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Cancer is a complex disease involving multiple mechanisms and critical players,
at broad genomic, transcriptional, translational and/or biochemical levels. One could
envision discovering new biomarkers for early detection by understanding the behavior
of cancer development and progression, but to date, there are few biomarkers approved
for use in the clinical setting. Therefore, there is a critical need to improve strategies and
methods by using novel state-of-the-art tools and strategies to identify and validate newer
biomarkers. In addition to biomarkers, there is also a demand for effective methods to
identify new targets to inhibit tumor growth. Technically, there is a growing requirement
to find new targets using personalized approaches in a targeted and much more effective
manner, as existing drugs often become resistant over time in cancer patients. Opportunities
to improve this strategy would, therefore, be to find better druggable targets and provide
options for drug combinations and/or drug repurposing. More importantly, the ultimate
goal of an oncologist and the desire of the cancer patient is to improve overall survival and
this could be achieved in part through better prognostic models. Cancer systems biology
has undoubtedly emerged as an integrative tool to achieve such advances.

This Special Issue on “recent developments in cancer systems biology” has compiled
several novel approaches that use cutting-edge technologies to build a strong foundation
of systems biology in cancer research. The issue includes eight original research articles
and four literature reviews on recent efforts that use a variety of in silico tools along
with experimental approaches to discover novel biomarker candidates for diagnosis and
prognosis and to identify drugs and their targets for treatments that could be used in
thirteen cancers and their subtypes.

Several “omics” investigations, including genomics, proteomics, metabolomics, gly-
comics and metagenomics, provide potential candidate biomarkers that can be measured
in plasma, tissue and saliva in several lethal cancer types including Pancreatic Cancer [1].
Integrative analysis of these “omics” data would likely discover novel biomarkers for
diagnosis and prognosis as well as targets for effective therapy. Moreover, distinguishing
clinically similar cancers can be challenging and focusing on genomic and transcriptomic
variations may prove beneficial, this issue describes details on various methods available
for ovarian and breast cancers [2] and types of lung cancer [3,4] and renal cell carcinoma [5]
for identifying key genes and pathways that might assist in proposing diagnostic and
prognostic predictions. In addition, integrating multi-omics is important particularly in
the use of patient-derived experimental models [6] that can be used in the clinical setting
to provide personalized treatment options. Another genome-level advancement that sur-
passes next-generation sequencing is the identification of somatic structural variants (SVs)
that influence functional and cancer-related genes [7]. This optical genome mapping and
SVs analysis can be applied to a variety of solid tumors for better cancer prognosis and
treatment.

Discovering new targets in cancers provide opportunities especially for recurrences
since the drug resistance is proving to be challenging to treat. Several drug targets have
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been identified using transcriptomics and biological networks in different cancer types
including miR-1246 targeting several genes [4] and Sestrin-2 [8] in lung adenocarcinomas,
ELK1 [9] and ETS [10] genes in glioma. Additionally, drug repurposing strategies are not
only extensively used to discover new uses for already approved drugs, but also provide
opportunities for potentially treatment of drug resistance in various cancers. In another
article [11], drug repurposing efforts were reviewed in triple-negative breast cancer, an
aggressive breast cancer subtype that has a high rate of recurrence and metastasis. These
authors compared different repurposing strategies, including structure-based, transcription
signature-based, biological network-based and data mining-based drug repositioning. In
another study, seven distinct gene programs representing different biological processes
involved in drug-induced changes in AML were identified [12]. Furthermore, a data-driven
dynamic model of acquired resistance to combined drugs was constructed by these authors
and revealed several interventions that can specifically disrupt portions of the system-wide
drug response, which could allow co-targeting and lead to synergistic treatments that can
overcome resistance and prevent potential recurrence.

In conclusion, all of the articles published in this Special Issue cover recent devel-
opments with attractive approaches to a wide range of topics encompassing the Cancer
Systems Biology. These articles and reviews propose a variety of biomarkers for clinical
diagnosis, prognosis and therapeutic strategies including “drug repurposing“ for various
cancers that pose a major health challenge with significant socioeconomic consequences.
We would like to make an appeal to researchers around the world to join forces and
contribute to the development of a common platform for personalized medicine using
a combination of the different biomarkers proposed in this Special Issue in a diagnostic
and/or prognostic setting, allowing the identification of patients at risk, which would
facilitate the early initiation of personalized treatments. This Special Issue also highlights
the various predictive models and the use of integrated biological network analysis to
identify target genes and correlate them with prognosis. It is of utmost importance that all
predictive models must undergo extensive validation.
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Abstract: FLT3-mutant acute myeloid leukemia (AML) is an aggressive form of leukemia with

poor prognosis. Treatment with FLT3 inhibitors frequently produces a clinical response, but the

disease nevertheless often recurs. Recent studies have revealed system-wide gene expression changes

in FLT3-mutant AML cell lines in response to drug treatment. Here we sought a systems-level

understanding of how these cells mediate these drug-induced changes. Using RNAseq data from

AML cells with an internal tandem duplication FLT3 mutation (FLT3-ITD) under six drug treatment

conditions including quizartinib and dexamethasone, we identified seven distinct gene programs

representing diverse biological processes involved in AML drug-induced changes. Based on the

literature knowledge about genes from these modules, along with public gene regulatory network

databases, we constructed a network of FLT3-ITD AML. Applying the BooleaBayes algorithm to this

network and the RNAseq data, we created a probabilistic, data-driven dynamical model of acquired

resistance to these drugs. Analysis of this model reveals several interventions that may disrupt

targeted parts of the system-wide drug response. We anticipate co-targeting these points may result

in synergistic treatments that can overcome resistance and prevent eventual recurrence.

Keywords: acute myeloid leukemia; Boolean model; drug resistance; network

1. Introduction

Acute myeloid leukemia (AML), characterized by the pathological accumulation of
myeloblast cells in blood or bone marrow, is a heterogeneous and aggressive form of
leukemia. About 30% of AML cases carry a mutation in the FLT3 gene, which encodes
a receptor critical for normal hematopoiesis [1]. By far the most common mutation is an
internal tandem duplication (FLT3-ITD), which occurs in about 25% of all AML cases [1], a
mutation placing patients in a poor prognosis category [2]. Highly specific FLT3 inhibitors
are therapeutically promising [1,2], though the disease often recurs.

Recent experimental results have suggested that while FLT3-inhibition can kill FLT3-
ITD cells, some cells survive and become drug tolerant persisters (DTPs) [3,4]. Targeting
the therapeutic vulnerabilities of drug-tolerant FLT3 mutant AML cells can enhance the
anti-leukemic efficacy of FLT3 inhibitors to eliminate minimal residual disease, mutational
drug resistance and relapse. The mechanisms underlying this phenotypic change are not
fully understood. A recent study found that DTPs exhibit the upregulation of inflammation
pathways, and combination treatment with quizartinib (a FLT3 inhibitor) and dexametha-
sone (a glucocorticoid that reduces inflammation) was synergistic [4]. This is an example
of reprogramming therapy, in which the phenotypes or gene expression patterns induced
by one drug are countered by another simultaneous intervention.

The idea of reprogramming cancer cells into drug-sensitive states [5–9] or even
non-malignant states [10,11] has become increasingly promising. Reprogramming drug-
sensitivity follows from the hypothesis that drug treatment induces reversible, system-wide
gene expression and epigenetic changes, causing cells to achieve a resistant or tolerant
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subtype [12,13]. Targeting these changes and reverting them may then reprogram the cells.
With this view, we seek to gain a systems-level understanding of the gene expression and
phenotypic changes of FLT3-ITD AML cells in response to drug treatment with quizartinib
and dexamethasone, and their evolution into DTPs.

To this end, we identified several modules of co-expressed genes that correspond
to different treatment conditions with quizartinib, dexamethasone, or their combination.
Based on genes within these modules, we built a network model of FLT3-ITD AML drug
response. Using data-driven tools, we derived a probabilistic, dynamical gene regula-
tory model that recapitulates the expression changes of AML cells following these drug
treatments and can be used to predict the effects of perturbations and interventions in the
cells. We focused on identifying interventions that downregulate modules associated with
drug resistance, and upregulate modules associated with cell death. The interventions
we identified represent promising strategies to improve response to FLT3 inhibitors in
FLT3-ITD AML.

2. Materials and Methods
2.1. Data Acquisition and Processing

RNAseq data of MV4-11 cells were collected by M. Gebru, as described in [4], and
previously made publicly available on GEO (GSE116432). Data consisted of triplicate
measurements, each of (1) 10 nM quizartinib treatment for 48 h, (2) 10 nM quizartinib
treatment for five days, (3) 100 nM dexamethasone treatment for 48 h, (4) combination
10 nM quizartinib + 100 nM dexamethasone for 48 h (we refer to this combination as
Quiz + Dex), (5) Quiz + Dex for five days (quizartinib for five days and dexamethasone
added on day 3 because the combination for 5 days would kill almost all cells), and (6)
DMSO (GEO: GSE116432). Data were transformed as log(1 + FPKM). Only transcripts with
a matched HGNC symbol were kept.

2.2. Weighted Gene Co-Expression Network Analysis

We used v1.69 of the WGCNA package in R v4.0.2. We used the pckSoftThresold
function with a “signed” network type to identify power = 10 as the smallest power that
achieved a scale-free R2 value >= 0.9 (Figure S1). We built a topological overlap matrix using
a signed adjacency matrix obtained from power = 10. Genes were hierarchically clustered
using the “average” method, and genes were assigned to co-expression modules using
WGCNA’s cutreeDynamic function with deepSplit = 2, pamRespectsDendro = FALSE,
and minClusterSize = 100. This analysis resulted in seven modules of co-expressed genes
(Figure 1A and Figure S1). Following WGCNA convention, the modules are denoted by
color: turquoise (7219 genes), blue, yellow, brown, green, black (164 genes).
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Figure 1. Differentially expressed modules respond differently to different treatment conditions. (A) WGCNA identified
seven gene co-expression modules from the DMSO and drug treated FLT3-ITD AML expression dataset, six of which are
differentially expressed across the six different treatment conditions. (B) Heatmap showing module eigengene expression
for each module in each sample. High module eigengene expression reflects high average expression of genes within
that module. (C) Qualitative model showing the effect of each drug on the expression of genes within each module.
Arrow-tipped edges indicate activation, while circle-tipped edges indicate repression. The dotted edge from quizartinib
to the black module reflects the observation that black module genes are upregulated at 48 h by quizartinib, but become
downregulated again by five days of treatment. The dotted edge from quizartinib to the green module reflects that the
green module is not upregulated after 48 h, but is after 5 days.

2.3. Molecular Biology of the Cell (MBCO) Ontology Analysis

MBCO analysis was completed using the source code from https://github.com/
SBCNY/Molecular-Biology-of-the-Cell/commit/9ff6c87 (accessed on 15 March 2020). The
background gene set consisted of all genes from the RNAseq dataset, and ontology analysis
was performed independently for each WGCNA gene module. Enrichment results are
given in Figures S2–S8 and File S2.

2.4. Network Construction

To build the network, we integrated interactions from multiple databases that aggre-
gated literature-based or predicted interactions, SIGNOR [14], TRRUST [15], and RegNet-
work [16], as well as published networks related to AML [14,17], NFKappaB signaling [17],
NOTCH signaling [18], tumor promoting inflammation [19,20], and apoptosis [20].

Many of these network resources have minor variations in gene names or use dif-
ferent aliases for different genes. We applied two methods to transform gene names
from different sources into a common space so that all interactions with a given gene
may be identified, even if the different sources use different names for that gene. First,
we considered that many sources use different capitalization, or interchangeably use “.”,
“-”, or “_” characters. To address this, we capitalized all characters in each gene name,
and removed all “.”, “-”, and “_” characters. Second, to match gene aliases across dif-
ferent network sources, we used three separate gene name alias data sources, including
Entrez Homo_sapiens gene info (https://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/
Mammalia/Homo_sapiens.gene_info.gz (accessed on 25 October 2020)), BioMart from
Ensemble (https://useast.ensembl.org/biomart (accessed on 25 October 2020)), and HGNC
(https://www.genenames.org/ (accessed on 25 October 2020)). Each source includes mul-
tiple aliases for each gene name. We constructed a gene name alias graph whose nodes
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represent gene names, and in which each edge represents that two nodes are aliases for the
same gene from one of those resources. Within this alias graph, if there exists a path from
one node to another, it indicates they refer to the same gene.

There were several properties we wanted the final AML network topology to have,
and the strategy we used to build the network was refined until we reached a network
that satisfied these properties. First, we wanted the network to be large enough to capture
enough regulatory details (e.g., more than about four nodes per module, or about 30 nodes
total), but not too large to be able to model or simulate well (e.g., fewer than about
200 nodes). Second, we wanted all seven gene co-expression modules to be similarly
represented, even though some modules are much larger than others (turquoise and
blue have thousands of genes each but green and black only have a few hundred genes
each). Third, we wanted the in-degree of nodes to not be too large (e.g., more than about
7 incoming edges). This is because a Boolean regulatory function with N inputs has
2N possible input conditions for which an output value must be specified. When inferring
Boolean functions of 7 or more variables using the BooleaBayes algorithm, the probability
that any given sample constrains a given input condition becomes extremely small, and
the resulting Boolean function becomes nearly completely stochastic.

The process we used to build the final network is shown in Figure S9. First, we merged
all the network sources (e.g., SIGNOR) into a single large network, wherein nodes that were
aliases of one another from different sources were merged into a single node. This network
contained 8614 nodes and 35,710 edges. Of the nodes, 2374 had non-zero out-degrees and
represented a gene from the RNAseq dataset. We then extracted subgraphs consisting of
only genes from the brown, red, green, yellow, and black modules. We focused on these
first as they are smaller modules than blue and turquoise, and we wanted to include as
many of these nodes as possible to ensure they are well represented in the final network.
We merged these five subgraphs together, which resulted in a disconnected graph. This
graph contained only two components with five or more nodes, one of which consisted
of 18 green nodes, the other consisted of 53 brown nodes. We hypothesized that nodes
from the red, yellow, or black modules may be connected into these components through
paths (successions of edges) containing nodes not in the brown, red, green, yellow, or black
modules. For example, no blue or turquoise nodes had been included at this point. We
searched for paths of no more than four nodes that could connect nodes from the red,
yellow, or black modules into the above-mentioned components (Figure S9B). Anytime
multiple paths were found, we only added the shortest path. If there were multiple equally
short paths, all were added.

We removed all sink nodes because they do not feed back into the dynamics of the
network, and thus cannot be drivers. The resulting graph contained 186 nodes and 888
edges. Of the nodes, 52 belonged to the brown module, 34 to turquoise, 23 blue, 21 yellow,
20 red, 15 green, and 9 black, while the others belonged to no module. This satisfied our
goals of having approximately equal representation of the different modules, and not too
few nor too many nodes. However, many nodes in the resulting graph had extremely high
in-degree. For example, RELA had 43 in-edges, TP53 had 37, and FOXO3 had 36. The
Boolean regulatory update function for RELA would then have 243 ~= 1012 conditions that
must be specified, which would be impractical, and impossible given available data.

To avoid such excessively high in-degree nodes in the network, we calculated an edge
score that we used to retain only the most confident edges. We set a threshold that must be
exceeded to include an edge, and made this threshold increase as more in-edges are added
to a node. This process preserves a node’s regulators if it has low in-degree, but provides
an increasingly strict criterion for edges to be included as the in-degree becomes larger.

The edge score was based on the following factors: (1) whether or not the source node
is a transcription factor (TF), (2) the number of references supporting the edge, (3) the
number of different databases (e.g., SIGNOR) or literature-based networks that included
the edge, and (4) the edge confidence given by the network resource, including “belief”
(networks from Indra) or “score” (SIGNOR, TRUUST). Regarding point (1), if the source
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node is a TF, the edge score is multiplied by TFMUL = 2. If not, TFMUL = 1. Regarding
point (4), for network resources that did not provide edge confidence, the confidence was
assumed to be 0. With these metrics, the edge score was calculated as:

score =

(

Nre f erences + Nresources + 10·
con f idence

Nedges

)

·TFMUL

The minimum possible score was 2, as Nre f erences and Nresources were at least each
1 for every edge. For each node, all its incoming edges were scored and ordered from
highest to lowest. The (up to) three edges with the three highest scores were always
included. Following these, each subsequent edge was included if score > NIN−EDGES − 1.
For example, given five incoming edges with scores (5, 4.5, 4, 3, 2), the first three edges
(scores 5, 4.5, and 3) are automatically included. The next edge has score = 3, which is
greater than NIN EDGES − 1 = 3 − 1 = 2, so it is included. The next edge has score = 2,
which is no longer greater than NIN EDGES − 1 = 4 − 1 = 3, so it, and any lower score
edges, would not be included.

Finally, once again, all sink nodes, or nodes that do not belong to a component of at
least size = 4, were removed. The final network had 106 nodes and 270 edges.

2.5. Regulatory Function Inference using the BooleaBayes Algorithm

Using the transcription data from the RNAseq dataset, the node activation data
constructed as described in the next section, and the network topology, we inferred proba-
bilistic Boolean regulatory functions using the BooleaBayes algorithm as described in [6].
Briefly, BooleaBayes tries to find Boolean logic functions consistent with steady-state gene
expression data and a network topology. As BooleaBayes needs normalized expression,
RNAseq data for each gene were normalized between 0 and 1 by setting all values less
than the 20th percentile to 0, all values above the 80% to 1, and all values in-between were
linearly interpolated between 0 and 1.

BooleaBayes infers a probabilistic Boolean regulatory function for each node in the
network. For each function, all input regulators are assigned a significance value by
BooleaBayes, defined as the maximum possible (absolute value) difference in output value
the regulator can make if it switches from OFF to ON. We set a minimum threshold of
0.1 for this value. With this threshold, each regulator must, in at least one condition, mean
the difference between a 0.45 or less output, and a 0.55 or greater output.

When fitting the function for a node, if at least one regulator did not exceed this
threshold, the regulator with the lowest significance was removed, and the function was
inferred again using only the remaining regulators. This process was repeated until either
all regulators exceeded the minimum significance threshold, or no regulators remained. In
the latter case, the target node becomes a source node for later analyses.

2.6. Extension of BooleaBayes to Post-Translational Regulation

Unlike previous work with BooleaBayes, which focused purely on transcriptional
regulation, the AML network includes post-translational modifications. However, the
expression data only include transcription quantification. To apply the BooleaBayes algo-
rithm, we must separate the probability of a node being transcribed from the probability of
a node being active. For instance, if node A regulates node B, node A may be transcribed
but not active, in which case the input value of node A into node B’s Boolean function
should be OFF.

To this end, we first distinguished for each edge whether it represented transcriptional
regulation or post-translational regulation. An edge whose source node is a transcription
factor according to [21] was considered to be a transcriptional edge. All other edges
were considered as post-translational. Post-translational edges were assigned as positive
(activating) or negative (de-activating) based on edge annotations from the source network.
For example, SIGNOR and Indra edges indicate whether the regulator up-regulates or
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down-regulates the target. For edges with no consistent database annotation, edge weights
were obtained from literature search when possible, or assumed to be positive if no specific
supporting information could be found.

Any node that is only transcriptionally regulated is assumed to be active as long as
it is transcribed. All nodes that are post-translationally regulated (such as a node named
“X”) were split into transcript (X_T) and active protein (X_A) forms. Any outgoing edges
(regulatory effects) from nodes that have _T and _A forms are assumed to come only from
the _A form.

To fit BooleaBayes functions, the values from the RNAseq data are used directly for
X_T. Values for X_A for each sample must be determined prior to applying BooleaBayes, so
that the target nodes of X use X_A for their training data, instead of X_T. We assumed that
protein post-translational activation follows an inhibitory dominant form. For example, if
X_A is activated by nodes J and K, and deactivated by node M, we say

X_A = X_T and (J or K) and not M
(or J_A, K_A, or M_A, if any of those regulators require an activated form). As X_T,

J, K, and M are not strictly Boolean variables, but rather probabilities, we transform this
into a sloppy logic form by replacing “or” with “+”, “and” with “*”, and “not” with “1-”.
Further, each term is strictly held within 0 and 1. Thus

X_A = X_T * min(J+K, 1) * max(1-M, 0)
More generally, as long as X has at least one activator we say
X_A = X_T * min(sum(ACTIVATORS_X), 1) * max(1-sum(INHIBITORS_X), 0)
while, if X has no activators, we say
X_A = X_T * max(1-sum(INHIBITORS_X), 0)
This distinction prevents nodes that have no activators from always being inactive—

they are assumed to be active unless deactivated. We constructed such an equation for
every node that must be activated. These equations formed a system of nonlinear algebraic
equations which we solved numerically using the scipy.optimize.fsolve() function in Python
v3.8, with an initial guess for each node of X_A = X_T. The resulting values of X_A were
then added to the gene expression dataset to be used for inferring BooleaBayes functions
for any node regulated by an _A form of a regulator.

2.7. Identification of Pseudo-Attractors

Pseudo-attractors of a probabilistic discrete system are states, or collections of states,
that the system keeps revisiting. Expressed more technically, pseudo-attractors are col-
lections of states for which transitions into them are more likely than transitions out,
along every axis. The sum of forward and backward transition probabilities between two
BooleaBayes states always adds up to 1. Therefore, if a transition is more likely into a state
than out of a state, the out-transition will be less than 0.5. Thus, pseudo-attractors of a
BooleaBayes-inferred system will correspond to the attracting strongly connected com-
ponents of the state transition system, for which all transitions with probability less than
0.5 are removed. This corresponds exactly to the attractors of the closest approximating
deterministic Boolean system, obtained by rounding all probabilities to the nearest 0 or
1—all transitions in the probabilistic system with probability less than 0.5 are absent.

Thus, to identify pseudo-attractors of the probabilistic AML drug network, we ap-
proximated each BooleaBayes-inferred update function to its closest deterministic function.
We used the AttractorRepertoire module from the StableMotifs [22] python package to find
attractors of the deterministic system. The system has a very large number of source nodes
(nodes with no regulators), which allows many attractors. To isolate the attractors most
relevant to AML drug response, we determined the Boolean state of these source nodes for
each of the six experimental conditions by averaging their probability to be ON or OFF
from the data. For each node, if it was more likely to be ON across the three replicates, we
plugged in the value ON to the deterministic system and propagated its value through the
Boolean update functions, and likewise for OFF.
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2.8. Node Interventions

We sought to understand how interventions that target specific nodes influence the
stability of WGCNA gene modules. We considered two types of interventions: holding
a node in the OFF (0) state, akin to knockout (KO) and holding a node in the ON (1)
state, akin to constitutive activation (CA). We assumed that any intervention targeting a
gene that was separated into transcribed and active protein forms applied to both forms.
During simulations, the states of controlled nodes were held constant, and other nodes
were updated as in the WT system.

2.9. Definition and Calculation of Influence Index

Systematic in silico intervention experiments require a significant number of com-
putational resources, thus we wanted to prioritize the most likely candidates for up- or
down-regulating a target module. To this end, we calculated an “influence index” for
each node-intervention-module tuple, for example the tuple “GSK3B, KO, blue module”.
The influence index is designed to estimate how likely it is that the influence of a node-
intervention on the node’s direct targets aligns with the up- or down-regulation goal of a
specified module.

The influence index is based on the concepts of necessary and sufficient regulation.
If node A = ON is necessary for node B = ON, this means that A = OFF implies B = OFF.
Conversely, if node A = ON is sufficient for node B = ON, this means that A = ON implies
B = ON [23]. For each edge we developed scores quantifying the likelihood that the edge
represents necessary regulation or sufficient regulation. In total we calculated four scores
for each edge: (1) the source is necessary for the target to be ON (called NON), (2) the source
is sufficient for the target to be ON (called SON), (3) the source is necessary for the target
to be OFF (called NOFF), and (4) the source is sufficient for the target to be OFF (called
SOFF). These scores are based on the average value of the probabilistic function output
when the node at the source of the edge is ON (avgON), or the source node is OFF (avgOFF).
For example, consider a node C whose regulatory function is f (A, B). For the edge A→B,

avgON = f (1,0)+ f (1,1)
2 while avgON = f (0,0)+ f (0,1)

2 .
Using this definition of avgON and avgOFF, NON , SON , NOFF, and SOFF were calculated

as follows:
If an edge represents overall positive regulation (meaning that switching the source

node from OFF to ON increases the likelihood that the target turns on)

NON = 1 − avgOFF

SON = avgON

NOFF = 0
SOFF = 0

Conversely, if an edge represents overall negative regulation (meaning that switching
the source node from OFF to ON decreases the likelihood that the target turns on)

NON = 0
SON = 0

NOFF = avgOFF

SOFF = 1 − avgON

To illustrate these definitions, consider a node D with deterministic Boolean update
function f(A,B,C) = A or (B and C). This function means that node D will turn on if A is ON
or if B and C are simultaneously ON. For the edge A → D, we can calculate

avgON = f (1,0,0)+ f (1,0,0)+ f (1,1,0)+ f (1,1,1)
4 = 1

avgOFF = f (0,0,0)+ f (0,0,0)+ f (0,1,0)+ f (0,1,1)
4 = 0.25

A is a positive regulator of D, so NON = 1− 0.25 = 0.75, SON = 1, and NOFF = SOFF = 0.
This means that in 75% of input conditions A would be necessary to turn D ON (only when
B=C=1 does D turn ON without A). Conversely, A is sufficient to turn D ON in all input
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conditions. Finally, A is never sufficient nor necessary to turn D OFF, as A is a positive
regulator of D.

With this, we define the influence index of each node-intervention-module tuple using
one of the following formulas:

Source node intervention: KO; Target module goal: DOWN

In f luenceIndex = ∑[(NON − NOFF) + 0.5·(SON − SOFF)]

Source node intervention: KO; Target module goal: UP

In f luenceIndex = ∑[(NOFF − NON) + 0.5·(SOFF − SON)]

Source node intervention: CA; Target module goal: DOWN

In f luenceIndex = ∑[(SOFF − SON) + 0.5·(NOFF − NON)]

Source node intervention: CA; Target module goal: UP

In f luenceIndex = ∑[(SON − SOFF) + 0.5·(NON − NOFF)]

where in each case the sum is over all target nodes of the perturbed node that are in the
target gene module. The higher weight on necessary edges in KO interventions reflects the
fact that turning OFF a necessary regulator is sufficient to control its output. The higher
weight on sufficient edges in CA interventions reflects the fact that turning ON a sufficient
regulator is sufficient to control its output.

2.10. Analyzing the Effect of Node Interventions

In contrast to attractors of deterministic systems, our stochastic model can evolve away
from pseudo-attractors (i.e., pseudo-attractors are not trap spaces). We start simulations
from a system state that corresponds to the average state of all pseudo-attractors associated
to a given experimental condition, and examine how many steps are required for a given
module’s overall expression to increase or decrease relative to its start state.

To accomplish this, we quantify a module’s “activation” as the fraction of nodes in the
module that are ON. For the purpose of this calculation, we exclude all source nodes, as
those nodes cannot be activated or silenced based on interventions of other nodes, and are,
therefore, insensitive to any perturbation. During simulations we very rarely observed a
module achieve more than 3/4 of non-source nodes becoming ON. We thus considered
switches between states that have low module activation (fewer than 1/4 non-source nodes
are ON) and intermediate module activation (between 1/4 and 3/4 non-source nodes
are ON).

We simulated the dynamics of the WT system by starting from a pseudo-attractor and
updating a single, randomly selected node at each time step [6]. For modules that start
in the low activation state, we counted how many steps were required for the module to
switch to the intermediate state for the first time. For modules that start in the intermediate
state, we instead counted how many steps were required to switch to the low activation
state for the first time. We repeated these simulations, restarting from the start state,
100 times. For each simulation, we updated the system 5000 times. If a module did not
switch within that time, we assigned a value 5001. For subsequent statistical analyses, we
used a non-parametric ordinal test, so in most cases it does not practically matter how
much above 5001 it really would have been.

We then chose a set of interventions to test, based on analysis of the network and
influence index of various nodes. We considered single node KO or CA, or combinations of
multiple nodes individually controlled. As in the WT system, we performed 100 iterations
of 5000 steps, counting how many steps were required for a module to switch for the first
time. We used a two-sided Mann–Whitney U test to test whether the average number of
steps from the intervention simulations was statistically different from the WT. All p-values
were FDR-corrected using the Benjamini–Hochberg (BH) method, and the threshold for
significance was defined as BH-adjusted p < 0.05.

Following intervention, if a module requires more steps before it switches from low to
intermediate activation, or vice versa, compared to WT, then the module’s original state
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was stabilized by the intervention. If the module began in the low state, we then classified
the intervention as down-regulating. If the module began in the high state, we classified the
intervention as up-regulating. Conversely, if an intervention makes a module require fewer
steps to switch, then the module’s original state was destabilized by the intervention. If the
module began in the intermediate state, we classified the intervention as down-regulating.
If the module began in the low state, we classified the intervention as upregulating.

3. Results
3.1. Identification of Gene Co-Expression Modules Associated with Distinct Treatments

We analyzed an RNAseq dataset [4] consisting of MV4-11 cells (a FLT3-ITD AML
cell line) exposed to six different treatment conditions. These included triplicate mea-
surements each of (1) 10 nM quizartinib treatment for 48 h, (2) 10 nM quizartinib treat-
ment for five days, (3) 100 nM dexamethasone treatment for 48 h, (4) combination 10 nM
quizartinib + 100 nM dexamethasone for 48 h (we refer to this combination as Quiz + Dex),
(5) Quiz+Dex for five days (quizartinib for five days and dexamethasone added on day
3), and (6) DMSO (GEO: GSE116432). Previous work found that dexamethasone and
quizartinib in combination were synergistic in FLT3-ITD cells [4].

Applying weighted gene co-expression network analysis (WGCNA) [24] to this gene
expression dataset, we identified seven modules of co-expressed genes (Figure 1A and
Figure S1). WGCNA assigns color names to each module. The modules we identified
ranged in size from 164 genes (black module) up to 7219 genes (turquoise module). The
genes in each module are given in File S1.

Given a WGCNA gene module, the module’s eigengene (defined as the first principal
component) is commonly used as a single metric capturing the overall expression of all
genes within that module. Based on module eigengene expression, we found that six
modules were statistically differentially expressed across treatment conditions (Figure 1A,
Kruskal–Wallis test, BH-adjusted p-value < 0.05): the yellow, red, brown, blue, turquoise,
and black modules.

Of these modules, we find that the yellow module is upregulated (relative to DMSO)
by all treatments, most significantly by the combination of dexamethasone + quizartinib
(Figure 1B). The red module is upregulated by dexamethasone, with or without the addition
of quizartinib, while we detected no response of this module to quizartinib alone. The blue
module is upregulated by quizartinib, with or without the addition of dexamethasone,
while we detected no response of this module to dexamethasone alone. Opposite to blue,
the turquoise module is downregulated by all treatments, including quizartinib. Finally,
the black module is upregulated after 48 h of treatment with quizartinib (with or without
dexamethasone) but returns to DMSO levels after 5 days of treatment. Though the green
module was not significantly differentially expressed, we noticed that, within the triplicate
measures in both DMSO and dexamethasone treatment, one sample of each appears to be a
clear outlier in the green module eigengene expression (Figure 1B). Without those samples,
the green module is upregulated following quizartinib treatment for 5 days. Thus, the
green module may still be relevant to understanding AML drug response, and we consider
its possible role later. These results are summarized as interactions between the drugs
and modules in Figure 1C, which shows that dexamethasone reverses quizartinib-induced
upregulation of the brown module but does not reverse other modules that are affected
by quizartinib.

3.2. Ontology Analysis Reveals Biological Processes Unique to Each Module

To uncover the biological character of each gene module, we performed ontology
enrichment analysis using the Molecular Biology of the Cell Ontology (MBCO) method [25].
This analysis searches not only for enriched sub-cellular processes, but enriched relation-
ships between processes. The results of MBCO analysis are reported in Figures S2–S8,
and in File S2. These analyses revealed several biological processes and pathways that
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become activated by different drug treatments, that may play critical roles in mediating
AML drug response.

We found the yellow module was enriched for cell–cell communication, especially
via NOTCH signaling, as well as extracellular matrix homeostasis. The red module was
strongly enriched for extracellular matrix homeostasis, including collagen biosynthesis and
crosslinking. The brown module was enriched for immune response activation and actin
and lamellipodium structure. Collectively, these three modules thus may be responsible
for mediating the tumor microenvironment response through cell–cell communication,
structural changes, and immune activation.

The blue module, which is upregulated by quizartinib, was highly enriched in drug
export and cellular detoxification, indicating a potentially essential role in mediating
cell survival following treatment with quizartinib. The turquoise module was highly
enriched in cell-cycle progression, suggesting a possible role in mediating proliferation.
Treatment with quizartinib downregulates the turquoise module, which is consistent with
the prior hypothesis that DTPs slow down their growth in the presence of drug [3,26,27].
Quizartinib’s simultaneous activation of the blue module, and downregulation of the
turquoise module may be able to quickly lead to the emergence of DTPs, allowing cells
to then acquire other changes, or change their environment, leading to more favorable
cancer-cell survival. Dexamethasone treatment did not reverse the effect of quizartinib on
these DTP-associated modules (Figure 1C).

The black module was found to be enriched in transcription and translation. The black
module is upregulated by quizartinib in the short term, but returns to untreated levels by
5 days of treatment. This suggests that, early on in treatment, cells may quickly activate
several gene transcription programs, but the activation of new programs may relax by day
five as cells reach a new equilibrium.

Finally, though it was not significantly differentially expressed across subtypes, the
green module was highly enriched in the regulation of apoptosis. As noted above, exclud-
ing two outlier samples, the green module is upregulated following quizartinib treatment
for 5 days.

3.3. Network Analysis

3.3.1. Construction of Gene Regulatory Network Governing AML Drug Response

To understand how cells mediate these drug-induced gene expression changes, we
constructed a gene regulatory network model of highly differentially expressed genes from
within each module. The full details of network construction are presented in Methods
Sections 2.4–2.6 and an overview is in Figure S9. Briefly, we aggregated interactions from
the public databases SIGNOR [14], TRRUST [15], and RegNetwork [16]. Based on the
ontology analysis that implicated cell–cell communication, inflammation, and apoptosis,
we also integrated published networks related to AML [14,17], NFKappaB signaling [17],
NOTCH signaling [18], tumor promoting inflammation [19,20], and apoptosis [20]. The
final network (Figure 2 and Figure S10) was constructed with the aim of avoiding over- or
under-representation of any single module.

3.3.2. Inference of Predictive Dynamic AML Drug Resistance Network Model and
Drug-Induced Pseudo-Attractors

We next sought to understand how the genes in the AML drug response network
interact. To this end, we applied the BooleaBayes algorithm [6] to infer probabilistic
regulatory functions for each node in the network (File S3). Briefly, BooleaBayes tries
to find Boolean logic functions consistent with steady-state gene expression data and a
network topology. In our case, the gene expression data are derived from normalization
of the 18 AML RNAseq samples (see Methods Section 2.5) and the network topology is
that of Figure 2. The inferred logic functions use binary values. For example, f(nodeA,
nodeB) = nodeA AND nodeB, where nodeA and nodeB have binary (ON or OFF) values.
BooleaBayes produces probabilistic functions indicating the probability that the target
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node will be ON or OFF, depending on the ON/OFF status of its regulators, where a value
0 indicates 100% confidence the target node is OFF, a value 1 indicates 100% confidence the
target node is ON, and a value 0.5 indicates equal chance of being ON or OFF. See Figure 3
for an example showing how BooleaBayes finds these values.

Figure 2. Gene regulatory network of FLT-ITD AML quizartinib and dexamethasone response. Nodes are genes and are
colored by the WGCNA module to which they belong. Edges ending in arrows represent net positive regulation, while
edges ending in circles indicate net negative regulation. Edge regulation sign is determined using the BooleaBayes algorithm
(see Methods Sections 2.5 and 2.6). The nodes in this network combine the transcript and the protein encoded by the same
gene. For example, the node JUN has transcriptional regulators (FOS, CREB1, and MEF2A) and a posttranslational regulator
(GSK3B). For nodes like this with post-translational modifications, the full network, shown in Figure S10, has separate
nodes corresponding to their transcript and active protein.

Unlike previous work with BooleaBayes, which focused exclusively on transcription
factors, the AML network also includes post-translational regulation. For nodes with
post-translational regulation, we distinguish between the transcription of the gene, and
the activation of the protein product. Protein activation is assumed to follow inhibitory
dominant Boolean rules, which means that at least one activator is required, but any
inhibitor is enough to prevent activation. Full details of how this was implemented into
BooleaBayes are available in Section 2.6.

With a deterministic Boolean model, one may search for its attractors, which represent
long-term stable behaviors of the system. Once the system reaches an attractor, it can no
longer escape it without an external intervention. As BooleaBayes is a probabilistic system,
it has no inescapable attractors. Nevertheless, there are states which the system is more
likely to enter than to leave, termed pseudo-attractors.

We asked whether the AML network has pseudo-attractors corresponding to the
drug-treatment conditions. To find these, we approximated the probabilistic BooleaBayes
regulatory functions by finding their closest-matching deterministic Boolean functions
(File S4). The network has 65 source nodes (nodes without regulators), which can be 0 or
1 with no constraints, indicating that there will be at least 265 ~= 1019 possible attractors (at
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least one per source node configuration), and even more pseudo-attractors. Not all of these
pseudo-attractors necessarily correspond to true attractors of the system, but may instead
reflect uncertainty of BooleaBayes functions far from the observed data. To specifically
find pseudo-attractors associated with the drug-response, we plugged into the source
nodes their respective observed values in each of the drug conditions, and propagated
those substitutions to find simplified systems for each drug state. Attractors of these
simplified systems were found using the StableMotif [22] Python package (Figure 4). These
attractors of the simplified deterministic system correspond to pseudo-attractors of the
probabilistic BooleaBayes functions. Pseudo-attractors for the 5-day Quiz+Dex treatment
have three oscillating nodes: ABL1_active, CBL_active, and INSR_active, driven by a
negative feedback loop between CBL_active and INSR_active. All other pseudo-attractors
are steady states. Many modules have clear consensus of the activity of their genes, in
which almost all of them are ON or almost all are OFF. For example, almost all yellow
nodes and almost all red nodes are OFF in pseudo-attractors corresponding to quizartinib
treatment (either for two days or for five days). This agrees with the low module eigengene
expression (pink color) on Figure 1B. Other modules are more split. For example, nearly
half of the brown and green module nodes are ON and nearly half are OFF in pseudo-
attractors corresponding to combination treatment for five days. These also agree with the
module eigengene expressions (white color). Overall, there is a good agreement between
all modules’ average activation in pseudo-attractors and their eigengene expression shown
in Figure 1B.

Figure 3. Examples demonstrating BooleaBayes regulatory function inference. Left: the inferred function for JUN tran-
scription. JUN_T has three regulators: FOS, CREB1_active, and MEF2A_active. A Boolean function of 3 regulators has
23 = 8 possible input configurations (e.g., FOS = 0, CREB1_active = 0, MEF2A_active = 0). Each column of the figure corre-
sponds to one of the possible regulator configurations, from all regulators being OFF (left-most column) to all regulators
being ON (rightmost column). Each row corresponds to one of the 18 AML samples. The red and blue colors along the far
left show whether JUN_T (the target node) is ON or OFF in each sample. The white-black color scale shows how closely
each sample (row) corresponds to a given input configuration (column). For example, the top three samples (rows) are most
likely to correspond to FOS = 1, CREB1_active = 1, MEF2A_active = 0, as is shown by the black and dark grey cells in the
first three rows of that column. In both samples, JUN_T is likely to be OFF (indicated by the blue color). Thus, the inferred
regulatory function for JUN_T (bottom row) says that if FOS = CREB1_active = MEF2A_active = 0, JUN_T is very likely to
turn OFF. Right: inferred function for EP300 transcription. Unlike JUN_T, there are many conditions for which there was no
observed data, such as RBPJ_active = 0, TP53_active = 0, TCF7_active = 0, and EPAS1_active = 1 (second condition from the
left). In these cases, the inferred rule has a near 50% chance for EP300_T to turn ON or OFF, as there are no data indicating
what should happen in these cases.
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Figure 4. Pseudo-attractors corresponding to DMSO and drug-treated AML, which are also the attractors of the deterministic
approximation of the BooleaBayes network. The values of the network’s 65 source nodes are fixed to match one of the six
treatment conditions, including DMSO, and attractors of the reduced systems are shown above. Each row is one attractor,
and columns are nodes of the network. Columns are grouped and colored based on the module the node belongs in. The
vertical orange lines delimit the nodes of each module.

3.3.3. Identification of Intervention Targets That Disrupt AML Drug Resistance Modules

With the dynamic model of AML drug response, there are many possible questions
one could pursue. We focus on identifying interventions that we hypothesize may be
able to reprogram DTP cells into drug susceptible states. Specifically, we previously
showed that dexamethasone increases cell death of quizartinib-induced DTPs in FLT3-ITD
AML [4]. However, there remain gene expression modules that dexamethasone does not
reverse ( Figures 1 and 4), including some that are natural markers of DTPs. To identify
additional targets that may be able to improve combination quizartinib and dexamethasone
treatment, we thus focus on the pseudo-attractors corresponding to combination treatment
with Quiz + Dex for 5 days, compared to the attractors in DMSO. As discussed above,
several differentially expressed modules are enriched in biological functions that may
be responsible for mediating drug resistance. Of greatest interest, the blue module is
enriched in detoxification and drug export, the green module is enriched in regulated cell
death and apoptosis, and the turquoise module is enriched in cell cycle progression. We
hypothesize that downregulating the blue module may prevent the emergence of resistance
mechanisms. Activating the turquoise module may enhance proliferation, preventing cells
from entering the DTP state. Activating the green module may enhance apoptosis. It is also
of note that the yellow and red modules are more highly expressed following Quiz + Dex
treatment than DMSO. We hypothesize that reverting these modules to the DMSO state
may improve therapy response. Collectively, these changes may extend the efficacy of
combination Quiz + Dex treatment.

To this end, we picked control objectives of downregulating the blue, red, and yellow
modules, and upregulating the turquoise or green modules. Upregulation of the green
module was chosen due to its enrichment in apoptosis, even though this would push the
green module further away from the DMSO state. We first quantified the stability of the
gene expression modules near the Quiz + Dex 5-day pseudo-attractors. To accomplish
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this, we simulated 100 random walks of 5000 steps (see Methods Section 2.10) from an
initial state determined by the average of the Quiz + Dex 5-day pseudo-attractors. For
each step along the walk, we quantified the fraction of nodes from each module that are
ON to get an overall module activation score. We characterized modules with fewer than
1/4 active nodes to be in a low state, between 1/4 and 3/4 to be in an intermediate state,
and above 3/4 to be in a high state. These ranges were chosen to ensure each module
began sufficiently far from the boundary. With these definitions, all modules began in
either the low or intermediate states. We then quantified how long it took for each random-
walk simulation to cross from low to intermediate activation, or from intermediate to low
activation, for the first time (we only rarely observed a cross from intermediate to high
activation, so this transition was excluded). The distributions of the crossing times in
Figure 5A capture the baseline stability of each module.

Figure 5. Targeted interventions of driver nodes cause up- or down-regulation of gene modules. (A) Distribution of the
number of steps required for the module to switch between low and intermediate activation. The distributions in beige
show the dynamics of the system with no manipulations, while the colored distributions show the manipulated systems.
For modules transitioning from low to intermediate activation, an intervention shifting the distribution to a longer time to
switch (rightward shift) maintains the module in the downregulated state, while a leftward shift upregulates the module.
For modules transitioning from intermediate to low, a rightward shift indicates the module is maintained in an upregulated
state, while a leftward shift indicates downregulation. (B) Heatmap showing the up- or down-regulation of statistically
significant interventions (two-sided Mann–Whitney U Test, FDR-adjusted p-value < 0.05) compared to control for each
module. Only significant interventions are colored. Colors are scaled so that a value of +/−1 indicates a 100% relative shift
in mean transition time compared to control.

We then asked which interventions shift the module distributions to lower or higher
numbers of steps. If a module starts in the intermediate state and transitions into the low
state, then interventions shifting the distribution to a higher number of steps stabilize the
more active state of the module. Conversely, interventions shifting the distribution to a
lower number of steps downregulate the module. The opposite interpretation holds for
modules starting in the low state and transitioning to the intermediate state: a shift to a
lower number of steps indicates upregulating the module, while a shift to a higher number
of steps indicates maintaining the module in the low state.

Nodes targeted by in silico intervention were fixed as either ON or OFF, and not
allowed to update during the simulation. We prioritized nodes to target by (1) analysis
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of the regulatory paths in the network (Figure 2 and Figure S10), and (2) calculation of
an influence index for each possible node interventions and each module (see Methods
Section 2.9 for details). Briefly, the influence index considers the most likely effect an
intervention of a given node will have on the nodes it targets. A positive influence index
indicates that those effects are likely to align with our control objectives, while a negative
influence index indicates that those effects are likely to contradict our objectives. Influence
indices for each intervention are given in File S5.

We tested the interventions shown in Figure 5 by simulation. For each intervention, we
quantified how the distribution of steps required to cross the low-intermediate threshold
shifts relative to the baseline control. We determined significant upregulating or down-
regulating shifts using a two-sided Mann–Whitney U test (see Methods Section 2.10). The
most significant regulators for each module are shown in Figure 5B.

We predict several interventions that may lead to the downregulation of the blue
module, which is enriched in genes related to drug resistance. The most significant are
knockout of GSK3B, IFNGR1, CREB1, SIRT1, or MAP3K11. Investigating these further,
GSK3B inhibition has previously been proposed as a differentiation-inducing therapy for
AML [28,29]. Nevertheless, it has also been found in a CRISPR screen that GSK3B KO leads
to the reactivation of FGF/Ras/ERK and Wnt signaling that can confer resistance to quizar-
tinib monotherapy in FLT3-ITD AML [30]. CREB1 overexpression has been associated with
poor outcome in AML patients [31], and SIRT1 activation has been previously associated
with drug resistance of FLT3-ITD AML stem cells [32].

For the green module, which is enriched in apoptosis regulation, we find JUN con-
stitutive activation leads to activation of the green module, while JUN knockout inhibits
it. Previous work has found that JUN KO increased apoptosis in AML cells [33]. JUN
is a master regulator of apoptosis, but also involved in AML cell survival via inflamma-
tory pathways, indicating it may have dual roles. Expanding the network to include
relevant downstream JUN activity may better elucidate how these competing effects may
be activated or controlled.

For the turquoise module, which is enriched in cell cycle progression, we found
activation of TNF, TP53, or AP2A1 support upregulation of the turquoise module. TNF-
alpha is highly upregulated in AML patients, and has been shown to induce proliferation
of leukemic blasts [34,35]

We additionally tested combination interventions to simultaneously control multiple
gene modules. The combined knockout of TBK1 and JUN and found that it leads to
downregulation of both the red and yellow modules. Simultaneous constitutive activation
of FOS with knockout of CREB1 led to downregulation of the brown and blue modules,
and stabilization of the green module.

Focusing on modules other than blue, green, and turquoise, we predict that GRB10
KO strongly downregulates the yellow module, which is upregulated by both quizartinib
and dexamethasone treatment, and GRB10 overexpression has previously been associated
with aggressive phenotypes in FLT3-ITD AML [36]. ROCK1 KO downregulates both the
yellow and red modules, and ROCK inhibition has been shown to inhibit cell growth in
FLT3 mutant AML patient-derived blasts [37]. We predict that TBK1 KO downregulates
the red module; it has previously been suggested as a therapeutic target in AML due to its
activation of MYC-dependent survival pathways [38].

Four interventions had relatively high influence indices but did not lead to a statisti-
cally significant shift: KO of EP300, ZFYVE9, PML, or IRS2. Of these, ZFYVE9 and IRS2 KO
have a large effect on their direct targets, but that effect clearly will not propagate through
the network. For instance, ZFYVE9 is a necessary regulator for two blue module genes:
SMAD2 and SMAD3, which BooleaBayes did not detect significant regulatory functions
for in this network, and thus they became sink nodes. IRS2 is necessary for PIK3CA
to activate, and PIK3CA_A only regulates a single target node, PTK2B_T. PTK2B_T is
also regulated by SRC, and SRC has a much stronger regulatory influence than PIK3CA
(File S3). The remaining two interventions, EP300 and PML KO, have multiple downstream
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paths, but nevertheless our full simulations of the network did not detect upregulating or
downregulating influences of these interventions on any module.

The concordance of our identified interventions with previous work from the literature
supports the validity of our findings. Furthermore, we make several additional novel
predictions. For example, we predict the blue module can be downregulated by the KO
of IFNGR1 or MAP3K11. The turquoise module can be upregulated by CA of AP2A1 or
TP53. The validation of these novel predictions is needed as a next step in establishing the
predictive value of this model and is the subject of future work in our labs. Collectively,
we anticipate that these interventions would synergize with combination quizartinib and
dexamethasone treatment in patients with FLT3-ITD AML.

4. Discussion

Here we constructed a dynamic model of a gene regulatory network relevant to
FLT3-mutant acute myeloid leukemia. The model integrates multiple types of information:
RNAseq data consisting of MV4-11 cells exposed to drug treatment and several databases
of signal transduction and gene regulation. Model development included multiple state of
the art analysis methodologies: weighted gene co-expression analysis, ontology analysis,
inference of regulatory relationships using BooleaBayes, attractor analysis, and control
theory. We also developed new capabilities for BooleaBayes, and new confidence scores to
prioritize interactions to be included in the network and new influence scores to prioritize
interventions. Overall, this work illustrates the challenges and capabilities of computational
systems biology analysis in cancer research and the potential for this type of analysis to
advance personalized medicine.

The model attractors recapitulate the activation of the modules (compare Figure 4
to Figure 1B), and the most significant predicted model interventions match well with
literature reports on drivers of proliferation, survival, and drug resistance (Figure 5).
Collectively, these results strongly support the model’s validity. Nevertheless, there are
several possible avenues for further model improvement. This model was derived from
data in MV4-11 cells treated with quizartinib and dexamethasone. We previously showed
that the gene expression profile of MV4-11 cells was predictive of sensitivity of multiple
FLT3-ITD cell lines and patient cells to treatment with quizartinib and dexamethasone [4].
Nevertheless, including data collected from other cell lines, or cells treated with other
drugs, such as other FLT3 inhibitors or glucocorticoids may reveal alternative pathways and
processes involved in mediating drug resistance. Finding common resistance mechanisms,
as well as system-specific resistance mechanisms, may lead to a more generalizable model.
Furthermore, during network construction we removed sink nodes to focus on nodes that
contribute feedback into the network dynamics. Nevertheless, those sink nodes may be
valuable phenotypic markers, or could be regulators of other nodes we may include in the
future. Additionally, the large number of source nodes (65) should eventually be decreased.
Many of these became source nodes because BooleaBayes was not able to determine
a significant role for their regulators, and so those edges were removed. Additional
expression datasets, or literature knowledge, may elucidate functional forms of those
interactions. Additionally, more nodes may be added by including more AML-specific
literature knowledge (e.g., MCL as downstream target of GSK3B, downstream targets of
JUN to further elucidate the dual effect of its inhibition on apoptosis and inflammation).

In Figure 5 we showed four interventions that had high influence indices, but this did
not translate into significant up- or down-regulation of any modules. In at least two cases,
we determined that these interventions led to sink nodes, or nodes with weak influence,
explaining why the influence index was not predictive of overall impact. To address
this, the influence index of a node may be extended to consider the influence index of its
downstream targets. Further, nodes can have conflicting downstream effects, and resolving
these may improve the predictive value of influence index.

The dynamic model may eventually be used to answer other fundamental questions,
such as how does drug treatments lead to the resistant state. To this end, the network
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could be extended by integrating known drug targets, though in practice drugs often
have multiple off-target effects. One possible way to overcome this would be to prioritize
adding drug targets that can induce the changes between the status of the source nodes
in the untreated and drug-treated conditions. Future work is focused on expanding and
improving the network model by incorporating information about drug targets, additional
cell lines, and additional drug perturbation datasets. We are also working to validate the
model’s novel predictions, such as combining Quiz+Dex treatment with KO of IFNG1 or
MAP3K11, or CA of AP2A1.

Finally, we anticipate that data-driven predictive modeling, as demonstrated in this
work, may eventually help accelerate patient-specific precision treatments. The dynamics
of the AML model emerged from the expression data we used to train it, thus incorporating
patient-specific data may help reveal patient-specific drug resistance pathways or targets.
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enrichment, Figure S6: Red module enrichment, Figure S7: Turquoise module enrichment, Figure S8:
Yellow module enrichment, Figure S9: Network construction, Figure S10: Full network, File S1.csv:
WGCNA modules, File S2.xlsx: MBCO enrichment, File S3.txt: BooleaBayes fit probabilistic update
functions, File S4.txt: Deterministic Boolean approximation, File S5.csv: Influence indices.
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Abstract: Lung cancer is the second most frequently diagnosed cancer type and responsible for the

highest number of cancer deaths worldwide. Lung adenocarcinoma (LUAD) and lung squamous

cell carcinoma (LUSC) are subtypes of non-small-cell lung cancer which has the highest frequency

of lung cancer cases. We aimed to analyze genomic and transcriptomic variations including simple

nucleotide variations (SNVs), copy number variations (CNVs) and differential expressed genes

(DEGs) in order to find key genes and pathways for diagnostic and prognostic prediction for lung

adenocarcinoma and lung squamous cell carcinoma. We performed a univariate Cox model and

then lasso-regularized Cox model with leave-one-out cross-validation using The Cancer Genome

Atlas (TCGA) gene expression data in tumor samples. We generated 35- and 33-gene signatures

for prognostic risk prediction based on the overall survival time of the patients with LUAD and

LUSC, respectively. When we clustered patients into high- and low-risk groups, the survival analysis

showed highly significant results with high prediction power for both training and test datasets.

Then, we characterized the differences including significant SNVs, CNVs, DEGs, active subnetworks,

and the pathways. We described the results for the risk groups and cancer subtypes separately

to identify specific genomic alterations between both high-risk groups and cancer subtypes. Both

LUAD and LUSC high-risk groups have more downregulated immune pathways and upregulated

metabolic pathways. On the other hand, low-risk groups have both up- and downregulated genes on

cancer-related pathways. Both LUAD and LUSC have important gene alterations such as CDKN2A

and CDKN2B deletions with different frequencies. SOX2 amplification occurs in LUSC and PSMD4

amplification in LUAD. EGFR and KRAS mutations are mutually exclusive in LUAD samples. EGFR,

MGA, SMARCA4, ATM, RBM10, and KDM5C genes are mutated only in LUAD but not in LUSC.

CDKN2A, PTEN, and HRAS genes are mutated only in LUSC samples. The low-risk groups of both

LUAD and LUSC tend to have a higher number of SNVs, CNVs, and DEGs. The signature genes and

altered genes have the potential to be used as diagnostic and prognostic biomarkers for personalized

oncology.

Keywords: TCGA; non-small-cell lung cancer; lung adenocarcinoma (LUAD); lung squamous cell

carcinoma (LUSC); differential expression; SNV; CNV; risk group; signature; survival

1. Introduction

Lung cancer is the second most frequently diagnosed cancer type and the leading
cause of cancer-related mortality worldwide [1]. Lung cancer treatments used in the clinic
are surgery, radiotherapy, chemotherapy, targeted therapy, and emerging immunother-
apy. The clinical treatment decisions are made based on tumor stage, histology, genetic
alterations of a few driver oncogenes for targeted therapies, and patient’s condition [2].
However, most of the patients are diagnosed at an advanced and metastatic stage, with
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high mortality and poor benefit from therapies [3]. Although the targeted therapeutics and
immunotherapeutics including immune-checkpoint inhibitors are introduced for patients
at an advanced stage, these options are beneficial only for limited subsets of patients and
these patients still can develop resistance [4]. Therefore, the majority of patients with
advanced-stage lung cancer die within 5 years of diagnosis [5].

Histologically there are four major types of lung cancer, including small-cell carcinoma
(SCLC), and adenocarcinoma, squamous cell carcinoma, large cell carcinoma as grouped
non-small-cell carcinoma (NSCLC). Lung adenocarcinoma (LUAD) and lung squamous
cell carcinoma (LUSC) account for 50% and 23% of all lung cancers, respectively [6]. Lung
cancer is both histologically and molecularly heterogeneous disease and characterizing the
genomics and transcriptomics of its nature is very important for effective therapies. Lung
cancer has many subtypes with distinct genetic characteristics, resulting in intra-tumoral
heterogeneity [7].

The Cancer Genome Atlas (TCGA) database serves different types of data such as
transcriptome profiling, simple nucleotide variation, copy number variation, DNA methy-
lation, clinical and biospecimen data of 84,392 cancer patients with 68 primary sites [8].
The Cancer Genome Atlas Research Network reported molecular profiling of 230 lung ade-
nocarcinoma samples using mRNA, microRNA and DNA sequencing integrated with copy
number, methylation and proteomic analyses. They identified 18 significantly mutated
genes, including TP53, KRAS which is mutually exclusive with EGFR, BRAF, PIK3CA, MET,
STK11, KEAP1, NF1, RB1, CDKN2A, GTPase gene RIT1, including activating mutations
and MGA including loss-of-function mutations. DNA and mRNA sequence from the
same tumor highlighted splicing alterations including exon 14 skipping in MET mRNA in
4% of cases. They also showed DNA hyper-methylation of several key genes: CDKN2A,
GATA2, GATA4, GATA5, HIC1, HOXA9, HOXD13, RASSF1, SFRP1, SOX17, WIF1, and
MYC over-expression was significantly associated with the hyper-methylation phenotype
as well [9].

The Cancer Genome Atlas Research Network also profiled 178 lung squamous cell car-
cinomas and detected mutations in 11 genes, including mutations in TP53 (81%), CDKN2A,
PTEN, PIK3CA, KEAP1, MLL2, HLA-A, NFE2L2, RB1, NOTCH1 including truncating
mutations and loss-of-function mutations in the HLA-A class I major histocompatibility
gene. They identified altered pathways such as NFE2L2 and KEAP1 in 34%, squamous
differentiation genes in 44%, PI3K pathway genes in 47%, and CDKN2A and RB1 in 72%
of tumors. CNV analysis revealed the amplification of NFE2L2, MYC, CDK6, MDM2,
BCL2L1 and EYS, and deletions of FOXP1, PTEN and NF1 genes with previously identified
CNV genes, SOX2, PDGFRA, KIT, EGFR, FGFR1, WHSC1L1, CCND1, and CDKN2A. They
identified overexpression and amplification of SOX2 and TP63, loss-of-function mutations
in NOTCH1, NOTCH2 and ASCL4 and focal deletions in FOXP1 which have known roles
in squamous cell differentiation. CDKN2A is downregulated in over 70% of samples
through epigenetic silencing by methylation (21%), inactivating mutation (18%), exon 1β
skipping (4%), or homozygous deletion (29%) [10].

Recently, many studies have been published on gene expression signatures predict-
ing the survival risk of patients with lung adenocarcinoma. These recent studies have
been mostly using TCGA data, but their methods generated different gene signatures.
Seven-gene expression signature including ASPM, KIF15, NCAPG, FGFR1OP, RAD51AP1,
DLGAP5 and ADAM10 genes, was obtained for early stage cases from seven published
lung adenocarcinoma cohorts and the signature showed high hazard rations in Cox re-
gression analysis [11]. Shukla et al. developed TCGA RNAseq data-based prognostic
signature including four protein-coding genes RHOV, CD109, FRRS1, and the lncRNA
gene LINC00941, which showed high hazard ratios for stage I, EGFR wild-type, and EGFR
mutant groups [12]. A prognostic signature that was independent of other clinical factors,
was developed and validated based on the TCGA data. Patients were grouped into risk
groups using signature genes, and patients with high-risk scores tended to have poor
survival rate at 1-, 3- and 5-year follow-up. The developed eight-gene signature including
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TTK, HMMR, ASPM, CDCA8, KIF2C, CCNA2, CCNB2, and MKI67 were highly expressed
in A549 and PC-9 cells [13].

Twelve-gene signature (RPL22, VEGFA, G0S2, NES, TNFRSF25, DKFZP586P0123,
COL8A2, ZNF3, RIPK5, RNFT2, ARHGEF12 and PTPN20A/B) was established by using
published microarray dataset from 129 patients and the signature was independently prog-
nostic for lung squamous carcinoma but not for lung adenocarcinoma [14]. A four-gene
clustering model in 14-Genes (DPPA, TTTY16, TRIM58, HKDC1, ZNF589, ALDH7A1,
LINC01426, IL19, LOC101928358, TMEM92, HRASLS, JPH1, LOC100288778, GCGR) was
established and these genes plays role in positive regulation of ERK1 and ERK2 cascade, an-
giogenesis, platelet degranulation, cell–matrix adhesion, extracellular matrix organization
and macrophage activation [15].

Lu et.al. identified differentially expressed genes between lung adenocarcinoma
and lung squamous cell carcinoma by using microarray data from the Gene Expression
Omnibus database. They identified 95 upregulated and 241 downregulated DEGs in lung
adenocarcinoma samples, and 204 upregulated and 285 downregulated DEGs in lung
squamous cell carcinoma samples, compared to the normal lung tissue samples. The genes
play role in cell-cycle, DNA replication and mismatch repair. The top five genes from global
network, HSP90AA1, BCL2, CDK2, KIT and HDAC2 have differential expression profiles
between lung adenocarcinoma and lung squamous cell carcinoma [16]. Recently, Wu et.al.
identified diagnostic and prognostic genes for lung adenocarcinoma and squamous cell
carcinoma by using weighted gene expression profiles. The five-gene diagnostic signature
including KRT5, MUC1, TREM1, C3 and TMPRSS2 and the five-gene prognostic signature
including ADH1C, AZGP1, CLU, CDK1 and PEG10 obtained a log-rank P-value of 0.03
and a C-index of 0.622 on the test set [17].

A considerable number of genetic and transcriptomic alterations have been identified
in mostly LUAD and poorly in LUSC. Although many gene expression signatures have
been identified in LUAD recently, there is less work on LUSC expression signatures. Addi-
tionally, the molecular differences between risk groups of LUAD and LUSC have not yet
been systematically described. In this study, we aimed to identify the genomic and tran-
scriptomic differences between risk groups of lung adenocarcinoma and lung squamous
cell carcinoma. We performed a univariate Cox model and then Lasso-Regularized Cox
Model with Leave-One-Out Cross-Validation (LOOCV) by using TCGA gene expression
data in tumor samples, and identified best gene signatures to cluster patients into low- and
high-risk groups. We generated 35- and 33-gene signatures for prognostic risk prediction
based on the overall survival time of the patients with LUAD and LUSC. When we clustered
patients into high- and low-risk groups, the survival analysis showed highly significant
results for both training and test datasets. Then, we characterized the differences including
significant SNVs, CNVs, DEGs and active subnetwork DEGs between risk groups in LUAD
and LUSC.

2. Materials and Methods
2.1. Data

Simple Nucleotide Variation (SNV), Transcriptome Profiling, Copy Number Variation
(CNV) and Clinical data of patients who have all of these data types in LUAD and LUSC
projects, was downloaded separately using TCGAbiolinks R package [18]. Using the same
package and the reference of hg38; Simple Nucleotide Variations (SNVs) and Copy Number
Variations (CNVs); and transcriptomic variations were processed to identify the genomic
alterations of the LUAD and LUSC patients (Table 1). The method described below can be
found as flowchart in Figure S1.
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Table 1. Summary of clinical variables of train and test group of patients with LUAD and LUSC
analyzed in the study.

LUAD LUSC

Category
Train Group

(n: 436)
Test Group

(n: 56)
Train Group

(n: 431)
Test Group

(n: 47)

Age at diagnosis
(median; range)

66; 33–88 66.5; 42–86 68; 39–90 69; 45–85

Gender

Female 232 33 112 14

Male 204 23 319 33

Tumor stage

I 241 28 211 25

II 106 13 138 16

III 68 13 76 5

IV 23 2 6 1

Vital status

Alive 284 30 275 18

Dead 152 26 156 29

Smoked years
(median; range)

33; 2–61 31.5; 4–64 40; 8–62 40; 10–60

Smoked packs
per year

(median; range)
40; 0.15–154 48; 5–94.5 50; 1–240 50; 2–157.5

2.2. Gene Expression Signature Analysis

Clinical data and Gene Expression Quantification data (HTSeq counts) of patients with
unpaired RNAseq data (tumor samples without normal samples) was downloaded from the
TCGA database using the TCGAbiolinks R package. Raw HTSeq counts of tumor samples
were normalized by TMM (trimmed mean of M values) method and Log2 transformed
after filtering to remove genes that consistently have zero or low counts. Univariate Cox
Proportional Hazards Regression analysis was performed using survival R package [19]
to identify survival-related genes. For these survival-related potential biomarker genes
(p ≤ 0.05), Lasso-Regularized Cox Model (by using minimum lambda calculated in the
model) with Leave-One-Out Cross-Validation (LOOCV) was performed to determine a
gene expression signature using glmnet R package [20]. Multivariate Cox Regression for the
signature genes was performed and the predictive performance of the model was scored
using riskRegression R package [21]. The risk score of each patient was predicted based on
multivariate Cox regression model using the survival R package. Patients were clustered
into high-risk and the low-risk group based on the best cutoff value for ROC, calculated by
cutoff R package [22].

For the validation of the gene signature, HTSeq counts belonging to the tumor samples
of patients who have paired RNAseq data (tumor samples with the paired adjacent normal
samples) were downloaded from the TCGA database, filtered, normalized by TMM method
and Log2 transformed. Multivariate Cox Regression for the signature genes was performed
and the predictive performance of the model was scored. The risk score of every patient in
the validation group was predicted based on multivariate Cox regression model and each
patient was assigned to the high- or low-risk group using the best cutoff value for ROC.
These analyses were performed for LUAD and LUSC patients separately.
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2.3. Differential Expression Analysis

Gene Expression Quantification data (HTSeq counts) of both the primary tumor (TP)
and the paired normal tissue adjacent to the tumor (NT) was downloaded from the TCGA
database. Raw HTSeq counts of both tumor and normal samples were normalized by
TMM method after filtering to remove genes which have zero or low counts. Differentially
expressed (q < 0.01) genes were determined using limma [23] and edgeR [24] R packages
by limma-voom method with duplicate-correlation function. HUGO symbols and NCBI
Gene identifiers of the differentially expressed genes were downloaded using the biomaRt
R package. This analysis was performed for high- and low-risk group patients of LUAD
and LUSC, separately.

2.4. Active Subnetwork Analysis

Active subnetworks of the differentially expressed genes were determined using
DEsubs R package [25]. DEsubs package accepts the differentially expressed genes output of
the limma package along with their FDR adjusted p values (q values). DEsubs package both
computes and plots the active subnetworks. All the plots and computations were generated
for the high- and low-risk group patients of the LUAD and LUSC projects, separately.

2.5. Copy Number Variation Analysis

The Copy Number Variation data of the primary tumor samples of patients was down-
loaded using TCGAbiolinks package (Masked Copy Number Segment as data type). The
chromosomal regions which are significantly aberrant in tumor samples were determined
and plotted by gaia R package [26]. Gene enrichment from genomic regions which have
significant differential copy number was performed using GenomicRanges [27] and biomaRt
R packages. R codes used in this analysis were modified from the codes presented at
“TCGA Workflow” article [28]. All the computations and the plots were generated for the
high- and low-risk groups of LUAD and LUSC projects, separately.

2.6. Simple Nucleotide Variations Analysis

The masked Mutation Annotation Format (maf) files of the TCGA mutect2 pipeline in
tumor samples were downloaded to obtain the somatic mutations. The maf files are filtered
using the maftools [29] to obtain the subset of the mutations corresponding to the patient
barcodes. Summary plot and oncoplot were generated to summarize the mutation data
using maftools R package. Somatic mutations were filtered and assigned to either oncogene
(OG) or tumor suppressor gene (TSG) groups along with a significance score (q < 0.05)
using the SomInaClust R package [30]. SomInaClust computes a background mutation value
to identify the hot spots using the known set of somatic mutations in “COSMIC” and
the “Cancer Gene Census” (v92) datasets of COSMIC database for GRCh38 [31]. SNV
analysis was performed for high- and low-risk group patients of LUAD and LUSC projects,
separately.

2.7. Visualization

Scatter plots showing risk score and survival time of patients were generated by
ggrisk R package [32] and Kaplan–Meier (KM) survival curves were plotted by survminer R
package [33] displaying the overall survival difference between the risk groups stratified
on the proposed gene signature. ROC curves were plotted for the risk scores based on
each gene signature using survivalROC R package [34]. Univariate and multivariate Cox
regression analyses were performed and forest plots were generated for risk score with
clinical variables using survival and forestmodel [35] R packages.

Gene and pathway enrichment analyses were performed by biomaRt [36] and clus-
terProfiler [37] R packages and plotted by enrichplot R package [38]. Heatmap plots were
generated using ComplexHeatmap R package [39]. Mosaic plots to compare the categorical
variables were generated using the vcd R package [40,41].
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OncoPrint showing CNVs among patient samples was generated using Complex-
Heatmap R package. OncoPlot for significant mutated genes was drawn using maftools,
and oncoPrint showing SNVs and CNVs together was generated using ComplexHeatmap R
package. Circos plot showing all non-synonymous SNVs in original data of risk groups
and significant CNVs at genome-scale were generated using circlize R package [42].

All possible relations between DEGs; active subnetwork DEGs; CNV genes; SNV genes
of LUAD and LUSC risk groups were identified by using VennDiagram R package [43].

3. Results
3.1. Gene Expression Signature Analysis of LUAD and LUSC Patients

In order to identify gene expression prognosis risk model, clinical data and gene
expression quantification data of tumor samples of patients with LUAD and h LUSC with
unpaired RNAseq data as two separate training groups (Table 1) were downloaded from
the TCGA database. A 35-gene expression signature for LUAD and a 33-gene expression
signature for LUSC were identified by Lasso-Regularized Cox Model with LOOCV after
univariate Cox regression analysis. The risk scores of each patient in training groups and
test groups were predicted using signature genes, then patients were clustered into high-
and low-risk groups based on the cutoff values.

