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Oceans represent an extraordinary source of resources that needs to be preserved while
being exploited. The blue economy lies at the basis of the future of human society because
it aims at developing a sustainable and renewable economy, getting benefits from the
ocean while reducing pollution and waste. Hence, improving our understanding of ocean
processes and their changes, as well as how ocean resources are affected by anthropogenic
activities is crucial.

Within this framework, the continuous, updated, and synoptic monitoring capabilities
provided by Earth observation instruments play a key role. Nowadays, an unprecedented
amount of large-scale and long-term information is available that can support decision
makers, environmental agencies, business companies, and local authorities in the man-
agement of ocean resources. Remote sensing tools operating on different platforms (e.g.,
satellite, airborne, unmanned aerial vehicle (UAV), shore-based) at different frequencies
(e.g., microwaves, infrared, visible) provide the unique chance of generating added-value
products, retrieving geophysical parameters of interest, and boosting the knowledge of
ocean processes and marine awareness.

In this special issue, several topics have been addressed that deal with the remote sens-
ing of the ocean for blue-economy-supporting and marine-pollution-monitoring purposes.
The articles published in this special issue cover:

• Detection of targets such as marine raft aquaculture, moving vessels, and the
shoreline [1–3];

• Observation of spatio-temporal pattern of oil spills and coastal marine litter [4–6];
• Study of natural sea processes, including typhoon-induced storm surges, sub-mesoscale

eddies and migration of the along-slope counter-flow [7–9];
• Analysis of scattering and spectral properties of the sea surface [10,11].

Those goals have been pursued using multi-platform and multi-frequency remote
sensing tools together with theoretical models, numerical simulations, and in-situ measure-
ments. Most of the study exploited satellite data, including microwave–synthetic aperture
radar (SAR) imagery collected in single-, dual- and quad-polarimetric imaging modes,
radar altimeters [1–5,7,11], and optical–spin-scanning radiometers and spectroradiome-
ters [7,8]. Other studies used airborne or shore-based sensors, including UAV cameras
and high-frequency (HF) coastal radars [6,9]. Numerical tools and simulations were also
considered in [3,4,8–10], while in-situ information was exploited in [5,7,8].

Further details on material and methods addressed in the articles published in this
special issue, together with the main outcomes those studies achieved in the context of
blue economy and marine pollution, are presented as follows:

In [1], single-polarization (under vertical transmit) C-band Sentinel-1 SAR satellite data
are exploited to detect marine raft aquaculture in coastal areas. To this aim, a segmentation
network combined with a non-subsampled contourlet transform is proposed to extract
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the sea area covered by the raft aquacultures. It was pointed out that interferences due to
significant sea waves can reduce the effectiveness of the proposed method.

In [2], the problem of shoreline extraction is addressed by means of single-polarization
(under horizontal transmit) C-band spaceborne Radarsat-2 SAR images. An improved
geometric active contour model is proposed, which resulted in a fast, stable and accurate
extraction of the land/sea boundary.

In [3], a new method to improve the refocusing of moving vessels under high sea state
conditions is proposed. Experimental results, performed on C-band Gaofen-3 SAR satellite
imagery, showed that the adaptive time-frequency analysis based on the particle swarm
optimization results in an increased and faster global convergence and better processing
effectiveness and robustness.

In [4], the monitoring from space of marine pollution due to oil spills is addressed.
Simulated compact-polarimetric SAR data are considered for the analysis and were col-
lected from Alos PalSAR-1 (L-band), Radarsat-2 and SIR-C/X (C-band) satellites over ocean
slicks of known origin. A set of polarimetric parameters is investigated to identify actual
oil spills of natural origin and to distinguish them from oil look-alikes as biogenic films. It
was shown that scattering-based features are effective in oil spill detection and that, even
though the slant linear compact-polarimetric mode results in better detection performance,
the circular compact-polarimetric architecture is to be preferred to preserve the integrity of
the detected oil spill.

In [5], the problem of oil pollution is also considered. A novel approach, based
on a convolutional neural network and simple linear iterative clustering superpixel, is
proposed to classify sea oil spills from quad-polarimetric SAR measurements collected on
C-band by Radarsat-2 and SIR-C/X satellite missions. It was found that the simple linear
iterative clustering superpixel method significantly improves the classification accuracy,
especially for oil emulsion, and that, among the polarimetric features considered in the
study, the scattering model-based parameters derived from the four-component Yamaguchi
decomposition results in the highest classification performance.

In [6], the pollution of marine coastal areas due to anthropogenic debris, including
plastic and metal objects, is investigated. The spatial and temporal patterns of marine
debris accumulation along the beaches are analyzed by means of cameras on-board a UAV.
Results showed that the equilibrium of the accumulation process depends on the season
and on the size of the debris and that it can be significantly affected by extreme events,
such as floods. A fairly good agreement between the UAV observations and the standard
manual counting is found for medium-/large-size litters, while discrepancies were found
for small-size objects, which is likely attributed to the transparent, buried, or hidden nature
of such debris.

In [7], a study on the spatiotemporal variations of the along-slope counter-flow off
northeastern Taiwan is investigated by means of satellite data and in-situ observations.
A synergistic approach is followed, which integrates geostrophic velocity from radar al-
timeter data from the Archiving, Validation, and Interpretation of Satellite Oceanographic
data, sea surface temperature measurements from the moderate-resolution imaging spec-
troradiometer, the re-analysis ocean data from the assimilative global Hybrid Coordinate
Ocean Model, and horizontal velocity records from a mooring acoustic Doppler current
profiler. It was observed that the along-slope counter-flow in the subsurface layer was
remarkably uplifted and lowered with this phenomenon that was closely linked with the
Kuroshio intrusion.

In [8], the impact of tropical cyclone size on storm surges in semi-enclosed areas is
addressed. Typhoon information from meteorological satellites, data from tide stations, and
simulations performed according to a finite-volume coastal ocean model were considered
for the study. It was found that the size of the tropical cyclones is a key parameter that
must be accounted for when predicting marine-economic effects and risk assessment. The
highest storm surges occur at maximum wind speeds of 40–45 m/s, while the radius of
maximum wind only affects the inner area of the typhoon. The peak surge values have
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been found to approximately follow a linear trend with respect to the seven-level wind
circle range.

In [9], HF coastal radar observations of the sea surface current velocity field are used
to detect sub-mesoscale eddies in an unsupervised way. A novel algorithm is proposed
to overcome the drawbacks due to the high non-geostrophic winds of the observed sea
surface currents, therefore resulting in the detection of eddies characterized by significant
asymmetry. It was shown that the proposed method allows estimating the eddy boundary
profiles and spatial distribution effectively.

In [10], theoretical advancements on the scattering mechanisms of the sea surface
when observed by HF and very HF airborne radars are presented. Once the sea surface
height has been expressed as the superposition on linear and non-linear wave heights,
numerical models are used to simulate the sea surface normalized radar cross section
according to the small perturbation method under different environmental and radar
imaging parameters and to derive the first- and second-order sea-echo Doppler spectra.
The proposed model gives further insights on the sea surface scattering and the wave
height spectrum, also providing a theoretical baseline to design a potential airborne radar
for ocean surface remote sensing.

In [11], C-band Sentinel-1 satellite SAR measurements are exploited to analyze the
spectral signatures of low-backscattering sea areas. The latter can be due to several natural
and anthropogenic phenomena, such as oil spills, algal blooms, and low-wind areas. A
physically-based approach that relies on the inherent synthetic aperture radar imaging
characteristics of the sea surface with and without slicks is proposed to evaluate the signa-
tures of low-backscattering sea areas in terms of the auto-correlation function estimated
along the azimuth direction. Results showed that the presence of a low-backscattering
area at sea modifies the shape and the width of the azimuth auto-correlation function with
respect to the reference sea surface, and that oil spills result in the largest departure.
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on “Remote Sensing of the Oceans: Blue Economy and Marine Pollution”, as well as all the kind
reviewers who provided constructive comments and useful suggestions to the authors.
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Abstract: Unmanned aerial vehicles (UAVs) are becoming increasingly accessible tools with
widespread use as environmental monitoring systems. They can be used for anthropogenic marine
debris survey, a recently growing research field. In fact, while the increasing efforts for offshore
investigations lead to a considerable collection of data on this type of pollution in the open sea,
there is still little knowledge of the materials deposited along the coasts and the mechanism that
leads to their accumulation pattern. UAVs can be effective in bridging this gap by increasing the
amount of data acquired to study coastal deposits, while also limiting the anthropogenic impact
in protected areas. In this study, UAVs have been used to acquire geo-referenced RGB images in a
selected zone of a protected marine area (the Migliarino, Massacciuccoli, and San Rossore park near
Pisa, Italy), during a long-term (ten months) monitoring programme. A post processing system based
on visual interpretation of the images allows the localization and identification of the anthropogenic
marine debris within the scanned area, and the estimation of their spatial and temporal distribution
in different zones of the beach. These results provide an opportunity to investigate the dynamics
of accumulation over time, suggesting that our approach might be appropriate for monitoring and
collecting such data in isolated, and especially in protected, areas with significant benefits for different
types of stakeholders.

Keywords: unmanned-aerial-vehicles; UAVs; anthropogenic-marine-debris; AMD; beached-marine-
litter; BML; marine-protected-areas; MPA; ortho-photo; marine-pollution; accumulation-rate

1. Introduction

Interactions between geosphere and anthroposphere, in sensitive areas such as the land–sea
interface, are constantly evolving due to population growth and exploitation of natural resources.
Therefore, the growing problem of the accumulation of anthropogenic marine debris (AMDs, or marine
litter–ML), especially in isolated/protected coastal areas, is one of the emerging problems of recent
decades. The interest in AMDs pollution in recent years has led to a significant increase in data related
to such material in oceans [1]. In the Mediterranean area, the increasing knowledge of the concentration
and type of ML [2–7] and the increasing efforts to survey off-shore areas, have not been accompanied by
an equally increasing knowledge of the sources, composition and distribution of materials deposited
along the coast (beached marine litter, BML), and the mechanism through which they accumulate in
particular coastal areas. A long stay on the coast of BML can cause considerable damage. Especially

Remote Sens. 2020, 12, 1260; doi:10.3390/rs12081260 www.mdpi.com/journal/remotesensing5
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plastic objects left on the beach for months/years are subject to photodegradation at a higher rate than
expected if they were at sea [8,9]. Rapidly fragmented, reduced to meso-plastics (5 mm–2.5 cm) and
micro-plastics (MPs, ≤ 5 mm long), they mix with the substrate and can produce a stream of particles
flowing into the sea [10–12] adding to those directly released by rivers, which are key agents in the
release of macro and micro marine litter in oceans [13,14]. There is an urgent need to develop new
methods of spatial and temporal mapping of beaches to identify the areas of greatest accumulation,
quantify the abundance and types of material, and trace their origin, in line with the protocol and
standard monitoring strategies [15–19]. Numerous studies have reported that 80% of waste present in
the sea is probably of terrestrial origin and rivers also seem to play a key role in the transport of debris
from land to oceans [20]. Therefore, it becomes important to estimate the flow of material transported
by water courses and its impact on the areas surrounding the river mouths. So far, few studies have
investigated the transport, deposition, and accumulation of AMDs through internal water. To better
understand this problem, monitoring actions are needed to verify how rivers transport AMDs and
how they affect coastal deposits. These surveys should collect data in a consistent manner throughout
the investigated territory, in one or more seasons, and with different replicas, trying to correlate the
data obtained with the anthropic impact (urbanization, presence of parks and protected areas) and
with the morphological characteristics (rivers, ports, types of beaches) of the area. Particularly at risk
are the MPAs, which often suffer from a large influx of AMDs, as they are located in or near densely
populated and industrialized areas. AMDs in protected coastal areas are often difficult to clean from
waste due to the inherent difficulty of reaching these isolated areas that are not served by roads or
facilities, and also due to regulations that limit human intervention. In this context, the use of aerial
survey could be a valuable aid. To get the best results from aerial survey processing it is important
to choose the right scale [21]. Since the highest resolution of commercial satellite images is about
0.3 m (WorldView-4), this platform is not the most suitable for observing beach waste [22]—a spatial
resolution below decimeter is required and UAVs, especially commercial UAVs, have proven to be
effective in this respect. The longer battery life, the ability to plan automatic flights with easy-to-use
ground station software, and their small size are real advantages, and the structure from motion
algorithms (SFM) allow accurate digital elevation models (DEM) and ortho-mosaic terrain models
over large areas. Today UAVs are increasingly accessible and have widespread applications, such as in
environmental monitoring systems for agroforestry, structural geology, archaeology, marine habitats,
supervised hazards, and accidents [23–39], and recently also in monitoring ML on the coast [40–44]
or that floating in rivers [45]. These studies are not uniform with regard to the data processing
procedures, ranging from visual interpretation of images [42] and analysis of the spectral profile of
litter [46], to the use of machine learning methods [43,44]. Moreover, since this is an “emerging field of
study”, there is no single standardized protocol for data acquisition and processing, but only a few
suggested protocols [42,43]. The difficulty of developing scalable procedures that do not depend on
local environmental constraints, is also due to the different objectives to be achieved. In any case,
most of the studies carried out focused on the detection of BML stocks, especially in isolated areas.
The advantages offered by UAVs, in terms of survey resolution and repeatability, are particularly
suitable for the purpose we are interested in, that is to study the model of aggregation and distribution
of BML in such remote areas, and are particularly useful to monitor the most sensitive areas, such as
protected areas. So far, little attention has been paid to the long-term study of a particular area in
order to understand the dynamics of BML deposition, and to obtain the rate of accumulation and the
variability of spatial distribution over time. The vertical spatial distribution (cross shore) of debris on a
beach has its own dynamics, which is strongly influenced by the physical processes determined by the
wind and waves on the beach profile. Therefore, to understand this phenomenon, it is important to
monitor it over a long period, with frequent sampling [46,47]. The “manual” collections and cataloguing
of BML are the usual way of carrying out such monitoring, but they take time and involve many people.
UAVs can reduce both monitoring time and human staffing requirements. For this reason, starting
from April 2019, we have implemented a pilot monitoring program through UAVs in the Migliarino,
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Massacciuccoli, and San Rossore (SRPRK) park, a marine protected area with 34 km of protected
coastline, north of the mouth of the Arno river. We planned to use UAVs to acquire geo-referenced
RGB images in a selected area about 100 meters long, from the dune crest to the low-tide terrace
(shoreline base), during a one-year monitoring program (about two recognition flights per month). For
each monitoring and image acquisition date, a post-processing system allowed the localization and
identification of BML within the area scanned by ortho-photos. A specially created software for pattern
recognition (based on visual interpretation of the images, [42]) provided the estimation of typology,
quantity, density, and position of the identified items (see Material and Methods).

The UAVs used in this study were in the ‘multicopter’ category, and in the ‘light’ and ‘very light’
classes, and had an autonomy of about 30 minutes of flight, sufficient for the purposes of our current
survey, as suggested in previous studies [42,43]. In our case, each flight allowed us to cover the entire
selected area (100 m × 15 m), even considering that it used a conservative approach with high overlap
between images and a “stop and go” shooting method that increased the overall flight time.

In this specific area, where there are airworthiness constraints due to the presence of a control
traffic region (CTR), flight missions were allowed at specific heights provided for by the regulations;
in any case, a resolution of at least 2/2.5 cm/pixel (and even higher) would be guaranteed, which would
be sufficient to recognize even the cotton buds or caps, i.e., the small BML typically present on beaches.

2. Materials and Methods

2.1. The Study Area

The target area was the afitoic backshore of a stretch of sandy beach inside the marine protected
area of SRPRK. This area, located between the two rivers Arno (N 43◦40’47.408”, E 10◦16’40.466”) and
Serchio (N 43◦47’1.704”, E 10◦16’0.016”) is affected by the marine current that goes from the mouth
of Arno to the north, with a considerable transport of fluvial material. The Arno River is, in fact,
an important Italian water course that crosses the Tuscany region, running through large cities like
Florence and Pisa, and industrial and production centers such as the province of Prato and Pontedera.
The limitation to tourism in this area of the Park allows the study of the dispersion of marine debris
and its accumulation on the coasts, caused by natural and meteorological events, as there is no direct
contribution to such accumulation by human presence. This site is in fact located within the area
“A” of SRPRK, which means there is an absence of tourism throughout the year. Access to this area
is forbidden from both land and sea, and access is only allowed for research purposes. In summer,
some excursions are made with environmental guides, but only on a few specific paths and never
beyond them. The beach is a “natural” beach, with a dune cordon parallel to the coastline that delimits
the hinterland. In our case the foreshore is very small, given the weakness of the tidal phenomena,
as on most of the coasts of the Italian peninsula. We have taken into account the maximum extent of
the tide in this area when choosing the points of our stretch of beach (10◦16’40.70” E 43◦42’55.07” N;
10◦16’42.12” E 43◦42’51.86” N; 10◦16’41.68” E 43◦42’51.74” N; 10◦16’40.23” N. E 43◦42’54.93” N), such
that it started at the edge of the “swash zone” (wave run-off zone). The size of the selected area was
about 100 meters long and 15 meters wide, with a south-west exposure (Figure 1).
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Figure 1. Geographical location of the stretch of beach studied, on the Northern Italian coast (coordinates:
10◦16’40.70” E 43◦42’55.07” N; 10◦16’42.12” E 43◦42’51.86” N; 43◦42’51.86” N; 10◦16’41.68” E
43◦42’51.74” N; 10◦16’40.23”E 43◦42’54.93”N). Maps created by using QGIS 3.12 [48], @OpenStreetMap
Contributors [49] and Geoscopio WMS service by Regione Toscana [50].

2.2. Characteristics of the Used UAV

In the present study the Phantom 4 PRO v2 quadcopter [51] was used. It is a commercial UAV
suitable for this type of application, thanks to the good resolution of the camera (5472 × 3078 pixels,
which, flying at 6 meters above ground level allowed us to reach the theoretical value of
0.16 cm/pixel—with perfectly flat ground and in the best conditions—and, in our case of not perfectly
flat ground, 0.18 cm/pixel), the compactness of the aircraft, and flight stability. It had a titanium and
magnesium alloy structure, increasing the strength of its frame and reducing its weight; together with
the good battery capacity (5870 mA), this gave a flight time of up to approximately 30 minutes. It had
a gimbal three-axis stabilized camera with a 1-inch 20-megapixel CMOS sensor (Figure 2), capable of
shooting up to 4K/60 fps video and photo bursts, at up to 14 fps. The gimbal was set to −90◦ to look
at nadir. This allowed it to capture photos perpendicular to the direction of flight. It was equipped
with HD video transmission capable of reaching a maximum range of 7 km. The correct position
management was obtained thanks to two satellite tracking systems: GPS and GLONASS. The use of
UAVs for 3D mapping of the terrain or sites has the advantage to access utilities, like waypoint mapping
for identifying the surveyed area and flight path planning and control, provided by third-party
applications. Three sets of dual vision sensors formed a 6-camera navigation system that worked
constantly to calculate the relative speed and distance between the UAV and any object; this system
allowed it to fly more safely and avoid obstacles along the way. A remote controller allowed a pilot
to control the flight of the UAV; a smartphone (or tablet) could be connected to the remote controller
to view the camera, read the telemetry, and enable automatic functions. The maximum speed was
72 km/h and the maximum control range was 7 km from the driver. The UAV operated automatically
using the Drone Harmony (DH) ground station software (see Section 2.4). The mapping and modeling
of the aerial photography area was selected during the configuration process, and the flight plans
were selected. The automatic process of the mission included take-off and landing, route planning
and calculation of the corresponding spatial resolution of the flight altitude, which were displayed
on the screen. Establishment of flight altitude depended on the spatial resolution we wanted. As the
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number of pixel per item depended on the type of object (our test gave 20–30 pixel for a bottle cup,
18–22 pixel for cotton-buds, and 40–50 pixel for a spoon) with best light condition and since these
conditions were not always present, we tried to increase the resolution by acting on the flight altitude,
so as to guarantee at least twice the pixel/item values previously tested.

Figure 2. (a) Sensor characteristics of the DJI Phantom 4 PRO v 2.0; (b) parameters for calculating
the distance of the sample to the ground: sensor diagonal size (d), focal distance (f), field of view (α),
ground diagonal (Dt), and vertical ground distance or flight height (h). With this choice, a spatial
resolution of 0.01–0.03 m was obtained, which was sufficient to recognize the smallest macro beached
marine litter (BML).

Once the flight altitude of the UAV was established, the ground sample distance (GSD) was
calculated using the parameters in Figure 1 and Equations (1), (2), and (3):

α = 2 × atan(d2/f), (1)

where α is the field of the view angle, d2 is half the diagonal of the sensor area, and f is the focal distance,

Dt = h × tan (α/2) × 2, (2)

where Dt is the ground diagonal, h is the vertical ground distance, and α is the field of view angle,

GSD = Dt/n, (3)

where GSD is the ground sample distance, Dt is ground diagonal, and n is number of pixels.

2.3. Survey Realization

After having identified and delimited the coastal profile of the study (a stretch of about 100 meters
in length and 15 meters in depth, starting from the coastline to the dune area), we established the flight
plans and the take-off/landing points for the UAV (Figure 3). These plans must have guaranteed the
necessary resolution, the respect of the autonomy of the aircraft, the compliance with the regulations in
force, and the acquisition of photos with overlap of at least 70%–80%. This overlap level ensured a
greater precision during the preparation of the ortho-mosaic. In fact, by using a low altitude flight,
the scanning area for each photogram was limited (8.76 m × 5.84 m) and an error of even 1 or 2 meters
could have had a big impact on the photogrammetric reconstruction. A high overlap, therefore,
compensated for this fact, and also allowed us to get a better 3D reconstruction.
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UAVs operating in the multicopter category and in the “very light” classes had an autonomy of
about 25/30 minutes of flight. In order to have the maximum resolution in the photos, a flight altitude
of 6 m was chosen. Using this configuration, we got a ground sampling distance (GSD) of 0.18 cm/pixel.
In addition, specific precautions were used to ensure optimal image capture: 1 m/s speed with a “stop
and go” mode for each shot, to ensure shooting in a stationary position due to low flight altitude and to
avoid blurred photos; with the manual focus set to infinity (i.e., autofocus disabled) to avoid variations
in focus; initial exposure setting of autoexposure (AE) was disabled to avoid variations in brightness.
In the specific study area, several scans were performed using UAVs. For each scan, the specific
software (Agisoft Photoscan Professional) provided the alignment and creation of an orthophoto for
the entire area. The memorization of the flight plans allowed the replication of the scans at a later
time, keeping the same areas of interest and the established take-off/landing points. We used the Litchi
application to manage the storage of the flight plan; if the conditions required landing before the end
(for example due to the sudden occupation of the airspace), the Litchi application allowed you to
resume the flight from the point where it was interrupted.

After the initial scan of the monitoring program (12 April 2019), the removal of anthropic material
from the stretch of beach considered was carried out, excluding only objects with a linear dimension
less than 2.5 cm (OSPAR protocol). The collected material was subsequently catalogued and counted
according to a protocol previously adopted in this type of monitoring; this protocol integrated the
Marine Strategy Framework Directives (MSFD) survey procedures [16], the OSPAR guideline [15] for
size and type classification of BML and citizen science contribution, involving volunteers, researchers,
and university students during beach cleaning operations, classification, and counting of objects
(SeaCleaner protocol [52,53]). As a result, we could compare and match the ortho-photo data with
those collected by standard manual surveys. A second survey was then carried out by acquiring
images immediately after the cleaning of the beach. From this date, every 10/15 days and for a period of
about 4 months, surveys were carried out with UAVs. The scanned images/videos were transferred to
the servers. A post-processing system that uses a pattern recognition software, located and identified
the different BML within the scanned area and estimated the accumulation rate of the different classes
of objects and dimensions and other parameters of interest. On 13 July 2019, the beach was cleaned
for the second time, the BML were catalogued and counted, and the procedure described was started
again for the second period of study.

(a) (b) 

Figure 3. (a) An example of a transect performed by unmanned aerial vehicles (UAVs) to obtain the
necessary images for the entire coverage of the area of interest, with an overlapping of the shooting
areas of the adjacent frames. (b) The stretch of beach investigated before and after the complete cleaning
carried out by researchers and volunteers.
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2.4. Image Acquisition and Processing

The software used for the automatic flight of UAVs was “DRONE Harmony”, a commercial
software (free to use only for one month) that can perform several operations (to create the flight plan
necessary, to capture the photos, etc.) in a simple and accurate way [54]. The total acquisition time
of all images of the studied area, on each date, was about 21 minutes. The speed of the flight was
2 m/s, but the total acquisition time increased because the “stop and go” mode option was used at each
selected point for the photographic acquisition. The photogrammetry technique was used to define the
position, shape, and size of the objects on the ground, using the information contained in appropriate
photographic images of the same objects, taken from different points. The photos were in fact taken
such that there was an overlap between the adjacent frames, with a coverage of about 70% or 80% (see
Section 2.3). This technique can be used both at the ground level and in aerial mode, and allows the
obtainment of a 3D reconstruction of the objects (Figure 4), whose potential, even if not exploited in
the present study, could be useful for several applications (Supplementary Material B).

(a) (b) 

Figure 4. Photogrammetry technique allowing the 3D reconstruction of the objects. By precisely
knowing the position of the homologous points A’ and A” on the two photographs, and the spatial
position of the two sectors and the two perspective centers O1 and O2, the point A remains geometrically
defined, since it is the intersection point of the two projecting rays r1 and r2 connecting the two
homologous points with the perspective centers (b). This does not happen with a single photo shoot (a).

In our specific application, we used Agisoft Photoscan, a standalone software product that
performs photogrammetric processing of digital images and generates 3D spatial data for use in GIS
applications, cultural heritage documentation, and visual effects production, as well as for indirect
measurements of objects of various scales. The use of this software allows us to obtain ortho-mosaic,
a calibrated image that constitutes the ortho-rectified mosaic of the entire area covered by the scan.
We also obtain the digital elevation model (DEM), with the aim of estimating the height variations of
the ground that must be used to correct the dimensional measures of the objects (see Figure 5).
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Figure 5. Orthophoto (a) and digital elevation models (DEM) (b) of the study area, with the profile of
the beach corresponding to the central point of the sampled transect (c). Distances and elevation are
indicated in the image, with the dotted line that delimits the study area inside the beach.

2.5. Data Acquisition from Images and Data Analysis

After data collection, the image sets were processed by Agisoft Photoscan for the generation of
dense points cloud and Digital Terrain Models. GPS information extracted from the EXIF (EXchangeable
Image File) information of each image file was used to create a georeferenced ortho-photo map
(ortho-mosaic), with a resolution of 0.18 cm/pixel. Once the ortho-mosaic was obtained, it was possible
to extract the data of interest for this study. We were mainly interested in obtaining an estimate
of the spatial coverage of the monitored stretch of beach, over time, by the BML. This involved
the knowledge of the surface occupied by the surveyed objects, and not only their possible type
identification (material), the standard linear dimension and the numerical estimate [15,16]. For this
reason, we decided to develop a semi-automatic software (waste mapping, WM) to quantify the
waste detected with the ortho-photos acquired with aerial survey. This software (currently only
available for internal use, but we plan to share it within the concerned scientific community when
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we have concluded the necessary updates) was developed for the most popular operating systems
(Windows, OSX, Linux); it could load an ortho-rectified image of the analyzed area and also offered
analysis tools on it. The image must contain some acquisition data as ground sample distance and
geographic coordinates; if not available, these data could also be entered manually. The user had a
cursor which identified the presence of the object; subsequently, the user could have an automatic
drawing of the shape of the object, but, if it did not work (overlapping objects, unclear image, noise,
etc.), he could manually carry out the drawing; the user then associated the object with a class (plastic,
metal, multi-material, etc.). Once these operations were performed on the whole image, the software
estimated the number of objects, GPS position, area, and principal linear dimension of each object,
and then calculated the properties of the objects: total number for each material type (plastic, glass,
metal, etc.), total number for each size category, both in terms of standard linear dimensions and
measured area, also expressed as a pseudo-color map. This visualization of the local density of BML
(local percentage of area covered by the objects) was obtained in the following way—the whole stretch
of the beach was divided into 32 × 6 rectangles, each measuring 3.125 m × 2.5 m = 7.8125 m2: = TA (see
Section 3.1 for the results of this visualization methods). Then, for any rectangle of beach, the local
density surface area (DA) would be DA =

∑
OAi/TA, where OAi is the object coverage area, with i

varying from 1 to n; n = total number of detected objects inside the considered rectangle.
All information obtained through the WM software could be exported to a CSV (Comma Separated

Values) file and managed by other processing software. The effectiveness of this evaluation method
was validated by distributing a defined number of objects of a known size (surface area and linear
dimension) on the same stretch of beach (Figure 6a,b, and Figure 7c,d) and then analyzing the WM
errors in identifying the sizes and the number of the same objects. Thus, we evaluated the errors in
percentage terms:

• PES = (Sm-Sa)/Sa × 100 where PES is the percentage error on size (object surface area) estimation,
Sm is the measured object size, Sa is the actual object size;

• PEN = (Nm-Na)/Na × 100 where PEN is the percentage error on the number of objects estimation,
Nm is the measured object number, Na is the actual object number.

Figure 6. Error evaluation on items size (object surface) estimation. (a) Part of the whole study area;
(b) zoomed-in view on the portion of beach used for validation, of about 18 m2; (c) boxplot of percentage
error (PES) per size class (in m2). PES was calculated using Microsoft Excel and boxplot were made with
R 3.4.1 software for windows (https://www.r-project.org/). Defining PDs the “percentage of detected
objects by UAVs”, we obtain that PDs is 100–PES.
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Concerning the object surface area estimation, in Figure 6c we can see how the relative error grows
with a decreasing size class, but it is still quite small for all classes. For item counting, the relative errors
were classified according to the linear size of the objects, because it was the same classification used
during the standard manual monitoring (see Section 3.3). Additionally, in this case, the percentage
error increased while the size class decreased (Figure 7c). The validation of this method was done in
the best possible weather conditions (Figure 7a), but we also showed, in Figure 7b, how the ortho-photo
image could be in the worst weather conditions (wind, change of brightness, etc.). In this case the
relative error increased, especially for smaller objects.

Figure 7. Error evaluation on items counting estimation in (a) good weather condition; (b) a
case of possible bad weather/not optimal visual condition; and (c) boxplot of percentage error
in items counting (PEN) per size (linear dimension, following OSPAR guidelines prescriptions).
PEN was calculated with Microsoft Excel and the boxplots were made with the R 3.4.1 software for
windows (https://www.r-project.org/). PDN indicates the percentage of detected objects by UAVs;
PDN = 100 − PEN.

3. Results

From April 2019 to January 2020 we carried out 17 total recognition flights of the studied area,
within the SRPRK, near Pisa, Italy. For each flight, we have elaborated and realized an ortho-mosaic.
The visual screening of each ortho-mosaic took about 60–80 minutes, and was carried out using our
WM software, which allowed us to obtain different types of information.

3.1. Two-Dimensional Distribution of BML on the Beach

WM enabled us to estimate the size of the classified objects in terms of the surface area they
occupied, to visualize the amount and the distribution of BML over time in the different zones of the
beach (Figures 8 and 9), and to investigate the dynamics of their accumulation over time (Figure 10).
This is an aspect that, to our knowledge, has not been previously investigated using UAVs.
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Figure 8. Variation in beached marine litter surface coverage of the monitored area, over time, for the
first temporal period (from April 2019 to July 2019). The sequence of strips, from (a) to (e), shows
the beach before the first total cleaning in (a), immediately after the first cleaning in (b), and at the
following dates of our monitoring in (c), (d), and finally (e), after 90 days. The correspondent dates
were: (a) 15 May 2019; (b) 24 May 2019; (c) 04 June 2019; (d) 25 June 2019; and (e) 13 July 2019.
The accumulation of waste is displayed both qualitatively and quantitatively using a color gradation,
which corresponded to the percentage of the surface area covered by the objects in relation to the total
area. The sequence shows the pattern of spatial and temporal distribution, with a clear increase in
waste accumulation in the upper part of the strips (the dune zone).

Figure 9. Variation in beached marine litter surface coverage of the monitored area, over time,
for the second temporal period (from half July 2019 to January 2020). The correspondent dates were:
(a) 19 July 2019; (b) 21 August 2019; (c) 18 September 2019, (d) 03 October 2019, (e) 20 November 2019,
(f) 11 December 2019; and (g) 17 January 2020. As in Figure 8, the pattern of spatial and temporal
distribution highlights the accumulation of waste increasing in the upper part of the strips (dune zones).
In strip (e) the “footprint” of the Arno flooding, that occurred during the correspondent time period,
is evident.
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Figure 10. Accumulation trend of the BML with time for both time periods studied, starting from a
“completely clean beach” situation, for the different size classes (a,b,e,f), in terms of the total number
of elements accumulated (c,g) and the total area covered (d,h). The time, in the x- axes, for both
periods starts from ‘0’, which represents the date of total beach cleaning. The points correspond to
the acquisition dates of the orthophotos (graphs on the left: 12 April 2019; 15 May 2019; 24 May 2019;
04 June 2019; 25 June 2019; 13 July 2019; graphs on the right: 13 July 2019; 19 July 2019; 03 August 2019,
21 August 2019; 18 August 2019, 03 September 2019, 20 November 2019, 11 December 2019, 17 January
2020). The “burst” detected on 20 November 2019, following the flood of the 15 November 2019 is well
visible. Data collected before the first cleaning (12 April 2019) of the monitoring programme, that were
not included in the graph, are the total number of items (203 items) and the total waste area (2.141 m2).

Figures 8 and 9 show the distribution of the density (percentage of covered area) of beach waste
in the studied area and its variation over time, from April 2019 to July 2019 and from July 2019 to
January 2020, respectively. By using a color gradation to represent the amount of covered surface (see
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Section 2.5), it was possible to highlight both qualitatively (visually) and quantitatively (percentage
of covered surface) how the accumulation changed with time. In Figures 8 and 9, therefore, for
both temporal periods, the initial “random” pattern of BML assumed, and with time, an increasingly
precise connotation with a greater accumulation (red/yellow) mainly located near the dunes clearly
emerges. The fact that in this type of beach most of the debris is in the area towards the dune was
already highlighted by other studies, including those carried out using UAVs [43]. The new results
that emerged from our long-term programme were the time-series that allowed us to obtain the trend
of BML accumulation over three or four months, starting from a cleaned-up beach. In our opinion,
these data are important because they can contribute to the understanding of the dynamic mechanisms
that determine the “vertical” (cross-shore) distribution of BML observed on beaches.

3.2. Quantity, Typology, and Accumulation Rate of BML

Another important result obtained from our long-term monitoring programme is the estimation
of the quantity of waste accumulated over time and its rate of accumulation, for different size classes
of BML and for two different periods (spring–summer and summer–autumn).

In Figure 10, the graphs on the left side refer to the first period (spring–summer). Figure 10a,b
show the number of objects deposited on the studied stretch of beach with time, for different size
(surface area) classes (Figure 10b is just a zoomed-in view of Figure 10a). Figure 10c shows the total
number of objects accumulated with time, while Figure 10d shows the total surface covered by BML,
with time. Figure 10e–h show the same graphs but for the second period (summer–autumn). Looking
at graphs (a)–(e), we note that, starting from the date of the total cleaning of the beach (date “0” for
both periods), there was a progressive increase in waste on the beach for all size classes in the first
months. Unfortunately, during the first period (spring–summer) we could not monitor frequently
during the first month and, therefore, we did not have any data in the first 30 days, as can be seen in
Figure 10b. On the contrary, the more frequent data-acquisition flights that were performed in the
second period (summer–autumn) highlighted a clear general fast growth of items of all size classes
in the first ten days (Figure 10f). Then, up to 40/50 days from the cleaning, this initial common steep
growth changed to a less fast growth or, for some size classes, to a decrease. Finally, from the third
month (around 60–80 days), the accumulation seemed to be in an “almost-flat” phase, with no or very
low growth in the total quantity of items, for almost all size classes. The range of 10–40 days after
the full beach cleaning was the one in which major changes in the accumulation occurred, depending
on the size class. After 40 days, the growth continued, but at a much lesser rate, especially in the
first period (spring–summer), both for the total number of objects and for the total area covered
(Figure 10c,d). The second period (summer–autumn) was characterized, in its final phase, by an
anomalous accumulation due to a flood in the Arno river, which occurred on 15 November 2019.
During this extraordinary event, there was a large increase in the flow rate of the river, with a peak of
1473.75 m3/s compared to the previous period (mean flow of 33.44 m3/s, with a minimum of 8.7 m3/s,
and a maximum of 121.1 m3/s). In addition, a strong south-west wind (Libeccio) was recorded, with
a maximum peak of 86.4 Km/h and an average daily value of 50.1 Km/h, just in the direction of the
coast [55]. Parallel to the increase in the transport of solids from the river and their discharge into the
sea [20,45], the effect of the wind must also be taken into account, which prevents their dispersion
offshore but, instead, helps to push them towards the coast where they accumulate on the beaches.
Our monitoring, which took place on 20 November 2019, i.e., immediately after this flood, showed a
huge increase in the number of stranded materials, highlighted both in Figure 10 (dotted line) and
Figure 11, and through the high density and uniform spatial distribution of BML displayed in Figure 9e.
In the following monitoring dates, we could observe a return to the pre-flooding values, both of the
quantity and of the spatial distribution of the BML, as evidenced again in Figures 10 and 11 and in
the last strip of Figure 9, corresponding to our last survey (17 January 2020). The data concerning
the number of BML, obtained during this last survey (performed in January 2020), are reported in
Figure 10 and included in Tables 1 and 2; from the Tables, and by comparing graphs (c) and (g) of
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Figure 10, it can be noted that the amount of BML in the autumn and winter season was higher than
that found in the previous seasons (spring–summer). The survey of 17 January 2020 thus concluded
the second studied time-period (summer–autumn) with a considerable delay, as it was impossible for
us, after the last monitoring on 11 December 2019, to carry out other surveys with UAVs, due to the
continuous bad weather conditions, which lasted until mid-January 2020.

 

Figure 11. Histogram of the total surface area covered by BML for the different survey dates of the
temporal period summer–autumn. Note that the time gap between different dates is not constant.

3.3. Comparison with “Standard” Survey Results

Standard monitoring campaigns were carried out during our long-term monitoring program with
the help of volunteers, citizens, researchers, and students, following the SeaCleaner protocol [52,53]
(which meets the MFSD survey procedures [16] and the OSPAR guideline for size and type classification
of BML [15]). To date, three beach cleaning operations have been carried out—at the beginning of the
first period (12 April 2019), at the beginning of the second period (13 July 2019), and at the beginning
of the third, for which data acquisition has not yet been completed (17 January 2020). The cleaning
and cataloguing operations take about one full day for each date of monitoring. Tables 1 and 2 show
the results from the manual standard survey of the studied beach, compared with the one obtained
from ortho-mosaic.
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In a 1500 m2 transect on 12 April 2019, we detected a total of 943 objects through a standard
manual census, while the visual screening of UAV orthophotos, for the same area, reported 203 objects.
Thus, the percentage of litter identification, from images at an altitude of 6 m, compared to that derived
using the standard terrain assessment, was about 21%. At the end of the first monitoring period,
on 13 July 2019, 768 items with manual census and 151 items from UAV ortho-photos screening were
counted. Therefore, the probability of litter identification compared to the standard manual census,
was about 20%. At the end of the third monitoring period, on 17 January 2020, 1599 items with manual
census and 294 items from UAV ortho-photos screening were counted—which gave an 18% probability
of litter identification, compared to the standard manual census. From Table 2 we can see that the main
differences between the standard manual and the UAV concern the small objects, this is not surprising
and it agrees with what was observed in [43]. We must point out that the objects belonging to our
“small” category had dimensions between 2.5–15 cm, in line with the OSPAR prescription. Although
through the use of UAV and the other settings adopted, we would be able to detect even smaller
objects (up to 1 cm of average linear dimension), during data extraction using the WM software we
only counted BML included in the size of the “small” category, to be able to make the comparison with
data extracted from the manual census.

In Table 1, the major differences between UAVs and the standards results were mainly found
for the plastics and the multimaterial categories. This is because most plastics are small objects and
multimaterials are inherently difficult to identify, as compared to other well-classified BML.

4. Discussion

The visualization of the orthographic maps allowed the study of the two-dimensional distribution
of the accumulations (Figures 8 and 9), which was not feasible with the standard monitoring approach
(manual collection and classification of the objects). The information we got in this way confirmed some
previous results, such as the fact that BML accumulated prevalently in the dune zone [41,45], and was a
cause for concern as, in this area, there were semi-permanent structures (trunks, clumps of plants, etc.)
that contributed to retaining anthropogenic debris in the long-term, by hindering their return to the
sea, even in conditions of heavy storms. This favored their photo-degradation, which was faster on the
rather than the sea [8] and led to the consequent formation of meso and micro-plastics, [9]. However,
with our monitoring approach we were also able to evaluate the dynamics of the accumulation process,
and its dependence on the object sizes. In fact, Figure 10 shows that in the first ten days (the first time
range) there was a fast growth of the number of objects of any sizes. This was understandable, because
we started from a cleaned beach. Then, during the second time range (from 10 to about 60 days),
the dynamics was more influenced by the size of the objects (Figure 10b and especially Figure 10f).
Probably, the great variability that characterized this time interval was due to the different dynamic
equilibrium times, between deposition and removal, for objects of different size classes. From the third
month, the general trend was a regular growth with a dynamic that decreased a lot, for all size classes,
towards the equilibrium between deposition and removal, possibly disturbed by the occurrence of
sporadic events such as, in our case, the flooding of the river (Figure 10g,h). At the end of this last
period, it was not unusual to see a large prevalence of small objects: this agreed with the results
of previous manual surveys, which considered the size classes, carried out in the same area [53,56];
more generally this agrees with the fact that the number of macro-AMDs was higher when the size
was smaller, both at sea and on the coast. [55,57].

The predominance of smaller objects led to some issues concerning the counting method using an
aerial survey. In fact, despite the expected accuracy in counting beach objects (85%–100%, Figure 7)
with UAV, for small objects, the figure obtained when compared to the standard (manual) counting,
was quite different—about 15% (Section 3.3, Tables 1 and 2). This result agreed with that of Martin
et al. [43]; in particular that result shown in Table 2 They pointed out that “smaller items < 4 cm in
average linear dimension, were those that were not mainly recorded through aerial surveying (small
fragments, bottle caps, plastic rings, etc.)”. It is interesting to note that litter density estimates by
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Martin et al. [43] through aerial survey and manual image processing (0.27 items/m2) was in line, even
if slightly higher, with what we observed (Table 1). However, we must point out that their surveys
were carried out in a very different place from ours, so this agreement between the two measures could
only be fortuitous. As far as counts performed manually using the SeaCleaner protocol are concerned,
the numerical density values (items/m2) found (0.51–1.07, see Table 1) agreed well with those found
with the same protocol during previous surveys, in the same geographical area [53,56].

In any case, our work supported the conclusion of others [42,43], regarding the difficulty in
identifying the smallest objects through UAV. The reasons for this gap between manual and UAV
counting of small objects could be the following:

1. Hidden BML (for example under trunks or other objects) could be easily identified by human
inspection, while this was almost impossible for UAV;

2. Almost completely buried BML could be extracted by humans from sand, identified and then
counted, while UAVs cannot do the same, obviously;

3. Some transparent BML, especially fragments of plastic bags and thin films, are often not detected
by the UAV camera;

4. Small BMLs can be overestimated by manual counting. In fact, while for the protocol suggested by
the OSPAR macro-waste guidelines (to which our specific SeaCleaner local monitoring protocol
refers), objects smaller than 2.5 cm should not be considered [15,52,53,55], however, during
manual counting such small objects were often counted equally, contrary to the recognition and
counting by orthophotos.

In the course of this work, we have noted the importance of taking into account the occurrence of
extreme events, as evidenced by the “burst” in Figures 10 and 11, where the increase in the flow river
heavily affected the transport of the solid bodies by the rivers, and so influenced the accumulation
of BML [20]. It is interesting to note that, after this extreme event, the situation reverted back to that
similar to previous ones (Figures 10–12). The decrease in detected BML after the flood event was
due to the successive swells, i.e., the dynamics of the waves, which, even in “standard” conditions,
not only tend to accumulate, but also remove objects from the shoreline, tending towards a situation of
equilibrium. As a result of this, in normal conditions most of the waste is found in the dune area, where
the presence of trunks and plant material tend to prevent it from returning to the sea (Figure 12a).
During exceptional events, such as that of 15 November 2019 (Figure 12b), the enormous amount of
material transported and washed up on the beach produced situations such as that in Figure 12c, i.e.,
a significant increase in the number of waste, evenly distributed on the beach (Figure 10e). The waves
(and even more so the strong swells) that act in the period following this event, partly removed this
material, bringing the beach back to a situation similar to the previous ones with regards to the number
and density of BML, with the trash mainly accumulated in the dune area (Figures 9g and 11). In our
particular case, the heavy swells following the flood also contributed to a change in the conformation of
the beach, removing a part of the sand from the ordinary berm zone (the upper part of the beach, with
depositional features due to the accumulation of sediment caused by the waves, Figure 12d). Moreover,
the removal time of the plant material accumulated in the dune area was quite long—it was in fact
present, in a higher than normal quantity, even during our last monitoring, which was 32 days after the
occurrence of the exceptional event when the beach had recovered its standard conformation. This had
probably caused a greater difficulty in detecting the BML with aerial devices, with even relatively
large BML sometimes being hidden from aerial detection (see Point 1 above), as observed in our latest
census that showed a worse agreement between UAV and standard manual survey, also for “large”
and, especially, for “medium” objects, with respect to previous dates. A part of this small difference,
the percentage of BML identification with UAV compared to that derived using the standard terrain
assessment was very similar for all three dates reported in Tables 1 and 2, ranging from 18.39% to
21.53% for total item number, and from 18.69% to 20.63% for total density of items, indicating that the
bias described above (points 1, 2, and 3) always affect in the same way. However, our study was limited
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to a small stretch of beach (100 meters long and 15 meters deep), while extreme events also affected the
shape of all coastlines of SRPRK. Therefore, an effective understanding of the consequences of these
strong events should imply the study of a large portion of the coastline, also taking into account the
erosion phenomena.

Even if not quantitatively reported in this work, we have observed an effective role of the wind
influencing the special distribution of BML. This applies, in particular, to expanded polystyrene (EPS),
which is easily fragmented and, because of its very low density, it was conveyed by the wind more
than by the sea. Not surprisingly, from Figure 10 and also Tables 1 and 2, we noted that the amount of
BML accumulated during spring and summer was smaller than that during late autumn and in the
winter, which were characterized by stronger winds and larger swells.

The main task of the present work was to test a possible methodology for studying the coastal
dynamics of waste accumulation through aerial survey devices. Thus, our attention was more focused
on the study of accumulation dynamics in the coastal area rather than on the precision and detailed
cataloguing of the found objects, as done by other works [43,44]. However, we realized that the high
precision in object recognition could lead to a high accuracy even for its size (surface area) estimation,
a priority target for understanding the dynamic behavior of different classes of AMDs on the beaches
(Figure 10). Actually, the aerial survey size evaluation was intrinsically influenced by some errors
that led to an underestimation of the values. For example, as discussed in Point 2 of the list above,
and due to the fact that the area of a “flat” BML positioned in an almost vertical direction was highly
underestimated by UAVs, because of the almost fixed direction of view. The estimation of this bias
required a dedicated study.

Aerial surveys save time, compared to standard manual approaches to the BML study, even after
accounting for the time needed, in addition to mere monitoring, for image processing, labeling, and
imaging. In fact, covering even larger areas requires the work of only one person, and data extraction
by orthophotos requires no more than 2 hours of visual census, for each monitoring campaign.
Moreover, geo-referenced images can provide useful information that standard counting cannot
provide. The study of accumulation dynamics, like ours, requires two/three monthly monitoring
campaigns, repeated for 3/4 months. Many people should be involved in standard manual procedures.
This is probably the reason why data on the accumulation rate of BML are scarce in the literature.
The use of UAVs can, in our opinion, help to fill this gap. In addition to the pure scientific aspect of the
phenomenon, the knowledge of the accumulation behavior, possibly in different areas of the coast, was a
useful information for marine parks/protected areas (MPAs). Presently UAV technology, compared to
some years ago, is sufficiently low-cost and it can be foreseen that parks and administrations of MPAs
are equipped with such devices, with the patents/permits related to their use. The knowledge of the
time scale for the formation of the maximum stock of BML after the beach cleaning operation, could
help the MPAs and the local authorities to optimize the planning of the cleaning campaigns, minimize
the effort, and maximize the result, thus, preventing the degradation and fragmentation of most of the
material and the production of microplastics.
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Figure 12. (a) The beach before the sea storm of 20/11/2019 (normal conditions). (b) The beach during
the storm. (c) The beach 3 days after the storm. (d) The beach 10 days after the storm. At the time of
the last monitoring (17 January 20120, i.e., 32 days after the storm) the beach was returned almost to its
normal condition and conformation.

5. Conclusions and Further Improvement

The UAVs flying at a low altitude provided high resolution data, which was useful in detecting
plastic, metal, and other type of beached objects. Moreover, UAV allowed the repeatability of the
surveys in a short time, which was essential for the study of accumulation dynamics. Other important
advantages were the reduced anthropogenic impact (just one person for the survey) and the possibility
of obtaining 3D and 2D characterization of the monitored areas. Our pilot test to use UAVs for
monitoring spatial and temporal dynamic of BML accumulation in coastal areas that started in April
2019, proved to be a useful procedure. To our knowledge, this was the first case of using the aerial
survey methodology through UAVs to monitor the presence of BML on Italian beaches (Figure 7
of [40]) and the first case of using UAVs to estimate the accumulation rates of BML on beaches in
general. The results of our work showed that the dynamics and the equilibrium of the accumulation
process depended, in general, on season, but also on the size of the specific BML. Moreover, extreme
events lead to strong fluctuations, but the normal situation was quickly restored, for both the dynamics
and the equilibrium features. Observational evidence of this phenomenon, as well as that visible
in the peak accumulation of BML recorded by us (Figures 9–11), are available in our short film
“Before&3-10dayafter.avi” (Supplementary Material), which shows the situation of the beach before
the flood, three days after this extreme event and, finally, ten days after it.

