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and Miguel Marchamalo

A Model-Based Volume Estimator that Accounts for Both Land Cover Misclassification and 
Model Prediction Uncertainty
Reprinted from: Remote Sens. 2020, 12, 3360, doi:10.3390/rs12203360 . . . . . . . . . . . . . . . . . 73

Ying Guo, Zengyuan Li, Erxue Chen, Xu Zhang, Lei Zhao, Enen Xu, Yanan Hou and Rui Sun

An End-to-End Deep Fusion Model for Mapping Forests at Tree Species Levels with High
Spatial Resolution Satellite Imagery
Reprinted from: Remote Sens. 2020, 12, 3324, doi:10.3390/rs12203324 . . . . . . . . . . . . . . . . . 97

Dirk Hoekman, Boris Kooij, Marcela Qui ñones, Sam Vellekoop, Ita Carolita, 
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Editorial Summary

The need for timely, spatially, and thematically accurate information regarding forests
is increasing because of the key role of forests in the global carbon balance and sustainable
social, economic, ecological, and cultural development. While an increasing number of
countries in the world already are conducting statistically sound forest inventories, a
few for 100 years, inventories in other countries are still lacking, which makes the global
information about forest statistics inaccurate.

The total global forest area based on the Forest Resource Assessment report of the
United Nations FAO from 2020 was 4.06 billion hectares, which is 31 percent of the total
land area. The rate of net forest loss declined from 7.8 million ha per year in the decade
1990–2000 to 4.7 million ha per year in 2010–2020. The net forest area loss in 2010–2020
was the largest in Africa, while the largest increases were in Asia and Europe. The world’s
total growing stock of trees decreased slightly, from 560 billion cubic metres in 1990 to 557
billion cubic metres in 2020, due to a net decrease in forest area while the stock per unit
area increased from 132 in 1990 to 137 cubic metres per ha in 2020.

Remote sensing techniques have been utilized for National Forest Inventories (NFI) for
many decades, first using mainly airborne sensors such as photography, but increasingly,
space-borne sensors such as Landsat. Remotely sensed data have also been used at a
global level by FAO for the purpose of comparison and as complementary information,
since 1980. Some institutes have attempted to conduct global forest inventories, sometimes
providing contradicting information. This implies that remote sensing-based approaches
are vulnerable to misclassification and inaccurate estimation of forest parameters and
changes, such as the recognition of temporarily unstocked forest areas, forest degradation,
and species composition, as well as in strictly following the globally adopted definitions.

Active remote sensing technologies, such as Airborne Laser Scanning (ALS) and,
in particular, Synthetic Aperture Radar (SAR), which are becoming increasingly available,
provide new opportunities for large-area and global forest inventory, and sufficient re-
peat monitoring in a cost-efficient way. Technically and statistically sound methods are
still being developed. Some gaps exist in global forest monitoring using remote sensing,
such as difficulties in estimating subtle changes as well as the lack of statistically sound
uncertainty estimates.

This Special Issue includes papers that attempt to overcome the gaps and describe
state-of-the-art of remote sensing for forest parameter estimation and change monitoring
at national, continental, or global scales.

Remote Sens. 2021, 13, 597. https://doi.org/10.3390/rs13040597 https://www.mdpi.com/journal/remotesensing

1



Remote Sens. 2021, 13, 597

A short summary of the articles published is given below.
(1) Detection of Forest Windstorm Damages with Multitemporal SAR Data—A Case

Study: Finland. Multitemporal Sentinel-1 data together with other geo-referenced data
were used to develop methods to localize forest windstorm damages, assess their severity
and estimate the total area damaged, preliminarily without new training data. The study
was the first step towards an operational system for near-real-time windstorm damage
monitoring. The improved k-NN method, multinomial logistic regression and support
vector machine classification methods were fine-tuned and their predictions were evaluated.
A method to estimate the confidence intervals of the probabilities of the predicted categories
was proposed.

(2) Forest Drought Response Index (ForDRI): A New Combined Model to Monitor
Forest Drought in the Eastern United States. A new forest soil drought response index
(ForDRI) for long term spatial drought monitoring was developed. It uses space-borne
remotely sensed data (MODIS) and other geo-referenced data. The new index identified
extreme drought periods that are compatible with those calculated from forest flux-tower
data. The tree ring analyses showed the impact of the drought on the tree growth.

(3) Large Uncertainty on Forest Area Change in the Early 21st Century among Widely
Used Global Land Cover Datasets. The study shows large variation and inconsistency
in the estimates of forest area changes that are based on the widely used global data sets
and calls for the development of a more accurate database to support forest policies and
contribute to global actions against climate change.

(4) A Model-Based Volume Estimator that Accounts for Both Land Cover Misclassifi-
cation and Model Prediction Uncertainty. The study estimated the effects of the uncertainty
of forest species maps used in sampling and on the volume estimation. The conclusions
drawn were: (1) the effects of uncertainty in the forest species map on the uncertainty of
large area volume estimates are not negligible; (2) overall, the effects of uncertainty in the
forest species map on area estimates were greater than the effects of uncertainty in the map
on the selection of field plots used to calibrate the random forest volume prediction model;
(3) the effects of the forest species map uncertainty increased for open forest species or less
representative forest species; (4) bootstrapping estimates demonstrated the suitability of
this technique to accommodate the effects of uncertainty from more than one source; and,
(5) the results are relevant for countries that use a remote sensing-based forest/non-forest
map to guide the establishment of field plots.

(5) An End-to-End Deep Fusion Model for Mapping Forests at Tree Species Levels with
High Spatial Resolution Satellite Imagery. A new end-to-end deep learning fusion method
using high spatial resolution remote sensing images was developed by combining the
advantageous properties of multi-modality representations and the powerful features of
post-processing step to optimize the classification accuracy of the dominant tree species in
a highly automated way. The accuracy of the method was tested for several plantation tree
species in two test sites in China, such as Chinese pine and Larix principis in the northern
test area, and Eucalyptus in the southern test area.

(6) Wide-Area Near-Real-Time Monitoring of Tropical Forest Degradation and Defor-
estation Using Sentinel-1. The system introduced combined time-series analysis of small
objects that were identified in Sentinel-1 data, which is, segments containing linear features
and apparent small-scale disturbances. A physical model was introduced for quantifying
the size of small (upper-) canopy gaps. Deforestation detection was evaluated for several
forest landscapes in the Amazon and Borneo. In peat swamp forests, narrow linear canopy
gaps (road and canal systems) could be detected, including many gaps that are barely
visible on hi-res SPOT-6/7 images. When compared to optical data, subtle degradation
signals are easier to detect and they are not quickly lost over time due to fast re-vegetation.
The method looks promising in recognizing relatively small changes in forest canopy cover,
such as those caused by ditching or small scale logging.

(7) A Near Real-Time Method for Forest Change Detection Based on a Structural
Time Series Model and the Kalman Filter. A stochastic modelling method that combines
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a structural time series model with the Kalman filter was developed for near-real-time
monitoring of forest changes, caused, e.g., by damages. The method was demonstrated
while using Sentinel-2 data and test sites in Malawi (dry tropical forest) and Austria
(temperate deciduous, coniferous, and mixed forests). The method looks promising for
an automated REDD+ (Reducing Emissions from Deforestation and Forest Degradation)
services in the tropics and windthrow damage assessment or bark beetle monitoring in
Central Europe.

(8) Characterizing the Error and Bias of Remotely Sensed LAI Products: An Example
for Tropical and Subtropical Evergreen Forests in South China. The study used nearly 8000
in situ measurements of leaf area index (LAI) from six forest environments in southern
China to evaluate the magnitude, uncertainty, and dynamics of three widely used EO
LAI products. The finer spatial resolution GEOV3 PROBA-V 300 m LAI product gave the
most accurae LAI estimates with a multi-site dataset and captured canopy dynamics well.
The MODIS 500 m product did not capture the temporal dynamics observed in situ across
southern China. The uncertainties estimated for each of the EO products are substantially
smaller (3–5 times) than the observed bias of the EO products when compared to the in
situ measurements, showing that uncertainties are substantially underestimated and do
not fully account for their total uncertainty.

(9) Analysis of the Spatial Differences in Canopy Height Models from UAV LiDAR and
Photogrammetry. Six data sets, including one LiDAR data set and five photogrammetry
data sets captured from an unmanned aerial vehicle (UAV), were used to estimate the
forest canopy heights. Three spatial distribution descriptors, the effective cell ratio, point
cloud homogeneity, and point cloud redundancy, were developed to assess the LiDAR
and photogrammetry point clouds in the grid. Large negative and positive variations
were observed between the LiDAR and photogrammetry canopy heights. The stratified
mean difference in canopy heights gradually increased from negative to positive when
the canopy heights were greater than 3 m, which means that photogrammetry tends to
overestimate low canopy heights and underestimate high canopy heights.

(10) Prediction of Individual Tree Diameter and Height to Crown Base Using Nonlinear
Simultaneous Regression and Airborne LiDAR Data. A compatible simultaneous equation
system of diameter at breast height (DBH) and height to crown base (HCB) error-in-variable
(EIV) models were developed using LiDAR-derived data and ground-measurements for
510 Picea crassifolia Kom. trees in northwest China. Four versatile algorithms were evaluated
for their estimating efficiencies and precision for a simultaneous equation system of DBH
and HCB EIV models. The simultaneous equation system could illustrate the effect of
errors that are associated with the regressors on the response variables (DBH and HCB)
and guaranteed the compatibility between the DBH and HCB models at an individual
level level.

(11) Land Use/Land Cover Mapping Using Multitemporal Sentinel-2 Imagery and
Four Classification Methods—A Case Study from Dak Nong, Vietnam. A parametric classi-
fier (logistic regression) and three non-parametric machine learning classifiers (improved k-
nearest neighbors, random forests, and support vector machine) for the classification of
multi-temporal Sentinel-2 images into LULC categories in Dak Nong province, Vietnam,
were studied. A total of 446 images, 235 from the year 2017 and 211 from the year 2018,
were pre-processed to gain high quality images for mapping LULC in the 6516 km2 study
area. The Sentinel 2 images were tested and classified separately for four temporal periods:
(i) dry season, (ii) rainy season, (iii) the entirety of the year 2017, and (iv) the combination
of dry and rainy seasons. Eleven different LULC classes were discriminated. The greatest
accuracies were achieved for the composite IMG 4 obtained by combining dry and rainy sea-
son image sets while using the SVM classifier. The research showed the utility of combining
Sentinel-2, multi-spectral, and dry and rainy season band data when mapping LULCs.

(12) Predicting Forest Cover in Distinct Ecosystems: The Potential of Multi-Source
Sentinel-1 and -2 Data Fusion. The study investigated: (i) the ability of the individual
sensors and (ii) their joint potential to delineate forest cover for study sites in two highly
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varied landscapes that were located in Germany (temperate dense mixed forests) and South
Africa (open Savanna woody vegetation and forest plantations). Multi-temporal Sentinel-1
and single time steps of Sentinel-2 data in combination to derive accurate forest/non-forest
(FNF) information via machine-learning classifiers were used. The results indicated that
optical sensors are capable of detecting homogeneous tree aggregations with high accura-
cies while failing at locating large portions of tree cover in open Savannas. The addition
of multi-temporal microwave information to this data set showed multiple advantages.
These are the correction of falsely classified cloud pixels, as well as an improved delineation
of small forests in the Savanna ecosystem.

(13) Estimation of Changes of Forest Structural Attributes at Three Different Spatial
Aggregation Levels in Northern California using Multitemporal LiDAR. Two modeling
strategies to estimate changes in the stem volume (V), basal area (BA) and above ground
biomass (AGB), of trees were developed using auxiliary information from two light detec-
tion and ranging (LiDAR) flights in the Black Mountains Experimental Forest, Northern
California from two time points. The analyzed strategies consisted of (1) directly modeling
the observed changes as a function of the LiDAR auxiliary information (sigma-modeling
methods) and (2) modeling V, BA, and AGB at two different points in time, including a term
to account for the temporal correlation, and then computing the changes as the difference
between the predicted values of V, BA, and AGB for time two and time one. The predictions
and measures of uncertainty at three different level of aggregation were evaluated.

(14) Remote Sensing Support for the Gain-Loss Approach for Greenhouse Gas In-
ventories. For tropical countries that do not have extensive ground sampling programs,
such as national forest inventories, the gain–loss approach for greenhouse gas inventories
is often used. With the gain–loss approach, emissions and removals are estimated as the
product of activity data defined as the areas of human-caused emissions and removals and
emissions factors defined as the per unit area responses of carbon stocks for those activi-
ties. Remotely sensed imagery and remote sensing-based land use and land use change
maps have emerged as crucial information sources in facilitating the statistically rigorous
estimation of activity data. Similarly, remote sensing-based biomass maps have been used
as sources of auxiliary data for enhancing the estimates of emissions and removal factors
and as sources of biomass data for remote and inaccessible regions. The current status of
statistically rigorous methods for combining ground and remotely sensed data that comply
with the good practice guidelines for greenhouse gas inventories of the Intergovernmental
Panel on Climate Change was reviewed.

Author Contributions: Conceptualization, E.T., L.T.W., G.W., R.E.M. and J.P.; methodology, E.T.,
L.T.W., G.W. and R.E.M.; software, E.T. and L.T.W.; validation, E.T., L.T.W., G.W., R.E.M. and J.P.; for-
mal analysis, E.T. and L.T.W.; investigation, E.T. and L.T.W.; resources, E.T.; data curation, E.T., L.T.W.,
G.W. and R.E.M.; writing—original draft preparation, E.T., L.T.W., G.W., R.E.M.; writing—review
and editing, E.T., L.T.W., G.W., R.E.M. and J.P.; project administration, E.T. and L.T.W. All authors
have read and agreed to the published version of the manuscript.
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the authors.

Conflicts of Interest: The authors declare no conflict of interest.

4



remote sensing 

Article

Detection of Forest Windstorm Damages with Multitemporal
SAR Data—A Case Study: Finland

Erkki Tomppo 1,2*, Ghasem Ronoud 1, Oleg Antropov 3, Harri Hytönen 4 and Jaan Praks 1

��������	
�������

Citation: Tomppo, E.; Ronoud, G.;

Antropov, O.; Hytönen, H.; Praks, J.

Detection of Forest Windstorm

Damages with Multitemporal SAR

Data—A Case Study: Finland.

Remote Sens. 2021, 13, 383. https://

doi.org/10.3390/rs13030383

Received: 11 December 2020

Accepted: 18 January 2021

Published: 22 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electronics and Nanoengineering, Aalto University, P.O. Box 11000, 00076 Aalto, Finland;
ghasem.ronoud@aalto.fi (G.R.); jaan.praks@aalto.fi (J.P.)

2 Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, P.O. Box 27,
00014 Helsinki, Finland

3 VTT Technical Research Centre of Finland, P.O. Box 1000, 00076 Espoo, Finland; oleg.antropov@vtt.fi
4 Finnish Forest Centre, Kauppakatu 19 B, 40100 Jyväskylä, Finland; harri.hytonen@metsakeskus.fi
* Correspondence: erkki.tomppo@aalto.fi or erkki.tomppo@helsinki.fi

Abstract: The purpose of this study was to develop methods to localize forest windstorm dam-
ages, assess their severity and estimate the total damaged area using space-borne SAR data. The
development of the methods is the first step towards an operational system for near-real-time wind-
storm damage monitoring, with a latency of only a few days after the storm event in the best case.
Windstorm detection using SAR data is not trivial, particularly at C-band. It can be expected that a
large-area and severe windstorm damage may affect backscatter similar to clear cutting operation,
that is, decrease the backscatter intensity, while a small area damage may increase the backscatter of
the neighboring area, due to various scattering mechanisms. The remaining debris and temporal vari-
ation in the weather conditions and possible freeze–thaw transitions also affect observed backscatter
changes. Three candidate windstorm detection methods were suggested, based on the improved k-nn
method, multinomial logistic regression and support vector machine classification. The approaches
use multitemporal ESA Sentinel-1 C-band SAR data and were evaluated in Southern Finland using
wind damage data from the summer 2017, together with 27 Sentinel-1 scenes acquired in 2017 and
other geo-referenced data. The stands correctly predicted severity category corresponded to 79% of
the number of the stands in the validation data, and already 75% when only one Sentinel-1 scene
after the damage was used. Thus, the damaged forests can potentially be localized with proposed
tools within less than one week after the storm damage. In this study, the achieved latency was only
two days. Our preliminary results also indicate that the damages can be localized even without
separate training data.

Keywords: boreal forest; windstorm damage; synthetic aperture radar; C-band; Sentinel-1; support
vector machine; improved k-NN; genetic algorithm; multinomial logistic regression

1. Introduction

1.1. Background and Objectives of the Study

Windstorm damages have become more common in the past decades [1,2]. Wind-
storms cause noticeable large area forest damages in Europe, including Scandinavia and
Finland. For example, in southern Sweden, approximately 4.5 million cubic meters of tim-
ber was damaged in 1999 in a single storm [3], and in 2005 and 2007 approximately 70 and
12 million cubic meters of timber fell down in similar disastrous events, respectively [4].
The forest area reported to have been cut due to damages was over 30,000 ha on more than
20,000 forest stands in Northern Finland in 2014, and more than 6000 ha in Eastern Finland
in July 2020.

A rapid localization of the forest damages and removal of the fallen trees is the key
for not only assessing the losses, but also avoiding further damage, caused, e.g., by insects.
Severe storms require earlier sanitary cuttings (compared to original forest plans) to prevent
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such insect outbreaks. These ad-hoc cuttings naturally increase harvesting and removal
costs, cause losses in revenue and lower the future cutting possibilities [5]. The volume
of damaged trees in windstorm has exceeded the volume of the normal annual cut in
some countries in Europe, e.g., Germany, Poland and Sweden [1,6]. Timely detection and
mapping of a damaged forest allows additionally to optimize efforts in clearing potentially
blocked roads and damaged power-lines in rural areas.

A common method to localize the damage areas for operational forest regime purposes
and obtain a rough overview of the damages has been monitoring with airplane using
either visual assessment or optical sensors, e.g., video camera or airborne laser scanner
(ALS). Most large-area studies with space-borne data have been conducted using optical
satellite instruments [7]. A recent study by Rüetschi et al. [8] presents a summary of several
demonstrated approaches in mapping windthrown forest areas. Our further in-depth
analysis with SAR data is given in Section 1.2.

A key prerequisite for successful operational forest management after a storm is
a rapid, near-real-time localization of the damages. Damages are often large in area
wherefore methods using space-borne data are appealing and cost-efficient alternatives. A
central requirement is the timely availability of the remotely sensed data. SAR data are the
only possibility for rapid monitoring due to their independence of light conditions and
cloud cover.

SAR backscatter depends on the forest structure and biomass, the environment and
weather conditions such as moisture and temperature and sensor properties. From the
current operative SAR satellites, EU Copernicus program’s two C-band Sentinel-1 satellites
probably have the best potential for rapid monitoring, primarily due to a frequent data
acquisition and a free of charge data policy [9]. The only drawback of C-band data
in forest application is the low penetration to forest volume due to short wavelength,
which could restrict detectability of minor damages. The ALOS PALSAR-2 with L-band
SAR, with deeper penetration depth than C-band and fully polarimetric capability, would
likely better suit forest applications [10,11], but the operational use is restricted by data
availability [10,11]. ESA’s coming forest specific P-band BIOMASS mission may provide
information for monitoring aboveground biomass and its change over large areas, but
will not be operated over Europe [12]. The data availability and price also restrict the
usability of high resolution X-band SAR data that could enable spatial texture analysis of
SAR backscatter for forest disturbance [10] (a further detailed analysis of possible scenarios
is given in Section 1.2) In the future, new satellites and constellations, such as NISAR [13]
and ICEYE [14,15] as well as planned DLR TanDEM-L [16] and ESA ROSE-L [17] may
improve the situation significantly.

Thus, Sentinel-1 presently and in the near future seems to be the most suitable tool for
forest damage assessment in Europe at operational level.

The overall goals of this study were to develop methods to localize the forest wind-
storm damages, assess the severity and area of damaged forests and quantify the uncer-
tainties in forest damage prediction when using space-borne SAR data.

The detailed objectives were:
1. to study the potential of Sentinel-1 SAR data in localizing the forest windstorm damages;
2. to assess the accuracy of the developed methods; and
3. to assess the time lag from the damage to the damage detection and a ready product.

1.2. Windstorm Damage Studies with SAR

Several windstorm studies with SAR are shortly reviewed in this section, as well as
studies using airborne SAR instruments. It is expected that the number of SAR-based
studies will increase with the increasing data availability.

Green [18] investigated the sensitivity of SAR backscatter to forest windstorm damage
gaps using multi-polarization C, L and P band data acquired by the NASA/JPL AIRSAR
in August 1991. The study showed that changes in backscatter due to the presence of
windstorm damage gaps were evident in each polarization channel used, especially with C-
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band HH polarization in a coniferous plantation. It is suggested that backscatter is sensitive
not only to the presence but also to the shape and geometry of the windthrow gaps.

Dwyer et al. [19] used ESA’s C-band ERS-1/ERS-2 interferometric image pairs and
found them to be effective in differentiating between damaged and undamaged forests
when the damaged areas were larger than or equal to 2–3 ha. The damage happened
in Jura mountain in France in December 1999. Ready software by ESA made fast data
processing possible.

Fransson et al. [3] studied the potential of CARABAS-II long wavelength SAR imagery
for high spatial resolution mapping of windstorm damage forests. The results of this
research show that the backscattering amplitude, at a given stem volume, is considerably
higher for windstorm damage thrown forests than for unaffected forests. In addition, the
backscattering from fully harvested storm-damaged areas was, as expected, significantly
lower than from unaffected stands. These findings imply that VHF SAR imagery has
potential for mapping windthrown forests.

Another study by Fransson et al. [4] investigated simulated wind-thrown forest map-
ping (controlled experiment with felling of trees) using multitemporal ALOS PALSAR (L-
band), RADARSAT-2 (C-band) and TerraSAR-X (X-band) imagery. The detection methodol-
ogy was based on bitemporal change detection and visual interpretation of scenes acquired
before and after a simulated windthrow event. Stripmap ALOS PALSAR images were
found less suitable for a damage area detection, likely due to a coarse spatial resolution.
The windthrown forests were well visible when the RADARSAT-2 and TerraSAR-X HH
polarization images were used.

Ulander et al. [20] used space- and airborne SAR data to map windthrown forests
in southern Sweden. Analysis of the Space- and Airborne C-band SAR images includ-
ing Envisat and Radarsat showed that they are unable to detect forest storm damage.
The CARABAS VHF-band SAR, on the other hand, showed that these data can detect
most storm-damaged forests as well as power lines, and sometimes better than the
aerial photographs.

Thiele et al. [21] used TerraSAR-X data and focused first on the border line extraction of
forest areas to enables a fast estimation of windthrown areas, whereby the pre-event forest
border is derived from multi-spectral data. Second, clean-up operations were monitored
in the affected forest areas by applying a change detection operator. They presented a
method to extract the border of forest areas by fusing multi-aspect SAR images. They
found that this extraction of multi-temporal changes and displacements of the forest border
enables a rapid damage estimation, which is very useful to plan first clean-up operations.
In addition, their intensity-based change detection showed good results to highlight small
areas especially with hard to analyze data, even for human operators.

Eriksson et al. [6] showed that, when trees are felled, the backscattered signal from
TerraSAR-X (X-band) increases by about 1.5 dB, while for ALOS PALSAR (L-band) a
decrease with the same amount is observed. Radar images with fine spatial resolution
also showed shadowing effects that should be possible to use for identification of storm
felled forest.

Tanase et al. [22] applied L-band space-borne SAR data to windthrow and insect
outbreak detection in temperate forests. The results show that changes in backscatter relate
to the damages caused by the wind and insect outbreaks. In this case, an overall accuracy
of 69–84% was achieved for the delineation of areas affected by the wind damage. The
study showed that L-band space-borne SAR data can be employed over larger areas and
ecosystem types in the temperate and boreal regions to delineate and detect damaged areas.

Rüetschi et al. [8] developed a straightforward approach for a rapid windthrow
detection in mixed temperate forests using Sentinel-1 C-band VV and VH polarization
data. Following radiometric correction of Sentinel-1 scenes acquired approximately 10 days
before and 30 days after the storm event, a SAR composite images of before and after the
storm were generated. The differences in backscatter before the storm and after the storm in
windthrown and in intact forest were studied. A change detection method was developed.
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Locations of windthrown areas of a minimum extent of 0.5 ha was suggested. The detection
was based on user-defined parameters. While the results from the independent study area
in Germany indicate that the method is very promising for detecting areal windthrow with
a producer’s accuracy of 0.88, its performance was less satisfactory at detecting scattered
windthrown trees. Moreover, the rate of false positives was low, with a user’s accuracy of
0.85 for (combined) areal and scattered windthrown areas. These results underscore that
C-band backscatter data have a great potential to rapidly detect the locations of windthrow
in mixed temperate forests within approximately two weeks after a storm event.

Other methods potentially suitable for mapping windthrown forests with SAR data
include approaches demonstrated in other studies of natural and/or anthropogenic forest
disturbance. These include mapping snow-damaged forest areas [23], monitoring selective
logging and thinning operations in boreal and tropical forest biomes [11,24–28], forest clear
cutting and other forest changes [29–34].

A common observation is that, while at L-band direct pixel-wise (or area-based)
change detection using averaged-backscatter can be attempted, due to a better sensitivity
to forest structure and volume, this does not really work at shorter wavelength such as
C-band. Especially in the absence of fully polarimetric SAR capability. At C-band, texture
analysis/extraction and subsequent image segmentation should be attempted after speckle
is reduced (e.g., using image aggregation of scenes acquired before and after the forest
disturbance event). At C-band, felling of trees does not change strongly the total backscatter,
since the needles and smaller branches still create “bright enough” random-volume layer.
Thus, texture from shadows in standing and fallen trees is the key feature to rely upon
in the analysis. At even shorter wavelength and even higher resolution, such as X-band,
texture analysis becomes the central way to proceed with the change detection, in addition
to single pass interferometry with X-band data. Interestingly, most of the studies cited
above rely on some kind of bitemporal change detection (even if “before” and “after”
scenes are aggregated in two composite images). This does not really allow analyzing the
added value of incorporating additional scenes of temporal dimension into the analysis.
However, the idea of using textural features, even at stand level, and follow-up image
segmentation appears most fruitful and is adopted and elaborated in our further analysis
and methodology development.

2. Material

2.1. Test Site

The study area was selected in a collaboration with the Finnish Forest Centre. It is a
forested landscape in Southern Finland in which a severe windstorm damage occurred on
12 August 2017. The fastest speed of the wind in the inland was near 30 m/s and on the sea
outside the capital 32 m/s [35]. The area reaches from Helsinki capital region towards the
towns Kouvola and Lappeenranta east and northeast of Helsinki region (Figure 1). The area
of the forestry land in the study area, covered by Sentinel-1 scenes, is 830,000 ha. Forestry
land includes three land categories: (1) forest land; (2) poorly productive forest land; and (3)
unproductive land [36]. The two commonest stand level dominant tree species are Norway
spruce (Picea abies Karst. L.) and Scots pine (Pinus sylvestris L.) (see also Tables 1 and 2).
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Figure 1. The location of the study area in Southern Finland.

2.2. Field Data

The training data and validation data were also selected in a collaboration with the
Finnish Forest Centre and extracted from their forest database. The harvesting operation in
Finnish forests presume an advance announcement and acceptance by the Forest Centre
wherefore the Forest Centre has good overview of stands with wind damage but only
after a longer reporting period. Two types of stands were selected for study: (a) stands
in which harvesting had been planned to be carried out due to the windstorm damage;
and (b) stands in which harvesting had not been reported. We call these stands damaged
and non-damaged, respectively, in the following analysis. The total number of stands in
reference database falling inside of all images was 977 after screening checks and removal
of some doubtful stands, e.g., when stand characteristics seemed to be out-of-date in 2017.
The number of damaged stand records was 313 and the number of non-damaged stand
records 664. From the damaged stands, 195 stands were severely damaged and the rest
slightly damaged. The severity category is assessed in the field by the forestry experts in
charge. A severe damage presumes stand regeneration, while slight damage requires only
removal of fallen or broken trees. The areas and growing stock characteristics are shown in
Table 1 and similar statistics when the volume of growing stock is larger than 75 m3/ha in
Table 2.
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Damaged and non-damaged stands displayed on Sentinel-1 scene from 19 August
2017, VV polarization and VH polarization are shown in Figure 2 (see also the zoomed
figures with stand boundaries in Figures 3 and 4).

Table 1. Average stand-level areas and forest characteristics in training data, separately for damaged
and non-damaged stands.

Damaged Stands Non-Damaged Stands

313 Stands 664 Stands

Characteristics Minimum Average Maximum Minimum Average Maximum

Area, ha 0.05 1.89 33.96 0.03 0.91 7.24
Diameter, cm 0.00 19.57 29.25 0.00 17.79 27.79
Height, dm 2.00 169.32 253.00 0.78 159.98 247.35
Age, years 1.00 56.20 96.61 0.63 49.27 98.92

Basal area, m2/ha 0.00 18.79 30.00 0.00 18.27 30.23
Volume, m3/ha 0.00 167.60 337.83 0.71 159.75 330.87

Volume, pine 0.00 52.92 145.50 0.71 41.13 182.43
Volume, spruce 0.00 84.31 304.67 0.00 68.43 284.36

Volume, birch spp. 0.00 21.89 110.80 0.00 34.87 107.63
Volume, other br. l. 0.00 8.48 103.00 0.00 15.32 67.60

Table 2. Average stand-level areas and forest characteristics in training data, separately for damaged
and non-damaged stands with volume of growing stock greater than 75 m3/ha.

Damaged Stands Non-Damaged Stands

281 Stands 631 Stands

Characteristics Minimum Average Maximum Minimum Average Maximum

Area, ha 0.05 1.89 33.96 0.03 0.91 7.24
Diameter, cm 9.17 20.97 29.25 6.28 18.38 27.79
Height, dm 87.83 181.34 253.00 64.49 165.06 247.35
Age, years 22.17 60.11 96.61 17.92 50.84 98.92

Basal area, m2/ha 7.60 20.3 30.00 8.57 18.92 30.23
Volume, m3/ha 77.88 181.4 337.83 76.89 165.62 330.87

Volume, pine 5.00 57.06 145.50 1.27 42.77 182.43
Volume, spruce 5.54 92.17 304.67 0.03 71.35 284.36

Volume, birch spp. 1.00 23.27 110.80 1.70 35.88 107.63
Volume, other br. l. 0.00 8.88 103.00 0.00 15.62 67.60

Selection of the Training Data and Validation Data

The field observation data were ordered based on the east and north coordinates
and split into training and validation data using a systematic sampling. The goal was a
representative variation both in training data and validation data. Three-fourths of the
observations were selected into the training data and the remaining one-fourth into the
validation data. The entire data were 977 stands, of which 732 were used as the training
samples and the other 245 as validation samples (Table 3).

Windstorm damages usually occur in more advanced stands: in thinning forests
stands or mature forests stands. The analyses were therefore done also with the forest
stands in which the volume of the growing stock on the basis of the Finnish multi-source
national forest inventory (MS-NFI) was larger than 75 m3/ha, a value leaving out young
forests (Table 3) (see Section 2.4 and the work of Tomppo et al. [36]). The number of those
stands was 912 from, of which 683 stands belonged to the training data and 229 stands to
the validation data.
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Figure 2. Damaged and non-damaged stands displayed on Sentinel-1 from 19 August 2017: VV polarization (a); and VH
polarization (b) (EPSG:3067).
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Table 3. The numbers of forest stands in the training data and validation data classified also based
on the severity of the damage in the entire dataset and when the volume of growing stock is larger
than 75 m3/ha.

Data Entire Dataset Volume > 75 m3/ha

Damage Damage

No Severe Slight Total No Severe Slight Total

Training 492 142 98 732 474 120 89 683
Validation 172 49 24 245 57 48 24 229

Total 664 191 122 977 631 168 113 912

2.3. Sentinel-1 SAR Data

In total, 40 Sentinel-1 GRD (ground range detected) images, Level-1 data with VV and
VH polarizations, were downloaded from ESA Open Access Hub. Some of these images
covered the test site only partly. In total, 27 image layers were constructed (mosaiced)
from the images. The images were acquired in interferometric wide (IW) mode between
4 January and 25 September 2017. Multi-temporal data are necessary for change detection,
but aggregating the data also reduces the effect of the random scattering (speckle) on
the estimates and error estimates. It makes it possible to utilize the variation of the data
acquisition conditions in the estimation using multifaceted information. The dates of the
images are shown in Table 4.

The pixel spacing of orthorectified scenes was set to 10 m. The local digital elevation
model (DEM) available from National land Survey was used (see Section 2.5). Scenes
were aggregated in azimuth and range to obtain images with pixel dimensions approxi-
mately corresponding to the 10 m grid spacing. Bi-linear interpolation method was used
for resampling in connection with the orthorectification. Radiometric normalization of
intensity was done using a projected pixel area-based approach to minimize the effect of
the topography. The scenes with a pixel size of about 13.5 m were further re-projected to
the ERTS89/ETRS-TM35FIN projection (EPSG:3067) and resampled to a final pixel size of
10 m.

In total, 27 Sentinel-1 mosaics were constructed from the 40 original Sentinel-1 scenes
and thus the final data stack includes 54 backscatter intensities layers of VH and VV
polarizations. Examples of intensity variations before and after the damages are shown in
Figures 3 and 4 with stand boundaries displayed on the intensities.

Table 4. The 27 Sentinel-1 data mosaics from 2017 used and their acquisition dates.

Mosaic Date Mosaic Date Mosaic Date

1 4 January 10 14 July 19 20 August
2 16 January 11 15 July 20 1 September
3 28 January 12 21 July 21 7 September
4 9 February 13 26 July 22 12 September
5 21 February 14 2 August 23 13 September
6 2 July 15 7 August 24 18 September
7 3 July 16 8 August 25 19 September
8 8 July 17 14 August 26 24 September
9 9 July 18 19 August 27 25 September
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Figure 3. Examples of damaged and non-damaged stands displayed on Sentinel-1 scenes: (a) before windstorm damage, 7
August 2017; and (b) after windstorm damage, 19 August 2017 (b) (VV polarization, EPSG:3067).
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Figure 4. Examples of damaged and non-damaged stands displayed on Sentinel-1 scenes: (a) before windstorm damage,
7 August 2017; and (b) after windstorm damage, 19 August 2017 (b) (VH polarization, EPSG:3067).

14



Remote Sens. 2021, 13, 383

2.4. Multi-Source National Forest Inventory Data

The raster form data from the Finnish multi-source national forest inventory (MS-NFI)
were used as additional information in estimating the models to predict the windstorm
damages, their severity and uncertainty [36,37]. The data have been projected to correspond
to the 31 July 2017 situation and cover all forest ownership groups [38].

The following variables were used in the analyses: mean diameter of the trees, mean
height of the trees, mean age of the trees and basal area of trees as well as the volume of
the growing stock by tree species groups. The groups were Scots pine (Pinus sylvestris L.),
Norway spruce (Picea abies Karst. L.), birch (Betula spp) and other broad leaved trees,
mainly aspen (Populus tremula L.) and alder (Alnus spp.). The first three variables were
calculated from the tree-level field measurements as weighted averages, the weight being
the basal area of trees. A similar method was used when calculating stand-level averages
from pixel-level estimates or measurements. A variation of volume of the growing stock is
shown in Figure 5 and a zoom from a sub-area in Figure 6.
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Figure 5. Volume of the growing stock on 31 July 2017 on the study area based on MS-NFI (EPS:3067).
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Figure 6. Volume of the growing stock on 31 July 2017 on the sub-area of the study area based on multi-source national
forest inventory (EPS:3067).

2.5. Other Geo-Referenced Datasets

A digital elevation model from Land Survey of Finland was used in orthorectification
and radiometric normalization of SAR images, as well as to calculate the average elevation,
slope and aspect for each stand and pixel. The original pixel size is 10 m × 10 m and
elevation resolution 10 cm [39].

The reason for also using these datasets as explanatory variables in the models is
our assumption that the windstorm damages vary also by the aspect and steepness of the
slopes of the hills.

3. Methods

Three different classification methods, the improved k-NN (ik-NN), multinomial
logistic regression (MLR) and support vector machine classifier (SVM), were tailored for
windstorm damage detection to reach a desired detection accuracy level. The observations
units in the models were forest stand level averages of the Sentinel-1 intensities or other
stand level quantities of the input variables. Forest patches identified and derived using a
segmentation algorithm were tentatively tested as optional observation units. The reason
was that the damages do not necessarily follow the stand boundaries given by the Forest
Centre. The segmentation-based units were tested only with the SVM classifier. Figure 7
shows the logic and processing phases of the classification models training and windstorm-
map production. The methods are described in detail in the following sections.

The main software tools used for analyses were as follows: (1) SNAP software by
European Space Agency [40] was used for Sentinel-1 image pre-processing; (2) GDAL [41]
was used for other image raster data pre-processing; (3) statistical computing package
R [42] with own codes was used for other data handling including the field data, as well as
for MLR, SVM and statistical analyses (Sections 3.4–3.6); and (4) own algorithms for ik-NN
(Section 3.3), segmentation and adaptive filtering, written mainly in GNU Fortran [43]
(Section 3.2).
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Figure 7. The flowchart of the windstorm detection methodology using Sentinel-1 time series: model training and damage-
map production phases.
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3.1. SAR Metrics Used in the Damage Assessment

The basic SAR metrics were stand level variables calculated from pixel level variables
for both polarizations. Using stand level metrics instead of pixel level metrics reduces the
the speckle effect and the radiometric variation within homogeneous stands. From the
pixel level intensities (Ik,p

s,i ), the following features were calculated for each stand s, for both
polarizations p and for each image k:

(a) averages,

10 log10 Ik,p
s = 10 log10

∑ns
i=1 Ik,p

s,i

ns
, k = 1, ..., 27, p ∈ {VV, VH}, (1)

where ns is the number of the pixels on stand s; (b) standard deviations
√

ns

∑
i=1

(Ik,p
s,i − Ik,p

s )2/(ns − 1), k = 1, ..., 27, p ∈ {VH, VV}; (2)

and (c) intensity-ratios

1/ns

ns

∑
i=1

I
k1,p
s,i /I

k2,p
s,i , k1 = 1..., 26 and k2 = 2, ..., 27. (3)

These predictor variables, stand-averaged intensities (Equation (1)), standard de-
viations (Equation (2)) and different ratio features (Equation (3)), were evaluated and,
optionally, instead of the averages, also median and mode stand level intensities.

The training data and the validation data and their ‘stand’ boundaries concerning the
damages consisted of the cutting reports rather than the forest patches really damaged by
the storm. A natural question is whether it is relevant to use SAR features calculated from
the areas reported to be cut because the cutting area can be larger than the damaged area.
The characteristics such as median and those calculated from the quantiles SAR features
inside the cutting stands were also tested, in addition to the differences of the features from
SAR data before and after the damage. Median is not as sensitive to the outliers as is, e.g.,
the average.

3.2. Segmentation-Based Observation Units

The areal units provided by the Finnish Forest Centre represent forest areas to be
treated by sanitary cuts due to the windstorm damage. They may be larger than the real
damage area. We tested whether it was possible to delineate the entire forest area into
sub-areas of which a part of the sub-areas are changed due to the damage. A common
practice is to use segmentation for the delineation of the area of interest. The input for
segmentation should include the information of the changes. A speckle removal before
segmentation could improve the quality of segmentation.

3.2.1. Adaptive Filtering

An adaptive edge-preserving filtering in further stand-level processing was tested.
An own heuristic algorithm was implemented and used. It employs a set of alternative
image windows (kernels) and selects the one with the smallest variance. The windows
were selected inside a window of 5 × 5 pixels. The line and column coordinates for a set of
26 different windows are given in Table 5 in the groups of three pixels. For example, (−2,
−1, 0) (2, 1, 0) means the set of pixels (line, col) (−2, 2), (−2, 1), (−2, 0), (−1, 2), (−1, 1),
(−1, 0), (0, 2), (0, 1) and (0, 0), the center pixel of the window, that is the pixel for which
the average value is calculated and attached. Usually 3–5 consecutive runs, depending on
data, are needed to identify homogeneous forest patches.
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Table 5. The 26 image widows (W) for adaptive filtering.

W lin1,2,3 col1,2,3 W lin1,2,3 col1,2,3 W lin1,2,3 col1,2,3

1 (−2, −1, 0) (0, 0, 0) 2 (−2, −1, 0) (1, 0, 0) 3 (−2, −1, 0) (1, 1, 0)
4 (−2, −1, 0) (2, 1, 0) 5 (−1, −1, 0) (1, 2, 0) 6 (−1, 0, 0) (2, 0, 1)
7 (0, 0, 0) (0, 1, 2) 8 (0, 0, 1) (0, 1, 2) 9 (0, 1, 1) (0, 1, 2)

10 (0, 1, 2) (0, 1, 2) 11 (0, 1, 2) (0, 1, 1) 12 (0, 1, 2) (0, 0, 1)
13 (0, 1, 2) (0, 0, 0) 14 (0, 1, 2) (0, 0, −1) 15 (0, 1, 2) (0, −1, −1)
16 (0, 1, 2) (0, −1, −2) 17 (0, 1, 1) (0, −2, −1) 18 (0, 0, 1) (−1, 0, −2)
19 (0, 0, 0) (−2, −1, 0) 20 (−1, 0, 0) (−2, −1, 0) 21 (−1, −1, 0) (−2, −1, 0)
22 (−2, −1, 0) (−2, −1, 0) 23 (−2, −1, 0) (−1, −1, 0) 24 (−2, −1, 0) (−1, 0, 0)
25 (0, 0, 0) (−1, 0, 1) 26 (−1, 0, 1) (0, 0, 0)

The window with the smallest variance was selected and the average value was
attached to the center, that is, the pixel in question. The windows allow the detection of
narrow linear form structures in the target and preserves those structures.

3.2.2. Segmentation Algorithm

We decided to test whether an algorithm implemented by us could be fine-tuned just
for the damage detection with SAR data. The directed tree algorithm by Narendra and
Goldberg [44] was modified to use SAR data (see also [45,46]). In this simple test, we used
only the difference of the intensities of two scenes, one before and one after the damage
and separately VV and VH polarizations.

The algorithm utilizes an edge gradient calculated from an edge image. Any edge
operator can be used to construct the edge image. Simplified steps of the segmentation
algorithm are as follows. (1) Plateau points are calculated using the inverted edge image
and a selected sensitivity (threshold) parameter ε. (2) For each pixel (i, j) that is not a
plateau point, a parent is determined. The parent of (i, j), P(i, j), is the neighbor that gives
the highest positive value of the inverted edge gradient among the neighbors of (i, j). Ties
are resolved arbitrarily. If no such neighbor exists, (i, j) has no parent and is therefore a root
node. The parents of each plateau points are thus determined. All points on a uni-modal
plateau will belong to the same directed tree with one point on the plateau that will be
called a root. (3) Once the parent of each point is determined, the points can be labeled by
the directed trees (segment) they belong to. The root pixels are first labeled. (4) Once the
roots have been labeled, the label of each pixel is determined by tracing of the chains to
link the pixels to their root pixels (for details, see [44]). The final segmentation result does
not depend on the processing order of the image.

3.3. ik-NN Method in Storm Damage Recognition

The well-known k-NN estimation method was tailored for and employed in storm
damage recognition. The weights for the features were calculated with a genetic algo-
rithm [36,47] and its variant for categorical variables [48]. This k-NN method is called
the ik-NN method (improved k-NN) here. The advantage of the ik-NN method is the
weighting of the explanatory variables based on their importance in prediction and thus
smaller prediction errors compared to the ordinary k-NN method, wherefore it is called
improved. Other advantages of the k-NN method are that all variables can be estimated
simultaneously. It preserves thus the natural dependencies of the variables in the estimates,
e.g., among stand age, mean height, mean diameter of the trees and the volume of the
growing stock. It is non-parametric, and no model is needed. When the weights for training
observations are collected for the calculation units, it also avoids a tendency towards the
mean in the areal level estimates that is typical for many other methods (see, e.g., [36]). The
k-NN estimation method became popular in forest applications when it was taken into into
the operational Finnish multi-source forest inventory (e.g., [49,50]). It is very well suited
for calculation of the areal level estimates.
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Let us recall the main features of the ik-NN estimation with the genetic algorithm
in the feature weighting. Denote the k nearest feasible stands by i1(p), . . ., ik(p) when the
distance is calculated in the feature space. The weight wi,p of stand i to stand p is defined as

wi,p =
1

dt
pi ,p

/
∑

j∈{i1(p),...,ik(p)}

1
dt

pj ,p
, if and only if i ∈ {i1(p), . . ., ik(p)}

= 0 otherwise.

. (4)

The value of k was fixed to be 5 after preliminary tests using the overall accuracy as the
criterion. The distance weighting power t is a real number, usually t ∈ [0, 2]. The value
t=1 was used here. A small quantity, greater than zero, is added to d when d = 0 and
i ∈ {i1(p), . . ., ik(p)}.

The distance metric d employed was

d2
pj ,p =

n f

∑
l=1

ωl
2( fl,pj

− fl,p)
2, (5)

where fl,p is the lth SAR feature variable of stand p, fl,pj
is the lth SAR feature variable

of the nearest neighbor j of stand p, n f the number of SAR feature variables and ωl the
weight for the lth SAR feature variable.

The values of the elements ωl of the weight vector ω were selected with a genetic algo-
rithm. The details of the genetic algorithm employed are given in [47] and the modification
to categorical variables in [48].

The fitness function for the categorical variables to be minimized with respect to ω
vector was

f [ω, γ, B(X) =
nm

∑
j=1

γj[1 − Bj(Xj)], (6)

where γj > 0 is a user defined coefficient, Xj an error matrix, Bj is the accuracy measure
with response variable j whose classes are to be predicted, nm is the number of response
variables to be considered in the optimization procedure and ω is the weight vector to be
optimized (Equation (5)). The number generations in the genetic algorithm optimization
was selected to be 40 after the tests.

For categorical variables, the mode or median of the predicted classes for the nearest
neighbors can be used as a prediction instead of a weighted average as is used for con-
tinuous variables. For this study, the mode gave more accurate results than the median,
consistent with the earlier investigations [48]. The predicted category is the category that
has the greatest sum of the weights, ωi,p, when summed up by classes over the k nearest
neighbors. In theory, equal sums are very rare when real value weights are used; in fact,
the probability is zero if rounding is not considered. In cases of equal sums for two or
more classes, one class is selected randomly from among those with the greatest sum. This
method was used for predicting the categorical variable obtaining the values, the value
being the damage category.

3.4. Multinomial Logistic Regression Method

Multinomial logistic regression was tested as one optional estimation method. The
probability of the damage category k on stand p was estimated using the model

P(damage category on stand p = k|xp) =
eβkxp

1 + ∑L−1
l=1 eβkxp

, k = 1, ..., L − 1 and

=
1

1 + ∑L−1
l=1 eβkxp

, k = L,
(7)
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where f (k, p) = βkxp is a linear predictor function, βk is the vector of the regression coeffi-
cient associated with damage category k, xp is a vector the set of the explanatory variables
associated with observation (stand) p and L is the number of the damage categories, here 3.

3.5. Support Vector Machine Method

Support Vector Machine method (SVM) is a machine learning technique presently
actively adopted in remote sensing [23,51–54]. SVMs are supervised learning models with
associated learning algorithms that analyze data used for classification or regression. Given
a set of training examples, each marked as belonging to one or the other of two categories,
an SVM training algorithm builds a model that assigns new examples to one category or
the other, making it a non-probabilistic binary linear classifier [55].

SVMs are based on statistical learning theory and have the aim of determining the
location of decision boundaries that produce the optimal separation of classes. [56]. In
the case of a two-class pattern recognition problem with linearly separable classes, the
SVM selects from among the infinite number of linear decision boundaries the one that
minimizes the generalization error. Thus, the selected decision boundary will be the one
that leaves the greatest margin between the two classes, where the margin is defined as the
sum of the distances to the hyperplane from the closest points of the two classes [56]. The
margin maximization is achieved using standard quadratic programming optimization
techniques. The data points that are closest to the hyperplane are used to measure the
margin and are referred to as support vectors.

If the two classes are not linearly separable, the SVM tries to find the hyperplane that
maximizes the margin while, at the same time, minimizing a quantity proportional to the
number of misclassification errors. The trade-off between margin and misclassification error
is controlled by a user-defined constant [55]. SVM can also be extended to handle nonlinear
decision surfaces by projecting the input data onto a high-dimensional feature space using
kernel functions [56]. Radial basis functions with accordingly selected parameters are a
typical choice to serve as kernel functions [51,52]. The gamma value varied here between
0.1 and 0.005 depending on the dataset.

As SVMs are designed for binary classification, this method appears to be an ideal
fit for outlier detection problems, i.e. separating damaged forest class against intact using
temporal dynamics of SAR backscatter. However, for estimating severity of damage
(evaluating “change magnitude”), the approach is less suitable.

3.6. Area Estimates and Error Estimates

We used poststratified estimators for the area and area error estimators [57], as derived
and suggested by Olofsson et al. [58]. The estimators use the confusion matrix and the area
estimates of the categories based on an output map, that is, the pixel level estimates of the
categories. The stratified estimators of the proportion of a category k is

p̂.k =
L

∑
i=1

Wi
nik
ni.

, (8)

where nik is the (i, k) element of the confusion matrix, observed counts on the columns and
classified on the rows; ni. is the row sum of the row i; L is the number of the categories; and
Wi is the proportion of the area mapped as category i. The area estimate of category k is

Âk = A × p̂.k, (9)

where A is the total area mapped.
The standard error for the poststratified estimator of the proportion of area (Equation (8))

is estimated by

S( p̂k) =

√√√√ L

∑
i=1

Wi p̂ik − p̂2
ik

ni. − 1
, (10)
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where p̂ik = Wi
nik
ni.

, and standard error of the the area by

S(Âk) = A × S( p̂k). (11)

An approximate 95% confidence interval is obtained as Ak ± 1.96 × S(Âk).

3.7. Confidence Intervals of Probabilities for Individual Observations Using ik-NN

The following procedure can be used to assess the uncertainty of the prediction of the
damage and non-damage of individual stands or forest areas. The k-NN estimation and
its improved version ik-NN produce probabilities for the predicted category on stand p.
These probabilities can be calculated using the weights wi,p (Equation (4)) as follows

p̃rob(k)p = P(category(p) = k) = ∑
i∈Ip

wi,p Ind(cat(i)=k) , (12)

where k is the mode category based on the largest sum of the weights wi,p by categories on
stand i ∈ Ip and Indcat(i)=k is an indicator function of the category in stand i. The confidence
intervals for the probabilities of the mode for the individual stands were calculated using a
linear model

̂̃
prob(k)p = a +

n f

∑
l=1

bl fl,p + c · k + ε, (13)

where fl,p are the SAR features (Equation (5)); k is the predicted damage category, a
categorical variable (factor); a, b and c are the regression coefficients to be estimated (b
being a vector); and ε is a normally distributed random error.

The confidence intervals of the predictions were calculated in a normal way using
the estimator

V̂f = s2 x0 (X
′
X)−1 x

′
0 + s2 (14)

for the variance for the individual prediction with a predictor vector of x0, residual sum of
s2 and design matrix X consisting of the feature vectors f and predicted categories k.

4. Results

4.1. Selection of the Data, Variables and Methods

The capability of the different features in damage area recognition was first studied
(see Section 3.1). Other variables were some traditional stand level forest characteristics
(Table 1) as well as slope, aspect and altitude calculated from the digital elevation model.
The stand level variables tested were mean diameter, mean height, age, basal area and the
volume of growing stock as well as volumes by tree species groups (Table 1).

The methods studied in windstorm damage recognition were the improved k-NN
with feature optimization based on a genetic algorithm, called ik-NN method, multinomial
logistic regression (MLR) and support vector machine (SVM) (Sections 3.3–3.5). The three
models were used to classify the training data into the three categories, non-damaged,
severely damaged and slightly damaged. The accuracies were validated using the val-
idation data. The explanatory variables in the models were the SAR metrics calculated
from the SAR images before and after the damage as well as the other characteristics
mentioned above.

Each method has several parameters to control the performance of the method. Fur-
thermore, the combinations of the explanatory variables is large. The number of the
optional methods and variable combinations is thus really large. It was not possible to
carry out all possible experiments. Only the results from a few tested combinations are
reported here.

4.2. Selection of Basic Sentinel-1 Features

Selection between the intensity variables, average, median and quantiles were done
using the SVM classifier and the Sentinel-1 scenes starting on 4 January 2017 and reaching
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until 20 August, in total 19 image layers (see Table 4). The date of 20 August was selected
close enough after the damage of 12 August. In total, three images after the damage were
available. The averages of the intensities, more precisely, σ0 (1), gave the largest OA in the
validation data, 0.771 (Table 6). The averages also worked well in the cases of UA and PA.
Only the results based on the averages are therefore reported here as the main results.

Table 6. The overall accuracies (OA) in training and validation data and user’s accuracies (UA) and
producer’s accuracies (PA) by damage by categories in the validation data when using 19 Sentinel-1
cover (1 January 2017–20 August 2017) and the SVM classifier. A volume threshold of 75 m3/ha is
used in the data.

Intensity OA UA PA

method Training Test 1 1 2 2 3 3 1 1 2 2 3 3

Average 1.0 0.771 0.805 0.619 0.750 0.913 0.531 0.250
Median 1.0 0.747 0.840 0.511 0.412 0.913 0.531 0.250

Quantiles 1.0 0.763 0.788 0.647 0.625 0.930 0.449 0.208
1 No damage, 2 Severe damage, 3 Slight damage.

4.3. Selecting a Time-Frame of Sentinel-1 Scenes

One goal of the study was to examine the minimum number of the scenes and the
shortest time after the damage to achieve a feasible uncertainty level in windstorm detection.
For this purpose: (a) only images until 20 August were used (19 images instead of the
original 27 image layers); and (b) only images until 14 August were used, further limiting
the number of images to 17. We also studied the importance of the scenes before the
damage, that is, the achieved accuracies when some of the images acquired before the
damage were left out of analysis. It turned out that 10 scenes gave almost as large accuracies
as the entire set of the scenes from 4 January to 20 August 2017. The accuracies were thus
calculated using the following numbers of the images: 27 (all scenes), 19 (all scenes until
20 August), 17 (all scenes until 14 August), the most important scenes until 20 August
(10 scenes) and the most important scenes until 14 August (8 scenes) (see Section 4.4).
Recall that the damage occurred on 12 August.

The importance of the Sentinel-1 scenes, acquired before the damage, was studied with
all three methods. The date of these 10 scenes were: 16 January, 28 January, 9 February,
2 July, 14 July, 21 July, 26 July, 2 August, 19 August and 20 August. The dates of all available
scenes in the period 4 January–20 August, in total 19 scenes, were 4 January, 16 January,
28 January, 9 February, 21 February, 2 July, 3 July, 8 July, 9 July, 14 July, 15 July, 21 July, 26 July,
2 August, 7 August, 8 August, 14 August, 19 August and 20 August (Tables 4 and 7).

When using all Sentinel-1 scenes from the period 4 January–14 August, as well as
adding scenes cumulatively after 14 August, it was noticed that the overall accuracy
(OA) increased only slightly. The maximum accuracy was obtained with the training
and validation data with the scenes until either 12, 13 or 18 September, depending on the
method. The OA in the validation data was 0.79 with SVM, 0.73 with ik-NN and 0.71 with
MLR (Figure 8 and Table 7).
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Figure 8. The overall accuracy with three different methods, ik-NN, MLR and SVM as a function of the acquisition date of
the latest Sentinel-1 scene. The scenes were used until the date in the horizontal axis.

Table 7. The overall accuracy (OA), user’s accuracy (UA) and producer’s accuracy (PA) in the valida-
tion data using support vector machine (SVM), improved k-NN method (ik-NN) and multinomial
logistic regression with four different Sentinel-1 datasets. The latest scene after the damage was from
20 August 2017, except for 27 scenes in which all Sentinel-1 scenes were used. Segmentation-based
results are indicated with ‘S’. A volume threshold of 75 m3/ha was used for the data.

Method and the
Number of the Scenes

OA UA by Category PA by Category

1 1 2 2 3 3 1 1 2 2 3 3

SVM 8 scenes 0.729 0.778 0.618 0.400 0.892 0.438 0.250
SVM 10 scenes 0.720 0.754 0.562 0.500 0.917 0.375 0.125
SVM 17 scenes 0.759 0.795 0.610 0.667 0.901 0.510 0.250
SVM 19 scenes 0.771 0.805 0.619 0.750 0.913 0.531 0.250
SVM 27 scenes 0.769 0.781 0.688 0.800 0.955 0.458 0.167

SVM 8 scenes, S 0.735 0.792 0.535 0.500 0.884 0.469 0.208
SVM 10 scenes, S 0.755 0.816 0.571 0.462 0.901 0.490 0.250
SVM 19 scenes, S 0.784 0.807 0.686 0.625 0.948 0.490 0.208
SVM 27 scenes, S 0.788 0.832 0.683 0.500 0.919 0.571 0.292
ik-NN 8 scenes 0.700 0.775 0.415 0.435 0.871 0.327 0.263

ik-NN 10 scenes 0.690 0.762 0.467 0.250 0.867 0.404 0.105
Ik-NN 17 scenes 0.703 0.781 0.432 0.434 0.867 0.365 0.263
ik-NN 19 scenes 0.630 0.747 0.286 0.133 0.814 0.308 0.053

MLR 8 scenes 0.703 0.742 0.435 0.583 0.917 0.208 0.292
MLR 10 scenes 0.712 0.763 0.464 0.533 0.904 0.271 0.333
MLR 17 scenes 0.686 0.771 0.407 0.348 0.879 0.229 0.333
MLR 19 scenes 0.657 0.794 0.326 0.296 0.808 0.286 0.333

1 Damage, 2 Severe damage, 3 Slight damage.

4.4. The Accuracies with Different Methods

The overall accuracy of the classifications increases only slightly when adding the
Sentinel-1 scenes after 1 or 2 scenes after the damage of 12 August (Figure 8) (see also
Table 7). The latest date here is 20 August, except for 27 scenes in which all Sentinel-1
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scenes were used. SVM gave the largest OA and ik-NN slightly larger than MLR. MLR is
the only parametric method of the three methods tested. All methods presume the selection
of the estimation parameters. The OAs are slightly larger when the backscattering-based
features are calculated using segmentation-based σ0 instead of stand boundaries-based
ones (Table 7, notation ‘S’). The proposed segmentation approach (tested only with SVM)
increased the OA particularly when the number of the scenes is small (e.g., 10), as well as
the PAs for the damage categories with 10 scenes. There are many possible combinations,
therefore not all were tested here. The limited improvement can also be attributed to the
fact that segmentation used the SAR data only now. A larger accuracy could be obtained
when using also the inventory and other auxiliary data, similar to set of features used in
the classification method.

4.5. The Damage Map Along with Area and Area Error Estimates

An example of the predicted damages in a map form was made using the ik-NN
method. The damage was predicted only to forests in which the volume of growing
stock exceeded 75 m3/ha. Ten Sentinel-1 scenes with the dates of 16 January, 28 January,
9 February, 2 July, 14 July, 21 July, 26 July, 2 August, 19 August and 20 August were used.

A good practice with poststratified estimators was used in estimating the area of
the damage categories (Section 3.6). The area of the classified forestry land (forest land,
poorly productive forest land and unproductive land) was 799,000 ha. The severe dam-
age was predicted for an area of 97,600 ha that corresponds to 12% of the mapped area
and slight damages for an area of 76,200 ha (9.5% of the mapped forestry land area).
Some individual pixels with wrong damage predictions increase the area of the damages.
The large-scale damage patterns generally follow the windstorm patterns on 12 August
2017 (Figures 9 and 10). The poststratified estimates of the relative errors were 9% and
10%, respectively.
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Figure 9. The predicted forest damages in the study area (EPGS:3067).
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Figure 10. The predicted forest damages in a sub-area of the study area (EPGS:3067).

4.6. Confidence Intervals for Individual Stand Predictions

The probabilities of the predicted category in the validation datasets were assessed as
given in Equation (12). The 95% confidence intervals of the predicted probabilities were
calculated using Equation (14) and the Sentinel-1 datasets from the period 16 January–
20 August, that is, in total 10 scenes (see Section 4.3). Basic statistics of the widths of the
confidence intervals by the windstorm category are shown in Table 8. The median and
mean of the intervals vary from 11% to 13%.

Table 8. Examples of the statistics of the 95% confidence intervals of the predictions of the probability of the category with
the largest probability when ten Sentinel-1 scenes from the period 16 January–20 August 2017 were used. The statistics are
shown by the threshold of the minimum of the stand area.

Damage
Category

Mean of
Predictions

Std of
Predictions

Min of
Intervals

Median of
Intervals

Mean of
Intervals

Max of
Intervals

Std of
Intervals

1 0.787 0.077 0.052 0.105 0.109 0.686 0.036
2 0.678 0.110 0.055 0.113 0.120 0.429 0.041
3 0.708 0.114 0.061 0.131 0.132 0.223 0.033

Figure 11 shows statistics of the widths of predictions intervals by the damage cate-
gories for the stands in the validation dataset together with the outliers. The statistics are
the median, 25th and 75th percentiles and 1.5 times the interquartile range.
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Figure 11. Distributions of the confidence intervals of the prediction probability of the category with
the largest probability by the damage category, shown as boxplots, that is, median, 25th and 75th
percentiles, 1.5 times of the interquartile ranges and individual outliers. The width of the box is
proportional to the square root of the number of the observations of the damage category.

The accuracy of the individual prediction, that is, the confidence interval of the
probability of the predicted category, also depends on the area of an individual damaged
stand. The confidence interval becomes generally narrower when the area of a stand
increases up to about 1–2 ha (Figure 12).

Figure 12. The width of the confidence interval of the probability of an individual prediction as a
function of the area of the damaged stand.
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4.7. The Accuracies of the Methods without a Separate Training Data

The use of specific training data is not necessarily possible in operational applications
due to a need for very rapid or almost real-time localization of the damages. A final goal
should be development of a method and a model that predict the locations of the damages
without new training data and using only the existing information before the damage and
SAR data (1–6 scenes) after the damage.

This possibility was tentatively tested in a simple way by selecting a set of the Sentinel-
1 scenes and another distinct set for prediction. The cover numbers of the scenes for
modeling were 2, 3, 4, 6, 7, 11, 12, 15, 16, 17, 18, 24, 25 and 26, and in prediction 1, 5, 8, 9, 10,
13, 14, 19, 20, 21, 22, 23 and 27 (see Table 4). The proportion of correctly predicted stands
was 0.73. This simple test could already indicate if it is possible to develop an unsupervised
damage prediction method.

5. Discussions and Future Work

The windstorm analyzed in this study took place during the Finnish summer, on
12 August 2017, wherefore the most important Sentinel-1 scenes were also from the summer.
Earlier and other ongoing studies have revealed that late autumn or early winter is the best
season for forest parameter estimation from SAR images in the boreal region (e.g., [59,60]).
The results of this study show that the summer SAR images could also be applicable in
forest change detection caused by a windstorm damage. One challenge when developing
an operational damage monitoring method is that the windstorms occur all around the year,
including during winter in Scandinavia and other boreal region. The weather conditions
and the temperature can also rapidly change from above to below 0 ◦C. Under frozen
conditions, a normalized radar cross-section decreases (e.g., [61]). Generally, freeze–thaw
environmental transitions affect the classification methods and accuracies if they happen
just after or during the damage and if a rapid assessment is needed.

This study provides some alternative methods to be developed further to be part of
an operational windstorm damage monitoring system. Three different classification algo-
rithm were tested to classify the forest observations on the three categories, non-damaged,
severely damaged and slightly damaged forest patches. In total, 27 Sentinel-1 image covers
were acquired and originally used, 16 before the damages and 11 after damages, in addition
to the field observations and other geo-referenced data. The explanatory variables were
derived from the intensities of the two polarizations VV and VH of the Sentinel-1 images
and from the quantities of the other geo-referenced data. Two alternative analysis units
were tested: (1) the forest stands or forest areas to be cut due to the windstorm damage;
and (2) the forest patches constructed using a segmentation algorithm. The main analyses
were carried out with the Alternative 1. The data were split to training data and validation
for assessing the uncertainties of the results of the different methods. A statistical method
was developed to construct the confidence intervals of the probabilities of the estimated
damage categories. One goal was to find the minimum number of the images after the
damages for a rapid operational monitoring method.

Using calculation units that are derived with a segmentation algorithm, that is, the
units that are homogeneous with respect to backscattering coefficient, slightly increased the
overall accuracies (OAs), and in some cases also the user’s accuracies (UAs). In some cases,
the UAs and producer’s accuracies (PAs) were smaller than with the given boundaries.
This may imply that the given boundaries followed the damaged areas or the effect of
variation in the image conditions on the results is significant or the segmentation-based
approach needs further development.

Although some windstorm damage studies have been published so far with space-
borne SAR data, quantitative uncertainty assessments are generally lacking. Many compar-
isons with accuracy figures are thus not possible. Our results are competitive with, e.g.,
those of Thiele et al. [21]. Our study showed that the damages could be identified even a
few days after the damage, which is quite unique. On the other hand, we should keep in
mind that windstorm damages vary by the areal extent of the damaged forest patches and
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also by severity. Furthermore, forest structures and imaging conditions vary wherefore
uncertainty quantities are not necessarily comparable.

Preliminary tests showed that it could also be possible to develop an unsupervised
method for windstorm damage monitoring, that is, to detect the changes without a specific
training data.

Detection of the windstorm damage is a demanding task. Severity of the damages
changes within the area of one storm, even in a relatively small area, e.g., the one in this
study, 100 km × 100 km, and depends on many factors, e.g., the structure of the growing
stock, the soil properties, the terrain elevation variation and the small scale spatial variation
of growing stock. Forests next to an open area or a young forest are more vulnerable to
damages than the forests surrounded by mature forests. Furthermore, in addition to the
changes in the growing stock, many other factors affect the changes of backscatter and also
in a short time interval, e.g., changes in the moisture of the tree canopies and soil. The
possibility to frequently acquire SAR data is thus important.

It should be recognized that further work is needed for a near-real-time operational
monitoring system.

In the continuation work, the accuracy of the estimates will be improved by further
method development and additionally using interferometric SAR data as well as meteoro-
logical data. The use of other geo-referenced data, such as land-use data, forest age and soil
data and forest data from the surrounding areas, may improve the classification accuracy be-
cause the windstorm damages occur often on the borders of open areas, newly constructed
roads and power-lines as well as next to young forests or forest regeneration areas.

Potential of interferometric SAR coherence, possibly combined with backscatter inten-
sity information, should be studied using Sentinel-1 multitemporal imagery, even though
temporal decorrelation can limit its utility [62]. Further, time series of bistatic TanDEM-X
scenes can be used for mapping forest change, due to high sensitivity to the vertical struc-
ture of the forests [63,64]. For the latter, the limiting factor is data availability over large
areas with small latency.

Coming and existing satellite missions and constellations with frequent and tailored
data acquisition increase the availability of data. It is also important that data providers
adopt a systemic data acquisition strategy similar to Sentinel-1 and ALOS/ALOS-2 missions
in connection with the hazard monitoring, particularly windstorm detection. A background
mission with at least seasonal global coverage can be suitable.

6. Conclusions

The methods to localize the forest damages caused by windstorms using space-borne
SAR data were developed and possibilities to an operative system investigated. Multitem-
poral Sentinel-1 time series were used.

Support vector machine (SVM) gave the largest overall accuracies among the three
methods tested, improved k-NN (ik-NN), multiple logistic regression (MLR) and SVM.
The proportion of correctly classified stands (OA) in a separate validation data was 79%,
and 75% if only one Sentinel-1 scene after the damage was used. The user’s accuracy
(UA) for severe damages was 62%, and 75% for slight damages. The producer’s accuracies
(PAs) were somewhat lower. The accuracy of 75% was achieved using only one Sentinel-1
scene after the damage, here two days after the damage, in addition to the data before
the damage.

Using segmentation-based calculation units only slightly increased the OA, implying
that this approach may presume further work. Most likely, not only SAR data, but also
inventory and other auxiliary data should be used in the segmentation methodology.

The study indicates that the damages could be localized using only one Sentinel-1
scene after the damage implying a time-lag of potential satellite SAR-based assessment
method would be just a few days after the damage. This gives promises that a SAR-based
near-real-time semi-automatic operative system to monitor windstorm damages is feasible.
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Abstract: Monitoring drought impacts in forest ecosystems is a complex process because
forest ecosystems are composed of different species with heterogeneous structural compositions.
Even though forest drought status is a key control on the carbon cycle, very few indices exist to
monitor and predict forest drought stress. The Forest Drought Indicator (ForDRI) is a new monitoring
tool developed by the National Drought Mitigation Center (NDMC) to identify forest drought
stress. ForDRI integrates 12 types of data, including satellite, climate, evaporative demand, ground
water, and soil moisture, into a single hybrid index to estimate tree stress. The model uses Principal
Component Analysis (PCA) to determine the contribution of each input variable based on its covariance
in the historical records (2003–2017). A 15-year time series of 780 ForDRI maps at a weekly interval
were produced. The ForDRI values at a 12.5km spatial resolution were compared with normalized
weekly Bowen ratio data, a biophysically based indicator of stress, from nine AmeriFlux sites. There
were strong and significant correlations between Bowen ratio data and ForDRI at sites that had
experienced intense drought. In addition, tree ring annual increment data at eight sites in four eastern
U.S. national parks were compared with ForDRI values at the corresponding sites. The correlation
between ForDRI and tree ring increments at the selected eight sites during the summer season
ranged between 0.46 and 0.75. Generally, the correlation between the ForDRI and normalized Bowen
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ratio or tree ring increment are reasonably good and indicate the usefulness of the ForDRI model
for estimating drought stress and providing decision support on forest drought management.

Keywords: forest monitoring; drought; time series satellite data; Bowen ratio; carbon flux

1. Introduction

Drought has multiple direct and indirect impacts on forests. High evaporative demand from
high temperature and low humidity, in isolation and especially when combined with limited soil
moisture supply, can induce plant water stress [1]. To reduce water loss and prevent the development
of excessively low water potentials, water-stressed plants typically close stomata. This can lead to carbon
stress, reduced growth, and greater susceptibility to insects and disease. Under extreme conditions,
drought stress can result in depleted carbon reserves, loss of hydraulic function, and mortality [2].

Monitoring drought impacts in forest ecosystems is complex because forest ecosystems are
composed of different species with heterogeneous structural compositions [3]. In a given ecosystem,
different tree species can also physiologically respond differently to drought stress [4–7]. Extreme
and intense droughts can induce irreversible growth and vigor loss, resulting in tree death [8–11],
which may lead to accumulation of fuel in a forest and increased fire danger. Drought conditions can
also result in decreases in forest Live Fuel Moisture Content (LFMC), the mass of water contained
within living vegetation in relation to the dry mass. LFMC has been identified as a factor relating to
fire ignition, behavior, and severity [12].

Traditionally, climate-based drought indices such as the Keetch–Byram Drought Index (KBDI)
or satellite-based indices have separately been used to monitor drought. In this study, these two
complementary approaches for monitoring forest drought have been combined.

The climate-based drought monitoring approach [13–19] characterizes forest drought status
indirectly (i.e., the climate-based drought indices indicate moisture deficit, but do not show levels
of physiological stress or damage in forests). Thus, most climate-based indices (e.g., KBDI) infer
impacts of the climatic parameters (e.g., rainfall and temperature) rather than measuring changes
in forest condition directly.