The genes of the LUAD expression signature model identified are AC005077.4, AC113404.3,
ADAMTS15, AL365181.2, ANGPTL4, ASB2, ASCL2, CCDC181, CCL20, CD200R1, CPXM2,
DKK1, ENPP5, EPHX1, GNPNAT1, GRIK2, IRX2, LDHA, LDLRAD3, LINC00539, LINC00578,
MS4A1, OGFRP1, RAB9B, RGS20, RHOQ, SAMD13, SLC52A1, STAP1, TLE1, U91328.1,
WBP2NL, ZNF571-AS1, ZNF682, ZNF835. Twenty-seven of them are protein-coding genes
while two of them are long intergenic non-protein coding RNA (LINC00539, LINC00578), one
is antisense RNA (ZNF571-AS1), three of them are pseudogenes (AC005077.4, AC113404.3,
OGFRP1) and two of them are novel transcripts (AL365181.2, U91328.1) (Table S1). Pathway
enrichment analysis by using clusterProfiler R package did not give any results for this 35-gene
list; therefore, enrichment analysis was performed manually using the online KEGG Mapper
tool. The genes play role in metabolic pathways, cancer and immune system-related pathways
such as Central carbon metabolism in cancer, Glycolysis, Cholesterol metabolism, Amino sugar
and Nucleotide sugar metabolism, HIF-1 signaling pathway, TNF signaling pathway, IL-17
signaling pathway, Chemokine signaling pathway and Wnt signaling pathway (Table S2).
Multivariate Cox regression analysis was performed for the signature genes and the predictive
performance of the model was scored. The AUC was 0.963 (p = 1.1 × 10−15) for LUAD training
group. The risk score of each patient was predicted and patients were clustered into high- and
low-risk groups based on the cutoff value. Low- and high-risk groups have different expression
patterns of the signature genes and significantly different survival probabilities (p < 0.0001).
The prediction power of the risk score is around 0.78 (AUC) for 1, 3, 5 and 8 years for LUAD
training group (Figure S2). Risk group clustering is independent from tumor stages because risk
groups have also significantly different survival probability for each tumor stage (Figure S3).
Vital status is highly correlated with risk groups that high-risk group is positively correlated
with death (p = 1.5 × 10−13), while only tumor stage IA and III are associated with risk groups
(Figure S4). The risk score has highly significant prognostic ability (HR:2.59, p < 0.001) when
multivariate Cox regression analysis was performed with other clinical variables (Figures S5
and S6).

In order to validate the gene expression signature, gene expression quantification data
of tumor samples of patients with LUAD who have paired RNAseq data were downloaded
from the TCGA database. The risk scores of each patient in test group were predicted using
the gene signature lists and patients were clustered into high- and low-risk groups based
on the best cutoff values for ROC. Risk groups have differential signature gene expression
patterns; high-risk group has lower survival time and higher number of deaths resulting a
significantly different survival probability (p < 0.0001). The risk score has high prediction
powers, 0.97, 0.92, 0.93 and 0.92 (AUC) for 1, 3, 5 and 8 years, respectively, for LUAD test
group (Figure 1).
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Figure 1. Gene expression signature and risk clustering of LUAD test dataset. Test dataset patients were clustered into
high- and low-risk groups based on risk scores of patients calculated by predicting the effect of the signature genes of the
signature genes expression on overall survival. (A) Expression heatmap of the signature genes in tumor samples of LUAD
patients in the test dataset. (B) Scatter plot showing risk scores, survival time and separation point of the patients into
risk groups. (C) KM survival plot showing the overall survival probability between risk groups. (D) ROC curve showing
prediction power of risk score in the test dataset for 1, 3, 5 and 8 years.

Risk groups have significantly different survival probability for each tumor stage in
LUAD test group as well (Figure S7). Vital status is highly correlated with risk groups. The
high-risk group is positively correlated with death (p = 3.87 × 10−7), while only tumor
stage I is positively associated with low-risk group (p = 0.016) (Figure S8). The risk score
has highly significant prognostic ability (HR:2.79, p < 0.001) as the result of multivariate
Cox regression analysis was performed with other clinical variables (Figure S9).

Expression signature model identified for LUSC includes these genes: AC078883.1,
AC096677.1, AC106786.1, ADAMTS17, ALDH7A1, ALK, COL28A1, EDN1, FABP6, HKDC1,
IGSF1, ITIH3, JHY, KBTBD11, LINC01426, LINC01748, LPAL2, NOS1, PLAAT1, PNMA8B,
RGMA, RPL37P6, S100A5, SLC9A9, SNX32, SRP14-AS1, STK24, UBB, UGGT2, WASH8P,
Y_RNA, ZNF160, ZNF703. Twenty-three of them are protein coding genes while two
of them are long intergenic non-protein coding RNA (LINC01748, LINC01426), one is
antisense RNA (SRP14-AS1), three of them are pseudo-genes (LPAL2, RPL37P6, WASH8P),
three of them are novel transcripts (AC106786.1, AC096677.1, AC078883.1) and one is Y
RNA (Table S3). They play role in mostly in metabolic pathways, cancer and immunity
related pathways such as Arginine and proline metabolism, Glycolysis/Gluconeogenesis,
HIF-1 signaling pathway, Non-small-cell lung cancer, PD-L1 expression and PD-1 check-
point pathway in cancer and TGF-beta signaling pathway (Table S4).
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The predictive performance score of the signature model is 80.8 (AUC) (p = 1.3 × 10−6)
in multivariate Cox regression analysis for LUSC training group. The risk score of each
patient was predicted and patients were clustered into high- and low-risk groups based
on the cutoff value. Low- and high-risk groups have different expression patterns of the
signature genes and significant difference of survival probability (p < 0.0001). The AUC
values showing prediction power of the risk score are 0.76, 0.82, 0.87 and 0.92 for 1, 3, 5
and 8 years, respectively, for LUSC training group (Figure S10). Risk groups have also
significantly different survival probability for tumor stages I, II and III (Figure S11). Risk
groups are highly correlated with vital status. The high-risk group has highly significant
positive correlation with death (p = 8.5 × 10−15), while low-risk group is negatively
correlated. Tumor stages did not show any association with risk groups (Figure S12). The
risk score has highly significant prognostic ability (HR:2.85, p < 0.001) when multivariate
Cox regression analysis was performed with other clinical variables (Figure S13).

In order to validate the gene expression signature for LUSC, gene expression quantifi-
cation data of tumor samples of patients with LUSC who have paired RNAseq data were
downloaded. The risk scores of each patient in LUSC test group were predicted using gene
signature lists and patients were clustered into high- and low-risk groups based on the
best cutoff values for ROC. Risk groups have differential signature gene expression pattern;
high-risk group has lower survival time and higher number of deaths. Risk groups have
significantly different survival probability (p < 0.0001). The risk score has high prediction
powers, 0.93, 0.95, 0.96 and 0.97 (AUC) for 1, 3, 5 and 8 years, respectively, for LUSC test
group (Figure 2).

Risk groups have also significantly different survival probability for tumor stages
in test group (Figure S14). Vital status is not correlated with risk groups of LUSC test
group that number of deaths is higher for high-risk group insignificantly (p = 0.07). Tumor
stages are not associated with risk groups (Figure S15). The risk score has highly significant
prognostic ability (HR:2.66, p < 0.001) while other clinical variables have no effect on overall
survival in multivariate Cox regression analysis (Figure S16).

The expression gene signatures of LUAD and LUSC do not have any common gene,
however they share eight common pathways which are mostly metabolic pathways: Central
carbon metabolism in cancer, Glycolysis/Gluconeogenesis, HIF-1 signaling pathway, Pyru-
vate metabolism, PPAR signaling pathway, Amino sugar and nucleotide sugar metabolism,
TNF signaling pathway and Pathways of neurodegeneration—multiple diseases.

3.2. Differential Expression and Active Subnetwork Analysis of Risk Groups

Gene expression quantification data of both primary tumor and adjacent normal
tissues of patients who have paired RNAseq data (test groups) in LUAD and LUSC projects
were downloaded from the TCGA database. Differentially expressed (q < 0.01) genes
(DEGs) were determined in tumor samples according to normal samples for high- and low-
risk patient groups in test sets of LUAD and LUSC, separately. Then, active subnetworks
of DEGs in tumor samples were determined using the DEGs with their q values.

In tumor samples of the LUAD low-risk group, the number of the genes which are
dysregulated significantly (q < 0.01) more than 2-fold is 3615 (2439 down-, 1176 upregulated)
while 3610 genes (2239 down-, 1371 upregulated) are dysregulated for the LUAD high-risk
group. LUAD low- and high-risk groups have 2745 common differentially expressed
genes (Figure S17). The top 20 significant DEGs highlighted as purple at volcano plot in
Figure 3A,B are different between LUAD risk groups as dysregulation pattern is different
between risk groups albeit the shared 2745 DEGs.
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Figure 2. Gene expression signature and risk clustering of LUSC test dataset. Test dataset patients were clustered into high-
and low-risk groups based on risk scores of patients calculated by predicting the effect of the signature genes’ expression
on overall survival. (A) Expression heatmap of the signature genes in tumor samples of LUSC patients in the test dataset.
(B) Scatter plot showing risk scores, survival time and separation point of the patients into risk groups. (C) KM survival
plot showing the overall survival probability between risk groups. (D) ROC curve showing prediction power of risk score
in the test dataset for 1, 3, 5, and 8 years.

Seven of the signature genes (GNPNAT1, CCDC181, LDHA, ADAMTS15, IRX2,
LINC00578, AC005077.4) are dysregulated in both risk groups. ANGPTL4 is upregulated
in the high-risk group while MS4A1, GRIK2, and OGFRP1 are upregulated in the low-
risk group.

Risk groups of LUAD share dysregulated pathways (Figure 3C,D), highly related to
cancer, such as Cell cycle, Biosynthesis of amino acids and Protein digestion and absorption
which are upregulated for both risk groups (Figure S18), on the other hand, they also
share ECM–receptor interaction, Cell adhesion molecules pathways with immune system-
related pathways such as Complement and coagulation cascades and Cytokine-cytokine
receptor interaction which are downregulated for both risk groups (Figure S18). However,
the high-risk group has more dysregulated immune system-related pathways such as
Allograft rejection, Graft-versus-host disease, Inflammatory bowel disease, Intestinal im-
mune network for IgA production, Rheumatoid arthritis, Staphylococcus aureus infection
(Figure 3C,D), which are downregulated pathways in LUAD high-risk group (Figure S18).

Active subnetworks of differentially expressed genes in tumor samples of the LUAD
risk groups were identified and low-risk group has 191 genes while high-risk group has 168
genes including 112 common genes, which are acting on active subnetworks (Figure S17).
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Figure 3. Differential expression analysis of the LUAD risk groups. LUAD test dataset patients were clustered into high-
and low-risk groups based on risk scores of patients and differentially expressed genes in tumor samples were determined
based on expressions in normal tissues. (A) Volcano plot showing differentially expressed genes more than 2-fold (Log2 =1)
for LUAD low-risk group. The top 20 significant downregulated and upregulated genes are highlighted as purple. FDR
corrected p-values threshold is 0.01 (-Log10 = 2). Red: Upregulated, Green: Downregulated, Black: Not significant or
low than 2-fold. (B) Volcano plot showing differentially expressed genes more than two-fold (Log2 = 1) for the LUAD
high-risk group. The top 20 significant downregulated and upregulated genes are highlighted as purple. FDR corrected
p-values threshold is 0.01 (-Log10 = 2). Red: Upregulated, Green: Downregulated, Black: Not significant or low than 2-fold.
(C) Dysregulated pathways of differentially expressed genes for LUAD low-risk group. (D) Dysregulated pathways of
differentially expressed genes for LUAD high-risk group.

Pathway enrichment of DEGs at active subnetworks shows that the genes playing
role in active subnetworks are much more related to cancer pathways such as PI3K-Akt
signaling pathway, Ras signaling pathway, Small-cell lung cancer, Breast cancer, Gastric
cancer, Proteoglycans in cancer and Rap1 signaling pathway (Figure 4). LUAD risk groups
have mostly similar cancer-related active pathways, however only low-risk group has
FoxO signaling pathway and TNF signaling pathway while high-risk group has Estrogen
signaling pathway, Growth hormone synthesis, secretion, and action with immune system
pathways such as Antigen processing and presentation, Intestinal immune network for
IgA production and Leukocyte trans-endothelial migration.

The number of dysregulated genes expressed significantly (q < 0.01) more than 2-
fold in tumor samples of the LUSC low-risk group is 5596 (3394 downregulated, 2202
upregulated) while 5403 genes (3338 downregulated, 2065 upregulated) are dysregulated
for LUSC high-risk group. LUSC low- and high-risk groups have 4562 common differen-
tially expressed genes (Figure S17). The top 20 significant DEGs highlighted at volcano
plot in Figure 5A,B include common genes and dysregulation pattern is similar between
risk groups.
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Figure 4. Pathway enrichment of differentially expressed genes at active subnetworks of the LUAD risk groups. Active
subnetworks were determined by using differential expression analysis results and pathway enrichment analysis was
performed for the genes at subnetworks. (A) Pathways of differentially expressed genes in active subnetworks for LUAD
low-risk group. (B) Pathways of differentially expressed genes in active subnetworks for LUAD high-risk group.

 

Figure 5. Differential expression analysis of the LUSC risk groups. LUSC test dataset patients were clustered into high-
and low-risk groups based on risk scores of patients and differentially expressed genes in tumor samples were determined
based on expressions in normal tissues. (A) Volcano plot showing differentially expressed genes more than 2-fold (Log2 = 1)
for LUSC low-risk group. The top 20 significant downregulated and upregulated genes are highlighted as purple. FDR
corrected p-values threshold is 0.01 (-Log10 = 2). Red: Upregulated, Green: Downregulated, Black: Not significant or low
than 2-fold. (B) Volcano plot showing differentially expressed genes more than two-fold (Log2 = 1) for LUSC high-risk group.
The top 20 significant downregulated and upregulated genes are highlighted as purple. FDR corrected p-values threshold is
0.01 (-Log10 = 2). Red: Upregulated, Green: Downregulated, Black: Not significant or low than 2-fold. (C) Dysregulated
pathways of differentially expressed genes for LUSC low-risk group. (D) Dysregulated pathways of differentially expressed
genes for LUSC high-risk group.
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LUSC signature genes have 10 common genes (EDN1, JHY, PLAAT1, HKDC1, ITIH3,
KBTBD11, RGMA, ZNF703, S100A5, LPAL2) with DEGs of both risk groups. Three of
the signature genes, ADAMTS17, IGSF1, and LINC01426, are upregulated in the low-risk
group; others, NOS1 and SRP14-AS1 are downregulated while Y_RNA is upregulated in
the high-risk group.

Risk groups of LUSC have common dysregulated pathways (Figure 5C,D), which
are highly related to cancer, such as Cell cycle, DNA replication, Base excision repair,
p53 signaling pathway which are upregulated at both risk groups (Figure S19), on the
other hand, they also share ECM–receptor interaction, Cell adhesion molecules, Focal
adhesion pathways with immune system-related pathways such as Chemokine signaling
pathway, Complement and coagulation cascades, Cytokine–cytokine receptor interaction,
which are downregulated at both risk groups (Figure S19). However, the high-risk group
has more upregulated metabolic pathways such as Central carbon metabolism in cancer,
Protein digestion and absorption, Alanine, aspartate and glutamate metabolism, Arginine
and proline metabolism, Cysteine and methionine metabolism, Glutathione metabolism,
Ribosome biogenesis in eukaryotes; and downregulated immune-related pathways such
as JAK-STAT signaling pathway, TNF signaling pathway, Primary immunodeficiency, T
cell receptor signaling pathway distinctly from low-risk group (Figure S19). LUSC low-
risk group has downregulated PI3K-Akt signaling pathway, Phenylalanine metabolism,
Tyrosine metabolism, Phospholipase D signaling pathway, Proteoglycans in cancer and
Tight junction pathways with upregulated Hippo signaling pathway and Small-cell lung
cancer distinctly from high-risk group (Figure S19).

Active subnetworks of differentially expressed genes in tumor samples of the LUSC
risk groups has 357 genes for the low-risk group while 350 genes for high-risk group includ-
ing 245 common genes (Figure S17). Active pathways of the LUSC risk groups, are highly
related to cancer pathways such as PI3K-Akt signaling pathway, Ras signaling pathway,
Small-cell lung cancer, Proteoglycans in cancer and Rap1 signaling pathway (Figure 6A,B).
LUSC risk groups have mostly similar cancer-related active pathways, however only low-
risk group has Nucleotide excision repair, Adherens junction and Alpha-Linolenic acid
metabolism pathways, while high-risk group has cancer and metabolism-related pathways
such as Basal cell carcinoma, Prolactin signaling pathway, Apoptosis, Mitophagy, Choline
metabolism in cancer, Insulin signaling pathway, Carbohydrate digestion and absorption,
Central carbon metabolism in cancer with immune system-related Measles and Influenza
A pathways.

 

Figure 6. Pathway enrichment of differentially expressed genes at active subnetworks of the LUSC risk groups. Active
subnetworks were determined by using differential expression analysis results and pathway enrichment analysis was
performed for the genes at subnetworks. (A) Active pathways of differentially expressed genes for LUSC low-risk group.
(B) Active pathways of differentially expressed genes for LUSC high-risk group.
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3.3. Copy Number Variations Analysis

The significant aberrant genomic regions in tumor samples of patients were deter-
mined and then gene enrichment from genomic regions which have differential copy
number was performed. Pathway enrichment analysis of genes which have CNVs was
performed and plotted. LUAD low- and high-risk groups have different CNV profiles
as seen at CNV plots showing amplified or deleted genomic regions on chromosomes.
Chromosomes 1, 6, 7, 10, 13, 16, 17, 28 and 20 have different significant aberrant genomic
regions (q < 0.01) between risk groups (Figure 7A,B). The highest frequencies of the am-
plified genes are 45%, 49% and the deleted genes are 31%, 45% in the low- and high-risk
groups, respectively. The top 10 the highest frequently amplified or deleted genes in tumor
samples of risk groups are different and patients in the same group may have different
aberration patterns (Figure 7C,D). The numbers of the deleted genes and the amplified
genes are 10,144 and 10,412, respectively, in tumor samples of the LUAD low-risk group.
LUAD high-risk group has 5379 deleted and 8442 amplified genes in tumor samples. Risk
groups have 4921 deleted and 6559 amplified genes in common (Figure S22).

Pathways of CNV genes are different between LUAD risk groups; mostly immune
system pathways such as Allograft rejection, Graft-versus-host disease, Antigen processing
and presentation, Complement and coagulation cascades, Inflammatory bowel disease and
Viral carcinogenesis pathways have amplified CNVs in the low-risk group (Figure S20)
while Herpes simplex virus 1, Cytosolic DNA sensing pathway, Natural killer cell mediated
cytotoxicity and Nod-like receptor signaling pathways have deleted CNVs (Figure S20)
in the high-risk group (Figure 7). Complement and coagulation cascades pathway has
amplified genes in both risk groups while Natural killer cell mediated cytotoxicity and
Nod-like receptor signaling pathways have deleted genes in both risk groups (Figure S20).
The low-risk group patients have immune system pathways with amplified genes whereas
high-risk group patients have immune system pathways with deleted genes. On the other
hand, high-risk group has amplified genes in metabolic pathways such as Gastric acid
secretion and Insulin secretion (Figure S20).

LUSC risk groups have different significant aberrant genomic regions obviously on
chromosomes 5, 6, 8 and X (Figure 8A,B). The highest frequencies of amplified genes are
84%, 77% and of the deleted genes are 55%, 51% in the low- and high-risk groups, respec-
tively. LUSC risk groups have higher frequency of amplified genes than deleted genes.
Risk groups have common genes from top 25 the highest frequently amplified genes such
as SOX2, GHSR, TNFSF10 and miRNAs, miR-7977 and miR-569, with variable frequencies.
Risk groups have also common deleted genes such as CDK inhibitors, CDKN2A and
CDKN2B, and miR-1284 (Figure 8C,D). LUSC low-risk group has 10,720 deleted and 10,264
amplified genes while LUSC high-risk group has 9477 deleted and 10,250 amplified genes
in tumor samples. Risk groups have 7820 deleted and 8659 amplified genes in common
(Figure S22).

Pathways of CNV genes highly overlap between LUSC risk groups and they share
cancer-related pathways such as PI3K-Akt signaling pathway, JAK-STAT signaling path-
way, Ras signaling pathway, Gastric cancer (Figure 8E,F). However, some pathways differ
between risk groups, low-risk group has CNVs at mTOR signaling pathway, VEGF signal-
ing pathways and Central carbon metabolism in cancer, while high-risk group has CNVs
at Chemical carcinogenesis, Drug metabolism—cytochrome P450, Carbohydrate digestion
and absorption pathways (Figure 8E,F). Steroid hormone biosynthesis and Bile secretion
pathways have multiple amplified genes while NOD-like receptor signaling pathway has
deleted genes, in both risk groups. Only low-risk group has multiple amplified genes
at Growth hormone synthesis, secretion and action, and Complement and coagulation
cascades pathways. Only high-risk group has amplified genes at Chemical carcinogenesis
and Drug metabolism pathways while has deleted genes at Cytokine-cytokine receptor
interaction and Fatty acid biosynthesis pathways (Figure S21).
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Figure 7. Significant Copy Number Variations (CNVs) of the LUAD risk groups. (A) CNV plot at genome scale showing
amplified or deleted genomic regions on chromosomes of the LUAD low-risk group. Score: -Log10(q value), Horizontal
orange line: 0.01 q value threshold. (B) CNV plot of the LUAD high-risk group. (C) OncoPrint plot showing 25 the highest
frequently amplified and deleted genes of the LUAD low-risk group. (D) OncoPrint plot showing 25 the highest frequently
amplified and deleted genes of the LUAD high-risk group. (E) Pathways of CNV genes of the LUAD low-risk group.
(F) Pathways of CNV genes of the LUAD high-risk group.
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Figure 8. Significant Copy Number Variations (CNVs) of the LUSC risk groups. (A) CNV plot at genome-scale showing
amplified or deleted genomic regions on chromosomes of the LUSC low-risk group. (B) CNV plot of the LUSC high-risk
group. (C) OncoPrint plot showing 25 the highest frequently amplified and deleted genes of the LUSC low-risk group.
(D) OncoPrint plot showing 25 the highest frequently amplified and deleted genes of the LUSC high-risk group. (E)
Pathways of CNV genes of the LUSC low-risk group. (F) Pathways of CNV genes of the LUSC high-risk group.

3.4. Simple Nucleotide Variations Analysis

Significantly (q < 0.05) mutated genes classified as oncogene (OG) or tumor suppressor
gene (TSG) based on TSG/OG scores of the genes and the Cancer Gene Census, were
identified for LUAD and LUSC risk groups. COSMIC database was used as a reference
mutation database for this analysis and Cancer Gene Census data.

LUAD low-risk group has 15,376 mutated genes, while LUAD low-risk group has
12,815 mutated genes, 11,516 genes of which are common between LUAD risk groups
(Figure S27). LUAD patients have a wide range of mutation numbers changing from
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1518/1158 to 10s with median 167 and 172.5 for low- and high-risk groups, respectively.
Missense mutation is the highest frequent mutation type, and C > A and C > T substitutions
are the most frequent ones for both risk groups. LUAD risk groups have a similar set of
mutated genes with varying frequencies. TP53 is the highest frequently mutated gene with
45% and 53% for low- and high-risk groups, and the following ones are MUC16 (39%, 40%)
and CSMD3 (38%, 35%) for both groups (Figure S23). SomInaClust analysis was performed
to determine driver genes, and 39 genes and 19 genes are strong candidate driver genes
for the low-risk group and high-risk group, respectively (Tables S5 and S6). Interestingly,
LUAD risk groups share 18 of these driver genes (Figure S27). SomInaClust calculates
TSG and OG scores based on background mutation rate and hot spots, then classifies the
genes based on TSG/OG scores and cancer gene census data (Figure S25). The driver genes
determined in LUAD low-risk group are KRAS, TP53, EGFR, BRAF, STK11, MGA, NF1,
RB1, PIK3CA, ATM, RBM10, SETD2, ARID1A, CTNNB1, CMTR2, SF3B1, CSMD3, ATF7IP,
KEAP1, HMCN1, EPHA5, ARID2, TTK, SMAD4, KDM5C, SMARCA4, APC, NFE2L2, RIT1,
DDX10, LTN1, CDH10, SPTA1, LRP1B, COL11A1, MAP3K12, USH2A, AKAP6 and RASA1.
The driver genes determined in LUAD high-risk group are KRAS, TP53, STK11, EGFR,
BRAF, RBM10, PIK3CA, SETD2, ARID2, NF1, RB1, MGA, KEAP1, CSMD3, SMARCA4,
CTNNB1, KDM5C, IDH1 and ATM (Figure S25; Tables S5 and S6). TP53 and CSMD3
genes are the most frequently mutated genes with 47%, 56% and 41%, 37% frequencies,
respectively for low- and high-risk groups (Figure 9A,B). More than half of the genes are
mutated in less than 12% of patients. For common genes, LUAD high-risk group has
mostly higher frequencies. TP53 has differential mutation types, while KRAS has mostly
missense mutations. CSMD3 has more multi-hits (multiple mutations in one patient) in
the low-risk group than the high-risk group. EGFR has in frame deletions in both risk
groups and other common genes have similar mutation type pattern between risk groups
(Figure 9A,B). Pathways of driver mutated genes are highly lung cancer-related pathways
such as Non-small-cell lung cancer, EGFR tyrosine kinase inhibitor resistance, Platinum
drug resistance, MAPK signaling, mTOR signaling, Ras signaling pathway, PI3K-Akt
signaling (Figure 9C,D) and other immunologic and metabolic pathways such as Signaling
pathways regulating pluripotency of stem cells, FoxO signaling pathway, Rap1 signaling
pathway, Central carbon metabolism in cancer, Proteoglycans in cancer, Human T-cell
leukemia virus 1 infection, PD-L1 expression and PD-1 checkpoint pathway in cancer and
Natural killer cell mediated cytotoxicity pathways, for both risk groups. Many common
pathways are enriched because these mutated driver genes play role in many crucial
important pathways. However, Wnt signaling pathway and Hippo signaling pathways
are mutated only in the low-risk group, while Gap junction, GnRH signaling pathway,
C-type lectin receptor signaling pathway, T cell receptor signaling pathway, HIF-1 signaling
pathway, Growth hormone synthesis, secretion and action and AMPK signaling pathways
are mutated only in the high-risk group (Figure 9C,D).

LUSC low-risk group has 14,038 mutated genes, while LUSC low-risk group has 14,616
mutated genes, and 11,947 genes are common (Figure S27). LUSC patients have a range of
mutation numbers from 2300/1488 to 10s with median 201 for low- and high-risk groups,
respectively. Missense mutation is the highest frequent mutation type, and C > A and
C > T substitutions are the most frequent ones for both risk groups. LUSC risk groups have
overlapping list of mutated genes with varying frequencies. TP53 is the highest frequently
mutated gene with 80% and 78% for low- and high-risk groups, and the following ones are
CSMD3 (42%, 42%) and MUC16 (39%, 40%) for both groups (Figure S24). As candidate
driver genes, 30 genes and 19 genes were identified for the low-risk group and the high-risk
group, respectively (Tables S7 and S8). LUSC risk groups share 14 of these driver genes
(Figure S27). The driver genes determined in LUSC low-risk group are TP53, KMT2D,
NFE2L2, PIK3CA, CDKN2A, PTEN, RB1, FAT1, ARID1A, NF1, RASA1, CUL3, KDM6A,
NRAS, KRT5, ZNF750, EP300, FGFR3, TAOK1, CSMD3, NSD1, HRAS, SI, PDS5B, KRAS,
KEAP1, API5, HNRNPUL1, SLC16A1, FBXW7. The driver genes determined in LUSC high-
risk group are TP53, NFE2L2, PIK3CA, KMT2D, FAT1, CDKN2A, RB1, PTEN, NOTCH1,
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ARID1A, RASA1, NF1, KMT2C, BRAF, PIK3R1, CSMD3, STK11, HRAS, KEAP1 (Figure
S26; Tables S7 and S8). TP53 (83%, 82%), CSMD3 (44%, 44%) and KMT2D (25%, 23%) are
most frequent mutated genes for low- and high-risk groups (Figure 10A,B). For common
genes, risk groups have similar frequencies. TP53 and KMT2D genes have differential
mutation types, while CSMD3 has mostly missense and multi-hit mutations. CDKN2A has
mostly truncating mutations in both risk groups and other common genes have similar
mutation type pattern between risk groups (Figure 10A,B). Pathways of driver mutated
genes are highly lung cancer-related pathways such as Non-small-cell lung cancer, EGFR
tyrosine kinase inhibitor resistance, Platinum drug resistance, MAPK signaling and Ras
signaling (Figure 10C,D) and other immunologic and metabolic pathways such as FoxO
signaling pathway, Central carbon metabolism in cancer, Proteoglycans in cancer, Hepatitis
B, Hepatitis C, PD-L1 expression and PD-1 checkpoint pathway in cancer for both risk
groups. Many common pathways are enriched because these mutated driver genes play
role in many crucial important pathways. However, Gap junction and Ubiquitin mediated
proteolysis pathways are mutated only in the low-risk group, while HIF-1 signaling and
TNF signaling pathways are mutated only in the high-risk group (Figure 10C,D).

 

Figure 9. Oncoplot of potential driver genes containing significant SNVs of the LUAD risk groups. (A) Oncoplot showing
significant SNV genes in tumor samples of the LUAD low-risk group patients. (B) Oncoplot showing significant SNV genes
in tumor samples of the LUAD high-risk group patients. (C) Pathway enrichment of the significant SNV genes of the LUAD
low-risk group. (D) Pathway enrichment of the significant SNV genes of the LUAD high-risk group.
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Figure 10. Oncoplot of potential driver genes containing significant SNVs of the LUSC risk groups. (A) Oncoplot showing
significant SNV genes in tumor samples of the LUSC low-risk group patients. (B) Oncoplot showing significant SNV genes
in tumor samples of the LUSC high-risk group patients. (C) Pathway enrichment of the significant SNV genes of the LUSC
low-risk group. (D) Pathway enrichment of the significant SNV genes of the LUSC high-risk group.

When venn diagram is drawn by using all driver genes, all cancer and risk groups
have TP53, CSMD3, KEAP1, NF1, RB1 and PIK3CA mutations. KRAS, STK11, BRAF,
ARID1A, NFE2L2 and RASA1 genes are shared by 3 different groups. LUAD high-risk
group has only IDH1 oncogene as different from LUAD low-risk group while LUSC high-
risk group has KMT2C, NOTCH1 and PIK3R1 tumor suppressor genes as different from
LUSC low-risk group. EGFR, MGA and SMARCA4 are not driver genes in LUSC while
CDKN2A, PTEN, HRAS and FAT1 are not driver genes in LUAD groups (Figure 11).

Significant SNVs and CNVs on driver genes are co-displayed as OncoPrint. Although
there exist some genes with both SNVs and significant CNVs while others have only SNVs.
Moreover, some patients have only SNVs or only CNVs or both for a particular driver gene.

TP53, STK11, KEAP1, SMARCA4 and MGA genes have deletions while CSMD3
and PIK3CA genes have amplification beside SNVs in both LUAD risk group. KRAS
and EGFR genes have amplification in the high-risk group; however, they do not have
significant CNVs in the low-risk group. Oncogenes tend to have amplifications while tumor
suppressor genes tend to have deletions in both risk groups with exceptions (CSMD3,
CDH10, HMCN1, AKAP6 and CTNNB1) (Figure 12).
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Figure 11. Venn diagram of driver genes containing Simple Nucleotide Variation (SNV) in tumor samples of LUAD and
LUSC risk groups.

 

Figure 12. OncoPrint of the driver genes containing significant SNVs and CNVs in LUAD risk groups. Significant SNVs
and CNVs are plotted together on potential driver genes in tumor samples of the LUAD risk groups. (A) OncoPrint of the
driver genes in LUAD low-risk group. (B) OncoPrint of the driver genes in LUAD high-risk group.

OncoPrints in Figure 13 show that TP53, CDKN2A, FAT1, RASA1, ARID1A and HRAS
genes have deletions while only PIK3CA gene has amplification beside SNVs in both LUSC
risk groups. PIK3R1, KEAP1 and STK11 genes have deletions only in the high-risk group
while SI, CSMD3, ZNF750, KRAS genes have amplification and NSD1, FGFR3, PTEN,
SLC16A1, NRAS and CUL3 have deletion only in the low-risk group. Oncogenes tend
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to have amplifications while tumor suppressor genes tend to have deletions in both risk
groups with exceptions (CSMD3, FGFR3, ZNF750, NRAS, HRAS, KEAP1) (Figure 13).

 

Figure 13. OncoPrint of the driver genes containing significant SNVs and CNVs in LUSC risk groups. Significant SNVs and
CNVs are plotted together on potential driver genes in tumor samples of the LUSC risk groups. (A) OncoPrint of the driver
genes in LUSC low-risk group. (B) OncoPrint of the driver genes in LUSC high-risk group.

Circos plots showing all non-synonymous SNVs in original data of risk groups and
significant CNVs at genomic scale on chromosomes were drawn to show the genomic
alterations between risk groups of LUAD and LUSC.

LUAD low-risk group has more genome-wide CNVs and SNVs than the high-risk
group. The low-risk group has more genomics regions containing missense, nonsense and
frame-shift insertions/deletions mutations. Moreover, low-risk group has extra deletions
on chromosomes 1, 3, 5, 6, 12, 15 and X with extra amplifications on chromosomes 6, 10,
14, and 20. The high-risk group has extra amplifications on chromosomes 7, 11, 12, and 17.
The CNVs of high-risk group are localized mostly on 1, 3, 5, 6, 7, 8 and 17 whereas low-risk
group has CNVs on more chromosomes (Figure 14).

Figure 14. Circos plot of chromosome regions containing all SNVs and CNVs in LUAD risk groups. Significant CNVs
(q < 0.01) and all SNVs in original data are plotted together on chromosome regions in tumor samples of the LUAD risk
groups. (A) Circos plot of the LUAD low-risk group. (B) Circos plot of the LUAD high-risk group.
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LUSC high-risk group has more genomic regions containing missense and nonsense
mutations than the low-risk group. However, they have similar amount of CNVs although
with different localizations. The high-risk group has extra amplifications on chromosomes
4, 6 and 11; has extra deletions on chromosomes 15, 19 and X. The low-risk group has only
extra deletions on chromosomes 1, 5, 6, 11 and 16 (Figure 15).

Figure 15. Circos plot of chromosome regions containing all SNVs and CNVs in LUSC risk groups. Significant CNVs
(q < 0.01) and all SNVs in original data are plotted together on chromosome regions in tumor samples of the LUSC risk
groups. (A) Circos plot of the LUSC low-risk group. (B) Circos plot of the LUSC high-risk group.

4. Discussion

In order to profile the genetic differences between risk groups of LUAD and LUSC,
gene expression signatures were generated and the patients were clustered into low- and
high-risk groups and then significant DEGs, DEGs at active subnetworks, CNVs and SNVs
were identified in each risk group. The biological alterations for these data types were
compared between risk groups and between lung cancer subtypes.

Expression signature for LUAD consists of 35 gene which 27 of are protein-coding
genes while two are long intergenic non-protein coding RNA, one is antisense RNA, three
are pseudogenes and two are novel transcripts. Many of the coding genes are lung cancer
or other cancer types related such as ADAMTS15 [44], ASB2 [45] and EPHX1 [46] with
potential tumor suppressor roles; ANGPTL4 [47], ASCL2 [48], CCL20 [49], DKK1 [50],
GRIK2 [51], LDHA [52], RGS20 [53], RHOQ [54], TLE1 [55] and WBP2 [56] with potential
oncogenic roles; and CD200 [57], CD200R1 [57], CCDC181 [58], GNPNAT1 [59], IRX2 [60],
LDLRAD3 [61], STAP1 [62], LINC00578 [63] with prognostic potential. Moreover, MS4A1 is
dysregulated in asbestos-related lung squamous carcinoma [64], RAB9B is a target of miR-
15/16 which are highly related to lung cancer [65], LINC00539 is related to tumor immune
response [66] while long non-coding RNA, OGFRP1, regulates non-small-cell lung cancer
progression [67]. The remaining signature genes, CPXM2, ENPP5, SAMD13, SLC52A1,
ZNF682, ZNF835, ZNF571-AS1 and U91328.1, have not been related to carcinoma, yet.
However, they showed highly prognostic power through risk score to distinguish low- and
high-risk of overall survival in LUAD.

LUSC gene expression signature including 33 genes of which ALDH7A1 [68], ALK [69],
EDN1 [70], FABP6 [71], HKDC1 [72], IGSF1 [73], KBTBD11 [74], NOS1 [75], SLC9A9 [76],
STK24 [77], UBB [78], ZNF703 [79] have been shown with oncogenic relations while
RGMA [80] is candidate tumor suppressors. ITIH3 [81] and S100A5 [82] has been re-
lated to prognostic biomarker potentials. Other cancer-related genes are ADAMTS17 [83],
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LINC01748 [84], LPAL2 [85], SRP14-AS1 [86] and WASH8P [87]. Long intergenic non-
protein coding RNA, LINC01426, promotes cancer progression via AZGP1 and predicts
poor prognosis in patients with LUAD [88]. COL28A1 has prognostic values in glioblas-
toma [89]. Many of the genes such as JHY, PLAAT1, PNMA8B, RPL37P6, SNX32, UGGT2
and Y_RNA have not been related to any cancer, yet.

Gene expression signatures of LUAD and LUSC share eight pathways which are
mostly metabolic pathways. LUAD signature plays role in immune-related pathways as
different from those in LUSC. However, pathway enrichment shows us that risk prediction
works on metabolic pathways, therefore if we put a name to important mutations as
driver mutations, in this case we can say that reprogramming of energy metabolism is the
alternative fuel of the cancer [90–92]. The differential expression on them with immune
system effect in count can hold the passage of cancer.

High-risk groups of both LUAD and LUSC have more immune pathways including
downregulated genes and metabolic pathways including upregulated genes. On the other
hand, low-risk groups have both upregulated and downregulated genes on cancer-related
pathways. Although LUAD and LUSC seem to have similar characteristics of risk groups,
close signature gene pathways and similar differential expression pathways sharing 2106
DEGs in total, they are displayed separately in PCA, especially at analysis of test groups.

At CNV level both risk groups and cancer subtypes have huge number of genes
with amplifications or deletions which can cause genomic instability and uncontrolled
regulation. Both LUAD and LUSC risk groups have important gene alterations such as
CDKN2A and CDKN2B deletions which are associated with NSCLC [93] and promotes
KRAS and EGFR mutant tumorigenesis [94,95] while SOX2 oncogene amplification in
LUSC which is a common event in squamous cell carcinomas [96,97] and amplification of
PSMD4 in LUAD, with oncogenic roles in breast, hepatocellular, colorectal and prostate
cancer cells [98–101]. CNVs also play role in metabolic and immune-related pathways
which can differ between risk groups and cancer subtypes. If we look from a higher
perspective, the LUAD low-risk group has much more CNVs and SNVs on its genome
than the high-risk group. On the other hand, the LUSC high-risk group has more SNVs
than the low-risk group while CNVs do not vary too much.

SNV analysis gives similar results with literature for example EGFR and KRAS muta-
tions are mutually exclusive in LUAD samples that is confirmed again [9]. Additionally,
EGFR [102], MGA [103], SMARCA4 [104], ATM [105], RBM10 [106] and KDM5C [107]
which are lung cancer related genes are mutated only in LUAD but not in LUSC. On the
other hand, CDKN2A [108], PTEN [109] and HRAS [110] genes are mutated only in LUSC.
In general, low-risk groups have more mutated genes for both LUAD and LUSC sam-
ples. When SNV and CNV genes are plotted together, it can be seen that LUAD high-risk
group has obvious oncogene amplifications and tumor suppressor deletions, while LUAD
low-risk group has both tumor suppressor deletions and tumor suppressor amplifications
with a few oncogene amplifications. This SNV and copy number differential pattern can
cause differential gene expression profiles and characteristics of tumor. LUSC patients
have mostly deletions on driver genes with only PIK3CA [111] and KRAS [111] oncogene
amplifications. Both LUSC risk groups have obvious TP53 [111] and CDKN2A tumor
suppressor gene deletions, but amplification of CSMD3, which has differential roles in lung
cancer [112,113], does not occur in LUSC high-risk group. Again, only these driver genes
which have differential alterations and frequencies can create the risk difference based on
gene expression levels.

5. Conclusions

This study has been performed to profile the genomic and transcriptomic differences
not only between LUAD and LUSC but also between risk groups to understand the
driving differences between them. Treatment options can vary between cancer subtypes
and risk groups because of differential targetable mutation patterns. Nowadays, many
groups and government institutions are working on the integration of the drug bioactivity
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and molecular data to investigate more effective molecularly targeting therapeutics for
individual patients for the personalized therapy.

Supplementary Materials: The supplementary data are available online at https://www.mdpi.com/
2075-4426/11/2/154/s1; Figure S1: Flowchart of method and used R packages in this study. The
other R packages not written in this flowchart can be found at Materials and Method part of the
article; Figure S2: Gene expression signature and risk clustering of LUAD training dataset; Figure S3:
Survival analysis of risk groups clustered by using signature gene expression at different tumor
stages in LUAD training dataset; Figure S4: Mosaic plots showing association analysis of categorical
variables for LUAD training dataset. Pearson residuals show the positive (blue) or negative (red)
association between levels of categories; Figure S5: Multivariate Cox Regression results of clinical
variables and risk score in LUAD training dataset. Only risk score has significant result when all
clinical variables are included into multivariate analysis; Figure S6: Multivariate Cox Regression
results of selected clinical variables (which have significant results in univariate Cox analysis) and
risk score in LUAD training dataset. Risk score, t, n, m stages and history of prior malignancy have
significant effects on survival. When pathologic tumor stage is used instead of t, n, m stages, only
risk score and history of prior malignancy show significant effect on survival; Figure S7: Survival
analysis of risk groups clustered by using signature gene expression at different tumor stages in
LUAD test dataset; Figure S8: Mosaic plots showing association analysis of categorical variables
for LUAD test dataset; Figure S9: Multivariate Cox Regression results of selected clinical variables
(which have significant results in univariate Cox analysis) and risk score in LUAD test dataset. Risk
score and n stages have significant effect on survival. When pathologic tumor stage is used instead
of t, n, m stages, only risk score shows significant effect on survival; Figure S10: Gene expression
signature and risk clustering of LUSC training dataset; Figure S11: Survival analysis of risk groups
clustered by using signature gene expression at different tumor stages in LUSC training dataset;
Figure S12: Mosaic plots showing association analysis of categorical variables for LUSC training
dataset. Pearson residuals show the positive (blue) or negative (red) association between levels of
categories; Figure S13: Multivariate Cox Regression results of selected clinical variables (which have
significant results in univariate Cox analysis) and risk score in LUSC training dataset. Risk score,
tissue or organ of origin, t and n stages and history of prior malignancy have significant effects on
survival. When pathologic tumor stage is used instead of t, n, m stages, tissue or organ of origin,
risk score and history of prior malignancy show significant effect on survival; Figure S14: Survival
analysis of risk groups clustered by using signature gene expression at different tumor stages in
LUSC test dataset; Figure S15: Mosaic plots showing association analysis of categorical variables for
LUSC test dataset. Pearson residuals show the positive (blue) or negative (red) association between
levels of categories; Figure S16: Multivariate Cox Regression results of selected clinical variables
(which have significant results in univariate Cox analysis) and risk score in LUSC test dataset. Only
risk score has significant effect on survival either t, n, m stages or pathologic tumor stage is used
instead of t, n, m stages; Figure S17: Venn diagram of differentially expressed genes in tumor samples
of risk groups for LUAD and LUSC test groups; Figure S18: Pathway enrichment of DEGs of LUAD
risk groups; Figure S19: Pathway enrichment of DEGs of LUSC risk groups; Figure S20: Pathway
enrichment of CNV genes of LUAD risk groups; Figure S21: Pathway enrichment of CNV genes of
LUSC risk groups; Figure S22: Venn diagram of genes which have significant copy number alterations
in tumor samples of LUAD and LUSC risk groups; Figure S23: Summary of SNVs in LUAD risk
groups; Figure S24: Summary of SNVs in LUSC risk groups; Figure S25: SomInaClust result of
potential driver genes containing significant SNVs in LUAD risk groups. SomInaClust calculates
oncogene (OG) score and tumor suppressor gene (TSG) score for each significant gene and classifies
the gene according to the score threshold (20) and reference database; Figure S26: SomInaClust result
of potential driver genes containing significant SNVs in LUSC risk groups. SomInaClust calculates
oncogene (OG) score and tumor suppressor gene (TSG) score for each significant gene and classifies
the gene according to the score threshold (20) and reference database; Figure S27: Venn diagram of all
genes and potential driver genes containing SNVs of LUAD and LUSC risk groups, Table S1: Gene
list of expression signature in LUAD. Ensemble Gene IDs were used in signature analysis and then
enriched by using BioMart database; Table S2: KEGG pathway enrichment of expression signature
gene list in LUAD by using KEGG Mapper tool; Table S3: Gene list of expression signature in LUSC.
Ensemble Gene IDs were used in signature analysis and then enriched by using BioMart database;
Table S4: KEGG pathway enrichment of expression signature gene list in LUSC by using clusterProfiler
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R package; Table S5: SomInaClust result of SNV data in tumor samples of LUAD low-risk group;
Table S6: SomInaClust result of SNV data in tumor samples of LUAD high-risk group; Table S7:
SomInaClust result of SNV data in tumor samples of LUSC low-risk group; Table S8: SomInaClust
result of SNV data in tumor samples of LUSC high-risk group.
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Abstract: Although many studies have been conducted on single gene therapies in cancer patients,

the reality is that tumor arises from different coordinating protein groups. Unveiling perturbations in

protein interactome related to the tumor formation may contribute to the development of effective di-

agnosis, treatment strategies, and prognosis. In this study, considering the clinical and transcriptome

data of three Renal Cell Carcinoma (RCC) subtypes (ccRCC, pRCC, and chRCC) retrieved from The

Cancer Genome Atlas (TCGA) and the human protein interactome, the differential protein–protein

interactions were identified in each RCC subtype. The approach enabled the identification of dif-

ferentially interacting proteins (DIPs) indicating prominent changes in their interaction patterns

during tumor formation. Further, diagnostic and prognostic performances were generated by taking

into account DIP clusters which are specific to the relevant subtypes. Furthermore, considering the

mesenchymal epithelial transition (MET) receptor tyrosine kinase (PDB ID: 3DKF) as a potential

drug target specific to pRCC, twenty-one lead compounds were identified through virtual screening

of ZINC molecules. In this study, we presented remarkable findings in terms of early diagnosis,

prognosis, and effective treatment strategies, that deserve further experimental and clinical efforts.

Keywords: renal cancers; protein interactome; diagnostic biomarker; prognostic biomarker; virtual

screening; docking

1. Introduction

Kidney cancer is among the 10 most common cancers in adults and renal cell car-
cinoma (RCC) shows a steady increase in prevalence [1]. RCC is known to be the most
common type of kidney cancer and is responsible for up to 85% of cases; it is more com-
mon in males than in females (ratio, 1.7:1), and most of the patients are at an older age
(average age of 64 years) [1]. Primarily, RCC is categorized into subtypes according to
histological classification under a microscope, including clear cell (ccRCC, also known
as KIRC), papillary (pRCC, also known as KIRP), chromophobe (chRCC, also known as
KICH), and some other, less common subtypes such as collecting duct, medullary RCC, and
unclassified RCC [2]. The most prevalent one among kidney cancers is ccRCC which repre-
sents 75–80% of RCC [3] and derives its name from its clear cytoplasm on the pathologic
analysis [4]. The rest are papillary (10–15%), chromophobe (5%), and rare kidney cancers.
Although improvement of the state-of-the-art treatment technologies, the overall prognosis
is still poor in RCCs, particularly for patients who present with the advanced-stage dis-
ease [1]. Therefore, early diagnosis and successful urological procedures with partial or
total nephrectomy can be life-saving. However, only about 10% of RCC patients present
with urological problems or other known clinical symptoms. More than sixty percent of
patients are incidentally noticed at imaging investigations [5], and metastasis has already
begun in nearly 20–30% of the patients when diagnosed [6]. In this context, biomarker
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identification from secretion fluids is extremely important for early diagnosis. Furthermore,
biomarkers are becoming increasingly significant to facilitate the discovery of anti-cancer
agents, to distinguish cancer cells from the other cells, to understand drug action mech-
anisms, to predict prognosis, to design personalized medication, and to understand the
mechanisms underlying response to therapy. All types of kidney cancers are different in
many respects including tumor location within the kidney, the cell type from which they
originate, and alterations on their genotype, making it even more crucial to characterize
the pathology of each type and to identify specific proteins as druggable targets.

Biomarkers play an important role in the implementation of personalized medicine in
clinics with respect to defining subtype phenotypes, predicting clinical course and progno-
sis, and determining the appropriate therapeutic approach. In this respect, a comprehensive
pool of molecular markers from different biological levels (hub proteins, receptors, miR-
NAs, mRNAs, reporter TFs, and metabolites) were presented from a systematic integrative
biology perspective with the potential to provide in-depth knowledge into the disease
mechanisms in RCC subtypes [7]. On the other hand, the limited diagnostic and prognostic
performance of a molecular biomarker revealed the need for system biomarkers to be
obtained with approaches that consider interactions between critical molecules such as the
differential protein interactome [8,9].

The differential interactome methodology is based on the idea that significant alter-
ations occur in the protein–protein interactions (PPIs) among phenotypes. The success
of this approach has been effectively demonstrated in various cancers and their sub-
types [8–10]. The differential interactome approach made it possible to estimate the
probability distributions for any possible co-expression profile of gene pairs (encoding
proteins that interact with each other) across phenotypes and to determine the uncertainty
of whether a PPI is meeting the corresponding phenotype.

The Cancer Genome Atlas (TCGA) is one of the comprehensive cancer genomics
datasets available. The availability of TCGA allows researchers to uncover the molecular
profiling of tumors through the application of genome analysis technologies, including
large-scale genome sequencing. In our present study, we investigated the TCGA transcrip-
tome data from 892 individuals and used the differential interactome methodology [8]
that integrates transcriptome data with the human protein interactome network to ana-
lyze and compare the differential protein–protein interactions among healthy and tumor
groups. Three common subtypes (ccRCC, pRCC, and chRCC) of RCC were investigated
and compared in terms of the differential interactome profiles. These analyses allowed us
to identify differentially interacting proteins (DIPs) that represent significant changes in
their interaction patterns during the transition from “normal” to “tumor” phenotypes and
are therefore differently related to the corresponding tumor [9]. We also determined can-
didate protein panels with high diagnostic and/or prognostic performance, which might
allow us to develop novel drug candidates and to diagnose patients in the early stage.
Furthermore, we offer drug candidates that showed an inhibitory effect on mesenchymal
epithelial transition (MET) receptor tyrosine kinase which is one of the DIPs that have
activated interactions in the case of pRCC.

2. Materials and Methods
2.1. Collecting of Gene Expression Data

The transcriptome datasets consisting of three different subtypes of kidney cancer
(chRCC, ccRCC, and pRCC) were acquired from the TCGA database [11] to analyze their
gene expression profiles. The number of the primary tumor and the matched normal
tissue samples were 538 and 72 for ccRCC, 289 and 32 for pRCC, and 65 and 24 for
chRCC, respectively.

2.2. Obtaining Protein–Protein Interactions Data

Physical PPI data experimentally detected in humans was obtained from the BioGRID
database using the latest version (v. 4.0.189) [12]. The data contained 51,745 PPIs among
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10,177 human proteins. After filtering the PPI data for proteins encoded by genes having
transcriptome data in TCGA datasets, a network was reconstructed with 34,604 PPIs among
8322 proteins.

2.3. Identification of Differential Interactome and Differentially Interacting Proteins

The gene expression profiles of RCC subtypes were analyzed together with the ob-
tained PPI data through the differential interactome algorithm revised in the study of
Gulfidan et al. [8] using R (version 3.6.1). This algorithm presents the differential PPIs
(dPPIs) between the tumor phenotype and normal phenotype, taking into account the
relative observation frequencies (q-value) of each PPI as described earlier [8,9]. The criteria
of the algorithm for obtaining significant dPPIs were set as q-value < 0.10 (significantly
repressed in tumor phenotype), q-value > 0.90 (significantly activated in tumor phenotype),
and a normalized observation frequency either in normal or tumor phenotype > 20%.

DIPs, the proteins having differential interactions, were classified into two groups
according to their interaction patterns: (i) DIPs having repressed interactions under tumor
condition, and (ii) DIPs having activated interactions under tumor condition. DIPs that
were specific to the RCC subtypes and were common in all subtypes were detected for
further analyses. The networks consisting of dPPIs and DIPs were visualized through the
Cytoscape 3.4.0 [13].

2.4. Evaluation of the Secretion Levels of Subtype-Specific DIPs in Body Fluids

The secretion levels (ppm) of subtype-specific DIPs in plasma, serum, urine, and saliva
were investigated through protein expression data which is accessible in the GeneCards [14]
database curating the proteomics databases; ProteomicsDB [15], MaxQB [16], and MOPED [17].

2.5. Analysis of Diagnostic Performance and Prognostic Power

Principal component analyses (PCA) were carried out for the assessment of the diag-
nostic potential of subtype-specific DIPs using the expression values of genes encoding the
DIPs which had the secretion levels in body fluids. The simulations were performed using
the gene expression data of tumor samples of ccRCC, pRCC, and chRCC datasets for each
subtype-specific DIPs, separately.

To explore the prognostic performance of each subtype-specific DIP, survival anal-
yses were carried out through stratification of patients into high- and low-risk groups
based on their prognostic index (PI), which is the linear component of the Cox model
(PI = β1x1 + β2x2 + . . . + βpxp, where βi is coefficient acquired from the Cox fitting, xi is
the expression value of each gene). Analyses were implemented through the SurvExpress
tool [18] utilizing two RNA-Seq originated datasets of ccRCC with 415 samples, and pRCC
with 278 samples including clinical data. In addition, RNA–Seq originated chRCC dataset
with 9 samples with clinical data retrieved from TCGA [11] was analyzed separately
through the pipeline established in our previous study [8] due to the absence of any dataset
related to the chRCC subtype in the SurvExpress database. The signatures of survival in
each risk group were estimated by Kaplan–Meier curves and Hazard Ratios (HR). Statistical
significance of each plot was evaluated by the cut-off for log-rank p-value < 0.05. Hazard
ratio (HR = O1/E1/O2/E2) was calculated to discover the significance of the survival
curves based on the ratio between the relative death rate in group 1 (O1/E1) and the
relative death rate in group 2 (O2/E2), where O denotes the observed number of deaths,
and E denotes the expected number of deaths.

2.6. Identification of Candidate Drugs through Virtual Screening

We set the following criteria to determine the potential drug target protein among
DIPs in docking studies: (i) its interactions should be activated in the disease state, and
(ii) it should have at least 5 interactions. Among DIP proteins of pRCC, MET protein
satisfied all the criteria and came to the forefront as a potential drug target. Through virtual
screening, potential molecules targeting MET were determined. To have an insight into
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the ligand-receptor interactions, the available X-ray crystal structures of MET were fetched
from the Protein Data Bank (PDB) (www.rcsb.org) [19]. PDB entry 3DKF was chosen for
all the docking studies according to the resolution, Ramchandran outliers, and structural
similarity between the screened ligands and the co-crystallized ligands. Virtual Screening
binding analysis was carried out on the assigned binding site of the X-ray crystal structure of
MET [20] exploiting ZINC molecules described by the publicly available ZINC15 library [21].
Molecular docking studies were executed for 703 substances retrieved from the ZINC15
library through AutoDock Vina [22] in the PyRx virtual screening tool (v. 0.8) [23].

3. Results
3.1. Differential Interactome Estimation in Subtypes of RCC

RNA-seq transcriptome data of three RCC subtypes were retrieved from TCGA to
apply differential interactome methodology [8] for prediction of highly probable PPIs in
each state and identification of differential PPIs. To this end, we examined transcriptomic
data for three common subtypes of RCC with an adequate number of samples (n > 24)
in both normal and tumor groups (see Materials and Methods section). The scale-free
topology of the differential interactome network brings out the presence of hubs called
DIPs indicating substantial changes in their interaction patterns during the transition from
“normal” to “tumor” phenotypes [8,9]. We determined 628 DIPs for chRCC, 50 DIPs for
ccRCC, and 29 DIPs for pRCC as subtype-specific DIPs, whereas 33 DIPs were common in
all subtypes (Supplementary Table S1). The tumor-specificity of DIPs varied according to
the subtype (Figure 1).

–

ity on s-DIPs

2, 

Figure 1. Differential interactome networks reconstructed with differential protein–protein interac-
tions (dPPIs) around differentially interacting proteins (DIPs) in three Renal Cell Carcinoma RCC
subtypes. Red nodes represent DIPs specific to the subtype of interest. ccRCC: Clear Cell Renal
Carcinoma; pRCC: Papillary Renal Cell Carcinoma; chRCC: Chromophobe Renal Cell Carcinoma.
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Further analyses (i.e., determination of prognostic power, diagnostic performance,
and druggability) were implemented by taking into account 50 DIPs specific to ccRCC,
29 DIPs specific to pRCC, and the top 50 DIPs having the most interactions specific to
chRCC (Table 1). We considered those DIPs as a cluster for each subtype and suggested
them as potential systems biomarkers for the development of effective diagnosis, prognosis,
and treatment strategies.

Table 1. Differentially interacting proteins (DIPs) specific to RCC subtypes.

Specificity s-DIPs 1 Non s-DIPs 2

ccRCC-specific

ABCC2, B2M, BST2, CALU, CCDC106, CENPA,
CYB5R3, DDX3X, DKC1, DNAJB4, DTNBP1,

GABBR1, GIT2, HLA-B, HSPBP1, IMMT,
MAPK3, NRP1, PDIA4, PEA15, PFDN2, PFKM,

PPIB, PRKCD, RGCC, RPS6KA3, SDHA,
UBQLN1, TNIP1

AZIN1, CDT1, ELF4, FBXW8, GPS2, IL32,
IRF1, LDOC1, MCM7, MCM9, MTF1, MTOR,

P4HA2, PHLPP1, RSL1D1, SCD, TAF1,
TAPBP, TOMM20, USP2, ZNF668

pRCC-specific
CS, CUL3, DFFA, DHFR, EIF4A2, FLOT2, G6PD,

GSTA2, IGBP1, ITGA3, MET, MME, MVP,
PARP4, PGM2, PNPT1, PPM1A, TRAPPC1

GSTA4, HGF, LBH, LGALS8, MMGT1,
RANBP9, SF3A3, SOCS1, TRAPPC12,

TRAPPC2L, UNG

chRCC-specific

ANXA5, AQP1, ARF1, BAD, CHMP4B, CYLD,
ECH1, EEF1B2, FLOT1, FUS, HADHA, HADHB,
HSD17B10, JUP, KRT18, MAPRE1, PARK7, PFN1,
PHB, PHB2, PPP1CB, PRDX1, PRDX2, PRDX3,

PRDX5, PSMB4, PSMB6, PSME1, PTGES3,
PTMA, RAB1A, RAB7A, S100A10, TGOLN2,

TXN, UBB, UBE3A, YWHAB, YWHAE

ABL1, AMFR, ARAF, CDK9, FOS, JUND,
MCL1, MORF4L2, SF3B5, STAU1, TRIM8

1 Protein expression was observed at least in one of the following body fluids: serum, plasma, saliva, urine; 2 Protein expression was not
observed in any of the following body fluids: serum, plasma, saliva, urine.

Then, we filtered DIPs by considering whether they are secreted in body fluids and
renamed secreted proteins as “s-DIPs” (Table 1, Figure 2). s-DIPs represent proteins
that were expressed at least in one of the following media: serum, plasma, saliva, or
urine (www.genecards.org) [14]. The importance of secretion in body fluids that can be
accessed without surgery is that it might provide serious convenience for early diagnosis.
While s-DIPs were used for diagnosis analysis, all DIPs (s-DIPs and non-s-DIPs) were
considered in prognosis and druggability (virtual screening) analyses.

“ ”

– –

Figure 2. Bubble plots indicating protein expression levels of DIPs specific to three subtypes in different body fluids
including serum, plasma, saliva, and urine. The x-axis indicates subtypes while the y-axis indicates protein symbols.
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3.2. Prognostic and Diagnostic Capabilities of DIPs Clusters

We considered the clusters of DIPs as potential systems biomarkers for each RCC
subtype and analyzed their diagnostic performance and prognostic power.

The diagnostic analysis was performed via PCA using s–DIPs (Table 1). All s–DIP clus-
ters exhibited significantly high diagnostic performance for relevant subtypes (Figure 3A).

–Meier curves estimating patients’ survival for three 

–

− − −

Figure 3. Diagnostic and prognostic performance analysis results for Renal Cell Carcinoma (RCC) subtypes. (A) Principal
component analyses (PCA) plots, visualized by considering s-DIPs, indicating the individual differences in the gene
expression profiles in tumor samples among the subtypes. (B) Kaplan–Meier curves estimating patients’ survival for three
subtypes based on categorization of patients into high- and low-risk groups via prognostic index. ccRCC: Clear Cell Renal
Carcinoma; pRCC: Papillary Renal Cell Carcinoma; chRCC: Chromophobe Renal Cell Carcinoma; HR: Hazard Ratio; PC:
Principal component.

Prognostic capabilities of gene clusters were quantified through log-rank p-values
and visualized by Kaplan–Meier curves (Figure 3B). Cox (proportional hazards) regression
was also engaged to estimate HRs. These analyses were carried out utilizing TCGA clinical
datasets (see Materials and Methods section). Gene clusters were significantly predic-
tive in terms of patient survival risk assessment for the respective subtype (Figure 3B,
ccRCC p < 1 × 10−15, pRCC p = 5.36 × 10−5, chRCC p = 1.86 × 10−3). Through Cox-
proportional hazard analysis, HR values were estimated as 4.33, 4.32, and 7.12 for ccRCC,
pRCC, and chRCC, respectively.

3.3. Discovery of Drug Candidates through Virtual Screening Analyses

In silico simulation techniques have become an indispensable tool for modern-day
drug discovery programs. Molecular docking currently offers the best alternative to quickly
estimate the binding conformations of ligands that are energy-efficient to interact with a
pharmacological receptor site. It has become more popular as it is time and cost effective
in the pipeline of drug discovery and development. Interactions of some DIP proteins
within the module were activated during the tumorigenesis, while some were found to be
repressed. We hypothesized that, if we manage to break through the interactions that are
activated, we might model a strategy to cure the disease. For this purpose, we considered
DIPs with activated interactions in the tumor state as potential drug targets.
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For instance, among DIP proteins of the pRCC subtype, MET protein came into promi-
nence as a potential drug target. Candidate molecules targeting MET were determined via
virtual screening of the ZINC15 library via the available crystal structures of MET from
PDB. All available X-Ray crystal structures of MET (PDB IDs: 3DKF, 2RFN, 3EFJ, 3U6H,
4EEV) and their bound ligands were superposed, and potential binding sites were deter-
mined to identify the binding site location on the receptor (Figure 4A). Virtual Screening
binding analysis was accomplished on the assigned binding site of the X-ray structure
of MET (PDB ID: 3DKF) utilizing ZINC molecules which were described by the ZINC15
library. The virtual screening analysis revealed twenty-one ZINC molecules with high
binding affinities (∆G0 ≤ −12, LE > 0.35) (Table 2; Figure 4B).
high binding affinities (ΔG ≤ −

Figure 4. Virtual screening to identify potential hit drug candidates for pRCC. (A) Superposition of
X-ray crystal structures of MET retrieved from RCSB for the validation of docking protocol. (B) 2D
structures of ZINC molecules that showed high binding affinities to MET protein in virtual screening.
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Table 2. The ZINC molecules presented the best binding affinities to MET.

Ligand ZINC15 ID
Vina Binding Affinity

(kcal/mol)
Ligand Efficiency (LE)

ZINC200458361 −12.7 0.41
ZINC144529139 −12.6 0.39
ZINC73196087 −12.6 0.45
ZINC72318117 −12.5 0.44
ZINC72318118 −12.5 0.41
ZINC73163075 −12.5 0.42
ZINC96284612 −12.5 0.41
ZINC150080371 −12.4 0.38
ZINC299865209 −12.4 0.42
ZINC43176957 −12.4 0.43
ZINC73165724 −12.4 0.39
ZINC73196196 −12.4 0.43
ZINC72318119 −12.3 0.41
ZINC150078084 −12.2 0.37
ZINC96284613 −12.2 0.39
ZINC144475075 −12.1 0.4
ZINC40431067 −12.1 0.37
ZINC84759584 −12.1 0.36
ZINC96284618 −12.1 0.37
ZINC144529348 −12 0.41
ZINC166085169 −12 0.38

4. Discussion

Dysregulations in various biochemical pathways play an important role in cancer
formation and development. Genetic studies have identified numerous molecular defects
in cancer cells and suggested multiple potential targets for therapeutic intervention. Con-
ventional drug design has mainly focused on the inhibition of a single protein, usually
an enzyme or receptor; however, this strategy has not been successful enough, as the
development and progression of cancers are mostly due to the coordinated action of a
group of biological entities rather than a single molecule dysfunction [24]. Hereby, PPIs
have become highly promising targets that cover many therapeutic areas and potential in-
tervention points for the development of anticancer agents. Until now, significant progress
has been made in identifying small molecule inhibitors of various protein–protein systems
in the field of oncology, and powerful and selective drug-like molecules that inhibit many
interactions such as p53-MDM2 interaction have been discovered [25]. Furthermore, a
number of these small-molecule inhibitors, such as Siremadlin, AMG-232, and APG-115
have progressed to early phase clinical trials [26].

Our study reports the generation of the dPPI networks in RCC subtypes through
the implementation of high throughput transcriptome and protein interactome data. The
integration of respective RNA-seq datasets and differential interactome approach allowed
the identification of dPPIs in different conditions (tumor/normal) in RCC subtypes. The
study unveils and compares the dPPIs for each subtype and identifies DIPs through a
differential interactome. Further analyses on DIPs may be useful in understanding the
tumor mechanisms. For instance, our findings revealed that HspB1 protein is one of the
common DIPs for three subtypes. The correlation between HspB1 expression in RCC
subtypes and metastasis process has been revealed in previous studies and HspB1 is
known to facilitate metastasis by suppressing anti-cancer response such as apoptosis and
senescence [7,27].

DIP clusters were used for diagnostic and prognostic analyses for each subtype. De-
spite the improvements in the state of the art treatment technologies, the overall prognosis
is still poor in RCCs and more than 50% of RCCs are diagnosed incidentally [28]. Even
the detection of the early asymptomatic stage during routine examination could have a
profound impact on clinical outcome. Therefore, an effective, clinically useful test for
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early detection of RCC subtypes should be measurable in readily accessible body fluids,
such as plasma, serum, urine, or saliva. For this purpose, we filtered DIPs by considering
whether they are expressed in those body fluids at the protein level and defined the s-DIP
concept here for the first time in literature. s-DIP clusters characterize patients well in
terms of the diagnostic group (subtype) to which they belong. Hence, we offer that s-DIPs
might be used for the diagnosis of candidate RCC patients after further experimental and
clinical validations.

Saliva is one of the complex and important multi-constituent body fluids that reflects
a wide variety of physiological knowledge due to its contents extensively supplied by the
blood. Moreover, a saliva-based diagnosis has been drawing attention in the diagnosis
of systemic diseases such as renal cancers, due to the source, composition, function, and
interaction of saliva with the substances that make up the plasma [29,30]. In the present
study, besides blood components and urine, we also demonstrated the potential of saliva
as a non-invasive potential media for RCC diagnosis, especially in chRCC.

The three basic elements for the art of medicine are diagnosis, therapeutics, and
prognosis. Therefore, after making the correct and early diagnosis, determining the optimal
treatment strategies would be important and as a follow-up, one could provide up-to-date
information on the patient’s prognosis. Our present investigation also aimed to provide
new targets for the design of novel therapies in RCC subtypes and putative biomarkers
with prognostic significance. In this study, DIP clusters appear to be strong putative
candidates for the prognostic marker in each related subtype. Survival analyses through
stratification of patients according to clinicopathological variables such as tumor stage
or grade would demonstrate the prognostic power of the potential biomarkers better.
However, despite the presence of comprehensive gene expression profiling efforts such
as TCGA, transcriptome data with available clinical information is still limited for RCCs,
even for the most common subtypes.

Additionally, to shed light on the further experimental studies, we identified MET
protein as an ideal potential drug target in pRCC and showed the high potential of
twenty-one Zinc molecules (Table 2) as candidate therapeutics for future preclinical stud-
ies. The integration of the transcriptome and protein interactome data with the drug
knowledge helped to uncover 21 in silico validated potential drug candidates for pRCC.
These in-silico findings can be used further to design and synthesize novel MET in-
hibitors. Furthermore, ZINC73196087, ZINC72318117, ZINC72318118, ZINC73163075,
ZINC73165724, ZINC73196196, and ZINC72318119 have been shown to demonstrate ef-
fective anti-proliferative activity against a panel of c-Met-amplified gastric cancer cell
lines [31]. We propose that these ZINC compounds should also be evaluated with experi-
mental studies for RCC cell lines and we conclude that these molecules might be potential
therapeutics for the management of the pRCC. Further in vitro/in vivo pharmacological
evaluations and clinical validations are needed for approval of these candidate drugs.

The major limitation of the study is the lack of experimental validations of the iden-
tified ZINC compounds on the RCC samples or cell lines. Future in vitro studies need
to be conducted to evaluate the effects of ZINC compounds identified on cell viability,
proliferation, and migration. Moreover, the mechanism of actions of these molecules
need to be investigated in detail to elucidate their effect on molecular pathways such as
apoptosis and cell cycle. Rather than being considered as a single agent, these compounds
can also be regarded as adjuvant therapy to the baseline therapeutics, then, the critical
extension of this work would be to learn whether the observations of in vitro studies can
be recapitulated by in vivo studies and eventually in clinical trials. Another point that has
a crucial role in translation to the clinic is sampling where body fluids are favorable for
the detection of the biomarkers. Proteomics studies also need be verified for the proteins
exhibiting significantly high diagnostic and prognostic performance for relevant subtypes.
Moreover, these biomarkers could also assist oncologists to assist in optimal diagnosis and
prognosis management.
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ccRCC Clear Cell Renal Cell Carcinoma
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LE Ligand efficiency
ns-DIP Non-secreted DIP
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PCA Principal component analysis
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Abstract: The underlying molecular heterogeneity of cancer is responsible for the dynamic clinical

landscape of this disease. The combination of genomic and proteomic alterations, including both

inherited and acquired mutations, promotes tumor diversity and accounts for variable disease

progression, therapeutic response, and clinical outcome. Recent advances in high-throughput

proteogenomic profiling of tumor samples have resulted in the identification of novel oncogenic

drivers, tumor suppressors, and signaling networks; biomarkers for the prediction of drug sensitivity

and disease progression; and have contributed to the development of novel and more effective

treatment strategies. In this review, we will focus on the impact of historical and recent advances in

single platform and integrative proteogenomic studies in breast and ovarian cancer, which constitute

two of the most lethal forms of cancer for women, and discuss the molecular similarities of these

diseases, the impact of these findings on our understanding of tumor biology as well as the clinical

applicability of these discoveries.