The comparison between the UAV and standard manual counting (made according to the
SeaCleaner protocol [52,53], which met the MFSD survey procedures [16] and the OSPAR guideline for
size and type classification of BML [15]) showed a good agreement for “medium” and “large” size
objects (~67%–95%), while this was not the case for the “small” ones (~15%). The possible causes of
this discrepancy are analysed in the Discussion section.

Our study focused on the distribution of BML in the different areas of a stretch of beach, from the
coastline to the dunes. In a next work, we would like to analyze, with the same techniques, the dynamics
of accumulation on several stretches of beach of the entire coastline of the park. In this way, we could
provide information on the importance of both, the distance from the mouths of rivers (Arno and
Serchio) and the presence of possible obstacles in the process of accumulation of debris. To this end,
we are currently testing different types of UAVs and increasing the flight height (requesting the
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necessary clearance in advance). The objective was to increase the size of the scanned area for each
individual flight, losing a little of the detail, in the process. Ideally, we should do a lower resolution
scan on the whole coastal area of the park, and do a detailed analysis, like the one in this paper, on a
few randomly sampled areas.

As shown in Tables 1 and 2, besides the fact that UAV census counts are generally underestimated
for all categories of objects, it seemed that the recognition of some particular types was more difficult
and in our case was the “multimaterial”. As already pointed out in the Discussion section, although
the recognition of the object typology through UAV did not play a central role in the present work,
its importance in improving the effectiveness of the monitoring system (estimation of the count and
the surface/volume of the objects) had emerged. Therefore, we are trying to apply automatic systems
based on machine learning, as already tested by other BML recognition studies [40,41,43,44]. In order
to carry out a more accurate study of how coastal dynamics affect the accumulation of BML, it would
also be necessary to cross-reference the data obtained from AMD monitoring campaigns with those
related to sea and wind weather conditions, while accounting for extreme events, as far as possible.

The main difficulties encountered in this type of monitoring are, in our opinion and personal
experience, those common in autumn and winter due to adverse weather conditions; windy or
rainy days or heavy swells prevent the surveys from being carried out (see Figure 12) and might,
therefore, compromise the planned surveys (as for our last late survey of the summer–autumn period).
In particular, the flight operation must be suspended if it rains, the wind exceeds 10 m/sec and the
temperature exceeds the range of 0–40 ◦C. Operating near the shoreline, the force of the sea can produce
aerosol in the area–low aerosol levels can be managed with a simple cleaning, while high values
(present with rough seas and strong wind conditions) can damage the UAV and require extraordinary
assistance. Take-off and landing can raise the sand, which can damage the moving parts; it is therefore,
important to use an appropriate drone landing pad. Even sub-optimal light conditions (Figure 7) and
ground shading can affect the results–during the scan it is preferable to have a constant brightness,
therefore, the fast passage of clouds could produce variations of light that needs to be corrected in
post-processing. Another operational limit is the flight autonomy of the UAV, especially if one wants
to analyze large areas; in this case the APP Drone Harmony was very useful, because it managed the
interruption of the flight, the replacement of the battery, and the resumption of the flight starting from
the last position.

To date, the use of UAVs for BML monitoring had only just begun, and we think this work could
help to highlight its great potential. It is, therefore, foreseeable that UAVs would be widely used in the
future and would allow us to considerably increase the knowledge of the dynamics of accumulation
of BML on beaches, especially in coastal areas with difficult access and MPAs. The understanding
of the characteristics of this process and the possibility for acquiring a large amount of data, even in
real-time, combined with the relatively modest costs of these methodologies, would help allow, through
integrated programs, the different stakeholders involved in mitigation actions, citizencience, and
research activities, to work together to optimize beach cleaning actions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/8/1260/s1,
Figure S1: The figure summarizes the potential of the three-dimensional orthophoto reconstruction. In (a) a
relatively large section of the beach is shown, with the largest BML in evidence, while in (b) a smaller area of the
selected beach section has been enlarged. The resolution of this method is high enough to identify even small
objects in a large area.
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Abstract: Oil spill detection plays an important role in marine environment protection.
Quad-polarimetric Synthetic Aperture Radar (SAR) has been proved to have great potential for this
task, and different SAR polarimetric features have the advantages to recognize oil spill areas from
other look-alikes. In this paper we proposed an oil spill detection method based on convolutional
neural network (CNN) and Simple Linear Iterative Clustering (SLIC) superpixel. Experiments were
conducted on three Single Look Complex (SLC) quad-polarimetric SAR images obtained by
Radarsat-2 and Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR).
Several groups of polarized parameters, including H/A/Alpha decomposition, Single-Bounce
Eigenvalue Relative Difference (SERD), correlation coefficients, conformity coefficients, Freeman
3-component decomposition, Yamaguchi 4-component decomposition were extracted as feature sets.
Among all considered polarimetric features, Yamaguchi parameters achieved the highest performance
with total Mean Intersection over Union (MIoU) of 90.5%. It is proved that the SLIC superpixel
method significantly improved the oil spill classification accuracy on all the polarimetric feature sets.
The classification accuracy of all kinds of targets types were improved, and the largest increase on
mean MIoU of all features sets was on emulsions by 21.9%.

Keywords: oil spill; Synthetic Aperture Radar; polarimetric decomposition; superpixel; convolutional
neural networks

1. Introduction

Marine environment plays a crucial part in global ecosystems. Oil spill is one of the main marine
pollution, which will cause serious damage to ocean ecology and resources. In 2010, the accident of
the Gulf of Mexico oil spill lasted for about three months. Beaches and wetlands in many states of
the United States were destroyed and local marine organism was devastated [1]. Thus it is necessary
to monitor sea surface and detect oil spill. Remote sensing plays a crucial role in achieving this goal,
and relevant methods have been effectively applied to oil spill detection.

Space-borne Synthetic Aperture Radar (SAR) is widely applied for oil spill detection due to its
all-weather and all-time ability and wide area coverage. Full polarization SAR data provides four
channels according to the transmit and receive mode of radar signal and they are HH, HV, VH and VV
channels. The clean sea can be regarded as a rough surface, while the smooth oil spill layer usually
floats on the water surface, existing as dark spots since it dampens capillary waves, short gravity waves
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and Bragg scattering [2]. The general steps for oil spill detection are divided into:(1) spot extraction,
(2) feature extraction, (3) classification [3]. Early researches mainly focused on textual information of
dark spots area. Several textual features including first invariant planar moment and power-to-mean
ratio were extracted from SAR data, supplemented by statistical model or machine learning, to perform
oil spill detection [4,5]. Some experiments were carried out to perform oil spill detection on different
band SAR images [6,7]. Yongcun Cheng et al. used VV channel data acquired by COSMO-SkyMed to
monitor oil spill and simulate a model [8]. M. Migliaccio et al. proposed a multi-frequency polarimetric
SAR processing chain to detect oil spill in the Gulf of Mexico, and has been applied successfully [1].
These methods could successfully distinguish oil spill area from sea surface, and they are known as
mature classification algorithms.

However, several environmental factors including low-speed winds, internal wave and biogenic
films also appear as dark spots in SAR images [9], and they are called look-alikes. The most challenging
thing of oil spill detection from SAR images is to distinguish the oil spill area from these look-alikes.
That is the main obstacle of the early researches of texture analysis focused on single pol-SAR data.
Oil spill area may experience complex deformation on the sea surface, which is easy to be confused
with look-alikes. Moreover, a large amount of data are required for texture analysis. These problems
become major hindrances for high-accuracy oil spill detection. With the new development of SAR
satellites in recent years, the research focus of oil spill detection began to incline to dual-pol or quad-pol
SAR image, and the derived compact SAR [10], which not only retain texture characteristics of dark
spots area, but also provide a lot of polarized information. Polarimetric decomposition essentially
reflects the scattering modes of microwave on the sea surface, which highlights the subtle differences
of different ocean objects [11]. Many polarized parameters extracted from different SAR channels
has been proved to have great ability to perform high accuracy oil spill detection [12–15]. On the
perspective of polarized feature, S. Skrunes used k-means classification method to detect oil spill area on
several polarized parameters [16]. With the rise of machine learning algorithms in recent years, neural
networks have also been applied into oil spill detection. Yu Li et al. performed several comparative
experiments between different machine learning classifiers based on multi polarized parameters [17],
and the differences between fully and compact polarimetric SAR images [18] were explored.

Meanwhile, as a classical feedforward neural network, convolutional neural network (CNN)
is widely used in image classification and recognition. Since it was proposed in 1989, CNN has
experienced many improvements and changes, and derived several classic network structures such as
Inception, Resnet and Cliquenet [19–21]. Min Lin et al. used the global average pooling (GAP) layer to
replace the fully connection layer to reduce the parameter amount in 2014 [22]; Andrew Howard et al.
put forward the depthwise separable convolution in MobileNet [23,24], which can maintain high
accuracy even when the amount of parameters and calculation is reduced.

In 2015, Jonathan Long et al. proposed a fully convolutional network (FCN) with transposed
convolution for image semantic segmentation [25]. The end-to-end operation is implemented with
an encoder-decoder structure, and the classification prediction is given for each pixel on the image.
The concept of dilated convolution into semantic segmentation in 2016, and it greatly improved
classification accuracy [26]. Follow by that, advanced models have been developed for high precision
segmentation, and they are Unet, Linknet and Deeplab series [27,28]. The encoder-decoder structure of
semantic segmentation model based on CNN has been used in oil spill detection in recent studies [29,30],
and achieved high accuracy. With the application of TerraSAR-X and other SAR satellites, dual-polarized
SAR images are also introduced into oil spill detection. Daeseong Kim et al. extracted polarized
parameters from dual-pol TerraSAR-X images, successfully mapped oil spill area with artificial neural
networks [31].

The concept of superpixel is an image segmentation technology proposed in 2003 [32]. It refers to
an irregular pixel block with certain visual significance. It is composed of adjacent pixels with similar
texture, color brightness and other characteristics. The similarity of features between pixels are used to
form a group of pixels, and image are expressed by a small number of superpixels. Superpixel greatly
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reduces the complexity of image post-processing, and it is used as a pre-processing step for image
segmentation algorithm. Simple Linear Iterative Clustering (SLIC) is a widely used superpixel
segmentation method [33], and has been introduced into some SAR scenes. Some researchers also use
multi-chromatic analysis to perform target detection and analysis on SAR images [34,35].

Many current oil spill detection methods only divided images into oil or non-oil areas, which may
cause false alarm and cannot recognize every target on the sea surface. The classification method
combining neural networks also could not distinguish oil spill and look-alikes well, while the flexible
structure of CNN provides the possibility to solve these problems. It allows a variety of parameters input,
can simultaneously take into account the task of dark spots extraction and classification and identify
every target on the sea surface. In this paper we proposed an oil spill detection method using SLIC
superpixel and semantic segmentation algorithm based on CNN, combining several convolution kernels
including dilated and depthwise separable convolution. It allows multiple-parameters input and realize
pixel-level oil spill area classification, which finally realize further accuracy improvement. We carried
out experiments on five groups of polarized parameters extracted from SLC quad-polarimetric SAR
data of Radarsat2 and Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar(SIR-C/X-SAR),
and evaluated the classification results of superpixel segmentation combined with polarized parameters.
The experiments results show that our method could effectively extract and classify dark spots on a SAR
image. SLIC superpixel could further improve classification accuracy of oil spill area, and Yamaguchi
4-component decomposition combined with SLIC superpixel classification is considered the most
suitable parameters for oil spill detection in our case.

2. Materials and Methods

2.1. Overall Framework

The flowchart of our oil spill detection method is illustrated as Figure 1. The four channels data
was processed by Lee refined filter firstly, and different polarized parameters were then extracted
from these four channels. All polarized parameters used in our experiments are divided into five
groups according to different scattering principles and calculation methods. For monostatic SAR
system, reciprocity always holds, which means that the complex scattering coefficient obeys HV = VH.
For this reason, HV is considered for cross polarization channel in the analysis. Three channel data
should be used to generate image in CIElab color space for SLIC superpixel model. We choose data of
HH, HV and VV channel to do it, since co-polarized channels (HH/VV) data contains more polarized
information than cross-polarized channels (VH/HV) [36]. The HH, HV and VV data were also used
to calculate SLIC superpixels. Sections 2.2 and 2.3 explains the method used to extract polarized
parameters and they are both set as the input of neural network models. The neural network is
composed of an encoder and a decoder section. The output of the neural network is segmentation
results of oil spill detection.

We designed a semantic segmentation model based on CNN as the classifier, as shown in Figure 2.
The dims in the diagram represents the number of polarization parameters, since multiple polarization
modes are applied in our work, the network parameters will be adjusted according to the parameter of
dims. The depthwise separable convolution and dilated convolution was used in several layers in the
bottom parts. The subsequent encode task is completed by standard convolution layer. Green blocks
represent a skip connection structure similar to residual learning [19], in order to make top layers
accessible to the information from bottom layers and help train the network easier. The feature maps
extracted by encoder is decoded by progressive transposed convolution layers, and skip connection
is also applied to absorb more features. The specific principle and implementation of network are
explained in Section 2.4 in detail.

The different polarized parameters groups and superpixel segmentation results will be combined
to input into the neural networks for training. The output is the result of oil spill detection. Finally,
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Mean Intersection over Union (MIoU) was calculated between segmentation result and annotation
images to evaluate the accuracy.

 

Figure 1. Flow chart of our oil spill detection method.

Figure 2. Structure of neural networks in our segmentation method. Blue and green blocks donate
encoder parts, which consist of multi convolution layers, here we used depthwise separable convolution,
dilated convolution and standard convolution as filter kernel, respectively. Purple-red blocks constitute
the decoder part, it outputs a classification map with the same size as original image.
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2.2. Polarimetric Decomposition

The whole process of extracting polarimetric parameters is shown in Figure 3. The boxes are
different polarized parameter combinations for classification. This section will explain the calculation
method of different polarized parameters in the followings.

 

Figure 3. Polarized parameters extraction. We extracted 13 polarized parameters in total. They are
divided into five groups as the position of the box in the figure, each group was input into neural
network for classification.

2.2.1. H/A/Alpha Decomposition

The scattering matrix of a fully polarimetric SAR image can be expressed as

S =

⎡⎢⎢⎢⎢⎣ SHH SHV

SVH SVV

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣ |SHH |ej∅HH |SHV |ej∅HV

|SVH |ej∅VH |SVV |ej∅VV

⎤⎥⎥⎥⎥⎦, (1)

where |SXX| and ∅XX represent the amplitudes and phases of the complex scattering coefficients, each
complex element donates a polarization component. The two crossed-polarized terms are identical in
Radarsat-2, i.e., SHV = SVH.

Polarization covariance matrix C and coherency matrix T contain abundant physical information of
polarization characteristics of ocean objects. Cloude and Pottier outlined a scheme for parameterizing
polarimetric scattering problems based on matrix T in 1997, the covariance matrix can be derived by

C3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
〈S2

HH〉 〈√2SHHS∗HV〉 〈SHHS∗VV〉
〈√2SHVS∗HH〉 〈2S2

HV〉 〈√2SHVS∗VV〉
〈SVVS∗HH〉 〈√2SVVS∗HV〉 〈S2

VV〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (2)

where ∗ represents conjugate, 〈 〉 stands for multilook with an average window (we set the window
size to 3, the same is true in later equations). The expression of matrix T is listed as follow:

T3 = 1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
〈|SHH + SVV |2〉 〈(SHH + SVV)(SHH + SVV)

∗〉 〈(SHH + SVV)(2SHV)
∗〉

〈(SHH + SVV)
∗(SHH + SVV)〉 〈|SHH + SVV |2〉 〈(SHH − SVV)(2SHV)

∗〉
〈(SHH + SVV)

∗(2SHV)〉 〈(SHH + SVV)
∗(2SHV)〉 〈

∣∣∣(2SVV)
∣∣∣2〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (3)

T3 can be transformed into C3 according to formula C = ATTA, A = 1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 1
1 0 −1
0
√

2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, it can also be

expressed in another form

T3 = U3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
λ1

λ2

λ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦UH
3 , (4)
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where H donates transpose conjugate, and the formula of U3 is

U3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(α1)ej∅1 cos(α2)ej∅2 cos(α3)ej∅3

cos(α1) cos(β1)ejδ1 sin(α2) cos(β2)ejδ2 sin(α3) cos(β3)ejδ3

sin(α1) sin(β1)ejγ1 sin(α2) sin(β2)ejγ2 sin(α3) cos(β3)ejγ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (5)

The column vectors
→
u1,

→
u2 and

→
u3 of U3 are the eigenvectors of matrix T3, corresponding to

eigenvectors λ1, λ2 and λ3. Cloude decomposition regards the scattering behaviors of targets as the
superposition of three independent scattering behaviors, and the probability of three eigenvectors,
which represents the weights of each basic scattering can be calculated by

Pi =
λi∑3

j=1 λ j
. (6)

The polarimetric entropy describes the randomness of the scattering mechanisms and is defined by

H = −
3∑

i=1

Pi log3(Pi). (7)

The formula of anisotropy is

A =
(P2 − P3)

(P2 + P3)
, (8)

and the mean scattering angle is
α = α1P1 + α2P2 + α3P3, (9)

where αi = arccos(ν j), ν j donates the eigenvalue of T3.

2.2.2. Single-Bounce Eigenvalue Relative Difference

Allain et al. proposed Single-Bounce Eigenvalue Relative Difference (SERD) based on Cloude
decomposition in 2004. The correlation between co-polarized and cross-polarized channels is almost
equal to 0 for sea surface microwave scattering, so the matrix T3 can be simplified as

T3 = K · K∗T =
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
〈|SHH + SVV |2〉 〈(SHH + SVV)(SHH − SVV)

∗〉 0

〈(SHH − SVV)(SHH + SVV)
∗〉 〈|SHH − SVV |2〉 0

0 0 〈
∣∣∣(2SHV)

∣∣∣2〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (10)

and the eigenvalue of matrix T3 can be calculated by

λ1nos =
1
2

{
〈|S2

HH |〉+ 〈
∣∣∣S2

VV

∣∣∣〉 +
√(
〈
∣∣∣S2

HH

∣∣∣〉 − 〈∣∣∣S2
VV

∣∣∣〉 )+ 4|〈SHHSVV〉|2
}
, (11a)

λ2nos =
1
2

{
〈|S2

HH |〉+ 〈
∣∣∣S2

VV

∣∣∣〉 −
√(
〈
∣∣∣S2

HH

∣∣∣〉 − 〈∣∣∣S2
VV

∣∣∣ 〉)+ 4|〈SHHSVV〉|2
}
, (11b)

λ3nos = 2〈
∣∣∣(SHV)

∣∣∣2〉. (11c)

The first two eigenvalues are related to the co-polarized backscatter coefficient, and the third one is
related to the cross-polarized channel and multiple scattering. Calculate the value of scattering angle
αi according to the eigenvectors corresponding to eigenvalues λ1nos and λ2nos to distinguish the type
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of scattering mechanisms: the eigenvalue corresponds to a single scattering when αi ≤ π4 , and it is a
double scattering when αi ≥ π4 . The SERD is defined as

SERD =
λs − λ3nos

λs + λ3nos
, (12)

λs = λ1nos when α1 ≤ π4 or α2 ≥ π4 , and λs = λ2nos when α1 ≥ π4 or α2 ≤ π4 .
SERD is very sensitive to the surface roughness. A large value of SERD indicates a strong single

scattering in the scattering process of the target, while the small SERD value indicates weak single
scattering. For the high entropy scattering area of oil spill surface, the scattering is composed of many
kinds of scattering mechanisms. Single scattering is not dominant, that is, the SERD value at oil film is
relatively small, and then it can be used for oil spill detection.

2.2.3. Co- and Cross- Polarized Decomposition

This section will introduce two parameters based on the scattering matrix: co-polarized correlation
coefficients and conformity coefficients. Correlation coefficients can be expressed as

ρHH/VV =

∣∣∣∣∣∣∣
〈SHHSVV

∗〉
〈S2

HH〉〈S2
VV〉

∣∣∣∣∣∣∣. (13)

The conformity coefficients were firstly introduced into compact polarimetric SAR to estimate soil
moisture by Freeman et al. [18]. Extending the conformity coefficients to quad-polarimetric SAR, it can
be expressed as

μ =
2(Re(SHHSVV

∗))

|SHH |2 + 2
∣∣∣(SHV)

∣∣∣2 + |SVV |2
. (14)

2.2.4. Freeman 3-Component Decomposition

Freeman and Durden [11] proposed a three-component scattering model for polarimetric SAR
data in 1998, and it includes three simple scattering mechanisms: volume (or canopy) scattering,
double-bounce scattering and rough surface scattering. Assuming those three scatter components are
uncorrelated, the scattering process of radar wave on the sea surface can be regarded as the composition
of these three mechanisms, so the model for total backscatter is

〈|SHH |2〉 = fs
∣∣∣β∣∣∣2 + fd|α|2 + fv, (15a)

〈|SVV |2〉 = fs + fd + fv, (15b)

〈SHHSVV
∗〉 = fsβ+ fdα+ fv/3, (15c)

〈|SHV |2〉 = fv/3, (15d)

〈SHHSHV
∗〉 = 〈SHVSVV

∗〉 = 0, (15e)

where fs, fd and fv are the contribution of surface, double-bounce and volume scattering to the VV
cross section. Once fs, fd and fv are estimated, we can also get contributions of three scatter to HH, HV
and VH channels. α in the formula is defined by

α = ej2(γh−γv)

(RghRth

RgvRtv

)
, (16)

Rth and Rtv donate the reflection coefficients of vertical surface for H and V polarizations, while Rgh
and Rgv are the Fresnel reflection coefficients of horizontal surface. The propagation factors ej2γh and
ej2γv are used to make the model more general, γ represents any attenuation and phase change of the V
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and H polarized waves when they propagate from the radar to the ground and back again. α = −1
when Re(SHHSVV

∗) is positive, if Re(SHHSVV
∗) is negative, β = 1.

The volume scattering contribution can be calculated directly from Equation (15d). We can
estimate the contribution of each scattering mechanism to the span P

P = Ps + Pd + Pv ≡ (|SHH |2 + 2|SHV |2 + |SVV |2), (17)

with
Ps = fs(1 +

∣∣∣β∣∣∣2), (18a)

Pd = fd(1 + |α|2), (18b)

Pv = 8 fv/3. (18c)

Then we can use Equations (15)–(18) to calculate the scattering power of three mechanisms: Ps, Pd and
Pv. They are the result of Freeman decomposition.

2.2.5. Yamaguchi 4-Component Decomposition

In 2005, Yamaguchi et al. [12] proposed a four component decomposition method based on
Freeman decomposition, included the helix scattering power as the fourth term for a more general
model, which is essentially caused by the scattering matrix of helices and is mainly used in urban
areas. What is more, Yamaguchi decomposition modify the volume scattering matrix according to the
relative backscattering magnitudes of 〈|SHH |2〉 versus 〈|SVV |2〉.

Assume the magnitude of the helix scattering power fc, the corresponding magnitude of 〈SHVSVV
∗〉

becomes fc/4, and the power relation becomes

fc
4

=
1
2

∣∣∣Im(〈SHHSHV
∗〉+ 〈SHVSVV

∗〉)
∣∣∣, (19)

and we can get the following five equationsα, β, fs, fd, fv, fc by comparing the covariance matrix element:

〈|SHH |2〉 = fs
∣∣∣β∣∣∣2 + fd|α|2 + 8

15
fv +

fc
4

, (20a)

〈|SHV |2〉 = 2
15

fv +
fc
4

, (20b)

〈|SVV |2〉 = fs + fd +
3
15

fv +
fc
4

, (20c)

〈SHHSVV
∗〉 = fsβ+ fdα+

2
15

fv − fc
4

, (20d)

1
2

Im{〈SHHSHV
∗〉+ 〈SHVSVV

∗〉} = fc
4

. (20e)

fc can be measured directly. The volume scattering coefficient fv is calculated by

fv =
15
2

(
〈|SHV |2〉 − fc

4

)
, (21)

α and β is calculated as the same way as Freeman decomposition, so we can get contribution of four
mechanisms: fs, fd, fv and fc. The scattering powers Ps, Pd, Pv and Pc corresponding to surface, double
bounce, volume and helix scattering contributions can be obtained by

Ps = fs(1 +
∣∣∣β∣∣∣2), (22a)

Pd = fd(1 + |α|2), (22b)
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Pv = fv, (22c)

Pc = fc, (22d)

P = Ps + Pd + Pv + Pc ≡ (|SHH |2 + 2|SHV |2 + |SVV |2), (23)

Ps, Pd, Pv and Pc are the results of Yamaguchi decomposition.

2.3. SLIC Superpixel

The superpixel algorithm was first proposed in 2003 by Xiaofeng Ren et al. [32]. Adjacent pixels
with the same attribute are divided in one region (one superpixel) and then the whole image can be
indicated by a certain number of superpixels, which allows better performance for subsequent image
processing. SLIC adopted k-means algorithm to generate superpixels. The algorithm limited the
search space to a region proportional to the size of superpixels, and reduced the number of distance
calculation in optimization and the linear complexity of pixels.

The SLIC segmentation result relies only on the number of superpixels k. Each superpixel has
approximately the same size. These k initial cluster centers are sampled on a regular grid with S pixel

intervals. S can be calculated by S =
√

N
k , where N is the number of pixels.

Each pixel i is assigned with the nearest clustering center if their search area could overlap its
position, then SLIC allows faster clustering than traditional k-means does. The distance measurement
D′ determines the closest clustering center Ck for each pixel i. The expected spatial range of the
superpixel is an area of approximate size S× S. A similar pixel search is performed in the area 2S× 2S
around the center of the superpixel.

SLIC realizes the above steps based on labxy color image plane space. The value of the pixel is
expressed as [l a b]T in CIELab color space. However, the position [x y]T of the pixel changes with the
size of the image. In order to combine them into a single measurement, we need to standardize the
color proximity and spatial proximity by their maximum distances Nc and Ns in the cluster. Then D′
can be calculated by

dc =

√(
l j − li

)2
+
(
aj − ai

)2
+
(
bj − bi

)2
, (24a)

ds =

√(
xj − xi

)2
+
(
yj − yi

)2
, (24b)

D′ =
√
(dc/Nc)

2 + (ds/Ns)
2, (24c)

where Ns = S =
√

N
k . When Nc is fixed as a constant m, the Equation (24c) can be listed as the

following:

D′ =
√
(dc/m)2 + (ds/S)2, (25)

where dc =

√(
l j − li

)2
in gray-scale. m allows us to balance the relative importance between Nc and Ns.

When m increases, the superpixel result depends more on the degree of spatial proximity.
Once each pixel has been associated with the nearest cluster center, the update step adjusts the

cluster center to the average vector of all pixel. L2 norm is used to calculate the residual error E between
the new and the previous cluster center position. The allocation and iterative process ends when E is
less than the setting threshold. In our experiments, we transform the HH, HV and VV channel SAR
data to labxy color space for superpixel calculation.

2.4. Semantic Segmentation Algorithm

We constructed a refined segmentation method based on CNN to perform oil spill detection.
The structure used in our network will be described in details in the followings.
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2.4.1. Convolutional Layer and Dilated Convolution

CNN has been widely used in image classification and object detection for its good generation
ability. Compared with traditional neural networks, CNN imitates the human visual nerve and allows
automatic feature extraction. Two main processes in the training of CNN are forward propagation and
backward propagation. Forward propagation expresses the transmission of characteristic information,
while backward propagation mainly uses error information to correct model parameters.

Convolutional layer is the core component of CNN. In forward propagation, it sets up a filter
kernel to slide on the input tensor and obtain image features, the number of layers of these kernels
equals to the input tensor. Convolution operations can be expressed as

yij = f
(∑m

i=1

∑n

j=1
xijθk + bk

)
, (26)

θk and bk are weights and biases that need to be trained in neural networks, while f (∗) represents
the activation function, herein Rectified Linear Units(ReLU) function and tanh() function were used,
and their equations are

f (x) = max(0, x), (27)

tanh(x) =
sinh(x)
cosh(x)

=
ex − e−x

ex + e−x . (28)

The backward propagation process of neural networks depends on the backward derivation of
the output layer (loss function) and the calculation of errors. The parameter adjustment is further
optimized by the error function, and Adam optimizer was adopted in this paper. It adjusts the value of
weights and biases iteratively, which allows little error of the output of neural networks. The gradient
of output layer transfer between convolutional layers can be expressed as

δl =
∂J(W, b)
∂zl

=
∂J(W, b)
∂al

� σ′
(
zl
)
, (29)

where al donates the output tensor of layer l and zl = Wlal−1 + bl, and σ
(
zl
)

is the formula of

convolution. � donates the Hadamard product. If matrix A = [a1, a2, · · · , an]
T and B = [b1, b2, · · · , bn]

T,
A� B = [a1b1, a2b2, · · · , anbn]

T. J(W, b) is the loss function between output tensor and ground truth.
In our case we used the cross entropy, which is described by

H(p, q) = −
n∑

i=1

p(xi) log(q(xi)), (30)

p(xi) and q(xi) donate the probability of xi classification of the output and ground truth.
The recurrence relation between layer l and layer l− 1 is

zl = al−1 ∗Wl + bl = σ
(
zl−1

)
∗Wl + bl. (31)

Then the gradient of layer l− 1 is

δl−1 =

(
∂zl

∂zl−1

)T

δl = δl ∗ rot180
(
Wl

)
� σ′

(
zl−1

)
, (32)

where rot180() means that the convolution kernel is rotated 180 degrees when the derivative is
calculated, and the gradients of all layers can be calculated. Assuming that the gradient after t iterations
is gt = δl(t), the exponential moving average of the gradient is calculated by

mt = β1mt−1 + (1− β1)gt, (33a)
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where β1 is the exponential decay rate. The exponential moving average of gradient square is

vt = β2vt−1 + (1− β2)gt
2. (33b)

Revised mt and vt as the formula
m̂ =

mt

1− β1
t , (33c)

v̂ =
vt

1− β2t . (33d)

Then the formula for updating parameters is

θt = θt−1 − α ∗ m̂√
v̂ + ε

, (33e)

where α represents the learning rate.
In our paper, dilated convolution is applied to extract features from input layer, which adopts

inject holes into traditional convolutional kernels and it can increase the reception field. The difference
between standard kernel and dilated kernel is represented in Figure 4. The kernel will slide from left to
right, top to bottom on the image. As shown in Figure 4a, the red points are standard kernel. For dilated
kernel (see Figure 4b), several inject holes highlighted as blue or dark blue points were added. The values
at these points are set as 0. Only values at red points are calculated. Suppose k : Ωr → R, Ωr = [−r, r]2

is a discrete filter with the size of (2r + 1)2, the discrete convolution operator can be defined as

(F ∗ k)(p) =
∑

s+t=p
F(s)k(t). (34)

When l is a dilation factor, ∗l should be defined as

(F ∗l k)(p) =
∑

s+lt=p

F(s)k(t). (35)

That is the calculation formula of dilated convolution.

 
(a) (b) 

Figure 4. Convolution kernels for (a) standard kernel, which has a receptive filed of 3× 3, and (b) dilated
kernel with dilation rate = 2, and its receptive field is 7× 7.

2.4.2. Depthwise Separable Convolution with Dilated Kernel

Suppose the size of input tensor is N ×H ×W ×C and there is a h ×w × k convolution kernel,
the output of this layer would be an N×H×W× k tensor when pad = 1 and stride = 1. The whole
process needs h×w× k×C parameters and h×w× k×C×H×W times multiplication.
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Depthwise separable convolution decomposes traditional convolution layer into a depthwise
convolution and a pointwise convolution. Depthwise process divides the N×H×W×C size input tensor
into C groups. A convolution operation with a h×w kernel is carried out on each group. This process
collects the spatial feature of each channel, i.e., depthwise features. The output N×H×W×C size
output tensor is operated by a traditional 1 × 1× k convolution kernel, which extract the pointwise
feature from each channel. Its output is also a N×H×W× k. size tensor. Depthwise and pointwise
can be regarded as a convolution layer with much lower amount of computation. The two processes
need (H×W×C) × (k + h×w) times multiplication in total.

In order to combine the reception field of dilated convolution with the calculated performance of
depthwise separable convolution, we adopt the strategy of adding holes into depthwise convolution
kernel in several bottom layers of neural network.

2.4.3. Transposed Convolution

Transposed convolution, also known as deconvolution, is often used as decoder in neural networks.
In the semantic segmentation task, transposed convolution upsample the feature map extracted by
convolution layer. The final output is a fine classification map with the same size as the original
image. In fact, it transposes the convolution kernel in the ordinary convolution we used in the encoder
section and inverts the input and output. For example, Figure 5 shows a highly condensed feature map
extracted by multilayer network and how it is decoded by a transposed convolution layer. For example,
the 2 × 2 feature map padded with 2 × 2 border of zeros using 3 × 3 strides is convolved by a 3 × 3
kernel. Its output is a 6× 6 tensor when there is no padding in convolution process.

Figure 5. Convolution process of transposed convolution layer.

The detailed parameters of each layer are listed in Table 1. The encoder section contains
10 convolution layers and 2 residual blocks. Convolution layers 1 and 3 adopted depthwise separable
convolution, and layer 5 was dilated convolution layer. The decoder section consisted of five
deconvolution (transposed convolution) layers, in which layer 1 and layer 2 are connected with
convolution layer 7 and layer 3, respectively.

Table 1. The detailed parameters of segmentation networks.

Layer 1 Filter Kernel Size Strides

Conv 1 depthwise 5× 5 1
Conv 2 Conv 6× 6 2
Conv 3 depthwise 4× 4 1
Conv 4 Conv 4× 4 2
Conv 5 dilated 2× 2 1
Conv 6 Conv 3× 3 2
Conv 7 Conv 2× 2 2
Conv 8 Conv 1× 1 1
Conv 9 Conv 3× 3 3

Conv 10 Conv 1× 1 1
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Table 1. Cont.

Layer 1 Filter Kernel Size Strides

Res 1 Conv 6× 6 4
Res 2 Conv 3× 3 4

Deconv 1 transposed 3× 3 1
Deconv 2 transposed 3× 3 8

Deconv 2_1 transposed 6× 6 4
Deconv 3 transposed 6× 6 2

Deconv 3_1 transposed 6× 6 2
1 Conv, Res and Deconv represent the blue, green and purple-red blocks, respectively.

2.4.4. Evaluation Method

MIoU is usually used as an index to measure the accuracy in semantic segmentation task, it is to
calculate the intersection between prediction and ground truth. MIoU can be expressed as

MIoU =
1

k + 1

∑k

i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

, (36)

which is equivalent to

MIoU =
1

k + 1

∑k

i=0

TP
FN + FP + TP

. (37)

where TP is the abbreviation for true positive, which means the number of samples when real value and
model prediction are both positive. FN represents false negative, which means real value is positive
while model prediction is negative. FP represents false positive. k is the number of classifications.

3. Experiments and Results

3.1. SAR Data and Preprocessing

There are three images used in our experiments. Image 1 is a quad-pol oil spill image obtained by
C-band Radarsat-2 satellite over the North Sea of England in 2011 during the oil-on-water exercise
conducted by the Norwegian Clean Seas Association for Operating Companies (NOFO). The whole
image contains five parts in total: clean sea, ships, biogenic look-alike film, emulsion and crude oil
spill. The biogenic look-alike film was simulated by Radiagreen plant oil, while emulsion area was
composed of Oseberg blend crude oil mixed with 5% IFO380 (Intermediate Fuel Oil). The oil spill area
was the Balder crude oil. It was released 9h before SAR acquisition [16]. Emulsions are classified as
an independent class in this paper since they have different composition and polarimetric scattering
characteristics in SAR images. Image 2 and Image 3 are acquired by C-band SIR-C/X-SAR in 1994,
the dark spots contained in images are biogenic look-alike and oil spill, respectively. The biogenic
look-alike was composed of Oleyl Alcohol in the experiment [37]. The detailed information of SAR
acquisition is listed in Table 2.

Table 2. Details of Synthetic Aperture Radar (SAR) image acquisition.

Image ID 137348 PR11588 PR44327

Radar Sensor Radarsat-2 SIR-C/X-SAR SIR-C/X-SAR
SAR Band C C C

Pixel Spacing (m) 4.70× 4.80 12.50× 12.50 12.50× 12.50
Radar Center Frequency (Hz) 5.405× 109 5.298× 109 5.304× 109

Centre Incidence Angle (deg) 35.287144 23.600 45.878

The Single Look Complex (SLC) radar images experienced multi-look process and was filtered by
Refined Lee Filter. Figure 6 shows the image extract from coherence matrix T before and after filtering.
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It helped suppress speckle noise and enhance the edge of dark spots, and some early experiments have
proved that Refined Lee Filter could help increase oil spill detection accuracy.
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Figure 6. Three oil spill data used in the experiments. Left side shows the original image, and right
side are images processed by Refined Lee Filter. (a1,a2) Image 1 acquired by Radarsat-2, (b1,b2) Image
2 (PR11588) acquired by SIR-C/X-SAR and (c1,c2) Image 3 (PR44327) acquired by Spaceborne Imaging
Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR).

The filtered images were processed by different polarized decomposition methods according to
the steps listed in Section 2.2. Figure 7 lists the five groups of polarized parameters extracted from
Image 1 as an example: H/A/Alpha, H/A/Alpha/SERD, correlation/conformity coefficients, Freeman
decomposition and Yamaguchi decomposition, and characteristics of all these parameters are listed in
Table 3.
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Figure 7. Cont.
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Figure 7. All the polarized features extracted from Radarsat2 data. (a1–a3) H/A/Alpha decomposition,
a1 for entropy, a2 for anisotropy, a3 for alpha. (b1–b4) H/A/Alpha decomposition and Single-Bounce
Eigenvalue Relative Difference (SERD), b1 for entropy, b2 for anisotropy, b3 for alpha, b4 for
SERD. (c1,c2) Scattering coefficients calculated from scattering matrix, c1 for co-polarized correlation
coefficients, c2 for conformity coefficients. (d1–d3) Freeman 3-component decomposition, d1 for
double-bounce scattering, d2 for rough surface scattering, d3 for volume scattering. (e1–e4) Yamaguchi
4-component decomposition, e1 for double-bounce scattering, e2 for helix scattering, e3 for rough
surface scattering, e4 for volume scattering.
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Table 3. Characteristics of polarized parameters in experiments.

Parameter Clean Sea Look alike Emulsion Oil Spill Ship

Entropy low high higher higher higher
Anisotropy low low low low low

Alpha low lower low low low
SERD high low lower lower lower

Correlation Coefficient high low lower lower lower
Conformity Coefficient high low lower lower lower

Freeman Double-Bounce high low low lower higher
Freeman Rough-Surface high low low low higher

Freeman Volume high lower lower low higher
Yamaguchi Double-Bounce high low low lower higher

Yamaguchi Helix low lower lower lower high
Yamaguchi Rough-Surface high low lower lower higher

Yamaguchi Volume high lower lower low higher

3.2. SLIC Superpixel Segmentation

The HH, HV and VV data was taken as input data to perform SLIC superpixel segmentation.
We used these three channels of SAR data to generate a new image, it was converted into CIElab
color spaces. Following the steps of SCIC superpixel method described in Section 2.3, the superpixel
segmentation results of SAR data are shown in Figure 8. The superpixel number of three images was
set to 250, 40, 40, respectively. They are another type of input besides polarized parameters for CNN
training. It can be seen from Figure 8 that SLIC superpixel divides the image into several independent
areas, and can initially locate dark spots, especially in Image 2 and Image 3.

 
(a) 

 
(b) 

 
(c) 

Figure 8. Simple Linear Iterative Clustering (SLIC) superpixel segmentation results. (a) Image 1,
(b) Image 2 and (c) Image 3.

Polarimetric decomposition and superpixel images are divided into five groups as listed in
Figure 2. The three SAR images are divided into five categories pixel by pixel: clean sea background
(CS), emulsion (EM), biogenic look-alike (LA), oil spill (OS) and ships (SH). All the images are divided
into 48× 48 small pictures in the experiment. When multiple parameters are input into CNN, they are
stacked along the third axis of images to form a three-dimensional array. The original SAR images
only contained 5 ships, in order to increase the number of samples, especially ships, we sampled
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the same target area for multiple times. We extracted image of target areas from different positions,
and these images are divided into 48*48. Thus, we can get several sampling images on the same area.
We randomly selected training set and test set from sample images, the number of samples are listed
in Table 4. The MIoU was calculated on the test set. They are trained with the proposed network
described in Section 2.4 and the output segmentation results are verified with ground truth.

Table 4. Number of samples of each category.

Areas CS EM LA OS SH

Training set 80 75 82 88 31
Test set 27 25 28 30 12

3.3. Oil Spill Classification

In order to evaluate the influence of SLIC superpixel on segmentation results, we carried out
comparative experiments based on each group of polarized parameters with and without superpixel
segmentation. Figure 9 presents the segmentation results of five groups of polarized parameters on
five dark spots areas of three images. The oil spill area is marked with the dark spots and the light grey
means the biogenic look-alikes. The medium grey represents emulsion.

As shown in Figure 9, the dark spots area can be extracted effectively and classified accurately
in each group. The classification result of oil spill area in Image 3 showed the best. Among all the
polarized decomposition parameters, the performance of Yamaguchi 4-component parameters was
the best, followed by Freeman 3-component parameters and H/A/SERD/Alpha. H/A/Alpha could
also distinguish each category in the images except ships. The parameter SERD effectively increased
the classification accuracy on the basis of H/A/Alpha decomposition. The segmentation result of
co-polarized correlation coefficients and conformity coefficients does not perform well nearly in all
categories, indicating they are not optimal polarized parameters for detecting oil spill areas.

 

 

(a1) 

 

(a2) (a3) (a4) 

 

(a5) 

 

(b1) 

 

(b2) (b3) (b4) 

 

(b5) 

Figure 9. Cont.

45



Remote Sens. 2020, 12, 944

 

(c1) 

 

(c2) (c3) (c4) 

 

(c5) 

 

(d1) 

 

(d2) (d3) (d4) 

 

(d5) 

 

(e1) 

 

(e2) (e3) (e4) 

 

(e5) 

 

(f1) 

 

(f2) (f3) (f4) 

 

(f5) 

Figure 9. The results of dark spots area verified by polarized parameters, 1-3 in each group represents
emulsion, 2 for biogenic look-alike, 3 for oil-spill area of Image 1, 4 and 5 represent biogenic look alike and
oil spill area of Image 2 and Image 3. (a1–a5) Ground truth, (b1–b5) H/A/Alpha, (c1–c5) H/A/SERD/Alpha,
(d1–d5) Scattering Coefficients, (e1–e5) Freeman 3-Component Decomposition, (f1–f5) Yamaguchi
4-Component Decomposition.

Considering all categories, the classification results of clean sea (CS) is the best. Then it is followed
by oil spill (OS) areas, which is slightly better than look-alikes (LA). The classification accuracy of
the categories of emulsions (EM) and ship (SH) are the lowest. The false detection mostly occurred
in emulsions. A number of emulsion areas were misclassified into oil spill or look-alikes, especially
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in the experiments of H/A/Alpha, H/A/SERD/Alpha and co-polarized CC/conformity coefficients.
Compared with those results, Freeman 3-component and Yamaguchi 4-component decomposition
could distinguish most of these categories successfully. Moreover, the experiment results by applying
these two groups of polarized parameters could also detect ships with high reliability, which are almost
all misclassified as oil spill areas in other groups’ experimental results.

In the followings, we added the SLIC segmentation result from SAR data as another input
besides polarized parameters and inputted them together into neural network and repeated the above
experiments. The output results are represented in Figure 10. The classification results of each category
has been improved significantly, especially for emulsion areas. Compared with the segmentation
results without applying superpixel model results, the edge of different classes become more distinct.

 

 

(a1) 

 

(a2) (a3) (a4) 

 

(a5) 

 

(b1) 

 

(b2) 

 

(b3) (b4) 

 

(b5) 

 

(c1) 

 

(c2) 

 

(c3) (c4) 

 

(c5) 

Figure 10. Cont.
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Figure 10. The results of dark spots area verified by polarized parameters combined with SLIC
superpixel segmentation, 1-3 in each group represents emulsion, 2 for biogenic look-alike, 3 for oil-spill
area of Image 1. Images 4 and 5 represent biogenic look-alike and oil spill area of Image 2 and Image 3.
(a1–a5) Ground truth, (b1–b5) H/A/Alpha, (c1–c5) H/A/SERD/Alpha, (d1–d5) Scattering Coefficients,
(e1–e5) Freeman 3-Component Decomposition, (f1–f5) Yamaguchi 4-Component Decomposition.

The numerical comparison was carried out by calculating the MIoU of each polarized parameter
group on the test set. The compared results with and without SLIC superpixel are listed in Table 5.
The accuracy of Yamaguchi and Freeman decomposition is significantly higher than other groups
of polarized parameters, and that of each classification category has been also improved by SLIC
superpixel to varying degree.

Table 5. Mean Intersection over Union (MIoU) result on each classification of polarized
parameters experiments.

Without SLIC Superpixel With SLIC Superpixel

Classification CS EM LA OS SH CS EM LA OS SH

H/A/Alpha 94.0% 70.8% 84.2% 85.7% 10.5% 95.6% 88.3% 89.7% 93.4% 39.7%
H/A/SERD/Alpha 94.5% 80.7% 84.9% 88.3% 11.7% 95.8% 91.0% 91.7% 95.1% 43.1%

Scattering coefficients 1 94.1% 27.3% 82.3% 80.2% 6.8% 94.7% 85.8% 84.2% 90.1% 41.5%
Freeman 95.8% 80.7% 82.4% 90.6% 60.7% 96.3% 91.1% 91.5% 95.1% 48.3%

Yamaguchi 96.1% 81.8% 85.4% 94.0% 75.0% 96.9% 94.1% 94.6% 96.8% 70.2%
1 scattering coefficient means the combination of correlation coefficients and conformity coefficients.
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For further analysis, Table 6 shows the total MIoU of different polarized parameters decomposition
methods. The average MIoU of each classification in all experiments is shown in Table 7. Both Tables 6
and 7 are calculated from the average value of Table 5. The overall accuracy of different polarimetric
parameters after combined with SLIC superpixel segmentation maintained the same trend in previous
analysis as illustrated in Tables 5 and 6. Yamaguchi 4-component decomposition achieved the highest
MIoU by 90.5%, followed by Freeman parameters and H/A/SERD/Alpha. Although SLIC superpixel
just provide a rough classification of dark spots area, it could also improve MIoU values of each
polarimetric parameters, increased by 12.3%, 11.3%, 21.2%, 2.5%, 4.0% relatively. Take Yamaguchi
parameters as example, the MIoU of OS area increased from 94.0% to 96.8%, and increased by 0.8%,
12.3% and 9.2% in CS, EM and LA area relatively. What’s more, the largest increase of MIoU occurred
in EM area, which increased by 21.9% in average in five groups of polarimetric parameters, as shown
in Table 8. CS and OS areas achieved the highest MIoU by 95.9% and 94.1% in all experiments with
and without SLIC superpixel, and SH was significantly lower than other parts.

Table 6. Total MIoU results of each group of polarimetric parameters.

Parameters H/A/Alpha H/A/SERD/Alpha Scattering coefficients Freeman Yamaguchi

Without SLIC Superpixel 69.0% 72.0% 58.1% 82.0% 86.5%
With SLIC Superpixel 81.3% 83.3% 79.3% 84.5% 90.5%

Table 7. Average MIoU of each classification.

Areas CS EM LA OS SH

Without SLIC Superpixel 94.9% 68.2% 83.8% 87.8% 32.9%
With SLIC Superpixel 95.9% 90.1% 90.3% 94.1% 48.6%

Table 8. Total MIoU results of Yamaguchi parameters combined with different SLIC parameters.

Superpixels 150 200 250 300 350 400

Total MIoU 87.1% 88.5% 91.0% 90.3% 90.5% 86.6%

It is worth noting that the number of superpixels in SLIC superpixel segmentation will also
affect the final segmentation accuracy. We tested the number of superpixels from 150 to 400 with the
step of 50 on Image 1 alone. Figure 11 shows the SLIC segmentation results of different numbers of
superpixels. We carried out the comparison experiments with the use of the polarized parameter
group of Yamaguchi 4-component decomposition, since it achieved the highest MIoU in the previous
experiments. Table 10 lists the MIoU for oil spill segmentation accuracy under different superpixel
numbers. The highest accuracy is 91.0% when superpixel number was set to 250.

Finally, the classification results of the whole image without and with SLIC superpixel by
applying Yamaguchi parameters are represented in Figure 12. Each category on the sea surface
can be distinguished with high accuracy. SLIC superpixel helped further improve the accuracy of
each category, especially for emulsions. Biogenic look-alikes were also better classified with less
misclassification pieces inside. Emulsions can be well detected from oil spill and biogenic look-alike
areas, and the segmentation results of other categories also perform better. The improvement effect in
Image 1 was the most obvious, while SLIC superpixel mainly helped improve the accuracy of CS area
in Image 2 and Image 3.
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Figure 11. SLIC superpixel segmentation results with different superpixel numbers. (a) 150, (b) 200,
(c) 250, (d) 300, (e) 350, (f) 400.
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Figure 12. The whole classification result of Yamaguchi 4-component parameters. Left: the results
without SLIC superpixel; right: the results with SLIC superpixel. (a1,a2) Image 1, (b1,b2) Image 2,
(c1,c2) Image 3.
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In order to evaluate the algorithm complexity, we calculate the calculation time of the superpixel
segmentation and CNN classification with different polarized parameters, the results are listed in
Table 9. Table 10 shows the memory usage of different neural network models. Due to the limitation
of experimental conditions, our experiments are carried out on a device without independence GPU.
It should be noted that the processing speed will be more than several tens of times faster on a device
with independence GPU, hence it will be no problem to achieve near-real time monitoring.