The remote sensing drought monitoring approach [20–25] enables a near-real-time monitoring
of forest condition at high resolution. However, an approach based on reflectance values also has
limits [22]. Remote sensing data alone are insufficient to demonstrate that drought is the causal
agent of a particular change in reflectance values. In addition to this, remote sensing of forest
drought and its interpretations can be complex due to technical aspects of the sensor technologies
and interconnections of underlying ecological processes in forested areas [26]. There is a need
for an integrated wide-area drought monitoring system that focuses specifically on drought stress
in forested ecosystems [27]. Most forests in the eastern U.S. are composed of different tree species
with different levels of drought tolerance, which makes monitoring forest drought challenging when
solely using climatic or satellite data. Both climate- and satellite-based data are powerful sources
for depicting and describing drought conditions and impacts. However, they could be more powerful
when merged together.

In this study, we present the Forest Drought Response Index (ForDRI), a new ‘hybrid’ drought tool
developed to monitor and assess forest drought conditions through the integration of satellite-based
observations of vegetation conditions, evapotranspiration (ET) estimates from satellite, root-zone soil
moisture (satellite-estimated or modeled), climate-based drought indices, and biophysical characteristics
of the environment. These input variables are combined based on their contribution (weight)
determined by covariance (principal component analysis) to provide the ForDRI value at each grid
point. The overarching goal of ForDRI research is to develop an integrated forest drought monitoring
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tool for decision makers using satellite, climate, and biophysical parameters to address the need and
challenges of forest drought monitoring on the order of weeks to months and years.

The main objective of this study is to identify and monitor drought impacts on forests to help
users, such as the U.S. Drought Monitor (USDM) map authors (drought experts), in characterizing
drought across forested areas of the U.S. The USDM relies on experts to synthesize the climate- and
satellite-based data and work with local observers to interpret the information. The USDM also
incorporates ground-truthing and information about how drought is affecting people, via a network
of more than 450 observers across the country, including state climatologists, National Weather Service
staff, extension agents, and hydrologists [28]. The USDM map is used by policy makers (e.g., legislative
and congressional offices, state forestry commissions); water supply managers; irrigation associations;
agricultural trade organizations; public land managers; federal, state and local fire managers; others
in the U.S. [28,29]. However, trees are likely to be more resilient to water limitation than annual plants
due to their generally deeper roots and woody stems, thus the need for a forest-specific product.

2. Materials and Methods

2.1. Study Area Forest Group Type Coverage by Climate Region

The study area for the experimental analysis is the eastern U.S. (Figure 1). The predominant land
cover in this region is forest cover consisting of more than 80 tree species [30]. Figure 1 shows the study
area and the forest type groups based on the national forest type dataset produced by the United
States Forest Service (USFS) Forest Inventory and Analysis (FIA) program and the Remote Sensing
Applications Center (RSAC). The national forest type dataset was created by modeling several
biophysical layers, including digital elevation models (DEM), Moderate Resolution Spectroradiometer
(MODIS) multi-date composites, vegetation indices and vegetation continuous fields, class summaries
from the 1992 National Land Cover Dataset (NLCD), various ecologic zones, and summarized
PRISM climate data [31]. The national forest types were classified into 28 groups to portray broad
distribution patterns of forest cover in the U.S. [30,32]. Our study area includes 10 major forest type
groups (Figure 1).

The study area was divided into Central, East North-Central, Northeastern, and Southeastern
forest/climate regions [31] (Figure 1). The Oak/Hickory (38%), Loblolly/Shortleaf Pine (17%),
and Maple/Beech/Birch (15%) forest type groups dominate the study area. However, each forest/climatic
region has its own characteristic and areal extent of forest group types as well as species composition.
For example, the highest percent area coverage of the Northeast Climate Region is the Maple/Beech/Birch
Group (about 66%), followed by the Oak/Hickory Group (about 22%). In contrast, the highest percent
cover of the forest group in the Southeast Climate Region is the Oak/Hickory Group (about 40%),
followed by Loblolly/Shortleaf Pine Group (about 28%). Detailed information and the data for the U.S.
is available at USDA’s Forest Service website at [31].
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Figure 1. Study area for the Forest Drought Response Index (ForDRI). The map shows the ten major
forest group types in the study area based on the USFS National Forest Type dataset [31].

2.2. Data Used in ForDRI Model Development

The ForDRI model includes water cycle variables (precipitation, temperature, evaporation,
soil moisture, and vapor pressure deficit) that influence short- and long-term drought conditions that
are combined with satellite-derived vegetation reflectances (NDVI) that characterize forest condition.
The input variables are described in additional detail below.

2.2.1. MODIS-based Normalized Difference Vegetation Index (NDVI)

The normalized difference vegetation index (NDVI) information at 250-meter (m) spatial resolution
is based on Moderate Resolution Imaging Spectroradiometer (MODIS) data acquired by the National
Aeronautics and Space Administration’s (NASA) Earth Observing System (EOS). The MODIS-based
7-day data from 2003–2017 were acquired from USGS [33] and resampled to a 1 km grid, and each dataset
was standardized (Z-score) to be consistent with the other input variables. The Z-score was calculated
using the formula: weekly-observed value minus weekly-mean value divided by the standard
deviation. This dataset can be accessed at USGS Earth Explorer [33].
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2.2.2. Standardized Precipitation Index (SPI)

The SPI was calculated to quantify the precipitation anomaly for three specified time-scales
(the previous 12, 24, and 60 months) based on the long-term precipitation record over that specific time
interval [12,34]. Since the SPI values are calculated by fitting the long-term record of precipitation over
a specific time step to a probability distribution to standardize the values, we have used these three
SPI values to represent different time scales of the rainfall conditions that would affect forest health.
The three SPIs are selected to represent the long-term precipitation impact (from 1 year to 5 years)
on tree stress. The rainfall data used to generate the time series of SPI were obtained from Applied
Climate Information System (ACIS) meteorological station data across the study region. We used
the available daily long-term record of each station to generate SPI at 12-, 24-, and 60-month aggregate
periods and interpolated using the inverse-distance weight (IDW) method to produce 1 km resolution
SPI maps.

2.2.3. Standardized Precipitation Evapotranspiration Index (SPEI)

Unlike the SPI, which depends only on rainfall, the SPEI is designed to take into account
both precipitation and temperature. The time series of the SPEI were generated based on daily
rainfall and temperature data acquired from ACIS meteorological station data. The SPEI were
generated at 24- and 60-month aggregate periods and interpolated (using the IDW method) to 12.5 km
spatial resolution. With the temperature input, potential evapotranspiration (PET) is calculated and
a historical time series of the simple water balance (precipitation—PET) is used in determining drought.
Thus, the SPEI captures the main impact of increased temperatures on water demand [35]. Two
specified time periods of SPEI historical records (i.e., the previous 24 and 60 months) that represent
the temperature impact on water demand (rainfall) were used in building the ForDRI model to monitor
forest drought response.

2.2.4. Evaporative Demand Drought Index (EDDI)

The EDDI indicates the anomalous condition of the atmospheric evaporative demand (also known
as “the thirst of the atmosphere”) for a given location and across a time period of interest [36,37].
The EDDI is expressed as atmospheric evaporative demand (Eo) anomalies. The Eo is calculated
using the Penman–Monteith FAO56 reference evapotranspiration formulation driven by temperature,
humidity, wind speed, and incoming solar radiation from the North American Land Data Assimilation
System datasets (NLDAS-2). EDDI is multi-scalar (i.e., captures drying dynamics that themselves
operate at different timescales). We combined 12-month aggregated EDDI values with the other
variables to monitor evaporative demand during forest drought.

2.2.5. Ground Water Storage (GWS)

GWS anomalies are calculated from Gravity Recovery and Climate Experiment (GRACE)
observations [38,39]. Data from the Global Land Data Assimilation System (GLDAS), including
Terrestrial Water Storage (TWS), Root Zone Soil Moisture (RZSM) at 1-meter depth, and Snow Water
Equivalence (SWE), were used to convert GRACE observations into a series of GWS anomalies
(i.e., GWS = TWS – RZSM – SWE). NASA provided the data (2003 to 2017) at 12.5 km resolution
for the U.S. The ground water product at 1-meter depth represents deeper soil condition that can be
accessed by deeper-rooted tree species. The global GRACE data (2003–2020) are also available online
from the NASA GSFC Hydrological Sciences Laboratory at the NASA GESDISC data archive [40].

2.2.6. Palmer Drought Severity Index (PDSI) and Palmer Z Index (PZI)

The PDSI has been one of the most widely used climate-based drought indices in the U.S. [41].
The PDSI is calculated based on a simple supply-and-demand model of a water balance equation
using historical records of precipitation and temperature as well as available water-holding capacity
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of the soil at a given location [14,15]. The PDSI is calculated using a combination of current and
previous climatic conditions. In contrast to the PDSI, the Palmer Z-Index (PZI) corresponds to
monthly drought conditions with no memory of previous monthly deficits or surpluses [14,15]. Thus,
in this study, we have used the PDSI and 60-month PZI historical datasets to represent the short- and
long-term drought conditions that impact forests.

2.2.7. Noah Soil Moisture (SM)

The Noah soil moisture dataset used in this study is produced using a land surface model that
forms a component of the GLDAS [42–44]. The Noah soil moisture represents shallow soil depth
conditions that can be accessed by shallow-rooted species. Compared to other NLDAS-2 soil moisture
products (e.g., VIC), Noah soil moisture shows the best performance in simulating shallow depth soil
moisture [45]. The Noah model uses a four-layered soil description with a 10-cm thick top layer and
takes into account the fractions of sand and clay. Soil moisture dynamics of the top layer are governed
by infiltration, surface and sub-surface runoff, gradient diffusion, gravity, and evapotranspiration [46].
The model was forced by a combination of NOAA/GLDAS atmospheric analysis fields, spatially and
temporally disaggregated NOAA Climate Prediction Center Merged Analysis of Precipitation (CMAP)
fields, and observation-based downward shortwave and longwave radiation fields derived using
a method of the Air Force Weather Agency’s agricultural meteorological system [40]. The historical
data (available since 2000) has a 25 km resolution (resampled to 1 km for combining with other model
inputs). This dataset is also available as NOAA’s NLDAS Drought Monitor Soil Moisture [47].

2.2.8. Vapor Pressure Deficit

The vapor pressure deficit (VPD) represents the difference between the actual water vapor pressure
in the air and the vapor pressure when the air at that temperature is saturated [48]. The VPD is
one of the critical variables that control photosynthesis and water use efficiency of plants. The photosynthetic
rates in leaves and canopies is inversely proportional to the atmospheric VPD [49]. Thus, it is important
for forest ecosystem structure and function [50]. Average daily VPD data using the PRISM model at 4 km
resolution were retrieved from the PRISM Climate Group, Oregon State University [51–53].

2.2.9. National Forest Groups and Types

The national forest types and forest groups geospatial dataset (1 km spatial resolution) used
in this study was created by the USFS Forest Inventory and Analysis (FIA) program and the Remote
Sensing Applications Center (RSAC) to show the extent, distribution, and forest type composition
of the nation’s forests. The dataset was created by modeling forest type from FIA plot data as a function
of more than 100 geospatially continuous predictor layers. This process results in a view of forest type
distribution in greater detail than is possible with the FIA plot data alone. The ForDRI model is calculated
for forest areas based on this national forest type dataset acquired from the USDA Forest Service [31].

2.2.10. Bowen Ratio Data to Compare with ForDRI at Nine AmeriFlux Sites

Plant water stress is typically characterized by the water potential (ψ), which represents the tension
in the water column and reflects the balance of free energy between atmospheric demand and soil
water supply, modulated by leaf stomatal and hydraulic resistances [54]. Plant water potentials can
be measured via pressure chamber [55] or in-situ hygrometer [56], but long-term observations across
a range of sites are not available.

Energy balance considerations mean that net radiation (Rn) at a forest site is balanced by the energy
of sensible heat (H) and evaporation (λE) plus any change in storage (S):

Rn = H + λE + S (1)

38



Remote Sens. 2020, 12, 3605

The change in energy storage associated with ground or canopy heat flux is small compared to
the other terms and averages over time to zero. Evaporation from a canopy in energy terms (W m−2) is
described by the Penman–Monteith equation [57]:

λE =
Δ(Rn − S) + cpρδega

Δ + γ(1 + ga/gs)
(2)

where Rn and S are as above, δe is the vapor pressure deficit, ga and gs are boundary layer and stomatal
conductances to water vapor, and Δ, cp, ρ, and γ are thermodynamic parameters that are weak functions
of temperature. The stomatal conductance, gs, plays an important but not unique role in limiting λE.
If λE is reduced because of a change in conductance, then H (and to a lesser extent, S) will rise because
of energy balance considerations. This makes the Bowen ratio (β), defined as H/λE, especially sensitive
to changes in conductance. Stomatal conductance in turn is a function of incoming solar radiation,
the vapor pressure deficit (δe), temperature, (internal) CO2 concentration, and water stress (ψ) [58,59].
During drought, higher temperatures and increased vapor pressure deficits can combine with soil
water stress to severely limit gs and increase H at the expense of λE.

We assessed forest water stress by using sensible (H) and latent heat (λE, evaporation) flux data
measured at AmeriFlux network sites to calculate an integrated Bowen ratio (βi):

βi =

∑
H∑
λE

(3)

Measured 30-minute H and λE fluxes (no gap filled values) were summed over 7 days, when both
were >50 W m−2. The 7-day integration period was chosen to match the weekly timestep of ForDRI.
The Bowen ratio in this context thus represents the weekly partitioning of the site net radiation. When
a tree canopy is fully developed and water is passing through foliage on its way to the atmosphere, λE is
generally greater than H, and β < 1. When water stress occurs, evaporation from a canopy is limited
by stomatal closure and potentially, reduced foliage area. These limits result in more of the incoming
energy being converted to sensible heat causing the Bowen ratio to increase.

Sensible (H) and latent (λE) heat data from nine forested AmeriFlux eddy covariance sites
in the eastern U.S. were used to calculate the weekly Bowen ratio (βι). These represented all forested
sites in the eastern U.S. with 12 or more years of H and λE data (Table 1). Because there are seasonal
as well as site-to-site variations in β, we normalized weekly, log-transformed integrated Bowen
ratios (log10 βi) by their standard deviations (σ) from the weekly mean over the full record (log10 βi,
where a negative value indicates a higher than average βι and more drought-stressed conditions).
This normalization (also referred to as a Z-score) occurs for each week of the growing season and helps
highlight unusual behavior in the weekly βι values consistently across sites.

Z–score(βi) =
log10 βι − log10 βi

σ
(4)

This normalization also means that in a long enough record there is a direct, probabilistic
interpretation of values based on characteristics of the normal distribution (e.g., a 2σ result has
a single-tailed probability of ~2.27%, a 3σ result has p < 0.2%, etc.).
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2.2.11. Tree Ring Data for Evaluation

Landsat-based Phenology and Tree Ring data (1984–2013) for Eastern US Forests were acquired
for evaluation of ForDRI from the Oak Ridge National Laboratory Distributed Active Archive Center
(ORNL DAAC). This dataset provides a 30-year record of forest phenology and annual tree ring
data at several selected forested sites in the eastern U.S. [69]. These selected sites are located in four
national parks—Harpers Ferry National Historical Park (HAFE), Prince William Forest Park (PRWI),
Great Smoky Mountains National Park (GRSM), and Catoctin Mountain Park (CATO). Details of sample
preparation and dendrochronological analyses are presented in [70]. We have used eight sites from
the four parks (two sites per park) to compare tree ring increment with ForDRI values during
the summer season (June to September).

2.3. Methods

2.3.1. ForDRI Model Development

To develop a proof-of-concept ForDRI model, we used 12 selected variables (described above) that
contribute to forest drought (Figure 2). The input variables include MODIS-based NDVI, GRACE-based
ground water storage, three SPI timescales (12-, 24-, and 60-month SPI), two SPEIs (12- and 24-month
SPEI), PDSI, PZI, Noah soil moisture, 12-month EDDI, and VPD. To determine the contribution
of each input variables objectively, we have used the principal component analysis (PCA) method.
Using the PCA approach, the weights of each variable are determined based on their historical data and
the covariance of all input variables (Figure 2; Step 2). This approach helps in limiting the redundant
information that could influence the combined ForDRI model. In addition, the PCA-based process
is automatic (using scripts), which allows us to produce a separate model for each week in a year
using several inputs at a higher spatial resolution [71,72]. Figure 2 shows the method and steps to
develop the ForDRI model and the process of producing maps for the forest regions. The process
includes six steps from data processing to product dissemination. As shown in Figure 2, the main steps
are (i) standardizing all the input variables to be consistent in combining them, (ii) determining
the percent contribution (weight) of each input variable based on the covariance of the variables using
the PCA method, (iii) multiplying each input variable with the proportion (weight) determined by PCA,
(iv) adding the weighted input variables and standardizing the output using long historical records and
generating the ForDRI maps for the selected forest regions (we generated the ForDRI maps for the four
forest regions of the eastern U.S. to demonstrate and evaluate ForDRI, Figure 3), (v) evaluating
the ForDRI maps using tree ring increment (dendrology) data and forest flux data (i.e., Bowen Ratio),
and (vi) disseminating the ForDRI maps. In this study, Steps 1 to 5 (Figure 2) were used. For Step 4,
the historical data were used in hindsight as “Near-real Time data” to demonstrate the ForDRI model’s
capability. The last step (i.e., Step 6, Internet portal for data access and distribution) is the potential
delivery of the operational ForDRI maps to the public in the future. An operational ForDRI model
is planned to be developed after expanding the model to the western U.S. and evaluating the final
national ForDRI model for the continental U.S. (CONUS).
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Figure 2. Conceptual method and steps to develop the Forest Drought Response Index (ForDRI).

2.3.2. Evaluation Method/Approaches for ForDRI (Both Qualitative and Quantitative Approaches)

For this initial version of the ForDRI model, we used climatic, satellite, and biophysical data
for the eastern U.S. (east of 100◦W) at a weekly timestep. Forests in the eastern U.S. experience occasional
drought, but they tend to be shorter and more random than the seasonal droughts of the West [73].
To evaluate the ForDRI model, we needed long-term measures of forest physiological stress from
a variety of sites sufficient to capture a number of significant drought events. As described earlier,
our approach was to evaluate ForDRI by assessing forest water stress using sensible and latent heat
(evapotranspiration) flux data measured at AmeriFlux network sites to calculate an integrated Bowen
ratio and by comparison with estimates of forest growth. It is well known that drought is a primary
limit on tree growth and its effects can be seen in tree ring increments [74]. We also evaluated the ForDRI
model by qualitatively comparing the spatial patterns and intensity of the drought conditions depicted
on the U.S. Drought Monitor (USDM) maps during selected drought years. The USDM is a hybrid
product, developed using several sources of ground observation and remote-sensed data including
the SPI, PDSI, NDVI, streamflow values, and other drought indicators used by the agriculture, forest,
and water management sectors as well as expert feedback from regional and national climatologists.
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Figure 3. Example of the Forest Drought Response Index (ForDRI), showing maps of eastern U.S. Forest
Service regions for week 32 (August 12) for selected years: (a) 2007, (b) 2008, (c) 2010, and (d) 2012.

3. Results

3.1. ForDRI Maps for Selected Drought Years

Historical ForDRI maps (780 maps at a weekly interval) were produced from 2003 to 2017. The same
weeks (ending August 12) in 2007, 2008, 2010, and 2012 (Figure 3a–d) are shown below to demonstrate
and evaluate the ForDRI model and products. The selection of these drought years was based upon the
general long-term drought conditions of the eastern U.S. depicted by the USDM (Figure 4). Even though
2010 was not a drought year over most parts of the U.S., the Northeastern region experienced drought,
as shown in Figure 3c.

3.2. Comparison of ForDRI with U.S. Drought Monitor (USDM)

The drought intensity estimates of ForDRI broadly agree with those for the same time period
produced by the USDM (compare Figure 3; Figure 4). Note that ForDRI masks out non-forested
(e.g., agricultural, rangelands, water, and urban) lands that are a focus of the USDM. In mid-August 2007
(Panel “a”), for example, both reach their most severe categories in Alabama-Tennessee and both capture
intense drought west of Lake Superior. Details of the patterns differ because of differences in inputs
and weighting. In mid-August 2008, for example, ForDRI indicates forest drought stress stretching well
into Virginia while the USDM localizes the worst effects in a smaller region (Panel “b”). Both products
agree that only mild drought is present in mid-August 2010 (Panel “c”). However, ForDRI does not
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indicate stress for forests in northern Louisiana while the USDM at that time is indicating short-term
(e.g., agricultural) impacts are present. The extreme drought across much of the Midwest in August
of 2012 [11] is clearly visible in both products (Figures 3d and 4d).

 

Figure 4. The U.S. Drought Monitor (USDM) maps for mid-August: (a) 2007, (b) 2008, (c) 2010, and
(d) 2012 for qualitative comparisons.

3.3. Evaluating ForDRI with Bowen Ratio

Figure 5 shows the time-series comparison of the historical records of Bowen Ratio at nine
AmeriFlux sites and ForDRI. During the assessment period, two of the flux tower sites, Morgan
Monroe (“MMS”, Monroe County, Indiana) and the Missouri Ozarks (“MOz”, Boone County, Missouri)
experienced “Exceptional” (D4) drought as defined by the U.S. Drought Monitor (Table 2). The North
Carolina Pine site (“NC2”, Washington County) experienced “Extreme” (D3) drought, while four sites
experienced at least one “Severe” (D2) drought (Table 2). Two sites experienced at most “Moderate”
(D1) growing season drought in the period between 2003 and 2017. Both Willow Creek (“WCr”) and
the Sylvania Wilderness (“Syv”) sites experienced D3 events in the period between 2007 and 2010 or
2011 when they were offline (no observations available).
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The Midwest drought of 2012 is easily seen in the normalized Bowen ratio flux data from
both the MMS and MOz sites and is well captured by the ForDRI model (Figure 5). The 2012
drought reached D4 at both sites in August, and both model and data reached a minimum during
this event. The normalized Bowen ratio reached −2.89σ at the MOz site and −3.26σ at MMS,
consistent with single-tailed probabilities of <1% and <0.1%, indicating the severity of the drought.
At both sites, the ForDRI model output is significantly correlated over the entire assessment period
with the normalized Bowen ratio data (Z-score βι) (p < 0.001, r = 0.56 at Morgan Monroe and r = 0.76
at the Missouri site). A late-summer D2 event at Morgan Monroe in 2010 is also well resolved
in both the data and by ForDRI, as is a late summer D1 event in 2007 at both sites. However, a drought
classified as D2 by the USDM at the Missouri Ozarks site in 2006 is less clear in the Bowen ratio data
and ForDRI model. The ForDRI model and normalized Bowen ratio flux data disagree noticeably
at Morgan Monroe in 2014 and at the Missouri Ozarks site in 2015. In both cases, the data suggest
~1σ drier than normal conditions (higher Bowen ratios) while ForDRI indicated wetter than normal.
This may be related to tree mortality attributable to 2012 drought that occurred in subsequent years;
this delayed effect of drought [62] might complicate the Bowen ratio comparison.

 

Figure 5. Comparison of the historical records of ForDRI values and normalized Bowen Ratio (Z-Score βι)
at nine AmeriFlux sites that include Bartlett Experimental Forest (Bar), Howland Forest (Ho1), Morgan
Monroe State Forest (MMS), Missouri Ozark Site (MOz), North Carolina pine forest (NC2), Silas Little
Forest (Slt), Sylvania Wilderness Area (Syv), Univ. of Mich. Biological Station (UMB), and Willow
Creek (WCr).

The ForDRI model and Z-score βι are also well-correlated (p < 0.001, r = 0.73) at a North Carolina
pine forest (NC2) site (Figure 5). The NC2 flux site experienced D2 in the fall of 2007 which worsened
to D3 in the spring of 2008. This site also experienced a D2 drought throughout the summer of 2011.
All of these events and their relative severity are clearly identified in both ForDRI and the normalized
Bowen ratio.

The Silas Little Forest (Slt) in the New Jersey Pine Barrens is characterized by sandy soils with
low water holding capacity and drought-tolerant species. The record drought in this time period was
September 2010, when the USDM classified Burlington County as D2 for several weeks. The normalized
Bowen ratio shows this as a −2σ event and ForDRI identifies it as the most extreme in the interval
(Figure 5). However, model and data disagree sharply at this site in the early spring of 2007 when
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ForDRI was indicating normal moisture conditions while the Z-score βι showed this as an extreme
stress departure of −2.85σ. ForDRI and the normalized Bowen ratio then came into better agreement
as the growing season progressed. The difference can be accounted for by a gypsy moth caterpillar
(Lymantria dispar L.) outbreak that removed most foliage from the forest in spring of 2007 [64]. Following
the peak of herbivory in mid-June, a second, partial leaf-out occurred and resulted in a canopy
with roughly half of the normal summer leaf area [64]. A secondary, lesser defoliation occurred
at Silas Little in 2008. With little or no foliage, evaporation was severely constrained, and this resulted
in most of the incoming energy being converted to sensible heat and a high Bowen ratio.

ForDRI identified the 2007–2009 drought at Willow Creek and the Sylvania Wilderness that
reached D3 when flux data were not available, as well as lesser events. The normalized Bowen ratio
data (Z-score βι) reached a minimum of −2σ at lesser (D2) events at these sites. However, ForDRI and
Z-score βι were not significantly correlated at either site over the full data record (Willow Creek, r = 0.10,
p = 0.23; Sylvania r = 0.12, p = 0.19). At UMB, the USDM reached D2 in 2005 and 2007, but these
periods were poorly resolved by both ForDRI and Z-score βι. Both Howland and Bartlett recorded
only minor (D1) growing season events during the assessment period, and ForDRI and Z-score βι were
not significantly correlated at these sites.

Table 2. Historic drought at AmeriFlux sites during the ForDRI assessment period based on the U.S.
Drought Monitor.

Site County State Year Dates Intensity

MMS Monroe Indiana
2012

26 June–4 Sept D2
17 July–28 Aug D3
24 July–7 Aug D4

2010 21 Sept–23 November D2
2007 21 Aug–26 Oct D2

MOz Boone Missouri
2012

3 July–end of year D2
17 July–16 Oct D3

14 Aug–28 Aug D4
2006 8 Aug–22 Aug D2
2007 21 Aug–16 Oct D1

NC2 Washington North Carolina

2011
31 May–23 Aug D2

20 Nov–4 Mar 2012 D2

2008
1 Jan–26 Aug D2

29 Jan–12 Feb, 26 Aug (one week) D3
2007 4 Sept–23 Oct D2

Slt Burlington New Jersey 2010 7 Sept–28 Sept D2
2007 June, Gypsy moth outbreak none

UMB Cheboygan Michigan

2011 29 Mar–26 Apr D1
2010 6 April–17 Aug D1
2007 28 Aug–4 Sept D2
2005 19 July–16 Aug D2
2003 7 Jan–1 April, 23 Sept D1

Syv Gogebic Michigan

* 2010
1-29 June D3

13 April–17 Aug D2
* 2009 22 Sept–20 Oct D2
* 2008 26 Aug–12 May 2009 D1

* 2007
14 Aug–4 Sep D3
10 July–16 Oct D2

2006 11 July–25 July D2
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Table 2. Cont.

Site County State Year Dates Intensity

WCr Price Wisconsin

2012 9–23 Oct D2
* 2010 13 April–22 June D2

* 2009
4–18 Aug D3

25 Jan–Aug D2
* 2008 21 Oct–end of year D2
* 2007 12–18 Sept D2
2005 6 Sept–4 Oct D2

2003 18–25 Mar, 22–29 July, 2 Sept–end
of year D1

Ho1 Penobscot Maine
2016 15 Nov–20 Dec D2

2016/17 27 Sept–7 Feb 2017 D1
2010 10 Aug–28 Sept D1

Bar Carrol New Hampshire 2016/17 27 Sept–7 Feb 2017 D1

* means data not available from flux site for that specific period.

3.4. Evaluating ForDRI with Tree Ring Increments

Tree ring increment (TRI) data from eight sites were used to assess ForDRI values at the four
national parks (i.e., HAFE, PRWI, GRSM, and CATO). The tree ring increment is the width of a tree ring
that shows the amount of growth taken place over one year and thus indicates the growing conditions
for that year. The data that we used include 38 trees in CATO park (two per each site), 115 trees
in GRSM (two per each site except one site with only one tree), 24 trees in HAFE (two per each site),
and 44 trees in PRWI (two trees per each site). To analyze the correlation of the ForDRI and TRI,
two sites from each national park were selected (Figure 6). Three species including American tulip tree
(Liriodendron tulipifera), northern red oak (Quercus rubra), and white oak (Quercus alba) were selected
for tree ring increment data analysis. Niinemets and Valladares [75] considered Liriodendron tulipifera
and Quercus rubra moderately susceptible to drought and Quercus alba moderately tolerant [76]. At each
of the selected park sites, the individual tree ID and species type are shown in Figure 6.

Figure 7 shows the correlation between annual tree-ring increment data and ForDRI weekly values
during the summer season (June to September). The ForDRI values at a weekly interval were compared
with the tree ring annual data at each site between 2003 and 2017 to identify the best period to monitor
drought stress on trees using the ForDRI model. The results showed that four sites at GRSM and
PRWI have higher correlations (between 0.61 and 0.82) with ForDRI during all weeks of summer
(Figure 7) than the other park sites. The correlation peaked when compared with ForDRI values
from mid-August. Tree ring increment at the two CATO sites also showed relatively good correlation
(0.35 < r < 0.73) with ForDRI. At this site, the highest correlation (0.73) was found in July. Tree ring
increments recorded at two HAFE sites showed relatively lower correlations (0.22 < r < 0.63) with
ForDRI. This could be because the dominant tree species in the park (oak) are drought-tolerant.
In addition, differences in the strength of these relationships may depend upon tree site specifics
(ridgetop vs. valley), soils, or other factors. In addition, the frequency and intensity of drought at these
four national historic parks over this relatively short interval were not identical. Generally, however,
the comparison revealed that the ForDRI values showed reasonable correlation with the tree ring
increment, so ForDRI maps may help decision-makers monitor tree drought stress in these parks.
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Figure 6. Locations of the tree ring sites and their species types at the selected four national historical
parks. The table in the lower left side of the figure shows the species type of each individual tree,
indicating the tree species: Quercus alba (QUAL), Liriodendron tulipifera (LITU), and Quercus rubra (QURU).
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Figure 7. Time series correlation of ForDRI and tree ring increment data during summer season (June to
September) at eight sites across four national parks in the eastern U.S.

Table 3 shows the maximum, minimum, and average correlation between ForDRI and tree ring
increment data at eight sites of the four national parks in the eastern U.S. during the summer season
(June to September). The correlation between ForDRI and tree ring increments at the selected eight
sites during summer ranged between 0.46 (minimum) and 0.78 (maximum). The two GRSM sites had
higher average correlations (0.75 and 0.78) than the PRWI (0.73 and 0.75), or other sites. Using average
summer values of ForDRI accounted for over half the variance in tree ring increment at the GRSM and
PRWI sites. Correlations may have been strongest at these two sites because they were impacted
by the 2008 Southeast drought (Figure 3b) while the CATO and HAFE sites were not.

Table 3. Maximum, minimum, and average correlation of ForDRI and tree ring increment (TRI) data
at eight sites during summer season (June to September) at four parks in the eastern United States.

Site/Tree ID Min Max Average

HAFE_49_1 0.22 0.59 0.46
HAFE_59_2 0.33 0.63 0.48

CATO_25_1_2 0.52 0.73 0.64
CATO_42_1_2 0.35 0.67 0.54

GRSM_101_2_1 0.68 0.81 0.75
GRSM_66_1_1 0.74 0.82 0.78
PRWI_15_2_1 0.61 0.81 0.73
PRWI_3_1_2 0.61 0.81 0.75

4. Discussion

The ForDRI model reaches minimum values at the same times as the normalized Bowen ratio
(Z-score of βι), a relative measure of physiological water stress. Both of these measures reach minimum
values at times when the USDM suggests these forested sites experienced extreme (D3) or exceptional
drought (D4). Overall, ForDRI was significantly correlated with the normalized Bowen ratio. At the site
level, this correlation was significant at four of the nine sites and can account for over half the variance
in the flux-derived quantity. At the sites with lesser (e.g. D2) events in the record, both the normalized
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Bowen ratio measurements and ForDRI tend to reach at least local minima during the drought event(s)
but the correlation between these indicators across the entire time period drops. This lack of correlation
at these sites is to be expected when there is little or no drought stress signal to measure. We would
expect that other factors such as herbivory and other causes of foliage loss are contributing “noise”
to the signals during these non-drought periods and that ForDRI and the normalized Bowen ratio
are differentially sensitive to these other factors (the “noise” is uncorrelated). As mentioned earlier,
stomatal conductance and β are sensitive to a number of factors in addition to plant (or soil) water stress.
These include solar radiation, temperature, and vapor pressure deficit. When significant droughts
are absent at a site during the comparison periods (e.g., Bartlett Forest), our normalization scheme
will highlight this other variation and magnify disagreement with ForDRI. Bowen ratio data from
the Silas Little Forest supports this argument. In 2007, Bowen ratio values at Silas Little Forest reached
a minimum, indicating extreme physiological stress, while ForDRI suggested no stress was present.
Researchers at the forest, however, report that insects had consumed almost all of the canopy foliage
at this time [64]. Without foliage to transpire water, incoming energy was converted to sensible heat
and β soared. The stress was real; it just was not caused by drought. Even so, lesser droughts (D2) are
easily visible in the normalized Bowen ratio record.

Tree ring increment data were similarly significantly correlated with ForDRI, with higher
correlations evident at sites that had experienced more significant drought. The long timespan
of developing intense drought (drought serial autocorrelation) was observed in the correlation
of annual ring increment with ForDRI estimates across the summer.

A multiyear pattern of drought stress is clearly visible in ForDRI and the normalized Bowen ratio
at a number of sites, and critically, in all those that reached D3 or D4. This is an important result as
it implies that serious forest drought, the kind that we are most concerned about, takes a long time to
develop. It also indicates that ForDRI has a certain capacity to predict the likelihood of extreme (D3) or
exceptional drought (D4) prior to, or early in, the growing season. Extreme or exceptional drought
conditions seem very unlikely to develop if ForDRI is indicating average or wetter than average
conditions at the beginning of the growing season. Conversely, seasons with enhanced likelihood
of significant forest drought stress can also be identified. This suggests the possibility of forecasting
potential drought maximum severity at the beginning of the growing season, which would be useful
to fire managers and many others.

5. Conclusions

We have described ForDRI, a new and non-subjective indicator of forest drought. Weekly values
of ForDRI have been calculated since 2003, and in that period, these values readily identify extreme
(D3) or exceptional (D4) drought in several research forests. Severe (D2) and less intense droughts are
also identified, but at a lower probability of success. A novel and independent measure of forest water
stress calculated from forest flux-tower data, weekly, log-transformed integrated Bowen ratios (log10 βi)
transformed to Z-scores from the weekly mean over the full record, similarly identifies extreme drought
periods over the same record. At the sites that have experienced extreme or exceptional drought,
these measures are significantly correlated, providing strong evidence for the utility of ForDRI.

The tree ring analysis also showed that the ForDRI values are correlated at the eight sites of the four
national parks in the eastern U.S., indicating the drought/water stress impact on tree growth during
the drought years. The results showed the potential usefulness of the ForDRI tool for decision making
to monitor drought stress on trees in the eastern U.S. and suggest the model can be readily expanded
to other parts of the continental U.S.
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Abstract: Forests play an important role in the Earth’s system. Understanding the states and changes
in global forests is vital for ecological assessments and forest policy guidance. However, there is no
consensus on how global forests have changed based on current datasets. In this study, five global land
cover datasets and Global Forest Resources Assessments (FRA) were assessed to reveal uncertainties
in the global forest changes in the early 21st century. These datasets displayed substantial divergences
in total area, spatial distribution, latitudinal profile, and annual area change from 2001 to 2012.
These datasets also display completely divergent conclusions on forest area changes for different
countries. Among the datasets, total forest area changes range from an increase of 1.7 × 106 km2

to a decrease of 1.6 × 106 km2. All the datasets show deforestation in the tropics. The accuracies
of the datasets in detecting forest cover changes were evaluated by a global land cover validation
dataset. The spatial patterns of accuracies are inconsistent among the datasets. This study calls for
the development of a more accurate database to support forest policies and to contribute to global
actions against climate change.

Keywords: forest area change; data assessment; uncertainty evaluation; inconsistency

1. Introduction

As one of the most widely distributed land cover types, forests have a total area of 40.6 × 106 km2,
which accounts for 31% of the world’s total land area [1]. Forests play an important role in maintaining
the balance of the global ecosystem by acting as a carbon sink [2,3], prompting water conservation [4],
providing a habitat for species [5], improving landscape functions [6], and regulating the climate [7].
Forests have experienced great changes, including deforestation and afforestation. Understanding
states of global forest and its changes help to provide guidelines for forest conservation, protection,
and management [8,9].

According to the Food and Agriculture Organization (FAO) of the United Nations (UN), more than
1.29 × 106 km2 of forest have been lost globally since 1990 [1]. Fires, insects, severe weather events,
and ecological evolution are important natural factors that cause changes in forest distribution [10,11].
Human activities have significant influence on forests. This includes sourcing wood for industrial and
fuel usage [12,13]. Land expansions caused by human activities, e.g., farmland and urban expansion,
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are also major causes of deforestation [14]. Such changes can result in significant climate consequences by
initiating considerable climate feedbacks in biochemical and biogeophysical processes [7]. For example,
the Amazon suffers from the most severe deforestation. As a consequence of the biogeophysical
feedback, it has become drier and warmer [15]. Forest changes also affect humans through their
ecological functions, such as mitigating the heat island effect [16]. Given that forest changes can greatly
affect the Earth systems and human society, it is critical to obtain accurate descriptions of the status
and changes of the global forest. However, there is no consensus on how global forests have changed
in the past several decades.

There are two main methods to monitor forests at large scales: i.e., remote sensing monitoring
and forest censuses. Many global land cover datasets were produced to quantify the global land cover
situations and its changes with respect to the advances in remote sensing theory and technology [17].
Large-scale forest monitoring by remote sensing has improved in terms of its availability, accuracy,
and spatiotemporal resolution [18,19]. These datasets fostered the development of large-scale forest
researches [20,21]. Forest censuses by governments are another commonly used method to assess
forest status. The FAO’s FRA reports were the most commonly used national scale forest datasets.
It can provide a perspective on the impact of policies and other human factors on forests, e.g., how the
Three-North Shelter Forest Program in China significantly improved forest coverage in northern
China [22].

Based on existing datasets and studies, global forests have substantially changed, including changes
in total area [23], spatial distribution [24], and tree biodiversity [25]. However, these studies came to
inconsistent and even contradictory conclusions on global forest changes. Hansen et al. [26] detected
global forest change with the Advanced Very High Resolution Radiometer (AVHRR) data, revealing a
decrease in the tree cover percentage from 1982 to 1999. Among different regions, Latin America
and Southeast Asia were the dominant regions for forest loss. This finding was contradictory to that
from the FRA. According to Song et al. [27], global tree cover area increased by 2.2 × 106 km2 from
1982 to 2016; the gross loss and gain of tree cover both increased, but the rate of tree cover gain was
greater than that of tree cover loss, especially after the first decades of the 21st century. In contrast,
Hansen et al. [28] reported that global forest area decreased by 1.6 × 106 km2 from 2001 to 2012 [28].
According to FRA reports, the global forest area decreased by 1.3 × 106 km2 between 1990 and 2015,
including decreases of 7.3 × 105 km2 from 1990 to 2001 and 5.6 × 105 km2 from 2001 to 2015 [29–31].
Current studies reached a consensus: the tropics have undergone rapid forest loss over the past several
decades. Keenan et al. [23] concluded the tropical forest area decreased by 1.95 × 106 km2 from 1990 to
2015. Ordway et al. [32] found that agricultural expansion increased forest loss in South America and
Southeast Asia; Qin et al. [33] also demonstrated a forest loss in the Brazilian Amazon from 2000 to
2017. Current studies also revealed that cropland expansion was an important driver of the forest loss
in the tropics [24,34]. However, when it comes to the specific area of forest change, the conclusions are
diverse. So far, these studies paid more attention to analyzing the results based on their own datasets,
while comparisons between different datasets were often ignored. Comparisons of how forests changed
based on the commonly used land cover datasets can help us to understand the states of forest and
recognize the inconsistencies among the datasets.

The primary objective of this study was to investigate inconsistencies of global forest changes
among five commonly used globally land cover datasets and FRA reports from 2001 to 2012. The selected
land cover datasets including Vegetation Continuous Fields (VCF), Global Forest Change (Hansen),
Terra and Aqua combined Moderate Resolution Imaging Spectroradiometer Land Cover Climate
Modeling Grid (MCD12C1), Land Cover project of the Climate Change Initiative (CCI-LC), and the
new generation of Land-Use Harmonization (LUH2). FRA reports also participated in the comparison
at country and continental scales. To evaluate the inconsistencies of forest area changes among these
datasets, total forest area change, latitudinal profile of forest change, forest area change in different
climatic zones, annual area change, and spatial distribution of forest change for the selected datasets

56



Remote Sens. 2020, 12, 3502

were compared. The global land cover validation dataset from the United States Geological Survey
(USGS) was utilized to evaluate the accuracy of the land cover datasets.

2. Materials and Methods

2.1. Materials

2.1.1. VCF

The Making Earth System Data Records for Use in Research Environments (the MEaSURES)
VCF products use a non-parametric trend analysis in each pixel to measure land cover changes [27].
VCF provides the annual global fraction of tree canopy (TC) cover, short vegetation (SV) cover, and bare
ground (BG) cover from 1982 to 2016. This dataset is based on the AVHRR and other supplementary
data, including Landsat Enhanced Thematic Mapper Plus (ETM+), the Moderate Resolution Imaging
Spectroradiometer (MODIS), and other very high-resolution satellite images [27]. This dataset can be
obtained from Global Land Analysis and Discovery [35]. In this study, TC was selected to calculate
forest area changes from 2001 to 2012 (Table 1).

2.1.2. Hansen

Hansen is the high-resolution global maps of twenty-first-century forest cover, including tree
canopy data for the year 2000, global forest cover gain between 2000 and 2012, year of gross forest
cover loss event, and data mask at 30 m × 30 m resolution [28,36]. Forest cover gain is displayed as a
binary value that provides information on whether forest gain occurred in each pixel from 2000 to 2012.
Hansen also provides information of the years when net forest loss occurred in each pixel. Hansen was
produced based on 654,178 growing season Landsat 7 ETM+ images. We used the forest cover gain for
2001–2012, forest cover loss for 2001–2017, and land mask (whether the specific pixel represents land
or not) to calculate the global forest area change from 2001 to 2012 (Table 1) [28].

2.1.3. MCD12C1

Version 6 of MCD12C1 product provides land cover data using three land cover classification
schemes, i.e., International Geosphere-Biosphere Programme (IGBP), University of Maryland (UMD),
and Leaf Area Index (LAI). For each land cover classification scheme, MCD12C1 provides global land
cover fraction at a 0.05 × 0.05◦ spatial resolution from 2001 to 2018. In this study, the IGBP classification
scheme was utilized to calculate global forest area changes. Forest cover is defined by the pixels of
evergreen broadleaf forest, deciduous needle leaf forest, or deciduous broadleaf forest layers [37,38].

2.1.4. CCI-LC

CCI-LC product is produced by the Land Cover (LC) project of the Climate Change Initiative
(CCI), which is led by the Europe Space Agency (ESA) [39]. Three original data types were used
to develop CCI-LC, including AVHRR data from 1992 to 1999, Systeme Probatoire d’Observation
de la Terre-Vegetation (SPOT-VGT) data from 1999 to 2013, and Project for On-Board Autonomy
Vegetation (PROBA-V) data for 2013, 2014, and 2015. CCI-LC is at a 300 m × 300 m resolution, based on
the Glob Cover unsupervised classification chain, which utilizes a machine learning algorithm [40].
CCI-LC uses the hierarchical classification system of the United Nations Land Cover Classification
System (UN-LCCS), which was developed by the FAO.

2.1.5. LUH2

LUH2 is the new generation of global land-use forcing datasets that provide a standard format
of historical land use and future projections for climate models. The dataset provides historical
reconstructions of land-use, which can be used with future projections via Earth system models.
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LUH2 provides global land-use states and transitions at a 0.25 × 0.25◦ resolution from 850 to 2100.
The classification of LUH2 is more detailed than that of the previous versions (Table 1) [41,42].

Table 1. Basic information of Vegetation Continuous Fields (VCF), Global Forest Change (Hansen),
Terra and Aqua combined Moderate Resolution Imaging Spectroradiometer Land Cover Climate
Modeling Grid (MCD12C1), Land Cover project of the Climate Change Initiative (CCI-LC), and Land-Use
Harmonization (LUH2).

Dataset
Temporal
Coverage

Temporal
Resolution

Spatial
Resolution

Spatial
Coverage

Reference

VCF 1982–2016 Yearly 0.05◦ Global Song et al., 2018 [27]
Hansen 2001–2017 Yearly 30 m Global Hansen et al., 2013 [28]

MCD12C1 2001–2017 Yearly 0.05◦ Global Sulla-Menashe and Friedl, 2018 [38]
CCI-LC 1992–2015 Yearly 300 m Global Bontemps et al., 2013 [40]
LUH2 850–2100 Yearly 0.25◦ Global Hurtt et al., 2020 [41]

2.1.6. FRA Reports

FRA reports are the most comprehensive forest assessment datasets. The dataset provides the
global forest resources and their changes every five year. FRA reports are based on country level
government inventories and remote sensing data. FRA reports provided every five-year assessment
about the global forest resources and their changes. FRA reports were widely used for forest conditions
popularizations, policy guidance, and land cover data accuracy validations. FRA report 2000, FRA report
2010, FRA report 2015, and FRA report 2020 were selected to compare in the forest area change with
the global land cover datasets at country level.

2.1.7. USGS Global Land Cover Validation Data

Global land cover validation data were developed by USGS based on high resolution commercial
satellite imagery. Over 1100 individual scenes of commercial data imagery were utilized to produce
the validation data from several satellites, including QuickBird, WorldView-1, WorldView-2, IKONOS,
OrbView-3, and GeoEye-1. The USGS validation dataset, includes 500 5 km × 5 km samples at a global
scale, with samples locations that were randomly selected based on the modified Köppen climate
zones and population [43,44]. The validation dataset provides the dominant land cover type in each
pixel at a 2 m spatial resolution, spanning 2001–2014.

2.2. Data Processing

To ensure that the global land cover datasets at different temporal and spatial scales (VCF, Hansen,
MCD12C1, CCI-LC, and LUH2) are comparable, all of the land cover datasets were aggregated to the
same temporal period, spatial resolution, and spatial coverage. As Hansen exhibits the least latitude
coverage (80◦N–60◦S) and shortest temporal period (2001–2012) among the five land cover datasets,
all of the datasets were adjusted to the same spatiotemporal extent (latitude: 80◦N–60◦S; time period:
2001–2012). We also processed all the five datasets at a 0.05◦ resolution following the procedures
outlined below.

Hansen provides information on when forest loss occurred from 2001 to 2017 and whether forest
gain occurred between 2001 and 2012 in each 30 m × 30 m pixel. The number of pixels of forest loss,
forest gain, and the land pixel in every 200 × 200 Hansen block (matched to a 0.05 × 0.05◦ pixel) were
calculated. The forest change ratio in a 0.05 × 0.05◦ pixel was calculated by dividing the number of net
change pixels (the number of forest gain pixels minus the number of forest loss pixels) by the total
number of land pixels:

Change ratio[i, j] =
numgain − numloss

numland
, (1)
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where i and j refers to the row number and column number of the 0.05 × 0.05◦ pixel; numgain refers to
the number of forest gain in the pixel [i,j]; numloss refers to the number of forest loss event range from
1 to 12 in the pixel; numland refers to the number of land surface in the pixel.

CCI-LC provides the land cover types in each 250 m × 250 m pixel. In this study, regions with
the class code 30, 40, 50, 60, 70, 80, 90, and 100 were defined as forest areas based on the legend
system. We counted the pixel number of the above layers as forest cover in every 18 × 18 CCI-LC block
(matched to a 0.05 × 0.05◦ pixel), representing the forest cover ratio in each 0.05◦ pixel.

Forest cover ratio of VCF was obtained from the Percent Tree Cover layer. For the MCD12C1,
evergreen needle leaf forest, evergreen broadleaf forest, deciduous needle leaf forest, and deciduous
broadleaf forest land cover types were selected as forest cover under Land_Cover_Type_1_Percent
for the IGBP scheme. For LUH2, the variables of primf (forested primary land) and secdf (potentially
forested secondary land) in the states layer were selected to obtain the percentage of forest cover in
each pixel. For these three datasets, forest area change in each pixel was calculated by multiplying the
forest cover percentage by the area of the pixel.

To assess the accuracy of the land cover datasets, the forest cover percentage of each sample
was calculated. First, we transformed the projection of the global land cover validation data from
Universal Transverse Mercator (UTM) Projection to latitude and longitude. Second, the corresponding
row number and column number for each sample were calculated based on the latitude and longitude.
Then the numbers of forest pixel in each sample were calculated. The forest cover percentage in the
sample is equal to the pixel numbers of forest divided by the total pixel numbers in the sample. We only
found date information for 300 samples out of the 500 samples, such that the accuracy validation was
based on the 300 samples with date information.

We also compared the forest area changes at country level. We calculated the forest area for the
years 2001 and 2012 for each country; forest area change for each country was calculated by subtracting
forest area of 2001 from that of 2012.

2.3. Statistical Indicators

To understand the spatial distribution of forest area changes for the five land cover datasets,
we calculated the standard deviation and deviation among the five land cover datasets to describe
the magnitude of the difference. For pixel [i, j] , the standard deviation and deviation were defined
as follows:

Standard deviation[i, j] =

√∑5
k=1

(
xi, j,k − xi, j

)2

5
, (2)

Deviation[i, j] =

∑5
k=1

∣∣∣xi, j,k − xi, j
∣∣∣

5
, (3)

where i and j refers to the row number and column number, respectively; xi, j,k refers to the forest area
change for pixel [i, j] of dataset k; xi, j refers to the average of forest area change in the five land cover
datasets for pixel [i, j] .

3. Results

3.1. Total Forest Area Change from 2001 to 2012

There was substantial inconsistency in total global forest area change among the five global land
cover datasets. Figure 1 displays the total forest area change from 2001 to 2012 in 80◦N–60◦S for the five
land cover datasets and FRA reports. The VCF was the only dataset that displayed an increase in forest
area (1.7 × 106 km2). Hansen exhibited the largest forest area decrease, up to 1.6 × 106 km2, followed by
the forest losses of 0.4 × 106 km2 for MCD12C1, 0.2 × 106 km2 for CCI-LC, and 0.1 × 106 km2 for the
LUH2. The gap in the forest area change between VCF and Hansen was 3.3 × 106 km2, accounting for
8.8% of the total forest area worldwide (4.1 × 107 km2) based on FRA report 2015 [31].
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Figure 1. Total forest area changes in 60◦S–80◦N for VCF, Hansen, MCD12C1, CCI-LC, and LUH2 from
2001 to 2012.

Forest area changes across climatic zones are displayed in Figure 2. In the boreal zone
(66.5◦N–80.0◦N in this study), VCF, FRA, and CCI-LC displayed increases in forest area, while the
other datasets demonstrated decreases. VCF indicated the largest forest area increase (2.2 × 105 km2)
(Figure 2a). In the temperate zone (35◦N–66.5◦N and 35◦S–60◦S) (Figure 2b), Hansen indicated forest
loss while other datasets indicated forest gain. Among them, VCF indicated the largest forest gain,
followed by FRA. In the sub tropics, VCF indicated the largest forest gain (1.9 × 105 km2), and Hansen
indicated the largest forest loss (1.5 × 105 km2). As for the tropics (23.5◦S–23.5◦N), all the datasets
indicated forest loss. FRA reported the largest forest loss area (10.0 × 105 km2), which approximately
seven times that of VCF (1.2 × 105 km2). Hansen also indicated a large forest loss (8.5 × 105 km2).
The tropics was the only climatic zone where all the datasets indicated a same trend (decrease) in forest
change. This conclusion was consistent with previous studies: Hansen et al. [45] quantified the gross
forest cover loss in the tropics as 47.6 × 104 km2 from 2000 to 2005, and Zeng et al. [24] found that there
was a rapid forest loss in Southeast Asia in the early 21st century (about 29.3 × 104 km2). In general,
VCF displayed increases in forest area in the boreal, temperate, and subtropical zones; it also indicated
the least forest gain in the tropics. Hansen reported the largest forest loss among these datasets for all
climatic zones except for the tropics.

 

Figure 2. Forest area change in different climatic zones from 2001 to 2012: (a) boreal (66.5◦N–80◦N),
(b) temperate (35◦N–66.5◦N and 35◦S–60◦S), (c) subtropical (23.5◦N–35◦N and 23.5◦S–35◦S), (d) tropical
(23.5◦S–23.5◦N), and (e) the latitudinal profiles of forest area change in 60◦S–80◦N.

We also compared the latitudinal profiles of forest area changes based on the five datasets.
In Figure 2e, VCF exhibited forest area gains in the northern hemisphere and the southern temperate
zone but identified forest losses in the tropics and the southern hemisphere. VCF also had the
largest latitudinal average in forest area change. Hansen showed gross forest loss along the latitudes.
The latitudinal profiles of forest area changes for MCD12C1, CCI-LC, and LUH2 fluctuated with
latitude, but all the three datasets indicated overall forest losses. Most of the inconsistencies occurred
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in the northern hemisphere, where all the datasets demonstrated decreases in the 10◦S–10◦N latitudinal
range, which corresponds to the Amazon and Southeast Asia. The difference in the latitudinal profile
of forest area change between VCF and Hansen was the largest, which was consistent with the results
displayed in Figure 1.

Forest area changes in different continents were displayed in Figure 3. VCF demonstrated the
largest forest gains in Asia, Northern America, Europe, and Oceania. Hansen demonstrated the
largest forest losses in Asia, Northern America, Europe, and Oceania. In Africa and South America,
regions with severe tropical rainforests, most datasets displayed large forest loss. For other continents,
there were inconsistencies in the sign and magnitude of the forest area changes among the datasets.

Figure 3. Forest area change in different continents from 2001 to 2012: (a) Asia, (b) North America,
(c) Europe, (d) Africa, (e) South America, and (f) Oceania.

3.2. Spatial Distribution of Forest Change from 2001 to 2012

Figure 4 displays the spatial distribution of forest area changes in the five land cover datasets.
For VCF, forest area increased in Europe, the USA, China, India, and Siberia (Figure 4a). The spatial
distribution of Hansen was significantly different from that of VCF. Based on Figure 4b, the most
apparent difference was that Hansen indicated forest losses of in more pixels than that in VCF,
especially in Southeast Asia, Congo, and the Amazon. Combining with Figure 4c–e, the magnitudes of
forest area changes in MCD12C1, CCI-LC, and LUH2 were much lower than those of VCF and Hansen.
Figure 4f displays the ensemble mean of forest area change in the five land cover datasets. The Congo
Rainforest, the Amazon Rainforest, and Southeast Asia displayed severe deforestation, while Eastern
China, Siberia, and Eastern USA displayed forest gain.
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Figure 4. Distributions of forest area changes from 2001 to 2012: (a) VCF, (b) Hansen, (c) MCD12C1,
(d) CCI-LC, (e) LUH2, and (f) ensemble mean.

The spatial patterns of standard deviation and deviation of forest area change between the five
datasets are demonstrated in Figure 5. Standard deviation and deviation have very similar spatial
patterns. The Congo Rainforest, Amazon Rainforest, and Southeast Asia have high standard deviation
and deviations, which means discrete distributions of forest change area in these areas. Siberia, India,
and Western USA have small standard deviations and deviations in forest area change.

(a) (b) 

Figure 5. Distributions of standard deviation and deviation of forest area changes from 2001 to 2012:
(a) standard deviation and (b) deviation.

To assess the inconsistencies of forest area change between VCF and Hansen, which displayed the
largest inconsistency, the differences in forest change trends between the two datasets were displayed
in Figure 6. Both VCF and Hansen demonstrated forest loss in the Amazon, South Africa, and the
majority of Southeast Asia; most of these areas were located in the tropics. In contrast, both VCF and
Hansen demonstrated forest gain in Europe, Eastern USA, and Western Siberia. VCF and Hansen
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demonstrated different change trends in forest area in other areas. Several hot spots, where heavy
forest changes or large differences occurred in the base map, were also selected to compare differences
among the five datasets. The hot spots include North America (37.0◦N–50.0◦N, 95.0◦W–85.0◦W),
Europe (45.0◦N–54.0◦N, 0.0–15.0◦E), Eastern Siberia (55.0◦N–66.5◦N, 90.0◦E–150.0◦E), the Amazon
(10.0◦S–10.0◦N, 73.0◦W–40.0◦W), South Africa (5.0◦S–8.0◦N, 10.0◦E–40.0◦E), and Southeast Asia
(10.0◦S–28.0◦N, 92.0–140.0◦E). Apart from the Amazon, where all five datasets displayed forest losses,
all other regions demonstrated inconsistent trends in forest change (Figure 6d). Forest losses were
clear for regions in the southern hemisphere (e.g., the Amazon and the Congo rainforests), but the
uncertainties were larger for regions in the northern hemisphere.

Figure 6. Difference in forest area change between VCF and Hansen, and comparisons of forest area
changes among the five datasets in several hotspots. (a) North America (37.0◦N–50.0◦N, 95.0◦W–85.0◦W),
(b) Europe (45.0◦N–54.0◦N, 0.0–15.0◦E), (c) Eastern Siberia (55.0◦N–66.5◦N, 90.0◦E–150.0◦E), (d) Amazon
(10.0◦S–10.0◦N, 73.0◦W–40.0◦W), (e) Southern Africa (5.0◦S–8.0◦N, 10.0◦E–40.0◦E), and (f) Southeast
Asia (10.0◦S–28.0◦N, 92.0◦E–140.0◦E).

3.3. Annual Forest Area Change in Five Datasets from 2001 to 2012

Hansen displayed a relatively stable annual forest area change, while other datasets exhibited
irregular changes (Figure 7). Hansen was the only dataset that displayed net forest loss for all years
during the research period, and its annual forest loss areas were greater than 5.0× 104 km2. The subfigure
displayed the magnitude of annual forest area change for these datasets, which represented the range of
annual forest area change. VCF had the largest magnitude in forest area change. Forest gain exhibited by
VCF was larger than 2.0× 106 km2 in 2004; forest loss in 2009 was larger than 1.5 × 106 km2. The number
of deforestation years was greater than the number of afforestation years for VCF. Annual forest area
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changes in MCD12C1, CCI-LC, and LUH2 fluctuated but exhibited a decreasing trends from 2001 to
2012. LUH2 demonstrated a minor total forest area changes with dramatic annual fluctuations in 2009
and 2010.

Figure 7. Annual forest area changes in VCF, Hansen, MCD12C1, CCI-LC, and LUH2 from 2001 to 2012.

3.4. Comparison of Forest Area Change at Country Level

Forest area changes for these datasets at the country level were calculated. Table 2 lists the forest
area changes for countries with land areas over 10.0 × 107 km2. According to Table 2, the datasets
exhibited substantial inconsistencies at the country level. Hansen demonstrated decreases in forest
area for all the selected countries. Hansen and FRA indicated very close forest area changes in Brazil,
Australia, Kazakhstan, India, and Argentina, but there were huge inconsistencies in other countries.
The increased forest area indicated by VCF was the largest among the five datasets. Forest loss was
indicated in Brazil and Kazakhstan for VCF. From a country perspective, Hansen demonstrated
reductions in Russia and India, while the other datasets exhibited increases in these two countries.
All the datasets indicated forest loss in Brazil and Argentina, while they exhibited different patterns of
forest changes in other countries.

Table 2. Comparison of forest area changes during 2001–2012 for VCF, Hansen, FRA, MCD12C1,
CCI-LC, and LUH2 for nine major countries with total land areas over 10.0 × 107 km2.

VCF Hansen FRA MCD12C1 CCI-LC LUH2

Country Forest Area (×104 km2) Forest Area Change (×104 km2)

Russia 814.93 65.44 −21.89 5.66 0.24 2.54 4.64
Canada 347.07 30.10 −19.13 −0.73 5.07 2.45 0.64

USA 310.10 26.88 −13.24 6.56 −5.19 −0.97 4.67
China 208.32 24.03 −4.14 31.32 7.44 −0.49 2.30
Brazil 493.54 −11.61 −29.60 −27.74 −19.26 −9.81 −8.41

Australia 124.75 6.48 −4.57 −4.09 2.68 0.48 1.08
Kazakhstan 3.31 −0.43 −0.06 −0.06 −0.29 2.08 −0.03

India 70.68 2.24 −0.69 5.29 2.98 0.23 0.06
Argentina 27.11 −4.42 −4.28 −4.75 −0.63 −3.12 −0.14
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4. Discussion

4.1. Accuracy Assessment Using Global Land Cover Validation

In this study, five global land cover datasets and FRA reports were evaluated to reveal the
inconsistencies in global forest changes from the perspectives of total area, spatial distribution,
latitudinal profile, and annual area change from 2001 to 2012. There were huge inconsistencies in
global forest changes for the above aspects among the selected datasets. Thus, assessments of data
accuracy were essential to understanding the reliabilities of the selected datasets. However, the selected
land cover datasets in this study have highly different spatial resolutions (Table 1). Certain very high
resolution satellite images (e.g., Google Earth images and QuickBird images) were effective tools to
validate several high-resolution datasets (e.g., Hansen data, 30 m spatial resolution; CCI-LC data,
250 m spatial resolution) based on visual interpretation [24] but not suitable to validate datasets with
lower resolution (e.g., LUH2 data, with a spatial resolution of 0.25 × 0.25◦).

Here, the global land cover validation data from USGS was applied to evaluate the accuracies of
the selected land cover datasets. Forest cover percentage in each sample was calculated and compared
with the forest cover percentages of the land cover datasets (Figure 8). Spatially, underestimation of
forest cover percentage commonly occurred in the Amazon, Western USA, and Eastern Europe; on the
contrary, overestimation occurred in Eastern Asia, Western Europe, and Northern USA. The correlations
between the land cover datasets and the validation data were not very strong: the correlation coefficients
were 0.63, 0.77, 0.59, 0.68, and 0.37 for VCF, Hansen, MCD12C1, CCI-LC, and LUH2, respectively.
Hansen had the highest correlation with the validation data, while LUH2 had the lowest correlation.
Zeng et al. [24] also proved that Hansen had a pretty good accuracy in Southeast Asia across Google
Earth imagery, an overall accuracy of 98.4% can be achieved. Therefore, Hansen is recommended to be
utilized in forest and forest changes estimates.

We note that Hansen provided the forest gain information as a binary value from 2000 to 2012,
so that years when forest gain occurred were not available. To calculate forest cover percentage of
Hansen, the pixel number of forest gain in the validation pixel (0.05 × 0.05◦) for each year was assumed
to be equal in this study. The accuracy of Hansen forest cover percentage based on this hypothesis was
lower than the actual accuracy.

4.2. Possible issues in VCF

Previous studies have widely reported that the global forest area has decreased over the past
several decades [23,28,31]. According to FRA reports, the total global forest area in the world was
41.3 × 106 km2, 40.6 × 106 km2, 40.3 × 106 km2, 40.2 × 106 km2, and 40.0 × 106 km2 in 1990, 2000, 2005,
2010, and 2015, respectively [31]. It is also indicated that the gross forest cover losses in the boreal
zone and the temperate zone were 3.5 × 105 km2 and 1.7 × 105 km2 from 2000 to 2005 [45]. However,
the results based on VCF were contradictory to the general understanding of global forest changes,
which indicated an increase in global forest area [27]. VCF revealed an increase of 1.7 × 106 km2 in
total forest area, whereas Hansen, FRA, MCD12C1, CCI_LC, and LUH2 demonstrated decreases of
1.6 × 106 km2, 0.6 × 106 km2, 0.4 × 106 km2, 0.2 × 106 km2, and 0.1 × 106 km2, respectively (Figure 1).
VCF also exhibited an order of magnitude inter annual forest area change than that in the other land
cover datasets. According to these results, inconsistencies among the datasets primarily occurred
between VCF and the other datasets. Another implausible behavior of VCF was that its forest area
change fluctuated erratically in 2004, 2005, and 2009, indicating the occurrence of rapid forest gains or
forest losses (Figure 7). For trees, defined as vegetation taller than 5 m in VCF, it is unreasonable to
expect such a rapid change within a short period.
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Figure 8. Accuracy assessment of the land cover datasets using USGS’s global land cover validation
data. Spatial pattern of differences in forest cover percentage between the land cover datasets and
global land cover validation data (a1–a5) and correlation coefficient between the land cover datasets
and global land cover validation data (b1–b5) for VCF (1), Hansen (2), MCD12C1 (3), CCI-LC (4),
and LUH2 (5). Size of dots in (a1–a5) represent the difference of forest cover percentage between the
land cover datasets and validation data.
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To evaluate these inconsistencies between VCF and the other land cover datasets, we compared
the spatial distributions of forest area changes from VCF with the land cover from MCD12C1 in 2004
and 2005, during which VCF reported drastic fluctuations in forest area. VCF indicated that the forest
area increased by 2.4 × 105 km2 in 2004 (Figure 9a) and decreased by 1.0 × 105 km2 in 2005 (Figure 9b),
but the forest distribution did not substantially change in 2004 and 2005 (Figure 9c or Figure 9d).
MCD12C1 demonstrated that the main land cover types in Siberia were grassland and shrub land.
Forest area did not change significantly in this region, while VCF displayed clear forest change in
the corresponding period. Minor changes in the Amazon forest were indicated by MCD2C1 data,
while VCF indicated a noticeable increase in 2004 and a decrease in 2005 for the same area.

Figure 9. VCF forest area change and MCD12C1 land cover in 2004 and 2005, (a) forest area change in
2004, (b) forest area change in 2005, (c) MCD12C1 land cover in 2004, and (d) MCD12C1 land cover
in 2005.

To investigate the rapid forest gain or loss in 2004, 2005, and 2009 indicated by VCF, we utilized the
Google Earth images as reference data to validate the reliability of VCF. The fine resolution Google Earth
images displayed land surface conditions for a visual inspection of land surface changes. We selected a
target pixel in China (110.525◦E, 21.775◦N) as an example (the black dot in Figure 10a,b), where VCF
reported a large forest increase (+19.2%) in 2004 (Figure 10a) and a substantial forest decrease (−16.6%)
in 2005 (Figure 10b). According to the Google Earth images, short vegetation appeared in 2005, but the
tree cover did not change significantly (far less than VCF indicated) (Figure 10c–e). We also validated
pixels in Southeast Asia and the US with similar results. The validation indicated that VCF cannot
distinguish short vegetation (e.g., crops) from forest cover sufficiently. The seasonal growth of short
vegetation, such as crops may be one reason for the inconsistencies between VCF and the other datasets.

4.3. Impacts of Tree Cover Definition and Land Cover Classification System

The differences in concepts and definitions of “forest” between different land cover datasets lead to
different results in forest detection, forest ranges, and forest transitions [46]. The definitions of “forest”
in the selected land cover datasets were different from each other. VCF describes the “tree canopy” as
consisting of tall vegetation (≥5 m in height) [27]. Hansen defines the tree as all vegetation taller than
5 m in height [28]. The IGBP classification system in MCD12C1 describes “forest” as land dominated
by trees with a percent cover >60% and height exceeding 2 m [38]. CCI-LC defines forest as a parcel or
unit of land of at least 0.5 hectares in size that is covered by 10% or more trees that are 5 m or taller [39].
FRA defines forest as an area over 0.5 ha with a minimum tree cover of 10%. However, “forest” in
FRA reports represents a kind of land use rather than physical trees compared to the satellite-based
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land cover datasets [1]. An area will be classified as forest if it is registered as “forest” land use even if
there is no tree. Thus, forest area measurement in different land cover datasets were not consistent.
For example, some short shrubs, which are taller than 2 m, but shorter than 5 m, will be counted
as forest in MCD12C1 but will not be counted in VCF and Hansen. Besides, different land cover
classification systems in land cover datasets also lead to inconsistencies in forest area, and we cannot
compare forest area change directly. In addition, for spatial resolution of the land cover datasets,
algorithms to identify forest can also lead to inconsistencies in forest change.

Figure 10. Contrast of forest change between VCF and Google Earth images. (a) VCF forest area change
ratio in 2004, (b) VCF forest area change ratio in 2005, (c) land surface of target pixel from Google Earth
in December 2004, (d) land surface of target pixel from Google Earth in December 2005, and (e) land
surface of target pixel from Google Earth in December 2006.

The inconsistent definition of “forest” was not the major factor for the inconsistencies in the
overall global forest area change. VCF and Hansen have the same definition of “forest”, but the
inconsistencies between them were the largest. VCF displayed the largest forest gain, while Hansen
displayed the largest forest loss. So the differences in definition of “forest” were not the decisive
factor for the inconsistencies. Another problem for the satellite-based land cover datasets is that they
do not assess what happened to the land after deforestation. Regrowth after deforestation is a slow,
incremental process compared to deforestation; the latter is easy to spot when comparing satellite
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images. In addition, it is more difficult to identify deforestation from year to year. Identifying regrowth
and low shrubs is also challenging. Therefore, there is no clear answer on how global forest area
has changed in the early 21st century. We recommend interpreting these datasets with caution and
performing detailed local-scale spatial validation before use. We also highly advocate more accurate
forest cover data with higher resolution and a better classification system.

5. Conclusions

This study analyzed global forest area changes from 2001 to 2012 using five global land cover
datasets and FRA reports. To evaluate the inconsistencies in global forest area changes among these
datasets, global forest total area change, spatial distribution, latitudinal profile, and annual area change
were compared. We found large inconsistencies on forest changes among these datasets. The majority
of the datasets indicated decreases in total global forest area, but VCF demonstrated a net increase trend,
which was conflicted with the other datasets and previous studies. The inconsistencies in forest changes
primarily occurred in the northern hemisphere, while the southern hemisphere showed more consistent
results. These datasets demonstrated forest loss in the tropics, but inconsistent forest changes in other
zones. Global land cover validation data from USGS was applied to evaluate the accuracies of the land
cover datasets. The results indicated that all of the land cover datasets displayed mediocre accuracies
in forest cover. Hansen had the highest correlation with validation data, while LUH2 had the lowest
correlation. Therefore, Hansen is recommended for forest cover and forest cover change estimations.