Keywords: genomics; proteomics; breast; ovarian; cancer

1. Introduction

Each year more than 1.8 million people are diagnosed with cancer in the United States
including more than 270,000 breast cancer patients and 21,000 ovarian cancer patients [1].
Despite advances in diagnostic tools, predictive biomarkers, and new therapies over the
past 20 years which have led to declining mortality rates, more than 285,000 people will die
each year in the US due to their disease, including more than 50,000 breast and 13,000 ovar-
ian cancer patients [1]. Enormous clinical variability, including disease progression and
response to therapy has been shown to exist for most forms of cancer. These observed
differences are driven, in part, by underlying genetic, genomic, and proteomic alterations
unique to each patient [2–5]. In essence, cancer is not a single disease but rather a collection
of genetically driven malignancies affecting a given tissue. As a result, all tumors, even
within a given tissue type, cannot be treated equally [6–12]. New tools, therapies, biomark-
ers, and treatment strategies are being developed or will need to be developed, to identify
and target those mutations and/or signaling pathways essential for each tumor to improve
clinical outcome and quality of life for each patient.

The underlying genetic heterogeneity within human cancers creates several challenges
both clinically and from a basic science perspective. From a mechanistic standpoint, vari-
ability in patterns of genomic and proteomic alterations create a challenge in separating
the key drivers of oncogenic signaling, tumor development, and progression from those
mutations that are tumor-promoting but non-transforming or that do not directly con-
tribute to tumorigenesis (i.e., passenger mutations). This is essential as not all mutated or
aberrantly expressed genes are required for tumorigenesis nor do they equally contribute to
therapeutic response [13,14]. As a result, there is a need to develop tools and approaches to
understand the interplay between altered genes and to determine how these genes or pro-
teins promote aberrant signaling, including the identification of novel signaling networks
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and cellular processes that contribute to tumor growth and progression. Finally, utilizing
the compendium of alterations across a given tumor type, we must develop approaches
to identify novel therapeutic targets and determine predictive biomarkers to recognize
patients that are likely to benefit from specific therapeutic regimens.

Over the past 20 years, beginning with the sequencing of the human genome to the
more recent development of next-generation sequencing (NGS), advances in genomics,
proteomics, and systems biology have allowed us to begin to catalogue, visualize, com-
pare and dissect patterns of DNA mutations and copy number alterations, mRNA and
miRNA expression patterns, protein and phosphorylated protein expression and epige-
netic alterations between individual patients, across specific forms of cancer and between
malignancies affecting different tissues [2–5,15,16]. These studies, coupled with functional
genomic studies, have begun to identify and provide insight into key drivers of oncogenic
signaling, mediators of specific tumor characteristics, including response to therapy, and
identify novel treatment strategies. In this review, we will examine historical and recent
advances in genome and proteome-wide analyses in breast and ovarian cancer and discuss
the impact of these findings on our understanding of tumor biology as well as the clinical
applicability of these discoveries.

2. Clinical Characterization of Breast and Ovarian Cancer

Breast cancer is the most commonly diagnosed and the second leading cause of
cancer-related mortality for women in the United States [1]. While it is estimated that
approximately 50,000 women in the US and 522,000 women worldwide will die from
this disease annually, survival rates have steadily increased by over 40% over the past
30 years [1,17]. Currently, more than 98% of patients diagnosed with early stage disease
are expected to live for at least 10 years and the current 5-year survival rate is ~90%
across all stages [1,17–19]. These improvements can be attributed, in part, to increased
early detection from earlier screening and improved imaging technology as well as the
development of novel therapeutic regimens incorporating chemotherapeutics, targeted
therapies, radiation, surgery, and immunotherapy [20–22]. Despite these advances, the
prognosis for patients with locally advanced and metastatic disease remains poor. Patients
with advanced metastatic disease have a 5-year survival rate of less than 30% and a
significant percentage of patients whose tumors are inoperable and/or refractory to current
therapies will succumb to their disease within 5 years irrespective of tumor stage at
diagnosis [18].

Part of the challenge in developing effective treatments for this disease lies in the
molecular and clinical heterogeneity that exists between each patient’s tumor. Clinically,
breast tumors are classified based on morphological features with ~70% of tumors be-
ing classified as invasive ductal carcinomas (IDC), ~15% categorized as invasive lobular
carcinoma (ILC), and the remaining tumors regarded as rare subtypes [18,23]. Prognosis
and treatment strategies are largely dictated by classical histopathologic features includ-
ing tumor size, histological grade and stage, lymph node status, and the expression of
hormone receptors or HER2 (human epidermal growth factor receptor 2) status [18,19].
Among the histological subtypes, estrogen receptor (ER), progesterone receptor (PR), and
HER2 status can be used to further delineate patients into ER+/PR+ (60–70% of patients),
HER2+ (10–20%), and triple negative breast cancer (TNBC, 15–20%). However, differences
in the prevalence of these histological subtypes are seen between women with different
ancestries. Notably, women of African American decent have a higher incidence of TNBC
when compared to American women of European ancestry (36.3% vs. 13.7%) [1,24,25].
Importantly, these biomarkers are used to direct current standard-of-care treatments with
endocrine-based therapies comprising the core of therapeutic regimens to treat hormone
receptor-positive (HR+) breast tumors; HER2-family inhibitors forming the foundation
for therapies used to treat HER2+ patients [26], and multi-agent cytotoxic chemotherapies
providing the basis for the treatment of TNBC patients [27,28]. While endocrine-based
therapies result in remission in the majority of patients with HR+ tumors, approximately
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30–50% of patients manifest primary or acquired resistance [29,30]. Recent studies have
reported that the emergence of hormone therapy resistance in ER+ breast cancers can arise
through four predominant mechanisms including ESR1 mutations (18%), altered MAPK
signaling (13%), MYC or transcription factor activation (9%), and other/unknown factors
(60%) [31]. The findings of multiple clinical trials have resulted in FDA and international
approval for use of the mTOR inhibitor everolimus in conjunction with exemestane for
the treatment of patients with advanced or metastatic ER+, PR+, HER2-negative, PIK3CA
mutant tumors [32]. Likewise, the PI3K inhibitor alpelisib has been approved for the
same patient population in combination with fulvestrant [33]. More recently, CDK4/6
inhibitors palbociclib, ribociclib, and abemaciclib have been approved and, in conjunction
with hormone therapy, have become the primary treatment regimen for HR+/HER2- treat-
ment naïve or hormone therapy treated metastatic breast cancer patients [34]. Finally, the
treatment of TNBC tumors has begun to evolve to include immune checkpoint inhibitors
while patients with BRCA mutations are treated with PARP inhibitors in conjunction with
chemotherapy [28,35,36].

In contrast to breast cancer, ovarian cancer is a less frequently diagnosed malignancy
with approximately 21,750 women in the US and 250,000 women worldwide being di-
agnosed with this disease annually [1]. Unfortunately, however ovarian cancer is the
most lethal form of gynecological cancer with an estimated 13,940 women dying from this
disease in the United States and more than 150,000 women dying worldwide in 2020 [1].
This translates to a death-to-case ratio of approximately 64%, far outpacing the lethality of
breast cancer [1].

Similar to breast cancer, the clinical complexity of ovarian cancer is due, in part, to
histological and molecular heterogeneity. Ovarian tumors are classified into four major
classes: high (70%) and low (4.1%) grade serous, endometrioid (8.3%), clear cell (9.5%)
and mucinous (3.2%) carcinoma [37–39]. Of note, a study by Beckmeyer-Borowko and
colleagues showed that non-Hispanic Black ovarian cancer patients were more likely to be
diagnosed with stage four HGSOC, clear cell or mucinous carcinomas when compared to
non-Hispanic White patients [40]. Beyond these classifications, ovarian epithelial tumors
have been divided into Type I and Type II tumors [41–44]. Type I tumors typically encom-
pass low-grade and indolent tumors including low-grade serous, low-grade endometrioid,
clear cell, and mucinous carcinomas that tend to present as stage I tumors while Type
II tumors include more aggressive and high-grade tumors including high-grade serous,
high-grade endometrioid, malignant mixed mesodermal tumors, and undifferentiated
carcinomas [42]. Genetically, Type I and II tumors are characterized by specific muta-
tions: mutations common to Type I tumors include KRAS, BRAF, ERBB2, CTNNB1, PTEN,
PIK3CA, ARID1A, and PPP2R1A, while Type II tumors have a high frequency of TP53
mutations (>95%) as well as mutation or aberrant expression of BRCA1 or BRCA2 [3,42–44].
Importantly, these mutations appear to be largely confined to each subtype with Type II
tumors rarely expressing Type I mutations and Type I tumors being largely wild-type for
TP53, except for low-grade mucinous tumors (~25%) [45].

While more than 92% of Stage I ovarian cancer patients are successfully treated, only
15% of patients are diagnosed with the early stage disease [1]. High-grade serous ovarian
cancer (HGSOC) is the most prominent form of ovarian cancer and accounts for 70% of
ovarian cancer-related deaths [46,47]. Although most patients will initially respond favor-
ably to standard-of-care cytoreduction surgery followed by platinum- and taxane-based
treatment, approximately 80% will eventually relapse and develop resistance in late stage
disease [39,48–51]. In addition, 25% of patients are inherently resistant to standard-of-care
therapy and demonstrate disease progression within six months of treatment [52]. More
recent studies have determined that HGSOC tumors are characterized by homologous
recombination deficiencies (HRD) which render these tumors sensitive to PARP inhibi-
tion [53–56]. As such, PARP inhibitors (olaparib, rucaparib, niraparib) were FDA approved
for treatment of platinum-sensitive recurrent, BRCA mutated, and HRD-positive epithe-
lial ovarian cancer [34,56–61]. In addition, olaparib in combination with bevacizumab
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has been approved for the treatment of patients with advanced epithelial ovarian cancer.
This combination treatment nearly doubled the progression-free survival in HRD-positive
tumors when compared to bevacizumab alone [62]. Finally, clinical trials examining the
impact of multiple novel combinatorial strategies, including VEGF inhibitors (VEGFi) in
combination with PARP inhibitors (PARPi) as well as anti-PD-1 inhibitors, alone or in
combination with VEGFi and/or PARPi, are ongoing [63]. While significant advances in
the molecular characterization of ovarian cancer have led to a better understanding of this
disease, the prognosis has not significantly improved over the past several decades; poor
prognosis is attributed to lack of early detection and resistance (inherent and acquired) to
platinum-/taxane-based therapies [3,46].

Despite the inherent differences in clinical manifestation between breast and ovarian
cancer, a portion of these malignancies are intrinsically linked, as women with specific
inherited germline mutations including BRCA1, BRCA2, PALB2, TP53, CDH1, and PTEN
have an increased lifetime risk of developing either disease [64,65]. BRCA1 or BRCA2
mutations are the most prevalent cause of high penetrance inherited breast or ovarian
cancers and have been shown to affect patients irrespective of race or ethnicity. Overall,
the rate for germline BRCA1 or BRCA2 mutations is relatively low with 4–6% of breast
and 8–15% of ovarian tumors expressing one of these mutations [66–73]. However, it is
estimated that 39–63% of women with a BRCA1 mutation will develop ovarian cancer
while 46–87% will develop breast cancer by age 70. Likewise, BRCA2 mutation carriers
are strongly predisposed to develop ovarian (17–27%) or breast (38–84%) cancer [65,74–77].
Clinically, BRCA1/2-mutated breast tumors tend to be classified as TNBC invasive ductal
carcinoma with high nuclear grade while BRCA1/2-mutated ovarian tumors are predomi-
nantly classified as HGSOC [78–80]. Although BRCA-mutated breast and ovarian tumors
are often highly aggressive, a number of studies suggest that these patients may achieve
a slightly better short-term therapeutic response (2–3 year overall survival) compared to
patients with wild-type BRCA1 or BRACA2, as these tumors may be more responsive
to DNA-damaging drugs; however, long-term survival and/or progression-free survival
differences remain unclear [65,79–82].

While inherited breast and ovarian cancers have similar features, including response
to specific inhibitors, as we will discuss below, non-familial ovarian and some subsets of
breast tumors also demonstrate striking genome- and proteome-wide similarities including
somatic mutations, patterns of copy number alterations, and expression of specific genes,
proteins and signaling pathways. By utilizing this information, more recent treatment
strategies for breast and ovarian cancers have begun to incorporate targeted therapies in
conjunction with standard-of-care treatments [18,19,21,83]. While these novel regimens
have improved clinical response and quality of life, as we have discussed, these treatments
are often limited to patients with specific genomic alterations or clinical subtypes and not
all patients will respond equally. These observations highlight the need to not only develop
new, more effective therapies but also illustrate that it is necessary to develop a genome- or
proteome-wide portrait of the underlying molecular heterogeneity of each of these diseases.
Gaining a more complex view of the underlying biological mechanisms driving disease
development, progression, and response to treatment will allow investigators to identify
and develop biomarkers that will enable the design and evolution of treatment regimens
based on the underlying biology of a given patient’s tumor.

3. Molecular Classification and Characterization of Breast Cancer

Seminal studies by Perou and colleagues used microarray-based gene expression
profiling and unsupervised hierarchical clustering to identify a 496 intrinsic gene list that
defined five molecularly distinct subtypes of breast cancer [84,85]. These subtypes clustered
largely along the estrogen receptor status with ER-positive tumors being classified into
luminal A (LumA) or luminal B (LumB) subtypes while ER-negative tumors were classified
as HER2 enriched (HER2E), basal like, or normal like [84–87] (Figure 1).
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Figure 1. Gene expression-based classification of breast and ovarian cancers. The major molecular classifications of breast
and ovarian cancers are depicted here. Further highlighted are the molecular similarities between high grade serous ovarian
and basal-like breast cancer.

The ER-positive luminal tumors express luminal cytokeratins 8 and 18 and are en-
riched for genes expressed by breast luminal epithelial cells, including GATA3, FOXA1,
ESR1, and MYB. Among luminal tumors, LumB tumors are defined by higher expression
of proliferation-related genes, high genomic risk, and poorer clinical outcome than LumA
tumors. HER2E tumors are predominantly ER negative, characterized by the amplification
of the HER2 gene on chromosome 17q12, and are associated with poor prognosis and
increased risk of metastasis. The basal-like subtype is largely synonymous with triple
negative breast cancer (TNBC). These tumors express basal epithelial cell markers keratin
5/6 and are characterized by enrichment of the genes expressed by breast basal or my-
oepithelial cells [2]. Basal-like tumors represent the most diverse subtype of breast cancer
and are associated with high proliferation rates, high mutational burden, higher risk of
metastasis, and poor survival rates [85,86]. Finally, the normal-like breast cancer subtype
has also been described and is typified by high expression of genes known to be expressed
by basal epithelial cells and adipose cells. However, the biological relevance and clinical
importance of this subtype remains unclear [84–87].

The association between molecular subtypes and disease-specific outcomes demon-
strate that tumor cell response to treatment is not determined by anatomical prognostic
factors but rather inherent molecular features, indicating the potential clinical value of
these expression-based patient classifications [84,85]. However, the ‘intrinsic’ gene set used
by Perou and group to experimentally categorize patients was not readily employable
in the clinic due to its relatively large size [84–87]. Utilizing microarray data and several
minimization methods, Parker et al. developed a reliable 50-gene signature to identify
breast cancer intrinsic subtypes [88]. Combined with common histologic criteria, such
as tumor grade and pathologic staging, the 50-gene signature (PAM50) provided signifi-
cant prognostic and predictive value through classification and generating risk-of-relapse
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(ROR) scores for all patients [88]. While the clinical implications of the PAM50 subtype
predictor remain to be fully resolved, the Prosigna assay, which is derived from the initial
intrinsic analyses, is used clinically to help predict risk of relapse and to guide therapeutic
intervention [89–91].

The recent advances in gene expression profiling platforms have led to the iden-
tification of additional molecular subtypes, further defining the biological and clinical
heterogeneity of breast cancer. The claudin-low subtype was identified to be predom-
inantly triple negative and poorly differentiated subgroup of breast tumors which are
enriched for cancer stem cell-like genomic signatures and immune response genes [92,93].
These tumors are characterized by low expression of luminal genes, proliferation genes,
and genes involved in tight junctions and cell–cell adhesion [92,93]. More recent gene
expression studies employed by Lehmann et al. initially categorized TNBC tumors into six
molecular subtypes, including BL1 and BL2 (basal-like), immunomodulatory (IM), mes-
enchymal (M), mesenchymal stem-like (MSL), and luminal androgen receptor (LAR) [94].
This classification has since been further refined to include the four (TNBCtype-4) tumor-
specific subtypes (BL1, BL2, M, and LAR) and exclude the IM and MSL subtypes due to the
identification of transcripts from infiltrating lymphocytes and tumor-associated stromal
cells, respectively [95]. The TNBC type-4 subtypes demonstrated significant differences
in histopathology, grade, and local and distant disease progression [95]. These subtypes
were characterized by unique identities of pathway activation which stimulated the use
of known inhibitors and therapies to exploit signaling vulnerabilities, exhibiting early
evidence of clinical applicability [94,95].

Decomposing vast amount of information from profiling studies represents a key step
in developing patient-specific therapeutic regimens. In light of this, pathway signatures
were developed as an underlying platform to provide a functional interpretation of the
gene expression data within each subtype and further dissect the heterogeneity of breast
cancer [96]. Integrated analysis using gene expression and pathway activation probabilities
contributed to stratifying tumor subtypes and characterizing distinct clinical and biological
features [96–100]. Along these lines, Gatza et al. utilized pathway activation probabilities
that reflect in vivo activity levels to identify subgroups that reflect the status of important
signaling pathways in breast tumors [97]. These subgroups corresponded to the intrinsic
subtypes and exhibited distinct patterns of pathway activation, DNA copy number changes
as well as clinical and biological characteristics [97,98].

While microarray-based gene expression profiling of breast tumors has been able
to distinguish tumor subgroups and begin to define underlying biological and clinical
diversity, these studies were limited in their ability to create true “molecular portraits”
of breast cancer. Large-scale integration of multiple proteogenomic platforms through
The Cancer Genome Atlas (TCGA) project provided a more comprehensive view of breast
cancer heterogeneity and underlying biology. The TCGA project (n = 1072) used data
from six different high-throughput technology platforms, including mRNA expression
microarrays (and mRNA sequencing), DNA methylation, genomic DNA copy number
arrays, microRNA sequencing, whole-exome sequencing, and reverse-phase protein array
(RPPA) to examine specific genetic, epigenetic, and proteomic alterations in breast cancer
and to link these alterations to clinical data and characteristics [2]. Intriguingly, while the
overall patterns of proteogenomic alterations were found to be variable amongst patients,
including between subtypes, intra-subtype variation was limited. Remarkably consistent
patterns of genomic and proteomic alterations were found to be associated with each of the
mRNA-based PAM50 subtypes.

Luminal tumors are characterized by an increased frequency and diversity of signifi-
cantly mutated genes in addition to a lower frequency of copy number alterations [2,101,102].
These tumors exhibit increased mutations in luminal genes including GATA3 and FOXA1,
as well as genes belonging to the p38-JNK pathway (MAP3K1 and MAP2K4), which were
mutated in a mutually exclusive manner. PIK3CA, which is the most frequently mutated
gene in breast cancer, was predominantly altered in luminal tumors and was mutated
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at a much higher frequency in LumA (45%) relative to LumB (29%) tumors. Despite the
high frequency of activating PIK3CA mutations in LumA subtype tumors, the PI3K/AKT
signaling axis has not been shown to be consistently upregulated in these tumors. In
contrast to LumA tumors, LumB tumors are characterized by higher inactivation of the
TP53 pathway associated with a higher rate of mutation in the TP53 gene, loss of ATM2,
and MDM2 amplification [2]. More recent integrative analysis using 52 gene expression
signatures that measure oncogenic signaling pathways identified a limited number of genes
that are amplified and overexpressed in aggressive luminal subtype tumors. Among these
genes, a subset (FGD5, METTL6, CPT1A, DTX3, MRPS23, EIF2S2, EIF6, and SLC2A10) was
found to be essential for cell growth and, in some instances, correlated with clinical out-
come [99,103–105]. This study further suggests that not only do LumA and LumB tumors
express unique mutation profiles, but that these alterations result in distinct patterns of
oncogenic signaling beyond differences in proliferation.

The HER2E subtype is characterized by high amplification of the HER2 amplicon
(80%) on chromosome 17q12. These tumors can be either ER negative or positive and
demonstrate increased expression of the HER2 oncogene as well as other genes on the
17q12-amplicon, including GRB7. However, not all clinically defined HER2-positive tumors
are categorized into this subtype, as some ER+/HER2+ tumors demonstrate increased
expression of specific luminal genes (i.e., GATA3, BCL2, and ESR1) and cluster largely
into the LumB subtype. TP53 (72%) and PIK3CA (39%) mutations are highly enriched in
this subtype and show significantly higher expression and activation of receptor tyrosine
kinases such as FGFR4, EGFR, and HER2 [2].

Basal-like breast cancers represent the most heterogeneous subtype with a high fre-
quency of TP53 mutations which are present in an overwhelming 80–90% of tumors. In
addition to TP53 truncating mutations, these tumors are characterized by loss of RB1
and BRCA1 along with amplification and hyperactivation of the MYC and FOXM1 genes.
Increased activation of PI3K/AKT signaling, relative to other subtypes is a distinguishing
feature of basal-like tumors despite a low incidence of PIK3CA (9%) mutations. Expression
of keratins 5, 6, and 17 and cell proliferation genes are significantly upregulated in these
tumors owing to the increased expression of FOXM1 as a transcriptional driver of this gene
signature [2].

Similar multiplatform analysis was also conducted to provide molecular context to in-
vasive lobular breast cancer, which is the second most commonly diagnosed invasive breast
cancer and comprise approximately 10–15% of all cases. Despite histological differences,
invasive lobular carcinomas (ILC) and ER+ invasive ductal carcinomas (IDC) patients have
historically been treated similarly, emphasizing the need to more robustly understand the
molecular underpinnings of the disease for better therapeutic interventions [106]. Multi-
platform studies carried out by the TCGA project and Desmedt et al. identified mutations
in the E-cadherin (CDH1) gene (63% in ILC vs. 2% in IDC) which is the hallmark feature
of ILCs. In addition to CDH1 loss, mutations in PTEN, TBX3, FOXA1, and ESR1 were
enriched in ILC relative to IDC tumors. Mutations in PIK3CA were reported in 48% of
ILC relative to 33% of IDC tumors which, along with loss of PTEN function, defines the
significant upregulation of PI3K signaling in ILC tumors [23,106]. Transcriptomic analysis
identified molecular ILC subtypes which were characterized by unique molecular profiles
and clinical outcomes with more proliferative tumors demonstrating a worse clinical prog-
nosis [23,106]. Overall, these multiplatform analyses not only better distinguished between
lobular and ductal carcinomas but also identified clinically relevant heterogeneity that may
help to better differentiate and treat these carcinomas. In addition to TCGA, the METABRIC
(Molecular taxonomy of breast cancer international consortium) study used an integrated
clustering approach to examine the genomic and transcriptomic architecture of 2000 breast
tumors (along with clinical data) and classify them into 10 integrative clusters (IntClust
1–10) which demonstrate distinct alterations and clinical outcomes [9,107]. Importantly,
this classification strategy demonstrated that incorporation of both mRNA and cDNA
copy number data identified additional granularity within the PAM50 subtypes as well
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as molecularly distinct entities based on the underlying genetic alterations. These data,
coupled with multi-platform orthogonal analyses performed by TCGA have provided
enormous insight into the underlying genetic framework of breast cancer; however, these
studies were limited in their ability to associate the genomic and transcriptomic features
with the proteome and phosphoproteome that drives the phenotypic characteristics of a
tumor. The RPPA platform used by TCGA for quantifying protein abundance and post-
translational modifications is limited by antibody quality and an inability to detect mutant
protein forms.

Consistent with this premise, analysis of the proteome and phosphoproteome was
performed by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) using mass
spectrometry-based analyses to integrate and contextualize genome-scale alterations of
105 tumors and adjacent normal samples [5]. In breast cancer, these analyses resulted
in the identification of an average of more than 11,000 proteins and 26,000 phosphosites
per tumor significantly extending the previous work from TCGA where only 141 pro-
teins and 31 phosphosites were captured [2,5,23]. Phosphoproteomic analysis informed
the translational outcomes of PIK3CA mutations in breast cancer, which often are not
correlated with the transcriptional signature of breast tumors. These analyses resulted
in the identification of 62 different phosphosites in PIK3CA mutated breast tumors, in-
cluding RPS6KA5 and EIF2AK4, explaining the activation of the pathway and revealing
possible druggable kinases in this pathway [5]. The CPTAC project highlights the need
for integrating data across proteogenomic platforms to connect somatic mutations with
the activation of various oncogenic signaling pathways in tumors for better therapeutic
outcomes. In addition, CyTOF (Cytometry by Time of Flight), has been used for real-
time high-dimensional analysis of breast cancer [108–110]. For example, a recent study
by Ali et al. emphasized the significance of multiplatform analyses when coupled with
multidimensional imaging mass cytometry in highlighting the tumor heterogeneity both
on tumor-specific and tumor microenvironment levels which in turn affect the tumor
evolution, ecosystem and clinical outcomes [109]. Similarly, imaging mass cytometry has
been used to generate high-dimensional images of 281 human breast tumor samples in
order to identify the spatial architecture, and to define heterogeneity between intra and
inter-tumoral cell subpopulations [110].

4. Molecular Classification and Characterization of Ovarian Cancer

Similar to studies in breast cancer, studies by Tothill (n = 285) [111], the TCGA project
(n = 489) [3], Helland (n = 939) [112], and Konecny (n = 174) [113] utilized K-means clus-
tering and non-negative matrix factorization consensus clustering to classify HGSOC into
four distinct gene expression-based subtypes. These four molecularly distinct subtypes
(Figure 1) were termed immunoreactive, proliferative, mesenchymal, and differentiated
based on molecular and clinical characteristics [3]. However, in contrast to molecular
subtypes of breast cancer which have clear biological and clinical implications, these
relationships do not appear to be as robust in HGSOC.

Mesenchymal tumors have been reported to have the worst clinical prognosis of the
four HGSOC molecular subtypes [111,113,114]. These tumors are defined by low tumor
purity and demonstrate increased desmoplasia and reactive stromal components, includ-
ing CD3+ infiltrates [4,111,115]. Phenotypically, these tumors exhibit increased epithelial
to mesenchymal transition (EMT), angiogenesis, extracellular matrix (ECM) remodeling,
and proteolysis [113,115]. Consistent with these findings, mesenchymal subtype tumors
demonstrate increased expression of HOX genes which contribute to development regula-
tion as well as aberrant TGFβ, stromal-associated, wound response, and fos-jun signaling
as demonstrated by gene expression signatures [116]. Global proteomic analyses by the
CPTAC project further demonstrated that these tumors exhibit increased expression of
ECM and cytokine signaling at the protein level [4].

Similar to mesenchymal subtype tumors, immunoreactive tumors are defined by low
tumor purity [4]. However, immunoreactive subtype tumors are associated with a good

72



J. Pers. Med. 2021, 11, 149

clinical prognosis [111,113–115]. While these tumors do demonstrate infiltration of stromal
cells, immunoreactive tumors appear to be defined by increased immune signaling, likely
due to increased immune cell infiltration [117]. Gene and protein expression profiling stud-
ies have reported activation of the adaptive immune response as well as increased T and
B cell activation markers, antigen presentation, and chemokine signaling [3,111,113,115].
Consistent with these findings, it was reported that mesenchymal and immunoreactive
tumors are more closely related to each other, as compared to the proliferative or differen-
tiated subtypes, despite differences in patterns of signaling network activity and clinical
outcomes [113,118]. These similarities are likely due to the low tumor cell purity that is
apparent in mesenchymal and immunoreactive tumors, while the distinction between
these groups is driven by both underlying tumor biology as well as the composition of
infiltrating cell populations in the tumor microenvironment. Consistent with these ideas,
recent single-cell RNAseq studies have demonstrated that unique aspects of the tumor
microenvironment may define signaling within these subtypes; immunoreactive tumors
were shown to have immune-related cell clusters while mesenchymal tumors contained
cell clusters enriched for cancer-associated fibroblast signaling [117].

Tumors classified in the proliferative subtype are associated with poor overall sur-
vival [106,107,109]. In contrast to immunoreactive or mesenchymal tumors, these tumors ex-
hibit high tumor cellularity and low infiltration of CD3+ and CD45+ stromal cells [111,112].
Proliferative subtype tumors are defined by an undifferentiated phenotype and express
pro-proliferative signaling including increased expression of developmental transcription
factors, proliferation markers, ECM-related genes, and WNT/β-catenin signaling, as well
as increased expression of proteins involved in DNA replication [3,4,111,113]. In addition,
it has been noted that these tumors express low levels of ovarian cancer marker genes
(MUC1, MUC16, KLK6, KLK7, and KLK8) and high expression of the developmental tran-
scription factors HMGA2 and SOX1. These tumors were also associated with an increased
expression of FANC genes and homologous recombination [113,115].

Finally, differentiated subtype tumors have been shown to most closely resemble
normal fallopian tissue at the gene expression level [111,115]. At the genetic level, these
tumors are defined by increased expression of MUC1, MUC16, SLP1 (secretary fallopian
tube marker), epithelial cell differentiation markers, and folliculogenesis-related genes
which are indicative of increased tumor cell differentiation [3,113,115]. Proteomic analyses
from the CPTAC project were able to further dissect signaling networks activated in these
tumors to identify enrichment of protein expression programs associated with altered
tumor cell metabolism and increased cell-to-cell communication [4] providing additional
insight into subtype-specific mechanisms driving tumor development and progression.

Although these seminal studies were able to identify four largely concordant subtypes
based on gene expression profiling, a number of recent studies have suggested that these
subtypes are not consistent across platforms and populations [113–115,118]. These more
recent studies have observed that tumors were able to be more robustly classified into fewer
groups and/or that alternative strategies may provide additional insight into the underly-
ing biology of this disease. Notably, studies from the CPTAC project were able to utilize
proteome-wide data from 9600 proteins and 6769 phosphoproteins from 174 tumor samples
to identify altered signaling networks in the transcriptome based subtypes further refining
and validating the distinct signaling networks in these tumors, as well as identifying signal-
ing pathways correlated with homologous recombination deficiency phenotype and patient
survival [4]. However, in this proteogenomic analysis of ovarian tumors, Zhang et al. also
identified five distinct protein-based subtypes and were able to show that three of the five
subgroups were largely concordant with the TCGA mRNA-based subtypes. The remaining
two subgroups represented tumors defined by unique underlying biology that would not
be apparent by assessing mRNA data alone. Consistent with this premise, a number of
recent studies have attempted to move beyond mRNA- or protein-based approaches to
incorporate phosphoproteomic or glycoproteomic profiling to investigate the heterogeneity
of HGSOC tumors [119,120]. These studies have provided additional depth to our under-
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standing of HGSOC tumorigenesis by identifying subgroups defined by unique patterns
of active kinases and altered cell signaling which contributing to tumor development,
progression, and clinical outcome. Likewise, recent work by Karagoz et al. [116] assessed
patterns of oncogenic signaling using a panel of 62 gene expression-based signatures across
the four TCGA subtypes in three unique datasets [3,111,121]. As noted above, these studies
identified unique oncogenic and tumorigenic signaling pathways associated with each
mRNA-based subtype. However, in contrast to similar analyses in breast tumors which
demonstrated clear differences in pathway patterns between the PAM50 subtypes, the
distinctions amongst ovarian subtypes appeared to be more subtle and included increased
intra-subtype heterogeneity [99,116].

Collectively, these data reinforce the premise that ambiguity in HGSOC subtype
assignment could be a result of shared common biological underpinnings, the existence
of intermediate subtypes, or biased by tumor cellularity and/or composition. As such,
it is apparent that further refinement of the molecular subtypes, potentially through the
incorporation of multiple genomic or proteomic platforms, may be necessary for these
classification schemes to be clinically relevant.

At the molecular level, HGSOC has been classified as a C-class malignancy (chromo-
somally unstable) that is defined by extensive structural variants [102]. Consistent with
this classification, mutational profiling of HGSOC by the TCGA project using whole-exome
sequencing has identified a limited number of significantly mutated genes that define this
disease [3]. The most prominent among these is TP53 mutations which are evident in nearly
all patients and are believed to arise early in the transformation process [3,44,122–124].
Beyond altered p53 signaling, transforming oncogenic mutations in PIK3CA, BRAF, KRAS
and NRAS have been detected in HGSOC, albeit at low frequencies (<1%). Almost half of
HGSOC tumors are characterized by homologous recombination (HR) deficiency through
germline or somatic mutations in BRCA1/2 (20%), BRCA1 hypermethylation (11%), and/or
dysregulation of other HR genes including PTEN, ATM or ATR, RAD51C, EMSY and Fan-
coni anemia genes [3]. While few significant mutations are apparent in HGSOC, DNA copy
number alterations are more frequent in these tumors [3,102]. This includes amplification
of MECOM, MYC, and CCNE1 which are among the most significant focal amplifications
and found in more than 20% of HGSOC cases in addition to KRAS and MAPK1 which are
found in more than 10% of cases.

Interestingly, while specific genes are mutated at a low frequency in HGSOC, pathway
analyses incorporating orthogonal whole-exome sequencing and copy number data demon-
strated that HGSOC tumors are characterized by aberrant RB1/E2F (67%), PI3K/RAS (45%),
and NOTCH (22%) signaling as well as dysregulation of the FOXM1 transcription factor
network (87%) [3]. Further pathway analysis, based on phosphoproteomic profiles of
HGSOC tumors demonstrated differential expression of RhoA-regulatory, PDFRB, and
integrin-linked kinase pathways between poor and good prognostic HGSOC patients [4].

Finally, a number of recent studies have used integrative analyses to identify novel
oncogenes and tumor suppressors that promote HGSOC and biomarkers to predict ther-
apeutic response and risk. These studies relied on integrative analyses of DNA copy
number, methylation, and gene expression data to identify potential oncogenes and tumor
suppressor proteins in HGSOC and clear cell carcinoma [125–127]. Similarly, studies from
Karagoz et al. assessed orthogonal genomic and proteomic data from human HGSOC
tumors from the TCGA and CPTAC studies in the context of a prognosis gene expression
signature. These analyses, along with data from a genome-wide RNAi screen in ovarian
cancer cell lines, identified ADNP as a novel oncogene in HGSOC and in vitro studies
showed that this protein regulates cell survival through altered cell cycle checkpoints [116].
While the therapeutic potential of these genes remains unclear, studies by Kurimchak et al.
incorporated kinome profiling of human tumors and PDX models to identify MRCKA as
a potentially drug-able oncogene activated in a subset of HGSOC tumors. Subsequent
loss-of-function studies demonstrated that this gene could regulate HGSOC tumorigenesis
and could be pharmacologically inhibited suggesting it may have potential as a novel
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therapeutic target [128]. Finally, studies from Coscia et al. identified CT45 as a biomarker
for platinum-sensitivity in HGSOC using global proteomic profiling and demonstrated
that mRNA or protein expression was associated significantly with chemosensitivity and
disease-free survival [129].

5. Genetic and Genomic Relationship between Breast and Ovarian Tumors

As discussed above, both familial and non-inherited breast and ovarian cancers have
been shown to have similar genetic and genomic features (Figure 1). Beyond the previously
discussed correlation between inherited mutations and the increased risk of breast or
ovarian tumor development, analysis of human breast tumors demonstrated that HGSOC
tumors also express a basal-like gene expression signature [2]. This relationship was further
validated by multi-platform genomic analyses in which basal-like and HGSOC tumors
were found to have a strong genomic association based on global mRNA profiling and to
express a similar pattern of DNA copy number alterations [130]. While similar patterns
of gene expression between these two diseases were noted by Hoadley and colleagues
in a pan-cancer analysis of 12 tumor types and by the TCGA breast cancer paper, this
association was not as clear when studied within the context of 33 tumor types potentially
reflecting differences driven by tumor cell of origin, additional variability due to a more
diverse tumor population, or other technical or biological factors [2,130,131]. Regardless,
basal-like and high-grade serous ovarian tumors are classified as C-class malignancies and
are characterized by predominant recurrent copy number alterations [102]. Specifically,
these tumors share copy number gains of 1q, 3q, 8q, and 12p, and copy number losses of
4q, 5q, and 8p [2,100]. Among the commonly amplified genes are MYC (8p21.21), CCNE1
(19q13.2), MECOM (3q26.2), FGF3 (4p16.3), MCL1 (1q21.3) and ERBB3 (12q13.2) [43].
Additionally, basal-like and HGSOC tumors share RB1 loss in 20% and 10% of tumors,
respectively [2,3].

Beyond copy number alterations, these tumor subtypes have been shown to express
similar mutation profiles for a limited number of key oncogenes and tumor suppressor
genes. Basal-like and high-grade serous ovarian tumors are enriched for BRCA1/2 inacti-
vation and express TP53 mutations in 90–95% of tumors [2,3,5]. In addition, both tumor
types exhibit an increased frequency of genome breakpoints as well as a loss of heterozy-
gosity and allelic imbalance indicating genomic instability and homologous recombination
deficiency [132–134]. More recent studies have indicated that these tumors demonstrate
high homologous recombination deficiency (HRD) scores, accumulation of large-scale state
transitions, increased loss of heterozygosity (LOH), and telomeric allelic imbalance scar
signatures. Clinically, these alterations have been shown to be significantly correlated with
pathologic complete response and minimal residual disease in TNBC patients treated with
platinum-based therapies and with a better prognosis in HGSOC [36,135,136].

In addition to specific mutations and genomic alterations, basal-like breast and HG-
SOC tumors have been shown to express similar signaling networks including increased
activation of PI3K signaling [2,3,102,137–139]. While PIK3CA mutations are relatively rare
events in each tumor type, a number of unique alterations have emerged as contributing to
aberrant signaling [2,3,5]. In HGSOC, DNA copy number gains in PIK3CA (18%), AKT1 or
AKT2 (9% combined) and to a lesser extent, homozygous deletion of PTEN (7%) are the
main drivers for this pathway [3,140,141]. In contrast, basal-like tumors are regulated by
alterations in multiple genes (EGFR, IGFR1, AKT3) that occur at a low frequency (2–4%), as
well as a loss of PTEN (35%) or INPP4B (30%), SOX4 amplification and overexpression, and
MAGI3-AKT3 gene fusion [2,137,142,143]. Interestingly, these data indicate that while both
tumor types are characterized by high PI3K signaling, the mutations activating signaling
in each tumor type differed in prevalence and composition.

Similarly, on a pathway activity level, basal-like and HGSOC tumors share increased
FOXM1, HIF1-α, and MYC signaling [2]. Basal-like breast cancers have increased altered
cell cycle checkpoint regulation, DNA damage repair, MYC, and immune response sig-
naling [5], while proteins associated with recurrent copy number alterations in HGSOC
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converge on cell migration/invasion and immune regulation pathways [4]. Consistent with
common alterations between basal-like and high-grade serous ovarian tumors, Marcotte
and colleagues [144] used a genome-wide pooled shRNA screen in 29 breast and 15 ovarian
cancer cell lines to identify genes uniformly essential for cell viability as well as genes
required within each disease type. While cell line-specific genes were identified, these
analyses also identified 66 ovarian and 155 breast cancer-specific genes as well as 297 genes
that were essential for viability in the majority of cell lines irrespective of tissue type. While
the latter set of genes did not necessarily take into account distinctions between molecular
subtypes, these studies further reinforce the shared underlying biology of these diseases.

6. Advances in Genomic Analyses of Breast and Ovarian Cancer

Single-platform genomic and proteomic analyses have allowed for the identification
and cataloging of mutations; copy number alterations; and altered gene, miRNA, protein,
or phosphoprotein expression profiles [2,3,7,12,23,145–152]. As we have outlined above,
patterns of genomic and proteomic alterations can define tissue- and histological-specific
differences in underlying biology and can be used to define molecularly distinct subtypes
of cancer, including breast and ovarian cancer [2,3,11,23,97,118–120,136,153–155]. These
genomic and proteomic patterns can identify oncogenic mechanisms that contribute to
disease development, progression and in some instance can serve as therapeutic targets
or markers of therapeutic response [10,62,63,99,102,113,126,128,129,135,137,142,156–172].
However, single platform analyses can be limited in their ability to visualize altered signal-
ing networks and oncogenic processes. Given the complexity of mechanisms regulating
these processes, multiplatform analyses, incorporating orthogonal genomic and proteomic
data, enable the visualization of various types of alterations, in multiple key components
within a given network to better define the state of signaling within specific tumors types
and/or subtypes [102]. More importantly, integrative multiplatform analyses have led to
the comprehensive identification of actionable alterations through reverse engineering of
signaling pathways, while identifying upstream effectors and downstream targets using
multiple omics platforms [156,173–176] (Figure 2). Ultimately, integrative analyses have
resulted in the discovery of novel tumor-promoting mechanisms with higher confidence.

Breast and ovarian tumors are comprised of a complex collection of cell types including
multiple populations of tumor cells, stroma, immune cells, fibroblasts, and other cells
that encompass the tumor microenvironment [177,178]. As we have discussed, omics
technologies that rely on analysis of the entire tumor (i.e., bulk analysis) have provided an
enormous amount of insight into tumor biology; however, these approaches represent an
averaged view of the tumor landscape and do not allow for fine resolution at the single
cell level. Although a number of approaches including ESTIMATE, and others, have been
developed to delineate specific signaling networks that arise from discrete cell populations
or to estimate differences in cell composition within tumors using bulk sequencing or
proteomic data, these methodologies are unable to fully address these challenges [179].
Advances in single-cell omics have had a significant impact on our understanding of
tumor characteristics that are not apparent by bulk genomic, proteomic, or metabolomic
approaches. These methods have allowed us to identify and characterize unique cell
subpopulations, distinguish cell transition states, map molecular markers, identify novel and
previously unrecognized biological features, and in combination with other technologies,
are beginning to be used to spatially map tumor cell populations, identify circulating
tumor cells and provide mechanistic insight into tumorigenic processes including metastasis
and therapeutic response. Given spatial limitations, we point our readers to an excellent
collection of review articles that discuss these advances in depth [180–191].
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Figure 2. Use of single platform and integrative omics in cancer biology and medicine. The major contributions of single
and multi-platform omics studies as well as single cell omics are summarized here. Single platform studies enable cataloging
of mutation or alteration patterns, identifying signaling networks of interest and defining certain molecular subtypes.
Multiplatform studies can further expand single platform-defined molecular subtypes and identify signaling pathways by
identifying mutations in multiple genes representing multiple levels of pathway dysregulation. Single cell analyses allow
for analyses of tumor cell subpopulations, identify cell transition states, map molecular markers and cell populations and
identify circulating tumor cell populations. Orthogonal analysis of these data provides further context to genomic studies.
These approaches contribute to a greater understanding of tumor biology as well as clinical advancements in treating cancer.

A number of recent studies have employed single-cell RNA-sequencing (scRNA-seq)
analyses to examine tumor immune profiling [192–197]. These approaches have clear
implications for both our understanding of the role of the immune system in the tumor
microenvironment and for determining or predicting the efficacy of immunotherapy-based
treatments. Of note, a recent study by Azizi et al. demonstrated the wide variability in
immune cell type composition between breast cancer patient samples in addition to high-
lighting the phenotypic expansion of intratumoral immune cells using single-cell RNA and
T cell receptor sequencing [198]. Further studies by Savas and colleagues demonstrated
the association between tissue-resident memory T cell differentiation signature, devel-
oped using single-cell RNA-seq, and prognosis in early stage triple-negative breast [199].
Demonstrating the potential clinical implications and applicability of these approaches,
investigators have used these technologies to identity mechanisms of therapeutic resis-
tance [200]. Notably, recent work identified enrichment of immunosuppressive immature
myeloid cells (IMC) in anti-Her2 and CDK4/6 inhibitor-resistant HER2-positive breast
cancer, while combinatorial treatment with cabozantinib (IMC-targeting tyrosine kinase
inhibitor) and immune checkpoint blockade overcame resistance [201]. Moreover, scRNA-
seq has been used to develop gene-expression-signature of the myeloid-derived suppressor
cells (MDSCs) in addition to identifying CD84 as a surface biomarker for MDSCs in breast
cancer [202]. Similarly, Wan et al. reported reprogramming of inert natural killer and T cells
to a highly active cytotoxic state following bispecific anti-PD-1orPD-L1 antibody treatment
using single-cell RNA-seq analysis of HGSOC organoid co-cultures; this study identified
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a potential advantage of bispecific antibodies in immune checkpoint blockade therapy
in HGSOC [203]. Further analyses have identified inter- and intra-tumor heterogeneity
in cancer associated fibroblasts cell states in HGSOC and breast cancer [117,204]. Collec-
tively, immune profiling coupled with imaging and single-cell RNA-seq underscored the
importance of the spatial architecture of tumor niches in regulating immune infiltration
and activation [205–212].

A number of recent studies have employed single-cell analyses to investigate inter
and intra- tumoral heterogeneity [213–218]. Of note, recent work by Chung et al. linked
tumor-intrinsic and immune cells diversity with TNBC intratumoral heterogeneity while
studies by the Ellisen laboratory identified a connecting between intertumoral heterogene-
ity and clonality of inferred genomic copy number changes in these tumors. These latter
studies suggested that cellular genotype drives gene expression programs, including signa-
tures of treatment resistance and metastasis, in individual tumor cell populations [219,220].
Consistent with this premise, investigators have identified rare plastic pre-adapted cell
subpopulations in luminal breast tumors which showed resistance to acute endocrine
treatment [221]. Similarly, studies by Izar et al. and Geistlinger et al. used scRNA-seq
based analyses to link the transcriptomic-based subtype classification of HGSOC to tu-
mor cell type composition rather than intrinsic difference in gene expression patterns
present in tumor epithelial cells further highlighting the importance of considering spe-
cific subpopulations of cells and the impact of signaling from the microenvironment on
tumor characteristics [117,222]. More complex analyses integrating single-cell RNA-seq
coupled with cell lineage tracing has been used to detail tumor cell subpopulations that
contribute to various aspects of tumor evolution, including identifying pre-EMT (Epithelial
to Mesenchymal Transition) cells that are essential for metastasis initiation [223].

Beyond assessing the transcriptome, single-cell DNA sequencing approaches have
been developed and used to identify subpopulations of cells that express unique muta-
tional and CNA patterns in therapeutically actionable genes in a given breast tumor [224].
These findings have clear clinical implications as different subpopulations will be likely be
uniquely sensitive or resistant to specific therapeutic regimens and contribute to the evolu-
tion of the tumor and therapeutic sensitivity. Consistent with this premise, longitudinal
sequencing analyses of tumors have demonstrated the emergence and/or re-emergence
of clonal populations following treatment [225–227]. Complementary to these studies,
single-cell mass cytometry using CyTOF identified rare tumor subtypes in HGSOC in
addition to the dominant subsets and demonstrated that one of the identified rare subtypes
was enriched for EMT signaling and associated with increased tumor metastasis [228].
Finally, merging single cell proteomics with other omics analysis has enable investiga-
tors to capture tumor-immune interactions in breast tumors [212]. Collectively, single-cell
omics underscored intra- and inter-tumoral heterogeneity, identified subpopulation-specific
vulnerabilities and emphasized the importance of addressing these vulnerabilities with
combinatorial targeted therapeutic options [117,214,220,229–233].

Traditionally genome-wide RNAi and CRPSR/Cas9 screens have identified novel es-
sential genes and pathways [144,234,235]. These studies evolved to include chemo-genetic
screens which incorporate loss-of-function screens coupled with drugs or small molecule
inhibitors in order to identify drug-gene interactions, cancer genetic vulnerabilities, and
potential drug resistance mechanisms [21]. More recently, investigators have begun to
incorporate these studies with multi-dimensional genomic analyses of human tumors as
an added functional filter to identify clinically relevant cancer vulnerabilities and potential
novel therapeutic targets. For instance, Marctotte and colleague integrated a pooled shRNA
screen with genomic, transcriptomic and proteomic data from 77 breast cancer cell lines to
identify breast cancer subtype-specific vulnerabilities. In this study, PSMB3, PSMA6 and
ATP6V1B2 were identified as top ranked “basal-selective” essential genes [234]. Likewise,
integrative correlative studies between pathway-specific gene expression signature scores,
gene level DNA segment scores and RNAi shRNA abundance led to the identification of
21 amplified, essential and putative driver oncogenes in highly proliferative luminal breast
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cancers as well as the identification of SOX4 as a driver of PI3K signaling in basal-like
breast tumors [99,137]. Similarly, in ovarian cancer, systemic loss-of-function shRNA screen
identified 50 essential and amplified genes including CCNE1, PAX8, FRS2, PRKCE, and
RPTOR. Of note, PAX8 was found to be amplified in 16% of primary ovarian cancers while
shRNA mediated silencing of PAX8 lead to apoptosis in cell lines harboring either PAX8
amplification or overexpression [235]. Likewise, ubiquitin B (UBB) and ubiquitin C (UBC)
were identified as a paralog deficiency dependency in ovarian cancers, implying the essen-
tiality of UBC in cell lines with repressed UBB [166]; shRNA mediated silencing of UBC in
UBB repressed ovarian cancer xenograft model lead to tumor regression and prolonged
survival [160]. More recent studies have evolved to employ machine learning algorithms
for predicting functional cancer vulnerabilities while integrating shRNA (DEMETER2) or
CRISPR/Cas9 (DepMAp) screens coupled with genomic and proteomic profiling of cancer
cell lines [236]. Collectively, genome-wide RNAi and CRPSR/Cas9 loss-of-function screens
made a significant contribution in identifying cancer dependencies, and potential novel
therapeutic targets [166,237–239].

Unfortunately, spatial limitations prevent an in-depth discussion of the many tools,
algorithms, and computational approaches that have been developed for a single plat-
form and integrative analyses. However, biochemical and genetic-based studies as well
as large-scale proteogenomic analyses have demonstrated that despite enormous tumor
heterogeneity, molecular alterations often converge on a limited number of signaling
networks, reflecting pathway activity levels and their role in driving tumor progres-
sion [14,102,147,149,240,241]. As a result, a number of tools and approaches have been
developed, including the use of gene expression-based signatures, mutational signatures,
CNA (copy number alterations) signatures, and protein signatures to quantify pathway
activity [7,96,97,242–244]. These approaches include several that incorporate data from
multiple technical platforms and use statistical modeling driven by a priori knowledge of
signaling pathways and/or protein–protein interaction networks to cluster samples based
on similarity networks, detect enriched signaling networks across multi-omics platforms
and/or infer pathway activity from the expression or mutation profiles of established
pathway components [3,8,23,170,245,246].

As we have outlined, large-scale genomics and proteomics studies including those
from the TCGA, METABRIC, and CPTAC projects, as well as many other studies, have
enabled the cataloging molecular alterations and signaling pathways in breast and ovarian
cancers. While these studies have implications for our understanding of the underlying
molecular mechanisms of these diseases, they also highlight the need to personalize thera-
peutic approaches based on the biology of each patient’s disease [6,131,247]. Consistent
with this premise, the use of genomic profiling, including DNA sequencing gene panels
from Foundation Medicine and others, into clinical trials and practice has identified poten-
tial biomarkers, beyond standard immunohistochemistry (IHC)-based assays, to predict
response and provided a means to personalize treatment. In addition to DNA sequencing-
based assays, multiple molecular biomarkers are currently being used to monitor and
track the progression of both ovarian and breast cancer [167,248,249]. For ovarian cancer
patients, these biomarkers include single gene markers CEA (Carcinoembryonic Antigen),
CA125 (Cancer Antigen 125), and HE4 (Human Epididymis protein 4), as well as multi-
variate index assays including OVA1, ROMA, and OVERA [250–257]. Similarly, several
gene-expression based prognostic tests, including Oncotype DX [258], EndoPredict [259]
and MammaPrint [260] as well as the aforementioned Prosigna assays, have been FDA
approved to predict risk of recurrence in breast cancer and can be used to help guide
clinical decisions. Oncotype DX Recurrence Score is based on the expression level of a
panel of 21 genes, which is used to predict the likelihood of the 10-year tumor recurrence
and guiding the adjuvant treatment options while weighing the added benefit of adju-
vant chemotherapy versus treatment with hormonal therapy alone. Oncotype Recurrence
Score stratified patient samples into low-, intermediate- and high-risk groups, predicting
high likelihood of added benefit of adjuvant chemotherapy in the high-risk group patient
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cohort [258,261,262]. MammaPrint on the other hand is based on the gene expression
profile of a panel of 70 genes. This test is used in clinics for assessing clinical outcome
and predicting recurrence score in early stage breast cancer. Based on recurrence scores,
patient samples are stratified into low or high genomic risk. Studies showed that there is an
added benefit to adjuvant chemotherapy in the low genomic risk group when compared to
patients who did not receive chemotherapy [260,263]. Finally, emerging data supports the
role of analyses of circulating tumor DNA in routine clinical care [48,264–268]. The FDA
recently approved the FoundationOne Liquid CDx test, which is a circulating cell-free DNA
(cfDNA) based-assay as a companion diagnostic for treatment of BRCA mutant (germline
or somatic) ovarian cancer patients with the PARP inhibitor rucaparib as well as alpelisib
treatment of HR+/HER2-, PIK3CA mutated breast cancer patients [249].

7. Summary

Over the past twenty years, proteogenomic profiling of human tumors has drastically
expanded our understanding of breast and ovarian cancer biology. The identification of
molecular subtypes; novel oncogenes, tumor suppressor proteins and signaling networks;
as well as clinically relevant biomarkers have begun to contribute to the development of
novel and more effective treatment strategies. The next challenge will be to effectively
translate these efforts into the development of new clinical diagnostic tools, biomarkers, and
therapeutic strategies in order to personalize cancer treatment and improve the outcome
and quality of life for patients.
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Abstract: Genomic structural variants comprise a significant fraction of somatic mutations driv-

ing cancer onset and progression. However, such variants are not readily revealed by standard

next-generation sequencing. Optical genome mapping (OGM) surpasses short-read sequencing in

detecting large (>500 bp) and complex structural variants (SVs) but requires isolation of ultra-high-

molecular-weight DNA from the tissue of interest. We have successfully applied a protocol involving

a paramagnetic nanobind disc to a wide range of solid tumors. Using as little as 6.5 mg of input

tumor tissue, we show successful extraction of high-molecular-weight genomic DNA that provides a

high genomic map rate and effective coverage by optical mapping. We demonstrate the system’s

utility in identifying somatic SVs affecting functional and cancer-related genes for each sample.

Duplicate/triplicate analysis of select samples shows intra-sample reliability but also intra-sample

heterogeneity. We also demonstrate that simply filtering SVs based on a GRCh38 human control

database provides high positive and negative predictive values for true somatic variants. Our results

indicate that the solid tissue DNA extraction protocol, OGM and SV analysis can be applied to a

wide variety of solid tumors to capture SVs across the entire genome with functional importance in

cancer prognosis and treatment.

Keywords: optical genome mapping; solid tumors; cancer genomics

1. Introduction

One of the hallmarks of cancer is genomic instability, which often affects genes control-
ling cell division and genome integrity. The resulting alterations include single-nucleotide
variant (SNV) point mutations as well as structural variants (SVs), in which larger DNA
segments undergo chromosomal perturbations such as deletions, insertions, duplications,
inversions, and translocations. For instance, recurrent translocations, such as the Philadelphia
chromosome, can activate oncogenes but at the same time reveal avenues for implementing
or developing effective targeted drug therapies [1–4]. Likewise, SV identification plays an
increasingly important role in cancer diagnosis and prognosis [5,6], and SVs have been shown
to play a crucial role in intra-tumoral genetic heterogeneity [7]. Therefore, SV identification
and analysis are important to understanding oncogenesis and tumorbehavior.
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Short-read sequencing can readily detect many SNVs, but is less successful in detect-
ing SVs, by either alignment-based or assembly-based methods [8]. Since alignment-based
approaches rely on mapping reads to unique positions, repetitive and low-complexity
genomic regions can lead to misalignment and false-positive SV calls. Additionally, homol-
ogous alleles may be incorrectly combined, leading to haploid assembly only representing
a single allele or chimeric assemblies mixing alleles. Whole-genome and cytogenetic
approaches such as whole-genome sequencing (WGS), karyotyping, fluorescent in situ
hybridization (FISH) and CNV microarrays also contain significant limitations. Karyotyp-
ing provides a comprehensive view of the entire genome but carries limited resolution of
~5 Mb and in most cases requires culturing cells before preparing chromosomes. FISH has
a higher resolution but requires prior knowledge as to which loci to test and has limited
throughput. CNV microarrays offer a resolution down to multiple Kb but are insensitive to
balanced chromosomal aberrations such as translocations and inversions, are unable to
detect low-frequency allelic changes, and cannot distinguish tandem duplications from in-
sertions in trans. Finally, WGS has difficulty with de novo genome assembly and resolving
duplications and repeated sequences [8–10]. Therefore, alternative methods are required to
preserve long-range genomic structural information.

Optical genome mapping (OGM) has emerged as a viable option for analyzing
large genomes for SVs. OGM preserves long-range information by imaging entire in-
tact molecules of DNA in their native state and, as a result, has contributed to con-
structing reference genome assemblies, including those for maize, mouse, goat, and
humans [11–28]. OGM can detect large (>500 bp) and complex SVs, such as chromothrypsis,
that are difficult to detect using traditional short-read sequencing alone. OGM preparation
and analysis workflow has been successfully applied to liquid-phase tumor and cell cul-
ture SV analyses. For instance, investigators have analyzed primary leukemic cells with
OGM to identify previously unrecognized SVs implicated in oncogenesis and patients’
survival and have combined OGM with chromosome conformation capture to demonstrate
enhancer highjacking resulting from SVs [5,29,30]. Similarly, investigators used OGM to
visualize complex gene fusions and novel somatic SVs in liposarcoma, melanoma and other
well-studied cancer cell lines [31,32].

Despite its success in visualizing SVs in liquid tumors and cell lines, OGM has not
yet seen widespread application in solid tissue tumors, due primarily to the difficulty of
obtaining high-quality, high-molecular-weight DNA from solid tumor samples. Nonethe-
less, previous work has shown the feasibility of high-quality high-molecular-weight DNA
isolation and analysis using earlier workflow iterations [33], and recent feasibility studies
have shown the importance of OGM application to solid tumor analysis [7,34,35]. Peng et al.
demonstrated large SVs not detected by WGS implicated in metastatic lung squamous cell
carcinoma [7], and Jaratlerdiri et al. and Crumbaker et al. similarly found SVs impacting
oncogenic and tumor-suppressing genes not identified by NGS or WGS alone in prostate
cancer [34,35]. However, these previous methods for extracting gDNA from solid tissue
were either prohibitively expensive or yielded low quantities of DNA [36]. We demonstrate
here the successful implementation of a workflow to generate ultra-high-molecular-weight
gDNA and subsequent SV analysis for 20 solid tumor samples comprising a wide variety
of solid tissue organ systems.

2. Materials and Methods
2.1. Tumor Samples

Solid tissue was collected following surgical resection for 10 tumors: four squamous
cell carcinomas of the tongue, three anaplastic carcinomas of the thyroid, one liver hepa-
tocellular carcinoma, one lung pleomorphic carcinoma, and one bladder tumor. Patients
consented under protocols approved by the Penn State Health Institution Review Board
and tissue was flash frozen and stored at −80 ◦C in the Penn State Institute for Person-
alized Medicine (IPM). Ten additional fresh frozen solid tumor samples were acquired
from BioIVT for the following tumor types: lung adenosquamous carcinoma, liver hepato-
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cellular carcinoma, bladder papillary urothelial carcinoma, kidney renal cell carcinoma,
breast ductal carcinoma in situ, prostate invasive adenocarcinoma, brain anaplastic astrocy-
toma, ovarian serous carcinoma, colon adenocarcinoma, and papillary thyroid carcinoma.
For some of the samples, two or three separate sections of the tumor were excised and
processed independently to provide duplicate or triplicate biological replicates.

2.2. Bionano Optical Genome Mapping

Ultra-High-Molecular-Weight gDNA Isolation from Solid Tissue. The following protocol
is diagrammed in Figure 1 and described in greater detail in a support document from
Bionano Genomics (https://bionanogenomics.com/support-page/sp-tissue-and-tumor-
dna-isolation-kit/). Briefly, tissue sections with a target mass of 10 mg were sliced from a
frozen parent piece on a sterilized aluminum block over dry ice. The tissues were minced
briefly and placed into a 15 mL conical tube on ice containing homogenization buffer (HB)
for subsequent blending with a Tissueruptor II (Qiagen). Following tissue disruption,
samples were washed in additional HB, poured through a 40 µm filter, and centrifuged to
pellets, from which the supernatants were decanted.

Figure 1. Workflow for isolation of high-molecular-weight DNA from solid tumors.
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Pellets were resuspended in Wash Buffer A (Bionano, San Diego, CA, USA) and
transferred to microcentrifuge tubes for additional washing. Supernatants were then
decanted, and pellets resuspended in residual volume. Proteinase K (Bionano Genomics,
San Diego, CA, USA) was added to samples, followed by Lysis and Binding Buffer (LBB,
Bionano Genomics, San Diego, CA, USA) and mixed to produce a lysate containing high-
molecular-weight DNA. Phenylmethylsulfonyl Fluoride Solution (PMSF, Millipore Sigma)
was added to inactivate Proteinase K, followed by Salting Buffer (SB, Bionano Genomics,
San Diego, CA, USA).

A single paramagnetic Nanobind Disc (Bionano Genomics, San Diego, CA, USA) was
added to the lysate with 100% isopropanol, to facilitate binding and washing of gDNA
strands. With gDNA captured on the disc, the supernatants were carefully removed and
discs were washed with rounds of ethanol-based wash buffer. Discs were then transferred
to clean tubes, where gDNA was eluted in buffer and homogenized at room temperature.

Ultra-High-Molecular-Weight gDNA Isolation from Blood. Previously frozen EDTA-
stabilized blood aliquots were thawed, inverted to mix, and measured for white blood cell
counts (HemoCue, Brea, CA USA, WBC). Blood volumes corresponding to 1.5 × 106 cells
were transferred to a microcentrifuge tubes, then spun to obtain cell pellets. After removing
supernatants, pellets were resuspended in 40 µL Stabilizing Buffer and 50 µL Proteinase
K (Bionano Genomics, San Diego, CA, USA). Lysis and Binding Buffer (LBB, Bionano
Genomics, San Diego, CA, USA) was then added and mixed to produce a lysate, after
which isolation of DNA was performed essentially as described above for tumor tissue.

Direct Label and Staining (DLS). For both tumor- and blood-derived samples, gDNA was
labeled in Direct Label and Stain reactions, in which fluorescent labels are enzymatically
conjugated to a six-base pair recognition sequence followed by DNA counterstaining.
Briefly, 750 ng gDNA was diluted and mixed with a labeling master mix containing DLE-1
Enzyme and DL-Green (Bionano Genomics, San Diego, CA, USA). Reactions were shielded
from light and incubated at 37 ◦C for 2 h. A Proteinase K solution then inactivated the
enzyme, and successive membrane adsorption steps were used for cleanup. A portion
of each sample was then carried forward into a staining master mix addition, slowly
homogenized, and incubated overnight at room temperature.

The DNA concentration of each labeled sample was confirmed within 4–12 ng/µL
by High-Sensitivity dsDNA Qubit Assay and then loaded onto a Bionano Saphyr® Chip
(Bionano Genomics, San Diego, CA, USA, Part#20366) and run on the Bionano Saphyr®

instrument, targeting approximately 300× human genome coverage.

2.3. Bionano Access and Solve Pipeline

Genome analysis was performed using Rare Variant Analysis in Bionano Access 1.6
and Bionano Solve 3.6, which captures somatic SVs occurring at low allelic fractions. Briefly,
molecules of a given sample dataset were first aligned against the public Genome Reference
Consortium GRCh38 human assembly. SVs were identified based on discrepant alignment
between sample molecules and GRCh38, with no assumptions about ploidy. Consensus
genome maps (*.cmaps) were then assembled from clustered sets of at least three molecules
that identify the same variant. Finally, the genome maps were realigned to GRCh38, with
SV data confirmed by consensus forming final SV calls. SVs were then annotated with
known canonical gene set present in GRCh38, as well as estimated population frequency
for each structural variant detected by comparing to a custom control database (n = 297)
from Bionano Genomics.

2.4. Data Comparison

Whole-genome imaging data were compared to the human reference genome GRCh38
(hg38) to retain only those SVs not present in the reference genome. SVs were further
filtered to eliminate any variant observed in any of the Bionano control samples or, if
available, patient-matched blood. Bionano Access-created csv files containing filtered SVs
were analyzed to compare SV content across samples. For tissue samples with associated
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blood samples, control database filtration efficacy was compared to blood-filtering effi-
cacy at identification of somatic mutations. For duplicate/triplicate samples, filtered SVs
were compared to determine intra-sample reliability. For identification of cancer-related
genes, the set of genes affected by SVs in each of the samples was compared to the list of
genes causally implicated in cancer available in the Cosmic Cancer Gene Census database
(v92) [37] (https://cancer.sanger.ac.uk/census).

3. Results

Patient Clinical Characteristics. Clinical data for the patients from whom tumor samples
were acquired are shown in Table 1. A total of 60% (12/20) patients were male, with a
mean age of 73.5 years at sample acquisition. A total of 45% (9/20) patients identified as
Caucasian, 40% (8/20) as Asian, and 5% (1/20) as Hispanic, with 10% (2/20) not identifying.
The majority of IPM-sourced tumor samples were obtained from Caucasian patients (7/10),
while the majority of the BioIVT-sourced tumor samples were obtained from patients
of Asian ethnicity (8/10). In terms of overall risk factors, 55% (11/20) of patients were
self-described current or former tobacco users and 45% (9/20) endorsed some history of
alcohol use.

Table 1. Patient demographics and tumor characteristics.

Study ID Cancer Type * Age † M/F Ethnicity Smoking History Alcohol History
Pathologic

TNM ‡
Cancer
Stage

7528 Tongue (SCC) 25 M Caucasian None Rare T3N2bM0 IVa

7052 Tongue (SCC) 35 M Caucasian None None T2N3M0 IVb

7622 Tongue (SCC) 60 F Caucasian 50 pack years 1–2 drinks/week T3N0M0 III

7403 Tongue (SCC) 65 M Caucasian 45 pack years Rare T2N3bM0 IVb

7518 Thyroid (AP) 70 F Caucasian 20 pack years 2 drinks per day T4bN1bM1 IVc

7708 Thyroid (AP) 65 M Caucasian None None 4aN1bM1 IVc

3717 Thyroid (AP) 80 M Hispanic 25 pack years Rare T4aN1aM1 IV

14369
Lung

(pleomorphic
carcinoma)

60 M N/A 60 pack years None T2bN1M0 IIa

10974

Liver (metastic
adenocarcino-

ma of
colon)

65 F N/A Former None T3N2aM1 IVB

3096
Bladder

(urothelial
carcinoma)

55 M Caucasian 60 pack years None T2N0M0 II

73432
Lung (adeno-

squamous
carcinoma)

35 M Asian
Former (5 pack

years)
Former (1 per
day, 10 years)

T2aN1M0 IIA

94894
Liver

(hepato-cellular
carcinoma)

70 M Asian 7 pack years
1 per day, 35

years
T1NxM0 I

101558

Bladder
(papillary
urothelial

carcinoma)

65 M Asian
Former (5 pack

years)
1 per day, 20

years
T2NxM0 II

69033
Kidney (renal

cell carcinoma)
60 F Asian None None T2bNxM0 II
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Table 1. Cont.

Study ID Cancer Type * Age † M/F Ethnicity Smoking History Alcohol History
Pathologic

TNM ‡
Cancer
Stage

79379
Breast (ductal
carcinoma in

situ)
50 F Asian None None T3N0M0 IIB

102095
Prostate

(invasive adeno-
carcinoma)

60 M Caucasian 40 pack years None T3bN1M0 IV

80384
Brain (anaplastic

astrocytoma)
40 F Caucasian None None NA NA

81347
Ovarian (serous

carcinoma)
75 F Asian None None T1aN0M0 IA

119664
Colon Cancer
(adenocarci-

noma)
80 M Asian 2 pack years

1 per day, 40
years

TXNXMX UNK

128019
Thyroid

(papillary)
35 F Asian None None T3bNxM0 I

* SCC: squamous cell carcinoma; AP: anaplastic.† ~Age (≥Age-3 and ≤Age+3) ‡. Pathologic Staging: Tumor, Node Metastasis (TNM)
staging is the internationally accepted system set forth by the American Joint Committee on Cancer (AJCC) used to determine cancer
disease stage and guide prognosis and treatment (https://www.cancerstaging.org) [38].

The tumor samples consisted of a variety of stages (Table 1). A total of 75% (3/4) of
tongue cancer samples and 100% (3/3) anaplastic thyroid cancers were stage IV cancers,
while 100% (2/2) lung and (2/2) bladder cancers were stage II. Limited tumor data were
available for the commercially available BioIVT-sourced tumor samples.

DNA Quality Metrics: All 20 solid tumors yielded high-molecular-weight gDNA
(Table 2). The average concentration across all samples following gDNA isolation was
120 ng/µL by Broad Range dsDNA Qubit Assay. All eluted gDNA were well above the
minimal concentration required for DLS labeling (35 ng/µL) and the average final DNA
yields for each tumor ranged from 1.2 to 16.4 µg/10 mg input tissue. Analysis on a Saphyr
instrument following DLS labeling revealed that samples achieved an average label density
of 14.4/100 Kbp, average filtered N50 (>20 Kbp) DNA size of 242 Kbp, average filtered N50
(>150 Kbp) DNA size of 315 Kbp, map rate of 82.62%, effective reference coverage of 320×
and average effective DNA throughput (≥150 Kbp) of 50 Gbp/scan. Rare Variant Pipeline
Analysis of the samples yielded an average of 82.4% of molecules aligning to the reference
genome. These values are all well above the acceptable range for obtaining high-quality
data and none of the samples failed any of these quality control metrics.

Identification of somatic structural variants. Rare Variant analysis of the samples revealed
a large numbers of variants in each sample, only a fraction of which were likely somatic.
The unfiltered analysis yielded an average of 1633 total SVs per sample (range 1241–2000),
which include both somatic and germline polymorphic variants (Figure 2, upper panel).
These consisted predominantly of insertions and deletions, with an average of 712 insertions
and 604 deletions, a fewer number of inversion (an average of 153) and duplications (an
average of 123), and relatively few translocations (an average of 41). Eliminating those SVs
found in Bionano’s control database of known polymorphic SVs reduced the number of
putative somatic structural mutations by 91% to an average of 124 total SVs per sample
(Figure 2, lower panel). Most of the variants eliminated were insertions and deletions, of
which on average 97% and 94%, respectively, were removed. On the other hand, less than
0.2% of the translocations were flagged as polymorphic, consistent with the fact that almost
no translocations persist in the population as polymorphisms.
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Table 2. Single-molecule quality report metrics.