Table 9. Calculation time of each process (seconds).

Image 1 Image 2 Image 3

Pixel Number in Experiments 2350× 2450 1000× 480 1550× 600
Computer Configuration i5-8250u CPU 8GB

Superpixel Segmentation(s) 1742 576 482

CNN Classification with SLIC(s)

H/A/Alpha 1594 135 243
H/A/Alpha/SERD 2107 186 359

Scattering
Coefficients 1023 102 159

Freeman 1602 133 245
Yamaguchi 2115 192 361

Table 10. Memory Usage Condition of CNN.

Without SLIC With SLIC

H/A/Alpha 59.2 M 91.3 M
H/A/Alpha/SERD 91.3 M 130 M

Scattering Coefficients 33.9 M 59.2 M
Freeman 59.2 M 91.3 M

Yamaguchi 91.3 M 130 M

4. Discussion

In order to improve the reception field and reduce parameters, we used depthwise convolution and
dilated convolution in several bottom layers of our semantic segmentation model instead of traditional
convolution kernel. These strategies achieved high accuracy with small amount of parameters in
the experiments.

The emulsion marked in Image 1 we used is mixture of Oseberg oil, IFO380 and water, with
water content of approximately 69%. The emulsion has different polarimetric characteristics from
oil spill. Actually, they behave in between crude and clean sea surface on polarimetric SAR features.
In actual cases, it should be also recognized as a type of oil leakage that will cause damage to ocean
environment. The emulsions, biogenic look-alikes and oil spill area are independent of each other in
actual SAR images, but dark area in the same test image may be classified into two or more categories.
For example, many EM areas are classified into OS or LA as shown in Figure 9.

It was discovered that that parameters calculated from covariance matrix or correlation/conformity
coefficients could mistakenly detect the ship as oil spill area. Experiments proved that Yamaguchi
and Freeman decomposition parameters performed better in oil spill classification. Both of them are
scattering model-based decomposition method, while Yamaguchi decomposition could better deal
with the large cross-polarized component caused by complex ground target, which break the reflection
symmetry. Hence Yamaguchi decomposition could distinguish each area with relatively high accuracy,
especially on ship targets.

Moreover, SLIC can combine neighboring pixels together with special significance and associate
adjacent pixels, thus forming connected blocks and greatly improves the classification accuracy,
the MIoU of each group polarized parameters has been greatly improved in the demonstrated
experiment. Further experiments on Image 1 showed that when superpixel number was set to 250,
the recognition accuracy achieved the highest. In fact, the number of superpixels set strongly relies
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on the type and size of objects. That means that the SLIC superpixel numbers should be adjusted
depending on real conditions.

5. Conclusions

In this paper, we proposed an oil spill detection method combining SLIC superpixel model and
semantic segmentation algorithm based on CNN. The dilated convolution kernel and depthwise
separable convolution kernel was adopted for better computing performance and larger sensing area.
SLIC superpixel segmentation is set as an input for the CNN model for auxiliary classification.

The experiments were carried on a C-band fully polarized SAR data of Radarsat-2. We extracted
several polarized parameters according to different methods, and tested their performance in oil spill
classification based on the proposed method. The results showed that in each group of experiments,
this network structure can effectively distinguish the oil spill area and other areas. The highest MIoU
value appeared in Yamaguchi decomposition parameters experiment, followed by H/A/SERD/Alpha
and Freeman decomposition.

The introduction of SLIC superpixel greatly improved the recognition accuracy. The MIoU values
of each group are improved, and their numerical order of the polarimetric feature sets is almost the
same as in experiments without SLIC superpixel. Hence, it is suggested that Yamaguchi parameters
combined with superpixel segmentation is the most suitable method for oil spill detection.
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Abstract: Ocean surveillance is one of the important applications of synthetic aperture radar (SAR).
Polarimetric SAR provides multi-channel information and shows great potential for monitoring ocean
dynamic environments. Oil spills are a form of pollution that can seriously affect the marine ecosystem.
Dual-polarimetric SAR systems are usually used for routine ocean surface monitoring. The hybrid
dual-pol SAR imaging mode, known as compact polarimetry, can provide more information than the
conventional dual-pol imaging modes. However, backscatter measurements of the hybrid dual-pol
mode depend on the transmit wave polarization, which results in lacking consistent interpretation
for various compact polarimetric (CP) images. In this study, we will explore the capability of
different CP modes for oil spill detection and discrimination. Firstly, we introduce the general CP
formalism method to formulate an arbitrary CP backscattered wave, such that the target scattering
vector is characterized in the same framework for all CP modes. Then, a recently proposed CP
decomposition method is investigated to reveal the backscattering properties of oil spills and their
look-alikes. Both intensity and polarimetric features are studied to analyze the optimal CP mode
for oil spill observation. Spaceborne polarimetric SAR data sets collected over natural oil slicks and
experimental biogenic slicks are used to demonstrate the capability of the general CP mode for ocean
surface surveillance.

Keywords: general compact polarimetry; hybrid dual-polarization; oil spill discrimination; target
decomposition; ocean environment

1. Introduction

Marine oil spills have been of tremendous concern due to the adverse impact on ocean economic
and ecological systems. It results in serious effects on coastal fisheries, sea creatures, seabirds,
and eco-environment regeneration. Oil spills are, regrettably, common around the world; e.g., the 2010
Deepwater Horizon oil spill in the Gulf of Mexico, oil leakage from the Penglai 19-3 oil rig platform in
2011 in Bohai Bay, and the Rena oil spill that occurred off a coast in New Zealand in 2011. The rapid
increase in oil spill pollution is primarily due to increased ocean activities by humans. The spatial
distribution of the spills showed that the most frequent occurrence of oil spills takes place along the
main tanker routes, near offshore oil platform positions, as well as in the large ports. Optical and
microwave remote sensing techniques are mostly used to monitor marine oil spills, with microwave
sensing having significant capability for observing ocean ecosystems [1,2].

Synthetic aperture radar (SAR) has all-day and all-weather imaging capabilities, where the satellite
systems can provide periodical observations of high-risk areas. Polarimetric SAR (PolSAR) offers
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multi-channel polarimetric information, and the fully or quad-polarimetric (quad-pol) SAR system
allows the complete backscattering characterization. It has been widely demonstrated that polarimetric
information greatly improves the performance of SAR systems [3]. The quad-pol system, alternatively
transmitting two orthogonal polarizations and receiving in both polarizations simultaneously, has many
advantages but suffers from system complexity, data volume, and limited imaging swath compared to
the SAR systems, which transmit only a single polarization. The dual-pol system is a compromise for
the trade-off between imaging spatial coverages and observation dimensionality. The hybrid dual-pol
or the named compact polarimetric (CP) SAR refers to a unique polarization in transmission and
coherent orthogonal polarizations in reception. At present, the Indian RISAT-1 (2012), Japan JAXA
(Japan Aerospace Exploration Agency) ALOS/PALSAR-2 (2014), Argentine SAOCOM-1A (2018), and
the Canadian RADARSAT Constellation Mission (RCM, 2019) have CP imaging modes. In the future,
CP modes have also been planned for SAOCOM-1B.

The techniques of processing CP images are categorized into two groups. One is to reconstruct
the pseudo quad-pol data from compact polarimetry [4–10], and then quad-pol methods can be
applied to the reconstructed data for various applications. The other is to extract target scattering
parameters directly from the backscattered waves [11–16]. In this study, we focus on the detection
of oil spills by using polarimetric features measured by CP modes. Radar backscatter is sensitive to
the ocean capillary–gravity waves [17–19]. Under low to moderate sea conditions with intermediate
radar incidence angles ranging from 20◦ to 60◦, the scattering mechanism of the sea surface is often
predominated by Bragg resonant scattering [3,20]. Any process that affects the ocean surface roughness
can be imaged with SAR. Oil slicks not only damp the ocean capillary and gravity waves, but also
reduce the surface tension and friction between the wind and liquid surface [21]. Therefore, oil slicks
have a low backscattering signature [17–19,22]; i.e., oil slicks appear as distinguishable dark patches
compared to the ambient areas. However, low backscatter features could also be created by other
ocean phenomena, known as look-alikes, such as biogenic films, low wind regions, rain affects, sea ice,
and upwellings, etc. It is crucial to distinguish between oil slicks and their look-alikes, because false
alarms could initiate the costly manual activities and more seriously delay the cleaning activities of
the spills. The fully polarimetric features, such as the polarimetric signature and pedestal height [23],
the Mueller matrix-based filter [24–26], and the co-polarized phase difference (CPD) [27], have been
investigated for oil spill observation and discrimination. In compact polarimetry, the performance of
the degree of polarization (m) were studied for both oil spill and ship detections under several typical
dual-pol modes [16], but analysis related to oil look-alikes was not included. CP feature extraction
methods mainly have the m− δ decomposition [11,13], the m− χ decomposition [12], and the m− αs

decomposition [14]. These methods were proposed based on the circular CP mode, not applicable to
other CP modes without any modification. In [10], we extended the m− αs decomposition to the linear
π/4 mode.

In fact, there are numerous possibilities of transmit wave ellipses on the polarization plane, and thus
theoretically we have numerous hybrid dual-pol imaging modes. However, the hybrid dual-pol features
were only studied under the conventional HH/VH and HV/VV polarizations, as well as the circular and
linear π/4 CP modes. In the open literature, there are no studies that investigate the general CP mode for
ocean target characterization. In [28], we demonstrated that scattering characterization under compact
polarimetry should be described in the same framework for the purpose that unified algorithms
applicable for all CP modes can be developed. A formalism method was first proposed for the CP
backscattered vector, and then a polarization ratio-based target decomposition method was developed
to represent the scattering mechanism and the scattering randomness of targets for an arbitrary hybrid
dual-pol mode [28]. In this paper, the performances of the general CP features for oil spill detection and
discrimination are analyzed and the optimal CP mode for ocean environment monitoring is studied.
The organization is given as follows. In Section 2, the formalism of the general CP descriptors and
the CP decomposition method are introduced. In Section 3, data sets of RADARSAT-2, SIR-C/X-SAR,
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and ALOS/PALSAR-1 are analyzed to show the ability of different CP modes to distinguish between
oil spills and biogenic look-alikes. Finally, conclusions are given in Section 4.

2. The General Compact Polarimetric Features

2.1. Formalism of the General CP Descriptors

For an arbitrary transmitting electromagnetic (EM) wave, the CP measurements are a function of
both the target and the transmit wave polarization. The backscattered wave is represented by a Jones
vector [29], which is a 2-dimensional complex vector. It can be formulated by an absolute coefficient
and a complex channel ratio, which represents the vector nature (or the polarimetric property) of the
backscattered wave to characterize target scattering mechanisms. Suppose the transmit transverse EM
wave is

⇀
Ei
(
θ, χ

)
=

[
a
b

]
=

[
cosθ − sinθ
sinθ cosθ

][
cosχ
j sinχ

]
=

[
cosθ cosχ− j sinθ sinχ
sinθ cosχ+ j cosθ sinχ

]
(1)

where θ and χ are the ellipse orientation and ellipticity angles, and a and b are the complex transmitting
wave elements with |a|2 + |b|2 = 1. For a given target S, the received CP (or hybrid dual-pol) signal is
totally dependent on a and b (or θ and χ), as follows:

⇀
Er
(
θ, χ

)
= S

⇀
Ei
(
θ, χ

)
=

[
SHH SHV

SVH SVV

][
a
b

]
=

[
aSHH + bSHV

bSVV + aSVH

]
. (2)

This formula is represented in the linear H/V polarization basis. It should note that the CP
measurements are independent of the receiving polarization coordinates. Equation (2) shows that the

complex vector direction of the scattering wave is highly affected by the transmit wave
⇀
Ei =

[
a b

]T
.

When a = 0 or b = 0,
⇀
Er corresponds to the conventional HV/VV or HH/VH dual-pol case. We only

consider the general CP mode. When a � 0 as well as b � 0, the backscattered wave
⇀
Er can be projected

to another space by a scaling transformation as

⇀
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a SHV
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where
⇀
k 1 is the formalized CP vector, which is the sum of the co-polarized and cross-polarized

components. Compared to
⇀
Er, in which both the co-polarized and cross-polarized terms are affected by

the transmitting wave’s polarization,
⇀
k 1 has a fixed term

[
SHH SVV

]T
to characterize the scattering

properties of a target under all CP modes. Another vector can thus be obtained from (3) by a unitary
transform:

⇀
k 2 =

1√
2

[
1 1
1 −1

][
E1

E2

]
=

1√
2

[
E1 + E2

E1 − E2

]
. (4)

Then, the second-order products, named as the formalized CP covariance and coherency matrices,
are accordingly obtained to describe the stochastic backscattering process.

C2 =
⇀
k 1
⇀
k

H

1 =

[ 〈|E1|2〉 〈E1E2
∗〉

〈E2E1
∗〉 〈|E2|2〉

]
(5)

T2 = 〈⇀k 2
⇀
k

H

2 〉 =
⎡⎢⎢⎢⎢⎢⎣

〈|E1+E2 |2〉
2

〈(E1+E2)(E1−E2)
∗〉

2
〈(E1−E2)(E1+E2)

∗〉
2

〈|E1−E2 |2〉
2

⎤⎥⎥⎥⎥⎥⎦ (6)
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where H denotes the matrix conjugate transpose and 〈·〉 denotes the ensemble average. In [28], we
discussed the sensitivity of different CP modes to the target geometrical parameters. It showed that
for the surface and trihedral scatterers, the polarization ratios of the formalized vector are always

distributed around (1, 0) (see Figure 1a,b in [28]). The difference between the two vectors, i.e.,
⇀
Er and

⇀
k 1,

is schematically shown in Figure 1. For backscatter from natural areas, the cross-pol term is relatively
small as compared to the co-pol terms. Suppose the term Δ is negligible for both vectors. When

(a, b) varies, the direction of
⇀
Er, determined by both

[
SHH SVV

]T
and (a, b), can be dramatically

affected by the transmitting wave’s phase δ (δ = angle(b/a)). The direction of
⇀
k 1 is only determined by[

SHH SVV

]T
. In the real scattering case, the end point of

⇀
k 1 varies around

[
SHH SVV

]T
, which is

taken as a reference point to characterize the scattering mechanism in the formalized vector. We use
real measurements for intuitive illustration. Scattering matrices from the ocean surface and oil slicks
are as follows:

Ssea = ejϕ1

[
0.1555 −0.0064− 0.0051i

−0.0064− 0.0051i 0.1571− 0.0500i

]

Soil−slick = ejϕ2

[
0.025 −0.0031− 0.0063i

−0.0031− 0.0063i 0.0595− 0.0114i

]
,

(7)

which are randomly selected from the test data used in the experiments. Figure 2 shows variation

in the polarization ratios of
⇀
Er and

⇀
k 1 with the varying CP modes (θ = π/4, χ ∈

[
−π/4 π/4

]
)

for the scattering types in (7). It shows that with the formalized scattering vector, the effect of the
transmitted polarization on the backscattered wave is greatly reduced, especially for the ocean surface.
To distinguish between oil slicks and the sea surface in different CP modes, multiple thresholds or a

nonlinear curve are needed when
⇀
Er is used to represent the target features, while only one threshold

is needed when
⇀
k 1 is used. Polarimetric properties of targets can be explained consistently for all CP

modes with
⇀
k 1, which facilitate developing unified explanation algorithms for target characterization.

 

Figure 1. Schematic representation of
⇀
Er and

⇀
k 1.

 

Figure 2. Variation of the polarization ratios of
⇀
Er and

⇀
k 1 with the varying compact polarimetric (CP)

modes (θ = π/4,χ ∈ [−π/4,π/4]) for scatterers from the ocean surface and oil slicks.
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2.2. Polarization Ratio-Based Decomposition for the General CP Images

By using the CP descriptors presented in (3)–(6), we proposed a polarization ratio-based
decomposition method [28]. Polarization ratio is a fundamental parameter in revealing target scattering
mechanisms. This idea was also employed for the ΔαB/αB method [30,31] in fully polarimetric imagery.
The fully polarimetric and the general CP ΔαB/αB methods are mathematically equal, but there is
difference in the physical interpretations. From matrix T2, we can define parameter αBCP as

αBCP = atan
( 〈|E1 − E2|2〉
〈|E1 + E2|2〉

)
(8)

where αBCP ∈
[

0◦ 90◦
]

is used to describe the average scattering mechanism. For deterministic
scatterers without obvious rotation, the cross-polarized term SHV is usually small compared with the
co-polarized terms. Then, by (3) and (8) it is easily known that when the transmitted wave is balanced
in the channel amplitudes, i.e., |a| ≈ |b| (equivalent to θ ≈ ±π/4 or χ ≈ ±π/4), for surface scattering
dominated areas, αBCP is close to 0◦; for double-bounce scattering dominated areas, αBCP is close to
90◦; and for random volume scattering, αBCP is close to 45◦. When the wave channel amplitudes are
imbalanced, i.e., |a| � |b| or |a| � |b|, the cross-polarized term will gradually play a leading role in
determining the scattering mechanism with the imbalance increasing.

For the single-look data, αBCP is equivalent to E2/E1. For the multi-look data, αBCP is a function
of the multi-look polarization ratio ρCP and the channel correlation coefficient |rCP| [28]. We defined
another parameter to measure the effect of |rCP| on αBCP, as follows:

ΔαBCP = αBCP − α0CP (9)

where

α0CP = atan
(
|1−ρCP|2
|1+ρCP|2

)
and ρCP =

√
〈|E2 |2〉
〈|E1 |2〉 e

jangle(〈E2E1
∗〉). (10)

α0CP is only determined by the averaged polarization ratio ρCP. We use the distance between αBCP and
α0CP to measure the scattering randomness. For all CP modes, ΔαBCP was distributed in the interval[
−45◦ 45◦

]
and a larger |ΔαBCP| indicates a more random scattering process. The properties of αBCP

and ΔαBCP has been discussed in [28]. A diagram can be constructed as shown in Figure 3. The pixel
distribution depends on the polarization phase difference, i.e., φ = angle(〈E2E1

∗〉).

Figure 3. The ΔαBCP/αBCP plane. Pixels of all CP modes are distributed in the red and blue rectangles.
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3. Experiments

3.1. Test Data Sets

To analyze the performances of various CP modes for oil spill detection and discrimination, data
acquired by C-band RADARSAT-2, C-band SIR-C/X-SAR, as well as L-band ALOS/PALSAR-1 over oil
slicks and biogenic slicks were used. The biogenic slicks were simulated using Oleyl Alcohol (OLA) by
controlled experiments [26]. Data sets are specified in Table 1, in which the oil spills originated from oil
platforms, such as the Penglai 19-3 oil slicks, as well as tanker accidents, such as the ALOS/PALSAR-1
data [25]. Figure 4 shows the Pauli-basis images. Before carrying out the analysis, polarimetric images
were filtered by a sliding window for speckle reduction. Pixel spacing was in general taken into
account for selection of the window size. However, it was found that when analyzing the scattering
mechanisms, the filter window size does not affect the results too much if it varies within a small range,
at least for the test data in this study. Thus, an appropriate and applicable window size of 5 was set for
the experiments.

Table 1. Fully polarimetric synthetic aperture radar (SAR) images. The SIR-C/X-SAR data were
measured in the C-band and p.n. is the processing number.

Sensor
Location or Site

Identification
Pixel Spacing

(in meters)
Incidence Angle

(in degrees)
Acquisition

Date
Object

ALOS/PALSAR-1 ALPSRP031440190 4.5*9.5 Center: 25.7◦ 2006-8-27 Oil slicks

RADARSAT-2 Penglai 19-3 oilfield,
Bohai bay 4.7*5.5 36.5◦–38.0◦ 2011-8-19 Oil slicks

SIR-C/X-SAR p.n. 17041 12.5*12.5 35.4◦–40.4◦ 1994-4-11 Oil slicks
SIR-C/X-SAR p.n. 44327 12.5*12.5 44.1◦–47.5◦ 1994-10-1 Oil slicks
SIR-C/X-SAR p.n. 49939 12.5*12.5 47.2◦–49.9◦ 1994-10-8 Oil slicks
SIR-C/X-SAR p.n. 41467 12.5*12.5 25.8◦–29.2◦ 1994-10-4 OLA
SIR-C/X-SAR p.n. 11588 12.5*12.5 19.3◦–24.4◦ 1994-4-15 OLA
SIR-C/X-SAR p.n. 41370 12.5*12.5 26.2◦–30.8◦ 1994-10-1 OLA

    
(a) (b) (c) (d) 

   
(e) (f) (g) (h) 

Figure 4. Pauli-basis images for oil slicks and Oleyl Alcohol (OLA). (a) ALOS/PALSAR-1 data,
ALPSRP031440190; (b) RADARSAT-2 data acquired over the Penglai 19-3 oil field; (c–h) are SIR-C/X-SAR
data sets with p.n. 17041, 44327, 49939, 41467, 11588, and 41370, respectively.

3.2. Oil Spill Detection

Radar signatures of natural slicks and oil spills are interpreted as dark patches in SAR images.
The characteristic dark feature is a primary indicator for detection and mapping of potential oil spills.
For various CP modes, the total backscattered energy varies with the transmit wave. The damping
ratio has been widely used in SAR images for identification of surface slicks, including oil spills. For
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the hybrid dual-pol backscatter, we used the total intensity to define the contrast between the ocean
surface and surface slicks as follows:

rratio =
Tr(C2)slick− f ree

Tr(C2)observed area
(11)

where Tr(·) is the trace of a matrix. In damping ratio images, sea surface slicks will appear as
bright spots against the dark background of water. We used SIR-C/X-SAR data with p.n. 49939
and 41370 for illustration. The damping ratio under the left circular mode in Figure 5a,b, i.e.,(
θ, χ

)
=
([
−π/2 π/2

]
, π/4

)
, shows that the signature of the surface slicks is evident in the

CP images. We used the areas outlined in Figure 5a,b to show the variations of the damping ratio with
the transmitted wave polarizations, given in Figure 5c,d. The damping ratio in full polarimetry is also
given, calculated based on the total backscattered energy, which was 2.63 ± 0.62 for the oil slicks and
2.59 ± 0.67 for OLA. It shows that when the transmitted wave approaches the conventional dual-pol
modes, the contrast between the oil slicks and ocean surface is very small, which is not favorable to
predict the surface slicks because it can generate missed detections. When the transmitting wave’s
polarization deviates from the H and V polarizations, the damping ratio increases and reaches its
maximum at θ = ±π/4. Comparison of Figure 5c,d shows that the damping ratio is greatly affected
by the ellipse orientation angle and that it varies only a little with the ellipticity angle. When the
transmitting wave’s channel amplitude is balanced, i.e., θ = ±π/4 or χ = ±π/4, the oil slick always
has a larger contrast with the ambient water than the OLA slick. Damping ratios of oil slicks and
OLA at the linear π/4 and the left circular modes are almost the same. When χ varies, the maximum
difference between the damping ratios of oil slicks and OLA takes place at

(
θ, χ

)
=
(
π/4 , π/8

)
.

However, the overall difference is not significant.

 
(a) (b) 

 
(c) (d) 

Figure 5. Damping ratios of oil slicks and OLA for the C-band SIR-C/X-SAR images with p.n. 49939
and p.n. 41370. (a) Damping ratio of oil slicks in the left circular mode; (b) damping ratio of OLA in the
left circular mode; (c) variation of the damping ratio with χ changing from −π/4 to π/4; (d) variation
of the damping ratio with θ changing from −π/2 + eps to π/2− eps.
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The above analysis shows that low backscattered features are still visible in CP imagery. When the
transmitted wave is balanced in the channel amplitude, i.e., |a| = |b|, the slicks that cause a dampening
of the surface waves have a maximum contrast with the background surface. After the dark patches
are detected, further analysis is needed to refine the results such that the possibility of false oil spill
detection can be reduced. Next, the general CP features were analyzed to distinguish between oil slicks
and OLA. αBCP describes the physical scattering mechanism of targets in compact polarimetry, and
ΔαBCP relates to the scattering randomness. The left circular mode is used as an example. The general
CP features for the test data sets are shown in Figure 6, where the ΔαBCP/αBCP scatter diagram is also
given by using pixels of the outlined areas. The areas are only depicted in the αBCP images for simplicity.
It is observed that parameters ΔαBCP and αBCP can distinguish oil slicks from the background ocean
surface for data of all the three sensors. The ocean surface always has small αBCP and ΔαBCP values,
and oil slicks have relatively larger αBCP and |ΔαBCP| values. The oil slick images in Figure 6 indicate
that in CP imagery, oil slicks and ocean surface can be discriminated by polarimetric features. We also
observe that OLA and the ocean surface have very similar ΔαBCP and αBCP values. These two scattering
types could not be separated in the ΔαBCP/αBCP diagram. The two-pixel groups overlap each other,
indicating that OLA and the ocean surface have similar backscattering mechanisms in the circular
CP mode.

(a) 

   

(b) 

   

(c) 

   

Figure 6. Cont.
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(d) 

   

(e) 

   

(f) 

   

(g) 

   

(h) 

   

Figure 6. CP parameters in the left circular mode and the ΔαBCP/αBCP scatter plots. (a–h) used data
from ALOS/PALSAR-1 with ALPSRP031440190, RADARSAT-2 (Penglai 19-3 oil field), and the SIR-C
data sets with p.n. 17041, 44327, 49939, 41467, 11588, and 41370, respectively.
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In [15], under the circular CP mode, we proposed a parameter ρCTLR (see (10) in [15]), which is a
special case for αBCP. It was shown that the performance of αBCP in the circular mode is quite similar
to that of αB in the full-pol mode (see Figure 5a in [15]) for ocean surface characterization. For the test
data sets in this study, experimental results show that the ΔαBCP/αBCP scatter plots in the circular CP
modes have a good overall agreement with the FP ΔαB/αB distributions.

We further consider an arbitrary CP mode in the formalized vector to evaluate the effects of the
transmitted wave’s ellipticity and orientation angles on the surface slick representation. The data sets
demonstrated in Figure 5 are used to keep the experimental analysis consistent. Averaged FP αB and
ΔαB values of the outlined ocean surface, oil slick, and OLA areas in Figure 5, and their corresponding
standard deviations, are given in Table 2. Variations of the CP αBCP and ΔαBCP values with the varying
transmitted wave polarizations are shown in Figure 7. Table 2 shows the ocean surface and oil slicks
have large differences in αB and ΔαB. The averaged differences in both parameters for the two scatterers
are about 15◦. In contrast, the two parameters do not exhibit significant differences for ocean surface
and OLA slicks. It is observed from Figure 7 that when the transmitted wave’s amplitude is balanced
in H and V polarization channels, variation trends of oil slicks, ocean surface, and OLA are very
similar. When the transmitted wave is more circularly polarized, the difference between the oil slicks
and ocean surface becomes larger with αBCP. In the linear π/4 mode, the difference in αBCP values
is 6.5◦, while in the circular mode, the difference increases to 15◦. However, standard deviations
of ΔαBCP for oil slicks also increases with the increased polarization circularity. For all CP modes
with the balanced channel amplitudes, the scattering mechanisms of ocean surface and OLA have
little differences, with 1◦ on average in αBCP and 1◦ on average in ΔαBCP. For the linearly polarized
transmitted waves, the difference between the oil slicks and the ocean surface achieves its maximum
when the wave orientation angle is at ±45◦, indicating that when the transmit wave is with |a| = |b|
(equivalent to χ = ±π/4 or θ = ±π/4), oil slicks could be better detected from the ocean background.
Differences between ocean surface and OLA slicks are very small with the varying wave orientation
angles, indicating that ocean surface and OLA have a similar scattering mechanism. Figure 7 also
shows that the scattering mechanisms of targets are greatly affected by transmitting wave orientations
and less sensitive to wave ellipticity angles. When the wave orientation angle varies, a maximum
change of 35◦ can be found in αBCP and 15◦ in ΔαBCP for ocean surface. While the maximum changes
within both parameters for ocean surface are 5◦ with the varying ellipticity angles.

In Table 2 and Figure 7, target scattering mechanisms in polarimetric modes are analyzed based on
2 representative data sets. To further validate the performances of the CP parameters for surface slick
characterization, results of the other six data sets in Table 1 are also given. Table 3 shows the averaged
FP αB and ΔαB values for the ocean surface, oil-slick, and OLA areas outlined in Figure 6. Variations
of the CP parameters with the varying transmit polarizations for these areas are shown in Figure 8.
From Table 3 and Figure 8, similar analysis results can be observed as those from Table 2 and Figure 7,
verifying that the CP ΔαBCP and αBCP is effective in differentiating target scattering mechanisms, and
CP modes with balanced transmit channel amplitudes are better for detection of oil spills.

Table 2. αB and ΔαB values (in degrees) of the FP images for the outlined areas in Figure 5.

mean(·) ± std (·) SIR-C Data with p.n. 49939 SIR-C Data with p.n. 41370
Water Oil Slicks Water OLA

αB 17 ± 3 32 ± 7 3.7 ± 0.7 4.5 ± 1
ΔαB 12 ± 3 27 ± 6 1.8 ± 0.5 2.9 ± 1
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(a) (b) 

Figure 7. Variation of αBCP and ΔαBCP values with varying transmitted wave polarizations for the
water surface, oil slick, and OLA areas outlined in Figure 5. (a) SIR-C data with p.n. 49939. (b) SIR-C
data with p.n. 41370.
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(a) 

  
(b) 

  
(c) 

  
(d) 

  
(e) 

  
(f) 

Figure 8. Variation of αBCP and ΔαBCP values with transmitting polarizations for the water surface,
oil slick, and OLA areas outlined in Figure 6. (a) ALOS/PALSAR-1 data (ALPSRP031440190);
(b) RADARSAT-2 data (Penglai 19-3 oilfield); (c) SIR-C data with p.n. 17041; (d) SIR-C data with p.n.
44327; (e) SIR-C data with p.n. 41467; (f) SIR-C data with p.n. 11588.

Finally, an example carried out in the circular and linear π/4 CP modes is given for an intuitive
visualization of the oil spill detection results. Both the characteristic low backscattered feature and
polarimetric features are utilized. The experiment follows steps as follows. First, the damping ratio is
used to detect surface slicks, where the Parzen window with a Gaussian Kernel is employed to model
the ocean clutter. Low backscattered features are detected based on a given false alarm rate, which
is set to p f a = 0.5% in this example. Then, the αBCP and ΔαBCP parameters are used to discriminate
between oil slicks and OLA. We simply use the Euclidean distance to measure the dissimilarity of a
detected slick and ocean surface. According to Tables 2 and 3 and Figure 7 and Figure 8, we set the
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threshold as 5◦, which is the median value of the distances between oil slicks and ocean surface and
the distances between OLA and ocean surface. Detection results are shown in Figure 9. The detected
oil spills are shown in yellow and the detected low backscatter features are shown in green. Figure 9
shows that in compact polarimetry, oil slicks and OLA can be distinguished from the ocean surface by
combining polarimetric features and the backscattered intensity. Detection results of the circular and
linear π/4 CP modes are quite similar, but comparatively the circular CP mode can detect more areas of
oil spills. Both modes can discriminate oil slicks from OLA.

    

(a) 

    

   
(b) 

Figure 9. An example of an oil spill and the OLA detection results. The pseudo-color composite image
is fused by R = Detection of oil slicks, G = Detection of dark features, and B = Span image. (a) The left
circular mode; (b) the linear π/4 mode.

4. Conclusions

Oil spill detection is a very important step for ocean environment managing. In this paper,
the general compact polarimetric (CP) mode, which refers to a coherent dual-pol system with an
arbitrary transmitted elliptical polarized wave, was first analyzed to observe oil spills and biogenic
slicks. A previously proposed formalism method is employed to describe the general CP measurement.
We showed that the formalized vector is better in characterizing target scattering mechanism for ocean
surface with and without slicks as compared with the original scattering vector. Both the backscattered
intensity, which is favorable in detection of surface slicks due to their characteristic dark signatures in
SAR images, and polarimetric parameters, which can discriminate between scattering mechanisms, are
analyzed. Polarimetric SAR data from C-band SIR-C/X-SAR and RADARSAT-2, as well as L-band
ALOS/PALSAR-1 were used in experiments. Results demonstrated the effectiveness of the general CP
parameters, i.e., αBCP and ΔαBCP, for oil spill detection. Analysis of these two parameters showed that
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the scattering mechanism of the ocean surface is very similar to that of the OLA slicks but different
from that of oil spills. The CP modes for which the transmit wave amplitude is balanced in the H and
V coordinates, i.e., θ = ±π/4 or χ = ±π/4, enable better detection performances. Compared to the
linear π/4 mode, the circular mode is better in preserving the integrity of the detected oil spill areas.
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Abstract: Marine raft aquaculture (MFA) plays an important role in the marine economy and
ecosystem. With the characteristics of covering a large area and being sparsely distributed in sea
area, MFA monitoring suffers from the low efficiency of field survey and poor data of optical satellite
imagery. Synthetic aperture radar (SAR) satellite imagery is currently considered to be an effective
data source, while the state-of-the-art methods require manual parameter tuning under the guidance
of professional experience. To preclude the limitation, this paper proposes a segmentation network
combined with nonsubsampled contourlet transform (NSCT) to extract MFA areas using Sentinel-1
images. The proposed method is highlighted by several improvements based on the feature analysis
of MFA. First, the NSCT was applied to enhance the contour and orientation features. Second,
multiscale and asymmetric convolutions were introduced to fit the multisize and strip-like features
more effectively. Third, both channel and spatial attention modules were adopted in the network
architecture to overcome the problems of boundary fuzziness and area incompleteness. Experiments
showed that the method can effectively extract marine raft culture areas. Although further research
is needed to overcome the problem of interference caused by excessive waves, this paper provides
a promising approach for periodical monitoring MFA in a large area with high efficiency and
acceptable accuracy.

Keywords: marine raft aquaculture; Sentinel-1; nonsubsampled contourlet transform; semantic
segmentation; fully convolutional network

1. Introduction

According to the data from the Food and Agriculture Organization of the United Nations,
aquaculture production worldwide has surpassed that of capture fisheries, and it has been steadily
increasing year by year [1]. As the primary mean for coastal aquaculture, marine raft aquaculture plays
an important role in the development of the global marine economy and has a considerable impact on
the global marine ecosystem. For example, the 2008 Yellow Sea shade green tide outbreak induced by
marine raft aquaculture had a negative impact on the Olympic sailing event and led to the loss of RMB
1.3 billion. This serious environmental catastrophe stemmed largely from the environmental pressure
caused by the increasing number of marine raft aquaculture areas [2]. The distribution and number of
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marine raft aquaculture areas reflect the development status of the fishery as well as the quality of the
water environment. The monitoring of marine raft aquaculture areas is of great significance for the
protection of marine ecosystems and the sustainable use of marine fishery resources.

Marine raft aquaculture covers a wide area, is far from land, and is sparsely distributed. At present,
the relevant government departments mainly rely on field surveys to monitor it. As a result of sea
conditions, travel means, and weather, it is difficult to use manual inspection to detect illegal areas and
keep track of the distribution and quantity of floating rafts in a timely manner. Remote sensing satellites
have the capacity to periodically observe wide areas with few ground restrictions, which enables
regular and quick monitoring of marine raft aquaculture areas. A combination of remote sensing
monitoring technology and field surveys can provide comprehensive and efficient monitoring of
marine aquaculture areas, which is conducive to the orderly development of aquaculture and the
protection of natural ecology [3].

Raft culture is a form of aquaculture that uses floats and ropes to form rafts on the sea surface
that are fixed to the seabed with cables, which have algae or shellfish suspended on slings [4].
As shown in Figure 1, the floating raft is divided into two parts, i.e., above and below water, and the
water surface mainly contains floating balls. The structure of the floating raft makes it difficult for
passive remote sensing to capture its reflected signal. Limited by imaging modality, it is difficult
to accurately describe the marine raft culture area on optical satellite images [5,6]. Additionally,
sea environmental elements such as wind and waves as well as fog render it difficult to extract a
research target using optical remote sensing imagery. Synthetic aperture radar (SAR) actively emits
electromagnetic waves (fixed frequency beams) and collects reflected and back-scattered signals. It is
considered to be the best method for monitoring marine environments because it is not affected by the
above elements [7]. Therefore, marine raft aquaculture monitoring through SAR images has practical
research significance, especially in coastal cities where mariculture is the main economic activity.
Timely and effective monitoring of marine raft aquaculture areas can effectively assist in the planning
of marine aquaculture resources.

  
(a) (b) 

Figure 1. Raft culture. A floating raft has two parts: underwater (a) and water (b) [5].

In recent years, researchers have focused on SAR-based methods for aquaculture area extraction.
Chu et al. extracted raft aquaculture areas using various filtering methods and human–computer
interaction [8]. Fan et al. proposed a joint sparse representation classification method to construct
meaningful texture features of raft aquaculture on the basis of wavelet decomposition and gray-level
co-occurrence matrix (GLCM) statistical methods [9]. Hu et al. improved the statistical region merging
algorithm for superpixel segmentation and used a fuzzy compactness and separation clustering
algorithm to identify raft aquaculture areas from SAR images [10]. Geng et al. extracted raft
aquaculture areas by means of weighted fusion classifiers and sparse encoders [11,12]. These methods
are efficient in certain regions with the help of professional experience. However, knowledge-intensive
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feature engineering always leads to low robustness. The empirical parameter tuning causes the above
methods to not work well with different data and in different regions.

The emergence of convolutional neural networks has provided a way to avoid intensive
parameter tuning through deep learning and has led to the focus on object extraction based on
semantic segmentation network. Long et al. proposed fully convolutional network (FCN) [13] as
the pioneering work of deep learning semantic segmentation model based on full convolutional
network, and subsequent algorithms have improved on this framework. Ronneberger et al. proposed
U-net [14] to improve the FCN’s loss of information in task practice with an encoder–decoder network
structure. Then, this method was followed by several models such as DeepLab (v1/v2/v3) [15–17],
multi-path refinement networks (RefineNet) [18], and pyramid scene parsing network (PSPNet) [19].
Advances in semantic segmentation network have made it possible to improve the accuracy and
efficiency of marine raft aquaculture area extraction. Yueming et al. used richer convolutional features
network (RCF) [20] to extract rafts through edge detection in a raft aquaculture area in Sanduao,
China [21]. Shi et al. used dual-scale homogeneous convolutional neural network (DS-HCN) to extract
rafts in a dual-scale full convolutional network, finding it had superior performance on marine raft
aquaculture in Dalian, China [22]. Cui et al. proposed improved U-net with a pyramid upsampling
and squeeze-excitation (PSE) structure (UPS-net), which captures both boundary and background
information by adding PSE structures to the decoder part of U-net, with this method being effectively
verified in marine raft aquaculture in eastern Lianyungang, China [23]. However, Yue’s method
suffers from partial edges [21]. Shi’s method is mainly aimed at rafts, and the segmentation results
are incomplete and suffer from the adhesion problem [22]. Cui’s method has been experimentally
demonstrated to be more accurate than other popular networks based on the FCN model framework.
It was proposed to solve the adhesion problem of the DS-HCN method, and it is more suitable for
marine aquaculture than the DS-HCN method, but it does not take advantage of the characteristics of
the raft itself, and the edge of the raft is rough and incomplete [23].

It can be seen that state-of-the-art works, such as those by Chu, Fan, and Hu, mainly rely
on artificial parameter adjustments and feature designs. The deep learning method for semantic
segmentation avoids a large amount of manual work, but there are still poor integrity and boundary
fuzzy flaws in the detection results.

This paper proposes a segmentation method, which combines a semantic segmentation network
with the nonsubsampled contourlet transform (NSCT), to extract marine raft aquaculture areas and to
overcome the phenomena of rough edges, adhesion, and incomplete results in the existing methods.
To the best of our knowledge, this paper is the first to attempt to use a semantic segmentation network
to extract marine raft aquaculture areas from SAR images.

The method is characterized by improvements in feature enhancement and model optimization
on the basis of the feature analysis of marine raft aquaculture areas, as follows:

1. To address the low signal-to-noise ratio problem in SAR images, we enhanced Sentinel-1 images
with the NSCT [24] to strengthen the subject contour features and directional features.

2. To capture better feature representations, we combined several modules in U-net.
Multiscale convolution was used to fit the multisize characteristics of marine raft aquaculture
areas, asymmetric convolution was selected to address the floating raft strip geometric features,
and the attention module was adopted to focus on both spatial and channel interrelationships.

This paper is organized as follows. The first part introduces the background significance of
marine raft aquaculture area extraction and the current research status, the second part analyzes the
characteristics of marine raft aquaculture areas, the third part introduces the details of the method
proposed in this paper, the fourth part shows the experimental results and analyzes the results, the fifth
part provides the discussion, and the sixth part is the conclusion.
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2. Feature Analysis of Marine Raft Aquaculture Areas

Feature analyses of the marine raft aquaculture areas provide the basis for the design of the method.
A SAR image is the reflection of the target on radar beam, and the single-band echo information reflects
more scattering characteristics and structural characteristics of the target. Hence, this section focuses
on the scattering characteristics and structural characteristics of raft aquaculture areas.

2.1. Scattering Characteristics

Rafts are basically floating with floating balls on the surface of the water, and thus the scattering
from the raft culture area consists mainly of surface scattering from the seawater and the balls,
with two-sided angles and spirals scattering between them [25]. Therefore, an area where a raft exists
has a different scattering intensity than areas with only seawater. Due to the presence of waves, surges,
currents, and internal waves in various regions of the ocean, the backscatter characteristics of the ocean
are very irregular. Furthermore, the backscatter characteristics of floating raft, influenced by the sea
state, vary in different areas of the ocean. Therefore, enhancing the features of marine raft aquaculture
areas in SAR images is necessary to enhance the commonalities among marine raft aquaculture areas in
order to overcome the lack of floating raft features in SAR images and to mitigate background effects.

SAR images are visualized by the coherent processing of echoes from successive radar pulses,
in which coherent speckle noise is unavoidable. Speckle noise exhibits a granular, black and white
dotted texture on an image. Due to noise, some pixels in a homogeneous region are brighter than
average, while the others are darker. Thus, the speckle effect makes a radar image of a floating raft look
like a random matrix, and the magnitude values of the backscattering coefficient obey the Rayleigh
distribution [26]. Raft culture increases the roughness of the sea surface, and the backscattering signal
of seawater in a floating raft region is enhanced. Nevertheless, considering the influence of periodic
ocean waves, backscattering coherence superposition is more prominent, resulting in more severe
coherent speckle noise in SAR images [25]. As shown in Figure 2, the grayscale values of the pixels
depict the amplitude values of the backscattering at each pixel, and the variability in grayscale values
within the raft aquaculture area leads to the blurred edges of the area, as well as inconspicuous local
features. The global features can better characterize the raft culture area.

Figure 2. Difference in gray levels of a floating raft affected by noise. (a) The raft aquaculture area is
globally distinguishable. (b) The local culture area is poorly characterized. (c) Differences in grayscale
values exist at various pixels within the floating raft.

2.2. Structural Characteristics

Marine raft aquaculture areas tend to extend outward from offshore areas near islands and cover
wide areas with distinct structural characteristics. The structural characteristics of raft culture areas
help us to distinguish them from the seawater background, which includes but not limited to the
following aspects:
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• Multisize characteristics:

The multisize nature of marine raft aquaculture areas is twofold. Overall, the aquaculture
regions are scattered, with varying regional range sizes and inconsistent densities. Locally,
the strips in the aquaculture areas are uniform in width, vary in length, and have narrow sea lanes,
which vary in width between rafts. Thus, the method design needs to consider a method that
can fit multisize features, and the use of a single feature sensibility field makes avoiding missing
detailed information difficult.

• Strip-like geometric contour characteristics:

Floating rafts are made of ropes in series with floating balls and have distinct strip geometric
characteristics in an image. The non-centric symmetry of this type of rectangle needs to be noted
when using convolution to extract targets.

• Outstanding directionality:

The arrangement of floating rafts within an aquaculture area is directional, has explicit main
directions, and is generally parallel to the shoreline.

Figure 3 shows the structure of the marine raft aquaculture areas. The floating rafts in areas A
and B have the same strip-like geometric features and are aligned in the same direction within each
zone. The size, density, and alignment direction between regions are different, i.e., zone A is more
tightly packed than zone B, and the rafts are arranged horizontally in zone A and vertically in zone B.

Figure 3. (a,b) show two independent examples of marine raft aquaculture areas. Raft aquaculture
areas A in (a) and B in (b) are inconsistent in range size, density, and arrangement orientation.

In summary, the scattering features cause marine raft aquaculture areas to have weak local
features on SAR images and detailed features can be missed, which make it difficult to distinguish raft
aquaculture areas from seawater using only scattering features. The structural characteristics indicate
that when designing an approach, attention needs to be paid to the multisize and internal uniform
directional features, as well as the geometric features of the floating raft strip contour. On the basis of
the features of marine raft aquaculture areas, this paper proposes a segmentation method involving
feature enhancement and a semantic segmentation network similar to U-net, which will be introduced
in Section 3.

3. Methods

There are four main steps in the semantic segmentation method for extracting the target area:
dataset construction, model construction, model training, and final testing. In addition, the accuracy
of target extraction is calculated on the basis of the results of the final testing. The method for
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extracting marine raft aquaculture areas in this paper adds a feature enhancement step between dataset
construction and model construction. The overall process of the method in this paper is shown in
Figure 4.

 
 

 

Figure 4. Overall flow chart.

In the dataset processing stage, this paper collected Sentinel-1 image data. After basic image
processing of the data, we used the ArcGIS software to mark the image and generate binary maps
called ground truth maps. Then, the images and ground truth maps were divided into training,
validation, and test datasets at a 3:1:1 ratio, and data augmentation methods including mirroring,
panning, and other operations on the training and validation samples were used to expand the dataset.
The specific details are presented in Section 4.1.

After the construction of the dataset was completed, this paper used the NSCT to enhance the
contour and orientation features of the image, and the obtained low-frequency sub-band and direction
sub-bands were synthesized with the original image into a 26-channel image. This step is explained in
detail in Section 3.1.

In the model construction phase of this paper, the task of detecting marine raft aquaculture areas
was implemented by constructing a semantic segmentation algorithm model similar to the U-net
model. The details are presented in Section 3.2.

During the model training phase, the training samples and the validation samples were input into
the network model of this paper, and then the weight information was saved. The saved weights were
applied to the test samples in the final testing stage to extract the floating raft region and calculate the
final accuracy.

3.1. Feature Enhancement

During the feature analysis in Section 2, it was shown that the raft culture area was less
distinguishable from seawater on the SAR image, but the raft culture area had significant contour and
directional features. The NSCT method is well known for its capacity to highlight the main contour
and directional features [27,28]. In this paper, the NSCT was used to enhance the main contour features
of marine raft aquaculture areas, clarify the direction of the raft arrangement, and thus improve
its distinguishability.

The NSCT is an improved method of the contour wave transform with anisotropy,
multi-directionality, and translation invariance and consists of the nonsubsampled pyramid filter
bank (NSPFB) and the nonsubsampled directional filter bank (NSDFB). As illustrated in Figure 5,
the NSPFB acquires sub-band images with different frequencies through an iterative filter bank for
multiscale decomposition of images, and the NSDFB acquires directional sub-band images with
different directional divisions through a directional filter bank.
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(a) 

 
(b) 

Figure 5. The two parts of the nonsubsampled contourlet transform (NSCT) for the decomposition
diagram. (a) Nonsubsampled pyramid filter bank (NSPFB) decomposition diagram with the pyramid
filter (y1 is the final obtained low-frequency sub-band). (b) Nonsubsampled directional filter bank
(NSDFB) decomposition diagram with the directional 2D filters (decomposition of high-frequency
images).

Figure 6 shows a sample image decomposed by the NSCT. Figure 6a is the original image, Figure 6b
corresponds to y1 in Figure 5, and Figure 6c–i is the directional sub-band of the decomposed image.
Figure 6b concentrates most of the energy of the original diagram and describes the main contour
features well. Figure 6h is the main directional sub-band image of the original diagram, where the
directionality of the floating raft arrangement can be clearly observed. It can be seen that the sub-band
images obtained from the NSCT, which are decoupled from the SAR image, describe the main profile
features of the floating raft and the directional features of the floating raft arrangement in the marine
raft aquaculture area well and make full use of the information in the SAR images to enrich the data
features. Therefore, this paper enhanced the data features with the NSCT before importing the data into
the network for training. The scale parameter of the NSPFB was set to 2, and the direction parameter
of the NSDFB was set to 8 according to the image size (512) of the whole scene image in the dataset.

(a) (b) (c) 

Figure 6. Cont.
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(d) (e) (f) 

(g) (h) (i)

Figure 6. NSCT decomposition image results. (a) Original image. (b) Low-frequency sub-bands.
(c–i) High-frequency directional sub-bands.

3.2. Fully Convolutional Networks

This section specifies the structure of the semantic segmentation network, which is similar to
the U-net structure proposed in this paper for the extraction of marine raft aquaculture areas from
Sentinel-1 images and includes the design of the convolution module and the integration of the
attention mechanism shown in Figure 7.

The original U-net uses only a simple 3-by-3 convolution layer, which makes it difficult to fit the
multisize features and regular geometric features of the raft culture area. Therefore, in the encoder stage,
we introduced multiscale convolution to adapt for multisize features and asymmetric convolution in
order to filter geometric features, which is shown in Figure 7b. To fully use the explicit global feature
while discarding vague local features, we introduced a spatial attention mechanism at the encoder
stage to calculate the spatial relationship among the pixels, and the global features were assigned to
each pixel by weighting. A channel attention mechanism was adopted to direct more attention to
the contour and directional features acquired through the NSCT decomposition. Figure 7c shows the
attention mechanism that is used.