The differences in definition of “forest”, classification system, spatial resolution, and algorithm
can affect the detection of forest and its changes. Due to these differences and the large uncertainties
among these datasets, we need to interpret the results based on these land cover datasets with
caution. Validations and assessments of forest and its changes using ground-level field data or very
high-resolution imagery (e.g., Google Earth or USGS’ validation dataset) are needed. In addition,
some methods including data fusion and cross-dataset calibration are useful to reconcile the
inconsistencies of the differences in forest definition [47,48].
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Abstract: Forest/non-forest and forest species maps are often used by forest inventory programs in
the forest estimation process. For example, some inventory programs establish field plots only on
lands corresponding to the forest portion of a forest/non-forest map and use species-specific area
estimates obtained from those maps to support the estimation of species-specific volume (V) totals.
Despite the general use of these maps, the effects of their uncertainties are commonly ignored with
the result that estimates might be unreliable. The goal of this study is to estimate the effects of the
uncertainty of forest species maps used in the sampling and estimation processes. Random forest (RF)
per-pixel predictions were used with model-based inference to estimate V per unit area for the six
main forest species of La Rioja, Spain. RF models for predicting V were constructed using field plot
information from the Spanish National Forest Inventory and airborne laser scanning data. To limit the
prediction of V to pixels classified as one of the main forest species assessed, a forest species map was
constructed using Landsat and auxiliary information. Bootstrapping techniques were implemented to
estimate the total uncertainty of the V estimates and accommodated both the effects of uncertainty in
the Landsat forest species map and the effects of plot-to-plot sampling variability on training data used
to construct the RF V models. Standard errors of species-specific total V estimates increased from
2–9% to 3–22% when the effects of map uncertainty were incorporated into the uncertainty assessment.
The workflow achieved satisfactory results and revealed that the effects of map uncertainty are not
negligible, especially for open-grown and less frequently occurring forest species for which greater
variability was evident in the mapping and estimation process. The effects of forest map uncertainty
are greater for species-specific area estimation than for the selection of field plots used to calibrate the
RF model. Additional research to generalize the conclusions beyond Mediterranean to other forest
environments is recommended.

Keywords: random forests; error propagation; bootstrapping; Landsat; LiDAR; La Rioja

1. Introduction

Forest and other wooded land environments provide numerous ecosystem services that contribute
directly or indirectly to improving our well-being. They play an important role in mitigating
climate change through carbon sequestration, combating desertification, maintaining biodiversity,
protecting soil and water resources, and supplying wood and other forest products [1] (pp. 285–299).
In light of the significance of these roles, accurate and updated information suitable for assessing
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forest resources is needed. National forest inventories (NFIs) were originally motivated by a need for
information on forest area, volume, and increment of growing stock and the amount of timber [2].
Since then, many countries have established their NFI programs as the primary sources of forest
information necessary for forest management and policy formulation [3,4].

NFI data include measurements of individual trees on plots selected using probabilistic sampling
designs. Tree measurements include height and diameter, which are then used to predict individual
tree attributes such as volume and biomass [5]. To increase the efficiency of inventory sampling designs,
maps can be used in the design phase to select the locations of the field plots [6] and in the estimation
phase to increase precision [7,8]. Of the 37 countries for which Tomppo et al. [9] include NFI reports,
six countries use a forest/non-forest map to determine where to establish their field plots. Among them
is Spain, where permanent sampling plots are established systematically at the intersections of a
1-km × 1-km grid in the portion of the Spanish National Forest Map (SNFM) classified as forest land.
Therefore, the SNFM is the base mapping layer for the Spanish National Forest Inventory (SNFI),
both of which are updated on a 10-year cycle [10]. The most recent versions of the SNFM are based on
the photointerpretation of aerial photography and digitization of polygons that are classified with
respect to the vegetation present in the area [11].

Traditional forest inventories have the disadvantage of being expensive, especially in areas with
poor road infrastructure [12]. In the last decades, remote sensing (RS) technologies have emerged as an
auxiliary data source that alleviates some of this limitation by increasing the precision of inventory
estimates and reducing the cost of forest resources assessment [13]. These technologies typically
entail constructing a model that represents the relationship between the RS data and field plot data.
The model is applied to predict forest attributes where field plots are lacking, thereby producing
spatially continuous forest attribute information [14]. These modeling applications have led to
inferential approaches guided by the properties of the ground data [15]. In particular, model-based
(MB) inferential approaches can be used when models are constructed using data collected from
non-probability training samples and data external to the area of interest [16]. This feature makes MB
inference an interesting option for areas where design-based inference is limited due to remoteness
and inaccessibility [17]. However, the effectiveness of this approach relies on the correctness of the
model, and consequently, population parameter estimators may be biased and imprecise if the model
is incorrect [18,19]. Hence, the estimation of forest population parameters and a rigorous assessment
of their uncertainties are necessary to produce reliable estimates.

In this context, reliable methods for propagating the main sources of uncertainty associated with
forest predictions have been developed [12,20,21]. As noted previously, forest maps can be used as
masks in the design phase to restrict the establishment of field plots and in the estimation phase to
restrict the application of the models. Most current reports in the literature assume that these maps
are without error [17,18], but very few have analyzed the effects of this source of uncertainty on
the uncertainty of forest attribute estimates. Rodríguez-Veiga et al. [22] used multiple forest masks
constructed using MODIS and ALOS PALSAR data to estimate total aboveground biomass for Mexico.
Their study demonstrated that different forest masks had large impacts on the estimation of national
carbon stocks due to the discrepancies in the forest extent estimated from each forest mask. Li et al. [23]
found substantial differences in the regional climate modeling outputs when the uncertainty of the
MODIS land cover products used was considered.

These studies showed how the uncertainty inherent in forest maps affects the reliability of
estimates. Both national estimates and uncertainties of the estimates are required for NFI reporting
and are specifically required for greenhouse gas inventories. In particular, the Intergovernmental
Panel on Climate Change (IPCC) states as a guideline that uncertainties should be reduced as far as
practicable [24]. However, the satisfaction of this guideline implies that before uncertainties can be
reduced, they must first be properly estimated. Failure to estimate the uncertainty associated with
forest maps used to restrict the establishment of ground plots and application of models could lead to
imprecise estimates and under-estimated uncertainties, thereby leading to reporting estimates that
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would fail to comply with the IPCC guidelines. In addition, sampling completely within a forest
mask facilitates the estimation of deforestation but not reforestation or afforestation outside the map
unless the mask is updated frequently. In the last decades, Spain has reported an expansion of forest
area because of the naturalization of marginal agricultural land due to rural abandonment and of
afforestation policies through the Common Agricultural Policy [25].

The goal of this study is to estimate the effects of the uncertainty of forest species maps used in
the sampling and estimation processes. To this end, we addressed the following objectives: (1) to
provide pixel-level volume (V) predictions for a large region using three sources of information: SNFI
ground plot data, multispectral data, and airborne laser scanning (ALS) data; (2) to estimate the total
MB uncertainty of the large area V estimates taking into account both the uncertainty of a forest species
map that guided the selection of plot locations and application of models, and sampling variability;
and (3) to estimate the relative contributions to the total uncertainty in the large area estimates of each
of the components. MB inference used random forests V models specific to each of the main forest
species of La Rioja whose spatial distributions were initially determined from a forest species map
constructed using Landsat imagery. Random forests (RF) predictive V models and RF classification
models were constructed.

2. Materials and Methods

2.1. Study Area

The study area was La Rioja, Spain, covering an area of 5045 km2 (Figure 1). This province in the
north of Spain borders mostly Navarre, Castile, and Leon, and also the Basque Country and Aragon.
La Rioja is surrounded by two large relief units with elevations ranging from 260 to approximately
2300 m. This large altitudinal gradient contributes to rich vegetative diversity ranging from coniferous
forests, deciduous forests, mixed forests, and shrub lands to grasslands in a relatively small area.
According to the SNFI, forest land (without considering shrublands and grasslands) covers 34.7%
of La Rioja with the main forest species, in order of area: Pyrenean oak (Quercus pyrenaica Willd),
Scots pine (Pinus sylvestris L.), beech (Fagus sylvatica L.), and holly oak (Quercus ilex L.) [26] (p. 11).
The remaining part of the study area is lowlands composed of unirrigated and irrigated fields where
the landscape becomes more homogenous. La Rioja includes important natural environmental aspects
such as Sierra de Cebollera Natural Park and Urbion Lake, among others. In addition, 24% of La Rioja
was declared a Biosphere Reserve by UNESCO.

Figure 1. La Rioja study area and distribution of the main forest species based on the Spanish National
Forest Map. ETRS89/UTM zone 30N (N-E) (EPSG: 3042). The blue polygon in the lower right corner
depicts the location of the study area in north central Spain.
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2.2. Data

Three types of data were used in this research: the SNFI field data, multispectral data, and ALS data.

2.2.1. Spanish National Forest Inventory (SNFI)

The 4th SNFI in La Rioja was conducted between 2011 and 2012 using permanent sample plots
established systematically at the intersections of a 1 km × 1 km grid in areas identified as forest land by
the SNFM (E: 1:25,000) (SNFM25) [10]. The methodology for producing SNFM25 includes three phases:
(i) the manual digitalization of polygons with homogenous forest structure and forest species on screen
by photo-interpretation, (ii) field monitoring, and (iii) quality control. Field visits are programmed for
quality control over the polygons whose digitalization are problematic [10]. Discrepancies between
SFM25 and SNFI are analyzed, and modifications are made if needed.

The SNFI sample units consist of four circular concentric plots of radius 5, 10, 15, and 25 m.
Trees with diameter at breast height (DBH) of at least 75 mm are measured in a 5 m radius plot;
trees with DBH > 125 mm are measured in a 10 m radius plot; trees with DBH > 225 mm are measured
in a 15 m radius plot; and only trees with a DBH > 425 mm are measured in the 25 m radius plot [10,27].
For each tree, DBH, total height, forest species, and the tree’s position relative to the plot center
(direction and distance) are recorded. Species-specific allometric models were used with measured
DBH and height to predict individual tree volumes which were weighted to predict the total plot
volume. The main difficulty in combining SNFI plot data with ALS measurements is discrepancies
between the attribute measured in field and the ALS data assigned due to center plot coordinate
errors [28]. Therefore, only plots for which the maximum height of a measured tree, hmax, was within
±4 m of the 99th ALS height percentile were considered. The deletion of 153 of these plots altered the
systematic nature of the grid-based sample with the result that the remaining sample consisting of
1095 SNFI plots was considered a purposive sample, albeit with systematic components. This sample
was used to construct the volume models (Section 2.4.3).

2.2.2. Multispectral and Auxiliary Data

The study area is covered by three Landsat scenes with paths (p) and rows (r): p201 r031, p200 r031,
and p200 r030 (Figure 1). For each scene, predominantly cloud-free Landsat 5 Thematic Mapper
(TM) images from 1 June to 31 August for 2010 were used to construct an updated forest species
map (Section 2.4.2). The reason behind the decision to use Landsat 5 data is their availability for free
and absence of sensor malfunction problems as occurred in Landsat 7. Annual summer composites
based on the greenest pixels available defined by Normalized Difference Vegetation Index (NDVI)
were constructed using the Google Earth Engine Python and Javascript Application Programming
Interfaces [29] and resampled to the corresponding 25 m × 25 m ALS cell size (Section 2.2.3). For this
study, we used the following bands: blue (0.45–0.52 μm), green (0.52–0.60 μm), red (0.63–0.69 μm),
near infrared (NIR; 0.76–0.90 μm), and two shortwave IR bands (SWIR1, 1.55–1.75 μm; and SWIR2,
2.08–2.35 μm). Three vegetation indexes were derived from the annual summer composites:
NDVI, the Normalized Difference Moisture Index (NDMI) and the Normalized Burn Ratio (NBR).
Finally, elevation information was derived from a 25 m × 25 m digital elevation model downloaded
from the Spanish National Center of Geographic Information.

2.2.3. Airborne Laser Scanning (ALS) Data

ALS data were acquired between August and October 2010, during leaf-on conditions by the
Spanish National Programme of Aerial Orthophotography with a mean pulse density of 0.5 points per
m2 and vertical root mean square error (RMSE) ≤ 0.20 m. ALS tiles were processed using FUSION
software [30] to construct a 2-m digital elevation model from the ground points, thereby facilitating the
estimation of height above the ground surface for each ALS vegetation point. Following the removal
of ground points with heights less than 2 m, 15 forest structure metrics were calculated for both the
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SNFI plots and for the 25 m × 25 m cells that tessellated the study area and served as population units.
ALS metrics included mean, variance (varia), standard deviation (stdev), coefficient of variation (cv),
interquartile range (iq), kurtosis (kurto), percentiles (ranging from the 1st to 99th percentile: p1, p5,
p25, p50, p75, p95, and p99), canopy relief ratio (crr), and forest canopy cover (lfcc).

The methodological framework is illustrated in Figure 2.

Figure 2. Workflow diagram of the processing steps conducted to account for the sources of uncertainty
involved in the volume estimation.

2.3. Statistical Techniques

2.3.1. Overview

Three primary statistical techniques were used in the study. First, the RF method (Section 2.3.2)
was used for classification to construct a forest species map (Section 2.4.2) and to predict volume (V)
for individual population units (Sections 2.4.3 and 2.4.4). Second, the sampling design used to acquire
the model calibration data had both systematic and purposive features (Section 2.2.1). As a result
of the purposive features, model-based (MB) population parameter estimation methods were used
(Section 2.3.3). Third, because the V estimation procedure had multiple estimation and uncertainty
components and because analytical procedures for estimating uncertainties associated with the RF
approach are generally not available, bootstrapping procedures were used. For the estimation of
uncertainties associated with the forest species map, pairs bootstrapping (p) was used (Section 2.3.4).
However, for the estimation of uncertainties associated with volume estimation, for which the model
calibration data were acquired using a design with substantial systematic components, wild bootstrapping
(w) was used (Section 2.3.4). These three statistical techniques are described in greater detail in the
sections that follow immediately.

2.3.2. Random Forests (RF)

Forest population parameter estimation using models that represent relationships between
inventory variables and RS observations has become relatively common in recent decades [31–33].
For this study, RF [34] was selected as the model or prediction technique due to its utility and its
popularity [35,36]. Multiple studies support the reliability of RF as a robust classifier and prediction

77



Remote Sens. 2020, 12, 3360

model for forest attributes when used with RS auxiliary data [37–41]. Although the term “regression”
has often been used in combination with RF, in this study, the term “prediction model” was used to
avoid confusion with linear or nonlinear regression models.

RF consists of a combination of decision tree predictors, each of which is preceded by a bootstrap
resample usually consisting of 2/3 of the original sample data. The remaining 1/3 of the original sample
is retained as another subset called out-of-bag (oob) and is used for internal error estimation [42].
For this study, RF models were calibrated using the R package RandomForest [43] with the default
settings of number of trees (500) and of predictor variables (mtry) tested at each node (mtry = p/3 for
prediction or mtry = sqrt (p) for classification, where p is the total number of predictor variables).

2.3.3. Model-Based (MB) Estimation

For the estimation of species-specific V mean, MB inferential methods that do not require
probability samples were used. As previously noted (Section 2.2.1), the available SNFI sample was
considered a non-probability, purposive sample. In addition, new forest species maps constructed as
part of the uncertainty estimation procedure (Sections 2.4.2 and 2.4.4) may extend into areas originally
classified as non-forest in which case no sample plots will be available, thereby further altering the
systematic nature of the sample and deviating from a probability sample. The MB estimator of the
species-specific V mean is

μ̂MB =
1
N

N∑
i=1

v̂i, (1)

where v̂i is the RF prediction of v for the ith population unit (pixel, map unit) and N is the total number
of population units for each forest species for which V prediction models were applied.

2.3.4. Bootstrapping

Four primary sources of uncertainty are associated with all MB predictions: (i) model
misspecification, (ii) uncertainty in the values of the independent variables, (iii) residual variability
around model predictions, and (iv) uncertainty in the model predictions resulting from the effects of
sampling variability as they affect the model calibration dataset [16]. For this study, the RF prediction
technique was assumed to be sufficiently accurate that model misspecification was not considered
problematic (Section 3.1.2). Furthermore, uncertainty in the values of the independent variables
were considered negligible. Finally, for large forest areas, the effects of model prediction uncertainty
resulting from sampling variability dominate the effects of residual uncertainty [44]. Therefore, for this
study, all the sources were ignored except the effects of sampling variability on the V model calibration
dataset. When a regression model is used for prediction purposes, the effects of this sampling
variability can be expressed in terms of the covariances for the model parameter estimates. However,
when non-parametric prediction techniques such as RF are used, more complex techniques merit
consideration [44]. For these situations, bootstrapping techniques [33,45,46] have emerged as robust
alternatives to analytical variance estimators and uncertainty propagation [47,48].

Two bootstrapping techniques were considered for this study to estimate the uncertainty of
the MB population parameter estimates: pairs bootstrapping [49] and wild bootstrapping [50].
Pairs bootstrapping, also characterized as non-parametric bootstrapping [51], entails randomly
selecting with replacement a resample of the original data of the same size as the original sample.
With pairs bootstrapping, the resample will omit some of the original sample units but include some of
the original sample units multiple times. A basic bootstrap principle is that the resampling procedure
should mimic the original sampling scheme [50–53] (p. 2). Thus, unless the original sample was
acquired using simple random sampling, conventional RF that uses pairs bootstrapping does not
preserve the underlying spatial structure of systematic sample, or samples with substantial systematic
components such as the SNFI field plot sample.
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As an alternative to pairs bootstrapping, Liu [50] proposed the wild bootstrap, which retains the
full set of original sample units and, therefore, retains any original spatial structure in the sample
data. Wild bootstrapping entails two steps. First, predictions and residuals for the original sample are
calculated using an arbitrary prediction technique. Second, the wild bootstrap resample is constructed
as the predictions plus products of the residuals and a randomly selected variable from a distribution
with mean 0 and standard deviation of 1 [54–56]. For this study, a standard normal distribution
was used but with truncation of values less than −2.0 and greater than 2.0. The advantage of wild
bootstrapping is that it preserves the original spatial structure of the data, but it requires the calculation
of predictions and residuals for the original sample units using another technique for which pairs
bootstrapping is a viable candidate and is easily implemented for continuous response variables.

2.4. Analyses

2.4.1. Overview

The analyses focused on estimating species-specific mean and total V. A key feature of the study
was that RF models for predicting V were constructed using data for only those field plots that were
located in the forest portion of a forest species map. Thus, uncertainty in the estimates of mean
and total V must incorporate the uncertainty from two sources: uncertainty in the forest species
map and the sampling variability in the model calibration data. The analyses focused on four tasks.
First, a forest species map was constructed using training and Landsat data. The map was first used to
estimate species-specific areas using MB methods and their standard errors using pairs bootstrapping
(Section 2.4.2). Second, the effects of sampling variability associated with the portion of the SNFI
field dataset used to calibrate the models were estimated using wild bootstrapping (Section 2.4.3).
Third, the map was used to limit the plots whose data were used to construct the RF V models and to
limit the population units to which the models were applied. MB methods were used to estimate mean
and total V and their standard errors (SE) (Section 2.4.4). Finally, total uncertainty was estimated by
combining the effects of uncertainty in the forest species map and sampling variability in the model
calibration data (Section 2.4.5). Methods for accomplishing these tasks are described in the sections
that follow immediately.

2.4.2. The Forest Species Map and the Effects of Its Uncertainty on Area Estimates

A forest species map, hereafter called the Landsat forest species map, was constructed for the study
area (Figure 1) to depict the six dominant forest species of La Rioja: Fagus sylvatica (FS), Pinus halepensis
(PH), Pinus nigra (PN), Pinus sylvestris (PS), Quercus pyrenaica/faginea (Q), and Quercus ilex (QI).
The remaining forest species occurring in the study area were classified into two general groups
designated as “Other coniferous” (OC) and “Other broadleaves” (OB). Non-forest areas such as water
bodies, agricultural areas, bare soil, urban fabric, shrublands and grasslands were merged into a
single non-forest (NF) class. Training areas were digitalized using the combination of fine resolution
imagery and information on forest species from the SNFM25 map which, for purposes of training area
delimitation, were considered as “ground truth” and not subject to uncertainty. Once the training areas
were delineated, a stratified sample of 100 points was selected for which the nine species classes served
as strata. The number of points per training area could be one, several, or no points. Spectral bands,
vegetation indexes, and auxiliary information (Section 2.2.2) were used as predictor variables for the
calibration of the RF classification models. To assess the accuracy of the Landsat forest species map, the RF
oob error was analyzed. This oob error estimation is considered a reliable source that can replace a test
dataset independent of the training dataset for the algorithm [42].

Uncertainty in the Landsat forest species map induces uncertainty in the species-specific area
estimates. Hence, to estimate the effects of this source of uncertainty, a 4-step bootstrap procedure
was used:
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(1) A pairs bootstrap resample was selected from the training data used to calibrate the RF
classification model,

(2) A new Landsat forest species map was constructed by applying a new RF classification model based
on the resample from step (1),

(3) The area for each of the dominant forest species, k, for each bootstrap iteration, b, was estimated
as the product of the number of pixels classified as the species and the pixel area and was denoted
Âk

p b where the subscript “p” indicates that pairs bootstrapping was used,

(4) Steps (1)–(3) were replicated 2000 times,
(5) The MB estimates of species-specific areas and their SEs were estimated as,

Â k
p map =

1
nboot

nboot∑
b=1

Â k
p b (2)

and

SE
(
Â k

p map

)
=

√√√
1

nboot − 1

nboot∑
b=1

(Â k
p b − Â k

p map)
2

(3)

where the subscript “map” indicates that only the uncertainty in the Landsat forest species map was
incorporated into Equation (3), and the subscript “b” indexes the bootstrap resamples.

2.4.3. The Effects of Sampling Variability in the Volume Model Calibration Data on Volume Estimates

Species-specific RF models of the relationship between mean V per unit area (m3/ha) as the
response variable and the set of ALS metrics as the predictor variables (Section 2.2.3) were constructed
for each of the six dominant forest species in La Rioja (FS, PH, PN, PS, Q, QI) (see Table A1 in
Appendix A). Although OB and OC were discriminated on the Landsat forest species map, V models for
OB and OC were not constructed and, therefore, mean and total V for these forest species were not
estimated for this study.

RF models were calibrated using the original SNFI field plot dataset (Table 1) subject to two
constraints: (i) only data for plots that were in forest land portion of the original Landsat forest species
map, and (ii) only data for plots whose ground measurements were of that forest species without regard
to the forest species predicted by the Landsat forest species map.

Table 1. Statistics for mean volume (m3/ha) obtained from the Spanish National Forest Inventory (SNFI)
field plots classified as forest according to the Landsat forest species map and used for the construction of
the V models.

Forest Species * Number of SNFI Plots Mean Standard Deviation Minimum Maximum

FS 182 192.62 93.07 5.89 530.81
PH 35 80.58 42.44 9.06 164.24
PN 82 137.69 94.96 3.71 415.36
PS 199 225.12 136.10 2.53 756.76
Q 272 90.31 55.36 1.44 305.75
QI 136 52.91 34.99 0.00 215.51

* FS: Fagus sylvatica; PH: Pinus halepensis; PN: Pinus nigra; PS: Pinus sylvestris; Q: Quercus pyrenaica/faginea;
QI: Quercus ilex.

For each forest species, the species-specific V model was used to predict V for each population unit
classified as that species in the original Landsat forest species map. Corresponding SEs for the estimates
of mean and total V were estimated using a 7-step wild bootstrapping procedure (Figure 3):

(1) Select a wild bootstrap resample from the SNFI field plot dataset subject to the two previously
noted constraints,

(2) Calibrate the species-specific RF V models,
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(3) For each species, k, predict V for all population units classified as that species in the original
Landsat forest species map,

(4) Estimate mean species-specific V as V̂ k
w b using Equation (1) and total V, V̂T

k
w b, as the product of

the estimates of mean V and the area, Âk, from the original Landsat forest species map,

V̂T
k
w b = V̂ k

w b·Âk (4)

where the subscript “w” indicates that wild bootstrapping was used.
(5) Repeat steps (1)–(4) 2000 times,
(6) Estimate species-specific mean V and its SE as,

V̂ k
w plot =

1
nboot

nboot∑
b=1

V̂ k
w b (5)

with

SE
(
V̂ k

w plot

)
=

√
1

nboot − 1

∑nboot

b=1
(V̂ k

w b − V̂ k
w plot)

2
, (6)

(7) Estimate species-specific total V and its SE as,

V̂T
k
w plot =

1
nboot

nboot∑
b=1

V̂T
k
w b (7)

with

SE
(
V̂T

k
w plot

)
=

√√√
1

nboot − 1

nboot∑
b=1

(V̂T
k
w b − V̂T

k
w plot)

2
(8)

where the subscript “plot” indicates that only the effects of sampling variability in the RF model
calibration dataset are incorporated into Equations (6) and (8).

 
Figure 3. Wild bootstrapping scheme conducted in this study to account for the effects of plot-to-plot
sampling variability in the model training data, ignoring uncertainty in the Landsat forest species map.
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2.4.4. The Effects of Uncertainty in the Forest Species Map on Volume Estimates

Little is known about the cumulative effects of land cover product classification errors when they
are used to limit the model calibration sample and application of the prediction models. The effects of
uncertainty in the Landsat forest species map (map-to-map variability) on the V model calibration and
application data were estimated using a 9-step pairs bootstrap procedure (Figure 4):

(1) Select a pairs bootstrap resample of the training areas used to calibrate the RF classification model,
(2) Construct a new Landsat forest species map and for each species, k, estimate the area, Â k

p b. The oob
error estimation for each RF classification model, recalibrated in each bootstrap iteration with
the resample from step (1), was recorded to estimate the average user’s and producer’s accuracy
for each of the classified forest species and to estimate the standard error of the user’s and
producer’s accuracy,

(3) Select the subset of the SNFI field plot dataset located in the forest portion of the new Landsat
forest species map,

(4) Construct new species-specific RF V prediction models using data for that species determined
from the plot data, not the map species classification for plot,

(5) For each species, apply the model constructed in (4) to each pixel classified as that species in the
map constructed in step (2),

(6) For each species, k, estimate mean V for each bootstrap iteration, b, as V̂ k
p b using Equation (1)

and total V, V̂T k
p b, as the product of the estimates of mean V and the area from step (2):

V̂T k
p b = V̂ k

p b ∗ Â k
p b (9)

(7) Replicate steps (1)–(6) 2000 times,
(8) Estimate species-specific mean V and its SE as,

V̂ k
p map =

1
nboot

nboot∑
b=1

V̂ k
p b (10)

with

SE
(
V̂ k

p map

)
=

√
1

nboot − 1

∑nboot

b=1
(V̂ k

p b − V̂ k
p map)

2
, (11)

(9) Estimate species-specific total V and its SE as,

V̂T k
p map =

1
nboot

nboot∑
b=1

V̂T k
p b (12)

with

SE
(
V̂T k

p map

)
=

√√√
1

nboot − 1

nboot∑
b=1

(V̂T k
p b − V̂T k

p map)
2

(13)

where the subscript “map” indicates that only the effects of uncertainty in the Landsat forest species
map were incorporated into Equations (11) and (13).

As the above procedure indicates, uncertainty in the Landsat forest species map affects V estimates
in two ways: (1) induces uncertainty into the set of SNFI field plots falling within the forest land
portion of the map which, in turn, affects the set of SNFI plots used to calibrate the RF V models and
the ensuing pixel-level V predictions, and (2) induces uncertainty in the portion of the Landsat forest
species map for which V is predicted. To assist in distinguishing the relative magnitudes of these effects
of map uncertainty, two additional analyses were conducted.
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First, each new Landsat forest species map, (one for each bootstrap iteration), was compared with
the original Landsat forest species map to determine the population units for which the predicted forest
species changed and those that retained the original classification. The percentages of population units
whose predicted forest species did not change over the 2000 bootstrap iterations were calculated and
hereafter designated as the percentage of stable pixels or pixel stability. If predicted forest species changed
for only a small percentage of population units, then the effects of area changes on mean and total V
estimates would be expected to be small.

Second, the percentages of SNFI field plots that were within the forest portions of the 2000 new
Landsat forest species maps and, therefore, were used to calibrate the RF models were calculated and
hereafter designated as percentage of stable plots or plot stability. If only a few plots were affected by
uncertainty in the Landsat forest species map, then the effects of map uncertainty on the RF model
predictions would be expected to be small. In addition, these analyses facilitate distinguishing among
forest species with respect to how map uncertainty affects respective area estimates and V predictions
for individual forest species.

 

Figure 4. Wild and pairs bootstrapping schemes used to account for uncertainty in the Landsat forest
species map.

2.4.5. Total Uncertainty

When accounting for both the uncertainty in the Landsat forest species map and sampling variability
in the RF model calibration data, the effects of sampling variability change with each iteration of the
Landsat forest species map, technically making it necessary to separately estimate the sampling variability
effects for each map. This approach would entail on the order of 2000 × 2000 overall bootstrap
iterations and require considerable computational intensity. However, the differences in plots selected
for different forest species maps will be relatively small, and the effects of this sampling variability for
the different maps are expected to be relatively constant. Therefore, instead of estimating the effects of
this sampling variability for each new Landsat forest species map, we assume that the average SE over all
map iterations would be about the same as the SE obtained based on the sampling variability effects
for the original Landsat forest species map as estimated in Section 2.4.3. Thus, for species k, the overall

SE, SE
(
V̂Tk

total

)
, which incorporates the effects of both sources of uncertainty was estimated as,
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SE
(
V̂Tk

total

)
=

√
SE2

(
V̂T

k
p map

)
+ SE2

(
V̂T

k
w plot

)
, (14)

where SE
(
V̂T

k
p map

)
is obtained using Equation (13) and SE

(
V̂T

k
w plot

)
is obtained using Equation (6).

3. Results

3.1. Accuracy Assessment

3.1.1. Forest Species Map Accuracy

The accuracy assessment of the original Landsat forest species map used the oob RF error (Table 2)
and produced an overall accuracy of 88.77%. User’s and producer’s accuracies for most individual
forest species were greater than 80% and even greater than 90% for some. User’s and producer’s
accuracies were less for the Q, OB, and OC classes. The former showed a commission error of 23% due
to confusion of this species with the OB class (see Table A2 in Appendix A), which also explains the OB
omission error (23%). The OB class’s commission error (29%) is due to some of the points of this class
erroneously classified as Q and FS. As for the OC class, it tends to be classified as some of the other
Pinus spp. species and vice versa because of the similar spectral response among them. Nevertheless,
the Landsat forest species map achieved an excellent overall accuracy of 98.8% for distinguishing between
NF and the aggregation of all the forest species with producer’s accuracies of 92.9% and 99.7% and
user’s accuracies of 98.1% and 98.8% for NF and the aggregation of forest classes, respectively.

Table 2. Out-of-bag confusion matrix estimated from the random forest (RF) classification model fitted
to construct a forest species map for the study area.

Forest Species * User’s Accuracy (%) Commission Error (%) Producer’s Accuracy (%) Omission Error (%)

NF 98 2 93 7
FS 95 5 88 13
PH 97 3 94 6
PN 89 11 93 7
PS 93 7 96 4
Q 77 23 84 16
QI 91 9 84 16
OB 71 29 77 23
OC 81 19 88 12

* NF: Non-forest; FS: Fagus sylvatica; PH: Pinus halepensis; PN: Pinus nigra; PS: Pinus sylvestris; Q: Quercus
pyrenaica/faginea; QI: Quercus ilex; OB: “Other broadleaves” (OB) and OC: “Other coniferous”.

3.1.2. RF Volume Models

A graph of V predictions versus observations for SNFI plots showed that in general, most
observations were located close to the 1:1 line, although a few observations exhibited a different
tendency in the form of greater distances from this line (Figure 5). The lack of systematic error supports
the previous MB inferential assumption that the RF model is essentially correct.
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Figure 5. Volume reference values for each of the field plots, used to construct the different RF
models, versus their predictions. Note: FS: Fagus sylvatica; PH: Pinus halepensis; PN: Pinus nigra;
PS: Pinus sylvestris; Q: Quercus pyrenaica/faginea; QI: Quercus ilex. Orange line represents the 1:1 line.

3.2. Uncertainty Assessment

3.2.1. The Effects of Uncertainty in the Landsat Forest Species Map on Area Estimates

SEs for the area estimates were generally less than 10% with the exception of PH and PN for
which SE(Â k

p map) as percentages of estimates of the means reached 22.07% and 12.27%, respectively
(Table 3). Greater SE estimates for areas for the latter two species are at least partially attributed to their
less frequent occurrence among the six main forest species analyzed. These results indicate the overall
variability in the Landsat forest species maps among the bootstrap iterations. The percentages of stable
pixels were strongly positively correlated with the SE

(
Â k

p map

)
estimates. Among all species, more than

80% of the pixels were always classified as the same forest species, although for PH and PN, just 67%
and 79% of the pixels remained stable. Regarding plot stability, among all species, nearly 80% of the
field plots were in the forest portions of all 2000 Landsat forest species maps, one for each of the bootstrap
iterations, and were therefore used for the calibration of V models. For individual species, PH exhibited
the least plot stability with just 73% of the field plots selected for all 2000 Landsat forest species maps and
with some plots selected for fewer than 50% of the maps. Excellent results were achieved for PS and
Q for which the plot stabilities were nearly 100%. Although overall plot stabilities for these species
were large, some field plots used to fit V models for these species were selected only a few times,
particularly two plots that were selected for only about 40% of the maps. Generally, PH exhibited
greater variability for area estimates and for plots selected to construct the RF V models, which was
likely because this is an open grown forest species whose locations are more likely to be misclassified
as non-forest.
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Table 3. Area estimates (ha) and pixel and plot stabilities for the main forest species in La Rioja.

Forest Species *

Area Estimates Standard Errors Stability

^
A

k

(ha)
^
A k

p map (ha) SE(Â k
p map) (ha) SE(

^
A k

p map) (%)
% of

Stable
Pixels

% of
Stable
PlotsSee Footnote (**) Equation (2) Equation (3) Equations (2) and (3)

FS 2.10 × 104 2.24 × 104 552.66 2.47 94.20 100.00
PH 1.09 × 104 0.97 × 104 2132.26 22.07 66.85 72.97
PN 0.67 × 104 0.63 × 104 779.12 12.27 79.52 86.59
PS 1.79 × 104 1.86 × 104 1243.83 6.67 92.01 96.48
Q 5.51 × 104 5.06 × 104 2664.66 5.27 83.54 95.96
QI 3.53 × 104 3.61 × 104 3202.95 8.84 84.51 86.76

* FS: Fagus sylvatica; PH: Pinus halepensis; PN: Pinus nigra; PS: Pinus sylvestris; Q: Quercus pyrenaica/faginea;
QI: Quercus ilex. ** Calculated as the product of pixel size and the number of pixels classified as species k in the
original Landsat forest species map.

A confusion matrix analysis for the Landsat forest species maps, constructed for the bootstrap
iterations, was conducted using the RF oob error obtained with the pairs bootstrap resamples.
The mean and the standard deviation of the accuracies of these maps over all iterations were estimated
(Figure 6) with results similar to those for the original confusion matrix obtained for the original forest
species map. Smaller user’s and producer’s accuracies were obtained for Q.

Figure 6. Mean and the standard error estimates (number at the top of each bar) of the accuracies
(from 0 to 1) of the Landsat forest species maps over all the iterations for the main forest species of
La Rioja. Note: FS: Fagus sylvatica; PH: Pinus halepensis; PN: Pinus nigra; PS: Pinus sylvestris; Q: Quercus
pyrenaica/faginea; QI: Quercus ilex.

3.2.2. The Effects of Uncertainty in the Landsat Forest Species Map on Volume Estimates

Bootstrapping procedures were applied to assess the effects of map-to-map variability on the
uncertainty of the V estimates for each of the most important forest species in La Rioja (Table 4).
The results showed that the effects of map-to-map uncertainty were not negligible for any of the main

forest species with SE
(
V̂T

k
p map

)
% ranging from 3% to 22%. The uncertainties in the total V estimates
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resulting from the effects of uncertainty in the Landsat forest species map were greatest for PH (21.95%)

and for QI (12.05%). The least SE
(
V̂T

k
p map

)
% was achieved, from greatest to smallest, for FS, PS, and Q,

as indicated by estimates of 3.17, 4.65, and 4.66%, respectively.

Table 4. Volume estimates and standard errors based on uncertainty in the Landsat forest species map.

Forest Species *

Mean Volume (m3/ha) Total Volume (m3)

V̂k
p map SE(V̂ k

p map) V̂T
k
p map SE(V̂T

k
p map) SE(V̂T

k
p map) (%)

Equation (10) Equation (11) Equation (12) Equation (13) Equations (12) and (13)

FS 204.05 5.46 4.57 × 106 1.45 × 105 3.17
PH 67.38 7.91 0.65 × 106 1.42 × 105 21.95
PN 144.05 8.75 0.91 × 106 0.79 × 105 8.71
PS 216.28 8.62 4.02 × 106 1.87 × 105 4.65
Q 70.50 2.80 3.56 × 106 1.66 × 105 4.66
QI 44.63 4.10 1.62 × 106 1.95 × 105 12.05

* FS: Fagus sylvatica; PH: Pinus halepensis; PN: Pinus nigra; PS: Pinus sylvestris; Q: Quercus pyrenaica/faginea;
QI: Quercus ilex .

3.2.3. The Effects of Sampling Variability in the Model Calibration Dataset on Volume Estimates

Bootstrapping procedures were applied to assess the effects of plot-to-plot sampling variability
for each of the most important forest species in La Rioja without consideration of the effects of map
uncertainty. A total of 2000 iterations was sufficient for estimates of both means and SEs to stabilize

(Figure 7). Overall, the V̂ k
w plot estimates of the means were very similar to the μ̂MB estimates (Table 5)

with the greatest estimates for PS and FS and the least for PH and QI. The effects of plot-to-plot

sampling variability on SE
(
V̂T

k
w plot

)
% (as percentages of estimates of the total V) varied among the

forest species, ranging from 2% to 11%. PH and QI were the forest species with more dispersion in the

total V estimates as suggested by their larger SE
(
V̂T

k
w plot

)
% values, 11.23% for the former and 9.07%

for the latter. The smallest SE
(
V̂T

k
w plot

)
% values, from smallest to greatest, were for PS, FS, and Q.

Table 5. Volume estimates and standard errors based on sampling variability in model calibration dataset.

Forest Species *

Mean Volume (m3/ha) Total Volume (m3)

^
μMB V̂ k

w plot SE(V̂ k
w plot) (%) V̂T V̂T

k
w plot SE(V̂T

k
w plot) SE(V̂T

k
w plot) (%)

Equation (1) Equation (5) Equation (6) See Footnote (**) Equation (7) Equation (8) Equations (7) and (8)

FS 203.70 204.29 5.02 4.28 × 106 4.29 × 106 1.06 × 105 2.46
PH 61.52 66.49 7.47 0.67 × 106 0.73 × 106 0.82 × 105 11.23
PN 146.96 144.22 4.25 0.99 × 106 0.97 × 106 0.28 × 105 2.94
PS 223.08 220.43 5.22 3.99 × 106 3.95 × 106 0.94 × 105 2.37
Q 70.84 72.43 2.06 3.90 × 106 3.99 × 106 1.13 × 105 2.84
QI 43.27 44.46 4.03 1.53 × 106 1.57 × 106 1.43 × 105 9.07

* FS: Fagus sylvatica; PH: Pinus halepensis; PN: Pinus nigra; PS: Pinus sylvestris; Q: Quercus pyrenaica/faginea; QI: Quercus
ilex. ** Calculated as the product of species-specific area, from original Landsat forest species map, and mean V
based on plots from SNFI field dataset located within area classified as the species.
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Figure 7. Estimates for means and standard errors for each bootstrap iteration and forest species
analyzed. Note: FS: Fagus sylvatica; PH: Pinus halepensis; PN: Pinus nigra; PS: Pinus sylvestris; Q: Quercus
pyrenaica/faginea; QI: Quercus ilex.

3.3. Total Uncertainty

The results (Table 6) revealed that the uncertainties in the V estimates were dominated by the

effects of uncertainties in the Landsat forest species map as suggested by a greater SE
(
V̂T

k
p map

)
relative

to SE
(
V̂T

k
w plot

)
obtained when considering only sampling variability associated with the model

calibration data. When both sources of uncertainty were considered together, the SEs increased for all
the forest species with increases greater than 5% for most species. Greater uncertainties were estimated

for PH, with SE
(
V̂T

k
total

)
increasing from 11% to 25%, and for QI with increases from 9% to 15%.

Table 6. Uncertainties in total volume estimates for the main forest species of La Rioja.

Forest Species *

Uncertainty in the Landsat Forest Species Map Sampling Variability in Model Calibration Data Total Uncertainty

SE( ˆVT k
p map) (%) SE( ˆVT k

w plot) (%) SE( ˆVT k
total) (%)

Equations (12) and (13) Equations (7) and (8) Equation (14)

FS 3.17 2.46 4.01
PH 21.95 11.23 24.66
PN 8.71 2.94 9.19
PS 4.65 2.37 5.22
Q 4.66 2.84 5.46
QI 12.05 9.07 15.08

* FS: Fagus sylvatica; PH: Pinus halepensis; PN: Pinus nigra; PS: Pinus sylvestris; Q: Quercus pyrenaica/faginea;
QI: Quercus ilex.

88



Remote Sens. 2020, 12, 3360

4. Discussion

4.1. The Statistical Techniques

In this study, mean and total V estimates were inferred using an MB estimator based on RF
predictions for the six main forest species of La Rioja (Spain). RF V models were constructed using
SNFI field plot information and ALS data. To limit the prediction of V to pixels classified as one of
the main forest species assessed, a forest species map was constructed using Landsat and auxiliary
information and RF classification models. RF performed well with respect to both classification and
prediction accuracy. Both RF models were calibrated with the default settings included in the R
package RandomForest [43]. Balanced training samples were constructed to calibrate the RF classification,
although RF is not known to be sensitive to the characteristics of the training sample [39]. An assessment
of the effects of correlation among the ALS metrics on RF performance for volume prediction and
therefore, procedures for selecting the most suitable variables would be appropriate [40,57].

Bootstrapping techniques were the lynchpin of this study and facilitated accounting for two
sources of uncertainty: the uncertainty in the Landsat forest species map and the RF model prediction
uncertainty resulting from the effects of sampling variability in the model training data. The similarity
in the bootstrap estimates and the MB estimates indicates the lack of any substantial bias in the
bootstrap procedure. Estimates of bootstrap means and standard errors stabilized by 2000 bootstrap
iterations. However, this result should be generalized with caution and would better be considered
a parameter that must be tuned for each forest species. As per Figure 6, the number of iterations
necessary for estimates of the bootstrap means and standard errors to stabilize varied by forest species.
Computer intensity will depend not only on the number of iterations but also on the size of the study
area, with smaller study areas requiring less computation time. If a large number of iterations are
necessary for a large study area, the development of the methodology could be conditional on access
to a great deal of computationally capability. The workflow developed in this study was performed on
a multi-processor Core i-7 6800 K box, with 12 cores and 64 GB memory because of the computational
intensity involved. The cumulative effects of both sources of uncertainty were estimated with the
effects of plot-to-plot sampling variability for the different maps assumed to be relatively constant.
Apart from this assumption, the computational intensity associated with the methodology could
become prohibitive, particularly if a large number of iterations were necessary to achieve stability in
the estimates of means and standard errors. Nevertheless, the use of cloud-based platforms could
overcome these difficulties providing the users with computing power at affordable prices.

4.2. Effects of Uncertainty in the Landsat Forest Species Map

The Landsat forest species map constructed for this study exhibited satisfactory accuracies considering
the large number of forest species and their level of heterogeneity. Our results are in line with those
reported by Fernández-Landa et al. [28] who used RF classification models to construct a map for
PS and FS in a subset area of La Rioja of 16,000 ha. They reported user’s accuracies of 0.80 and 0.97
and producer’s accuracies of 0.97 and 0.89 for FS and PS, respectively. In their study, they claimed
confusion between FS and OB as the main reason for the FS classification errors. Among the other
forest species mapped, Q yielded the greatest commission errors coinciding with the results of other
studies that mapped forest species using remotely sensed data in Mediterranean environments [58,59].
Despite the difficulty involved in mapping open forest species such as PH, the accuracies obtained for
this study are in accordance with other studies conducted for Mediterranean species using multispectral
information [60].

Uncertainty in the Landsat forest species map affects the V estimates in two manners: (1) it affects
which plots are used to construct the species-specific V models, and (2) it affects the estimate of
the area for each forest species that is multiplied by the estimate of the V mean. For the sake of
simplicity, we assumed that the effects of plot-to-plot sampling variability in the model training data
on V predictions for the different Landsat forest species maps to be relatively constant. Overall, the results
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justify this decision, because the differences in the field plots selected for the different Landsat forest
species maps were relatively small. Hence, the results obtained suggest that the Landsat forest species
map effects on area estimates are more important than the effects on field plot selection on RF model
predictions. However, caution must be exercised with forest species in open woodlands such as PH,
because the Landsat forest species map has a similar effect on both factors. On one hand, V models for
PH were calibrated using a smaller calibration dataset (35 field plots) relative to the other forest species
for which V models were calibrated. On the other hand, even though we refined the training dataset
by removing the SNFI field plots that showed greater discrepancies, this dataset is characterized by a
lack of location precision for its plot centers [28,61]. For species growing in open areas such as PH,
this effect is exacerbated, resulting in a greater sampling variability (Figure 8) and increasing variance
estimates [32].

   

Figure 8. Examples of SNFI field plots used for V prediction purposes for PH not included in 100%
of the total bootstrap iterations conducted to assess plot-to-plot variability. Yellow squares represent
population units of cell size of 25 × 25 m.

An interesting pattern observed in this study is the strong positive relationship between pixel
stability and SE for estimates of V totals. The results indicate that greater stability in the forest species
classification produces less uncertainty in V estimates. In our study, we did not consider other sources
of uncertainty such as tree measurement errors and ALS errors. However, both are expected to
contribute very little to total uncertainty [62]. Nevertheless, if uncertainty in V estimates for smaller
areas is desired, an approach accounting for residual uncertainty should be developed [63].

There was no positive relationship between species-specific pixel stabilities and accuracies obtained
for the different Landsat forest species maps. Even though PH exhibited the largest variability in the pixels
classified as such among the bootstrap iterations, it did not produce smaller accuracies. This is likely
due to the location of the points used to train the RF classification models and therefore used to calculate
the oob error, most of which were in dense forest areas. These points are less likely to be misclassified,
although PH is a Mediterranean forest species occurring in open forest. These areas represent mixed
pixels that were likely to be classified both as forest or non-forest, which could explain the larger
PH classification variability. Uncertainty results at pixel scale facilitate analysis of the accuracy of
the spatial distribution of V estimates and contribute to the identification of special patterns [12,56].
It is important to bear in mind that the reference data used to fit the RF classification models did
not represent a probability sample but just an approximation. Although probability samples are
not required for training data, future research could assess the effects on classification accuracy of
probability-based samples of training data. Even though the RF oob error has been reported as a
reliable accuracy measurement that can replace the use of an independent dataset [42], further research
using a variety of datasets in different application scenarios would be appropriate [39].
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4.3. Effects of Sampling Variability for the Model Calibration Datas

In this study, we only considered the uncertainty in the model predictions resulting from the effects
of sampling variability. We did not include tree measurement errors for which the effects are generally
regarded as negligible, thereby producing no meaningful adverse consequences [5]. Spatial correlation
among pixel predictions was not included because for large contiguous area, distances between the
vast majority of pairs of pixels are greater than the range of spatial correlation, thus, when averaging
over all pairs of pixels, the overall effect is negligible [44]. Spatial correlation needs to be assessed in
future research especially for smaller forest areas for which forest attributes are calculated. In addition,
there were other sources of uncertainty involved in the V estimation framework such as the uncertainty
associated with the V allometric model used in the SNFI and with the model linking plot-level V
with ALS metrics. When these two sources of uncertainty are considered, uncertainty estimates are
larger [12]. Sampling variability in the model calibration data produced SE% estimates in the range of
2–11% with greater values for PH and QI. Chirici et al. [64] estimated growing stock volume using
NFI field plots and remotely sensed data (Landsat and SAR data) for a large area in Italy. Their SE
estimates varied from 2% to 4%, although SE estimates were not reported for specific forest species.
Irulappa-Pillai-Vijayakumar et al. [65] reported V estimates for a French region using NFI field plot
data and remotely sensed data. They reported SE estimates of approximately 3% for oak V estimates
and 5.76% for PS. For oak volume estimates, their SEs were slightly less than the SE of 5.46% for our
study, although they did not consider the uncertainty of the forest species map.

The greater SEs for PH and QI are in accordance with the map uncertainty results as suggested by
greater variability for PH and QI mapping. PH and QI are Mediterranean forest species that intermix
with other vegetation types in complex patterns or in open woodlands. This complexity poses a
challenge when using remote sensing-based classification methods in these kinds of environments as
opposed to those in boreal forests [11,64]. A relationship between SEs for V totals and plot stabilities
was not clearly observed as it was for pixel stability. That being said, it seems that there is a relationship
between plot stability and the number of field plots used to calibrate the RF V models. Plot stabilities
were less for PH and PN for which field plot sample sizes were smaller.

4.4. Total Uncertainty

Many studies have reported large area V estimates, even at a country level, using models and
remotely sensed data [21,64,66]. These studies have demonstrated the potential of assessing forest
resources using different sources of information already acquired and therefore posing an opportunity to
replicate the methodology in other countries with well-established NFI programs. However, the results
of our study demonstrated that if similar approaches are to be replicated, it is necessary to include
the uncertainty of the forest species map used. Uncertainty results can be underestimated when the
uncertainty of the forest species map is ignored in the modeling approach. This is particularly relevant
for the V estimates for forest species: (1) for less representative species such as PN, incorporating the
effects of map uncertainty increased SE% from 2.94% to 9.19%; and (2) for Mediterranean forest species
occurring in open areas such as PH, incorporation of the effects of map uncertainty increase SE% from
11.23% to 24.66%. Further work is recommended to construct uncertainty maps at a pixel scale that
represents the spatial distributions of the accumulated sources of uncertainty considered. Such maps
would be key to distinguishing uncertainties between site conditions and estimated volume levels [12].

4.5. Operational Consequences

This study is unique because of our approach to propagating uncertainty to account for the
effects of uncertainty in the map of the spatial distribution of the main forest species estimated from
Landsat and from the effects of sampling variability on RF V model predictions. Even though we used
a different approach for constructing the forest map than the SNFM, the results are relevant for the
SNFI. On one hand, although the SNFI used a forest map constructed by photo-interpretation, it could
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also have potential errors that might affect the V estimates. On the other hand, until now, national V
estimates have been sample-based, but because of the economic crisis, the number of field plots has
been reduced [10]. Nevertheless, an appropriate use of remotely sensed data could guarantee that
accuracy is not lost in forest attribute predictions, even if the number of field plots was reduced [67],
although it is crucial to account for the time interval between field data and remotely sensed data used.
However, if NFI plots are to be established only in the forest portion of a remote sensing-based forest
map, then the uncertainty associated with the map should be considered. Otherwise, countries will
underestimate uncertainty and fail to comply with the IPCC good practice guidelines [24].

5. Conclusions

Our study assessed the effects of uncertainty in a forest species map involved in the selection of the
field plots used to calibrate the volume models and in the estimation process on the uncertainty of large
area volume estimates. Five conclusions were drawn from the study: (1) the effects of uncertainty in the
forest species map on the uncertainty of large area volume estimates are not negligible, and ignoring
the effects could jeopardize the reliability of the forest volume estimates; (2) overall, the effects of
uncertainty in the forest species map on area estimates were greater than the effects of uncertainty in
the map on the selection of field plots used to calibrate the RF volume prediction model; (3) the effects
of the forest species map uncertainty increased for open forest species or less representative forest
species; (4) bootstrapping estimates demonstrated the suitability of this technique to accommodate the
effects of uncertainty from more than one source; and (5) the results are relevant for countries that use
a remote sensing-based forest/non-forest map to guide the establishment of field plots. Further work
in a variety of forest environments to assess whether the conclusions can be generalized beyond
Mediterranean environments is recommended.
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Abbreviations

Abbreviation Full Description

ALS Airborne laser scanning
crr ALS canopy relief ratio
cv ALS height coefficient of variation
DBH Diameter at breast height
FS Fagus sylvatica
IPCC Intergovernmental Panel on Climate Change
iq ALS height interquartile range
kurto ALS height kurtosis
lfcc Forest canopy cover
MB Model-based
MSE Mean square error
NBR Normalized Burn Ratio
NDMI Normalized Difference Moisture Index
NDVI Normalized Difference Vegetation Index
NFI National Forest Inventory
NIR Near infrared
OB Other broadleaves
OC Other coniferous
oob Out-of-bag
p1-p99 ALS percentiles (ranging from the 1st to 99th percentile)
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PH Pinus halepensis
PN Pinus nigra
PS Pinus sylvestris
Q Quercus faginea or Quercus pyrenaica
QI Quercus ilex
RF Random forest
RMSE Root mean square error
rRMSE Relative root mean square error
RS Remote sensing
SE Standard error
SNFI Spanish National Forest Inventory
SNFM Spanish National Forest Map
stdev ALS height standard deviation
TM Thematic Mapper
V Mean volume per hectare
varia ALS height variance

Appendix A

Table A1. Summary of the V models using 2010 airborne laser scanning (ALS) data and SNFI field
plots for the six main forest species of La Rioja (Spain). Measures of predictive accuracy were obtained
from the out-of-bag (oob) internal error derived from the RF models.

Forest Species * % Variance Explained MSE (m3/ha) RMSE (m3/ha) rRMSE (%)

FS 52.62 4081.84 63.89 33.27
PH 44.37 973.24 31.20 38.72
PN 85.64 1279.01 35.76 25.97
PS 69.26 5665.13 75.27 33.43
Q 64.47 1084.85 32.94 36.47
QI 36.38 769.52 27.74 52.43

* FS: Fagus sylvatica; PH: Pinus halepensis; PN: Pinus nigra; PS: Pinus sylvestris; Q: Quercus pyrenaica/faginea; QI: Quercus ilex.
Note: MSE: mean square error; RMSE: root mean square error, and rRMSE: relative root mean square error.

Table A2. Out-of-bag confusion matrix derived from the RF classification model fitted to construct
a forest species map for the study area. Columns represent true classes, while rows represent the
classifier’s predictions.

Forest Species * NF FS PH PN PS Q QI OB OC

NF 158 0 1 1 0 0 0 0 1
FS 0 146 1 3 1 0 1 2 3
PH 1 0 104 0 0 1 0 0 1
PN 0 2 3 100 0 6 1 0 0
PS 0 1 0 0 84 5 13 6 0
Q 3 0 1 1 4 128 0 1 3
QI 2 1 0 1 9 6 89 12 5
OB 0 0 0 0 2 0 7 161 0
OC 6 2 1 1 0 7 4 2 97

* NF: Non-forest; FS: Fagus sylvatica; PH: Pinus halepensis; PN: Pinus nigra; PS: Pinus sylvestris; Q: Quercus pyrenaica/faginea;
QI: Quercus ilex; OB: “Other broadleaves” (OB) and OC: “Other coniferous”.
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Abstract: Mapping the distribution of forest resources at tree species levels is important due to their
strong association with many quantitative and qualitative indicators. With the ongoing development
of artificial intelligence technologies, the effectiveness of deep-learning classification models for high
spatial resolution (HSR) remote sensing images has been proved. However, due to the poor statistical
separability and complex scenarios, it is still challenging to realize fully automated and highly accurate
forest types at tree species level mapping. To solve the problem, a novel end-to-end deep learning
fusion method for HSR remote sensing images was developed by combining the advantageous
properties of multi-modality representations and the powerful features of post-processing step
to optimize the forest classification performance refined to the dominant tree species level in an
automated way. The structure of the proposed model consisted of a two-branch fully convolutional
network (dual-FCN8s) and a conditional random field as recurrent neural network (CRFasRNN),
which named dual-FCN8s-CRFasRNN in the paper. By constructing a dual-FCN8s network,
the dual-FCN8s-CRFasRNN extracted and fused multi-modality features to recover a high-resolution
and strong semantic feature representation. By imbedding the CRFasRNN module into the network as
post-processing step, the dual-FCN8s-CRFasRNN optimized the classification result in an automatic
manner and generated the result with explicit category information. Quantitative evaluations on
China’s Gaofen-2 (GF-2) HSR satellite data showed that the dual-FCN8s-CRFasRNN provided a
competitive performance with an overall classification accuracy (OA) of 90.10%, a Kappa coefficient
of 0.8872 in the Wangyedian forest farm, and an OA of 74.39%, a Kappa coefficient of 0.6973 in the
GaoFeng forest farm, respectively. Experiment results also showed that the proposed model got
higher OA and Kappa coefficient metrics than other four recently developed deep learning methods
and achieved a better trade-off between automaticity and accuracy, which further confirmed the
applicability and superiority of the dual-FCN8s-CRFasRNN in forest types at tree species level
mapping tasks.

Keywords: forest type; deep learning; FCN8s; CRFasRNN; GF2; dual-FCN8s
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1. Introduction

Forest classification at tree species’ levels is important for the management and sustainable
development of forest resources [1]. Mapping the distribution of forest resources is important due
to their strong association with qualitative monitoring indicators such as spatial locations, as well as
with many quantitative indicators like forest stocks, forest carbon storage, and biodiversity [2].
Satellite images have been widely used to map forest resources due to their efficiency and increasing
availability [3].

With more accurate and richer spatial and textural information, high spatial resolution (HSR)
remote sensing images can be used to extract more specific information of forest types [4]. In the recent
past, a growing number of studies have been conducted on this topic [5,6]. Important milestones
have been achieved, but there remain limitations [7,8]. One of the key limitations is that there is poor
statistical separability of the images spectral range as there are a limited number of wavebands in
such images [9]. As a result, in the case of forests with complex structures and more tree species,
the phenomenon of “same objects with different spectra” and “different objects with the same spectra”
can lead to serious difficulties in extracting relevant information. Thus, it raises the requirements for
advanced forest information extraction methods.

Deep learning models are a kind of deep artificial neural network methods that have attracted
substantial attention in recent years [10]. They have been successfully applied in land cover classification
as they can adaptively learn discriminative characteristics from images through supervised learning, in
addition to extracting and integrating multi-scale and multi-level remote sensing characteristics [11–14].
Compared with traditional machine learning methods, these models are capable of significantly
improving the classification accuracy of land cover types, especially in areas with more complicated
land cover types [15–17].

With the ongoing development of artificial intelligence technologies, several efficient
deep-learning-based optimization models for the classification of land cover types have been
proposed [18]. According to several recent studies, fusion individual deep-learning classifiers such as
a convolutional neural network (CNN) into a multi-classifier can further improve the classification
capacity of each classifier [19–21]. At the same time, other studies have shown that a CNN designed
with a two-branched structure can extract panchromatic and multispectral information in remote
sensing images individually, ensuring better classification quality compared to single structures [22].
In addition, some related research also indicated that the combination of a CNN and traditional image
analysis technology such as conditional random fields (CRF) [23] is conducive to further improve the
classification accuracy [24].

In recent years, to explore the classification effectiveness of deep-learning models for mapping
forest types at tree species level, some scholars have attempted to apply advanced deep-learning
classification methods to HSR satellite images. Guo (2020) proposed a two-branched fully convolutional
network (FCN8s) method [25] and successfully extracted forest type distribution information at the
dominant tree species level in the Wangyedian forest farm of Chifeng City [26] with China’s GF2 data.
The study revealed that the deep characteristics extracted by the two-branch FCN8s method showed
a certain diversity and can enrich the input data sources of the model to some degree. Thus, it is a
simple and effective optimization method. At the same time, compared with the traditional machine
learning algorithms such as support vector machine and so on, there is a significant improvement in
the resultant overall classification accuracy (OA). However, the classification accuracy of some forest
types or dominate tree species, such as White birch (Betula platyphylla) and Aspen (Populus davidiana) in
the study area, needs to be improved further.

Relevant studies have shown that when classifying forest types using FCN8s, the use of CRF
as an independent post-processing step can further improve the classification accuracy [27,28].
However, even though the CRF method can improve the results of classification to some extent as a
post-processing step independent of the FCN8s training, the free structures are unable to fully utilize
CRF’s inferential capability. This is because the operation of the model is separated from the training
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of the deep neural network model. Consequently, the model parameters cannot be updated with the
iterative update of weights in the training phase. To address this limitation, Zheng (2015) has proposed
a conditional random field as recurrent neural networks (CRFasRNN) model in which the CNN and
CRF are constructed into a recurrent neural network (RNN) structure. Then, training the deep neural
network model and operation of the CRF post-processing model can be implemented in an end-to-end
manner. The advantages of the CNN and CRF models are thus fully combined. At the same time,
the parameters of the CRF model can also be synchronously optimized during the whole network
training, resulting in significant improvements in the classification accuracy [29].

In the paper, we proposed a novel end-to-end deep learning fusion method for mapping the
forest types at tree species level based on HSR remote sensing data. The proposed model based on the
previous published two-branch FCN8s method and imbedded a CRFasRNN layer into the network as
the post-processing step, which is named dual-FCN8s-CRFasRNN in the paper.

The main contributions of this paper are listed as follows:

1. An end-to-end deep fusion dual-FCN8s-CRFasRNN network was constructed to optimize the
forest classification performance refined to the tree species level in an automated way by combining
the advantageous properties of multi-modality representations and the powerful features of
post-processing step to recover a high-resolution feature representation and to improve the
pixel-wise mapping accuracy in an automatic way.

2. A CRFasRNN module was designed to insert into the network to comprehensively consider the
powerful features of post-processing step to optimize the forest classification performance refined
to the dominant tree species level in an end-to-end automated way.

The remainder of the paper was structured as follows. The Materials and Method are presented
in detail in Section 2. The Results are given in Section 3. Section 4 then discusses the feasibility of the
optimized model. Finally, Section 5 concludes the paper.

2. Materials and Method

2.1. Study Areas

In this research, two study areas in China were selected, namely the Wangyedian forest farm and
the GaoFeng forest farm, which are located in the North and South of China respectively (Figure 1).
The reason why the Wangyedian forest farm and the GaoFeng forest farm were chosen as study areas
was that both of them represented typical forest plantations in North and South China, respectively.
Among them, the coniferous and broad-leaved tree species in the Wangyedian forest farm had clear
spectral differences; however, the tree species in the GaoFeng forest farm belonged to the evergreen
species, which made the spectral characteristics less affected by the seasonal changes and had more
challenging for the classifier. Thus, the validation of the two above test areas could better illustrate the
effectiveness and limitations of the proposed method.

The Wangyedian forest farm was founded in 1956. The geographical location is 118◦09′E~118◦30′E,
41◦35′N~41◦50′N, which lies to the southwest of Harqin Banner, Chifeng City, Inner Mongolia
Autonomous Region, China, at the juncture of the Inner Mongolia, Hebei, and Liaoning provinces. The
altitude is 800–1890 m, and the slope is 15–35◦. The annual average temperature is 7.4 ◦C and the annual
average precipitation is 400 mm, the climate zone belongs to moderate-temperate continental monsoon
climate. The area of the forest farm is 2.47 ha with the forest area covers 2.33 ha, of which the plantation
is 1.16 ha and the forest coverage rate 92.10%. The tree species of the plantation are mainly Chinese
pine (Pinus tabuliformis Carrière) and Larix principis (Larix principis-rupprechtii Mayr); the dominant
tree species in natural forests includes White birch (Betula platyphylla) and Aspen (Populus davidiana).

The GaoFeng forest farm was established in 1953. Its geographical location is 108◦20′E~108◦32′E,
22◦56′~23◦4′N (Figure 1), which is in Nanning City, Guangxi Zhuang Autonomous Region, China.
The relative height of the mountain is generally 150–400 m and the slopes are 20–30◦. It is in the humid
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subtropical monsoon climate area, with an average annual temperature of 21.6 ◦C and an average
annual rainfall of 1300 mm. The total area of the forest land under management is 8.70 ha and forest
coverage is 87.50%. Eucalyptus (Eucalyptus robusta Smith) and Chinese fir (Cunninghamia lanceolate) are
the main plantations. It should be noted that the GaoFeng forest farm test area in our study is part of
the GaoFeng forest farm. This is because after we searched all China’s Gaofen-2 (GF-2) images within
the GaoFeng Forest Farm in recent three years, only the DongSheng and JieBei sub-forest farms were
cloud-free during this period. Therefore, these two sub-forest farms were selected in the research.

 
Figure 1. Schematic diagram of study area location, data source. WYD—Wangyedian Forest Farm,
GaoFeng—Gaofeng Forest Farm, Gaofen-2 satellite (bands 4, 3, 2 false-color combinations).

2.2. Test Data

2.2.1. Land Cover Types, Forest and Tree Species Definition

The land cover, forest, and tree species classification used in this study mainly refer to the
regulation of forest resources planning, design, and measurement [30], which are the technical
standards of national forest resources planning and design survey. Based on the analysis of potential
land classification results through pre-classifications from China’s GF-2 images, the classification system
of this study was determined as shown in Tables 1 and 2. The classes were divided into 11 categories
for the Wangyedian forest farm (Table 1), including Chinese pine (Pinus tabulaeformis), Larix principis
(Larix principis-rupprechtii), Korean pine (Pinus koraiensis), White birch and Aspen (Betula platyphylla
and Populus davidiana, respectively), Mongolian oak (Quercus mongolica), Shrub land, Other forest land,
Cultivated land, Grassland, Construction land, and Other non-forest lands. For simplicity, the above
categories were abbreviated as CP, LP, KP, WA, MO, SL, OFL, CUL, GL, COL, ONFL as shown in Table 1.

For the GaoFeng forest farm test area (Table 2), it was divided into 7 categories, including Eucalyptus
(Eucalyptus spp.), Chinese fir (Cunninghamia lanceolata Hook.), Masson pine (Masson pine Lamb.), Star anise
(Illicium verum Hook.f.), Miscellaneous wood, Logging site, and Other non-forest lands. Here, Eucalyptus,
Chinese fir, Masson pine, Star anise, and Miscellaneous wood belong to the subdivision category of
forest land; Other non-forest lands mainly include construction land, water, and so on. For simplicity,
the above types were abbreviated as EP, CF, MP, SA, MW, LS, ONFL as shown in Table 2.
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Table 1. Classification system of the Wangyedian study areas.

Test Area Level One Level Two Level Three

The Wangyedian forest farm

Forest land

Woodland

Chinese pine (CP)
Larix principis (LP)
Korean pine (KP)

White birch and aspen (WA)
Mongolian oak (MO)

Shrub land(SL) /

Other forest land Include part of Mixed Broadleaf-conifer Forest
and part of Mixed Broadleaf Forest (OFL)

Non-forest land

Cultivated land (CUL) /

Grassland (GL) /

Construction land (COL) /

Other non-forest land (ONFL) /

Table 2. Classification system of the GaoFeng study areas.

Test Area Level One Level Two Level Three

The GaoFeng forest farm test area

Forest land
Woodland

Eucalyptus (EP)
Chinese fir (CF)

Masson pine (MP)
Star anise (SA)

Miscellaneous wood (MW)

Logging site (LS) /

Non-forest land Other non-forest land (ONFL) Include part of Construction land
and part of Water

2.2.2. Remote Sensing Data

Launched on 19 August 2014, China’s GF-2 was the first sub-meter HSR satellite successfully
launched by the China High-resolution Earth Observation System (CHEOS). The GF-2 satellite is
equipment with two panchromatic and multispectral (PMS) cameras which can provide pan and
multispectral data with nadir resolutions of 1 m and 4 m, respectively, across an imaging swath of
45 km. Radiometric resolution of GF-2 is 10 bit. The GF-2 multispectral remote sensing images include
the blue band(B) (0.45 μm–0.52 μm), green band(G)(0.52 μm–0.59 μm), red band (R) (0.63 μm–0.69 μm),
and near infrared band(NIR)(0.77 μm–0.89 μm).The study used China’s GF-2 panchromatic and
multispectral (PMS) remote sensing imagery, which comprised a panchromatic band (1-m resolution)
and four multispectral bands (4-m resolution). The WYD study area was covered by four scenes and
the GaoFeng study area by one scene (specific image information is shown in Table 3).

Table 3. Parameter information for Gaofen-2 (GF-2) remote sensing images in the two study areas.

Research Area
Scenery Serial

Number
Image Time

Solar Elevation
Angle (◦) Solar Azimuth (◦) Cloud Cover (%)

Wangyedian (WYD)

4074551 5 September 2017 36.139 163.305 2%
4074552 5 September 2017 35.978 163.166 2%
4082058 5 September 2017 36.039 163.724 0%
4082059 5 September 2017 35.878 163.586 0%

GaoFeng (GF) 2835829 21 September 2016 26.133 147.107 0%

The imaging time was September 5, 2017 for the Wangyedian forest farm and September 21, 2016
for the GaoFeng forest farm test area. The preprocessing procedure of the satellite images comprised
four steps, which were radiometric calibration, atmospheric correction, ortho-rectification, and image
fusion. The radiometric calibration was the first step. The pixel brightness values of satellite observations
were converted to apparent radiance by using the absolute radiometric calibration coefficients released
by China Resources Satellite Data and Application Center [31]. Then, the fast line-of-sight atmospheric
analysis of hypercube method [32] was used to perform atmospheric correction of multi-spectral and
panchromatic data. In the next step, the parameters of the multi-spectral and panchromatic images
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and one digital elevation model (DEM) of 5 m resolution were used to perform ortho-rectification
aided by the ground control points automatically extracted by image to image registration using
a scale invariant feature transformation algorithm [33] with ZY-3 digital ortho-photo map (DOM)
in 2 m spatial resolution [34] as reference. Finally, by using the nearest-neighbor diffusion-based
pan-sharpening algorithm [35], the multi-spectral and panchromatic images were fused to obtain a
0.8 m high spatial resolution multi-spectral remote sensing image.

2.2.3. Ground Reference Data

Being aided by multi-temporal high-resolution remote sensing imagery and forest
sub-compartment map and field survey data, 154 samples for the Wangyedian forest farm (Figure 2) and
136 samples for the GaoFeng forest farm test area (Figure 3) were constructed by visual interpretation.
Each sample was composed of a pre-processed remote sensing image block and a matching image
interpretation block at pixel levels. The size of each sample was 310 × 310 pixels.

 
Figure 2. Examples in details for some of the training samples in the Wangyedian forest farm (a) Original
image blocks; (b) Ground truth (GT) blocks showing the labels corresponding to the image blocks in (a).

 
Eucalyptus Chinese firMasson pine Star aniseMiscellaneous wood

Logging siteOther non-forest lands

（（a） （b） （a） （a）（b） （b）

Figure 3. Examples in details for some of the training samples in the GaoFeng forest farm test area
(a) Original image blocks; (b) Ground truth (GT) blocks showing the labels corresponding to the image
blocks in (a).

At the same time, to verify the classification accuracy of the deep learning model, field surveys
were carried out in September 2017 in the Wangyedian forest farm and January 2018 in the GaoFeng
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forest farm test area. A total of 404 samples in the Wangyedian forest farm and 289 samples in the
GaoFeng forest farm test area were collected, as shown in Figure 4. It should be noted that the selected
time of remote sensing image used in GaoFeng Forest Farm test area was inconsistent with that of
field survey. This was because the cloud cover of China’s GF-2 data in 2018 is large, which affected
the classification accuracy. After the search of the data in experimental area during recent three years,
we chose the cloud-free data in 2016. By the comparison among the multi-period data, the land cover
types during that period had little changes, which was classified into logging sites.

 

（ ） （ ） （ ） （ ）（ ） （ ）

Figure 4. Spatial distribution map of the field survey sample points and some of the training samples
in (a) the Wangyedian forest farm; (b) the GaoFeng forest farm test area, (i) Chinese pine, (ii) Larix
principis, (iii) White birch and aspen, (iv) Mongolian oak, (v) Korean pine, (vi) Eucalyptus, (vii) Chinese
fir, and (viii) Masson pine.