Tissue
No. of

Duplicates
Input (mg)

DNA
(ng/µL)

DNA Yield
(µg/mg)

N50 Kbp
(>20 Kbp)

N50 Kbp
(>150 Kbp)

Labels/100 kbp
Map Rate

(%)
Gbp/Scan

Effective
Coverage

7528 (tongue) 1 17.5 37 0.12 211 317 12.3 58.8 53 237×

7052 (tongue) 1 17.1 81 0.28 179 287 15.2 82.4 37 345×

7622 (tongue) 1 18.7 160 0.51 315 361 13.4 75.8 64 317×

7403 (tongue) 1 18 79 0.26 148 272 14.8 72.8 33 304×

7518 (thyroid) 1 8.6 28 0.20 143 265 14.4 76.6 26 312×

7708 (thyroid) 1 10.6 85 0.47 269 356 13.1 61.2 35 253×

3717 (thyroid) 1 13.2 49 0.22 250 320 14.5 88.2 58 371×

14369 (lung) 1 11.4 87 0.45 268 323 14.0 89.6 36 372×

10974 (liver) 1 6.5 82 0.74 235 289 15.2 87.9 49 360×

3096 (bladder) 1 9.4 59 0.37 265 319 13.8 78.3 39 325×

73432 (lung) 3 9.6 128 0.86 248 304 15.0 90.4 51 339×

94894 (liver) 2 9.0 196 1.41 265 306 14.9 89.3 84 325×

101558 (bladder) 3 9.7 245 1.64 313 357 15.2 91.8 66 338×

69033 (kidney) 3 10 96 0.63 201 269 14.6 83.5 41 296×

79379 (breast) 3 13.3 183 1.04 317 395 14.2 84.1 77 288×

102095 (prostate) 3 10.3 113 0.72 273 361 14.8 85.1 62 295×

80384 (brain) 2 10.5 168 1.06 228 292 14.6 90.2 42 306×

81347 (ovary) 2 10.5 168 1.05 228 292 14.6 90.2 42 330×

119664 (colon) 2 11.3 231 1.33 263 330 14.9 88.6 42 274×

128019 (thyroid) 4 10 126 0.77 213 294 14.5 87.6 64 294×

Average 1.9 11.8 120. 0.71 241. 315. 14.4 82.6 50.0 314×

Average values are presented for samples with multiple replicates.
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Figure 2. Total and somatic structural variants present in tumor samples. Upper panel: SV counts as determined using
the Bionano Rare Variant pipeline, before control database filtration. SV counts are averages for duplicate and triplicate
samples. Lower panel: SV counts after filtering total SVs to remove known polymorphic SV found in Bionano’s GRCh38
control database. SV counts are averages for duplicate and triplicate samples, which are indicated by (*).
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To determine the efficacy of identifying somatic SVs by filtering against Bionano’s
database of known polymorphisms, we used as a gold standard the blood samples from
four patients from whom we had obtained tongue tumors. That is, we determined the
true somatic mutations in each of these four tumors by eliminating those SVs identified
in each of the tumors that were also present in the corresponding blood sample. We
could then compare those true somatic variants to the list of somatic variants predicted by
filtering against the database of polymorphisms. For these four tongue tumor samples, we
identified an average of 1474 total SVs per sample. Filtering these SVs using the Rare Variant
Analysis pipeline for SVs not found in the Bionano control database yielded an average
of 72 total SVs per sample, consisting of 11 insertions (range 9–15), 31 deletions (range
11–47), 3 inversions (range 1–6), 14 duplications (range 2–23), and 14 translocations (6–19)
(Figure 3, right upper panel). Filtering against the variants found in the corresponding
blood samples returned an average of 58 total SVs per sample, consisting of 10 insertions
(range 9–10), 20 deletions (range 7–35), 2 inversions (range 0–4), 13 duplications (range
4–24), and 14 translocations (range 6–19) (Figure 3, left upper panel). Comparing the
residual SV sets obtained by filtering against Bionano’s control database to the sets of true
somatic SVs for each sample demonstrated that the control database filtration exhibited
strong statistical accuracy (Figure 3, lower panel). Across the four separate samples,
the control database exhibited an average sensitivity of 92% (83–96%) and specificity of
98% (range 97–99%). That is, filtering with the control database retained most of the
true somatic mutations while eliminating almost all of the polymorphic SVs. Similarly,
the average negative predictive value of the filter was 99.6%, demonstrating that an SV
identified as germline was indeed a germline variant, while the positive predictive value
of 74% (range 60–81%) indicates that a majority, but not all, the variants identified as
somatic are in fact somatic. In other words, the results obtained by filtering SVs against
Bionano’s control database retained almost all the true somatic mutations. However,
several of the SVs identified as somatic were actually germline. Those SVs inaccurately
identified as somatic were rare germline variants, predominantly insertions or deletions,
essentially private to the patient’s genome. As above, we noted that the filtering process
did not affect all SV types equally: while most deletions and insertions were flagged as
polymorphic and eliminated from the list of somatic mutations, very few duplications
and essentially no translocations were identified as polymorphic. This is consistent with
observation that few translocations or duplications are stable through meiosis. Duplicate
Sample Analysis. We compared SV calls from separate isolates of the same sample to assess
consistency and reproducibility of the method, albeit without knowing the extent of tumor
heterogeneity of the individual samples. Six samples underwent triplicate analysis, and
four samples underwent duplicate analysis (Table 3). After identifying SVs using the Rare
Variant Analysis pipeline and filtering them against the Bionano control database of known
polymorphisms, we recovered an average of 116 somatic SVs shared among the separate
isolates of the same tumor. These comprised an average of 23 insertions, 29 deletions,
10 inversions, 11 duplications and 43 translocations (Table 3). As noted above, the number
of SVs identified in a tumor varied widely across the different tumors examined, with lung,
breast, brain and ovarian tumors showing a high level of somatic SVs while the others
containing a relative low number of SVs. Moreover, the percentage of SVs shared among
different isolates of the same tumor also varied among the different tumor types. However,
the percentage of shared SVs and the total number of SVs were uncorrelated. Assuming that
the higher values for shared SVs reflect the reproducibility of the method, then we might
postulate that the lower shared values represent both the reproducibility and the tumor
heterogeneity. That is, we would suggest that the reproducibility of the method across
multiple biological replicates is 85–95%, corresponding to the values obtained from those
samples with the least variability. Thus, we would suggest that the residual variability
in those samples with lower reproducibility (50–75%) reflects heterogeneity of SVs in
the tumors. This would suggest that these brain, liver, lung and prostate tumors had a
relatively high level of tumor heterogeneity.
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Figure 3. Efficacy of the somatic variant identification using a control database of known polymorphisms. Upper Panel:
Number and distribution of somatic structural variant in four tongue tumors as determined by filtering against SVs in
the patient’s genome from peripheral blood (left) or against Bionano’s control database of known polymorphisms. Lower
Panel: Values for sensitivity (SN), specificity (SP) and positive (PPV) and negative predictive values (NPV) for identification
of somatic structural variants obtained by filtering total identified SVs to remove those present in a control database of
know human polymorphisms. Data obtained by filtering against the control database were compared to those obtained by
filtering total SVs to remove those present in the genomes obtained from peripheral blood from the each of the patients
from whom the tumors were removed.
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Table 3. Duplicate Sample Analysis. Shown are the number of somatic structural variants shared among the multiple isolates of the
same sample and the percentage of those relative the total number of somatic variants found in all the isolates of the same sample.

Total % Insertion % Deletion % Inversion% Duplication % Translocation %

Brain * 134 70 5 63 21 78 9 69 13 72 86 69

Colon * 63 93 15 83 36 97 2 100 9 90 1 100

Liver * 45 70 14 74 21 81 1 17 4 67 5 71

Ovary ‡ 338 86 136 82 59 87 4 80 40 85 99 91

Bladder ‡ 30 88 11 79 18 100 1 100 0 100 0 0

Breast ‡ 221 92 9 82 33 85 23 88 14 88 142 95

Kidney ‡ 19 76 6 67 11 85 2 100 0 0 0 100

Lung ‡ 221 66 18 69 53 75 59 73 26 50 65 63

Prostate ‡ 69 48 8 47 22 61 3 38 1 25 35 44

Thyroid ‡ 19 86 7 88 10 91 0 100 2 100 0 0

Average (all) 116 78 23 73 28 84 10 76 11 68 43 63

Duplicate Average 145 80 43 75 34 86 4 66 17 78 48 83

Triplicate Average 97 76 10 72 25 83 15 83 7 60 40 50

* = duplicate sample, ‡ = triplicate sample. % = % of SV calls shared among duplicate/triplicate samples.

The number and types of somatic variants in a tumor varied substantially across
the collection of samples (Figure 4). Several tumor samples, including those from colon,
bladder, kidney and all four from thyroid, contained relatively few somatic SVs whereas
others, including those from prostate, ovaries, lung and brain, carried a large number of
somatic SVs. Since these samples for the most part serve as single representatives of each
tumor type, we cannot extrapolate to the tumor types as a whole the contribution of SVs
to cancer onset and development for each class of tumor. However, it is noteworthy that
the SNV mutational burden in thyroid cancers is among the lowest among all tumor types
and that measure of genome instability is mirrored in the low number of somatic SVs
in all four of the samples examined [39]. Similarly, the SNV mutational burden in lung
cancers is among the highest across all tumor types and both of the lung tumors examined
here also carry a high level of somatic SV. Finally, the extent of somatic SVs observed
in our collection of tumors does not correlate with either cancer stage nor with obvious
lifestyle characteristics (Table 1). For instance, neither smoking nor drinking history has a
stronger influence on SV mutation burden than does site of origin of the tumor. However,
further data examining the correlation of lifestyle characteristics and tumor stages with SV
mutational burden are warranted to assess the impact of these behaviors on SV formation
and persistence.

Identification of Cancer Gene Mutations. While, as noted above, we cannot generalize
regarding the role of structural variants in onset and progression of different tumor types,
our results indicate that we can extract from the structural variant list clinically relevant
data on individual tumors that might inform prognosis or treatment options. We examined
the somatic structural variants in each tumor sample for those that affected genes previously
associated with cancer. In particular, we annotated those genes altered by a structural
variant, either by disruption, duplication, deletion or fusion, and intersected that list with
the set of cancer-related genes in the Cosmic database (v92) [37]. The resultant list by
tumor type is provided in Table 4 and subdivided into oncogenes, tumor suppressor genes
and gene fusions. We included only those oncogenes that were potentially activated by
duplication or gene fusion and only those tumor suppressor genes that were potentially
inactivated by deletion, insertion or fusion. As evident, every tumor sample carried at least
one such cancer gene mutation and most contained multiple hits. Several of these genes
offer the opportunity for targeted therapies, focused either directly on the oncogene, as
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would be the case for CDK6 and ERBB2, or at the pathway downstream of the affected gene,
as would be the case for BRAF and CDKN2A. Other affected genes, such as MSH2, RAD51B,
RAD21 and RAD18, suggest the potential of therapy based on possible ensuing genome
instability, such as immunotherapy or PARP inhibitors. Many of these variants would
not be readily identified by targeted gene panels generally used for clinical assessment
of tumor genomes. Moreover, in many cases, the cancer genes altered by SVs were not
previously associated with the cancer type in which we observed it. For instance, we
observed a fusion of CDK6 in one of the tongue tumors while it has previously been
associated predominantly only with ALL. Similarly, LRP1B is often inactivated in CLL or
ovarian cancer, while we find it inactivated by deletion in one of the lung tumors. Thus, the
identification of somatic structural variants by OGM could provide useful clinical insights
not readily available through standard next-generation sequencing or targeted panels.

 

ion 

RMP

ZFHX3

Figure 4. Global view of structural variants in solid tumor samples. Diagrams of somatic structural variants in all the
solid tumor genomes, filtered to remove known polymorphisms, showing translocations and inversions in the center, copy
number on the inner ring and insertions (green), deletions (orange) inversions (light blue) and duplications (violet) on the
next to most outer ring. Chromosomes are ordered sequentially in a clockwise orientation in the outer ring on which are
indicated cytological banding patterns and the centromere (red bar).
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Diagrams of somatic structural variants in all the solid tumor genomes, filtered to
remove known polymorphisms, showing translocations and inversions in the center, copy
number on the inner ring and insertions (green), deletions (orange) inversions (light
blue) and duplications (violet) on the next to most outer ring. Chromosomes are ordered
sequentially in a clockwise orientation in the outer ring on which are indicated cytological
banding patterns and the centromere (red bar).

In addition to identifying individual cancer-related genes in tumor types, our results
provide a panoramic view of the entire tumor genome and reveal large-scale genomic fea-
tures not readily available from standard sequencing techniques. As evident in the results
in Figure 4, our data provide a rapid snapshot of the extent of genomic instability in each of
the tumors. Such images present an integrated picture of the aneuploidies, translocations,
inversions, deletions and insertions, which offers a readily digestible impression of the
extent of genetic instability underlying a tumor. Moreover, several large-scale features are
evident in these data. For instance, chromothripsis is a massive cluster of chromosomal
rearrangements localized to a restricted region of a chromosome, which often results from
a single catastrophic event [40]. Figure 5 details a chromothripsis event on a portion of
chromosome 5 in one of the lung tumor samples. In fact, such events are readily evident in
four of the Circos plots in Figure 4, consistent with previous estimates of 2–3% prevalence
across all cancers, albeit with different frequency in different cancers [41]. The detection
and mapping of such a feature are difficult to achieve by short-read sequencing [41] but
can indicate poor prognosis and the corresponding need for aggressive therapy.

Table 4. Structural variants affecting cancer relevant genes.

Sample Oncogene Tumor Suppressor Gene Fusion

Prostate ERBB2 (Dup) PTEN (Del) PTEN-LINC01374

GATA2 (T) NF1 (Del) DHX30-GATA2

NUP98 (T) CASC15-NUP98

PRKAR1A-FRMPD4

ERG-TMPRSS2

FREM1-MYH9

Ovarian NUMA1 (T) NBEA-ZFHX3

NF1 (I) HMGN2P46-BLOC1S6

SMARCA4 (I) LPP-PIEZO1

Kidney PRKAR1A (T) CDKN2A (Del) PRKAR1A-FRMPD4

ERBB2 (Dup) ZFHX3 (Del)

Colon FHIT (Del)

Breast ERBB4 (Dup) USP8 (T) USP8-PRPSAP

ERBB2 (Dup) PRKAR1A (T) PRKAR1A-FRMPD4

RAD51B (Del) LINC01476-BRIP1

CDKN2A (Del) SYK-CFAP77

Brain SETBP1 (T) LARP4B (T) CCDC158-LARP4B

CSMD3 (T) CA13-CSMD3

LRP1B (Del) DPYD-SETBP1

RAD21 (Del) CNBD1-AC083836.1

Bladder DDX10 (Del)

Tongue BRAF (T) CDKN2A (Del) EPHB1-BRAF

CDK6 (T) PTPRD (Del) CDK6–AC091551.1

CCND2 (T) RAD51B (T) PCLO-RAD51B

CCND1 (Dup) LRP1B (Del)

CDKN1B (Del)
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Table 4. Cont.

Sample Oncogene Tumor Suppressor Gene Fusion

Thyroid YWHAE (T) ABR-YWHAE

PTPRD (Del) CDK12-CSF3

RAD18-SRGAP3

SHROOM3-AFF1

Liver VTI1A (T) RMI2 (T) VTI1A-NHLRC2

MAP3K13 (T) NCOR (T) C3orf70-MAP3K13

MACC1 (T) CBLC (T) AC005062.1-MACC1

NSD3 (T) MSH2 (T) NSD3-AC087623.2

RASGEF1B-VTI1A

RMI2-TOX3

NCOR1-LRRC75A

MSH2-CYP3A43

Lung CTNND2 (Del,T) PTPRD (Del) CTNND2-TRIO

IKBKB (T) RAD51B (T) DUSP10-CTNND2

FUS (T) IKBKB-FAM91A1

LRP1B (T) FUS-CNOT1

PDE6D-RAD51B

PRKCH-HIF1A

GAS7-LYRM9

EHBP1-LRP1B

T, translocation; Dup, duplication; I, insertion; Del, deletion.

–

– —

—

Figure 5. Chromothrypsis of chromosome 5p in a lung tumor. Shown is a truncated Circos plot of
the lung tumor, focused on the region of chromosome 5, highlighting the chromothrypsis event that
occurred on its p arm. The organization of the Circos plot is as indicated in the legend to Figure 4.
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4. Discussion

In this report, we described the application of optical genome mapping to solid tumors,
which we suggest can significantly augment the genomic analysis of such tumors obtained
by next-generation sequencing. Genomic analysis of tumors has stimulated major advances
in cancer diagnosis, prognosis and treatment, shifting the focus from morphological and
histochemical characterization to consideration of the landscape of driver mutations in the
tumor [42–44]. Somatic driver events in a tumor—point mutations and structural variants
(SVs) including insertions, deletions, inversions, translocations and copy number changes—
are currently identified in solid tumors by some combinations of RNA sequencing and
genome sequencing of either targeted gene panels, whole exomes or whole genomes. As
noted in this report, OGM can provide a pervasive view of the structural variants in a
tumor and the cancer-related genes on which they impinge, thus identifying affected genes
agnostically, without prior bias imposed by gene panels.

Some prior studies have begun to demonstrate the utility of Bionano DNA isolation
protocols in solid tissue tumor analysis. These include studies of lung squamous cell
carcinoma and metastatic prostate carcinoma [7,34,35]. This current report demonstrates
the utility of the DNA isolation protocol and SV analysis in a wide variety of solid tissue
types, and expands the feasibility of such analysis for previously unused human tissue
types. The high DNA yield, high effective coverage, map rate and other molecular quality
metrics shown across tumor types confirm how our extraction and analysis workflow can
be effectively applied to many solid tissue tumors.

This current DNA isolation protocol carries a number of advantages. Tissue handling
can be performed at room temperature. The current protocol showed successful DNA
isolation in solid tissue samples of <20 mg, and even as low as 6 mg. The low tissue
input requirement carries important applications for rare cancer samples, human tissue
biopsy testing and other low-quantity specimen acquisition. Additionally, utilizing the
novel paramagnetic Nanobind disks rather than prior agarose gel plugs greatly decreases
time needed to complete DNA isolation to only 5 h. The ability to isolate DNA from up
to eight simultaneous samples using the current protocol greatly amplifies throughput
and reduces tissue-to-data processing time, increasing both laboratory convenience as
well as expanding potential for clinical utility where rapid data turnaround is paramount.
Furthermore, the strong inter-sample SV correspondence shown by most tissue types in
duplicate/triplicate sample analysis demonstrates the reproducibility of this technique;
intra-sample heterogeneity of select samples may be attributed to non-tumor normal tissue
within some tissue fragments, or attributed to specific cancer subtype, and merits further
investigation. Although the isolation protocol described here affords many advantages,
there are some limitations to this protocol. While high-quality DNA isolation and OGM
SV analysis was obtained for a wide variety of tumor types that were tested, it may not
be generalizable to every additional untested solid tumor type. Future directions include
continuing to validate this protocol in additional tissue types, and assessing additional
tumor samples to assess broader trends in the role of specific OGM-identified SVs in
individual cancer subtypes.

In clinical evaluation of liquid tumors such as leukemia, genomic analysis is aug-
mented by karyotyping, which gives a panoramic, albeit low resolution, view of the entire
genome. Despite the low resolution, the genome wide view of the structural changes
afforded by karyotyping reveals diagnostic features of the tumor that have strong prog-
nostic value. Given the consistent correlation of clinical outcomes with specific mutation
classes, the World Health Organization (WHO), National Comprehensive Cancer Network
(NCCN) and European Leukemia Net (ELN) agencies developed recommendations for
diagnosis and management of acute myeloid leukemia in adults based on the spectrum of
somatic point mutations and SVs generally revealed by karyotyping [45]. SVs, particularly
translocations and inversions, are major considerations in this diagnosis. Since karyotyping
is a very challenging technique to apply to solid tumors, the clinician does not have access
to a comparable global view of a solid tumor’s genome and the role of SVs in prognosis
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has likely been underappreciated. Applying OGM broadly to cancer types and correlating
SVs revealed by that analysis with clinical outcomes could provide new genomic markers
for prognosis and treatment selection.

5. Conclusions

We demonstrate the utility of a DNA isolation protocol for high-molecular-weight DNA
extraction and OGM SV analysis of a wide variety of solid human tumor types on the Bionano
Saphyr system, including breast, colon, liver, brain, bladder, kidney, lung, ovary, prostate and
thyroid cancer tissue. The system can be used to accurately detect genetic mutation hallmarks
in cancer tissue samples, including rearrangements such as translocations, gene fusions and
copy number alterations. Somatic SVs can be determined by comparison filtering with the
Bionano control sample database, or against a matched pair sample. Importantly, Bionano
SV pipelines can detect SVs with complex breakpoint structures that are difficult to detect
with other technologies. Our results indicate that the solid tissue DNA extraction protocol
can be applied to a wide variety of solid tumors, and that the Saphyr system can capture, in a
streamlined workflow, a broad spectrum of SVs. These SVs have functional importance and
provide great utility in cancer prognosis and treatment.
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Abstract: The ETS domain family of transcription factors is involved in a number of biological

processes, and is commonly misregulated in various forms of cancer. Using microarray datasets

from patients with different grades of glioma, we have analyzed the expression profiles of various

ETS genes, and have identified ETV1, ELK3, ETV4, ELF4, and ETV6 as novel biomarkers for the

identification of different glioma grades. We have further analyzed the gene regulatory networks of

ETS transcription factors and compared them to previous microarray studies, where Elk-1-VP16 or

PEA3-VP16 were overexpressed in neuroblastoma cell lines, and we identify unique and common

regulatory networks for these ETS proteins.

Keywords: Ets; Elk-1; PEA3; Ets-1; glioma; biomarker

1. Introduction

ETS proteins are present in metazoan lineages [1] and play a role in diverse biological
processes. Intriguingly, ETS proteins also exhibit extensive overlaps in their tissue expres-
sion profiles, with many members of this superfamily having ubiquitous expression [2].
Not surprisingly, members of this family also tend to exhibit overlapping and sometimes
redundant DNA binding, as analyzed by genome-wide occupancy and other assays [3].

The ETS (E26 transformation specific) domain transcription factor superfamily in-
cludes 27 members in humans in 11 subfamilies [2,4]. Taking its name from the founding
member of this superfamily, namely oncogenic v-ets [5], ETS domain transcription factors
are typically defined by their DNA binding domain, called the ETS domain, which binds
the consensus motif 5′-GGA(A/T)-3′, called the ets motif of the ETS binding site (EBS) [6].
Their DNA binding property, as well as transactivation function, is regulated by the MAPK
signaling pathway [7,8].

In addition to their roles in normal growth and development, ETS proteins are com-
monly involved in cancer formation and progression through the regulation of cell prolifer-
ation, adhesion, migration, or vascularization, as well as regulation of epithelial–stromal
interactions and epithelial–mesenchymal transition [9]. The expressions of several ETS
family members, such as PEA3, ETS-1, and ETS-2, are upregulated in tumors, playing a role
in different aspects of tumorigenesis, including tumor initiation, epithelial-mesenchymal
transition, metastasis, and angiogenesis [4,10]. In some cases, ETS members are amplified
and/or rearranged, such as c-ETS1 in acute myelomonocytic leukemia, or undergo chro-
mosomal relocations that result in fusions, like in the case of chromosomal translocation
of 5′ TMPRSS2 to the ETS genes, resulting in TMPRSS:ERG fusion proteins in nearly half
of prostate cancers, or chromosomal translocation that yields EWS-FLI1 fusion in Ewing
sarcoma. The transcriptional potency of ETS proteins is also often increased in various can-
cers as a result of changes in protein–protein interactions, post-translational modifications,
and/or protein stabilization [4].
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Ets-1 was found to be overexpressed in breast cancer, which was reported to be as-
sociated with poor prognosis [10]. Ets-1 is not only a critical regulator of invasion [10],
but is also involved in regulating cancer energy metabolism in ovarian and breast cancer
cell lines [11]. It has also been shown to play a role in telomere maintenance through the
regulation of hTERT expression [12]. T417 phosphorylation of Elk-1, a member of the
ternary complex factor (TCF) subfamily, was found to be associated with the differentiation
grade of colonic adenocarcinomas [13]. Additionally, in high clinical stage prostate cancer,
ELK-1, not TCF members ELK3 or ELK4, was found to be associated with disease recur-
rence [14]. In fact, ELK1 expression was reported to be higher than ELK3 in many cancer
cell lines, including brain, skin, and myeloid tumors and sarcomas [15]. PKCα expression,
parallel to cell migration and tumorigenicity, of hepatocellular carcinoma was increased
by MZF/Elk-1 transcription factor complex [16]. The PEA3 subfamily of ETS domain
transcription factors was also involved in a number of cancers, such as in lung tumors with
MET amplification, and PEA3 subfamily members were found to play a role in migration
and invasion [17]. In colorectal carcinoma, PEA3 was shown to promote invasiveness and
metastatic potential [18]. In ovarian cancer, the loss of repressors of the PEA3 subfamily
was shown to cause overaccumulation of ETV4 and ETV5 [19].

Malignant gliomas are the most common and lethal primary tumors of the brain.
Grading of diffuse gliomas is based largely on the mitotic activity and vascular proliferation
states, and molecular markers are also used as diagnostic entities. Still, further molecular
information will be important in a more detailed description and categorization of central
nervous system (CNS) tumors, in particular for reliable and reproducible classification of
grade II and grade III diffuse gliomas [20,21]. Glioblastoma multiforme (GBM), WHO grade
IV, is the most aggressive and lethal among all gliomas. High-grade gliomas are composed
of a highly proliferative tumor core, with highly invasive cells surrounding them [22].

ETV2, an early regulator of vascular development, was found to be overexpressed
in high-grade gliomas, and was reported to play a critical role in endothelial transdif-
ferentiation of CD133+ GBM stem cells, which is thought to render them resistant to
anti-angiogenic therapy [23]. Another ETS-related gene, ERG, was found to be a novel and
highly specific marker for endothelial cells within CNS tumors, a feature that can be used
in studying the vascularization of gliomas [24]. A transposon-based study of gliomagenesis
identified friend leukemia integration 1 transcription factor (Fli1), among other genes, to
be expressed in gliomas, although Fli1 expression is limited to a subset of glioma cells [25],
and ETS protein PU.1, known for its critical role in hematopoietic development, was also
reported to be highly expressed in glioma patients, indicating its role in the progression
of glioma [26]. In addition to their role in tumor vascularization, ETS proteins can also
regulate other aspects of tumorigenesis. In a network analysis based on complexity, as
measured by betweenness, Etv5 was identified as a regulator in low-grade optic gliomas in
Nf1 mutant mice, and experiments validated the increased expression of both Etv5 and its
target genes in optic gliomas [27].

Gliomas can be broadly classified as diffuse and non-diffuse (circumscribed) gliomas.
Diffuse gliomas, namely oligodendrogliomas and astrocytomas, exhibit similarities to
glial precursors, and are identified and categorized based on the WHO classification
of CNS tumors [28]. Due to their rather heterogeneous nature, the reproducibility in
diagnosis of low-grade (WHO grade II/III) diffuse gliomas can be a challenge. Several
molecular markers, such as isocitrate dehydrogenase (IDH) mutations or telomerase reverse
transcriptase (TERT) promoter mutations, which create ETS binding sites [12], are used
to assist in differential diagnosis [20]. Previously, ETS gene status in clinical prostate
tumor samples has been determined, and ERG+ and ETV1/4/5+ cases were found to
be associated with worse prognosis, indicating that ETS status may act as a prognostic
biomarker and be used in combination with other existing molecular determinants [29].
In this study, we have analyzed microarray data from patients with different grades of
glioma for relative expression of ETS genes, and identified different ETS genes that are
upregulated at different glioma grades. We show that, while ETV1 is expressed at high
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levels in grade 2 glioma, its expression gradually decreases with glioma stage, and on the
other hand, ELK3 and ETV4 expressions are increased with progression of the glioma stage.
Furthermore, both ELF4 and ETV6 expressions are downregulated at grade 2 glioma, but
upregulated at increasing levels in grades 3 and 4, indicating that these genes can also be
utilized as additional molecular determinants to distinguish glioma grades. We further
compare these data to microarray results from Elk-1-VP16 or PEA3-VP16 overexpression
SH-SY5Y cells in order to narrow down transcriptional regulons, and identify common
and unique transcriptional regulatory networks for these ETS proteins.

2. Materials and Methods
2.1. Data Collection

Microarray datasets related to glioma were searched from the Gene Expression Om-
nibus data repository [30], and GSE4290 datasets, including expression data of brain tissue
from glioma patients, were selected in this study [31]. The dataset contains the brain
tissue of three glioma grades (grade 2–4) from glioma patients and epilepsy patients as
a non-tumor control by obtaining brain tissue from surgery patients from Henry Ford
Hospital. Patient classification and tissue preparation for microarray were described in [30].
A preprocessed expression matrix was imported into an R programming interface by using
R package GEOquery from the Bioconductor project [32]. The methodological flow chart
of the study is shown in Figure 1.

–

Figure 1. Methodology of transcriptomic profiling and gene regulatory network inference algorithm.
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2.2. Data Processing and Differentially Gene Expression Analysis

The expression matrix of the study was Log2 normalized, used in principal component
analysis (PCA) to investigate the relationship between samples. Outlier samples were
determined by using the PCA plot and eliminated from the expression matrix before the
differential gene expression analysis. Differential gene expression analysis was performed
with the R package limma from Bioconductor with the contrast of each glioma grade versus
non-tumor samples [33]. Differentially expressed genes (DEGs) were determined with a
Benjamini & Hochberg corrected p-value < 0.05 significance level and absolute Log2 fold
change > 0.6. DEGs were visualized with a volcano plot by using R package Enhanced-
Volcano from Bioconductor [34]. Additionally, the intersection of DEGs was performed
between limma results, Elk-1-VP16, and the PEA3-VP16 overexpression microarray, which
were previously published from our laboratory for use in further analysis.

2.3. Gene Regulatory Network Construction

Transcriptional gene regulatory network (GNR) mediated by the ETS transcription
factor family was constructed by using the R package RTN from Bioconductor [35–37].
The expression matrix and ETS transcription factor list from differentially expressed genes
were used as an input for the transcriptional network inference (TNI) algorithm with a
Benjamini & Hochberg corrected p-value < 0.05 significance level and 1000 permutation
number parameters. Regulon activity scores were calculated from TNI by using a two-
tailed gene set enrichment analysis (GSEA) algorithm built-in RTN package and visualized
as a heatmap. To construct an edge-weighted gene regulatory network mediated with
ETS members (Regulons), transcriptional regulatory networks from TNI and differentially
expressed genes were integrated by a transcriptional regulatory analysis (TNA) algorithm
with two-tailed GSEA. A gene regulatory network of ETS members was constructed
by using significant network interaction from TNA (p-value < 0.05). Additionally, the
constructed network was filtered with the intersection of DEGs and previous microarray
studies (Elk-1-VP16 and PEA3-VP16 overexpression studies). The final GNR was visualized
by using Cytoscape software [38].

2.4. Functional Enrichment Analysis

Gene ontology (GO) and KEGG pathway enrichment analysis were performed by
using R package clusterProfiler from Bioconductor to analyze the functional profile of gene
clusters from differentially expressed genes (up- and downregulated genes of individual
glioma grade) and transcription factor regulon clusters (positively and negatively regulated
targets for each ETS regulon) [39]. The enriched GO term and KEGG pathways were
determined by using a Benjamini & Hochberg corrected p-value < 0.05 significance level
and context manner term filtration.

3. Results
3.1. Identification of Differentially Expressed Genes in Gliomas

Before analyzing the expression of genes within the ETS superfamily, we have obtained
and analyzed microarray datasets corresponding to different stages of glioma from patients
(grades 2–4), using epilepsy patients as the non-tumor control [31].

Analysis of the transcriptome profiles of these glioma samples yielded a set of differen-
tially expressed genes (DEGs), and the performance of the differential expression levels in
discriminating the tumor cells from non-tumor cells was verified through principal compo-
nent analysis (Figure 2). According to the PCA analysis, it was found that, while non-tumor
and glioma samples were readily separated, discrimination of glioma stages was less
pronounced; grade 2 and grade 4 gliomas were relatively separate, however, grade 3 tumor
samples were not clearly separated from the other tumor groups (Figure 2A). Therefore,
any outlier data were eliminated for differential gene expression analysis. According to
differential gene expression analysis, 8402 of 19,225 genes were found to be significantly
changed (with adjusted p-value < 0.05 and absolute log2 fold change > 0.6 thresholds) in
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the tumor samples (grades 2–4) (Supplementary Table S1). Up- and downregulated genes
in all three grades of gliomas were obtained by differential gene expression analysis, and
the volcano plot was used to visualize the DEGs, which shows that the distribution of
differentially expressed genes was compatible (Figure 2B–D).

–

Figure 2. (A). Differential gene expression analysis results. Principal component analysis (PCA) plot of the normalized
expression matrix. Each point represents individual samples. (B–D). Corresponding differentially expressed genes (DEGs)
were obtained from comparisons of non-tumor vs. individual glioma grades by using the limma package with a 0.6 absolute
log2 fold change and adjusted p-value < 0.01 with FDR cutoff, which is indicated with red points. (E). Relative fold change
of significantly changed ETS members for glioma grade compared with non-tumor samples by differential gene expression
analysis. (F). Intersection of DEGs between limma results, Elk1VP16 and PEA3VP16, which are our previously published
micro arrays, were represented as venn diagrams.
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We have next asked whether ETS genes were among the DEGs, and, if so, how their
expressions were affected in different glioma stages compared to the non-tumor control
(Figure 2E). To that end, we have focused our studies to ETS subfamilies that have been
previously reported to be involved in gliomas, namely the ETS subfamily [40–42], TCF sub-
family [43–45], ELF subfamily [46,47], PEA3 subfamily [27,48], and TEL subfamily [49,50].
The results showed that the expressions of ETS2 and ELK-1 were downregulated at all
grades, while the expressions of ELK4, ELF1, ELK3, ETS1, ETV4, and ETV1 were upregu-
lated at all grades; intriguingly, ETV6 and ELF4 expressions were downregulated at grade 2,
but upregulated at grades 3 and 4. The expression of ELK3, ETV4, and to some extent ELK4
was found to increase gradually with glioma grade, while ETV1 expression was highest
in grade 2 glioma, and progressively decreased with glioma stage (Figure 2E). The only
member of the SPI subfamily of ETS transcription factors represented was PU.1, which was
previously shown to be involved in glioma progression, and its levels were indeed found
to be increased with glioma grades (Figure 2E; [26]).

Previous microarray studies where either constitutively active Elk-1-VP16 or PEA3-
VP16 was overexpressed in SH-SY5Y neuroblastoma cells have identified a number of
transcriptional targets for these ETS proteins. In order to narrow down our search and
focus on gene regulatory networks of ETS proteins, we have identified overlapping genes
by comparing DEGs from glioma grades 2–4 with the microarray results from Elk-1-VP16
and PEA3-VP16 overexpressing cells; 2637 genes were found to be at the intersections of
these two experiments, with 63 genes commonly regulated in both glioma tumor samples
(DEGs), as well as cell line studies (Elk-1-VP16 and PEA3-VP16) (Figure 2F).

To clarify the functional profiles of the identified DEGs in glioma grades, enrich-
ment analysis was performed, and significant GO and KEGG annotations were obtained
(Figure 3). For the GO enrichment analysis of biological processes, initially, up- and down-
regulated genes of the different glioma grades were analyzed. While the upregulated gene
clusters of grades were observed with cell cycle related phenotype in all glioma grades,
the downregulated gene clusters of grades showed neuronal phenotype, such as synaptic
transmission, as would be expected (Figure 3A, Supplementary Table S2). In the KEGG
enrichment analysis, while the upregulated genes of glioma grades were enriched in p53,
TGF-β, and Notch signaling pathways, prominent downregulated gene clusters fell into
synaptic function related pathways, such as glutamatergic, GABAergic, serotonergic, and
dopaminergic pathways (Figure 3B, Supplementary Table S3). For instance, the TGF-β
signaling pathway was found to be altered through glioma progression, as observed by an
increase in the level of BMP molecules, including BMP3 and BMP4, as well as their targets,
such as Smad1/5/8 and Id. Additionally, the expression of cMyc and p15 associated with
cell cycle were significantly increased. On the other hand, Notch signaling pathway genes,
such as Delta, Notch, and Fringe, were observed to be upregulated in glioma. The MAPK
signaling pathway was found to be enriched in downregulated clusters, with the expression
of genes, such as Ras, MEK1, ERK, JNK, and Elk-1, being downregulated. All of these
functional enrichment analysis results confirmed that, in all of the glioma grades, cells
had downregulated pathways directly related with neuronal function, but upregulated
signaling pathways related to cell proliferation and survival. It is interesting to note that
the grade 4 glioma samples did not exhibit significant TGF-β pathway upregulation, but
PI3K pathway upregulation instead (Figure 3B).
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Figure 3. GO and KEGG enrichment analysis of differentially expressed genes for glioma grades. Each glioma grade was
clustered as up- and downregulated gene clusters. (A). GO and (B). KEGG analysis were performed by clusterProfiler with
an adjusted p-value < 0.05. The gene ratio indicates the number of genes enriched with a corresponding GO or KEGG term
among the total gene number introduced into the enrichme.nt analysis.

3.2. Transcriptional Gene Regulatory Network Construction

In order to investigate ETS transcriptional regulation networks specific for each glioma
grade, we have integrated DEGs obtained from the analysis of glioma grades with the
normalized expression matrix, where significantly changed ETS members are referred
as regulons. The initial network obtained using the transcriptional network inference
(TNI) algorithm contained 10 ETS member regulons, 11,762 target genes, and 23,181 total
interactions (Figure 4A). We have focused on the expression changes of ETS members in
different grades of glioma, and regulon activity scores were calculated from the initial
network. The analysis of regulon activity scores showed that, while ELK-1 and ETS2
showed high regulon activity in the non-tumor condition (magenta, Figure 4A), ETV1
showed a high activity score on mainly grade 2 glioma (green, Figure 4A). The other ETS
proteins showed high regulon activity in the grade 4 glioma cluster, however, regulon
activity of grade 3 glioma was dispersed between grade 2 and grade 4 (Figure 4A). After
including DEGs into the initial network using the transcriptional network analysis (TNA)
algorithm, a focused network of glioma grades was constructed. According to TNA

117



J. Pers. Med. 2021, 11, 138

algorithm, nine significant ETS regulons were found to be enriched with different numbers
of target genes. ETV1, which expressed the least significance among the significant ETS
regulons, was marked in blue (Figure 4B).

 
Figure 4. Regulon activity and size of the ETS-mediated gene regulatory network. (A). The correlation distance heatmap
of regulon activity for non-tumor and glioma grades. (B). Regulon size of the individual transcription factor in the gene
regulatory network resulting from the transcriptional network analysis (TNA).

To determine the direction of regulation between each regulon and its targets, two-
tailed GSEA was performed, and positively and negatively regulated co-expression patterns
in target gene distribution were constructed for individual ETS regulons (Figure 5). In this
analysis, genes were ranked for their fold changes in the x-axis, and enrichment scores
were given in the y-axis; the peak of each plot is the enrichment score for the gene indicated
(dotted lines), while the colored bar shows the positively and negatively correlated genes.
These results suggest that enriched ETS regulons have both unique and common gene
targets in gliomas, as indicated by a clear separation of negatively and positively correlated
targets in regulons such as ETS2 and ELK1 (unique), and overlapping negative and positive
regulons, such as those of ELF4 and ELK3 (common).
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Figure 5. Two-tailed GSEA analysis associated positively and negatively regulated targets of individual regulons. Target
genes are ranked by gene expression analysis, and scored by enrichment analysis that indicates the edge weight of the gene
regulatory network.

The network from the TNA algorithm was filtered by DEGs from Elk-1-VP16 and
PEA3-VP16 overexpression microarray results to create a much more unique regulatory
network of ETS members. As a result of filtering, a final regulatory network was constructed
with 3366 target genes and 6610 interactions with ETS regulons, and the gene regulatory
network was visualized with Cytoscape (Figure 6). This network representation shows fold
changes of DEGs, as well as their interaction with the ETS regulons, showing the common
targets to be clustered in the middle (Figure 6).
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Figure 6. Gene regulatory network of glioma grades under the regulation of ETS transcription factors. Diamond nodes
represent ETS members as a regulator, and circle nodes correspond to the target genes. The color of the circle indicates the
mean fold change of glioma grades compared to non-tumor samples, resulting from differential gene expression analysis.
Edge colors show the enrichment score of each target gene with corresponding regulators resulted from GSEA analysis.

Focusing on the functional investigation of the gene regulatory network, GO and
KEGG enrichment analysis was performed with positively and negatively regulated targets
of ETS regulons on the regulatory network (positive regulation indicates similar coexpres-
sion patterns, i.e., when ETS protein is downregulated, its targets are also downregulated,
and vice versa). It was observed that positive and negative cluster targets of ETS regulons
were enriched in biological processes, such as cell–cell adhesion, synapse formation, and
protein localization, some of which are common across members, while some are unique
for one or few family member(s) (Figure 7A,B, Supplementary Tables S4 and S5). ELF1
and ELF4 regulons appear to belong to similar biological processes; ELK1 and ETS2 also
were found to have targets within the same biological pathways (Figure 7A). The ETV1
regulon appears to have a distinct set of positively regulated targets, while ELK3, ELK4,
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ETS1, and, to some extent, ETV4 appear to regulate similar biological processes (Figure 7A).
This classification is not conserved for negatively regulated targets, however; here, ELF1,
ELK3, ELK4, ETS1, and ETV4 appear to regulate similar biological processes, while the
ELF4 regulon and ETS2 regulon each are comprised of distinct targets (Figure 7B). It is
important to note that, in positively regulated targets of the ETV1 regulon, nucleosome and
chromatin disassembly related processes were prominent, while no significant negatively
regulated targets were identified for the ETV1 regulon. The ELK3 regulon included posi-
tively regulated targets in ECM organization, protein maturation, and processing pathways,
and negatively regulated targets in synaptic vesicle signaling, synaptic transmission, and
synaptic plasticity pathways.

Figure 7. GO enrichment analysis of individual regulons and their (A). positively and (B). negatively regulated targets. GO
analysis was performed by clusterProfiler with an adjusted p-value < 0.05. The gene ratio indicates the number of genes
enriched with corresponding GO terms among the total gene number introduced into the enrichment analysis.
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Similar comparative analysis using KEGG pathway enrichment showed that, unlike
the GO biological processes analyzed above, distinct signaling pathways were regulated by
each ETS regulon, while a positively regulated cluster of the ETV4 regulon was enriched
for the MAPK and PI3K-Akt signaling pathways, and a negatively regulated cluster of
this protein was enriched for endocytosis and the synaptic vesicle cycle (Figure 8A,B,
Supplementary Tables S6 and S7); the positively regulated cluster of ELK1 was enriched for
cholinergic and dopaminergic synapses, as well as calcium signaling, while its negatively
regulated cluster was enriched Hippo signaling, signaling of pluripotent stem cells, and cell
cycle (Figure 8A,B). Interestingly, endocytosis and the synaptic vesicle cycle were common
signaling pathways in almost all ETS regulons, except for ELK1 (Figure 8B).

Figure 8. KEGG enrichment analysis of individual regulons and their (A). positively and (B). negatively regulated targets.
KEGG analysis was performed by clusterProfiler with an adjusted p-value < 0.05. The gene ratio indicates the number of
genes enriched with corresponding KEGG pathways among the total gene number introduced into the enrichment analysis.
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4. Discussion

The five stages of gliomagenesis are the initial growth stage, oncogene-dependent
senescence stage, growth stage, replicative senescence stage, and, finally, the immortal-
ization stage [28]. Disease stage classification and identification of stage-dependent or
grade-dependent biomarkers is important in the accurate diagnosis of gliomas.

Graph complexity analysis in low-grade glioma has shown Etv5 and its network
expression to be critical features of the neoplastic state [27]. Unfortunately, ETV5 of the
PEA3 subfamily does not appear to be significantly altered in tumor vs. non-tumor samples
in the microarray datasets used in this study (data not shown). However, we have identified
another PEA3 subfamily member, ETV1, to be expressed at high levels in low-grade glioma
and decrease in expression in higher grades (Figure 2). ELK-1 protein is known to be
a critical partner for the androgen receptor (AR) in prostate cancer, and its expression
was found to be associated with a higher clinical stage and prognostic marker of disease
recurrence in prostate cancer [14]. No such distinction was apparent in our study on glioma
grades 2–4. However, we have identified ELF4 and ETV6 to be downregulated in grade 2
gliomas, and upregulated in increasing amounts in grades 3 and 4 (Figure 2). It should be
noted, however, that the ETS expression profile is also different in epilepsy; ELF1, ELK1,
ELK4, ETS1, ETS2, and ETV1 are expressed at higher levels than ELF4, ELK3, and ETV4,
and there is also variability in expression among different types of epilepsy (Supplementary
Figure S1). However, since the type of epilepsy used in the datasets analyzed in this study
were not known, it was not possible to normalize for ETS gene expression (Supplementary
Figure S1) [51].

ETS proteins focused on in this study (namely, class I subfamilies ETC, TCF, and
PEA3 and class II subfamilies ELF and TEL) exhibit little tissue specificity, and, in fact,
many family members are ubiquitously expressed [2,15]. It is therefore not surprising that
gene regulatory network analysis of ETS transcription factors exhibits extensive overlap of
targets, confirming that functional redundancy exists at least to a certain extent (Figure 6).
However when positively and negatively regulated targets of ETS regulons were analyzed,
negatively regulated targets were found to extensively overlap (mostly related to synaptic
vesicle trafficking and synaptic transmission, Figure 7B), while positively regulated targets
appeared to be selective for groups of ETS family members, with ELF1 and ELF4 comprising
one class (targets in synapse pruning, immune function, and cell to cell adhesion related
biological processes), ELK1 and ETS2 forming another class (targets in synapse function
and synaptic vesicle trafficking related processes), and ELK3, ELK4, ETS1, and ETV4
forming a third class (targets in extracellular matrix related processes, as well as protein
processing and localization, ER stress, and cell cycle related processes); ETV1 appeared to
be a class by itself (targets in nucleosome and chromatin disassembly) (Figure 7A). These
regulon classes were not directly related to ETS subfamily assignments.

Although more physiologically relevant non-tumor controls are required to fine-tune
the results in the future, this is a proof of concept study that shows that expression levels of
ETS genes can be used as diagnostic markers for glioma grade identification, in addition to
already existing molecular markers. In addition, the gene regulatory network analysis for
ETS regulons can be used to identify target gene clusters in positively and negatively regu-
lated pathways and processes, which can help in understanding the molecular mechanisms
of transcriptional redundancy among family members. We propose that such network
analysis can also be extended to differentiate stages of tumorigenesis in other types of
tumors, as well as to developmental stages of various tissues.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-442
6/11/2/138/s1, Figure S1: Expression level of ETS members on the neocortex and hippocampus in
epilepsy patients and the healthy control from GSE134697; Table S1: GO biological process enrichment
analysis result table of glioma grades from DEGs; Table S2: KEGG pathway enrichment analysis
result table of glioma grades from DEGs; Table S3: GO biological process enrichment analysis result
table of positively regulated targets of ETS regulons; Table S4: GO biological process enrichment
analysis result table of negatively regulated targets of ETS regulons; Table S5: KEGG pathway
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enrichment analysis result table of positively regulated targets of ETS regulons; Table S6: KEGG
pathway enrichment analysis result table of negatively regulated targets of ETS regulons; Table S7:
Table formation of the gene regulatory network in Figure 6.
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Abstract: Elk-1, a member of the ternary complex factors (TCFs) within the ETS (E26 transformation-

specific) domain superfamily, is a transcription factor implicated in neuroprotection, neurodegenera-

tion, and brain tumor proliferation. Except for known targets, c-fos and egr-1, few targets of Elk-1

have been identified. Interestingly, SMN, SOD1, and PSEN1 promoters were shown to be regulated

by Elk-1. On the other hand, Elk-1 was shown to regulate the CD133 gene, which is highly expressed

in brain-tumor-initiating cells (BTICs) and used as a marker for separating this cancer stem cell

population. In this study, we have carried out microarray analysis in SH-SY5Y cells overexpressing

Elk-1-VP16, which has revealed a large number of genes significantly regulated by Elk-1 that function

in nervous system development, embryonic development, pluripotency, apoptosis, survival, and

proliferation. Among these, we have shown that genes related to pluripotency, such as Sox2, Nanog,

and Oct4, were indeed regulated by Elk-1, and in the context of brain tumors, we further showed that

Elk-1 overexpression in CD133+ BTIC population results in the upregulation of these genes. When

Elk-1 expression is silenced, the expression of these stemness genes is decreased. We propose that

Elk-1 is a transcription factor upstream of these genes, regulating the self-renewal of CD133+ BTICs.

Keywords: ETS; Elk-1; stem cell; microarray; brain-tumor-initiating cell (BTIC)

1. Introduction

The ternary complex factor (TCF) Elk-1 of the ETS domain superfamily is a ubiquitous
transcription factor, yet it interacts with neuronal microtubules and motor proteins, is
found mainly in neuronal axons and dendrites, and is phosphorylated at Serine 383 residue
in fear conditioning or synaptic plasticity paradigms [1–6]. Phosphorylation of Elk-1 by
MAPKs, in particular Serine 383 and Serine 389 within the activation domain, was shown
to induce its binding to DNA [7,8].

Elk-1 transcription factor has been widely studied with respect to its mitogen-induced
activation through phosphorylation by mitogen-activated protein kinases (MAPKs) and
regulation of the c-fos promoter in complex with serum response factor (SRF) [9]. However,
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Elk-1 and other ternary complex factor (TCF) members have a rather large number of
targets, some of which have a high degree of redundancy [10]. A thousand new promoters
were identified for Elk-1 binding using a ChIP-chip assay, with two distinct binding
modes: SRF-dependent and SRF-independent; furthermore, it was shown that there was a
redundancy of promoter occupancy by other ETS proteins in a subset of promoters [10].
Elk-1 was also shown to regulate survival in neuronal cell models by regulating the Survival
of Motor Neuron (SMN) promoter as a novel target [11]. CD133, a widely-accepted Cancer
Stem Cell (CSC) marker [12–14], was also shown to be regulated through ets motifs as
well as hypoxia-inducible elements, through the interaction of HIF-1α and Elk-1 on the
promoter [15].

Elk-1 was recently found to have both activating and repressive role in human embry-
onic stem cells (hESCs), particularly through SRF interaction, and found to be upregulated
in mesoderm differentiation [16].

In this study, we have first aimed to identify novel targets of Elk-1 using SH-SY5Y
neuroblastoma cell line in a transcriptomics approach. We have identified novel pathways
and genes that were up- or downregulated upon Elk-1-VP16 overexpression, and when
promoters of a subset of these genes were analyzed, several ets motifs were identified.
Among these, genes related to pluripotency or early neuronal development were particu-
larly interesting, hence we have further analyzed and verified the regulation of a selected
set of genes by Elk-1 using qPCR and investigated the regulation of SOX2, NANOG, and
POU5F1 promoters by Elk-1 and its binding to predicted ets motifs in neuroblastoma and
glioblastoma (GBM) cell lines. Considering Elk-1 was previously shown to regulate CD133
expression [15], we have also studied Elk-1 expression levels in CD133− and CD133+
cell lines as well as primary brain tumors, indicating Elk-1 was indeed overexpressed
in CD133+ cells, and when Elk-1 expression was silenced by RNAi, SOX2, and NANOG
expression were reduced in both CD133+ primary GBMs, as well as CD133+ cell lines in a
cell context-dependent manner.

2. Materials and Methods
2.1. Cell Culture and BTIC Isolation from Cell Lines and Primary Tumors

SK-N-BE (2) (ATCC CRL-2271) and SH-SY5Y (ATCC CRL-2266) human neuroblastoma
cell lines as well as U-87 MG (ATCC® HTB-14), A172 (ATCC CRL-1620), and T98G (ATCC
CRL-1690) human GBM cell lines were used. U87-MG, A172, and T98G cell lines were
provided by Assist. Prof. Tugba Bagci Onder from Koc University. For all the stated cell
lines for monolayer culture, DMEM high-glucose (4.5 g/L) medium (Gibco, #41966029,
Waltham, MA, USA) was used as a basal medium and supplemented with one percent
penicillin-streptomycin solution (Gibco, #15140122, Rockville, MA, USA) and 10 percent
fetal bovine serum (FBS) (Life Technologies, #10500064, Carlsbad, CA, USA). Cells were
grown in 37 ◦C and 5 percent CO2 incubator.

To form tumorsphere cultures from monolayer cells and support brain-tumor-initiating
cells after conducting CD133+ isolation, initial proliferation media (IPM), N2 media, and
coated culture plates were used. Plates were prepared by coating with poly-HEMA (poly
(2-hydroxyethyl methacrylate) solution. To prepare poly-HEMA solution, 38 mL absolute
ethanol was mixed with two mL double distilled water. Following the addition of 1.2 g
of poly-HEMA (Sigma Aldrich, #P3932, Taufkirchen, Germany) powder into the mixture,
it was placed in a shaker at 37 ◦C with a vigorous shake for four-five hours until no pow-
der could be seen with the naked eye. This poly-HEMA solution was filtered through a
0.22-micron filter and kept at 4 ◦C up to six months. Initial proliferation medium (IPM) is
necessary for culturing tumorspheres and isolated brain-tumor-initiating cells up to three
passages. IPM is made up of neurobasal medium (Gibco, #21103049, Waltham, MA, USA),
1X B27 (Gibco, #17504044, Waltham, MA, USA), 1X GlutaMAX (Gibco, #35050061, Waltham,
MA, USA), one percent penicillin-streptomycin solution (Gibco, #15140122, Waltham, MA,
USA), 20 ng/mL FGF-2 (Gibco, #13256029, Waltham, MA, USA), and 20 ng/mL EGF (Gibco,
#SRP3027, Waltham, MA, USA). N2 medium is necessary for culturing spheroids and iso-
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lated brain-tumor-initiating cells over three passages. N2 medium is made up of neurobasal
medium (Gibco, #21103049), 1X N2 (Gibco, #17502048, Waltham, MA, USA), 1X GlutaMAX
(Gibco, 35050061, Waltham, MA, USA), one percent penicillin-streptomycin solution (Gibco,
#15140122, Waltham, MA, USA), 20 ng/mL FGF-2 (Gibco, #13256029, Waltham, MA, USA),
and 20 ng/mL EGF (Waltham, MA, USA, #SRP3027, Waltham, MA, USA).

For brain-tumor-initiating cells’ (BTICs) isolation from cell lines, SK-N-BE (2) neurob-
lastoma cells were grown as monolayer cells up to 80 percent confluency, and on the day of
isolation, the media was removed, cells were washed with five mL PBS/flask, and three
mL of StemPro Accutase/flask was added onto the cells. The suspension was centrifuged
at 300× g for five minutes. The cells were resuspended with MACS buffer [two percent
bovine serum albumin (BSA), two mM EDTA, and phosphate-buffered saline (PBS) pH
7.2]. To prevent the clogging of the columns at the ongoing isolation procedure, cells were
passed through the first 70-micron cell strainer several times until they could pass freely
through it. Then, they were passed through a 30-micron filter several times, cell aggregates
were removed, and the single-cell suspension was prepared. Cells could be counted at
this stage of the procedure. The viable cell number was determined by staining the cells
with 0.4 percent Trypan Blue Solution (Gibco, #15250061, Waltham, MA, USA). To continue,
cells were centrifuged at 300× g for 10 min, and the supernatant was removed. Cells were
resuspended in 60 µL MACS buffer/107 cells and 20 µL FcR Blocking Agent/107 cells, and
20 µL CD133 Microbeads/107 cells were added (CD133 MicroBead Kit—Tumor Tissue,
human, Miltenyl Biotec, #130-100-857, Gladbach, Germany). The cells were incubated
at 4 ◦C for 30 min at a constant, slow rotation (12 rpm). Following incubation, two mL
buffer/107 cells were added to wash the cells, and then, they were centrifuged at 300× g
for 10 min again. The supernatant was aspirated, and the pellet was resuspended in 500 µL
MACS buffer/107 cells and continued with magnetic separation part.

MACS MS column (Miltenyl Biotec, #130-042-201, Germany) was placed on the MACS
Mini Separation stand and was equilibrated with 500 µL MACS buffer. The cells prepared
in the previous step were loaded onto that column, and with gravity effect, the suspended
cells flow through the column for positive selection. That is, the cells labeled for CD133
(CD133+) were kept in the column, while marker-free cells (CD133−) would not bind to the
column and were collected in a tube. The column was washed three times with 500 µL of
the buffer to wash column-retaining CD133+ cells, the flowing liquid was collected again,
and the resulting cells were combined to assemble CD133− cells. For elution of CD133+
cells, the column was separated from the magnetic stand and allowed to stand in the
non-magnetic field for about two minutes and flushed out with one mL MACS buffer with
the supplied plunger. Cells were counted with Trypan Blue, centrifuged for five minutes
at 150× g and resuspended in complete IPM and cultured for 7–10 days in a humidified
incubator at 37 ◦C and five percent CO2, replacing the medium with freshly prepared IPM
every three–four days until their size reached 200 microns, or they started dying from the
center. When they reached the limitations, they were passaged. For passaging the cells,
the suspension cells were collected from the dishes to a falcon and centrifuged at 300× g
for 10 min. Following the centrifugation, the medium was aspirated, and one mL StemPro
Accutase Cell Dissociation Reagent (Gibco, #A1110501, Waltham, MA, USA) was added
onto the cells, and cells were incubated at 37 ◦C for five minutes. Cells were triturated
about 40 times until the spheroids become single-cell suspension. Onto this single-cell
suspension, five mL of PBS with antibiotics was added. Cells were counted at this stage if
necessary or to continue cells were centrifuged at 300× g for five minutes. The cells were
resuspended in complete IPM at the proper volume.

2.2. Dissociation and Culture of Primary GBM Tissue

Human GBM samples were obtained from consenting patients, as approved by the
Hamilton Health Sciences/McMaster Health Sciences Research Ethics Board. Brain tu-
mor samples were dissociated as previously described [17] and cultured as neurospheres
in Neurocult complete (NCC) media, a chemically defined serum-free neural stem cell
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medium (STEMCELL Technologies, Vancouver, BC, Canada), supplemented with human
recombinant epidermal growth factor (20 ng/mL: STEMCELL Technologies, Vancouver,
Canada), basic fibroblast growth factor (20 ng/mL; STEMCELL Technologies, Vancouver,
Canada), heparin (2 µg/mL 0.2% Heparin Sodium Salt in PBS; STEMCELL Technologies,
Vancouver, Canada), antibiotic-antimycotic (10 mg/mL; Wisent Bioproducts, Saint Bruno,
QC, Canada) in ultra-low attachment plates (Corning, New York, NY, USA). Primary GBM
cells (BT 428, BT 458 and BT 624) were cultured in NSC complete media and flow-sorted
for CD133+ and CD133− populations as described previously [18,19]. Transfections were
carried out by Lipofectamine 2000 as per the manufacturer’s instructions.

2.3. Transient Transfection of Cells

For transfection of adherent cells, single-cell suspensions of adherent cell cultures
were prepared and seeded at 0.3–0.6 × 106 cells/cm2 density in complete DMEM medium,
and they were incubated in 37 ◦C, five percent CO2 incubator, so that they would be
85–90 percent confluent at the time of transfection. On day one, for the formation of the
carrier liposome complex, the desired plasmid and PEI were mixed at the determined ratio
for each cell line in serum-free DMEM and incubated at room temperature for 20 min.
At the end of the period, a complete DMEM medium with 10 percent FBS was added to
the mixture at half the volume of the mix. Two hours later, complete DMEM medium
containing 10 percent FBS was added to the wells/dishes and the cells were incubated
for 48 h in 37 ◦C, five percent CO2 incubator for the transgene expression. Cells were
transfected with empty pCDNA3 or pCMV plasmids, pCMV-Elk-1 and pRSV-Elk-1-VP16
(courtesy of Prof. A.D. Sharrocks) using the PEI reagent (CellnTech), in 3 replicas per
sample. psiSTRIKE hMGFP-scrRNA (from here on referred to as scrRNA) and psiSTRIKE
hMGFP-siElk-1 (from here on referred to as siElk-1) has been described elsewhere [11].

For transfection of BTICs, the suspension cells were collected from the dishes to a
falcon and centrifuged at 300× g for 10 min. Following the centrifugation, the medium was
aspirated, and one mL StemPro Accutase Cell Dissociation Reagent (Gibco, #A1110501)
was added onto the cells, and cells were incubated 37 ◦C for five minutes. Cells were
triturated for about 40 times until the spheroids become single-cell suspension. Onto this
single-cell suspension, five mL of PBS with antibiotics was added and centrifuged at 300× g
for five minutes. The cells were resuspended in complete IPM at the proper volume. Cell
density and Lipofectamine 2000 (Thermo Fischer Scientific, Waltham, MA, USA) ratio were
determined. Cells were seeded at 0.3–0.6 × 106 cells/cm2 density in complete IPM without
antibiotics on the day of transfection. Following the cell seeding, Lipofectamine 2000 and
the nucleic acids were diluted in neurobasal medium without antibiotics, incubated at room
temperature for five minutes, then the diluted Lipofectamine 2000 was gently combined
with the dilute nucleic acids, and the mixture was incubated at room temperature for 20 min
to form liposome. Then, the mixture was added directly onto wells containing cells, and the
cells were incubated for 24–72 h in 37 ◦C, 5% CO2 incubator for the transgene expression

2.4. Soft Agar Assay

For softy agar assay, 100 cells in 100 µL IPM and an equal volume of 2.8% low-
melting-point (LMP) agarose solution were mixed to generate 1.4% agarose-cell solution
per well in a 96-well plate, and the mixture was incubated at 37 ◦C, 5% CO2 incubator for
14 days. At the end of 14 days, colonies were counted under a 10× magnification or stereo
microscope. For staining, crystal violet was dissolved in PBS with two percent ethanol at
a final concentration of 0.04 percent, filtered with 0.45 µm filter, and dishes were stained
with 50 µL of this solution for one hour at room temperature. The plates were checked
every ten minutes to prevent the staining of the background. Then, the staining solution
was removed carefully, and the wells were washed with water three times for 30 min. At
the last wash, water was kept in the wells overnight to remove the background. The assay
was performed in quadruplicate; colonies ≥ 20 µm were counted and analyzed using MS
Excel software; results were reported as mean ± standard deviation.

130



J. Pers. Med. 2021, 11, 125

2.5. Limiting Dilution Analysis (LDA)

Limiting dilution analysis (LDA) has been extensively used to find out differences
within multiple groups for a particular trait. In our case, LDA was used for determining
the cancer cell initiating frequency of CD133+ and CD133− SKNBE (2) cells; in other words,
to evaluate the self-renewing capacity of BTICs. For LDA, following the BTIC isolation
procedure, cells were counted so that 10,000 cells/50 µL complete IPM would be present in
the first tube. Through serial dilution by factor two up to 1 cell/50 µL, cells were seeded
on poly-HEMA coated 96-well plates. For each condition/cell number, samples were
seeded in quintuplet. Twenty-five microliters of culture media were added to each well
every three–four days, and cells were examined for the presence/absence of spheres and
quantified on day 10.

2.6. RNA Isolation, cDNA Synthesis, Reverse Transcription Polymerase Chain Reaction (RT-PCR),
and Real-Time PCR

PureLink RNA Mini Kit (Life Technologies Ambion, #12183-018) and PicoPure RNA
Isolation Kit (Arcturus, #KIT0202) were used for RNA isolation throughout the experiments.
In summary, adherent cells grown in cell culture plates (usually 1.5x106 cells/10 cm culture
dish) were washed with cold PBS; then, the resuspended cells were centrifuged at 300× g
for 5 min at 4 ◦C. An amount of 0.3–0.6 mL of lysis solution with beta-mercaptoethanol
was added onto the cells depending on the number of cells, and they were mechanically
burst and homogenized by triturating through an insulin syringe 15 times. The cells were
centrifuged at 2000× g for five minutes at 4 ◦C, followed by the addition of 70 percent
ethanol equal to the volume of the present cell lysate. The lysates were transferred to
the filter cartridges and were centrifuged at 12,000× g for 30 s. This step was repeated
until the whole sample was finished, and the washing process was started. For washing,
700 µL of wash buffer I was added and centrifuged at 12,000× g for 15 s. Following the first
washing step, 500 µL of wash buffer II was added and repeated twice after centrifugation
at 12,000× g for 30 s. Tubes were centrifuged for two minutes to dry the membrane. In the
elution stage, the cartridges were transferred to new Eppendorf tubes, and depending on
the starting number of cells, 20–35 µL of nuclease-free water was put onto the membrane
surface and incubated for three minutes at room temperature. Total RNA isolation was
completed with centrifugation at 12,000× g for one minute. The concentrations of RNA
samples obtained were determined with NanoDrop Spectrophotometer (Thermo Fisher
Scientific, Paisley, UK), and the samples were stored at −80 ◦C in the presence of RNase
inhibitors or used for further experiments.

Following total RNA isolation, cDNA synthesis was performed using modified MMLV-
derived reversible transcriptase using the iScript cDNA Synthesis Kit (BioRad, #1708891,
Hercules, CA, USA). For this purpose, a maximum of one µg total RNA sample was diluted
to a maximum volume of 15 µL. The RNA sample was denatured at 70 ◦C for five minutes
and centrifuged briefly. After the addition of the 5X reaction buffer and iScript reversible
transcriptase, the mix was ready for the cycling. Prepared cDNA samples were diluted
with nuclease-free water to the desired concentration immediately before use in qPCR
and/or stored at −20 ◦C for a maximum of one month.

PrimerQuest (Integrated DNA Technologies, IDT, Coralville, IA, USA), a free online
software, was used for the qPCR primer design. The mRNA sequences of the target genes
were obtained from the NCBI Gene (https://www.ncbi.nlm.nih.gov/gene/, accessed on
20 January 2021) database, the exon regions of the respective genes were determined,
and the primers were designed to be at the exon–exon boundary (if possible). Potential
primer pairs were evaluated for GC content, melting temperatures (Tm), and the hairpin
formation and appropriate primers were determined. The NCBI BLAST database (https:
//blast.ncbi.nlm.nih.gov/, accessed on 20 January 2021) was used to check the specificity
of the designed primers. The designed primers are listed in Table 1.
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Table 1. qPCR primers used.

Gene Site Sequence (5′-3′)

GAPDH
Frw CAT CTT CCA GGA GCG AGA TCC

Rev AAA TGA GCC CCA GCC TTC TCC

ACTB
Frw ACG AAA CTA CCT TCA ACT CC

Rev GAT CTT GAT CTT CAT TGT GCT GG

ELK1
Frw GCT TCC TAC GCA TAC ATT GAC C

Rev ACT GGA TGG AAA CTG GAA GG

SOX2
Frw GGG AAA TGG GAG GGG TGC AAA AGA GG

Rev TTG CGT GAG TGT GGA TGG GAT TGG TG

POU5F1
Frw AAG GAT GTG GTC CGA GTG TGG

Rev CCT GAG AAA GGA GAC CCA GCA G

NANOG
Frw TTC AGA GAC AGA AAT ACC TCA GCC

Rev CCT TCT GCG TCA CAC CAT TGC

WNT3A
Frw GACAAAGCTACCAGGGAGTC

Rev CTGCTGCAGCCACAGAT

IRAK3
Frw ACATACTAGAGTTGGCTGCATATT

Rev TGTCACCTACACACTGCAATC

MEF2B
Frw CAACCGCCTCTTCCAGTATG

Rev TCAGCGTCTCGAGGATGT

TCF7L1
Frw TGAGCGTGAAATCACCAGTC

Rev TGGCCCTCATCTCCTTCATA

RHO
Frw CATGATGAACAAGCAGTTCCG

Rev AGAGTCCTAGGCAGGTCTTAG

HES7
Frw CGGGATCGAGCTGAGAATAG

Rev GTTCCGGAGGTTCTGGTC

NOTO
Frw GCTGGAAGAGTTGGAGAAAGT

Rev ACTCTCACCTGGTTCTCTGTA

SIX3
Frw CAGCAAGAAACGCGAACTG

Rev GTGCTGGAGCCTGTTCTT

CREB3
Frw ACCTGCATCTTGGTCCTACTA

Rev GGACAACACTCCATGCTCAG

CREM
Frw ATCCCAGCATGATGGAAGTATAA

Rev ATTGCTGCTACCTGAGCTAAA

LIFR
Frw GCTCTGGACAAGTTAAATCCATAC

Rev CCCTTTGAAGGACTGGCT

FRZB
Frw AAGTTAAGCGCTGGGATATGA

Rev GGGATTTAGTTGCGTGCTTG

GLUT3
Frw AGCTCTCTGGGATCAATGCTGTGT

Rev ATGGTGGCATAGATGGGCTCTTGA

RXRB
Frw GATGTGAAGCCACCAGTCTTAG

Rev GTAGTGTTTGCCTGAGCTTCT
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Table 1. Cont.

Gene Site Sequence (5′-3′)

NODAL
Frw TACATCCAGAGTCTGCTGAAAC

Rev CTAGGAGCACTCTGCCATTATC

PAX6
Frw GTGAATGGGCGGAGTTATGA

Rev ATGAGTCCTGTTGAAGTGGTG

GSK3B
Frw CCGAGGAGAACCCAATGTTT

Rev GCCAGCAGACCATACATCTATAC

FGF11
Frw CAAAGGCATCGTCACCAAAC

Rev GATCAGGTTGAAGTGGGTGAA

FRIT1
Frw GTGCAGGAAACCGAGTAGAA

Rev GCGCCTTTAGAGTGAGTGAA

GLI4
Frw CTCGGAAGGTCCCAGGT

Rev CCCGGTGATGAGAGACTGA

BRACHYURY
Frw GTAAACTCCACCAGTCCTACTTT

Rev TCTGTCCTTAACAGCTCAACTC

NOTCH4
Frw GAGGATATCGATGAGTGCAGAAG

Rev TTCAAAGCCTGGGAGACAC

ZIC1
Frw GAGCGACAAGCCCTATCTTT

Rev GGATTCGTGGACCTTCATGT

ARC
Frw TCAGCTCATGACTCACCCA

Rev CTTGAGACCTGTTGTCACTCTC

ALS2
Frw GGACTCAAAGAAGAGAAGCTCAA

Rev TGGCAATCTCTCTGGTGTTATG

SOX10
Frw CTTCATGGTGTGGGCTCA

Rev CGTTCAGCAGCCTCCAG

SMAD6
Frw CCTACCGTGTGCTGCAA

Rev GGAATCGGACAGATCCAGTG

NGFR
Frw CATAGCCTTCAAGAGGTGGAAC

Rev CACTGTCGCTGTGGAGTTT

MAPK6
Frw AGGAGCTTCTCAGCGTAATTC

Rev CCAGGAAATCCAGTGCTTCT

NGFR
Frw CATAGCCTTCAAGAGGTGGAAC

Rev CACTGTCGCTGTGGAGTTT

CD133
Frw GCGTCTTCCTCATGGTTGGAG

Rev CTTGCTCGTGTAAGGTTCACAG

All the qPCR experiments were performed using SSOAdvanced Universal SYBR
Green Supermix (Biorad, #1725274, Hercules, CA, USA) and Applied Bioscience StepOne
Plus Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA); essentially,
1–10 ng cDNA was used as template; primers were used at 300 nM each, and the reaction
was carried out at 60 ◦C for 40 cycles. The differences between the expression of target
genes were normalized by the expressions of β-actin and gapdh genes. Each setup was
prepared in triplicate and analyzed by the ∆∆CT method as described previously [20]. The
fold changes in target gene expressions were calculated based on the mean of the reference
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gene expression and logarithm-transformed. All qPCR experiments were repeated at
least 3 times, unless otherwise noted. The mean and standard deviation values were
calculated for each group, and the differences in the gene expression levels were determined
considering the control group. For statistical analysis, depending on the context, one-way
ANOVA with Tukey post hoc test or Student’s t-test depending on the context with Prism
5 GraphPad software was used. p-value under 0.05 was considered statistically significant.