3.2.1. Convolution Block

As stated in Equation (1), the essence of convolution is a kind of weighted superposition. In the
field of image processing, the size and weight of the convolution are designed to extract the required
features from the image. The extracted multiple features constitute a multi-dimensional feature space,
where inter-class variance is expected to be enhanced and intra-class difference is expected to be
suppressed. In a fully convolutional network, the image is mapped to a high-dimensional feature
space by means of convolutional modules, and the weights of the convolution are learned through
data training to avoid the uncertainty of artificial design.

H = F ∗G
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which can be written as
H(i, j) =

∑
m

∑
n

F(m, n)G(i−m, j− n) (1)

 
 

    

(a) Model 

 
(b) Con_block 

 
(c) Attention_block 

 
Conv 1x3

Conv 3x1
Conv 3x3

Conv 1x3

Conv 3x1
Conv 3x3

Conv 1x3

Conv 3x1
Conv 3x3

 

Spatial
attention

Channel 
attention

Figure 7. The model for the marine raft aquaculture area extraction task. (a) The overall model structure;
(b) the Con_block with an asymmetric and multiscale structure; (c) the structure of the Attention_block
with channel attention and spatial attention.

Therefore, in this paper, a full convolutional network was designed for the marine raft aquaculture
area extraction task. It used multiscale convolution to extract multisize characteristics and asymmetric
convolution to extract the strip-like geometric characteristics of marine raft aquaculture areas.

• Multiscale Convolution

Since the marine raft aquaculture areas vary in size and the spatial structures of the areas consist
of large strip rafts and narrow sea lanes, we proposed the extraction of the features by a multiscale
convolutional kernel, which is an appropriate choice. On the one hand, multiscale convolution
extracts the information of the large-scale strip rafts and the detailed information of the narrow sea
lanes. On the other hand, multiscale convolution can also capture features effectively, regardless of
the size differences among the areas. When convolution kernels of different sizes, such as
3 × 3, 5 × 5, or 7 × 7, are applied simultaneously to extract feature maps, the computational
complexity of the model increases. Inspired by the GoogLeNet architecture, we designed a
multiscale convolutional kernel, as shown in Figure 8a. Due to the computational characteristics
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of convolution, the computational effects of two 3 × 3 convolution kernels are equivalent to that of
a 5 × 5 convolution kernel, and the computational effects of three 3 × 3 convolution kernels are
equivalent to that of a 7 × 7 convolution kernel [29–32]. Therefore, in this paper, the feature map
fusion of multiscale convolutional kernels was achieved through series and parallel convolution
kernels, which led to the extraction of features. Then, in the basic unit of each encoder, 3/5/7,
three-scale receptive field information was obtained through three 3 × 3 convolution kernels.

(a) 

Conv 3x3

Conv 3x3 Conv 3x3

Conv 3x3 Conv 3x3 Conv 3x3

5x5

7x7

(b) 

Conv 3x3

Conv 3x3

Conv 3x3

Figure 8. Multiscale convolution kernel was achieved through series and parallel convolution kernels.
(a) A schematic diagram of the multiscale convolutional structure advanced in this paper; (a) is equivalent
to (b).

• Asymmetric convolution

The sensory field of common convolution is a rectangle with equal length and width,
and thus it is difficult to capture the shape features of the non-centric symmetrical target.
In consideration of the remarkable geometric structure of strip rafts, we selected asymmetric
convolution kernels of sizes 1 × 3 and 3 × 1 for additive fusion with the results extracted from the
3 × 3 convolutional kernels.

3.2.2. Attention Block

Although the original SAR image was enhanced by the NSCT, there was still a need to better
characterize the overall global features to overcome the interference of noise and the sea state. To address
this problem, the proposed method combined the channel attention and spatial attention mechanisms in
a series between the convolution modules. Channel attention is designed to direct attention to channels
that contain the main and directional features of the raft culture after the NSCT. The spatial attention
mechanism converts overall spatial relationship into weights assigned to each point of the raft culture
area to better extract the global features. Convolutional block attention module (CBAM) [33] showed
that channel attention and spatial attention can be used in chains, and inspired by efficient channel
attention for deep convolutional neural networks (ECA-Net) [34], we simplified the calculations for
channel attention weights to make them easier and faster.
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• Channel Attention

The simple 2D convolution operation focuses only on the relationship among pixels within
the sensory field and ignores the dependencies between channels. Channel attention links the
features of each channel in order to focus on key information, such as the primary direction of the
raft culture area, more effectively. As shown in Figure 9, the feature map was globally averaged
to obtain a feature map of size [batch-size, channel, 1, 1]. Then, a 1 × 1 convolution was used
to learn the correlation between each channel. Finally, the sigmoid function was used to obtain
information about the weights assigned to each channel to adjust the feature information for the
next level of inflow.

Sigmoid

Conv 1 1

Golbal Average Pooling [b,c,1,1]

Figure 9. Channel attention.

• Spatial Attention

In addition to the dependency among channels, the overall spatial relationship also has a
great influence on the extraction result. As shown in Figure 10, the spatial attention module
first normalized the number of channels and then learnt the higher-dimensional features under
a larger sensory field through convolution, thus reducing the flow of redundant information of
low-dimensional features to the lower convolution and focusing on the overall information of
the target.

Sigmoid

Conv 2 1

Cat max avg [b,2,h,w]

[b,1,h,w]

Figure 10. Spatial attention.
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Although the semantic segmentation network proposed in this paper adopts a U-shaped
structure similar to U-net, it is different from U-net. The key to the difference lies in the design of
the encoder. The network proposed in this paper additively merges multi-scale convolution and
asymmetric convolution at the encoder stage to form basic coding units, and connects channel
attention and spatial attention in series between these basic units.

4. Experiment, Results, and Analysis

This section illustrates the experiments on the test data in the study area. Section 4.1 presents the
study area and experimental data. Section 4.2 proves the interpretability and generality of the proposed
method through validation experiments, and Section 4.3 verifies the superiority of the method through
comparative experiments. The experiments were carried out under 64-bit Linux system, using GeForce
RTX 1080.

To quantify the experimental results, we used the following metrics: intersection over union (IOU)
and F1-Score (F1). IOU and F1, at present, are commonly used as accuracy indexes. IOU means the
intersection ratio of the predicted image and ground truth image. The F1 is an accuracy index that
considers precision and recall. The formulas to calculate the metrics are as follows:

IOU =
TP

TP + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 =
2× Precision×Recall

Precision + Recall
(5)

4.1. Study Area and Experimental Data

Currently, there is no authoritative open dataset for marine raft aquaculture area extraction,
and thus this paper collected Sentinel-1 images of the Changhai region to construct a dataset to use as
a basis for research.

4.1.1. Study Area

Changhai County is located in the Yellow Sea on the east side of the Liaodong Peninsula at
longitude 122◦13′18” E–123◦17′38” E and latitude 38◦55′48” N–39◦18◦26” N, as shown in Figure 11.
It is under the jurisdiction of Dalian City and has a land area of 142.04 square kilometers, sea area of
10,324 square kilometers, coastline of 358.9 km [35], and sea use area of 244.82 square kilometers for
raft culture, which is a typical large-scale marine raft aquaculture area [36].

Figure 11. Study area.

82



Remote Sens. 2020, 12, 4182

4.1.2. Dataset

With the advantages of high coverage, free access, and stable updates, the Sentinel-1 interferometric
wide swarth (IW) ground range detected (GRD) data from the European Space Agency (ESA)’s
Copernicus project’s dual polarized C-band SAR were chosen by this study as the data source
(https://vertex.daac.asf.alaska.edu/).

The dataset contains four Sentinel-1 images from Changhai County (September 16, September 28,
October 10, and October 22), each containing both vertical–horizontal (VH) and vertical–vertical (VV)
polarization data. The cross-polarized VH data were less permeable than the isotropic polarized
VV data, and it can be seen from the images in Figure 12 that the marine raft aquaculture area was
difficult to observe with the cross-polarized data; thus the isotropic polarization (VV) image was used
to construct the dataset.

Figure 12. Sentinel-1 dual polarization imaging.

It is difficult for SAR images to avoid speckle noise, which leads to a jump in the digital number
(DN) value in a homogeneous region. Although the existing SAR image noise suppression methods
have significantly improved image grayscale resolution, the texture information is too smooth and
loses its unique features and information after denoising [37]. In this paper, before the image data
were annotated, we utilized the preprocessing operations are of histogram equalization and linear
stretch. On the basis of this operation, we used ArcGIS to annotate data and generate a .shp file. Then,
the vector files were converted to binary images, called ground truth maps. The size of a Sentinel-1
image is too large, and thus the original images and the labeled ground truth maps were clipped into
10038 patch pairs with sizes of 512 × 512. Figure 13 illustrates the main steps of dataset construction.

Figure 13. After selecting a data source, dataset construction requires three main steps: data labeling,
generating a truth map, and cropping.

The complete dataset should include training data, validation data, and test data. To better verify
the validity of the methods in this paper, we selected the image from Oct 16, which was not included
in the dataset, as independent test data. The data used in experiments is shown in Table 1.

83



Remote Sens. 2020, 12, 4182

Table 1. Training, validation, and test data of the experiments.

Dataset Time Number of Images Size Number of Patches

Training 9.16/9.22/10.10 3 (512, 512) 7421
Validation 10.22 1 (512, 512) 2617

Testing 10.16 1 (6217, 3644) /

4.2. Verification Experiment

4.2.1. Ablation Experiment

To prove that the strategy used in the presented method is effective, this section uses the results
of the test image obtained by the original U-net (denoted by U-net), the network that introduced the
attention layer (denoted by Attention_block + U-net), and the network that modified the convolutional
structure (denoted by Attention_block + Con_block + U-net) and compares them with the result
obtained by the proposed method (denoted by NSCT + Attention_block + Con_block + U-net).

Figure 14 shows the prediction maps for a typical region. Table 2 shows the evaluation of the
whole test map segmentation results.

Table 2. Precision, recall, F1-Score (F1), and intersection over union (IOU) scores on the test data of the
ablation experiment.

Method IOU F1 Precision Recall

U-net 77.2% 87.1% 93.0% 81.9%

Attention_block + U-net 78.2% 87.8% 86.4% 89.2%

Attention + Con_block + U-net 81.4% 89.7% 87.4% 92.1%

NSCT + Attention + Con_block + U-net 83.0% 90.7% 89.1% 92.3%

From the results shown in Figure 14c, we can see that the segmentation result of U-net had
poor integrity and relatively inward shrinking edges with burr. The result was greatly affected by
speckle noise. U-net had difficulty capturing multisize information from the raft culture area, such as
the narrower gaps within the floating rafts, as shown by the false positive (FP) pixels in the red
box of Figure 14c; the smaller range and density of the raft culture area caused false negative (FN)
pixels, as shown by the blue box in Figure 14c. There was considerable noise at the edges of the
results, as shown in the green box in Figure 14c. U-net extracted features with only two tandem 3*3
convolutions, did not fully exploit the features of the floating raft, did not pay attention to the multisize
information and the geometric features of the floating raft, and was highly influenced by speckle noise.
There were a large number of omissions and neglected areas of interregional sea lanes in the U-net
detection results, and thus the U-net segmentation result had low IOU and F1 but high precision.

As shown in Figure 14d, the addition of Attention_block effectively reduced the number of FN
pixels and smoothed the edges, while the number of FP pixels was increased. In addition, the overflow
and adhesion problems at the edges were serious, and the intervals between the raft culture areas
were ignored. It can be seen in Table 2 that recall was improved by 7.3%, while precision decreased.
Considering that the lack of information about the area inside the marine raft aquaculture area
also contributed to this phenomenon, this paper overcomes this problem by designing a tailored
convolutional structure.

The convolution block design with a multiscale convolution kernel and an asymmetric convolution
kernel was more compatible in addressing the structures of marine raft aquaculture areas. As shown
in Figure 14e, the number of FP pixels was reduced but FN pixels were displayed in areas where the
outline of the subject was not visible in the yellow box. Asymmetric convolution was used to filter the
striped geometric information of the raft. Multiscale convolution was used to adapt for the different
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sizes and densities of the raft culture area, as well as the different sizes of the raft and seaway. The IOU
increased by 3.2% compared to Attention_block + U-net.

(a) Test Image (b) Ground Truth

(c) U-net (d) Attention_block+U-net

(e) Attention_block+
Con_block+ U-net 

(f) NSCT+ Attention_block+
Con_block+ U-net

Figure 14. Results of the ablation experiment for a subset of the study area. (a) Test image. (b) Ground
truth. (c) The results obtained by the original U-net. (d) The results obtained by the network that
introduced the attention layer. (e) The results obtained by the network that modified the convolutional
structure. (f) The results obtained by the proposed method.

As simply changing the network structure would not be sufficient to address the low signal-to-noise
ratio due to the SAR imaging mechanism and because areas with obscure subject contours were still
missed, we used the NSCT in the proposed method to enhance the features. Figure 14f shows the
results obtained by the proposed approach. The result was similar to the actual distribution of the
raft culture areas and had fewer FN pixels in areas where the main contour was not obvious, such as
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the area in the yellow box, and even single floating rafts could be extracted. The NSCT improved the
information utilization and emphasized the main contour features of the floating raft, making the
directional information clearer. Therefore, the feature enhancement operation increased the difference
between the raft culture region and the background and helped to distinguish similarly structured but
irregularly arranged waves. As shown in Table 2, the proposed method in this paper was optimal
regardless of whether it used IOU or F1 as the evaluation index.

4.2.2. Applied Experiment

To verify the generality of the method, we in this section select demonstration areas in the
coastal region of Shandong for experiments. Figure 15 shows the extraction results of the proposed
method in subsets of the demonstration area. Table 3 shows the evaluation of the results for the whole
demonstration area along the coast of Shandong.

Figure 15. Results of the applied experiment for subsets of the study area. (a,d) Test image. (b,e)
Ground truth. (c,f) The results obtained by the proposed method.

Table 3. Precision, recall, F1, and IOU scores on the demonstration areas of the applied experiment.

Method IOU F1 Precision Recall

NSCT + Attention +
Con_block + U-net 83.8% 91.2% 96.1% 86.8%
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As shown in the orange box in Figure 15d, the raft culture area in Shandong coastal area was
slightly different from Changhai. Some of the floating rafts in the inner part of the marine raft
aquaculture area were wider while they were arranged more sparsely. This led to larger fluctuation and
more FN pixels at the edge when extracting the whole area, as shown in the orange box in Figure 15f.
However, scattering characteristics and structural features of the raft culture area as a whole did not
change, and thus the method proposed in this paper was also effective in this region. As for the
results, the proposed method was applicable in others areas with the same characteristic performance
besides Changhai.

4.3. Comparative Experiment

In recent similar studies, UPS-net [23] was demonstrated to be more accurate than other popular
networks based on the FCN and more applicable than DS-HCN [22] to extract marine raft aquaculture
area. Therefore, UPS-net was chosen as the comparison method to verify the superiority of the
proposed method.

Figure 16 shows the prediction map for a typical region. Table 4 shows the evaluation of the
whole test map segmentation results.

(a) Test Image (b) Ground Truth

(d) Ours(c) UPS-net

Figure 16. Results of the comparison experiment for a subset of the study area. (a) Test image.
(b) Ground truth. (c) The results obtained by UPS-net. (d) The results obtained by the proposed method.
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Table 4. Precision, recall, F1, and IOU scores on the test data of the comparative experiment.

Method IOU F1 Precision Recall

UPS-net 74.8% 85.6% 91.7% 80.3%
Ours 83.0% 90.7% 89.1% 92.3%

As shown in Figure 16, the results of UPS-net showed FN pixels in the sparsely arranged or the
small raft culture area and FP pixels in narrow sea lanes, with severe edge shrinkage. In contrast,
the result of the proposed method was less affected by the background, had more complete edges,
and provided better discrimination of sea lanes. Table 4 shows the evaluation results of the comparative
experiments, and it can be seen that compared to UPS-net, the proposed method improved recall by
12%, IOU by 8.2%, and F1 by 5.1%. UPS-net adds PSE modules to U-net to obtain more contextual
information and discards some redundant information at the decoder stage. However, simply adding
multiscale information without considering the scattering features, geometry, and orientation of
the marine raft aquaculture area makes it difficult to ensure the integrity of the extraction results.
The method in this paper used asymmetric convolution to fit the geometric information of the raft
culture area while adding multiscale information fusion, and used the attention mechanism and
NSCT method to make better use of the scattering features and directionality of the raft culture area,
which resulted in better outcomes.

5. Discussion

The state-of-the-art works for marine raft aquaculture areas are mostly dependent on professional
experience. Although the deep learning method for semantic segmentation avoids a large amount of
manual work, it does not work well when directly migrated to SAR images. Marine raft aquaculture
areas in SAR images exhibit large differences in grayscale values (influenced by speckle noise) and
distinct structural characteristics (striped contours and directionality). In consideration of these
characteristics, this paper proposes a segmentation network combined with NSCT. This combination
of frequency domain priors and semantic segmentation models provides a promising idea for future
research in marine raft aquaculture areas extraction from SAR images.

The optimized model in this paper is more suitable for the task of marine raft aquaculture area
extraction on SAR images. Although semantic segmentation models have been widely used in optical
remote sensing image target extraction, these models do not yield good results by direct migration to
SAR images. As shown in Figure 14c, the original U-net could not extract the raft culture area as a
whole. The inward adhesion at the edges was caused by the inherent speckle noise in SAR images,
which caused great loss to the detail and structure information, and this led us to focus more on global
and structural information instead of local information [38]. Thus, attention module and multiscale
asymmetric convolution were introduced to capture global and structural information, respectively,
leading to a 4.2% increase in IOU and a 2.6% increase in F1.

Furthermore, the results show that the combination of NSCT and semantic segmentation model is
useful for obtaining better results. Studies by Yin and Wang show that the naturally trained model
focuses more on low-frequency information and is poorly robust to high-frequency information [39,40].
To enhance both the low and high frequency information at the same time, the proposed method
decouples the original SAR image using NSCT. This improved IOU by 1.6% and F1 by 1%.

Overall, the proposed method obtained more satisfactory results than the state-of-the-art methods.
However, there are some matters requiring attention. Firstly, post-processing techniques such as
conditional random field (CRF) can be used to remove noise masks and obtain integration results [41],
but this was not the focus of this article. Secondly, it is worth noting that the applicability of the
method is related to the image resolution. Marine raft aquaculture areas extraction using the medium
resolution imagery is validated in this paper, while imagery with higher resolution should be used
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for refined information extraction inside the area. Transfer learning will be a good way for the model
transfer between imagery with different resolutions [42].

6. Conclusions

This paper proposes a segmentation algorithm for the marine raft aquaculture area extraction
using Sentinel-1 images and is characterized by feature enhancement and an improved semantic
segmentation network.

1. Feature enhancement: In response to the low signal-to-noise ratio problem in SAR images,
the floating raft features were enhanced using the NSCT. The low-frequency sub-band obtained
by decomposing the original SAR image with the NSCT was used to enhance the contour features,
and the high-frequency sub-bands were used to supplement details with direction information.

2. Improved semantic segmentation network: Multiscale feature fusion was introduced to better
recognize large rafts and small seaways with less edge adhesion. Asymmetric convolution was
adopted to capture the characteristics of floating raft strip distribution by screening the geometric
features. Attention module was added to improve the integrity and smoothness in view of the
grayscale variance in the homogeneous region of the SAR image caused by speckle noise.

In summary, the segmentation method makes full use of the scattering and structural features,
and is effective in marine raft aquaculture area extraction. It is worth mentioning that the data in this
paper had not been denoised, which eliminates the tedious step of extracting targets from an SAR
image and has good application prospects.

In regions with poor sea conditions, the present method still suffers from errors caused by coherent
spot noise enhanced by wave cascades. Therefore, further research is needed to address the issue of
wave interference.
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Abbreviations

FCN Fully convolutional network
RefineNet Multi-path refinement networks
PSPNet Pyramid scene parsing network
RCF Richer convolutional features network
UPS-net Improved U-Net with a PSE structure
DS-HCN Dual-scale homogeneous convolutional neural network
CBAM Convolutional block attention module
ECA-Net Efficient channel attention for deep convolutional neural networks
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Abstract: To increase the global convergence and processing efficiency of particle swarm optimization
(PSO) applied in the adaptive joint time-frequency, in this study an improved PSO is proposed to
refocus the high-resolution SAR images of complex moving vessels in high sea states. According to
the characteristics of the high-order multi-component polynomial phase signal, this algorithm
provides parallel processing and co-evolution methods by setting the different permissions of the
sub-population and sharing its search information. As a result, the multiple components can be
extracted simultaneously. Experiments were conducted using the simulation data and Gaofen-3
(GF-3) SAR data. Results showed the processing speed increased by more than 40% and the global
convergence was significantly improved. The imaging results verify the efficiency and robustness of
this co-evolutionary PSO.

Keywords: synthetic aperture radar (SAR); moving vessel; multicomponent polynomial phase
signal(mc-PPS); adaptive joint time-frequency (AJTF) decomposition; co-evolutionary particle
swarm optimization

1. Introduction

Synthetic aperture radar (SAR) has the distinct ability to be able to observe vessels at all
times, and is an important method in the detection and monitoring of marine moving targets [1–3].
Marine application research of SAR has been carried out around the world, and ship detection systems
based on space-borne SAR have been developed and used in practical applications, e.g., the ocean
monitoring workstation (OMW) system of Canada, the automated maritime surveillance tool (MaST)
system of England, the Kongsberg satellite services (KSAT) system of Norway, the collect localization
satellite (CLS) system of France, and the Ship Surveillance system of China. The GF-3 satellite is
China’s first C-band multi-polarization SAR, and has a maximum resolution of spotlight mode of 1 m.
As an ocean surveillance and monitoring satellite, it has played an increasingly important role in the
field of marine theory and applications [4]. Vessels can be detected effectively using constant false
alarm rate (CFAR) processing and its derivatives using high-resolution GF-3 images [5]. Wang et al.
used the analytic hierarchy process by calculating the vessel’s kernel density estimation, aspect ratio,
and pixel number to finally obtain optimized vessel detection results [6]. Similarly, the identification of
vessels can also be achieved with GF-3 SAR images using artificial intelligence techniques, such as
convolutional neural networks (CNNs) and Region-CNN algorithms [7,8]. However, SAR imaging
uses the relative motion of the satellite and ground targets to obtain high azimuth resolution in
principle, assuming that the ground is static during synthetic aperture acquisition (i.e., dwell time).
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For a stationary vessel, the main structure of the hull surface is distinguishable in SAR images, and is
easily detected and identified. On the contrary, vessels moving due to sea wind and waves appear as
various distortions and are blurred (defocused) in SAR images. This can cause the shape of vessels to
be distorted. As a result, the length, width, and scattering distribution cannot be accurately obtained,
thus affecting the application of target detection and recognition. The motions of a marine vessel have
multiple periodicities and a high degree of randomness. The different motion characteristics of each
scattering point in every range cell cause different distance migration and initial phase, which result in
frequency folding and wrapping in the azimuth dimension, and generate high-order non-cooperative
phase errors in the SAR echo signal, ultimately reducing the precision of compensation [9]. In particular,
the number of signal components in each cell increases and significant mutual interference between
the components exists, which reduces the reliability of the component extraction. The SAR images of
vessels are less clear, and vessels may even be unrecognizable, with worse sea conditions, longer dwell
time, and higher SAR resolution. This phenomenon is frequently found in high-resolution images of
space-borne SAR and airborne SAR.

Therefore, refocusing of the SAR images of vessels in complex motion has consistently been
an important research subject for marine remote sensing applications. Generally, the refinement
of image processing for moving SAR marine targets is divided into two main aspects: translation
compensation and rotation compensation. The compensation method for translation is relatively
mature, and usually use the inverse SAR (ISAR) principle and a self-focusing method, such as the
phase gradient autofocus algorithm (PGA), to achieve high-quality SAR images [10]. Liu et al. [11]
presented a model for numerical simulation and quantitative evaluation of the image distortions
caused by each rotation of a ship. Martorella [12] applied ISAR processing to the Cosmo-SkyMed SAR
system and refocused moving targets. These methods are suitable for vessels with relatively stable
motion or medium-resolution SAR. However, due to the complex three-dimensional rotation in high
sea states, there may be no effect of using the envelope alignment and phase correction method of
ISAR processing steps. The remaining uncompensated translational and rotational terms after ISAR
processing still have a large influence on the high-resolution SAR image in particular.

The time-frequency analysis method is an effective method for rotational compensation [13],
and utilizes the instantaneous Doppler frequency of the target to avoid blurring. In the literature [14],
the relatively stable interval of the target motion is selected for imaging using different time-frequency
analysis methods. However, for high-resolution SAR, the signal of a moving vessel can be represented
by a high-order multicomponent polynomial phase signal (mc-PPS), which includes complex envelope
migration and Doppler wrapping. In these circumstances, the traditional time-frequency analysis
methods, such as short-time Fourier transform, Wigner Ville distribution, and polynomial phase
transformation [15,16], are seriously affected by cross-terms and cannot adapt to the practical
applications of the mc-PPS. For an effective extraction of signal components, the adaptive joint
time-frequency (AJTF) method, as an improved maximum likelihood method, is proposed to represent
the mc-PPS in ISAR imaging, and offers better results without being affected by cross-terms. Li et al. [17],
based on the AJFT method, estimated the phase of multiple scattering centers of ISAR data. According
to the linearity relationship between the scattering point location and the Doppler change in the
echo phases, refined ISAR images are achieved using the data of the best imaging period time.
Searching for optimal parameter components with different extremal solutions in the solution space is a
multidimensional optimization problem during AJTF processing. Therefore, optimization algorithms,
such as genetic algorithms (GA) and particle swarm optimization (PSO) algorithms, are used to
reduce the computing complexity of searching, and simulation results confirm the efficiency of these
approaches during processing [18,19]. The frequency-domain extraction-based AJTF decomposition
method has been proposed to deal with the high-resolution space-borne SAR. Although its feasibility
and effectiveness have been verified, the imaging processing time is long and the SAR imaging results
show limited improvement [1].
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In this paper, a refocusing method is proposed to deal with the mc-PPS of the vessels’ SAR
data using a co-evolutionary PSO optimizing AJTF. Because the design of the method uses parallel
processing, this algorithm improves the effectiveness and computing speed by extracting multiple
components simultaneously. Furthermore, the convergence and global optimal ability are enhanced
through the co-evolution of multiple sub-populations. The simulation high-resolution SAR data and
GF-3 SAR data were processed and compared with ISAR and the classic PSO algorithm. Results show
that the imaging technical indicators and image visualization were clearly improved. These results also
verify the robustness and efficiency of the presented algorithm, particularly under high sea conditions.

2. AJTF Decomposition Method

AJTF is a global phase compensation method that has been proved to be an effective focused
imaging algorithm to address the problem of non-cooperative targets [20]. This method performs
parameter estimation and phase compensation, which reduces the influence of mutual interference
between scattering centers and is particularly suitable for situations with different phase changes of
each scattering center of the vessels in high-resolution SAR.

The echo of a moving vessel for a range cell in high-resolution SAR can be expressed in the form
of the mc-PPS as follows [21]:

s(t) =
M∑

m=1

Am·rect
[ t
T

]
exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩ j2π
Np∑

n=0

am,ntn

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (1)

where M is the number of components; Am represents the component intensity; rect[·] is the rectangular
time window of width T; Np is the polynomial order of the signal phase; am,0 is a time-independent
constant phase; am,1 is the linear term of time t, which is related to the real position of the scatter point;
and am,2 Skimmed higher-order parameters are the phase errors generated by the target motion and
need to be compensated in the SAR imaging process.

For the m-th component signal sm of the mc-PPS, the phase compensation function sh(t) is
expressed as follows:

sh(t) = rect
[ t
T

]
exp

{
− j2π

∑Np

n=2
antn

}
, (2)

By multiplying this component signal sm and the phase compensation function sh, the m-th
motion compensation is achieved. The frequency spectrum Sc( f ) is obtained by applying Fourier
transformation to the compensated signal, as follows:

Sc( f )= FT
{
rect

[ t
T

]
·sm(t)·sh(t)

}
= FT

{
rect

[ t
T

]
·Aej2πa0 exp[ j2πa1t]

}

= Aej2πa0T sin c[T( f − a1)]
(3)

The objective function of the AJTF method is as follows:

⎧⎪⎪⎨⎪⎪⎩
{ân} = argmax

{
max

[
FT

(
sp(t)·sh(t)

)]}
, n = 2, 3, 4, · · ·

â1 = fp, Sc( fp) = max[Sc( f )]
, (4)

where {ân} refers to the estimating parameters and fp is the peak position Sc max = Sc (fp). The maximum
value of the spectrum is at f = a1. The maximum value of the spectrum is at, which is the scattering
point image as the sin c(·) envelope function.

Through optimal estimation, the estimated signal
�
s m of this component is obtained as:

�
s m(t) =

�
A· exp

{
j2π

∑Np

n=1

�
a ntn

}
, (5)
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where
�
A is the component intensity of the maximum value of the spectrum Sc( f ), and

{�
a n
}

is the
optimal estimated parameter of the signal component.

The time-domain residual signal is updated as follows:

y(t) = s(t) −�s m(t) (6)

Using the same method, each signal component can be continuously estimated and extracted
from the residual signal sequentially. The final estimated signal can be expressed as:

�
s (t) =

M∑
m=1

�
s m(t)+yM(t), (7)

where M is the number of components,
�
s m is the optimal estimation of the m-th component signal,

and yM(t) is the residual error after extracting M components.
The most critical step in AJTF decomposition processing is the search for the optimum parameters

in the multidimensional solution space. Such optimal problems are generally non-convex and require
substantial amounts of computation. Therefore, optimization algorithms such as PSO can be applied
to AJTF decomposition, thus accelerating the speed of optimal processing and improving the global
convergence ability.

3. PSO Algorithm Applied in AJTF Decomposition

3.1. PSO Algorithm

PSO is based on the movement and intelligence of swarms. This approach compares the
optimization technique to bird flocking and has become an attractive alternative to other heuristic
algorithms [22]. The method is initialized with a population of random solutions. Then, the bird is
abstracted as a particle, which is represented by two parameters: position and velocity. The position
indicates a feasible solution of the optimization and the velocity means the tendency of particles to
move, which is the rate of change of the particle position. The particle tends to move to its historical
optimal position and global optimal position during the iteration. The optimal state of each particle
in the population during the iteration is evaluated using fitness. The method minimizes the fitness
function and obtains the optima by adopting the optimum velocity of each particle toward the local and

global particle. From iteration g to g + 1, the update of the velocity
→
Vi(g + 1) and position

→
Pi(g + 1) of

the i-th particle is shown as follows:

→
Vi(g + 1) = ω

→
Vi(g) + r1c1

(→
PLbest −

→
Pi(g)

)
+ r2c2

(→
PGbest −

→
Pi(g)

)
, (r1, r2) ∈ U(0, 1)

→
Pi(g + 1) =

→
Pi(g) + T

→
Vi(g + 1)

(8)

where ω is the inertial weight; c1 and c2 are the local and global attractive coefficients, respectively;

and
→
PLbest the

→
PGbest represent the historical best local and global positions, respectively, in the whole

swarm. T is the factor of position updating. Therefore, the PSO algorithm may obtain a local optimal
solution and retain multiple sub-optimal solutions. The flow chart of PSO is shown in Figure 1.
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g

Figure 1. The flow chart of the particle swarm optimization (PSO) algorithm.

In each iteration, the position and velocity of each particle is updated, and each particle has
an overall tendency to maintain its local and global best positions. The PSO algorithm retains its
individual best value at the end of the algorithm. Compared with other evolutionary algorithms such
as GA, PSO avoids complex genetic operations and has a population-based global search strategy.
Thus, it is a more efficient search algorithm than other evolutionary algorithms [19]. Unfortunately,
PSO compensation processing takes about 20 min, which means it does not meet the requirements
of the mission. However, for the mc-PPS in AJTF decomposition, PSO may obtain a locally optimal
solution while retaining multiple sub-optimal solutions, which may also be true components. Therefore,
PSO easily falls into the local optimal solution, which means the algorithm cannot guarantee convergence
to the global optimum during the processing of the mc-PPS signal of the vessel’s SAR data.

3.2. Co-Evolutionary PSO Algorithm

To solve the problems of the standard PSO algorithm, Shi Y. devised the co-evolutionary PSO
algorithm by reducing the dimension of the fitness function. The solution is divided into multiple
sub-groups, each of which is optimized by a separate algorithm, and the fitness value is evaluated
and combined into a complete particle. However, the algorithm and subsequent improvements are
nonetheless prone to the problem of pseudo-minimums and cannot guarantee global convergence [23].
In theory, the components of the mc-PPS are uncorrelated with each other, which indicates that the
extraction of the signal components will not affect other components [18]. Therefore, the improved
co-evolutionary PSO algorithm is proposed, based on the division of multiple sub-groups in the
original algorithm. This algorithm sets different permissions of the sub-groups and adds a random
group. It divides the entire population into several sub-groups, such as an optimal group (Opt-group),
a sub-optimal group (Sub-group), and a random group (Ran-group). The term “co-evolutionary” refers
to the division of groups in the solution space into several sub-groups; a sub-group represents a sub-goal
to be solved, and excellent individuals found in the search migrate between different sub-groups as
shared information to guide the progress of evolution. As a result, the global convergence efficiency of
this algorithm is significantly improved.

The co-evolutionary PSO algorithm combines the abilities of PSO to explore the search spaces
with varied priorities. The Opt-group includes the particle with the global optimal position, and the
Sub-group is prohibited from iterating with the neighborhood of the Opt-group. Setting the search
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forbidden zone to the sub-optimal particle swarm strengthens the global optimal ability of the
Opt-group. The Sub-group only limits the search area in the sub-optimal solutions, which means the
premature stagnation state problem of the particle is solved. The Sub-group represents a sub-space in
the solution space, and also represents one solution to the problem. Based on the azimuth position of
the scattering center, the Opt-group and the Sub-group are distinguished and the scattering center
corresponds to the maximum value of the spectrum. The random group has no best particle and is
updated with the other groups, which improves the randomness of the entire population and the
information exchange among the three groups. When the Opt-group falls in the local optimal solution,
the Sub-group retains the ability to search for another optimal solution outside of the region. Using this
approach, multiple components can be extracted simultaneously, which effectively improves the global
convergence speed. The procedure flow of the co-evolutionary PSO algorithm is shown in Figure 2.

Input initial 
particles

Max iteration 
number or Fitness 

converge

 Initial fitness 

Update  particles position

Update fitness and
local best particle

Update fitness and
local best particle

Survival of the fittest and 
exchange one pair particles

Survival of the fittest and 
exchange one pair particles

Divide P1 into three groups

P1,sub1 P1,sub3 P1,sub2

Optimal group

Suboptimal group
Random group

Output 
extracted 

components

N

Y

Update  particles position

Survival of the fittest and 
exchange one pair particles

Iteration g=g+1

Figure 2. The procedure of the co-evolutionary PSO algorithm.

(a) The input initial particles are the residual signal of one range cell of SAR.
(b) The initial fitness. The fitness of the m-th particle Pm is as follows:

F f it(P m) = max
{∣∣∣∣FT

(
sp(t)·sh(Pm, t)

)∣∣∣∣
}

(9)

where F f it(P m

)
is the fitness function of the m-th component; FT() is the Fourier transform process;

sp(t) is the signal to be processed; and sh(t) is the phase compensation function. The position of all
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particles refers to the individual parameters in the multidimensional solution space, including the start
and end times of the signal component and the second-order and above polynomial coefficients.

→
Pm = {an, τs, τe}, m = 1, · · ·, Npop, n = 2, 3, · · ·, Np, (10)

where an refers to the higher-order parameters and is due to the complex movement; τs and τe are
the start time and end time of the time window, respectively. This indicates that the point scattering
characteristics of the complex motion are variable because some signal components will appear and
vanish during the dwell time. Npop is the total number of particles, which mainly depends on the vessel
size and SAR image resolution, and typically has a value of 50~120. Np is the polynomial order of the
input signal phase, and has a value of 3~4 [18].

(c) Divide P1 into three groups. P1, sub1 is the Opt-group, P1, sub2 is the Sub-group, and P1, sub3 is
the Ran-group. Iteration is set to g = 1.

(d) Update particle position. By random division, the Ran-group is divided into two sub-groups
and combined with the Opt-group and Sub-group in two new mixed groups.

(e) Update fitness and local best particles. According to the fitness function, the global optimal
and sub-optimal particle fitness are searched for in the respective ranges, and the optimal particle
parameters and scattering center positions are updated. Observing the near zone of the Opt-group
scattering center is prohibited to the Sub-group, which has a value of 20~30.

In the g-th iteration, the local and global optimal fitness values of the m-th particle are as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
FL,g,m = max

{
Ffit

({→
Pm(g′)

})}
FG,g = max

{
FL,g′,m

} , g′ = 1, 2, · · · , g, (11)

where
→
Pm(g′) represents all position records from the 1st iteration to the g-th iteration of the m-th

particle. Correspondingly, the local and global optimal positions of the m-th particle are as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
→
PLbest(g) = argmax

{
FL,g,m

}
→
PGbest(g) = argmax

{
FG,g

} , m = 1, 2, · · · , Npop, (12)

(f) According to local fitness results in the new mixed group of the Opt-group, the survival of
the fittest is made by exchanging the two particles inside if the maximum fitness value of the random
Sub-group is more than the minimum value of the Opt-group. The same processing is applied to the
other mixed group of the Sub-group.

(g) Similarly, according to global fitness results, the survival of the fittest is made by exchanging
the roles of the two groups if the maximum fitness value of the Sub-group is more than that of
the Opt-group.

(h) The iteration g = g+ 1. Based on the previous two steps, the new groups become the (g + 1)-th
population. The local best position is updated as follows. Furthermore, the global best position can
also be obtained, according to Formula (12). When the fitness is stable, the update velocities of the
optimal particle become zero, and the position, which is equivalent to the global optimal position, no
longer changes.

→
PLbest(g + 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
→
Pm(g + 1), Ffit

(→
Pm(g + 1)

)
≥ Ffit

(→
PLbest(g)

)
→
PLbest(g) otherwise

(13)

(i) Whether the stop conditions are met is determined, including the maximum iteration number
and the convergence of the global fitness results. The maximum iteration number is generally 300,
and the convergence is expressed by the fitness ratio of the residual signal of the sub-optimal solution
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before and after the extraction of the global optical component, which is usually set to 0.99. If the
conditions are met, step (j) is performed, and if not, then step (e) is performed.

(j) Finally, the global best parameters of Opt-group and Sub-groups are outputted, and the
algorithm of one range cell is completed and it continues to process the next range cell. When the
traversing of all range cells is completed, the two-dimensional imaging result is obtained with the
AJTF decomposition method [1].

4. Experiment Results and Analysis

4.1. Simulation Test

The modeling and simulation system of space-borne SAR was established. The vessel scattering
model consists of nine points on the edge of the hull. The sea condition of the complex motion was
Level 5 [24]. The main simulation parameters of the moving vessel and imaging condition of the GF-3
satellite are shown in Table 1.

Table 1. Main simulation parameters.

Item Value

Scattering point model of the vessel with 9 points
[X,Y]

[0 0, 100 0, −100 0,
50 50, 50 0, 50 −50,

−50 50, −50 0, −50 −50] [m]
Vessel rotation amplitude

Vessel rotation period
[Roll, Pitch, Yaw]

[38.4, 3.4, 3.8] [deg]
[12.2, 6.7, 14.2] [s]

Looking Angle
Imaging Mode

Band Width
PRF

31.2 [deg]
Spotlight

240 [MHz]
3725.6 [Hz]

Sample Rate 266.667 [MHz]
Aperture Time 4.0 [s]

Shortest Slant Range 898.388 [Km]

To evaluate the performance, the classical PSO and the proposed algorithm applied to AJTF
were compared in the simulation experiment. The imaging results of the scattering point model
simulation are shown in Figure 3. Figure 3a,b shows the results of the stationary vessel and the moving
vessel, respectively, which were obtained using the Chirp Scaling (CS) algorithm of the conventional
SAR ground processing system. Significant differences exist between the results of the model with
nine scattering points. Under the stationary condition, all of the points are similar; moreover, the
intensity value of the points is also relatively larger, indicating that the focusing effect was better.
On the contrary, the imaging result of the vessel in complex motion is defocused and fuzzy, and
it is not possible to effectively identify the points of the simulation model. The exception is the
central point, which remains focused in the image because it is the center of rotation and is thus
not influenced by the rotational motion. The eight surrounding points are distorted and differ from
each other. These differences are due to the phase error caused by the rotation movement and the
different positions. Figure 3c,d shows the results of the moving vessel using the classical PSO and
co-evolutionary PSO, respectively. During the PSO processing, the number of iterations is 300, and the
number of particles is 100. The scattering points are focused better than those using the CS algorithm.
The nine scattering points of the modeled vessel are obvious and identifiable. The focusing effect in the
azimuth (Figure 3d) is more obvious in the detail of its points, which indicates that complex moving
compensation is more accurate compared with that using classical PSO.
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(a) (b) 

  
(c) (d) 

Figure 3. Imaging results of the vessel scattering point model: (a) imaging result of a simulated
stationary vessel; (b) imaging result of a simulated moving vessel; (c) imaging result of classical PSO;
(d) imaging result of co-evolutionary PSO.

To evaluate the effects of point refocus, the peak sidelobe ratio (PSLR) and the integral sidelobe
ratio (ISLR) in the azimuth were calculated from the eight surrounding scattering points, and are
shown in Table 2. Compared to the imaging results, the PSLR and ISLR of co-evolutionary PSO were
superior. The improvement of the average azimuth PSLR was greater than 1.45 dB, and the average
azimuth ISLR improvement was greater than 2.1 dB, compared to classical PSO in this simulation test.
This indicates the compensation accuracy of the high-order phase error is higher and the algorithm is
more robust. Finally, the processing speed of co-evolutionary PSO is about 48.97% faster than that
of classical PSO, indicating a significant improvement in the global convergence. Computational
complexity relates mainly to iterative processing, including the fitness update and individual parameter
update. The fitness update requires the Fourier transform, and the number of calculations in the
extracting components is related to the number of population individuals and the total number of
iterations. Unfortunately, the PSLR and ISLR in the subsequent experiment were difficult to measure
due to the clustered scattering points of the vessel in the real SAR data.

Table 2. Comparison of the algorithms.

CS Classical PSO Co-Evolutionary PSO

PSLR (dB) −5.02 −10.12 −11.57
ISLR (dB) −5.41 −13.55 −15.65

Ave computation time (s) 65 1421 725

4.2. Experimental Test

To evaluate the imaging effect and usability of this algorithm, actual GF-3 SAR stationary and
moving vessel data were used to verify the experiment, as shown in Figure 4. According to the
imaging time and location of the moving vessel in a high sea state taken from the GF-3 satellite,
we determined that the wave height was 2.8 m and the ocean velocity was 1.42 m/s at the time the
image was captured [25]. In addition, the stationary vessel was selected at other times near the area in
a calm sea state to compare the effects of complex motion on SAR imaging. Figure 4a,b show the results
of the stationary and moving vessels using the CS algorithm. Figure 4c shows the refocusing result of
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the moving vessel using ISAR processing algorithms [26]. Figure 4d,e show the imaging results of the
moving vessel using the classical PSO and co-evolutionary PSO algorithms, respectively.

   
(a) (b) (c) 

  
                  (d)        (e)  

Figure 4. Imaging results of the GF-3 data: (a) imaging result of stationary vessel; (b) imaging result of
moving vessel; (c) imaging result of the inverse synthetic aperture radar (ISAR) process; (d) imaging
result of classical PSO; (e) imaging result of co-evolutionary PSO.

In Figure 4a, the edge of the stationary vessel is clear and the inside structure is easy to identify
on the calm sea, similar to the case of the SAR imaging result of a stationary ground target. However,
as shown in Figure 4b, the vessel image in a high sea state is highly unfocused, and it is impossible to
measure the parameters of the vessel and recognize the vessel type. The ISAR principle and the phase
gradient autofocus method were used to accomplish the phase compensation of the moving vessel,
shown in Figure 4c. Compared with Figure 4b, the focus in the azimuth is improved, indicating that
there is a translation component of the vessel. However, previous research has shown that the ISAR
method is only applicable to vessels with stable motion. Due to the different movements of the various
parts of the vessel, this method is not able to provide complete compensation. Residual uncompensated
translation and rotation errors after ISAR processing still have a significant influence on the SAR image.
Figure 4d,e shows that the information of the scattering centers of each range unit is effectively extracted.
The basic outline of the vessel is maintained, and the length and width of the vessel can be easily
measured. In addition, the resolution of each scattering center is improved and the imaging blurring
problem caused by phase wrapping is resolved. The edge shape of the vessel in Figure 4e shows more
image detail than that of 4d; however, many noise spots are present in the red circles of the classical
PSO result image, indicating that it may have fallen into a local optimal solution, and the stability and
reliability of the classical PSO algorithm are comparatively worse. In addition, the processing time of
co-evolutionary PSO was about 10 min, representing a reduction of about 42.2% compared to classical
PSO, which is consistent with the simulation results. Hence, the results proved the efficiency and
robustness of this co-evolutionary PSO algorithm by simulation and experimental testing.

5. Conclusions

According to the relevant statistics, the number of defocused vessel images affected by complex
motion accounts for 15–20% of GF-3 high-resolution ocean data. The SAR echo of vessels subject to
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complex motion is a multicomponent polynomial phase signal, which leads to the inability of classical
time-frequency analysis methods to process data efficiently. Therefore, a novel co-evolutionary PSO
applied to AJTF is proposed that can extract several components in the solution space simultaneously
and avoid falling into a local optimal solution. Compared with other algorithms, this method has
obvious advantages in image focusing performance, robustness, and efficiency. The results of simulation
data and GF-3 satellite SAR data show that the image of a moving vessel in a high sea state was improved
and, simultaneously, the processing speed of the algorithm was increased by over 40%. According
to our preliminary experiments, this algorithm is also suitable for sub-meter space-borne SAR and
airborne SAR data processing, with a processing time of several hours. The existing method performs
compensations after traditional SAR imaging and involves redundant calculations. Therefore, we will
continue to study methods for simultaneous image processing and phase estimation compensation to
improve computing efficiency for processing sub-meter resolution SAR data. To summarize, the use of
the proposed and ISAR methods [26] in existing GF-3 SAR ground processing systems could have
significant benefits for marine users who need high-precision images of moving marine vessels in
applications such as vessel identification and intelligent feature extraction.

Author Contributions: Conceptualization C.L. and J.C.; methodology: L.Y. and P.W.; writing—original draft
preparation, L.Y.; writing—review and editing, P.W. and Z.M.; funding acquisition, C.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lao, G.; Yin, C.; Ye, W.; Sun, Y.; Li, G.; Han, L. An SAR-ISAR Hybrid Imaging Method for Ship Targets Based
on FDE-AJTF Decomposition. Electronics 2018, 7, 46. [CrossRef]

2. Crisp, D.J. The State-of-the-Art in Ship Detection in Synthetic Aperture Radar Imagery; Defence Science and
Technology Organisation: Edinburgh, Australia, 2004.

3. Gao, G.; Liu, L.; Zhao, L.; Shi, G.; Kuang, G. An adaptive and fast CFAR algorithm based on automatic
censoring for target detection in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 2008,
47, 1685–1697. [CrossRef]

4. Lin, M.; He, X.; Jia, Y.; Bai, Y.; Ye, X.; Gong, F. Advances in marine satellite remote sensing technology in
China. Haiyang Xuebao 2019, 41, 99–112.

5. Hwang, S.I.; Ouchi, K. On a novel approach using MLCC and CFAR for the improvement of ship detection
by synthetic aperture radar. IEEE Geosci. Remote Sens. Lett. 2010, 7, 391–395. [CrossRef]

6. Wang, C.; Zhang, H.; Wu, F.; Jiang, S.; Zhang, B.; Tang, Y. A Novel Hierarchical Ship Classifier for
COSMO-SkyMed SAR Data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 484–488. [CrossRef]

7. An, Q.; Pan, Z.; You, H. Ship detection in Gaofen-3 SAR images based on sea clutter distribution analysis
and deep convolutional neural network. Sensors 2018, 18, 334. [CrossRef]

8. Kang, M.; Leng, X.; Lin, Z.; Ji, K. A modified faster R-CNN based on CFAR algorithm for SAR ship detection.
In Proceedings of the 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP),
Shanghai, China, 18–21 May 2017; pp. 1–4.

9. Yu, L.; Li, C.; Wang, P.; Fang, Y. Imaging of maritime rotation targets in spaceborne SAR image. In Proceedings
of the 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL), Singapore, 19–22 November
2017; pp. 503–507.

10. Noviello, C.; Fornaro, G.; Martorella, M.; Reale, D. ISAR add-on for focusing moving targets in very
high resolution spaceborne SAR data. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing
Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 926–929.

11. Liu, P.; Jin, Y.-Q. A study of ship rotation effects on SAR image. IEEE Trans. Geosci. Remote Sens. 2017,
55, 3132–3144. [CrossRef]

12. Martorella, M.; Pastina, D.; Berizzi, F.; Lombardo, P. Spaceborne radar imaging of maritime moving targets
with the Cosmo-SkyMed SAR system. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2797–2810.
[CrossRef]

103



Remote Sens. 2020, 12, 3302

13. Lu, G.; Bao, Z. Range instantaneous Doppler algorithm in ISAR based on instant frequency estimation.
J. Xidian Univ. 1998, 3545, 198–201.

14. Hu, C.; Ferro-Famil, L.; Kuang, G. Ship discrimination using polarimetric SAR data and coherent
time-frequency analysis. Remote Sens. 2013, 5, 6899–6920. [CrossRef]
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Abstract: Submesoscale eddies play an important role in the energy transfer from the mesoscale down
to the dissipative range, as well as in tracer transport. They carry inorganic matter, nutrients and
biomass; in addition, they may act as pollutant conveyors. However, synoptic observations of
these features need high resolution sampling, in both time and space, making their identification
challenging. Therefore, HF coastal radar were and are successfully used to accurately identify,
track and describe them. In this paper we tested two already existing algorithms for the automated
detection of submesoscale eddies. We applied these algorithms to HF radar velocity fields measured
by a network of three radar systems operating in the Gulf of Naples. Both methods showed
shortcomings, due to the high non-geostrophy of the observed currents. For this reason we developed
a third, novel algorithm that proved to be able to detect highly asymmetrical eddies, often not
properly identified by the previous ones. We used the results of the application of this algorithm to
estimate the eddy boundary profiles and the eddy spatial distribution.