2.3. Workflow Description

In this study, a novel dual-fcn8s-crfasrnn method was developed to classify forest type at tree
species level for HSR images. The network consisted with a two-branch FCN8s model with the ResNet50
network [36] as the backbone and a CRFasRNN model as a post-processing module. The classification
process was shown in Figure 5: 310 × 310 image blocks were cut from the entire image and the real
feature categories were labeled as training samples. During the training process, it was divided into
the training samples and the validation samples according to the proportion of 80% and 20%. Then the
dual-fcn8s-crfasrnn method was built. The test image contained eleven and seven feature types for
Wangyedian forest farm and the GaoFeng forest farm, respectively. The same method was used to label
the true feature types. The image block instead of the pixel unit was sent to the network for training,
and the model loss was obtained after training. The model parameters were updated by using the
back-propagation algorithm [37] until the optimal parameters were obtained. In the classification stage,
the test image was sent to the trained network to obtain the final classification map.
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Figure 5. Workflow for the proposed model for forest type classification at tree species level based on
high spatial resolution (HSR) image.

2.4. Network Structure

The proposed dual-FCN8s-CRFasRNN model is a kind of deep learning fusion model. It bases on
a two-branched fully convolutional network, which predicts pixel-level labels without considering
the smoothness and the consistency of the label assignments, followed by a CRFasRNN stage,
which performs CRF-based probabilistic graphical modelling for structured prediction. The general
workflow of the model is shown in Figure 6.

 

Figure 6. The general workflow of the Dual-FCN8s-CRFasRNN classification method.

2.4.1. Two-Branched Fully Convolutional Network

The two-branched fully convolutional network (FCN8s) was proposed recently for the forest
type classification at a dominant tree species level using HSR remotely sensed imagery [26], and the

104



Remote Sens. 2020, 12, 3324

FCN8s [25] is the basic structure of the network which has showed impressive performance in terms of
accuracy and computation time with many benchmark datasets. The architecture of FCN8s consists of
down-sampling and up-sampling parts. The down-sampling part has convolutional and max-pooling
layers to extract high-level abstract information, which is widely used in the classification related tasks
in CNN. The convolutional and deconvolutional layers are contained in the up-sampling part which
up-samples feature maps to output the score masks.

The structure of the two-branched FCN8s method contains two FCN8s sub-models which used
Resnet50 [36] as its base classifier. Among them, one of the FCN8s sub-model used the RGB band
information of image with fine-tuning strategy to construct the network by using the pre-trained weights
of ImageNet dataset [38] and another sub-model made full use of the original 4-band information and
the Normalized Difference Vegetation Index (NDVI) to build the model.

In the study, the two-branched FCN8s model was used to extract multi-modality features, with
each FCN8s sub-model associated to one specific modality. For the model’s output, each FCN8s
sub-model was separated into five blocks according to the resolution of the feature maps, and the
features with the identical resolution from different branches were combined using convolutional
blocks. Then, the combined features from different branches gradually up sampled to the original
resolution of the input image. The whole model can be defined as the minimum total loss between
the prediction results of the training data and the ground truth value during the training process.
Meanwhile, the parameters of the network can be iteratively updated by using a stochastic gradient
descent (SGD) algorithm [39].

2.4.2. Conditional Random Field as Recurrent Neural Networks

CRFasRNN is an end-to-end deep learning model to solve the problem of pixel level semantic
image segmentation. This approach combines the advantages of the CNN and CRF based graphics
model in a unified framework. To be more specific, the model formulates mean-field approximate
inferences for the dense CRF with Gaussian pairwise potentials as an RNN model. Since the parameters
can be learnt in the RNN setting using the standard back-propagation, the CRFasRNN model can
refine coarse outputs from a traditional CNN in the forward pass, while passing error differentials
back to the CNN during training. Thus, the whole network can be trained end-to-end by utilizing the
usual back-propagation algorithm [37].

2.4.3. Implementation Details

The implementation details of the proposed dual-FCN8s-CRFasRNN model were as follows.
During the training procedure, we first trained a two-branched FCN8s architecture for semantic
segmentation and the error at each pixel can be computed using the standard SoftMax cross-entropy
loss [40] with respect to the ground truth segmentation of the image. Then, a CRFasRNN layer was
inserted into the network and continued to train with the network. The detailed structure of the model
is shown in Figure 7.

For more detail, once the computation enters the CRFasRNN model in the forward pass, it takes
five iterations for the data to leave the loop created by the RNN. Neither the two-branched FCN8s
that provides unary values nor the layers after the CRFasRNN need to perform any computations
during this time since the refinement happens only inside the RNN’s loop. Once the output Y leaves
the loop, the next stages of the deep network after the CRFasRNN can continue the forward pass.
During the backward pass, once the error differentials reach the CRFasRNN’s output Y, they similarly
spend five iterations within the loop before reaching the RNN input. In each iteration inside the loop,
error differentials are computed inside each component of the mean-field iteration. After the CRFasRNN
block, the output probability graph was obtained by using a softmax layer. Then, the probability
output was thresholded to generate a classification result for each pixel.

Based on this, the complete system unifies strengths of both two-branched FCN8s and CRFs and
is trainable end-to-end using the back-propagation algorithm [40] and the SGD procedure [41]. It is
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important to mention that in all of the convolutional block, we use a batch normalization layer [42]
followed by a rectifier linear unit activation function [43].
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Figure 7. The structure of the proposed Dual-FCN8s-CRFasRNN.

In our all experiments, we initialized the first part of the network using the publicly available
weights of the two-branched FCN8s network [26]. The compatibility transform parameters of the
CRFasRNN were initialized using the Potts model [29]; the kernel width and weight parameters
were obtained from a cross-validation process. During the training phase, the parameters of the
whole network were optimized end-to-end using the back-propagation algorithm. We used full image
training with the learning rate fixed at 10−9 and momentum set to 0.99. The loss function used was the
standard SoftMax loss function, that is, the log-likelihood error function described in [40].

The proposed model was implemented in the Python language using Keras [44] with a
TensorFlow [45] backend. All of the experiments were performed on a Nvidia Tesla K40C GPU.
To optimize the network weights and early stopping criterion, the training set was divided into
subsets (training and validation). We trained the proposed model using the Adam optimizer [46]
with minibatches of size 16. The maximum number of training epochs was fixed to 10,000 for all
experiments, and the training computation time was approximately 36 h.

2.5. Accuracy Evaluation Index

The evaluation index includes the OA, Kappa coefficient, as well as the user’s (UA) and producer’s
accuracy (PA) values. OA is calculated as a percentage of correctly classified samples relative to
all verified samples. The Kappa coefficient measures the consistency between classification results.
The UA is expressed as the proportion of the total number of correctly classified samples for a specific
class with respect to the total number of reference sample. The PA is calculated by the proportion of a
specific class of accurate classification reference samples to the whole reference samples of that class
and is a supplement of the omission error. The confusion matrix represents the number of pixels which
are classified into a specific class.

3. Results

3.1. Classification Results of the Dual-FCN8s-CRFasRNN

3.1.1. The Wangyedian Forest Farm

The results of the dual-FCN8s-CRFasRNN approach showed a high level of agreement with
the forest status on the ground in the Wangyedian forest farm. The OA was 90.10% and the Kappa
coefficient was 0.8872 (Table 4). Among the individual forest type or tree species, it showed better
results for the coniferous tree species compared to the broad-leaved tree species. For the three coniferous
tree species, Larix principis and Korean pine performed well reaching PA and UA values above 90%,
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respectively. In contrast, the classification of the broad-leaved tree species (White birch and Aspen,
and Mongolian Oak), performed worse than the coniferous trees. The accuracy obtained with PA and
UA was only above 80%. For White birch and aspen, the UA was 90.91%, and the PA was only 80.65%
with ten samples being assigned to the coniferous forest and two samples to the other forest lands
category. Mongolian Oak had better accuracies (UA:86.67%; PA:92.86%). However, the mixed class
called the other forest lands had a UA of 58.33% and a PA of 48.75% with some misclassification of the
Cultivated land class, Mongolian Oak, and Chinese pine class. This was probably due to the similarity
of the spectrum in the reference dataset.

Table 4. Confusion Matrix of Classification Result of Dual-FCN8s-CRFasRNN for the Wangyedian
forest farm.

CP LP KP WA MO OFL CUL COL SL GL ONFL Total UA (%)

CP 70 3 0 10 0 0 0 2 0 0 0 85 82.35
LP 1 63 0 0 0 0 0 1 0 0 0 65 96.92
KP 1 0 15 0 0 0 0 0 0 0 0 16 93.75
WA 1 2 0 50 2 0 0 0 0 0 0 55 90.91
MO 0 0 0 0 26 1 0 2 1 0 0 30 86.67
OFL 0 0 0 0 0 32 0 3 1 1 0 37 86.49
CUL 0 0 0 0 0 0 40 0 0 0 0 40 100.00
COL 1 1 0 2 0 1 0 7 0 0 0 12 58.33
SL 0 0 0 0 0 2 0 1 21 0 0 24 87.50
GL 0 0 0 0 0 0 0 0 0 11 0 11 100.00

ONFL 0 0 0 0 0 0 0 0 0 0 29 29 100.00
Total 74 69 15 62 28 36 40 16 23 12 29 404

PA (%) 94.59 91.30 100.00 80.65 92.86 88.89 100.00 43.75 91.30 91.67 100.00
Overall accuracy: 90.10%; Kappa coefficient: 0.8872

3.1.2. The GaoFeng Forest Farm Test Area

The quantitative evaluation of this test site is shown in Table 5. It showed that the OA was 74.39%
and the Kappa coefficient was 0.6973. Compared to the non-forest lands, the classification effect of the
dual-FCN8s-CRFasRNN model on single tree species or forest land was better. The Eucalyptus type
had the highest classification accuracy (PA:93.33%; UA: 70.89%). In addition to the good extraction
effect on Eucalyptuses, the classification accuracy on other four types of tree species or forests was
also about 70%. In these four tree species or forest types, the classification effect of the Chinese fir tree
species was good, which may be related to the wide distribution of this tree species in the test site.
The Other non-forest lands type performed poor and a large amount of Other non-forest lands was
misclassified as Eucalyptus, which may be due to the sample size involved in modeling.

Table 5. Confusion Matrix of Classification Result of Dual-FCN8s-CRFasRNN for the GaoFeng
forest farm.

EP CF MP SA MW LS ONFL Total UA (%)

EP 56 1 5 6 3 3 5 79 70.89
CF 0 35 3 0 4 0 0 42 83.33
MP 1 5 26 2 2 3 1 40 65.00
SA 1 1 0 25 2 0 1 30 83.33

MW 1 5 4 3 25 3 2 43 58.14
LS 1 0 0 0 1 27 3 32 84.38

ONFL 0 0 0 0 0 2 21 23 91.30
Total 60 47 38 36 37 38 33 289

PA (%) 93.33 74.47 68.42 69.44 67.57 71.05 63.64
Overall accuracy: 74.39%; Kappa coefficient: 0.6973
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3.1.3. The Complementarity of the Case Study

It could be seen from the result of Table 4, the OA of the dual-FCN8s-CRFasRNN model
in the Wangyedian forest farm was 90.10%; however, it was only 43.75% for the less distributed
broad-leaved tree species or mixed forest (such as White birch and Aspen). To verify the effect of
the model for broad-leaved tree species or forest, this study further carried out the experiment in the
GaoFeng forest farm. The main forest type in this area was broad-leaved mixed forest represented
by Eucalyptus. The results showed that (Table 5), the OA of the dual-FCN8s-CRFasRNN model was
74.39%; however, it was 93.33% for the Eucalyptus species with wide distribution. This indicated that
the classification effect of the model was not restricted by tree species, but rather by the distribution
of tree species. It also could be seen from the results of the two test areas that (Tables 4 and 5)
the dual-FCN8s-CRFasRNN model performed well to extract the plantation with the accuracy all
above 90%.

3.2. Impact of Adding NDVI and Using Fine-Tuning Strategy on Performance

According to the conclusion presented in [27], the two-branched FCN8s model can optimize the
classification results after including NDVI features and using the fine-tuning strategy. Based on their
conclusion, this paper further analyzed the influences of the use of NDVI features and fine-tuning
strategies on the classification effect of the dual-FCN8s-CRFasRNN model.

In the follows, we will firstly analyze the classification effects of the dual-FCN8s-CRFasRNN model
on the two test sites using the fine-tuning strategy without NDVI features, of which the results will be
denoted as dual-FCN8s-noNDVI-CRFasRNN. Then, we will analyze the classification performance
of the dual-FCN8s-CRFasRNN model with NDVI features but not using the fine-tuning strategy,
whose results will be denoted as dual-FCN8s-noFinetune-CRFasRNN.

3.2.1. Impact of Adding NDVI on Performance

The classification results of the dual-FCN8s-noNDVI-CRFasRNN model on the two test sites were
shown in Tables 6 and 7. It can be seen from Table 6 that the OA of this model on the Wangyedian
forest farm was 88.37%, and the Kappa coefficient was 0.8678. Its classification accuracy decreased by
1.73% compared with the dual-FCN8s-CRFasRNN model. The classification accuracy of this model on
the GaoFeng forest farm test area is shown in Table 7. It can be found that the OA of the model in this
test site was 71.63%, and the Kappa coefficient was 0.6645. Its classification accuracy deceased by 2.76%
compared with the dual-FCN8s-CRFasRNN model. From the further analysis of the results, it can be
known that the dual-FCN8s-CRFasRNN model could optimize the effect on broad-leaved trees after
adding NDVI. From the comparative analysis of Tables 6 and 7, it can be found that after including
NDVI, the classification accuracies of the two broad-leaved mixed tree species of White birch and Aspen
and Mongolian Oak were both improved. Especially for White birch and Aspen, the classification
accuracy was improved by approximately 10%. The comparison results of the GaoFeng forest farm
test site showed that, after the including of NDVI, the classification performance of broad-leaved forest
was also improved.

3.2.2. Impact of Using a Fine-Tuning Strategy on Performance

The classification results of the dual-FCN8s-noFinetune-CRFasRNN model are shown in Table 6
Table 7. It can be seen from the Table 4 that the classification accuracy decreased by 4.95% and 12.8%
on the Wangyedian forest farm and the GaoFeng forest farm test area, respectively, compared with the
dual-FCN8s-CRFasRNN model. Through the further analysis of the results, it can be known that after
applying the fine-tuning strategy, the dual-FCN8s-CRFasRNN model can optimize the classification
effect of most types in the classification systems of these two test sites. From the comparative analysis
of Table 6, after the fine-tuning strategy was used, the optimization effect of broad-leaved forests was
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significant in the Wangyedian forest farm. From the comparative analysis of the GaoFeng forest farm
shown in Table 7, the classification accuracy of Chinese fir improved significantly.

Table 6. Impact of NDVI Features and Fine-tuning Strategy on Classification Accuracy of
Dual-FCN8s-CRFasRNN for the Wangyedian forest farm.

dual-FCN8s-noNDVI-CRFasRNN dual-FCN8s-noFinetune-CRFasRNN
PA (%) UA (%) PA (%) UA (%)

CP 94.59 81.4 93.24 77.53
LP 91.30 96.92 89.86 88.57
KP 100.00 93.75 100.00 100.00
WA 70.97 89.80 62.90 92.86
MO 89.29 100.00 85.71 85.71
OFL 81.25 72.22 68.75 47.83
CUL 88.89 84.21 94.44 79.07
COL 100.00 100.00 100.00 100.00
SL 95.65 75.86 82.61 100.00
GL 83.33 76.92 83.33 76.92

ONFL 79.31 92.00 72.41 95.45
OA (%) 88.37 85.15

Kappa coefficient 0.8678 0.831

Table 7. Impact of NDVI Features and Fine-tuning Strategy on Classification Accuracy of
Dual-FCN8s-CRFasRNN for the Gaofeng forest farm test area.

dual-FCN8s-noNDVI-CRFasRNN dual-FCN8s-noFinetune-CRFasRNN
PA (%) UA (%) PA (%) UA (%)

EP 91.67 68.75 91.67 76.39
CF 61.7 76.32 46.81 78.57
MP 60.53 48.94 68.42 55.32
SA 69.44 89.29 72.22 81.25

MW 59.46 56.41 64.86 48.98
LS 84.21 91.43 78.95 85.71

ONFL 63.64 95.45 63.64 80.77
OA(%) 71.63% 70.59%

Kappa coefficient 0.6645 0.6538

3.3. Impact of Using a CRFasRNN Post-Procedureon Performance

For clearly observing the difference before and after the CRFasRNN post-processing, we compared
the results of the proposed dual-FCN8s-CRFasRNN and the two-branched FCN8s, as well as the results
obtained from comparing the FCN8s model with the CRFasRNN module called FCN8s-CRFasRNN
with the FCN8s.

3.3.1. The Wangyedian Forest Farm

The comparison of the results of the dual-FCN8s-CRFasRNN model and the two-branched FCN8s
model on the Wangyedian forest farm are shown in Table 8. It can be found that after the embedding
of the CRFasRNN post-processing module, the OA of the two-branched FCN8s model increased from
87.38% to 90.1%, and the Kappa coefficient increased from 0.8567 to 0.8872. The classification result of
single category showed that the Grassland had the best improvement effect, followed by White birch
and Aspen.

In addition, the results in Table 8 show the OA of the FCN8s model increased from 86.63%
to 88.12%, and the Kappa coefficient increased from 0.8482 to 0.8646 after the inserting the
CRFasRNNpost-processing module. The classification result of single category showed that White
birch and aspen had the best improvement effect.

109



Remote Sens. 2020, 12, 3324

Table 8. Classification accuracies of the FCN8s, FCN8s-CRFasRNN, Dual-FCN8s and Dual-FCN8s-CRF
for the Wangyedian forest farm.

FCN8s FCN8s-CRFasRNN Dual-FCN8s Dual-FCN8s-CRF
PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

CP 90.54 81.71 86.49 81.01 95.95 86.59 95.71 84.81
LP 94.20 87.84 89.86 96.88 86.96 92.31 94.20 94.20
KP 100.00 93.75 100.00 100.00 100.00 93.75 100.00 100.00
WA 56.45 92.11 79.03 77.78 67.74 93.33 60.53 88.46
MO 100.00 82.35 92.86 81.25 92.86 92.86 92.86 96.30
OFL 50.00 40.00 31.25 83.33 62.50 43.48 62.50 55.56
CUL 97.22 87.50 97.22 83.33 94.44 75.56 90.44 80.95
COL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
SL 86.96 95.24 95.65 91.67 91.30 87.5 95.65 95.65
GL 83.33 100.00 83.33 90.91 50.00 85.71 83.33 83.33

ONFL 93.10 93.10 96.55 100.00 96.55 96.55 86.21 100.00
OA (%) 86.63 88.12 87.38 89.63

Kappa coefficient 0.8482 0.8646 0.8567 0.882

Furthermore, the classification performance of the dual-FCN8s-CRFasRNN and the
FCN8s-CRFasRNN models were better than the two-branched FCN8s model and FCN8s models.
These results indicate that the learned features obtained by the CRFasRNN post-procedure achieve a
level of performance that is complementary to the deep features extracted by the original model.

3.3.2. The GaoFeng Forest Farm Test Area

The comparison of the classification results of the dual-FCN8s-CRFasRNN model and the
two-branched FCN8s model on the GaoFeng forest farm is shown in Table 9. After the embedding of
the CRFasRNN post-processing module, the OA of the two-branched FCN8s model increased from
72.32% to 74.39%, and the Kappa coefficient increased from 0.6735 to 0.6973. The classification result of
single category showed that the classification effect of Chinese fir, Masson pine, and Logging site were
all improved.

Table 9. Classification accuracies of the FCN8s, FCN8s-CRFasRNN, Dual-FCN8s and Dual-FCN8s-CRF
for the GaoFeng forest farm test area.

FCN8s FCN8s-CRFasRNN Dual-FCN8s Dual-FCN8s-CRF
PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

EP 95.00 66.28 93.33 78.87 93.33 76.71 86.67 89.66
CF 59.57 66.67 55.32 81.25 63.83 73.17 70.21 68.75
MP 50.00 70.37 78.95 55.56 63.16 61.54 63.16 61.54
SA 72.22 76.47 58.33 84.00 69.44 75.76 72.22 86.67

MW 67.57 40.32 70.27 54.17 72.97 54 62.16 43.40
LS 63.16 88.89 73.68 90.32 65.79 89.29 78.95 85.71

ONFL 27.27 81.82 75.76 89.29 66.67 88.00 78.79 100.00
OA (%) 65.05% 73.36% 72.32% 74.05%

Kappa coefficient 0.5857 0.6863 0.6735 0.695

In addition, the results in Table 9 reveal the OA of the FCN8s model increased from 65.05% to
73.36%, and the Kappa coefficient increased from 0.5857 to 0.6863 after embedding the CRFasRNN
post-processing module. The classification result of single category showed that the classification effect
of Masson pine has the most obvious improvement.

From the OA results of the two test sites, the embedding of the CRFasRNN post-processing
module can optimize the classification effect of the two-branched FCN8s and FCN8s models. At the
same time, the results showed that the FCN8s model with the CRFasRNN post-processing module had
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better optimization effects on the classification results compared with the optimization of the dual
structure on the FCN8s model.

3.4. Benchmark Comparison for Classification

In order to further investigate the validity of the proposed method, this study compared
the classification accuracy of the dual-FCN8s-CRFasRNN method with the performances of
other four models: the two-branched FCN8s model using CRF as post processing method
(named dual-FCN8s-CRF); the two-branched FCN8s model without any post-processing procedure
(named dual-FCN8s); the traditional FCN8s method (named FCN8s); and the FCN8s inserted with a
CRFasRNN layer (named FCN8s-CRFasRNN). Both study areas were tested with the above models
(Tables 8 and 9).

The backbone network of the FCN8s model mentioned in the four above approaches was
Resnet50 [36]. The input features for the four above approaches were four-band spectral information and
the NDVI feature. It can be seen from the classification results of the two test sites that among the above
models that the dual-FCN8s-CRFasRNN model had the best classification performance; the FCN8s
model had the poorest accuracy. Among the remaining three models, the classification accuracy of
the dual-FCN8s-CRF model was better than that of the FCN8s-CRFasRNN model. The classification
performance of the FCN8s-CRFasRNN model was better than that of the dual-FCN8s model. From the
perspective of a single category classification, the accuracy of the dual-FCN8s-CRFasRNN model on
the White birch and Aspen in the Wangyedian forest farm test site and the Chinese fir in the GaoFeng
forest farm test site were better than those of other models.

Figures 8 and 9 present the land cover type derived from the above five models at a more detailed
scale. After post processing by the CRF and CRFasRNN algorithms, the classification result images are
refined. The algorithms both reduce the degree of roughness of the image; the boundaries of Larix
principis and White birch and Aspen become smoother, and the land cover shapes become clearer
during the segmentation process. However, due to the excessive expansion of certain land covers during
the CRF post-processing, some small land covers are incorrectly classified by the surrounding land
covers, which is inferior to the CRFasRNN as the post-processing method. From the visual comparison
of the model with and without the CRFasRNN post-procedure, we observed classes that tend to
represent large homogeneous areas benefit substantially from the post-procedure. For the dual-FCN8s
method, some small objects are easily misclassified as the surrounding categories because they are
merged with surrounding pixels into the same objects during the segmentation phase. In addition,
the local inaccurate boundaries generated by the segmentation method also caused deviation from the
real edges. The result also shows that some details were missing from the land cover border. Small land
cover areas tend to be round, and some incorrect classifications are exaggerated by directly applying
the common-structure FCN8s to the image classification problem.
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Figure 8. The detailed classification results of the Wangyedian forest farm (a) GF2-PMS (b) Label
(c) Dual-FCN8s-CRFasRNN (d) Dual-FCN8s-CRF (e) Dual-FCN8s (f) FCN8s (g) FCN8s-CRFasRNN.
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Figure 9. The detailed classification results of the GaoFeng forest farm test area (a) GF2-PMS
(b) Label (c) Dual-FCN8s-CRFasRNN (d) Dual-FCN8s-CRF (e) FCN8s-CRFasRNN (f) Dual-FCN8s
(g) FCN8-CRFasRNN.
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4. Discussion

The study showed that the deep learning fusion model has great potential in the classification of
forest types and tree species. The proposed dual-FCN8s-CRFasRNN method indicated its applicability
for forest type classification at a tree species level from HSR remote sensing imagery. The experimental
results showed that, the dual-FCN8s-CRFasRNN model could extract the dominant tree species or
forest types which were widely distributed in two study areas, especially for the extraction of the
plantation species such as Chinese pine, Larix principis, and Eucalyptus which all had an OA above
90%. However, for the other forest land types in the Wangyedian forest farm and the other category in
the GaoFeng forest farm, the classification accuracy was poor. That may be because the above two
categories included many kinds of surface features, presenting spectral characteristics that are complex
and difficult to distinguish.

Through the comparative analysis of the research results of the two experimental areas, it could
be seen that the classification accuracy of the GaoFeng forest farm in Guangxi was relatively low
compared with the classification results of the Wangyedian forest farm in North China. The PA of
Masson pine, Star anise, and Miscellaneous wood were less than 70%. This may have been caused by
two reasons. Firstly, the spectral is similar among these forest land types, which inevitably increased
the difficulty of distinguishing them. Secondly, the number of collected samples of these forest land
types compared to Eucalyptus was relatively small, which leads to an under-fitting phenomenon of
the model.

To verify the effectiveness of the proposed method and clarify the optimization effect of
embedding CRFasRNN layer in the model published earlier, the paper not only compared the
dual-FCN8s-CRFasRNN model with the deep learning model published earlier, but also compared
the results of post-processing with CRF. The results showed that the optimal classification results
were obtained after adding CRFasRNN layer in both experimental areas compared with the above
two methods. The classification effect was improved obviously especially for the category with less
distribution range.

To further prove that embedding CRFasRNN layer into deep learning model is a general and
effective optimization method. This study further compared and analyzed the optimization effect of
embedding CRFasRNN layer in the classic FCN8s model. The results showed that the model with
CRFasRNN layer got better classification accuracy than the classic FCN8s model and the previously
published two branch fcn8s model. At the same time, in terms of processing efficiency, it also reduced
the processing time compared with using CRF post-processing method.

For including NDVI indices and using a fine-tuning strategy, the proposed method outperformed
those without NDVI feature and fine-tuning strategy in terms of the OA and the Kappa coefficient
achieved. To further clarify the effectiveness of the use of NDVI index, this study further replaced the
NDVI index with green NDVI (GNDVI) [47] index in two experimental areas as showed in Tables 10
and 11. The results showed that the accuracy of the dual-FCN8s-CRFasRNN model with GNDVI index
was with OA of 89.47% and 73.70% and Kappa coefficient of 0.8804 and 0.6898 for Wangyedian and
GaoFeng forest farm, respectively, which was very similar with the model using NDVI index and the
difference between them was less than 1%. From the classification results of a single category, the use
of GNDVI index improved the effect of broad-leaved mixed forest, such as the other forest types in
Wangyedian forest farm and the Miscellaneous in GaoFeng forest farm.

Compared with the previous research results of the fine classification of forest types using HSR
data, the method proposed in the study got better performance. Immitzer et al. (2012) carried out tree
species classification with random forest using WorldView-2 satellite data and the overall accuracy for
classifying 10 tree species was around 82% [48]. Adelabu et al. (2015) employed ground and satellite
based QuickBird data and random forest to classify five tree species in a Southern African Woodland
with OA of 86.25% [49]. Waser et al. (2014) evaluated the potential of WorldView-2 data to classify tree
species using object-based supervised classification methods with OA of 83% [50]. Cho et al. (2015)
based on WorldView-2 data performed tree species and canopy gaps mapping in South Africa with
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OA of 89.3% [51]. Sun et al. (2019) optimized three different deep learning methods to classify the
tree species, the results showed that VGG16 had the best performance, with an overall accuracy of
73.25% [52]. Cao (2020) based on the airborne charge coupled device (CCD) orthophoto proposed an
improved Res-UNet model for tree species classification in GaoFeng forest farm. The result showed that
the proposed method got an OA of 87% which was higher than this study; however, the experimental
area of this study was smaller, and the accuracy of Eucalyptus classification is 88.37%, which is lower
than this paper [53]. Xie (2019) based on multi-temporal ZY-3 data, carried out the classification of
tree species, forest type, and land cover type in the Wangyedian forest farm [54], which is same test
area utilized in our research. The OA (84.9%) was much low than our result, but the accuracy of
broad-leaved tree species such as White birch and Aspen (approximately 85%) was a little bit higher
than ours. This may be due to the use of multi-temporal data to optimize the performance. The effect
of using multi-temporal data for the fine classification of forest types had also been proven by other
studies. For example, Ren et al. based on multi-temporal SPOT-5 and China GF-1 data achieved
the fine classification of forest types with an accuracy of up to 92% [55]. Agata (2019) classified tree
species over a large area based on multi-temporal Sentinel-2 and DEM with a classification accuracy of
94.8% [56]. Based on these results, studies are planned to combine multi-temporal satellite data with
the deep learning method for forest type fine classification as the next step in the research. In addition,
the proposed method also needs to be assessed in other forest areas to evaluate the effect of different
forest structures and other tree species.

Table 10. Classification accuracy of dual-FCN8s-CRFasRNN with the green NDVI index in the
Wangyedian forest farm.

PA (%) UA (%)

CP 95.89 86.42
LP 91.30 96.92
KP 100.00 88.24
WA 68.42 86.67
MO 89.29 100.00
OFL 81.25 72.22
CUL 88.89 84.21
COL 100.00 100.00
SL 95.65 75.86
GL 83.33 83.33

ONFL 80.00 96.00
OA(%) 89.4737

Kappa coefficient 0.8804

Table 11. Classification accuracy of dual-FCN8s-CRFasRNN with GNDVI index in the GaoFeng
forest farm.

PA (%) UA (%)

EP 93.33 75.68
CF 61.70 76.32
MP 57.89 52.38
SA 69.44 83.33

MW 70.27 56.52
LS 81.58 91.18

ONFL 72.73 96.00
OA(%) 73.7024%

Kappa coefficient 0.6898

5. Conclusions

As an effort to optimize the forest mapping performance refined to the tree species level
in an automated way, this study developed a novel end-to-end deep learning fusion method
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(dual-FCN8s-CRFasRNN) for HSR remote sensing images by combining the advantageous properties
of multi-modality representations and the powerful features of post-processing step, and verified its
applicability for the two areas which are located in the North and South of China respectively. With an
overall accuracy of 90.1% and 74.39% for two test areas, respectively, we could demonstrate the high
potential of the model for forest mapping at tree species level. The results also showed that it could
get a remarkable result for some plantation tree species, such as Chinese pine and Larix principis in
the northern test area, and Eucalyptus in the southern test area. The embedding of the CRFasRNN
post-processing module could effectively optimize the classification result. Especially for the tree
species with small distribution range, the improvement effect is obvious. Through comprehensive
comparison of classification accuracy and processing time, embedding CRFasRNN layer in deep
learning model not only automatically completed post-processing operation in an end-to-end manner,
but also improved classification effect and reduced processing time.

Given the importance of mapping forest resources, the proposed dual-FCN8s-CRFasRNN model
provided a feasible optimized idea for mapping the forest type at tree species levels for HSR image,
and will substantially contribute to the improvement for the management and sustainable development
of forest resources in the country.

In the future, we will further exploit the potentials of deep learning based on multi-temporal data,
as well as investigating the means to build the model with limited number of training samples for the
forest type classification at tree species level of high-spatial-resolution images.
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Abstract: The use of Sentinel-1 (S1) radar for wide-area, near-real-time (NRT) tropical-forest-change
monitoring is discussed, with particular attention to forest degradation and deforestation. Since forest
change can relate to processes ranging from high-impact, large-scale conversion to low-impact,
selective logging, and can occur in sites having variable topographic and environmental properties
such as mountain slopes and wetlands, a single approach is insufficient. The system introduced
here combines time-series analysis of small objects identified in S1 data, i.e., segments containing
linear features and apparent small-scale disturbances. A physical model is introduced for quantifying
the size of small (upper-) canopy gaps. Deforestation detection was evaluated for several forest
landscapes in the Amazon and Borneo. Using the default system settings, the false alarm rate (FAR)
is very low (less than 1%), and the missed detection rate (MDR) varies between 1.9% ± 1.1% and
18.6% ± 1.0% (90% confidence level). For peatland landscapes, short radar detection delays up to
several weeks due to high levels of soil moisture may occur, while, in comparison, for optical systems,
detection delays up to 10 months were found due to cloud cover. In peat swamp forests, narrow linear
canopy gaps (road and canal systems) could be detected with an overall accuracy of 85.5%, including
many gaps barely visible on hi-res SPOT-6/7 images, which were used for validation. Compared to
optical data, subtle degradation signals are easier to detect and are not quickly lost over time due
to fast re-vegetation. Although it is possible to estimate an effective forest-cover loss, for example,
due to selective logging, and results are spatiotemporally consistent with Sentinel-2 and TerraSAR-X
reference data, quantitative validation without extensive field data and/or large hi-res radar datasets,
such as TerraSAR-X, remains a challenge.

Keywords: Sentinel-1; NRT monitoring; deforestation; degradation; tropical forest; tropical peat

1. Introduction

Worldwide, forests disappear at alarming rates. In the last decade, the average annual net
forest/non-forest conversion loss was estimated at 4.74 million ha [1]. Degradation of remaining
natural forests is another major concern. A recent study of the Amazon region showed that losses in
carbon were almost evenly split between cases attributable to forest conversion (e.g., biomass removals
associated with commodity-driven deforestation) and cases due to forest degradation and disturbance
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(e.g., biomass reductions attributable to selective logging, drought, wildfire, etc.) [2]. Less well-known,
but of equal concern, are losses of peat underneath tropical peat swamp forests. The largest tropical
peat deposits are found in Indonesia, the Peruvian Amazon, and the Congo Basin, accounting for a
total of approximately100 gigatons carbon (GtC), equal to 25% of the carbon stock stored globally in
biomass [3–5]. For example, in degraded peat swamp forests in Indonesia, on average, approximately
0.4 GtC is lost annually because of oxidization and fires [6]. Forest loss, forest degradation, and peat
degradation are important components of carbon accounting. The Intergovernmental Panel on Climate
Change (IPCC) recently released the 2019 Refinement to the 2006 IPCC Guidelines for National
Greenhouse Gas Inventories, where the use of Earth observation data plays a prominent role [7].
In addition to its role in carbon accounting, timely information on forest change is needed in support
of other applications, such as forest management and peatland restoration. Optical satellite data have
been used for decades for forest-change monitoring. Cloud cover, which can be very persistent in
tropical rainforests, may pose problems when continuous timelines and timeliness of information
is important. Radar data, such as Sentinel-1 data, offers an alternative. Radar’s independence of
cloud cover is a clear advantage. However, this may not be the only advantage, as is explored later in
this paper.

Deforestation is commonly defined as land-use change from forest land to any other non-forest
land-use category and forest degradation as long-term loss of forest carbon stocks, as well as forest values
without land-use, change [8–11]. However, quantitative criteria to describe forest degradation are still
under discussion. Specification of thresholds for carbon stock loss and minimum area and time affected
are not given, but are mandatory to apply such a definition [9–11]. Deforestation detection (with optical
data) is based on the easy differentiation between forest and non-forest classes, such as open areas,
bare soil, agriculture, and settlements. Commonly used methods are based on sub-pixel approaches
like spectral mixture analysis, which are also used to assess proxies of forest degradation [12–15].
The abovementioned recent study of the Amazon was based on MODIS data at ∼500 m resolution [2].
It states that applying higher-resolution satellite data (e.g., 30 m Landsat imagery) would reduce
uncertainty in carbon loss estimates, in particular, from degradation and disturbance. Another study,
based on Landsat, mentions that subtle degradation signals are not easy to detect and are quickly lost
over time due to fast re-vegetation [16]. This would mean that significant loss of carbon could remain
undetected. Obviously, higher spatial resolution provides more detail; however, regrowth or remaining
understory can limit disturbance detection. Radar imaging is fundamentally different in several ways
and can also be used to detect subtle patterns of forest disturbance, such as patterns caused by selective
logging. Good results have been obtained with airborne radar [17], and high-resolution satellite radar
data, such as COSMO-SkyMed spotlight data [18] and TerraSAR-X 3 m stripmap data [19,20]. However,
such data types are not practical for wide-area monitoring applications. Coarser resolution radar data,
such as the Sentinel-1 IW data, may offer a good alternative.

Forest disturbance, either through forest loss or drainage, can result in tropical peat disturbance.
Peat swamp forests are among the world’s most threatened and least known ecosystems. In Southeast
Asia, large areas of peat swamp forest have been drained, deforested (for timber), converted for
agricultural projects (even though the soil is too acid), or are converted into plantations (such as
oil palm, acacia, and Borneo rubber), even though peat systems are fragile and sensitive to
hydrological disturbance (e.g., see Reference [21]). Drainage through canalization has frequently
and severely disrupted groundwater-level dynamics. Besides resulting in CO2 emissions due
to oxidization [22,23], this process makes them particularly vulnerable to fire, especially during
‘El Niño’ years [24]. Emissions from the fires in Indonesia during 1997–1998, for example, have been
estimated to be 0.8–2.5 GtC [25,26]. Water management is essential in addressing these disturbances.
Indonesia currently makes efforts to restore degraded peatlands by “re-wetting”, blocking canals and
promoting paludiculture. For these vast areas, near-real-time (NRT) information is needed on the
construction of new drainage canals in the forest, which are often illegal and a precursor to further
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forest and peat disturbance. This is currently achieved by using SPOT-6/7 and Pleiades data, even
though costs and cloud cover pose severe limitations.

Wide-area and spatially detailed NRT data are needed not only for tropical peatland management
and restoration. Other sectors needing such data include law enforcement, national forest monitoring
systems, and indigenous communities; MRV systems, carbon accounting, and REDD+ projects;
sustainable development of timber trade, forest plantations, and other commodities; protection
of conservation areas, biodiversity, and ecological corridors; and early warning and disaster
management [1,10,27–30].

Several wide-area NRT systems already exist. Since 2004, near-real-time deforestation monitoring
over the Brazilian Amazon has been carried out by INPE based on the Real Time Deforestation Detection
System (DETER) program. The system currently uses the optical AWiFS data with 56 m spatial resolution
and five-day temporal resolution [31]. Because cloud cover poses a problem, the JJ-FAST system is
considered as an additional NRT data source [32]. The JJ-FAST system is based on ALOS PALSAR-2
ScanSAR data and is the first SAR-based global early warning system for tropical forests (covering
77 countries) [33,34]. It currently offers deforestation data every 1.5 months, at a minimum mapping
unit (MMU) of 2 ha. Validation based on Landsat data provided by the GLAD system [15] shows an
overall user accuracy of 66.7% [35]. The ALOS PALSAR observation strategy was designed to provide
consistent wall-to-wall observations, at fine resolution, of almost all land areas on Earth, on a repetitive
basis [36]. In addition to providing the data for the JJ-FAST system, it is used to make annual global
forest/non-forest maps [37] and provide insight in the spatiotemporal radar backscatter variation of
tropical forests [38]. The L-band variability is relatively low for (dryland) tropical rainforest, higher for
tropical moist deciduous forest and highest for tropical dry forest (for HH-polarization up to 3.5 dB
standard deviation). The variability is also high for wetlands, such as peat swamp and floodplain
forests [38]. Moreover, for C-band data, spatiotemporal backscatter variation of tropical rainforest is
low [39] and can be substantial for tropical dry forest [40].

Though L-band radar, in general, provides better contrast between forest and non-forest
classes [41–45]; C-band radar also seems well suitable for forest-change monitoring. From an
operational point-of-view, this is particularly true for the Sentinel-1 radar, which reliably provides
free medium-resolution data with a global coverage at a 6- or 12-day repeat cycle. From a technical
point-of-view, there are a few challenges. (1) The first is the contrast between forest and non-forest,
which, compared to L-band, is often low and of short duration (because of regrowth). (2) The
spatiotemporal variability of forest can be substantial, notably for wetland forests; however, it seems
lower than for L-band. (3) Spatial co-registration, with optical data and other radar, is difficult because
of forest height, and limitations of available DEMs and radar parallaxes. This is especially true for the
finer details, such as forest edges and disturbances. (4) Radar imaging is fundamentally different from
optical imaging. Together with the previous issue, this complicates validation based on other satellite
data. (5) Moreover, as stated in Reference [32], “radar image analysis must be conducted carefully
because there is no single pattern of deforestation in the Brazilian Amazon”. This is also the case for
other tropical rainforest areas. Results depend on forest and terrain type and other environmental
conditions, as discussed in this paper.

Several recent studies discuss the appropriateness of Sentinel-1 for forest/non-forest discrimination
and deforestation detection. For a dryland forest site in the Peruvian Amazon, deforestation could
be detected successfully (detection rate 95%) based on time-series analysis of radar shadows and the
combined use of ascending and descending observations [43]. In Reference [44], several methods for
forest/non-forest classification for a wide range of forest types are discussed. Classification accuracies
for the tropical rainforest sites in this study are up to 81.6% (Sumatra) and up to 88.6% (Colombia).
In Reference [45] the potential of time-series and recurrence metrics for deforestation mapping at test
sites in Mexico is discussed. In Reference [46], for a site in the Amazon, it is shown that (time-series of)
interferometric coherence has potential for deforestation detection.
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The objective of this paper is to discuss the suitability of Sentinel-1 radar for wide-area, NRT
monitoring of tropical forest change in terms of deforestation and degradation, for a variety of landscapes
in Indonesia and the Amazon, including tropical peat swamp forest landscapes. This requires clear
definitions of forest, deforestation, degradation, and disturbance. However, users in different countries
and disciplines use different definitions. It is therefore practical to have a flexible system that can
be adapted to the needs of the user. It is also necessary to indicate the limitations of such a system.
In this paper, certain default settings and definitions are used. The forest class includes undisturbed
and disturbed natural forest and excludes forest plantations, such as acacia, rubber, and eucalypt.
Deforestation is defined as clear-cut areas exceeding a certain size. The default threshold is arbitrarily
set at 1.0 ha, except for peat swamp forest, where 0.3 ha is used. Any detected forest loss smaller than
the default size is labelled as degradation. Degradation in degraded forests is mapped as the additional
degradation since the start of the monitoring. The defaults values for the change detection algorithms
used in this study were established during earlier work in Malaysia and Sumatra and seem generally
applicable in all areas studied so far, including the Guianas, Gabon, and the areas validated in this
paper. Special characteristics of tropical peat swamp forests, viz, the flat terrain and occurrence of long
and narrow straight gaps caused by drainage canal construction, form ideal conditions for theoretical
studies relevant for development of models to quantify degradation. Section 2.1 introduces the study
sites and supporting data. Sections 2.2–2.4 describe physical background, system design considerations,
and types of errors and summarize system components. Section 2.5 provides a theoretical background
for the radar imaging of linear canopy gaps (roads and canals) and small canopy gaps (tree logging
gap disturbances) and introduces a physical model for radar imaging at high-resolution. Section 3
provides results for NRT canal gap detection, NRT deforestation monitoring, and NRT degradation
monitoring. It also reflects on validation challenges. Sections 4 and 5 provide a synthesis and the main
conclusions. The system is tested for a range of tropical forest landscapes and seems to function well,
even in challenging environments, such as mountain slopes and wetlands. In this paper, the term
“landscape” is used in the context of an ecosystem approach and stands for a vast area with a mosaic of
forest types.

2. Materials and Methods

2.1. Study Sites and Supporting Data

The system was tested in several tropical forest areas, comprising wall-to-wall coverage of the
island Borneo, Suriname, Guyana, and selected sites in Brazil, Colombia, Gabon, and the island Sumatra,
for the entire period of Sentinel-1 observation, since launch (see Tables 6 and 7). System validation
mainly focused on the Indonesian Province Central Kalimantan (154,000 km2) on Borneo and the
municipality Almeirim (73,000 km2) in the State of Pará, Brazil (see Figure 1). These two validation
areas have a wide range of forest types, as well as a wide range of deforestation and degradation
characteristics. Central Kalimantan was almost entirely covered by tropical evergreen forest until
the 1980s. Intensive logging of predominant commercial Dipterocarp species and conversion to
cropland, oil palm, and timber plantations has reduced forest cover significantly. Other major natural
vegetation types include peat swamp forests, which are found in the coastal and sub-coastal lowlands,
freshwater swamps along rivers inland, and mangrove forests in the coastal plains. Large fractions of
the peat swamp forests are drained, causing frequent forest fires, notably in El Niño periods. Almeirim,
located between the Amazon River and Suriname, has moist evergreen forest, varied topography,
and blackwater nutrient-poor rivers. Selective logging and conversion to pasture, agriculture and
plantations occur in this area, however, the rates of deforestation and degradation are still relatively low.

Monitoring forest change requires knowledge on the location and characteristics of forest at
the start of the monitoring period. A simple approach would be to use the globally available
forest/non-forest maps derived from PALSAR-2 [37]. For this study, accurate regional baseline maps
with more detailed thematic information were made based on the first available Sentinel-1 images,
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and concurrent PALSAR-2, Landsat-8, and, when available, Sentinel-2 images [47–49], using the
systematics of the FAO Land Cover Classification System (LCCS) [50]. The combination of these
three sensors allows accurate distinction of the different forest classes, such as peat forest, heath
forest, high dipterocarp forest, mangrove forest, riparian forest, and forest plantations. The LCCS
classification system describes vegetation in terms of vegetation structure and soil wetness conditions,
such as flooding under the canopy. L-band radar is able to observe wetness under the canopy and is
uniquely suitable to distinguish dryland and wetland forest classes. The baseline typically comprises
30 classes, depending on the eco-region. For Borneo, using 9000 reference areas, an accuracy of 85% was
achieved [51]. In combination with additional historical data (mainly PALSAR), additional information
on degradation, regrowth, and flood frequency (also under the canopy) is obtained.

(a) (b)

Figure 1. Overview test site locations. Two Sentinel-1 footprints in the Indonesian Province Central
Kalimantan (a). One Sentinel-1 footprint in Brazilian State of Pará (b).

Sentinel-2, SPOT-6/7, Google Earth, and TerraSAR-X single polarization 3 m resolution stripmap
data were used to validate the detected forest changes (see Tables 6 and 7). For Sentinel-1 data
simulation use was made of field and LiDAR data collected in earlier experiments (see Section 2.5).

2.2. Physical Background of Methodology

In general, undisturbed forests have a relatively high and stable backscatter level; therefore,
a significant decrease in backscatter level would indicate deforestation. Though true in general,
this assumption, for several reasons, is too simple to allow for accurate change detection, notably for
small-scale disturbances and wetland forests. Three reasons are discussed next.

(1) In the first place, good knowledge on the natural temporal backscatter variation of undisturbed
forest is required. For tropical rainforests, the causes of natural variation include seasonality, foliage
wetness, soil wetness, and flooding. The strengths and spatial scales of these phenomena also depend
on the forest type, notably, because of flooding, on the distinction between dryland and wetland forest
types. Moreover, rain affects backscatter level, though this strongly depends on rain intensity and
radar wavelength. For the C-band of Sentinel-1, for example, heavy rain can result in a slight decrease
in backscatter over large areas, while excessive rain can result in backscatter decrease exceeding 3 dB
over smaller areas. A typical example is given in Figure 2. Approaches to address temporal backscatter
variation are discussed later.

(2) The opposite can also be true. Radar images may not show any clearly perceivable change
even though strong forest disturbance has taken place (such as in Figure 20). This phenomenon is
partly explained in Figure 3. Logging a single large tree causes a small depression in the upper canopy.
A small area of backscatter decrease (caused by radar shadow) and a small adjacent area of backscatter
increase (caused by radar overlay) results, even when the lower canopy still covers the soil completely
(Figure 3B). The mean backscatter is hardly affected, while the patterns which constitute the texture
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change significantly. When the lower canopy is also removed, the radar textural change signal is
somewhat stronger (Figure 3C). Optical systems, in the latter case, may detect spectral change because
of a bare soil contribution. However, there are two other important differences between radar and
optical imaging to consider. The first difference is the duration of change. Since it usually takes years
for the canopy gap depression to fill up again, while it only takes a few weeks or months for the bare
soil to be covered with regrowth again, radar change is well observable for a long period, while, for
optical systems, this is only a short time and only in the absence of cloud cover. The second difference is
the incidence angle. Theoretical models (to be discussed in Section 2.5) show that Sentinel-1 incidence
angle has little effect, while, for optical systems, this may not be true. Since canopy gaps can be small
and deep, incidence angles for optical systems may be too large to observe the soil surface in high
forest. For Sentinel-2, the local incidence angle can be as large as 23.86◦ [52], while, for SPOT-6/7, using
the oblique viewing capability, as is often done for areas with persistent cloud cover, this can be as
large as 45◦. Though the Sentinel-1 signal of a new small gap is stable for a long period, it is also weak.
It relates to a few pixels only and the backscatter decrease and increase is roughly at the same level as
the standard deviation of the radar speckle. Approaches to estimate this weak signal in the presence of
speckle are discussed later.

(3) The backscatter level of clear-cut areas, in both polarizations, is usually significantly lower
(>2.0 dB) than the original forest cover. Under certain circumstances, however, factors such as remaining
debris and undergrowth, terrain slopes [53], soil roughness, and soil moisture can cause much smaller
decreases. This loss of contrast can be temporarily or persistent. It is evident that good knowledge is
needed on the causes, levels, and probabilities of contrast loss, for the landscapes to be monitored.

The monitoring system is designed to be capable of accommodating all the above mentioned issues
as good as possible; however, at a certain point, compromises have to be made. These compromises
are discussed in Section 2.4, after the introduction of the system components in Section 2.3.

(a) (b)

Figure 2. Sentinel-1 radar image of 20161229 (a) and next observation at 20170122 (b). Excessive rain at
the first date reduces backscatter in VV- and VH-polarization with more than 3 dB. Location: Sebangau,
Central Kalimantan. Size: 6 km × 6 km. Standard color scale: (red) VV with range −15.0 to −6.0 dB;
(green) VH with range −24.0 to −13.0 dB; (blue) VV–VH with range 4.0 to 12.0 dB.
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Figure 3. Radar response to forest degradation. Pre-disturbance situation (case A). Small gaps create
small areas of (dark) “radar shadow” and (bright) “radar overlay”, shown in red and cyan, respectively.
Therefore, extraction of large canopy trees can be detected, even when the soil is still covered with lower
vegetation (case B). When a soil fraction is visible (case C), both radar and optical detect extraction.
The radar signal persists over long periods when canopy gaps are steep and deep.

2.3. System Description

End-to-end system: As soon as a new Sentinel-1 radar image is available [54], the system
automatically downloads this image, updates time-series analyses, and produces new maps, including
a deforestation map, a forest access-road map, and a forest-degradation map. Since the baseline
reference is in the past, and updates have to be made chronologically, the system initially produces
a series of historical maps, before commencing near-real-time map production. In this paper, these
historical sequences are studied and validated. The end-to-end system consists of many steps. It is out
of scope to discuss all of these technical steps in detail. Therefore, only a high-level description and
some relevant details are presented next.

Preprocessing: Interferometric preprocessing is performed for radiometric calibration, geometric
correction, and precise co-registration. This is done over tiles, each containing 30–50 bursts, covering
the landscape (Figure 4). Preprocessing includes slope correction [53] and slant-range multi-temporal
speckle reduction. The speckle reduction step combines a number of approaches [55–57] in order to
preserve edges and texture well. This is relevant, in particular, for the quality of the access road and
forest degradation assessment. Speckle filtering increases the equivalent number of looks (ENL) from
4 to 19 and reduces speckle in homogeneous regions from 2.3 to 1.0 dB. The result is an (updated)
time-series of dual-polarization (VV- and VH-) intensity images at a 15 m pixel size and interferometric
coherence data. It is noted that, throughout this paper, backscatter intensity is expressed by the
backscattering coefficient γ0 (γ0 = σ0/ cos(θinc) , where σ0 is the normalized radar cross-section).
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Figure 4. Area division is done in tiles typically comprising 30–50 Sentinel-1 bursts. Borneo Island.

There are two important reasons for using the Single Look Complex (SLC) products instead of the
more generally used Ground Range Detected (GRD) products as input data. SLC data are in the original
radar geometry and can be converted by multi-looking and orthorectification in the required ground
range geometry. However, SLC data also contain phase information which allows for a very precise
co-registration (typically 6 mm accuracy) of multi-looked data in the slant range. Another advantage is
that all slant-range multi-look pixels have the same ENL, which allows for superior multi-temporal
speckle reduction. Co-registration of GRD data is far less precise and typically has an accuracy of several
meters in flat areas but can exceed the pixel dimension in mountainous areas. The increased sharpness
and spatial co-registration as a result of interferometric preprocessing (i.e., using phase information)
is essential to allow the applications as discussed in this paper, in particular, the quantification of
degradation and the detection of subtle linear features.

Baselines: The baseline consists of a land-cover baseline map (described in Section 2.1) and
a Sentinel-1 reference image from the same date. The land-cover map is used to stratify the
landscape, allowing forest-type-dependent algorithm settings for change detection, as well as
forest-type-dependent assessment of spatiotemporal backscatter variation in undisturbed forest.
The latter assessment is done at a much coarser scales; however, it still captures changes caused by
flooding of wetland forest. The backscatter decrease in cells of extreme rainfall cannot be corrected
well and has to be dealt with in the thematic mapping steps.

Change detection: When the natural temporal backscatter variation is taken into account, change
follows by detecting a substantial backscatter increase or decrease in one or both of the polarizations.
Such a change can be flagged (i.e., provisionally detected) by using relatively simple time-series
analysis techniques, such as Bayesian techniques [58]. A similar technique is adopted here; however,
several important interconnected modifications have been made. (1) Segmentation allows time-series
analysis at segment level, not only pixel level. (2) The threshold for change detection is not fixed.
It not only depends on forest class and terrain slope angles but can also change in time and in relation
to the position in the segment. For example, the threshold can be lowered after a confirmed change
detection or for pixels at the edge of a segment. (3) To avoid error propagation and to allow a high
sensitivity (i.e., low threshold values), the results of the pixel-based change detection are used in
a feedback loop, to regulate the segment-based results. (4) The change is not a scalar value but is
defined as the combined vectorial change of the two polarizations. (5) Several minimum mapping unit
(MMU) sizes are used, depending on forest type and product type. For example, for deforestation in
high dryland dipterocarp forest, the MMU is 1.0 ha, and for peat swamp forest, the MMU is 0.3 ha.
Intermediate products with still lower MMUs are made to guide the production of forest-degradation
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maps. The latter information can be added to the deforestation maps as a qualitative indication where
degradation is ongoing.

Products: The NRT system currently produces, next to the deforestation and degradation maps,
two other types of thematic maps. Quantitative forest-degradation maps are based on a theoretical
model for radar imaging of canopy gaps. This is discussed in Section 2.5. The third map type is based
on change of linear features. It is used to update access road maps and canals, such as in peat swamp
forest, and also gives qualitative indications of degradation. This is also discussed in Section 2.5.
Consequently, three fundamentally different types of forest-change maps are generated, each focused
on different aspects of forest change. A flowchart is shown in Figure 5.

Figure 5. Flowchart: preprocessing and thematic processing steps of the Sentinel-1 near-real-time
(NRT) forest-monitoring system.

2.4. Types of Errors and Compromises

For a near-real-time monitoring system, two types of compromises exist. To discuss these, the error
types should be introduced first. Suppose Sentinel-1 NRT deforestation maps are validated using
available Sentinel-2 images. Two factors would complicate this validation exercise. The first is the
asynchrony of the radar and optical time-series and the second is cloud cover. These complications
are addressed by defining six rule-based classes as shown in Table 1. Missing pixels in the optical
reference dataset, because of clouds and cloud shadows, are classified as forest when the pixel has the
forest class in future images and are classified as non-forest when the pixel has the non-forest class in a
previous image. The remaining missing pixels are classified as unknown. Only pixels labelled in the
baseline as one of the forest classes are evaluated.

Table 1. Quality control classes and color coding used for validation of deforestation.

CD1 Correct deforestation detection
CD2 Correct deforestation detection, prior to next optical reference date
MD Missed non-forest detection
UN Unknown
CF Correct forest classification
FA False alarm

A pixel or segment is labelled as correct deforestation (CD1) when an optical image of the same
or earlier date is deforested. It is also labelled as correct deforestation (CD2) in case the previous
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optical image shows the forest class and the next optical image the non-forest class. The label “missed
non-forest detection” (MD) is assigned when the pixel is classified as forest in the radar map and
non-forest in a previous optical image. The label false alarm (FA) is assigned when the pixel is classified
as non-forest in the radar map and as forest in the previous optical image. The label correct forest
classification (CF) is assigned when the pixel is classified as forest in the radar map and the previous
optical image. Using these rules, not all the radar map pixels can be labelled with one of these five
classes because of the presence of unknowns in the optical reference maps. In these cases, the label
unknown (UN) is assigned. The false alarm rate (FAR) and missed detection rate (MDR) are calculated
by using the following equations:

FAR = FA/(FA + CF) (1)

MDR =MD/(MD + CD1 + CD2) (2)

The performance of the system can be tuned to specific needs of the user. Basically, the user
has to make two important compromises. The first relates to the interchangeability of the two types
of detection error, i.e., the false alarm (FA) rate and the missed detection (MD) rate, also known
as false positive and false negative. When algorithm settings are selected to decrease the FA rate,
then the MD rate increases, and vice versa. Of course, multiple maps using different settings can be
made. The second compromise relates to the interchangeability of overall accuracy and timeliness.
The timeliness of NRT maps is defined on the basis of the dates of the available radar image time-series.
When the first radar image has the time stamp t0 (t zero), the second t1, etc., and the last tp (t present),
then the second to last image has time stamp tp−1. An NRT map can be based on a tp radar image,
a tp−1 radar image or, in general, a tp-n radar image. Larger values for n cause larger delays in map
availability; however, in general, they result in larger overall accuracy. Of course, multiple maps using
different values of n can be made simultaneously and can be combined. To make a distinction between
different types of NRT maps, these are denoted as NRT(N = 0), NRT(N = 1), etc. Within an NRT(N = 1)
system the most recent radar image is only used as confirmation, which, for example, can be used
to avoid false alarms caused by heavy rain cells. The default NRT system studied in this paper is an
NRT(N = 1) system with a low FA rate. Nevertheless, evaluation of the performance of this relatively
simple system can yield important insights. These insights, to be presented in this paper, support the
design of more accurate and complicated systems which combine multiple maps made with different
settings, tuned for the landscapes of interest.

2.5. Theoretical Background of Canal-Gap Mapping and Forest-Degradation Quantification

Models of the physical interaction, the forest structure, and the canal gap geometry can be used
to simulate radar imaging of canal gaps. The canal gap geometry was derived from SPOT-6/7 data
and is expressed as canal width and orientation. The description of forest structure is based on
field observations from previous studies [17,19,59,60]. Relevant parameters include forest height
and canopy roughness. The physical interaction is modelled at high resolution, accounting for the
three-dimensional structure of canopy roughness and incidence angle, as described in Reference [61]
and canal gap geometry.

Radar profiles of canal gaps were extracted from the radar images in the east–west direction
by re-sampling and averaging over straight canal sections of approximately 45 radar image rows,
which strongly reduces the variation caused by speckle. Figure 6 shows a comparison between an
observed profile and a simulated profile. The observation differs from the simulation because of
remaining speckle and texture effects. However, across the canal profile, the fit is very good, with
a standard error of estimate of only 0.5 dB. Results over several canal sections are summarized in
Table 2 and Figure 7. Since realistic simulations can be made, the radar backscatter model can be
used as a theoretical tool to support further quantitative analysis. In Section 3.1, this is done to study
limiting factors related to canal gap detection and in Section 3.3 to study possibilities to quantify small
forest-gap dimensions in relation to forest degradation.
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Figure 6. Comparison between simulated radar backscatter profile across a canal gap (solid curve) and
an observed profile (dotted curve). The positions of the ridge, valley, and edges are indicated.

Figure 7. Comparison of observed and predicted VV-backscatter across five canal gaps.
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Table 2. Canal gap simulation results. Width of gap (m), orientation with respect to radar azimuth
direction (degrees), RMSE (dB), and Pearson correlation between observed and predicted values.
Note that the RMSE for canal B is relatively large. This is caused by its large width, which causes
visibility of the gap floor, and strong regrowth on the gap floor, which causes an increase in backscatter.

Canal Width Orientation RMSE r2

A 56.2 32.6 0.501 0.987
B 50.0 32.6 0.813 0.959
C 32.8 32.4 0.556 0.964
D 25.0 31.3 0.386 0.954
E 18.7 63.4 0.285 0.870

Average 0.539 0.959

Since the radar data are acquired near the equator in descending orbit, the azimuth direction is
−168.0◦ with respect to north and the radar look direction, which is towards the right, is −78.0◦, i.e.,
almost west. For descending data, as shown in Figure 6, the radar profile of the canal gap, shows a
ridge positioned left of a valley. The valley results from radar shadowing and the ridge from radar
overlay. The widths and heights of the ridges and valleys vary as function of canal gap width and
orientation. The characteristic shape of the radar gap profile suggests several alternative approaches
for linear feature detection. For descending data in the direction from east to west (or right to left)
the profile shows a negative edge (or sharp decrease) followed by a valley, a sharp increase, a ridge
and a second negative edge. It suggests that several classes of operators are suitable to detect the
canal gaps, such as edge detectors, ridge-valley (or line) detectors [62,63], and matching filters (for
the characteristic valley-ridge pattern in descending data). The application of these operators is the
first step in the process of generating canal-gap maps. Subsequent steps include thresholding of the
detections, applying spatial shifts (because the operators act on different parts of the canals gaps),
linking small segments into larger segments (by evaluating canal gap directions), and time-series
analysis (to reduce false alarms). The operators used for detection are briefly described first.

The Sobel operator was used for edge detection. It uses two 3 × 3 kernels which are convolved
with the original image to calculate approximate edge gradients in the horizontal and vertical direction.
In subsequent steps, for computational efficiency, the edge gradients in only eight discrete directions
(at 45-degree intervals) are used. Therefore, in the initial step, eight 3 × 3 kernels are applied as shown
in Figure 8 (top). The same approach was used for the ridge and valley detection (see Figure 8, middle)
and the matched filter detection (Figure 8, bottom). Therefore, in this approach, in total, 24 types of
detection per pixel can be made. Since these detections are not independent, a selection of a subset
of these detections would be sufficient. A careful evaluation showed that 10 types suffice without
decreasing performance and that the main value of the matched filter is the improvement of the
detection of small canals. The latter also explains the shape of the matched filter, which works well on
narrow canals and is less efficient for wider canals.

Before discussing experimental results of canal gap mapping, the utility of the theoretical model
introduced above should be discussed in more detail. Canal gaps in peat swamp forest show up more
prominently in radar images when they are oriented more closely in azimuth direction and when they
are wider. The theoretical model can be used to quantify these relationships; moreover, it can be used
to predict the effect of forest structural parameters and incidence angle on these relationships.

This can be done by introducing the parameter “contrast”, which simply is the sum of the absolute
radar backscatter change (in dB) of the disturbance in the forest canopy caused by the canal gap,
as shown in Figure 6. This sum is taken over pixels of a single row (i.e., east–west direction) matching
the canal disturbance section. Higher contrast values can be related to higher visibility of canals gaps
in the radar image. Higher contrast values are found for canals gaps wider than 10 m in combination
with a canal orientation smaller than 75 degrees from azimuth direction (see Figure 9).
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Figure 8. Sobel gradient, ridge and matched filters used for canal gap detection. Only the 0◦ (east–west)
and 45◦ orientations are shown.

Figure 9. Contour plot of modelled contrast (dB) as function of orientation (degrees from radar azimuth)
and canal gap width (m).

Since the contrast parameter is independent from canal length, it also applies for gaps of very
short canals, which resemble gaps caused by selective logging. These small canopy gaps, or forest
degradation gaps, are usually not elongated. Therefore, it may be assumed that contrast values for
small orientation angles apply. Furthermore, it can be noted that, for small angles, the ratio between
contrast and gap width is almost constant when the gap width is above 20 m. The latter relation
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can be computed by using the same model and depends on incidence angle and forest structure.
In Figure 10, the relation between contrast and degradation gap width for a peat swamp forest at
three incidence angles is shown. This example shows that lower incidence angles give higher contrast.
Simulations also show that higher forest, in general, gives higher contrast. Therefore, when the right
model is applied and contrast is not computed over a single gap section but over a certain fixed area
(e.g., 10 × 10 pixels), then the averaged contrast can be related to the fraction of the forest canopy lost
because of degradation. Examples for quantification of degradation are discussed in Section 3.3.

Figure 10. Modelled contrast (dB) as a function of canal gap width (m) for a peat swamp forest in
Central Kalimantan for three radar incidence angles. Steeper incidence angles yield higher contrast:
30.0 degrees (top), 37.6 degrees (middle), and 45.0 degrees (bottom).

3. Results

3.1. Results for Canal Gap Detection

The Sentinel-1 NRT canal maps were validated by using results of visual interpretation of
SPOT-6/7 images as reference. For each canal visible, the length, width, and orientation were determined.
The detection rate was studied by comparing the lengths of these canals with the corresponding lengths
in the Sentinel-1 map. This was done as a function of canal width and orientation. The false-alarm rate
was studied by evaluating Sentinel-1 canal detections not present in the initial reference dataset. A large
fraction of the initial reference map for 8 August 2017 is shown in Figure 11a, while, in Figure 11b,
the corresponding Sentinel-1 NRT canal map for 7 August 2017 is shown.

The overall detection rate is 85.5%, i.e., 9.3 km of canal length is missed out of a total 64.2 km.
Tables 3–5 divide this result over several width and orientation classes. Only for the smallest width
class (5–10 m range, Table 3) and the orientation two classes closest to the range direction (more than
80 degrees from azimuth direction, Table 4), the accuracy drops below 50%. Table 5 combines these
2 classes showing that for small canals (smaller than 20 m) in radar look direction (within ±15 degrees
from range direction) the accuracy drops to 27.3%. In all other cases, the accuracy is much higher,
which is in agreement with the simulated result presented in Figure 9.
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(a) (b)

(c)

Figure 11. (a) Reference data from SPOT-6/7 20170908; (b) detail Sentinel-1 (S1) NRT canal map
20170907, 11.6 km × 7.9 km; (c) corresponding S1 radar image 20170907. (Standard color scale: see
caption for Figure 2.)

Table 3. Detection rate based on canal width.

Width (m) Length (m) Correct (%)

5–10 1559 47.4
10–15 15,634 77.8
15–20 13,462 91.3
20–25 7938 84.1
25–30 9351 99.9
30–35 3859 70.7
35–40 5838 84.4
40–45 2511 92.4
45–50 2861 87.8
>50 1186 100.0

Total 64,197 85.5
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Table 4. Detection rate based on look direction.

Azimuth Length (m) Correct (%)

0–5 2283 97.8
5–10 152 100.0
10–15 720 100.0
15–20 3555 99.7
20–25 1511 99.3
25–30 1119 98.7
30–35 12,283 95.0
35–40 4470 83.2
40–45 3255 94.8
45–50 2562 83.2
50–55 2827 95.6
55–60 6883 79.3
60–65 7317 81.4
65–70 903 84.5
70–75 6048 81.1
75–80 6610 68.4
80–85 1422 45.2
85–90 275 27.3
Total 64,197 85.5

Table 5. Detection rate for wide and narrow canals, oriented in look direction or other direction. Here,
wide means >20 m; in look direction means within ±15 degrees from range direction.

Combination Classes Length (m) Correct (%)

Wide, not in look direction 25,510 96.2
Wide, in look direction 8032 64.3

Narrow, not in look direction 30,379 82.7
Narrow, in look direction 275 27.3

Total 64,197 85.5

Sentinel-1 canal detections not present in the initial reference set could be divided in two different
categories. The first category consists of true canal gap segments very poorly visible in the SPOT
images. These canal gaps are often narrow and often show regrowth. An example is given in Figure 12.
Once these canals are recognized in SPOT images, aided by the Sentinel-1 maps, additional visual
interpretation is possible. In this study, 7.3 km of additional canal gaps could be found in the SPOT
data, of which 4.6 km (or 62.7%) was actually already mapped by Sentinel-1. This includes three
canals smaller than 10 m, all oriented at 55 degrees from azimuth direction: (1) 9.7 m width, 114 m
length, and 100.0% detected; (2) 8.1 m width, 340 m length, and 100.0% detected; and (3) 6.5 m width,
348 m length, and 48.3% detected. The second category consists of small canal gap segments in the
NRT map which are not visible in the SPOT images, even after careful re-evaluation. While a part
of these false-alarm detections may constitute true false alarms, another part may be true detections
(or “false false” alarms) not visible in the SPOT image, for example, related to small canopy gaps
caused by illegal selective logging. This notion is based on an evaluation of a time-series of canal
gap maps. For example, in the 7 August 2017 NRT canal gap [NRT(N = 0)] map, the false-alarm
rate is 9.5%. However, in subsequent maps, an increasing number of these false alarms disappear.
Therefore, these false alarms may be related to noise effects and could be regarded as true false alarms.
After approximately two months of persistent false alarm detections remain. These persistent false
alarm detections, unlike the non-persistent false alarm detections, are not located at random, but are
located near canals and rivers or forest edges. These places are much more accessible and prone to
illegal logging activities. Thus, the false alarm rate of 9.5%, after approximately two months, may
be divided in a non-persistent false alarm rate of 3.9% and a non-verifiable false alarm rate of 5.6%,
which may relate, to a large extent, to true disturbances such as illegal logging.
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Figure 12. Location of canals hardly visible in SPOT-6/7 corresponding with the detections by Sentinel-1
in the black ellipse of Figure 11b. The inset located in the upper-left shows the corresponding area of
the Sentinel-1 NRT canal gap map.

3.2. Results NRT Deforestation Monitoring

Sentinel-1 NRT deforestation maps were validated in Borneo and Brazil, using a careful visual
interpretation of all available Sentinel-2 images and Google Earth. The result is an optical reference
set of image segments labelled either as completely forested or completely deforested. These optical
segments are compared with individual pixels in the radar maps. Before discussing the results of this
validation, it may be insightful to compare an S1 radar NRT deforestation map with an S2 deforestation
map, where all pixels of the S2 map which have at least a small bare soil fraction in at least one of
the images used for validation are marked as deforested (Figure 13). This map clearly shows large
agreement between optical and radar data for deforested areas. However, for forest areas recovering
from fire, newly degraded areas, and narrow linear gaps (new roads and canals), large fractions are
missing in the S2 map.

Table 6. Overview Sentinel-1 NRT map series and Sentinel-2 reference data series. For Brazil, two
Sentinel-2 series were used.

Series Number Period

Indonesia S1 91 20150930–20190804
Indonesia S2 157 20170119–20191120

Brazil S1 81 20170108–20191001
Brazil S2 63 20170616–20191029
Brazil S2 56 20180524–20191130
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Figure 13. A 30 km × 40 km section of an S1 deforestation map of August 2019 is compared with a
Sentinel-2 (S2) reference map for an oil palm development area on shallow peat in Central Kalimantan.
The S2 reference map shows the cumulative detection (for all available S2 images, see Table 6) of pixels
with a bare soil fraction. For large-scale deforestation, there is a large agreement (red). In other areas,
such as forests recovering from fire damage and degraded forest, the S2 reference misses large areas
(yellow). The same is true for new road and canal gaps.