Total RNA was extracted using a Norgen Total RNA isolation kit and quantified using
the NanoDrop Spectrophotometer ND-1000. Complementary DNA was synthesized from
0.5–1 µg RNA by using qScript cDNA Super Mix (Quanta Biosciences, Beverly, MA, USA)
and a C1000 Thermo Cycler (Bio-Rad, Hercules, CA, USA) with the following cycle param-
eters: 4 min at 25 ◦C, 30 min at 42 ◦C, 5 min at 85 ◦C, hold at 4 ◦C. qRT-PCR was performed
by using Perfecta SybrGreen (Quanta Biosciences, Waltham, MA, USA) and an Opticon
Chroma4 instrument (Bio-Rad, Hercules, CA, USA). Gene expression was quantified by
using Opticon software, and expression levels were normalized to 28srRNA expression.
For statistical analysis, multiple Student’s t-tests with Prism 5 GraphPad software were
used. p-value under 0.05 was considered statistically significant.

2.7. Microarray and Data Analysis

For microarray analysis, SH-SY5Y cells were transfected with Elk-1-VP16 expression
plasmid or empty pCDNA3 plasmid as described above, and 48 h after transfection, RNA
samples were isolated using Ambion Tri-pure RNA isolation kit, checked for quality, con-
verted to cDNA, and confirmed for Elk-1 expression as described above. Thereafter, RNA
was converted to cDNA using the Superscript Double-Stranded cDNA Synthesis (Invit-
rogen, Carlsbad, CA, USA) Kit and labeled with NimbleGen One Color DNA Labeling
(NimbleGen, Roche, Madison, WI, USA). The labeled cDNA was hybridized to NimbleGen
Human Gene Expression Array 12x135K (NimbleGen, Roche, Wisconsin, USA), which
covers 45.033 genes with 3 probes per gene, containing 12 arrays per slide. After hybridiza-
tion, slides were scanned using Genepix 4000B scanner and analyzed with NimbleScan
2.5 software using three arrays from the pCDNA3-transfected cell as reference samples.
The expression datasets were normalized using the Robust Multi-Array Average expression
measure [21], and differentially expressed genes (DEGs) and their fold-changes were iden-
tified from the normalized expression values using two-tailed Student’s t-test assuming
equal variances and Benjamini-Hochberg’s method as the multiple testing option to control
the false discovery rate. An adjusted p-value threshold of 0.15 was used to determine
the statistical significance of differential expression. The dataset is accessible from EBI
ArrayExpress, with the accession number of E-MTAB-9938.

Gene IDs were converted to official gene symbol, and gene set enrichment analyses
of DEGs were performed through ConsensusPathDb (r.32) [22] using KEGG [23], Reac-
tome [24], and Biocarta [25] as the data source for molecular pathways, and Gene Ontology
Biological Process annotations [26] as the data source for biological processes. Whole-
genome annotation for the human genome was used as the background reference set.
p-values were determined through a modified Fisher exact test and adjusted via Benjamini-
Hochberg’s method. A threshold of adjusted p-value < 0.05 was used to determine the
statistical significance of the enrichment results. Besides, to characterize the molecular
functions of each gene product, and their association with diseases, we manually searched
GeneCards Human Gene Database [27].

2.8. Promoter Clonings and Site-Directed Mutagenesis

To identify the putative Elk-1 transcription factor binding sites in selected stem-
ness gene promoters (SOX2, NANOG, POU5F1), the Cold Spring Harbor Laboratory—
Transcriptional Regulatory Element Database (TRED), Swiss Institute of Bioinformatics—
The Eukaryotic Promoter Database (EPD), and Alggen-Promo algorithmic analysis pro-
gram were used. The promoter sequences that correspond to the genes of interest were
retrieved from either the Transcriptional Regulatory Element Database (TRED) (http:
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//rulai.cshl.edu/cgi-bin/TRED/tred.cgi?process=home, accessed on 20 January 2021),
or the Eukaryotic Promoter Database (EPD) (http://epd.vital-it.ch/, accessed on 20 Jan-
uary 2021). The obtained promoter sequences were analyzed with Promo 3.0 (http:
//alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3, accessed on
20 January 2021). The promoter binding regions for transcription factors can be analyzed by
the Promo 3.0 tool, and the results are displayed as “dissimilarity rate”. The dissimilarity
matrix expresses the similarity pair to pair between Elk-1 DNA binding sequence and the
putative sequences at analyzed genes. From this point of view, the smaller dissimilarity
rates are the indicators of a higher possibility for the interaction between Elk-1 and the
promoter of interest. The binding ability of Elk-1 to the predicted sites on the promoters
could be confirmed by luciferase and chromatin immunoprecipitation assays, thereby
verifying the microarray results (Table 2).

Table 2. Number of ets motifs predicted on selected promoters and their dissimilarity score (DS)
range; DS of 0% means perfect match to consensus; TRED, Transcriptional Regulatory Element
Database; EPD, Eukaryotic Promoter Database. *

Number of Predicted ets Binding Motifs with Different
Dissimilarity Scores (DS) in Promo 3.0

DS: 0–1 Percent DS: 1–5 Percent DS: 5–10 Percent

SRF - 2 1

MCL1 2 - 3

LIF - 2 1

SOX2 (TRED) - 1 1

NANOG (TRED) - 1 -

POU5F1 (TRED) - 1 2

SOX2 (EPD) 1 2 3

NANOG (EPD) - 1 1

POU5F1 (EPD) 1 2 1
* For dissimilarity scores of individual ets motifs, see Supplementary Table S3 for URL of databases, please refer

to text.

Cloning primers for human SOX2, NANOG, and POU5F1 promoters were designed
and analyzed with NetPrimer (http://www.premierbiosoft.com/netprimer/, accessed
on 20 January 2021) and PrimerBlast (http://www.ncbi.nlm.nih.gov/tools/primer-blast/,
accessed on 20 January 2021) softwares. The designed cloning primers are listed in Table 3.
Gradient PCR with five different annealing temperatures was performed to detect the
optimum annealing temperature of the primers. The PCR reactions were prepared with
i-Taq DNA Polymerase (Intron, #25024, Seoul, Korea) kit using the genomic DNA isolated
from the SH-SY5Y cell line as a template. After optimization, the preparation of the
insert was carried out using Pfu DNA Polymerase (Thermo Scientific, #EP0571, Waltham,
MA, USA) suitable annealing temperatures as indicated in text for 30 cycles. Following
amplification, PCR products were purified by PureLink PCR Purification Kit (Invitrogen,
# K3100-01) and cloned into pGL3luciferase reporter plasmid.

Intentional deletion mutations were made on cloned promoter sequences with site-
directed mutagenesis (SDM). The promoter sequences were analyzed with Promo 3.0,
as stated previously. Potential Elk-1 binding sites on stemness promoters were chosen
according to the dissimilarity rate Promo 3.0. Accordingly, ets1 motif on NANOG promoter,
ets1 and ets2 motifs on SOX2 promoter, and ets1, ets2, and ets3 motifs on POU5F1 promoter
were deleted in corresponding pGL3 luciferase reporter constructs. SDM primers were
designed using the NEB Base Changer (http://nebasechanger.neb.com/, accessed on 20
January 2021) website, and Q5® Site-Directed Mutagenesis Kit Protocol (NEB, #E0554) was
followed for the mutations. The primer pairs designed flanking the region to be deleted
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and eventually forming deletion mutants from the cloned promoter sequences are given in
Table 4. The mutagenesis was carried out according to the manufacturer’s instructions.

Table 3. Cloning primers for chosen Homo sapiens stemness gene promoters.

Promoter
Forward Primer

(5′-3′)
RE Site

Reverse Primer
(5′-3′)

RE Site
Product

(bp)

POU5F1
AGACggtaccAGGGCTG

TTGGCTTTGGACA
KpnI

CTGTagatctAGCCATTTAA
GAATTCCAGAGTAGG

BglII 993

SOX2
CTGTggtaccGGGGAGTG

ATTATGGGAAGAA
KpnI

CTGTagatctCACTAGACTG
TCTTCATTCAACCGTAGC

BglII 993

NANOG
CTGTggtaccTTTCTGCC

TAAACTAGCCA
KpnI

CTGTagatctAGGTGAAGA
TTCTTTACAGTCG

BglII 988

Table 4. Primers used for site-directed mutagenesis of cloned promoters.

Primer Site Oligo Length Tm (◦C) Ta (◦C)

NANOG-ets∆
Fwd TACTAACATGAGTGTGGATC 20 59

58
Rev AGGAGGAAAAAATTTAAGAGG 21 57

POU5F1- ets∆1
Fwd CCTTTCCCCCTGTCTCTG 18 64

65
Rev CAGGGAAAGGGACCGAGG 18 68

POU5F1- ets∆2
Fwd GAATTGGGAACACAAAGG 18 57

57
Rev TGAATGAAGAACTTAATCCC 20 56

POU5F1- ets∆3
Fwd GTGAAGTTCAATGATGCTCTTG 22 61

62
Rev AACCAGTTGCCCCAAACT 18 64

SOX2- ets∆1
Fwd TTGAAATCACCCTCCCCC 18 64

65
Rev ATCCCACGGCACTGTATG 18 65

SOX2- ets∆2
Fwd GTGTCTTTCCCCAGCCCC 18 69

68
Rev GGCGCTCAAAAGTGCAGG 18 67

2.9. Luciferase Reporter Assay

For each cell line, the necessary optimization experiments were performed, and cell
numbers and DNA: PEI ratios were determined for co-transfections. For 24-well cell culture
plates for luciferase analysis, for SK-N-BE (2), T98G, and A172 cells 80 × 104 cells/well,
and for SH-SY5Y and U87-MG cells, 60 × 104 cells/well were seeded with triplicates for
each transfection group. The following day, SOX2-luc, NANOG-luc, POU5F1-luc, or one
of the deletion mutant of these plasmids, one of the Elk-1 series plasmids (pCDNA3.1,
Elk1-VP16, Elk1-EN, siElk1, or scrRNA), Renilla-luc plasmid (pRL-TK (Promega, #E2241,
Madison, WI, USA)) and the proper ratio of PEI mixture was prepared. After transfection,
the cells were incubated for 42 h in a normoxic medium and subjected to one percent
hypoxia for the last six hours for the normoxia–hypoxia experiments. At the end of hypoxia
treatment, luciferase analysis was performed with Thermo Luminoskan Ascent device
by using Dual-Glo Luciferase kit (Promega, Wisconsin, USA) with some modifications.
For luciferase analysis of monolayer cell lines, 48 h of incubation was necessary before
performing luciferase analysis.

On the day of the luciferase assay, the medium on the cells was aspirated, and the
wells were washed with PBS. Cells were lysed with 100 µL of 5X Passive Lysis Buffer (PLB)
(Promega, #E1941, Wisconsin, USA) diluted to 1X. Seventy-five microliters of the cells
were transferred to luminometer compatible white-bottomed 96-well plates. To measure
the Firefly luciferase activity, 75 µL of Dual-Glo® Luciferase Reagent was added onto the
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lysed cells. For at least 15 min, the plates were incubated at room temperature, and the
luminescence for Firefly luciferase activity was measured. To measure the Renilla luciferase
activity, 75 µL of Dual-Glo® Stop&Glo Luciferase Reagent was added to the wells. They
were incubated at room temperature for the equal time that was done for Firefly luciferase,
and the luminescence for Renilla luciferase activity was measured. Firefly/Renilla ratios
were calculated, normalizations were done, and the results were graphed as relative
luciferase activity. For statistical analysis, one-way ANOVA with Tukey post hoc test
or Student’s t-test depending on the context with Prism 5 GraphPad software was used.
p-value under 0.05 was considered significant.

2.10. Chromatin Immunoprecipitation (ChIP) Assay

In this assay, proteins and interacting DNA are crosslinked with formaldehyde; the
chromatin is sheared with either sonication mechanically or micrococcal nuclease enzy-
matically. The nucleoprotein complex is enriched by immunoprecipitation, and through
the reversal of the crosslinking, DNA and the interacting protein are separated. In the
end, the interacting DNA fragment is purified and quantified with ChIP-qPCR. To de-
termine the promoter fragment to be amplified in ChIP PCR, Promo3.0 analysis used for
predicting ets motifs and their dissimilarity scores was used (Supplementary Table S3).
The amplicon size was arranged between 75–150 bp; CpG islands were checked for the
potential binding sites of Elk-1, and the position of Elk-1 to those sequences was con-
sidered for primer design. The UCSC in silico PCR tool was used to verify the ampli-
con (https://genome.ucsc.edu/cgi-bin/hgPcr, accessed on 20 January 2021); primers used
for ChIP PCR are listed in Table 5.

Table 5. The list of primers used in chromatin immunoprecipitation (ChIP) assay.

Name Primer Sequence PCR Product Size

ChIP_MCL1
Frw
Rev

GCCGCCCTAAAACCGTGATA
CGCCTGGCTGAGAAAACTG

99

ChIP_SRF
Frw
Rev

TGACAGCAACGAGTTCGGTA
CCCCCATATAAAGAGATACAATGTT

130

ChIP_SOX2_ETS1
Frw
Rev

TGGGAGGGAGTTTGTGACT
AAAGTGCAGGCGATGGG

97

ChIP_SOX2_ETS2
Frw
Rev

GTGGGATGCCAGGAAGTT
GTCGTGCGGCTTTCAAATG

102

ChIP_SOX2_ETS3
Frw
Rev

AGACAGTCTAGTGGGAGATGTG
CGGACCATAAGGCAGACTCTA

138

ChIP_SOX2_ETS4
Frw
Rev

CTTATGGTCCGAGCAGGATTT
TCCCGACTAGAAGTTAGGAGAC

103

ChIP_SOX2_ETS5
Frw
Rev

CGCACCTTAGCTGCTTCC
GTCACACCACACGCCTTT

143

ChIP_NANOG_ETS1
Frw
Rev

CTGGAGGTCCTATTTCTCTAACATC
ATGCTTCAAAGCAAGGCAAG

155

ChIP_NANOG_ETS2
Frw
Rev

GCAGAGGAGAATGAGTCAAAGA
CCCAAACCCAACATTCAAGAAA

131

ChIP_NANOG_ETS3
Frw
Rev

CTTAGTCCAGCCTGTTCCAAA
AGTGAAAGACCAAAGGGAAGG

136

ChIP_POU5F1_ETS1
Frw
Rev

CTTCACTGCACTGTACTCCTC
CACCTCAGTTTGAATGCATGG

101

ChIP_POU5F1_ETS2
Frw
Rev

GGAGTTTGTGCCAGGGTT
CCCTCCAACCAGTTGCC

105

ChIP_POU5F1_ETS3
Frw
Rev

GTTGGAGGGAAGGTGAAGTT
TACTGTGTCCCAAGCTTCTTTAT

93
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Table 5. Cont.

Name Primer Sequence PCR Product Size

ChIP_MCL1
Frw
Rev

GCCGCCCTAAAACCGTGATA
CGCCTGGCTGAGAAAACTG

99

ChIP_SRF
Frw
Rev

TGACAGCAACGAGTTCGGTA
CCCCCATATAAAGAGATACAATGTT

130

ChIP_SOX2_ETS1
Frw
Rev

TGGGAGGGAGTTTGTGACT
AAAGTGCAGGCGATGGG

97

ChIP_SOX2_ETS2
Frw
Rev

GTGGGATGCCAGGAAGTT
GTCGTGCGGCTTTCAAATG

102

ChIP_SOX2_ETS3
Frw
Rev

AGACAGTCTAGTGGGAGATGTG
CGGACCATAAGGCAGACTCTA

138

ChIP_SOX2_ETS4
Frw
Rev

CTTATGGTCCGAGCAGGATTT
TCCCGACTAGAAGTTAGGAGAC

103

ChIP_SOX2_ETS5
Frw
Rev

CGCACCTTAGCTGCTTCC
GTCACACCACACGCCTTT

143

ChIP_NANOG_ETS1
Frw
Rev

CTGGAGGTCCTATTTCTCTAACATC
ATGCTTCAAAGCAAGGCAAG

155

ChIP_NANOG_ETS2
Frw
Rev

GCAGAGGAGAATGAGTCAAAGA
CCCAAACCCAACATTCAAGAAA

131

ChIP_NANOG_ETS3
Frw
Rev

CTTAGTCCAGCCTGTTCCAAA
AGTGAAAGACCAAAGGGAAGG

136

ChIP_POU5F1_ETS1
Frw
Rev

CTTCACTGCACTGTACTCCTC
CACCTCAGTTTGAATGCATGG

101

ChIP_POU5F1_ETS2
Frw
Rev

GGAGTTTGTGCCAGGGTT
CCCTCCAACCAGTTGCC

105

ChIP_POU5F1_ETS3
Frw
Rev

GTTGGAGGGAAGGTGAAGTT
TACTGTGTCCCAAGCTTCTTTAT

93

Essentially, cells were seeded in three separate 150 mm cell culture dishes of 2 × 106

cells/dish per experimental group on day zero. On day 1, cells were transfected with either an
empty pCDNA3.1 plasmid or an expression plasmid for Elk1-VP16 plasmids and incubated
48 h at 37 ◦C, 5% CO2. Cells were then treated with 1% formaldehyde at room temperature for
20 min; glycine was then added to the dishes to a final concentration of 0.125 M and incubated
for 5 min at room temperature. The dishes were washed three times with cold PBS on ice
and then centrifuged at 400× g for five minutes at 4 ◦C with 1× protease inhibitor cocktail
(PIC) (Roche, 4693159001). The supernatant was aspirated, and lysis buffer was added onto
the cells with a volume of at least 10 times the pellet obtained. The suspension was incubated
on ice for 10 min and passed through an insulin needle 20 times. One volume of the sample
was mixed with an equal volume of 0.4 percent Trypan Blue Dye, and the cell nuclei were
checked under the microscope. The volume of the sonication buffer to be used to dissolve the
pellet was adjusted to 2–3 × 106 nuclei/mL and sonicated in the Biorupter UCD-200 Sonicator
(Diagenode, Denville, NJ, USA). Following the sonication, cell lysates were centrifuged at
22,000× g for 20 min at 4 ◦C to remove insoluble materials. The supernatant was then diluted
five-fold with dilution buffer and pre-cleared for 4 h with slow rotation with protein A/G
mixture beads. After incubation, the samples were precipitated at 150× g for 5 min at 4 ◦C,
and 10% of the total supernatant was removed as total input control and kept in −20 ◦C. The
rest of the supernatant was divided into two fractions of the negative control (IgG-mock) and
immunoprecipitation (IP) per group.

Sixty microliters of ANTI-FLAG® M2 Affinity Gel (Sigma Aldrich, #A2220, Taufkirchen,
Germany) resin per group were washed and equilibrated with five volumes of dilution buffer
and centrifuged three times at 400× g for one minute each at 4 ◦C. The negative control and
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IP fractions separated from the dilution in the previous step were mixed with Protein G-Plus
agarose beads and anti-Flag M2 resin, respectively. The tubes were incubated at 4 ◦C overnight
with slow rotation. The following day, the mix was centrifuged at 4 ◦C and 600× g for five
minutes, and the pellet was collected. The beads were washed with one mL of low salt, high
salt, LiCl, and TE buffers at 4 ◦C with rotation, respectively. Following each of the washing
steps, the beads were centrifuged at 4 ◦C and 600× g for five minutes.

At the elution step, the inputs that were collected and frozen a day before were thawed
and added as the third fraction of each group. After the last wash, 250 µL fresh elution
buffer, pre-heated at 65 ◦C, was added onto the beads, and they were incubated on a shaker
for 15 min. The tubes were vortexed with five-minute intervals and then centrifuged at
4 ◦C and 18,000× g for five minutes. The supernatant was collected for each fraction of each
group, and the elution step was repeated with another 250 µL elution buffer. After elution
of the crosslinked DNA–protein complex, 10 µL of RnaseA (10 mg/mL) (Intron, #BR003)
and 25 µL of 5 M NaCl was added onto the elutes and incubated for at least five hours or
overnight at 65 ◦C. The following day, 10 µL of 0.5 M EDTA, 20 µL 1 M Tris–HCl (pH 6.5),
and two µL Proteinase K (20 mg/mL) (Invitrogen, #25530049, Carlsbad, CA, USA) mix
were added and incubated again at 65 ◦C for two more hours. Using MEGAquick-spin™
Plus Total Fragment DNA Purification Kit (Intron Bio, #17290, Sungnam, Korea), the DNA
was cleaned up. The resulting fractions were used for qPCR analysis.

SSOAdvanced Universal SYBR Green Supermix (Bio-Rad, #1725274, Hercules, CA,
USA) and Applied Biosciences StepOne Plus Real-Time System were used for qPCR analysis
with DNA isolated from ChIP. Ten microliters of PCR reaction were prepared by mixing
2X SSO Advanced Universal SYBR Green Supermix, 300 nM forward and reverse primers
each, and 1 µL template. In the analysis phase, qPCR signals obtained from the ChIP
samples were normalized by the signals obtained from the input, and the mock samples
and the results are presented as fold change. For statistical analysis, one-way ANOVA with
Tukey post hoc test or Student’s t-test depending on the context with Prism 5 GraphPad
software was used. p value under 0.05 was considered significant.

3. Results
3.1. Microarray Analyses Reveal Novel Targets in Elk-1-VP16 Overexpressing SH-SY5Y Cells

Elk-1 is a ubiquitous transcription factor, yet it has been implicated in different bio-
logical processes in the nervous system. In order to identify novel target genes of Elk-1
with respect to survival in neurons, we have overexpressed Elk-1-VP16 constitutively
active fusion protein in SH-SY5Y neuroblastoma cells. The comparative analysis of the
transcriptome profiles indicated 11,018 differentially expressed genes (DEGs), of which
4212 were downregulated and 6806 were upregulated, when SH-SY5Y neuroblastoma
cells were transfected with Elk1-VP16. The gene set enrichment analysis (GSEA) of these
genes up- or downregulated by exogenous Elk-1-VP16 presented overrepresentation of
quite a high number of biological processes such as anatomical structure development, cell
proliferation, single-organism developmental process, developmental growth, and organ
and tissue development, including forebrain and midbrain development (Supplement
Tables S1 and S2). When a subset of these genes was analyzed further, stemness genes such
as POU5F1, SOX2, and NANOG, as well as growth factors and receptors or transcription
factors including FGFR1, WNT16, WNT 3, PDGFA, PAX6, PAX7, HIF3A, NOTO, among
many others were found to be upregulated, whereas genes such as EGLN2, FEV, JUNB, and
GLI4 were found to be downregulated upon overexpression of Elk-1-VP16 (Figure 1A,B).

Prediction of putative Elk-1 binding sites (i.e., ets motifs) on the promoters of these
genes was assessed via Alggen PROMO 3.0 online software [28]. Among the genes of
interest for which human promoter sequences were available, the analysis was performed
for human ELK-1 (TRANSFAC database accession no. T00250) binding, thereby limiting
the number of promoters investigated, and out of these, promoters with at least one motif
are listed (Supplement Table S3). Among the selected subset of genes, SOX2 promoter was
found to contain one ets motif with a dissimilarity score of 2.16, NANOG was found to
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contain one ets motif with a dissimilarity score of 2.3, and POU5F1 contained one ets motif
with a dissimilarity score of 3.12, among other potential ets binding sites, indicating a high
probability of binding (Supplement Table S3). Other promoters of the microarray-determined
set of putative Elk-1 target genes, whose promoters contained low dissimilarity score ets
motifs, included transcription factors such as RXRB, TCF7L1, MEF2B, PAX6, SOX10, CREB3,
SMAD6, CREM, and HES7 and signal transduction pathway elements such as RHO, IRAK3,
WNT3A, LIFR, FRZB, NGFR, MAPK6, NOTCH4, FGF11, and NODAL, among many others
(Supplement Table S3).

Figure 1. (A) Heatmap of a subset of genes regulated by Elk-1-VP16 showing increased (green) or decreased (red) expression in
Elk1-VP16 overexpressing SH-SY5Y neuroblastoma cells; 557A10, 557A11, 557A12 correspond to SH-SY5Y cells transfected
with Elk-1-VP16 expression plasmid, 557A01,557A02,557A03 control SH-SY5Y cells transfected with empty plasmid; color key
shows up- and downregulation levels. (B) Schematic representation of the relation between selected genes in pluripotency and
early embryonic development pathways that were found to be regulated by Elk-1-VP16 in microarray analysis.

3.2. Regulation of Nervous System Development Related Genes by Elk-1

To validate regulation of selected candidate genes identified through microarray
experiments by Elk-1 transcription factor, we have either overexpressed Elk-1-VP16 consti-
tutively active fusion protein or knocked down endogenous Elk-1 expression in SH-SY5Y
and SK-N-BE (2) neuroblastoma cell lines and A172 and T98G GBM cell lines (Figure 2).

qPCR results in SH-SY5Y cells were parallel to those obtained from the microarray
analysis, especially in the genes related to pluripotency such as SOX2, NANOG, POU5F1,
RXRB, GLUT3, TCF7L1, NODAL, and CREB3 (Figure 2A,B). SOX2 was upregulated in SH-
SY5Y overexpressing Elk-1-VP16 protein, similar to microarray, but not in other cell types,
while it was repressed when Elk-1 was knocked down (siElk-1) in all cell types (Figure 2).
Similarly, NANOG and POU5F1 was upregulated in SH-SY5Y cell overexpressing Elk-1-VP16,
but downregulated in cells transfected with siElk-1 plasmid (Figure 2A,B), whereas both genes
were repressed in SK-N-BE (2) cells overexpressing Elk-1-VP16 and upregulated in siElk-1
knockdown (Figure 2C,D; Table 6), indicating a cell context-dependent regulation. TCF7L1 and
NODAL expression increased in Elk-1-VP16 overexpressing SH-SY5Y and SK-N-BE (2) but
decreased in siElk-1 silencing; BRACHYURY (T) expression was upregulated in Elk-1-VP16
overexpressing but decreased in siElk-1 silenced SK-N-BE (2) cells (Figure 2; Table 6). GLUT3
expression was upregulated in all cell types overexpressing Elk-1-VP16, and decreased in all
cells with siElk-1 silencing, paralleling the microarray results (Figure 2, Table 6). The expression
of ARC and CREB3 increased in A172 and T98G cells overexpressing Elk-1-VP16 but decreased
in siElk-1 knockdown cells (Figure 2E–H; Table 6). GLI4 and ALS genes increased in A172 cells
overexpressing Elk-1-VP16 and decreased with siElk-1 silencing (Figure 2E,F).

140



J. Pers. Med. 2021, 11, 125

Figure 2. qPCR expression profiles of selected genes in different cell lines upon overexpression of Elk-1-VP16 (A,C,E,G) or
knockdown of endogenous Elk-1 (B,D,F,H). Expression profiles after (A). over-expression with Elk1-VP16 and (B). after
knock-down with siElk1 in SH-SY5Y neuroblastoma cell line; expression profiles after (C). over-expression with Elk1-VP16
and (D). after knock-down with siElk1 in SK-N-BE(2) neuroblastoma cell line; expression profiles after (E). over-expression
with Elk1-VP16 and (F). after knock-down with siElk1 in A172 GBM cell line; expression profiles after (G). over-expression
with Elk1-VP16 and (H). after knock-down with siElk1 in T98G GBM cell line. Unpaired t-test; **** p < 0.0001, *** p < 0.001,
** p < 0.01, * p < 0.05.
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Table 6. Summary of qPCR and microarray comparisons of selected potential Elk-1 target genes after Elk1-VP16 over-
expression or siElk-1 silencing in neuroblastoma and glioblastoma cell lines.

Elk-1-VP16 Overexpression siElk-1 Silencing

Gene ID SH-SY5Y SK-N-BE (2) T98G A172 Microarray Data SH-SY5Y SK-N-BE (2) T98G A172

ALS2 N/A* N/A −0.5 0.60 −6.06 N/A N/A −0.64 −1.44

ARC N/A N/A 0.44 1.67 −6.87 N/A N/A −2.17 −0.06

BRACHYURY N/A 0.32 N/A N/A 1.54 N/A −0.25 N/A N/A

CREB3 −0.01 N/A 0.83 0.46 −1.92 0.09 N/A −0.74 −0.67

CREM N/A N/A −0.91 1.40 N/A −0.51 N/A −0.43 0.44

ELK-1 1.50 2.04 8.48 8.98 13.11 −0.54 −2.36 −0.60 −1.49

FGF11 −0.23 N/A N/A 0.28 −2.40 0.48 N/A N/A −1.31

FRIT1 0.17 N/A N/A N/A 1.82 −0.34 N/A N/A N/A

FRZB 1.21 −0.72 −0.86 N/A 1.91 −2.20 −1.34 −0.18 N/A

GLI4 N/A N/A N/A 0.695 −3.81 N/A N/A N/A 0.61

GLUT3 1.62 0.07 0.83 0.92 2.43 −0.67 −0.46 0.54 2.64

GSK3B −0.22 N/A N/A N/A −1.61 −0.12 N/A N/A N/A

HES7 N/A N/A 0.68 N/A −1.77 0.12 N/A 0.20 N/A

IRAK3 2.78 0.51 −0.46 N/A 1.70 −0.23 −0.81 −0.97 N/A

LIFR −0.91 −1.52 −0.84 −0.08 −2.01 −0.53 0.48 −0.12 −0.82

MAPK6 N/A N/A N/A 0.76 1.64 N/A N/A N/A N/A

MEF2B 0.09 −0.41 −1.19 N/A −2.74 −0.19 −0.33 −1.57 N/A

NANOG 1.96 −0.91 0.58 1.18 2.54 −0.99 4.85 −0.07 3.12

NODAL 2.33 0.66 N/A N/A 1.64 −0.66 −0.26 N/A N/A

NOTCH4 N/A N/A N/A 3.56 3.39 N/A N/A N/A 7.16

NOTO −2.94 0.18 −0.34 N/A 2.15 1.05 −0.08 −0.76 N/A

PAX6 −1.54 −0.28 N/A N/A 2.61 1.18 −1.62 N/A N/A

POU5F1 1.62 −1.20 0.56 0.32 3.68 −2.19 3.31 −0.67 1.06

RHO −3.56 −1.07 −2.26 N/A 2.27 −0.20 −0.30 −0.93 N/A

RXRB 1.01 0.66 0.83 0.46 5.95 0.45 0.31 N/A N/A

SIX3 −1.94 N/A 0.61 N/A −5.72 1.56 N/A 0.41 N/A

SMAD6 N/A N/A N/A −0.29 −3.78 N/A N/A N/A −0.42

SOX2 1.54 0.41 0.37 −0.59 2.75 −0.84 −1.08 −0.56 −0.36

SOX10 N/A N/A N/A 2.94 2.41 N/A N/A N/A 5.83

TCF7L1 0.79 0.56 0.15 N/A 2.34 −0.29 −0.25 0.14 N/A

WNT3A −2.11 0.53 0.11 N/A 2.25 0.86 −1.11 0.52 N/A

ZIC1 N/A 1.53 N/A N/A 2.26 N/A 1.07 N/A N/A

* N/A: the expression level is not available.

The promoters of a subset of genes have been selected for chromatin immunoprecipi-
tation to address whether predicted binding sites were indeed binding to Elk-1 (Figure 3).
To that end, we have transfected SK-N-BE (2) neuroblastoma and T98G GBM cell lines
with Elk-1-Flag expression vector and pulled down exogenous Elk-1 using Flag-agarose
beads. The known targets SRF (p = 0.0451) and MCL1 (p = 0.0102) showed significant
binding in SK-N-BE (2) cells, but the binding was not statistically significant in T98G cells
(Figure 3A). Among the novel promoters identified in this study, GLUT3 promoter showed
Elk-1 binding in both cell types, albeit not to the same extent, while KLF4 (p = 0.0496)
only showed significant binding in T98G cells (Figure 3B). LIF1, however, did not show
significant Elk-1 binding in either cell type.
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Figure 3. Chromatin immunoprecipitation assay for the identification of Elk-1 binding sites on the
target gene promoters in pCMV-transfected (pCMV) vs. Elk-1 over-expressing cells (Elk-1) in (A).
SK-N-BE (2) cells and (B). T98G cells. Lysates were immunoprecipitated with either Flag antibody
(Flag IP) for exogenous Elk-1 or IgG (IgG IP) as control. qPCR results were analyzed as explained in
Materials and Methods and reported as average fold change.

3.3. Regulation of SOX2, NANOG, and POU5F1 by Elk-1 in CD133+ Cells

Since Elk-1 was previously shown to be important in human embryonic stem cells
(hESCs) maintenance of self-renewal capacity through co-occupation of promoters with
ERK2 [29], and to regulate the promoter of CD133, a cell surface protein commonly used as
a cancer stem cell marker [15], we addressed whether the cell context-dependent regulation
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was due to heterogenous nature of some cell lines used in terms of their tumorsphere
forming abilities. SK-N-BE (2) neuroblastoma cells were shown to form CD133+ tumor-
spheres, unlike SH-SY5Y cells, hence we have first sorted CD133− and CD133+ SK-N-BE
(2) cells and showed that expression of CD133, ELK-1, SOX2, NANOG, and POU5F1 were
all significantly more in CD133+ cells than in CD133− cells (Figure 4A). Intriguingly, ELK-1
levels increased in different passages (p1 and p2) of CD133+ sorted cells, while CD133
levels declined with each passage; NANOG and POU5F1 levels also increased slightly in
p2 cells, albeit not significantly (Figure 4B). Both passages (p1 and p2) of CD133+ SK-N-BE
(2) cells were shown to be Nestin+ (data not shown). To address whether this coexpression
of ELK-1 with stemness genes studied is through direct regulation, we have silenced en-
dogenous Elk-1 expression in CD133+ SK-N-BE (2) cells, and observed that NANOG and
SOX2 but not POU5F1 were downregulated significantly upon silencing (Figure 4C). It
must be noted, however, that overexpression of Elk-1-VP16 in CD133− cells did not yield
upregulation of NANOG, SOX2 or POU5F1 in SK-N-BE (2) cells (data not shown).

−

−

−

−

−

−

Figure 4. qPCR expression profiles of stemness genes in CD133− vs. CD133+ SK-N-BE(2) cells and in primary brain tumors.
(A). Stemness gene expression analysis of SKNBE(2) passage 0, passage 1, and passage 2 cells (*** p < 0.001, two-way ANOVA
w/Dunnett multiple comparison test); (B). Stemness gene expression analysis of SKNBE(2) CD133+ BTICs vs. CD133−
spheroids (unpaired t-test, * p < 0.05, *** p < 0.001, **** p < 0.0001); (C). left, NANOG, middle POU5F1 and right, SOX2 gene
expressions in CD133+ cells upon silencing of Elk-1 expression (unpaired t-test; **** p < 0.0001, ** p = 0.0051); (D). endogenous
Elk-1 expression levels in CD133− and CD133+ primary brain tumor samples (sample no 428, 458 and 624); relative gene
expression is reported as normalized to 28S rRNA level (unpaired t-tests; * p < 0.05, *** p < 0.0001); (E). primary brain tumor cells
from sample no 624 were transfected with either scrRNA or siElk-1 plasmids and analyzed for expression level of endogenous
ELK-1, CD133, NANOG, SOX2, and POU5F1 normalized to 28S rRNA level (unpaired t-tests; *** p < 0.0001).

144



J. Pers. Med. 2021, 11, 125

To investigate whether similar regulation could be observed in primary GBM, primary
brain tumor samples from three different patients (patient no. 428, 458, 624) were analyzed
for ELK-1 expression in CD133− vs. CD133+ cells. Although there was variability between
samples, in all three GBMs, CD133+ cells expressed significantly more ELK-1 than CD133−
cells (Figure 4D). This was parallel to our analysis of GBM cell lines, where tumorspheres
of A172, T98G, and U87 GBM cells expressed significantly more Elk-1 protein than the
monolayer cultures did, whereas ELK-1 expression level did not alter significantly in
SH-SY5Y tumorsphere vs. monolayer cultures (data not shown). Furthermore, when
endogenous ELK-1 was silenced in the primary tumor culture of patient 624 (middle level
of ELK-1 expression), CD133, NANOG, SOX2, and POU5F1 levels were all downregulated
as compared to scramble RNA control (Figure 4E).

3.4. Effect of Elk-1 Expression on Colony Formation of SK-N-BE (2) Cells on Soft Agar

The ability of transformed cells to grow in anchorage-free conditions is one of the
hallmarks of cancer formation, and soft agar colony assay is a commonly used tool to assay
for this feature [30]. It was shown in endometrial tumors, for instance, that CD133+ cells
exhibited higher colony formation than CD133− cells in soft agar assay [31]. We have,
therefore, addressed whether the same scenario was true for CD133+/CD133− SK-N-BE (2)
cells, and whether overexpression of Elk-1-VP16 or silencing of endogenous Elk-1 would
affect the number of colonies. To that end, we have sorted SK-N-BE (2) cells into CD133+
BTICs and CD133− cells, and both CD133+ and CD133− spheroids were grown in IPM
culture conditions for three days in limiting dilution assay (LDA), and the frequency of
spheroid formation was found to be almost tenfold more in CD133+ BTIC cells, indicating
that sorting of cells was successful.

Next, the effects of Elk-1 overexpression or silencing were studied; to that end,
we have transfected CD133− cells with Elk-1-VP16 expression vector, while CD133+
cells were transfected with siElk-1 silencing vector as described in Materials and Meth-
ods, and colony formation frequencies were determined in soft agar assay. In untrans-
fected SK-N-BE (2) cells, CD133− cells and unsorted cells showed a similar number
of colonies (24 ± 11 vs. 25 ± 11, respectively), whereas CD133+ BTICs had almost 50%
more colonies formed (33 ± 9 colonies). CD133− cells transfected with either pCDNA3-
Elk-1-VP16 (37 ± 10 colonies) or pCMV6-Flag-Elk-1-VP16 (50 ± 15 colonies) showed
higher colony number than their counterparts transfected with empty vectors, pCDNA3.1
(32 ± 3 colonies) or pCMV-Flag (24 ± 10 colonies). On the other hand, CD133+ cells where
endogenous Elk-1 was silenced by RNAi exhibited a decreased colony number (18 ± 5)
compared to scrambled RNA control (26 ± 9) (Supplement Table S4).

3.5. Regulation of NANOG, POU5F1, and SOX2 Promoters by Elk-1

To assess whether the regulation of these genes by Elk-1 was direct or indirect, the
promoters for NANOG, POU5F1, and SOX2 were cloned to luciferase reporter vectors and
tested for Elk-1 regulation in different cell lines.

Initially, SK-N-BE (2) (Figure 5A) and SH-SY5Y (Figure 5B) neuroblastoma cells and
U87-MG (Figure 5C), A172 (Figure 5D), and T98G (Figure 5E) GBM cells were either
transfected with constitutively active Elk-1-VP16 and/or dominant-negative Elk-1-EN
fusion protein expression vectors for overexpression (i), or with siElk-1 or scrRNA vectors
for silencing (ii) experiments to study the regulation of SOX2 promoter by Elk-1 protein
(Figure 5). Although there appear to be cell type-specific variations, SOX2 promoter
appeared to be upregulated upon Elk-1-VP16 overexpression in all cell types (Figure 5Ai–
Ei), whereas only SH-SY5Y and U87 cells exhibited downregulation of SOX2-dependent
luciferase activity upon the silencing of endogenous Elk-1, indicating that other proteins
are involved in the regulation of this promoter (Figure 5Bii,Cii).
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Figure 5. SOX2 promoter activity analysis with respect to (i) Elk-1 variants over-expression and (ii) endogenous Elk-1
silencing in (A) SK-NBE (2), (B) SH-SY5Y, (C) U87-MG, (D) A172, and (E) T98G cell lines. Luminometric measurements
were normalized to Renilla-luc activity. ANOVA, Tukey’s multiple comparative tests, ** p < 0.01, *** p < 0.001, **** p < 0.0001
for Ai, Ci; unpaired two-tailed t-test, * p < 0.5, ** p < 0.01, **** p < 0.0001 was done for Bi, Bii, Cii, Di, Ei.
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We next studied NANOG promoter; while SOX2 promoter was found to have 1
consensus Elk-1 binding motif with dissimilarity score (DS) of less than 1%, and 5 ets
motifs with DS 1–10%, NANOG promoter was found to contain three consensus ets motifs
(Figure 6A), two of which had DS of 1–10% (Table 2). We have constructed a wildtype
NANOG promoter reporter vector (NANOG-Luc), and one where the higher similarity
consensus ets motif (ets1) was deleted (NANOG∆-Luc), and studied the regulation of this
promoter by Elk-1 in different cell lines (Figure 6).
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Figure 6. Regulation of NANOG promoter by Elk-1. (A) Schematic diagram of predicted ets motifs ets1-3 on NANOG

promoter. Ets1 was predicted to be a stronger binding motif for Elk-1 and was deleted to generate NANOG∆-Luc reporter
plasmid. (B) Luciferase assay for (i) wildtype NANOG-Luc and (ii) NANOG∆-Luc reporters in SK-N-BE (2) cells after
transfection of expression plasmids with Elk1-VP16, Elk1-EN, or empty control plasmid pCDNA3.1 (left graphs) or
co-transfection of silencing plasmids for scrRNA control or siElk-1 (right graphs). Luminometric measurements were
normalized to Renilla-luc activity. ANOVA, Tukey’s multiple comparative tests, *** p < 0.001 for (i) and (ii) left graphs;
unpaired two-tailed t-test, ** p < 0.01 was done for (i) and (ii) right graphs. (C) Luciferase assay for (i) wildtype NANOG-Luc
and (ii) NANOG∆-Luc reporters in SH-SY5Y cells after transfection of expression plasmids with Elk1-VP16, Elk1-EN or
empty control plasmid pCDNA3.1 (left graphs) or co-transfection of silencing plasmids for scrRNA control or siElk-1
(right graphs). Luminometric measurements were normalized to Renilla-luc activity. ANOVA, Tukey’s multiple comparative
tests, *** p < 0.001 for (i) and (ii) left graphs; unpaired two-tailed t-test; * p < 0.5, *** p < 0.001 for (i) and (ii) right graphs.
(D) Luciferase assay for (i) wildtype NANOG-Luc and (ii) NANOG∆-Luc reporters in U87-MG cells after transfection
of expression plasmids with Elk1-VP16, Elk1-EN, or empty control plasmid pCDNA3.1 (left graphs) or co-transfection
of silencing plasmids for scrRNA control or siElk-1 (right graphs). Luminometric measurements were normalized to
Renilla-luc activity. ANOVA, Tukey’s multiple comparative tests, ** p < 0.01, *** p < 0.001 for (i) and (ii) left graphs; unpaired
t-test; ** p < 0.01 for (i) and (ii) right graphs.
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Elk-1-VP16 overexpression in SK-N-BE (2) cells resulted in upregulation from wildtype
NANOG promoter, but the upregulation was slightly less in NANOG∆-Luc reporter; Elk-
1-EN repressed both promoter activities to control levels (Figure 6Bi vs. Figure 6Bii).
Parallel to this, when Elk-1 was silenced using siElk-1, NANOG-Luc reporter activity
was decreased (Figure 6Bi), whereas there was no significant change in NANOG∆-Luc
activity in SK-N-BE (2) cells (Figure 6Bii). On the other hand, there was no significant
difference between NANOG vs. NANOG∆ promoter activity by Elk-1-VP16 overexpression
in SH-SY5Y or U87 cells, while Elk-1-EN repressed both wildtype and mutant promoter
activities (Figure 6C,D). There was a slight albeit significant increase in NANOG promoter
activity in siElk-1 SH-SY5Y cells, whereas NANOG∆ promoter activity was decreased upon
siElk-1 silencing (Figure 6Ci vs. Figure 6Cii); in U87 silencing, endogenous Elk-1 did not
significantly alter wildtype NANOG-Luc activity but resulted in a decrease in NANOG∆-
Luc (Figure 6Di vs. Figure 6Dii). There was no significant change in either Elk-1-VP16
overexpression or siElk-1 silencing in A172 and T98G cells (data not shown).

In POU5F1 promoter, of the four predicted ets motifs, three of them were predicted
to have DS score of 1-10% DS (Table 2; Figure 7A). Wildtype POU5F1 promoter was
cloned, and deletion constructs for these motifs (ets1-ets3) were generated for luciferase
reporter assays as described in Materials and Methods. When wildtype POU5F1 promoter
activity was compared to deletion constructs in SK-N-BE (2) cells transfected with Elk-1-
VP16 expression plasmid, POU5F1∆ets2-Luc deletion construct exhibited less upregulation
(around 2.4 units) than wildtype, POU5F1∆ets1, and POU5F1∆ets3 promoters (around
3 units), while Elk-1-EN overexpression resulted in similar level of activation to control in all
cases (Figure 7B). On the other hand, siElk-1 silencing did not result in a significant change
in wildtype POU5F1 promoter activity or the POU5F1∆ets3 deletion mutant, whereas
it resulted in a decrease in luciferase activity in both POU5F1∆ets1 and POU5F1∆ets2
constructs in SK-N-BE (2) cells (Figure 7B).

Elk-1-VP16 overexpression upregulated wildtype POU5F1-Luc reporter activity, while
Elk-1-EN repressed it in SH-SY5Y cells; there was no significant change in this profile
in either of the three ets deletion constructs, indicating the regulation might be through
a different motif or could be indirect (Figure 7C). Interestingly, siElk-1 silencing upreg-
ulated wildtype POU5F1-Luc and POU5F1∆ets1-Luc reporter activity, while decreasing
POU5F1∆ets2-Luc and POU5F1∆ets3-Luc reporter activity (Figure 7C). In U87-MG GBM
cells, however, wildtype POU5F1-Luc and POU5F1∆ets2-Luc reporters were upregulated
to similar levels in Elk-1-VP16 overexpression (1.2 units in Figure 7Di and 1.5 units in
Figure 7Diii), while POU5F1∆ets1-Luc was upregulated more (2.4 units, Figure 7Dii), and
upregulation was significantly less in POU5F1∆ets3-Luc reporter (Figure 7Div). Elk-1-EN
overexpression did not significantly alter promoter activity (Figure 7D), and while siElk-1
silencing did not cause any change in wildtype promoter, it resulted in a downregulation
in all deletion constructs to a different extent (Figure 7D). Wildtype POU5F1-Luc promoter
was upregulated by Elk-1-VP16 overexpression in both A172 and T98G cells, although
siElk-1 silencing did not significantly change with respect to scrambled RNA control.
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Figure 7. Regulation of POU5F1 promoter by Elk-1. (A) Schematic diagram of predicted ets motifs ets1-4 on POU5F1

promoter. Motifs ets1-3 were predicted to be stronger binding motifs for Elk-1 and were individually deleted to generate
POU5F1∆ets1-Luc, POU5F1∆ets2-Luc, and POU5F1∆ets3-Luc reporter plasmids. (B) Luciferase assay for (i) wildtype
POU5F1-Luc and its deletion mutant reporters (ii) POU5F1∆ets1-Luc, (iii) POU5F1∆ets2-Luc, and (iv) POU5F1∆ets3-

Luc in SK-N-BE (2) cells after transfection of expression plasmids with Elk1-VP16, Elk1-EN, or empty control plasmid
pCDNA3.1 (left graphs) or co-transfection of silencing plasmids for scrRNA control or siElk-1 (right graphs). Luminometric
measurements were normalized to Renilla-luc activity. ANOVA, Tukey’s multiple comparative tests, ** p < 0.01, *** p < 0.001
for left graphs (i–iv); unpaired two-tailed t-test, ** p < 0.01 and *** p < 0.001 for right graphs (i–iv). C. Luciferase assay for (i)
wildtype POU5F1-Luc and its deletion mutant reporters (ii) POU5F1∆ets1-Luc, (iii) POU5F1∆ets2-Luc, and (iv) POU5F1

ets3-Luc in SH-SY5Y cells after transfection of expression plasmids with Elk1-VP16, Elk1-EN, or empty control plasmid
pCDNA3.1 (left graphs) or co-transfection of silencing plasmids for scrRNA control or siElk-1 (right graphs). Luminometric
measurements were normalized to Renilla-luc activity. ANOVA, Tukey’s multiple comparative tests, * p < 0.5, ** p < 0.01,
*** p < 0.001 for left graphs (i–iv); unpaired two-tailed t-test, * p < 0.5, ** p < 0.01 for right graphs (i–iv). (D) Luciferase
assay for (i) wildtype POU5F1-Luc and its deletion mutant reporters (ii) POU5F1∆ets1-Luc, (iii) POU5F1∆ets2-Luc, and (iv)
POU5F1∆ets3-Luc in U87-MG cells after transfection of expression plasmids with Elk1-VP16, Elk1-EN, or empty control
plasmid pCDNA3.1 (left graphs) or co-transfection of silencing plasmids for scrRNA control or siElk-1 (right graphs).
Luminometric measurements were normalized to Renilla-luc activity. ANOVA, Tukey’s multiple comparative tests, * p < 0.5,
** p < 0.01, *** p < 0.001 for left graphs (i–iv); unpaired two-tailed t-test, ** p < 0.01, *** p < 0.001 for right graphs (i–iv).

3.6. Binding of Elk-1 to Predicted ets Motifs on SOX2, NANOG, and POU5F1 Promoters

Elk-1-VP16 overexpression was found to upregulate expression of SOX2, NANOG,
and POU5F1 expression in qPCR analysis, and wildtype promoter luciferase reporters were
found to be upregulated by Elk-1-VP16 in a cell context-dependent manner, yet deletion of
predicted ets motifs did not significantly change reporter activities, indicating that either
there are other ets motifs in distal promoters that are not cloned in this study, or that the
regulation is not through direct Elk-1 binding to these predicted ets motifs. To address this
second point, we have carried out chromatin immunoprecipitation (ChIP) experiments in
SK-N-BE (2) neuroblastoma and T98G GBM cell lines (Figure 8).
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The cells were transfected with pCMV-Flag-Elk-1 (empty pCMV was used as control),
and immunoprecipitation was carried out using Flag agarose beads (Flag IP); IgG beads were
used as control (IgG IP). Elk-1 binding motifs on SRF and MCL-1 promoters were used as a
positive control for Elk-1 binding. All three of the predicted ets motifs on the NANOG promoter
exhibited Elk-1 binding in SK-N-BE (2) cells (Figure 8A) but not on T98G cells (Figure 8B).
Similarly, all four predicted ets motifs on POU5F1 promoter showed Elk-1 binding, albeit to
different extents, in SK-N-BE (2) cells (Figure 8A) but not on T98G cells (Figure 8B). Likewise,
all five predicted ets motifs showed Elk-1 binding in SK-N-BE (2) cells (Figure 8A), whereas
only the ets3 motif showed significant binding to Elk-1 in T98G (Figure 8B). This indicates
that, while Elk-1 is capable of binding to these predicted motifs, this binding is affected by
cell-dependent circumstances, which may be a transcriptional partner or posttranslational
modification status of the Elk-1 protein in that particular cell type.

 

Figure 8. Chromatin immunoprecipitation assay for the identification of Elk-1 binding sites on the
target gene promoters in pCMV-transfected (pCMV) vs. Elk-1 over-expressing cells (Elk-1) in (A).
SK-N-BE (2) cells and (B). T98G cells. Lysates were immunoprecipitated with either Flag antibody
(Flag IP) for exogenous Elk-1 or IgG (IgG IP) as control. qPCR results were analyzed as explained in
Materials and Methods and reported as average fold change. All predicted ets motif sequences on
NANOG, SOX2, and POU5F1 promoters were screened for Elk-1 binding; SRF and MCL1 promoter
sequences were used as positive control.
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4. Discussion

ETS transcription factors are involved in a number of biological processes in different
tissues, and it was shown that in embryonic development, expression of several ETS
proteins including Elf3 and SpiC increased after fertilization until the blastocyst stage, and
silencing of ETS expression affected Oct3/4 gene expression [32]. It was shown in human
pluripotent stem cells (hPSCs) with different X chromosome inactivation states (Xa, active,
Xi, inactive) that Elk-1 overexpression mimicked XaXa in terms of decreased pluripotency,
the differences being diminished in low oxygen [33].

One study has shown Elk-1 to be essential for human embryonic stem cells, and that it
co-occupies promoters of genes in cell proliferation pathways with ERK2, and in the absence
of ERK2, the promoters were repressed by Polycomb proteins [29]. In fact, Elk-1 was further
found to be upregulated, while Nanog, Oct4, and Sox2 were found to be repressed during
mesoderm differentiation of hESCs, and it was shown to bind to and activate promoters
such as EGR-1 while repressing a subset of promoters such as FOSL1 [16]. Intriguingly,
mice deficient for Elk-1 were viable albeit with mild neuronal impairment, indicating other
Ets proteins may act redundantly and compensate for its embryonic functions [34]. During
neuronal differentiation of mES cells, Sox2 chromatin interaction profiles were altered,
and promoters of neuronal differentially expressed gene clusters were enriched in Elk-1,
among other transcription factors [35]. Similarly, during reprogramming of fibroblasts into
neural stem cells (NSCs) using pharmacological molecules, Elk-1 was found to be one of
the transcription factors to regulate reprogramming, particularly through binding Sox2
promoter [36].

Another Ets protein, Pea3/ETV4, was shown to regulate Nanog and Oct4 expression
in pluripotent NCCIT embryonic carcinoma cells [37,38]. Interestingly, members of the
Pea3 subfamily of ETS proteins, ETV4 and ETV5, were found to be expressed in undif-
ferentiated ES cells, and suppression of Oct3/4 was found to result in downregulation
of their expression, and ETV4 and ETV5 were found to be important for proliferation of
undifferentiated ES cells through regulation of stem cell-related genes such as Tcf15, Gbx2,
and Zic3 [39]. A transcriptional partner of Elk-1, namely serum response factor (SRF),
was shown to repress the reprogramming induced by ERK pathway inhibition, and to
negatively regulate pluripotency [40], which may be independent of Elk-1 interaction.

CD133 is a cell surface protein that has been used alone [12] or in combination with
CD15 [41] to isolate and culture brain-tumor-initiating cells from a variety of tumors.
ERK/MAPK pathway was shown to be required for CD133 expression [42], and HIF-1α
was shown to bind to the CD133 promoter through Elk-1 [15], which is supported in our
study by overexpression of Elk-1 in CD133+ BTIC subpopulation.

In a genome-wide study in the human embryonic stem cell (hESC) population,
ELK1 was found to be essential for hESCs, and some of the promoters bound by ELK1
were determined to be important in the maintenance of embryonic identity, spinal cord
development, and neuron fate development [29]. Furthermore, induced neural stem
cells were found to contain relatively high levels of phosphorylated Elk-1, along with
Gli2, and both were shown to bind to Sox2 promoter upon neural reprogramming [36],
and distinct GABPA/Elk-1 motifs were found in Sox2 promoter, identified as a neuronal
cluster gene involved in differentiation of embryonic stem cells to neuronal precur-
sors [35]. It is intriguing whether tumorigenesis reactivates this mechanism in a cell
context-dependent manner.

5. Conclusions

We propose that not only does ELK1 present a novel target for tumor therapy directed
at eliminating BTIC population, but also can be used as a molecular diagnostic molecule to
identify potential for tumor recurrence. It should be noted, however, that posttranslational
modifications such as phosphorylation and SUMOylation regulate ELK1 protein, which
can differ among gliomas and must be studied in more detail.
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Supplementary Materials: The following are available online at https://www.mdpi.com/xxx/s1,
supppl1: Biological processes among enriched pathways that were upregulated in Elk-1-VP16-
transfected SH-SY5Y cells, Table S2: Biological processes among enriched pathways that were
downregulated in Elk-1-VP16-transfected SH-SY5Y cells, Table S3: Transcription factor binding site
analysis for promoters of genes identified in microarray analysis, Table S4: Soft agar assay colony
formation assay.
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Abstract: Pancreatic cancer is one of the most fatal malignancies and the seventh leading cause of

cancer-related deaths related to late diagnosis, poor survival rates, and high incidence of metastasis.

Unfortunately, pancreatic cancer is predicted to become the third leading cause of cancer deaths

in the future. Therefore, diagnosis at the early stages of pancreatic cancer for initial diagnosis

or postoperative recurrence is a great challenge, as well as predicting prognosis precisely in the

context of biomarker discovery. From the personalized medicine perspective, the lack of molecular

biomarkers for patient selection confines tailored therapy options, including selecting drugs and their

doses or even diet. Currently, there is no standardized pancreatic cancer screening strategy using

molecular biomarkers, but CA19-9 is the most well known marker for the detection of pancreatic

cancer. In contrast, recent innovations in high-throughput techniques have enabled the discovery of

specific biomarkers of cancers using genomics, transcriptomics, proteomics, metabolomics, glycomics,

and metagenomics. Panels combining CA19-9 with other novel biomarkers from different “omics”

levels might represent an ideal strategy for the early detection of pancreatic cancer. The systems

biology approach may shed a light on biomarker identification of pancreatic cancer by integrating

multi-omics approaches. In this review, we provide background information on the current state of

pancreatic cancer biomarkers from multi-omics stages. Furthermore, we conclude this review on how

multi-omics data may reveal new biomarkers to be used for personalized medicine in the future.

Keywords: pancreatic cancer; systems biology; omics; biomarker; genomics; transcriptomics; pro-

teomics; metabolomics; glycomics; metagenomics; personalized medicine

1. Introduction

Pancreatic cancer is one of the most fatal malignancies and the seventh leading cause
of cancer-related deaths considering both sexes worldwide according to the latest global
cancer statistics reported in 2018 [1]. Pancreatic cancer has a difficult diagnosis at an
early stage and a 5 year survival rate of 10% at the time of diagnosis in the United States,
where the poor survival rates have hardly changed for almost 40 years since most patients
reporting to the hospital have either unresectable or metastatic disease. Only 10.8% of
these patients are at a locally advanced stage at the time of diagnosis [2,3]. Unfortunately,
pancreatic cancer is projected to become the third leading cause of cancer deaths in the
future [1].

It is a great challenge to intervene at the early stages of pancreatic cancer that is in initial
diagnosis or postoperative recurrence because of the difficulties in early diagnosis and
inadequacy in precise prognostic biomarkers, and this challenge may result in undesirable
overdiagnosis and/or overtreatment, causing the high mortality rate [4–7].

Pancreatic cancer can be divided into two large groups; (a) endocrine pancreatic
tumors, including gastrinoma, glucagonoma, and insulinoma, and (b) exocrine (non-
endocrine) pancreatic tumors, including adenoma, ductal adenocarcinoma, acinar cell
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carcinoma, cystadenocarcinoma, adenosquamous carcinoma, signet ring cell carcinoma,
hepatoid carcinoma, colloid carcinoma, undifferentiated carcinoma, pancreatoblastoma,
and pancreatic mucinous cystic neoplasm [8,9]. Most of the pancreatic cancers are exocrine
types—namely, ductal adenocarcinoma, which comprises 80–90% of all pancreatic cancers;
whereas endocrine (neuroendocrine) pancreatic tumors are rare with 1–2% of all pancreatic
cancers [7].

Moreover, pancreatic neoplasms can be categorized by their gross appearance as
solid, cystic, or intraductal. The solid pancreatic tumors contain pancreatic ductal ade-
nocarcinoma (PDAC), neuroendocrine (islet cell) neoplasms, acinar cell carcinomas, and
pancreatoblastoma. The cystic types of pancreatic tumors tend to be less aggressive and
include mucinous cystic neoplasms, serous cystadenoma, intraductal papillary mucinous
neoplasms, and solid-pseudopapillary neoplasms [10]. Pancreatoblastoma is mostly ob-
served in childhood, and it has a poor prognosis if an adult is diagnosed with it. Mucinous
cystic neoplasms consist of a range from benign to malignant [7].

The World Health Organization (WHO) classifies the morphological variants of PDAC
differently from the conventional pancreatic adenocarcinoma classification. These variants
have different histological features besides molecular signatures and prognosis. According
to WHO, the different subtypes of PDAC are adenosquamous carcinoma, colloid/mucinous
carcinoma, undifferentiated/anaplastic carcinoma, signet ring cell carcinoma, medullary
carcinoma, and hepatoid carcinoma [11].

Like most cancer types, pancreatic cancer has also several known risk factors, such as
cigarette smoking, diabetes, obesity, lack of physical activity, and chronic pancreatitis [12,13].
Currently, computed tomography (CT), magnetic resonance imaging (MRI), endoscopic
ultrasound (EUS), positron emission tomography (PET), and other imaging methods are
used in the diagnosis and prognosis of pancreatic cancer [12–14].

Unsurprisingly, early detection of PDAC by effective screening approaches is crucial
to improve a better prognosis of the disease. The absence of clinical symptoms in the early
stage of pancreatic cancer could lead to a delay in confirmed diagnosis even though tumor
biomarkers and imaging techniques are being developed. Therefore, using circulating
biomarkers for primary screening and its combination with imaging and histopathologic
results might be the future strategy for diagnosing PDAC. Candidate circulating biomarkers
in PDAC are not limited to circulating tumor cells (CTC) but also consist of metabolites, cell-
free DNA and non-coding RNA, exosomes, autoantibodies, and inflammatory or growth
factors, which are recently summarized [15]. The presence of CTCs in the blood usually
correlates with the systemic spread of the tumor, and the characteristics of these CTCs
could be used as potential biomarkers. Moreover, the challenging tasks of CTC isolation
and detection are being overcome [16,17], and the emerging area of profiling CTCs has
been recognized in prognosis of pancreatic cancer [18].

Sample source is very critical in the identification of biomarkers for the detection and
diagnosis of early-stage pancreatic cancer [19]. The pancreas is located in the back of the
abdomen and is surrounded by the stomach, small intestine, liver, and spleen, so it becomes
a big challenge in getting a biopsy. The most common way to get pancreatic tumor samples
is by fine-needle aspiration (FNA). However, a core needle biopsy using a larger needle than
an FNA can provide a larger sample, often useful for molecular profiling. These biopsies
can be taken with an EUS. Other biopsy types, like brush biopsy or forceps biopsy, can be
done during an endoscopic cholangiopancreatography (ERCP). However, body fluids such
as blood, cyst fluid, pancreatic juice, bile, as well as urine are characteristically enriched
with biomarkers that can be a potential source of diagnostic, predictive, and/or prognostic
biomarkers in PDAC. As a source of pancreatic cancer biomarker, saliva has also been used.
In omics biomarker studies, blood is a frequently preferred sample source due to its easy
accessibility, noninvasiveness, and cost-effectiveness [20]. As an alternative rich source
for the discovery of biomarkers, pancreatic juice has recently been identified. Pancreatic
juice contains pancreatic cancer-specific markers such as DNA, RNA, proteins, and cancer
cells, but the collection procedure for this sample source is invasive [19]. Although urine
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contains limited protein, DNA, and RNA, it can be considered as an ideal source sample for
proteomic and genomic biomarkers [21]. Furthermore, accurate staging is very important
for providing appropriate treatment. The majority of the time, surgical excision is used for
treatment, and traditional chemoradiotherapy has very restricted effectiveness, despite the
development of novel therapy options [7]. In this review, we present a systems-level outlook
of PDAC biomarkers from different “omics” levels (Figure 1) as well as a comprehensive
overview of methodology and sampling used in biomarker studies for PDAC (Table 1).

 
Figure 1. A conceptual review of pancreatic cancer biomarkers from a variety of “omics” levels.

2. Recent Insights from Different Omics Levels

Despite the substantial advancement in pancreatic cancer research, there has not been
any remarkable reduction in the mortality-to-incidence ratio. This is mainly a result of
the limited early diagnostic characteristic symptoms and reliable biomarkers, besides the
unresponsiveness to the treatments due to the tumor heterogeneity, plasticity, and the
aggressive metastasis that presents in more than 50% of the diagnosed patients [22].

Systems biology studies of pancreatic cancer rely on the integration of omics data
from different biological levels. With the frequently arising challenges regarding cancer
diagnosis and treatment—mainly due to its complex pathogenic landscape and cellular
heterogeneity—the holistic view provided by the systems biology approach allowed for
having a global understanding of the mechanisms of the disease and gaining more insight
toward diagnostic or prognostic biomarkers and drug target discovery [23,24].

Likewise, systems biology also augments current diagnosis and therapy options.
Aggressiveness and chemoresistance of PDAC are caused by the desmoplastic reactions
induced by immune cells, stromal cells, neural cells, and the extracellular matrix sur-
rounding and forming the bulk of the tumor mass. Therefore, single-cell sequencing may
shed a better insight into cellular differences. Moreover, altered metabolism is caused
by limited delivery of the needed oxygen and nutrients in such a hypoxic and acidic
microenvironment; a direct impact on the drug delivery mechanisms is common [25,26].

3. Genomic Signatures

Next-generation sequencing (NGS) provides support for the early diagnosis and
screening of PDAC as well as many other diseases. Genomics techniques may assist in
the early diagnosis of pancreatic cancer in patients with specific alleles that predispose
them to cancer development. Different potential biomarkers discovered by genomics
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methods can be categorized as chromosomal aberrations, driver changes, single nucleotide
polymorphisms (SNPs), or copy-number alterations.

Previous studies pointed out the most prominent genetic features of PDAC, such
as oncogenic activation of K-RAS, which is a standard feature in more than 90% of the
patients, and with the early onset mutation of that gene, it is considered a critical driver of
PDAC initiation and progression [27]. Along with the oncogenic activation, inactivating
mutations of the tumor suppressor gene CDKN2A/2B are also observed in more than 80%
of the early-stage lesions, while later stages of PDAC exhibit inactivating mutations and
deletions of tumor suppressor genes most prominently including TP53 and SMAD4 [28].

Metabolic reprogramming is considered a prominent hallmark of PDAC. Therefore,
tackling this aggressive cancer might be possible through establishing a clear understanding
regarding its metabolism in addition to genomics [29]. Recent studies have shown the
crucial role of both glucose and glutamine metabolism in the progression of PDAC tumors
that are regulated by the K-RAS oncogene to maintain tumor growth [30–32]. Inducible
oncogenic K-RAS mouse model of PDAC showed—in addition to being a key driver of
PDAC initiation—that it plays a central role in rewiring the tumor glucose metabolism by
stimulating the glucose uptake and driving glycolysis intermediates toward nonoxidative
pentose phosphate pathways [31]. It was also reported that the PDAC cells maintain the
tumor growth by relying on the distinct pathway of glutamine metabolism and that this
reprogramming is mediated by K-RAS [30].

Therefore, not only genomics biomarkers but also network reconstructions [33], in-
cluding different omics levels, become an essential tool for exploring the disease under the
systems biology perspective. Network models and computational platforms for integrating
and analyzing these data, as well as investigating more thoroughly into these networks by
simulations, are prominent efforts.

4. Coding and Noncoding RNA Signatures of Pancreatic Cancer

Initial transcriptome studies were performed for analysis of the mRNA profiles, which
focused on protein-coding genes in PDAC. Thereafter, researchers compared gene ex-
pression levels between tumors and normal pancreas tissues and determined the genes
with altered expression profiles in the disease state; this assisted in discovering potential
diagnostic or prognostic biomarkers [34]. Over the years, microarray and RNAseq tech-
nology have been utilized not only to obtain coding but also non-coding RNA signatures.
Although transcriptomic studies of non-coding RNAs are mainly focused on microRNAs
(miRNA) and long non-coding RNAs (lncRNAs), other non-coding RNA types such as
piwi interacting RNA (piRNAs), circular (circRNAs), small nucleolar RNA (snoRNA), and
small nuclear RNA (snRNA) [35] are also promising biomarker candidates as they are
quantitatively assessed, providing opportunities for noninvasive and early diagnosis of
PDAC [20].

miRNAs involve in the expression of posttranscriptional regulatory mechanisms [36]
and act as oncogenes or inhibit tumor suppressors in PDAC. Overexpression of the onco-
gene miRNAs (oncomir) increases in tumor progression, while tumor suppressors inhibit
cell proliferation and induce apoptosis [37] by inactivating TP53, P16, and SMAD4 in
PDAC [38]. miRNAs have the advantage of being stable in serum, hence these show re-
markable potential as diagnostic biomarkers or a prognostic tool for noninvasive detection
and convenient screening [39]. Therefore, the use of miRNA expression profiling has
gained importance for the early detection of cancer [40,41].

Dysregulation of miRNAs in PDAC has been investigated not only in pancreatic
tumors but also in blood samples, pancreatic juice, stool, urine, and saliva [39,42]. In several
studies, the expression levels of miR-21, miR-155, and miR-196 have been reported to be
upregulated in PDAC [43–46]. The higher concentration of miR-155 and miR-210 in the sera
of pancreatic cancer patients as compared to normal healthy individuals has been proposed
as a potential diagnostic marker in the early stages of pancreatic cancer [47,48]. Moreover,
miR-155 and miR-21 were also found to have increased expression in pancreatic juices,
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while expressions are linked with histological progression characteristics [49]. In addition,
the evaluation of more than 700 miRNAs in a study using blood samples compared between
pancreatic cancer patients and healthy individuals emphasized miR-1290 as a promising
biomarker [50]. Likewise, multiple studies have proposed not only miR-21, miR-155,
miR-196, and miR-1290 but also miR-200, miR-18a, miR-210, miR-192, miR-22, miR-642b,
miR-885-5p, and miR-375 as candidate biomarkers for PDAC patients [47,51–55]. Another
comparison between cancer patients and healthy individuals clearly showed a distinct
miRNA expression profile that included upregulation of miR-21, miR-23a, miR-31, miR-100,
miR-143, miR-155, miR-2214, and downregulation of miR-148a, miR-375, and miR-217 [43].

The combination of various biomarkers such as CA19-9 with miR-16 and miR-196a
provoked distinct improvement to distinguish between PDAC patients and healthy con-
trols [56]. Similarly, the miR-27a-3p expression profile coupled with CA19-9 differenti-
ated PDAC patients and healthy controls with a sensitivity and specificity of more than
80% [57,58]. Among diagnostic features of miRNAs, poor survival in PDAC patients was
determined regarding overexpression of miR-221/222 and miR-744 levels in tumor tissue
and plasma, respectively, as well as low-expression levels of miR-218 and miR-494 in tumor
tissue [59–62].