Keywords: surface currents; HF radar; eddy detection algorithms

1. Introduction

Transport in the ocean develops over an extremely wide range of scales, from the basin to the
dissipation scale (e.g., [1]). Our ability to observe and/or to model processes at smaller and smaller
scales has greatly increased over the last few decades. Phenomena that in the very recent past could
not be detected or described, and thus needed to be parametrized in terms of larger scales (e.g., [2,3]),
are now subjects of consolidated research, as is the case of mesoscale features. Now, our focus has
shifted to smaller dynamics, such as submesoscale motions. In the wide range of turbulent processes
in the ocean, submesoscale eddies are the most volatile ones, due to their short lifetime (few hours)
and length scale (below 10 km).

Submesoscale eddies principally act as energy conveyors from the mesoscale to the microscale,
and play a crucial ecological role: they may influence the state of health of ocean regions through
their ability to carry heat, inorganic matter, nutrients and biomass ([4,5]), ensuring the connectivity
between different ecosystems ([6]). They are particularly important for phytoplankton, as they develop
over timescales similar to those of phytoplankton growth ([7]), moreover, they may act as carriers of
pollutants (see, e.g., [8]). Consequently the detection of eddies, behind its inherent interest, is crucial
also for environmental applications.

As more and more synoptic, high resolution data on mesoscale and submesoscale eddies has become
available, thanks to remote sensing techniques at different resolutions, automatic eddy detection methods
have gained importance and interest. In the recent past, several eddy detection algorithms ([9–13]) have
been developed and applied to velocity fields derived from altimeter data, numerical model outputs
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and HF radar observations. They can be divided into three families: geometrical, dynamical and hybrid
ones. The definition depends on the flow characteristics extrapolated by the algorithm itself, that can
be geometrical, dynamical or both (e.g., [9–11] and respectively). However, the existing methods have
been mainly conceived for meso and larger scale recirculations, which display different kinematic
characteristics than submesoscale eddies, in particular in terms of divergence and (a)symmetry of the
flow field.

Mesoscale eddies scale with the first internal Rossby radius ([14,15]), which is of the order of
10 km in the Mediterranean (5 to 12 km according to [16]) and four to ten times as large in the north
Atlantic ([17]). Differently, submesoscale surface eddies have characteristic lengths starting from 0.1 km
up to the mesoscale ([8,18]). They are completely confined in the surface mixed layer, within depths
going from tens to hundreds of meters. Therefore, since their relative Rossby and Froude numbers,
Ro and Fr, are not small, these structures show highly non-geostrophic behavior, high divergent
flow patterns and strong asymmetries. As a consequence, the aforementioned algorithms, typically
designed to capture the features of vortices in geostrophic balance, may fail in detecting submesoscale
eddies as they are often unable to characterize highly deformed, divergent or convergent motions.
For this reason, we have designed a novel algorithm, presented in this paper, that has proved to be
able to capture the noncircular symmetry and the divergent character of submesoscale recirculations.

High resolution data is needed in order to identify submesoscale motions. In this framework,
HF radars are proving to be an almost irreplaceable tool: They are land-based remote sensing
instruments which allow to observe surface currents at very high spatial and temporal resolution,
thus suitable to monitor such small scale phenomena ([19,20]). Other remote sensing techniques are
available, even with much higher spatial resolution, and are thus able to detect submesoscale flow
features ([21–23], but they have very long revisit periods with respect to the hourly sampling provided
by coastal radars, thus allowing for detecting but not for tracking such features.

In this study we have utilized HF radar observations of surface currents in the Gulf of Naples
(GoN), a semi-enclosed area of the Tyrrhenian, a sub-basin of the western Mediterranean Sea. The GoN
is surrounded by a coast characterized by a quite uneven orography, dominated by the presence of the
Vesuvius volcano and of Mount Faito in the East, both exceeding 1000 m altitude, and of a number of
lower hills very close to the northern coastline. It has a complex bathymetry, with an average depth of
170 m which reaches down to more than 800 m in correspondence of two major canyons, the Magnaghi
and the Dohrn, which carve the shelf across the threshold connecting the Gulf with the open Tyrrhenian
Sea. Its surface circulation is mainly wind driven, with a strong seasonal regime ([24,25]), even though
the offshore circulation of the Southern Tyrrhenian may occasionally affect the current pattern in the
interior of the GoN ([25] and references therein). The Gulf represents a very complex system: It hosts a
heavily anthropized coastline, with industrial settlements in the immediate vicinity of the coast, side
by side with four marine/natural protected areas. Moreover, oligotrophic and eutrophic characteristics
coexist in the Gulf. Its outer portion is dominated by Tyrrhenian, oligotrophic waters, while the coastal
part is typically eutrophic, as can be expected ([26,27]). Water exchange inside the Gulf is ruled by
mechanisms acting at different spatial and temporal scales, triggered by external (local and remote)
driving as well as by bottom topography and coastal constraints ([25,28–31]). Fixed-point long term
investigations of the local plankton community composition have shown a strong variability of species,
alternatively coming from the coast or from offshore ([32]). Recent investigations have pointed out the
different roles of physical transport and biological processes, demonstrating in particular the effect
of transient current patterns (e.g., [33]). For the above reasons we believe that the Gulf may well
represent a universal example of a coastal area facing and intensively interacting with the open sea,
but more importantly characterized by the coexistence of different subsystems. In such a framework,
submesoscale eddies may act as an extremely powerful exchange mechanism among those subsystems
for water and its biogeochemical content, and are therefore worthy of the maximum consideration.

The article is structured as follows. In Section 2 we describe our dataset and the dynamical fields
that allow us to identify recirculating structures. Then in Section 3 we accurately describe the chosen
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detection algorithms, and in Section 4 we describe the algorithm tuning procedure and we provide
a method for estimating eddy boundaries and radii. In Section 5 we discuss the results obtained by
two algorithms and we analyze the spatial distribution of the detected eddies. Finally, in Section 6,
we summarize our results and highlight some possible research directions.

2. Materials

2.1. Dataset

For this study we used the HF radar observations of surface currents in the GoN collected by
a CODAR (Coastal Ocean Dynamics Application Radar) SeaSonde system. The product consists
of a two-dimensional velocity field with a spatial resolution of 1 km over an area of approximately
20–30 km alongshore by 15–20 km offshore, and with an hourly frequency. The specifics of the radar
network operating in the GoN can be found in [30]; see [20] for a review on HF radar theory and its
applications to coastal current observations; [34] for a recent utilization of HF radar-detected transport
to fisheries. Specific applications to the GoN in terms of description of the dynamics, data validation,
as well as their use in conjunction with numerical models, can be found in [24,25,33,35–38]. The data
utilized in this study refers to the late fall period 24 November through 8 December 2008. Since the
number of eddies was clearly detectable in radar observations, we selected this period among many
others, as a sort of training dataset for our algorithm, necessarily limited to a relatively short timespan
for validation issues.

Since the observed GoN eddies have radii in a range between 0.5 and 5 km (we found a mean
equivalent radius of approximately 0.8 km, with extrema reaching 4 km) we decided (following [10]) to
refine the grid to approximately 0.5 km, by means of a cubic interpolation, as illustrated in Figure 1.
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Figure 1. Surface currents data provided by the HF radar system in the Gulf of Naples (on the left)
and the interpolated data (on the right). Black arrows denote the velocity field whereas the blue line
represents the coastline.

With a reference velocity scale U of 10 cm s−1, a length scale L of 1 km and a Coriolis parameter
f ∼ 9.5 · 10−5 s−1, the Rossby number is Ro ∼ 1. It is thus evident that the quasi-geostrophic equations
are not accurate for describing the GoN dynamics.

2.2. Dynamical Parameters Characterizing Recirculations

At a first glance, eddies of two-dimensional turbulent flows can be described as flow regions
characterized by a rigid-body rotation. In this approximation, many local and semi-local parameters
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can be adopted to decide whether vortices exist or are likely to develop. As eddies are extensive
structures, it is natural to consider integral quantities, rather than pointwise ones, to identify them.
Nevertheless, the choice of the appropriate computational regions, specifically their shape and area,
is completely arbitrary. For this reason these parameters naturally depend on a scale coefficient.

2.2.1. Okubo–Weiss and Local Okubo–Weiss Parameters

The Okubo–Weiss parameter (OW) is a local dynamical field which, loosely speaking, measures
the relative dominance of the rate-of-strain tensor s over the vorticity ω of the velocity field (here |.|
denotes the euclidean module)

OW = |s|2 − |ω|2.

It was independently introduced by [39,40]. For a two-dimensional flow u = (u, v) it turns
out that

OW =

(
∂

∂x
u
)2

+

(
∂

∂y
v
)2

+ 2
(

∂

∂y
u
)(

∂

∂x
v
)

.

By definition OW < 0 whenever the rotation tendency exceeds the strain one.
The local version of the OW parameter, called the local Okubo–Weiss parameter (LOW) (see [10]),

depends on a positive distance a > 0 and is defined as the integral of OW over the disk of radius a:

LOW(x) =
∫

Ba(x)
OW(x′)dx′.

2.2.2. Local Normalized Angular Momentum and Momentum Flux Fields

In the rotating rigid-body analogy the angular momentum of a fluid particle has to be maximized
about the eddy center, as pointed out by [41]. This consideration suggested to define the local normalized
angular momentum field (LNAM):

LNAM(x) =
ẑ · ∫Ba(x)(x′ − x)× u dx′∫

Ba(x) (|u||x′ − x|+ |u · (x′ − x)|) dx′
,

which assumes extreme values ±1 at the centers of circular symmetric eddies: +1 for cyclonic rotations
and −1 for anticyclonic ones (in [41] the term u · (x′ − x) appears with its sign; we added the modulus
to get |LNAM| ≤ 1.)

Analogously, the local normalized momentum flux field (LNMF) can be defined as follows:

LNMF(x) =

∫
Ba(x) u · (x′ − x)dx′∫

Ba(x) (|u||x′ − x|+ |u × (x′ − x)|) dx′
.

It is clear that LNMF identically vanishes on centers of rotating eddies, while it assumes extreme
values ±1 at the symmetric sources and sinks; so it can be adopted to distinguish these various types
of recirculating structures.

3. Methods

3.1. Eddy Detection Algorithms

We implemented two versions of two different existing detection algorithms for our study.
The first method, the angular momentum eddy detection and tracking algorithm (AMEDA), developed
by [10], was tested on several products such as altimeter data, numerical simulations and laboratory
experiment. The second, proposed by [11], the ’Nencioli et al. algorithm’ (NEAL), was specifically
designed for certain HF radar derived datasets.
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It is worth noting that in both cases above the velocity fields utilized for testing and application
were geostrophic or quasi-geostrophic. On the other hand the surface flow observed in the GoN
is highly non-geostrophic and significant variations of the divergence field frequently occur, often
associated to recirculating sources or sinks. So, to distinguish similar structures in our study area, it was
necessary to modify those algorithms, and yet, as discussed in the following, our proposed refinements
led to just moderate improvements. Therefore, in order to specifically address the aforementioned
classification problems, we defined a third method, yet another eddy detection algorithm (YADA),
inspired by [10,12].

3.2. Ameda

The AMEDA algorithm ([10]) determines the eddy centers accordingly with the following procedure:

1. Identifies grid points which are local extrema of LNAM satisfying LNAM > K and LOW < 0,
for a chosen threshold K ∈ (0, 1);

2. Verifies the existence of at least one closed streamline around each extremum.

However, as already pointed out, GoN eddies may have hyperbolic orbits, in contrast with the
geostrophic flows found in [10,11]. In such cases the second assumption is never verified, so we
decided to adopt the following alternative criterion (described in [11]):

2’. Confirms that the velocity field constantly rotates along the perimeter of the square domain of
edge 2b and centered at the extremum, for a chosen distance b.

The modified version of AMEDA, obtained by substituting 2 with 2’, is here denoted by
AMEDAmod.

3.3. Neal

The eddy detection algorithm developed in [11], and here denoted by NEAL, identifies the eddy
centers in several steps, namely:

1. Identifies couples of adjacent grid points (x1, x2) such that the meridional component of the
velocity field changes sign going westward along the zonal segment of length 2a, centered at xi,
and increases its magnitude away from this point. This computation also provides the expected
sign of rotation;

2. Verifies that, at any such grid point xi, the zonal component of the velocity field changes sign
going northward along the meridional segment of length 2a, centered at xi, and increases its
magnitude away from this point. This change must be compatible with the expected rotation;

3. Identifies the KE (kinetic energy) local minima inside a square domain of edge 2b, centered at xi,
which are global minima in a square neighborhood Qb of the same size;

4. Confirms that the velocity field constantly rotates along the perimeter ∂Qb.

3.4. Yada

The YADA algorithm searches for potential eddy centers in two steps:

1. Identifies the local extrema of a dynamical field like LNAM, KE or OW;
2. Analyzes the streamline geometry within some neighborhood Qb of each extremum, ensuring

the existence of either bounded hyperbolic orbits (characterizing eddies with sink-like cores) or
elliptic orbits (in presence of eddies having stable orbits).

Note that the second step is precisely designed to distinguish different eddy geometries. During
this classification procedure, as we will see in the next section, the YADA algorithm computes quantities
that are strongly related to the eddy shape, and therefore provide useful information about its character,
which may be either hyperbolic or elliptic, depending on the streamline behavior.
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3.5. Tuning Strategy

Each algorithm depends on some parameters, specifically the LNAM threshold K and the
neighborhood radii a and b, which have to be tuned in order to maximize the probability of detection.
In principle, such a training phase should be carried out with a set of completely characterized
observations, for which the real eddy population and its spatio-temporal distribution is perfectly
known. This is never the case for eddy detection studies. In [10] the authors, in order to cross-validate
their parametric algorithm, considered the number of detected eddies as a score function depending on
the algorithm parameters. The best model was then chosen by looking for parameters stabilizing the
score function. The reasoning behind this approach can be heuristically described as follows. One starts
with an inaccurate model which predicts too few (or too many) eddies. However, by randomly
exploring different parameter values, one may observe an increase (decrease) of the score function
until reaching a stable region in the parameter space. Then, elements within the stable region can be
considered optimal assuming that the observed local fluctuations are caused by the existence of eddies,
that randomly fall in (or escape from) the detection range as parameters vary. In our study we chose to
adopt the same tuning strategy, better described in the next section.

4. Results

In this section we first describe the tuning procedure for each chosen algorithm and then we
discuss the results. Before doing this, some observations about the algorithm definitions are needed.
Firstly, for numerical convenience, we substituted the disk Ba(x) in the definition of LNAM and LOW
with the square domain centered at x of edge 2a, which we denote by Qa. Secondly, we note that in
both algorithms AMEDA and NEAL the final step concerns the rotation of the velocity vector along a
boundary profile. This was explicitly done by following the path counter-clockwise and verifying that
any velocity vector at a given grid point was rotated to the left of the previous by an angle less than
π/2 radians; note that this criterion does not depend on the sense of rotation of the velocity field along
the path.

4.1. Ameda Tuning and Results

Three parameters have to be determined to run this algorithm: a, from the definition of LNAM
and LOW, K and b. To obtain all dimensionless parameters we divided a and b by the length scale l of
one pixel (l ∼ 0.5 km): a0 = a/l and b0 = b/l.

The optimal choice of these parameters depends on the scale analysis of the investigated dynamics:
if a0 is too large then LNAM may sum up the contribution of many eddies inside Qa, leading to a
wrong estimate of the angular momentum. Similarly a large b0 is not recommended, nor is a small one
since the velocity vector may abruptly rotate with an angular velocity greater than π/2 radians per
pixel in proximity of the eddy center. The parameter K, in turn, once a0 is coherently chosen, represents
a lower bound for the detected eddy intensity.

We ran the algorithm on the 10-day dataset described in Section 2.1 for different values of the
parameters a0 and b0, and analyzed the number of detected eddies Ne as a function of K, varying from
0.1 to 1 with step 0.1. The results are shown in Figure 2.
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Figure 2. Number of eddies detected in the observation period Ne, obtained with the angular
momentum eddy detection and tracking algorithm (AMEDA) for different values of the parameters a0,
b0 and K. In each figure, corresponding to a value of a0, the colored curves denote the graphs of Ne as
a function of K for different values of b0 (labeled as in the legend).

For any choice of a0 and b0 the values of Ne turned out to be approximately constant for K < 0.6,
so we set K = 0.6. On the other hand for a fixed a0 the maximum of Ne was achieved at b0 = 2;
so we chose this value for b0. Finally we noted that Ne weakly decreased as a0 increased, as expected,
suggesting to take a0 = 1. In summary, our optimal choice of the parameters turned out be (a0, b0, K) =

(1, 2, 0.6).
Since we were interested in discriminating diverging structures from converging ones we added

a third control to AMEDA (see above, Section 3.4):

3. Discards those extrema satisfying LNMF > 0.2.

In this way we allowed only a little divergence near the eddy core (see the LNMF contour line in
Figure 3 for instance). This correction reduced the number of detected eddies Ne by about 16% for
K = 0.6, and by 0.4% for K = 0.7; this behavior was expected since strong rotations often imply weak
divergences.
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Figure 3. Source-like eddy core detected by the algorithm AMEDA (black star), velocity field (black
arrows), local normalized angular momentum field (LNAM) contour lines (colored), local normalized
momentum flux (LNMF) = 0.2 contour (black lines) and coastline (blue line).
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Unfortunately this criterion is not optimal: It is a pure dynamical control depending on the local
behavior of the flow, but eddies are extensive structures which may admit internal divergences. In such
a case the eddy center and its real extension is difficult to estimate since it would be necessary to
understand the streamline geometry.

4.2. Neal Tuning and Results

By definition NEAL is a purely geometrical method, which is not required to compute any
differential quantity: Eddy centers are simply defined as energy minima. Of course this reduces the
computation time, making the algorithm fast and efficient. Moreover we note that, as in the previous
case, there are two parameters, a and b, to be determined; as before we considered the dimensionless
parameters a0 = a/l and b0 = b/l.

We ran the algorithm on the dataset for a0 = 1, . . . , 8 and b0 = 1, . . . , 8. In Figure 4 the number of
eddies Ne, discarding the unlikely results obtained for a0 = 1 (Ne > 1000), is shown. We observed
that for a0 = 2 there was a weak dependence on b0, but the values of Ne turned out to be much less
than those obtained by AMEDA. For a0 = 3, 4 the number of detected eddies highly depended on b0,
but the results did not converge anywhere; for a0 > 4 we obtained values depending weakly on b0

but much less than those for a0 = 2. These discrepancies were likely caused by asymmetrical eddies
lacking radially increasing velocity components. In conclusion, we were not able to tune NEAL, as no
stable regions in the parameter space were identified.
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Figure 4. Number of eddies detected in the observation period, Ne, obtained by the ’Nencioli et al.
algorithm’ (NEAL) for different choices of the parameters a0 and b0. Colored lines denote the graphs of
Ne as a function of b0 for different values of a0 (labeled as in the legend).

4.3. Yada Tuning and Results

The first step of the algorithm coincides with that of AMEDA: it identifies any local extremum x
of LNAM satisfying LNAM > 0.6 for a0 = 1 (having tested this values in tuning AMEDA).

The second step concerns the study of the streamline geometry in a neighborhood of the extremum.
It proceeds as follows: in a square neighborhood Qb centered at x with edge 2b, where the length b has
to be intended as an upper limit for the eddy radius (which, in this study, has been overestimated to
be b = 10l), it draws a circle Cr of radius r = l, centered at x and composed by 8 points (as many as
the grid points on the tangent square perimeter). It then computes the streamlines originated from
these points (each streamline is built by means of a fourth order Runge–Kutta method, with a step of 5
points per pixel. It is composed by up to 1000 points), collecting their mean points (geometric means)
and end points.

Then the algorithm performs a selection of all the streamlines such that:

(1) The end points belong to the square domain Qb−2l (that is: they stay away from the boundary
of the reference domain);
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(2) Each streamline completes at least one revolution.

The second control consists in looking at the cumulative winding-angle (given an oriented piece-wise
linear curve, its cumulative winding-angle is the sum, over all the angular points, of the angle,
with positive sign going counter-clockwise and negative going clockwise, between the two intersecting
segments, considered as vectors) of the streamline, as defined in [12]: it has to be, in modulus, equal to
or grater than 2π. If no such streamline exists we increase the radius of Cr by l until at least one
streamline satisfying (1) and (2) is found; the maximum allowed r will be b/2 (at any step we increase
the number of points in the circle to match the amount of grid points in the tangent square perimeter).

Note that if one such streamline exists it means that either it converges to some point inside the
domain or it definitely stays inside the domain without converging anywhere (at least for the first
1000 points). Of course some diverging streamline, which rotates without reaching the boundary of
the domain, could exist and be identified by the algorithm. However, a path starting from x and which
rotates around it at least three times before reaching the boundary, and having the same step-size of the
drawn streamlines, counts approximately 300–400 points. Then, if a spiral-like streamline diverging
from the center stays inside the domain without reaching the boundary, it has to complete at least
eight revolutions; even in this case we can safely affirm that an eddy exists.

Once the algorithm has selected all the streamlines satisfying (1) and (2) for the first allowable r,
it compares the distributions of the mean points with that of the end points. If the eddy core behaves
as a sink all the end points will accumulate near it. On the other hand if the orbits around the eddy are
elliptic the mean points will be close to the orbits’ common center of mass. So the algorithm chooses
the distribution with less variance and choose its mean point as eddy center of mass, or eddy symmetry
center (ESC); by contrast the extremum will be called the eddy extreme point (EEP). However, to ensure
it is not selecting another eddy in the square domain relative to a different extremum, it is required
that the expected ESC must belong to the disk bounded by Cr, otherwise the point is discarded and
the algorithm moves toward the next extremum; some examples of this procedure can be found in
Figures 5 and 6.
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Figure 5. Maps showing the functioning of ’yet another eddy detection algorithm’ (YADA) for two
eddies with sink-like cores. Once the eddy extreme point (EEP) (black crosses) is detected, YADA
identifies a circle (black stars), centered at the extremum, which emanates streamlines (blue lines)
with the following property: The streamline has to complete up to a revolution without reaching the
domain boundary. Then it evaluates the mean points (yellow stars) and end points (red stars) of such
streamlines, choosing the mean point of the second distribution as eddy symmetry center (ESC) (green
stars). Black arrows denote the velocity field. In both panels the mean point and the ESC coincide.
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Figure 6. Maps showing the functioning of YADA for two eddies having elliptic orbits. Once the
eddy extreme point EEP (black crosses) is detected, YADA identifies a circle (black stars) emanating
streamlines (blue lines) with the following property: Each streamline has to complete up to a revolution
without reaching the domain boundary. Then it evaluates the mean points (yellow stars) and end points
(red stars) of such streamlines, choosing the mean point of the first distribution as eddy symmetry
center ESC (green stars). Black arrows denote the velocity field. In both panels the mean point and the
ESC coincide.

Generally the ESC does not coincide with the eddy center even though it provides a better
approximation of the true eddy core than the EEP; e.g., Figures 5–8. As a consequence the distance
between the ESC and the EEP can be considered as a measure of the eddy asymmetry.

Following the procedure just described, the algorithm detected Ne = 255 eddies, about 30% more
than the value obtained with AMEDA. Eddies such as those in Figure 5, for instance, were missed by
AMEDA due to their small extension and asymmetry, whereas they were detected by YADA. However
there were still structures detected by AMEDA and missed by YADA, see for instance Figure 9. In some
of these cases we noted that the divergence around the LNAM extremum was so weak (LNMF < 0.2)
that some orbits complete up to three revolutions before leaving the region.

In conclusion we can affirm that YADA was able to detect and distinguish multiple kinds of
eddies and, as it will be shown in the next part, it can be refined to estimate their boundaries.

4.4. Eddy Boundaries

There is no universal definition of eddy boundary: many authors adopted OW or ω contour lines,
as well as closed streamlines or closed stream-function contours (not equivalent at all) to locate them.

Based on YADA architecture, we propose a different definition, which aims to distinguish eddies
with sink-like cores from those having elliptic orbits. Of course we can not expect to identify the true
boundary profile, so we assume it to be in general elliptic (rather than circular).

4.4.1. Sink-Like Cores

We considered the set Sr of all the streamlines originated from Cr and satisfying conditions (1) and
(2) as explained in the definition of YADA. We then evaluated the variance ellipse of this distribution
of points; let e be its eccentricity. Then we drew the ellipse Ed of eccentricity e, centered at the ESC,
with major semi-axis d = l. As we did for Cr we consider the streamlines emanated by Ed and if all
such streamlines belong to the ellipse interior we increment d by l, repeating the step up to reach
d = b. Further, in analogy with [10], we also control that the circulation along Ed does not decrease by
increasing d. The largest ellipse Ed satisfying this criterion will define the eddy boundary, as shown in
Figure 7.
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Figure 7. Map showing the YADA boundary computation of an eddy having a sink-like core. Once the
eddy extreme point EEP (black cross) and the eddy symmetry center ESC (green cross) are detected
the algorithm draws the ellipses centered at the ESC with increasing radii. The cycle breaks when
the black ellipse is drawn due to the existence of inadmissible streamlines (blue lines) leaving the
domain. The last computed ellipse (green line) will be considered as boundary. Black arrows denote
the velocity field.

4.4.2. Eddies Having Elliptic Orbits

For such eddies we also started by building the variance ellipse of the admissible streamlines
Sr. Then we drew the ellipses Ed with eccentricity e, centered at the ESC and having semi-major
axis d = l, 2l, . . . , d′, where d′ was the maximum distance for which the circulation around Ed was a
non-decreasing function of d, and we moved each Ed following the flow, thus collecting all the end
points of the streamlines emanated by Ed. We denoted this set by ε(Ed).

We expected that, if Ed approximated the eddy boundary, it had to be close to an elliptic orbit,
and therefore ε(Ed) had to be a small deformation of Ed. However, in order to ignore the effects of
translating motions, which could occur, we centered the two sets on the same reference point. Then we
evaluated the Hausdorff distance δ(d) between them (see the Appendix A for details).

Finally we took d∗ satisfying δ(d∗) = min {δ(d)}, and Ed∗ as eddy boundary; we chose Ed∗ to
keep the elliptic symmetric, though ε(Ed∗) would provide a better approximation. In Figure 8 we
plotted the various steps just described; in each panel the ellipse of semi-major axis d = l, 2l, . . . , d′

is drawn.
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Figure 8. Maps showing the YADA boundary computation of an eddy having stable orbits. From panel
(a–d) ellipses of increasing semi-major axes are drawn; the temporal frame is unchanged. Once the EEP
(black crosses) and the ESC (green crosses) are detected the algorithm draws the ellipses centered at the
ESC with increasing semi-major axis d (black stars); from panels (a–d) the semi-major axis increases
from 2 to 5 pixel lengths. It then evaluates the end points (red stars in panels (a,b,d), and green stars
in (c)) of the streamlines emanated by these ellipses. The algorithm selects the semi-major axis d∗ for
which the relative end points (green stars in (c)) form the closest deformation of the associated ellipse.
Black arrows denote the velocity field.

5. Discussion

5.1. Detected Eddies

In Section 4 we tried to tune the three chosen algorithms by following a stability criterion.
We succeeded for AMEDA, but failed for NEAL. Indeed, in the latter case, no stable parameter regions
were identified. The algorithm YADA, instead, was indirectly tuned by using the AMEDA common
parameters, namely K and a; in fact both these parameters served to set a lower bound to the eddy
rotational energy, which was independent on the algorithm itself.

We then compared the tuned version of the two algorithms, AMEDA and YADA. It turns out that
AMEDA detected 195 eddies within the time period, whereas YADA detected 255 eddies. However,
among these, 157 eddies have been identified by both, leaving 38 eddies detected by AMEDA but
missed by YADA and 98 seen by YADA but lost by AMEDA. Mismatches between AMEDA and YADA
detections were expected, as already observed: eddies like that in Figure 9 were missed by YADA
due to their large extension and weak, but still positive, divergence. On the other hand, deformed
recirculations, as in Figure 5, were easily hidden to AMEDA but not to YADA.
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Figure 9. Eddy detected by AMEDA and missed by YADA. The local normalized angular momentum
field LNAM extremum x (black cross) corresponds to an eddy core, but any circle centered at x (black
stars) emanates streamlines (blue lines) which complete up to 3 revolutions before reaching the domain
boundary (contact points in red). Black arrows denote the velocity field.

Finally we checked by visual inspection all the available time frames, in order to determine the
existence of false positive detections. Interestingly, no such detections were found, testifying the
reliability of both the algorithms, at least in terms of false alarms. The same inspection showed that
volatile and higly asymmetrical structures were still missed by both. However, our algorithm was able
to detect long-lived eddies for longer time periods, as shown in Figure 10.
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Figure 10. Sequence of time frames (from panel 1 to 6) showing the evolution of a detected eddy.
Red stars denote eddy centers identified by AMEDA, whereas blue stars indicate ESCs computed by
YADA. As the eddy changes shape and becomes less centrosymmetric AMEDA misses it (panel 3 to 4).
Black arrows denote the velocity field (not in scale).

5.2. Equivalent Radii

Following [10] we computed the equivalent radius ρ for each detected eddy. It is defined as the
radius of the circle bounding an area equivalent to that delimited by the eddy boundary. For elliptic
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contours it equals d 4
√

1 − e2. The mean radius ρ̄ turned out to be 0.87 km, with a standard deviation
of 0.84 km and values of 2.8 and 3.6 km for the 95th and 99th percentile respectively. Similarly we
computed a mean eccentricity e of 0.71 with standard deviation of 0.02. It turned out that the mean
equivalent radius was merely 1–2 times the pixel length scale of the dataset, and therefore we could
expect that our method would not accurately describe some kinematic and dynamic features of eddies
having ρ close to ρ̄. It may have been possible to obtain a more accurate description by increasing the
spatial resolution up to reach l ∼ 0.3 km; however this would have implied performing interpolations
at a much higher resolution.

5.3. Spatial Distribution

The hourly sampling frequency of the HF radar allowed to track eddies having longer lifetime.
We identified such long-lived structures by looking for eddies encircling an EEP, coming from the
previous temporal frame, within their own boundary. The spatial distribution of all the detected
long-lived eddies, counted without repetitions, can be found in Figure 11.

Figure 11. Left panel: Spatial distribution of the detected eddies by means of YADA (colored circles);
different colors denote different sizes. Right panel: Detected long-lived eddies (circles) with lifetime
T ≥ 2 h. Initial, mid and final EEPs (black circles, blue circles and red stars respectively) with their
relative eddy trajectories (blue dashed lines) and eddy lifetimes T ≥ 3 h (blue numbers). Shoreline
(blue contour) and bathymetric contour lines (black lines) between 100 m and 800 m of depth.

A larger density can be noted in correspondence of a relatively flat plateau located in 40.73◦ N,
14.27◦ E, between 120 and 160 m of depth, excluding topographic wakes, that need steep bathymetric
slopes, as primary instability causes (for a comprehensive analysis of several submesoscale eddy
generation mechanisms see [5]). To understand the instability sources generating the GoN eddies,
therefore, it would be necessary to investigate the flow behavior within the SBL (surface boundary
layer). Unfortunately there are neither wind observations nor density profiles relative to the GoN
SBL. However, there is a work in progress, funded by the Science and Technology department of the
Parthenope University of Naples, aiming to investigate the vertical water profile through numerical
simulation. Such a study could provide more information to understand the instability sources within
the GoN.

Finally we observed that the detected long-lived eddies, namely those with lifetimes greater than
1 h, were 36, distributed as shown in Figure 11. They usually persisted for few hours, 5 or 7 h in some
cases, distributed in agreement with the entire density population. We also noted that, except for few
examples, they were almost stationary.
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6. Conclusions

Submesoscale motions play an important role in the transfer of energy from the mesoscale down
to the dissipative range ([5,42]) as well as in the transport of pollutants, of biomass, of organic and
inorganic matter ([43,44]). At present, they represent one of the frontiers of the study of transport in the
ocean. On the other hand, as recently pointed out by several authors (see, e.g., [5,8,45]), the observation
of submesoscale eddies in a synoptic way is challenging, feasible with remote sensing techniques
which are typicaly limited by available resolution. HF radars are land-based remote sensing tools that
can be very suitable for such investigations, given their temporal and spatial sampling characteristics.
In this paper we have tackled the issue of devising an algorithm for submesoscale eddy detection in a
high resolution surface velocity field provided by a network of 25 Mhz coastal radar antennas active
in the Gulf of Naples. We started by applying two different eddy detection algorithms, here denoted
by AMEDA and NEAL, based on the studies of [10,11] respectively, but they both displayed some
weaknesses. The application of AMEDA to the selected surface current dataset demonstrated to be
unable to distinguish submesoscale eddies entrapping fluid masses from the others. So we refined the
algorithm by measuring the divergence occurring in the eddy core. The number of detected eddies
then decreased. Differently, we did not succeed to tune the algorithm NEAL.

To obtain a more efficient detection method, able to distinguish asymmetric eddies entrapping
fluid masses, we developed a novel, modified algorithm, named YADA, which detected 255 eddies
(about 30% more than the refined AMEDA value). Then we used YADA to estimate the eddy
boundaries, assuming an elliptical symmetry, and we found a mean equivalent radius of 0.87 km and
a mean eccentricity of 0.71.

YADA’s results were validated comparison with the results of the algorithm AMEDA, as well as
by visual inspection of all time frames. Having developed a more robust algorithm, this also allowed
us to look at the spatial distribution of the detected eddies, and to observe a larger density at the
plateau located at 160 m of depth, and led us to exclude topographic wakes as main instability sources.
Moreover, we obtained estimates for their spatial scales taking into account the noncircular geometry
of the vortices.

As mentioned above, submesoscale eddies represent a relevant transport mechanism for waters
and their biogeochemical characteristics; their influence is particularly important in those coastal areas,
such as the Gulf of Naples, characterized by the coexistence of different subsystems, whose mutual
exchanges may strongly affect the whole functioning of the area. For this reason an accurate
identification of such structures is a necessary first step for the quantitative assessment of their
role, which we plan to further investigate in terms of their specific transport properties both in the
horizontal and in the vertical.
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Appendix A. The Hausdorff Distance

The Hausdorff distance δH(A, B) between two compact subsets A and B of the euclidean plane is
defined by the formula

δH(A, B) = max
{

supa∈Ad(a, B), supb∈Bd(b, A)
}

,

where d(a, B) and d(b, A) are the usual point-set distances:

d(a, B) = infb∈B|a − b|, d(b, A) = infa∈A|b − a|.

The Hausdorff distance δH makes the set of all compact subsets a metric space; in particular
δH(A, B) = 0 if and only if A = B.
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Abstract: Typhoon storm surge research has always been very important and worthy of attention.
Less is studied about the impact of tropical cyclone size (TC size) on storm surge, especially in
semi-enclosed areas such as the northern East China Sea (NECS). Observational data for Typhoon
Winnie (TY9711) and Typhoon Damrey (TY1210) from satellite and tide stations, as well as simulation
results from a finite-volume coastal ocean model (FVCOM), were developed to study the effect of TC
size on storm surge. Using the maximum wind speed (MXW) to represent the intensity of the tropical
cyclone and seven-level wind circle range (R7) to represent the size of the tropical cyclone, an ideal
simulation test was conducted. The results indicate that the highest storm surge occurs when the
MXW is 40–45 m/s, that storm surge does not undergo significant change with the RWM except for
the area near the center of typhoon and that the peak surge values are approximately a linear function
of R7. Therefore, the TC size should be considered when estimating storm surge, particularly when
predicting marine-economic effects and assessing the risk.

Keywords: storm surge; tropical cyclone size (TC size); ideal test; marine-economic effects; Northern
East China Sea (NECS)

1. Introduction

1.1. Background

Storm surge is an abnormal increase in seawater level, which can be induced by typhoons and
atmospheric pressure disturbances [1–3], and also may be affected by factors such as interaction with
the seiches of (semi) enclosed basins, coastal configuration, coastal bathymetry, and the extend of the
continental shelf [4]. Storm surges caused by hurricanes or typhoons (two types of tropical cyclones)
are among the most disastrous marine/coastal hazards in the world, resulting in significant property
damage and loss of life [5–9]. Weisberg [10], Orton [11], Rey [4], and others have studied the effects of
factors such as typhoon landing points, direction, and maximum wind speed (MXW) on storm surges.
Condon [12] uses the radius of maximum wind (RMW) to indirectly discuss the impact of TC size on
storm surge. However, RMW only represents a single distance parameter and can only reflect the wind
speed in the area near the typhoon center, which is not enough to completely describe TC size and
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consequently, it is necessary to introduce other distance parameters to describe TC size. At present,
TC size is often described by the distance from the center of the typhoon to the wind speed of level
7 or 10 in the measurement. However, analysis of the historical hurricane record showed no clear
correlation between surge and TC size and consequently, little attention has been given to the role of
storm size in surge generation [13]. Researchers have ignored the effect of changes in TC size in the
context of global warming [14], which has resulted in a significant underestimation of the TC-driven
storm surge destructive potential [13].

Due to the lack of accurate data, there has been relatively less research on the impacts of TC size
on storm surge. At present, there are many ways to define typhoon dimensions, due to differences
in the means of observation. Brand [15] and Merrill [16], using the mean radius of the outermost
closed isobar (ROCI) to measure TC size, and analyzing surface weather charts, reported that there
were seasonal and regional variations in TC size, and Northwest Pacific (NWP) TCs had a mean
size twice as large as that of the TCs in the Atlantic Ocean. For this reason, more attention should
be paid to the impact of different typhoon scales on storm surge in the Pacific. Based on aircraft
and other normal surface observations, TC size was investigated using the radii of a specific fixed
isobar (1004 hPa) [17]. However, in situ observations are not routinely available and there is still
a lack of wind structure observations for TCs in the open ocean [18,19]. The dearth of observations
makes TC size estimation heavily dependent upon satellite observations and techniques [19]. Satellite
observations include cloud/feature-tracked winds [20,21] and scatterometry [22]. The US Joint Typhoon
Warning Center (JTWC) has published TC critical wind radii (mean azimuth radii of 34-, 50-, and
64-kt surface winds—R34, R50, and R64, respectively) in the TC best-track dataset since 2001 [23].
The quick scatterometer (QuikSCAT) surface wind speed data have been used to study the relationship
between TC size and weather variables, for which TC size was defined as either R15 [24] or R34 [25].
Knaff [18,19] measured TC size in terms of R5 (the radius of the mean tangential surface wind speed of
5 kt) and presented a relatively simple method for estimating the TC wind radii from two different
sources: Infrared satellite imagery and global model analyses. Data from European remote sensing
(ERS) satellites [26] and Japan meteorological satellites [23] have also been extensively analyzed in TC
size investigations. This study compares the size of tropical cyclones using data from two Japanese
satellites, GMS-5 and MTSAT-2. Synthesizing the above, the typhoon size is described in terms of two
main aspects: Wind profile and air pressure profile. Different TC sizes exert different effects on the
weather and ocean. The timely determination of TC size, intensity, and track is important in weather
forecasts, as well as predictions of the potential impacts of TCs [18,19,26–30].

TC size has a significant impact on weather and climate, and the corresponding effects on the ocean
can also lead to large storm surges and wave disasters, particularly for very intense storms making
landfall in mildly sloping regions [13,31]. For example, Hurricane Katrina’s large size contributed to
its massive storm surge, enabling it to generate a higher storm surge than hurricane Camille, even
though Camille produced stronger winds when it struck the same area in 1969 [13]. Statistical analysis
reveals an inverse correlation between storm surge magnitudes and maximum wind speed radius
(RMW), while positive correlations exist between storm surge heights and TC sizes [32]. According to
Irish [13], storm surge varies by as much as 30% over a reasonable range of TC sizes for a given storm
intensity, which means that TC size has a significant impact on storm surge and is worth studying.

1.2. Study Area

The northern East China Sea (NECS), particularly the Bohai Sea and the northern Yellow Sea,
is one of the areas in the world most vulnerable to storm surge [33]. The Bohai Sea is a semi-enclosed
sea with three bays: Liaodong Bay, Bohai Bay, and Laizhou Bay (Figure 1). The terrain is mostly flat and
leaning from bays to the Bohai Strait. The surface area of the Bohai Sea is approximately 77,000 km2,
with a mean depth of 18 m below mean sea level (MSL) [34]. The main industries in the flat (susceptible
to inundation) coastal areas include mariculture, salt-drying, oil and gas exploitation, and tourism.
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Figure 1. The northern East China Sea, showing names, locations, and bottom topography (in meters
with mean sea level (MSL)) as the vertical datum. The black line is the dividing line between northern
and southern Yellow Sea.

The Yellow Sea is a marginal sea of the western North Pacific located between the Chinese
mainland and the Korean peninsula [35]. The average depth of the northern Yellow Sea is about 38 m
below MSL [36]. Many previous studies have divided the Yellow Sea into northern and southern parts,
with a dividing line that runs between Chengshan Cape of the Shandong Peninsula and Changyon of
the Korean Peninsula [33].

Typhoons in the north Pacific are often serious marine disasters. For example, Typhoon Winnie
(TY9711) resulted in 133 people dead or missing and caused more than 28 billion yuan in direct
economic losses. Typhoon Winnie (TY9711) and Typhoon Damrey (TY1210) were selected to compare
the effects of different TC sizes on storm surge, because the difference in size between typhoons Winnie
and Damrey is similar to the difference in size between Hurricane Katrina and Hurricane Camille.
As part of this study, ideal tests were conducted by modeling different sizes of typhoons to examine
the role of TC size in storm surge. In addition, TC size should be considered when estimating storm
surge, particularly when predicting marine-economic effects and assessing the risk.

2. Data and Methods

2.1. Typhoon Information and Data Processing

2.1.1. Typhoon Information

Pacific typhoons Winnie (TY9711) and Damrey (TY1210) made landfall north of NECS. TY9711
and TY1210 were selected because they had similar paths and MXWs but different TC size. The paths
of TY9711 and TY1210 are shown in Figure 2. TY9711 made landfall on the coast of Wenling, Zhejiang
Province at 20:00 on 18 August 1997. Its MXW was 20 m/s and its seven-level wind circle range (R7)
was about 400,000 m in the Shandong area (about 35◦ north latitude). TY1210 made landfall on the
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coast of Yancheng City, Jiangsu Province at 21:30 on 2 August 2012. Its MXW was 29 m/s and its R7
was 170,000 m in the Shandong area.

The typhoon data (including TC size) used for comparison and simulation is from the Wenzhou
Typhoon Net (http://www.wztf121.com/history.html), where TC size corresponds to the seven-level
wind circle range (R7); R7 specifically refers to the radius corresponding to v = 13.9 m/s.

2.1.2. Satellite Data

Since measured data on the typhoon scale is limited, in order to study impacts of typhoon-scale
weather variables on storm surge, it is necessary to determine typhoon size based on satellite inversion
data. The TY9711 typhoon-scale inversion data were provided by the GMS-5 meteorological satellite,
while the TY1210 data were derived from the MTSAT-2 satellite. The TC size inversion method and
dataset were provided by Lu [23], using infrared images to determine the typhoon scale based on R34
(defined as the mean azimuth radius of 34-kt surface winds). The TC size data were from the China
Meteorological Administration Tropical Cyclone Data Center (http://tcdata.typhoon.org.cn/tcsize.html).

The Japanese geostationary meteorological satellite (GMS) is located at 140◦ E and has been the
most important source of meteorological satellite information for Asian weather forecasting since its
launch in July 1977. The GMS-5 satellite was launched in March 1995 and officially positioned at 140◦
E in June, at which time it commenced operation. The main detection instrument on this satellite is
the visible and infrared spin-scanning radiometer (VISSR). The visible light resolution is 1250 m, and
the spatial resolution of the infrared and water vapor channels is 5000 m. The GMS has obtained
valuable data since its inception, prompting extensive inversion algorithms and application studies.
For example, Hyangsun [37] used machine learning to correct GMS data and Broomhall [38] expanded
the Australian database with GMS data pairs.

The MTSAT-2 satellite is a geostationary-orbit satellite launched by Japan on 18 February 2006;
meteorological observation began in 2010. The imager mounted on the MTSAT-2 satellite has one
visible light band and four infrared bands. The imager relies on an internal scanning mirror to capture
the image of the Earth’s surface. The light collected by the scanning mirror is divided into visible
light by a lens and a filter. There is a total of five bands of light. The MTSAT-2 captures images of
the Northern Hemisphere every 30 min; this temporal frequency helps to better grasp the movement
of typhoons and clouds. At the same time, the horizontal resolution of the satellite reaches 1000 m
in the visible light band and 4000 m in the infrared band, and image quality is expected to improve
significantly. Since it began accepting meteorological observation missions, the MTSAT-2 has been
widely used in meteorological research [23,39].

2.1.3. Tide Station Data Processing

Data from 11 tide stations in NECS were used for model verification and typhoon storm surge
comparison studies. The time resolution of the data was 1 h. The station locations are shown in
Figure 1. The astronomical tide was calculated and analyzed by harmonic analysis of more than
one year of measured data from the tide gauge stations. The remaining tide level was obtained by
observing the tide level minus the astronomical tide. The base of the remaining tide level is sea level,
which is identical to the base of the numerical model.

2.2. Wind Formula

For the relationship between TC size and storm surge, the radial distribution of wind relative to
the MXW is specified following DUAL (dual-exponential) formula [40]. The DUAL formula is the
same as the Jelesnianski2 [41] and Holland [42] formulas, but differs in that it is a summary formula
based on multiple measurements of the cross-section of a tropical cyclone. The advantage of the DUAL
formula is that the parameters can be calculated from measured or predicted wind speed in order to
study the effects of different TC sizes on storm surges, which is why this study uses this formula.
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The DUAL formula and the numeric coefficients (Formula 1-11) are both derived from the paper
of Willoughby [40], as follows:

v = Vc = Vs + Vmax

( r
Rmax

)n
, (0 ≤ r ≤ R1), (1)

v = Vs + Vc(1−w) + Vow, (R1 ≤ r ≤ R2), (2)

v = Vo = Vs + Vmax

[
(1−A)exp

(
− r−Rmax

X1

)]
+ Aexp

(
− r−Rmax

X2

)
, (R2 ≤ r). (3)

Related parameters:
X1 = 317.1− 2.026Vmax + 1.915ϕ, (4)

n = 0.406 + 0.0144Vmax − 0.0038ϕ, (5)

w =
nX1

nX1 + Rmax,
, (6)

A = 0.069 + 0.0049Vmax − 0.0064ϕ, (7)

Rmax = 46.4ex p(−0.0155Vmax + 0.0169ϕ), (8)

where r is the radial distance from the typhoon center; v is the wind velocity as functions of r; Vs is the
forward speed of the typhoon; Vc and Vo are the tangential wind component in the eye and beyond
the transition zone, which lies between r = R1 and r = R2; Vmax and Rmax are the MXW and the RMW;
X1 and X2 are the exponential decay length in the outer vortex; A is the coefficient representing the
scale of the E exponential function related to X1 and X2 (Formula (3)); ϕ is the latitude of the typhoon
center and n is the exponent for the power law inside the eye.

Note: In order to ensure that both Vc and Vo are equal to Vmax at r = Rmax, a simple correction to
the DUAL formula is as follows.

v = Vs + Vc(1−w) + Vmaxw, (R1 ≤ r ≤ Rmax), (9)

v = Vs + Vmax(1−w) + Vow, (Rmax < r ≤ R2). (10)

The weighting function, w, is expressed in terms of a nondimensional argument ε =

(r−R1)/(R2 −R1). When ε ≤ 0, w = 0; when ε ≥ 1, w = 1. In the subdomain 0 < ε < 1, the weighting
is defined as the polynomial.

w(ε) = 126ε5 − 420ε6 + 540ε7 − 315ε8 + 70ε9, (11)

which ramps up smoothly from zero to one between R1 and R2 [40].
TC size is represented by the seven-level wind circle range (R7). The variable v is equal to 13.9 m/s

at r = R7, where R7 is the radial distance between the typhoon center and the seven-level wind circle.
The exponential decay length X2 will be calculated by using R7 data from the Typhoon Network
(http://www.wztf121.com/history.html). Specifically, the measured seven-stage wind speed and R7 are
brought into Equation (3) to determine X2, which is the control model wind field cross-section curve.

Wind stress is computed from the following equation:

⇀
τ = Cdρa

∣∣∣∣∣ ⇀VW

∣∣∣∣∣VW , (12)
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where Cd, a drag coefficient dependent on wind velocity, is given by the fitting curve (Figure 2), which
is fitted to the mid-air pressure profile of Moon [43] based on previous research [44,45]:

Cd × 103 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.040v4 − 0.5241v3 + 2.4631v2 − 5.3025v + 6.1763;
v ≤ 6

−1.3405× 10−5v4 + 0.0010v3 − 0.0264v2 + 0.3428v− 0.0755
6 < v ≤ 31

1.8701× 10−7v4 − 4.3336v3 + 0.0043v2 − 0.2308v + 6.8709
v > 31

. (13)

Figure 2. Drag coefficient as a function of maximum wind speed (MXW).

3. Model and Validation

3.1. Model Description and Configuration

The time-dependent, three-dimensional, primitive equation, finite-volume coastal ocean model
(FVCOM) [46] is used to model storm surge. A non-overlapping unstructured triangular grid is used
at the horizontal to accurately fit complex coastlines.