Results of (quantitative validation at radar pixel level) can be shown in charts, as in Figure 14a.
This example is the aggregated result for three representative landscapes in Central Kalimantan with
a total area of 194,235 ha, and with major deforestation events in the Sentinel-1 observation period.
Within these landscapes, all areas interpreted as deforested in the Sentinel-2 images while being
classified as forest in the 2015 baseline map were evaluated. An overview of the S1 NRT maps and the
S2 images used for validation are given in Table 6. In the chart of Figure 14, the transition in time from
forest to non-forest is visible in terms of the classes used for validation. Only the classes MD (orange)
and FA (red) represent errors. In the vertical direction the relative strength of the errors is visible and
in the horizontal direction the duration of the errors.

The FAR (Equation (1)), in this example (Figure 14a), is very low, and is discussed later. The MDR
(Equation (2)) is sometimes substantial and varies over time. For example, on 30 April 2019, at a
90% confidence level, the MDR has a value of 18.6% ± 1.0%, while, on 17 June 2019, the MDR is
1.9% ± 1.1%. This variation can be explained partly in methodological terms and partly in physical
terms. The presented result relates to the default NRT(N = 1) system (see Section 2.4). This means
detected deforestation is only (or mostly, depending on system settings) mapped when it can be
confirmed by the next radar image. This is often not the case, as is illustrated by the time-series of radar
images in Figure 15. This series of eight consecutive radar images, covering an oil palm plantation
development area on shallow peat, clearly demonstrates the backscatter contrast between forest and
new clear-cut can go up and down. This may be explained, physically, by the relatively large soil
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roughness in combination with changes in soil moisture. The same phenomenon is illustrated in
segment-averaged temporal backscatter signals for VH, VV, and VH–VV ratio for the same area in
Figure 16a. The VH and VV signals jointly go up and down, and deforestation is detected at the first
moment it stays down. However, the VH–VV ratio stays low from the moment the VH and VV signals
go down for the first time. The lowered VH–VV ratio is a sign of vegetation loss and the fluctuation
of the VV and VH are signs of soil moisture fluctuations. High levels of soil moisture and large soil
roughness in combination with the NRT(N = 1) methodological rules explain the delay in deforestation
detection in this shallow peat landscape. It could also be noted that, on average, the delays are larger
in the deep peat landscape and absent in the dry forest landscape. This may be related to other soil
roughness and/or soil drainage conditions.

(a)

(b)

Figure 14. (a) Aggregated validation results for three representative landscapes in Central Kalimantan
for the period September 2015 until August 2019. (b) Aggregated validation results for representative
landscapes in Pará, Brazil, for the period January 2017 until September 2019.
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Figure 15. Eight successive radar observations at a 12-day interval for the period 20180704–20180926
(from top left to bottom right). Area: 10 km × 10 km. Location: Central Kalimantan. (Standard color
scale: see caption Figure 2.)

(a)

(b) (c)

Figure 16. (a) Temporal radar signature for an area located in Figure 15. VH-polarization (red), VV-
(blue), VH/VV-polarization (red). The black line shows the time of detection for the NRT (N = 1) system,
and the gray line is the reference time following from visual interpretation of Sentinel-2. (b) Temporal
radar signature for an area in Brazil where, after the first indication of deforestation on S2, radar
backscatter decreases slowly. This causes a delayed detection by an NRT (N = 1) system. (c) Temporal
radar signature for an area in Brazil with much more cloud cover. In this case, Sentinel-2 data can only
show that deforestation occurred within the gray interval.
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These results can be compared with a representative landscape north of the Amazon River in
the State of Pará, Brazil, with a total area of 57,792 ha, as shown in Figure 14b. This landscape is
characterized with small-scale deforestation, often of the slash-and-burn type. Deforestation is often
preceded by severe degradation and sometimes changed in low secondary vegetation without ever
passing through a bare soil state. In the latter case, the change in averaged radar backscatter is low and
deforestation is only detected well along the near range forest edges as radar shadow and partly as
degradation (see Section 3.3). This explains the aggregated validation results for the Brazil landscape
shown in Figure 14b. Like in Indonesia, the FAR is very low and the MDR is sometimes substantial and
varies over time. The MDR may be split for MD which is followed by correct detections within a short
period and persistent MD related to areas that never experience a stage without substantial vegetation
cover. For example, at 10 January 2019, at a 90% confidence level, the MDR is 17.0% ± 1.6%, which can
be split into a temporary part of 3.3% ± 1.5% and a persistent part of 13.8% ± 1.4%. These numbers do
not change much until 21 July 2019, when significant temporary MD cases start to occur. Figure 16b
illustrates the gradual deforestation process typical for this landscape. The backscatter decreases over
a period of several months before deforestation is detected. Gradual deforestation may partly explain
the delay in deforestation detection, which is unlike the situation in Indonesia where delayed detection
may be better explained by high levels of soil moisture (mainly on peat).

In summary, it can be concluded that the FA rate is very low (because of selected user settings)
and the MD rate can be significant and varies because of delays in detection; however, the MD error is
not permanent. The detection delay is a typical feature of the NRT(N = 1) system. Such delays are
absent in the NRT(N = 0) system at the expense of a higher FA rate (for example caused by heavy rain
cells). In an NRT(N ≥ 2) system, the delays are much shorter at the expense of having less timely maps.
This may illustrate the importance of proper user settings or adopting a more complex system with
multiple sets of user settings.

Opposed to detection delays in radar data, there are also detection delays in optical data. The class
CD2 shows radar detection prior to the first available next optical image. However, there are many
more cases where radar detection precedes optical detection. In the validation procedure, these cases
are present in the class unknown (UN), but these cases cannot be validated, by definition, by optical
data. An example is given in Figure 16c. Because of cloud cover, the optical data can only be used
to show the deforestation occurs in the period August 2017 until April 2018. The radar detection
is in the middle of this period, where a significant drop in the radar backscatter occurs. In cases
where validation could be done, a drop of such a magnitude leads to a correct deforestation detection.
An evaluation of the radar signatures of all test areas reveals that, for the Brazilian landscape, in more
than 20% of the cases, the radar detection precedes the optical detection by at least two months and up
to 11 months. For the Indonesian landscapes, all relatively close to the coast, where there is less cloud
cover, the radar detection precedes the optical detection in approximately 10% of the cases by at least
two months and up to eight months.

In the presented examples (Figure 14a,b), the FAR is always very low. This result should be
interpreted as follows. FAR and MDR are dependent. The selected settings of the algorithm used for
this example favor a low FAR at the expense of a relatively high MDR. The results shown are at pixel
level, while the optical reference data, based on visual interpretation, are at segment level. Within the
segment a very small fraction of pixels may relate to small scale deforestation such as road development
prior to deforestation, or small remnant patches of trees after deforestation. These fractions cause small
FAR and MDR errors.

3.3. Results NRT Degradation Monitoring

3.3.1. Brazilian Study Site

Since the theoretical model introduced in Section 2.5 applies equally well for gaps of very short
canals, which resemble gaps caused by selective logging, it can be used to quantify degradation.
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When the right model parameters are applied and contrast is computed over a certain fixed area
(e.g., 10 × 10 pixels), then the averaged contrast can be related to the fraction of the forest canopy lost
resulting from degradation (e.g., Figure 10). A mapping example for an active section in a Brazilian
timber concession area is shown in Figure 17.

Figure 17. A section of a Sentinel-1 radar derived map showing deforestation at pixel level (red) and
quantitative degradation for 150 m × 150 m blocks in a timber concession area (demarcated with white
lines). Area: 4 × 5 km. Degradation classes expressed in canopy loss fraction: <20% (light green),
20–30% (yellow), 30–40% (tan), and >40% (pink). Almeirim, Brazil, February 2018.

Radar is a suitable instrument to quantify degradation. Unlike optical data, which detect
degradation mainly by the signal fraction from the bare soil, the radar detects degradation by signals
from gaps in the canopy, even when the understory still covers the soil. Therefore, the radar signal is
very persistent (gaps in the upper canopy do not fill up fast), while the optical signal is visible for a short
time window only (secondary regrowth on bare soil appears fast). The latter is even more troublesome
when cloud cover is frequent. This is illustrated well by the example given in Figure 18. Here, for a
selective logging concession area in Brazil a comparison is made between the Sentinel-1 radar and
Sentinel-2 optical results. The solid line shows the total forest canopy fraction loss for each radar
observation as a function of time. For optical data, such a result is not feasible because of cloud cover;
instead, the accumulated detections can be shown (dotted line with diamonds). This accumulated
result sums all detections, even when they are not visible anymore because of regrowth or cloud
cover. It can also be noted that in this period where 81 radar observations were made only 12 partly
cloud-free optical images (diamonds) are available (see Table 7). From the comparison, it is clear that
most degradation in the wet season (December–May) is not detected by the optical system. Obviously,
optical data have severe limitations to detect degradation and, thus, are less suitable for the validation
of radar degradation maps. An alternative is the use of high-resolution radar data, such as TerraSAR-X,
which are used to map selective logging at the level of individual canopy trees [20]. Results for the wet
season, in January–February 2018, show a clear correspondence in time and location of degradation.
The 85 trees logged in this period (mapped by TerraSAR-X) compare with an effective forest canopy
fraction loss of 4.5 ha (mapped by Sentinel-1). This would relate to an average loss of ±500 m2 per
logged canopy tree.
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(a)

(b)

Figure 18. (a) Results of degradation mapping for a selective logging timber concession in Almeirim,
Brazil. Total forest canopy fraction loss as a function of time for radar (solid line), which is the sum
of the fraction related to canopy gaps (triangles) and the fraction related to timber trails (plusses).
For optical data, the accumulated detections are shown (dotted line with diamonds). The symbols
indicate the time of observation (scaled between January 2017 and December 2020). (b) As Figure 18a,
for a timber concession in Central Kalimantan.
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Table 7. Overview Sentinel-1 NRT map series and Sentinel-2 and TerraSAR-X (3 m single-pol stripmap)
reference data series.

Series Number Period

Indonesia S1 88 20160104–20190804
Indonesia S2 29 20170119–20191110

Brazil S1 81 20170108–20191001
Brazil S2 12 20170616–20191024

Brazil TerraSAR-X 3 20171203–20180207

3.3.2. Indonesian Study Site

A second example is given for a timber concession located in Central Kalimantan on undulating
terrain (250–1100 m altitude). For this area Sentinel-1 degradation maps have been made from January
2016 onward. For Sentinel-2 29 partly clouded images are available since January 2017. These images
were used to delineate all disturbance through careful visual interpretation. Results (Figure 18b) are
shown in a similar way, as was done for the Brazilian site. The study area (shown in Figures 19 and 20)
is 8000 ha large. The radar shows that an equivalent area of approximately 400 ha is lost in the year
2016 and another 300 ha in 2017. The first Sentinel-2 image shows a loss of only ±80 ha. This is partly
explained by partial cloud cover; however, almost all of the 2016 losses detected by radar were not
detected, either, in the following 28 Sentinel-2 images. The accumulated losses visible in the optical
data increase until ±280 ha, while the instantaneous losses mapped by radar peaks at ±750 ha in
mid-2018, followed by a slight decrease, which may be attributed to regrowth.

The evaluation of the radar and optical maps shown in Figure 19a–e and the corresponding radar
images (Figure 20) of this area allows for a more detailed discussion. This is done for three moments in
time: one of the first radar degradation maps (August 2016: Figure 19a); the first optical reference map
and the associated radar degradation map (January 2017; Figure 19b,c); and the optical reference and
radar map around the end of the logging operation (December 2017; Figure 19d,e). The radar images
coincide with the August 2016 radar map (Figure 20a) and the December 2017 radar map (Figure 20b).
A visual comparison of these two radar images clearly shows a change in the road network but no
clear signs (i.e., backscatter level or textural change) of degradation. Nevertheless, degradation can
be mapped based on model-based calculations using the changes in the patterns that constitute the
texture (Figure 19a,c,e). In the first Sentinel-2 reference map (Figure 19b) the main road network is well
visible as well as some small canopy gaps. These gaps correspond almost completely with the area
of current activity, while most of the gaps visible in the August 2016 radar map, five months earlier,
are not visible. The December 2017 Sentinel-2 reference image shows the accumulated visibility of
roads and gaps. New roads and gaps show up at the same location as in the radar map. However,
in general, there are two qualitative differences. The first, as discussed above, radar detects more forest
loss related to gaps. Secondly, the radar maps show less roads than the optical reference image, for
which there are two causes. The first cause is that the radar maps only show change with respect to
the baseline. Therefore, existing and stable road gaps do not show up while in the optical reference
image they are still mapped. One clear example is the gap caused by a river visible in the upper left
corner of Figures 19d and 20. The second cause is the use of an MMU of 1 ha for mapping of clear-cut
in this forest type. Since narrow roads may break in multiple smaller segments, some smaller than
the MMU, these missed sections may be mapped as degradation instead. The same is true for wider
roads oriented in the radar range direction, as discussed in Section 3.1, which is visible, for example,
in the top-right of Figure 19d,e. It is noted that, for the calculation of the total equivalent area of forest
loss (as shown in Figure 18a,b), it does not matter whether a small narrow road section is classified as
deforestation or as degradation.
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gradation.

(a)

(b) (c)

gradation.

(d) (e)

Figure 19. (a) S1 degradation map 20160807. Detail of a timber concession area in Central Kalimantan.
Area: 7.3× 5.6 km. (Legend: see caption Figure 17). (b) S2 reference map 20170119 and (c) corresponding
S1 degradation map 20170122. In the S2 reference map, cloud cover in the last available image is shown
in gray, and the accumulated visibility of roads and gaps is shown in white. (d) S2 reference map
20171210 and (e) corresponding S1 degradation map 20171212.
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(a) (b)

Figure 20. (a) S1 radar image 20160807 and (b) S1 radar image 20171212. Same area as in Figure 19.
(Standard color scale: see caption Figure 2.)

4. Discussion

4.1. System and Disturbance Model

The Sentinel-1 NRT radar monitoring system is an automated system based on interferometric
preprocessing and time-series analysis of small image segments, linear features, and small-scale
disturbances. This results in a system that can accurately map different phenomena simultaneously,
such as deforestation (clear-cut and fire scars), degradation, selective logging impact, and new narrow
canals in peat swamp forest. Radar imaging of canal gaps and the canal-gap-detection mapping
results were shown to be in agreement with a physical-interaction model. Small gaps caused by
selective logging are too small to be detected individually; however, the same theoretical model
(that describes canal gaps) can be used to quantify the canopy disturbance in a statistical sense.
Therefore, change mapping is done in three fundamentally different ways. Deforestation is detected
by using segment-based time-series analysis and uses a decrease of backscatter as an indicator of
deforestation. Canal-gap detection is based on time-series analysis of linear features, using edge,
line, and matched filters. Degradation is quantified by using a time-series analysis of textural change
based on a physical model. These three approaches are not completely independent, not from a data
processing point-of-view, nor from a forest-change-interpretation point-of-view.

Several examples of interdependency can be given. For deforestation mapping in peat swamp
forests an MMU of 15 pixels (0.3 ha) applies. This means that wide canal gaps are often mapped as
(a row of individual) segments. The same canal gaps show up in the canal gap maps as linear features.
Of course, the dedicated canal gap product shows more canals, including some very narrow ones
which are hardly visible in SPOT-6/7 data. Very small deforestation segments or very short canal gap
detections are often part of degradation areas. At the Brazil test sites some areas of deforestation,
the ones that gradually change from forest to low secondary forest without going through a bare
soil stage, are not detected with the deforestation mapping approach. However, the near range
edges of such areas are still visible as elongated segments, and parts of these areas are detected as
degraded. Using such interdependencies explicitly may contribute to a better interpretation of ongoing
forest-change processes.

4.2. Deforestation

Deforestation detection success is evaluated by using results of a careful visual interpretation of
Sentinel-2 time-series as a reference. These results are independent of any issues related to baseline
class definitions and timing. In summary, for the Central Kalimantan landscapes, it is shown that the
false alarm rate (FAR) is very low (less than 1%) and the missed detection rate (MDR) varies between

146



Remote Sens. 2020, 12, 3263

18.6% ± 1.0% and 1.9% ± 1.1% (90% confidence level). However, results also depend on user settings.
FAR and MDR are interchangeable. Settings were selected to favor a low FAR at the expense of a slightly
higher MDR. Another compromise to be made is between overall accuracy and timeliness. In other
words, the faster the maps should be made available after radar observation, the lower the accuracy.
Settings were selected to favor a relatively fast system, which results in significant detection delays in
the map time-series. It was found that peatlands are a typical case where detection delays up to two
months occur which are caused by the combination of rough soil surface and high soil moisture. This is
causing the high MDR, but these missed detections are only temporary, not permanent. Other settings
could decrease such delays to a few weeks. These delays were not found outside the peat areas or in
the Amazon. Because of cloud cover, radar can be much faster than optical systems, but this cannot be
validated by optical systems. It was found that radar very often detects deforestation two months and
up to 10 months faster than optical systems.

4.3. Canal Gap Detection

Results of visual interpretation of SPOT-6/7 images were used as reference. The overall detection
rate is 85.5%; however, results strongly depend on canal gap orientation and, to a lesser extent, on canal
gap width. Only for the smallest width class (5–10 m range) or for orientations of more than 80 degrees
from azimuth direction, the accuracy drops below 50%. In total, 9.3 km of canal length was missed out
of a total 64.2 km. Sentinel-1 canal gap detections which were not present in the initial reference set
could be divided in two different categories. The first category consists of true canal gap segments
very poorly visible in the SPOT images. These canal gaps are often narrow and often show regrowth.
Once these canals are recognized in SPOT images, aided by the Sentinel-1 maps, additional visual
interpretation is possible. In this study, 7.3 km of additional canal gaps could be found in the SPOT
data. The second category consists of small canal gap segments in the NRT map which are not visible
in the SPOT images, even after careful re-evaluation. A part of these false alarms is persistent while
others disappear within two months. These persistent false-alarm detections, unlike the non-persistent
false-alarm detections, are not located at random, but are located near canals and rivers or forest edges.
These places are much more accessible and prone to illegal logging activities. Therefore, the false
alarm rate of 9.5%, after approximately two months, could be divided into a non-persistent false alarm
rate of 3.9% and a non-verifiable false alarm rate of 5.6%, which may relate to a large extent to true
disturbances, such as illegal logging.

4.4. Degradation

Like for deforestation, degradation detection success is evaluated using results of a careful visual
interpretation of Sentinel-2 time-series as a reference. Radar is a suitable instrument to quantify
degradation. Unlike optical data, which detect degradation mainly by the signal fraction from the
bare soil, the radar detects degradation by signals from gaps in the canopy, even when the understory
still covers the soil. Therefore, the radar signal is very persistent (gaps in the upper canopy do not fill
up fast), while the optical signal is visible for a short time window only (secondary regrowth on bare
soil appears fast). The latter is even more troublesome when cloud cover is frequent. Validation is
difficult using optical data since degradation is detected in a fundamentally different way and a lot
of degradation is missed. Nevertheless, results are spatiotemporally consistent. It may be much
better to use TerraSAR-X for validation of degradation, notably for quantitative validation. The result
presented here, for Brazil, is based on limited data only but provides high spatiotemporal, as well as
quantitative, agreement.

4.5. Comparison with Other Approaches Based on C-Band

Other existing methods based on C-band [43–46], which focus either on deforestation monitoring or
forest/non-forest mapping, can be compared with the deforestation results presented here. The method
for deforestation detection presented in Reference [43] provides a similar accuracy level, however,
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requires both ascending and descending data. These are not available for most tropical forests, nor
will they become available in the near future. The method for deforestation detection based on
interferometric coherency [46] is less accurate; however, it may provide useful additional information.
The results of forest/non-forest classification presented in Reference [44] also seem less accurate when
used for the purpose of deforestation monitoring. The comparison with other systems is difficult
because the system presented in this paper uses C-band for the monitoring part and a combination of
L-band, C-band, and optical data for the (baseline) classification part.

5. Conclusions

Like JJ-FAST, the automated Sentinel-1 system presented here can be used for wide-area NRT
forest-change monitoring. Results are available two days after satellite overpass, with higher spatial
and temporal resolution and a high accuracy for deforestation detection. Unlike JJ-FAST, it utilizes
multiple approaches for change detection, to allow monitoring of finer scaled features, such as narrow
linear elements (roads and canals) and low-intensity degradation (selective logging). However, these
refinements require the availability of a good forest baseline and system tuning to optimize it for local
conditions, as well as local user requirements. The Sentinel-1 system is not meant primarily as a single
system for pan-tropical coverage, but as a system to be operated and customized by local operators at
the national level.

Though C-band, in general, has a lower forest/non-forest contrast than L-band, the Sentinel-1
radar in IW mode provides a higher temporal and spatial resolution than the PALSAR-2 ScanSAR
mode, which makes Sentinel-1 equally suitable for the purpose of forest-change monitoring. One of
the novelties in this paper is the use of the Sentinel-1 phase information for very precise co-registration
(Section 2.3), which allows for the detection of subtle changes.

Though tested for large areas in Indonesia and the Amazon, the validation requires more efforts,
which should result in more refined local tuning. For example, a preliminary test for entire Borneo over
the entire period revealed that there are still some deforested areas which were not detected but would
have been detected with slightly different system settings. The quantitative estimation of degradation
is difficult to validate with optical data. More work is needed, using extensive field data as reference,
to calibrate the radar proxy for degradation and compare it with optical proxies.

Even though degradation information is still not yet properly calibrated and validated, several
interesting applications emerge. For example, the result in Figure 17 suggests that selective logging is
not too intensive and is absent in the protected buffer zones along the river. This information is already
helpful for planning field inspections in remote areas, certification, and transparency. Another example
is early warning. Low-impact changes, such as new narrow roads, degradation, and small clear-cut
areas in remote places are the first indications of potential future threats of forest-cover change.
This information is already successfully used as input for predictive modelling based on machine
learning by the World Wide Fund for Nature for the development of their Early Warning System (EWS)
to predict deforestation [29]. The data also support and could modernize conventional approaches
based on hi-res optical data, to get more information out of these data, such as discussed above for
the detection of narrow canal gaps in SPOT-6/7 data. Alternatively, hi-res optical data acquisition,
for example, after a long period of cloud cover, could be focused on areas where change actually has
occurred. The availability of free Sentinel-1 radar data with a systematic and complete coverage is a
great asset for future development of efficient wide-area forest-monitoring systems.
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Abstract: The increasing availability of dense time series of earth observation data has incited
a growing interest in time series analysis for vegetation monitoring and change detection.
Vegetation monitoring algorithms need to deal with several time series characteristics such as
seasonality, irregular sampling intervals, and signal artefacts. While common algorithms based on
deterministic harmonic regression models account for intra-annual seasonality, inter-annual variations
of the seasonal pattern related to shifts in vegetation phenology due to different temperature and
rainfall are usually not accounted for. We propose a transition to stochastic modelling and present
a near real-time change detection method that combines a structural time series model with the
Kalman filter. The model continuously adapts to new observations and allows to better separate
phenology-related deviations from vegetation anomalies or land cover changes. The method is tested
in a forest change detection application aiming at the assessment of damages caused by storm events
and insect calamities. Forest changes are detected based on the cumulative sum control chart (CUSUM)
which is used to decide if new observations deviate from model-based forecasts. The performance is
evaluated in two test sites, one in Malawi (dry tropical forest) and one in Austria (temperate deciduous,
coniferous and mixed forests) based on Sentinel-2 time series. Both forest areas are characterized by
a distinct, but temporally varying leaf-off season. The presented change detection method shows
overall accuracies above 99%, users’ accuracies of 76.8% to 88.6%, and producers’ accuracies of 68.2%
to 80.4% for the forest change stratum (minimum mapping unit: 0.1 ha). Results are based on visually
interpreted points derived by stratified random sampling. A further analysis revealed that increasing
the time series density by merging data from two Sentinel-2 orbits yields better forest change detection
accuracies in comparison to using data from one orbit only. The resulting increase in users’ accuracy
amounts to 7.6%. The presented method is capable of near real-time processing and could be used for
a variety of automated forest monitoring applications.

Keywords: state space models; forest disturbance mapping; near real-time monitoring; Sentinel-2;
CUSUM

1. Introduction

Current Earth observation (EO) missions employing optical sensors such as Sentinel-2 acquire a
vast volume of data: a new image every 5 days of almost every place on earth. By taking orbit overlaps
into account, the time between consecutive images of the same region is reduced even further and the
chance of acquiring cloud-free observations is further increased. Through high-quality georeferencing
and atmospheric correction of the satellite images, it is possible to create consistent time series of
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measured reflectance values for any given spectral band. The vast availability of high-resolution
optical data allows—for the first time—to also map small changes in near real-time. Here, “small”
may apply to both spatial extent as well as spectral change magnitude. However, dense time series of
high-resolution optical data have a number of characteristics that pose a challenge to change detection
applications. In addition to noise effects remaining after atmospheric correction and uncertainties in
the geometric registration, these challenging characteristics include:

• Seasonality: Recurring seasonal patterns can be attributed to plant phenology and/or varying
illumination conditions due to topography and solar angle. Considering that annual variations of
temperature and rainfall also affect phenology, the seasonal patterns can vary between years.

• Irregular sampling interval: Satellites with a regular nadir acquisition scheme usually have a
constant revisit cycle, for example, 5 days for the Sentinel-2A and B constellation. If images from
overlapping orbits are integrated, though, the sampling interval becomes irregular. Data gaps
due to masked clouds, cloud shadows, and snow also add to this irregularity.

• Presence of signal artefacts: Despite using state-of-the-art screening algorithms like Fmask [1],
un-masked clouds, cloud shadows, and snow-covered areas remain in the pre-processed imagery.
Corresponding observations have to be treated as invalid since the measured reflectance values
neither represent the undisturbed land cover state nor a persistent change of it.

Algorithms can be divided based on how they deal with the time series characteristics described
above. The different approaches used to handle these characteristics strongly affect the algorithms’
suitability for monitoring changes in near real-time. Approaches that do not account for seasonality
form a first group of algorithms. A review of change detection studies using Landsat time series
concludes that many older studies focused on mapping changes only at annual or biannual time scales
based on series of cloud-free composite images, which always represent the same season [2]. In this
context, both the Vegetation Change Tracker (VCT) [3] as well as the LandTrendr approach [4] represent
widely used algorithms, but they are not designed for near real-time mapping.

A second group of algorithms explicitly accounts for seasonality by using regression models
based on trigonometric functions to capture the intra-annual variations (variations within one year, i.e.,
seasonality) of the spectral signatures independently for each pixel. With this approach, also frequently
referred to as harmonic regression, periods of stable land cover are modelled as a deterministic,
continuous function of time. Irregular sampling intervals and data gaps are therefore not a problematic
issue, but the deterministic nature of the model does not allow inter-annual variations of the seasonal
pattern (variations between different years, e.g., shifts in seasonality). The seasonal model represents
an average of different conditions occurring within a stable period, e.g., dry and wet years, late and
early leave outbreak. A widely used algorithm belonging to this group is the Breaks for Additive
Season and Trend (BFAST) algorithm [5] and its evolution BFAST Monitor [6]. While the latter is
tailored to near real-time mapping of new changes, the original version is intended for the analysis of
historic time series. Both versions have been used in a variety of studies and can be applied to detect
both abrupt and gradual changes. Concerning the robustness of BFAST to invalid observations, it has
been stated that occasional signal artefacts are well handled, but temporally aggregated occurrences
such as several consecutively un-masked clouds can be a source of error [7]. Also, additional
pre-processing to eliminate artefacts was applied [8–10]. The second widely used implementation of
the harmonic regression approach is the Continuous Change Detection and Classification algorithm
(CCDC), where the original concept [11] is extended to include more types of land cover besides forest,
as well as a classification framework [12]. From the beginning, CCDC was designed to work with
dense Landsat time series and can handle seasonality, irregularly spaced observations, and signal
artefacts to some extent. Both abrupt and gradual changes can be detected. Some further updates to
the algorithm include (i) a mechanism to automatically adjust the complexity of the time series model
based on the number of available clear observations, as well as (ii) a different method to estimate the
model parameters which reduces overfitting [13]. A third algorithm employing harmonic regression
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utilizes residuals from the regression together with statistical quality control charts [14]. This approach
comprises signal artefact detection with Shewhart X-bar charts. After the elimination of artefacts,
both abrupt and gradual changes are indicated by exponentially weighted moving average (EWMA)
charts in a near real-time manner. All of the described algorithms of the second group share certain
basic concepts, but the individual implementations vary. They are designed to process large amounts
of data in a highly automated way and therefore rely on data-driven statistical boundaries for detecting
change, although the distinct nature and computation of these boundaries is quite different.

The third group of algorithms stands out by also taking inter-annual variations of the seasonal
pattern into account. Structural time series models are set up in terms of components, such as trends
and cycles, which have a direct interpretation. Their statistical treatment is based on the state space form
and the Kalman filter and first described for time series analysis in econometrics [15]. Compared to
the harmonic regression approach, the model is no longer deterministic. Kalman filtering denotes
a versatile parameter estimation technique which yields optimal estimates in a statistical sense [16].
It is well established in many application fields and has been applied to numerous signal tracking
problems [17]. The combination of structural time series models with the Kalman filter and the
concept’s suitability for remote sensing purposes has been investigated in a proof of concept study,
where Landsat time series are used to detect storm damages in a small forest test site in Germany [18].
The Kalman filter has also been applied to time series of MODIS 8-day composites in order to detect
insect-induced defoliation in near real-time at a forest test area in northern Sweden [19]. This study
makes use of the CUSUM control chart [20] to indicate changes, but it does not combine structural
time series models with the Kalman filter. Instead, the filter is used to derive a smoothed time series of
the Normalized Difference Vegetation Index (NDVI) based on a global model trajectory.

With the advantages and limitations of existing algorithms in mind, this work combines the
pixel-by-pixel modelling typical for existing harmonic regression algorithms with the Kalman filter’s
capability to dynamically adjust the model based on new observations. The main aim of this study is
to present an innovative change detection algorithm for optical EO data which is based on a structural
time series model and the Kalman filter. It is largely data-driven and designed especially for near
real-time mapping in web- or cloud-based monitoring services. The algorithm presented in this paper
accounts for seasonality and also allows inter-annual variations of the seasonal pattern, e.g., vegetation
phenology. Furthermore, strategies for handling irregular sampling intervals and signal artefacts
are presented. The algorithm is tested in a forest change detection application using time series of
Sentinel-2 data (S-2). Forest disturbances are detected at two complex forest test sites in Austria and
Malawi. The first test site is an alpine area in Austria characterized by frequent cloud cover, snow cover,
strong topographic effects, and pronounced forest seasonality and phenology. The second test site
is located in the dry tropical forests of Malawi, where forests show a strong and varying seasonality
between dry and rainy seasons. In the Malawi test site, we also analyze and compare accuracy results
for two different data scenarios: first, using S-2 images from only one orbit, and second, using all
available S-2 imagery from two orbits. The aim of this analysis is to investigate if different viewing
angle and inconsistent geo-location of the pixels resulting from the combination of two orbits decrease
the overall change detection accuracies despite the boosted time series density.

2. Materials and Methods

2.1. Test Sites, Data, and Pre-Processing

For the forest change detection demonstration, we selected two test sites, one in Austria and
one in Malawi. The location of the two sites is shown in Figure 1. The Austrian test site is located
in the south-eastern part of the country. The test site is characterized by strong topography in the
northern part (Alpine area), where coniferous forests dominate. The southern part of the test site is
located in the foothills of the Alps with moderate topography and the forests are predominantly mixed
forests composed of coniferous and deciduous trees. The annual temperature amplitude in the Alpine
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area is stronger than in the foothills; however, the Alpine coniferous forests have less pronounced
phenological dynamics in comparison to the mixed and deciduous forests that dominate in the foothills.
The eastern half of the study area is covered by two orbits, and the western half only by one orbit
(see Figure 1). This is a typical data scenario encountered in practical applications.

Figure 1. Location of the test sites.

The Malawi test site is characterized by flat to slightly hilly topography. The land cover is very
heterogeneous and is subject to a precipitation gradient from east to west. As a result, the area is
characterized by a vegetation phenology gradient from east to west. The forested areas differ in
tree-cover density and tree-type composition and therefore, show very different spectral behavior.
Dry tropical forests and the surrounding land use classes are more difficult to classify and monitor
than humid evergreen forests, as they show a typical phenological development from highly vital in
the rainy season to dry and leafless in the dry season [21]. Understory and grassland fires beneath the
forest canopy can further complicate forest classification. Two S-2 orbits (relative orbits 92 and 135)
cover the Malawi study area. The size of the test site was clipped to the overlap area of two orbits to
investigate the effect of separately processing data from one and two orbits.

Both test sites are located in areas that show distinct seasonal patterns due to phenology. Austria has
the typical European summer growing season with leaf-off time in winter for deciduous species due to
low temperatures. The forests of Malawi also show strong phenological variation as water scarcity
during the dry season (typically May–October) causes leaf-fall. The typical temporal NDVI signatures
of different forest types are shown in Figure 2. Each time series represents two years of NDVI
observations for a single pixel corresponding to a specific forest type and test site. In all cases, data from
two orbits is used and cloud/snow masking has been applied as described below. Aside from the
different seasonal patterns, several other characteristic properties of the data can be observed:
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• The time series density achieved with the Sentinel-2 constellation and overlapping orbits has a
high potential for near real-time monitoring applications.

• Larger data gaps occur during winter (snow cover in Austria) or the rainy season (frequent cloud
cover in Malawi).

• The illustration also gives an impression of the smoothness of the time series. Significant short-term
variance of consecutive observations caused by limited multi-temporal geometric registration
accuracy [22], different viewing angles, and remaining atmospheric effects has to be expected.

Figure 2. Typical temporal NDVI (Normalized Difference Vegetation Index) signatures over two years
for single pixels corresponding to specific forest types and test sites. Larger data gaps occur in the
winter months due to snow cover in Austria (AUT) or the rainy season in Malawi (MWI). Outside of
these periods, the observation density is high enough to capture the seasonal patterns.

The current data quality report issued by the Sentinel-2 Mission Performance Centre (S2 MPC)
gives statistics for the multi-temporal geometric registration performance [22]. For about half of the
images, the co-registration error is larger than 0.5 pixels at 10 m resolution. Within homogenous
land-cover areas, this can be treated as an additional noise component. The high geometric uncertainty
becomes a larger problem at the border regions between land-cover classes, especially if a given pixel
jumps between forested and non-forested states.

All available Sentinel-2 scenes with a nominal cloud cover below 90% were downloaded for the
test sites (Table 1) at Level-1C and atmospherically corrected to surface reflectance (SR) values using the
Sen2Cor processor version 2.5.5 [23]. We then resample the 20 m bands to 10 m spatial resolution and
stack all bands to a 10-band output image. We calculate a combined cloud, cloud shadow, and snow
mask with the FMask algorithm [24,25]. This mask is slightly altered by morphological operations
(erode, expand) to fill cloud holes and the masked pixels are then removed from the pre-processed S-2
imagery by assigning no-data values to them. We also perform a topographic correction based on a
modified Minnaert correction [26] using the Shuttle Radar Topography Mission (SRTM) model at 30 m
spatial resolution as digital elevation model (DEM).

Table 1. Earth ObservationData Information.

Test Site Tile ID No. of Images Used
Time Windows

Initialization Change Detection

Malawi—one orbit
(R135) 36LWM 86 2016–2018 2019

Malawi—two orbits
(R135 and R092) 36LWM 134 2016–2018 2019

Austria—two orbits
(R122 and R079) 33TWN 160 2016–2018 2019
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2.2. Change Detection Method Using a Structural Time Series Model and the Kalman Filter

The underlying assumption of the monitoring approach presented in this section is that the normal
temporal trajectory of a given spectral band over the course of the year can be captured by a univariate
structural time series model. Within the structural model, we can further distinguish between an
observation sub-model and a dynamic sub-model. The observation sub-model on the one hand defines
the relationship of the measurements to a set of state variables which cannot be observed directly. In a
structural time series model, the state variables usually represent the series’ additive decomposition
into trend, seasonal, and long-term cyclical components. The dynamic sub-model on the other hand
describes the expected temporal evolution of the state variables. By formulating the dynamic sub-model
in continuous time, the problem of irregular sampling intervals is addressed. The Kalman filter is used
to fit the model to the data and operates recursively from one point in time to the next. Each recursion
may be divided into two steps. In the time-update step, the states’ temporal evolution is predicted
based on the dynamic sub-model. It is followed by the measurement update step, where the predicted
state estimate is enhanced by incorporating newly available observations. Abrupt changes of the
spectral signature, possibly linked to a forest disturbance, are indicated by statistically significant
deviations between new observations and the Kalman filter predictions. The recursive operation of the
filter further implies that prior knowledge about the initial state is required. Because the ability to
distinguish anomalies from normal seasonal changes depends on the quality of the state estimates,
a proper initialization is of high importance. Therefore, a robust least squares method is used to
estimate the initial state from a historic time series covering at least one full year prior to the beginning
of the monitoring period (see initialization time window in Table 1). The following sub-sections
describe the implementation in more detail.

2.2.1. Time Series Model

Structural time series models are mathematically formulated using the discrete-time state space
representation [15]. This concept assumes that a linear, time-variant system can be described by a
set of state variables. Because these variables can usually not be observed directly, an observation
sub-model linking the system state to a set of measurements is required. In case of univariate time
series, the measurement equation is

zk = hkxk + rk, (1)

where hk is a row vector, xk denotes the state vector, and zk is a scalar observation made at time tk.
In addition, rk represents serially uncorrelated observation noise with mean zero and variance Rk.
We will refer to discrete points in time as epochs and define an epoch index k ∈ N to indicate a possible
time-dependency of variables. The temporal evolution of the state vector is described by a dynamic
sub-model using the transition equation:

xk = Φkxk−1 + qk, (2)

where Φk denotes the transition matrix and qk is a vector of serially uncorrelated process noise with
mean zero and covariance matrix Qk. Note that no assumptions regarding the distributions of the
observation and process noises are made at this point, but they are supposed to be uncorrelated
with each other in all epochs. It is further assumed that the initial state x0 is known with a level of
uncertainty characterized by the state error covariance matrix P0.

The structural time series model implemented in this study enables a decomposition of the time
series into additive trend, seasonal, and irregular components. We assume a constant trend and
directly introduce the state variable μk, which represents the trend level at time tk. The seasonal
component on the other hand is constructed by a sum of P-periodic cosine waves, with P denoting the
fundamental duration of the seasonal cycle. Considering the nature of the time series investigated
here, it is appropriate to measure time in days and thus set P to 365.25. For each cosine wave added to

158



Remote Sens. 2020, 12, 3135

the seasonal component, two more variables are appended to the state vector. Taking a wave with
frequency ωi, the state variable γi,k representing the cosine waves’ level at time tk is added along
with the variable γ∗i,k, whose interpretation is not particularly important. The structural model for the
Malawi test site features a seasonal component with frequencies corresponding to one and two periods
per year. In case of the Austrian test site, we use just the fundamental frequency because of the less
complex seasonal pattern. The measurement Equation (1) of the Malawi model becomes

zk = [ 1 1 0 1 0 ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
μ
γ1

γ∗1
γ2

γ∗2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
k

+ rk (3)

Note that zk represents the observed reflectance value at time tk and h is time-invariant. Using Δtk =

tk− tk−1 measured in days andωi = 2πi/365.25, the transition Equation (2) of the Malawi model becomes⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
μ
γ1

γ∗1
γ2

γ∗2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
k

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0
0 cos (ω1Δtk) sin (ω1Δtk) 0 0
0 − sin (ω1Δtk) cos (ω1Δtk) 0 0
0 0 0 cos (ω2Δtk) sin (ω2Δtk)

0 0 0 − sin (ω2Δtk) cos (ω2Δtk)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
μ
γ1

γ∗1
γ2

γ∗2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
k−1

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qμ
qγ1

qγ∗1
qγ2

qγ∗2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
k

(4)

In order to fully specify the state space model, two more quantities need to be defined: Rk and
Qk. The first one will be addressed in the next sub-section. The covariance matrix Qk quantifies the
uncertainties within the dynamic sub-model and is defined depending on the nature of the process
noise. Here, we assume that the state transition is affected by multivariate, continuous time white noise
with constant variances Qc independently specified for the trend and seasonal component, that is:

Qk = Δtk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Qtrend

c 0 0 0 0
0 Qseas

c 0 0 0
0 0 Qseas

c 0 0
0 0 0 Qseas

c 0
0 0 0 0 Qseas

c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

Note that all off-diagonal elements of Qk equal zero and we therefore assume that the different
process noise components are uncorrelated. Implementing the dynamic model in continuous time
means that the time series model is specified for arbitrary values of Δtk and irregular sampling intervals
do not pose a problem. Finding appropriate values for Qc is one of the difficulties. Our experiments
showed that setting individual values for each pixel and band proportional to the respective observation
variance R works quite well. Since R is estimated from the data (see the next sub-section), the user
has to specify two proportionality factors, one for the trend component and one for the seasonal
component. We recommend to let Qseas

c be larger than Qtrend
c in order to make the time series model

more responsive to phenological variations.
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2.2.2. Initial State Estimation

In order to obtain estimates of the initial state vector x0, its associated covariance matrix P0, and the
observation variance R, the state space model outlined above is transformed to a linear regression
model with the measurement equation:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2
...

zm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hΦ(t1, t0)

hΦ(t2, t0)
...

hΦ(tm, t0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦x0 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
r1

r2
...

rm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

Equation (6) also illustrates the key difference between a structural time series model and a
regression model. The latter does not distinguish between observation sub-model and dynamic sub-
model and has no notion of process noise. Standard least squares methods may be used to obtain
estimates of x0 and P0 from a batch of m historic observations acquired before the monitoring period.
We applied a robust parameter estimation approach known as iteratively reweighted least squares
(IRLS). The technique belongs to the class of M-estimators [27] and the implementation follows [28].
We further use the mean squared error of the weighted least squares fit as an estimate for the observation
variance R. If the number of valid historic observations is low, for example in areas with extremely high
cloud probability, the observation variance can be severely underestimated. Existing studies applying
harmonic regression also report this issue and we take up the suggestion to define a certain minimum
value for R that is used if the estimate is lower [12,29].

2.2.3. Kalman Filter

Once the time series model and the initial values x0 and P0 are defined, the discrete-time Kalman
filter recursion can be used to obtain estimates for the state and its error covariance matrix in subsequent

epochs. The time update step yields the predicted (a-priori) estimates
~
xk and

~
Pk based on the dynamic

model and the previous estimates at time tk − 1:

~
xk = Φk

^
xk−1 (7)

~
Pk = Φk

^
Pk−1ΦT

k + Qk (8)

Then, the a-priori measurement residual yk and its variance Ck is computed according to
Equations (9) and (10). The residual represents the difference of the prediction to the actual measurement
and is referred to as innovation, since it contains new information currently not present in the predicted
state [17].

yk = zk − h
~
xk (9)

Ck = h
~
PkhT + R (10)

In the measurement update step of each recursion, new information is merged with the predictions

to obtain improved (a-posteriori) estimates
^
xk and

^
Pk. The Kalman gain kk (11) determines how much

the newly acquired measurement will influence the a-posteriori estimates of the state and its error
covariance and appears in both update Equations (12) and (13), where I represents an identity matrix.

kk =
~
PkhTC−1

k (11)

^
xk =

~
xk + kkyk (12)

^
Pk = (I− kkhk)

~
Pk (13)
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2.2.4. Signal Artefact Handling and Change Detection

When the sequence of measurements processed by the filter may contain artefacts, an additional
anomaly detection step should be included before the measurement update. The properties of
the innovations can be exploited to detect anomalous measurements by means of a statistical test.
Provided that the underlying model assumptions are valid, and the observation noise is Gaussian,
the innovations should be normally distributed with mean zero and variance Ck. The test statistic T̂k
given in (14) follows the χ2-distribution with a single degree of freedom. The hypotheses to be tested
on a significance level α are stated in (15) and (16), respectively:

T̂k =
y2

k
Ck

, T̂k ∼ χ2 (14)

H0 : yk = 0 if T̂k ≤ χ2
1, 1−α (15)

H1 : yk � 0 otherwise (16)

Considering that anomalous observations will cause large innovations, the null hypothesis
will be rejected. In that case, the measurement update is not carried out so that the state estimate
remains unbiased.

The change detection part of the algorithm is based on the cumulative sum control chart
(or CUSUM) [20]. The key quantity here is again the sequence of filter innovations, which should
have zero mean if the Kalman filter model assumptions reflect the truth closely enough. We use the
CUSUM control chart to monitor if the innovations deviate from mean zero. Of course, the presence
of artefacts like un-masked clouds presents a problem in this regard, because a single innovation
corresponding to an artefact may shift the mean significantly and hence trigger a (inaccurate) change
signal. The previously described anomaly test cannot distinguish between an artefact and an abrupt
land cover change. To work around this limitation, a new quantity we call edited innovation y̌k is
introduced. It represents the original innovation divided by its standard deviation, but also limited in
magnitude based on the significance level α specified for the anomaly test, that is:

y̌k =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min

(
yk√
Ck

,
√
χ2

1,1−α

)
if yk ≥ 0

max
(

yk√
Ck

,−
√
χ2

1,1−α

)
if yk < 0

. (17)

Dividing by the standard deviation means that sequences of edited innovations should be close to
having unit variance across different bands and pixels. The limit operation on the other hand ensures
that the CUSUM control chart with y̌k as input is less sensitive to single statistical outliers. A temporal
aggregation of edited innovations with the same sign is required to shift the mean of the sequence
significantly. The CUSUM test statistic for a positive mean shift with respect to spectral band i is
implemented as:

S+
i (0) = 0

S+
i (k) = max(0, S+

i (k− 1) + y̌i(k) − d)
(18)

where d is a drift parameter which generally compensates small deviations and also ensures that effects
of occasional signal artefacts on the test statistic fade away over time. A mean shift is signaled if
the test statistic crosses a predefined threshold. Instead of evaluating all processed bands separately,
we decided to aggregate the test statistics of several bands by simple summation and then use a global
threshold. We look for anomalous reflectance increases in the red, red edge, and short wave infrared
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(SWIR) bands, as these have proven to be sensitive to vegetation changes [30]. The implemented
criterion for detecting a forest disturbance at time tk is given in Equation (19) using S-2 band numbers.∑

i

S+
i (k) > change threshold where i ∈ {B04, B05, B11, B12} (19)

Both the change threshold in (19) and the drift parameter in (18) are user-defined tuning parameters.
Appropriate values need to be determined empirically. Because of the limit operation described
by (17), the maximum of a single edited innovation is a known constant and amounts to ~2.57 if
α = 1%. This knowledge provides a helpful yardstick for setting both threshold and drift parameters.
The statistical normalization applied to the edited innovations means that the same values can be
used globally for all pixels. The flowchart depicted in Figure 3 illustrates how the methods discussed
in the preceding sections are joined together in order to create a data-driven algorithm capable of
detecting abrupt changes on the pixel level. A summary and some additional explanatory comments
are given below.

Figure 3. Flow chart of the Kalman filter approach.
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1. The initial state as well as the observation noise are estimated on the pixel level using the
iteratively reweighted least squares (IRLS) method. Therefore, the user has to supply a stack of
historic images as a training dataset. At least one year of observations is required, but, especially
for models using two seasonal frequencies, we recommend two or three years to ensure a stable
initial model.

2. New images acquired in the monitoring period are processed one-at-a-time in a Kalman filter
loop. A hypothesis test is used to identify anomalous observations showing significant deviations
to the prediction.

3. Whenever an observation is marked as anomalous, the measurement update step is bypassed in
order to avoid adverse influence of signal artefacts on the state estimates.

4. Spectral bands are processed in parallel and the aggregated CUSUM test statistic used for change
detection is evaluated after processing each new image.

Figure 4 visualizes the method for a forest change pixel (10 by 10 m) in a deciduous forest in the
Austrian test site. The first four sub-plots show the surface reflectance of Sentinel-2 bands 4 (red), 5 (red
edge), 11 (SWIR1), and 12 (SWIR2) over time. The sub-plot at the bottom shows the value of the CUSUM
test statistic defined in Section 2.2.4 over time. A phenological cycle that is typical for deciduous tree
species can be observed. Higher reflectance values correspond to the leaf-off season during winter.
The red line represents the Kalman fit and the grey area corresponds to the 90% confidence interval of
the model forecast. While blue observations are considered in the model and measurement update step
(compare Figure 3), the orange observations are flagged as anomalous and therefore ignored during
the measurement update step. Please note that the level of significance for the anomaly test is α = 1%,
hence blue observations may also appear outside of the plotted confidence interval. Occasional positive
anomalies will cause a short-lived increase of the related CUSUM, but in most cases, it should not
exceed the threshold (e.g., middle of 2016 or end of 2017 in Figure 4). Such anomalies occur if for
example small cloud artefacts remain in the pre-processed data. A prolonged increase of the CUSUM
is triggered by a persistent signal shift. At some point, the threshold is exceeded, and the pixel is
flagged as changed, in this case, at the end of 2018. The vertical dashed line in Figure 4 marks the
date on which the change is visible for the first time in the S-2 imagery. Note that anomalies with
significant magnitude are first detected only in the SWIR bands, while the signal shift in the red and
red edge band initially occurs within the 90% confidence interval; however, the aggregated CUSUM
test statistic allows a timely detection of the change. After a threshold crossing, the test statistic is
reset to zero. Repeated change alerts, as shown in this example, may thus occur. This could be used
to increase the confidence about a detected change at the cost of delaying the detection; however,
this aspect has not been investigated in detail in this work. For the resulting forest change maps at the
two test sites, we first include all Sentinel-2 single pixel changes (10 by 10 m) that were detected by
the described approach within the change detection time window. For the final forest change maps,
a minimum mapping unit of 0.1 ha is applied to the forest change stratum, which relates to change
areas represented by at least ten connected 10 m pixels. Detected forest change areas smaller than
10 pixels are removed from the final forest change maps.
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Figure 4. Example of the time series model for a deciduous forest pixel at the Austrian test site, where a
forest change occurred at the end of 2018. The plots show the surface reflectance of Sentinel-2 bands 4,
5, 11, and 12. The vertical dashed line marks the date on which the change is visible for the first time in
the S-2 image time series. The plot at the bottom shows the cumulative sum control chart (CUSUM)
used for detecting the change event (coordinates: X 559045 m, Y 5235095 m, in EPSG 32633).
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2.3. Evaluation Method

In order to test the operational application of the presented forest change detection method, a full
area-based validation of the resulting change maps is performed in both test sites based on stratified
random sampling points that are located within forest areas outlined by benchmark forest masks
(status 2016 for Malawi and summer 2018 for Austria). The overall number of samples and samples
per stratum are based on recommendations for land cover accuracy estimation [31,32]. Points that
were found to be already deforested before the beginning of the change detection time window were
excluded from the analysis since these cases correspond to errors of the initial forest masks.

For Malawi, 849 reference sample points are used for statistical analysis, with 735 sample points
belonging to stratum forest and 114 sample points belonging to stratum change. During blind
interpretation, we flagged all sample points that were located at or very close (~10 m) to the border
of a forest change patch. This allows us to treat these points as correctly classified in a subsequent
plausibility analysis. This approach is usually termed “plausibility analysis”, because it is deemed
plausible that the border point can also belong to the other stratum. This is especially true for
the small-scale 10 by 10 m change assessment we use in this study considering that some of the
spectral bands of Sentinel-2 used to derive the changes only have a nominal spatial resolution of 20 m.
For Malawi, assessments are based on the following validation approaches and input data options:

• Blind versus plausibility validation approach.
• Input data from only one orbit versus combined input data from two orbits.

The plausibility analysis is only performed for the two-orbit input data. Thus, the comparison of
the two input data options in Malawi is based only on the blind assessment approach.

For Austria, we interpreted a total of 1585 reference points, of which 21 points were removed as
they were found to be non-forest already before the beginning of the change detection window. From the
remaining 1564 points, 1212 belong to stratum forest and 352 to stratum change. The plausibility
approach was carried out in the same manner as in Malawi. Please note that the Austrian test site
is only partly covered by two orbits, which is a typical data scenario when working with Sentinel-2
data. Combined input data from two orbits is used where possible. For all assessments, we provide
unbiased estimates of the mapped area proportions as well as the products’, users’, and producers’
accuracies by applying Equations (1) and (6)–(8) from Reference [31].

3. Results

Table 2 gives a summary of key validation results for both test sites, different assessment
approaches, and input data scenarios. The detailed results of the forest disturbance detection are shown
in Tables 3–7, where the upper part presents the sample counts and the lower part presents the unbiased
estimates of area proportion and accuracy measures. Overall accuracies are very high (96.4–99.3%).
This is not surprising since the unchanged forest class accounts for 98.7% of the validation area at the
Malawi test site and for 98.6% at the Austrian test site. It is also evidence for a low rate of false-positive
change detections. For better comparison, Table 2 also lists the users’ accuracies and producers’
accuracies of the different validation approaches for the change class. The plausibility analysis increases
the users’ accuracy of the change class by 17.5% in Malawi and by 4.1% in Austria. Producers’ accuracies
show a strong increase of 31.1% in Malawi and 29.1% in Austria. Overall accuracies after plausibility
analysis reach 99.3% at both test sites. Results show that combining data from two orbits leads to an
increase in users’ accuracy of 7.6% (Malawi—blind validation approach) compared to using data from
only one orbit, while producers’ accuracies remain the same. The detailed accuracy metrics for Malawi
are shown in Tables 3–5, and for Austria, they are listed in Tables 6 and 7. For comparison between
one and two orbits, please compare Tables 3 and 4. For comparison of blind and plausibility results,
please compare Tables 4 and 5 for Malawi and Tables 6 and 7 for Austria.
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Table 2. Summary of the accuracy measures for the forest change maps at both test sites for different
assessment approaches (blind interpretation and plausibility analysis).

Country Validation Approach
Change Class

Overall
Users Producers

Malawi Blind—1 orbit 63.5% 37.2% 96.4%
Malawi Blind—2 orbits 71.1% 37.1% 98.0%
Malawi Plausibility—2 orbits 88.6% 68.2% 99.3%
Austria Blind—2 orbits 72.7% 51.5% 98.6%
Austria Plausibility—2 orbits 76.8% 80.4% 99.3%

Table 3. Error matrix for Malawi, blind approach—1 orbit.

Reference Ai (ha) Users Producers Overall
Forest Change Total

Map Forest 714 20 734 55,258
Change 42 73 115 1407

Total 756 93 849 56,665

Forest 0.949 0.027 0.975 54,266 97.3 ± 1.2% 99.1 ± 0.2%
Change 0.009 0.016 0.025 2399 63.5 ± 8.8% 37.2 ± 10.7%

Total 0.958 0.043 1.000 56,665 96.4 ± 1.2%

Confidence interval of accuracy measures: 95%.

Table 4. Error matrix for Malawi, blind approach—2 orbits.

Reference Ai (ha) Users Producers Overall
Forest Change Total

Map Forest 723 12 735 55,909
Change 33 81 114 756

Total 756 93 849 56,665

Forest 0.971 0.016 0.987 55,215 98.4 ± 0.9% 99.6 ± 0.1%
Change 0.004 0.009 0.013 1450 71.1 ± 8.4% 37.1 ± 13.4%

Total 0.974 0.026 1.000 56,665 98.0 ± 0.9%

Confidence interval of accuracy measures: 95%.

Table 5. Error matrix for Malawi, plausibility approach—2 orbits.

Reference Ai (ha) Users Producers Overall
Forest Change Total

Map Forest 731 4 734 55,909
Change 13 101 115 756

Total 744 105 849 56,665

Forest 0.981 0.005 0.987 55,691 99.5 ± 0.5% 99.9 ± 0.1%
Change 0.002 0.012 0.013 974 88.6 ± 5.9% 68.2 ± 21.0%

Total 0.983 0.017 1.000 56,665 99.3 ± 0.5%

Confidence interval of accuracy measures: 95%.

166



Remote Sens. 2020, 12, 3135

Table 6. Error matrix for Austria, blind approach.

Reference Ai (ha) Users Producers Overall
Forest Change Total

Map Forest 1084 11 1095 426,192
Change 128 341 469 6253

Total 1212 352 1564 432,445

Forest 0.976 0.010 0.986 423,617 99.0 ± 0.6% 99.6 ± 0.1%
Change 0.004 0.010 0.014 8828 72.7 ± 4.0% 51.5 ± 14.8%

Total 0.980 0.020 1.000 432,445 98.6 ± 0.6%

Confidence interval of accuracy measures: 95%.

Table 7. Error matrix for Austria, plausibility approach.

Reference Ai (ha) Users Producers Overall
Forest Change Total

Map Forest 1092 3 1095 426,192
Change 109 360 469 6253

Total 1201 363 1564 432,445

Forest 0.983 0.003 0.986 426,478 99.7 ± 0.3% 99.6 ± 0.1%
Change 0.003 0.011 0.014 5967 76.8 ± 3.8% 80.4 ± 17.8%

Total 0.986 0.014 1.000 432,445 99.3 ± 0.3%

Confidence interval of accuracy measures: 95%.

Figure 5 shows some mapping examples of windthrow detection for the Austrian test site.
The series of S-2 images illustrates the development of forest disturbances occurring at an alpine subset
of the test site that was affected by windthrow late in the year 2018 (storm Vaia on 29/30 October
2018). Please note that the depicted sequence does not represent all available imagery, but a selection
of cloud-free images of the area of interest. The first image (top left) shows the undisturbed state
two weeks before the storm event. A large windthrow area can be identified in the second image
(top middle; surrounding the red circle). Forest change detection is complicated by the fact that the
timing of the storm exactly coincides with leaf discoloring and leaf-fall for the broadleaf trees at the
site and by subsequent bad weather conditions also leading to snow cover. Remaining snow (blueish
colored areas) can still be seen in early April 2019 (top right image). Harvesting of damaged forest
areas leads to a continuous increase in deforested areas in the subsequent images. Typically, also areas
adjacent to completely thrown forest areas are affected to some degree by wind damage, e.g., single tree
throws or broken stems. In Austria, all storm damage affected areas are usually harvested directly
after the storm event to prevent bark beetles from spreading. The last image in the series shows which
pixels are flagged as changed by the algorithm and in which month the changes were detected. Due to
frequent cloud and snow cover at the site from mid-November 2018 to April 2019, only few pixels
were detected as changed shortly after the storm as only two usable post-storm observations were
available until the end of 2018. Many detections are thus delayed until early spring 2019, when the
time series of snow-free Sentinel-2 imagery continues and when the damaged forest areas are being
cleared (removal of damaged and broken trees). This example shows both the capabilities, but also the
limitations of the method when used in near real-time forest change mapping scenarios for Central
European/Alpine forests.
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Figure 5. Examples of near real-time forest change detection in Austria. Storm “Vaia” windthrows on
29/30 October 2018 at an alpine forest site in Styria (~1400 m above sea level).

The software needed to create the presented mapping example and time series plots has been
implemented in Python. This Python implementation is capable of processing smaller test sites (up to
10 MP) for development and demonstration purposes in reasonable time. For large-area processing,
a performance-optimized C/C++ implementation is also available. However, both versions rely on
certain in-house modules and libraries which are subject to licensing restrictions.

4. Discussion

When comparing our results to those of other studies on near real-time forest change detection,
similarly high overall accuracy values can be observed. This is to be expected for a land cover class
and test sites that are characterized by a large proportion of unchanged areas. In this case, users’ and
producers’ accuracies of the change class are much better measures to determine the suitability and
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practical implementation potential of a monitoring approach. Many recent near real-time forest change
monitoring approaches detect and evaluate changes at a minimum mapping unit (MMU) of at least one
Landsat 8 pixel (~0.1 ha) as most related studies are still primarily based on Landsat 8 imagery with a
lower spatial resolution than Sentinel-2 [29,33–35]. For better comparability, we have also applied a
0.1 ha MMU for the change class, but our change polygons can be of any shape representing at least
ten connected Sentinel-2 change pixels.

There are a number of near real-time forest change studies and algorithms that provide accuracy
statistics similar to those presented here. The near real-time humid tropical forest monitoring approach
of Global Forest Watch was evaluated at national scale in Peru with a reported producer’s accuracy
of 75.4% and a user’s accuracy of 92.2% [33]. However, a direct comparison of results is difficult,
since 63% of the detected forest changes in this study were at least one hectare in size, while only
4% were the size of one single Landsat pixel (~0.1 ha). In our test sites, the vast majority of change
polygons is smaller than 0.5 ha. Another change detection approach has recently been developed and
tested for seasonal tropical forests in Myanmar. It uses a harmonic regression model to account for
seasonality and a set of time series disturbance probabilities to detect forest changes [35]. The authors
report overall disturbance detection accuracies of 78.3% for Landsat 8 data and 83.6% for Landsat 8
data combined with Sentinel-1 data. The reported users’ accuracy for the disturbance class at the single
Landsat 8 pixel level (~0.1 ha) is 84.1% and producers’ accuracy is 78.6%, but disturbance detections
are significantly delayed by 65 days on average. Very high users’ and producers’ accuracies of 88%
and 89% were also reported for a forest change detection approach that combines Landsat 8, Sentinel-1,
and ALOS-2 PALSAR-2 data at a dry tropical forest site in Bolivia characterized by distinct dry and wet
seasons [34]. Instead of adapting the time series model in near real-time to the observed phenology,
the authors apply a-priori spatial normalization to reduce the dry forest seasonality in the time series
and then apply the change detection analysis on the normalized data [10]. The method is reported
to perform well for extreme events, but we would expect that such a combined normalization and
change detection approach could fail in years that behave significantly different from the average, e.g.,
years with extreme dryness (deviation in magnitude) or a very late start (deviation in time) of the
wet season.

Our approach to use the Kalman filter is quite different in that it continuously accounts for
inter-annual phenology variations and updates the time series model. The method proved to work
properly at both test sites even for cases where the phenology curve significantly differs between years.
Figure 6 shows three false-color Sentinel-2 images (band combination B11, B04, B03) of an unchanged
forest area at the Malawi test site from three consecutive years, acquired almost on the same day of
each year (mid-August). Significant differences in the phenological state can be observed both in the
images as well as in the corresponding time series plot below (Figure 6). The time series plot shows the
Sentinel-2 red band surface reflectance for a pixel at the center of the red circle in the images. Each year
shows time periods with strong deviations from the average IRLS fit over all years. Year 2016 shows an
early and stronger than average dry season, while the observations of year 2018 indicate a pronounced
prolongation of the spring rainy season and thus late start of the dry season. The observed reflectances
for August 2016 and August 2018 deviate by more than 7% of total surface reflectance. A widely used
deterministic modelling approach based on harmonic regression (see IRLS fit represented by the green
line in Figure 6) results in large and prolonged deviations between observations and the model curve
which is disadvantageous for change detection. The Kalman filter is able to track the differences in
plant vitality much better. In the given example, only one single observation in December 2018 was
flagged as anomalous.
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Figure 6. The illustration shows 3 false-color images (B11, B04, B03) acquired in three consecutive years
in Malawi, almost on the same day (gray dashed lines). The upper time series plot shows the red band
surface reflectance for a single pixel located in the center of the red circle together with a harmonic
regression fit (IRLS—iteratively reweighted least squares) and the Kalman filtered trajectory. The lower
plot shows the trend and seasonal components separately.

This seasonal phenological effect is further illustrated in Figure 7, which compares the residuals
of the IRLS fit shown in Figure 6 with the corresponding Kalman filter innovations. The IRLS residuals
show a much larger degree of unwanted systematic patterns left in the sequence, which is apparent
when comparing the moving mean of the last 15 observations (dashed orange line in Figure 7).
These systematic patterns represent the difference in phenology (both in time and magnitude) from the
“average” fit. In combination with the CUSUM test, these systematic deviations of the IRLS fit would
result in a larger amount of erroneous forest change detections. In case of the Kalman filter innovations,
remaining non-random patterns appear when the model receives adjustments to the current phenology
(especially the second half of 2018 in Figure 7). However, the drift parameter in Equation (18) avoids
that small and short-lived deviations from the zero mean assumption accumulate to a change signal.
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Figure 7. The residuals of the regression fit (IRLS) and the corresponding Kalman filter innovations for
the same plot as in Figure 6. The orange dashed line represents the moving mean based on the last
15 observations.

We could show that the combination of Kalman filter innovations and the CUSUM test is suitable
for rapid near real-time detection of abrupt forest changes as shown in Figure 4. With the CUSUM test,
changes can be detected with a smaller time lag than with traditional change detection methods based
on multiple confirmations [21,35–37]. Many existing algorithms require a fixed number of observed
anomalies to signal a change, and some enforce the condition that anomalies also have to be detected
consecutively. Certain statistical boundaries or change probabilities specific to the method have to be
exceeded multiple times for a change to be recorded. When the spectral footprint of a change event is
at the border of detectability, these restrictions likely lead to omission errors or a large time lag between
change event and detection. Because of its cumulative nature, the proposed CUSUM test statistic is not
restricted in the same away. Any post-change observation can add information to the test statistic,
regardless of being flagged by the anomaly test or not. Depending on the spectral footprint of the
change event, it may take two, three, or more post-change observations to detect the change. At this
point, we cannot give a quantitative evaluation of the typical time lag because appropriate reference
data were not available.

The reduction of the time lag between change event and change detection is of major importance to
near real-time forest monitoring systems. For this reason, several recent studies have combined optical
data with Synthetic Aperture Radar (SAR) data in order to reduce this time lag [34,35]. Regarding optical
data, persistent cloud cover during rainy seasons represents a major limitation as the time gap between
consecutive valid observations may become very large. Change detection methods that require multiple
confirmed change detections will therefore show large time lags between the change event and its
detection. Two studies carried out in tropical regions reported mean time lags of 63 days and 70 days
for Myanmar and Bolivia respectively, if only optical Landsat 8 data is used [34,35].

At the Malawi site, we also tested if exploiting overlaps of two S-2 orbits delivers higher forest
change detection accuracies. Using two orbits has the advantage of providing a much denser time
series, but a potential disadvantage stems from the geometric shifts related to the different orbit viewing
angles. Especially, the forest border is often slightly misplaced in data from two orbits as the DEM that
is used by the European Space Agency (ESA) to orthorectify the imagery does not accurately account
for tree height. At the 10 m spatial resolution of Sentinel-2, the effect of orbit-related geometric shifts on
the spectral reflectance of single forest border pixels is much stronger than that, for example, in 30 m
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Landsat 8 pixels. Elevation errors in the DEM may also lead to strong dislocations of up to 20 m at
mountain ridges as observed in the alpine test areas in Austria. In Malawi, our test site is characterized
by flat to slightly hilly terrain, so errors related to topography are negligible. The results show that for
Malawi, the users’ accuracy increases from 63.5% to 71.1% when using two orbits instead of only using
one orbit. Especially, the commission error is much higher with only one orbit (see mapped areas of
1407 ha versus 756 ha in Tables 3 and 4, respectively). The main reason for this strong improvement may
be found by looking at the inter-annual temporal distribution of valid observations. The time series
density at the Malawi test site is quite inhomogeneous (see Figure 6). While many clear observations
are available during the dry season, the time series is sparse in the rainy season from November to
April due to frequent cloud cover. Using two orbits greatly increases the chance of including a few
clear observations during the rainy season, which is very important for a proper initialization of the
time series model. To our knowledge, such a comparative analysis on using Sentinel-2 data from one
or two orbits as input to a change detection approach has not been performed before. Thus, we cannot
assess whether our findings are in line with other research results. While our findings suggest that
denser time series resulting from orbit overlaps lead to higher forest change mapping accuracies, it is
not yet clear if these findings for the dry forests in Malawi are also valid for other forest types and for
other regions. Further studies with different data input scenarios and at various forest test sites are still
needed to fully answer this question.

The presented approach for detecting forest changes in near real-time using Sentinel-2 imagery has
a high potential for operationalization of forest monitoring services, such as improved and automated
REDD+ (Reducing Emissions from Deforestation and Forest Degradation) services in the tropics,
and windthrow damage assessment or bark beetle monitoring in Central Europe. Future studies to
improve the presented forest change detection method and similar near real-time approaches should
focus on an integrated and automated separation of different biotic and abiotic forest disturbance
agents. Additional developments should include a multivariate analysis of relevant reflectance bands
and a spatiotemporal analysis of changes. The near real-time capability should be tested in operational
scenarios and the time lag of change detection needs to be assessed with field data or EO data of
very high geometric and temporal resolution (e.g., Planet data). For tropical forest monitoring and
REDD+ activities, the method should be tested in combination with recent Sentinel-1 SAR forest change
detection approaches, such as SAR shadow detection [38], backscatter composite differencing [39],
or SAR backscatter thresholding based on the coefficient of variation [40]. With minor adaptations,
the presented time series analysis approach might also be directly applicable to SAR data. The approach
could also be used for other EO-based applications, such as phenology monitoring in agriculture or
grassland monitoring (detection of mowing events).

5. Conclusions

In this paper, we presented a new algorithm designed for vegetation monitoring and change
detection using optical EO data. The approach is largely data-driven and designed especially for near
real-time mapping in web- or cloud-based monitoring services. Compared to existing algorithms
employing harmonic regression, this study explored methodological improvements, mainly in two
aspects:

• Seasonal patterns related to plant phenology can vary strongly between years because of different
climate conditions, such as temperature and rainfall. With widely used harmonic regression
models, it can be difficult to separate these normal variations from true disturbances due to the
deterministic modelling approach. Our algorithm uses structural time series models in state
space form which take into account that the trend and seasonal components in a time series can
evolve over time. This class of stochastic models is typically used in conjunction with the Kalman
filter, which also enables elegant handling of irregular sampling intervals and signal artefacts like
un-masked clouds and cloud shadows. We showed that it is possible to track the phenology-related
vegetation dynamics more closely without losing the ability to detect disturbances.
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• Many existing algorithms require that specific change probabilities or statistical boundaries have
to be exceeded multiple times for a change to be confirmed. In our algorithm, the sequence of
Kalman filter innovations (i.e., the differences between the one-step-ahead model forecasts and
corresponding observations) opens up alternative possibilities to characterize change. If the time
series model assumptions are correct and no changes occur, the innovation sequence should be
mostly free of temporal autocorrelation and it should have zero mean. We used the CUSUM
control chart to monitor these properties and assumed that significant deviations indicate change.
Additionally, a separate anomaly test intended to suppress commission errors due to signal
artefacts was implemented. Compared to the multiple confirmation approach, our results indicate
that the CUSUM approach has the potential to reduce the time lag between change event and
detection and a better chance of detecting subtle and gradual changes because of its cumulative
nature. However, a better understanding of different change types and especially reference data
for validation are required to support this claim.

Two challenging test sites located in Austria and Malawi were selected to test the algorithm
in a forest change detection scenario based on Sentinel-2 data. Both sites show pronounced and
dynamic seasonal patterns in the Sentinel-2 time series due to plant phenology. The dominant change
types in Malawi are deforestation and forest degradation. In Austria, we were mainly interested
in changes caused by storm damages or bark beetle infestations, but of course, deforestation also
occurs. The validation of the results was performed based on visually interpreted points derived by a
stratified random sampling approach. For the forest change class, we reported users’ accuracies of
76.8% (Austria) to 88.6% (Malawi), and producers’ accuracies of 68.2% (Malawi) to 80.4% (Austria).
Due to the low rate of commission errors and large proportion of stable forest, overall accuracies
reached over 99%.

In the Malawi site, we further showed that a denser time series with data from two different
orbits results in better change detection results compared to using data from only one orbit. The larger
number of input images seems to outweigh the possible negative effects of spectral and geometric
differences related to the different viewing angles, which especially occur at forest edges. The observed
increase in users’ accuracy when using two orbits amounted to 7.6%. However, further studies with
different data inputs and at various forest test sites are required to confirm these results.