In addition to microRNAs, other non-coding RNAs—such as long non-coding RNAs
(lncRNAs), small nuclear RNAs (snRNAs), or circular RNAs (circRNAs)—have also been
identified that might have potential as diagnostic or prognostic markers for PDAC. Long
non-coding RNAs (lncRNAs) consist of more than 200 nucleotides, and some of them are
circulating in body fluids which makes them promising markers for disease detection [63].
Although the biological functions of lncRNAs are not fully understood, the expression
of lncRNAs (HOTAIR, MALAT-1, GAS5, MEG3, HULC, BC008363, and HSATII) showed
significant alterations in pancreatic cancer cell lines. Besides, HOTAIR and PVT1 had higher
concentrations in saliva in PDAC patients than saliva taken from healthy individuals.
Therefore, these lncRNAs in saliva offer a potential noninvasive detection method for
PDAC [35]. To date, U2snRNA, which is overexpressed in PDAC, has been the only
reported snRNA biomarker in PDAC patients [64].

Circular RNAs (circRNAs), as another type of non-coding RNAs, have drawn in-
creased attention through their regulatory roles in cancer. Generally, these are generated
from precursor mRNA (pre-mRNA) by canonical splicing and head-to-tail back splicing,
which makes them circular. Moreover, their structure without a polyA tail makes circRNAs
favorably insensitive to ribonuclease and more desirable as clinically useful biomarkers.
These function as miRNA sponges and overwhelm the ability of the miRNA to bind its
mRNA targets [65]. Therefore, the associations of miRNAs and circRNAs with their po-
tential regulatory role were also investigated in PDAC. For instance, hsa_circ_0005785 is
potentially able to bind miR181a and miR181b as “oncomiRs” in pancreatic cancer, while
miR-181a plays a critical role in regulating cancer growth and migration [66]. In another
study, two upregulated circRNAs (hsa_circ_0001946, hsa_circ_0005397) and five downregu-
lated circRNAs (hsa_circ_0006913, hsa_circ_0000257, hsa_circ_0005785, hsa_circ_0041150,
and hsa_circ_0008719) were proposed as biomarkers after microarray analysis. They also
validated the expression pattern of the above seven proposed circRNAs via qRT-PCR in
PDAC tissues and adjacent normal tissues [67]. More recently, circRNAs expression in
PDAC was explored by comparing PDAC tissues versus normal tissues by using microar-
ray again. As a result, 256 differentially expressed circRNAs and 20 differentially expressed
miRNAs were proposed to be associated with PDAC development [68].

Seimiya and coworkers [69] applied circular RNA-specific RNA sequencing and
determined more than 40,000 previously unknown circRNAs that were altered in PDAC.
Their research resulted in a novel circRNA, named circPDAC RNA, with no peptide
production but the aberrant expression in PDAC tissues as well as patient serum. Another
recent study involving a 208-case cohort of patients with PDAC identified a novel circRNA,
named circBFAR or hsa_circ_0009065. The expression of circBFAR correlated positively
with the tumor-node-metastasis stage and was related to the poor prognosis of patients
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with PDAC. Likewise, circBFAR knockdown dramatically inhibited the proliferation and
motility of PDAC cells in vitro and their tumor-promoting and metastatic properties in
the in vivo models [70]. A recent systematic review designating the roles of circRNAs
in pancreatic and biliary tract cancers gathered detailed information and provided an
understanding of the role of circRNAs in pancreatic cancer [71].

In recent studies, single-cell transcriptomics has paved the way to elucidate molecular
biomarkers for early diagnosis of PDAC. Peng et. al. [72] found that a subset of ductal
cells with unique proliferative features were associated with an inactivation state in tumor-
infiltrating T cells, providing novel markers for the prediction of an antitumor immune
response. EGLN3, MMP9, and PLAU have been reported as participating in PDAC
carcinogenesis regarding dysregulated gene expression in malignant ductal cells [72].
In another single-cell RNA-sequencing study, sampling was from the mouse pancreas
during the progression from preinvasive stages to tumor formation. While metaplastic
cells were found to express two transcription factors, ONECUT2 and FOXQ1, the altered
expression profiles of MARCKSL1, MMP7, and IGFBP7 were also observed, which could
be accomplished as candidate markers for early detection of PDAC [72].

Consequently, findings provided by transcriptomic analysis of PDAC have been a
valuable resource not only for deciphering the intra-tumoral heterogeneity and disease
mechanism but also suggesting potential biomarkers for diagnosis, targeted therapy, or
immunotherapy.

5. Proteomic Signatures of Pancreatic Cancer

Proteomics is a powerful approach that encompasses an extensive range involving the
systematic analysis of protein structure, function, expression, protein–protein interactions,
and posttranslational modifications [73]. Over many years, proteomics has been a key
player for researchers to pinpoint biomarkers, which can be used as a tool for a faster disease
diagnosis, prognosis, and enhanced treatment [74,75]. In terms of making contributions
to clinical disease prediction, protein-based biomarkers are promising. The analysis and
verification of unique protein biomarkers have been achieved by using highly sensitive
and reliable mass spectrometry-based proteomics. Moreover, this technique is crucial in
terms of querying protein modifications [20]. Numerous clinical specimens of pancreatic
cancer such as pancreatic juice, pancreatic tumor tissue, pancreatic cyst fluid, urine, and
plasma/serum have become targets for the proteomics field to dig into mechanisms of
disease, improve novel biomarkers, and enhance drug development [76–78]. Identifying
proteins or peptides detected in body fluids in cases of cancer might be useful for the early
diagnosis of PDAC [78].

Sample type is a critical concern for the study of biomarkers. Since blood serum or
plasma is convenient for periodic collections and includes a reproducible quantification,
it is presumably the most preferred option. Although blood samples are easily accessible
and noninvasive, the fundamental disadvantage of blood collection for the discovery of
novel biomarkers is that not every protein carrying diagnostic potential is secreted into
the bloodstream [79]. Investigation of the human pancreatic proteome has been done in
patients with premalignant neoplasia, PDAC, and benign pancreatic disease. Although
one of the most potent samples from the pancreas is the pancreatic juice, involving a
high amount of proteins that might display the disease status, its collection is onerous
since this procedure requires an endoscopy and cannulation of the pancreatic duct [80–86].
Collecting and conserving the intact tumor tissue and adjacent normal tissue is challenging
due to the presence of digestive enzymes secreted by the pancreas. Nonetheless, pancreatic
tissue is considered an excellent specimen for investigation of the pathological mechanisms
underlying PDAC as well as for determining drug targets in virtue of its proximity to the
lesion and its greater ingredient of tumor-related proteins [87]. Pancreatic cysts, which
possess peculiarly stagnated fluids, are extensively seen as the most hopeful origin for
the discovery of potential biomarkers since these tend to turn into pancreatic cancer [88].
In terms of urine, this is an effortlessly approachable biological specimen for biomarker
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detection, and its proteins are generated from both glomerular filtration and kidney [89].
Due to their accessibility and noninvasiveness, various urinary protein biomarkers have
been examined to improve clinical assays for the diagnosis of several cancer types. As yet,
merely a restricted amount of proteomics studies have been carried out to investigate the
urinary proteome [90].

A retrospective study using a comprehensive proteomic analysis of pancreatic juice
and pancreatic cell line samples from PDAC patients demonstrated that regenerating
Family Member 1 Beta (REG1B) and syncollin (SYCN) could represent potential PDAC
biomarkers [84,91]. Sogawa et al. [92] carried out a comparative proteomics analysis
using a tandem mass tag (TMT) labeling and demonstrated that C4b-binding protein
α-chain (C4BPA) is a novel serum biomarker for the early diagnosis of PDAC as well as for
discrimination between PDAC and other gastroenterological cancers. Based on the results
of a combinatorial proteomics strategy, Yoneyama et al. [93] indicated that insulin-like
growth factor-binding proteins, IGFBP2 and IGFBP3, are compensatory biomarkers that
can allow more accuracy through the combination with CA19-9 for the early detection of
PDAC. In an MS-based proteomic study, Guo et al. [94] have demonstrated that dysbindin
as a potential biomarker improved the accuracy of diagnosis in distinguishing PDAC
from other pancreatic diseases. In a recent study, Cohen et al. [95] observed that the
combination of testing circulating tumor DNA (ctDNA) with protein biomarkers (CA19-9,
CEA, hepatocyte growth factor (HGF), and osteopontin) shows better performance than
the CA19-9 test alone to distinguish PDAC from healthy controls. The improved accuracy
of the biomarker panel—which is composed of a gold standard biomarker CA19-9, tissue
factor pathway inhibitor (TFPI), and an isoform of tenascin C (TNC- FNIII-B)—in the
differentiation of early-stage PDAC from different diseases was also demonstrated in a
clinical cohort study [96]. In addition, Capello et al. [97] reported that the combination
of TIMP1, LRG1, and CA19-9 performed better diagnostic accuracy than CA19-9 alone in
differentiating early-stage PDAC from benign PDAC. Kim et al. [98] identified another
biomarker panel that has high plasma THBS-2 and CA19-9 concentrations, which showed a
remarkable differentiation ability between PDAC and healthy patients with 87% sensitivity
and 98% specificity. The clinical significance of serum survivin was also reported in PDAC
patients [99].

The pancreatic ductal fluid has been proposed as a good biological fluid for iden-
tifying prognostic biomarkers [100]. Focusing on the content of the ductal fluid, high
concentrations of mucins and S100A8 or S100A9 were associated with the low survival
rate in PDAC [100]. Ger et al. [101] recently investigated the proteome of 37 samples from
pancreatic cancer and healthy subjects and identified that FLT3 and PCBP3 are promising
prognostic biomarkers of pancreatic cancer.

Targeted proteomics is a rapidly evolving technological tool that conceptually repre-
sents an important advancement in alleviating the bottleneck in the preclinical biomarker
assessment processes. In a targeted proteomics pilot study [102], five pancreatic cancer
biomarker candidates—including 14-3-3 protein sigma, gelsolin, lumican, transglutaminase
2, and tissue inhibitor of metalloproteinase 1—were investigated in 60 plasma samples
using a simple and robust selected reaction monitoring (SRM) multiplexed assay. Their re-
sults showed that gelsolin, lumican, and tissue inhibitor of metalloproteinase 1 have better
area under curve (AUC) values than CA19-9 to discriminate pancreatic cancer from healthy
controls and chronic pancreatitis controls. Yoneyama and colleagues [103] developed a
quantification method specific for α-fibrinogen hydroxylated at proline residues 530 and
565 by SRM/multiple reaction monitoring (SRM/MRM). To validate these modifications
as pancreatic cancer biomarkers, they quantified these posttranscriptional modifications in
plasma samples from 70 pancreatic cancer patients and 27 healthy controls. They demon-
strated that the plasma concentration of proline-hydroxylated α fibrinogen is significantly
greater in pancreatic cancer patients.

In light of the rapidly developing accuracy and efficiency of proteomic approaches,
our knowledge of the underlying molecular mechanism of pancreatic cancer has greatly
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increased [104,105]. However, there are still various limitations and analytic challenges that
have resulted from the dynamic nature of the proteome of tissues and cells and the variation
in the forms and functions of proteins due to several modifications [106]. Although several
standardizations and improvements are required, proteomics is certainly a promising
approach for the early diagnosis, prognosis, and discovery of targets for the treatment of
pancreatic cancer.

6. Metabolomic Signature of Pancreatic Cancer

Metabolomics or metabolite profiling is a novel promising approach for the identi-
fication of robust biomarkers for diagnosis, prognosis, and assessment of treatment in
pancreatic cancer [107–111]. Although there is currently no clinically validated metabolic
biomarker that can help to provide early diagnosis of pancreatic cancer, the number of
studies focusing on metabolic profiling and phenotyping of pancreatic cancer is increasing
drastically [111–114]. As compared to other omics technologies, metabolic phenotyping is a
sensitive indicator due to rapid and more precise results for new biomarker discovery [115].
The largest case-control study to discover a blood-derived metabolic biomarker signature
that enables one to distinguish PDAC from chronic pancreatitis (ChP) was conducted by
Mayerle et al. [114]. They investigated metabolomic profiles of plasma and serum samples
from 914 subjects (patients with PDAC, ChP, liver cirrhosis, healthy, and non-pancreatic
disease control), and a tumor biomarker signature (nine metabolites and additionally CA
19-9) was identified for differential diagnosis between PDAC and ChP with an AUC of
0.96. In a retrospective study investigating tissue metabolomics from 25 pancreatic cancer
patients who had to undergo tumor resection surgery and gemcitabine-based adjuvant
therapy, high lactic acid levels were observed in patients with poor clinical outcomes after
gemcitabine therapy. Moreover, the combined evaluation of hENT1 with lactic acid showed
superior performance in differentiating patients according to their overall survival [116].
In another study, Battini et al. [117] investigated tissue samples from 106 patients after
PDAC resection to find metabolic biomarkers associated with long-term survival using
metabolomic analysis methods. While the network analysis results revealed that higher
levels of glucose, ascorbate, and taurine associated with long term survivors, decreased
levels of choline, ethanolamine, glycerophosphocholine, phenylalanine, tyrosine, aspartate,
threonine, succinate, glycerol, lactate, glycine, glutamate, glutamine, and creatine were
estimated in long-term survivors. Due to the association of higher ethanolamine levels
with worse survival, the metabolite with the highest accuracy in distinguishing between
long-term and short-term survivors was ethanolamine.

An animal study was conducted to obtain metabolite profiling of pancreatic intraep-
ithelial neoplasia (PanIN) and PDAC tissue samples from rats. They observed that the
levels of kynurenate and methionine decreased in PDAC but increased in PanIN, demon-
strating the potential of these metabolites to be biomarkers to differentiate PDAC from
PanIN [116,118]. Laconti et al. identified that circulatory metabolite signatures can be used
to differentiate animals with early-stage lesions with a diagnostic accuracy of 81.5% and
73.2% respectively [110].

Since the metabolic changes are quite important to detect and treat cancer regardless
of the disease stage [119], genome-scale metabolic models (GEMs) might be a very helpful
source to create and/or test the hypothesis for the elucidation of physiological mechanisms
or novel biomarkers [120,121] so that GEMs can be used as a tool in both “top-down” and
“bottom-up” methods in the context of biomarker discovery. GEMs have been employed for
studying cancer metabolism utilizing either generic/personalized or tumor/cell-specific
methods, which may translate into clinically relevant applications. They can also be used to
identify drug targets leading to inhibition of cancer-related phenotypes or drug resistance in
cancer therapy. Furthermore, the fortification of GEMs can be obtained via the integration
of omics data like genomic, transcriptomic, and proteomic data, as well as the incorporation
of regulatory molecules to the metabolism [122]. GEMs also provide valuable insight into
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the interaction between cancer cells and supporting cells in their niches as paving the way
for whole-cell modeling [123,124].

In addition to all these, there are still some challenges in metabolomic studies. Whether
significant changes in the metabolite level are due to the occurrence of the targeted disease,
the use of non-confirmed metabolites with small sample size and the variability of patients’
parameters would affect the accuracy and reliability of the results [125]. Therefore, further
standardization and improvement of currently available metabolomics techniques is a
prospective requirement for the designation of highly accurate biomarkers that will provide
significant clinical benefits and may help to obtain new target signatures for accurate
diagnosis, imaging, and possible therapeutic options [126,127].

7. Glycomic Signatures of Pancreatic Cancer

Cancer studies are performed mostly based on alterations in genome, transcriptome,
proteome, and metabolome levels, with a relatively small number of studies in alterations
in glycan compositions and/or structures and glycoproteins [128]. However, the glycan
studies have been increasing day by day to identify potential glycan alterations and
glycoprotein biomarkers for cancer owing to the developments in glycans profiling [129].
In cancer cells, alterations in carbohydrate structures of secreted proteins are functionally
significant and may offer promising targets to develop potential diagnostic and therapeutic
strategies [130–132].

Since pancreatic cancer does not indicate any noticeable symptom during the early
stages, it is a very difficult cancer type to diagnose [131]. It is an important challenge to
detect new diagnostic biomarkers for pancreatic cancer. The glycoproteome occurring after
co-translational or posttranslational modifications (PTM) and its role in the mechanism
of pathogenesis have not been explained completely in pancreatic cancer. Besides, the
available information about glycoproteome in normal pancreas and pancreatic cancer is
very limited [133,134].

Glycosylation—the covalent attachment of a glycan to protein, lipid, carbohydrate,
or other organic molecules—is the most common and complex PTM of proteins and
significantly affects the function of proteins. Glycosylation of proteins plays an important
role in various biological functions, including immune response and cellular regulation.
Abnormal glycosylation is accepted as a molecular characteristic of transformation into
malignant tumors for many epithelial cancers, including PDAC. Therefore, targeting
aberrant glycosylation associated with cancer would be a useful approach to improve
accurate diagnosis and possibly therapeutic strategies [129,133].

Several studies were published about glycan alterations and glycoproteome in pancre-
atic cancer. Pan et al. investigated protein N-glycosylation in pancreatic tumor tissue com-
pared to the normal pancreas and chronic pancreatitis tissue through a quantitative glyco-
proteomics approach using HPLC and MS. This study presented a set of glycoproteins hav-
ing aberrant N-glycosylation levels in pancreatic cancer, including mucin-5AC (MUC5AC),
carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), insulin-like
growth factor binding protein (IGFBP3), and galectin-3-binding protein (LGALS3BP) [133].
MUC5AC and CEACAM5 have been shown to play a role in tumor progression and
metastasis in pancreatic cancer [133,135,136]. On the other hand, LGALS3BP was signifi-
cantly hyperglycosylated in tumor tissue. Additionally, increased N-glycosylation on many
cancer-associated aberrant glycoproteins was reported on pancreatic cancer-associated
pathways such as TGF-β, TNF, NF-kappa-B, and TFEB-related lysosomal changes [133].

Yue et al. studied sera from pancreatic cancer patients to determine certain glycan
alterations and their possible usage in the diagnosis of pancreatic cancer. To that end, they
characterized glycan and protein levels of specific mucins and carcinoembryonic antigen-
related proteins of these patients through the antibody-lectin sandwich array method
previously developed. They found that MUC16 protein was frequently increased (65% of
the patients) in the cancer patients, whereas MUC1 (30%) and MUC5AC (35%) proteins
were less frequently elevated. In addition to this, MUC1 and MUC5AC proteins indicated
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highly extensive and diverse glycan alterations, while MUC16 protein did not. The most
frequent glycan elevations that affected these proteins involved the Thomsen–Friedenreich
antigen, fucose, and Lewis antigens. Additionally, they reported an unanticipated enhance-
ment in the exposure of alpha-linked mannose on MUC1 and MUC5AC. Moreover, the
CA19-9 on MUC1 had the most important increase (87%) in cancer patients with 4% of the
control subjects [130].

In another study, N-glycosylation at Asn88 in serum human pancreatic ribonuclease 1
(RNase1) was substantially elevated in pancreas cancer patients compared with normal
human subjects [131]. Similarly, increased fucosylation levels of serum α-1-acid glycopro-
tein (AGP) glycoforms were reported in pancreatic cancer compared to healthy controls
and pancreatitis patients via numerous analytical methods consisting of MS, capillary zone
electrophoresis (CZE), and enzyme-linked lectin assays (ELLA) [134].

As an alternative therapy option having fewer adverse effects than others, regional
intra-arterial chemotherapy (RIAC) is preferred for advanced pancreatic cancer. Qian
and colleagues [137] took advantage of the presence of Glypican-1 (GPC1) in extracellular
vesicles (EVs) to determine if the change in GPC1+ cells in EVs could be a predictor
of the consequences of RIAC for advanced pancreatic cancer patients. They concluded
that patients with advanced pancreatic cancer who displayed a decrease in GPC1+ EVs
experienced enhanced overall survival rates with the aid of RIAC therapy.

Another cell-surface glycoprotein, CD44 is a known prognostic biomarker and ther-
apeutic target in pancreatic cancer [138]. The overexpression of CD44 was shown to be
associated with aggressive malignant attitudes, cell migration, and distance metastasis,
therefore with poor overall survival in patients with pancreatic cancer [138]. On the other
hand, the reduction in CA19-9 levels envisaged a good prognosis after neoadjuvant therapy
with a low incidence of recurrence after surgery [139].

All of these studies provide an insight into the potential biomarker candidates for
effective diagnosis, prognosis, and treatment in pancreas cancer using measurements in
glycan alterations on precise glycoproteins.

8. Metagenomic Biomarkers of Pancreatic Cancer

In recent studies, the interaction between microbiomes and the initiation and pro-
gression of pancreatic cancer has become recognized, raising the possibility of identifying
novel diagnostic and prognostic factors for PDAC [140]. The existence of intratumoral
microbiota is considered to have a potential etiologic impact on pancreatic carcinogenesis,
including inflammation, immunosuppression, and stimulation of cellular carcinogenic
pathways [141–143].

It is becoming clear that there is a correlation between oral microbiota and PDAC, and
the abnormalities of oral microbiota have been proposed to appear before the development
of cancer [144]. Available literature data provide knowledge on the oral bacteria that
might play a pathogenic role in the progression of PDAC, and these are Porphyromonas
gingivalis, Fusobacterium, Neisseria elongata, and Streptococcus mitis [145]. In this context,
a large metagenomic study comparing PDAC patients and healthy controls revealed
that P. gingivalis was associated with an approximately 60% greater risk of PDAC [146].
Mitsuhashi et al. [147] indicated that the existence of approximately 10% Fusobacterium
in pancreatic cancer tissue is independently associated with poor prognosis of PDAC but
not with its clinical and molecular features. It is also thought that Fusobacterium species
may be a candidate prognostic biomarker for pancreatic cancer and should be considered
for further oral microbiota studies. On the other hand, some studies have revealed that
Fusobacteria are associated with reduced risk of PDAC, revealing that the role of Fusobacteria
on PDAC could be controversial [144,146,148].

Fecal microbial transplantation (FMT) possesses an enormous amount of microbiota
compared to usually preferred probiotic supplements and might provide a significant
movement in reducing the immunosuppression and in increasing the response rate to
treatment in cancer patients having a probable low survival [149]. In a recent cohort study,
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Riquelme and colleagues [150] made a metagenomic analysis from 68 tumor samples of
tumor microbiome composition of PDAC patients with short-term survival (STS) and
long-term survival (LTS) phenotypes using 16S rRNA gene sequencing. They reported that
the tumor microbiome diversity of long-term survivors was higher than that of short-term
survivors, potentially representing a strong interrelation between the gut microbiome and
patients’ survival rate. Besides, animal studies by human-into-mice FMT experiments from
STS, LTS, and healthy donors conspicuously confirmed that the transference of the long-
term survivors’ gut microbiome can modulate the intratumoral microbiome. According
to a study encompassing a comparative analysis of fecal microbiota from PDAC patients
and control donors in murine models, a certain type of bacteria—namely, Proteobacteria,
Actinobacteria, Fusobacteria, and Verrucomicrobia—are found in higher amounts in the
gut of PDAC patients. Specifically, the gut microbiota of PDAC patients contains greater
amounts of Proteobacteria (45%), Bacteroidetes (31%), and Firmicutes (22%). This study
remarkably highlights that the intratumoral microbiome associated with pancreatic cancer
has relatively distinct proportions in comparison to the microbiome of normal pancreatic
tissue [143].

In an animal study, Mendez et al. [151] demonstrated a substantial correlation between
microbial dysbiosis and the release of tumor-inducing metabolites in the early-stage, while
showing significantly elevated serum polyamine concentrations in PDAC patients; this
may be postulated as a predictive biomarker for early detection of pancreatic cancer. It is
among the current assumptions that bacteria in the pancreatic microbiome may contribute
to the resistance of gemcitabine, which is widely used in the treatment of PDAC. Based on
this assumption, 76% of the tested pancreatic tissue was found to be positive for bacteria,
particularly Gammaproteobacteria [152].

Several studies also suggest that the composition of oral [146,148,153], fecal [154],
and pancreatic microbiome [143,155] may be used for early diagnosis of PDAC. With the
accumulation and advanced evaluations of data on the pancreas, gut, and oral microbiota,
it might be possible to develop microbiome screening methods that can be considered as a
promising tool in the prediction of PDAC risk and treatment of disease progression.

9. Biomarkers Leading to Improved Personalized Medicine

On the way to personalized medicine, there are promising and on-going efforts for
the integration of multi-omic data. As an aim of precision medicine, the first attempt
is to stratify patients according to their disease subtypes, biomarkers, clinical features,
or demography. Later, in addition to the stratification process, more features such as
environment, medication history, behaviors, and habits are utilized to create smaller
groups. In theory, this stratification technique should avoid failures in clinical trials since
the suitable diagnosis and targeted treatments are applied to small patient populations or
directly to individuals. Instead of “one-size-fits-all” treatment approaches, the best therapy
options or medications for each individual or a small group can be achieved through
disease stratification and then personalization by the integration of multi-omics networks.
In addition, personalized medicine treatment necessitates the co-development of diagnostic
tools (preferably within noninvasive methods) to characterize the ideal therapy for patients.
There is an urgent need for multi-omic data integration not only for pancreatic cancer but
also for many other diseases from the personalized medicine perspective in the future
(Figure 1).

According to the present clinical data, using only chemotherapeutic approaches in the
treatment of pancreatic cancer will likely be insufficient in terms of the increase in survival
time and response rate in the near future. Therefore, there is an urgent need for precision
medicine, which aims at tailoring the best treatment option for individual patients based
on their genomic information, together with molecular, environmental, and lifestyle factors,
to identify the suitable biomarkers and targeted therapies for cancer patients. Personalized
medicine stratifies the patients by considering the individual differences among cancer
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patients, unlike conventional therapy. As in other types of cancer, studies on precision
medicine in pancreatic cancer have increased in recent years [156,157].

There are several precision medicine programs and clinical studies run by various
initiatives from different countries to offer the best personalized treatment options for
pancreatic cancer patients according to their molecular tumor profiling [156]. These pro-
grams have demonstrated that a small patient cohort had better progression-free survival
after switching their therapies from standard-of-care treatment to molecular-targeted ther-
apy [158]. Further, molecular profiling of tumors from patients with all stages of pancreatic
cancer was performed using NGS to develop response rates and therapeutic biomark-
ers [159]. Besides, different clinical studies were performed to discover biomarkers for
prognosis or treatment response [160], focusing on alterations in genome and epigenome
in tumor tissue [161]. The Comprehensive Molecular Characterization of Advanced Pan-
creatic Ductal Adenocarcinoma for Better Treatment Selection (COMPASS) trial was the
prospective translational study that investigated the feasibility of comprehensive real-time
genomic analysis of advanced PDAC, integrating genomic and transcriptomic subtypes
and chemotherapy response [162].

The alterations in the genome, epigenome, proteome, and metabolome cause the
changes in the phenotype in pancreatic cancer, and thus studies carried out on these
alterations could help with the stratification of pancreatic cancer. The identification of
new biomarkers for subtyping, diagnosing cancer, and predicting therapy response is
an ongoing process in preclinical studies. However, the difficulties in the translation
of promising preclinical findings into clinical practice make the application of precision
medicine approaches in clinics a great challenge. These difficulties arise from the evaluation
of basic science findings in the clinical settings and the selection of the best effective
scientific data for clinical trials [156]. Moreover, it is very important and vital to building
collaborations among basic scientists, clinicians, and bioinformaticians to overcome these
challenges.

For patients with pancreatic cancer, CA19-9 is the only routinely used serum biomarker
in prognosis and early diagnosis of recurrence after therapy [156]. Although the increase in
CA19-9 level indicates advanced pancreatic cancer and poor prognosis [139], this elevation
can be only observed in 65% of the patients with resectable pancreatic cancer, in addition to
patients with other diseases such as pancreatitis or cirrhosis [163]. Besides, 10% of patients
with pancreatic cancer cannot synthesize CA19-9 even if they are in the advanced stage,
since they are negative for Lewis antigen a or b. Moreover, it is not a screening biomarker
for pancreatic cancer to be used alone [156].

Numerous gene alterations that play important roles in tumorigenesis can provide the
development of novel treatments that target specific genes for pancreatic cancer patients.
Personalized medicine can certainly improve the management of patients and outcomes of
novel treatments with the administration of the right therapy using the right dose at the
right time to the right patient when applied to pancreatic cancer patients. The generation of
well-designed clinical trials allowing the construction of molecular profiling of tumors of
patients will further guide the development of novel and effective strategies for the overall
survival of patients in this highly lethal cancer [157,160].

10. Conclusions

There are big initiatives, various research programs, and databases in which re-
searchers are able to collect different omics datasets of pancreatic cancer. However, many
biomarker studies have been challenged by low case numbers, non-specificity of molecular
markers and their low reproducibility, and the absence of preclinical or clinical as well as
feasibility studies.

The well-known example of pancreatic cancer biomarkers is CA19-9, but as a single
biomarker it cannot offer a potential to be used in the clinic. Recent studies on non-
coding RNAs such as miRNAs, circRNAs, and lncRNAs hold great promise not only as
biomarkers but also for understanding the regulatory network components in pancreatic
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cancer. Targeted or shotgun proteomic approaches also provide an opportunity for more
sensitive or novel biomarker identification. Metagenomics is another emerging technique
that measures altered microorganism abundance and may act as a potential biomarker. On
the other hand, although the pancreas is at the center of many metabolic pathways, the
metabolic rewiring of pancreatic cancer is an underestimated topic since the number of
metabolomics studies are not as numerous as some of the other omics investigations.

Although many novel markers have been discovered through omics studies of PDAC
in the past decade, none of those novel biomarkers have yet been brought into routine
clinical practice. However, there is a hope that various combinations of these biomarkers
as a biomarker panel may result in a clinical output, and this fact makes the integration of
multi-omics data more challenging on the way to translating omics markers into the clinic.

Another point that has a crucial role in translation to the clinic is sampling, where
body fluids are favorable for the detection of the biomarkers. Later, these biomarkers also
assist oncologists in deciding optimal therapeutic management by defining the way for
precision treatment.

In conclusion, there is great attention focusing on multi-omics biomarkers in terms
of their diagnostic, predictive, and prognostic potentials to fight against pancreatic cancer
as well as other cancer types. One of the major medical concerns raised by oncologists
is the identification of robust, reasonable, and reliable diagnostic biomarkers since early
detection of pancreatic cancer is crucial for personalized therapy options and improved
survival outcomes. This strategy can be accomplished by a systems biology approach
that aims to organize multi-omics data despite the challenges. Successfully accomplishing
multi-omics data integration by systems biology approaches will fulfill future expectations
and the need for robust, accurate, and feasible biomarker panels for pancreatic cancer.

Table 1. A summary of methodology and sampling used in biomarker studies for pancreatic cancer.

“Omic” Level Description Sample Origin Altered
Molecule/Microorganism Expression Pattern Detection Method * Reference Study

Genomics Mutation Pancreatic tissue CDKN2A, CDKN2B,
TP53, SMAD4, KRAS - WES/WGS [28]

Transcriptomics

Coding RNAs

T cell EGLN3, PLAU Downregulated scRNA-seq [72]

T cell MMP9 Dysregulated scRNA-seq [72]

Mouse pancreatic
tissue

ONECUT2, FOXQ1,
MARCKSL1, MMP7,

IGFBP7
Upregulated scRNA-seq [164]

Tumor tissue hsa_circ_100782 Upregulated Microarray/qRT-
PCR [71]

circRNAs

Tumor
tissue/plasma/cell

lines
hsa_circ_0006988 Upregulated qRT-PCR [165]

Tumor tissue/cell
lines

hsa_circ_0099999
(circZMYM2) Upregulated circRNA

overexpression [166]

Tumor tissue hsa_circ_0006215 Upregulated circRNA
overexpression [167]

Tumor tissue,
plasma exosome circ-IARS Upregulated circRNA

overexpression [168]

Tumor tissue circ-PDE8A Upregulated circRNA
overexpression [169]

Tumor tissue/cell hsa_circ_0001649 Downregulated Microarray/qRT-
PCR [170]

Tumor tissue/cell hsa_circ_0005397
(circ-RHOT1) Upregulated Microarray/qRT-

PCR [171]

Tumor tissue/cell
lines hsa_circ_0030235 Upregulated circRNA

overexpression [172]

Tumor tissue/cell
lines hsa_circ_0007534 Upregulated circRNA

overexpression [173]

Tumor tissue/cell
lines ciRS-7 (Cdr1as) Upregulated qRT-PCR [174]
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Table 1. Cont.

“Omic” Level Description Sample Origin Altered
Molecule/Microorganism Expression Pattern Detection Method * Reference Study

Tumor tissue hsa_circ_0007334 Upregulated Microarray/qRT-
PCR [175]

Tumor tissue circLDLRAD3 Upregulated circRNA
knockdown [176]

Tumor tissue/cell circASH2L Upregulated Microarray/qRT-
PCR [177]

Tumor tissue/cell
lines circADAM9 Upregulated circRNA

knockdown [178]

Tumor tissue/cell hsa_circ_001653 Upregulated circRNA
knockdown [179]

Tumor tissue/cell circHIPK3 Upregulated circRNA
knockdown [180]

Tumor tissue/cell circFOXK2 Upregulated circRNA
knockdown [181]

Tumor tissue hsa_circ_0009065
(circBFAR) Upregulated circRNA

overexpression [70]

Tumor tissue hsa_circ_0086375
(circNFIB1) Downregulated circRNA

knockdown [182]

Tumor tissue/cell hsa_circ_0013912 Upregulated circRNA
overexpression [183]

Tumor tissue/cell
lines hsa_circ_001587 Downregulated circRNA

knockdown [184]

Tumor tissue hsa_circ_0001946,
hsa_circ_0005397 Upregulated Microarray/qRT-

PCR [67]

Tumor tissue

hsa_circ_0005785,
hsa_circ_0006913,
hsa_circ_0000257,
hsa_circ_0041150,
hsa_circ_0008719

Downregulated Microarray/qRT-
PCR [67]

Plasma miR-21 Upregulated Microarray/qRT-
PCR [49]

Pancreatic juice miR-155 Upregulated qRT-PCR [49]

miRNAs

Tumor tissue/cell
lines miR-196a Upregulated Microarray/qRT-

PCR [185]

Tumor tissue miR-210 Upregulated qRT-PCR [186]

Tumor tissue/cell
line/serum miR-1290 Upregulated Microarray/qRT-

PCR [50]

Tumor tissue/cell
lines miR-200a/miR-200b Upregulated Microarray/qRT-

PCR [51]

Tumor tis-
sue/plasma/serum miR-18a Upregulated qRT-PCR [55]

Tumor tissue miR-192 Upregulated Microarray/qRT-
PCR [187]

Blood miR-22-3p/miR-
642b/miR-885-5p Upregulated qRT-PCR [188]

Tumor tissue miR-23a/miR-31/miR-
100/miR-143/miR-221 Upregulated qRT-PCR [43]

Tumor tissue miR-148a/miR-375/miR-
217 Downregulated qRT-PCR [43]

Plasma
miR-16 and miR-16 and
miR-196a and CA 19-9

combination
Upregulated qRT-PCR [56]

Peripheral Blood
Mononuclear Cells miR-27a-3p with CA 19-9 Upregulated RNA-seq/qRT-PCR [57]

Tumor tissue/cell
lines miR-221/miR-222 Upregulated qRT-PCR [185]

Tumor
tissue/plasma miR-744 Upregulated Microarray/qRT-

PCR [62]

Tumor tissue miR-218 Downregulated Microarray/qRT-
PCR [189]

Tumor tissue miR-494 Downregulated Microarray/qRT-
PCR [46]
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Tumor tissue HOTAIR Upregulated qRT-PCR [35]

Tumor tissue PVT1 Upregulated qRT-PCR [190]

Other ncRNAs

Tumor tissue MALAT-1 Upregulated qRT-PCR [191]

Tumor tissue Gas5 Upregulated qRT-PCR [192]

Tumor tissue MEG3 Upregulated qRT-PCR [193]

Tumor tissue HULC Upregulated qRT-PCR [194]

Tumor tissue BC008363 Upregulated Microarray/qRT-
PCR [195]

Tumor tissue HSATII Upregulated RNA-seq [196]

Serum/plasma U2snRNA Upregulated Microarray/qRT-
PCR [197]

Pancreatic juice and
cell line REG1B/SYCN Upregulated ELISA [84]

Serum C4BPA Upregulated TMT labeling [92]

Proteomics Proteins

Plasma IGFBP2/IGFBP3 Upregulated
Antibody-based

and
LC-MS/MS-based

[93]

Serum DTNBP1 Upregulated MS [94]

Plasma
ctDNA with CA19-9,

CEA, HGF, and
osteopontin

Upregulated
Luminex

bead-based
immunoassays

[95]

Plasma Combination of CA19-9,
TFPI, and TNC- FNIII-B Upregulated ELISA [96]

Plasma Combination of TIMP1,
LRG1, and CA19-9 Upregulated ELISA [97]

Plasma THBS-2 and CA19-9 Upregulated ELISA [98]

Serum Survivin Upregulated ELISA [99]

Pancreatic ductal
fluid

Mucins and S100A8 or
S100A9 Upregulated MS [100]

Tumor tissue FLT3, PCBP3 Upregulated HDMS [101]

Tumor tissue Combination of hENT1
and lactic acid GC/TOF-MS [116]

Tumor tissue
Glucose, ascorbate,
ethanolamine, and

taurine
Upregulated HRMAS-NMR [117]

Tumor tissue

Choline, ethanolamine,
glycerophosphocholine,
phenylalanine, tyrosine,

aspartate, threonine,
succinate, glycerol,

lactate, glycine,
glutamate, glutamine,

and creatine

Downregulated HRMAS-NMR [117]

Metabolomics Metabolites

Rat tumor tissue Kynurenate and
methionine Downregulated NMR [116]

Tumor tissue
N-glycosylation of

MUC5AC, CEACAM5,
IGFBP3, and LGALS3BP

Upregulated HPLC, MS [133]

Serum

α-linked mannose and
glycan involved the

Thomsen–Friedenreich
antigen, fucose, and

Lewis antigens affected
MUC1 and MUC5AC

Upregulated Microarray, WB [130]

Serum
Asn-88 N-glycosylation
and differential RNase-1

expression
Upregulated ELISA, WB [131]
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Glycomics

Glycan
alterations

Serum α1-3 fucosylation in
α-1-acid glycoprotein Upregulated ELLA, HILIC-MS,

CZE [134]

Serum CA19-9 Downregulated Immunoassay [139]

Tumor biopsy CD44 antigen (CD44) Upregulated WB [138]

Plasma Glypican-1 (GPC1) Upregulated Flow cytometry [137]

Glycoproteins Serum Mucin-5AC, MUC1, and
MUC16 Upregulated Antibody-lectin

sandwich array [130]

Metagenomics Microbiota

Oral microbiota

Porphyromonas gingivali,
Fusobacterium, Neisseria

elongata, and Streptococcus
mitis

High amount
plasma antibody

analysis, 16S rRNA
sequencing

[145]

Murine fecal
microbiota

Proteobacteria,
Actinobacteria,

Fusobacteria, and
Verrucomicrobia

High amount
qPCR, FISH, 16S

rRNA gene
sequencing

[143]

Murine gut
microbiota

Proteobacteria,
Bacteroidetes, and

Firmicutes
High amount

qPCR, FISH, 16S
rRNA gene
sequencing

[143]

* CZE: capillary zone electrophoresis, ELISA: enzyme-linked immunosorbent assay, ELLA: Enzyme-linked lectin assay, FISH: fluorescence
in situ hybridization, GC: gas chromatography, HILIC: Hydrophilic interaction chromatography, HRMAS: high-resolution magic angle spin-
ning, LC: liquid chromatography, MS: mass spectrometry, NMR: nuclear magnetic resonance, qRT-PCR: quantitative reverse transcription
polymerase chain reaction, TOF: time of flight, WB: Western blot, WES: Whole exome sequencing, WGS: whole genome sequencing.
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Abstract: Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer which
presents a high rate of relapse, metastasis, and mortality. Nowadays, the absence of approved
specific targeted therapies to eradicate TNBC remains one of the main challenges in clinical practice.
Drug discovery is a long and costly process that can be dramatically improved by drug repurposing,
which identifies new uses for existing drugs, both approved and investigational. Drug repositioning
benefits from improvements in computational methods related to chemoinformatics, genomics,
and systems biology. To the best of our knowledge, we propose a novel and inclusive classification of
those approaches whereby drug repurposing can be achieved in silico: structure-based, transcriptional
signatures-based, biological networks-based, and data-mining-based drug repositioning. This review
specially emphasizes the most relevant research, both at preclinical and clinical settings, aimed at
repurposing pre-existing drugs to treat TNBC on the basis of molecular mechanisms and signaling
pathways such as androgen receptor, adrenergic receptor, STAT3, nitric oxide synthase, or AXL.
Finally, because of the ability and relevance of cancer stem cells (CSCs) to drive tumor aggressiveness
and poor clinical outcome, we also focus on those molecules repurposed to specifically target this cell
population to tackle recurrence and metastases associated with the progression of TNBC.

Keywords: triple-negative breast cancer; personalized medicine; computational methods; drug
repurposing; clinical trials; cancer stem cells

1. Introduction

Breast cancer is the second most common cancer and the second cause of cancer death among
US women, after lung cancer [1]. In 2020, it is estimated that 279,100 new cases will be diagnosed in
the United States and more than 42,000 deaths will be a consequence of this type of cancer [2]. It is
a heterogeneous disease that has been classified using immunohistochemical techniques to measure
the presence of three receptors: estrogen receptor (ER), progesterone receptor (PR), and overexpression
of human epidermal growth factor receptor 2 (HER2). Triple-negative breast cancer (TNBC) is
characterized by the lack of expression of these receptors and, consequently, there are no approved
targeted therapies [3]. Approximately 10% to 20% of new cases of breast cancer would be included in
this subtype, which presents poor prognosis with high risk of relapse compared to other breast cancer
subtypes [4]. TNBC is the breast cancer subtype with the poorest overall survival (OS) and the highest
rates of metastases [5], most commonly in lungs and brain [6]. Furthermore, it is more frequent in
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women in younger ages and black race, presenting an incidence rate about twice as high compared
with white race [1].

Histopathologically, TNBC is a heterogeneous group that mostly presents features of ductal
invasive carcinomas, but also metaplastic, medullary, or apocrine characteristics. Based on the
gene expression profile, TNBC is divided into four subtypes: basal-like 1 (BL1), basal-like 2 (BL2),
luminal androgen receptor (LAR), and mesenchymal (M) [6]. As a result of the variety and the
lack of receptors of TNBC, there are not targeted therapies, making it necessary the application of
personalized medicine. Whereas TNBC has a higher sensitivity to chemotherapeutics in comparison to
other breast cancers, this subtype presents a higher risk of recurrence, which makes the unraveling of
new treatments important [5]. Nevertheless, the process of creating and testing a new drug for TNBC
is a cost- and time-consuming challenge that requires a huge investment and comprises high failure
rates. For this reason, drug repurposing has been considered an increasingly successful approach for
developing new therapies [7].

2. Current Treatments for TNBC

Besides surgery, nowadays, chemotherapy is the only treatment approved by the Food and
Drug Administration (FDA) for non-metastatic TNBC [8], which includes microtubule inhibitors,
anthracyclines, alkylating agents, antimetabolites, and platinum (Table 1) [7,9]. The current standard
of treatment is based on a combination of anthracyclines and taxane agents [10]. In spite of initial
chemosensitivity of tumors and the use of different drug combinations to potentiate treatments,
later chemoresistance is frequently developed and it is related to the high presence of cancer stem cells
(CSC) [9]. All of these compounds are repurposed drugs as they have been previously approved for
diseases other than TNBC [7,11,12].

Table 1. Summarized approved agents for non-metastatic triple-negative breast cancer (TNBC).

Class Agent Mechanism Original Indication

Microtubule
inhibitors

Paclitaxel
Docetaxel

Disruption of microtubule dynamics
leading to the end of cell division.

Ovarian cancer,
atrial restenosis

hormone-refractory
prostate cancer

Anthracyclines
Doxorubicin,

Epirubicin

Inhibition of DNA, RNA
synthesis forming

an anthracycline-DNA-topoisomerase II
ternary complex.

Harm of mitochondrial function.
Generation of oxygen-free radicals.
Activation of apoptosis and matrix

metalloproteinase.
Immune reactions.

Antibiotics from
Streptomyces peucetius

bacterium

Alkylating agents Cyclophosphamide Inhibition of DNA replication.
Immuno-modulator in
autoimmune diseases.
Immunosuppressant

Antimetabolites

Methotrexate
Antagonist of dihydrofolate reductase.

Decrease the synthesis of purines
and pyrimidines.

Leukemia

Capecitabine
5-fluorouracil pro-drug. Inhibition of

thymidylate synthetase.
Colon cancer

Gemcitabine
Analogue of cytidine. Irreparable errors

that inhibit DNA replication.
Anti-viral drug

Platinum
Carboplatin,

Cisplatin
Damage of genetic material.

Testicular, ovarian,
and bladder cancers

Additional therapeutic options have been recently approved by the FDA for metastatic TNBC,
when patients do not respond to traditional treatments (Table 2) [13]. For instance, olaparib and
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talazoparib, two PARP (poly[adenosine diphosphate-ribose] polymerase) inhibitors of enzymes were
approved for patients harboring germline mutations in BRCA1/2 [8,13–15].

Table 2. Novel approved agents for metastatic TNBC.

Class Agent Mechanism Original Indication

PARP inhibitors
Olaparib

Talazoparib

Inhibition of PARP.
Cell death due to accumulation of

irreparable DNA damage.

Ovarian cancer with
BRCA mutation

PD-L1 inhibitor Atezolizumab
Block interaction with receptors

PD-1 and reverse T-cell suppression.

Non-small cell
lung cancer

Bladder cancer

ADC Sacituzumab govitecan
Targeted to Trop-2 and conjugated

with SN-38, a DNA damaging agent.
-

Furthermore, the use of patient’s immune system as an approach for cancer treatment,
or immunotherapy, has strongly emerged as the fifth pillar of cancer therapy [16]. Immune escape
is hallmark of tumor cells that promotes their development and progression, by decreasing immune
recognition, for example, through the expression of immune suppressive molecules, or immune
checkpoints, like cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) or programmed cell death-1
and their ligands (PD-1, PD-L1/2)(19–21). Ligand-receptor binding inhibits T-lymphocytes activity
through their exhaustion. Physiologically, these molecules are checkpoint regulators of strength and last
of LT-mediated immune response [16]. Interaction of PD-1/PD-L1 represents a mechanism of resistance
to adaptative immune system by tumor cells in response to the endogenous antitumor response [16].
Nowadays, several checkpoint inhibitors (CPIs) (antibodies anti-CTLA-4, anti-PD-1, and anti-PD-L1)
are under clinical use in cancer. In TNBC, combination of CPIs with targeted therapies and/or
chemotherapy have been shown to be more effective than monotherapy, which showed a modest
effectivity and durability [17]. Recently, atezolizumab, an inhibitor that targets PD-L1, has been
approved in combination with paclitaxel for the treatment of patients with previously untreated
metastatic TNBC (IMpassion130 study, NCT02425891) [18,19]. Despite of the great expectative on this
new and expensive therapy, a small percentage of patients respond to it [16] because of several reasons
such as the low tumor infiltration of lymphocytes (TILs, tumor infiltrating lymphocytes), presence
of which is associated with a higher survival and good prognosis in early stage TNBC patients [17],
low expression of PD-L1 on tumor cells, or the expression of other inhibitor molecules of immune
system (IDO, CD73, TIGIT, or VISTA) [20].

Lastly, antibody-drug conjugates (ADC) represent a big potential to improve cancer treatment
as they allow to target toxic drugs directly into cancer cells by using specific receptors. Sacituzumab
govitecan is the newest therapeutic option available only after the failure of at least two other
treatments [13]. This FDA-approved drug is an anti-trophoblast cell-surface antigen 2 (Trop-2) antibody
conjugated with SN-38, a DNA damaging agent [21].

3. Drug Repurposing

The discovery and development of a new drug is a time-consuming process which requires great
investments, being estimated to take between 10 and 17 years and a cost of US$2–3 billion [22,23].
Moreover, it comprises high failure rates in clinical trials, where almost 90% of the drugs are rejected
because of unexpected properties [7]. Drug repurposing (also known as drug repositioning or drug
reprofiling) is a strategy for identifying new uses for existing drugs, both approved and under
investigation (Figure 1). This relatively new strategy allows to significantly shorten the time and reduce
the costs of drug development, especially in the case of FDA-approved repurposed drugs, which would
likely go through accelerated clinical trials owing to their previous safety and toxicological clinical
studies [24]. It has been estimated that repurposing a drug would cost, on average, US$300 million [23].
Several methodologies can be considered for drug repurposing, from non-computational approaches
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including high-throughput screening [25] and methods based on experimental findings and previous
literature, e.g., target-based, to computational strategies. Indeed, drug repurposing process can be
highly improved via computational methods related to chemoinformatics, genomics, and systems
biology. These methods allow to select, prior to in vitro experiments, drug candidates for repositioning
in a rational manner [24,26,27].

 

–

Figure 1. Comparison between de novo drug development and drug repurposing. Adapted from
Ashburn and Thor [22].

3.1. Common Computational Approaches for Drug Repurposing

There are many different computational approaches for drug repurposing based on different
types of data, including drug and target structures, drug–target interactions, or transcriptomes.
Accordingly, several classifications have been suggested [24,28,29]. To date, it has not been determined
which approach would be the best option for in silico drug repositioning, and no standardized
method has been adopted. Hence, analyzing the retrieved literature, it was considered of interest
reviewing and summarizing the most accessible, commonly used approaches (Figure 2), so as to
provide a fuller view of the current strategies and the possibilities that in silico analysis has to
offer. Thus, these various computational approaches have been categorized in: (1) structure-based,
(2) transcriptional signatures-based, (3) biological networks-based, and (4) data-mining-based
drug repurposing.

3.1.1. Structure-Based Drug Repurposing

Structure-based methods, which rely on both drug and receptor structure, are mainly
based on virtual high-throughput screening (VHTS) of small chemical compounds from different
databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/), DrugBank (www.drugbank.ca/),
ChemSpider (www.chemspider.com/) or CheEMBL (www.ebi.ac.uk/chembl/). It allows the user to
find, in silico, multiple drugs that will potentially interact with the target’s binding site [24]. The 3D
structure of the target, which is usually a protein, can be found in the Protein Data Bank (PDB,
www.rcsb.org/). VHTS comprises a computational modelling technique known as molecular docking,
which enables to predict ligand-receptor biding affinity via different scoring functions. There are
several molecular docking programs, such as Glide (www.schrodinger.com/glide), GOLD (www.ccdc.
cam.ac.uk/solutions/csd-discovery/components/gold/), UCSF DOCK (http://dock.compbio.ucsf.edu/),
AutoDock Vina (http://vina.scripps.edu/), or Ledock software [30]. VHTS can also be inversely
approached by finding a variety of biological targets that may have affinity for a particular ligand.
Apart from molecular docking, the user can also perform pharmacophore mapping, which consists
of searching of ligands that can be matched to a pharmacophore, i.e., a set of molecular features
such as hydrogen bonds, hydrophobic groups, or chemical substructures, that enable the recognition
of a ligand by a receptor and their biological activity. Pharmacophore features can be derived
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from protein-binding site or protein–ligand complexes structures, and software packages such as
Catalyst (www.3dsbiovia.com/), Unity (Tripos, www.tripos.com), or PharmMapper can be used for
pharmacophore searching [24,26]. Structure-based methods also encompass ligand/receptor profiling,
based on a guilt-by-association principle. Ligand profiling consists of finding compounds that are
chemically similar to a given drug, and consequently may have similar functional and biological
properties. Likewise, receptor profiling consists of finding proteins that have similar binding sites to
a particular receptor, therefore being likely to bind with the same ligands [24,26].

multiple drugs that will potentially interact with the target’s binding site 

–

Figure 2. Diagram of the main computational approaches and software for drug repurposing.

3.1.2. Transcriptional Signature-Based Drug Repurposing

Transcriptional signatures related to a disease or transcriptional responses associated to a specific
treatment can be used for drug repurposing. Potential drug candidates can be identified via negative
correlation between the gene expression profile from a disease and the transcriptional signature
induced by a small compound, with the aim of finding a drug that would reverse the disease state
toward the normal one. Similarly, positive correlation can be used to identify small compounds
that have similar transcriptional signatures to a genetically or chemically induced perturbation,
so as to induce a similar gene expression [31]. Signature-based drug repurposing is also known
as connectivity mapping, a concept first introduced with the creation of the Connectivity Map
(CMap) database [32,33], which comprises a genome-wide dataset of transcriptional expression
responses of human cell lines to perturbagens, e.g., chemical treatments or genetic perturbations [34].
Transcriptional data can be found in different public databases such as Gene Expression Omnibus (GEO;
www.ncbi.nlm.nih.gov/geo/), Ensembl (www.ensembl.org/), or The Cancer Genome Atlas (TCGA;
https://portal.gdc.cancer.gov/), and several tools are available for analyzing and comparing drug

183



J. Pers. Med. 2020, 10, 0200

and disease transcriptional profiles. Examples of tools for signature-based repurposing are CMap
(https://clue.io/), L1000CDS2 (http://amp.pharm.mssm.edu/L1000CDS2/), and ksRepo free source [24].

3.1.3. Network-Based Drug Repurposing

Biological networks are data representations used to model biological interactions of any kind,
where nodes represent various biological components, such as genes or proteins, and whereas
edges represent the associations between them [28]. Network-based drug repositioning methods
help inferring unknown disease-associated signaling pathways and therefore new therapeutic
targets. There are different biological networks depending on the main source of biological data.
Some interesting examples are protein–protein interaction (PPI) networks and drug–target interaction
(DTI) networks. In PPI networks, nodes represent proteins. Most proteins are associated with other
proteins, but only a limited number of them interact with multiple others. PPI networks allow to
identify the most highly connected central proteins, generally known as hubs or hub proteins [35].
Alterations of hubs may affect the structure of the biological network, leading to dysfunction and
disease [36]. Accordingly, PPI networking methods help predicting new disease-related targets for
drug repurposing. PPI analysis can be performed with PRISM (Protein Interactions by Structural
Matching; http://gordion.hpc.eng.ku.edu.tr/prism) server [36], or OmicsNet (https://omicsnet.ca/).
Regarding DTIs, they are considered bipartite networks, where nodes represent both drugs and targets.
There are several tools for predicting potential DTIs, such as DT-web (https://alpha.dmi.unict.it/dtweb/)
or STITCH (http://stitch.embl.de/). Moreover, systems biology combines different network models with
quantitative mathematical network models to infer the dynamics of biological systems, providing a more
complete perspective for drug repurposing [24]. Complex biological networks can be found in the
Causal Biological Networks (CBN, http://causalbionet.com/) database, and complex biological pathways
can be found in KEGG database (www.kegg.jp/).

3.1.4. Data-Mining-Based Drug Repurposing

All the previously described methods are based on drug–target interactions. However,
meta-analysis of data from clinical trials is another interesting approach for drug repurposing.
Su et al. [37] described a novel method for drug repositioning using ClinicalTrials.gov (https:
//clinicaltrials.gov/) public database and two text mining tools, I2E (Linguamatics) and PolyAnalyst
(Megaputer). It consists of, first, the extraction of Serious Adverse Event (SAE) data to identify drugs
with fewer SAEs on the test arm than on the control arm and, second, the ranking of said drugs.
Therefore, it allows to discover potential drug candidates for diseases different from those in the
testing conditions.

4. Drug Repurposing for TNBC

The urgent necessity to find effective molecularly targeted treatments for TNBC has been translated
into efforts by the research community to characterize and divide it into different subtypes with a more
approachable profile. One of the first transcriptomic-based breast cancer classifications was performed
by Perou et al., using cDNA microarrays and hierarchical clustering analysis to distinguish variations
in gene expression patterns [38]. It gave a different approach to the commonly immunohistochemical
characterization of breast cancers. Afterwards, several studies conducted similar genome-wide
analyses [39–41], up until 2009 when Bernard et al. developed a qRT-PCR-based assay using only fifty
genes (PAM50) to classify tumors into four intrinsic subtypes of breast cancer: luminal A, luminal B,
HER2-enriched, and basal-like [42]. In 2007, Kreike et al. performed the first gene-expression-based
classification of TNBC. After gene profiling, they identified all triple-negative breast tumors as
basal-like, and classified them in five different subgroups [43]. In opposition, Prat et al. proved that
basal-like cancers were not interchangeable with TNBCs [44], similarly to the findings of the study
conducted by Lehman et al. in 2014 [45]. While the majority of TNBCs are basal-like, and vice versa,
they should not be considered synonymous. These studies highlighted the necessity to further classify
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TNBC in well-defined subtypes in order to successfully develop personalized therapies. The first
transcriptomic-based TNBC classification which differentiated between basal-like and non-basal like
TNBC subtypes was performed by Lehman et al. in 2011. They identified six TNBC subtypes with
representative gene expression signatures and signaling pathways, including two basal-like (BL1, BL2),
an immunomodulatory (IM), a mesenchymal (M), a mesenchymal stem-like (MSL), and a luminal
androgen receptor (LAR) subtype [46]. A web-based tool (TNBCtype) was also developed for the
classification of TNBC samples into the six mentioned subtypes [47]. Later in 2016, Lehman et al.
refined their own classification algorithm and developed a new one (TNBCtype-4), which scaled
down the number of subtypes to four: BL1, BL2, M, and LAR [48]. While several other TNBC
classifications followed different approaches and described varying number of subtypes, they all
broadly concurred in those four main subgroups [49–51]. Recently, based on both Lehman et al. and
Ring et al. algorithms [48,52], Espinosa et al. identified various TNBC cell lines whose signatures
remained stable between cell lines and xenografts for each of the four subtypes: HCC2157 for BL1
subtype; HCC70, SUM149PT and HCC1806 for BL2 subtype; BT-549 for M subtype; and MDA-MB-453
for LAR subtype [53]. Thus, those cell lines, representative of each subtype, should be considered
for in vitro studies on the effectiveness of targeted therapies in all different subtypes. Among the
previously mentioned TNBC subtypes, the dependency on androgen receptor (AR) signaling of the
LAR subtype provides a feasible target for directed therapies, which makes it an excellent candidate for
drug repurposing. Whereas patients with AR-dependent TNBCs, which have a better prognosis than
those with other TNBC subtypes [54], would benefit from AR inhibition therapy, it has been suggested
that this may also be beneficial for non-LAR patients with relatively lower AR expression [50,55,56].
However, not all TNBCs express AR, so a quadruple negative breast cancer subtype has also been
addressed [57,58]. This subtype would not benefit from AR antagonist repurposing treatments, and so
forth different molecular pathways would need to be targeted. Accordingly, we offer an insight on the
main repurposed therapies which are currently being investigated for the treatment of TNBC based
on their molecular targets, including both AR-directed and non-AR-directed therapies, as shown in
Figure 3. We have also summarized drugs in preclinical phase for TNBC in Table 3 and those under
clinical trials in Table 4.

 

Figure 3. Overview of the different pathways investigated by drug repurposing. Repurposed inhibitors
under investigation are shown in red. Created with BioRender.com.
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Table 3. Summarized repurposed drugs to treat TNBC that are under investigation in the preclinical phase.

Mechanism Compound Pre-Clinical Effects Original Indication Repurposing Method References

α-ADR antagonist α -yohimbine

Reduction of tumor growth in vitro.
Development of resistance to paclitaxel when treated in

combination with catecholamines and/or cortisol in vitro.
Reversion of tumor growth after stimulation with clonidine

in vivo.

Impotence
Non computational:

target-based
[59–61]

Non-selective
β1/β2-blocker

Propranolol

Inhibition of cell proliferation, arrest of the cell cycle at
G0/G1 and S, and induction of cell apoptosis in vitro.

Inhibition of tumor growth in vivo.
Combination of propranolol with paclitaxel increased the

anti-tumor efficacy of paclitaxel in vivo.
Associated with less advanced disease at diagnosis and

decreased risk of metastasis and mortality.
Reverted isoproterenol-induced cell inhibition.

Hypertension
Non computational:

target-based
[61–65]

Selective β1-blocker Atenolol

Reduction of norepinephrine-induced cell migration
in vitro.

Inhibition of cell proliferation in vitro.
Combination with metformin enhanced reduction of

angiogenesis and metastasis in vivo.
Not associated with differences tumor incidence, risk of

metastasis and mortality rates.
Associated with significantly lower recurrence but no

significant OS.

Hypertension
Non computational:

target-based
[63,66–70]

Metoprolol
Associated with significantly lower recurrence but no

significant OS.
Hypertension

Non computational:
target-based

[68]

STAT3 inhibitor Bazedoxifene
Decrease of cell viability, migration, colony formation.

Increase cell apoptosis.
Improvement of sensitivity to paclitaxel if combination.

Osteoporosis
Computational:
structure-based

[71,72]

Flubendazole

Inhibition of cell proliferation in vitro and tumor growth
in vivo.

Reduction of CD44high/CD24low CSC population,
mammosphere-forming ability and expression of

stemness genes.
Improvement of sensitivity to fluorouracil and doxorubicin

if combination.

Anthelmintic
Non computational:

target-based
[73]
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Table 3. Cont.

Mechanism Compound Pre-Clinical Effects Original Indication Repurposing Method References

Niclosamide

Inhibition of cell proliferation in vitro and tumor growth
in vivo.

Reversion of EMT and inhibition of stem-like phenotype in
cancer cells.

Radiosensitizer in vitro and in vivo.

Anthelmintic
Non computational:

screening
[74–76]

Osthole
Induction of apoptosis in vitro.

Reduction of tumor growth in vivo.
Osteoporosis

Non computational:
literature-based

[77,78]

Risedronate Sodium Toxicity in TNBC cells in vitro. Osteoporosis
Computational:
structure-based

[79]

AXL pathway
modulator

Thioridazine
Fluphenazine

Trifluoperazine

Decrease of cell invasion, proliferation, and viability and
increase of apoptosis in vitro.

Reduction of tumor growth and metastasis in vivo.
Anti-psychotics

Computational:
transcriptional

signature-based
[80]

Table 4. Summarized repurposed drugs for TNBC under current investigation in clinical trials.

Mechanism Compound Preclinical and Clinical Effects Clinical Trials 1 Original Indication Repurposing Method References

AR antagonist Bicalutamide

Reduction of cellular proliferation and colony
formation, and induction cell apoptosis in vitro.

Decreased cellular viability and induced apoptosis
in vivo.

CBR at 6 months of 19% and median PFS of 12 weeks
(n = 26; AR expression higher than 10% by IHC).

Grade 1–3 AEs included fatigue, limb edema,
or hot flashes.

Phase II—completed
(NCT00468715)

Phase II—recruiting
(NCT02605486)

Phase III—recruiting
(NCT03055312)

Prostate cancer
Non computational:

target-based
[81,82]

Enzalutamide

Reduction of cell proliferation, migration and
invasion and increased apoptosis in vitro.

Inhibition of tumor viability by inducing cell
apoptosis in vivo.

CBR at 16 weeks of 25%, median PFS of 2.9 months
and median OS of 12.7 months (n = 118;
AR expression higher than 0% by IHC).

CBR at 16 weeks of 33%, median PFS of 3.3 months
and median OS of 17.6 months (n = 78; AR expression

higher than 10% by IHC).
Grade 3 AEs included fatigue.

Phase II—completed
(NCT01889238)

Phase II—recruiting
(NCT02689427)

Phase Ib/II—active
(NCT02457910)

Prostate cancer
Non computational:

target-based
[55,56,83,84]
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Table 4. Cont.

Mechanism Compound Preclinical and Clinical Effects Clinical Trials 1 Original Indication Repurposing Method References

Abiraterone
acetate

Combination treatment with Chk1 inhibitors had
an additive effect inhibiting cell apoptosis in vitro.

Reduction of tumor growth, which was significantly
higher with the combination treatment.

CBR at 6 months of 20% and median PFS of
2.8 months (n = 30; AR expression higher than 10%

by IHC).
Grade 1/2 AEs included hypertension, fatigue,

nausea, and hypokalemia.

Phase II—completed
(NCT01842321)

Prostate cancer
Non computational:

target-based
[85,86]

Orteronel Currently being investigated.
Phase II—active
(NCT01990209)

Prostate cancer
Non computational:

target-based
NCT01990209

Seviteronel

Inhibition of cellular growth in vitro.
Inhibition of tumor volume in vivo. Induction of

radiosensitization, both in vitro and in vivo.
Early results:

CBR at 16 weeks of 33% (n = 6).
Grade 1/2 AEs included fatigue, nausea and

decreased appetite.

Phase I/II—completed
(NCT02580448)

Phase II—completed
(NCT02130700)

Prostate cancer
Non computational:

target-based
[87–89]

Enobosarm Currently being investigated.
Phase II—terminated

(NCT02368691)
Prostate cancer

Non computational:
target-based

NCT02368691

STAT3 inhibitor Zoledronic acid

Induction of cell cycle arrest, decrease of cell viability,
cell proliferation, self-renewal and expression of EMT

markers in vitro.
Antitumor potential with doxorubicin in vivo.

Improvement of pCR and DFS in combination with
chemotherapy versus only chemotherapy.

Phase II—completed
(UMIN000003261)

Phase II—terminated (low
accrual rate) (NCT02347163)

Phase II—recruiting
(NCT03358017)

Phase III—active
(NCT02595138)

Phase unknown—recruiting
(NCT04045522)

Osteoporosis

Computational:
structure-based,

Non computational:
literature-based

[79,90–92]

NOS inhibitor L-NMMA

Decrease of cell proliferation, migration, and CSC
self-renewal in vitro.

Decrease of growth, CSC self-renewal and tumor
initiation in xenograft models of TNBC.

Improvement of chemotherapy response in
combination with docetaxel in PDX models of TNBC.

Phase Ib/II—recruiting
(NCT02834403)

Septic shock
Non computational:

target-based
[93,94]

1 Last access to ClinicalTrials.gov on October 16th, 2020.
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4.1. Androgen Receptor

LAR subtype is highly enriched in hormonally regulated pathways, despite being negative for
both ER and PR. All ER, PR, and AR belong to the nuclear steroid hormone receptor family, and it has
been proposed that AR overexpression may replace ER signaling, resulting in similar functional effects.
In fact, both epidemiological and preclinical studies suggest that the androgenic signaling pathways
may be linked to the development of breast cancer [50,51,54]. AR plays a central role in regulating
gene expression, is mainly located in the cytoplasm, and it can be found complexed with heat shock
proteins, HSP70 and HSP90, in order to maintain its inactive conformation. Upon binding of androgens,
the receptor dissociates from HSPs and homodimerizes, enabling nuclear translocation. Once in the
nucleus, AR binds to the promoter of target genes and induces the recruitment of coactivators
and other transcription factors, therefore inducing transcriptional activation [54,95]. In TNBC,
it has been suggested that AR activation alters the tumor microenvironment, hence suppressing
the antitumor response and upregulating the secretion of the epidermal growth factor receptor
(EGFR) ligand amphiregulin (AREG), both stimulating tumor growth and progression. AR activation
has also been linked to metastasis via promotion of epithelial-to-mesenchymal transition (EMT),
survival of anchorage-independent cell population, and maintenance of a CSC-like population [56,58].
However, the mechanisms by which AR-associated pathways may influence TNBC development and
progression still remain unclear and are currently under research. Considering the crucial role that
AR may play in AR-positive TNBC, different AR-targeted agents first intended for the treatment of
metastatic castration-resistant prostate cancer (mCRPC) are being repurposed and tested in clinical
trials on TNBC patients. It includes several FDA-approved drugs, such as bicalutamide, enzalutamide,
or abiraterone acetate, as well as experimental drugs such as orteronel or seviteronel [88,96,97]. In fact,
enzalutamide has proved to prolong survival in men with mCRPC after developing drug resistance
to chemotherapy [98]. Therefore, they might represent an alternative treatment to avoid resistance
in TNBC. Additionally, selective AR modulators or SARMs (e.g., enobosarm), investigational drugs
first intended to be used as an alternative to testosterone therapies for male hypogonadism as well
as related conditions such as muscle dystrophy, sarcopenia, or osteoporosis, are also currently being
tested in clinical trials for both prostate cancer and TNBC [95,99,100].

Bicalutamide. It was the first drug to be repurposed in clinical trials as a potential treatment
for AR-positive TNBC. Bicalutamide is a first-generation, non-steroidal antiandrogen developed for
prostate cancer. It acts as a competitive inhibitor that directly binds to AR, stabilizing its association with
HSPs. Whereas it maintains the receptor in an inactivated conformation, it does not prevent nuclear
translocation and binding to DNA, which entails possible partial agonistic activity [58,101]. In vitro
studies showed that bicalutamide significantly reduced cellular proliferation and colony formation,
and induced cell apoptosis in MDA-MB-453 and MDA-MB-231 breast cancer cells. Reduction of
tumorigenicity was associated with the inhibition of Wnt/β-catenin signaling pathway through
downregulation of c-Myc transcripts. Moreover, assays with xenografts tumors of MDA-MB-453 and
MDA-MB-231 cells further demonstrated that bicalutamide decreased cellular viability and induced
apoptosis in vivo [82]. A single-arm, nonrandomized, phase II clinical trial with bicalutamide was
performed in AR-positive TNBC (NCT00468715). The criteria to define AR positivity was an AR
expression higher than 10% by immunohistochemistry (IHC). Among all AR-positive patients (n = 51),
26 were treated with bicalutamide. The clinical benefit rate (CBR), defined as the total number of
patients who showed a complete response, partial response, or stable disease at 6 months, was 19%,
and the median progression-free survival (PFS) was 12 weeks. The drug had grade 1–3 adverse events
(AEs), such as fatigue, limb edema, or hot flashes, indicating a moderate toxicity. This study suggested
the potential of AR blockade in AR-positive metastatic TNBC [81]. Other clinical trials are currently
under development, including a phase II (NCT02605486) and a phase III (NCT03055312) trial.