Storm surge is a cumulative water level effect, so the model must be large enough to contain the
spatial extent of the storm and the accumulation of surge response due to nonlocal excitation [10].
The model domain extends from north of Bohai Sea to near Taiwan Strait, with an open boundary
arching south. The grid resolution increases from the open boundary toward the NECS, with the highest
resolution (about 100 m) on the coast of the Bohai Sea (Figure 3). A total of 168,373 triangular cells with
89,541 nodes comprise the horizontal, and 10 uniformly distributed s-coordinate layers comprised
the vertical. The shoreline and bathymetry used in the model were obtained from the ETOPO-1
(http://www.ngdc.noaa.gov/mgg/global/global.html) dataset and were corrected near the NECS using
an electronic chart with a scale of 1:50,000 (Figure 4). Based on the Courant—Friedrichs—Levy
numerical stability condition, the computational time steps of 1.5 and 15 s are used for the external and
internal modes, respectively. Temperature and salinity are estimated and specified to be constant at
18 ◦C and 35 psu, respectively. Storm surge in this model is only controlled by wind stress. The effects
of atmospheric pressure, tides, rivers, and wave run up are not modeled. The conditions applied to the
open boundaries were a combination of free surface and close the wet and dry grid.

The wind stress is provided by the above DUAL formula and corresponding typhoon data
(Figure 5), but does not consider fusion with the background wind field, given the ideal nature of the
design. The wind field established by the DUAL model shows that the typhoon is slightly larger on
the right side, an asymmetrical characteristic that is consistent with the actual typhoon.
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Figure 3. Computed model domains of finite-volume coastal ocean model (FVCOM). The paths of
Typhoon Winnie (TY9711) and Typhoon Damrey (TY1210) are indicated by different color lines. The star
is the cross point of the two typhoons and is also the time and location of the space map below.

Figure 4. Shoreline and bathymetry of the northern East China Sea (NECS) after correction of the
1:50,000 electronic chart.
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Figure 5. The dual-exponential (DUAL) model wind field and corresponding wind pressure diagram.

3.2. Model Validation

Since Typhoon Winnie (TY9711) and Typhoon Damrey (TY1210) were selected to investigate the
relationship between TC size and storm surge, it is necessary to validate the reliability and accuracy of
the simulation. The surge observation data were collected from six tide stations: Zfd, lko, wfg, tgu,
byq, and lht. The locations are shown in Figure 1. Due to the lack of data, only the TY1210 simulation
results are verified here (Figure 6). The timeframe is from 1–3 August 2012 (UTC, the same hereinafter).
The results of the model agree well with observations not only in magnitudes but also in phases.
However, there are slight differences between the two curves. The probable reasons are as follows: 1)
The wind variations calculated by the DUAL formula differs from the actual wind change; 2) there is
still some gap between model bathymetry data and actual bathymetry (which brings local effects to
storm surges and leads to undulation at the curves); and 3) other factors causing storm surge have not
been fully considered in the model, such as the effect of waves and tides. In addition, the FVCOM
mesh and model parameters have been validated using additional storms besides TY9711 and TY1210.
Therefore, it is given that only two storms are shown in the paper in order to then represent a verified
model for a larger experimental design of perturbations to an idealized TY1210. Nevertheless, FVCOM
simulates the storm surge elevations well enough to study storm surges induced by typhoons.
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Figure 6. Simulated (blue lines) and observed (red lines) time series of storm surges at tide stations zfd,
lko, wfg, tgu, byq, and lht induced by Typhoon Damrey (TY1210) in August 2012.

4. Results

4.1. Comparison of Similar Typhoon Storm Surges

TY9711 and the TY1210 were selected to compare the effects of different TC sizes on storm surge.
The maximum envelope of storm surge (MESS) of TY9711 is far greater than MESS of TY1210 (Figure 7).
At the zfd, lko, tgu, and lht tide stations, the storm surge curve over time (Figure 8) shows that the
storm surge caused by TY9711 is greater than or equal to the storm surge caused by TY1210, but the
MXW of TY9711 is less than the MXW of TY1210. One of the possible causes of this phenomenon is TC
size, which is illustrated by the size of the cloud circle inversion shown on satellite imagery (see the
cloud map at http://www.wztf121.com/history.html).

Figure 7. The maximum envelope of storm surge (MESS) of Typhoon Winnie (TY9711) and Typhoon
Damrey (TY1210) simulated spatial distribution. The unit of the storm surge is meters (m).
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Figure 8. The minimum pressure and MXWs of Typhoon Winnie (TY9711) and Typhoon Damrey
(TY1210) curves over time are displayed at the top. Remaining tide levels calculated from observations
of storm surges at the tide stations are displayed at the bottom. The star symbol represents the location
at which the paths of the two typhoons crossed.

At the same time, the size of the typhoon measured by R34 was inverted by the GTM-5 and
MTSAT-2 satellites. The size of TY9711 is obviously larger than that of TY1210 (Figure 9). However,
the amount of cloud map and inversion contour data is very small, making it difficult to accurately
describe the chronological change of typhoon size and the relationship with the storm surge. Since
further research is needed, we designed ideal tests to study the effects of different TC sizes on storm
surge (see Section 3.2).
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Figure 9. Map of the satellite inversion of TY9711 and TY1210 size.

4.2. Ideal Tests

There are many factors affecting storm surges, such as topography and external environmental
impacts, but wind causes the largest proportion of storm surges [11]. In order to further explore the
influence of tropical cyclone intensity and size on storm surge, we designed an ideal test based on the
path of TY1210.

4.2.1. Maximum Wind Speed

Based on the path of TY1210, six contrast tests (ideal tests) were designed by varying the MXW
and RMW, but fixing R7. The constant R7 is equal to 200,000 m. The MXW is constant for each ideal
test, at values of 20, 30, 35, 40, 45, and 50 m/s (Table 1). The RMW is calculated from the MXW and the
latitude of the center of TY1210 using Equation (8).

Table 1. Maximum wind speed ideal test parameters.

MXW (m/s) RMW (m, Latitude = 36◦N) R7 (m)

test 1 20 62,533 200,000
test 2 30 53,555 200,000
test 3 35 49,561 200,000
test 4 40 45,865 200,000
test 5 45 42,445 200,000
test 6 50 39,279 200,000

Using the DUAL formula wind fields, the ideal tests are computed using the FVCOM model.
Figure 10 shows time series of simulated surges induced by different MXWs. The time span is one day
before and after the time of maximum surge. The wind cross-section (Figure 11) is the curve of wind
as a function of the distance from the center of the typhoon. It is intercepted from the center of the
typhoon to periphery along longitude. The maximum envelope of storm surge (MESS) is given by
calculating the extreme value of storm surge in the tests (Figure 12).
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Figure 10. Time series (at representative spots for the tide stations) of simulated surges (cm) induced
by different MXWs.

Figure 11. Wind cross-sections from the center of the typhoon at different MXWs. The black star
represents the position of the seven-level wind circle range (R7).
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Figure 12. The maximum envelope of storm surge (MESS) of the typhoon at di_erent MXWs. The unit
of the storm surge is meter (m).

The maximum value of storm surge occurs at an MXW of 40–45 m/s rather than at an MXW of
50 m/s (Figure 10). The reason for the phenomenon is related to the fact that the model only changes
MXW and RMW, which can be seen from the wind cross-section (Figure 9). In addition, the storm surge
does not undergo significant change with the MXW, probably due to the small TC size (Figure 11).

The MESS spatial distribution map of the ideal MXW test (Figure 12) reveals that the spatial
distributions of storm surge caused by different wind intensities are slightly different, and the water
increases in each bay mouth area are larger. For example, the storm surge in Bohai Bay is larger than
the storm surge in other areas. Most of the storm surge extremes occur in the MXW = 45 m/s test.

4.2.2. TC Size and RMW

Based on the path of TY1210, a series of idealized storm surge tests with varying TC sizes and
RMW were designed. The TC size is represented by the seven-level wind circle range (R7). There are
three ideal tests (test 1, test 3, test 6) for which the MXW is constant and RMW varies with the latitude
of the center of TY1210. The constant MXW is equal to 35 m/s. R7 in each test is a constant value of
200,000, 400,000, and 600,000 m (Table 2).

Table 2. Tropical cyclone (TC) size ideal test parameters.

MXW (m/s) RMW (m, Latitude = 36◦N) R7 (m)

test 1 35 m/s 49,561 200,000
test 2 35 m/s 25,000 400,000
test 3 35 m/s 49,561 400,000
test 4 35 m/s 75,000 400,000
test 5 35 m/s 100,000 400,000
test 6 35 m/s 49,561 600,000

In the other three tests (test 2, test 4, test 5), MXW and R7 values are fixed, but RMW fixed values
are different in different tests (Table 2). The constant MXW is equal to 35 m/s and the constant R7 is
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equal to 400,000 m. The RMW is constant for each ideal test, at value of 25,000, 75,000, and 100,000 m
(Table 2). The cross-section of all the tests wind is shown in Figure 13.

Figure 13. Wind cross-sections from the center of the typhoon at different TC sizes and radius of
maximum wind (RMW). The black star represents the position of the seven-level wind circle range (R7).

Using the DUAL formula wind fields, the ideal tests are computed by the FVCOM model.
The wind cross-section of the different tests (Figure 13) are represented as function curves of distance
from the center of a typhoon. The maximum envelope of storm surge (MESS) is given by calculating
the extreme value of storm surge in the tests (Figure 14). Time series of surges induced by different
tests are shown Figure 15.

Figure 14. Maximum envelope of storm surge (MESS) induced by the ideal test at different TC sizes
and RMWs. The unit of the storm surge is meter (m).
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Figure 15. Time series (at representative spots from the tide stations) of simulated surges (cm) induced
by different TC sizes and RMWs.

The maximum value of the storm surge increases as R7 increases, and the maximum value is
greatest when R7 is equal to 600,000 m (Figures 14 and 15). These results are the same as reported by
Irish [13]. In addition, we found that the peak surge values are approximately a linear function of R7.
This is consistent with conclusions from Condon [12].

Tests 2–5 show that the storm surge does not undergo significant change with the RWM except for
the area near the center of typhoon (Figures 14 and 15, location of hha and tgu), which is related to the
change of wind field profile caused by the fixing of R7 (Figure 13).

5. Discussion

As shown above, the numerical ideal tests with different TC sizes indicate that in addition to
storm intensity, TC size can dramatically change maximum storm surge. TC size data are lacking,
however. Field observations, such as ground reports and buoy observations, can provide high-quality
surface conditions, but these observations are not routinely available. Aircraft reconnaissance can also
provide detailed spatial distributions of low-level or surface winds, but these missions rarely occur
in the Northwest Pacific Ocean [18,19]. A weather center’s estimate of the wind radius is based on
subjective analysis of existing information, such as the 2007 publication of the global Hurricane Satellite
(HURSAT) dataset by the National Oceanic and Atmospheric Administration (NOAA) (available
online at: www.ncdc.noaa.Gov/hursat/index.php) [23].

Due to the lack of in situ observations, conventional TC size estimates are heavily dependent
upon satellite observations and techniques. Satellites observations typically employ infrared light,
cloud visible light, etc. [20,21]. In addition, satellite inversion relies on good inversion methods.
Predecessors used a variety of techniques to transform measured data, such as data fusion [19] and
machine learning [37,47]. The size and cloud top brightness temperature profiles of TCs are used for
parameter inversion [23]. In the future, we should continue to study satellite inversion methods, and
develop new observation methods to ensure timely access to typhoon-scale intensity and movement
trajectory data to support weather system assessment and storm surge forecasting.
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In the study of the impact of TC size on storm surge, Weisberg [10] investigated the storm surge
in the Tampa Bay area of Florida, in the United States, and found that as the intensity of the wind
increases, the maximum value of the storm surge increases, and it is suggested that as the RMW
increases, the maximum value of the storm surge will increase. Irish [13] used a coupled hurricane
vortex–planetary boundary layer (PBL) model to establish a wind field to simulate the entire Gulf of
Mexico and found that storm surge increases with storm size. However, these studies have certain
regional characteristics and rely on the establishment of wind fields.

Rey [4] and the NHC [48] built a database from the perspective of hypothetical hurricanes, using
similarly anticipated typhoon storm surges that could not fully respond to the upcoming typhoon
storm surge due to the complexity and variability of the typhoon storm surge. In this paper, using the
predicted typhoon path, MXW and TC size, the entire wind field is inverted by the DUAL formula
to simulate the storm surge. The approach can supplement the historical database and increase the
accuracy of forecasting storm surges in order to reduce disaster losses. Therefore, it is necessary to
establish the wind field by TC size and study the tropical cyclone intensity and size in the NECS.

In order to more clearly study the impact of TC size on storm surges, we have parameterized
RMW according to the Weisberg [10] research. It is well known that typhoon wind field can be is
described by at least two curves, that is, the wind speed rising curve with distance from the typhoon
center to RWM and the wind speed decreasing curve with distance from RWM to the periphery. R7 or
the peripheral location of fixed wind speed can be used to compensate for the inaccuracy of the wind
field profile by RMW and typhoon center location alone. Our research found the small TC size limits
the impact of wind field intensity changes on storm surges to some extent. This phenomenon occurs
because with a fixed R7, the cross-section of the typhoon changes as the storm’s strength varies, with
the maximum value of storm surge occurring at an MXW of 40–45 m/s rather than 50 m/s. It is usually
assumed that TC size increases as RWM increases, while other TC size changes are ignored, in many
studies of storm surge changes through different RWM [4,12]. Our research found the storm surge
does not undergo significant change with the RWM except for the area near the center of typhoon,
probably due to the fixing of R7 (TC size). The maximum value of the storm surge increases as TC
size increases. Therefore, we suggest that at least three positional parameters (typhoon center, RMW,
TC size) are needed to accurately describe the wind field profile of a typhoon, especially TC size, which
is more important in storm surge simulation. However, an ideal test with varying MXWs, RMWs, and
TC sizes demonstrated that the MXW, RMW, and pressure of a typhoon will change with different TC
sizes. There is no clear relationship between MXW, RMW, and typhoon pressure with TC size [49].
What is certain, however, is that the relationship is not simply linear. In the future, we will continue to
investigate these relationships and their impacts on storm surge.

Typhoon scale varies, and the disasters caused by typhoon-scale weather factors vary significantly.
According to the Saffir–Simpson hurricane scale, Hurricane Camille was a Category 5 storm, while
Katrina was only a Category 3. Hurricane Katrina, however, was a greater natural disaster and resulted
in a higher death toll due to its larger size [13].

The same conclusion was gleaned from the disaster losses caused by TY9711 and TY1210 (Table 3).
TY9711 affected eight provinces, while TY1210 affected only four. In the same provinces (Jiangsu,
Shandong, Hebei, and Tianjin) in which losses occurred, TY9711 destroyed 557 dykes, damaged
1000 ships, and damaged a large amount of farming equipment and homes, causing direct economic
losses of 8300 million yuan, while TY1210 destroyed 40 dykes, damaged 690 ships, and destroyed
a number of pieces of farming equipment and homes, resulting in a direct economic loss of 4175 million
yuan. With the exception of Hebei Province, the disaster losses caused by TY9711 far exceeded those
from TY1210, which was also due to the larger scale of TY9711. It can be seen that TC size variation
has a significant impact on storm surge disasters. Moreover, the analysis of TC size variation is of great
importance in disaster prevention and reduction of marine-economic effects.
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Table 3. Direct economic losses.

Jiangsu Shandong Hebei Tianjin Total

TY9711 (million yuan) 3000 4500 200 600 8300
TY1210 (million yuan) 537 1599 2044 4 4184

6. Conclusions

Three-dimensional FVCOM is used to simulate storm surge in the NECS region. First, we used
observational data from tide stations to test the reliability and accuracy of the model. Through
a hindcasting test of TY1210 storm surge, we found that the overall trend of the storm surge is
consistent with actual measurements, and the maximum value of the storm surge was also similar to
the measured value.

Analysis of the satellite cloud images and inverse typhoon profiles of TY9711 and TY1210 revealed
that TY9711 had a larger TC size than TY1210. Based on observations and model simulations, the storm
surge generated by TY9711 was far greater than the surge produced by TY1210, even though the paths
and MXWs of the typhoons were similar.

Based on the path of TY1210, six contrast tests (ideal tests) were designed by varying the MXW
and RMW, but fixing R7. The result of the ideal tests showed that the maximum value of storm surge
occurs at a velocity of 40–45 m/s, rather than 50 m/s. Differences in the wind cross-section and the
storm surge do not induce significant changes in the MXW, probably due to the small TC size.

In order to study the effect of TC size on storm surge, a series of ideal tests were designed by
fixing the MXW, RMW, and R7. The maximum value of the storm surge becomes larger as R7 becomes
larger, and the peak surge values are approximately a linear function of R7. The storm surge does not
undergo significant change with the RWM except for the area near the center of typhoon.

Using the predicted typhoon path, MXW, RMW, and TC size, the entire wind field was inverted
by the DUAL formula to simulate the storm surge. This approach can supplement the historical
database and increase the accuracy of forecasting storm surges in order to reduce disaster losses of
marine-economic effects. Therefore, it is necessary to establish the wind field by TC size and further
study tropical cyclone intensity and size in the NECS.
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Abstract: Rapid and accurate extraction of shoreline is of great significance for the use and manage-
ment of sea area. Remote sensing has a strong ability to obtain data and has obvious advantages
in shoreline survey. Compared with visible-light remote sensing, synthetic aperture radar (SAR)
has the characteristics of all-weather and all-day working. It has been well-applied in shoreline
extraction. However, due to the influence of natural conditions there is a problem of weak boundary
in extracting shoreline from SAR images. In addition, the complex micro topography near the
shoreline makes it difficult for traditional visual interpretation and image edge detection methods
based on edge information to obtain a continuous and complete shoreline in SAR images. In order
to solve these problems, this paper proposes a method to detect the land–sea boundary based on
a geometric active contour model. In this method, a new symbolic pressure function is used to
improve the geometric active-contour model, and the global regional smooth information is used as
the convergence condition of curve evolution. Then, the influence of different initial contours on the
number and time of iterations is studied. The experimental results show that this method has the
advantages of fewer iteration times, good stability and high accuracy.

Keywords: SAR images; shoreline extraction; geometric active contour model

1. Introduction

The coastal zone is rich in biological, mineral, energy, land and other natural resources.
Shoreline is the boundary between sea and land, and is also the outpost of national defense.
Accurate and rapid determination of the location, direction and outline of shoreline plays
an important role in coastal environmental protection and marine resource management.
The traditional field survey methods are labor-intensive, inefficient, long-term, and the
data obtained are not easy to be counted. Remote sensing has a strong ability to obtain
data and has obvious advantages in shoreline survey [1]. Visible remote sensing is often
used in shoreline extraction due to its imaging characteristics in line with human visual
characteristics. However, it is limited by illumination and climate conditions. Compared
with visible-light remote sensing, synthetic aperture radar (SAR) has the characteristics of
all-weather and all-day operation [2]. It can image a large area and record the information
of shoreline changes under bad weather conditions. SAR has been well-applied in shoreline
extraction [3–6]. However, sometimes the contrast between ocean and land is not strong
and the boundary is not always clear, which makes the shoreline extraction of SAR images
a challenging problem.

So far, there are two main methods to detect shoreline from SAR images: visual in-
terpretation and automatic interpretation. Usually, the digital manual tracking method is
adopted to mark the boundary between ocean and land according to the trend, texture,
shape and other interpretation marks of shoreline characteristics in SAR images, as well
as the differences between tidal flats and water bodies near the coastal zone. This process
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is visual interpretation. However, because visual interpretation needs image interpreta-
tion, the reader must have rich visual interpretation experience and master all kinds of
geoscience knowledge, which requires greater labor. Moreover, this interpretation method
is time-consuming in human and material resources, and to a certain extent, it is difficult
to ensure the quality of the interpretation image. Based on this, the current research on
SAR-image shoreline extraction mainly focuses on the automatic interpretation.

Based on the characteristics of land and water boundary, extracting shoreline from SAR
images is actually an image-segmentation process. The most classical image-segmentation
methods are edge-differential operators (such as Sobel operator, Canny operator and
Roberts operator). Although these edge-differential operators are simple and fast they are
sensitive to noise, and the edge location is not accurate enough, so they lack universal
applicability. In order to detect the complete and continuous shoreline from SAR images,
many researchers have done a lot of active exploration and also put forward some effective
extraction methods.

The geometric active contour (GAC) model [7] was developed on the basis of the active-
contour model (ACM). ACM was a major breakthrough in the field of extracting image
boundary and has very practical research value [8]. In recent years, with the extensive and
in-depth study of ACM, the GAC model has wide use in the world, involving more and
more fields. The GAC model also shows strong practicability in the field of SAR-image
boundary extraction. However, due to problems of SAR images such as fuzzy boundary,
low contrast, high gray level and easy interference by noise, the method of the GAC model
can still encounter some problems such as weak boundary, the number of iterations and
iteration times being easily affected by the initial contour of the image, and influence of
image preprocessing on the shoreline extraction from SAR images.

In order to solve the problem of weak boundary in SAR-image shoreline extraction,
this paper proposes a method of sea–land boundary detection based on a geometric active-
contour model. This method improves the GAC model through combining the global
regional smooth information as the convergence condition of curve evolution, which is
helpful to solve the problem of weak shoreline boundary. New symbolic pressure function
combined with regional information is proposed as the boundary stop condition of the
GAC model, and the shoreline is accurately extracted. In this paper, the influence of
different initial contours of a SAR image on the iterations of shoreline detection is studied.
It shows that the larger the initial contour selection of the image, the fewer number of
iterations and the shorter the iteration times. Experiments show that the proposed method
cannot only effectively detect the shoreline in SAR images, but also reduce the number of
iterations and shorten the iteration times compared with other related shoreline extraction
methods, and the detection accuracy is further improved.

The paper is structured as follows. The background and related work, which includes
the main methods for shoreline extraction of SAR images, are presented in Section 2. The
materials and methods, which include the study area, traditional geometric active contour
model, the improvement of geometric active contour model and the method of shoreline
extraction in this paper, are described in Section 3. In Section 4, the results are presented.
The influence of the selection of a SAR-image initial contour is verified in Section 5. The
results and the future research directions are discussed in Section 6. Finally, the conclusions
are summarized in Section 7.

2. Background and Related Work

At present, many scholars have carried out research on SAR-image shoreline-extraction
technology and achieved many meaningful research results. There are two main methods
for shoreline detection of remote sensing image, which are based on edge detection and
region segmentation. The main methods include boundary tracking algorithm, Markovian
segmentation method, active contour model method, level set algorithm and so on.

The boundary tracking algorithm [9,10] first analyzes the normal distribution of ocean
and land pixels in the image, and then sets a threshold value according to the mean value
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and standard deviation to distinguish the ocean and land in the image to obtain the binary
image. Then, the boundary-tracking algorithm is set to send out from a certain shoreline
point to plot the boundary contour of ocean and land. The algorithm is intuitive, simple
and easy to operate, and can get continuous shoreline. However, the shoreline obtained by
this algorithm depends on the separation of land and ocean in the image, that is, smoothing,
filtering and threshold selection, so it has great limitations and is generally applied in the
case of low-accuracy requirements. In order to solve the problem of edge discontinuity and
false edge, a ridge-tracking technique for edge extraction from noisy data was proposed
in [11,12].

Markovian segmentation method uses the concept of the Markovian random field
and simulated annealing method to extract shoreline [13]. First, the resolution of the image
is reduced and the influence of speckle noise is reduced. The minimum value of energy
function is solved by a simulated annealing method. The pixels in the image are classified
(sea, land, low wave zone, beach). The right angle gradient operator is defined to obtain
an approximate rough boundary. Then, the image resolution is restored and the above
steps are applied to the high-resolution image. Finally, the shoreline is obtained. However,
the method of Markovian random field and simulated annealing still has errors in the
classification of pixels in the image, and the amount of calculation is relatively large [14].

ACM is also called the snakes algorithm, which is a kind of algorithm based on human
visual characteristics [8]. The algorithm first gives an initial contour in the region of interest
in the image and then minimizes an energy function to drive the contour line to move in
the image. After several iterations, the contour line is constantly changed, and finally the
boundaries of the objects in the image are approached. The active contour method can
get the outline of each object in the image. However, because of the poor stability of the
active contour method and high requirement for the position of initial contour, it can only
be applied to the detection of simple images.

The level-set algorithm [15,16] follows the characteristics of the active-contour method.
In this kind of algorithm, it is also necessary to give the initial contour line, and the
requirement of the initial contour position is lower than that of the active-contour method.
The level-set algorithm has strong topology adaptability, and contour curves can be merged
or separated automatically without additional treatment. Given a simple initial contour,
the boundary of the object in the image can be obtained. Moreover, the two-dimensional
curves are embedded into the three-dimensional surfaces, so that the numerical solution in
this method is stable and there is a unique solution. However, due to the iterative algorithm
of 3D surface, it leads to a large number of calculations and high complexity.

The GAC model is based on the level-set method and curve-evolution theory [17].
The basic idea of the GAC model for extracting shoreline from SAR images is: (1) Using
continuous curve to describe image edge and combining with image information to define
energy functional. (2) Then using the Euler Lagrange method to get the curve-evolution
equation corresponding to the energy functional. (3) Finally using level set to simulate the
evolution process of initial curve along the direction of the fastest energy decline to obtain
the optimal boundary-contour curve. The GAC model can be classified as edge-based,
region-based and hybrid models.

Above all, the shoreline obtained by the boundary-tracking algorithm depends on
the separation of land and ocean in the image, which has great limitations. ACM can
obtain continuous shoreline, but it is sensitive to the initial contour and cannot handle
the boundary topology adaptively; it is usually used in combination with other methods,
such as clustering algorithms [18] and wavelet-edge detection [19]. According to different
energy function, ACM can be divided into region-based ACMs and edge-based ACMs
(EL-ACMs). Region-based ACMs cannot simulate the heterogeneity of coastal zones with
a single probability distribution, especially in high-resolution images [20]. EL-ACMs
construct edge indicators based on edge information or gradient, which allows contours to
evolve rapidly in homogeneous regions and stop at real boundaries [21]. They have been
also used for shoreline extraction from SAR images [18]. The level-set algorithm follows
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the characteristics of the active-contour method and also needs to give the initial contour
line, but the requirement for the position of the initial contour is lower than that of the
active-contour method. The existing SAR-image shoreline-detection technology mostly
uses the method based on the active-contour model or level set for iterative calculation,
which has high computational complexity, and detection accuracy is greatly affected by
the initial contour, window size and other factors [8,16,22]. The method of the GAC model
to extract the shoreline of a SAR image will still encounter some problems, such as weak
boundary, and number of iterations and iteration times, which are easily affected by the
initial contour of the SAR image.

Shoreline extraction methods based on multipolarization SAR have also been pro-
posed [14,23]. In [23], radar frequency was shown to have great influence on the method of
SAR-based shoreline extraction.

In addition, the classical fuzzy C-means (FCM) method was also applied to shoreline
detection, and the Wavelet decomposition algorithm was combined to better suppress the
inherent speckle noise of SAR images [24]. In [25], a nonparametric fuzzy approach was
proposed for shoreline extraction from Sentinel-1A. In [26], a shoreline extraction method
based on spatial pattern analysis was proposed, which includes image decomposition,
smoothing, segmentation and shoreline compensation. A learning process that involves
spatial patterns was presented in the image-decomposition step. A nonlocal means filter
was used to smooth the outline images, and then the graphic cutting technology was
applied to segment the images into sea and land areas. The positioning accuracy was
determined using the snakes algorithm. In [27], J-Net Dynamic which is an experimental
algorithm was applied on a high-resolution Sentinel-1 SAR image for the first time.

Relevanting works, a new diffusion-based method for the delineation of shorelines
from space-borne polarimetric SAR imagery, was presented in [28]. The over-segmentation
problem is solved by combining neighboring segments with similar radar brightness.
In [29], shoreline rotation has been analyzed to provide a better understanding of the
morphodynamic processes of natural embayed beaches. In [30], a shoreline monitoring
system based on satellite SAR imagery was studied. In this system, a shoreline-extraction
technique was developed based on the edge-detection technique, and a simple polynomial
function was introduced to represent the shoreline location at arbitrary water level. In [31],
a semiautomatic coastline-extracting approach was proposed based on fuzzy connectivity
concepts. And an automatic procedure was proposed for the evaluation of results.

Although the above results have improved the performance of shoreline extraction to
a certain extent, there are still many problems to be further studied. Generally speaking, the
boundary tracking algorithm, Markovian segmentation method and active-contour method
are seldom used independently due to their detection effect. For SAR-image shoreline
extraction, it is necessary to analyze the extraction effect, antinoise ability and complexity.

3. Materials and Methods

3.1. Study Area

We used the SAR image observed by RADARSAT-2, a Canadian radar satellite series.
Compared with the RADARSAT-1 satellite, the RADARSAT-2 satellite has a more powerful
imaging function and has become one of the most advanced commercial SAR satellites
in the world. First, the RADARSAT-2 satellite can switch between left view and right
view according to the command, and all wave velocities can be viewed left or right,
which shortens the revisit times and increases the ability to obtain stereo images. Second,
RADARSAT-2 retains all imaging modes of RADARSAT-1 and adds spot light mode,
hyperfine mode, four polarization (fine, standard) mode and multiview fine mode, giving
users more flexibility in imaging-mode selection. Third, the RADARSAT-1 satellite only
provides HH polarization mode, while the RADARSAT-2 satellite can provide VV, HH, HV,
VH and other polarization modes. The coasts of interest are shown in Figure 1. The study
area is near the South China Sea.
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Figure 1. Administrative division map of the study area.

3.2. Theoretical Background
3.2.1. Traditional Geometric Active Contour Model

The geometric active contour model was developed on the basis of the active-contour
model. Compared with the active-contour model, the geometric active contour model
has the advantages of natural handling of topological structure changes, insensitivity
to initial conditions and simple numerical implementation. These characteristics have
attracted more and more attention, and this model is widely used in computer vision and
image processing.

Based on the definition of energy functional, the GAC model can fall into boundary
model and region model categories. The geodesic active-contour model was the most
typical boundary model proposed in 1997 [32]. This model can solve the problems of the
sensitivity of the snakes model to initial conditions and the inability to deal with topological
changes automatically. The geodesic active-contour model is a special case of the snakes
model, and its energy functional E is:

E(C(q)) =
∫ 1

0
g(|∇I(C(q))|)∣∣C′(q)

∣∣dq (1)

where C is the parametric plane curve, I is the known image, and g is the edge stopping
function (ESF):

g =
1

1 + |∇Gσ ∗ I|2 (2)

where G is a Gaussian function with variance σ.
The value of g tends to 0 where the image gradient is large, and tends to 1 where

the image gradient is small. The curve evolves to the position where g tends to 0, which
can effectively extract the target boundary. The geometric active-contour model based
on the level-set method can automatically deal with the topological changes of curves
in the evolution process, and a similar boundary model has been proposed in [33]. The
curve evolution termination conditions of the above boundary models all depend on the
edge-detection operator based on image gradient. In fact, for low-contrast targets, the
edge detection operator does not converge to 0, and then the evolution curve can cross
the boundary. Moreover, the edge-detection operator is sensitive to noise, which makes
the evolution curve of the boundary model easy to fall into local extremum, resulting in
redundant contour.
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Compared with the boundary model, the region model defines the energy functional
by using the global region information inside and outside the active contour, and does
not use the edge-detection operator based on image gradient, which is more conducive to
SAR-image shoreline detection. Based on this, this paper uses the region-based geometric
active-contour model to detect the shoreline of SAR images. Assuming that the image is
composed of two homogeneous regions, I is the original image to be segmented, C is the
closed contour, and the energy functional is defined as follows [34]:

E(C, c1, c2) = t1

∫
in(C)

|I(x)− c1|
2
dx + t2

∫
out(C)

|I(x)− c2|
2
dx, x ∈ Ω (3)

where t1 and t2 are constants greater than zero and are used to control the weight of the
internal and external energy of the curve, and c1 and c2 are the average gray values of the
image inside and outside the contour-division area, respectively.

It can be seen that the model combines the global information of the image, and its
energy function is independent of the gradient of the image, so it is suitable for the edge
extraction of the image with smooth boundary and discontinuous boundary. But it is
not suitable for the image whose gray level of target and background is not obvious. In
addition, although the initial position of the evolution curve has little effect on the result of
edge detection, the evolution speed still depends on the initial position of the evolution
curve, and the level-set function must be periodically reinitialized, which increases the
time and computational complexity of edge detection to a certain extent.

3.2.2. Improvement of Geometric Active Contour model

The signed pressure function (SPF) is often used as the edge-stopping function in the
region-based geometric active-contour model [35]:

SPF(I(x)) =
I(x)− c1+c2

2

max
(∣∣∣I(x)− c1+c2

2

∣∣∣) , x ∈ Ω (4)

where I is the original image to be segmented, and c1 and c2 are the average gray values of
the image inside and outside the contour division area, respectively.

Because c1 and c2 are the average gray values of the image inside and outside the
contour division area, the SPF function will not be able to segment the weak boundary
when the contrast of the image is not high. For solving this problem, we replace (c1 + c2)/2
in Equation (4) with a weighted function f LBF in the local binary fitting (LBF) model [36],
and a new SPF function for the image area Ω can be given by:

SPFLBF(I(x)) =
I(x)− f LBF(x)

max(|I(x)− f LBF(x)|) , x ∈ Ω (5)

The weighted function is f LBF(x) = 1
(2π)n/2σn

e−|x|2/2σ2
with parameter σ > 0.

Then the corresponding evolution equation of the level-set function region-based can
be written as:

∂ϕ

∂t
= SPFLBF(I(x)) ·

(
div

( ∇ϕ

|∇ϕ|
)
+ α

)
|∇ϕ|+∇SPFLBF(I(x)) · ∇ϕ, x ∈ Ω (6)

where α is the spherical force controlling the contraction and expansion of the curve, and ϕ
is the level set function.

In this paper, the evolution process of the geometric active-contour model shown in
Figure 2 includes the following steps:
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Step 1: Initialize the level-set function ϕ as a binary function;

ϕ(x, t = 0) =

⎧⎨
⎩

−k x ∈ Ω0 − αΩ0
0 x ∈ αΩ0
k x ∈ Ω − Ω0

(7)

where k is a constant greater than zero, Ω0 is a subset of the image domain Ω, and αΩ0 is
the boundary of the region Ω0.

Step 2: The simplest level-set evolution equation is calculated by combining f LBF and
SPFLBF;

∂ϕ

∂t
= SPFLBF(I(x))α|∇ϕ|, x ∈ Ω (8)

Step 3: If ϕ > 0, set as ϕ = 1; otherwise, set as ϕ = −1;
Step 4: Selective binary and Gaussian filtering regularized level set (SBGFRLS)

method [35,36] is used;
ϕn+1 = G√∇t ∗ ϕn (9)

where ϕn and ϕn+1 are the values of ϕ obtained by the nth and (n + 1)th iterations respec-
tively, and G√∇t is the Gaussian kernel function with variance ∇t.

Step 5: Check whether ϕ converges. If not, return to step 2.

φ

±=φ

n
t

n G φφ ∗= ∇
+

φ

 
Figure 2. Evolution process of geometric active-contour model.

The geometric active-contour model proved in this paper combines the global regional
smooth information as the convergence condition of curve evolution, which can effectively
solve the influence of speckle noise on the segmentation of the land–sea boundary line in
SAR images. The improvement of the symbolic pressure function can solve the problem of
weak shoreline boundary. In addition, the SBGFRLS method can obtain faster convergence
speed in the process of level-set evolution. In this paper, we use simple grid sampling
points to obtain the initial positioning of the shoreline boundary as the initial contour of
curve evolution, which can not only reduce the iterative time of the algorithm, but also
reduce the possibility of boundary leakage caused by fuzzy boundary to a certain extent,
so as to obtain more accurate detection results.
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3.3. Method
3.3.1. Acquisition of Initial Contour

In order to reduce the evolution time of the geometric active-contour model, several
small disks are used as the initial contour of shoreline, as shown in Figure 3. First, a
numerical matrix is used to convolute the preprocessed target image. In the convolution
processed SAR image, the grid sampling points are generated by the grid-sampling point
function [37]. A disk with a radius of 9 pixels is created in the grid, and the image is inflated
by the method of image expansion to achieve the effect of strengthening the shoreline edge.

Figure 3. Initial contour.

3.3.2. Accurate Extraction of Shoreline

The accurate extraction process of shoreline is as follows:
Step 1: The SAR image is read and preprocessed;
Step 2: The SAR image is convoluted to generate grid sampling points and then

several small disks are drawn as the initial contour of the shoreline;
Step 3: The initial contour of shoreline obtained in step 2 is used as the input of the

geometric active-contour model. The improved symbolic pressure function is used as
the boundary stop condition of the geometric active-contour model. The binary level-set
function is quickly initialized by a Gaussian filter, and the shoreline is vectorized. Finally, a
continuous shoreline is obtained.

Figure 4 is the flow chart of this method.

 

Figure 4. Extraction process of shoreline.

4. Results

In this section, the method is compared with the improved Canny operator method [38],
boundary-tracking algorithm [9] and a traditional geometric active-contour model method [7].
At the same time, we label the shoreline manually and define it as follows: Error pixel is
the sum of missed pixel and false detection pixel; correct pixel is the difference between
detection result and false detection pixel; error rate is the ratio of wrong pixel number to
manually labeled pixel number; accuracy is the ratio of correct pixel number to manually
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labeled pixel number. An ideal detection method must have a high accuracy and a low
error rate. Figure 5a shows the original stripmap, select single-polarimetric, HH collected
SAR image around the South China Sea area. The spatial resolution is 6.8 × 7.0 m; the
number of looks is 1. The acquisition mode is fine.

  
(a) (b) 

Figure 5. Synthetic aperture radar (SAR) image: (a) Original SAR image; (b) SAR image after gray
transformation.

The gray contrast of the original SAR image used in this paper is low. In order to
achieve better shoreline extraction, the gray-level transformation method of piecewise linear
transformation is used to adjust the image contrast, and the result is shown in Figure 5b.

In Figure 6, the shoreline is less affected by the external natural conditions, and the
clarity is relatively high. The improved Canny operator method can detect continuous
edge points, but there are many false detection pixels, resulting in a high error rate. The
boundary-tracking algorithm and the traditional geometric-active contour model method
have many false detection pixels and missing pixels, which lead to a high error rate. The
method in this paper has higher accuracy and a lower error rate, and the extraction results
are better. See Table 1 for details.

Table 1. Algorithm extraction performance results.

Improved Canny
Operator Method

Boundary Tracking
Algorithm

Traditional
Geometric Active Contour

Modeling Method
Proposed Method Shoreline Pixels

Extraction result 707 789 906 681

663
False extraction pixel 158 184 311 53

Missing pixels 114 58 68 35
Error rate 0.410 0.365 0.572 0.133
Accuracy 0.828 0.913 0.897 0.947

It can be seen from Table 2 that the improved Canny method has 1693 iterations, and
the operation time is 363.15 s. The boundary-tracking method has 1389 iterations, with the
operation time of 289.63 s, and the traditional GAC model method has 1212 iterations, and
the operation time is 267.98 s. However, due to the use of small disks as the initial contour
of shoreline, the proposed method has 164 iterations and the operation time is 25.92 s.
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(a) (b) 

  
(c) (d) 

Figure 6. Shoreline extraction results: (a) Improved Canny operator method; (b) Boundary-tracking
algorithm; (c) Traditional geometric active-contour modeling method; (d) Proposed method.

Table 2. Comparison of extraction efficiency of algorithm.

Improved Canny Operator
Method

Boundary Tracking
Algorithm

Traditional Geometric Active
Contour Modeling Method

Proposed Method

Number of iterations/times 1693 1389 1212 164
Operation time/second 363.15 289.63 267.98 25.92

In order to further intuitively observe the detection effect, Figure 7 shows the local
enlarged results of shoreline extraction in Figure 6. From the visual point of view, it can
be clearly seen that the shoreline extracted by the improved Canny operator method,
boundary-tracking algorithm and traditional GAC model method has a large extraction er-
ror, while the shoreline extracted from the SAR image by the proposed method is more ideal.
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(a) (b) 

  
(c) (d) 

Figure 7. Local shoreline extraction results: (a) Improved Canny operator method; (b) Boundary-
tracking algorithm; (c) Traditional geometric active-contour modeling method; (d) Proposed method.

5. Validation

In order to further verify the influence of the selection of the SAR image initial contour
on the iteration number and operation times, this section selects small initial contour, large
initial contour and global image as the initial contour of the image, and sets the maximum
iteration number to 6000 times. The specific extraction results are shown in Figures 8–10,
in which Figure 8 is the extraction-effect diagram of small initial contour, Figure 9 is the
extraction-effect diagram of large initial contour, and Figure 10 is the detection result of
global image as initial contour. Among the three extraction result graphs, (a) is the initial
contour of the target image, (b) is the position of the initial contour in the target image,
(c) is the effect map of extracting the shoreline, and (d) is the binary map of the extraction
results of shoreline.
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(a) (b) 

  
(c) (d) 

Figure 8. Small initial contour extraction results: (a) Small initial contour of target image; (b) The position of initial contour
in target image; (c) Shoreline extraction result; (d) Binary map of the extraction results of shoreline.

The details are shown in Table 3. When a small initial contour is selected, the iteration
has not been completed when the iteration reaches 6000 times, but the set maximum
number of iterations has been reached, so the extraction automatically stops. It is further
verified that the size of the initial contour of the SAR image affects the iteration number
and operation time of the model: the larger the initial contour, the fewer the iteration
number and the shorter the operation time. Moreover, the initial contour combined with
the global information of the image has the fewest number of iterations and the shortest
operation time.
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(a) (b) 

  
(c) (d) 

Figure 9. Large initial contour extraction results: (a) Large initial contour of target image; (b) The position of large initial
contour in target image; (c) Shoreline extraction result; (d) Binary map of the extraction results of shoreline.

  
(a) (b) 

Figure 10. Cont.
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(c) (d) 

Figure 10. Extraction results of global image as initial contour: (a) Global initial contour of target image; (b) The position of
global initial contour in target image; (c) Shoreline extraction result; (d) Binary map of the extraction results of shoreline.

Table 3. Comparison of different initial contour extraction results.

Iteration Number/Times Operation Time/Second

Small initial contour 6000 161.23
Large initial contour 1593 58.48

Global initial contour 164 25.92

In order to further remove the redundant blocks from the shoreline, this paper uses the
method of block tracking. The results are shown in Figures 11 and 12, in which Figure 11 is
the comparison chart before and after the block-tracking processing, and Figure 12 is the
partially enlarged comparison map before and after the block-tracking processing.

  
(a) (b) 

Figure 11. Comparison of whole block tracking: (a) Before block tracking (b) After block tracking.
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(a) (b) 

Figure 12. Comparison of partial block tracking: (a) Before block tracking (b) After block tracking.

In order to further verify the proposed method, one more stripmap, select single-
polarimetric, HH collected SAR image is used in the experiment. The administrative
division map and the original SAR image are shown in Figure 13. The spatial resolution is
25.3 × 24.7 m; the number of looks is 1. The acquisition mode is standard. The extraction
result is shown in Figure 14. The traditional geometric active-contour modeling method has
532 iterations, and the operation time is 49.06 s. The proposed method has 219 iterations,
with the operation time of 38.81 s. It shows that the proposed method can reduce the
number of iterations and shorten the iteration time.

 

 

(a) (b) 

Figure 13. SAR image: (a) The administrative division map (b) The original SAR image.

Figure 15 shows the local enlarged results of shoreline extraction. It can be seen that
the shoreline extracted by the proposed method is more continuous and accurate, which
proves the proposed method can effectively solve the weak boundary problem.
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(a) (b) 

Figure 14. Shoreline extraction results: (a) Traditional geometric active-contour modeling method;
(b) Proposed method.

(a) (b) 

Figure 15. Local shoreline extraction results: (a) Traditional geometric active contour modeling
method; (b) Proposed method.

6. Discussion

In order to extract shoreline from a SAR image effectively, an improved GAC model
was proposed. Although the application of the GAC model in SAR-image shoreline
extraction was studied in this paper, much content and many technologies related to this
subject can be further studied and explored. The later research can be carried out from the
following aspects:

1. Although this paper solves the problem of shoreline extraction from SAR images,
there is no theoretical basis for the setting of model parameters. As future studies,
further research could be conducted to automatically set the parameters.

2. In this paper, the GAC model was improved by combining the global region smooth
information as the convergence condition of curve evolution. In order to further
reduce the iteration times and time, it is necessary to determine the initial contour
of shoreline accurately and find a way to eliminate the redundant points in the
detected shoreline.

3. The energy functional design of the model also needs a set of theories as a guide.

7. Conclusions

According to the characteristics of the automatic navigation process of satellite remote-
sensing images, an image edge-extraction algorithm based on the geometric active-contour
model was proposed to detect the land—sea boundary in a SAR image. First, the SAR
image was convoluted and the grid sampling points were generated. Then, several small
disks were drawn in the grid sampling points as the initial contour of the shoreline, which
realized the coarse positioning of the shoreline-, and provided conditions for the reduction
of the iteration times of the subsequent level-set evolution. Then, the improved symbolic
pressure function combined with regional information was used as the boundary stop
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condition of the geometric active-contour model, and the shoreline was extracted accurately.
The experimental results showed that this method reduces the number of iterations and
the execution time, and increases the accuracy.
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Abstract: Satellite synthetic aperture radar (SAR) is a unique tool to collect measurements over
sea surface but the physical interpretation of such data is not always straightforward. Among the
different sea targets of interest, low-backscattering areas are often associated to marine oil pollution
even if several physical phenomena may also result in low-backscattering patches at sea. In this
study, the effects of low-backscattering areas of anthropogenic and natural origin on the azimuth
autocorrelation function (AACF) are analyzed using VV-polarized SAR measurements. Two objective
metrics are introduced to quantify the deviation of the AACF evaluated over low-backscattering
areas with reference to slick-free sea surface. Experiments, undertaken on six Sentinel-1 SAR scenes,
collected in Interferometric Wide Swath VV+VH imaging mode over large low-backscattering areas
of different origin under low-to-moderate wind conditions (speed ≤ 7 m/s), spanning a wide range
of incidence angles (from about 30◦ up to 46◦), demonstrated that the AACF evaluated within
low-backscattering sea areas remarkably deviates from the slick-free sea surface one and the largest
deviation is observed over oil slicks.

Keywords: SAR; sentinel-1; low-backscattering areas; azimuth autocorrelation function

1. Introduction

Continuous and effective monitoring of the oceans is of paramount importance to
improving global marine awareness and the understanding of ocean dynamics, including
man-made target surveillance, pollution monitoring, and the impact on climate change [1].
Satellite Earth observation represents a valuable tool that provides extensive data collection
over the oceans. An important sensor for ocean observation is the synthetic aperture radar
(SAR), an active, band-limited, and coherent microwave imaging sensor that provides day
and night imagery in almost all-weather conditions [2]. The exploitation of SAR imagery
for marine and maritime applications is now well-established [3–6] and has been further
boosted when the European Space Agency (ESA) started providing Sentinel-1 (S1) SAR
satellite measurements free of charge in 2014 [7–10].

The general physical modeling that rules sea surface scattering in SAR imagery ac-
counts for both the sea surface roughness, i.e., the sea surface spectrum, and the sea
permittivity. In the context of marine pollution, low-backscattering areas, whose normal-
ized radar cross section (NRCS) is lower than the surrounding sea one, represent a broad
class of targets of interest since they can be often associated to natural or anthropogenic oil
slicks. Even though low-backscattering sea areas may have different origins, e.g., organic
films, low-wind areas, etc., most analyses on low-backscattering areas have been focused
on oil spill detection and classification [11–17], with important advancements that have
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been recently accomplished by means of proper physical processing of polarimetric SAR
data [18–21].

Low-backscattering areas are due to the damping of the capillary and small gravity
sea waves generated by the local wind and responsible for the measured NRCS, i.e.,
the centimetric Bragg resonant waves, which result in a reduced sea surface roughness.
Accordingly, most of the incident energy is scattered in the specular direction rather than
toward the SAR antenna. This is why low-backscattering sea areas appear as dark patches
in graytones intensity SAR images [22,23]. However, note that the NRCS values depend
on incident wavelength, polarization, and incidence angle [22]. In this paper, a new
approach is proposed to exploit VV-polarized, i.e., vertical transmit/vertical receive, S1
SAR data, collected in interferometric wide (IW) swath mode, to characterize different
kinds of large low-backscattering sea areas of a known origin. The approach, based on
the autocorrelation function evaluated along the azimuth (AACF), relies on the spectral
information inherently carried on by SAR measurements and on the SAR peculiar imaging
mechanism along the azimuth [24]. The experimental analysis, performed under low-to-
moderate wind regime, i.e., wind speed ≤ 7 m/s, and in a broad range of incidence angles
(approximately 30◦–46◦), considers slick-free sea surface as the reference scenario. The
deviation of the AACF evaluated over low-backscattering areas of both an anthropogenic
and natural origin is quantified using two objective metrics, namely the Euclidean distance
and the percentage relative difference. Furthermore, the AACF analysis is compared to
the conventional contrast, i.e., the slick-free sea surface to low-backscattering area NRCS
ratio, and the effect of incidence angle is also discussed. The experimental results show
a pronounced sensitivity of the AACF to low-backscattering sea areas. According to the
metrics, the oil AACF differs from the slick-free sea surface AACF and from other natural
low-backscattering area AACFs. In addition, the Euclidean distance, if compared to the
NRCS contrast, is less dependent on the incidence angle.

The remainder of this paper is organized as follows: The theoretical background is
presented in Section 2, while the dataset is described in Section 3. The experiments are
presented in Section 4, where the results are discussed, while conclusions are drawn in
Section 5.