In summary, it can be stated that the combination of structural time series models and Kalman
filtering represents an appropriate method for a variety of automated forest monitoring applications.
Beside the possibility of detecting abrupt changes, for example caused by storm damages or
deforestation, the method also shows a high potential to detect more subtle and continuous changes,
such as bark beetle infestations, forest degradation, or drought stress. Regarding the detection of insect
infestations, the interesting research question to be dealt with in future is whether an early detection of
bark beetle green attack is feasible.
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Abstract: Leaf area is a key parameter underpinning ecosystem carbon, water and energy
exchanges via photosynthesis, transpiration and absorption of radiation, from local to global scales.
Satellite-based Earth Observation (EO) can provide estimates of leaf area index (LAI) with global
coverage and high temporal frequency. However, the error and bias contained within these EO
products and their variation in time and across spatial resolutions remain poorly understood. Here,
we used nearly 8000 in situ measurements of LAI from six forest environments in southern China to
evaluate the magnitude, uncertainty, and dynamics of three widely used EO LAI products. The finer
spatial resolution GEOV3 PROBA-V 300 m LAI product best estimates the observed LAI from a
multi-site dataset (R2 = 0.45, bias = −0.54 m2 m−2, RMSE = 1.21 m2 m−2) and importantly captures
canopy dynamics well, including the amplitude and phase. The GEOV2 PROBA-V 1 km LAI product
performed the next best (R2 = 0.36, bias = −2.04 m2 m−2, RMSE = 2.32 m2 m−2) followed by MODIS
500 m LAI (R2 = 0.20, bias = −1.47 m2 m−2, RMSE = 2.29 m2 m−2). The MODIS 500 m product
did not capture the temporal dynamics observed in situ across southern China. The uncertainties
estimated by each of the EO products are substantially smaller (3–5 times) than the observed bias for
EO products against in situ measurements. Thus, reported product uncertainties are substantially
underestimated and do not fully account for their total uncertainty. Overall, our analysis indicates that
both the retrieval algorithm and spatial resolution play an important role in accurately estimating LAI
for the dense canopy forests in Southern China. When constraining models of the carbon cycle and
other ecosystem processes are run, studies should assume that current EO product LAI uncertainty
estimates underestimate their true uncertainty value.

Keywords: remotely sensed LAI; field measured LAI; validation; magnitude; uncertainty;
temporal dynamics

1. Introduction

The Leaf Area Index (LAI), the total leaf area per unit ground area, is a key biophysical variable
playing an important role in global carbon, water, and energy cycles [1,2]. As such, it acts as an
important parameter for several applications, such as land surface models [3], ecological models [4],
and yield prediction models [5]. The amount of leaf area has a first-order control on photosynthesis,
transpiration, and absorption of radiation, varying in both space and time. LAI seasonal dynamics
provide information about phenological processes of canopy development, senescence, and plant
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traits [6]. Therefore, retrieving LAI over large areas and having a good knowledge of their yearly
variations, errors, and bias is extremely important. Such information is central to accurately estimating
primary productivity, understanding land surface-atmosphere exchanges, and detecting the response
of terrestrial vegetation to climate change [7]. It is also beneficial for a large remote sensing community
because it provides insights for the interpretation and correct usage of the LAI maps. Satellite-based
Earth Observation (EO) offers the opportunity to retrieve information on LAI which is global in
coverage and at increasing temporal and spatial resolution [8–12]. Robust estimates of uncertainties
associated wth EO LAI estimates are needed to ensure their appropriate integration within further
analyses such as data assimilation [6,13]. However, such robust evaluations are rarely possible due to
the scarcity of in situ data at appropriate temporal and spatial resolutions [14,15].

LAI product uncertainty information represents the performance of the products’ algorithm and
reflects the uncertainties in the input data, model imperfections, and the inversion process [16–18],
which could be called the theoretical uncertainties [19]. Evaluation studies typically assess the theoretical
uncertainty of LAI based on the standard from Global Climate Observing System (GCOS) [20], which sets
a target for absolute LAI uncertainty range to be within 0.5 m2 m−2 and a relative uncertainty of less
than 20%. However, few studies validate the uncertainty estimates of EO LAI using in situ data [14] at
appropriate scales. A key challenge for the validation process is the mismatch in the scale of satellite
products (typically > 300 m) compared to that of the in situ data (<10 m). Heterogeneity of LAI at
scales finer than the satellite resolution [21] means that simple comparison between measurements at
different scales can be problematic [22].

The validation of LAI at temporal scales includes a more important component, the LAI temporal
dynamics, besides the traditional absolute value checking [23]. The temporal dynamics of LAI time
series contain useful ecological information (e.g., phenological infomation), which help study the
relationship between plant phenology and climate [24] or assist in land cover classification [25].
However, the temporal dimension has been neglected for most of the LAI validation work [23].
To validate the seasonal variations of LAI products, higher field sampling rates are need, especially for
the Evergreen Broadleaf Forests (EBF) across several regions (Africa, Eurasia, South America, Australia
and Asia) [14].

Despite the important role played by tropical forests in regulating the global carbon [26,27] and
energy balance [28], tropical phenology is highly uncertain. Large-scale monitoring of tropical forest
LAI with satellites is hindered by several challenges, including signal saturation [23], poor observation
conditions (cloud-aerosol contamination, etc.) [29], coarse spatial and temporal resolutions [30],
and scarcity of both ground data and detailed validation tests [31–33]. Uncertainties are therefore
particularly high in these regions [34]. Some progress has been made in the Amazon [35–39] and
African forests [40–42]; however, the Southern China region has typically been neglected in remote
sensing phenology studies [43–46]. Consequently, the phenological character of forests in this region
remains uncertain, with additional complexity driven by fragmentation [47], high species diversity,
and complex topography [48]. The lack of detailed validation studies in Southern China means that
there is little information regarding the suitability of global EO LAI products for the forests in this
region, which play a major role in the carbon sink across China, and span the climate gradient from the
subtropics to tropics [49,50].

In this study, we take advantage of a network of 6 sites with ~8000 ground-based measurements
of LAI for forests located across the tropical and subtropical Southern China region to fully evaluate
three satellite-based remote sensed LAI products with global coverage (Moderate Resolution Imaging
Spectroradiometer (MODIS) 500 m and PROBA-V GEOV2 1 km and V3 300 m). Specifically, we address
the following questions:

(i) How well do EO-based estimates of LAI capture temporal dynamics observed in
ground measurements?

(ii) How robust are EO LAI error estimates?
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To answer these questions, we evaluate errors across multiple LAI retrieval algorithms and spatial
resolutions and their associated temporal dynamics. We use additional fine resolution satellite data
to evaluate the heterogeneity of canopy cover at the scales intermediate between in situ data and the
satellite products at each location. Finally, we discuss the importance of robust error characterization for
LAI products in the context of constraining models of the terrestrial carbon cycle and other ecosystem
processes. We aim to characterize and understand errors and bias in the EO LAI products but do not
make retrievals over the entire region. Whilst our scientific questions are focused on the Southern China
region, the approach used can be applied elsewhere if in situ data is available. Assessing the uncertainties
in LAI products through comparison with in situ measurements, i.e., direct validation is critical for their
proper use in land surface models [51,52]. A better understanding of the uncertainties embedded in
current LAI products will improve the assimilation of the LAI into land surface modeling studies [53,54]
by providing a more robust error weighting [55].

2. Materials and Methods

2.1. Study Area

Site-level LAI observational data are collected from CERN (Chinese Ecosystem Research
Network) [56]. The six sites included are Ban Na Forest (BNF), Ai Lao Forest (ALF), Gong Ga
Forest (GGF), Ding Hu Forest (DHF), He Shan Forest (HSF), and Shen Nong Forest (SNF). These sites
are spread across southern China between 21.9◦ and 31.3◦N, covering major plant functional types from
northern subtropical zones to the northern tropical zones in this region (Figure 1). The regional climate
is characterized by a wet, warm summer and a dry, mild winter [57]. The site-specific Koeppen climate
classifications [58] are Cwa (Temperate zone warm summer; dry winter) for ALF, BNF, HSF, and SNF.
Cfa (Temperate zone hot summer; no dry season) for DHF and Dwb (Cold zone dry winter; cold summer)
for GGF. The mean annual temperature ranges between 4.2 and 21.8 ◦C. Annual precipitation ranges
between 1506 mm and 2175 mm. The sites vary in elevation (above sea level) between 70 and 3160 m
(Table 1). Forest types include the tropical seasonal rainforests, mixed coniferous forest, evergreen and
deciduous mixed broad-leaved forest. The sites used support publically forests which are natural, except
for forests at HSF and DHF, which support planted forests over 40 years old. All forests have at least
three vertical layers: woody, shrub, and herbs. The tree density (trees per hectare) varies widely across
sites. The highest tree density reaches over 7000 and the lowest is around 600 (Table S1). The range
of the mean diameter breath heights is 5–20 cm (Table S1). The dominant species composition differs
between sites but mainly consists of the evergreen species (Table S1). An image of forests measured at
each site is included in Figure S1.

Figure 1. Map of the study sites in Southern China.
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Table 1. Background information for each site. MAT: mean annual temperature; AP: annual precipitation.

Sites
Latitude

(N)
Longitude

(W)
Altitude

(m)
MAT
(◦C)

AP
(mm)

Gradient Forest Types

BNF 21.91 101.2 730 21.8 1506 18–25◦ Tropical seasonal rainforest
HSF 22.67 112.89 70 21.7 1761 18–23◦ Mixed coniferous forest
DHF 23.16 112.53 300 21 1996 25–35◦ Mixed coniferous forest

ALF 24.54 101.01 2488 11 1931 5–25◦ Natural wet evergreen
broad-leaved forest

GGF 29.57 101.98 3160 4.2 2175 30–35◦ Subalpine Emei fir forest

SNF 31.3 110.47 1650 10.6 1722 10–70◦ Evergreen and deciduous
mixed broad-leaved forest

2.2. Field LAI Data Measurements

In each of the six sites, there are one to four subplots at which LAI is estimated, and each subplot
area ranged from 400–10,000 m2 (Figure S1). Field measurements of LAI were made each month
using an LAI-2000 [59]. Field LAI measurement processing is consistent for each site and is based
on the unified data collection and quality control protocols specified for CERN [60]. The sampling
positions are distributed evenly and diagonally within the plot. The horizontal distance between each
sampling points or plot boundary are to exceed 15 m and 10 m separately to avoid overlap sampling
and reduce marginal effects. LAI-2000 were used to scan the canopy twice a day (8:00 am and 16:00 pm)
to get the three-layer LAI (woody, shrub, and herbs) at each sampling point at the measurement
day. The position for each sampling measurements and scan height is fixed. The median number of
monthly measurements made at each site ranged from 6 to 80 (Table S2). BNF is the most intensively
surveyed site, with between 203 and 360 measurements per year; therefore, BNF is particularly suited
to evaluating the temporal dynamics of EO LAI products. For the other sites, only a subset of years
and growth season months are measured (Table S2). A total of 795, 9 ground measurements from 2005
to 2017 were acquired across all the sites (Table S2).

2.3. Earth Observation LAI Estimates

In this study we evaluate three global EO LAI products. MODIS 500m product (MOD15A2H)
provides estimates of LAI at 500 m spatial resolution with an 8-day interval from 2000-present [10].
GEOV2 1 km [11] and GEOV3 300 m LAI [12] were derived from the SPOT/VEGETATION sensor data
at a 10-day interval, at spatial resolutions of 1/112◦ and 1/336◦, respectively (approximately 1-km and
300 m at the equator), in the Plate Carrée projection. For the MODIS 500 m LAI product, we consider
only the products derived from the main algorithm, which is based on the use of Look Up Tables (LUTs)
built for six different plant functional types, with simulations from a three-dimensional radiative
transfer model [61]. For the GEOV2 1 km and GEOV3 300 m LAI products, LAI is estimated using
Neural Networks(NNTs) applied on Top-of-Canopy (TOC) input reflectance in the red, near-infrared,
and shortwave infrared bands, at 1km resolution and 300m, respectively [11,12]. The period of MODIS
500 m LAI products and GEOV2 1 km LAI products is from 2005 to 2017 and 2014 to 2017 for the
GEOV3 300 m LAI product (released from 2014).

The definition of uncertainty information varies between LAI products. For MODIS LAI,
the standard deviation is used to measure the uncertainty of pixel LAI values, which is calculated over
all acceptable solutions of a look-up table (LUT) retrieval method [17]. For GEOV2 1 km and GEOV3
300 m LAI products, the uncertainties are computed as the RMSE between the final decadal value and
the daily NNTs estimates in the compositing period [12,62]. In this study, they are both treated as the
LAI products’ uncertainty. The quality assessment information is used to clean the LAI and inform
uncertainty information at the pixel level for all of these LAI products. For MODIS 500 m products,
data effected by cloud shadow, internal cloud masks, or aerosol are removed and only main retrievals
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were used in the analysis. For Copernicus LAI data (GEOV2 1 km and GEOV3 300 m), pixels that were
filled or interpolated, or out of LAI range, were removed.

2.4. Mapping Heterogeneity of Canopy Properties

To evaluate the upscaling of field LAI measurements to satellite products, Landsat Level-2 Surface
Reflectance products including Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation
Index (NDVI) derived from Landsat 5 (TM), Landsat 7 (ETM+) [63] and Landsat 8 (OLI) [64] scenes
are also analyzed. EVI is calculated from red (R), near-infrared (NIR) and blue band (B) based on
Equation (1) and incorporates parameters to adjust for canopy background, atmospheric resistance.

EVI = 2.5 ∗ ((NIR−R)/(NIR + 6 ∗R− 7 ∗ B + 1)) (1)

NDVI is calculated as a ratio between the R and NIR values in a traditional fashion (Equation (2)).

NDVI = (NIR−R)/(NIR + R) (2)

Landsat 5 (TM), Landsat 7 (ETM+), and Landsat 8 (OLI) Level-2 surface reflectance products were
generated, using the Land Surface Reflectance Code (LaSRC) and the Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) algorithms [65,66]. The LEDAPS and LaSRC surface reflectance
algorithms correct for the temporally, spatially, and spectrally varying scattering and absorbing
effects of atmospheric gases and aerosols, which is essential to derive the Earth’s reflectance surface
values. Landsat Spectral Indices are generated at 30 m spatial resolution on a Universal Transverse
Mercator (UTM) mapping grid. The Spectral Indices could be obtained from the USGS Earth Resources
Observation and Science (EROS) on-demand processing system.

The GTOPO 30 1 km elevation map [67] in the China region with Landsat scene footprints at
each site is presented in Figure S2. In each of the six sites, there are one to four sampling subplots.
The location of each site with the sampling subplots is shown on the Landsat scenes with path and row
information (Figure S3) and on the 90 m SARTM elevation map [68], respectively (Figure S4). There are
in total 778 Landsat 5–7 and Landsat 8 scenes with good quality (collection category is Tier 1) and
cloud cover smaller than 20% of the total scene area from the year of 2005 to 2017 for all of these forests.
Because there is no quality assessment information for the Landsat spectral indices, we use the pixel
quality assurance band (pixel_qa) instead to obtain quality information. Pixels with cloud shadow,
aerosols, etc., are filtered out, and we keep pixels with the best quality.

Landsat EVI and NDVI were extracted at the field sampling plots spatial level (20~100 m).
Based on the Landsat scene quality information, we cleaned and kept just good quality Landsat pixel
data. Then, daily EVI and NDVI were retrieved from the area-weighted averaged Landsat pixels inside
the field sampling plot. We averaged the daily EVI and NDVI values by month. Finally, the monthly
EVI and NDVI at the field sampling plots level were regressed with corresponding monthly in situ
LAI values to calculate the statistics (R2, etc.).

We investigated whether forest cover fraction in different LAI products’ spatial resolution levels
influenced product bias and error. We use the 30 m resolution GlobeLand30 land cover product for
2010 [69] to extract the forest cover fraction inside the relevant pixels for each of the LAI products at
each site. We classify the land cover for each 30 m pixel on different spatial scales (LAI products’ scale:
300 m, 500 m, and 1 km) at each site and plot. We only kept the 30 m pixels located entirely inside the
LAI pixels. The total number of 30 m pixels and pixels classified as forests were both counted and
summed to determine the total area and the forest areas at different spatial scales. Then we can obtain
the forests cover proportion at different spatial scales for each plot and site. Finally, the forests’ cover
proportion was compared with the LAI products’ bias at each site.
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2.5. Statistical Analysis

Daily satellite LAI and uncertainty information were retrieved from the three LAI products at
the location of each subplot of the six sites (Figure S1). If the field subplots overlapped with multiple
pixels for a given LAI product, then the satellite-based value was estimated using the weighted
sum of the contributing pixels, weighted by the area of overlap (Equation (3)). Data were cleaned
based on the products’ quality assessment information, before aggregation into monthly mean values,
and comparison with the mean monthly ground-based LAI measurements at each site and plot.
We calculate R2, bias, and RMSE between the field and satellite LAI time series to evaluate the accuracy
and error of the three LAI products.

LAIR =
n∑

i=1

Ai
A
∗ Pi, (3)

where LAIR is the extracted remote sensing LAI value; n represents the total number of the contributing
pixels which overlapped with the field plots; A is the total area for the plots, Ai is the overlapped area
between pixel and plots; Pi is the remote sensing pixel value.

LAI products’ uncertainty information was evaluated using the ratio of LAI products’ uncertainty
(LAIU) with the bias against the field measurements, r, as follows (Equation (4)),

r =
LAIU

|Bias| , (4)

where the bias (Equation (5)) is defined as:

Bias = LAIproduct − LAI f ield, (5)

The ratio, r, can be used to evaluate whether or not the product uncertainty is robust. When r ≥ 1,
the bias in the LAI product is within the reported uncertainty range, indicating that the uncertainty
estimate for LAI is robust; conversely, if r < 1, the reported uncertainty fails to capture the observed
bias and therefore the uncertainty estimate is not robust. We calculate this ratio r for each month at
different plots and sites.

2.6. Calculation of Amplitude, Phases and Periods for LAI Time Series

We use metaCycle [70] to calculate the periodic characteristics (periods, phases, and amplitude)
for the monthly field, MODIS, GEOV2 and V3 LAI time series. This method can calculate the periodic
characteristics for time series with missing values [70], which frequently occurred for the satellite LAI
times series. MetaCycle incorporates three methods: ARSER (Autoregressive spectral analysis) [71],
JTK_CYCLE(Jonckheere-Terpstra-Kendall algorithm) [72], and Lomb-Scargle [73], for periodic signal
detection, and it could output integrated analysis. The integrated period from MetaCycle is an
arithmetic mean value of multiple periods, while phase integration based on the mean of circular
quantities calculated from the above three mentioned methods.

MetaCycle recalculates the amplitude with the following model (Equation (6)):

Yi = B + TRE ∗
(
ti−

∑n
i=1 ti
n

)
+ A ∗ cos

(
2 ∗π ∗ ti− PHA

PER

)
, (6)

where Yi is the observed value at time ti; B represents the baseline value (mean value) of the LAI time
series; TRE is the trend level of the time-series profile; A is the amplitude of the waveform. PER and
PHA are the integrated period and phase, respectively. PER represented the periods of the LAI time
series; here, it is 12 months. PHA represented the phases of the LAI time series at the period of
12 months. “i” is the time points of the time series. “n” represents the total number of the time points of
the time series. In this model, only B, TRE, and A are unknown parameters and can be calculated using
ordinary least squares. Fisher’s method is implemented in MetaCycle for integrating multiple p-values.
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Relative amplitude (rAMP), which is the A/B, can be used to compare the amplitudes between time
series with different baselines levels.

In this study, each LAI time series is decomposed into the baseline value (mean value), the trend,
and the wavelength with specific amplitude, period, and phase. The integrated phases can be used
to compare whether the LAI time series is lead, lag, or synchronous. The amplitude can be used to
quantify the magnitude of seasonal fluctuations for LAI time series and the relative amplitude can
be used to compare the LAI seasonal fluctuations from different sites and data source. We apply this
method to the monthly averaged field LAI time series at BNF, and the monthly averaged retrieved
satellite LAI at each site because only BNF has frequent enough field measurements over multiple
months from the year 2005 to 2017.

2.7. Software

Remote-sensing data processing was carried out by Rv3.4.0 [74] using the package “raster” [75].
Amplitude, phases, and periods of LAI time series were calculated using the functions “meta2d” in the
package ‘MetaCycle’ [70] in R. Figures and maps were produced in R and ArcGIS 10.4.

3. Results

3.1. Accuracy of the LAI Products Magnitude

Satellite derived mean LAI estimates were typically lower than the field measurements,
which varied between 3.2 and 5.6 m2 m−2 (Table 2). GEOV3 300 m estimates were 10% lower
than field measurements (mean = 4.50 m2 m−2), MODIS 500m were 30% lower (mean = 3.6 m2 m−2

and GEOV2 1 km were 40% lower (mean = 3.07 m2 m−2) (Figure 2; Table 2). LAI mean and relative
uncertainty increased with product resolution: GEOV3 300m (0.22, 7%) <MODIS 500 m (0.37, 10%) <
GEOV2 1 km (0.56, 19%).

Figure 2. Time series of the LAI for the field, GEOV3 300 m, GEOV2 1 km, and the MODIS 500 m
for different sites. The timespan of the LAI time series is from 2005 to 2017. Each field data point
represented the mean value of the measurements from the sample subplots in each month. “N” denoted
the number of total sample measurements for each site, including the repeat measurements in each
month at each subplot.
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Table 2. Mean site LAI values (m2 m−2) and their statistical metrics calculated using months which
have both field and EO LAI values from 2005 to 2017. “r” is median of the ratio between product
uncertainty and bias for all months and subplots. R2 was calculated from the linear regression between
satellite products and field monthly measurements. “N” denotes the number of monthly values for all
subplots at each site. All the statistics are calculated on a monthly scale.

LAI Source Metric Statics ALF BNF DHF GGF HSF SNF Overall

Field (20~100 m)

Mean 4.18 5.55 4.90 3.18 3.44 4.11 5.1
Measurements error (std) 0.46 0.58 0.89 0.5 0.51 0.57 0.59
Relative error (std/mean) 0.11 0.11 0.18 0.16 0.15 0.14 0.12

N 38 571 57 14 96 17 793

GEOV3 300 m

Mean 3.28 5.15 3.82 2.38 2.94 3.34 4.50
Product uncertainty

(RMSE) 0.13 0.20 0.12 0.04 0.55 0.30 0.22

Relative uncertainty
(RMSE/Mean) 0.04 0.04 0.03 0.02 0.19 0.09 0.07

Bias (mean) −0.58 −0.40 −0.89 −1.18 −0.94 −0.66 −0.54
r (median) 0.17 0.24 0.09 0.65 0.45 0.36 0.26

R2 0.12 0.18 0.53 0.05 0.21 0.93 0.45
N 20 191 23 11 30 11 286

GEOV2 1 km

Mean 3.3 3.35 2.92 0.82 1.72 2.96 3.07
Product uncertainty

(RMSE) 0.54 0.60 0.60 0.27 0.33 0.77 0.56

Relative uncertainty
(RMSE/Mean) 0.16 0.18 0.21 0.33 0.19 0.26 0.19

Bias(mean) −0.88 −2.20 −1.97 −2.36 −1.72 −1.16 −2.04
r (median) 0.56 0.28 0.37 0.16 0.22 0.58 0.28

R2 0.18 0.22 0.15 0.38 0.30 0.74 0.36
N 38 571 57 14 96 17 793

MODIS 500 m

Mean 3.1 4.1 3.3 1.45 1.29 1.72 3.60
Product uncertainty (std) 0.45 0.38 0.48 0.66 0.16 0.40 0.37

Relative uncertainty
(std/mean) 0.15 0.09 0.14 0.44 0.12 0.23 0.10

Bias (mean) −0.99 −1.35 −1.54 −1.94 −2.09 −2.38 −1.47
r (median) 0.37 0.24 0.39 0.26 0.07 0.13 0.21

R2 0.03 0.12 0.10 0.47 0.16 0.25 0.20
N 33 506 52 7 85 17 700

Field mean LAI was best captured by GEOV3 300 m (R2 = 0.45; Figure 3), followed by GEOV2 1
km (R2 = 0.36), and MODIS 500 m (R2 = 0.20) for all of these six forests in this region. This performance
varied between forests and all of these products showed the highest R2 (Table 2) for the forests at SNF,
which showed more LAI seasonal variation (Figure 2). GEOV3 300 m LAI also had the lowest RMSE
and bias (RMSE = 1.21, bias = −0.41) compared with GEOV2 1 km LAI (RMSE = 2.32, bias = −2.04)
and MODIS 500m LAI (RMSE = 2.29, bias = −1.47) (Figure 3, Table 2).
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Figure 3. Regression between the field LAI and the satellite retrieved LAI. Each point represents the
monthly LAI field measurement against the satellite LAI retrieval. The blue solid lines represent the
regression between the field LAI against the satellite LAI for all the sites combined on a monthly scale.
Point colors and shapes represent different sites.

3.2. Robustness of the LAI Products Uncertainty

The magnitude of the reported EO LAI uncertainty is typically smaller than the bias to in situ
estimates (Figure 4), here shown as the ratio of uncertainty and reported bias (r), and this result
is consistent across forests (Figure S5, Table 2). GEOV3 300 m has the smallest proportion of EO
uncertainty estimates below the observed bias (86%) while MODIS 500m LAI and GEOV2 1 km have
87% and 91% of uncertainty estimates below the reported bias. The median ratio indicated similar
average skill between both GEOV3 300 m (0.26) and GEOV2 1km LAI products (0.28) and MODIS
500 m LAI products (0.21) (Figure 4, Table 2).
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Figure 4. Distribution of the ratio of EO uncertainty estimates to bias, based on a comparison against
in situ LAI measurements. Dashed lines represent the median values and the color represents different
EO products. The vertical black line is the reference line where the ratio is equal to 1. A ratio larger
than 1 indicates the uncertainty estimate is larger than the bias and is therefore considered robust.

3.3. Validation of the LAI Products Temporal Dynamics

The metaCycle analysis showed that a statistically significant period of 12 months (p < 0.05) is
present in the monthly field LAI time series at BNF and in all monthly satellite LAI time series at all
sites, except for MODIS 500 m LAI, which showed no significant 12-month periodic characteristics at
BNF. Overall, LAI retrieved from GEOV3 300 m showed very close values of the base, phase, amplitude
and relative amplitude with the field LAI at BNF (Figure 5). LAI retrieved from GEOV2 1km showed a
lower base and amplitude, similar phase, but larger relative amplitude compared with GEOV3 300 m
LAI for most sites and the field at BNF (Figure 5). LAI retrieved from MODIS 500 m product showed
the lower base values, but had a high variation of phases with one underestimated phase for the forest
at ALF compared with the other two LAI products (Figure 5b). The relative amplitude of LAI retrieved
from MODIS 500 m is lower for the forest at GGF and SNF, but higher at HSF compared with the other
two LAI products (Figure 5c).
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Figure 5. Periodic characteristics of the LAI time series from 2005 to 2017 for different sites. (a): Baseline
values of the LAI time series; (b): Phase of the LAI time series; (c): Amplitude of the LAI time
series; (d): Relative amplitude of the LAI time series. Point colors and shapes represent different sites.
A detailed description of the calculation can be found in the Methods section of this paper.

3.4. Evaluation of Landcover Heterogeneity

The Landsat data provide a more spatially consistent comparison of surface reflectance against field
data of LAI. The results (Figure S6) show that there are significant correlations between NDVI/EVI and
LAI across sites, but the effect sizes are small (R2 = 0.1). Thus, the relationships between remotely-sensed
NDVI/EVI at the fine resolution and field-measured LAI are less significant than those between LAI
products at the coarse resolution and field-measured LAI. The forest cover proportion at the pixel level
varied between 38%–100% (Table S3). The landcover data show that LAI retrievals were degraded by
the heterogeneity of landcover within product pixels. There was a clear pattern of LAI bias increasing
with reductions in the proportions of forest cover at the pixel scale (Figure S7).

4. Discussion

The performance of three EO LAI products was evaluated at six forests across southern China.
GEOV3 300 m LAI showed the best fit (R2 = 0.45) and the smallest bias (bias = −0.54) (Figure 3) and
the most similar LAI time series seasonal dynamic variation (phase and amplitude) compared with
in situ LAI measurements (Figure 5). For the GEOV2 1 km LAI product, its performance had larger
bias (Figure 3) and seasonality but similar phases of the LAI time series with the in situ observations
compared with GEOV3 300 m LAI products (Figures 3 and 5).

The different performance of the two Copernicus products is likely due to the mismatch of the
scaling between the EO pixel size and the field site. LAI is strongly non-linearly related to reflectance,
making its estimation from remote sensing observations scale-dependent [76,77]. In contrast, the core
operational algorithm (neural network techniques), data filtering and smoothing processes are
similar for these two products. There are differences in the method used for temporal compositing,
where temporal smoothing and gap filling using a climatology are used for GEOV2 1 km and
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interpolation applied in GEOV3 300 m) [78]. Differences in the applied gap-filling approach between
these two products do not impact our conclusion that resolution is the primary driver of performance
improvement at 300 m relative to 1 km, as all gap-filled and interpolated retrievals were removed
in our study. The in situ measurements were usually conducted in protected mature forest areas
with high plant densities, complex canopy stratums, and rich species diversities (Figure S1, Table S1).
However, at coarser spatial resolutions, pixels integrate heterogeneity over a greater diversity of
landscapes, habitats, and species, distributed across a variety of stages of growth and succession [79].
Thus, fine resolution GEOV3 300 m LAI product showed lower bias and similar seasonal dynamic
variation to the in-situ measurements compared to the higher bias for the GEOV2 1 km LAI product.

For Collection 6 500 m MODIS LAI, our results indicate that this product does not capture the
dynamics observed in situ, irrespective of the accuracy of estimated in situ LAI (Figure 3). Furthermore,
it does not adequately capture the LAI seasonal dynamics (Figure 5). This result is consistent with two
validation studies which both showed MODIS LAI had the poorest performance for the evergreen
forests in the south of China [80,81]. The MODIS LAI values for tropical evergreen forests are severely
impacted by atmospheric conditions, especially clouds during the growing season (around 42% data
are influenced by the cloud in this study, Figure S8), which lead to strong noise in the input reflectance
data and affect the retrieval [78]. Additionally, the reflectance saturation usually happened in dense
canopies and the main algorithm is sensitive to uncertainties in atmospheric correction, particularly
when red and NIR BRFs are saturated [82,83]. This means the reflectance does not contain sufficient
information to estimate the LAI value [84] and leads to the instability of the LAI retrievals [14]. All of
these may result in the poor performance of representation of evergreen forests in southern China for
the MODIS 500 m LAI products. Furthermore, the product does not adequately capture LAI periodic
characteristics in comparison to the field data and showed temporal inconsistency with GEOV2 and V3
products (Figure 5). Jiang (2017) also found the large temporal inconsistency between existing global
LAI products at a longer time scale [85]. Cammalleri (2019) found GEOV2 fAPAR showed a systematic
overestimation of the fAPAR anomalies compared with the MODIS fAPAR and proposed a two-step
harmonization procedure to remove this discrepancy [86]. However, the homogenization may alter the
magnitude of the original fAPAR time series in an undesirable way. These results highlight the need
to validate the temporal consistency between different satellite products and explore more solutions
to deal with such inconsistencies. In addition, geolocation uncertainty due to the spatial mismatch
could also have influenced validation reliability, As our study sites are not homogeneous and sampling
area is consistently smaller than the pixel of remote sensing data, mean or median remotely-sensed
LAI values of surrounding 3 × 3 array of pixels [15,87,88] cannot be used for validation. To solve this
problem, future field measurements should be conducted at a larger spatial scale and across more
homogenous habitats.

Overall, the absolute and relative uncertainty of LAI products tends to be smaller for the fine
resolution LAI products (Table 2). Collection 300 m GEOV3 has the smallest absolute uncertainty at
around 0.22. Collection1 km GEOV2 has the largest absolute uncertainty at around 0.56. Uncertainty
magnitude for Collection 6 500 m MODIS LAI is 0.37. This performance is consistent with the LAI
relative uncertainty (Table 2). If compared with the absolute uncertainty requirements (±0.5) and
relative uncertainty requirements (20%) set by the GCOS [12], all three products (Collection 300 m
GEOV3, 0.22, 5%; Collection 6 500 m MODIS LAI, 0.37, 10%; Collection 1 km GEOV2 0.56, 18%) appear
satisfactory. This is consistent with two global studies comparing different EO LAI products (MODIS,
CYCLOPES, and GLOBCARBON) at two coarse spatial resolutions (5 km and 1 km). More pixels can
meet the absolute uncertainty and relative uncertainty requirements at the spatial resolution of 1 km
compared with the 5 km [19,34]. All of these results indicated that the LAI product uncertainty is
scale-dependent. The algorithms will produce smaller uncertainty estimated for the LAI values at
finer spatial scales. This could make the uncertainty estimates of the fine-resolution products become
very conservative.
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Changes in LAI error with spatial resolution could be due to vegetation heterogeneity, especially
for the forests and scale-dependent reflectance values. However, it is still unclear how product
uncertainty changes over different spatial scales. For MODIS, the product uncertainty is the standard
deviation over all acceptable solutions of a look-up table (LUT) retrieval method [17]; for Collection
300 m GEOV3 and 1 km GEOV2 LAI products, the quantitative uncertainties (LAI_ERR) are computed
as the RMSE between the final dekadal value and the daily NNTs estimates in the compositing
period [12,62]. Standardizing different LAI products to the same spatial scale and averaging the
LAI and uncertainty for different pixels during the upscaling and resampling process [19,89] could
all generate errors [90]. When dealing with different spatial scales, the land surface properties (e.g.,
land cover proportion, soil properties) could change significantly. Thus, LAI retrieval algorithms are
based on inherent empirical assumptions on the distribution of their parameters, which can depart
significantly from the actual canopy and soil characteristics [14].

The ratio (r, in Equation (4)) of LAI product uncertainty to the bias of in situ measurements is
dramatically lower than the reference value for all of these LAI products (Figure 4, Table 2). This result
indicated that none of the three LAI uncertainty products tested here were able to provide a robust
estimate for the in-situ measurements. The most promising product is the Collection 300 m GEOV3
LAI; however, while its accuracy is the best, its uncertainty is still too conservative to capture the
offset from co-located field LAI measurements. This weakness reflects the complexity of this biome
type and highlights that the algorithm used to generate the uncertainty information for these LAI
products needs to be improved. For areas of high uncertainties, data producers may need to refine
the algorithms and verify the information using additional data sources, particularly in situ data [34].
However, with respect to field data collection, more accurate measurements are also needed to test
the results, such as destructive methods or using the litterfall traps. Direct measurement methods
obtaining ‘true’ LAI values could also act as a reference to correct the bias and errors in indirect
measurement techniques [31].

The accuracy of LAI data retrieved from remote sensing products is very important for a range
of earth system models, for which LAI is a key internal variable. LAI uncertainty is particularly
critical for model-data fusion in terrestrial carbon cycle studies [91]. The uncertainty produced for
the existing remote sensing LAI products in the analysis would further lead to biases in vegetation
productivity estimates [92–94]. For instance, the saturation of satellite-derived VIs generally results
in an underestimation of GPP or NPP in areas with dense vegetation. Using finer resolution remote
sensing data in carbon modeling studies could be an effective way to reduce the uncertainty in the
estimates of C fluxes and/or stocks, but more robust errors are critical [95].

Uncertainty estimates of the observations are as important as the observations themselves
because together they co-determine the outcome of the assimilation systems [96]. Bayesian approaches
are commonly used data assimilation systems and the influence of observations are weighted by
observational uncertainties. Uncertainties in data are critical as they often determine the outcome
of analyses and forecasts [97]. The assimilation process requires clear error quantification for LAI to
resolve model results and limit biases [98]. Besides, the presence of bias in a data stream will limit the
utility of using multiple observation types in an assimilation framework. Therefore, it is imperative to
characterize the error in the observations and understand better the error associated with the direct
measurements of LAI to landscape pixel [99]. Our results indicated that none of these LAI uncertainty
products are robust and therefore users should consider inflating the existing LAI product uncertainty
when using these data sources in data assimilation frameworks [98,100,101] or in other studies for
which the uncertainty of the product plays an important role.

One way of solving this spatial mismatch problem is to upscale the field measurements based on its
relationship with the plant index retrieved from high-resolution images (e.g., 10–30 m resolution) [102],
or using airborne Light Detection and Ranging (LiDAR) [103,104]. However, we failed to find a
good relationship between the Landsat based EVI or NDVI and the field measurements (Figure S5).
LAI-VI relationships are limited by a number of factors, including vegetation type, sun-surface-sensor
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geometry, leaf chlorophyll content, background reflectance, and atmospheric quality [31]. Geolocation
uncertainties due to spatial mismatch and insufficient overlap data between in situ measurements
and good quality Landsat scenes partly lead to this result. Saturation effects occur for both field
measurement and spectral plant indices for very dense canopies, which also increases the challenge
of upscaling field LAI to generate high-resolution LAI reference maps. In addition, the temporal
mismatch between field and Landsat data also contributes to the poor relationship between field and
Landsat data. This result may be also associated with the complex forest environments (such as terrain,
tree densities, canopy structures, and species diversities) in southern China (Figure S4, Table S1).
Thus, their LAI cannot be accurately modeled based on simple spectral indices, even with relatively
high resolution (30 m) satellite data. More complex upscaling approaches or those utilizing very
high-resolution sensors (e.g., LIDAR) to bridge the scaling gap may yield better results [102,105,106].
In particular, there is an exciting potential for unmanned aerial vehicles to provide critical upscaling
information from field to satellite [21].

When using EO LAI products in the absence of reliable validation data, we recommend that
the provided uncertainties are treated cautiously. Remote-sensing LAI products require improved
algorithms with particular attention given to generating robust uncertainty estimates. New cloud
and aerosol detection techniques based on time series and spatial analysis may help to improve the
uncertainty products and LAI estimated for evergreen forests [107]. In addition, the new remote-sensing
systems such as Global Ecosystem Dynamics Investigation (GEDI) [108], National Aeronautics and
Space Administration’s (NASA’s) Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) and Synthetic
aperture radar (SAR) provide promising ways to solve cloud coverage issues [109]. Given the importance
of data uncertainties (e.g., integration within terrestrial carbon modeling frameworks [92–94]), there is an
urgent need for robust uncertainty characterization, based on links to in situ observations. The findings
in this study are constrained to southern China. Future studies could explore the LAI and error
products for other regions, or focus on the seasons where products show the largest uncertainties [19].

5. Conclusions

In this study, we validated three global LAI products and their uncertainty products using ~8000 in
situ measurements of LAI from subtropical and tropical forests in the southern China region. The finest
resolution product, Collection 300 m GEOV3, performed best, with the lowest RMSE and the lowest bias.
It also best captured the temporal dynamics observed in the in-situ dataset, including the magnitude,
amplitude, and phases of the LAI time series. Collection 6 500 m MODIS LAI showed the poorest
performance and importantly it did not capture the temporal dynamics observed in situ for the forests
in this specific region. Critically, for all three LAI products, the accompanying uncertainties were all far
smaller than the bias compared to the in situ measurements, indicating that each product uncertainty
estimate is not robust. Given the importance of LAI uncertainty in the context of constraining models of
carbon cycling and other ecosystem processes, users should use the product’s uncertainty with caution
and consider inflating the existing LAI product uncertainty when using it within data assimilation
frameworks or other studies in which the uncertainty plays an important role.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/19/3122/s1,
Table S1: Detailed forest community information in the southern China region, Table S2: The detailed information
for field LAI measurements at each site, Table S3: Distribution of the ratio of EO uncertainty estimates to bias,
based on a comparison against in situ LAI measurements, Figure S1: Forest appearance for each forest in this study
in the southern China region, Figure S2: TOPO30 DEM (1 km) in the China region. Figure S3: Location of the
sampling subplots and the GEOV2 1km LAI pixels showed on the Landsat EVI scenes for different sites, Figure S4:
Location of the sampling subplots and the GEOV2 1 km LAI pixels showed on the SARTM 90 m DEM images
for different sites. Figure S5: Frequency distribution of the ratio of LAI products uncertainty with LAI products’
bias against the in situ measurements for different sites. Figure S6: Regression analyses between the Landsat
EVI/NDVI values and the field observed LAI values at sampling subplots, Figure S7: Regression analyses between
the proportion of forests cover (LAI pixel level) and the remotely sensed LAI bias against the field measured LAI
for different LAI products, Figure S8: Summary of the dates for the MODIS LAI pixels which were influenced by
the cloud in this study.

190



Remote Sens. 2020, 12, 3122

Author Contributions: Conceptualization, Y.Z. and M.W.; methodology, Y.Z., M.W., T.L.S., and D.T.M.; formal
analysis, T.L.S. and S.F.-P. and D.T.M.; writing—original draft preparation, Y.Z. and M.W.; writing—review and
editing, M.W., X.C., T.L.S., D.T.M., S.F.-P., and Y.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under grant number
41771049 and NCEO, CSSP Newton Fund, and China Scholarship Council.

Acknowledgments: The authors thank all the workers in the Chinese Ecosystem Research Network for field data
collection and database establishment.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Anav, A.; Murray-Tortarolo, G.; Friedlingstein, P.; Sitch, S.; Piao, S.; Zhu, Z. Evaluation of land surface
models in reproducing satellite Derived leaf area index over the high-latitude northern hemisphere. Part II:
Earth system models. Remote Sens. 2013, 5, 3637–3661. [CrossRef]

2. Mahowald, N.; Lo, F.; Zheng, Y.; Harrison, L.; Funk, C.; Lombardozzi, D.; Goodale, C. Projections of leaf area
index in earth system models. Earth Syst. Dynam. 2016, 7, 211–229. [CrossRef]

3. Williams, M.; Richardson, A.D.; Reichstein, M.; Stoy, P.C.; Peylin, P.; Verbeeck, H.; Carvalhais, N.; Jung, M.;
Hollinger, D.Y.; Kattge, J. Improving land surface models with FLUXNET data. Biogeosciences 2009, 6, 2785.
[CrossRef]

4. Asner, G.P.; Scurlock, J.M.; Hicke, A.J. Global synthesis of leaf area index observations: Implications for
ecological and remote sensing studies. Glob. Ecol. Biogeogr. 2003, 12, 191–205. [CrossRef]

5. Fang, H.; Liang, S.; Hoogenboom, G. Integration of MODIS LAI and vegetation index products with the
CSM–CERES–Maize model for corn yield estimation. Int. J. Remote Sens. 2011, 32, 1039–1065. [CrossRef]

6. Richardson, A.D.; Dail, D.B.; Hollinger, D. Leaf area index uncertainty estimates for model–data fusion
applications. Agric. For. Meteorol. 2011, 151, 1287–1292. [CrossRef]

7. Asaadi, A.; Arora, V.K.; Melton, J.R.; Bartlett, P. An improved parameterization of leaf area index (LAI)
seasonality in the Canadian Land Surface Scheme (CLASS) and Canadian Terrestrial Ecosystem Model
(CTEM) modelling framework. Biogeosciences 2018, 15, 6885–6907. [CrossRef]

8. Tum, M.; Günther, K.P.; Böttcher, M.; Baret, F.; Bittner, M.; Brockmann, C.; Weiss, M. Global gap-free MERIS
LAI time series (2002–2012). Remote Sens. 2016, 8, 69. [CrossRef]

9. Gonsamo, A.; Chen, J.M. Improved LAI Algorithm Implementation to MODIS Data by Incorporating
Background, Topography, and Foliage Clumping Information. IEEE Trans. Geosci. Remote Sens. 2014, 52,
1076–1088. [CrossRef]

10. Myneni, R.; Knyazikhin, Y.; Park, T. MOD15A2H MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global
500 m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. 2015. Available online:
https://doi.org/10.5067/MODIS/MCD15A2H.006 (accessed on 15 September 2020).

11. Verger, A.; Baret, F.; Weiss, M. Near Real-Time Vegetation Monitoring at Global Scale. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2014, 7, 3473–3481. [CrossRef]

12. Baret, F.; Weiss, M.; Verger, A.; Smets, B. Atbd for Lai, Fapar and Fcover From Proba-V Products at 300m Resolution
(Geov3); INRA: Paris, France, 2016.

13. Williams, M.; Rastetter, E.B.; Shaver, G.R.; Hobbie, J.E.; Carpino, E.; Kwiatkowski, B.L. Primary production
of an arctic watershed: An uncertainty analysis. Ecol. Appl. 2001, 11, 1800–1816. [CrossRef]

14. Garrigues, S.; Lacaze, R.; Baret, F.; Morisette, J.; Weiss, M.; Nickeson, J.; Fernandes, R.; Plummer, S.;
Shabanov, N.; Myneni, R. Validation and intercomparison of global Leaf Area Index products derived from
remote sensing data. J. Geophys. Res. Biogeosci. 2008, 113. [CrossRef]

15. Weiss, M.; Baret, F.; Garrigues, S.; Lacaze, R. LAI and fAPAR CYCLOPES global products derived from
VEGETATION. Part 2: Validation and comparison with MODIS collection 4 products. Remote Sens. Environ.
2007, 110, 317–331. [CrossRef]

16. Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Niño, F.; Weiss, M.;
Samain, O.; et al. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1:
Principles of the algorithm. Remote Sens. Environ. 2007, 110, 275–286. [CrossRef]

191



Remote Sens. 2020, 12, 3122

17. Knyazikhin, Y. MODIS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation Absorbed
by Vegetation (FPAR) Product (MOD 15) Algorithm Theoretical Basis Document. 1999. Available online:
https://modis.gsfc.nasa.gov/data/atbd/atbd_mod15.pdf (accessed on 15 September 2020).

18. Pinty, B.; Andredakis, I.; Clerici, M.; Kaminski, T.; Taberner, M.; Verstraete, M.; Gobron, N.; Plummer, S.;
Widlowski, J.L. Exploiting the MODIS albedos with the Two-stream Inversion Package (JRC-TIP): 1. Effective
leaf area index, vegetation, and soil properties. J. Geophys. Res. Atmos. 2011, 116. [CrossRef]

19. Fang, H.; Jiang, C.; Li, W.; Wei, S.; Baret, F.; Chen, J.M.; Garcia-Haro, J.; Liang, S.; Liu, R.; Myneni, R.B.; et al.
Characterization and intercomparison of global moderate resolution leaf area index (LAI) products: Analysis
of climatologies and theoretical uncertainties. J. Geophys. Res. Biogeosci. 2013, 118, 529–548. [CrossRef]

20. GCOS. Systematic Observation Requirements for Satellite-Based Products for Climate. 2011 Update Supplemetnatl
Details to the Satellite 39 Based Component og the Implementation Plan for the Global Observing System for Climate
in Support of the UNFCCC (2010 Update); Technical Report; World Meteorological Organisation (WMO) 7 bis:
Geneva, Switzerland, 2011.

21. Revill, A.; Florence, A.; MacArthur, A.; Hoad, S.; Rees, R.; Williams, M. Quantifying Uncertainty and
Bridging the Scaling Gap in the Retrieval of Leaf Area Index by Coupling Sentinel-2 and UAV Observations.
Remote Sens. 2020, 12, 1843. [CrossRef]

22. Williams, M.; Bell, R.; Spadavecchia, L.; Street, L.E.; Van Wijk, M.T. Upscaling leaf area index in an Arctic
landscape through multiscale observations. Glob. Chang. Biol. 2008, 14, 1517–1530. [CrossRef]

23. Wang, Q.; Tenhunen, J.; Dinh, N.Q.; Reichstein, M.; Otieno, D.; Granier, A.; Pilegarrd, K. Evaluation of
seasonal variation of MODIS derived leaf area index at two European deciduous broadleaf forest sites.
Remote Sens. Environ. 2005, 96, 475–484. [CrossRef]

24. Wang, J.; Wu, C.; Wang, X.; Zhang, X. A new algorithm for the estimation of leaf unfolding date using MODIS
data over China’s terrestrial ecosystems. ISPRS J. Photogramm. Remote Sens. 2019, 149, 77–90. [CrossRef]

25. Kou, W.; Liang, C.; Wei, L.; Hernandez, A.J.; Yang, X. Phenology-based method for mapping tropical
evergreen forests by integrating of MODIS and landsat imagery. Forests 2017, 8, 34.

26. Clark, D.A. Sources or sinks? The responses of tropical forests to current and future climate and atmospheric
composition. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2004, 359, 477–491. [PubMed]

27. Miller, S.D.; Goulden, M.L.; Hutyra, L.R.; Keller, M.; Saleska, S.R.; Wofsy, S.C.; Figueira, A.M.S.; da Rocha, H.R.;
de Camargo, P.B. Reduced impact logging minimally alters tropical rainforest carbon and energy exchange.
Proc. Natl. Acad. Sci. USA 2011, 108, 19431–19435. [CrossRef] [PubMed]

28. Tang, A.C.I.; Stoy, P.C.; Hirata, R.; Musin, K.K.; Aeries, E.B.; Wenceslaus, J.; Shimizu, M.; Melling, L.
The exchange of water and energy between a tropical peat forest and the atmosphere: Seasonal trends and
comparison against other tropical rainforests. Sci. Total Environ. 2019, 683, 166–175. [CrossRef]

29. Heiskanen, J.; Korhonen, L.; Hietanen, J.; Pellikka, P.K.E. Use of airborne lidar for estimating canopy gap
fraction and leaf area index of tropical montane forests. Int. J. Remote Sens. 2015, 36, 2569–2583. [CrossRef]

30. Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant phenology
and global climate change: Current progresses and challenges. Glob. Chang. Biol. 2019, 25, 1922–1940.

31. Fang, H.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An overview of global leaf area index (LAI): Methods,
products, validation, and applications. Rev. Geophys. 2019, 57, 739–799.

32. Chhabra, A.; Panigrahy, S. Analysis of spatio-temporal patterns of leaf area index in different forest types of
India using high temporal remote sensing data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, 38,
W20.

33. Olivas, P.C.; Oberbauer, S.F.; Clark, D.B.; Clark, D.A.; Ryan, M.G.; O’Brien, J.J.; Ordonez, H. Comparison of
direct and indirect methods for assessing leaf area index across a tropical rain forest landscape. Agric. For.
Meteorol. 2013, 177, 110–116.

34. Fang, H.; Wei, S.; Jiang, C.; Scipal, K. Theoretical uncertainty analysis of global MODIS, CYCLOPES,
and GLOBCARBON LAI products using a triple collocation method. Remote Sens. Environ. 2012, 124,
610–621.

35. Huete, A.R.; Didan, K.; Shimabukuro, Y.E.; Ratana, P.; Saleska, S.R.; Hutyra, L.R.; Yang, W.; Nemani, R.R.;
Myneni, R. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. 2006, 33. [CrossRef]

36. Wagner, F.H.; Hérault, B.; Rossi, V.; Hilker, T.; Maeda, E.E.; Sanchez, A.; Lyapustin, A.I.; Galvão, L.S.; Wang, Y.;
Aragao, L.E. Climate drivers of the Amazon forest greening. PLoS ONE 2017, 12, e0180932. [CrossRef]
[PubMed]

192



Remote Sens. 2020, 12, 3122

37. Wu, J.; Kobayashi, H.; Stark, S.C.; Meng, R.; Guan, K.; Tran, N.N.; Gao, S.; Yang, W.; Restrepo-Coupe, N.;
Miura, T. Biological processes dominate seasonality of remotely sensed canopy greenness in an Amazon
evergreen forest. New Phytol. 2018, 217, 1507–1520. [CrossRef] [PubMed]

38. Wu, J.; Albert, L.P.; Lopes, A.P.; Restrepo-Coupe, N.; Hayek, M.; Wiedemann, K.T.; Guan, K.; Stark, S.C.;
Christoffersen, B.; Prohaska, N. Leaf development and demography explain photosynthetic seasonality in
Amazon evergreen forests. Science 2016, 351, 972–976. [CrossRef] [PubMed]

39. Tang, H.; Dubayah, R. Light-driven growth in Amazon evergreen forests explained by seasonal variations of
vertical canopy structure. Proc. Natl. Acad. Sci. USA 2017, 114, 2640–2644. [CrossRef]

40. Yan, D.; Zhang, X.; Yu, Y.; Guo, W. A comparison of tropical rainforest phenology retrieved from geostationary
(seviri) and polar-orbiting (modis) sensors across the congo basin. IEEE Trans. Geosci. Remote Sens. 2016, 54,
4867–4881. [CrossRef]

41. Adole, T.; Dash, J.; Atkinson, P.M. A systematic review of vegetation phenology in Africa. Ecol. Inform. 2016,
34, 117–128. [CrossRef]

42. Ryan, C.M.; Williams, M.; Grace, J.; Woollen, E.; Lehmann, C.E. Pre-rain green-up is ubiquitous across
southern tropical Africa: Implications for temporal niche separation and model representation. New Phytol.
2017, 213, 625–633. [CrossRef]

43. Piao, S.; Fang, J.; Zhou, L.; Ciais, P.; Zhu, B. Variations in satellite-derived phenology in China’s temperate
vegetation. Glob. Chang. Biol. 2006, 12, 672–685. [CrossRef]

44. Wu, C.; Hou, X.; Peng, D.; Gonsamo, A.; Xu, S. Land surface phenology of China’s temperate ecosystems
over 1999–2013: Spatial–temporal patterns, interaction effects, covariation with climate and implications for
productivity. Agric. For. Meteorol. 2016, 216, 177–187. [CrossRef]

45. Liu, Q.; Fu, Y.H.; Zeng, Z.; Huang, M.; Li, X.; Piao, S. Temperature, precipitation, and insolation effects
on autumn vegetation phenology in temperate China. Glob. Chang. Biol. 2016, 22, 644–655. [CrossRef]
[PubMed]

46. Ge, Q.; Dai, J.; Cui, H.; Wang, H. Spatiotemporal Variability in Start and End of Growing Season in China
Related to Climate Variability. Remote Sens. 2016, 8, 433. [CrossRef]

47. Zhu, H. The Tropical Forests of Southern China and Conservation of Biodiversity. Bot. Rev. 2017, 83, 87–105.
[CrossRef]

48. Wu, J.; Lin, W.; Peng, X.; Liu, W. A review of forest resources and forest biodiversity evaluation system in
China. Int. J. Res. 2013, 2013. [CrossRef]

49. Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems
in China. Nature 2009, 458, 1009–1013. [CrossRef]

50. Tang, X.; Zhao, X.; Bai, Y.; Tang, Z.; Wang, W.; Zhao, Y.; Wan, H.; Xie, Z.; Shi, X.; Wu, B. Carbon pools in
China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA
2018, 115, 4021–4026. [CrossRef] [PubMed]

51. Justice, C.; Belward, A.; Morisette, J.; Lewis, P.; Privette, J.; Baret, F. 2000: Developments in the ‘validation’of
satellite sensor products for the study of the land surface. Int. J. Remote Sens. 2000, 21, 3383–3390.

52. Morisette, J.T.; Baret, F.; Privette, J.L.; Myneni, R.B.; Nickeson, J.E.; Garrigues, S.; Shabanov, N.V.; Weiss, M.;
Fernandes, R.A.; Leblanc, S.G. Validation of global moderate-resolution LAI products: A framework proposed
within the CEOS land product validation subgroup. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1804–1817.
[CrossRef]

53. Post, H.; Hendricks Franssen, H.J.; Han, X.; Baatz, R.; Montzka, C.; Schmidt, M.; Vereecken, H. Evaluation
and uncertainty analysis of regional-scale CLM4.5 net carbon flux estimates. Biogeosciences 2018, 15, 187–208.
[CrossRef]

54. Rüdiger, C.; Albergel, C.; Mahfouf, J.F.; Calvet, J.C.; Walker, J.P. Evaluation of the observation operator
Jacobian for leaf area index data assimilation with an extended Kalman filter. J. Geophys. Res. Atmos. 2010,
115. [CrossRef]

55. Viskari, T.; Hardiman, B.; Desai, A.R.; Dietze, M.C. Model-data assimilation of multiple phenological
observations to constrain and predict leaf area index. Ecol. Appl. 2015, 25, 546–558. [CrossRef]

56. Fu, B.; Li, S.; Yu, X.; Yang, P.; Yu, G.; Feng, R.; Zhuang, X. Chinese ecosystem research network: Progress and
perspectives. Ecol. Complex. 2010, 7, 225–233. [CrossRef]

193



Remote Sens. 2020, 12, 3122

57. Yu, G.; Chen, Z.; Piao, S.; Peng, C.; Ciais, P.; Wang, Q.; Li, X.; Zhu, X. High carbon dioxide uptake by
subtropical forest ecosystems in the East Asian monsoon region. Proc. Natl. Acad. Sci. USA 2014, 111,
4910–4915. [CrossRef] [PubMed]

58. Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification.
Eur. Geosci. Union 2007, 4, 439–473.

59. Li-Cor, I. LAI-2000 Plant Canopy Analyzer Instruction Manual; LI-COR Inc.: Lincoln, NE, USA, 1992.
60. Wu, D.; Wei, W.; Zhang, S. Protocols for Standard Biological Observation and Measurement in Terrestrial Ecosystems;

China Environmental Science Pres: Beijing, China, 2007.
61. Knyazikhin, Y.; Martonchik, J.; Myneni, R.B.; Diner, D.; Running, S.W. Synergistic algorithm for estimating

vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS
and MISR data. J. Geophys. Res. Atmos. 1998, 103, 32257–32275. [CrossRef]

62. Verger, A.; Baret, F.; Weiss, M. Atbd for Lai, Fapar and Fcover from Proba-V Products Collection 1km Version
2; 2019, Issue I1.41. Available online: https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/
CGLOPS1_ATBD_LAI1km-V2_I1.41.pdf (accessed on 15 April 2020).

63. Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.-K.
A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3,
68–72. [CrossRef]

64. Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI
land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [CrossRef]

65. Zanter, K.; Department of the Interior, U.S. Geological Survey. Landsat 4-7 Surface Reflectance (LEDAPS)
Product Guide. Version 2.0. 2019, EROS, Sioux Falls, South Dakota. Available online: https://www.usgs.gov/
media/files/landsat-4-7-surface-reflectance-code-ledaps-product-guide (accessed on 15 September 2020).

66. Zanter, K.; Department of the Interior, U.S. Geological Survey. Landsat 8 Surface Reflectance Code (LASRC)
Product Guide. Version 2.0. 2019, EROS, Sioux Falls, South Dakota. Available online: https://www.usgs.gov/
media/files/land-surface-reflectance-code-lasrc-product-guide (accessed on 15 September 2020).

67. USGS. GTOPO30: Global 30 Arc-Seconds Digital Elevation Model [Data Set]. Available
online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-30-arc-second-
elevation-gtopo30?qt-science_center_objects=0#qt-science_center_objects (accessed on 15 September 2020).

68. Reuter, H.I.; Nelson, A.; Jarvis, A. An evaluation of void-filling interpolation methods for SRTM data. Int. J.
Geogr. Inf. Sci. 2007, 21, 983–1008. [CrossRef]

69. Jun, C.; Ban, Y.; Li, S. Open access to Earth land-cover map. Nature 2014, 514, 434. [CrossRef]
70. Wu, G.; Anafi, R.C.; Hughes, M.E.; Kornacker, K.; Hogenesch, J.B. MetaCycle: An integrated R package to

evaluate periodicity in large scale data. Bioinformatics 2016, 32, 3351–3353. [CrossRef]
71. Yang, R.; Su, Z. Analyzing circadian expression data by harmonic regression based on autoregressive spectral

estimation. Bioinformatics 2010, 26, i168–i174. [CrossRef] [PubMed]
72. Hughes, M.E.; Hogenesch, J.B.; Kornacker, K. JTK_CYCLE: An efficient nonparametric algorithm for detecting

rhythmic components in genome-scale data sets. J. Biol. Rhythms 2010, 25, 372–380. [CrossRef] [PubMed]
73. Glynn, E.F.; Chen, J.; Mushegian, A.R. Detecting periodic patterns in unevenly spaced gene expression time

series using Lomb–Scargle periodograms. Bioinformatics 2006, 22, 310–316. [CrossRef] [PubMed]
74. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:

Vienna, Austria, 2017; Available online: https://www.r-project.org/ (accessed on 3 December 2018).
75. Hijmans, R.J.; Van Etten, J.; Cheng, J.; Mattiuzzi, M.; Sumner, M.; Greenberg, J.A.; Lamigueiro, O.P.; Bevan, A.;

Racine, E.B.; Shortridge, A. Package ‘raster’. R package version 2.5-8 (2015).
76. Weiss, M.; Baret, F.; Smith, G.; Jonckheere, I.; Coppin, P. Review of methods for in situ leaf area index (LAI)

determination: Part II. Estimation of LAI, errors and sampling. Agric. For. Meteorol. 2004, 121, 37–53.
[CrossRef]

77. Garrigues, S.; Allard, D.; Baret, F.; Weiss, M. Influence of landscape spatial heterogeneity on the non-linear
estimation of leaf area index from moderate spatial resolution remote sensing data. Remote Sens. Environ.
2006, 105, 286–298. [CrossRef]

78. Fuster, B.; Sánchez-Zapero, J.; Camacho, F.; García-Santos, V.; Verger, A.; Lacaze, R.; Weiss, M.; Baret, F.;
Smets, B. Quality Assessment of PROBA-V LAI, fAPAR and fCOVER Collection 300 m Products of Copernicus
Global Land Service. Remote Sens. 2020, 12, 1017. [CrossRef]

79. Nagendra, H. Using remote sensing to assess biodiversity. Int. J. Remote Sens. 2001, 22, 2377–2400. [CrossRef]

194



Remote Sens. 2020, 12, 3122

80. Liu, Z.; Shao, Q.; Liu, J. The Performances of MODIS-GPP and -ET Products in China and Their Sensitivity to
Input Data (FPAR/LAI). Remote Sens. 2015, 7, 135–152. [CrossRef]

81. Li, X.; Lu, H.; Yu, L.; Yang, K. Comparison of the spatial characteristics of four remotely sensed leaf area index
products over China: Direct validation and relative uncertainties. Remote Sens. 2018, 10, 148. [CrossRef]

82. Shabanov, N.V.; Huang, D.; Yang, W.; Tan, B.; Knyazikhin, Y.; Myneni, R.B.; Ahl, D.E.; Gower, S.T.; Huete, A.R.;
Aragão, L.E.O. Analysis and optimization of the MODIS leaf area index algorithm retrievals over broadleaf
forests. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1855–1865. [CrossRef]

83. Yang, W.; Shabanov, N.; Huang, D.; Wang, W.; Dickinson, R.; Nemani, R.; Knyazikhin, Y.; Myneni, R. Analysis
of leaf area index products from combination of MODIS Terra and Aqua data. Remote Sens. Environ. 2006,
104, 297–312. [CrossRef]

84. Yan, K.; Park, T.; Yan, G.; Chen, C.; Yang, B.; Liu, Z.; Nemani, R.R.; Knyazikhin, Y.; Myneni, R.B. Evaluation
of MODIS LAI/FPAR Product Collection 6. Part 1: Consistency and Improvements. Remote Sens. 2016, 8, 359.
[CrossRef]

85. Jiang, C.; Ryu, Y.; Fang, H.; Myneni, R.; Claverie, M.; Zhu, Z. Inconsistencies of interannual variability and
trends in long-term satellite leaf area index products. Glob. Chang. Biol. 2017, 23, 4133–4146. [CrossRef]
[PubMed]

86. Cammalleri, C.; Verger, A.; Lacaze, R.; Vogt, J. Harmonization of GEOV2 fAPAR time series through MODIS
data for global drought monitoring. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 1–12. [CrossRef] [PubMed]

87. Pisek, J.; Chen, J.M.; Alikas, K.; Deng, F. Impacts of including forest understory brightness and foliage
clumping information from multiangular measurements on leaf area index mapping over North America.
J. Geophys. Res. Biogeosci. 2010, 115. [CrossRef]

88. Verger, A.; Baret, F.; Weiss, M. Performances of neural networks for deriving LAI estimates from existing
CYCLOPES and MODIS products. Remote Sens. Environ. 2008, 112, 2789–2803. [CrossRef]

89. Claverie, M.; Vermote, E.F.; Weiss, M.; Baret, F.; Hagolle, O.; Demarez, V. Validation of coarse spatial resolution
LAI and FAPAR time series over cropland in southwest France. Remote Sens. Environ. 2013, 139, 216–230.
[CrossRef]

90. Tian, Y.; Wang, Y.; Zhang, Y.; Knyazikhin, Y.; Bogaert, J.; Myneni, R.B. Radiative transfer based scaling of LAI
retrievals from reflectance data of different resolutions. Remote Sens. Environ. 2003, 84, 143–159. [CrossRef]

91. Bloom, A.A.; Exbrayat, J.-F.; Van Der Velde, I.R.; Feng, L.; Williams, M. The decadal state of the terrestrial
carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times. Proc. Natl. Acad.
Sci. USA 2016, 113, 1285–1290. [CrossRef]

92. Raupach, M.R.; Rayner, P.J.; Barrett, D.J.; DeFries, R.S.; Heimann, M.; Ojima, D.S.; Quegan, S.; Schmullius, C.C.
Model–data synthesis in terrestrial carbon observation: Methods, data requirements and data uncertainty
specifications. Glob. Chang. Biol. 2005, 11, 378–397. [CrossRef]

93. Xie, X.; Li, A.; Jin, H.; Tan, J.; Wang, C.; Lei, G.; Zhang, Z.; Bian, J.; Nan, X. Assessment of five satellite-derived
LAI datasets for GPP estimations through ecosystem models. Sci. Total Environ. 2019, 690, 1120–1130.
[CrossRef] [PubMed]

94. Liu, Y.; Xiao, J.; Ju, W.; Zhu, G.; Wu, X.; Fan, W.; Li, D.; Zhou, Y. Satellite-derived LAI products exhibit large
discrepancies and can lead to substantial uncertainty in simulated carbon and water fluxes. Remote Sens.
Environ. 2018, 206, 174–188. [CrossRef]

95. Xiao, J.; Chevallier, F.; Gomez, C.; Guanter, L.; Hicke, J.A.; Huete, A.R.; Ichii, K.; Ni, W.; Pang, Y.; Rahman, A.F.
Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ.
2019, 233, 111383. [CrossRef]

96. Scholze, M.; Buchwitz, M.; Dorigo, W.; Guanter, L.; Quegan, S. Reviews and syntheses: Systematic Earth
observations for use in terrestrial carbon cycle data assimilation systems. Biogeosciences 2017, 14, 3401–3429.
[CrossRef]

97. Dietze, M.C. Ecological Forecasting; Princeton University Press: Princeton, NJ, USA, 2017.
98. López-Blanco, E.; Exbrayat, J.-F.; Lund, M.; Christensen, T.R.; Tamstorf, M.P.; Slevin, D.; Hugelius, G.;

Bloom, A.A.; Williams, M. Evaluation of terrestrial pan-Arctic carbon cycling using a data-assimilation
system. Earth Syst. Dyn. 2019, 10, 233–255. [CrossRef]

99. MacBean, N.; Peylin, P.; Chevallier, F.; Scholze, M.; Schuermann, G. Consistent assimilation of multiple data
streams in a carbon cycle data assimilation system. Geosci. Model. Dev. 2016, 9, 3569–3588. [CrossRef]

195



Remote Sens. 2020, 12, 3122

100. De Kauwe, M.G.; Disney, M.; Quaife, T.; Lewis, P.; Williams, M. An assessment of the MODIS collection 5
leaf area index product for a region of mixed coniferous forest. Remote Sens. Environ. 2011, 115, 767–780.
[CrossRef]

101. Chevallier, F. Impact of correlated observation errors on inverted CO2 surface fluxes from OCO measurements.
Geophys. Res. Lett. 2007, 34. [CrossRef]

102. Xu, B.; Li, J.; Park, T.; Liu, Q.; Zeng, Y.; Yin, G.; Zhao, J.; Fan, W.; Yang, L.; Knyazikhin, Y. An integrated
method for validating long-term leaf area index products using global networks of site-based measurements.
Remote Sens. Environ. 2018, 209, 134–151. [CrossRef]

103. Stark, S.C.; Leitold, V.; Wu, J.L.; Hunter, M.O.; de Castilho, C.V.; Costa, F.R.; McMahon, S.M.; Parker, G.G.;
Shimabukuro, M.T.; Lefsky, M.A. Amazon forest carbon dynamics predicted by profiles of canopy leaf area
and light environment. Ecol. Lett. 2012, 15, 1406–1414. [CrossRef]

104. Jucker, T.; Hardwick, S.R.; Both, S.; Elias, D.M.; Ewers, R.M.; Milodowski, D.T.; Swinfield, T.; Coomes, D.A.
Canopy structure and topography jointly constrain the microclimate of human-modified tropical landscapes.
Glob. Chang. Biol. 2018, 24, 5243–5258. [CrossRef] [PubMed]

105. Li, X.; Liu, S.; Li, H.; Ma, Y.; Wang, J.; Zhang, Y.; Xu, Z.; Xu, T.; Song, L.; Yang, X. Intercomparison of six
upscaling evapotranspiration methods: From site to the satellite pixel. J. Geophys. Res. Atmos. 2018, 123,
6777–6803. [CrossRef]

106. Shi, Y.; Wang, J.; Qin, J.; Qu, Y. An upscaling algorithm to obtain the representative ground truth of LAI time
series in heterogeneous land surface. Remote Sens. 2015, 7, 12887–12908. [CrossRef]

107. Hilker, T.; Lyapustin, A.I.; Tucker, C.J.; Sellers, P.J.; Hall, F.G.; Wang, Y. Remote sensing of tropical ecosystems:
Atmospheric correction and cloud masking matter. Remote Sens. Environ. 2012, 127, 370–384. [CrossRef]

108. Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.;
Luthcke, S. The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s
forests and topography. Sci. Remote Sens. 2020, 1, 100002. [CrossRef]

109. Narine, L.L.; Popescu, S.C.; Malambo, L. Using ICESat-2 to Estimate and Map Forest Aboveground Biomass:
A First Example. Remote Sens. 2020, 12, 1824. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

196



remote sensing 

Article

Analysis of the Spatial Differences in Canopy Height
Models from UAV LiDAR and Photogrammetry

Qingwang Liu 1,2,†, Liyong Fu 1,3,†, Qiao Chen 1,†, Guangxing Wang 4,*, Peng Luo 1,

Ram P. Sharma 5, Peng He 6, Mei Li 1, Mengxi Wang 1 and Guangshuang Duan 1,7

1 Research Institute of Forest Resource Information Techniques, Chinese Academy of Forestry,
Beijing 100091, China; liuqw@ifrit.ac.cn (Q.L.); fuly@ifrit.ac.cn (L.F.); chenq@ifrit.ac.cn (Q.C.);
luopeng@ifrit.ac.cn (P.L.); limei@ifrit.ac.cn (M.L.); wangmx@ifrit.ac.cn (M.W.); duangs@ifrit.ac.cn (G.D.)

2 Key Laboratory of Forestry Remote Sensing and Information System,
National Forestry and Grassland Administration, Beijing 100091, China

3 Key Laboratory of Forest Management and Growth Modeling,
National Forestry and Grassland Administration, Beijing 100091, China

4 School of Earth Systems and Sustainability, Southern Illinois University at Carbondale,
Carbondale, IL 62901, USA

5 Institute of Forestry, Tribhuwan Univeristy, Kritipur, Kathmandu 44600, Nepal; sharmar@fld.czu.cz
6 Central South Inventory and Planning Institute, National Forestry and Grassland Administration,

Changsha 410014, China; hepeng19880407@163.com
7 College of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, China
* Correspondence: gxwang@siu.edu; Tel.: +1-618-453-6017
† These authors contributed equally to this work.