Enzalutamide. It is a second-generation, non-steroidal antiandrogen developed for prostate
cancer, with higher binding affinity than bicalutamide. Upon binding to AR, enzalutamide blocks
nuclear translocation, recruitment of AR cofactors, and transcriptional activation which, oppositely to
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bicalutamide, results in a lack of agonistic activity [54,55,58]. Different in vitro studies demonstrated
that enzalutamide reduced cell proliferation, migration, and invasion and increased apoptosis [55,56,84],
and it was correlated with decreased AREG mRNA expression in SUM159 cells after treatment with
enzalutamide [56]. In vivo studies showed that enzalutamide inhibited tumor viability in TNBC
xenografts by inducing cell apoptosis [56,84]. A single-arm, non-randomized phase II clinical trial
evaluated the efficacy of enzalutamide in advanced AR-positive TNBC (NCT01889238). In this study,
AR positivity was defined as AR expression higher than 0% by IHC (intent-to-treat population,
ITT) or higher than 10% by IHC (evaluable subgroup). The ITT population (n = 118) and the
evaluable subgroup (n = 78) showed a CBR at 16 weeks of 25 and 33%, respectively. Median PFS was
2.9 months in the ITT group and 3.3 in the evaluable group. Median OS was 12.7 and 17.6 in ITT and
evaluable subgroup, respectively. The only treatment-related AE with grade 3 or higher was fatigue,
meaning enzalutamide was well tolerated by AR-positive TNBC patients. This study supported further
study of enzalutamide [83]. Moreover, other clinical studies are currently investigating the use of
enzalutamide as an adjuvant in treating patients with AR-positive TNBC, including a phase II trial
(NCT02689427) for enzalutamide in combination with paclitaxel and a phase Ib/II trial for enzalutamide
in combination with taselisib (NCT02457910).

Abiraterone acetate. It was the first androgen-production inhibitor developed for the treatment of
prostate cancer. It is a steroidal, non-selective inhibitor of 17α-hydroxylase/17,20-lyase (CYP17), a central,
rate-limiting enzyme which plays a critical role in the androgen biosynthesis pathway [54,58,102].
The efficacy of abiraterone acetate was investigated in a phase II clinical trial in combination with
prednisone in metastatic or locally advanced AR-positive TNBC patients (NCT01842321). AR positivity
was defined as AR expression greater than 10% by IHC. Evaluable patients (n = 30) showed a CBR at
6 months of 20%, and the median PFS was 2.8 months. The most common treatment-related AEs were
hypertension, fatigue, nausea, and hypokalemia, all grade 1–2 [85]. After this clinical trial, both in vitro
and in vivo studies were performed to assess whether combining abiraterone acetate with a Chk1
inhibitor would enhance its efficacy. They showed that combination treatment with the inhibitor
GDC-0575 had an additive effect on both MDA-MB-453 and SUM185PE cell lines in reducing cell
proliferation. Whereas abiraterone acetate alone had a weak effect inducing apoptosis, Chk1 inhibitors
doubled the effect, achieving statistical significance in MDA-MB-453 cells. Interestingly, a xenograft
model with MDA-MB-453 cells injected orthotopically in the mammary gland ducts of NSG mice
showed that abiraterone alone reduced tumor growth, and combination with GDC-0575 enhanced this
effect [86].

Orteronel (TAK-700). It is a non-steroidal, selective, second-generation CYP17 inhibitor.
Whereas clinical trials for the treatment of prostate cancer with orteronel were terminated in phase III
because of a lack of significant effect on OS [54,58,103], it is currently being investigated in a phase II
clinical study of women with AR-positive metastatic TNBC (NCT01990209).

Seviteronel (VT-464). It is another non-steroidal, selective, second-generation CYP17 inhibitor
which, in contrast to orteronel, also inhibits AR activation [54,58]. It was demonstrated that seviteronel
inhibited cellular growth and tumor volume in MDA-MB-453 cells and patient-derived xenografts
(PDX), respectively [88,89]. Moreover, Michmerhuizen et al. proved that the AR inhibition with
seviteronel induced radiosensitization, both in vitro and in vivo, whereas enzalutamide did not [104].
A phase I/II clinical study is investigating the activity of seviteronel in women with AR-positive TNBC
(NCT02580448). Out of 16 patients with AR-positive TNBC, 6 were evaluable. Two patients (33%) had
a 16-week CBR. The most common AEs were fatigue, nausea, and decreased appetite, all grade 1–2 [87].
A second phase II clinical trial is also currently investigating the effects of seviteronel in AR-positive
TNBC patients (NCT02130700).

Enobosarm (MK-2866, ostarine, GTx-024). It is a non-steroidal SARM that achieves a tissue-selective
modulation of AR action, hence minimizing the undesirable side-effects caused by antiandrogens [105].
In vitro studies showed that enobosarm inhibited cellular proliferation of MDA-MB-231 cells transiently
expressing AR. Moreover, tumor growth was completely inhibited by enobosarm in a nude mice
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xenograft model with MDA-MB-231-AR cells [106]. There was a phase II clinical trial for enobosarm in
AR-positive TNBC (NCT02368691), but it was terminated because of lack of efficacy.

4.2. Adrenergic Receptor

Adrenergic receptors (ADR), which can be classified as α or β receptors, belong to the G
protein-coupled receptor (GPCR) superfamily. The activation of ADR, stimulated through the
catecholamines, epinephrine and norepinephrine, derives in several stress response signaling pathways
key in maintaining physiological homeostasis [107]. However, there is an increasing evidence that
altered ADR stimulation may play a significant role in breast cancer progression, promoting cell
proliferation, metastasis, tumor invasion, and angiogenesis [68,108,109]. Accordingly, it has been
addressed that ADR-directed therapies, widely used for the treatment of hypertension and other
pathologies, could be repurposed for TNBC. Several preclinical studies have investigated the effects
of both α- and β-ADR antagonists in TNBC [61,64,66,67,110,111], and retrospective epidemiological
studies have explored whether TNBC cancer patients under treatment with beta-blockers for
hypertension had a significant better outcome that non-treated patients [63,68,108,112].

4.2.1. α-Adrenergic Receptor

α-adrenergic receptors can be subclassified as α1 (α1a, α1b, α1c) and α2 (α2a, α2b, α2c).
Their ligands activate GPCRs and initiate a signaling cascade that, in the case of α1 receptors,
increases intracellular calcium levels and is involved in blood pressure regulation, whereas α2 receptors
signaling cascade decreases intracellular cyclic AMP (cAMP) levels and regulates neurotransmitters
release [107]. Interestingly, activation of α-ADR has been associated with both tumor growth and
chemoresistance in TNBC cell lines. Vazquez et al. showed that both epinephrine and norepinephrine,
the natural ADR agonists, as well as clonidine, a synthetic α(2)-ADR agonist used in the treatment of
hypertension [113], promoted cell proliferation in MDA-MB-231 cells [110]. Similarly, Bruzzone et al.
demonstrated that clonidine increased tumor growth, whereas α(2)-ADR antagonist α-yohimbine
reversed clonidine stimulation in breast cancer [114].

α-yohimbine (rauwolscine). It is an alkaloid and α(2)-ADR antagonist used as a mydriatic and
in the treatment of impotence [115]. Piñero et al. found that yohimbine diminished tumor growth
in vitro, and it was associated with inhibition of ERK1/2 phosphorylation in vivo [61]. It was also
proved that α-yohimbine could reverse tumor growth after stimulation with clonidine in vivo [59].
Additionally, Flint et al. demonstrated that MDA-MB-231 cells developed resistance to paclitaxel when
treated in combination with catecholamines and/or cortisol [60]. In the light of these results, we suggest
the investigation of α-ADR antagonists for the treatment of TNBC and prevention of drug resistance.

4.2.2. β-Adrenergic Receptor

β-adrenergic receptors can also be subclassified as β1, β2, and β3. Activation of β1- and
β2-ADR increases intracellular cAMP levels, as opposed to α2-ADR, regulating the sympathetic
nervous system’s stress response in several different tissues [107]. The signaling cascade induced by
higher cAMP levels includes two main pathways. First, cAMP activation of protein kinase A (PKA)
induces phosphorylation of several transcription factors, such as GATA family, and β-ADR kinase
(BARK). The latter inhibits β-ADR signaling and activates Src kinase, leading to the activation of
different transcription factors, including STAT3, and several kinases like focal adhesion kinase (FAK).
Conversely, cAMP also leads to Rap1A activation, which induces B-Raf/mitogen-activated protein
kinase (MAPK) signaling pathway and activation of multiple genes with effects on several cellular
events [116]. It has been addressed that, in breast cancer, β-ADR signaling in β-ADR-expressing tumor
cells activates metastatic-associated genes involved in inflammation, angiogenesis, and EMT processes,
whereas it downregulates the expression of antitumoral response genes. Moreover, activation of
β-ADR pathway in tumor stromal cells and tumor-associated macrophages seem to promote tumor
growth and metastasis [109,116]. Several in vitro studies with different TNBC cell lines showed that
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β-ADR agonists stimulated cell migration, whereas β-ADR antagonists, such as atenolol and ICI118551,
reverted this process [66,67,111]. Moreover, it was also demonstrated that β-blockers propranolol and
ICI118551 decreased cell proliferation in TNBC, arresting the cell cycle and inducing cell apoptosis [62].
Oppositely, Slotkin et al. showed that treatment with β-ADR agonist isoproterenol lowered DNA
synthesis and decreased cell proliferation, and that these effects were reverted by propranolol [64].
Similarly, in an experimental mouse model of breast cancer,β-ADR agonists isoprenaline and salbutamol
inhibited breast cancer cell proliferation and tumor growth [61]. There seems to be conflicting results
in the role of β-ADR signaling in breast cancer, indicating that it might be dependent on the cancer
subtype. Accordingly, different retrospective observational cohort studies have been developed to
further study the effects of different non selective β1/β2-blockers (propranolol, timolol) and selective
β1-blockers (atenolol, bisoprolol, metoprolol) in breast cancer, more precisely in TNBC, so as to
determine their effects in the cancer biology of each subtype [63,68,108,112]. The first observational
study was performed by Powe et al. [108], in which breast cancer patients were divided into three
subgroups: non-hypertensive control group (n = 374), hypertensive patients treated, prior to cancer
diagnosis, either with β-blockers (n = 43) or with other antihypertensives (n = 49). Most β-blocker
users had received selective blockers (25 with atenolol, 7 bisoprolol), but several had received
non-selective ones (7 propranolol, 4 timolol). β-blocker users group suggested a significant lower risk
of metastasis development, tumor recurrence, and breast cancer mortality. However, differences in
β-ADR antagonists used by patients, and the lack of information in their cancer subtype made it
necessary to perform further studies to assess the efficacy of non-selective β1/β2-blockers versus
selective β1-blockers in TNBC.

Non-selective β1/β2-blockers (propranolol). Different studies showed that propranolol inhibited
cell proliferation, arrested the cell cycle at G0/G1 and S, and induced cell apoptosis in vitro, and inhibited
tumor growth in vivo [61,62,65]. Moreover, the anti-tumorigenic effects of thisβ-blocker were associated
with a decrease in phosphorylation levels of ERK1/2 and the expression levels of cyclooxygenase
2 (COX-2) [62]. Interestingly, Pasquier et al. reported that, whereas combination of propranolol
with chemotherapeutic drug paclitaxel seemed to have no additive effects in cellular cytotoxic effects
in vitro, propranolol increased the anti-tumor efficacy of paclitaxel in an orthotopic xenograft model
of TNBC, significantly increasing the median survival [65]. Barron et al. performed a study on
women treated with propranolol for hypertension (n = 70) in the year before breast cancer diagnosis,
in comparison with matching (1:2) non-users (n = 4738), and suggested that the use of propranolol
was significantly associated with less advanced disease at diagnosis and decreased risk of metastasis
and mortality [63]. However, like Ganz et al. pointed out, the limited size of the β-blocker users’
group may be insufficient to prove propranolol benefits in breast cancer [117]. Moreover, the patient
population was not subclassified based on cancer subtype or receptor status, so no conclusions can be
drawn for TNBC subtype.

Selective β1-blockers (atenolol, metoprolol). In vitro studies demonstrated that atenolol inhibited
cell proliferation in MDA-MB-435 cells [69], and enhanced metformin activity in vivo by reducing
angiogenesis and metastasis [70]. In the same study mentioned above, Barron et al. also evaluated breast
cancer patients treated with selective β1-blocker atenolol (n = 525) in the year before cancer diagnosis.
However, they found no significant difference in between atenolol users and matched non-users in tumor
incidence, risk of metastasis and mortality rates. These results indicated that the effects of propranolol in
breast cancer were mediated by β2-ADR [63]. Melhem-Bertrandt et al. performed another retrospective
study comparing breast cancer patients treated with β-blockers (n = 102), who received neoadjuvant
chemotherapy, with non β-blockers users (n = 1311), as well as TNBC patients taking β-blockers
(n = 29) compared to non-users (n = 348) [68]. The most commonly prescribed β-blockers were selective
β1-blockers, first metoprolol (42%) followed by atenolol (37%). Interestingly, after age, race, stage,
and receptor status adjustment, among some other parameters, users of β-blockers proved to have
significantly lower recurrence but no significant OS among both breast cancer and TNBC patients,
which seemed to contradict the findings of Barron et al. However, a subset analysis demonstrated that
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the subgroup of ER-positive breast cancer patients had no significant differences in tumor recurrence.
Consequently, these results suggested that, whereas patients with any breast cancer subtype could
benefit from a treatment with non-selective β-blockers via β2-ADR antagonism, only TNBC patients
could benefit from a treatment with non-selective β-ADR inhibitors. Nevertheless, it has to be noted
that not statistically significant results in the ER-positive subgroup may have been due to the relatively
short follow-up time in the study of Melhem-Bertrandt et al. Additionally, in a retrospective study
on TNBC patients taking β-blockers (n = 74), compared to non-users (n = 726), Botteri et al. also
demonstrated that a treatment with β-blockers was associated with a decreased risk of recurrence,
metastasis, and mortality, supporting previous findings [112]. Nevertheless, new prospective studies
will be required to clarify whether the efficacy of β-blockers depends on breast cancer subtype and/or
receptor status.

4.3. STAT3

Signal transducer and activator of transcription 3 (STAT3) is a tumor marker for early diagnosis
and the activation of its pathway is related to breast cancer aggressiveness, as it plays an important role
in progression, proliferation, apoptosis, metastasis, and chemoresistance [118]. The activation of this
pathway involves several cytokines such as, interleukin 6 (IL-6) and interleukin 10 (IL-10), and growth
factors, including epidermal growth factor (EGF), fibroblast growth factor (FGF), and insulin-like
growth factor (IGF), which bind their receptors and activate Janus kinases (JAKs). JAKs phosphorylate
themselves in a tyrosine domain included in their cytoplasmic fractions and they subsequently activate
STAT3 via tyrosine phosphorylation. Once STAT homodimers are produced, they are translocated to
the nucleus in order to create a complex with coactivators (e.g., p68) and ending up into the activation
of transcription [118]. The upregulation of IL-6/STAT3/ROS can lead to the transcription of genes
involved in breast cancer progression, as well as an augmentation in inflammation and generation
of breast cancer stem cells (BCSCs). Furthermore, the activation of JAK2/STAT3 favors proliferation
and motility of breast cancer cells by different mechanisms, including the suppression of apoptosis by
upregulation of cyclin D-1, c-Myc, and Bcl-2, and promotion of EMT. Finally, resistance to several drugs
like paclitaxel may be a consequence of this pathway. Because of its complexity and wide regulation
of breast cancer cells, STAT3 is an interesting target candidate to treat in TNBC. As a matter of fact,
several compounds that inhibit different mechanisms are being investigated. We will highlight some
of them: bazedoxifene, flubendazole, niclosamide, osthole, and zoledronic acid [118].

Bazedoxifene. It is a selective ER modulator approved in 2013 by the FDA to treat and prevent
osteoporosis in postmenopausal women [71]. Using a structure-based study for repurposing drugs,
bazedoxifene was discovered as a novel inhibitor of IL-6 receptor by blocking signals of glycoprotein
130 [119]. Hence, in TNBC, its mechanism involves the upstreaming disruption of STAT3 pathway as
ER is not expressed. Studies in in vitro and in vivo models of TNBC confirmed the decrease of cell
viability, migration, colony formation, and increase of apoptosis. Furthermore, when this compound
was administered in combination with paclitaxel, a synergistic effect as well as an improvement of
sensitivity to paclitaxel was found, probably because of the inhibition of the resistance effect induced
by IL-6 [71,72]. Those doses were administered in safety ranges that are registered in other indication
trials of bazedoxifene. Subsequently, safe effects can be assured in endometrial, ovarian, and breast
tissues, but it would be necessary to study possible secondary effects in other tissues that express
ER [72]. Considering the association between STAT3 and EMT, their interplay in CSCs, and the in vitro
effects of bazedoxifene, we suggest that this compound could act as an inhibitor of tumor-initiating
cells, although this hypothesis must be further investigated.

Flubendazole. It is an FDA-approved anthelmintic agent to treat intestinal parasites whose
mechanism of action is the disruption of tubulin polymerization. For this reason, it was considered
as a repurposed candidate to treat breast cancer [120]. Even though flubendazole causes cell
cycle arrest at G2/M phase and, consequently, inhibits cell proliferation in vitro and tumor growth
in vivo at clinical doses, it also presents additional properties. As an STAT3 inhibitor, it also causes
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a reduction of CD44high/CD24low CSC population, mammosphere-forming ability, and the expression
of stemness genes [73]. This fact is a positive characteristic as CSCs might have an essential role in
metastasis and aggressiveness of TNBC [120]. Furthermore, in some studies flubendazole is shown
to increase cytotoxicity activity of fluorouracil and doxorubicin, meaning it could reduce tumor
chemoresistance [73].

Niclosamide. It is a FDA-approved anthelmintic agent to treat tapeworms, which is known to
inhibit cell growth in vitro and tumor growth in vivo in TNBC studies [74]. Niclosamide was identified
as an inhibitor of BCSCs owing to a high-throughput drug screening [76]. It reverses EMT and
inhibits the stem-like phenotype in cancer cells suggesting that it may reverse cisplatin resistance [74].
Furthermore, Lu et al. proved that niclosamide is a radiosensitizer both in vitro and in vivo models
of TNBC as it reversed radioresistance generated by activation of STAT and Bcl-2 and reduction of
reactive oxygen species (ROS) [75].

Osthole (7-methoxy-8-isopentenoxycoumarin). It is a coumarin-derivative extract isolated from
C. monnieri that presents interesting properties, such as anti-inflammatory and vasorelaxant [121].
Osthole has successful results in vivo treating osteoporosis as it stimulates osteoblast proliferation and
differentiation and bone formation [77]. It also possesses anti-tumoral characteristics and, hence it
can be a candidate for repositioning in TNBC. Dai et al. elucidated that osthole inhibits STAT3
phosphorylation, induced by IL-6, in a dose-dependent manner by avoiding the translocation of
STAT3 to the nucleus, what causes cell cycle arrest and induction of apoptosis in TNBC cell lines.
Moreover, in vivo assays with osthole confirmed the suppression of STAT3 phosphorylation as well as
reduction of tumor growth in TNBC xenograft mice [78].

Risedronate sodium and zoledronic acid. They are two oral bisphosphonates to treat osteoporosis
that were found to be possible candidates as STAT3 inhibitors by a comparative docking study in silico.
Svranthi et al. also proved their toxicity in TNBC cells in vitro [79]. Furthermore, zoledronic acid has
been largely analyzed for TNBC. Schech et al. proved that it inhibited cell viability, induced cell cycle
arrest, reduced proliferative capacity, inhibited self-renewal capability, and decreased the expression of
EMT markers (N-cadherin, Twist, and Snail). Mechanistically, they discovered that zoledronic acid
inhibited phosphorylation of RelA, an active subunit of nuclear factor κB (NF-κB). Consequently, direct
inactivation of NF-κB induced the loss of EMT transcription factor gene expression [91]. In vivo studies
in mice also support the antitumor potential of zoledronic acid in combination with doxorubicin [92].
In a randomized phase II clinical trial (UMIN000003261), the combination of zoledronic acid and
neoadjuvant chemotherapy was evaluated in TNBC patients. The pathologic complete response rate
(pCR) was ameliorated in the combination group (35.3%) (n = 17) compared to patients treated with
chemotherapy alone (11.8%) (n = 17). Such an improvement of pCR rate was translated into a higher
disease-free survival in the combination group (70.6%) versus the chemotherapy group (94.1%) [90].
In contrast, a phase II clinical trial studying the application of pre-operative zoledronate prematurely
ended because of a low accrual rate (NCT02347163). Further trials to assess the anti-tumor activity of
zoledronic acid are currently ongoing in combination with atorvastatin and neoadjuvant standard
chemotherapy (NCT03358017), as well as to evaluate the potential of zoledronic acid as an adjuvant
therapy (NCT02595138, NCT04045522).

4.4. Nitric Oxide Synthase

Nitric oxide (NO) is a small molecule that is involved in several functions in the organism. It can
be synthesized by three isoforms of nitric oxide synthase (NOS): neuronal (NOS1/nNOS), inducible
(NOS2/iNOS), and endothelial (NOS3/eNOS). NO has a short half-life and interacts with different
targets, which produces nitrites, nitrates, S-nitrosothiols, and nitrosamines, these being compounds
that induce DNA damage and, therefore, gene mutations [122]. Glynn et al. proved that an increased
expression of iNOS in ER– breast cancer is correlated with poor survival of patients [123]. We later
proved that iNOS is a biomarker of poor prognosis and a good therapeutic target in a cohort of
73 TNBC patients [93]. In a previous report, we identified two genes, RPL39 (ribosomal protein
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L39) and MLF2 (myeloid leukemia factor 2), that are commonly mutated in lung metastases from
breast cancer patients, and their inhibition significantly reduced BCSC self-renewal and number,
tumor cell migration, invasion and generation of lung metastases, and tumor growth in in vitro and
patient-derived xenografts (PDX) models of TNBC. Mechanistically, RPL39 and MLF2 expression
was associated with iNOS signaling, and their mutations were associated with shorter median time
to relapse in a cohort of 53 breast cancer patients, which suggests that iNOS inhibition represents
a promising strategy for the treatment of TNBC [124]. In this regard, we reported that iNOS inhibitors
diminish cancer cell proliferation and migration, CSC self-renewal and EMT by a targeting HIF1α
and endoplasmic reticulum stress-transforming growth factor (TGFβ)-ATF4/ATF3 crosstalk [93].
Furthermore, we later confirmed that ATF4 is a transcriptional target of TGFβ-Smad2/3, is a biomarker
of poor prognosis in TNBC patients, and promotes tumor progression by modulating CSCs, metastasis,
relapse, and growth in PDX of TNBC [125]. Among the inhibitors tested, we reported that the pan-NOS
inhibitor L-NMMA (NG-monomethyl-L-arginine) decreased cell proliferation, migration, and CSC
self-renewal in vitro, and tumor growth (associated with less expression of Ki67), CSC self-renewal
and tumor initiation in xenograft models of TNBC. Accordingly, we designed a safe and effective
targeted therapy in TNBC by repurposing L-NMMA, previously studied in septic shock, with a dose
regimen in combination with docetaxel that restrained tumor growth and prolonged mice survival [93].
Moreover, in combination with docetaxel, iNOS inhibition with L-NMMA enhanced the response to
chemotherapy in PDX models of TNBC [94]. The translation of this therapeutic approach into clinic is
under investigation in a phase Ib/II study in refractory locally advanced or metastatic TNBC patients
(NCT02834403) [93,94]. Finally, iNOS has been associated with different signal transduction pathways
such as vascular endothelial growth factor (VEGF). Increased levels of VEGF have been found in TNBC
and it is known that NO can be responsible for it. Both iNOS and eNOS can induce VEGF and promote
angiogenesis, thus L-NMMA (pan-NOS inhibitor) may be a good option to target this pathway [126].

4.5. Anexelekto (AXL)

AXL, named from the Greek word anexelekto which means “uncontrolled,” is one of the TAM (Tyro3,
AXL, and Mer) family of receptors tyrosine kinase (RTK) [127]. Structurally, in the extracellular part,
it is composed of two immunoglobulin-like domains and two fibronectin III domains. The intracellular
part presents an RTK domain that contains a KWIAIES motif of TAM family. Its activation results in
the autophosphorylation at the cytoplasmic domain that unleashes different cascades and downstream
targets that are highly context dependent. Some of these pathways are PI3K/protein kinase B (Akt),
extracellular-signal-regulated kinase (ERK), and STAT, which can stimulate tumorigenic processes
such as cell motility, invasion, or proliferation [128]. In TNBC patients, the high expression of AXL is
a predictor of poor prognosis, produces mesenquimal phenotypes, by promoting EMT through the
expression of Vimentin, Twist, Snail, and Slug, higher chemoresistance, tumorigenesis, metastases,
and CSCs, which make it a potential candidate to treat TNBC [80,128,129]. AXL can be activated by
mechanisms dependent and independent of the ligand GAS6. If it is mediated by GAS6, AXL activates
signaling pathways like PI3K/Akt, MAPK, NF-κB, and JAK/STAT, which can stimulate tumorigenic
processes. On the other hand, the GAS6-independent pathway involves EGFR that activates AXL,
which finally unleashes Akt transcription and produces an increase of tumor cell proliferation and
migration [128]. Targeted inhibition of EGFR may not be a good option in TNBC because AXL can be
activated thought other pathways and the response to EGFR inhibitors is limited [130]. Because of drug
repositioning three drugs included in the same family are considered as a possible CSC-targeted therapy.

Phenotiazines. Goyette et al. carried out a research of drug repurposing based on AXL knockdown
gene signature. Using CMap, they found that three phenothiazines (thioridazine, fluphenazine,
trifluoperazine) could produce a similar gene signature. These dopamine receptor antagonists are
used as anti-psychotics and were tested in TNBC, obtaining good results both in vitro and in vivo.
In vitro, decrease of cell invasion, proliferation and viability, and increase of apoptosis were seen in
TNBC cell lines. Interestingly, an increased sensitivity to standard chemotherapy was also observed in
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combination with paclitaxel. In vivo, a significant reduction of tumor growth and metastasis were
observed. Furthermore, mechanistic insights revealed that these compounds did not exert their
activities by antagonizing with dopamine receptor. AXL activity was not decreased but a reduction of
PI3K/Akt/mammalian target of rapamycin (mTOR) and ERK signaling was produced, unravelling that
repurposed drugs generate the same consequences as AXL knockdown [80].

5. Drug Repositioning to Target Cancer Stem Cells in TNBC

The CSC model for tumor propagation underlines that solid tumors are hierarchically organized,
and contain a subset of cancer cells with stem-cell-like characteristics known as CSCs or tumor-initiating
cells, which are able to sustain tumor growth, progression, and recurrence, as well as metastasis.
Consequently, this model would explain intra-tumor heterogeneity and dormant behavior of several
types of cancer [131–133]. CSCs phenotype varies according to the type of cancer. BCSC are
characterized by surface markers CD44+/CD24–/low and aldehyde dehydrogenase 1 (ALDH1) enzyme
activity. Interestingly, it has been suggested that the acquisition of a stemness phenotype in
CD44+/CD24–/low subpopulation is connected to EMT [134], key event in metastatic spread [131,135,136].
EMT is known to be regulated by different pathways, including the TGFβ, PI3K/Akt/mTOR, MAPK,
or Wnt/β-catenin, which can be abnormally regulated during malignant processes in TNBC [131].
In fact, several studies have demonstrated that activation of EMT induced by TGFβ increases the
subpopulation of CSCs in breast cancers [137,138]. Interestingly, CSCs have been proved to be
more abundant in TNBC than in other breast cancer subtypes, which could explain its higher
aggressiveness [139,140]. Therefore, efforts are being focused on the development of CSC-targeted
therapies [141]. Additionally, several studies have shown that CSCs are intrinsically resistant
to chemotherapy and radiotherapy, therefore, targeting CSCs in combination with conventional
chemotherapy might decrease the aggressiveness of TNBC and prevent cancer relapse and improve
survival [131–133]. It has been suggested that EMT inhibitors could be potential CSC-targeted
therapies in breast cancer. In fact, activation of Wnt/β-catenin signaling has been correlated with the
expression of CD44+/CD24–/low CSC subpopulation. Whereas different Wnt inhibitors are currently
under development for the treatment of cancer, several FDA-approved drugs, such as salinomycin,
vitamin D3, or pyrvinium pamoate, have proven to inhibit this pathway, being possible candidates
for repurposing [50,142]. Some other FDA-approved drugs have also been demonstrated to regulate
EMT and/or affect CSCs via different molecular pathways, such as all-trans retinoic acid (ATRA) [143],
benztropine mesylate [144,145], and chloroquine [146]. Moreover, some of the previously mentioned
TNBC-directed repurposed drugs were shown to target EMT or CSCs as well, including flubendazole,
niclosamide, zoledronic acid, and L-NMMA. All breast CSCs-targeted drugs that are being investigated
are summarized in Table 5.
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Table 5. Summary of drug candidates to target cancer stem cells (CSCs) under investigation by drug repurposing.

Mechanism Compound Cellular and Molecular Effects Original Indication Repurposing Method References

Wnt, LRP6 Salinomycin

Decreased CD44+/CD24−/low population both in vitro
and in vivo.

Inhibition of tumor growth and expression of CSC
genes in vivo.

Combination with LBH589 induced apoptosis and cell
cycle arrest and regulates EMT in BCSCs.

Antibiotic
Non computational:

high-throughput
screening

[147–149]

Wnt/β-catenin,
PI3K dependent pathway,

lipid anabolism
Pyrvinium pamoate

Reduction of CSC self-renewal.
Reduction of CD44+/CD24−/low and

ALDH+ populations.
Reduction of expression of EMT markers (N-cadherin,

Vimentin and Snail).
Reduction of tumor growth in vivo.

Anthelmintic
Non computational:

high-throughput
screening

[142,150,151]

Notch-1, NF-κB1 Vitamin D3

Reduction of cell proliferation, CD44+/CD24−/low

population and mammosphere formation in vitro.
Relative insensitivity to vitamin D3 treatment, but

combination therapy with DETA NONOate achieved
a significant decrease in mammosphere formation

in vitro and tumor growth in vivo.

Vitamin supplement
Non computational:

target-based
[152–154]

Notch-1, TGF-β ATRA
Inhibition of mammospheres formation and reduction

of CSC self-renewal.
Reduction of ALDH1 CSC subpopulation.

Dermatologic diseases,
acute promyelocytic

leukemia

Computational:
transcriptional

signature-based
[155,156]

STAT3, NF-κB,
and β-catenin

Benztropine mesylate
Inhibition of mammospheres formation and reduction

of CSC self-renewal.
Reduction of ALDH and CD44+/CD24−/low populations.

Parkinson’s disease
Computational:

cell-based
phenotypic screening

[144]

Jak2, DNMT1 Chloroquine

Inhibition of autophagy.
Reduction of mammosphere formation efficiency and

CD44+/CD24−/low population in vitro.
Sensitization to paclitaxel through the inhibition of

autophagy in vitro.
Combination of paclitaxel significantly reduced tumor

growth and CD44+/CD24−/low population in vivo.
Phase II clinical trial for chloroquine in combination

with taxanes: ORR of 45.16%, median PFS of 12.4
months and median OS of 25.4 months. 13.15% of

patients experienced Grade ≥ 3 adverse events.

Antimalarial
Computational:
transcriptional

signature-based

[146,157]
NCT01446016
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Table 5. Cont.

Mechanism Compound Cellular and Molecular Effects Original Indication Repurposing Method References

STAT3
Flubendazole

Loss of CD44+/CD24−/low population.
Decrease of mammosphere-forming ability.
Suppression of stem cell genes expression.

Anthelmintic
Non computational:

target-based
[73]

Niclosamide
Reversion of EMT.

Inhibition of stem-like phenotype.
Anthelmintic

Non computational:
high-throughput

screening
[74]

STAT3, NF- κB Zoledronic acid
Induction of cell cycle arrest, decrease of cell viability,
cell proliferation, self-renewal and expression of EMT

markers in vitro.
Osteoporosis

Computational:
structure-based.

Non computational:
literature-based

[91]

iNOS L-NMMA Decrease of mammosphere-forming ability. Septic shock
Non computational:

target-based
[93]
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Salinomycin. It has been shown that LRP6, a co-receptor in the Wnt/β-catenin signaling pathway,
is upregulated in TNBC, [158], and transcriptional knockdown decreased Wnt/β-catenin signaling,
suppressing tumor growth in vivo [159]. Interestingly, the antibiotic salinomycin was demonstrated
to induced the degradation of LRP6, inhibiting the Wnt pathway [147]. Gupta et al. studied the
effects of salinomycin both in vitro and in vivo in comparison with paclitaxel. Salinomycin was found
to decrease CD44+/CD24−/low population both in cell culture and tumorspheres, whereas paclitaxel
induced an increase of this cell population, showing that CSCs were resistant to paclitaxel but sensitive
to salinomycin. This effect was later confirmed in mice orthotopically injected with SUM159 cells; it was
shown that, compared to paclitaxel, salinomycin was able to inhibit tumor growth and the expression
of CSC genes [149]. Moreover, a study investigating the efficacy of salinomycin in combination
with LBH589 was proven to be a potential BCSCs-targeted therapy in TNBC by inducing apoptosis,
arresting the cell cycle, and regulating EMT in breast CSCs [148].

Pyrvinium pamoate. This FDA-approved anthelmintic was discovered to inhibit the Wnt/β-catenin
signaling pathway using a high-throughput screen in a Xeropus egg extract [160]. As a consequence of
this inhibition, this drug is able to suppress self-renewal of CSC, it reduces both CD44+/CD24−/low

and ALDH+ BCSCs and expression of EMT markers such as N-cadherin, vimentin, and Snail [142].
Furthermore, pyrvinium pamoate inhibits PI3K-dependent pathway via suppression of Akt/P70S6K
signaling axis [151], as well as mitochondrial respiration function [161] and fatty acids and cholesterol
anabolism, lipids that are crucial to Wnt/β-catenin pathways [150]. Reduction of tumor growth
was observed in in vivo assays [142,151]. Xu et al. suggested that pyrvinium pamoate’s effect on
chemoresistance should be assessed in combination with traditional treatments based on the known
association between BCSCs and Wnt pathways and the development of drug resistance [142].

Vitamin D3. Upon binding to its ligand, the vitamin D3 nuclear receptor (VDR) heterodimerizes
with the retinoid X receptors (RXRs) and regulates the transcription of several genes involved in
Wnt, TGFβ and Notch pathways in different types of cancer [143]. In breast cancer, vitamin D3
has been proved to decrease transcriptional levels of the Notch ligands, resulting in the inhibition
of Notch-1 signaling, and levels of NF-κB1 [152,153]. Moreover, vitamin D3 has been shown to
induce the downregulation of BRCA-1 expression, a commonly mutated gene in breast cancer,
including TNBC [162]. In addition, Vitamin D3 was shown to reduce cell proliferation, CD44+/CD24−/low

population, and mammosphere formation [153]. Interestingly, Pervin et al. reported that, in breast
cancer, VDR silencing was associated with EMT and a higher ability to form mammospheres, whereas its
over-expression was followed by a decrease in mammosphere-forming ability. Moreover, in accordance
with the inherent aggressiveness of TNBC, they reported that VDR was significantly downregulated in
TNBC cells, which resulted in a relative insensitivity to vitamin D3 treatment. Accordingly, these authors
showed that a combination therapy with DETA NONOate achieved a significant decrease in
mammosphere formation in vitro and tumor growth in vivo [154]. Accordingly, vitamin D3 has
been suggested to be a potential inhibitor of breast CSCs.

All-trans retinoic acid (ATRA). Also called tretinoin, is a retinoid used in dermatology which was
approved to treat acute promyelocytic leukemia and has been investigated for the treatment of other
cancers like lymphoma, leukemia, melanoma, lung cancer, or cervix [143]. In a HER2+ breast cancer cell
line, Zanetti et al. proved that treatment of both ATRA and EGF suppressed tumorigenic effects of EGF.
While EGF-treated cells developed an increase of Notch1 transcription and TGFβ pathway stimulation
via SMAD3, ATRA+EGF-treated cells did not enhance levels of Notch1, and SMAD3 active form was also
decreased as phosphorylation did not ensue. Hence, ATRA modulated and reduced EMT by inhibiting
transcription of Notch1 and switching TGFβ pathway from a pro-migratory to anti-migratory program.
In TNBC, further studies are needed to be done to verify these mechanisms [163]. Using CMap and
introducing six analyses of up and down-regulated genes related to CSCs, Bhat-Nakshatri et al. found
ATRA to be a good candidate for a CSC targeted therapy in breast cancer, although its effectiveness
depends on tumor type. These gene signatures were obtained by comparison of gene expression in
two opposite contexts: one associated with CSC versus a non-CSC conditioned control. In TNBC,
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it was more interesting in those subtypes having mesenchymal properties, as they are enriched for
CD44+/CD24–/low subpopulations. In vitro, ATRA produced a decrease in CSC self-renewal, determined
by a mammosphere assay, and its effectiveness was augmented in cell lines with higher SOX2 expression.
In addition, ATRA reduced levels of EGFR, SERPINE1, and Slug in a cell-line-type-dependent manner.
MDA-MB-231 cell line was less sensitive to ATRA because of SOX2-independent characterization and
KRAS mutation, which was responsible for resistance to ATRA. Thus, better results in mammosphere
assays were obtained after the inhibition of KRAS pathway [155]. Furthermore, Ginestier et al. proved
that treatment of ATRA reduced breast ALDH1+ CSC population [156].

Benztropine mesylate. It is used for the treatment of Parkinson’s disease. It acts as
a central anticholinergic agent, as well as an antihistamine and a dopamine re-uptake inhibitor.
Cell-based phenotypic screening and functional assays showed that benztropine mesylate inhibited
mammosphere formation and self-renewal, reduced CSC subpopulations (both ALDH1+ and
CD44+/CD24–/low), and improved chemotherapy in vitro. In vivo, it impaired CSC frequency and their
tumor-initiating potential [144]. In addition, Sogawa et al. studied that benztropine could modulate
EMT via STAT3, NF-κβ, and β-catenin in colorectal cancer [145].

Chloroquine. It is an autophagy inhibitor primarily used as an antimalarial drug. Interestingly,
autophagy has been associated with drug resistance and maintenance of CSC population. In accordance
with this mechanism, Choi et al. identified chloroquine as a potential repurposed BCSC inhibitor
after in silico gene expression signature analysis of CD44+/CD24−/low population. In vitro assays
showed that chloroquine alone reduced the mammosphere formation efficiency and CD44+/CD24−/low

population in SUM159 and MDA-MB-231 cells, which was associated with a decrease in the expression
of Jak2 and DNA methyltransferase 1 (DNMT1). Moreover, chloroquine sensitized TNBC cells to
paclitaxel through the inhibition of autophagy. In vivo assays with an orthotopic xenograft model
proved that chloroquine plus paclitaxel significantly reduced tumor growth and CD44+/CD24−/low

population, as opposed to paclitaxel alone, which had no effect on tumor growth and increased the
CD44+/CD24−/low population, compared to controls, in accordance with previous in vitro assays [146].
A phase II clinical trial demonstrated the efficacy of chloroquine in combination with taxanes in the
treatment of patients with advanced or metastatic anthracycline-refractory breast cancer (NCT01446016).
Among their results, objective response rate (ORR) was 45.16%, patients showed a median PFS of
12.4 months and a median OS of 25.4 months. The combination was well tolerated, with only up to
13.15% of patients experiencing Grade ≥ 3 adverse events. These results suggest that chloroquine,
in combination with taxanes, could be used for the treatment of TNBC patients [157].

Several of the previously mentioned target pathways in TNBC have been associated with EMT
mechanisms, maintenance of tumor-initiating cells and/or tumor invasion, and drug resistance,
including AR, ADR, STAT3, and AXL pathways. Correspondingly, we hypothesize that AR
antagonists [56,58], the β-blocker propranolol [65] and atenolol [66,67,111], the STAT3 inhibitor
bazedoxifene [71,72,118] and zoledronic acid [91], and phenothiazines (thioridazine, fluphenazine,
trifluoperazine) [80] could act as potential inhibitors of BCSCs. Nevertheless, further investigations
would still need to be performed. The pathways altered by these drug candidates to be potentially
repurposed, as well as those included in Table 5, have been summarized in Figure 4.
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Figure 4. Overview of the different pathways investigated by drug repurposing to target breast cancer
stem cells (BCSCs) and their potential inhibitors/modulators. Repurposed inhibitors under investigation
are shown in red. Hypothesized inhibitors are shown in yellow. Created with BioRender.com.

6. Conclusions

The absence of targeted therapies for the treatment of TNBC, besides its inherent molecular
and histopathologic complexity, strongly reduces the chance of patient recovery and life expectancy.
It has therefore become imperative to find effective molecularly targeted treatments to overcome
the aggressive progression of this breast cancer subtype. Whereas de novo research is a costly and
long-term process, drug repurposing provides the possibility to reduce the time and investment needed
to translate a drug from bench to bedside for a specific therapeutic purpose. Drug repositioning
is achieved by means of different strategies, especially those including computational methods.
Accordingly, several therapies with different molecular targets are currently being investigated for
repurposing in TNBC, including androgen receptor, adrenergic receptor, STAT3, nitric oxide synthase,
or AXL-directed therapies. However, because of the importance of CSCs in the progression and
aggressiveness of this subtype of cancer, current efforts are also being directed to the search of
compounds targeting this subset of tumor-initiating cells in TNBC. Herein, according to all repurposed
drugs that are currently being studied for the treatment of TNBC, a few of them can be highlighted.
AR antagonists bicalutamide, enzalutamide, and seviteronel, currently under clinical trials, seem to be
particularly promising drugs in light of their association with the Wnt pathway, reduction of drug
resistance, and induction of radiosensitization, respectively. However, clinical trials are evaluating
the efficacy of these antiandrogens only in patients with a LAR subtype and, as a consequence,
these drugs might not be successful in treating the rest TNBC patients. Other drugs that are currently
in the clinical stage are also highlighted, including zoledronic acid, L-NMMA, and chloroquine.
They decrease tumor viability, reduce CSC population and their capacity of self-renewal both in vitro
and in vivo. Furthermore, they seem to sensitize these cells to chemotherapeutics, hence diminishing
drug resistance. Finally, there are other drugs at preclinical stage that must be highlighted because they
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target CSCs or have been associated with a reduction of drug resistance, such as salinomycin, pyrvinium,
vitamin D3, ATRA, benztropine, flubendazole, niclosamide, or propanolol. These drugs could be used
as a monotherapy or in combination with chemotherapy to enhance the therapeutic response.

At the core of precision oncology, the high heterogeneity and molecular subtypes of TNBC
should drive the diversity of approaches to tackle it, however, most studies do not discriminate
between different subtypes. To date, only LAR subtype has really been addressed as an example of
successful personalized drug repurposing. Besides the variety of molecular targets, a plethora of
computational strategies hinder the ability to efficiently find potential repurposed drugs for TNBC
patients. While having different tools for drug repositioning offers indeed a wide range of possibilities
for personalized medicine, lack of a standardized protocol and a resolution of the most effective
approach in the search of new uses for old drugs, raises the question: can computational drug
repurposing actually be implemented as an improved method for drug discovery in personalized
medicine and, more particularly, for TNBC? Factually, it is noticeable that some of the reviewed studies
date from some years ago but none of those repurposed compounds have been yet approved for TNBC.
While drug repurposing might increase the chances to help find new molecularly targeted candidates,
hence improving the development of a more personalized medicine, the results suggest that not all
candidates were as adequate as they might have seemed during in silico analysis, meaning that
computational drug repurposing could not be as efficient as expected. It is therefore necessary for
computational approaches to be validated and standardized, so as to reduce the chances of failure
and allow drug repurposing to become an improved and attainable alternative with guarantees for
personalized medicine. Be that as it may, drug repositioning has allowed to find new candidates that
would not have been considered otherwise, making it still a powerful alternative for the search of
a personalized treatment for TNBC patients.
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ADC Antibody drug conjugate
ADR Adrenergic receptor
AE Adverse events
Akt Protein kinase B
ALDH1 Aldehyde dehydrogenase 1
AR Androgen receptor
AREG Amphiregulin
ATRA All-trans retinoic acid
AXL Anexelekto
BARK β-adrenergic receptor kinase
BCSC Breast cancer stem cells
BL1 Basal-like 1
BL2 Basal-like 2
cAMP Cyclic AMP
CBN Causal biological networks
CBR Clinical benefit rate
CMap Connectivity Map
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CPIs Checkpoint inhibitors
CSC Cancer stem cells
CTLA-4 Cytotoxic T-lymphocyte-associated antigen-4
DFS Disease free survival
DTI Drug-target interaction
EGF Epidermal growth factor
EGFR Epidermal growth factor receptor
EMT Epithelial-to-mesenchymal transition
ER Estrogen receptor
FAK Focal adhesion kinase
FDA Food and Drug Administration
FGF Fibroblast growth factor
GEO Gene Expression Omnibus
GPCR G protein-coupled receptor
HER2 Human epidermal growth factor receptor 2
IGF Insulin-like growth factor
IHC Immunohistochemistry
IL-10 Interleukin 10
IL-6 Interleukin 6
IM Immunomodulatory
ITT Intent-to-treat population
JAKs Janus kinases
LAR Luminal androgen receptor
L-NMMA NG-monomethyl-L-arginine
M Mesenchymal
MAPK Mitogen-activated protein kinase
mCRPC Metastatic castration-resistant prostate cancer
MLF2 Myeloid leukemia factor 2
MSL Mesenchymal stem–like
mTOR Mammalian target of rapamycin
NO Nitric oxide
NOS Nitric oxide synthase
NOS1/nNOS Neuronal nitric oxide synthase
NOS2/iNOS Inducible nitric oxide synthase
NOS3/eNOS Endothelial nitric oxide synthase
OS Overall survival
PARP Poly[adenosine diphosphate-ribose] polymerase
PDB Protein Data Bank
pCR Pathologic complete response
PD-1 Programmed cell death 1
PD-L1 Programmed cell death-ligand 1
PDX Patient-derived xenografts
PFS Progression free survival
PI3K Phosphatidylinositol-3 kinase
PKA Protein kinase A
PPI Protein-protein interaction
PR Progesterone receptor
PRISM Protein Interactions by Structural Matching
ROS Reactive oxygen species
RPL39 Ribosomal protein L39
RTK Receptors tyrosine kinase
RXR Retinoid X receptors
SARMs Selective androgen receptor modulators
SAEs Serious adverse events
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STAT3 Signal transducer and activator of transcription 3
TAM Tyro3, AXL and Mer
TCGA The Cancer Genome Atlas
TGFβ Transforming growth factor β
TILs Tumor infiltrating lymphocytes
TNBC Triple-negative breast cancer
Trop-2 Trophoblast cell-surface antigen 2
VDR Vitamin D3 nuclear receptor
VEGF Vascular endothelial growth factor
VHTS Virtual high-throughput screening
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Abstract: Over the past decade, we have witnessed an increasing number of large-scale studies that
have provided multi-omics data by high-throughput sequencing approaches. This has particularly
helped with identifying key (epi)genetic alterations in cancers. Importantly, aberrations that lead to
the activation of signaling networks through the disruption of normal cellular homeostasis is seen
both in cancer cells and also in the neighboring tumor microenvironment. Cancer systems biology
approaches have enabled the efficient integration of experimental data with computational algorithms
and the implementation of actionable targeted therapies, as the exceptions, for the treatment of
cancer. Comprehensive multi-omics data obtained through the sequencing of tumor samples and
experimental model systems will be important in implementing novel cancer systems biology
approaches and increasing their efficacy for tailoring novel personalized treatment modalities in
cancer. In this review, we discuss emerging cancer systems biology approaches based on multi-omics
data derived from bulk and single-cell genomics studies in addition to existing experimental model
systems that play a critical role in understanding (epi)genetic heterogeneity and therapy resistance
in cancer.

Keywords: cancer systems biology; experimental model systems; next-generation sequencing;
single-cell sequencing; patient-derived xenografts; patient-derived organoids

1. Introduction to Cancer Systems Biology

Cancer is an extremely complex disease with heterotypic interactions between cancer cells and
neighboring stromal cells that support the proliferation, invasion, and the metastatic cascade of
tumor cells [1,2]. Recently, multi-omics approaches empowered by next-generation technologies have
enabled genomic characterization and evolutionary histories of both primary and metastatic cancer
progression [3–6]. These technologies that shed light on the genome, transcriptome, metabolome,
and proteome of cancer cells corroborate our understanding about systems biology-level approaches
in cancer (Figure 1) [7]. Considering the challenges to unify high-throughput data obtained from
multi-omics studies, system biology applications in cancer hold a key role to tackle this very problem.
For example, cancer as a disease of numerous distinct cell types requires taking into consideration the
combination of data derived from these different cell types together with the integration of various
layers of genetic and non-genetic data that are forming the cellular systems. Thus, cancer systems
biology can simplify the analysis of multi-layer data and offer effective and fast solutions for the
development of novel drug technologies and the identification of predictive biomarkers in cancer
therapies. Cancer systems biology is an emerging field with accumulating data obtained through
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network-driven and interdisciplinary science that ultimately aims to tailor better-personalized treatment
modalities for patients based on their genetic and non-genetic profiles [8].

Multi-omics Technologies

Next-generation DNA sequencing

Targeted sequencing

Whole-exome sequencing

Whole-genome sequencing

Single-cell whole-genome 
sequencing

Next-generation RNA sequencing

Whole-transcriptome 
sequencing

3’ mRNA sequencing

Single-cell RNA sequencing

Epigenome sequencing

ChIP-Seq

ATAC-Seq

Single-cell ATAC-Seq

Proteomics

Metabolomics

Experimental Model Systems

Cell line-based model 
systems

2D cancer cell lines

3D spheroids

Patient sample-based model 
systems 

Patient-derived 
xenografts

Patient-derived 
organoids

Figure 1. Comprehensive picture of systems biology approaches and experimental model systems
constituting the core components of the biology of cancer.

The heterogeneous nature of cancers led to studies mapping the (epi)genomic alterations [9–11]
both in primary [6,12] and metastatic cancers [5]. Through the high-throughput data obtained from
cancer patients, it is now possible to combine this information and assess the genotype-to-phenotype
link to further characterize the disease onset and clinical outcome. The combination of information
derived from the genomic architecture and various gene networks from a single or a group of cells not
only determines the fate of these cells during development but also a progression to cancer occurs
as a result of the deregulation of these interactions. For example, while the regulation of Notch
and Wnt signaling pathways are fine-tuned by each other in normal homeostasis [13], their aberrant
expression and deregulation are commonly seen in cancers [14,15]. Therefore, understanding the
genetic and epigenetic changes that cause persistent signaling activations and disrupting normal
cellular homeostasis is still one of the biggest challenges to address in cancer systems biology.

2. Cancer Systems Biology for Precision Medicine

The vast majority of efforts focus on bridging the “big data” obtained from various multi-omics
studies to new computational algorithms to ultimately offer more effective personalized cancer therapies.
Despite the advancements in cancer therapy through systems biology approaches, treatment resistance
is arguably one of the biggest challenges for better-personalized cancer treatments [16,17]. This is
mainly due to the fact that cancer follows distinct evolutionary trajectories in patients compared to
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their genomic landscapes, not only during the initiation and metastasis cascade of cancer cells but also
in response to the treatment in cancer therapies [18,19]. For this reason, the accurate identification of
subclonal drivers holds great importance for the timing of the subclonal expansion and its diversity in
cancer therapies [20]. This sophisticated subclonal identification tool, empowered by machine learning
and population genetics, will potentially lead to developing more comprehensive computational
methods by integrating with network-driven approaches for cancer systems biology in the future.

With the rapid developments in next-generation sequencing (NGS) technologies,
previous microarray studies have been gradually replaced by massively parallel deep sequencing
techniques such as whole-genome, whole-exome, targeted-panel, and RNA sequencing [21].
Initially, the microarray platforms have proved to be a very useful tool for genome-wide association
studies (GWAS) in cancer systems biology; however, they demonstrated limitations such as covering
only a the small fraction of the genome and failure to take into account more than common genetic
risk factors [22]. Later, individual research groups started to apply NGS technologies to identify
somatic alterations (single-nucleotide variations, copy-number alterations, structural variations) in
cancer driver genes and to determine gene expression changes and open chromatin formations both
in coding and non-coding regions of the genome [23–28]. Then, individual studies were followed by
larger multigroup projects [4–6]. One of the remarkable efforts is The International Cancer Genome
Consortium/The Cancer Genome Atlas (ICGC/TCGA) Pan-Cancer Analysis of Whole Genomes (PWAG)
project, comprising a working group of 700 scientists, which recently reported their findings from
2600 whole-genome samples [4,29–31]. In addition to these studies that deciphered the evolutionary
trajectories of tumors prospectively, recent technologies have also allowed the monitoring of clonal
dynamics using “cellular barcodes” integrated into experimental model systems to map the tumor
evolution at the single-cell resolution [32,33].

In addition, investigating cancer genomes at the single-cell resolution has taken a big step forward
in the past few years [3]. Initial studies focused on the understanding of the transcriptome of single
cells in a plate-based system wherein cells were required to be sorted individually, and thus the
system lacked high-throughput capacity [34]. However, recent advances, especially with the use of
droplet-based systems, have advanced our understanding about single-cell genomics through an
increased capacity to profile thousands of single cells at the same time (single-cell RNA sequencing,
scRNA-seq) [35,36]. The scRNA-seq technology provided a high-resolution picture not only of cellular
states in developmental biology [37] but also in cancer biology where intratumoral heterogeneity and
tumor cell plasticity are highly prevalent [38]. Furthermore, the information obtained from the analysis
of single-cell WGS (scWGS) has proved to be informative for understanding intratumor heterogeneity
and the evolutionary history of thousands of single cells comprising the bulk tumor population [39,40].
Recently, the high-throughput capacity for scWGS has improved significantly, and clonal/subclonal
alterations at the single-cell resolution were reported in thousands of cells [41]. To capture the
epigenetic changes at the single-cell level, novel methods to map the single-cell epigenome have also
been reported. For example, single-nuclei chromatin accessibility assays (ATAC-seq) inferring the
chromatin open or closed states in single cells [42,43]. Lastly, the rapid developments in the single-cell
biology have also resulted in novel methods such as parallel sequencing of single-cell genomes and
transcriptomes [44] and joint profiling of single-cell chromatin accessibility and gene expression [45].
Various online databases containing cancer systems biology tools to document molecular profiles
of cancer types are available and offered for the use of the cancer research community (Table 1).
Importantly, various multi-omics data obtained using high-throughput sequencing methods enables
the integration of these data into experimental model systems for the identification of the actionable
targets in cancer. As such, these molecular data integrated with systems biology applications, for the
function of transcriptional and proteomics networks, provide effective solutions for the treatment
of cancer. Given that cancer is a systems biology disease, integration of the cellular information
with the help of computational and mathematical modeling highlights the need to develop more
advanced and sophisticated systems biology applications in cancer. This considerable challenge
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has especially become evident with a rapid increase in the accumulation of sequencing data over
the past decade. Hence, to address this very challenge, systems biology approaches are timely
positioned to offer novel solutions to better understand the underlying mechanisms of drug resistance
and the identification of biomarkers that can predict the disease outcome and response to targeted
therapies. Overall, integrating cellular networks with cancer (epi)genomes in both single and bulk
cell populations has paved a way to advance our understanding for developing systems biology
approaches for precision therapy to advance clinical decisions for patient benefits.

Table 1. A collection of databases.

Name Description Website Reference

CaSNP
CaSNP performs quantitative analysis of copy
number variation from SNP arrays in multiple
cancer types

https://bioinformaticshome.com/tools/cnv/
descriptions/CaSNP.html

[46]

OncoLand
OncoLand provides oncology data access in
sample and gene directions.

https://omicsoftdocs.github.io/ArraySuiteDoc/
tutorials/OncoLand/Introduction/

[47]

AGCOH

The Atlas of Genetics, Cytogenetics in Oncology
and Hematology perform comprehensive
genomic characterization and analysis of
multiple cancer types

http://atlasgeneticsoncology.org/BackpageAbout.
html

[48]

PCWAG

PCWAG—Pan-cancer Analysis of Whole
Genomes provides common patterns of
mutations from more than 2600 cancer whole
genomes

http://dcc.icgc.org/pcawg [4]

ChiTaRS
ChiTaRS contains chimeric transcripts and
RNA-Seq data

http://chitars.bioinfo.cnio.es/ [49]

CanSAR
CanSAR provides information about
translational research and drug discovery
knowledgebase

https://cansarblack.icr.ac.uk/ [50]

OncoDB.HCC
Oncogenomics Database of Hepatocellular
Carcinoma provides genomic, transcriptomic,
and proteomic data

http://oncodb.hcc.ibms.sinica.edu.tw/index.htm [51]

COSMIC
COSMIC performs a comprehensive database of
somatic mutation in multiple cancer types

https://cancer.sanger.ac.uk/cosmic [52]

canEvolve

canEvolve is a comprehensive database including
genes, miRNA, and protein expression profiles;
copy number changes for a variety of cancer
types and protein–protein interactions

http://www.canevolve.org/AnalysisResults/
AnalysisResults.html

[53]

CancerPPD
CancerPPD provides information about
anticancer peptides and proteins in multiple
cancer types

http://crdd.osdd.net/raghava/cancerppd/ [54]

PED
The Pancreatic Expression Database performs a
comprehensive meta-analysis of pancreatic
cancer

http://www.pancreasexpression.org/ [55]

CGP
Cancer Genome Project provides genotype and
copy number changes information in tumors

https://www.sanger.ac.uk/group/cancer-
genome-project

[56]

MethyCancer
MethyCancer provides information about DNA
methylation and gene expression in a variety of
cancer types

http://methycancer.psych.ac.cn/ [57]

CPTAC
Clinical Proteomic Tumor Analysis Consortium
is a database containing an integration of
genomic and proteomic data

https://proteomics.cancer.gov/ [58]

intOGen
Integrative Onco Genomics performs
comprehensive genomic data of multiple cancer
types

https://www.intogen.org/search [59]

ArrayExpress
ArrayExpress focuses on microarray gene
expression data

https://www.ebi.ac.uk/arrayexpress/ [60]

DriverDBv3 DriverDBv3 is a database of cancer omics http://driverdb.tms.cmu.edu.tw/ [61]

PCDB
The Pancreatic Cancer Database provides genetic
information in pancreatic cancer

http://www.pancreaticcancerdatabase.org [62]

CancerDR
CancerDR contains anticancer drugs and their
effectiveness against a variety of cell lines

http://crdd.osdd.net/raghava/cancerdr/ [63]

Platinum
Platinum provides knowledge about missense
mutations on ligand–proteome interactions

http://biosig.unimelb.edu.au/platinum/ [64]

3. Experimental Model Systems of Cancer

Although cancer mortality rates are gradually diminishing, it is still one of the deadliest diseases
in the world [65]. To develop more effective therapeutic solutions, cancer cell lines, 3D spheroids,
in vivo patient-derived xenografts (PDXs), and ex vivo patient-derived organoids (PDOs) have been
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studied by various groups [66–68]. Due to the advances in the development of experimental model
systems, there has been remarkable progress in understanding the underlying mechanisms of initiation,
progression, and the metastatic cascade of cancer cells [69]. In addition to the advantages of each
model system, traditional model systems have failed to recapitulate the response to drugs that are
observed in the clinic. For instance, targeted therapies and chemotherapeutic agents that work well in
preclinical model systems fail to proceed into clinical trials since specific model systems were unable
to recapitulate the disease progression [70]. Therefore, in this section of the review, we sought to
discuss current preclinical model systems used in cancer research and their role in predicting how
cancer will progress and respond to the therapy when these model systems are integrated with system
biology approaches.

4. Cell Line-Based Model Systems

Since the first human cancer cell line was established in 1951, 2D monolayer systems have
provided major advantages in the understanding of tumor biology and cancer therapy [71]. Over the
decades, 2D monolayer systems offered several advantages such as being easy to expand and hence
allowing long-term culture times, being manipulated by gene insertions and deletions, and requiring
inexpensive material for culturing [72]. On the other hand, this platform has many drawbacks, mainly
its inability to mimic the 3D nature of tumor growth. The inadequacies of the 2D monolayer systems
also include a lack of cell-to-extracellular matrix (ECM) contact that has been reported as responsible
for the accurate detection of cell viability/death, drug metabolism, and expression of certain genes and
protein in tumors [73]. Another major limitation of 2D monolayer systems is their inaccurate utility of
oxygen and nutrients when compared to 3D culture systems that have proven to be more successful
in mimicking real tumor masses [74]. Collectively, 2D monolayer systems have played a major role
in understanding and designing cancer therapies for systems biology approaches; however, due to
their insufficiency to predict real tumor outcomes in patients, more suitable model systems such as 3D
culture systems have been developed.

The first 3D culture was performed using a soft agar solution by Hamburger and Salmon in 1977 [75].
Since that time, several 3D culture methods have been documented. Depending on the material used,
the 3D culture systems can be divided into three categories: (i) cultured onto non-adherent plates,
(ii) embedded into matrigel-like substances, and (iii) seeded into scaffold-based systems. The general
approach for 3D culture systems is based on the formation of a spheroid structure in which cancer cells
can form various layers. The 3D nature of spheroids has been demonstrated as a successful system in
mimicking the features of the solid tumor mass [73]. Three-dimensional spheroids can also mimic
tissue-specific functional characteristics in developmental processes. For example, cardiomyocyte
spheroids can exhibit heart-like rhythms, and hepatocyte spheroids exhibit biochemical functions
of the liver [76,77]. Three-dimensional culture systems have also been shown to mimic in vivo-like
microenvironments via the establishment of complex cell-to-cell and cell-to-ECM communications.
These interactions result in cellular signal transduction events similar to tumor tissues that can mediate
their cell shape and proliferation [78]. In addition, drug response assays in 3D culture systems
were shown to resemble in vivo studies more than 2D culture systems in terms of their success rates
in preclinical studies [79,80]. In another study, sensitivities of the same cell line against different
chemotherapeutic agents were reported as different in 2D vs. 3D culture systems [81]. For instance,
in this study, HCT-116 cells grown in both 2D and 3D model systems and their sensitivities against
four commonly used anticancer agents (melphalan, 5-Fluorouracil, oxaliplatin, and irinotecan) were
tested. The efficacy of these inhibitors was higher in the 2D than the 3D culture system, suggesting
that phenotypic differences and distinct cell-to-cell interactions between these model systems might be
responsible for observing the differences in drug sensitivities.
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5. Patient Sample-Based Model Systems

Patient-derived xenografts (PDXs) are preclinical models established by directly transplanting
patient-derived tumor specimens into immunodeficient mice [82]. PDXs have been accepted as
promising preclinical model systems that successfully mimic the testing of anticancer drugs [66].
This system provides several advantages, such as the preservation of tumor heterogeneity, molecular
subtypes and the clinicopathological features of the tumors obtained from patients [83]. In addition,
PDXs have been shown to successfully predict the drug response in the preclinical setting to test
the effectiveness of therapeutic agents [84]. While PDXs offer several advantages as a preclinical
model system, an increasing body of evidence suggests there are limitations [85]. Firstly, a significant
proportion of tumor samples engrafted in mice may not successfully grow due to the host mouse
environment causing a bottleneck. Secondly, engraftment times can be long so that the maintenance
costs associated with each PDX prove prohibitive. Thirdly, there is still no standardized method for
choosing the type of mouse or engraftment technique specific for each cancer type, which raises the
possibility of obtaining non-reproducible results between different studies. Studies that overcome these
limitations have shed light on the mechanisms of acquired drug resistance, especially in metastatic
colorectal cancer (mCRC). For instance, a series of seminal studies published by the Bertotti Lab has
demonstrated the use of a large PDX biobank to investigate the underlying mechanisms of drug
resistance in mCRC [86–89]. Importantly, one of these studies played a critical role in assessing the
genomic landscape of anti-EGFR antibody blockage in PDXs and functional consequences linked to
clinical data in cancer patients [87]. Thus, PDXs have paved a way to develop a platform for the
systematic analysis and evaluation of cancer therapies.

Patient-derived tumor organoids (PDOs) are ex vivo three-dimensional structures of tumors
obtained from cancer patients and grown in the presence of an extracellular matrix [90].
Accumulating evidence suggests that PDOs can successfully predict the drug response in cancer
patients in the clinic in addition to preserving the genetic and transcriptomic heterogeneity of the
original tumor [67]. In addition, studies focused on comparing the histopathological features of tumors
with PDOs revealed that the PDOs maintain similar morphological characteristics as the original
tumor [90,91]. Importantly, PDOs also mimic the genomic and transcriptomic features of the tumors
that they have derived from even after long ex vivo culture times [91–93]. To date, PDOs have been
established from different cancer types including colorectal [93], gastrointestinal [91], pancreatic [94],
prostate [95], bladder [96], breast [97], glioblastoma [98], and ovarian [99]. Three-dimensional cultures
of PDOs that predict the outcome of drug treatment in cancer patients can be considered an important
milestone for personalized medicine for the benefits of cancer patient [100]. When PDOs are established
from individual patients in a short time, they can provide a window of opportunity to test therapeutic
agents in parallel to the clinic, and thus the outcome of drug testing in the laboratory can prove
informative for the decision making of treatment for patients.

Amongst the key studies about PDOs, van de Wetering et al. (2015) is the first study that reported
a well-established and characterized PDO biobank from 20 primary CRC patients [93]. In this study,
whole-exome sequencing (WES) and the RNA sequencing of samples resulted in preserved genetic
heterogeneity and molecular cancer subtypes both in the primary tumor tissue and PDOs. In addition,
the genetic heterogeneity of the primary tumor was mostly preserved during the establishment and
long culture times of organoids in ex vivo. The histopathological assessment of samples suggested a
very high similarity in terms of the phenotypic heterogeneity between PDOs and the parental tumor.
In this important study, PDOs were treated with 58 chemotherapeutic agents, and those with TP53 loss
of function mutation were resistant to MDM2 inhibitors and as a consequence acquired RAS mutations
and therefore decreased sensitivity to an EGFR inhibitor. Importantly, in this study, colon tumor
organoids carrying the RNF43 mutation were dramatically sensitive to Wnt inhibitors.

In another significant study, PDOs were examined for the first time to investigate whether PDOs
as a preclinical model could predict the drug response seen in the gastrointestinal cancer patients in
the clinic [91]. In this study, a living organoid biobank was established from metastatic gastrointestinal
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cancer patients who were previously recruited for phase I or II clinical trials. According to the
phenotypic and genotypic profiling of organoid and patient tumor samples, both of them exhibited
highly similar profiles. Then, this led the authors to assess drug responses of PDOs in the laboratory
setting in parallel to the clinic. High-throughput drug screening of PDOs with Food and Drug
Administration (FDA)-approved drugs was shown to be successful with a positive predictive value
(predicting that a certain drug worked) of 88% and a negative predictive value (predicting that a certain
drug did not work) of 100%. This suggests a promising forecasting potential for PDOs in terms of the
treatment response.

6. Conclusions

Extensive (epi)genetic heterogeneity in cancer has been demonstrated in several studies. As a
result of the aberrantly activated and sustained complex signaling networks both in cancer cells
and neighboring tumor microenvironment, examples of the hallmarks of cancer were presented.
To address genomic aberrations and signaling network complexity, there has been a growing need to
develop more sophisticated approaches for cancer systems biology. Cancer systems biology can deliver
solutions for the better understanding of intratumor heterogeneity and therapeutic opportunities.
Specifically, improved cancer systems biology approaches integrated not only with multi-omics data
from tumors but also with comprehensive patient-derived experimental model systems can guide
clinicians for their decision-making to offer better therapeutic solutions with an ultimate aim to
overcome treatment failure in cancer.
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Abstract: Analysis of circulating miRNAs (cmiRNAs) before surgical operation (BSO) and after
the surgical operation (ASO) has been informative for lung adenocarcinoma (LUAD) diagnosis,
progression, and outcomes of treatment. Thus, we performed a biological network analysis to
identify the potential target genes (PTGs) of the overexpressed cmiRNA signatures from LUAD
samples that had undergone surgical therapy. Differential expression (DE) analysis of microarray
datasets, including cmiRNAs (GSE137140) and cmRNAs (GSE69732), was conducted using the Limma
package. cmiR-1246 was predicted as a significantly upregulated cmiRNA of LUAD samples BSO
and ASO. Then, 9802 miR-1246 target genes (TGs) were predicted using 12 TG prediction platforms
(MiRWalk, miRDB, and TargetScan). Briefly, 425 highly expressed overlapping miRNA-1246 TGs were
observed between the prediction platform and the cmiRNA dataset. ClueGO predicted cell projection
morphogenesis, chemosensory behavior, and glycosaminoglycan binding, and the PI3K–Akt signaling
pathways were enriched metabolic interactions regulating miRNA-1245 overlapping TGs in LUAD.
Using 425 overlapping miR-1246 TGs, a protein–protein interaction network was constructed. Then,
12 PTGs of three different Walktrap modules were identified; among them, ubiquitin-conjugating
enzyme E2C (UBE2C), troponin T1(TNNT1), T-cell receptor alpha locus interacting protein (TRAIP),
and ubiquitin c-terminal hydrolase L1(UCHL1) were positively correlated with miR-1246, and the high
expression of these genes was associated with better overall survival of LUAD. We conclude that PTGs
of cmiRNA-1246 and key pathways, namely, ubiquitin-mediated proteolysis, glycosaminoglycan
binding, the DNA metabolic process, and the PI3K–Akt–mTOR signaling pathway, the neurotrophin
and cardiomyopathy signaling pathway, and the MAPK signaling pathway provide new insights on
a noninvasive prognostic biomarker for LUAD.

J. Pers. Med. 2020, 10, 162; doi:10.3390/jpm10040162 www.mdpi.com/journal/jpm225
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1. Introduction

Resection-based therapy is a key player that increases the patient’s survival in nonsmall-cell lung
cancer (NSCLC). However, long-term survival remains below 50% in NSCLC patients as there is a
frequent recurrence of disease development following surgery and treatment [1]. It may increase
many concerns associated with a favorable therapeutic strategy. Analysis of circulating microRNAs
(cmiRNAs) before surgical operation (BSO) and after the surgical operation (ASO) has provided
significant information for NSCLC diagnosis, progression, and outcomes of treatment [2]. One of the
epigenetic biomarkers, known as cmiRNA, serves as a potential source for diagnosing NSCLC and its
subtypes [3–6]. There are three important advantages in using cmiRNAs as a biomarker for NSCLC;
they are as follows: (1) diagnostic feasibility from body fluids, (2) elevated stability and protection from
endogenous enzymes (RNAase), and (3) accumulation of pathologic information from various tumorous
sites, which overcomes the difficulty of tumor heterogenicity [7]. One of the common subtypes in
NSCLC is lung adenocarcinoma (LUAD), which accounts for ~40% of all lung cancers. Stable and
essential biomarkers for early diagnosis of LUAD are still insufficient [8]. Notably, the cmiRNAs are
more stable in serum samples [9], it facilitates the augmentation of miRNA as a promising blood-based
diagnostic biomarker. Aberrant changes in the level of miRNA, correlated with tumor growth,
results in metastasis, invasion, drug resistance, and progression in LUAD patients. The expression
level of miRNA-33a plays a vital role in the progression of LUAD; it could be an ideal biomarker
for the diagnosis and prognosis of LUAD patients who have received adjuvant chemotherapy [10].
Upregulated oncogenic miRNAs (miR-130b, miR-182-5p, miRNA-17, and miRNA-222) were reported
to cause the development and progression of LUAD [11–13]; moreover, downregulated miRNAs
(miR-486-5p, miR-101, miR-133a), also called tumor-suppressive miRNAs, were reported to repress the
development of NSCLC [14–16]. miR-21 and miR-24 were significantly lower in ASO serum samples
of lung carcinoma patients when compared to the samples of BSO patients. The findings depicted that
both miRNAs (21 and 24) could be employed as biomarkers for the prediction of cancerous growth
reappearance ASO [2]. Besides that, Asakura et al. [17] compared the diagnostic indexes of miR (17-3p,
-1268b, and -6075) BSO and ASO of serum samples of LC (n = 180) patients. After surgery, the level
of miRNAs was significantly reduced; it enhances their potential in the screening of resectable lung
cancer, including adenocarcinoma.