2. Theoretical Background

2.1. Physical Rationale

The SAR estimates the sea reflectivity by means of two different scanning mechanisms.
The range or across-track direction imaging is done at the speed of light, therefore insensi-
tive to temporal changes of the sea, while the azimuth or along-track direction imaging is
done at satellite velocity, therefore sensitive to temporal changes of the sea [24–26]. The
microwave signal scattered by the sea, under low-to-moderate sea state conditions and in a
broad range of incidence angles, can be well described by two-scale scattering models [27].
The class of two-scale scattering models assumes that the full-range sea surface roughness
spectrum is artificially split into two parts: The larger-scale roughness, mainly associated to
longer surface waves, and the smaller-scale roughness, mainly associated to shorter surface
waves, which are responsible for the Kirchhoff and Bragg scattering, respectively [28]. The
choice of the Klim, i.e., the wavenumber that splits the sea surface spectrum, has been
addressed in several papers and is summarized in [28,29] and references therein.

These two contributions are not independent since, for instance, the non-linear interac-
tion between the capillary (shorter) and gravity (longer) waves is the physical mechanism
that underpins the energy transfer from the wind to the waves [30]. However, to achieve a
good compromise between accuracy, practical implementation, and interpretation, these
two contributions are added incoherently [27]:

σ0
pq = σ0

pq,0 + σ0
pq,1, (1)
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where σ0
pq, σ0

pq,0, and σ0
pq,1 are the total NRCS, the zeroth-order Kirchhoff scattering contri-

bution, and the first-order tilted-Bragg scattering contribution, respectively [28]. In (1), the
subscripts “q” and “p” stand for transmitted and received polarization, respectively. In
the S1 IW SAR imaging mode, the incidence angle is such that the main term contributing
to σ0

pq is the first-order Bragg scattering [28]. The latter, which can be considered as an
average of the untilted Bragg scattering over the larger-scale ripple by the long-waves
structure, broadens the spectrum of the Bragg resonant waves [28]. Hence, according to
the tilted-Bragg model, the microwave signal backscattered to the radar antenna depends
directly on the small-scale ripple (through the small-scale sea surface roughness spectrum)
and, indirectly, on the longer-wave part of the spectrum through the probability density
function of the slopes [28,31,32].

The presence of a surfactant over the sea surface affects both the NRCS and SAR image
spectrum [33]. In fact, it modifies the full-range sea surface spectrum [28], i.e., both the
short- and the longer-wave part of the sea surface spectrum are affected by the surfactant.
The visco-elastic properties of the surfactant have a direct impact on the small-scale part
of the spectrum through a damping coefficient that, in the case of monomolecular surface
films, can be modeled by the Marangoni damping coefficient [34]. In this case, as expected,
the Marangoni damping mainly affects the small-scale part of the sea surface spectrum.
The surfactant, reducing the sea surface roughness, also affects the energy transfer from
the wind to the sea waves. The latter is typically modeled by the friction velocity, with this
phenomenon that is well described by a reduced friction velocity over the surfactant. A
reduced friction velocity has a direct implication on the long-wave part of the sea surface
spectrum by modifying the peak wavenumber and the significant slope [28].

The above-described physical rationale does not explicitly take into account sea
dynamic processes that are of paramount importance when dealing with SAR imaging
of sea surface. The effect of the sea dynamics on SAR images is known as the velocity
bunching phenomenon [35,36] that is related to the azimuth channel. This imaging is
affected by the scene coherence time which, being shorter than the SAR integration time,
makes the SAR imaging act as a non ideal filter along the azimuth direction [25,37].

These dynamics processes, which make SAR images appear blurred in the azimuth
direction [36], are such that the “optimal” focusing depends on the SAR image patch [36]
and it can narrow/broaden according to the sea state [24]. Although all this matter was first
seen as a limit in SAR imaging of the oceans [24], it was later considered as a geophysical
information to be potentially exploited [36]. This phenomenon is known as azimuth
cut-off [38]. In filter theory words, one can say that the azimuth cut-off is a measure of the
actual SAR azimuth spatial resolution [24]. In [35] the azimuth cut-off is explained as being
due to two main contributions. The radial velocity to the radar of the single moving water
particle generates a Doppler shift with respect to a stationary scene and the Doppler shifts
of the elementary scatterers in the SAR resolution cell are not all identical, i.e., the single
elementary Doppler shift is different from the mean Doppler shift of the SAR resolution
cell, producing a “velocity spread” that smears the image of the resolution cell [24,35].

The physical model detailed in [35] shows that the quasi-linear approximation of the
SAR image power spectrum Pql(K) is modeled as a perturbation of the linear SAR image
power spectrum Pl(K) modeled in accordance to the linear imaging theory. Hence, the
quasi-linear SAR image power spectrum Pql(K) can be expressed in function of the linear
SAR image power spectrum Pl(K) as follows [33,35]:

Pql(K) = exp(−Kx
2ξ2)Pl(K), (2)

where the subscript x refers to the azimuth direction and ξ2 is the total variance of the
azimuthal displacements within the SAR integration time.

Equation (2) means that the SAR image spectrum is not able to represent the waves
whose wavelength is less than the so-called azimuth cut-off wavelength λc, which can be
interpreted as a measure of the low-pass filtering, in the wavenumber domain, witnessed by

163



Remote Sens. 2021, 13, 1183

the exponential term. In (2), ξ and consequently λc are related to the sea surface spectrum
as follows [38]:

λc(θ, φ) = π
R(θ)

V

√∫ ∞

0
Ω2S(K)F(K, θ, φ)dK, (3)

where θ is the incidence angle, φ is the wind mean direction relative to the range axis [38],
R/V is the ratio between the slant-range distance and the velocity of SAR platform, S(·) is
the omni-directional sea spectrum and F(·) is the directional sea spectrum. This reasoning
can be exploited over slick-free sea surface, by means of a tailored semi-empirical model
and proper estimation procedure, to determine the wind speed [33,39].

2.2. Methodology

In this study, the large degree of heterogeneity resulting from the low-backscattering
sea class prevents the use of a compact parameter for the spectral analysis as in the case
of wind speed estimation, that relies on λc. Hence, here the analysis is focused on the
AACF that is obtained as the inverse Fourier transform of the power spectral density
(PSD) following a guideline similar to the one proposed in [39] to estimate λc. We expect a
sensitivity of the AACF to the low-backscattering areas. In fact, the theoretical modeling
here outlined shows that the surfactant affects the NRCS and the SAR image spectrum. The
relationship between the slick-covered sea surface spectrum and the SAR image spectrum
is generally complex and to some extent poorly known. Since the friction velocity reduction
affects the dynamic process, it is expected to have an additional impact on the azimuthal
SAR spectrum. Hence, we expect that the AACF evaluated over low-backscattering areas
exhibits deviation from the reference slick-free sea surface one.

In detail, the methodology proposed to process S1 SAR imagery using the AACF can
be summarized as follows, see also the flowchart of Figure 1:

• The VV-polarized uncalibrated intensity image of the SAR scene is divided into non-
overlapped square boxes whose size is n = 128 pixels. This value is set according
to the S1 pixel spacing, i.e., 10 m, in order to ensure both a satisfactory degree of
homogeneity and a consistent number of samples for a reliable AACF estimation;

• For each box, the 2-D PSD is evaluated as the square modulus of the Fourier transform
of the VV-polarized uncalibrated intensity image;

• The 1-D azimuth PSD, PSDx, is evaluated by averaging the PSD along the range
direction;

• The AACF is obtained by applying the inverse Fourier transform:

AACF =
1
n2 IFFT(PSDx), (4)

where PSD = FFT(X), with X is the VV-polarized uncalibrated intensity SAR image;
• A smoothing 7 × 1 median filter is applied to the modulus of the azimuth autocorrela-

tion function (AACF) in order to remove the 0-lag contribution.
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Figure 1. Flowchart of the AACF estimation procedure.

3. Dataset

The Copernicus Earth observation S1 mission consists of two polar-orbiting satellites
equipped with a C-band (5.405 GHz) SAR. The latter supports dual-polarimetric imaging
modes through a single switchable linear polarization transmission (horizontal—H, or
vertical—V) while receiving coherently in a linear orthogonal polarization basis H-V. S1
operates in four different acquisition modes: Stripmap, extra-wide swath, wave mode,
and IW mode. The IW mode is composed by three sub-swaths obtaing using the terrain
observation with progressive scans SAR (TOPSAR) imaging technique. The TOPSAR
technique, together with the electronic steering of the beam, result in a high-quality image
characterized by no scalloping and homogeneity throughout the swath.

In this study, a SAR dataset consisting of 6 C-band S1 VV+VH ground range detected
images collected in IW mode is considered that allows combining a large swath width
(250 km) with a moderate geometric resolution (5 m by 20 m). The swath coverage is
around 250 km, the pixel spacing is 10 m, and the incidence angle θ spans from about 30◦
up to 46◦. Although both co- and cross-polarized channels are available, in this study only
co-polarized S1 imagery is used since the cross-polarized channel is significantly affected
by noise due to the smaller signal-to-noise ratio (SNR) and, in addition, it exhibits a low
sensitivity to low-backscattering areas. All the images are characterized by low-to-moderate
wind conditions, i.e., wind speed between 2 m/s and 7 m/s, therefore representing an
optimal range for studying biogenic surfactants and oil slicks as suggested in [40]. The
wind speeds are provided by space/time co-located ancillary European Centre for Medium-
range Weather Forecasting (ECMWF) information.

The S1 SAR images include low-backscattering areas of a known origin [41–47] related
to both verified oil slicks and other natural phenomena, see Table 1. The corresponding
VV-polarized NRCS images are shown in Figure 2, where a graytones dB scale is used.
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The regions of interest (ROIs) considered for the experimental analysis are highlighted
with dashed boxes that refer to slick-free sea surface (blue and red), oil slick (green), and
look-alike (orange).

The image shown in Figure 2a is acquired on 10 August 2017, off the southern coast
of Kuwait in the Persian Gulf, where a certified oil spill is present [41]. The oil spill is
likely due to an accidental collision between the pipeline laying vessel “DLB 1600” and an
old pipeline on the seafloor. A conservative estimation of the oil-covered area is 131 km2.
Another low-backscattering area, due to very low wind conditions (<3 m/s), is also present.
The incidence angle relevant to both low-backscattering areas is equal to 32◦.

The image shown in Figure 2b was acquired on 8 October 2018, over the northern part
of the Tyrrhenian Sea between Corsica and Tuscany coasts. A 20-km-long oil spill due to
an accidental collision between two cargo ships the day before is present [42,43]. A large
low-backscattering area due to very calm sea state is also present. The incidence angles
over the two ROIs are 33◦ and 41◦, respectively.

The image shown in Figure 2c is acquired on 8 March 2017, off the coast of Fujairah in
the western coast of the United Arab Emirates (Persian Gulf). Multiple oil slicks due to a
seafloor leakage from the jack-up drill rig “Pasargad 100” are present [44]. The polluted sea
area is conservatively estimated to be about 334 km2. The incidence angle over the ROIs
is 35◦.

The image shown in Figure 2d was acquired on 11 March 2017, over the same area of
Figure 2c, during the same oil spill event. Another low-backscattering area due to very low
wind conditions (<3 m/s) is also visible [44]. The incidence angle over the ROIs are 35◦
and 40◦, respectively.

The image shown in Figure 2e was acquired on 20 July 2019, around the Gotland
island in the Baltic Sea between Sweden and Latvia. A diffuse low-backscattering area due
to swirling green algae blooms covers most of the observed sea surface [45]. The incidence
angle measured at mid-range is equal to 38◦.

The image shown in Figure 2f was acquired on 1 April 2018, over the Balikpapan
Bay on the eastern coast of Indonesia. An oil spill due to a 25-m-underwater oil pipeline
damaged the day before is present. The oil-affected area was estimated to be about
130 km2 [46,47]. The incidence angle over the oil slick is 43◦.
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Figure 2. S1 synthetic aperture radar (SAR) dataset: VV-polarized normalized radar cross section
(NRCS) graytones images (in dB scale) that include low-backscattering areas. (a–f) refer to the
SAR scenes labeled as data ID 1–6 in Table 1. The regions of interest (ROIs) that refer to slick-free
sea surface, oil slick, and look-alike are highlighted with blue-, green-, and orange-dashed boxes,
respectively. An extra slick-free sea surface ROI, highlighted with a dashed red box, is also considered
to analyze the intrinsic sea surface variability.
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Table 1. Main features of the S1 SAR dataset.

Data Acquisition
Figure

ROIs Wind
ROIs Reference

ID Date Speed (m/s)

1 10/8/2017 Figure 2a 2–3 Slick-free sea surface, oil slick, look-alike [41]
2 8/10/2018 Figure 2b <3 & 4–6 Slick-free sea surface, oil slick, look-alike [42,43]
3 8/3/2017 Figure 2c 5 Slick-free sea surface, oil slick [44]
4 11/3/2017 Figure 2d <3 Slick-free sea surface, oil slick, look-alike [44]
5 20/7/2019 Figure 2e <3 Slick-free sea surface, look-alike [45]
6 1/4/2018 Figure 2f 6–7 Slick-free sea surface, oil slick [46,47]

4. Experiments

In this section, the sensitivity of the AACF to the low-backscattering areas highlighted
in Figure 2 is analyzed.

4.1. Experimental Settings

The AACF over each ROI is estimated by averaging at least 10 AACFs evaluated
according to the methodology described in Section 2. To allow a fair intercomparison of the
estimated AACFs, they are normalized to their maximum value and the pedestal is set to
zero, as it will be shown in Section 4.2, where the color coding is in accordance to the ROIs
of Figure 2. In all the subsequent experiments, reference is made to slick-free sea surface
ROIs (that will be labeled in blue as “Sea ref”) at almost the same incidence angle of the
low-backscattering areas, see dashed blue boxes in Figure 2. In each SAR image, an extra
slick-free sea surface ROI (that will be labeled in red as “Sea”), see the dashed red boxes of
Figure 2, is also selected to analyze the intrinsic sea surface variability. In the following, we
refer to the slick-free sea surface AACFs as AACFs and to the AACFs estimated within the
low-backscattering areas as AACFlb. In all subsequent SAR image analysis, the average
contrast Δ, i.e., the difference between the slick-free sea surface and the low-backscattering
area NRCS values in dB scale, is evaluated as follows:

Δ(dB) = 10log10(σ
0
VV)s − 10log10(σ

0
VV)lb, (5)

where the subscripts “s” and “lb” stand for slick-free sea surface and low-backscattering
area, respectively.

To quantify the deviation of the AACFlb with respect to the AACFs, the Euclidean
distance, dE, and the percentage relative difference, Drel, are introduced. The Euclidean
distance is defined as:

dE =

√
m

∑
i=1

(lbi − si)2, (6)

where lb and s refer to AACFlb and AACFs, respectively, while i is the index that refers to
the AACF samples of the selected low-backscattering and slick-free sea surface ROIs, each
consisting of m = 1000 pixels. The percentage relative difference is defined as:

Drel(%) =
(dE)lb − (dE)s

(dE)lb
× 100, (7)

where (dE)lb is the Euclidean distance between the low-backscattering ROI and the ref-
erence sea surface one, while (dE)s is the Euclidean distance between the two slick-free
surface ROIs. This metric, as it is defined, is thought to analyze the deviation of the AACF
estimated over low-backscattering areas from the corresponding slick-free sea surface
reference one in order to filter out the intrinsic sea surface variability, i.e., induced by
NRCS variability with respect to the azimuth angle (wind direction relative to the radar’s
azimuth look direction). All the above-mentioned quantitative parameters are listed in
Table 2. Before proceeding further with the AACF analysis, since we are dealing with low-
backscattering areas, a discussion on the effects of additive noise onto the backscattered
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signal is due. When dealing with S1 SAR data, the worst case nominal noise equivalent
sigma zero (NESZ) is −22 dB. Hence, a received signal whose intensity is lower than NESZ
may be uninformative. To perform a more accurate analysis, the SNR is used. The latter
is not evaluated using the provided (worst case) NESZ but is estimated from the data
according to [48,49]:

NESZ =
η

A2 , (8)

where η and A are the noise calibration parameter and the NRCS calibration factor, respec-
tively, which are pixel-dependent parameters provided in the ESA annotated metadata
through a look-up-table. Then, the SNR is evaluated as follows:

SNR (dB) = 10log10(σ
0
VV)− 10log10(NESZ). (9)

4.2. Discussion

The SNR images evaluated over the whole SAR dataset are shown, in dB scale, in
Figure 3, where land is masked in white. The average SNR values evaluated over the ROIs
highlighted in Figure 2 are listed in Table 2.

Considering the reference slick-free sea surface ROIs (dashed blue boxes), the average
SNR is always larger than about 7 dB, witnessing that the signal scattered off slick-free
sea surface lies well above the NESZ along the whole SAR dataset. Considering the low-
backscattering sea areas, i.e., both oil slicks and look-alikes, the average SNR estimated
over the corresponding ROIs significantly varies along the SAR dataset depending on
the damping properties and incidence angle. Oil slicks (dashed green boxes), call for an
average SNR that lies in the range of 1.5 dB–4.2 dB, while the look-alikes (dashed orange
boxes), result in general in lower SNR values falling in the range of 0.5 dB–2.8 dB. Note
that these values can be either lower or larger than the oil slick ones. Hence, for the
purposes of the spectral analysis, it can be concluded that reference slick-free sea surface
samples are noise-free and oil slick samples can be considered to have an average SNR
large enough to not affect significantly the spectral analysis, while look-alike samples are
partly contaminated by noise and, therefore, particular attention must be paid in their
spectral analysis.

The first experiment refers to the SAR image ID 1, see Table 1. The two low-backscattering
ROIs are characterized by a great Δ value, i.e., >6 dB. The corresponding AACFs evaluated
over the four ROIs are plotted in Figure 4a. The qualitative analysis clearly shows that the
two AACFs are narrow, while the two AACFlb are wider. Although both AACFlb show a
distinct behavior with respect to AACFs, the oil-covered one shows the largest broadening
due to the oil damping properties and the reduction of the energy transfer from wind to
the sea waves. It can be also noted that both ROIs call for a large enough average SNR, i.e.,
>1.5 dB. The low-wind ROI, whose SNR exhibits large spatial variability, calls for the largest
average SNR (2.8 dB). The low-backscattering ROIs are characterized by dE values showing
a significant deviation from the reference AACFs, i.e., 3.31 and 1.80 for the oil-covered and
the low-wind ROI, respectively. The intrinsic sea variability, measured by computing the
Euclidean distance dE between the “Sea ref” and “Sea” AACFs, is equal to 0.30, witnessing
a good overlapping of the corresponding AACFs. Note that a similar result is obtained by
randomly changing the position of the two slick-free sea surface ROIs. In conclusion, the dE
values relevant to the low-wind and oil-covered ROIs are about 6 and 11 times greater than
0.30, respectively. The Drel values are 90.9% and 83.3% over the oil-covered and low-wind
ROIs, respectively.
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Figure 3. SNR images, in dB scale, evaluated over the SAR dataset shown in Figure 2. (a–f) refer to
the SAR scenes labeled as data ID 1–6 in Table 1. Land is masked in white.
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Figure 4. AACFs evaluated over the ROIs highlighted in Figure 2. (a–f) refer to the SAR scenes
labeled as data ID 1–6 in Table 1. Note that each AACF is normalized to its maximum value.

The second experiment refers to the SAR image ID 2, see Table 1. The two low-
backscattering ROIs show a great Δ value, i.e., about 5 dB and 7 dB for the oil-covered and
low-wind ROI, respectively. The four AACFs are plotted in Figure 4b. The two AACFlb are
wider than the two AACFs, with the oil AACFlb resulting in the largest broadening. dE is
equal to 0.55 and 0.14 for the oil-covered and the low-wind ROI, respectively. This occurs
even if the oil-covered ROI is characterized by an average SNR significantly larger than
the low-wind ROI (4.2 dB versus 0.7 dB, respectively), witnessing that the broadening is
mainly due to the different spectral properties of the low-backscattering sea areas rather
than to the additive noise. The intrinsic variability of the slick-free sea surface results in
dE = 0.01, witnessing a very small AACFs variability. The dE values relevant to AACFlb
are at least one order of magnitude larger than the ones relevant to AACFs. The Drel
values are 98.2% and 92.9% over the oil-covered and low-wind ROIs, respectively, showing
a remarkable sensitivity of the AACF to the low-backscattering ROIs. In fact, AACFlb
significantly deviates from AACFs.

The third experiment refers to the SAR image ID 3 and 4, see Table 1. The two scenes
refer to the same oil slick observed in two different dates and under different sea state
conditions. The SAR image of Figure 2d also includes a low-wind ROI. Again, all the low-
backscattering ROIs are characterized by a great Δ value, >4 dB. The corresponding AACF

172



Remote Sens. 2021, 13, 1183

evaluated over the considered ROIs are plotted in Figure 4c,d. The AACFs are narrower
than the AACFlb, with the oil AACFlb showing the largest broadening. Even in this case,
the largest broadening of the oil-covered ROI cannot be attributed to the additive noise
since the oil-covered ROI calls for an average SNR which is more than three times larger
than the low-wind one (1.7 dB versus 0.5 dB, respectively). For all the low-backscattering
ROIs, dE values are in the range of 0.38–2.68, always larger than the intrinsic sea variability
that results in dE equal to 0.08 and 0.14 for SAR image ID 3 and 4, respectively. The dE
values relevant to the oil and the low-wind AACFlb are more than one order of magnitude
and just three times larger than the ones relevant to AACFs, respectively. These results
are consistent with the Drel values which are about 94% and 63% for the oil-covered and
low-wind ROIs, respectively.

The fourth experiment refers to the SAR image ID 5, see Table 1. The low-backscattering
ROI shows a significantly great contrast, i.e., Δ about 9 dB. The three AACFs are plotted in
Figure 4e, where it can be noted that AACFs and AACFlb overlap despite the remarkable
contrast. Although it seems that the sensitivity of the AACF to this low-backscattering
area is negligible, this is most likely due to the very low wind conditions that apply over
the whole sea area. As a result, the longer-wave part of the spectrum does not change
significantly from the slick-free sea surface to the low-backscattering ROI. It is interesting
to note that AACFs and AACFlb call for almost the same width even if the average SNR of
the low-backscattering ROI is more than 10 times lower than reference slick-free sea surface
one (0.8 dB versus 8.8 dB, respectively), witnessing that additive noise is not the factor
driving the AACF broadening. However, although AACFs and AACFlb appear overlapped,
they result in dE = 0.14, i.e., twice the intrinsic sea variability (dE = 0.07). The corresponding
Drel value is 50.0% that, even though it is the smallest value among the whole SAR dataset,
still represents a remarkable deviation.

The fifth experiment refers to the SAR image ID 6, see Table 1. Even in this case, the
oil-covered ROI shows a pronounced contrast, i.e., Δ = 7 dB. The three AACFs are plotted
in Figure 4f. The oil AACFlb clearly deviates from the AACFs. This broadening results
in dE = 1.39, 10 times larger than the intrinsic sea variability (dE = 0.14). In this case, the
oil-covered ROI calls for Drel = 89.9%.

The experimental results suggest that the NRCS and the AACF call for a different
sensitivity to the incidence angle. Hence, a deeper investigation is due. The behavior
of Δ and dE with respect to the incidence angle is analyzed with reference to the scene
depicted in Figure 2f. The two metrics are evaluated fixing the oil-covered ROI while
moving the slick-free see surface ROI along the range transect to span the available range of
incidence angles. As suggested in [48,50,51], for the incidence angles of interest (31◦–43◦),
the slick-free sea surface NRCS variability is expected to be large, i.e., about 10 dB, while
the oil NRCS variability is expected to be much smaller. Hence, Δ is expected to vary
significantly with θ. The experimental results are depicted in Figure 5, where a dB scale is
used. One can note, as expected, that Δ significantly varies with the incidence angle. This
variability is practically negligible when dE is considered.
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Figure 5. Behavior of the Δ and dE parameters versus the incidence angle θ evaluated along with the
dashed white range transect highlighted in Figure 2f.

5. Conclusions

In this study, a spectral analysis of low-backscattering sea areas of both anthropogenic
and natural origin was addressed. This is of great interest for the marine pollution commu-
nity. The rationale of the proposed analysis relies on the capability of low-backscattering sea
features, including oil slicks, algal blooms, and low-wind regions, to modify the full-range
sea surface spectrum. Hence, the sensitivity of the SAR image autocorrelation function
evaluated along the azimuth direction, namely AACF, was investigated.

The AACF estimated over low-backscattering areas was analyzed with reference to a
slick-free sea surface AACF. The deviation of the low-backscattering AACF from the slick-
free sea surface one was quantified according to two objective metrics, i.e., the Euclidean
distance dE and the percentage relative difference Drel. A comparison was also made
with respect to the intrinsic sea variability, i.e., the AACF deviation between two different
slick-free sea surface areas.

Experiments, undertaken on 6 S1 VV-polarized SAR images, collected in IW dual-
polarimetric imaging mode, where known oil slicks and low-backscattering sea areas due to
natural phenomena are observed under low-to-moderate wind conditions (2 m/s–7 m/s)
in a broad range of incidence angles (≈30◦–46◦), showed that:

• The AACF is sensitive to different low-backscattering areas, with dE and Drel values
which are at least twice and 50% larger, respectively, than the intrinsic sea surface
variability;

• Among the low-backscattering sea areas, the oil slicks exhibit the largest AACF
deviation with respect to the reference slick-free sea surface, with a maximum of
dE = 3.31 and Drel = 98.2%;

• The additive noise does not play a key role in broadening the AACF;
• The AACF is practically independent on the incidence angle while the backscattering

contrast depends on it.
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Abbreviations

The following abbreviations are used in this manuscript:

AACF azimuth autocorrelation function
ECMWF European centre for medium-range weather forecasting
ESA European space agency
FFT fast Fourier transform
ID identifier
IFFT inverse fast Fourier transform
IW interferometric wide
NESZ noise equivalent sigma zero
NRCS normalized radar cross section
PSD power spectral density
ROI region of interest
S1 Sentinel-1
SAR synthetic aperture radar
SNR signal-to-noise ratio
TOPSAR terrain observation with progressive scans SAR
VH vertical transmit horizontal receive
VV vertical transmit vertical receive
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Abstract: Based on satellite and analysis data and in situ observations acquired during May 23,
2017 to May 19, 2018, the spatiotemporal variations of the along-slope counter-flow off northeastern
Taiwan were investigated. It was observed that the along-slope counter-flow in the subsurface layer
was uplifted and lowered significantly during the study period. The counter-flow was significantly
uplifted (lowered) while the sea surface was during an interval of positive (negative) geostrophic
velocity anomaly (GVA) curl. The vertical migration of the counter-flow was also found closely
linked with the Kuroshio intrusion (KI) to the northeast of Taiwan. The depths of both the upper
boundary and the axis of the counter-flow were found proportional to the KI variance along the
western continental slope off northeastern Taiwan. More importantly, it was established that the
variation of the KI to the northeast of Taiwan had better correlation with the counter-flow than the
Kuroshio derived from altimetry data. Thus, further study of the variation and mechanism of the
along-slope counter-flow is needed to improve the understanding and prediction of the KI in the area
of northeastern Taiwan, as well as the biochemical systems and marine economy in the East China
Sea in the future.

Keywords: ocean modeling; counter-flow; vertical migration; Kuroshio intrusion; marine economy

1. Introduction

The Kuroshio is the strongest western boundary current in the Pacific Ocean, transporting warm,
salty and nutrient-rich water from the seas off eastern Philippines northward to the seas off eastern
Japan [1,2]. The Kuroshio has significant influence on the marginal seas, atmosphere and climate
while traveling northward along the continental shelf west of the Pacific Ocean [3–7]. It is a unique
and significant phenomenon that the Kuroshio current intrudes onto the East China Sea shelf off
northeastern Taiwan [5,8–10]. Recent studies indicate that the seas to the northeast of Taiwan are
the source regions of the Kuroshio branch currents on the East China Sea shelf [11,12], which have
considerable influence on the regional circulation [13–15], chemical hydrography [16,17], and biological
systems [18–20]. Therefore, it is essential to investigate the detailed flow structures and their variations
in the region off northeastern Taiwan. Despite the northward-flowing Kuroshio water, a unique
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along-slope counter-flow exists in the subsurface layer below the depth of 150 m [21,22]. As illustrated
in Figure 1, this counter-flow is directed towards the southwest along the steep continental slope
from the North Mien-Hwa Canyon (NMHC) to the Mien-Hwa Canyon (MHC) [22–24] before flowing
southward into the I-Lan Bay [25].

The southwestward flow was first observed during a hydrographic survey [26] and the existence
of a counter-flow in the subsurface layer was first proposed by Chuang and Wu [27]. The year-round
existence of the counter-flow was later confirmed by further observations [22,23] and numerical
simulations [21,28,29]. Based on multiple historical observations, the counter-flow was initially
considered part of a cyclonic eddy in the subsurface layer off northeastern Taiwan [23,24,30,31],
and the cyclonic eddy was found to be closely related with the upwelling systems off northeastern
Taiwan [25,29–31]. Observational studies have indicated that this counter-flow is a quasi-steady
phenomenon that exhibits considerable seasonal and intraseasonal variations [22–24]. Earlier cruise
observations revealed that the along-slope counter-flow extends to the surface layer above the depth
of 50 m during summer months and descends to depths below 150 m during winter months [23].
In addition, substantial intraseasonal variability has also been reported based on previous in situ
observations [22,23,32,33] and numerical simulations [21].

However, the uplift and lowering of the counter-flow in the subsurface layer remain confusing
and unresolved. Furthermore, flowing along the western continental slope (D1-D2, Figure 1), where
the Kuroshio branches intrude onto the East China Sea shelf [12,34], to the northeast of Taiwan and
showing considerable variation in the extent of its vertical migration, the southwestward counter-flow
should be linked closely with the variation of the Kuroshio intrusion (KI); however, the relationship
between the along-slope counter-flow and the KI off northeastern Taiwan remains unclear. Above all,
it is important that the specifics of the variations of the counter-flow be revealed because this could
help improve the understanding of the local flow structure and KI variances off northeastern Taiwan.

Figure 1. Location of the study area, the bathymetry off northeastern Taiwan, location of the mooring
(25.51◦N, 122.59◦E; acoustic Doppler current profiler (ADCP) marked by yellow star), sections used in
data analysis and a sketch of the horizontal flow pattern below the water depth of 200 m. The gray solid
lines are isobaths of ETOPO1 [35], the blue solid line denotes the 200-m isobath and the red dots (D1
(25.03◦N, 122.03◦E), D2 (25.75◦N, 122.72◦E) and D3 (25.83◦N, 124.10◦E)) indicate segment points along
the 200-m isobath. The red dashed line (NL) and the black dashed line (K) denote sections used in the
data analysis. The panel in the lower-left corner shows the horizontal flow patterns off northeastern
Taiwan in the subsurface layer below the water depth of 200 m. The deep red arrow denotes the
main Kuroshio Current and the magenta arrows denote the counter-flow and the cyclonic eddy in the
subsurface layer. The panel in the upper-left corner shows the location of the study area (red box).
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2. Materials and Methods

2.1. Materials

2.1.1. Study Area

The East China Sea is one of the marginal seas west of the North Pacific Ocean, and seas off
northeast Taiwan located at the southern East China Sea (Figure 1). The bathymetry as well as the flow
structure in this area is complex. The sea water depth in the Okinawa Trough is deeper than 1000 m,
while the sea water depth of the continental shelf is shallower than 200 m. Sea valleys (NMHC and
MHC) are found on the steep continental slope off northeastern Taiwan. The Kuroshio current flows
northward into the study area through the I-Lan ridge, and then collides with the continental slope off
northeastern Taiwan, resulting in the significant Kuroshio water intrusion onto the East China Sea shelf.
Although the Kuroshio waters intrude onto the shelf across the entire slope off northeastern Taiwan,
the Kuroshio branches on the East China sea shelf were usually considered to intrude westward or
northwestward onto the continental shelf mainly through the western continental slope (D1–D2) both
during the summer months [9,12] and during the winter months [9,34].

2.1.2. In Situ Observations

In situ observations were carried out on the continental slope between the MHC and NMHC
(Figure 1), where the angle of the local isobaths is approximately 30◦ from north. An acoustic Doppler
current profiler (ADCP) mooring was deployed at a water depth of about 500.2 m with a standard
deviation of 0.7 m, and first bin depth of 483.5 m from 23 May, 2017 to 19 September, 2017. The ADCP
was again deployed at a water depth of 495.4 m with a standard deviation of 0.6 m and first bin depth
of 478.6 m from 19 September, 2017 to 19 May, 2018; the bathymetry measured by ship at the in situ
measurement sites was 621.0 m. The ADCP provided horizontal velocity records for 62 layers of
the water column in 8 m vertical bins with a 1 h sampling interval. The uppermost six bins were
excluded from the analysis because the data were contaminated by sidelobe reflection. Focusing on
the circulation off northeastern Taiwan, a 36 h low-pass filter was applied to the remaining 56 vertical
bins to remove tidal signals and other high-frequency fluctuations.

2.1.3. Satellite Altimeter Data

The all-satellite merged absolute dynamic topography (ADT), geostrophic velocity (GV), sea
level anomaly (SLA) and geostrophic velocity anomaly (GVA) data from the Archiving, Validation,
and Interpretation of Satellite Oceanographic (AVISO) dataset were used to provide geostrophic
velocities off northeastern Taiwan. The AVISO dataset were derived from 15 altimeter missions: the
TOPEX/Poseidon and Jason series; ERS-1, ERS-2, and ENVISAT; and Geosat Follow-On, Cryosat-2,
Saral/AltiKa, Sentinel-3A, Sentinel-3B, and Haiyang-2A, CFOSAT. The resolution of the AVISO dataset
is sufficient to resolve mesoscale eddy activity and mesoscale patterns off northeastern Taiwan [36] with
1-d temporal resolution and 0.25◦ spatial resolution. The daily satellite altimeter data are available from
the Copernicus Marine Environment Monitoring Service (CMEMS) [37], the version of the datasets
used in this study is “Global Ocean Gridded L4 Sea Surface Heights and Derived Variables Reprocessed
(1993-ongoing)”.

2.1.4. MODIS SST Data

The sea surface temperature (SST) level 3 datasets derived from the Moderate-resolution
Imaging Spectroradiometer (MODIS) [38] observations were used to compare the surface temperature
distribution patterns with the satellite altimeter data in the study. The first MODIS Flight Instrument,
ProtoFlight Model or PFM, is integrated on the Terra (EOS AM-1) spacecraft. Terra successfully
launched on 18 December, 1999. The second MODIS flight instrument, Flight Model 1 or FM1, is
integrated on the Aqua (EOS PM-1) spacecraft; it was successfully launched on 4 May, 2002. These
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MODIS instruments offer an unprecedented look at terrestrial, atmospheric, and ocean phenomenology
for a wide and diverse community of users throughout the world. The weekly (8-d) daytime SST data
with 4 km spatial resolution were used in this study.

2.1.5. The Analysis Data

The realistic ocean analysis datasets generated by the data assimilative global Hybrid Coordinate
Ocean Model (HYCOM) [39] were also used to reveal the spatiotemporal patterns of the counter-flow in
the region to the northeast of Taiwan, the version of the datasets used in this study is “GOFS
3.1 Global Analysis”. The HYCOM data applies the Navy Coupled Ocean Data Assimilation
(NCODA) system, which assimilates available satellite altimeter, sea surface wind stress, sea surface
temperature observations, in situ sea surface temperatures, vertical temperature and salinity profiles
from expendable bathythermographs (XBTs), Argo floats, and moored buoys. The three vertical
diffusion mixing sub-models of the HYCOM are capable of resolving both geostrophic shear and
ageostrophic wind-driven shear in the upper ocean [40]. The daily data are available with 0.08◦
horizontal resolution and 40 vertical z-levels, which are considered suitable for revealing accurate
variation of the counter-flow and providing reliable detailed flow fields. The analysis data were
validated, as shown in Figures 2 and 3.

2.2. Methods

The counter-flow is an along-slope current in the subsurface layer [21,23], and the direction of
the local isobaths is about 30◦ from north (Figure 1). The cross-shelf shoreward direction is 150◦
(0◦ towards east, and 90◦ towards north), and the southwestward direction in Figure 2b,d are 240◦.
The along-isobath southwestward velocities reveals the along-slope counter-flow, and distinguish
it from the surface velocities. To reveal and make quantitative estimation of the vertical migration
of the observed along-slope counter-flow, we applied a formula to calculate the axis depth (Da) of
the counter-flow at the in situ site. The method was also used in the calculation of Kuroshio axis
position [41]. The analysis velocities shallower than the sixth uppermost bin depth of the observation
velocities were also excluded in the calculation.

Da =

∫ zU
zB

vsw(z)·zdz∫ zU
zB

vsw(z)dz
, (1)

where vsw denotes the observed southwestward counter-flow velocity, z denotes water depth, and zU

and zB denote the upper boundary and bottom depth of vsw, respectively.
To make quantitative estimation of the Kuroshio mainstream, the Kuroshio intensity (INT) [41]

derived from the altimeter data along the section K (Figure 1) during the observation period were
calculated as follows.

INT =

∫ xE

xw

vg(x)dx, (2)

where vg denotes the normal geostrophic velocity of section K derived from the satellite altimeter data;
x denotes distance from the western integral limits of section K, the xw and xE. are the western and
eastern integral limits, respectively.

To make quantitative estimation the Kuroshio cross-shelf intrusion off northeastern Taiwan, the
integral KI off northeastern Taiwan derived from the analysis data and integral surface Kuroshio
intrusion (SKI) off northeastern Taiwan derived from the satellite altimeter data were given below.

KI =
∫ Sn

S1

v(s)ds, (3)
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SKI =
∫ xE

xw

vg(x)dx, (4)

where v(s) denotes cross-isobath (200-m isobath) component of horizontal velocity, s denote area of
vertical grid cell from bottom to the surface along the 200-m isobath section; vg indicates the normal
geostrophic velocity of section D1–D2 and section D2–D3 derived from the satellite altimeter data; x
denotes distance from the western integral limits of section D1–D2 and section D2–D3, the xw and xE

are the western and eastern integral limits, respectively.
The least square regression method [42] was applied to review the linear trend of the Kuroshio

Current, the along-slope counter-flow with the Kuroshio intrusion intensity off northeastern Taiwan.

ŷi = a + bxi, (5)

min
∑n

i=1
δi

2 = min
∑

(yi − ŷi)
2, (6)

R =
Cov(x, y)√

var(x)var(y)
, (7)

where the xi is the independent variable and yi is the dependent variable, ŷi is the fitting dependent
variable, and δi is the error or residual. a and b are the linear regression coefficient satisfied the
minimum δi

2. R is the related coefficient. Cov(x, y) is the covariance of variable x and y, and var(x),
var(y) are variance of variable x and y, respectively.

In addition, to reveal the surface cyclonic or anti-cyclonic GVA field variations, the GVA curl at
the in situ site were calculated as follow.

Vgacurl =
∂vgay

∂x
− ∂vgax

∂y
, (8)

where vga indicates the geostrophic velocity anomaly; x and y are the zonal and meridional direction.

3. Results

3.1. Vertical Migration of the Counter-Flow

The one year’s in situ observations confirmed that the depths of the upper boundary and axis
of the counter-flow experienced substantial fluctuations (Figures 2 and 3). The depth of the bottom
of the counter-flow at the in situ observation sites was deeper than the depth of the deployed ADCP
and therefore it could not be determined in this study. The depths of the upper boundary and axis of
the counter-flow rose during the summer months (May–October) and fell during the winter months
(November–April); the transition times were at the end of April and at the end of October (Figure 3).
During the observation period, the mean depth of the upper boundary of the counter-flow was 141.9
(± 84.4) m and the mean depth of the axis was 307.4 (± 51.8) m. Specifically, during May–October 2017,
the mean depths of the upper boundary and axis of the counter-flow were 102.0 (± 70.5) m and 269.6
(± 41.3) m, respectively. During November 2017 to April 2018, the mean depths of the upper boundary
and axis of the counter-flow were 182.3 (± 77.9) m and 339.6 (± 37.4) m, respectively.
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Figure 2. Current velocity distribution as a function of depth and time derived from (a,b) in situ
observations and (c,d) analysis data. Panels a and c represent cross-shelf velocities, where red (blue)
color indicates shoreward (seaward) velocity; panels b and d represent along-shelf velocities, where
red (blue) color indicates northeastward (southwestward) velocity. Black contour denotes 0 m/s.

Figure 3. The power spectrum of the observed (a) counter-flow upper boundary depth, (b) counter-flow
axis depth and (c) geostrophic velocity anomaly (GVA) curl at the in situ site, and time series of
the observed (d) counter-flow upper boundary depth and (e) counter-flow axis depth. A 5-d filter
was applied to the primary data. The red (blue) solid line was derived from in situ observations
(analysis data).
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In addition to the seasonal pattern, the depths of the counter-flow upper boundary and axis also
rose and fell frequently within periods of tens of days (Figure 3); the 5-d smoothed daily time series
showed near periodicity of 10, 15 and 20 d (Figure 3a,b). The near 10-d periodicity could be attributed
to Kuroshio baroclinic instability waves, which are a characteristic of the Kuroshio current in the East
China Sea [43,44]. The signal observed by James [43] in the East China Sea was 11-day, and they also
pointed out that the continental shelf depth and core location attributed as well to their effects on the
“stiffness” of the systems, and the model result reproduced was near 12-d. The near 15-d periodicity
could be attributed to the lunisolar synodic fortnightly component of the tidal signal, which was not
excluded in the 5-d low-pass filtering process. As for the near 20-d periodicity, the same signals were
revealed in the daily GVA curl time series at the in situ site (Figure 3c). Furthermore, intraseasonal
variations of the vertical migration of the counter-flow were also revealed in the GVA curl time series.
The sea surface was during an interval of positive (negative) GVA curl while the counter-flow was
significant uplifted (lowered). For instance, the counter-flow was uplifted significantly during June
2017 during an interval of positive GVA curl (Figures 2 and 4), while the counter-flow was lowered
significantly during July 2017 during an interval of negative GVA curl. There are a total of five intervals
of positive GVA curl and four intervals of negative GVA during the analysis period. Additionally, as
revealed in Figure 4, the counter-flow could also be uplifted during winter months with significant
positive GVA curl in the sea surface. A previous study [21] indicated that the flow field in the seas
northeast of Taiwan fluctuates in a wide range of timescales, for the intraseasonal scale, the local
structure was strongly influenced by the intraseasonal forces, such as westward-propagating mesoscale
eddies east of Taiwan [36,45]. The significant counter-flow uplifted case during the winter months
indicates that the intraseasonal forces imposed on the counter-flow off northeastern Taiwan is also
significant during winter months.

Figure 4. The daily sea level anomaly (SLA) (black lines), GVA curl (blue lines), and depths of the upper
boundary and axis of the counter-flow (red lines). A 9-d low-pass filter was applied to the primary data.
The SLA and GVA curl at the in situ site were derived from satellite altimeter data, and the depths of
the upper boundary and axis of the counter-flow were derived from in situ observations. The SLA
was defined as a deviation from mean sea level for the analysis period, and the seasonal variation
was removed.
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3.2. Horizontal and Vertical Patterns

The horizontal GV field, SST field, GVA field and the vertical velocity field during an uplifted case
and a lowered case are presented in Figures 5 and 6, respectively. During June (July) 2017, a significant
cyclonic (anti-cyclonic) GVA field covered the western continental slope off northeastern Taiwan, and
the SST distribution variations (Figures 5b and 6b) fit with the surface GVA field variations. The vertical
distribution of normal horizontal velocity along section NL (Figures 5d and 6d) indicates that the
surface cyclonic or anti-cyclonic GVA fields near the western slope were dominant in the surface layer
above the thermocline, while the along-slope counter-flow was dominant in the subsurface layer below
the thermocline. Previous studies [46–48] have also highlighted that the positions of cyclonic and
anticyclonic eddies in the surface layer off northeastern Taiwan can shift substantially. The horizontal
distribution of the surface GVA field (Figures 5c and 6c) also helps us to distinguish the surface flow
structures from the along-slope counter-flow in the subsurface layer. The variation and duration
of each of the surface processes over the western continental slope to the northeast of Taiwan were
revealed by the GVA curl, and it was found that the vertical migration of the counter-flow varies with
the surface GVA curl (Figure 4).

 

Figure 5. The horizontal absolute dynamic topography (ADT), geostrophic velocity (GV), sea level
anomaly (SLA), geostrophic velocity anomaly (GVA) and sea surface Temperature (SST) distribution
off northeastern Taiwan and the normal velocity distribution along section NL during an uplift case.
(a) The horizontal ADT (colors) and GV (black arrows) distributions derived from satellite altimeter
data. (b) The horizontal SST (colors) distributions derived from MODIS data, the white contours
denote the 26.5 ◦C isotherm, and the black contours denote the 28 ◦C isotherm. (c) The horizontal
SLA (colors) and GVA (black arrows) distributions derived from satellite altimeter data; the black
line denotes the 200-m isobath, the in situ site is marked by a yellow star and the cyclonic GVA field
center to the northeast of Taiwan is marked by a white ‘+’ symbol. (d) Vertical distribution of normal
velocity (colors) along section NL (Figure 1) derived from the analysis data; the black solid lines denote
isotherms, the black bold solid line denotes the 18 ◦C isotherm, and the purple dashed line denotes the
ADCP mooring site.
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Figure 6. The horizontal absolute dynamic topography (ADT), geostrophic velocity (GV), sea level
anomaly (SLA), geostrophic velocity anomaly (GVA) and sea surface temperature (SST) distribution
off northeastern Taiwan and the normal velocity distribution along section NL during a lowered case.
(a) The horizontal ADT (colors) and GV (black arrows) distributions derived from satellite altimeter
data. (b) The horizontal SST (colors) distributions derived from MODIS data, the white contours
denote the 27.5 ◦C isotherm, and the black contours denote the 29 ◦C isotherm. (c) The horizontal
SLA (colors) and GVA (black arrows) distributions derived from satellite altimeter data; the black line
denotes the 200-m isobath, the in situ site is marked by a yellow star and the anti-cyclonic GVA field
center to the northeast of Taiwan is marked by a white ‘+’ symbol. (d) Vertical distribution of normal
velocity (colors) along section NL (Figure 1) derived from the analysis data; the black solid lines denote
isotherms, the black bold solid line denotes the 18◦C isotherm, and the purple dashed line denotes the
ADCP mooring site.

4. Discussion

The Kuroshio Current transports warm, salty and nutrient-rich waters to the marginal seas west
of the Pacific Ocean [3,16,17,49,50], and marine organisms and species in the seas are substantially
sensitive to temperature, salinity, nitrate and phosphate [18–20,51,52]. Thus, the Kuroshio intrusion
water onto the shelf is important for the biochemical systems and ecological environment in the East
China Sea [50–53]. Previous studies indicate that the Kuroshio intrusion across the continental slope
off northeastern Taiwan is closely related with the upwelling systems and the marine fishery off
northeastern Taiwan [12,30,31,54]. Specifically, the nutrient-rich surface upwelling waters northeast
Taiwan was supplied by the subsurface Kuroshio intrusion waters [55,56]. What is more, the near-shore
Kuroshio branch current (NKBC) intrudes to the inner side of the East China Sea shelf and reaches
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the seas off eastern Zhejiang and Changjiang River estuary [54,57]. The Kuroshio subsurface water
was observed in the upwelling systems off the Changjiang river estuary [54,58]. The off-shore branch
current also transports nutrient-rich waters to the offshore regions in the East China Sea [49]. Both the
phytoplankton, zooplankton and fish diversity in the East China Sea were significantly influenced by
the Kuroshio bottom branches [19,58,59]. In addition, the nutrient supplement of Kuroshio intrusion
waters is not only important for the prediction of the fisheries, but also important for the harmful algal
blooms and red tides in the coastal area of the East China Sea [59,60].

The continental slope to the northeast of Taiwan is the source region of the Kuroshio branch
currents on the continental shelf. Although the Kuroshio water intrude onto the shelf across the entire
slope off northeastern Taiwan, and the cross-shelf intrusion across the eastern slope is also strong
(Figure 7), previous studies indicate that the waters of the Kuroshio branch currents mainly intrude onto
the East China Sea shelf through the western slope (D1-D2, Figure 1) of northeastern Taiwan [9,13,34,61].
Strong westward intrusion velocities were observed all year round in the subsurface layer of the MHC
Chanel (Figure 1) [62,63]. During the winter months, the strong anticyclonic Kuroshio branch current
intrude onto the East China Sea shelf close to the coast of northeastern Taiwan [9,34]. During the
summer months, the surface velocity across the western slope is weak, while, the Kuroshio intrusion
in the subsurface layer is strong [9]. The Kuroshio horizontal velocities in the subsurface layer were
considered to be colliding with the western continental shelf in westward or northwestward direction,
and the interior horizontal velocities

→
uk rotates clockwise with depth following the topography beta

spiral [12,47].
Generally, The KI across the continental slope to the northeast of Taiwan shows significant seasonal

variation [9,64]. The KI volume transport across the western continental slope becomes weak (strong)
during summer (winter) months, although the subsurface Kuroshio intrusion is relatively strong,
whereas the KI across the eastern continental slope becomes strong (weak) during summer (winter)
months (Figure 7). The intraseasonal variation of the KI across the western and eastern continental
slope is also in negative phase (Figure 7). Previous studies [36,65] have indicated that intraseasonal
variation of the KI can be attributed to mesoscale eddies off eastern Taiwan, cyclonic (anticyclonic)
mesoscale eddies off eastern Taiwan induce a strong (weak) KI across the western continental slope to
the northeast of Taiwan, while the Kuroshio Current volume transport east of Taiwan is weakened
(enhanced) [45,66]. Therefore, the KI to the northeast of Taiwan is strongly modulated by the Kuroshio
Current off northeastern Taiwan. The INT time series and the SLA variations east of Taiwan during
the analysis period was shown in Figure 8. The cyclonic mesoscale eddies were found east of Taiwan
during July 2017, last third (LT) of October to LT of November 2017, LT of December 2017 to LT of
February 2018, and LT of April to May 2018, whereas, anti-cyclonic mesoscale eddies east of Taiwan
were found during Juny 2017, August to LT of September 2017, LT of November to LT of December
2017 and LT of February to middle third (MT) of March 2018. The INT time series was in response
to the SLA east of Taiwan during the analysis period, namely, an anti-cyclonic (cyclonic) mesoscale
eddy east of Taiwan induce a PE (NE) of the Kuroshio intensity. However, it worth noting that during
LT of December 2017 to LT of February 2018, the INT revealed a slight increase while a significant
cyclonic mesoscale eddy propagating westward east of Taiwan (Table 1), this is different from the
rules above. Generally, the KI and surface GVA field northeast of Taiwan was in response to the
Kuroshio and mesoscale eddies east of Taiwan, namely, an anti-cyclonic (cyclonic) mesoscale eddy
east of Taiwan induce NE (PE) of KI through the western slope and cyclonic (anti-cyclonic) GVA field
over the western slope northeast of Taiwan. However, it worth noting that there are significant cases
different from this rules. The GVA field variation northeast of Taiwan is more complex, for instance,
during case L2 (U4). The GVA field over the western slope were anti-cyclonic (cyclonic) while an
anti-cyclonic (cyclonic) mesoscale eddy was found east of Taiwan (Table 1). These abnormal cases
indicate that other undetermined seasonal and intraseasonal factors strongly influence the flow field
off northeastern Taiwan.
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Figure 7. The KI across the western continental slope (D1–D2 in Figure 1) and across the eastern
continental slope (D2–D3 in Figure 1). (a) The magnitude of the KI was derived from analysis data and
calculated based on the vertical integral of the volume transport; (b) the magnitude of the SKI was
derived from altimeter data and calculated based on the horizontal integral of the geostrophic velocity.
A 15-d low-pass filter was applied to the primary data.