Received: 19 July 2020; Accepted: 1 September 2020; Published: 6 September 2020

Abstract: Forest canopy height is one of the most important spatial characteristics for forest resource
inventories and forest ecosystem modeling. Light detection and ranging (LiDAR) can be used to
accurately detect canopy surface and terrain information from the backscattering signals of laser
pulses, while photogrammetry tends to accurately depict the canopy surface envelope. The spatial
differences between the canopy surfaces estimated by LiDAR and photogrammetry have not been
investigated in depth. Thus, this study aims to assess LiDAR and photogrammetry point clouds and
analyze the spatial differences in canopy heights. The study site is located in the Jigongshan National
Nature Reserve of Henan Province, Central China. Six data sets, including one LiDAR data set and five
photogrammetry data sets captured from an unmanned aerial vehicle (UAV), were used to estimate
the forest canopy heights. Three spatial distribution descriptors, namely, the effective cell ratio (ECR),
point cloud homogeneity (PCH) and point cloud redundancy (PCR), were developed to assess the
LiDAR and photogrammetry point clouds in the grid. The ordinary neighbor (ON) and constrained
neighbor (CN) interpolation algorithms were used to fill void cells in digital surface models (DSMs)
and canopy height models (CHMs). The CN algorithm could be used to distinguish small and large
holes in the CHMs. The optimal spatial resolution was analyzed according to the ECR changes of
DSMs or CHMs resulting from the CN algorithms. Large negative and positive variations were
observed between the LiDAR and photogrammetry canopy heights. The stratified mean difference
in canopy heights increased gradually from negative to positive when the canopy heights were
greater than 3 m, which means that photogrammetry tends to overestimate low canopy heights
and underestimate high canopy heights. The CN interpolation algorithm achieved smaller relative
root mean square errors than the ON interpolation algorithm. This article provides an operational
method for the spatial assessment of point clouds and suggests that the variations between LiDAR
and photogrammetry CHMs should be considered when modeling forest parameters.

Keywords: digital surface model; digital terrain model; canopy height model; constrained neighbor
interpolation; ordinary neighbor interpolation; point cloud density; stereo imagery
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1. Introduction

Forest structure information is a prerequisite for forest resource inventories and forest ecosystem
modeling [1–3]. Various techniques and methods can be used to obtain such information. Light
detection and ranging (LiDAR) and photogrammetry have the ability to depict the three-dimensional
canopy structure of forests and therefore can be used to monitor structural changes over time [4–8].
Unmanned aerial vehicle (UAV) LiDAR, hereafter called LiDAR, can be used to accurately measure
the spatial distributions of forest canopies with a high density of point clouds [9–13]. Laser pulses
can penetrate the gaps between branches and leaves of tree crowns and detect middle parts or areas
under forest [14–17]. LiDAR point clouds are usually classified as vegetation, ground and other
objects, which are used to generate digital surface models (DSMs) and digital terrain models (DTMs)
using interpolation algorithms [10,18,19]. Generally, a DSM is created using the maximum algorithm
in a regular grid at the given spatial resolution, which is determined according to the point cloud
density [20–22]. A canopy height model (CHM) depicts the variations in the forest canopy height
above the terrain, and these height variations can be determined by subtracting the DTM from a
DSM [3,10,14,23–27]. Many algorithms that estimate the parameters at the individual tree or sample
plot level are developed based on a CHM [14–16,23,26–32].

UAV photogrammetry, hereafter called photogrammetry, usually acquires images with high
areas of overlap (usually 60–90% along-track and 30–60% across-track), which are processed to build
the spatial structure of forest canopies using stereo imagery algorithms, such as structure from
motion (SfM) [25,32–37] or semi-global matching [24,38–41]. Dense point clouds reconstructed from
image pairs are used to create a DSM with a similar algorithm used for LiDAR point clouds [23,42].
The distribution of dense point clouds is substantially affected by the image along- and across-track
overlap, flying height, terrain, and other factors [43–46]. It is quite difficult to reconstruct the terrain
under dense forest due to mutual obscuration among tree crowns. A photogrammetry CHM (P-CHM)
can be generated as the difference between a photogrammetry DSM (P-DSM) and LiDAR DTM
(L-DTM) [23,33,35,47]. Forest attributes can be precisely estimated using the CHMs of either LiDAR or
photogrammetry [23,25,48–50].

The observation geometry of LiDAR is obviously different from that of photogrammetry [23,46].
LiDAR can directly measure the spatial positions of branches and leaves at different heights,
while photogrammetry obtains the surface envelope of the forest canopy using a stereo imagery
algorithm. Thus, canopy heights estimated by LiDAR and photogrammetry show inherent spatial
differences, and these differences have not been discussed in depth in the literature. The spatial
resolutions of LiDAR and photogrammetry CHMs vary from centimetres to metres based on the
different point cloud densities [9,14,15,23,25–27,37]. Detailed canopy structures tend to be suppressed
with a coarse spatial resolution. The densities of LiDAR and photogrammetry point clouds are unevenly
distributed due to various factors, such as flying height and crown shadows, and these variations
produce varied points within different grid cells at a specified spatial resolution. A cell with one or
more points is referred to as an effective cell (valid cell), while a cell without any points is referred to as
a void cell (no data, missing or blank cell). The void cells can form variable holes in the grid. These
holes are different from canopy gaps (canopy openings) created by the snapping and falling of trees,
the impacts of insects or pathogens, or the mortality of single trees or small groups of trees; moreover,
these gaps will eventually be closed in the ecological processes of forest ecosystems [14,23].

The size of the holes in a grid can be expressed as the number of continuous void cells, which varies
at differing spatial resolutions. The same-sized hole will have more void cells at a fine resolution
than at a coarse resolution. Some void cells in a hole will have effective neighboring cells, which are
referred to as outer void cells, while the other void cells within a hole are referred to as inner void
cells. The outer and inner void cells can be estimated or interpolated from the effective cells by using
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the ordinary neighbor (ON) interpolation algorithm. The interpolated inner void cells are subject to
more uncertainties than the interpolated outer void cells considering the spatial relevance [9,14,51].
The number of effective neighboring cells can also affect the uncertainties of interpolated cells. The
interpolated cells with many effective neighboring cells will have higher confidence than those with
few effective neighboring cells. The ON algorithm should be constrained to obtain more reliable values
with more effective neighboring cells.

The distribution of effective or void cells in a grid can reflect the homogeneity of the point cloud
to some degree. Certain questions remain regarding the distribution of point clouds and estimated
canopy heights, such as (1) how can the distribution of point clouds for a given spatial resolution be
quantitatively described, (2) what spatial resolution is optimal for the specified point cloud, and (3) are
spatial differences of the canopy heights depicted by LiDAR and photogrammetry affected by different
spatial resolutions?

The purpose of this study was to assess the spatial distribution of point clouds and compare the
differences between CHMs derived by LiDAR and photogrammetry. Three descriptors of the spatial
distribution were introduced, namely, the effective cell ratio (ECR), point cloud homogeneity (PCH)
and point cloud redundancy (PCR), to characterize the point clouds and the derived CHMs in the grid.
The ON and constrained neighbor (CN) interpolation algorithms were used to fill the void cells of
CHMs, and the CN algorithm was used to distinguish small and large holes. LiDAR CHMs were
used as references to assess the photogrammetry CHMs that were created at different flying heights
and with different image overlaps. This article will provide an operational method for point cloud
assessment and spatial distribution analysis.

2. Materials and Methods

2.1. Study Site

The study site (114◦05′ E, 31◦52′ N) is located in the Jigongshan National Nature Reserve of Henan
Province, Central China (Figure 1). This area belongs to a transition zone from a subtropical to temperate
climate zone. The area covered is approximately 340 by 360 m, and the terrain elevation ranges from
approximately 115 to 198 m. The forest is dominated by deciduous broad-leaved trees, including
sawtooth oak (Quercus acutissima Carruth.), Chinese cork oak (Quercus variabilis Blume), Chinese
sweet gum or Formosan gum (Liquidambar formosana Hance), and bald cypress (Taxodium distichum (L.)
Rich.). Abundant shrubs are observed in the understory layer. This site has been used for studies on
atmospheric nitrogen deposition in forest ecosystems [52,53].

 
Figure 1. (a) Location of the study site in the Jigongshan Natural Reserve, Xinyang, Henan Province,
China; and (b) true color map of the study site (red dots indicate the centres of ground plots).
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The ground plots used were square with a size of 25 × 25 m (625 m2), which were set up on the
basis of the existing studies [52,53], and there were a total of 28 ground plots. The parameters of
individual trees with a diameter at breast height (DBH) ≥5 cm, including the DBH (cm), tree height
(m), crown radius in four directions (m) and species, were determined in August 2017 (Table A1). The
number of stems within the ground plots varied from 30 to 96. Lorey’s heights of the ground plots
ranged from 15.7 to 31.2 m.

2.2. UAV Data Sets

The LiDAR data and photogrammetry images were acquired in August 2017. The LiDAR
system used in this study is a Velodyne laser scanning system (VLP-16) with a high-precision global
navigation satellite system and inertial measurement unit (GNSS and IMU) mounted on an eight-rotor
aircraft [54,55]. The laser sensor has 16 channels with maximum scan angles of 30◦ and 360◦ in
the along- and across-track directions, respectively. More detailed specifications of the LiDAR and
photogrammetry system are shown in Table 1. The flying heights of the aircraft varied from 50 m to
55 m above the terrain or take-off point of the UAV at a speed of approximately 4.8 m s−1.

Table 1. Light detection and ranging (LiDAR) and photogrammetry system specifications.

LiDAR

UAV model GV1300 Rotor 8
LiDAR model VLP-16 PRF 300 kHz

Laser wavelength 905 nm Laser divergence 3 mrad
Scan pattern Rotate Mirror Scan FOV 30◦ × 360◦

Echoes 2 Max Scan frequency 20 Hz
Range 2 m–120 m Vertical Accuracy <5 cm

Photogrammetry

UAV model GV1500 Rotor 6
Camera model EOS 5DS Pixels 50,320,896

CMOS size 36.0 × 24.0 mm Image size 8688 × 5792 pixels
FOV 54.4◦ × 37.8◦ Focal length 35 mm

Pixel unit 4.1 × 4.1 μm Bands R/G/B

The LiDAR data acquired on 10 August 2017 did not cover the entire study area because the
travel distances of some laser pulses exceeded the maximum range (120 m) of the LiDAR system.
The areas with elevations below 130 m had almost no data, and they were mainly located in the west
and southwest parts of the study site. The second LiDAR flight was designed to obtain supplementary
point cloud data for the areas without data on 11 August 2017. The point clouds of the two flights
were matched and combined as a single LiDAR data set (denoted as L-D55). Detailed information on
the LiDAR data set is shown in Table A2. The point cloud density of LiDAR data varied from 0 to
1757 points m−2, with a mean of 168 points m−2 in the grid at a 1.0 m resolution (Figure A1).

The images were captured using a Canon EOS 5DS camera with a high-precision GNSS mounted
on a six-rotor aircraft (see Table 1 for detailed specifications) [56,57], and the lens had a focal length
of 35 mm. The size of the image consisted of 8688 × 5792 pixels, which corresponds to the size of
the sensor of 36.0 × 24.0 mm. The photogrammetry system was operated at different heights varying
from 80 to 300 m (the ground sample distance (GSD) varied from 1 cm to 4 cm) with image overlaps
varying from 64% to 84% to obtain five data sets (denoted as P1-D300, P2-D150, P3-D150, P4-D150
and P5-D80) covering the same area as shown in Table A2. P1-D300 was acquired at a flying height of
300 m with a corresponding GSD of 4 cm. P2-D150, P3-D150 and P4-D150 were obtained at 150 m
with a GSD of 2 cm using different across-track overlaps and flying speeds. P5-D80 was obtained
at a flying height of 80 m with a corresponding GSD of 1 cm. The images were captured with an
exposure time of 1/800 s or 1/1000 s on cloudy or sunny days using an automatic aperture and an ISO
of 160. The images were processed to build a dense point cloud of the forest structure using the SfM
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method [58]. Several steps were involved to generate high-precision dense point clouds. The images
were aligned with high accuracy using the camera positions obtained by static differential processing
of high-precision GNSS data. The camera and lens parameters, including the focal length, principal
point coordinates, affinity and skew (non-orthogonality) transformation coefficients, radial distortion
coefficients, and tangential distortion coefficients, were optimized to minimize the camera position
errors using the optimize camera alignment tool [58]. The dense points were built with high quality
and mild depth filtering to maintain detailed characteristics of the forest canopies. The point cloud
density of the photogrammetry data sets varied from 1 to 12,761 points m−2, with means ranging from
257 to 2562 points m−2 in the grid at a 1.0 m resolution (Figure A1).

2.3. Data Processing

The LiDAR point cloud was classified as ground, vegetation, building, and noise using
TerraSolid [59]. The noise points were each carefully identified by visual evaluation. The ground
algorithm was used to separate ground points from other objects with a maximum building size of
20 m, a terrain angle of 88◦, an iteration angle of 6◦ to the plane and an iteration distance of 1.4 m to
the plane. The ground points were modified by visual evaluation to eliminate false ground points.
The points of artificial objects, such as water towers and buildings, were manually recognized. The
remaining points were classified as vegetation after other objects were excluded. The L-DTM was
generated from the ground points by a triangulated irregular network interpolation algorithm with
spatial resolutions of 0.1, 0.2, 0.5, and 1.0 m [9,23,35,60,61]. The original LiDAR DSM (L-DSM) was
created from the vegetation and ground points by using maximum algorithms with spatial resolutions
of 0.1, 0.2, 0.5, and 1.0 m [9,14,28,61]. The original LiDAR CHM (L-CHM) was produced based on the
difference between the original L-DSM and L-DTM. The void cells of the original L-DSM were partially
interpolated by the CN interpolation algorithm to generate the interpolated L-DSM. The interpolated
L-CHM was produced based on the difference between the interpolated L-DSM and L-DTM.

The displacements between the LiDAR and photogrammetry point clouds were adjusted using
the reference points extracted from the buildings and open ground area. The horizontal displacement
was calculated based on roof ridges and building edges. The vertical displacement was computed
according to the ground control points after horizontal displacement was applied. The aligned data sets
were generated after the vertical displacement was applied. The photogrammetry dense point cloud
was used to generate the original P-DSM by using the maximum algorithm. The interpolated P-DSM
was created by the CN interpolation algorithm. The original P-CHM and the interpolated P-CHM were
created from the corresponding P-DSMs normalized by the L-DTM [23–25,32,33,37,48]. The DSMs and
CHMs from LiDAR and photogrammetry were masked using the boundaries of the buildings and
water towers to maintain consistency. The boundaries of the buildings were digitized according to the
building points of the point cloud. Seventeen water towers with heights of approximately 38 m were
distributed across the study site. The centres of the water towers were determined and used to create
circular boundaries by buffering with a radius of 1.2 m.

2.4. Descriptors of Spatial Distribution

This study used three descriptors of the spatial distribution, namely, the ECR, PCH and PCR,
to quantitatively depict the characteristics of the point cloud in the grid at the given spatial resolution.
The original DSMs or CHMs obtained from LiDAR and photogrammetry may have void cells
due to complex conditions, such as the laser scanning patterns, flight attitudes, and sunshine
conditions [14,31,51]. The ECR is defined as the proportion of effective cells to total cells (Equation (1))
and used to depict the distribution patterns of effective and void cells. The ECR reflects the uneven
characteristics of point clouds to some degree. A small ECR means that many points are clustered in a
small area.

ECR =
NE

N
(1)
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where ECR is the effective cell ratio, NE is the number of effective cells, and N is the number of total
cells, including effective and void cells. If the ECR equals 1, then the point cloud is evenly distributed
over each cell of the grid.

Different densities of points may occur in grid cells for different data sets with the same ECR. To
explain the homogeneity of the point cloud distributed in the grid, the PCH is defined in Equation (2)
by introducing the number of points per cell, which can be calculated as the product of the point cloud
density per square metre and the cell area.

PCH =

⎧⎪⎪⎨⎪⎪⎩
(

ECR
DC

)1/DC

ECRDC

, i f DC < 1
, i f DC ≥ 1

(2)

where PCH is the point cloud homogeneity, DC is the mean number of points per cell by DC = n/N,
n is the number of total points, and N is the number of total cells. If DC equals 1, then one point is
located in each cell and the PCH is only determined by effective cells. If the ECR equals 1, then the
PCH will be 1, regardless of how many points are located in each cell.

The PCR depicts the richness of points in each cell as defined in Equation (3). A lower PCH
corresponds to a higher PCR, which indicates that some cells hold more unnecessary points. An evenly
distributed data set should have a higher PCH and lower PCR.

PCR = 1− ECR
DC

(3)

where PCR is the point cloud redundancy, ECR is the effective cell ratio, and DC is the mean number
of points per cell. If the ECR and DC both equal 1, then the points are ideally distributed evenly in
each cell and the PCR equals 0. If the DC is much greater than the ECR, then the PCR approximately
approaches 1.

The ECR, PCH, and PCR of the point cloud could also be calculated based on the interpolated
DSM or CHM. The interpolation introduced some degree of variation in these descriptors of the
spatial distribution.

2.5. Constrained Neighbor Interpolation

The original DSM or CHM had void cells in the grid at a specified spatial resolution due to the
uneven distribution of point clouds. The void cells can be filled using the effective neighboring cells.
The number of effective neighboring cells (i.e., not including void neighboring cells) for one void cell
varies from 1 to 8, which affects the spatial variation in the filled cells [9,14]. The CN interpolation
algorithm is used to calculate the interpolated values for the void cells (Equation (4)).

Ci =

∑k
j=1 NCj

k
, k ≤ 8, i f k ≥ Q (4)

where Ci (m) is the interpolated value of the ith void cell, NCj (m) is the value of the jth effective
neighboring cell of the ith void cell, k is the number of effective neighboring cells of the ith void
cell, and Q is the threshold of effective neighboring cells of the void cell. The ith void cell will be
interpolated if the number of its effective neighboring cells is not less than the threshold (Q).

The value of the threshold Q varies from 1 to 8. The void cell will be interpolated if there is at least
one effective neighboring cells; that is, Q = 1. The ON interpolation algorithm will similarly interpolate
the void cells with any effective neighboring cells, which can be regarded as the special case (Q = 1) of
the CN interpolation algorithm. The CN and ON interpolation algorithms use an iterative process to
interpolate the void cells. Some void cells with effective neighboring cells can be interpolated in the
first loop, while other void cells may be interpolated in the second or more loops.

202



Remote Sens. 2020, 12, 2884

The void cells of different holes have a varied number of effective neighboring cells (Figure 2).
For example, the maximum number of effective neighboring cells of the void cells in Figure 2a is 4,
which will not be interpolated if the threshold Q equals 5. Eight void cells will be interpolated in the
first loop and 4 void cells interpolated in the second loop if the threshold Q equals 4. In practice, any
holes could be interpolated by iterative loops if the threshold Q is less than 5. The runs of iterative
loops will vary from several times to dozens of times depending on the number of void cells. The
CN algorithm will continue to loop until every hole is either eliminated or reduced to a specific size
as depicted in Figure 2. The double width cross pattern of 12 cells would be the minimum hole if Q
equals 5 under normal circumstances in Figure 2a. Another rarely occurring case would be that the
interleaved chess pattern in Figure 2e could not be interpolated. The small holes in Figure 2b–d will
not be interpolated if the threshold Q equals 6, 7, or 8, while those holes can be filled if the threshold Q
equals 5. Therefore, the threshold of Q = 5 is chosen for filling void cells in this study.

Q Q Q Q Q

Figure 2. Minimum holes left by the constrained neighbor (CN) interpolation algorithm with different
threshold values (Q) (void cells are white, and effective cells are grey): (a) Q = 5; (b) Q = 6; (c) Q = 7;
(d) Q = 8; and (e) Q ≥ 5.

The hole in Figure 2a is larger than the other holes in Figure 2, and it is referred to as the diagnostic
hole, which is used as the criteria to distinguish small and large holes. Small holes have one or more
void cells, and the numbers of columns and rows of void cells were not less than 4. Large holes have
twelve or more void cells, and both the numbers of columns and rows were equal to or greater than 4.
The actual area of the diagnostic hole was determined based on the spatial resolution, for example,
the area was 0.12 or 0.48 m2 with a spatial resolution of 0.1 or 0.2 m, respectively.

2.6. Analysis of Spatial Resolution

The spatial resolution will affect the number of points in each cell of the original DSM or CHM.
A fine spatial resolution tends to result in many void cells in the grid, while a coarse spatial resolution
will discard many points in the effective cells of the grid for a given point cloud, which represents a
compromise for determining the spatial resolution [9,14].

The spatial distribution characteristics of point clouds depend on the spatial resolution. The ECR
will increase as the number of void cells decreases at a coarse spatial resolution. The interpolated
void cells by the CN algorithm will also, to some degree, cause the ECR to increase. The variation
in the ECR can be used to analyze the optimal spatial resolution for the DSM or CHM, in which as
much information about the point cloud is retained as possible so that the void cells can be confidently
interpolated in the grid. Series of ECR pairs of original DSMs and interpolated DSMs by the CN
algorithm can be calculated at different spatial resolutions. The difference between the ECR of the
interpolated DSM and that of the original DSM is referred to as the ECR pair difference, which is
used as an indicator to select the spatial resolution. The ECR pair differences might decrease from
fine to coarse spatial resolution when the void cells of the grid are interpolated by the CN algorithm.
The optimal spatial resolution could be determined as the corresponding spatial resolution if the ECR
pair differences do not become greater than the specified threshold (for example, 0.10). The series of
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spatial resolutions used as candidates is 0.1 m, 0.2 m, 0.5 m, and 1.0 m in this study. The optimal spatial
resolution is considered relative to the other spatial resolution candidates.

2.7. Data Set Assessment

The estimated canopy heights obtained from the LiDAR data set were used as references to
compare the estimated canopy heights obtained from five different photogrammetry data sets with
spatial resolutions of 0.1, 0.2, 0.5, and 1.0 m. The overall mean difference (d) (Equation (5)) and mean
absolute difference (|d|) (Equation (6)) were calculated for this purpose [14,23]. The canopy heights
were divided into bins at 1.0 m intervals and used as a stratified variable to calculate a series of mean
differences for analyzing the potential trends of canopy heights.

d =

∑
di

N
=

∑
LHi − PHi

N
, (5)

|d| =
∑∣∣∣∣di − d

∣∣∣∣
N

, (6)

where d (m) is the overall mean difference, di (m) is the canopy height difference between LiDAR and
photogrammetry for the ith effective cell, LHi (m) and PHi (m) are the canopy heights of LiDAR and
photogrammetry for the ith effective cell (i = 1, . . . , N), N is the total number of effective cells, and |d|
(m) is the mean absolute difference.

The original and interpolated CHMs obtained from the LiDAR data set (response) were linearly
regressed and analyzed with the corresponding CHMs of the five photogrammetry data sets (predictor).
Three widely used statistical criteria, namely, the coefficient of determination (R2) (7), root mean square
error (RMSE) (8), and relative RMSE (rRMSE) (9), were used to assess the model accuracy [41]. The
RMSE combines the mean error and error variance to provide a robust measure of overall accuracy [62].

R2 = 1−
∑(

LHi − ˆLHi
)2

∑(
LHi − LH

)2 , (7)

RMSE =

√
e2 + σ2

e , (8)

rRMSE =
RMSE

LH
, (9)

where LHi and ˆLHi are the reference and estimated forest canopy heights (m) for the ith effective cell
(i = 1, . . . , N), N is the total number of the reference canopy heights, LH is the mean of the reference
canopy heights, e is the mean error calculated by e =

∑
ei/N =

∑(
LHi − ˆLHi

)
/N, ei is the ith error and

σ2
e is the error variance calculated by σ2

e =
∑
(ei − e)2/(N− 1).

3. Results

3.1. CHMs of LiDAR and Photogrammetry

The original L-DSM of the L-D55 data set with a spatial resolution of 0.1 m had many holes within
and between crowns. The interpolation of the L-DSM by the CN algorithm filled all the small holes
with areas less than 1.2 m2. The hole-free L-DSM was generated by the ON algorithm. The original
and interpolated L-CHMs were calculated based on the corresponding L-DSMs and L-DTM. The small
holes of the original L-CHM with a spatial resolution of 0.1 m (Figure 3a) were interpolated by the CN
algorithm (Figure 3b). All of the holes of the original L-CHM were filled by the ON algorithm except
for the holes representing the water tower and building areas (Figure 3c).
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Figure 3. Original canopy height models (CHMs) and interpolated CHMs by the constrained neighbor
(CN) and ordinary neighbor (ON) algorithms from the LiDAR and photogrammetry data sets with a
spatial resolution of 0.1 m (no data areas are white): (a) original CHM of L-D55; (b) CHM of L-D55
interpolated by the CN algorithm; (c) CHM of L-D55 interpolated by the ON algorithm; (d) original
CHM of P1-D300; (e) CHM of P1-D300 interpolated by the CN algorithm; (f) CHM of P1-D300
interpolated by the ON algorithm; (g) original CHM of P3-D150; (h) CHM of P3-D150 interpolated by
the CN algorithm; (i) CHM of P3-D150 interpolated by the ON algorithm; (j) original CHM of P1-D80;
(k) CHM of P1-D80 interpolated by the CN algorithm; and (l) CHM of P1-D80 interpolated by the
ON algorithm. The color describes the lowest to highest height from blue to green. The CHMs of
P2-D150 and P4-D150 are similar to that of P3-D150 at the same flying height of 150 m and thus are not
shown here.
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The P-DSMs of the five photogrammetry data sets were processed similarly to those of the LiDAR
data set to generate original P-DSMs and those interpolated by the CN and ON algorithms, and the
corresponding P-CHMs were generated by subtracting the L-DTM (Figure 3d–l). The original P-CHM
of the P1-D300 data set also had some small holes within crowns and large holes between the crowns,
and the distributions of the holes were similar to the distribution of the holes in the L-CHM. The
original P-CHMs of the P2-D150, P3-D150 and P4-D150 data sets had few small holes within crowns
but large holes existed between the crowns. The original P-CHM of the P5-D80 data set had some large
holes within the crowns and much larger holes between the crowns than any other data set. The large
holes were mainly distributed in the shadow area of tree crowns.

3.2. Spatial Distribution of Point Clouds

The spatial distribution of the point clouds was described using the ECR, PCH and PCR.
The calculated ECRs, PCHs and PCRs of the original and interpolated L-CHMs with spatial resolutions
of 0.1, 0.2, 0.5, and 1.0 m were shown in Figure 4. The ECRs of the original and interpolated L-CHMs
increased as the spatial resolution changed from 0.1 to 1.0 m. The ECRs of the original L-CHM with
a spatial resolution of 1.0 m were still less than 1.0, which indicated that some areas had sparsely
distributed points due to weak ability of backscattering. The CHMs interpolated by the ON algorithm
achieved the ideal ECR of 1.0 for any spatial resolution, although the method introduced great spatial
variations and decreased the accuracy of the estimated canopy heights.

Figure 4. Effective cell ratios (ECRs), point cloud homogeneities (PCHs), and point cloud redundancies
(PCRs) of the original CHMs and interpolated CHMs by the constrained neighbor (CN) algorithm
from LiDAR and photogrammetry data sets: (a) ECRs of the original CHMs; (b) ECRs of the CHMs
interpolated by the CN algorithm; (c) PCHs of the original CHMs; (d) PCHs of the CHMs interpolated
by the CN algorithm; (e) PCRs of the original CHMs; and (f) PCRs of the CHMs interpolated by the
CN algorithm.
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The ECRs, PCHs and PCRs of P-CHMs are shown in Figure 4. All the ECRs of the original
P-CHMs were greater than those of the L-CHM at spatial resolutions less than 1.0 m, which indicated
that the photogrammetry data sets had fewer holes than the LiDAR data set. The ECRs of the original
and interpolated P-CHMs also increased as the spatial resolution decreased.

The PCH of the original L-CHM was less than that of the original P-CHMs of most photogrammetry
data sets except for P-D80 with a spatial resolution of 0.1 m, which showed that the dense point cloud
of photogrammetry was more evenly distributed than the LiDAR point cloud. The low PCH of the
original P-CHM of the P-D80 data set was caused by many large holes due to the failed reconstruction
of the dense point cloud. The PCHs of the original L- and P-CHMs decreased continuously as the
spatial resolution decreased. The PCRs of the original P-CHMs were all higher than those of the
L-CHM, indicating that there were more redundant points in the photogrammetry data sets.

The difference between the ECRs of the original L-CHM and interpolated L-CHM by CN at the
spatial resolution of 0.1 m was the largest (0.19) compared with those at other spatial resolutions.
The ECR pair differences decreased as the spatial resolution decreased. The optimal spatial resolution
of L-CHM was 0.2 m if the threshold of the ECR pair difference was set as 0.10. The optimal spatial
resolution of P-CHMs was 0.1 m when the same threshold of the ECR pair difference as that of L-CHM
was used.

3.3. Differences between L-CHMs and P-CHMs

The differences between the original and interpolated L- and P-CHMs were calculated on a
cell-by-cell basis. The void cells of the holes might not have corresponding cells among different
CHMs. These cells were ignored if there was a void cell in either of the CHM pairs used to calculate
the differences. The mean differences between the original L-CHM and original P-CHMs with a spatial
resolution of 0.1 m varied from −0.1 to −0.5 m, while the corresponding mean absolute differences
varied from 0.9 to 1.1 m (Table A3). This result indicated that the original L-CHM was lower overall
than the original P-CHMs and large positive and negative differences occurred within the original
CHMs of different data sets. The mean differences between the original L-CHM and P-CHMs increased
from negative to positive as the spatial resolution became coarser because low values within cells
were ignored when CHMs with a coarse spatial resolution were generated using the maximum
algorithm. The mean absolute differences between the original L-CHM and original P-CHMs decreased
as the spatial resolution increased, which indicated that the spatial variation in canopy heights was
suppressed at a coarse spatial resolution.

The mean differences and mean absolute differences between the LiDAR and photogrammetry
data sets slightly increased when the CHMs were interpolated by the CN algorithm compared with
the original CHMs. The mean differences and mean absolute differences further increased using the
CHMs that were interpolated by the ON algorithm compared with the CHMs interpolated by the
CN algorithm.

The stratified mean differences between the original L-CHM and P-CHMs within the 1.0 m
bin of the canopy heights were calculated to analyze the spatial variations among canopy heights
(Figure 5). Three mark heights of mean differences were observed along the canopy heights, including
the minimum mark height, negative mark height and positive mark height. The minimum mark height
of the mean difference between CHMs at a spatial resolution of 0.1 m was the 3.0 m bin of the canopy
height corresponding to a minimum mean difference of 3.3 m. All the mean differences between CHMs
with a spatial resolution of 0.1 m were negative when the canopy height was less than the 21.0 m bin
and were positive when the canopy height was greater than the 26.0 m bin, which were referred to as
negative and positive mark heights, respectively. The mean differences increased from negative to
positive as the canopy height increased above the 3.0 m bin. This result indicated that photogrammetry
tends to overestimate the low canopy heights and underestimate the high canopy heights compared to
those obtained from LiDAR data.
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Figure 5. Stratified mean differences between the original LiDAR CHM and photogrammetry CHMs
within 1.0 m bins of the canopy heights: (a) mean differences between CHMs at a spatial resolution
of 0.1 m; (b) mean differences between CHMs at a spatial resolution of 0.2 m; (c) mean differences
between CHMs at a spatial resolution of 0.5 m; and (d) mean differences between CHMs at a spatial
resolution of 1.0 m.

The minimum mean differences increased from −3.3 to −0.6 m as the spatial resolution changed
from 0.1 to 1.0 m. The negative and positive mark heights both shifted from high bins to low bins as
the spatial resolution became coarser.

3.4. Correlation between L-CHMs and P-CHMs

The original and interpolated L-CHMs (responses) were regressed with the corresponding original
and interpolated P-CHMs (predictors) (see Figure 6). High correlations were observed between the
LiDAR and photogrammetry data sets at different spatial resolutions as shown by the R2, which varied
from 0.87 to 0.98. The original L-CHMs were better correlated with P-CHMs at a coarse spatial
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resolution than a fine spatial resolution. The RMSE between the original L-CHMs and P-CHMs
decreased as the spatial resolution changed from 0.1 to 1.0 m.

Figure 6. Coefficient of determination (R2), RMSE, and relative RMSE between the CHMs from
LiDAR and photogrammetry data sets: (a) R2 between the original CHMs; (b) R2 between the CHMs
interpolated by the CN algorithm; (c) R2 between the CHMs interpolated by the ON algorithm;
(d) RMSE between the original CHMs; (e) RMSE between the CHMs interpolated by the CN algorithm;
(f) RMSE between the CHMs interpolated by the ON algorithm; (g) relative RMSE between the original
CHMs; (h) relative RMSE between the CHMs interpolated by the CN algorithm; and (i) relative RMSE
between the CHMs interpolated by the ON algorithm.

The L-CHMs and P-CHMs interpolated by the CN algorithm had slight effects on the R2 and
root mean square errors (RMSEs) compared with those between the original L-CHM and P-CHMs.
The RMSEs between the interpolated L-CHM and P-CHMs by the ON algorithm were higher than
those between the interpolated CHMs by the CN algorithm, which was expected. The relative RMSEs
between the interpolated L-CHM and P-CHMs by the ON algorithm increased by approximately
3.1% compared with those between the original L-CHM and P-CHMs with a spatial resolution of
0.1 m. This result indicated that the ON interpolation algorithm would introduce obvious spatial
variation into the CHM at fine spatial resolution. The relative RMSE decreased as the spatial resolution
became coarser.

4. Discussion

4.1. Spatial Distribution of Point Clouds

The spatial distribution of point clouds is usually uneven across a survey area due to various
conditions, such as the LiDAR or photogrammetry system configuration, flying height, crown shadows,
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or terrain conditions [43–45,63]. At different locations, some points are closely clustered while other
points are sparsely distributed. The mean point density can describe only the overall characteristics of
point clouds and does not reflect the features of uneven distributions. The ECR, PCH and PCR are
used to describe the spatial distribution of point clouds based on regular grids.

The spatial resolution determines the number of points located within each cell of the grid and
affects the values of these spatial descriptors. The coverage, homogeneity and redundancy of point
clouds are dependent on the spatial resolution of the grid. The coverage of the point clouds will
increase at a coarse spatial resolution if the ECR is less than 1.0, the homogeneity of the point clouds
will decrease at a coarse spatial resolution, while the redundancy of the point clouds will increase at a
coarse spatial resolution.

The relative correlation of the spatial distribution of different data sets might remain constant.
For example, P3-D150 had the best coverage, L-D55 had the worst coverage, P1-D300 was the most
evenly distributed data set, P5-D80 had the worst homogeneity, L-D55 had the lowest redundancy, and
P5-D80 had the most redundant points, and these observations were all based on CHMs with the same
spatial resolution (Figure 4). The ideal data set should have the maximum coverage, best homogeneity
and lowest redundancy. No data set fulfilled these criteria in this study case.

4.2. Effects of the CN and ON Algorithms on the CHM

The void cells of the CHM could be filled by a neighbor interpolation algorithm. The ON algorithm
continuously interpolates void cells from the outside cells to inside cells. On the other hand, the CN
algorithm interpolates only void cells that meet the criteria of neighboring cells. For example, if the
threshold of effective neighboring cells (Q) is 5, the void cells along the edges of a large hole will not be
filled while the void cells at the corners will be conditionally filled by the CN algorithm.

The interpolated void cells of the CHM by the CN algorithm varied as the spatial resolution
changed and produced different ECR values (Figure 4). The ON algorithm interpolated all void cells
and obtained the same ECR at all spatial resolutions. If the dimension of the spatial resolution was
much smaller than the distance of the point cloud, then the number of the effective neighboring cells
of void cells was smaller than the threshold of effective neighboring cells (Q) and no void cells were
interpolated by the CN algorithm. If the dimension of the spatial resolution was larger than the size of
the maximum hole, then the ECR was equal to 1.0. The CN algorithm had no effect on the ECR of the
CHM according to these two mentioned cases.

The CN algorithm had a weak effect on the mean absolute differences between the L-CHM and
P-CHMs at the spatial resolution of 0.1 m. The mean absolute differences between the original L-CHM
and original P-CHMs at the spatial resolution of 0.1 increased by 0.2 m compared with that between
the L-CHM and P-CHMs interpolated by the ON algorithm (Table A3). The effects of the CN and ON
algorithms on the mean absolute differences both became weaker at a coarser spatial resolution.

The relative RMSEs between the L-CHMs and P-CHMs interpolated by the ON algorithm were
larger than those between the CHMs interpolated by the CN algorithm at all spatial resolutions.
The CN algorithm had the ability to control the spatial variation introduced by the ON algorithm.
Thus, the CN algorithm is recommended for interpolating the void cells of a CHM rather than the
ON algorithm.

4.3. Distinguishing Small and Large Holes within a CHM

The holes within a CHM with a specified spatial resolution consist of one or several continuous
void cells. Small holes in an L-CHM are usually caused by the fluctuation of the UAV platform,
mutual obscuration of crowns, gaps within and between crowns, lost echoes of laser pulses, etc. Large
holes in an L-CHM are mainly affected by the large incident angles on crowns and the loss of many
backscattering signals. The influencing factors of small and large holes of the P-CHM include the
reconstruction algorithm of dense point clouds, the quality of images, illumination conditions, texture
of crowns, pits of crowns, gap between crowns, and swinging of crowns due to wind. Large holes in
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the P-CHM are mostly due to weak texture and poor lighting (extremely bright or dim). The light
conditions of different photogrammetry data sets are very different and will cause different shadows to
affect the spatial distribution of the reconstructed point cloud.

The coverage of holes is the ratio of void cells to all cells expressed as 1-ECR. The original CHM
with a fine spatial resolution might include small and large holes, while the CHM interpolated by the
CN algorithm would include only large holes. For example, the area covered by holes of the original
L-CHM with a spatial resolution of 0.1 m was 38% of the whole area. The large holes (≥0.12 m2) of
the interpolated L-CHM occupied 19% of the whole area. This result indicated that 50% of the holes
were large holes. The percent of large holes (≥0.48 m2) decreased to 40% of the holes when the spatial
resolution of the original L-CHM was 0.2 m. The minimum size of large holes further increased, and
the percent of large holes further decreased when the spatial resolution of the L-CHM became coarser.

4.4. Optimal Spatial Resolution of the CHM

The spatial resolution of a CHM is usually determined by considering the mean point cloud
density. Many void cells will exist within the CHM at this spatial resolution if the point cloud is
unevenly distributed across the survey area. Small holes of the CHM can be interpolated by the CN
algorithm. The interpolated cells reflect the potential space that would become effective cells at a
coarse spatial resolution. The optimal spatial resolution may be determined by the potential space,
which is referred to as the potential space criteria. The potential space is calculated as the difference
between the ECRs of the original CHM and the CHM interpolated by the CN algorithm.

The optimal spatial resolution can also be determined by the ECR of the CHM interpolated by the
CN algorithm, which is referred to as the ECR criteria. If the ECR approaches 1 and is greater than the
specified threshold (for example, 0.90), then the corresponding spatial resolution will be regarded as
optimal. The ECR criteria are easily affected by very large holes, whose sizes are far greater than the
mean space of the point cloud. Additional criteria can be used to select the optimal spatial resolution.
We recommend potential space criteria that will not be affected by large holes. Moreover, the optimal
spatial resolution can be simply determined by the ECR pair differences among predefined spatial
resolutions, which should be calculated by automatic methods in future studies.

4.5. Effects of Flying Configuration on the CHM

Five photogrammetry data sets at three different flying heights were used in this study. P1-D300
had the highest flying height and a highly efficient capability of data acquisition when compared
to the other data sets collected at lower flying heights. The optimal spatial resolution of P1-D300
was 0.1 m if the threshold of the difference between the ECRs of the original CHM and the CHM
interpolated by the CN algorithm was 0.1. Therefore, an optimal flying height of approximately 300 m
was recommended to generate a CHM at a spatial resolution of 0.1 m using the similar photogrammetry
system in this study.

The P5-D80 data set had the lowest flying height among the photogrammetry data sets, although
the ECRs of the original P-CHM of P5-D80 were smaller than those of the other photogrammetry data
sets. Very large holes exist within the bright crown area in the original P-CHM of the P5-D80 data set.
This finding indicated that some tree crowns failed to be reconstructed using images with very high
spatial resolution.

Different shadows occurred in the photogrammetry data sets with different light conditions,
and these differences would affect the distribution patterns of void cells in the P-CHMs. The overall
effects of light conditions on the reconstructed point cloud and the P-CHMs were weaker than the
effects of the flying height in this study. The ECRs of the original P-CHMs with a spatial resolution of
0.1 m had slight differences under different light conditions at the same flying height of 150 m. The
differences among the ECRs of the P-CHMs with a spatial resolution of 0.1 m at flying heights of 80, 150
and 300 m were greater than those among the ECRs of the P-CHMs at the same flying height of 150 m.
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The mean differences between the combined pairs of photogrammetry data sets were smaller
and fluctuated from −0.5 m to 0.5 m when the canopy heights were less than 30 m. Obviously large
variations occurred when the canopy heights were greater than 30 m. This variation might be due
to the swinging of leaves and twigs of tall trees affected by wind. The mean differences between the
combined pairs of the P2-D150, P3-D150 and P4-D150 data sets at the same flying heights were smaller
than those of other pairs at different flying heights for all canopy height bins.

The mean differences between the P2-D150 and P4-D150 data sets with different image overlaps
varied from 0 m to 0.1 m, which meant that image overlap (>68%) had a minor effect on the estimated
canopy height. However, the point density of the photogrammetry data set was substantially affected
by image overlap (Figure A1). The mean differences between the P2-D150 and P3-D150 data sets with
different flying speeds varied from −0.2 to 0 m, indicating that canopy height was only slightly affected
by flying speed (<8 m s−1).

4.6. Effects of Gaps within and between Crowns on the CHM

The CHMs obtained from LiDAR and photogrammetry data sets for the given spatial resolution
were affected by the gaps within and between crowns [14,23,27]. Small gaps within crowns could be
depicted in the L-CHM with fine spatial resolution, while the P-CHM tended to ignore such small
gaps [23]. A number of deep gaps were observed between the tall tree crowns, which were much
darker than the surrounding crowns under the variable illumination conditions. It was difficult to
reconstruct the spatial structure in these deep gaps [14,38].

The spatial resolution will affect the height values of gaps within and between crowns. The cells of a
CHM are often calculated as the highest value if there are numerous points within the corresponding cell.
This condition will suppress the low values of gaps and promote high values of crowns, thus reducing
the spatial variation in the canopy heights. LiDAR can provide more detailed structural information
than photogrammetry on a fine scale and more details will be lost on a coarse scale. The CHMs between
LiDAR and photogrammetry tend to have more consistency as the spatial resolution decreases.

5. Conclusions

This study compared the canopy heights obtained from UAV LiDAR and UAV photogrammetry
and interpolated by two spatial interpolation algorithms CN and ON. The comparison was conducted
based on three proposed spatial distribution descriptors of point clouds: the ECR, PCH and PCR
quantifying the unevenness, homogeneity and redundancy characteristics, respectively, of point
clouds in the grid at a given spatial resolution. The stratified mean differences revealed that there
existed an inherent trend between the estimated canopy heights from LiDAR and photogrammetry,
which changed from negative to positive as the canopy heights increased. The LiDAR CHM strongly
correlated with the photogrammetry CHM. More importantly, the CN algorithm had the ability to
distinguish small and large holes and determine the optimal spatial resolution according to the ECR
pair differences, while the ON algorithm did not have this ability. Compared with the ON algorithm,
the CN algorithm apparently reduced the spatial variation in the CHM, led to smaller RMSE values,
and could be recommended to obtain reliable CHM values.

Some large holes in the CHMs interpolated by the CN interpolation algorithm still occurred at
very high point densities, which were typically distributed around the deep gaps between tall tree
crowns. Precisely measuring such deep gaps is quite challenging. Photogrammetry tends to ignore
gaps within the crowns, overestimate low canopy heights and underestimate high canopy heights;
these issues need to be considered while canopy cover, canopy closure, and forest stand height are
modelled. Overall, this article provides an operational method for the spatial assessment of point
clouds and suggests that the differences between LiDAR and photogrammetry derived CHMs should
be considered when forest parameters are estimated. In particular, further study is necessary to
enhance understanding the quality measures of the point cloud spatial distribution, optimal spatial
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resolution, small and large holes within CHMs, gaps within and between crowns, and their effects on
estimation of forest parameters using additional data sets.
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Appendix A

The statistics of the plot parameters are shown in Table A1.

Table A1. The statistics of the plot parameters.

Plot Parameters Mean Stand Deviation Minimum Maximum

Number of stems 63 21 30 96
Basal area (m2) 2.4 0.9 1.0 4.4

Lorey’s height (m) 23.8 4.4 15.7 31.2
Mean crown width (m) 5.4 0.6 4.3 6.8

The acquisition information of the LiDAR and photogrammetry data sets is shown in Table A2.

Table A2. LiDAR and photogrammetry data sets.

Data Set Date(y/m/d)
Local
Time
(h:m)

Flying
Height
(m) 1

Interval (m)/Overlap (%) Flying
Speed
(m s−1)

Footprint
Size/GSD

(cm)
Along-Track Across-Track

L-D55
2017/8/10 11:40–11:50 55 / 55 4.8 17
2017/8/11 10:13–10:24 50 2 / 55 4.8 15

P1-D300 2017/8/9 13:38–13:56 300 40/80% 50/84% 4.8 4
P2-D150 2017/8/14 15:14–15:32 150 20/80% 30/80% 4.8 2
P3-D150 2017/8/14 16:39–16:51 150 20/80% 30/80% 8.0 2
P4-D150 2017/8/15 11:08–11:20 150 20/80% 50/68% 4.8 2
P5-D80 2017/8/15 15:33–15:51 80 10/81% 30/64% 4.8 1

1 The flying height is the relative height above the take-off point (194 m above sea level) of the UAV, which is near
the highest point of the study site (198 m above sea level); 2 LiDAR flight with a height of 50 m above the terrain
other than the take-off point of the UAV.

The calculated mean differences and mean absolute differences between the L-CHMs and P-CHMs
are listed in Table A3.

The point density distributions of the LiDAR and photogrammetry data sets are shown in
Figure A1.
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Table A3. The mean differences and mean absolute differences between the CHMs of LiDAR and
photogrammetry data sets.

Data Set

L-D55

Original CHM
Interpolated CHM by
the CN Algorithm 1

Interpolated CHM by
the ON Algorithm 2 Spatial

Resolution
(m)d (m) |d| (m) d (m) |d| (m) d (m) |d| (m)

P1-D300 −0.1 1.0 −0.2 1.1 −0.3 1.3

0.1
P2-D150 −0.4 0.9 −0.5 1.0 −0.6 1.1
P3-D150 −0.5 0.9 −0.5 1.0 −0.6 1.1
P4-D150 −0.3 1.0 −0.4 1.0 −0.5 1.2

P5-D80 −0.1 1.1 −0.1 1.2 −0.3 1.4

P1-D300 0.2 0.8 0.1 0.9 0.0 1.0

0.2
P2-D150 −0.1 0.7 −0.1 0.7 −0.2 0.8
P3-D150 −0.1 0.7 −0.2 0.8 −0.3 0.9
P4-D150 0.0 0.8 −0.1 0.8 −0.2 0.9
P5-D80 0.2 0.9 0.1 1.0 0.1 1.1

P1-D300 0.4 0.8 0.4 0.8 0.3 0.8

0.5
P2-D150 0.1 0.6 0.1 0.6 0.1 0.6
P3-D150 0.1 0.6 0.0 0.6 0.0 0.6
P4-D150 0.1 0.7 0.1 0.7 0.1 0.7
P5-D80 0.3 0.8 0.3 0.9 0.3 0.9

P1-D300 0.5 0.7 0.5 0.7 0.5 0.8

1.0
P2-D150 0.2 0.5 0.1 0.5 0.1 0.5
P3-D150 0.1 0.5 0.1 0.5 0.1 0.5
P4-D150 0.2 0.6 0.2 0.6 0.2 0.6
P5-D80 0.3 0.7 0.3 0.7 0.3 0.8

1 CN means the constrained neighbor interpolation algorithm; 2 ON means the ordinary neighbor
interpolation algorithm.

Figure A1. Point density of the 1 m resolution grid (no data areas are white; the grid is stretched with
a percent clip of 0.5): (a) L-D55 point cloud with a mean of 168 points m−2; (b) P1-D300 point cloud
with a mean of 303 points m−2; (c) P2-D150 point cloud with a mean of 1319 points m−2; (d) P3-D150
point cloud with a mean of 1191 points m−2; (e) P4-D150 point cloud with a mean of 1050 points m−2;
(f) P5-D80 point cloud with a mean of 2529 points m−2.
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Abstract: The forest growth and yield models, whichor are used as important decision-support tools
in forest management, are commonly based on the individual tree characteristics, such as diameter
at breast height (DBH), crown ratio, and height to crown base (HCB). Taking direct measurements
for DBH and HCB through the ground-based methods is cumbersome and costly. The indirect
method of getting such information is possible from remote sensing databases, whichor can be used
to build DBH and HCB prediction models. The DBH and HCB of the same trees are significantly
correlated, and so their inherent correlations need to be appropriately accounted for in the DBH
and HCB models. However, all the existing DBH and HCB models, including models based on
light detection and ranging (LiDAR) have ignored such correlations and thus failed to account
for the compatibility of DBH and HCB estimates, in addition to disregarding measurement errors.
To address these problems, we developed a compatible simultaneous equation system of DBH
and HCB error-in-variable (EIV) models using LiDAR-derived data and ground-measurements for
510 Picea crassifolia Kom trees in northwest China. Four versatile algorithms, such as nonlinear
seemingly unrelated regression (NSUR), two-stage least square (2SLS) regression, three-stage least
square (3SLS) regression, and full information maximum likelihood (FIML) were evaluated for their
estimating efficiencies and precisions for a simultaneous equation system of DBH and HCB EIV
models. In addition, two other model structures, namely, nonlinear least squares with HCB estimation
not based on the DBH (NLS and NBD) and nonlinear least squares with HCB estimation based on
the DBH (NLS and BD) were also developed, and their fitting precisions with a simultaneous equation
system compared. The leave-one-out cross-validation method was applied to evaluate all estimating
algorithms and their resulting models. We found that only the simultaneous equation system
could illustrate the effect of errors associated with the regressors on the response variables (DBH
and HCB) and guaranteed the compatibility between the DBH and HCB models at an individual level.
In addition, such an established system also effectively accounted for the inherent correlations between
DBH with HCB. However, both the NLS and BD model and the NLS and NBD model did not show
these properties. The precision of a simultaneous equation system developed using NSUR appeared
the best among all the evaluated algorithms. Our equation system does not require the stand-level
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information as input, but it does require the information of tree height, crown width, and crown
projection area, all of whichor can be readily derived from LiDAR imagery using the delineation
algorithms and ground-based DBH measurements. Our results indicate that NSUR is a more reliable
and quicker algorithm for developing DBH and HCB models using large scale LiDAR-based datasets.
The novelty of this study is that the compatibility problem of the DBH model and the HCB EIV model
was properly addressed, and the potential algorithms were compared to choose the most suitable
one (NSUR). The presented method and algorithm will be useful for establishing similar compatible
equation systems of tree DBH and HCB EIV models for other tree species.

Keywords: Picea crassifolia Kom; compatible equation; nonlinear seemingly unrelated regression;
error-in-variable modeling; leave-one-out cross-validation

1. Introduction

A tree crown is characterized by crown height, crown width, crown density, leaf area, and crown
ratio, and their measurements are useful for forest management and research. The crown ratio is
considered a reliable indicator of the vigor and potential growth of a tree [1–4]. Height to crown
base (HCB) is an important tree measure to derive crown ratio and is also regarded as an indicator of
log quality. HCB is usually understood as the vertical height from the ground to the bottom of live
whorled branch on the bole of a tree [5]. The ground-based measurement of HCB is a time-consuming
and labor-intensive process; thus, it is rarely done during field inventory [6,7]. Most researchers
have obtained the HCB value by establishing linear or nonlinear HCB models with other variables
as predictors, such as DBH, tree height, basal area, basal area larger than a target tree, the sum of
basal area of all trees with diameter bigger than a target tree, crown competition factor, climate,
and site index [8–12]. Tree diameter at breast height (DBH) is also an important tree attribute that
is used as a main predictor in forest growth and yield, taper, and biomass models. In general,
the measurement of DBH is very common in ground-based inventory; however, field-inventory data
could have a low accuracy, and their measurement needs more time and cost, especially measurements
required for extensive forest areas. Therefore, methods of HCB data collection have been transformed
from the traditional forest field inventory to modeling and prediction based on remote sensing
technology [13–16].

Light detection and ranging (LiDAR) can accurately determine the geographical position of
surface objects by transmitting and receiving laser pulses. Laser pulses travel down the forest canopy,
and detailed information on the three-dimensional structures of the forest canopy and understory
topography can be obtained [17]. Many tree attributes, such as tree height and crown dimensions [18]
can be obtained based on the LiDAR data. The study approaches based on HCB prediction may
be divided into two categories: direct and indirect approaches. The direct approaches refer to
those derived from HCB with various geometrical shapes of the crown [12,19–23] or predicting HCB
according to descriptive statistics of the LiDAR-based data distribution [4,24]. Direct approaches do not
require any ground-measured HCB data, whichor are costly and time-consuming, as they only require
point-cloud data processing and analysis including tree detection and the determination of crown
base positions. In addition, this approach could also cause considerable uncertainties in determining
the base of the first normal green branch as a part of the crown. Therefore, its application is quite
limited to estimating HCB. The indirect approach, on the other hand, refers to predicting HCB through
the application of statistical modeling [22,25–28]. This approach requires field-measured HCB data to
establish the models for the prediction of HCB. The models for the accurate prediction of individual
tree HCB can be built using LiDAR-based information, and so this method has been frequently used in
recent years [22,25–28].
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The application of ordinary least square (OLS) regression to estimate the parameters of
LiDAR-based DBH and HCB models is not generally preferred, but it is still used [16,29]. This estimation
method usually assumes that (i) regressors are random variables with errors, (ii) regressors are fixed
variables without errors, and (iii) the associated error is subject to normal distribution with zero mean
and constant variance [30]. Any violation of the second assumption leads to the substantially biased
estimation of the models [30], whichor eventually reduces the prediction accuracy.

The prediction accuracy of the developed HCB and DBH models uses the LiDAR-based tree
height, crown width and crown area may not be always satisfactory for a couple reasons. Firstly,
LiDAR-based tree height, crown width, and crown area have random or systematic errors caused by
LiDAR system configuration and parameter estimation. Any error involved in the variables could
increase the residual variance of the model and also lead to invalid statistical tests [31,32]. Secondly,
the estimated DBH from a LiDAR-based DBH estimation model contains non-ignorable or inevitable
errors [33]. If such erroneous DBH is used as a predictor in a LiDAR-based HCB model, substantial
bias would occur due to error transfers [34]. In addition, estimating with a LiDAR-based DBH model
and a LiDAR-based HCB model separately or independently using OLS disregards the inherent
correlations of HCB with DBH and thus fails to account for the compatibility of the estimated HCB
and DBH. Thus, estimating the parameters of both model types independently with OLS may create a
remarkable problem, especially in the condition when errors are associated with both the regressors
and response variables. An appropriate settlement of this problem is to apply error-in-variable (EIV)
modeling, whichor takes the errors into consideration and can guarantee compatibility between HCB
and DBH [29,35–37].

Fuller [35] first introduced the theory on the development and application of linear EIV models,
and, later on, Carroll et al. [32] applied this concept on the nonlinear EIV modeling in detail.
Kangas [31] investigated the effects of EIV on the parameters of the diameter growth model and applied
the simulation extrapolation algorithm to adjust the errors in the estimated parameters. Lindely [38]
proved that validation data from the same population as the fitting data resulted in predictions that were
usually unbiased, even though the regressors were subject to error. Tang and Zhang [36] developed an
EIV model to investigate the unbiased parameter estimates. Tang and Wang [39] proposed the two-stage
EIV method to estimate the model parameters. In their study, the EIV concept was introduced into
forest attribute modeling, whichor provides a theoretical basis for studying the influence of errors
on stand growth and harvest models. Li and Tang [40] compared three methods, namely simulation
extrapolation, regression calibration, and EIV to estimate the models and found a better performance
with EIV with smaller variances compared to other two methods.

Few studies have been carried out with DBH EIV modeling using remote sensing data. For example,
Fu et al. [33] developed an individual tree DBH and above-ground biomass (AGB) EIV model with
LiDAR-based tree height and crown projection area as predictors with the application of the two-stage
error-in-variable modeling (TSEM) and nonlinear seemingly-unrelated regression (NSUR) to estimate
model parameters. Both TSEM and NSUR explain the correlations of DBH with AGB and also effectively
explain the errors in DBH on the prediction of AGB. Zhang et al. [29] reported that the DBH EIV model
developed with errors associated with both response and regressor variables through the application
of the maximum likelihood method was most appropriate. To the authors’ knowledge, no studies have
been carried out on developing LiDAR-based HCB EIV models that were attributed to compatibility.

This study thus aimed (a) to develop a compatible simultaneous equation system of DBH
and HCB EIV models based on the LiDAR data at the individual tree level for Picea crassifolia Kom
forests in northwest China, (b) to evaluate the compatibility of two different nonlinear OLS-based
DBH and HCB models with the leave-one-out cross validation method, and (c) to compare various
unbiased fitting algorithms including NSUR. To simplify the proposed simultaneous equation system
and to guarantee its application in the future, only response variables (HCB and DBH) were assumed
as the error-in-variables [39], and predictor variables were regarded as error-out variables [33].
The presented compatible simultaneous equation system of DBH and HCB models will be applicable to
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other Picea species whose growth and stand conditions are very much similar to the basis of our studied
species. This tree species is crucial to the economic and social development of the rural population,
as well as regional carbon storage and cycling, and the maintenance of the structures and functions
of the forest ecosystems in northwest China. This article is mainly concerned with the methodology
employed in this study, whichor is clearly described in the Methods section; additionally, the major
strengths and weaknesses of the methodologies, along with the main findings of the study, are
thoroughly discussed while the potential contribution of the study is highlighted.

2. Methods

2.1. Data Collection

The study site is located at the Xishui forest farm of the Su’nan Yuguzu autonomous county, Gansu
province (38◦29′–38◦35′N, 100◦12′–100◦20′E) (Figure 1a) with Picea crassifolia Kom as the dominate tree
species. The climate in this field is a temperate semi-arid zone. It is covered by mountainous forests.
Slopes with south-facing aspect are covered by grass, and the slopes with north-facing aspect are
covered by natural secondary pure forests with one dominating tree species of Picea crassifolia Kom.
The ground is covered by a moss floor, and the average elevation here is around 2993 m. The typical
soil type is sandy loam. Along the hill, we established a permanent sample plot (PSP) with 100 m
long and 100 m wide in 2008, and the PSP was divided into sixteen sub-plots that were 25 m long
and 25 m wide. The PSP designed in this study was very representative of the entire forest of the study
area and was mainly used for the carbon flux observation and dynamic monitoring of forest quality.

 

Figure 1. (a) Location of the study site: Xishui forest farm located in the Su’nan Yuguzu autonomous
county of the Gansu Qilian Mountains National Nature Reserve, Western China and (b) tree positions
within 16 sub-sample plots nested within a permanent sample plot of 100 × 100 m.

Airborne LiDAR data were acquired by the LiteMapper 5600 system with laser scanner—Riegl
LMS-Q560 by a specification of 50 kH pulse repetition frequency, a 49 HZ scanning frequency, and a
30◦ maximum scanning angle [41]. The LiDAR data were collected on 23 June 2008, and field-measured
data were collected on 1 June through 13 June 2008. The wavelength was 1550 nm, and the pulse length
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and laser beam divergence were 3.5 ns and 0.5 mrad, respectively. The average flight height was 3699 m,
and the average flight speed was 230 km h−1. The scanner’s pulse repetition frequency, scanning
frequency, and maximum scanning angle were 50 kHZ, 49 Hz, and 30◦, respectively, and the mean
density of point cloud was 4.34 m−2. The spatial distribution of neighbor smoothed 510 Picea crassifolia
Kom trees is shown in Figure 1b. Data summary is presented in Table 1, and the relationships of HCB
with DBH, LiDAR-derived tree height (LH), LiDAR-derived crown width (LCW), and LiDAR-derived
crown projection area (LCA) are shown in Figure 2.

Table 1. Descriptive statistics of tree measurements (SD, standard deviation).

Variable Min. Max. Mean SD

LH (m) 4.62 22.15 13.84 3.20
HCB (m) 0.90 10.20 4.80 3.52
LCW (m) 2.00 7.50 4.20 0.95
DBH (cm) 3.60 81.10 22.57 8.54
LCA (m) 3.19 38.63 12.21 5.47

Figure 2. The relationships of height to crown base (HCB) with other tree variables: (a) light detection
and ranging (LiDAR)-derived tree height (LH), (b) crown width (LCW), (c) diameter at breast height
(DBH), and (d) crown projection area (LCA) for Picea crassifolia Kom.
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The correlation analysis of LiDAR-derived tree attributes and ground-measured tree attributes
are shown in Figure 3, whichor indicates that these LiDAR-derived tree attributes are highly correlated
with ground-measure tree attributes. Thus, these LiDAR-derived tree attributes in the sample could be
used for our modeling study. Figure 4 presents the Y coordinate value versus the predicted HCB value
showing the vertical profile of the LiDAR product.

Figure 3. Correlations between LiDAR-derived HCB and ground-measured HCB (a), correlation
between LiDAR-derived tree height and ground-measured tree height (b), correlation between
LiDAR-derived crown with and ground-measured crown width (c), and correlation between
LiDAR-derived crown area and ground measured crown area (d).

The point cloud was created from LiDAR waveforms by the data provider [41]. By applying
the algorithm of TerraScan 005 (Terrasolid, Helsinki, Finland), the ground points were classified,
and this was used to create the digital elevation model (DEM) (Figure 5a) with a 0.25 m resolution.
With ground and vegetation points, the digital surface model (DSM) with a 0.25 m resolution was
created using the Highest hit z algorithm of TerraScan 005. A canopy height model (CHM) (Figure 5b)
with a resolution of 0.25 m and a window size of 3 × 3 m was obtained by subtracting the DSM
and DEM [42–44]. The pits in the CHM were smoothed by neighbor smoothing algorithm [45].
Using the local maximum method with a window size of 2.0 m to detect the crown top from the CHM,
the LH values were estimated as the values of detected crown tops with a prediction accuracy of 0.65.
Using the region growing algorithm proposed by Liu et al. [46], the LCW of each tree was estimated to
be the average of the horizontal ranges of the identified crown from west to east and north to south [45].
After determining canopy boundary, the LCA was obtained. Ground measurements were done for
various tree attributes including individual tree DBH, HCB, crown width, and total tree height (H) of
16 sub-plots for a total of 510 Picea crassifolia Kom trees.
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Figure 4. Predicted HCB (m) of trees against y-coordinate Y (m) located within coordinate X
(608,960–608,970 m).

 

Figure 5. Digital elevation model (DEM) of sample plot (a) and footprint of laser pulse (b).

2.2. Base Model

2.2.1. LiDAR–DBH Base Model

Fu et al. [33] developed an exponential LiDAR-based DBH model using LH and LCA as predictors
for Picea crassifolia Kom and found a significantly higher prediction accuracy than other three candidate
LiDAR-based DBH model forms (linear, Richards, and logistic). Our preliminary analyses exhibited
the biggest R2 and the smallest root mean square error (RMSE) of the exponential LiDAR-based DBH
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model form, indicating its greatest suitability according to our data characteristics, and its prediction
accuracy could be further improved by including LH and LCW as predictors (Equation (1)):

DBH = β1 exp(−β2LH − β3LCW) + εDBH (1)

where β1, β2, β3 are parameters to be estimated, and εDBH is a residual error.

2.2.2. LiDAR–HCB Base Model

Similar to Walters and Hann [40], we used the logistic model as a LiDAR–HCB base model,
whichor had DBH and LCA as predictors in this study.

HCB =
LH

1 + exp(γ1DBH + γ2LCA)
+ εHCB (2)

where γ1 and γ2 are parameters to be estimated, and εHCB is a residual error.

2.3. A Compatible Individual Tree DBH and HCB EIV Equation System

A compatible equation system consisting of tree-based DBH and HCB EIV models (Equation (3))
was built by integrating both the LiDAR–DBH base model (Equation (1)) and the LiDAR–HCB base
model (Equation (2)) by following the methods suggested by existing modeling studies [36,37,47].⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dbhi = β1 exp(−β2LHi − β3LCWi)

hcbi = LHi/(1 + exp(γ1DBHi + γ2LCAi)

DBHi = dbhi + εDBHi

HCBi = hcbi + εDBHi

εi = εDBHi + εHCBi

(3)

where DBHi (cm) and HCBi (m) (i = 1, 2 . . . , N) are the ground-measured diameter at breast height
with errors and height to crown base with errors of the ith tree, respectively; dbhi and hcbi are true
values (with the assumption of no errors) of DBHi and HCBi, respectively; εDBHi and εHCBi represent
the errors of DBHi and HCBi, respectively. Error εi is a two-dimensional vector that is assumed to be
normally distributed with zero means and variance–covariance matrix Σ; LHi, LCWi, and LCAi are
the LiDAR-derived tree height (m), crown width (m), and crown projection area (m2) of the ith tree,
respectively. In this simultaneous equation system (Equation (3)), both DBH and HCB are the EIV,
while LH, LCW, and LCA are regarded as error-free variables. The other parameters and variables are
the same as defined above. The elements in the variance–covariance matrix Σ were applied to account
for the inherent correlations of DBH with HCB.

It was assumed that the simultaneous equation system (Equation (3)) with an error term εti
(t = DBH and HCB; and i = 1, . . . , N) that were not correlated among the observations but were
contemporaneously correlated across the sub-models. For each observation, we assumed that:

Σ =

(
σDBH×DBH σDBH×HCB
σHCB×DBH σHCB×HCB

)
(4)

where σDBH×DBH, σHCB×HCB, σDBH×HCB, and σHCB×DBH are the variance and covariance related elements
for both DBH and HCB.

The covariance matrix of the stacked error terms (ε = (εT
DBH, εT

HCB)
T(εt = (εt1, . . . , εtN)

T, t = DBH
and HCB) would be R = Σ ⊗ IN.

2.4. Parameter Estimation

Four commonly used algorithms, such as NSUR, two-stage least square (2SLS), three-stage
least square (3SLS), and full information maximum likelihood (FIML) were applied to estimate
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the parameters B = (βT
DBH = (β1, β2, β3

)
,γT

HCB = (γ1,γ2)) in our simultaneous equation system
(Equation (3)). We briefly describe these algorithms in a methodological flow chart (Figure 6),
and the details are given in the sub-sections below.

Figure 6. A flow chart depicting a brief description of four algorithms (NSUR, nonlinear seemingly
unrelated regression; 2SLS, two-stage least square; 3SLS, three-stage least square; and FIML,
full information maximum likelihood) used to estimate a DBH and HCB error-in-variable (EIV)
equation system.

(1) NSUR algorithm
The NSUR algorithm considers the disturbance across the two equations as a linkage of the equation

system but assumes that disturbances are uncorrelated across the observations; thus, this algorithm is
known as a seemingly unrelated regression. The estimation of parameters in the simultaneous equation
system (Equation (3)) was done using the NSUR algorithm [34,48–50] with the feasible generalized
least square regression method described as follows:

Step 1: Two sub-models (Equations (1) and (2)) in the simultaneous equation system (Equation (3))
were fitted with the NSUR algorithm, and the resulting residuals ε̂t (t = DBH and HCB) were used for
estimating the variance–covariance matrix, Σ. The residuals of each sub-model were estimated with
OLS using following formula:

σ̂i j =
1
N

N∑
i=1

εitε jt (5)
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The estimated variance–covariance matrix Σ is given by:

Σ̂ =

(
σ̂11σ̂12 . . . σ̂1n
σ̂21σ̂22 . . . σ̂2n

)
(6)

Step 2: Based on the estimated Σ̂, a covariance matrix R was defined as R̂ = Σ̂⊗ IN. The parameters
in the simultaneous equation system (Equation (3)) were estimated using a feasible generalized least
square method.

B̂ = (XT(Σ̂−1 ⊗ IN)X)
−1
(Σ̂−1 ⊗ IN)y (7)

(2) 2SLS algorithm
The 2SLS algorithm was applied using the following steps [51]:
Step 1: By composing the reduced function (Equation (8)) for all the error-in variables on the right

side of an equation, the estimated error-in variables were obtained using OLS:

Yi = ΠiXi + εi (8)

where Xi is the vector of the error-free variables and Πi is the ith parameter vector for X.
Step 2: The error-in variables on the right side were replaced with estimated error-in variables Ŷi,

and the parameters were estimated using OLS.

cov(B̂) = (XT(diag(Σ−1) ⊗ IN)X)
−1

(9)

(3) 3SLS algorithm
The 3SLS algorithm considers the correlation of disturbance terms among different equations.

It was carried out with following steps [51]:
Step 1: The same as step 1 in 2SLS.
Step 2: The same as step 2 in 2SLS; in addition, the disturbance εi was estimated.
Step 3: The covarianceσi j and ε̂i was estimated in step 2, and then an estimated variance–covariance

matrix, Σ̂, was obtained. Φ = Σ ⊗ IN was defined, and parameters were estimated with a feasible
generalized least squares regression.

B̂ = (XT(Σ̂−1 ⊗ IN)X)
−1
(Σ̂−1 ⊗ IN)y (10)

cov(B̂) = (XT(diag(Σ̂−1) ⊗VN)X)
−1

(11)

where V is a matrix of the instrumental variables and I is an identity matrix.
(4) FIML algorithm
Instead of only making use of the reduced function information, FIML makes full use of all

the information by estimating all the parameters in the simultaneous equation system at the same time.
There must be equal number of error-in-variables and sub-models in this equation system, whichor we
used. Otherwise, if the number of endogenous variables is more than that of the sub-models, the limited
information maximum likelihood method needs to be applied. The FIML maximizes the following
conditional log-likelihood function [52]:

Qn(B, Σ) = −M
2

ln(2π) − 1
2

ln(|Σ|) − 1
2

m∑
i=1

(Yi − yi)
TΣ−1(Yi − yi) (12)

where M is the number of sub-models; the other parameters and variables are the same as defined above.
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2.5. Other Model Structures for Comparison

2.5.1. Nonlinear Least Squares with HCB Estimation not Based on DBH (NLS and NBD)

The DBH in the LiDAR–HCB base model (Equation (2)) was substituted by the LiDAR–DBH base
model (Equation (1)). Therefore, in this case, the HCB estimation was independent of DBH. The HCB
based on DBH model is given by:

HCBi = LHi/(1 + exp(γ1DBHi + γ2LCAi)) + εHCBi

= LHi/(1 + exp(μ1 exp(−μ2LHi − μ3LCWi) + μ4LCAi) + ε̃HCBi

(13)

where μ1 = β1γ1, μ2 = β2, μ3 = β3, and μ4 = γ2 are parameters in the model, and the error of the HCBi
was changed into:

ε̃HCBi = f (LHi, LCWi)εDBHi + εHCBi (14)

f (LHi, LCWi) = β1γ1 exp(−β2LHi − β3LCWi) (15)

With this method, DBHi was estimated by the LiDAR–DBH base model (Equation (1)), and HCBi
was estimated by the NLS and NBD model (Equation (13)). It should be noted that the inherent
correlations of HCB with DBH could not be addressed for this method. In addition, the compatibility
between the estimated DBH and HCB could not be achieved.