Gene signatures are an essential condition for potential clinical practice in cancer. It has many
important inferences that are used to reclassify the disease [18]. The identification of gene signatures
from patients who have undergone surgical therapy provides new insights on the diagnosis and
therapeutic implications of LUAD. Thus, we performed integrated biological network analysis to
identify the potential target genes (PTGs) of the shared cmiRNA signatures BSO and ASO of LUAD
samples. Microarray analysis of gene expression profiles is a standard and well-known method to
identify key hub genes and pathways [19,20]. Initially, we collected the cmiRNA and cmRNA datasets
from the Gene Expression Omnibus (GEO) database. Then, we performed differential expression (DE)
using the Limma algorithm and identified miR-1246 as a potential upregulated gene in BSO and ASO
samples of LUAD. miR-1246 TGs were predicted from 12 different TG prediction platforms. Then,
the overlapping genes of miR-1246 TGs and DE-cmRNAs were used to construct a protein–protein
interaction (PPI) network. After that, different modules were extracted from the PPI network using the
Walktrap algorithm. Moreover, 12 potential target genes (PTGs) were predicted from the modules based
on degree centrality measures, and their functional and pathway enrichment terms were determined.
Furthermore, the PTGs were validated using the expression of miR-1246 and the PTG correlation
analysis survival curve and immune–histochemical analysis. This study will provide new insights
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into the underlying molecular mechanism in LUAD, which might contribute to the clinical therapy of
LUAD patients.

2. Materials and Methods

2.1. Data Collection

Microarray datasets GSE137140 and GSE69732 of cmiRNAs and cmRNAs were extracted from
the GEO database [17,21]. The workflow of the study is shown in Figure 1. The cmiRNA study was
performed using a 3D-Gene Human miRNA V21_1.0.0 platform, which included cmiRNA profiles of
3924 samples consisting of 1566 BSO, 180 ASO of cancer, and 2178 noncancer controls. The histological
types include adenocarcinoma (1217), squamous carcinoma (221), adenosquamous carcinoma (18),
and small cell carcinoma (23) and other (87) subtype samples. However, in this study, we included 1217
BSO and 180 ASO LUAD samples and 1774 noncancer controls. The cmRNA study was performed
using the Illumina HumanHT-12 WG-DASL V4.0 R2 expression bead chip platform, which included
cmRNA profiles of six samples of lung cancer and noncancer controls.

 

 
Figure 1. Schematic illustration of the study.
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2.2. Differential Expression of cmiRNAs and cmRNAs

The R package “limma” (linear models for microarray analysis) of the Bioconductor project
was used to retrieve, preprocess datasets, and perform differential expression of cmiRNAs [22].
Log2 transformation, Benjamini and Hochberg and t-test were used to perform normalization and
calculate the false discovery rate (FDR; p < 0.05) of samples [23]. The total number of samples were
divided into two groups, control versus BSO samples and control versus ASO samples, for cmiRNAs
and cmRNAs as LUAD versus control. The analysis demonstrated that miR-1246 was upregulated in
both samples, which was used for further analysis.

2.3. miR-1246 Target Gene Prediction

The web interface miRWalk 2.0 (http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/) was
employed to predict the target genes of miR-1246. The database contains comprehensive and
experimentally verified information about miRNA-target gene interaction [24]. We extracted all
the possible miR-1246 target genes from the database. It includes 11 other different miRNA-target
prediction resources, namely, TargetScan, miRanda, miRDB, mirbridge, miRmap, miRNAMap, PITA,
Pictar2, RNA22, and RNAhybrid. The target genes of miR-1246 were predicted from more than five
databases and were used for further analysis.

2.4. Screening of Overlapping Target Genes

The overlapping miR-1246 target genes between the list of genes predicted from 12 different
databases and DE-cmRNAs in LUAD samples were selected based on the standard log2FC >1. A Venny
(https://bioinfogp.cnb.csic.es/tools/venny/index.html) [25] intersection diagram was used to facilitate
more distinctively identified miR-1246 TGs from more than five databases and DE-cmRNAs in LUAD
samples. These overlapping genes were employed to perform sequential bioinformatics analysis to
discover the molecular mechanism of miR-1246 in LUAD.

2.5. Construction of PPI Network

The search tool for retrieval of interacting genes/proteins (STRING; https://string-db.org/) [26] is a
database that is used to construct the PPI network. Currently, the database consists of 18,838 human
proteins with a core of 25,914,693 network interactions. In this study, we constructed the PPI network
from identified TGs using the STRING interactome. The highest confidence interaction score was set
to 0.9, which reduces false-positive interactions [27].

2.6. Identification of Modules and Hub Genes

The R package “igraph” was used to extract modules based on the Walktrap algorithm from the
PPI network. It runs several short random walks within a group of nodes that are highly connected to
detect small modules. From the modules, the PTGs (nodes) were identified with two different centrality
measures, “degree” and “betweenness” [28]. The degree of the gene is the number of maximum
connections it has with the other genes. Genes with a high degree act as hubs within the network.
The betweenness of a gene is the number of paths that pass through it when considering the pair-wise
shortest paths between all genes in the network. A node that occurs between two dense clusters will
have a high betweenness.

2.7. Functional Enrichment Analysis

We have used ClueGO v2.5.3, which is a Cytoscape v3.8.0 plugin for function and pathway
enrichment analysis of PTGs [29,30]. A list of overlapping miR-1246 TGs or PTGs was provided as
input into ClueGO with selected specific parameters, such as species (Homo sapiens), ID type (Entrez
gene ID), and different enrichment functions (biological process or cellular component or molecular
function or KEGG pathways), for the analysis. Each enrichment was calculated based on the Bonferroni
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method (p < 0.005) and a kappa score of 0.96. In ClueGO, the kappa score is employed to identify
term–term interactions revealed as edges on the network and correlate terms and pathways into
functional groups, depending on shared genes. The high kappa score indicates stronger network
connectivity of PTGs to the GO terms.

k = po − pe / 1 − pe = 1 − (1 − po /1 − pe)

where po represents a relative observed agreement among raters, and pe represents the hypothetical
probability of chance agreement [31]. Functional enrichment analysis results were visualized using
ImageGP (http://www.ehbio.com/ImageGP/index.php/Home/Reg/reg.html).

2.8. Validation of Potential Target Genes (PTGs)

2.8.1. Expression of PTGs in LUAD

The Gene Expression Profiling Interactive Analysis 2 (GEPIA2; http://gepia.cancer-pku.cn/) web
interface was employed to validate the expression level of PTGs in LUAD [32]. GEPIA consists of
comprehensive RNA sequencing information from TCGA and the Genotype–Tissue Expression (GTEx)
project. The expression level of PTGs is illustrated in the box plot, and p < 0.05 was considered to be
statistically important.

2.8.2. Correlation Analysis of miR-1246 and PTGs

The expression data of miR-1246 and PTGs in LUAD were obtained from the TCGA database.
The expression data were transformed with log2 for normalization. Then, the relationship with
miR-1246 and PTGs was elucidated using Spearman’s correlation analysis. The linear regression plot
was used as a visual representation of the trend of the relationships. It was performed with GraphPad
Prism (USA).

2.8.3. Survival Analysis

The PTGs were identified from the Walktrap modules. The R package “survival” was employed
to calculate the Kaplan–Meier (KM) survival plot with a hazard ratio (HR) and log-rank test of the
hub, which was implemented in the KM plotter web interface [33]. The database retrieved the gene
expression profiles, and clinical data include TNM (Stage I, II, III, and IV), gender (male and female),
smoking history (smoker and nonsmoker), histology (adenocarcinoma and squamous cell carcinoma),
and grade (G1, G2, G3, and GX) of 1925 patients from The Cancer Genome Atlas (TCGA), Cancer
Biomedical Informatics Grid (caBIG), and GEO. We analyzed the overall survival rate of the PTGs as
input and obtained the plot from the tool.

2.8.4. Protein Expression Analysis in LUAD

The Human Protein Atlas database (HPAD) was used to validate the immune-histochemistry
of PTGs. The database facilitates system-level studies on the transcriptome of the coding genes and
pathological expression of genes in different cancer types. The staining profiles for proteins of the
PTGs in human LUAD tissue based on immunohistochemistry using tissue microarrays. Further,
the name of the antibody, tissue type, staining levels (high, medium, low, and not detected), intensity,
and quality of the IHC analysis data were retrieved from the database for interpreting results [34,35].

3. Results

3.1. Differentially Expressed cmiRNAs and cmRNAs

In total, 5132 DE-cmiRNAs, which included 2242 underexpressed and 324 overexpressed cmiRNAs,
were obtained from BSO samples. Moreover, 1646 underexpressed and 920 overexpressed cmiRNAs
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were obtained from ASO samples. The top 10 overexpressed and underexpressed cmiRNAs are
illustrated in Table 1. In both the samples, miR-1246 was highly upregulated, with log2FC as 7.09 in
BSO samples and 6.28 in ASO samples. Therefore, further studies were carried out using miR-1246.
There were 306 overexpressed cmRNAs, and 743 under-expressed cmRNAs identified from differential
expression. The top 10 overexpressed and underexpressed cmRNAs are illustrated in Table 2.

Table 1. Top 10 overexpressed and underexpressed circulating miRNAs (cmiRNAs).

miRNA_ID Log2FC p-Value miRNA_ID Log2FC p-Value

BSO overexpressed BSO underexpressed

hsa-miR-1246 6.28 2.79 × 10−110 hsa-miR-373-5p −5.92 0
hsa-miR-8060 5.69 6.62 × 10−189 hsa-miR-1199-5p −6.05 0
hsa-miR-920 5.46 0 hsa-miR-208b-5p −6.07 0
hsa-miR-6131 5.31 9.32 × 10−187 hsa-miR-6777-5p −6.07 0
hsa-miR-4259 5.08 9.10 × 10−249 hsa-miR-4648 −6.32 0
hsa-miR-6849-5p 4.61 2.22 × 10−172 hsa-miR-4435 −6.38 0
hsa-miR-193a-5p 4.39 4.87 × 10−182 hsa-miR-4276 −6.46 0
hsa-miR-6717-5p 4.24 2.02 × 10−226 hsa-miR-6857-5p −6.49 0
hsa-miR-3934-5p 4.11 2.63 × 10−128 hsa-miR-92a-2-5p −7.19 0
hsa-miR-1343-3p 3.96 0 hsa-miR-1203 −7.37 0

ASO overexpressed ASO underexpressed

hsa-miR-1246 7.09 0 hsa-miR-3184-5p −8.41 0
hsa-miR-1290 6.17 0 hsa-miR-1203 −1.54 2.73 × 10−214

hsa-miR-29b-1-5p 6.03 0 hsa-miR-4730 −1.60 0
hsa-miR-191-5p 5.75 0 hsa-miR-873-3p −1.64 1.79 × 10−173

hsa-miR-451a 5.64 0 hsa-miR-92a-2-5p −1.74 0
hsa-miR-103a-3p 5.17 0 hsa-miR-4276 −1.89 2.65 × 10−242

hsa-miR-4755-3p 5.09 0 hsa-miR-3184-5p −2.01 0
hsa-miR-6131 4.99 0 hsa-miR-4648 −2.05 3.64 × 10−225

hsa-miR-4771 4.96 0 hsa-miR-6857-5p −2.36 4.82 × 10−302

hsa-miR-4480 4.89 0 hsa-miR-4481 −2.55 1.76 × 10−312

Table 2. Top 10 overexpressed and underexpressed cmRNAs.

Gene Symbol Description Log2FC p-Value

Overexpressed genes

BTBD11 BTB domain containing 11 3.108 4.69 × 10−4

ZNF683 Zinc finger protein 683 1.991 6.82 × 10−3

GPATCH4 G-patch domain containing 4 1.754 8.86 × 10−4

EHMT1 Euchromatic histone lysine methyltransferase 1 1.652 3.61 × 10−3

RAB6B Ras-related protein Rab-6B 1.576 9.06 × 10−3

C12orf5 TP53 induced glycolysis regulatory phosphatase 1.569 1.44 × 10−3

GNLY Granulysin 1.569 9.71 × 10−3

RPGRIP1
X-linked retinitis pigmentosa GTPase
regulator-interacting protein 1

1.542 3.44 × 10−4

CPT1B Carnitine palmitoyltransferase I 1.527 4.17 × 10−3

SRI Sorcin 1.525 1.38 × 10−3

Underexpressed genes

WISP3 WNT1-inducible-signaling pathway protein 3 −1.855 5.39 × 10−3

HFE2 Hemojuvelin −1.858 3.08 × 10−3

LOR Loricrin −1.861 4.96 × 10−3

SLC26A11 Sodium-independent sulfate anion transporter −1.875 3.97 × 10−3

DCAF12L2
DDB1- and CUL4-associated factor 12-like
protein 2

−1.885 3.31 × 10−4

DKFZp564N2472 POM121 transmembrane nucleoporin-like 12 −1.885 4.22 × 10−3

FRG2C FSHD region gene 2 family member C −1.921 4.13 × 10−4

PRM2 Protamine 2 −1.95 8.97 × 10−3

PTCH2 Patched 2 −2.022 4.04 × 10−3

NNAT Neuronatin −2.298 9.95 × 10−3
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3.2. Identification of Overlapping miR-1246 Target Genes

Briefly, 9802 miR-1246 TGs were predicted by 12 target gene prediction platforms. Additionally,
the differential expression mRNA of LUAD predicted 1049 genes. The intersection of these gene sets
using Venny demonstrated that 425 miR-1246 TGs were highly expressed in LUAD (Figure 2A).

 

 

− − −

Figure 2. (A) Venny interactive diagram of overlapping miR-1246 genes and differential expression
(DE)-cmRNAs. (B) Biological process of overlapping genes. (C) Molecular functions of overlapping
genes. (D) KEGG pathway enrichment of overlapping genes.

3.3. Functional and Pathway Enrichment of Overlapping miR-1246 Target Genes

The functional and pathway enrichment terms have a great consequence in the regulatory
mechanism of miR-1246 target genes. Plasma-membrane-bound cell projection morphogenesis,
chemosensory behavior, and neuron development are important biological process terms (Figure 2B),
and glycosaminoglycan binding (Figure 2C) is the major molecular functional term of miR-1245
overlapping target genes. KEGG pathways have demonstrated that nicotine addiction, neomycin,
kanamycin and gentamicin biosynthesis, complement and coagulation cascades, ECM-receptor
interaction, and PI3K–Akt signaling pathways are enriched pathway terms regulating miR-1245
overlapping target genes in LUAD (Figure 2D).

3.4. Modules and PTGs Identification

Using 425 overlapping miR-1246 TGs, the PPI network was constructed with 3133 nodes and
4228 interactions (Figure 3). Then, using the Walktrap algorithm, 21 modules with a minimum of
three nodes were predicted from the PPI network. Among them, the top three highly interconnected
modules, having more numbers of nodes, were selected for PTG analysis. Module 1 (33 nodes; p =

1.98 × 10−74); Module 2 (15 nodes; p =1.21 × 10−08), and Module 3 (10 nodes; p =1.62 × 10−14) were
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employed to identify the PTGs (Figure 4). Table 3 demonstrates the degree and betweenness centrality
measures of 12 different PTGs, which include ubiquitin-conjugating enzyme E2C (UBE2C), tubulin
folding cofactor E (TBCE), DnaJ heat shock protein family (Hsp40) member A3 (DNAJA3), paired like
homeodomain 2 (PITX2), transforming growth factor-beta-induced factor 1 (TGIF1), T-cell receptor
alpha locus interacting protein (TRAIP), ubiquitin c-terminal hydrolase L1 (UCHL1), troponin I3
(TNNI3), troponin T1 (TNNT1), neuroblastoma RAS (NRAS) viral oncogene, Rac family small GTPase
3 (RAC3), and the Ephrin-A4 (EFNA4) precursor.

 

 

Figure 3. Protein–protein interaction (PPI) network of overlapping genes of miR-1246 targets and
differentially expressed circulating mRNAs in force atlas layout (red color indicates downregulated
genes, orange color indicates upregulated genes, and yellow color indicates interconnected genes).
Change in the size of the nodes depends on degree centrality measures. UBC is the major node of the
subnetwork that is enriched in ubiquitin-mediated proteolysis.
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Figure 4. Walktrap modules of potential target genes extracted from the PPI network. Sugiyama
layout of Module 1 (33 nodes; p = 1.98 × 10−74); linear bipartite/tripartite layout of Module 2
(15 nodes; p = 1.21 × 10−08); circular bipartite/tripartite layout of Module 3 (10 nodes; p = 1.62 × 10−14).
Red color indicates downregulated, pink color indicates upregulated genes, and blue color indicates
interconnected genes. Change in the size of the nodes depends on degree centrality measures.

Table 3. Degree and betweenness centrality measures of 12 different potential target genes (PTGs).

Official
Symbol

Gene ID Official Full Name
Chromosome

Location
Exon Count Degree Betweenness

UBE2C 11,065
Ubiquitin conjugating

enzyme E2 C
20q13.12 8 34 7811.25

TBCE 6905 Tubulin folding cofactor E 1q42.3 18 13 39.11

DNAJA3 9093
DNAJ heat shock protein
family (Hsp40) member 3

16p13.3 12 12 6127.74

PITX2 5308
Paired-like homeodomain

transcription factor 2
4q25 9 07 4584.14

TGIF1 7050
TGFB induced factor

homeobox 1
18p11.31 12 07 22.32

TRAIP 10,293 TRAF interacting protein 3p21.31 16 06 1533.11

UCHL1 7345
Ubiquitin C-terminal

hydrolase L1
4p13 9 06 1537.48

TNNI3 7137 Troponin I3 19q13.42 8 04 0.23

TNNT1 7138 Troponin T1 19q13.42 15 04 10.91

NRAS 4893
Neuroblastoma RAS viral

oncogene homolog
1p13.2 7 03 247.07

RAC3 5881 Rac family small GTPase 3 17q25.3 6 03 630.68

EFNA4 1945 Ephrin A4 1q21.3 4 03 0
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3.5. Function and Pathway Enrichments of PTGs

The following were enriched molecular function terms: In Module 1, the TNF signaling pathway,
ubiquitin-mediated proteolysis, NOD-like receptor signaling pathways; in Module 2, regulation
of MAP kinase activity, negative regulation of cysteine-type endopeptidase activity involved in the
apoptotic processes, and transmembrane receptor kinase activity; in Module 3, channel inhibitor activity,
calcium-dependent ATPase activity, and calmodulin-binding. The top three biological processes of
the three different modules are microtubule cytoskeleton organization, the DNA metabolic process,
regulation of the intrinsic apoptotic signaling pathway, activation of MAPK activity, positive regulation
of endothelial cell proliferation, Rac protein signal transduction, positive regulation of cell–matrix
adhesion, regulation of the force of heart contraction, and regulation of skeletal muscle contraction,
respectively. The figure indicates the significant BP terms in the three modules (Figure 5A). PTGs of
modules were enriched in many signaling pathways, including necroptosis, protein processing in
the endoplasmic reticulum, ubiquitin-mediated proteolysis, Parkinson’s disease, pathways in cancer,
the MAPK signaling pathway, the mTOR signaling pathway, the Ras signaling pathway, the PI3K−Akt
signaling pathway, Epstein−Barr virus infection, cardiac muscle contraction, adrenergic signaling
in cardiomyocytes, hypertrophic cardiomyopathy, dilated cardiomyopathy, and the neurotrophin
signaling pathway. Among the pathways, three pathways, namely, cancer, ubiquitin-mediated
proteolysis, and Epstein−Barr virus infection, had a high number of gene counts (>75). Ten pathways
had a moderate level of gene counts (>50), including the MAPK signaling pathway, the mTOR signaling
pathway, the Ras signaling pathway, the PI3K−Akt signaling pathway, necroptosis, protein processing
in the endoplasmic reticulum, and dilated cardiomyopathy; two pathways had fewer gene counts
(>25) (Figure 5B).

3.6. Validation of PTGs

3.6.1. Expression of PTGs

There were 12 different PTGs identified from the modules, namely, UBE2C, TBCE, DNAJA3,
PITX2, TGIF1, TRAIP, UCHL1, TNNI3, TNNT1, NRAS, RAC3, and EFNA4, and they demonstrated
a high level of expression in LUAD tissues (Figure 6). As miR-1246 was upregulated in LUAD,
the differentially expressed genes in LUAD have essential importance to act as potential target genes
of miR-1246.

3.6.2. Spearman’s Correlation Analysis of PTGs

Spearman’s correlation analysis indicated that four of the 12 PTGs was significantly and positively
correlated with miR-1246: UBE2C (r = 0.32, p = 2.2 × 10−08), TNNT1 (r = 0.023, p = 0.07), TRAIP
(r = 0.58, p = 8.7 × 10−28), and UCHL1 (r = 0.44, p = 6.5 × 10−15) (Figure 7).

3.6.3. Prognostic Impact of PTGs

KM plots demonstrated the prognostic impact of the PTGs, which was identified from three
different modules of the PPI network. The results explained that the high expression of UBE2C, UCHL1,
TRAIP, TNNT1, TNNI3, and RAC3 were associated with poor overall survival of lung adenocarcinoma
patients (p < 0.05; Figure 8). Moreover, the high expressions of PITX2, NRAS, ENFA4, DNAJA3, TBCE,
and TGIF1 were correlated with longer overall survival of LUAD patients (Figure 9).
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Figure 5. Functional enrichment terms of potential target genes. (A) Biological process;
(B) KEGG pathways.
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Figure 6. Expression of potential target genes in lung adenocarcinoma (LUAD) and control samples
from the Gene Expression Profiling Interactive Analysis (GEPIA) database. Expression of the potential
target genes was detected in 483 LUAD tissues (red in color) and 347 normal tissues (black in color).
Eight potential target genes (A) EFNA4, (B) NRAS, (C) PITX2, (D) RAC3, (E) TNNT1, (F) TRAIP,
(G) UBE2C, and (H) UCHL1 were upregulated in LUAD tissues compared to control.

 

−

− −

Figure 7. Correlation analysis between miR-1246 and 4 PTGs: UBE2C (r = 0.32, p = 2.2 × 10−08), TNNT1
(r = 0.023, p = 0.07), TRAIP (r = 0.58, p = 8.7 × 10−28), and UCHL1 (r = 0.44, p = 6.5 × 10−15).
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Figure 8. The prognostic value of PTGs in LUAD patients. High expression of UBE2C, UCHL1, TRAIP,
TNNT1, TNNI3, and RAC3 was associated with poor overall survival of LUAD patients (p < 0.05).

 

Figure 9. The prognostic value of PTGs in LUAD patients. High expression of PITX2, NRAS, ENFA4,
DNAJA3, TBCE, and TGIF1 was correlated with longer overall survival of LUAD patients (p < 0.05).

3.6.4. Protein Expression of PTGs

The immune–histochemistry of pathological slides of the human protein atlas database
(HPAD) indicated that the protein expressions of PTGs were drastically higher in LUAD
tissues compared with adjacent normal tissues (Figure 10). The IHC data for UBE2C (https:
//www.proteinatlas.org/ENSG00000175063-UBE2C/pathology/lung+cancer#img), UCHL1 (https://
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www.proteinatlas.org/ENSG00000154277-UCHL1/pathology/lung+cancer#img), TRAIP (https://www.
proteinatlas.org/ENSG00000183763-TRAIP/pathology/lung+cancer#img), and RAC3 (https://www.
proteinatlas.org/ENSG00000169750-RAC3/pathology/lung+cancer#img) have a strong intensity, and the
intensity indicates that these PTGs played an initiative role and may be used as a biomarker. The other
PTGs have weak or low intensity, which may be a reason for the availability of a limited number of
samples in the database.

 

 

Figure 10. Immunohistochemistry of the PTGs based on the Human Protein Atlas database
(HPAD). (A) Median staining of EFNA4 in LUAD (antibody: CAB021350; magnification of 4 × 10;
substructures: cytoplasmic/membranous). (B) High staining of NRAS in LUAD (antibody: CAB010157;
magnification of 4 × 10; substructures: cytoplasmic/membranous). (C) Medium staining of RAC3
in LUAD (antibody: HPA047820; magnification of 4 × 10; substructures: cytoplasmic/membranous).
(D) Medium staining of TRAIP in LUAD (antibody: HPA036262; magnification of 4 × 10; substructures:
cytoplasmic/membranous). (E) Medium staining of UBE2C in LUAD (antibody: CAB011464;
magnification of 4 × 10; substructures: cytoplasmic/membranous. (F) Medium staining of UCHL1
in LUAD (antibody: CAB002580; magnification of 4 × 10; substructures: cytoplasmic/membranous).
The staining intensity is strong and quantity: >75% to all the selected protein morphology.

4. Discussion

Continuous intricacy in earlier diagnosis is the main reason for the increased rate of LUAD
individuals. Discovering potential and novel biomarkers and its interactive gene-level mechanism
may lead to higher chances in the diagnosis and prognosis of LUAD [36]. Prognostic markers that
include growth factor and hormone receptors, proliferation and angiogenesis markers, and proteases
provide molecular characteristics and assist the course of therapy [37–39]. On this concern, the result
of the study highlighted miR-1246 gene targets and key signaling pathways in LUAD.

MiR-1246 plays an imperative role in different cancers through their targets. For example,
the expression of miR-1246 was significantly correlated with chemoresistance and cancer stem-cell-like
characteristics and could identify a worse prognosis in cancer patients (pancreatic) by targeting cyclin
G2 protein-coding genes such as CCNG2 [40]. Moreover, Li et al. [41] reported that miR-1246 enhances
the proliferation and invasion of breast cancer cells by repressing the level of its CCNG2 target gene.

238



J. Pers. Med. 2020, 10, 162

Du et al. [42] found that miR-1246 targeted thrombospondin-2 (THBS2) to inhibit cancerous growth and
enhanced apoptosis in cervical cancer. Moreover, miR-1246 directly targeted death receptor 5 (DR5),
which promotes proliferation and increases radioresistance in lung cancers [43]. However, to our
knowledge, the specific role of miR-1246 in LUAD has been insufficiently investigated. Thus, in the
present findings, we examined miR-1246 expression through miRNA sequencing data, which increased
promisingly in LUAD patients. Hypothetically, target genes facilitate the functions of miR-1246.
Therefore, we studied the probable target genes of miR-1246 and its enriched pathways through
KEGG analysis.

For the biological process, we explored plasma-membrane-bound cell projection morphogenesis
as a key function. The top five functional terms were chemosensory behavior, neuron development,
negative regulation of neuron death, biomineral tissue development, and cellular component
morphogenesis and axonogenesis. For molecular function, glycosaminoglycan binding is the major
term. Glycosaminoglycan binds to different protein targets through electrostatic interactions between
positively charged amino acids and negatively charged uronic acids. It is found to be concerned
in multiple signaling cascades as it is mandatory for angiogenesis, cancer invasion, and metastasis.
Similarly, it can also inhibit tumor progression and act as a drug target [44]. Salanti et al. [45]
reported that parasite-derived protein could be exploited to target not only common but also complex
malignancies like melanoma-associated glycosaminoglycan modification. Moreover, the targeting
of glycosaminoglycans chains by tetrabranched peptide-like NT4 provides insights into the role of
heparan sulfate proteoglycans in cancer cell adhesion and migration [46]. Based on those findings,
we speculated that the regulation of miRNAs in glycosaminoglycan binding might improve the efficacy
of LUAD therapeutics theoretically. Exclusively, we hypothesized that miR-1246 might be implicated
in the regulation of glycosaminoglycans, which may persuade the treatment of LUAD patients.

Accordingly, we constructed a PPI interaction network of the TGs and selected the most densely
connected modules based on the degree and between centrality measures. Moreover, we studied the
gene expressions of UBE2C, TBCE, DNAJA3, PITX2, TGIF1, TRAIP, UCHL1, TNNI3, TNNT1, NRAS,
RAC3, and EFNA4, which were high in LUAD tissue samples. Among these, UBE2C, TNNT1, TRAIP,
and UCHL1 were positively correlated with miR-1246. The protein expression of ENFA4, NRAS, RAC3,
TRAIP, UBE2C, and UCHL1 were upregulated in LUAD compared with that of control.

On survival analysis, we determined that UBE2C, UCHL1, TRAIP, TNNT1, TNNI3, and RAC3
were associated with poor overall survival of LUAD patients. Moreover, the high expression of
PITX2, NRAS, ENFA4, DNAJA3, TBCE, and TGIF1 was correlated with longer overall survival of
LUAD patients. The high expression of UBE2C is found in the advanced stage of cancer, which might
point out its involvement in cancer progression and invasion. Additionally, patients with higher
UBE2C levels showed a shorter overall survival (OS) time and worst OS prognosis. It indicated that
UBE2C overexpression positively correlated in several cancers [47]. Accordingly, we hypothesized
that post-translational modification of protein like UBE2C plays key roles in protein degradation,
and protein interactions and their dysregulations in the earlier stage may lead to LUAD. Based on
that, miR-1246 can be implied to target UBE2C, which may contribute to improving LUAD patients’
prognosis and the survival of LUAD patients.

The ubiquitin-conjugating enzyme-2C (UBE-2C) is majorly responsible for the destructive cleavage
of mitotic cyclin proteins for spindle assembly, which leads to the progression of the cell cycle. Moreover,
the expressions of UBE-2C protein or mRNA are aberrantly expressed in various cancer types that lead
to poor clinical results. Therefore, UBE-2C acts as a potential biomarker in cancer [48]. In the case
of gastric cancer, Zhang et al. [49] reported that upregulated miR-17/20a significantly enhances the
growth of gastric cancer cells by directly targeted UBE-2C. Jin et al. [50] reported that the miR-548e-5p,
together with UBE-2C and zinc finger E-box binding homeobox (ZEB1/2), acts as a potential diagnostic
biomarker and target for NSCLC. Moreover, another ubiquitin-protein UCHL1 was reported to promote
uterine serous cancer cell proliferation, cell cycle progression [51], and TGFβ-induced breast cancer
metastasis [52]. So far, no study has mentioned the relationship between miR-1246 and UBE-2C and
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UCHL1 in LUAD. We are the first to report the targeting relationship between miR-1246 and UBE-2C.
Based on the key enriched GO items, we supposed that miR-1246 targets UBE-2C and UCHL1 for the
regulation of ubiquitin-mediated proteolysis and, therefore, persuades the prognosis of LUAD patients.
However, more evidence is needed to validate this hypothesis.

TNNT1 is one of the isoforms of the troponin protein and is highly expressed in skeletal muscle. It
plays key roles in muscle contraction and relaxation. In addition, reports have suggested that TNNT1
could contribute to cell proliferation in breast cancer [53]. Moreover, Hao et al. [54] reported that TNNT1
might promote the progression of colon adenocarcinoma by mediating the epithelial–mesenchymal
transition process. In the present study, we found that TNNT1 was involved in cardiac muscle
contraction, regulation of skeletal muscle contraction, troponin 1, and C binding molecular functions
and associated with poor prognosis of LUAD. As a result, we assumed that miR-1246 might target
TNNT1 and, thus, be associated with skeletal muscle regulation and poor prognosis of LUAD patients.
However, future studies are required to supply more evidence.

TRAIP is a ring-type E3 ubiquitin ligase involved in many cellular functions, namely, NF-κB
activation, DNA damage response, mitosis, and carcinogenesis [55]. Initially, it was considered a
tumor suppressor in basal cell carcinomas and breast cancer [56]. Moreover, Guo et al. [57] reported
that TRAIP exhibited as an oncogene in liver cancer. In the present study, we found that TRAIP was
involved in pathways in cancer, regulation of autophagy, and DNA metabolic process enrichment
terms and associated with poor prognosis of LUAD. As a result, we assumed that miR-1246 might
target TRAIP as the metabolic function plays a key role in the prognosis of LUAD patients. However,
future studies are required to supply more evidence.

Moreover, we also expected to determine the pathways that are associated with miR-1246 and its
potential target genes in LUAD. We identified 12 important pathways that might have an essential role in
the incidence and development of LUAD: pathways in cancer, ubiquitin-mediated proteolysis, protein
processing in the endoplasmic reticulum, necroptosis, hypertrophic cardiomyopathy, cardiac muscle
contraction, focal adhesion, the PI3K–Akt and Ras signaling pathways, the neurotrophin and mTOR
signaling pathways, and the MAPK signaling pathway. Many studies have reported that the PI3K–Akt
signaling pathway, the Ras signaling pathway, the neurotrophic-signaling pathway, the mTOR-signaling
pathway, and the MAPK signaling pathway are regulated in the development of lung adenocarcinoma
patients [58,59]. The PI3K/AKT/mTOR signal pathway is a key intracellular signal transduction pathway,
with an essential function in cell proliferation, growth, survival, vesicle trafficking, glucose transport,
and cytoskeletal organization. As we mentioned above, downregulation of PITX2, TGIF1, and TRAIP,
and upregulation of TBCE may be involved in the different cellular processes (transcription, RNA
splicing, cell cycle, and apoptosis) through the PI3K–Akt–mTOR signaling pathway and the MAPK
signaling pathway, which might improve the survival of LUAD patients. Additionally, underexpression
of TNNI3, TNNT1, and PITX2 might involve four independent pathways of cardiac muscle contraction,
adrenergic signaling in cardiomyocytes, hypertrophic cardiomyopathy, and dilated cardiomyopathy,
which are also incidentally associated through some somatic mutation and proto-oncogenic activities
in LUAD. Besides, targeting Epstein−Barr virus infection and necroptosis pathways regulates the
development of LUAD and the nonapoptotic form of regulated cell death, which may advance the
prognosis of LUAD patients. Moreover, ubiquitin-mediated proteolysis and Parkinson’s disease
pathways are also indirectly associated through proteolysis and cell proliferation in LUAD. UBE-2C
and UCHL1 are enriched in these pathways; we wondered if miR-1246 might target UBE-2C and
UCHL1 and participate in the regulation of the cellular process, which may improve the prognosis of
LUAD patients.
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5. Conclusions

We have done a detailed and complete study about LUAD and miR-1246 using public datasets,
with comprehensive biological network analysis useful for cancer research. Further experimental
studies are still necessary to validate the results, which is a tough but promising task. We assumed that
miR-1246 might target UBE2C, TNNT1, TRAIP, and UCHL1 during the regulation of ubiquitin-mediated
proteolysis, glycosaminoglycan binding, DNA metabolism, the PI3K–Akt–mTOR signaling pathway, the
neurotrophin and cardiomyopathy signaling pathway, and the MAPK signaling pathway. Upregulated
UBE-2C, TNNT1, TRAIP, and UCHL1 may point out better survival of LUAD patients through the
ubiquitin-mediated proteolysis, protein processing in the endoplasmic reticulum, and skeletal muscle
contraction pathways. Moreover, similarly, this study had the limitations of other data-mining methods;
the results of Limma and miRNA target prediction databases can be biased due to insufficient resources.
To enhance the reliability of the results, immunohistochemical data from HPAD were employed for
confirmation. Due to the constraint of HPAD, we could not get all the related IHCs of the tumor and
adjacent normal samples of each potential target gene.
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Abstract: Lung cancer remains the most dangerous type of cancer despite recent progress in
therapeutic modalities. Development of prognostic markers and therapeutic targets is necessary
to enhance lung cancer patient survival. Sestrin family genes (Sestrin1, Sestrin2, and Sestrin3) are
involved in protecting cells from stress. In particular, Sestrin2, which mainly protects cells from
oxidative stress and acts as a leucine sensor protein in mammalian target of rapamycin (mTOR)
signaling, is thought to affect various cancers in different ways. To investigate the role of Sestrin2
expression in lung cancer cells, we knocked down Sestrin2 in A549, a non-small cell lung cancer cell
line; this resulted in reduced cell proliferation, migration, sphere formation, and drug resistance,
suggesting that Sestrin2 is closely related to lung cancer progression. We analyzed Sestrin2 expression
in human tissue using various bioinformatic databases and confirmed higher expression of Sestrin2 in
lung cancer cells than in normal lung cells using Oncomine and the Human Protein Atlas. Moreover,
analyses using Prognoscan and KMplotter showed that Sestrin2 expression is negatively correlated
with the survival of lung cancer patients in multiple datasets. Co-expressed gene analysis revealed
Sestrin2-regulated genes and possible associated pathways. Overall, these data suggest that Sestrin2
expression has prognostic value and that it is a possible therapeutic target in lung cancer.

Keywords: Sestrin2; lung cancer; knockdown; cancer progression; bioinformatics; patient survival

1. Introduction

Cancer, one of the leading causes of death in modern society, poses a threat to human health
worldwide. Among the various cancers, lung and bronchial cancer is the most dangerous cancer type,
with 228,150 new patients and 142,670 deaths reported in 2019 in the United States alone [1]. Cancer
occurrence is gradually increasing with population increase and aging, although there have been
considerable advances in cancer therapy. Developments in the identification of novel cancer targets
and markers are required to improve human health.

Sestrin family genes consist of Sestrin1, Sestrin2, and Sestrin3. Under conditions of stress, sestrins
regulate stress-inducible metabolism and protect cells against various kinds of stressors such as
hypoxia, DNA damage, and oxidative and metabolic stress [2,3]. Sestrin1, also called p53-activated
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gene 26 (PA26), is involved in the growth arrest and DNA damage response pathways [4]. Sestrin2,
also known as hypoxia-inducible gene 95 (Hi95), is involved in mediating the response to hypoxia and
is upregulated by other stressors, such as DNA damage and oxidative stress [5,6]. Sestrin3, as well as
Sestrin2, is known to mediate the regulation of mammalian target of rapamycin 1 (mTORC1) and Akt
activation [7,8]. Expression of these genes decreases the levels of intracellular reactive oxygen species
(ROS) and promotes resistance against oxidative stress [9,10]. A recent study revealed that Sestrin1 and
Sestrin2 activate Nrf2 and subsequently increase Srx, which is important for oxidative metabolism [11].
Sestrin has been shown to interact with p53 and forkhead box class O (FoxO) transcription factors
and mediate antioxidant regulation [12]. Activation of 5′ adenosine monophosphate-activated protein
kinase (AMPK) and inhibition of mTORC1 are important for cell cycle and cell lifespan [13]. Since
sestrins can modulate pathways of cellular metabolism, sestrin expression seems to play an important
role in prolonging life and inhibiting aging [2].

Sestrin2 is an intracellular leucine sensor protein that negatively regulates mTORC1 signaling by
binding to GAP Activity Towards Rags 2 (GATOR2), a subunit of the GATOR complex, in the absence
of leucine. In the presence of leucine, Sestrin2 detaches from GATOR2 and consequently activates
mTORC1 [14–16]. Sestrin2 plays a variety of roles throughout the body and is responsible for mediating
the cellular response against various environmental stressors [2]. Genotoxic stresses, such as UV or
gamma irradiation, and genotoxic molecules promote the transcription of Sestrin1 and Sestrin2 through
the p53 pathway, resulting in cell cycle inhibition and modulation of metabolism in the stressed cells [17].
Oxidative stress activates the Nuclear factor erythroid-2-related factor 2 (NRF2) and Jun N-terminal
kinase-Activator protein 1 (JNK-AP1) pathways, which induce the expression of Sestrin2 [18,19].
Sestrin2 has also been shown to act as a tumor suppressor gene in various cancers [20–22]. In colorectal
cancer, Sestrin2 suppresses mTORC1 signaling by activating AMPK/mTORC pathway, resulting in the
suppression of tumor cell growth [21]. Sestrin2 knockdown accelerates colorectal carcinogenesis [22].
Moreover, Sestrin2 is known to be downregulated in bladder cancer, and when Sestrin2 is induced in
response to mitogen-activated protein kinase 8 (MAPK8)-JUN)-dependent transcription, it suppresses
bladder cancer growth [23]. However, contrary to these results, Sestrin2 is still expressed in various
cancers and may be necessary to increase cancer viability under certain conditions [24].

Based on previous reports, the present study aims to investigate the role of Sestrin2 in the
survival, migration, and sphere formation of lung cancer cells. Further, this study also aims to conduct
bioinformatic analyses for gene expression, prognostic value, and potential related pathways in human
samples using various cancer gene expression databases. The outcome of this study with respect to
Sestrin2 may indicate its potential role in prognostics and therapeutics for lung cancer.

2. Materials and Methods

2.1. Cell Culture

Human lung carcinoma cell line A549 was purchased from The Korea Cell Line Bank (Seoul,
Korea). A549 was cultured in RPMI 1640 medium (Sigma-Aldrich, St. Louis, MO, USA) supplemented
with 10% heat-inactivated fetal bovine serum (FBS, Gibco, Thermo Fisher Scientific Ltd., Waltham, MA,
USA), 100 U/mL penicillin, and 100 mg/mL streptomycin (Gibco). Cells were seeded in cell culture
plates (SPL Lifesciences, Pocheon-si, Korea) and maintained at 37 ◦C in a humidified atmosphere
containing 5% CO2.

2.2. Lentivirus Production and Infection

The short hairpin (shRNA) lentiviral plasmids for Sestrin2 knockdown (shSESN2-1 and shSESN2-2)
and scramble control were purchased from VectorBuilder (Chicago, IL, USA). The sequence of shRNA
was designed as previously reported [25,26]. pLSLPw-shLUC and shSESN2 were provided by
Dr. Andrei Budanov [25]. To prepare the lentivirus, we cultured human embryonic kidney (HEK)
293T cells up to 80% confluence in 6-well plates and transfected with scramble and Sestrin2-targeted
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shRNA plasmids using lipofectamine 3000 (Thermo Fisher Scientific Ltd., Waltham, MA, USA).
After 48 h, the virus-containing medium was collected and filtered with a 0.45 µm membrane filter.
The scramble and shRNA targeting SESN2 (shSESN2) lentivirus supernatant were used to infect
A549 cells, which were incubated overnight. Afterward, the media was replaced with fresh culture
media and the cells were grown. Puromycin was used for treatment 24 h after media change, and the
concentration was 4 µg/mL.

2.3. Total RNA Extraction and RT-PCR

Total RNA was extracted using Labozol (Labopass, Cosmogenetech, Seoul, Korea) with the
experimental protocol provided. The concentration of total RNA was measured using Nanodrop
(IMPLEN, CA, USA). Complementary DNA (cDNA) was synthesized using 2 µg of total RNA with
Moloney Murine Leukemia Virus (MMLV) reverse transcriptase (Promega) as per the experimental
protocol provided. RT-PCR was performed using r-Tap Plus Master Mix (Elpis Biotech, Daejeon, Korea),
and PCR products were analyzed by electrophoresis on a ~1.5% agarose gel containing ethidium
bromide (EtBr) and bands were observed under UV light. Relative expression was measured using
ImageJ (https://imagej.net/). Primer sequences are listed in Supplementary Table S1.

2.4. Cell Survival Assay

For cell proliferation analysis, control and Sestrin2 knockdown cells were seeded in 6-well plates
(5 × 104 cells/well) and cultured for 24, 48, 72, and 96 h. Cells were counted using a hemocytometer
following trypan blue staining. Cell proliferation assay was also carried out using EZ-cytox reagent
(DoGen, Seoul, Korea). Around 1 × 104 cells/well were seeded in 96-well plate and cultured. EZ-cytox
was added at a ratio of 1 to 10 and held in an incubator for 2 h. Afterward, the absorbance was
measured at 450 nm using a fluorescence microplate reader. To observe the drug sensitivity, the cells
were seeded in 6-well plates (1 × 105 cells/well) and grown. After 24 h, doxorubicin and cisplatin were
added to each well and mixed well. The final concentration was 1 µM for doxorubicin and 10 µM
for cisplatin. After 24 h of treatments, the cells were counted using hemocytometer following trypan
blue staining.

2.5. Wound Healing Assay

For the wound healing assay, 95% confluent cells were cultured in a 6-well plate. Cells were
treated with mitomycin C (10 µg/mL) for 2 h, then the monolayer was scratched using a 200 µL tip and
the media was replaced with fresh culture media with 10% fetal bovine serum (FBS). The wound area
was marked, and photos were taken every 12 h. Pictures were analyzed, and closure percentage was
measured using ImageJ.

2.6. Sphere-Forming Assay

Cells (1 × 105) were seeded in a non-coated 60 mm petri dish (SPL Lifesciences, catalogue number
11035) and cultured in the presence of sphere-forming media (serum-free DMEM/F12 media containing
B27 supplement, 20 ng/mL epidermal growth factor (EGF) (Sigma-Aldrich, St. Louis, MO, USA),
10 µg/mL insulin (Sigma-Aldrich), and 1% bovine serum albumin (Sigma-Aldrich)). After 5 days,
spheres were collected and stained with crystal violet (Sigma-Aldrich). Sphere sizes were measured
using ImageJ.

2.7. Dichlorodihydrofluorescein Diacetate (DCFDA) Cellular ROS Assay

Cells (1 × 104) were seeded in 96-well plates. After 24 h, 2′,7′-dichlorodihydrofluorescein diacetate
(DCFDA) (Invitrogen, Waltham, MA, USA) was added to the cells at a final concentration of 10 mM,
followed by incubation at 37 ◦C for 30 min. After removing the DCFDA media, cells were washed with
DPBS and fluorescence was measured immediately on a fluorescence microplate reader (SpectraMAX,
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Molecular Devices). For flow cytometry, cells (5 × 105) were seeded and cultured in 6-well plates.
After 24 h, DCFDA was added to cells and incubated for 30 min. DCFDA media was removed, and cells
were washed with Dulbecco’s Phosphate-Buffered Saline (DPBS), detached by trypsin, and analyzed
by flow cytometry (FACSCalibur, Becton Dickinson).

2.8. Oncomine Database Analysis

The expression of Sestrin2 mRNA was analyzed using Oncomine with the Okayama Lung
Statistics and Selamat Lung Statistics datasets (https://www.oncomine.org/resource/login.html) [27,28].
mRNA expression was compared between lung cancer and normal tissues using parameters with a
threshold p-value of 1 × 10−4 and gene ranking in the top 10%. We also analyzed genes co-expressed
with Sestrin2 in the Bass lung dataset.

2.9. The Human Protein Atlas

Expression of Sestrin2 protein in lung cancer tissue and normal tissue was analyzed using the
Human Protein Atlas (https://www.proteinatlas.org/). The normal lung tissue from Patient 2268 was
compared with lung cancer tissue from patient 3391 that stained with Sestrin2 antibody (HPA018191,
Sigma-Aldrich, St. Louis, MO, USA).

2.10. Prognoscan and Kaplan-Meier Plotter

The correlation between Sestrin2 expression and survival rate in lung cancer patients was
analyzed using Prognoscan and the Kaplan-Meier plotter database. Prognoscan is a database that
includes prognostic data for various cancers (http://dna00.bio.kyutech.ac.jp/PrognoScan/) [29]. Gene
Expression Omnibus (GSE)3141–overall survival (hazard ratio = 2.38) and GSE11117–overall survival
(hazard ratio = 2.59) were analyzed using Prognoscan with a Cox p-value < 0.05. The Kaplan-Meier
plotter database was used to analyze mRNA Affymetrix Genechip and RNA-sequencing datasets for
lung squamous cell carcinoma patient.

2.11. cBioPortal Database Analysis

The mutation and alteration of Sestrin2 were analyzed using cBioportal, a free-access bioinformatic
website (http://www.cbioportal.org/) [30]. cBioportal provides clinical characteristic data from
225 cancer studies in The Cancer Genome Atlas (TCGA) datasets. The mutations in 2704 cases
of lung cancer and gene alteration in 2324 cases were analyzed. Copy number alteration analysis was
performed using the GISTIC (Genomic Identification of Significant Targets in Cancer) algorithm and
plotted using TCGA mRNA expression data.

2.12. Enrichr Gene Ontology (GO) Analysis

To analyze the ontology of Sestrin2 and co-expressed genes, the Enrichr database was used
(https://amp.pharm.mssm.edu/Enrichr) [31]. GO and pathway analyses were visualized as a bar graph.
GO biological process, molecular function, cellular component, and Kyoto Encyclopedia of Genes and
Genomes information were also included in the analysis.

2.13. Statistical Analysis

Data were analyzed using GraphPad Prism 6 (Sandiego, CA, USA) and Excel 2006 (Microsoft
Corporation, Redmond, WA, USA). Statistical analyses were conducted using a T-test and statistical
significance was defined as * p < 0.05.
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3. Results

3.1. Knockdown of Sestrin2 in a Lung Cancer Cell Line Leads to Reduced Cancer Cell Survival and Migration

We detected relatively high Sestrin2 expression in A549, a non-small cell lung cancer cell line
compared to other cell lines tested (Supplementary Figure S1). To investigate the effect of Sestrin2 on lung
cancer cells, we examined the effects of Sestrin2 knockdown in these cells. Knockdown was performed
using Sestrin2-targeted shRNA cloned in a lentiviral vector. Reverse transcription-polymerase chain
reaction (RT-PCR) analysis revealed that expression of Sestrin2 was reduced by shRNA in A549 cells
(Figure 1A). Sestrin2 expression was decreased 72% by shSESN2-1 and 92% by shSESN2-2 compared
to the scramble control. To observe the effect of Sestrin2 in cancer cells, we compared the viability
of A549 cells treated with both shSESN2 and scramble control. The number of Sestrin2 knockdown
cells with shSESN2-1 and SESN2-2 was significantly reduced compared to that in the scramble control
(Figure 1B and Supplementary Figure S2). We performed a wound healing assay with A549 cells to
examine the effect of Sestrin2 expression on cancer cell migration (Figure 1C). The results showed
that the gap distance of the wound in scramble control cells was more closed than that in either
Sestrin2 knockdown cultures. The expression of epithelial–mesenchymal transition (EMT) markers,
which might contribute to cancer metastasis, was also observed (Figure 1D). RT-PCR revealed that the
expression of EMT markers (Vimentin, Snail, ZEB1) was significantly reduced in Sestrin2 knockdown
cells compared to that in scramble cells. Overall, we suggest that Sestrin2 expression is related to
survival and migration in the A549 lung cancer cell line.

–

–

Figure 1. Survival and migration were decreased in response to Sestrin2 knockdown in A549 lung
cancer cells. (A) Expression of Sestrin2 in shSESN2-1, shSESN2-2, and scramble A549 cells as measured
by RT-PCR followed by subsequent agarose gel analysis. Band density was measured with ImageJ and
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is plotted as the value relative to scramble control. (B) Survival of scramble, shSESN2-1, and shSESN2-2
cells was measured using trypan blue staining. The number of cells was counted using a hemocytometer.
(C) The wound healing assay revealed cell movement capacity. Cells were observed at the indicated
time, and closure percentage is plotted. The photo was taken under an inverted light microscope and
closure percentage was measured using ImageJ. (D) The mRNA expression of epithelial–mesenchymal
transition markers (Vimentin, Snail, ZEB1) was downregulated in Sestrin2 knockdown cells compared
to that in scramble cells. Band density was measured using ImageJ and is plotted on the right (** p < 0.01;
*** p < 0.005; **** p < 0.0001).

3.2. Knockdown of Sestrin2 in Lung Cancer Cells Decreases Cancer Cell Stemness and Drug Resistance

To investigate the role of Sestrin2 in cancer cell stemness, we determined the expression of
stemness marker genes by RT-PCR (Figure 2A). Expression of stemness markers Oct4, Sox2, and Nanog
was decreased in Sestrin2-knockdown A549 cells compared to that in the scramble control. The effect
of Sestrin2 gene on cancer stemness by sphere-forming assay was also determined (Figure 2B). The size
of the spheres formed by the Sestrin2 knockdown A549 cells was smaller than that formed by scramble
A549 cells. This result showed that Sestrin2 knockdown reduced lung cancer stemness. To evaluate
the effect of Sestrin2 on drug sensitivity, the expression of drug resistance marker genes (ABCG,
ABCA2) was determined using RT-PCR (Figure 2C). Expression of the drug resistance marker genes
was decreased in Sestrin2 knockdown A549 cells compared to that in cells with scramble (Figure 2C).
In addition, cell survival assay was performed on knockdown and scramble cells treated with the
anticancer drugs doxorubicin and cisplatin, which induce oxidative stress by increasing the ROS
level [32] (Figure 2D). The survival rate of Sestrin2 knockdown cells was significantly decreased
compared to that of scramble cells regardless of anticancer drug treatment. However, the percentage of
cells recovered with doxorubicin treatment was 49.7% for scramble control, 41.6% for shSESN2-1, 41.1%
for shSESN2-2 compared to no treatment control. The reduced recovery rate of Sestrin2 knockdown
cells in doxorubicin treatment suggests that cells became more sensitive to doxorubicin treatment.
These results suggest that the expression of Sestrin2 could be involved in mediating the development
of cancer stemness and drug resistance in lung cancer cell lines.

3.3. Expression of Sestrin2 is Related to ROS Regulation in A549 Lung Cancer Cells

NF-E2-related factor 2 (NRF2) is a critical transcription factor regulating intracellular antioxidants
and detoxification enzymes [33]. In cancers, the NRF2-mediated antioxidant pathways protect cells
from drugs such as doxorubicin and cisplatin [34]. Because Sestrin2 activates the NRF2 pathway
in cancer cells [11], the effect of Sestrin2 knockdown on NRF2 and oxidative status of A549 cells
was investigated. For ROS measurement by DCFDA assay, Sestrin2 knockdown cells without GFP
expression were generated, and the knockdown of Sestrin2 and downregulation of NRF2 and heme
oxygenase (HO-1) were confirmed in A549 cells (Figure 3A). Reduced expression of NRF2 and HO-1

were also observed in Sestrin2 knockdown A549 cells with the shRNA vectors used in Figures 1 and 2
(Supplementary Figure S3). The intracellular ROS level was then measured using the DCFDA assay.
In the Sestrin2 knockdown cells, ROS levels were significantly increased by nearly threefold (Figure 3B).
The increase in ROS levels was also indicated by flow cytometry (Figure 3C). These results suggest that
Sestrin2 affects the regulation of the NRF2-HO-1 pathway and ROS level in A549 cancer cells.

3.4. Sestrin2 Expression and Correlation with Patient Survival in Lung Cancer

Knockdown of Sestrin2 in A549 cells suppressed cancer cell properties such as proliferation,
migration, stemness, and drug resistance, which are critical to cancer progression. To examine the role
of Sestrin2 in human lung cancer, we used a publicly available gene expression database of cancer
tissues. In analysis using the Oncomine database, Sestrin2 mRNA expression was higher in lung cancer
tissue than in normal lung tissue in the Okayama Lung Statistics dataset (fold change, 1.295; p-value:
3.34 × 10−7) (Figure 4A). Histochemistry data for lung cancer using the Human Protein Atlas revealed
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that Sestrin2 protein was highly expressed in lung cancer (Figure 4B). The lung tumor was strongly
stained by Sestrin2 antibody HPA018191 (patient ID = 3391), while pneumocytes of the normal lung
were stained less strongly (patient ID = 2268). Based on these results, we suggest Sestrin2 is highly
expressed in lung cancer than in the normal tissue.

Figure 2. Effect of Sestrin2 expression on stemness and drug resistance in A549 cells. (A) Expression of
stemness marker in scramble and shSESN2 A549 cells was analyzed using RT-PCR. mRNA expression
relative to scramble control is shown in the graph. (B) Sphere-forming assay of scramble and Sestrin2
knockdown A549 cells. Cells were seeded in a petri dish and cultured in sphere-forming media.
Spheres were evaluated after 5 days of culture using crystal violet, and then photos were taken. The size
of the spheres was measured by ImageJ. The enlarged photo at the top left represents spheres in a
circle. (C) Expression of the drug resistance marker genes (ABCG2, ABCA2) in scramble and shSESN2
A549 cells was analyzed using RT-PCR. (D) Drug resistance assay with doxorubicin and cisplatin,
ROS-generating anticancer drugs. Scrambled control, shSESN2-1, and shSESN2-2 cells were treated
with 1 µM doxorubicin or 10 µM cisplatin for 24 h and subjected to cell counting with trypan exclusion
(* p < 0.05; ** p < 0.01; **** p < 0.0001).

treated with 1 μM doxorubicin or 10 μM cisplatin for 24 

2′ 7′

−

Figure 3. Sestrin2 knockdown leads to reactive oxygen species (ROS) overproduction by inhibiting
the oxidative stress response. (A) Expression of NRF2 and HO-1 in control and shSESN2 A549 cells
measured by RT-PCR. A549 cells were transduced with lentiviral pLSLPw-shLUC and shSESN2 plasmids.
(B) 2′,7′-Dichlorodihydrofluorescein diacetate (DCFDA) cellular ROS assay. A549 cells were stained
with DCFDA and washed. The emitted fluorescence was measured using a fluorescence microplate
reader (B) and flow cytometer (C). MFI: mean fluorescence intensity (*** p < 0.005; **** p < 0.0001).
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Figure 4. Sestrin2 mRNA expression analysis in lung cancer patients using various bioinformatic
databases. (A) Oncomine database analysis of Okayama Lung statistics comparing Sestrin2 mRNA
expression in normal lung with that in lung cancer. (B) Human Protein Atlas analysis for patient tissue
staining. The normal lung tissue is stained with a low amount of Sestrin2 antibody (patient ID = 2268)
while the lung cancer tissue is stained with a high amount of Sestrin2 antibody (patient ID = 3391)
(C) Forest plots of GEO datasets evaluating association of sestrin2 expression and overall survival in
lung cancer datasets in Prognoscan database. Hazard ratio (HR) with 95% confidential interval (CI) and
p-values are labeled in the right column of each forest plot. (D) The survival rate graph compares high
(red) and low (blue) Sestrin2 expression in non-small cell lung cancer patients. Prognoscan database
analysis survival curve plotter using GSE3141–overall survival (hazard ratio = 2.38, p-value = 0.0037)
(high n = 89, low n = 22) and GSE11117–overall survival (hazard ratio = 2.59, p-value = 0.023) (high
n = 6, low n = 35) datasets. (E) The survival rate graph compares high (red) and low (black) Sestrin2
expression in lung squamous cell carcinoma patients. The 223195_s_at dataset was analyzed with
RNAseq and Affymetrix Genechip using KM plotter.
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The correlation between Sestrin2 expression and lung cancer patient survival was analyzed using
KM plotter and Prognoscan. In meta-analysis using Prognoscan database, patient overall survival was
significantly correlated with Sestrin2 expression in three lung cancer datasets (Figure 4C). The survival
rate of the lung cancer patient group with high Sestrin2 expression was lower than that in the patient
group with low Sestrin2 expression in the GSE3141 dataset (p-value: 0.0037) and in the GSE11117
(p-value: 0.023) (Figure 4D). However, Sestrin2 expression is positively correlated with patient overall
survival in the GSE13213. In KM plotter analysis, the lung squamous carcinoma patient group with
higher Sestrin2 expression had worse overall survival than the patient group with lower Sestrin2
expression in the RNAseq dataset (p-value: 0.042) and in the Affymetrix Genechip dataset with probe
223195_s_at (p-value: 0.023) (Figure 4D). Overall, Sestrin2 expression is negatively correlated with
survival of patients with lung cancer in multiple lung cancer expression datasets.

3.5. Mutation and Alteration of Sestrin2 Gene in Lung Cancer

Mutations in lung cancer patients were analyzed using cBioportal web. The mutations of Sestrin2
in lung cancer patients were analyzed across 4510 samples from 4154 patients in 16 studies. Thirty-six
mutations were analyzed in the Sestrin2 protein (Figure 5A). Mutation occurred in 2.19% of the samples,
and deep deletion occurred in 0.55% of the samples, resulting in gene alteration in 2.73% of the lung
adenocarcinoma Broad dataset (Figure 5B,C). Expression of Sestrin2 was also analyzed based on gene
alteration (Figure 5D). Expression of Sestrin2 increased the following in order: deep deletion (DD),
shallow deletion (SD), diploid (D), gain (G), and amplification (A) in lung adenocarcinoma and lung
squamous cell carcinoma. We suggest that mRNA expression of Sestrin2 is associated with copy
number alteration.

3.6. Genes co-Expressed with Sestrin2 in Lung Cancer

To explore Sestrin2-related pathways, the genes co-expressed with Sestrin2 were analyzed in the
Bass lung dataset using Oncomine (Figure 6A). Highly co-expressed genes are listed by correlation
rate. Ontology analysis was performed with Sestrin2 and its 11 co-expressed genes using Enrichr
(Figure 6B). In GO analysis, Sestrin2 and its positively co-expressed genes were analyzed in biological
processes, molecular function, and cellular components. In GO biological process, regulation of
cell cycle process and protein tetramerization were highly related. Moreover, DNA-directed RNA
polymerase 2 holoenzyme and RNA polymerase II transcription factor complex were associated in
GO cellular component. In GO molecular function analysis, the most highly ranked terms were N-6
methyladenosine-containing RNA binding and leucine binding. In the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway database, the term ‘basal transcription factors’ was related to Sestrin2
and positively co-expressed genes. To check whether Sestrin2 expression regulates the expression
of co-expressed genes, we analyzed the expression of the top 5 genes in Sestrin2-knockdown A549
cells by RT-PCR. Expression of all top 5 co-expressed genes was reduced in Sestrin2-knockdown cells
(Figure 6C). These co-expressed gene profiles implied that Sestrin2 expression could regulate the
expression of multiple co-expressed genes, possibly related to tumor progression.
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Figure 5. Sestrin2 mutation and alteration in TCGA lung cancer. (A) The mutation plot shows the
location and type of mutation in Sestrin2. (B) Sestrin2 mutation analysis using cBioportal. Green:
mutation. (C) Sestrin2 alteration analysis using cBioportal. Red: amplification; blue: deep deletion.
(D) Copy number alteration of Sestrin2 mRNA expression in TCGA lung adenocarcinoma and TCGA
lung squamous cell cancer datasets. Sestrin2 expression positively related to the copy number alteration
status, deep deletion (DD), shadow deletion (SD), diploid (D), gain (G), and amplification (A). (* p < 0.05;
**** p < 0.0001).
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and Genomes (KEGG) pathway database, the term ‘basal transcription factors’ was related to Sestrin2 

Figure 6. Sestrin2 co-expression gene analysis using RT-PCR (A) Co-expression gene analysis in
the Bass lung dataset using the Oncomine database. (B) GO and KEGG analysis with Sestrin2 and
co-expressed genes using Enrichr; bar graph listed by p-value. The brighter the bar color, the more
significant the related pathway. (C) The expression of top 5 co-expression genes was downregulated
in Sestrin2 knockdown A549 cell as shown by RT-PCR. Fold-change was measured by ImageJ; graph
shown to the right. (** p < 0.01; *** p < 0.005; **** p < 0.0001).

4. Discussion

Sestrin2, a highly evolutionarily conserved protein, is involved in mediating cellular responses to
various stressors. It has a protective effect against physiological and pathological conditions, mainly
through regulating oxidative stress and inflammation [35]. Sestrin2 is a leucine sensor protein that
regulates mTORC1 signaling that is related to cell proliferation and growth. Sestrin2 also plays an
important role in cell protection and homeostasis, mainly by the downregulation of ROS and mTOR
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signaling [36]. It belongs to the family of stress-inducible proteins that has a pivotal role in regulating
antioxidants, autophagy, and apoptosis, thereby enabling protection from any form of DNA damage,
oxidative stress, hypoxia, or metabolic stress [37]. As a result, Sestrin2 keeps cells healthy, and it
has been suggested that it may prevent cancer. In this paper, we investigated the effect of Sestrin2
knockdown in A549, a non-small cell lung cancer cell line, and analyzed the prognostic value of
Sestrin2 expression in human lung cancer by employing various bioinformatic tools on various lung
cancer datasets.

In the A549 lung cancer cell line, Sestrin2 knockdown led to downregulation of cancer properties,
confirming the oncogenic function of Sestrin2. Our data showed that Sestrin2 knockdown resulted
in reduced tumor cell proliferation and migration (Figure 1). Moreover, in the sphere-forming assay,
the size of sphere was significantly decreased upon Sestrin2 knockdown in A549 cells (Figure 2). Based
on these results, we suggest that Sestrin2 has oncogenic effects in lung cancer cells. Consistently,
lung cancer cells from Sestrin2-deficient mice showed slower growth rates than did those from wild
type mice [38]. However, Sestrin2 knockdown has also been reported to promote proliferation of
cancer cells, inhibit apoptosis of cells [38–40], and enhance migration in the wound healing assay [40],
which is in complete contrast to our results. Several previous studies have reported that Sestrin2
can work as a tumor suppressor gene in various cancers [20–22]. Sestrin2 was proposed to regulate
AMPK/mTORC pathway activation and tumor cell growth in colorectal cancer [21], and Sestrin2
knockdown accelerated colorectal carcinogenesis [22]. Sestrin2 is also known to be downregulated
in bladder cancer, and Sestrin2 expression upon MAPK-JUN-dependent transcription leads to the
suppression of bladder cancer growth [23]. However, contrary to these results, Sestrin2 is still expressed
in various cancers and may be necessary to increase cancer viability under certain conditions [24].
In lung cancers, there have also been conflicting reports about the role of Sestrin2. Downregulated
Sestrin2 expression reduces death-receptor-induced apoptosis in lung cancer cell lines [25]. Sestrin2
expression is positively correlated with patient survival in 210 non-small cell lung cancer (NSCLC)
tissue samples [41]. However, in glutamine-depleted lung cancer cells, upregulated Sestrin2 increases
cell survival [42]. Based on contradictory reports, Sestrin2 expression studies on cancer progression
could reveal opposite results, likely dependent on different cellular conditions, which need to be
characterized in detail in future studies. Differences in the effects of Sestrin2 knockdown on cellular
proliferation and migration might be due to differences in culture conditions between laboratories,
originating from use of different reagents such as batches of fetal bovine serum, or different protocol
details such as cell numbers used for each assay or subculture.

Sestrin2 knockdown increased the intracellular ROS concentration in A549 cells with reduced
expression of antioxidant genes nrf-2 and HO-1 (Figure 3). In A549 cells, reduction in intracellular
ROS concentration by the antioxidant molecule N-acetyl cysteine enhanced cellular proliferation [43],
suggesting that reduced intracellular ROS level is a favorable condition for proliferation. Therefore,
increased amount of ROS in Sestrin2 knockdown A549 cells may be a negative regulator of cellular
proliferation and/or apoptosis induction. Treatment with doxorubicin or cisplatin induces cell death
via the increase of ROS in A549 cells [44,45]. Sensitization to doxorubicin and cisplatin in Sestrin2
knockdown cell was not apparently detectable because impaired proliferation of Sestrin2 knockdown
cells already reduced the recovered number of cells in no treatment control cells. However, the reduction
in the rate of survival in Sestrin2 knockdown A549 cells in the doxorubicin-treated group is larger than
that of no treatment control, suggesting sensitization to doxorubicin treatment in Sestrin2 knockdown
cells (Figure 2D). Overall, our in vitro Sestrin2 knockdown experiment supports the assumption
that reduced expression of Sestrin2 could be a favorable prognostic marker for survival of lung
cancer patients.

In addition, we analyzed gene expression databases with various web tools to investigate the
expression and prognostic value of Sestrin2 in lung cancers. In a dataset in the Oncomine database,
mRNA expression of Sestrin2 was upregulated in lung cancer compared to that in normal tissue.
Sestrin2 protein expression was upregulated in lung cancer patients in the Human Protein Atlas.
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In addition, Sestrin2 mRNA expression was negatively correlated with the survival of lung cancer
patients in multiple datasets. These results suggest that overexpressed Sestrin2 could have a poor
prognostic value in lung cancer, which was in agreement with our in vitro data using A549 cells.

In the tumorigenesis processes, somatic loss-of-function or gain-of-function alterations in specific
genes could have carcinogenic effects. However, mutations in the Sestrin2 gene have not been studied.
Therefore, we used cBioPortal to determine mutations and CNAs in Sestrin2 gene. we a found several
missense and truncating mutations within Sestrin2 protein-coding sequences (Figure 5A). The impact
of each mutation in Sestrin2 has not been experimentally validated. We also found that expression of
Sestrin2 was associated with the copy number alterations. This result implies that augmented Sestrin2
expression could be caused by the copy number alteration in lung cancer cells.

The co-expressed gene profile of Sestrin2 revealed pathways associated with Sestrin2 (Figure 6).
The most highly rated gene ontology terms of GO biological process was regulation of cell cycle, which
is closely related to cancer growth. Highly ranked terms in GO cellular component included RNA
polymerase II (GO:0016591 and GO:0090575). Other terms including core mediator complex, STAGA
complex, SAGA complex, transcription factor TFTC complex, condensation nuclear chromosome,
and condensed chromosome are related to histone acetylation and chromosomal condensation. Most
of the terms for GO cellular component suggested that Sestrin2 may be involved in transcriptional
control through chromosomal condensation. The most highly ranked term in GO molecular function,
N6-methyladenosine-containing RNA binding, may also be involved in transcriptional control;
N6-methyladenosine is the most frequent mRNA modification significantly affecting gene expression
and splicing [46]. KEGG pathway analysis includes p53 and mTOR signaling pathways, which were
already known from previous studies [16]. Most importantly, knockdown of Sestrin2 also suppressed
the expression of most highly correlated genes, which means that Sestrin2 is the upstream regulator of
these associated pathways. This co-expressed gene analysis strongly suggests that Sestrin2 may be a
key regulator of gene expression in lung cancer cells, which remains to be elucidated in further studies.

In this study, we investigated the impact of Sestrin2 expression in lung cancer with knockdown in
a lung cancer cell line in vitro, and bioinformatic analysis using gene expression datasets of lung cancer.
Further subsequent investigation using lung cancer cells including key cancer pathway analysis and
in vivo study using animal model remains to be studied to elucidate the underlying mechanism of
Sestrin2 in lung cancer.

5. Conclusions

In conclusion, Sestrin2 knockdown in lung cancer cells suppressed cancer cell properties, including
proliferation, migration, stemness, and drug resistance. In human cancer expression datasets, increased
expression of Sestrin2 and correlation of Sestrin2 expression with lung cancer patient survival was
observed. Sestrin2 may be an upstream regulatory gene for its associated pathways. Thus, Sestrin2
may have prognostic value and serve as a therapeutic target in lung cancer.
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Cell Proliferation assay of scramble, shSESN2-1, and shSESN2-2 cells. Cell viability was measured using EZ cytox
reagent at 1, 2, 3, and 4 day after seeing and incubating cells (1 × 104 per well in 96 well plate). The absorbance
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and HO1 by RT PCR in knockdown A549 lung cancer cell.
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