Figure 8. (a) The Kuroshio intensity (INT) and Kuroshio intensity anomaly through the K section
derived from the altimeter data. The Kuroshio intensity anomaly was defined as a deviation from mean
INT for the analysis period, and the seasonal variation was removed. (b) The ADT was the mean ADT
derived from sea area of 22◦N–24◦N and 122◦E–124◦E east of Taiwan during the analysis period; the
SLA was defined as a deviation from mean ADT for the analysis period, and the seasonal variation was
removed. A 15-d low-pass filter was applied to the primary data.
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It is worth noting that previous observations [22–25], and observations in this study, as well as
the simulations [21] supported the year-round existence of the strong along-slope counter-flow off
northeastern Taiwan below the water depth of 150 m. The counter-flow flows southwestward along
the western continental slope (D1–D2, Figure 1) in the subsurface layer, and more importantly, the
counter-flow is a quasi-steady phenomenon in the subsurface layer that shows significant variation
in its vertical scope. Therefore, it is essential to reveal the relationship between the along-slope
counter-flow and the KI off northeastern Taiwan.

The least square regression method was applied to show the linear regression of the counterflow
depths with the Kuroshio intrusion intensity off northeastern Taiwan (Figures 9 and 10). The related
coefficient R of the standardized INT across section K (Figure 1) with the Western KI (D1–D2) was
–0.643, while the R of the standardized depths of the upper boundary and axis of the counter-flow at
the in situ site with the western KI were –0.750 and –0.791, respectively (Figure 9a). The West SKI
between D1 and D2 derived from altimetry data was also used as validation in Figure 9b. The related
coefficient R of the standardized INT across section K with the SKI was -0.678, respectively, while the R
of the standardized depths of the upper boundary and axis of the counter-flow at the in situ site with
the western SKI were –0.815 and –0.852, respectively (Figure 9b).

The related coefficient R of the standardized INT across section K (Figure 1) with the Eastern KI
was 0.494, while the R of the standardized depths of the upper boundary and axis of the counter-flow at
the in situ site with the East KI were 0.696 and 0.703, respectively (Figure 10a). The East SKI between D2
and D3 derived from altimetry data was also used as validation in Figure 10b. The related coefficient R
of the standardized INT across section K with the East SKI was 0.624, respectively, while the R of the
standardized depths of the upper boundary and axis of the counter-flow at the in situ site with the
East SKI were 0.768 and 0.750, respectively (Figure 10b).

Figure 9. Scatter plots of standardized Kuroshio Intensity (INT), counter-flow upper boundary depth
and counter-flow axis depth with the KI across the western continental slope (D1–D2, Figure 1) The
INT was derived from satellite data along section K (Figure 1). The depths of the upper boundary and
axis of the counter-flow were derived from in situ observations. (a) The West KI was derived from
analysis data; (b) the West SKI was derived from satellite altimeter data. A 15-d low-pass filter was
applied to the primary data. Locations of each section, segment points and in situ measurement sites
are shown in Figure 1.
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Figure 10. Scatter plots of standardized Kuroshio intensity (INT), counter-flow upper boundary depth
and counter-flow axis depth with the KI across the Eastern continental slope (D2–D3, Figure 1). The
INT were derived from satellite data along section K (Figure 1). The depths of the upper boundary
and axis of the counter-flow were derived from in situ observations. (a) The East KI was derived from
analysis data; (b) the East SKI was derived from satellite altimeter data. A 15-d low-pass filter was
applied to the primary data. Locations of each section, segment points and in situ measurement sites
are shown in Figure 1.

The results indicate that the depths of the upper boundary and axis of the counter-flow at the in
situ site were proportional to the variance of the West KI and West SKI (Figure 9). The East KI and
East SKI also showed high linear relation with the counter-flow depths (Figure 10). Moreover, the
variation of the KI to the northeast of Taiwan had better correlation with the counter-flow than the
Kuroshio derived from altimetry data. Although the INT derived from altimetry data exhibited linear
trends with the KI, and the altimeter data are updated regularly on the open platform, the variable is
inadequate for using as a linear index for the KI to the northeast of Taiwan.

The quasi-steady counter-flow is directed southwest along the western continental slope to the
northeast of Taiwan in the subsurface layer and is frequently uplifted and lowered. This study has
found that the vertical migration of the counter-flow was in well response to the local surface GVA
curl, and that the vertical migration of the counter-flow exhibited reasonable linear correlation with
the KI across the western continental slope off northeastern Taiwan, where the Kuroshio branch
currents intrude onto the East China Sea shelf both during the summer and winter months [9,12,34].
Thus, further study of the variation and mechanism of the counter-flow is needed to improve the
understanding of the KI to the northeast of Taiwan, and the counterflow variations would be helpful
for oceanographers to make a better prediction of the KI off northeastern Taiwan, the KI and Kuroshio
branch currents on the East China Sea shelf as well as the fisheries in the seas off northeastern Taiwan,
eastern Zhejiang, and in the East China Sea.

5. Conclusions

Based on one year’s sustained mooring observations, in conjunction with satellite and validated
analysis data, this study revealed the vertical migration characteristics of the along-slope counter-flow
to the northeast of Taiwan. The mean depths of the upper boundary and axis of the counter-flow at the
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in situ site were 141.9 (± 84.4) m and 307.4 (± 51.8) m, respectively. Specifically, during the summer
half year, the counter-flow was uplifted with mean upper boundary depth of 102.0 (± 70.5) m and
mean axis depth of 269.6 (± 41.3) m. During the winter half year, the counter-flow was lowered with
mean upper boundary depth of 182.3 (± 77.9) m and mean axis depth of 339.6 (± 37.4) m. In addition
to the seasonal pattern, the depths of the upper boundary and axis of the counter-flow also rose and
fell frequently over periods of tens of days, e.g., with near 10-d and 20-d periodicity. The 20-d signal
was revealed in the GVA curl time series, more importantly, the intraseasonal variation of the vertical
migration of the counter-flow was also revealed in the sea surface GVA curl time series. There are
five intervals of positive GVA curl and four intervals of negative GVA during the analysis period,
and the counter-flow was significant uplifted during an interval of positive (negative) GVA curl in
the sea surface. The sea surface GVA curl near the western slope well revealed the variations of the
along-slope counter-flow in the subsurface layer. Additionally, the observations in this study also
indicates that the strong intraseasonal forces imposed on the counter-flow can uplift the along-slope
counter-flow to the surface layer during the winter months.

The depths of the upper boundary and axis of the counter-flow were also found closely linked
with the KI off northeastern Taiwan, i.e., as the counter-flow became closer to the sea surface, the
KI across the western continental slope (D1–D2, Figure 1) became weaker. The depths of the upper
boundary and axis of the counter-flow were found to be proportional to the magnitude of the KI across
the western continental slope to the northeast of Taiwan. Moreover, the variation of the KI to the
northeast of Taiwan showed better correlation with the counter-flow than the Kuroshio derived from
altimetry data. Thus, further study of the variation and mechanism of the along-slope counter-flow
is needed to improve the understanding of the KI off northeastern Taiwan, and, a step further, the
prediction of the biochemical systems and marine economy in the East China Sea.
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Abstract: Currently, shore-based HF radars are widely used for coastal observations, and airborne
radars are utilized for monitoring the ocean with a relatively large coverage offshore. In order to
take the advantage of airborne radars, the theoretical mechanism of airborne HF/VHF radar for
ocean surface observation has been studied in this paper. First, we describe the ocean surface wave
height with the linear and nonlinear parts in a reasonable mathematical form and adopt the small
perturbation method (SPM) to compute the HF/VHF radio scattered field induced by the sea surface.
Second, the normalized radar cross section (NRCS) of the ocean surface is derived by tackling the
field scattered from the random sea as a stochastic process. Third, the NRCS is simulated using the
SPM under different sea states, at various radar operating frequencies and incident angles, and then
the influences of these factors on radar sea echoes are investigated. At last, a comparison of NRCS
using the SPM and the generalized function method (GFM) is done and analyzed. The mathematical
model links the sea echoes and the ocean wave height spectrum, and it also offers a theoretical basis
for designing a potential airborne HF/VHF radar for ocean surface remote sensing.

Keywords: airborne HF/VHF radar; sea echo; mathematical model; radar cross section

1. Introduction

The sea echoes of HF or VHF ocean radars contain rich information about the sea surface since
the length of the HF/VHF radio wave is very close to the wave length of gravity wave at the ocean
surface [1]. On the one hand, shore-based HF radars are important components of coastal operational
monitoring systems [2–4]. Many countries have utilized shore-based HF radars to obtain ocean current,
wind and wave fields [5,6]. The maximum detection range of shore-based HF radars can reach 250 km,
with the time resolution ranging from 10 min to 1 h and the spatial resolution varying from 300 m
to 5 km. On the other hand, along with the development of electronic technology, airborne radars have
been widely used for ocean remote sensing [7–9]. The size of radar is becoming smaller, and the cost
of developing airborne radars is lower. In addition, an airborne VHF radar has been developed for
forest remote sensing [10]. All these developments make it possible to design and develop an airborne
HF/VHF radar to monitor the sea surface. The objective of this paper is to investigate the interaction
mechanism of HF/VHF electromagnetic waves scattering from the ocean’s surface, and this should
provide a theoretical basis for designing novel airborne HF/VHF radars for ocean remote sensing.

Many scholars have analyzed the interaction mechanism between HF/VHF electromagnetic
waves and ocean waves for shore-based HF radar. Barrick [11] adopted the small perturbation method
(SPM) to compute the scattered field from the time-varying sea surface and derived the normalized
radar cross section (NRCS) of the sea surface for monostatic HF radar. Subsequently, Johnstone [12]
and Anderson [13] respectively extended Barrick’s work to the configuration of shore-based bistatic
HF radar. For the SPM, Hisaki [14] considered the effect of finite illumination area to derive the NRCS

Remote Sens. 2020, 12, 3755; doi:10.3390/rs12223755 www.mdpi.com/journal/remotesensing197



Remote Sens. 2020, 12, 3755

for shore-based monostatic HF radar. More recently, Hardman et al. [15] also presented the shore-based
bistatic NRCS utilizing the SPM. Besides that, Srivastava and Walsh [16,17] proposed a generalized
function method (GFM) to analyze the scattered field from the sea surface and derived the NRCS for
the shore-based monostatic HF radar. Afterwards, the GFM was also extended to derive the NRCS for
the shore-based bistatic HF radar [18–20]. It is noted that Silva et al. [21] modified the usual way of the
GFM and derived a more general NRCS of the sea surface with arbitrary sea states.

For airborne HF/VHF radar, Bernhardt et al. [22,23] proposed the concept of HF Ground-Ionosphere-
Ocean-Space (GIOS), and conducted experiments to observe the sea surface. Anderson [24] proposed
the airborne passive HF radar which can be used to monitor the sea. Later, Chen et al. [25,26]
theoretically analyzed the sea echoes of the shore-to-air bistatic HF radar. Meanwhile, Voronovich
and Zavorotny [27] proved the possibility of extracting the wave height spectrum using airborne
HF/VHF radars.

However, the theoretical study on the airborne HF/VHF radar is still in an initial stage.
Voronovich and Zavorotny [27] analyzed the first-order interaction between HF/VHF radio waves and
ocean waves, but they omitted the second-order information which is much more complicated than the
first-order interaction and crucial for investigating the interaction mechanism between the HF/VHF
radio waves and ocean surface waves. This paper analyzes the first- and second-order interactions
which occur in the scattering of HF/VHF electromagnetic waves from the sea surface. First, a big
square area of the sea surface is considered as the scattering patch. Taking into account the randomness
of the sea surface, the ocean surface wave height is represented as the superposition of linear and
nonlinear wave heights. Next, the SPM is employed to derive the scattered field from the sea surface.
Then we obtain the NRCS of the sea surface for airborne HF/VHF radars. Finally, the theoretical
NRCS of the sea surface is simulated with various parameters, such as sea states and radar operating
frequencies.

This paper is organized as follows. Section 2 gives the description of the calculation of the
scattered field. In Section 3, the NRCS of the sea surface is derived. Section 4 consists of the simulation
of the NRCS and the analysis of the simulated sea echoes. Discussion and conclusions are presented in
Sections 5 and 6, respectively.

2. Description of the Scattering Problem

2.1. The Review of the Description of Wave Heights

As shown in Figure 1, the geometry of the scattering patch is established using a three-dimensional
Cartesian coordinate system, and the center of the scattering patch is set as the origin. The scattering
patch is assumed to be a square area with a very large side length of L. The x axis is assumed as
the projection direction of radar beam at the sea surface and the y axis is at the sea surface and
perpendicular to the x axis. The z axis is vertical to the sea surface.

Then the sea surface wave height z = f (x, y, t) can be expressed by Fourier series as:

z = f (x, y, t) = f (1)(x, y, t) + f (2)(x, y, t), (1)

f (1)(x, y, t) = ∑
m,n,l

p1(m, n, l)eiamx+iany−iwlt, (2)

f (2)(x, y, t) = ∑
m,n,l

p2(m, n, l)eiamx+iany−iwlt, (3)

where m, n and l are integers between −∞ and +∞, a = 2π/L and w = 2π/T; t denotes time; T is the
temporal period of the Fourier expansion; f (1)(x, y, t) and f (2)(x, y, t) are Fourier series which denote
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linear and nonlinear wave heights [28], respectively; the superscripts 1 and 2 denote the first-order
and second-order terms in the perturbational analysis, respectively; p1(m, n, l) and p2(m, n, l) are the
Fourier coefficients of the linear and nonlinear wave heights, respectively.

Figure 1. The geometry of the scattering patch. The square scattering patch is represented by the
parallelogram whose sides are navy blue straight lines. The radar is located in the far zone of the
scattering patch (R0 � L). Backscattering is considered, i.e., θi = θs. Here the x-z plane is perpendicular
to the sea surface and contains the center of the scattering patch and the point of the radar position. �ki

and �ks represent the wave vectors of the incident and scattered fields, respectively.

When perturbational analysis is utilized to solve the hydrodynamic equations, it is found that
p2(m, n, l) can be expressed using p1(m, n, l) [28]:

p2(m, n, l) = ∑
m′ ,n′ ,l′

Γ(�k′′, ω′′,�k′, ω′)p1(m′, n′, l′)p1(m − m′, n − n′, l − l′), (4)

(�k′′, ω′′) = (am′, an′, wl′), (5)

(�k′, ω′) = (am − am′, an − an′, wl − wl′), (6)

where m′, n′ and l′ are integers between −∞ and +∞; g is the gravitational acceleration; �k′′ and �k′
represent two ocean wave vectors; ω′′ and ω′ are the angular frequencies corresponding to �k′′ and �k′,
respectively. If �k′′ = −�k′ and ω′′ = −ω′, Γ(�k′′, ω′′,�k′, ω′) = 0; otherwise

Γ(�k′′, ω′′,�k′, ω′) = 1
2

[
|�k′′|+ |�k′|+ ω′′

0 ω′
0

g
(1 −

�k′′ · �k′
|�k′′||�k′| )

g|�k′′ + �k′|+ (ω′′
0 + ω′

0)
2

g|�k′′ + �k′| − (ω′′
0 + ω′

0)
2

]
, (7)

where |�k′′| and |�k′| are the lengths of �k′′ and �k′, respectively. The angular frequencies ω′′
0 = ±

√
g|�k′′|

and ω′
0 = ±

√
g|�k′| are given by the dispersion relationship of the gravity waves in deep water.
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2.2. Statistical Characteristics of the Scattering Patch

According to [29], the Fourier coefficient p1(m, n, l) of linear wave height can be considered as a
Gaussian random variable so that (1)–(3) can represent a real random sea surface. The mean of the
random variable p1(m, n, l) is zero:

< p1(m, n, l) >= 0, (8)

where < · · · > denotes a statistical ensemble average. p2(m, n, l) is also a random variable, because
p2(m, n, l) is determined by random variable p1(m, n, l).

The linear wave height f (1)(x, y, t) can be regarded as a stationary random process, so the power
spectral density of the linear wave height is calculated as:

W(p, q, ω) =
1

π3

∫∫∫ +∞

−∞
< f (1)(x1, y1, t1) f (1)∗(x2, y2, t2) > e−ipτx−iqτy−iωτ dτx dτy dτ, (9)

where τx = x1 − x2, τy = y1 − y2, τ = t2 − t1 and f (1)∗(x2, y2, t2) means the complex conjugation
of f (1)(x2, y2, t2). W(p, q, ω) is called the spatial-temporal spectrum of ocean waves. p and q denote
the components of a ocean wave vector�k along the x axis and y axis, respectively. ω is the angular
frequency corresponding to�k. After calculation, the relationship between W(p, q, ω) and p1(m, n, l) is

W(p, q, ω) =
L2T
π3 < p1(m, n, l), p∗1(m, n, l) >, (10)

where (�k, ω) = (p, q, ω) = (am, an, wl). The spatial-temporal spectrum W(p, q, ω) also can be
expressed as

W(�k, ω) = 4S(�k)δ(ω −
√

g|�k|) + 4S(−�k)δ(ω +

√
g|�k|), (11)

where δ(·) is the Dirac delta function, and S(�k) is the directional wavenumber spectrum.

2.3. The Incident and Scattered Fields Near the Sea Surface

Now we assume the incident field arriving at the scattering patch is vertically polarized with an
incidence angle of θi. The wave vector �ki = (k0 sin θi, 0,−k0 cos θi) of the incident electromagtic wave
is shown in Figure 1. Then the incident plane wave near the scattering patch, �Ei, can be expressed as:

�Ei = E0(cos θi x̂ + sin θi ẑ)eik0 sin θi x−ik0 cos θiz−iωct = Ei
xx̂ + Ei

yŷ + Ei
zẑ, (12)

where E0 is the magnitude of the electric field intensity of the incident field; ωc and k0 are the angular
frequency and wavenumber corresponding to the radio frequency fc in the free space, respectively; x̂,
ŷ and ẑ are unit vectors along each coordinate axis; Ei

x, Ei
y and Ei

z are the components of �Ei along the x,
y and z axes, respectively.

In (1)–(3), the whole sea surface has been treated as a periodic repetition of the scattering patch.
In this way, the scattered field near the scattering patch can be derived using the SPM, which is a
classical way to calculate the scattered field generated by periodic rough surface.

The slightly rough sea surface within the scattering patch can be divided into two parts: one
is the planar part of the surface, and the other is the rough part of the surface. Consequently, the
scattered field near the scattering patch contains two parts: the field induced by the planar surface,
�Esp = Esp

x x̂ + Esp
y ŷ + Esp

z ẑ, and the field caused by the rough surface, �Esr = Esr
x x̂ + Esr

y ŷ + Esr
z ẑ.

With the assumption that the sea water is an ideal conductor and the incident field is a plane wave at a
frequency of fc, the total electric field intensity, �Et = Et

xx̂ + Et
yŷ + Et

zẑ, near the scattering patch, can be
expressed as:
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�Et = �Ei + �Esp + �Esr. (13)

The scattered field induced by the planar part is

�Esp = E0(− cos θi x̂ + sin θi ẑ)eik0 sin θi x+ik0 cos θiz−iωct. (14)

The components Esr
x , Esr

y and Esr
z of the scattered field induced by the rough part are expressed as

Fourier series: ⎧⎪⎪⎨
⎪⎪⎩

Esr
x = ∑m,n,l A(m, n, l)E(m, n, l),

Esr
y = ∑m,n,l B(m, n, l)E(m, n, l),

Esr
z = ∑m,n,l C(m, n, l)E(m, n, l),

(15)

where A(m, n, l), B(m, n, l) and C(m, n, l) are unkown Fourier coefficients. E(m, n, l) is assumed as:

E(m, n, l) = E0eiamx+iany+ib(m,n)z−i(wl+ωc)t, (16)

and b(m, n) is defined as

b(m, n) =

⎧⎨
⎩
√

k2
0 − a2m2 − a2n2, if m2 + n2 < k2

0/a2

i
√

a2m2 + a2n2 − k2
0, if m2 + n2 > k2

0/a2
. (17)

The coefficients A(m, n, l), B(m, n, l) and C(m, n, l) can be derived by expanding boundary conditions
in perturbation parameter or smallness [30]. Here f (1)(x, y, t) and f (2)(x, y, t) are selected as the first-
and second-order smallness, respectively.

Two boundary conditions must be satisfied. First, the tangential component of the total electric
field intensity is zero at the interface between the sea water and the air, because the sea water is perfectly
conducting. Second, the divergence of the total electric field intensity is zero, because the zone above
the sea surface is sourceless. Then substituting the components Et

x, Et
y and Et

z of the total electric field
into these two boundary conditions gives the first- and second-order solutions of A(m, n, l), B(m, n, l)
and C(m, n, l). The results are presented in (18)–(25) where av = sin θi with an integer v is assumed
to facilitate the calculation. A(1)(m, n, l), B(1)(m, n, l) and C(1)(m, n, l) are the first-order solutions.
A(2)(m, n, l), B(2)(m, n, l) and C(2)(m, n, l) are the second-order solutions. Substituting these Fourier
coefficients into Esr

x , Esr
y and Esr

z , the total electric field near the sea surface can be obtained.
Referring to Barrick’s work [31], the first- and second-order terms of the scattered field are caused

by the first- and second-order Bragg scattering, respectively.

⎧⎪⎪⎨
⎪⎪⎩

A(m, n, l) = A(1)(m, n, l) + A(2)(m, n, l)

B(m, n, l) = B(1)(m, n, l) + B(2)(m, n, l)

C(m, n, l) = C(1)(m, n, l) + C(2)(m, n, l)

(18)

A(1)(m, n, l) = 2i(k0 − am sin θi)p1(m − v, n, l) (19)

B(1)(m, n, l) = −2ian sin θi p1(m − v, n, l) (20)

C(1)(m, n, l) =
1

b(m, n)
2i
[
−k0a(m − v)− b2(m, n) sin θi

]
p1(m − v, n, l) (21)
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A(2)(m, n, l) = 2i(k0 − am sin θi)p2(m − v, n, l)+

∑
m′ ,n′ ,l′

2
[
(k0 − am sin θi)b2(m′, n′) + k0(am − am′)(av − am′)

]
Q(m, n, l, m′, n′, l′) (22)

B(2)(m, n, l) = −2ian sin θi p2(m − v, n, l)+

∑
m′ ,n′ ,l′

2
[
k0(an − an′)(av − am′)− an sin θib2(m′, n′)

]
Q(m, n, l, m′, n′, l′) (23)

C(2)(m, n, l) =
1

b(m, n)
2i
[
−k0a(m − v)− b2(m, n) sin θi

]
p2(m − v, n, l)+

1
b(m, n) ∑

m′ ,n′ ,l′
2
{[

a2(m2 + n2) sin θi − amk0

]
b2(m′, n′)

}
Q(m, n, l, m′, n′, l′)+

1
b(m, n) ∑

m′ ,n′ ,l′
2
{

a3k0(m′ − v)(m2 + n2 − mm′ − nn′)
}

Q(m, n, l, m′, n′, l′)

(24)

Q(m, n, l, m′, n′, l′) = p1(m′ − v, n′, l′)p1(m − m′, n − n′, l − l′)
b(m′, n′) (25)

2.4. The Scattered Field Far from the Scattering Patch

For airborne HF radars, the antennas are located in the far zone of the scattering patch. As shown
in Figure 1, the far zone means that the distance R0 between the radar antenna and the center of the
scattering patch is much longer than the side length L of the scattering patch.

Here the Stratton–Chu integral is employed to calculate the scattered field in the far zone of the
scattering patch [12,32]. For monostatic configuration, substituting the scattered field from the rough
part of the scattering patch into the Stratton–Chu integral gives (26), which represents the scattered
field �H f (R0, t) at the receive antenna.

�H f (R0, r) =
ieik0R0

4πR0

∫ L/2

−L/2

∫ L/2

−L/2
{�ks × (n̂ × �Hsr)− k0

√
ε0

μ0
(n̂ × �Esr)

+

√
ε0

μ0
�ks · (n̂ × �Esr)

�ks

k0
}e−i�ks ·�r dx dy

(26)

In (26), �Hsr denotes the magnetic field corresponding to �Esr; �ks = (−k0 sin θi, 0, k0 cos θi) is the
wave vector of the scatterd field; the square area {(x, y, z)| − L/2 ≤ x ≤ L/2,−L/2 ≤ y ≤ L/2, z = 0}
is the integration interval of the Stratton–Chu integral; n̂ = ẑ is the unit normal vector of the
integration plane;�r = (x, y, z) is the vector pointing from the center of the scattering patch to any point
in the integration area; ε0 and μ0 are the electrical and magnetic permittivity of free space, respectively.
For backscattering, the angle of reflection θs is identical to the angle of incidence θi, i.e., θi = θs.
As mentioned in [14,15], when L is very big, i.e., L → +∞ is assumed, the integration interval of the
Stratton–Chu integral can also be set as {(x, y, z)| − L/2 ≤ x ≤ L/2,−L/2 ≤ y ≤ L/2, z = f (x, y, t)}.
The results of the NRCS are the same for these two cases of the integration interval.

As shown in Figure 1, the antenna locates at the point (R0, θs = θi, φs = π) in the spherical
coordinate system. The vertical polarization is considered herein. Thus the vertically polarized component
of �H f (R0, t) is the component of �H f (R0, t) along the direction φs = π in the spherical coordinate system:

H f
φs
(R0, t) = �H f (R0, t) · (−ŷ) = ∑

m,n,l
{ζ(m, n, l)

sin[(am + k0 sin θi)L/2] sin(anL/2)
(am + k0 sin θi)an

}, (27)
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ζ(m, n, l) =
ieik0R0

πR0
E0

√
ε0

μ0
{[cos θib(m, n) + k0] A(m, n, l)− am cos θiC(m, n, l)}e−i(wl+ωc)t. (28)

3. The NRCS of the Scattering Patch for Backscattering

3.1. The Power Spectral Density of the Scattered Field

The normalized power spectral density of the vertically polarized component H f
φs
(R0, t) of the

scattered field at the receive antenna can be calculated as follows:

1. Obtain the time autocorrelation function R(τ). The time autocorrelation function of H f
φs
(R0, t) is

defined as

R(τ) =< H f
φs
(R0, t1)H f ∗

φs
(R0, t2) >, (29)

where τ = t2 − t1.
2. Estimate the power spectral density. Take the Fourier transform of R(τ) and estimate the power

density spectrum R(ω′′):

R(ω′′) = 1
π

∫
R(τ)e−iω′′τ dτ. (30)

3. Calculate the normalized power spectral density. The normalized power density spectrum σ(ω′′)
is derived by:

σ(ω′′) = R(ω′′) · 4πR2
0

L2H2
0

, (31)

where H0 = E0
√

ε0/μ0 is the magnitude of the magnetic field intensity corresponding to the
magnitude of the electric field intensity of the incident field. σ(ω′′) is also called the NRCS of
the sea surface. The normalization is applied to derive the range-independent NRCS at the sea
surface area.

For an airborne HF/VHF radar, σ(ω′′) is a function of the incidence angle θi. For that ωd = ω′′ −
ωc is the Doppler frequency, σ(ω′′) is rewritten as σ(ωd, θi) which is given in (32)–(34). The definitions
of the coefficients and vectors in (32)–(34) are given in (35)–(41). Here the velocity of airplane is
assumed to be constant within the coherent integration time and has been left out.

σ(ωd, θi) = σ(1)(ωd, θi) + σ(2)(ωd, θi), (32)

σ(1)(ωd, θi) = 24πk4
0(1 + sin2 θi)

2 ∑
m1=±1

S(−2m1 sin θi�k0)δ(ωd − m1ωB), (33)

σ(2)(ωd, θi) = 24πk4
0 ∑

m1,m2=±1

∫∫ ∣∣∣(1 + sin2 θi)ΓH + ΓEM

∣∣∣2 S(m1�k1)

S(m2�k2)δ(ωd − m1
√

gk1 − m2
√

gk2) dpdq,

(34)

�k0 = (k0, 0), (35)

ωB =
√

2gk0 sin θi, (36)
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�k1 = (p − k0 sin θi, q), (37)

�k2 = (−k0 sin θi − p,−q), (38)

�k1 + �k2 = −2 sin θi�k0, (39)

ΓEM =

⎡
⎣−(�k1 · x̂)(�k2 · x̂) + (1 + sin2 θi)[k2

0 cos2 θi + �k1 · �k2]√
k2

0 cos2 θi + �k1 · �k2 − k0Δ

⎤
⎦ , (40)

Γ(�k, ω,�k′, ω′)
ω′′

0 +ω′
0=ωd−→

�k′′=�k1,�k′=�k2

ΓH =
1
2

[
|�k1|+ |�k2|+ m1m2

√
|�k1||�k2|(1 −

�k1 · �k2

|�k1||�k2|
)

2gk0sinθi + ω2
d

2gk0sinθi − ω2
d

]
. (41)

Both the first- and second-order scattered fields are considered; therefore, σ(ωd, θi) consists of
two parts: σ(1)(ωd, θi) and σ(2)(ωd, θi), which are called the first- and second-order NRCS of the sea
surface, respectively. σ(1)(ωd, θi) comes from the first-order component of �Esr, i.e., A(1)(m, n, l),
B(1)(m, n, l) and C(1)(m, n, l), which are directly proportional to the p1(m − v, n, l). Hence, the
first-order NRCS σ(1)(ωd, θi) is only caused by the first-order Bragg scattering. Similarly, σ(2)(ωd, θi)

comes from the second-order components of �Esr, i.e., A(2)(m, n, l), B(2)(m, n, l) and C(2)(m, n, l),
which include p2(m − v, n, l) and Q(m, n, l, m′, n′, l′). The Γ(�k′′, ω′′,�k′, ω′) in p2(m − v, n, l) (given
in (7)) becomes the hydrodynamic coupling coefficient ΓH which is given in (41). According to
Barrick’s definitions [31], ΓEM (given in (40)) is called the electromagnetic coupling coefficient which
comes from the second-order scattered field composed of Q(m, n, l, m′, n′, l′). It can be seen that both
p2(m − v, n, l) and Q(m, n, l, m′, n′, l′) are the products of p1(m′, n′, l′) and p1(m − m′, n − n′, l − l′).
Thus the second-order NRCS σ(2)(ωd, θi) is a result of the second-order Bragg scattering.

There is a singularity in the denominator of ΓEM when k2
0 cos2 θi + �k1 · �k2 becomes zero. The

assumption that the sea water is perfectly conducting causes the singularity. A term, −k0Δ, is added
in the denominator of ΓEM to eliminate this singularity [12,33]. Δ is the normalized surface impedance
which is a complex constant, i.e., Δ = 0.011 − i(0.012). The added term −k0Δ means the small energy
loss of HF electromagnetic waves traveling along the actual sea surface which is good at conducting
rather than perfectly conducting.

3.2. The Effectiveness of the NRCS

The NRCS of the sea surface has been derived using the SPM. Accordingly, the approximation
made in the perturbational analysis must satisfy the condition:

k0h cos θi � 0.5 and k0h sin θi � 0.5, (42)

where h is the root mean square (RMS) wave height of the sea surface, k0 is the wavenumber of the
incident plane wave at a frequency of fc and θi is the incident angle [28,34]. To ensure the correctness
of the results from the perturbational analysis, a more rigorous condition is adopted in this work:

k0h cos θi ≤ 0.2 and k0h sin θi ≤ 0.2. (43)

Considering that hs = 4h (hs is significant wave height), the NRCS σ(ωd, θi) is effective only if the
following inequality is satisfied:

G( fc) ≤ 0.8, (44)
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where G( fc) is defined as:

G( fc) =

{
k0hs cos θi, if 20◦ ≤ θi ≤ 45◦

k0hs sin θi, if 45◦ < θi ≤ 90◦
. (45)

The scattered field induced by the rough part of the sea surface is taken into consideration herein.
As a result, the NRCS σ(ωd, θi) is effective only when the angle of incidence θi satisfies 20◦ ≤ θi ≤ 90◦

where the intensity of the scattered field from the plane part of the sea surface is much smaller than the
intensity of the scattered field from the rough part of the sea surface [31]. Figure 2 shows the effective
region of the NRCS σ(ωd, θi) in the fc − hs plane with different θi values.

(a) θi = 25◦ (b) θi = 45◦

(c) θi = 60◦ (d) θi = 90◦

Figure 2. The effective region of the NRCS σ(ωd, θi). In (a) θi = 25◦, (b) θi = 45◦, (c) θi = 60◦ and (d)
θi = 90◦, the area filled with dark blue is the effective region for each case.

4. The Simulation and Analysis of the Sea Echo

The interpretation of the NRCS of the sea surface is crucial to analyze the sea echoes. The NRCS of
the sea surface, σ(ωd, θi), is interpreted as the theoretical prediction of the sea-echo Doppler spectrum.
Consequently, the simulations of σ(1)(ωd, θi) and σ(2)(ωd, θi) are treated as the first- and second-order
sea-echo Doppler spectra, respectively.

It can be found from the Formulas (32)–(34) that the directional wavenumber spectrum S(�k) is
included in the theoretical sea-echo Doppler spectrum σ(ωd, θi). S(�k) is the product of a non-directional

205



Remote Sens. 2020, 12, 3755

wave spectrum S(k) and a directional distribution function g(α). It is assumed that only wind waves
exist and they are fully developed. The Pierson–Moskowitz spectrum [35] and the cardioid distribution
model [33] are assumed:

S(�k) = S(k)g(α), (46)

S(k) =
4.05 × 10−3

k4 e−0.74( g
kU2 )

2
, (47)

g(α) =
cos4( α−α′

2 )∫ π
−π cos4( α

2 ) dα
, (48)

where U is the wind speed at 19.5 m above the sea surface and α′ is the dominant wave direction
which is the same with wind direction for wind-wave sea state. The relationship between U and hs is:

hs = 4
√∫∫

S(�k) d�k = 0.2
U2

g
. (49)

It can be seen that the theoretically predicted sea-echo Doppler spectrum σ(ωd, θi) is influenced
by four factors: the dominant wave direction α′, the incident angle θi, the radar frequency fc and the
sea state hs. Here we investigate the effects of the latter three factors on σ(ωd, θi). For simplification,
a normalized Doppler frequency is defined as η = ωd/ωB in the simulation. It is easy to prove that
when θi = 90◦, the theoretical sea-echo Doppler spectrum σ(ωd, θi) is reduced to the classical NRCS
for shore-based HF radar.

4.1. Sea Echoes at Different Radar Frequencies and Sea States

When α′ = 90◦, different values of fc, θi and hs are selected to simulate the Doppler spectrum.
The simulated results for θi = 30◦, 45◦, 55◦ and 70◦ are given in Figures 3–6, respectively. Each
sub-figure in Figures 3–6 corresponds to a combination of θi and hs and shows the Doppler spectrum at
six radar frequencies, i.e., fc = 3, 9, 15, 30, 45 and 55 MHz. The first-order sea-echo Doppler spectrum
σ(1)(ωd, θi) is represented by the two peaks at η = ±1, and the continuous curves around these two
peaks are the second-order sea-echo Doppler spectra σ(2)(ωd, θi).

First, as shown in Figure 3, the symmetry characteristics of the simulated results (when α′ = 90◦

and θi �= 90◦) are the same as the simulated sea-echo Doppler spectra for shore-based HF radar (when
α′ = 90◦ and θi = 90◦) [33].

Second, it is noted that the first-order sea-echo Doppler spectrum seems a constant for each θi when
the radar works in a higher frequency band, e.g., fc ≥ 15 MHz. It can be found from Figures 3a, 4a, 5a
and 6a that the energy of the first-order peak is relatively smaller when radar frequency is low and sea
state is calm, e.g., fc = 3 MHz and hs = 0.7 m. The reason for this is that the energy of ocean waves
which cause the first-order Bragg scattering does not vary dramatically when fc is high and hs is large.

Finally, it can be seen from Figure 3a–d that the second-order spectrum increases in magnitude
when fc increases. However, when the values of fc and hs do not meet the condition given in (44), the
second-order spectrum is even higher than the first-order peaks. As mentioned in [33], in this case, the
theoretical Doppler spectrum predicted by the SPM is not accurate.
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(a) σ(ωd, θi = 30◦), hs = 0.7 m (b) σ(ωd, θi = 30◦), hs = 2.9 m

(c) σ(ωd, θi = 30◦), hs = 6.6 m (d) σ(ωd, θi = 30◦), hs = 11.7 m

Figure 3. The Doppler spectra for θi = 30◦ with different fc and hs. (a) σ(ωd, θi = 30◦), hs = 0.7 m;
(b) σ(ωd, θi = 30◦), hs = 2.9 m; (c) σ(ωd, θi = 30◦), hs = 6.6 m; and (d) σ(ωd, θi = 30◦), hs = 11.7 m.
For each pair of θi and hs, six radar frequencies were selected to simulate the spectra. The six values of
fc were 3, 9, 15, 30, 45 and 55 MHz. The dominant wave direction α′ is 90◦.

(a) σ(ωd, θi = 45◦), hs = 0.7 m (b) σ(ωd, θi = 45◦), hs = 2.9 m

(c) σ(ωd, θi = 45◦), hs = 6.6 m (d) σ(ωd, θi = 45◦), hs = 11.7 m

Figure 4. The Doppler spectra for θi = 45◦ with different fc and hs. (a) σ(ωd, θi = 45◦), hs = 0.7 m;
(b) σ(ωd, θi = 45◦), hs = 2.9 m; (c) σ(ωd, θi = 45◦), hs = 6.6 m; and (d) σ(ωd, θi = 45◦), hs = 11.7 m.
For each pair of θi and hs, six radar frequencies were selected to simulate the spectra. The six values of
fc were 3, 9, 15, 30, 45 and 55 MHz. The dominant wave direction α′ is 90◦.

207



Remote Sens. 2020, 12, 3755

(a) σ(ωd, θi = 55◦), hs = 0.7 m (b) σ(ωd, θi = 55◦), hs = 2.9 m

(c) σ(ωd, θi = 55◦), hs = 6.6 m (d) σ(ωd, θi = 55◦), hs = 11.7 m

Figure 5. The Doppler spectra for θi = 55◦ with different fc and hs. (a) σ(ωd, θi = 55◦), hs = 0.7 m;
(b) σ(ωd, θi = 55◦), hs = 2.9 m; (c) σ(ωd, θi = 55◦), hs = 6.6 m; and (d) σ(ωd, θi = 55◦), hs = 11.7 m.
For each pair of θi and hs, six radar frequencies were selected to simulate the spectra. The six values of
fc were 3, 9, 15, 30, 45 and 55 MHz. The dominant wave direction α′ is 90◦.

(a) σ(ωd, θi = 70◦), hs = 0.7 m (b) σ(ωd, θi = 70◦), hs = 2.9 m

(c) σ(ωd, θi = 70◦), hs = 6.6 m (d) σ(ωd, θi = 70◦), hs = 11.7 m

Figure 6. The Doppler spectra for θi = 70◦ with different fc and hs. (a) σ(ωd, θi = 70◦), hs = 0.7 m;
(b) σ(ωd, θi = 70◦), hs = 2.9 m; (c) σ(ωd, θi = 70◦), hs = 6.6 m; and (d) σ(ωd, θi = 70◦), hs = 11.7 m.
For each pair of θi and hs, six radar frequencies were selected to simulate the spectra. The six values of
fc were 3, 9, 15, 30, 45 and 55 MHz. The dominant wave direction α′ is 90◦.
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4.2. Sea Echoes for Different Incidence Angles

Comparing Figures 3a, 4a, 5a and 6a, it can be found that the first-order spectrum σ(1)(ωd, θi),
which is represented by the two highest peaks in the spectra, varies with θi. To make it clear, the values
of σ

(1)
0 = 1

2

∫ ∞
−∞ σ(1)(ωd, θi) dωd against incident angles are shown in Figure 7a, and it shows that the

radar-received energy caused by the first-order Bragg scattering drops from −11 dB to −23 dB when
θi increases from 20◦ to 90◦.

As shown in Figure 7b, this descending trend also exists in the second-order Doppler spectra for
different θi. For |η| < 1, the values of second-order spectra decrease nearly 10 dB when θi varies from
25◦ to 90◦. In contrast, for |η| > 1, the magnitude of the second-order spectrum decreases even more
than 10 dB. Figure 7c demonstrates the value of σ

(2)
0 = 1

2

∫ ∞
−∞ σ(2)(ωd, θi) dωd against θi, and it clearly

shows the decrease in the radar-received energy caused by the second-order Bragg scattering.

(a) The value of σ
(1)
0

against θi.

(b) The second-order
Doppler spectra for
different values of θi

(c) The value of σ
(2)
0

against θi

Figure 7. (a) The values of σ
(1)
0 for 20◦ ≤ θi ≤ 90◦. (b) The second-order Doppler spectra σ(2)(ωd, θi)

for several incident angles θi, i.e., θi = 25◦, 45◦, 70◦ and 90◦. (c) The values of σ
(1)
0 for 20◦ ≤ θi ≤ 90◦.

hs = 2.03 m, α′ = 90◦ and fc = 9.4 MHz are assumed for (a), (b) and (c).

However, this descending trend is not significant for the near-grazing case, i.e., for 70◦ ≤ θi ≤ 90◦.
The value of σ

(1)
0 drops less than 1 dB when θi changes from 70◦ to 90◦. The second-order Doppler

spectrum for θi = 70◦ is nearly identical to that for θi = 90◦. Consequently, the values of σ
(2)
0 for

θi = 70◦ and 90◦ are nearly equal. There are two reasons for this phenomenon. One reason is that the
values of the functions sin θi and cos θi vary slightly with θi changing from 70◦ to 90◦, which causes
a small variation in the length of the vector −2 sin θi�k0. The other one is that the ocean waves which
cause the second-order Bragg scattering contain nearly equal energy for 70◦ ≤ θi ≤ 90◦.

4.3. Sea Echoes for Different Sea States

In Section 4.1, it has been clearly seen that the first-order Doppler spectra do not vary as the sea
state becomes higher. Here it is necessary to investigate the variation of the second-order spectrum
when sea state is higher. As shown in Figure 8, the Doppler spectra under three different sea states
(hs = 1.3 m, 2.92 m and 4.56 m) for different angles of incidence (θi = 25◦, 55◦ and 90◦) were simulated
while α′ = 45◦ and fc = 8 MHz. It is obvious that the energy of the second-order Doppler spectrum
becomes stronger along with the higher sea state.
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(a) θi = 25◦ (b) θi = 55◦ (c) θi = 90◦

Figure 8. The Doppler spectra for different values of hs and θi. (a) θi = 25◦. (b) θi = 55◦. (c) θi = 90◦.
α′ = 45◦ and fc = 8 MHz. The Doppler spectra were simulated for three distinct values of hs, i.e.,
hs = 1.3 m, 2.92 m and 4.56 m. These three values of hs correspond to U = 8 m/s, 12 m/s and 15 m/s,
respectively.

4.4. Comparison between SPM and GFM

For the case of shore-based monostatic HF radar, both the SPM [31] and GFM [16] have been
utilized to derive the NRCS of the sea surface. For a comparison between these two methods, it is
convenient to simulate the sea echoes derived by the two methods. Under the same condition as
Figure 5 in [36], we simulated the model which was derived by using the SPM. The simulated result is
shown in Figure 9.

Figure 9. The simulated Doppler spectrum for monostatic radar (θi = 90◦). In order to compare the
simulated result with Figure 5 in [36], U = 15 m/s, fc = 25 MHz and α′ = 120◦ were assumed.

It is seen that the Doppler spectra simulated by the two methods are similar in shape. Each result
shows that the positive first-order peak is nearly 10 dB larger than the negative one. However the
amplitudes of these two spectra are not equal. As mentioned in [36], these two methods are different
although they have the same form. The significant difference is that the NRCS based on the GFM is
affected by the range resolution of the radar while the NRCS derived using the SPM is not based on
this parameter.
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The above comparison shows a typical example of the NRCSs simulated using the GFM and
the SPM. However, a recent work [21] seems to indicate that the derivation of the NRCS using the
GFM has a wider application range in terms of approximation restrictions. The derivation of the NRCS
using the SPM is on the basis of three assumptions: first, the sea water is a good conductor; second, the
slope of ocean surface wave height is much smaller than 1; third, the product of the significant wave
height and the radio wavenumber is small. The results in Figures 3–8 were obtained based on those
conditions. Additionally, HF radar NRCS simulated using the SPM has been validated using real data
for more than 50 years. In contrast, it is possible to remove the significant wave height restriction using
the GFM as shown in [21]. In that work, the NRCS with arbitrary roughness scales has been obtained,
but it has not been compared with real Doppler spectrum.

5. Discussion

Four factors, radar frequency fc, the angle of incidence θi, the significant wave height hs and the
dominant wave direction α′, which influence the shape and the magnitude of the sea-echo Doppler
spectrum, have been investigated.

First, it was found that the first- and second-order spectra increase when radar frequency becomes
higher. However, the Doppler spectrum becomes saturated when radar frequency is too high to
meet the effective condition of the SPM. From the radar equation, we know that SNRo ∝ Ptσ0/Lp,
where SNRo is the signal to noise ratio at the output of the radar receiver, Pt is the transmitted power
of radar, σ0 = 1

2

∫ +∞
−∞ σ(ωd, θ) dωd and Lp represents the propagation loss of radio waves. If radar

frequency increases, both the Lp and σ0 vary. Thus, it is much better to combine the σ0 (derived in this
paper) with a suitable Lp (which is not the focus of our work) to select radar frequency for designing
an airborne HF/VHF radar for ocean remote sensing.

Second, the variation that occurs in the sea-echo Doppler spectrum when θi changes attracts
our attention. It can be known from Figure 7a,c that σ0 increases nearly 10 dB with θi changing from
90◦ to 20◦ (σ0 = σ

(1)
0 + σ

(2)
0 ). The σ0 becomes large when the incident angle becomes small, and

Lp is smaller when radio waves propagate in the air than when they propagate along the air–sea
surface. Consequently, considering the same SNRo for the airborne HF/VHF radar and the shore-based
HF radar, Pt could be much smaller for airborne HF/VHF radars. It is convenient to design a relatively
compact and low-power airborne HF/VHF radar.

Third, the energy of the sea echo increases when the sea state becomes higher, which is similar to
the case of shore-based HF radar.

Finally, since the NRCS connects the sea echoes and the waveheight spectrum, it is possible to
retrieve wave parameters from radar sea echoes by inversing the NRCS. In addition, sea surface current
may also be extracted from the first-order echoes by determining the Doppler shift induced by current.
The difference between θi �= 90◦ and θi = 90◦ for current inversion is shown in Figure 10. If airborne
and shore-based HF radars are located at the positions as the red points in the picture, the current
velocity measured by the shore-based HF radar is �Vx, whereas the current measured by the airborne
radar is �V′ which is a component of �Vx.

6. Conclusions

In this paper, the sea surface wave height has been expressed as the superposition of two
Fourier series which represent linear and nonlinear wave heights. Then the SPM was adopted to
get the scattered field from the sea surface. The scattered field has been calculated by taking into
account both the first- and second-order Bragg scatterings between the sea surface waves and the
electromagnetic waves. At last, theoretical models of the first- and second-order sea-echo Doppler
spectra for the airborne HF/VHF radars have been derived. Besides that, the effectiveness region of
the theoretical sea-echo Doppler spectrum σ(ωd, θi) was given.

There are continuous second-order spectra σ(2)(ωd, θi = 90◦) around the first-order Bragg peaks
σ(1)(ωd, θi = 90◦) in the sea-echo Doppler spectra of the shore-based HF radar, and the continuous
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spectra have been used for wave parameter inversion in practice. Thus, the second-order terms in
the SPM are not neglected in order to get the theoretical second-order sea-echo Doppler spectrum for
the airborne HF/VHF radar. Both the first- and second-order spectra were simulated under different
environment conditions to give a brief demonstration of the sea echo is received by radar. In addition,
the results of the simulated sea echoes may provide a basic guide for designing an airborne HF/VHF
radar to monitor the sea state in the future.

Figure 10. The difference between θi �= 90◦ and θi = 90◦ for current inversion. A current with velocity
vector �V exists at the origin O. The airborne and shore-based HF radars are located at (−L, 0, H) and
(−L, 0, 0), respectively.
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The following abbreviations are used in this manuscript:

HF high frequency
VHF very high frequency
NRCS normalized radar cross section
SPM small perturbation method
GFM generalized function method
GIOS Ground-Ionosphere-Ocean-Space
RMS root mean square
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