2.5.2. Nonlinear Least Squares with HCB Estimation Based on DBH (NLS and BD)

The LiDAR–DBH base model (Equation (1)) and the LiDAR–HCB base model (Equation (2)) were
fitted separately based on the database by the NLS and BD. This method was applied to quantify
the consequences in the HCB estimation by using predicted DBH to take place of an actual value
while ignoring its error. The NLS and BD approach could explain the compatibility between DBH
and HCB, but it failed to account for the effect of the errors in the estimated DBH on HCB estimation.
The estimated values of DBHi and HCBi (i = 1, 2 . . . , N) are, respectively, given by:

DB̂Hi = β̂1 exp(−β̂2LHi − β̂3LCWi) (16)

HĈBi = LHi/(1 + exp(γ̂1DBHi + γ̂2LCAi)) (17)

where β1, β2, β3, γ1, and γ2 are the model parameters; the other parameters and variables are the same
as defined above.

2.6. Comparison and Evaluation of Models

We only had 510 observations, whichor was not enough to divide a full data set into fitting
and validation sets. As such, we applied the leave-one-out cross validation (LOOCV) method [53,54]
for the validation of the models. Each time, one tree from the full dataset was deleted, and the fitting
data set was formed by the remaining trees. A fitting data set was used to fit the DBH and HCB models
and estimated their parameters. Using the estimated parameter values, the deleted tree’s DBH and HCB
were predicted, and commonly used prediction statistics, such as mean bias(e), variance of bias (σ2

e ),
RMSE, and mean absolute error (MAE) (Equations (18)–(21)) were computed with the difference
obtained from the predicted and observed values. Then, we put the tree back in place, deleted another
tree, and performed the same model-fitting and prediction processes. This procedure was performed
on all the trees in the full data set. We present the LOOCV computational codes with NSUR algorithm
as an example in Appendix A, and we used these codes to evaluate the equation system.

Finally, the prediction performance of the simultaneous equation system (Equation (3)) was
estimated with each of the six different methods: NSUR [33,47,55], 2SLS, 3SLS, FIML, NLS and BD [33],
and NLS and NBD [33] were evaluated by three statistics including mean bias, bias variance, and root
mean square error that were calculated with Equations (18)–(21). The model with the smallest e,
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σ2
e , RMSE, and MAE were defined as the final model to predict DBH and HCB. We performed all

computations with R software version 3.4.4 [56].

e =
N∑

i=1

ei/N =
N∑

i=1

(yi − ŷi)/N (18)

σ2
e =

N∑
i=1

(ei − e)2/(N − 1) (19)

RMSE =

√
e2 + σ2

e (20)

MAE = |
N∑

i=1

ei|/N = |
N∑

i=1

(yi − ŷi)|/N (21)

where yi and ŷi are the measured and estimated height to crown base or DBH for the ith observation,
N is the number of observations, e is the mean bias, σ2

e is the variance of bias, RMSE is the root mean
square error, and MAE is the mean absolute error.

3. Results

For the DBH model, the RMSE of NSUR was identical to the NLS and BD model and smaller than
that of 2SLS, 3SLS, and FIML. For the HCB model, the RMSE of NSUR was smaller than that of the NLS
and BD model, 2SLS, 3SLS, and FIML. The MAE of NSUR for the HCB model was the smallest.

3.1. Parameters Estimation

All the parameters in the LiDAR–DBH base model (Equation (1)), the LiDAR–HCB base model
(Equation (2)), and the simultaneous equation system (Equation (3)) were estimated with four different
methods, namely NSUR, 2SLS, 3SLS, and FIML using all the data. Most of the parameter estimates
were significantly different from zero, and their magnitudes and signs could meet biological logics,
except for parameters μ1,μ2, and μ3 for NLS and NBD and γ1 for both 2SLS and 3SLS, whichor were
not significant (p < 0.05) (Table 2).

Table 2. Parameter estimates of the LiDAR–DBH base model (Equation (1)), the LiDAR–HCB base
model (Equation (2)), and the NLS and BD model (Equation (13)), as well as the simultaneous equation
system (Equation (3)). The first three models were estimated using ordinary least squares regression,
and the last one was estimated using NSUR, 2SLS, 3SLS, and FIML.

Model Method Parameters Estimates Standard Error t-Value

LiDAR–DBH base model (Equation (1)) NLS β1 5.7161 0.3599 15.882
β2 −0.0567 0.0061 −9.344
β3 −0.1264 0.0178 −7.108
σ2 37.22

LiDAR–HCB base model (Equation (2)) NLS γ1 0.0053 0.0031 1.68
γ2 0.0367 0.0057 6.4340
σ2 3.37

HCB based on DBH model (Equation (13)) NLS μ1 −0.0003 0.0547 −0.00
NLS and BD μ2 0.2472 0.1987 −1.24

μ3 0.0800 0.0520 1.54
μ4 0.0283 0.0137 2.07
σ2 3.33

230



Remote Sens. 2020, 12, 2238

Table 2. Cont.

Model Method Parameters Estimates Standard Error t-Value

Simultaneous equation system (Equation (3)) NSUR β1 5.6992 0.3615 15.77
β2 −0.0563 0.0061 −9.27
β3 −0.1283 0.0180 −7.12
γ1 0.0059 0.0032 1.87
γ2 0.0361 0.0058 6.26
σ2

DBH 37.22
σ2

HCB 3.32
σDH 0.608

Simultaneous equation system (Equation (3)) 2SLS β1 5.2496 0.3586 14.64
β2 −0.0567 0.0064 −8.83
β3 −0.1451 0.0186 −7.80
γ1 0.0054 0.0051 1.04
γ2 0.0370 0.0091 4.08
σ2

DBH 37.93
σ2

HCB 3.32
σDH 0.551

Simultaneous equation system (Equation (3)) 3SLS β1 5.2641 0.3590 14.66
β2 −0.0564 0.0064 −8.78
β3 −0.1457 0.0186 −7.83
γ1 0.0052 0.0051 1.01
γ2 0.0373 0.0091 4.12
σ2

DBH 37.88
σ2

HCB 3.32
σDH 0.553

Simultaneous equation system (Equation (3)) FIML β1 5.7036 0.3469 16.44
β2 −0.0561 0.0047 −11.84
β3 −0.1289 0.0149 −8.66
γ1 0.0074 0.0042 1.76
γ2 0.0335 0.0076 4.39
σ2

DBH 37.72
σ2

HCB 3.31
σDH 0.65

The elements of the variance–covariance matrix were significantly different from each other
(p < 0.05) in the simultaneous equation system (Equation (3)), whichor was estimated using NSUR,
2SLS, 3SLS, and FIML, implying that correlation of DBH with HCB was highly significant.

3.2. Model Prediction

The LOOCV was carried out for the LiDAR–DBH base model (Equation (1)), the LiDAR–HCB
base model (Equation (2)), the NLS and NBD model (Equation (13)), and the NLS and BD model
(Equation (16)) estimated using the nonlinear OLS, as well as the simultaneous equation system
(Equation (3)) estimated using NSUR, 2SLS, 3SLS, FIML, and TSEM. The evaluations and comparisons
of all these models were carried out using e, σ2

e , and RMSE (Table 3).
A compatible DBH and HCB EIV equation system fitted with NSUR showed a better prediction

ability than those fitted with other alternative methods (Table 3). For the DBH model, the σ2
e of NSUR

was identical to that of NSL and BD, as well as 0.37%, 0.37%, and 0.18% smaller than that of 2SLS,
3SLS, and FIML, respectively. The RMSE of NSUR was identical to that of NLS and BD, and it was
0.02%, 0.01%, and 0.08% smaller than that of 2SLS, 3SLS, and FIML, respectively. For the HCB model,
the σ2

e of NSUR was 0.35%, 0.021%, 0.006%, and 0.17% smaller than that of NLS and BD, 2SLS, 3SLS,
and FIML, respectively. The RMSE of NSUR was 2.75%, 0.022%, 0.011%, and 0.082% smaller than that
of NLS and BD, 2SLS, 3SLS, and FIML, respectively. The MAE of NSUR for HCB was the smallest.

The residuals of six different alternative models and equation systems were calculated based on a
full dataset. This analysis indicated that the mean residuals of the NLS method for HCB were higher
than other alternative methods, among whichor NSUR showed the smallest mean residual for HCB
(Table 4).
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Table 3. Prediction statistics of the models: the DBH-based model (Equation (1)), the HCB-based
model (Equation (2)) fitted with NLS, the HCB based on DBH model (Equation (13)) fitted with NLS,
and the simultaneous equation system (Equation (3)) fitted with the NSUR, 2SLS regression, 3SLS
regression, and FIML algorithms.(e, mean bias; σ2

e, bias variance; and RMSE, root mean square error.
All other acronyms are the same as defined in Table 2).

Fitting Method Variables ¯
e σ2

e RMSE MAE

NLS and NBD DBH −0.0426 37.6572 6.1367 3.6998
HCB −0.0367 3.3387 1.8276 1.4619

NLS and BD HCB −0.4186 3.3530 1.8784 1.4619

NSUR
DBH −0.0458 37.6577 6.1368 3.7008
HCB −0.0276 3.3414 1.8281 1.4606

2SLS
DBH 0.0093 37.7985 6.1481 3.6984
HCB −0.0336 3.3421 1.8285 1.4612

3SLS
DBH 0.0026 37.7977 6.1480 3.7004
HCB −0.0341 3.3416 1.8283 1.4613

FIML
DBH −0.0457 37.6598 6.1369 3.7012
HCB −0.0195 3.3470 1.8296 1.4613

Table 4. Descriptive statistics of residuals of the LiDAR– DBH base model (Equation (1)), LiDAR–HCB
base model (Equation (2)), and model (Equation (13)), and simultaneous equation system (Equation (3)).
The first three models were estimated using ordinary least squares regression and last one was estimated
using NSUR, 2SLS, 3SLS, and FIML. (SD, standard deviation).

Model Method Response Variable Min. of Residuals Max. of Residuals Mean of Residuals SD of Residuals

LiDAR–DBH base model (Equation (1)) NLS DBH −60.0992 21.6027 0.0423 6.1365

LiDAR–HCB base model (Equation (2)) NLS HCB −6.1705 4.3487 0.0367 1.8272

HCB based on DBH model, NLS and BD
(Equation (13)) NLS HCB −6.1708 4.3495 0.0342 1.8300

Simultaneous equation system
(Equation (3)) NSUR

DBH −60.0883 21.5831 0.0458 6.1366
HCB −6.2068 4.4099 0.0276 1.8279

Simultaneous equation system
(Equation (3)) 2SLS

DBH −60.1132 22.2219 −0.0093 6.1481
HCB −6.2193 4.4061 0.0336 1.8282

Simultaneous equation system
(Equation (3)) 3SLS

DBH −60.0874 22.1638 −0.0026 6.1480
HCB −6.2150 4.3999 0.0341 1.8280

Simultaneous equation system
(Equation (3)) FIML

DBH −60.0819 21.5710 0.0457 6.1368
HCB −6.2407 4.4668 0.0295 1.8295

The prediction accuracy of the simultaneous equation system (Equation (3)) fitted with all four
fitting algorithms appeared almost identical (Figure 7), indicating that each of the fitting algorithms
were able to produce almost equally unbiased estimations and prediction accuracies. The prediction
accuracy of DBH seemed to be much higher than that of HCB.

The inherent correlations between the ground-measured DBH, model-estimated DBH,
ground-measured HCB, and model estimated-HCB were all significantly high (Figure 8). The inherent
correlation between DBH and HCB was substantially high. This figure suggested that all models
and all fitting algorithms were appropriately suited to our data.
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Figure 7. Scattered plots of estimated values of HCB versus ground-measured DBH for nonlinear least
squares with HCB estimation not based on DBH (NLS and NBD) (a), nonlinear least squares with HCB
estimation based on the DBH (NLS and BD) (c), NSUR (e), 2SLS regression (g), 3SLS regression (i),
and FIML (k). Scattered plots of estimated DBH versus LH for NLS and NBD (b), NLS and BD (d),
NSUR (f), 2SLS (h), 3SLS (j), and FIML (l).
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Figure 8. Correlations between the ground-measured tree diameter at breast height (DBH) and estimated
DBH for nonlinear least squares with height to crown base (HCB) estimation not based on DBH (NLS
and NBD) (a), nonlinear least squares with HCB estimation based on the DBH (NLS and BD) (c),
NSUR (e), 2SLS regression (g), 3SLS regression (i), and FIML (k), as well as correlations between
ground-measured tree HCB and estimated HCB from NLS and NBD (b), NLS and BD (d), NSUR (f),
2SLS (h), 3SLS (j), and FIML (l). R = Pearson’s correlation coefficient.
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4. Discussion

HCB is an important tree attribute to assess tree productivity and tree vigor. DBH is commonly
used to predict HCB model, but DBH estimated with LiDAR-based attributes contains unignorable
errors. In addition, the compatibility between DBH and HCB needs to be considered when estimating
HCB. In this study, we investigated four algorithms to estimate DBH and HCB in an EIV equation
system—NSUR, 2SLS, 3SLS, and FIML—that were compared with two model structures. The prediction
accuracy of the four EIV equation system algorithms and two model structures were reflected by
RMSE and MAE. The results showed that the impacts of measurement error of DBH on HCB
and the compatibility between DBH and HCB were well accounted for by the NSUR algorithm.

HCB is an important indicator for tree vigor and tree stem form, as well as an indispensable
measure for retrieving the crown ratio. However, measuring in-situ HCB is quite labor-intensive
and costly, especially when conducted for large forest areas. In this situation, an efficient method
of obtaining precise HCB is necessary, whichor can be possible with the HCB prediction model
developed from the LiDAR-derived variables, such as tree height, crown projection area, crown width,
and ground-measured DBH. The first three variables can be relatively more accurately and easily
measured by applying the advanced remote sensing techniques. The HCB can be estimated from
the established HCB model, whichor may also contain DBH as a predictor [11,28]. The DBH estimation
model can also be developed using the LiDAR-derived information [33]. The estimation of HCB
and DBH from their corresponding prediction models would be substantially biased if separately
developed models were used, i.e., DBH model and HCB models developed independently from
each other from the same tree data. In order to overcome such a bias, developing a compatible
simultaneous equation system is the most appropriate solution. However, this equation system of DBH
and HCB models is still unavailable in forest modeling literature. As mentioned in the introduction,
other compatible simultaneous equation systems developed through the EIV modeling approach are
available, e.g., a system of equations of DBH and individual tree above-ground biomass models [33].
Considering the knowledge gap, we developed the simultaneous equation system of DBH and HCB
models using the tree-level predictors (LH, LCW, and LCA), the information of whichor was derived
from the LiDAR imagery. Four different algorithms (NSUR, 2SLS, 3SLS, and FIML) were used to
estimate this equation system.

The data used in our study originated from the Picea crassifolia Kom forest, whichor is crucial to
the economic and social benefits to the rural population, as well as regional carbon storage, regional
carbon cycling, and the maintenance of the balanced-functions of forest ecosystems in northwest China.
Two different model structures (the NLS and NBD model and the NLS and BD model) built by assuming
errors associated with all the regressors and response variables were found to be inappropriate because
this approach did not account for the inherent correlations of DBH with HCB and all the estimated
parameters and variances were biased.

Generally, the structural estimators or fitting algorithms (NSUR, 2SLS, 3SLS, and FIML) should
always be preferred to the NLS, as each of them effectively accounted for the errors in variables in
an appropriate way. However, surprisingly, we found that NLS could sometimes provide a closer
estimation of the structural estimators applied in this study, and it was the same for NLS and NBD.
The NLS and NBD model had a smaller bias variance, so it has possibility to produce a smaller
RMSE. However, NLS standard errors are, in all the likelihoods, not useful for inference purposes [57].
The prediction accuracy of the NLS and BD model was the worst with the highest σ2

e and the biggest
RMSE, thus, in this case, the EIV modeling approach clearly displayed the advantage over NLS.
In general, individual tree DBH and HCB models based on the LiDAR data and field-measurements
contain errors that exist in image capture, image processing, and the extraction of the information
processes, and they are therefore very hard to completely avoid [29,33,58].

The NLS and NBD could neither address the compatibility problem of DBH and HCB nor
account for their inherent correlations. However, a simultaneous equation system (Equation (3)) can
effectively address these issues. Among the four algorithms used in fitting simultaneous equation
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system (Equation (3)), NSUR and 2SLS are classified into the limited information estimators, while
3SLS and FIML are the full information estimators. The former two estimators can make use of
the reduced model information, while the latter two estimators can make use of full information from
the model [33,34]. Based on the model validation results with LOOCV, the prediction accuracy of NSUR
was slightly better than that of the other algorithms (2SLS, 3SLS, and FIML). This was probably because
NSUR has a better ability to address the error transfers caused by DBH in the simultaneous equation
system of the DBH and HCB models. Potentially because of this, Parresol [49] applied NSUR to develop
the additive tree biomass models in a pioneer modeling study about a simultaneous equation system
in forestry. The prediction accuracy of 3SLS was slightly better than 2SLS, confirming the findings of
Tang et al. [34], who found that when errors in across equations were correlated, 3SLS outperformed
2SLS, and—when errors involved across equations were uncorrelated—2SLS outperformed 3SLS.

Our HCB equation system developed in this study was based on the most attractive fit statistics
of the base model among the five frequently used HCB base candidate models [10,59,60]. The analysis
of correlations between the regressors and HCB showed strong connections among LCA, LH, DBH,
and HCB. In other words, these tree characteristics strongly influenced HCB variations. Our DBH
base model, whichor replaced LCPA with LCW in the models of Fu et al. [33], showed a better
fitting performance with a smaller RMSE. Both the HCB model applied with all the LiDAR-based
data (except for DBH data, whichor were obtained from ground measurement) and the DBH model
were developed by LiDAR data, and this enabled the DBH–HCB-compatible EIV models, suggesting
the high possibility of the equation system’s application to an extensive forest area. The validation
results based on the LOOCV for NSUR, 2SLS, 3SLS, and FIML were almost identical, even though
NSUR slightly outperformed others; however, the prediction difference was still insignificant (Table 3).
In this study, we only considered DBH and HCB as error-in-variables; however, other regressors may
contain various errors including measurement errors, tree crown delineation errors, and errors of
parameter estimation. Ignoring all these errors can cause the complex uncertainties while developing
models. Future researchers should focus on these issues. Therefore, readers need to be cautious when
considering the conclusion of this study.

As mentioned in the introduction section, this study was based on a novel methodology,
whichor resulted in a system of compatible simultaneous equations of DBH and HCB models
in whichor various LiDAR-derived tree attributes were used. The measurement errors of both DBH
and HCB were simultaneously taken into consideration to address the problem of compatibility
between DBH and HCB models and to account for inherent correlations between these tree variables
through a simultaneous modeling approach. The presented equation system of DBH and HCB
models can fulfill the gaps of the unavailability of such an HCB EIV model system in forest modeling
literature. A compatible simultaneous equation system of the DBH and HCB models developed
using the information of the tree-level predictors (LH, LCW, and LCA) derived from LiDAR imagery
and ground-based measurements confirmed the accurate prediction of HCB and DBH. Compared
to any of the previously developed HCB models using only ground measurements [11] and those
based on LiDAR-derived databases [22,25–28], the presented equation system in this article will be
interesting and useful to both researchers and forest managers, as this system is able to accurately
predict HCB. Furthermore, the presented modeling approach and algorithm in this article will be
useful for establishing similar compatible equation systems of DBH and HCB EIV models for other
tree species and other tree variables that have inherent correlations between themselves.

5. Conclusions

This study developed a compatible simultaneous equation system of DBH and HCB EIV models
on the basis of LiDAR-derived and ground-measured data of Picea crassifolia Kom trees in northwest
China. Four different algorithms—NSUR, 2SLS regression, 3SLS regression, and FIML—were used to
estimate the parameters in an equation system. The NLS used for estimating both the LiDAR–DBH base
model (Equation (1)) and the LiDAR–HCB base model (Equation (2)) produced biased results, while
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the other fitting algorithms used for estimating a simultaneous equation system (Equation (3)) produced
unbiased results with similar SSE, MSE, and RMSE. Two additional model structures—nonlinear least
squares with HCB estimation not based on DBH (NLS and NBD) and nonlinear least squares with
HCB estimation based on the DBH (NLS and BD)—were also developed for comparison. All the fitting
algorithms and their resulting models were assessed by a leave-one-out cross validation method.
This study indicates that only EIV modeling method can effectively account for the effects of errors
associated with the regressors on the response variables and can guarantee the compatibility between
DBH model and HCB model at the individual tree level. However, neither the NLS and BD model
nor the NLS and NBD model exhibited these advantages. Among the various evaluated algorithms
and models, NSUR showed a slightly better performance than the others. The results showed that
the methodology proposed in this article is a reliable and efficient, and it can estimate individual tree
DBH and HCB from LiDAR-based data over the extensive forest area. In addition, the presented
simultaneous equation system (Equation (3)) does not need measurement of any stand-level variable,
whichor would require an additional cost. The presented modeling approach and algorithm will be
useful for establishing similar compatible equation systems of DBH and HCB EIV models for other
tree species and other tree variables that have inherent correlations between themselves.
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Appendix A

An R program for leave-one-out cross validation (LOOCV) using the SUR fitting algorithm is
illustrated on full data set.

library(“openxlsx”)
library(systemfit)
mydata<- read.xlsx(“sample.xlsx”)
LOOCV<-function(mydata) {
N<-nrow(mydata)
EstD<-array(dim=N)
EstHCB<-array(dim=N)
start.values<-c(a0=5,a1=-0.1,a2=-0.1,b0=0.2, b1=0.1)
eqD<-DBH~(a0*exp(-a1*LH-a2*LCW))
eqHCB<-HCB~LH/(1+exp(b0*DBH+b1*LCA))
model<-list(eqD,eqHCB)
for (i in 1: N) {
Temp1<-mydata[-i,]
Temp2<-mydata[i,]
try (sur<-nlsystemfit (“SUR”, model, start.values, data=mydata), TRUE)
if(class(sur)==“try-error”)
{EstD[i]<-”NA”
EstHCB[i]<-”NA”}
else {
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EstD[i]<-sur$b[1]*exp(-sur$b[2]*Temp2$LH-sur$b[3]*Temp2$LCW))
EstHCB[i]<-Temp2$LH/(1+exp(sur$b[4]*Temp2$DBH+sur$b[5]*Temp2$LCA))}
return (list (EstD,EstHCB))}
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Abstract: Information on land use and land cover (LULC) including forest cover is important for
the development of strategies for land planning and management. Satellite remotely sensed data of
varying resolutions have been an unmatched source of such information that can be used to produce
estimates with a greater degree of confidence than traditional inventory estimates. However, use of
these data has always been a challenge in tropical regions owing to the complexity of the biophysical
environment, clouds, and haze, and atmospheric moisture content, all of which impede accurate
LULC classification. We tested a parametric classifier (logistic regression) and three non-parametric
machine learning classifiers (improved k-nearest neighbors, random forests, and support vector
machine) for classification of multi-temporal Sentinel 2 satellite imagery into LULC categories in
Dak Nong province, Vietnam. A total of 446 images, 235 from the year 2017 and 211 from the year
2018, were pre-processed to gain high quality images for mapping LULC in the 6516 km2 study
area. The Sentinel 2 images were tested and classified separately for four temporal periods: (i) dry
season, (ii) rainy season, (iii) the entirety of the year 2017, and (iv) the combination of dry and rainy
seasons. Eleven different LULC classes were discriminated of which five were forest classes. For
each combination of temporal image set and classifier, a confusion matrix was constructed using
independent reference data and pixel classifications, and the area on the ground of each class was
estimated. For overall temporal periods and classifiers, overall accuracy ranged from 63.9% to 80.3%,
and the Kappa coefficient ranged from 0.611 to 0.813. Area estimates for individual classes ranged
from 70 km2 (1% of the study area) to 2200 km2 (34% of the study area) with greater uncertainties for
smaller classes.

Keywords: classification; Sentinel 2; land use land cover; improved k-NN; logistic regression; random
forest; support vector machine

1. Introduction

1.1. Motivation

Most Vietnamese forests are classified as tropical with natural forest accounting for more than
70% of the total forest area [1]. Dak Nong province has the most abundant natural forest resources in
Vietnam. The great diversity of this resource is primarily owing to a wide variety of environmental and
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climatic factors, most of which are governed by latitude and topography [2]. However, Dak Nong’s
natural forests are being lost at an alarming rate owing to factors that include expanding agriculture,
conversion to commercial and plantation forest types, and increasing human population. For many
years, the Highland Plateau, which includes Dak Nong, has been a major “hot spot” for conversion of
forest to agriculture in Vietnam. During the 1990s and early 2000s, forest was lost at an average annual
rate of 15,000 ha per year [3], with forest cover declining from 75% in 1985 to 60% in 2009. During
this time, the annual rate of deforestation in the Highland Plateau was the greatest of all regions,
accounting for 46.3% of the entire national forest area lost.

The Highland Plateau is characterized by a complex topography with mountains, highlands,
valleys, deltas, and diversified soil types. Approximately 1.3 million ha are fertile soils, rich in organic
matter and nutrients, that facilitate development of high value industrial perennial crops such as coffee,
rubber, pepper, cashew, and fruit trees. Additionally, the distinct rainy and dry seasons in the south of
Vietnam cause differences in the rates of plant growth. Finally, climatic differences from north to south
in Vietnam cause vegetation to vary in physiognomy and lead to morphological differences among
land cover types, particularly between semi-evergreen and deciduous Dipterocarp forests.

Current, accurate, and detailed land cover information that reflects these unique topographic and
climatic conditions, particularly for natural forest types, is crucial for land managers, decision makers,
and policy makers tasked with developing forest management strategies and policies [4–6]. Forest
resource decision-making is characterized by a large degree of uncertainty regarding the outcomes
of alternative choices. The result is a wide variety of opinions regarding the different options that
impedes agreement on a clear way forward. Although there is usually agreement on general objectives
such as sustainable forest use, biodiversity conservation, and the alleviation of rural poverty, conflicts
among stakeholders over the best course of action for achieving these objectives almost always arise.
New issues or new actors may appear and influence discussions, external events may unexpectedly
require the revision of agreed policy proposals, and deadlocks can exist for long periods, all continuing
until pressing circumstances lead to settlements and decisions [7].

1.2. Remotely Sensed Data

Remote sensing offers a unique environmental capability for monitoring extensive geographical
areas in a cost-efficient manner, while simultaneously producing information related to the Earth’s land,
atmosphere, and oceans [8]. Land cover mapping represents one of the most common uses of remotely
sensed data [9–11], with satellite imagery serving as one of the most important data sources [11].

As previously, Dak Nong presents unique challenges for the construction of accurate remote
sensing-based land use land cover (LULC) maps [12]. The variation in vegetation owing to the rainy/dry
seasonal variation affects the spectral reflectance properties of vegetation. For example, deciduous
dipterocarp forests have spectral properties in the dry season that are similar to those of other cover
types such as industrial coffee and rubber crops, whereas the respective spectral properties are quite
different in the rainy season. Only a few studies have accommodated this kind of seasonal variation
when constructing satellite image-based land cover classifications. Sothe et al. (2017) [13] combined
multi-spectral fall and spring season images when mapping land cover with Landsat-8 data and found
that the inclusion of additional band data considerably improved classifications when compared with
the use of fall spectral bands alone. For both classifiers used by Sothe et al. (2017) [13], there were
meaningful increases in classification accuracy, by 4.8% and 2.9% for the random forests and support
vector machine classifiers, respectively, when the “spring” spectral bands were added.

Dak Nong’s seasonal growth variation, varying vegetation spectral signatures, and varying
topography suggest that Sentinel-2 satellite spectral data, with its fine spatial resolution (10–60 m), fine
temporal resolution (five days), and fine spectral resolution (13 spectral bands), may be particularly
well-suited for land cover classification purposes in the province. Although data from the Sentinel-2
sensor have been investigated for a variety of vegetation monitoring [14,15], terrestrial monitoring [16],
and forest classification [16] applications, only a few studies have used Sentinel-2 for land cover
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mapping [17–19]. Therefore, additional studies that evaluate the utility of this imagery for land
cover classification for regions with extremely diverse conditions such as those in Dak Nong are
well-justified [20].

1.3. Classification Techniques

Factors that affect classification accuracy include sensor type, sources of training and accuracy
assessment data, the number of classes, and the classification method [21–23]. Of these factors,
the selection of a suitable algorithm that achieves acceptable classification accuracy with minimal
processing time can be crucial [24]. Many methods have been proposed for constructing satellite
image-based land cover maps [25,26], including both unsupervised and supervised methods and both
parametric and non-parametric methods. Although unsupervised algorithms such as IsoData and
K-Means clustering have been widely used for many years, general purpose clustering algorithms are
cumbersome and difficult to develop [27]. Parametric supervised algorithms such as linear discriminant
analysis [28–31] and multinomial logistic regression (MLR) have also been broadly used [32,33] and
are often considered standards for comparison purposes [29,30,34]. In the last decade, non-parametric
methods including support vector machine (SVM) [35–37], k-nearest neighbors (k-NN) [38,39], and
random forests (RF) [40–42] have gained attention for remote sensing-based land cover classification.
However, both SVM and RF require the selection of values for multiple parameters that affect their
efficacy, and both are computationally intensive [6,35]. For k-NN, Naidoo et al. (2012) [43] reported
difficulty in selecting the optimal value of k and that the genetic algorithms recommended for
optimization can be computationally intensive [44,45]. Finally, object-based classification has been
shown to be an effective method for classifying fine resolution imagery [46,47]. Object-based methods
have been used with both fuzzy sets [48,49] and neural networks [48,50] to map land cover using
satellite imagery. Although object-based classification methods have been shown to increase accuracy
for some land cover mapping applications, fine spatial resolution remotely sensed imagery remains
the most frequently used data source for these applications [51].

Because of the unique features of each study and study area including definitions, sample sizes,
and numbers and characteristics of the classes, comparisons of methods with respect to accuracy
among studies is difficult. Even so, not much effort has been committed to comparing methods with
respect to accuracy for diverse tropical forest regions such as Dak Nong. Meyfroidt et al., 2013 [52]
used MLR with Landsat data to assess classes of forest change and reported land cover classification
accuracies of 0.64 to 0.69. Use of RF for land cover classification has been reported for multiple studies
in Vietnam. Bourgoin et al. (in press) [53] used RF with both Landsat and Sentinel-2 data for multiple
land cover and land cover change classes and reported an overall accuracy of 0.81. Nguyen et al.
(2018) [6] used RF and Landsat data for 10 classes including multiple forest classes in Vietnam. Overall
accuracy was approximately 0.90. Ha et al. (2018) [54] used RF and Landsat data for seven land
cover classes including forest land and reported overall accuracies greater than 0.90. Finally, Phan
and Kappas (2018) [20] reported that SVM was more accurate than RF for classifying six types of land
cover types including one forest class in the North of Vietnam (Red River Delta) using Sentinel-2
data. In summary, although only a few studies using only a few methods have been used for the
classification of forest land in Vietnam, the reported accuracies are relatively large. Thus, there is merit
in a more comprehensive evaluation of classification methods, particularly for diverse tropical regions
such as in Dak Nong province, Vietnam, with their distinct seasonal effects.

1.4. Objectives

The overall objective was to evaluate the utility of multi-seasonal Sentinel-2 spectral data for land
cover classification and mapping in Dak Nong province, Vietnam. A subordinate objective was to
compare the parametric MLR and non-parametric ik-NN, SVM, and RF classification methods with
respect to both overall and class-level accuracies and with respect to whether the methods exploited
the beneficial effects of the multi-seasonal Sentinel-2 data. Google Earth Engine was used for collecting
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and pre-processing both training and accuracy assessment data. A second subordinate objective was
rigorous statistical estimation of the ground area of each land cover class.

2. Materials and Methods

2.1. Overview

The structure of this section has multiple components. First, the Dak Nong study area is described
in Section 2.2, the Sentinel-2 satellite imagery and its separation into temporal periods are described
in Section 2.2, and the land cover data from multiple sources and their separation into training and
validation subsets are described in Section 2.3. Next, brief descriptions of the four classifiers are
provided in Section 2.4, including descriptions of their statistical properties, details on their required
input parameters, and procedures for optimizing their performance. Finally, in Section 2.5, the two
analytical components used to compare all combinations of the four temporal image periods and the
four classifiers are described. The first component focuses on map accuracy assessment, while the
second component focuses on estimating LULC class areas and their corresponding uncertainties.
The overall research approach is summarized in Figure 1.

           

Figure 1. Research approach as a flowchart. The Sentinel-2 2017 and 2018 data were collected for
different seasons: dry, rainy, whole year, and rainy and dry composited images. The MLR, ik-NN, SVM,
and RF classifiers were tested with the resulting uncertainty assessments used as criteria for comparing
combinations of seasonal datasets and classifiers. OA, overall accuracy; K, Kappa coefficient; PA,
producer’s accuracy; UA, user’s accuracy.
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2.2. Study Area

The study was conducted in Dak Nong Province in the Central Highlands of Vietnam (Figure 2).
The average elevation is between 600 and 700 m above sea level. The mean temperature is 24 degrees
Celsius. The climate conditions produce general characteristics of a subequatorial tropical monsoon
climate. The province has characteristics of humid tropical highland climate and is affected by dry-hot
southwest monsoons. There are two distinct annual seasons: the rainy season starts in April and ends
in November, and the dry season starts in December and ends in March the following year. The average
annual rainfall is 2500 mm, of which 90% occurs during the rainy season. The study area extends
over 6516 km2 and is characterized by substantial fragmentation, thereby making LULC classification
particularly challenging. Natural forest consists of patches of natural evergreen broad-leaved, mixed
bamboo, deciduous dipterocarp, and semi-deciduous forest with different levels of disturbance, mainly
human in origin.

Figure 2. The study area in Dak Nong province, Vietnam, with sample unit locations.

2.3. Data

2.3.1. Sentinel-2 Imagery

Sentinel-2 MSI (multi-spectral instrument, Level-1C) remotely sensed data were used for LULC
classification. The Sentinel-2 mission was developed by the European Space Agency (ESA) as a part
of the Copernicus Programme [55]. The mission’s wide swath, fine spatial resolution (10 m–60 m),
multi-spectral features (13 spectral bands), and frequent revisit time (10 days at the equator with one
satellite, and 5 days with two satellites) support monitoring vegetation changes within a growing season,
forest monitoring, land cover change detection, and natural disaster management [56]. The spectrum
characteristics of the Sentinel 2 images are described in Table 1.
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Table 1. Basic characteristics of Sentinel 2 multi-spectral instrument (MSI).

Name Min Max Scale Resolution Wavelength Description

B1 0 10,000 0.0001 60 Meters 443 nm Aerosols
B2 0 10,000 0.0001 10 Meters 490 nm Blue
B3 0 10,000 0.0001 10 Meters 560 nm Green
B4 0 10,000 0.0001 10 Meters 665 nm Red
B5 0 10,000 0.0001 20 Meters 705 nm Red Edge 1
B6 0 10,000 0.0001 20 Meters 740 nm Red Edge 2
B7 0 10,000 0.0001 20 Meters 783 nm Red Edge 3
B8 0 10,000 0.0001 10 Meters 842 nm Near infrared (NIR)
B8a 0 10,000 0.0001 20 Meters 865 nm Red Edge 4
B9 0 10,000 0.0001 60 Meters 940 nm Water vapor
B10 0 10,000 0.0001 60 Meters 1375 nm Cirrus
B11 0 10,000 0.0001 20 Meters 1610 nm Short-wave infrared (SWIR) 1
B12 0 10,000 0.0001 20 Meters 2190 nm SWIR 2

QA10 10 Meters Always empty
QA20 20 Meters Always empty
QA60 60 Meters Cloud mask

The difference in solar illumination geometry during image acquisition between the two seasons
was considered in the present study. Although vegetation in the study area presents reduced climatic
and phonological seasonality, the observed reflectance varies by season owing to changes in the solar
illumination geometry caused by the Earth’s translation movement [13]. Therefore, seasonal image
datasets were separately classified to evaluate these influences. Accordingly, the scenes of interest
included the following: (i) a collection of Sentinel-2 MSI scenes in the study area during the dry season
of 2017 and 2018 (1 January 2017 to 31 March 2017, and 1 December 2017 to 31 March 2018), designated
imagery 1 (IMG 1) (Table 2); (ii) a collection of Sentinel-2 MSI scenes during the rainy season of 2017
and 2018 (from 1 April 2017 to 30 November 2017 and 1 April 2018 to 30 June 2018), designated IMG 2;
(iii) a collection of Sentinel 2 MSI scenes for all months of 2017 (from 1 January 2017 to 31 December
2017), designated IMG 3; and (iv) a combination of all bands for the dry and rainy seasons (combination
of IMG 1 and IMG 2, designated IMG 4.

Table 2. Seasonal satellite images used in the classification.

Image Name Time Acquisition Date
Number of Images

Involved
Number of Bands

IMG 1 Dry season, 2017–2018
01/01/2017–03/31/2017

and
12/01/2017–03/31/2018

169 10

IMG 2 Rainy season, 2017–2018
04/01/2017–11/30/2017

and
04/01/2018–06/30/2018

277 10

IMG 3 All for year 2017 01/01/2017–12/31/2017 265 10

IMG 4
Combination of all bands

for both 2017 and 2018
(IMG 1 + IMG 2)

Dry season
2017–2018 + Rainy
season 2017–2018

446 20

The different seasonal image datasets represented for each season were considered for the analyses
based on the median value of the collection. The multi-spectral bands in the study included Blue
(B2), Green (B3), Red (B4), Red Edge 1 (B5), Red Edge 2 (B6), Red Edge 3 (B7), near infrared (NIR)
(B8), Red Edge 4 (B8A), short-wave infrared (SWIR) 1 (B11), and SWIR 2 (B12). In addition to these
spectral bands, the normalized difference vegetation index (NDVI) and a digital elevation model
(DEM) were added to the seasonal image data (IMG 1–4) with the objective of increasing classification
accuracy, as reported from previous studies [22,57]. These bands, including NDVI [58,59] and DEM,
were resampled at 10 m resolution. Image information is described in Table 2 below.
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To conduct the analyses, the JavaScript API Code Editor in the Google Earth Engine (GEE) was
used to collect data for a large number of images. GEE provides most freely available image data
and an application programming interface (API) to analyze and visualize the data [60,61]. Surface
reflectance (SR) images for 2017 were not available, and for 2018 images, approximately 50% of the
study area was covered by clouds. Hence, a top of atmosphere (TOA) dataset acquired for 2017 and
2018 was used for the study. The set of collected images was pre-processed to reduce the effects of
topography and bidirectional reflectance distribution function (BRDF). At the same time, cloud areas
were masked out and shadows were removed during this process.

All images underwent pixel-wise cloud and cloud shadow masking using the Google cloudScore
algorithm for cloud masking and temporal dark outlier mask (TDOM) for cloud shadows, both of
which built on ideas from Landsat TDOM and cloudScore algorithm. The original concept was written
by Carson Stam, adapted by Ian Housman, currently documented in [60], and described and evaluated
in a forthcoming paper [62]. This study implemented the correction of reflectance spectral values by
BRDF based on the method described by Roy et al. 2017a,b [63,64]. Topographic correction is the
process to account for diffuse atmospheric irradiance caused by slope, aspect, and elevation effects.
The sun-canopy-sensor +C (SCSc) correction method based on the C-correction, as described by Soenen
et al. [65], was applied for topographic correction in this study. The median function was then applied
to create an image object (single image) representing the median value of all images in the filtered
collection [66,67]. The median lies closer to the majority of values and is insensitive to extreme values
and has exactly half the values smaller and half the values greater than the median, as elaborately
applied by [68]. The post-processed images were then resampled to a spatial resolution of 10 m using
the nearest neighbor method [69], and subsetted to the study area. The entire pre-processing was
implemented on GEE based on the script available on “Open Geo Blog - Tutorials, Code snippets and
examples to handle spatial data” [61,70].

2.3.2. Training and Validation Data

Within the study area, 11 LULC classes were distinguished: (1) dense evergreen broadleaved
forest (the forest has been slightly impacted); (2) open evergreen broadleaved forest (the forest has
been moderately to heavily disturbed); (3) semi-evergreen forest (the forest that consists of a mixture
of evergreen and deciduous dipterocarp tree species); (4) deciduous dipterocarp forest; (5) plantation
forest; (6) mature rubber (≥3 years old); (7) perennial industrial plants; (8) croplands (annual crop
land); (9) residential area; (10) water surface; and (11) other lands including, but not limited to, other
types of grassland, shrubs, bare land, and abandoned land.

Acquiring adequate training and validation data is often challenging in tropical regions. Sothe
et al., 2017 [13] and Teluguntla et al., 2018 [71] both obtained good results using sample data from a
combination of sources including field investigations, very fine spatial resolution Google Earth imagery,
current Landsat and Sentinel imagery, and other sources such as maps. A similar approach was used for
this study for which three sets of sample data were acquired in 2017 and 2018: (1) field observations for
a purposive sample of size 232; (2) visual interpretations of fine and very fine resolution imagery from
sources that included Google Earth for a purposive sample size of 214; and (3) visual interpretations
of fine and very fine resolution imagery from sources that included Google Earth and Sentinel- 2A
imagery for a simple random sample size of 800. For the latter sample dataset, field observations and
data from the 2016 Dak Nong Forest Inventory Map were used to clarify and refine interpretations for
the LULC classes such as semi-evergreen forest, plantation forest, and some perennial industrial crops
that were difficult to distinguish in the imagery.

To obtain the probability sample necessary for validation, a systematic sample of the
probability-based third dataset was selected. The plots in the third dataset were first sorted by
their east and north coordinates, and then a systematic sample was selected from within each LULC
class. For each class, the proportion selected was arbitrary, but was guided by the desire for a minimum
sample size of 15, where possible, while yet retaining a sufficient sample size for training purposes.

247



Remote Sens. 2020, 12, 1367

For the eleven LULC classes, the proportions were, in order, as follows: 0.20, 0.20, 0.50, 0.67, 1.00, 0.50,
0.11, 0.50, 0.67, 0.50, 0.20. Because the third dataset was selected using a simple random sample, and it
was systematically subsampled, each subsample can also be considered a simple random sample and,
therefore, can be used for validation. The remaining portion of the third dataset was used for training
purposes. The result was a sample size of 1036 for training and a sample size of 208 for validation.
The number of validation plots by LULC category was considered sufficient and generally complied
with the recommendation of Särndal et al. (1992) [72]. A summary of the training and validation
datasets is shown in Table 3 with the spatial distribution of sample locations shown in Figure 2.

Table 3. Training and validation data.

Dataset Use
Land Cover Class Total

1 2 3 4 5 6 7 8 9 10 11

1 Training 77 6 15 13 29 34 0 13 32 4 9 232
2 Training 6 8 52 33 11 14 19 21 20 4 25 213
3 Training 99 97 22 9 0 17 234 20 8 11 74 591

Total Training 182 111 89 55 40 65 253 54 60 19 108 1036
3 Validation 25 25 22 17 7 17 28 20 16 12 19 208

2.4. Classifiers

The MLR, ik-NN, RF, and SVM supervised classification algorithms were used to classify the
satellite image data as described above. The training areas for each LULC type were selected based on
Google Earth, field data, and prior knowledge, as well as available data. The models were used as
supervised classifiers to classify pixels based on their spectral signatures.

2.4.1. Multinomial Logistic Regression (MLR)

With MLR, the probability of class c for the ith plot, c=1,..., C, is estimated as follows:

p
(
yi = c

∣∣∣xi
)
=

exp(βc · xi)

1−∑C−1
m=1 exp(βm · xi)

+ εi, for c = 1, . . . , C− 1 (1)

and
p
(
yi = C

∣∣∣xi
)
=

1

1−∑C−1
m=1 exp(βm · xi)

+ εi, (2)

where C is the number of the LULC classes, xi is the vector of predictor variable observations for the ith

population unit, and βc is the vector of regression coefficients associated with LULC class c. The class
with the greatest probability is selected as the prediction for the ith population unit. Optimal estimates
for

{
βc : c = 1, . . . , C

}
can be obtained using any of multiple statistical software packages.

2.4.2. Improved k-Nearest Neighbors (ik-NN)

In the terminology of nearest neighbors techniques, the auxiliary or predictor variables are
designated feature variables and the space defined by the feature variables is designated the feature
space; the set of sample units for which observations of both response and feature variables are
available is designated the reference set; and the set of population units for which predictions of
response variables are desired is designated the target set (Chirici et al., 2016) [73]. All population
units for both the reference and target sets are assumed to have complete sets of observations for all
feature variables.

For the ith target unit, all forms of nearest neighbors algorithms entail selecting the k-nearest or

most similar neighbors,
{
yi

j : j = 1, 2, . . . , k
}
, from the reference set with respect to a distance metric, d,

formulated as a function of the feature variables. For categorical response variables such as land cover
classes, the prediction, ŷi, for the ith target unit is the most heavily weighted class among the k-nearest
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neighbors, a weighted median or mode in case of ordinal scale variables, or a mode in the case of
nominal variables. Implementation of nearest neighbors techniques requires multiple selections: (i)
the distance metric, d, to assess nearness or similarity in the feature space; (ii) a scheme for weighting
the predictor variables in the distance metric; (iii) a scheme for weighting individual neighbors when
calculating predictions; and (iv) a number, k, of nearest neighbors [73].

For this study, the distance metric was a simplified version of the metric proposed by Tomppo and
Halme (2004) [44], as used in the operational Finnish multi-source national forest inventory (MS-NFI),

dij =

√√√ p∑
m=1

w2
m ·

(
xim − xjm

)2
, (3)

where i denotes a target unit; j denotes a reference unit; dij is the distance between the units i and j;
m indexes the feature variables; xim and xjm are observations of the mth feature variable for the ith

target unit and jth reference unit, respectively; and wm is a feature variable weight. Neighbor weights
are typically formulated as powers, t ∈ [0, 2], of distances between target and reference units. Often,
the necessary selections to implement a nearest neighbor algorithm are made in an arbitrary method,
whereas improved k-NN (ik-NN) entails optimized selection of the weights, wm, using a technique
such as genetic algorithms [44,45,74]

2.4.3. Support Vector Machine (SVM)

The principle behind the SVM classifier is a hyperplane that separates the data for different classes.
The main focus is construction of the hyperplane by maximizing the distance from the hyperplane to
the nearest data point of either class. These nearest data points are known as support vectors [75].

According to Huang et al. (2002) [35] (p. 734), by mapping the input data into a high-dimensional
space, the kernel function converts non-linear boundaries in the original data space into linear
boundaries in the high-dimensional space, which can then be located using an optimization algorithm.
Therefore, selection of the kernel function and appropriate values for corresponding kernel parameters,
referred to as the kernel configuration, can affect the performance of the SVM.

The radial basis function kernel (RBF kernel) is one of the most popular kernels used to implement
the support vector machine algorithm and was used for this study. The squared Euclidean distance
metric was used to construct completely non-linear hyperplanes. The RBF kernel of the SVM classifier
is commonly used and has performed well. Polynomial kernels, especially high-order kernels, took far
more time to train than RBF kernels [35].

Meyer et al. (2002) [76] stated that, for classification tasks, C-classification is most likely used with
the RBF kernel because of its good general performance and the small number of parameters (only
two, C and γ). Therefore, the two parameters that must be defined for this classification algorithm
are the cost parameter (C) and the kernel width parameter (γ). According to Knorn et al. (2009) [77]
(p.960), C is a regularization parameter that controls the trade-off between maximizing the margin and
minimizing the training error. C is a preset penalty value for misclassification errors, while γ describes
the kernel width, which affects the smoothing of the shape of the class-dividing hyperplane.

The authors of LIBSVM suggest trying small and large values for C, such as 1 to 1000, then
using cross-validation to decide which is optimal for the data, and finally trying several γ’s for the
optimal C’s. A small C-value tends to emphasize the margin while ignoring the outliers in the training
data, while a large C-value may overfit the training data [77] (p.960). Optimal selection of C and γ

parameters was done by testing C parameters in the range 2−1 to 28 and γ parameters in the range 0.1
to 2.0.

2.4.4. Random Forests (RF)

The RF classifier developed by Breiman (2001) [78] requires selection of three parameters: ntree
(number of trees to grow), mtry (the number of variables to split each node), and variable importance
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(the number of variables/bands influences model performance). Liaw & Wiener (2002) [79] recommend
using the square root of the number of input variables as the default value for mtry. A large value for
ntree produces a stable result for variable importance, which is estimated using two indicators: (i) mean
decrease accuracy (MDA) and ii) mean decrease gini (MDG). MDA is the accuracy associated with each
predictor variable based on the out-of-bag error rate (OOB). Gini impurity is a measure of how often a
randomly chosen element from the set would be incorrectly labeled if it is randomly labeled according
to the distribution of labels in the subset. For this study, MDA values were investigated to determine
the importance of variables. Nguyen et al. (2018) [6] indicated that within the range 1 ≤ ntree ≤ 500,
ntree = 300 produced the best fit. In addition, Breiman (2001) [78] stated that using more than the
required number of trees may be unnecessary, albeit not harmful, because the relationship between
accuracy and ntree is asymptotic. The ‘RandomForest’ package in the R environment developed by
Liaw and Wiener (version 4.6–14 in 2018) was used in present study. Optimal values of mtry, ntree, and
variable importance were selected based on the smallest OOB error. The optimal variable importance
depended on the MDA value and accuracy of the model.

2.5. Analyses

2.5.1. Accuracy Assessment

Accuracy assessment is an important step before accepting a classification result [21].
The classification accuracy of a map product is estimated by constructing a confusion matrix between
reference and classified pixels. Classification accuracy was assessed using criteria such as overall
accuracy (OA), Kappa coefficient (K), producer’s accuracy (PA), and user’s accuracy (UA). Congalton
and Green (1999) [80] assert that analysis of the causes of differences in the confusion matrix can be one
of the most important and interesting steps in the construction of a map from remotely sensed data.

The objectives of the study included comparing the performance of classifiers as well as assessing
the effects of Sentinel-2 satellite images for different seasons, as described in Table 2. The number of
seasonal bands used with the four classifiers is reported in Table 4.

Table 4. Classifiers and seasonal bands. Ik-NN, improved k-nearest neighbors; MLR, multinomial
logistic regression; SVM, support vector machine; RF, random forests.

Classification Algorithm Image Set Number of Bands

ik-NN

IMG 1 10
IMG 2 10
IMG 3 10
IMG 4 20

MLR

IMG 1 10
IMG 2 10
IMG 3 10
IMG 4 20

SVM

IMG 1 10
IMG 2 10
IMG 3 10
IMG 4 20

RF

IMG 1 10
IMG 2 10
IMG 3 10
IMG 4 20

2.5.2. Land Cover Class Area Estimation

For each land cover class, an estimate of the class area and the corresponding standard error were
calculated using a combination of confusion matrices and stratified estimators [81,82]. For each class,
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C, a confusion matrix was constructed for two classes: (i) class C and (ii) the aggregation of all other
classes into a single class designated ~C (Table 5). Using estimates of proportions and corresponding
variances as indicated in Table 5, the stratified estimate of the area of class C was as follows:

ÂC = Atot ·
(
wt1 · p̂1 + wt2 · p̂2

)
, (4)

with standard error,
SE

(
ÂC

)
= Atot ·

[
wt2

1 · V̂ar
(
p̂1

)
+ wt2

2 · V̂ar
(
p̂2

)]
(5)

where wt1 is the proportion of the total map area in class C, wt2 = 1−wt1, and Atot is the total area of
interest. Approximate 95% confidence intervals for the class areas can be estimated as follows:

ÂC ± 2 · SE
(
ÂC

)
. (6)

Table 5. Confusion matrix.

Map Class
Reference Class

Total UA *
^
ph V̂ar(

^
ph)

C ~C

C n11 n12 n1· = n11 + n12 ua1 = n11
n1· p̂1 = n11

n1· V̂ar
(
p̂1

)
=

p̂1·(1−p̂1)
n1·

~C n21 n22 n2· = n21 + n22 ua2 = n22
n2· p̂2 = n21

n2· V̂ar
(
p̂2

)
=

p̂2·(1−p̂2)
n2·

Total n·1 = n11 + n21 n·2 = n12 + n22
PA * pa1 = n11

n·1 pa2 = n22
n·2

* UA = user’s accuracy, * PA = producer’s accuracy.

3. Results

3.1. Classifiers

3.1.1. Multinomial Logistic Regression (MLR)

The parameters of the multinomial logistic regression model (Equations (1) and (2)) were estimated
using the multinom function of the R packages [83]. All variables (spectral values of all bands of the
image set in the analysis) were included in the model. The log-likelihood stabilized after 100 iterations.
The importance of the variables was quite similar among different Sentinel-2 datasets. For the dry
season image (IMG 1) and for the all-month image (IMG 3), the most important variables were Blue
and SWIR 2, otherwise, the variable importance values were approximately the same. For the rainy
season image (IMG 2), the results were also similar, although the Blue and SWIR 2 importance values
were slightly less than for IMG 1 and IMG 3. Differences among importance values were small for the
two-season image (IMG 4).

3.1.2. Improved k-NN (ik-NN)

The improved k-NN (ik-NN) algorithm was applied as described in [45], except that only overall
accuracy was used in the fitness function. The value of k = 10 was used. For the genetic algorithm,
the number of the generations was 60, the population and medi-population sizes were 50, and the
maximum number of the random iterations was 4000. Otherwise, the genetic algorithm parameters
were as reported by Tomppo et al. (2009) [45]. Because genetic algorithms as a heuristic optimization
method may select a local optimum, several trial runs were used to find a near optimal solution.
Pixel-level estimates can be readily calculated with ik-NN when the weights of the variables have been
optimized. The importance for the different variables was similar for ik-NN and MLR. However, in the
case of predictor variables with large correlations, caution should be used when drawing conclusions
with either method.
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3.1.3. Support Vector Machine (SVM)

With the SVM algorithm using the RBF kernel, determination of the optimal cost (C) and Gamma
parameters for the model is important. Following Qian et al. (2015) [84] and using our actual dataset,
the R function ‘tune()’ was used to select these two SVM parameters. The optimal cost (C) value was
determined from the values: 2−1, 20, 21, 22, 23, 24, 25, 26, 27, 28, and the Gamma (γ) value was a free
parameter set from 0.1 to 2. The optimal parameters were determined based on classification error.
Figure 3 describes the performance of the SVM model using the different cost and Gamma parameters.
The darker the blue area, the better the performance of the model presented.

(a) IMG 1-SVM (b) IMG 2-SVM

(c) IMG 3-SVM (d) IMG 4-SVM

Figure 3. Parameter tuning of support vector machine: (a) IMG1-SVM; (b) IMG 2-SVM; (c) IMG 3-SVM;
(d) IMG 4-SVM.

For the IMG 2-SVM combination and the IMG 4-SVM combination, the optimal C of 23 and
Gamma of 0.1 produced classification errors of 0.2283 and 0.1525, respectively, while for the IMG
1-SVM and IMG 3-SVM combinations, the optimal C of 25 and 26, both with Gamma of 0.1, produced
classification errors of 0.2212 and 0.2145, respectively.

3.1.4. Random Forests (RF)

The three RF parameters, ntree, mtry, and variable importance, play important roles in classification.
The algorithm assesses the importance of each variable in the classification process by means of a
specific measure. ‘Importance()’ and ‘varImplot()’ functions were used to determine the MDA values
and to select the potential variables that were actually needed for the optimal RF models. Figure 4
shows the variable importance ranked in the direction of decreasing MDA from right to left for the
four seasonal images. The selection of variables was based on MDA using the backward selection
method [85]. With this method, the algorithm starts with all predictor variables and then sequentially
removes some variables until the greatest accuracy is achieved. Accordingly, the least MDAs were
attributed to two bands of IMG 1, 2, and 3: specifically, B6 and B8 for IMG 1 and B6 and B7 for both
IMG 2 and IMG 3. For IMG 4, the five bands were included: B5a, B2a, B2b, B7a, and B8b. In addition,
the NIR band reduced the accuracy for all images.
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(a) IMG 1-RF (b) IMG 2-RF 

(c) IMG 3-RF (d) IMG 4-RF 

Figure 4. Ranking the variable importance measurement (bands): (a) IMG 1-RF; (b) IMG 2-RF; (c) IMG
3-RF; (d) IMG 4-RF.

The number of variables used for splitting at each node (mtry) was determined using the tuneRF
function based on the variable importance and the number of trees (ntree). On the basis of the OOB
error estimation, the optimum ntree and mtry parameters were chosen for the models.

Figure 5 shows the OOB errors when the model was run with ntree ranging from 1 to 500 trees.
The smallest OOB errors were obtained for ntree = 500 trees for all seasonal image combinations.

(a) IMG 1-RF (b) IMG 2-RF

Figure 5. Cont.
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(c) IMG 3-RF (d) IMG 4-RF 

Figure 5. Out-of-bag error rate (OOB) errors versus ntree values: (a) IMG 1-RF; (b) IMG 2-RF; (c) IMG
3-RF; (d) IMG 4-RF.

The OOB errors associated with different mtry values are shown in Figure 6. The smallest OOB
error was obtained with mtry = 3 for the IMG 2/RF and IMG 3/RF combinations, with mtry = 6 for the
IMG 1/RF combination, and with mtry = 4 for the IMG4/RF combination.

(a) IMG 1-RF (b) IMG 2-RF

(c) IMG 3-RF (d) IMG 4-RF

Figure 6. The OOB error of the model based on mtry parameter: IMG 1-RF; (b) IMG 2-RF; (c) IMG
3-RF; (d) IMG 4-RF.

3.2. Analyses

3.2.1. Accuracy of Classification Results

OA, K, PA, and UA for each class for the different combinations of image groups and classifiers
are reported Table 6 and a comparison of the results is reported in Figure 7. In general, relatively large
accuracies were found with OA >60% and K >0.6. Of interest, the IMG 4 composite of rainy and dry
images produced the greatest accuracies for all classifiers. By contrast, the rainy season IMG 2 images
produced the smallest accuracies. Classification accuracies for IMG 1 and IMG 3 were less than for
IMG 4, but greater than for IMG 2.
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Figure 7. Overall accuracy for all combinations.

 
Figure 8. Land use and land cover (LULC) map produced for the most accurate classification combination.
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The greatest accuracy was achieved for the composite two-season IMG 4 using the SVM classifier,
specifically OA = 80.3% and Kappa = 0.813. The smallest accuracy was for IMG 2 with the MLR
classifier. The differences between the greatest and smallest accuracies were 16.4% percentage points
for OA and 0.202 for K. With respect to the classification algorithms, differences between the greatest
and smallest accuracies for the four algorithms were 14.4% percentage points for OA and 0.202 for
K. For SVM, the differences were 11.9% percentage points and 0.096 for K; for ik-NN, the differences
were 10% percentage points for OA and 0.108 for K. The final LULC map was constructed using the
classification for the most accurate IMG 4/SVM combination and is shown in Figure 8.

Average UA and PA estimates were greater than 60%, apart from a few cases, but differed by
LULC class. For the forest cover classes, dense forest (1) had the greatest accuracy, while open forest (2)
had the smallest accuracies for the four methods for most seasons (Figure 9).

Figure 9. User’s and producer’s accuracies by class for the four classifiers using the IMG 4 combination
of the rainy and dry Sentinel 2 satellite imagery.

3.2.2. Land Cover Class Area Estimates

Land cover class area estimates with corresponding standard errors are shown by class for the 16
seasonal image and prediction technique combinations in Table 6. Class area estimates ranged from
slightly greater than 70 km2 for class 10 for the IMG 4 and MLR combination to slightly greater than
2200 km2 for class 7 for the IMG 4 and SVM combination. Standard errors ranged from approximately
6 km2 to approximately 230 km2, with larger standard errors associated with larger area estimates
(Figure 10), although smaller ratios of standard errors to area estimates were associated with larger area
estimates. Regardless of the seasonal image and prediction technique combination, the three classes
with the greatest areas, in order, were class 7: perennial industrial plants, class 2: open evergreen
broadleaved forest, and class 1: dense evergreen broadleaved forest. For IMG 1, IMG 2, and IMG 3, the
sums of the estimated areas for these three classes as proportions of the total area ranged from slightly
more than 0.50 to approximately 0.63, but with larger estimates for IMG 4.

259



Remote Sens. 2020, 12, 1367

Figure 10. Standard errors (SE) (km2) of class area estimates versus area estimates (km2).

4. Discussion

Errors are present in any classification, estimation, or prediction [21,86–88]. Comparison of the
results of this study and those of earlier studies is not straightforward because the numbers and
definitions of the vegetation classes differ by study. Thus, optimality differs by study and user [21,86–88].
There are also no generally accepted limits on how accurate a classification should be to be characterized
as reliable, because different users may have different concerns about accuracy. They may, for example,
be interested in the accuracy for a specific class or in accuracy for areal estimates [89]. In addition,
multiple factors influence classification accuracy: image quality, classifier, image composition, number
and details of classes, and sample size.

Andersen et al. (1976) [90] recommended that accuracies of 85% for mapping land cover are
acceptable. However, as Foody (2008) [91] noted, for many contemporary mapping applications,
the challenge may be more difficult than assessed by Anderson et al. (1976) [90], particularly when
attempting to distinguish among a large number of relatively detailed classes at a relatively local,
large cartographic scale. Consequently, in such applications, the use of the 85% target suggested by
Anderson et al. (1976) [90] may be inappropriate, as it may be unrealistically large.

Indeed, many studies have been conducted to select the most accurate classifier, either among
those simultaneously evaluated or with classifiers evaluated in other studies. Such works reach no
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consensus, because the performance of a classifier always depends on the specific site characteristics,
on the type and quality of the remotely sensed data, and also on the number and general aspects of the
classes of interest [13]. Using the RF, SVM, maximum likelihood, and neural network classification
algorithms to discriminate among four individual land cover classes based on two Landsat-8 OLI
scenes, Lowe and Kulkarni (2015) [40] reported overall classification accuracies of 96.25%, 86.88%,
83.13%, and 76.87%, respectively. Kennedy et al. (2015) [41] used RF to classify Landsat time-series
data from 1198 training patches for four classes (agriculture, forest, urbanization, and stream) and
reported OA greater than 80%, but most successfully for the numerically well-represented forest
management class. Meanwhile, Franco-Lopez (2001) [38] used k-NN to map 13 types of land cover
using Landsat TM and achieved OA = 64%. Tomppo et al. (2008) [92] reported OA between 70%
and 80% for classifying dominant tree species in one boreal forest test site in Finland when using two
adjacent Landsat 7 ETM+ scenes and the ik-NN method. Pelletier et al. (2016) [18] used RF and SVM
algorithms to classify SPOT-4 imagery and Landsat-8 HR-SITS images in southern France. The authors
reported an OA of 83.3% for RF and 77.1% for SVM. Research by Phan and Kappas (2017) [20] showed
different results among RF, SVM, and k-NN classifiers used to discriminate six types of LULC using
Sentinel-2 image data in the Red River Delta of Vietnam. This research reported that SVM produced
the greatest OA (95.29%) with the least sensitivity to the training sample sizes, followed consecutively
by RF (94.44%) and k-NN (94.13%). These results indicate that no standard of accuracy is appropriate
for all cases, because accuracy relevance depends on both the objective and the user.

Spatial information including remotely sensed data has been an excellent source of information
for decision makers in forest management, albeit in conjunction with an understanding of classification
uncertainties, whereby the probabilities of non-optimal and infeasible decisions are reduced. For this
study, OA ranged from 63.9% to 80.3% (Figure 7) when using Sentinel 2 data to classify 11 LULC
classes, with SVM producing the greatest accuracies. The difference between accuracies for the most
accurate SVM classifier and the least accurate MLR classifier was approximately 14.4%. Although
the results for SVM and RF were relatively similar, some authors recommend RF because training is
less time-consuming and parameter selection is easier [18], a recommendation that was confirmed in
our study.

Producer’s and user’s accuracies among the 11 LULC classes differed considerably (Figure 9).
In general, the open evergreen forest classes were confused more than the other forest cover classes.
This result is attributed to the heterogeneous conditions of natural tropical forests. In addition,
forests in the study area have been disturbed to different degrees [21]. Among the forest classes,
deciduous dipterocarp and semi-evergreen forest are considered the most challenging for remote
sensing classification because of the seasonal deciduous characteristics of these forest types in the dry
season [93]. However, this problem may be solved by using the combination of dry and rainy season
images, as investigated in the present study.

The Sentinel-2 images acquired for different seasons (plant growth stages) produced different
results. The greatest accuracies were for the composite rainy and dry season IMG 4; by contrast, the
lowest accuracies were for the rainy season IMG 2. The observed reflectance varied by season owing to
changes in the solar illumination geometry caused by the Earth’s translation movement. In addition,
the vegetation in the study area varies depending on the season, owing to the substantial rainfall
differences for the two seasons. Sothe et al. (2017) [13] assert that differences in classification accuracies
for the dry and rainy seasons can be attributed to the differences in solar illumination geometry between
the two seasons. For images acquired in the dry season, the incident sun radiation arrives in a more
perpendicular direction to the Earth’s surface, thus reducing the shadow effect caused by topography
and variations in the forest canopy height, and leading to greater pixel illumination. For the current
study, there was a substantial increase in classification accuracies when using a composite of dry and
rainy Sentinel 2 images (IMG 4). For the ik-NN, RF, and SVM classifiers, the greatest accuracies were
obtained for the combined rainy and dry IMG 4 relative to the rainy or dry season alone (Table 6).
The accuracy increase for the composite image may be explained by the fact that different seasons
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contain different information for the same kind of land cover (e.g., dipterocarp forest is deciduous in
dry seasons and green in rainy seasons). Combining the two season’s image bands captures additional
information on land cover.

Among all combinations of images, classification algorithms, and land classes, the smallest SE for
area estimates was for the water surface class owing to its stability, whereas the largest SE was for the
industrial plant class. In fact, because cultivation characteristics of industrial plants in the study area
are quite complex with a variety of species such as coffee, pepper, and cashew, all with uneven ages,
large SEs are inevitable. This complexity also explains the large difference among area estimates for
this class, ranging from 1643.45 km2 to 2223.87 km2, or from 25% to 34% of the total area (Figure 10).

Although classification accuracies for vegetation classes were not particularly large, the
classifications are still useful for complex tropical rain forests that have been disturbed to different
degrees such as in the Central Highlands of Vietnam. The area estimates and spatial distributions of
the LULC classes produced from the current study will assist local authorities, managers, and other
stakeholders in decision-making and planning regarding forest land cover and uses. The usual practice
is for the Institution of Forest inventory and Planning (FIPI) to conduct a forest inventory and construct
a forest map every five years. Local forest units such as Dak Nong receive the maps and update them
manually. However, the accuracy of the map has usually not been announced, and inaccuracies and
errors have been detected only by local forest staff when patrolling in the field. Moreover, LULC
changes, particularly for industrial land, occur quickly and easily owing to factors such as unstable
crop markets and increasing population resulting from migration. Thus, the results of this study will
not only provide authorities with updated information on current conditions, but will also serve as
a recommendation regarding methods for proactively updating LULC maps in a timely and costly
manner. Specifically, timely and updated maps assist authorities by serving as a basis for formulating
suitable solutions and policies for managing LULC including forest cover.

5. Conclusions

This research showed the utility of combining Sentinel-2, multi-spectral, and dry and rainy season
band data when mapping LULCs in Dak Nong Province, Vietnam. The greatest accuracies were
achieved for the composite IMG 4 obtained by combining dry and rainy season image sets using the
SVM classifier.

Among the classifiers, SVM produced the greatest accuracies, although RF, which had similar
accuracies, was simpler to train and apply, and was less computationally intensive. For IMG 4, the
greatest accuracies with SVM were OA = 80.3% and Kappa index = 0.813; for RF, the greatest accuracies
were OA = 80.0% and K = 0.802. Thus, the combination of dry and rainy season imagery used
with the SVM or RF may contribute to potentially new ways for classifying the complex tropical
forest of Vietnam and similar areas. The area estimates and spatial distributions of the LULC classes
produced from the current study will assist local authorities, managers, and other stakeholders in
decision-making and planning regarding forest land cover and uses.

In conclusion, the two-season, multi-spectral Sentinel-2 images provided useful data for classifying
LULC classes in areas with substantial fragmentation, especially for natural forests that have been
disturbed and degraded at different levels such as in Dak Nong, Vietnam. The SVM and RF machine
learning algorithms were both accurate classifiers when used with the Sentinel 2 imagery. The methods
developed for this study are applicable to boreal and temporal forests with different classes in addition
to the tropical forests for the current study. However, the model parameters always need to be
re-estimated for each application.
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Abstract: The fusion of microwave and optical data sets is expected to provide great potential for the
derivation of forest cover around the globe. As Sentinel-1 and Sentinel-2 are now both operating
in twin mode, they can provide an unprecedented data source to build dense spatial and temporal
high-resolution time series across a variety of wavelengths. This study investigates (i) the ability of
the individual sensors and (ii) their joint potential to delineate forest cover for study sites in two
highly varied landscapes located in Germany (temperate dense mixed forests) and South Africa (open
savanna woody vegetation and forest plantations). We used multi-temporal Sentinel-1 and single
time steps of Sentinel-2 data in combination to derive accurate forest/non-forest (FNF) information via
machine-learning classifiers. The forest classification accuracies were 90.9% and 93.2% for South Africa
and Thuringia, respectively, estimated while using autocorrelation corrected spatial cross-validation
(CV) for the fused data set. Sentinel-1 only classifications provided the lowest overall accuracy of
87.5%, while Sentinel-2 based classifications led to higher accuracies of 91.9%. Sentinel-2 short-wave
infrared (SWIR) channels, biophysical parameters (Leaf Area Index (LAI), and Fraction of Absorbed
Photosynthetically Active Radiation (FAPAR)) and the lower spectrum of the Sentinel-1 synthetic
aperture radar (SAR) time series were found to be most distinctive in the detection of forest cover.
In contrast to homogenous forests sites, Sentinel-1 time series information improved forest cover
predictions in open savanna-like environments with heterogeneous regional features. The presented
approach proved to be robust and it displayed the benefit of fusing optical and SAR data at high
spatial resolution.

Keywords: forest cover; Sentinel-1; Sentinel-2; data fusion; machine-learning; Germany; South Africa;
temperate forest; savanna

1. Introduction

According to the Food and Agriculture Organization of the United Nations (FAO), approximately
one-third of global land area is covered by forests, yet exhibiting a decreasing trend since the 1990’s [1].
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These estimates include decrease in forest area by deforestation and increase by afforestation. Forests
are highly vulnerable ecosystems that are not only habitat to a large number of species and the
most widely distributed terrestrial type of vegetation, but also act as a key control in the global
carbon and water cycle, hence shaping land-atmosphere feedbacks [2–4]. Forests serve as essential
sinks for carbon, storing approximately 202–275 PgC [5]. These two account for 82% of the global
aboveground biomass carbon (ABC) stores if combined with savanna ecosystems (including woody
savanna) [5]. Consequently, land cover changes in these areas are regarded as a major source of
emission of greenhouse gases [6,7]. These figures indicate the importance of the monitoring and the
related aboveground biomass (AGB) in these areas. The spatial assessment of the amount and related
dynamics of woody AGB is crucial to project future developments and assess past changes, not only
on the local or national level, but also the global level.

Remote sensing techniques have been applied for decades to foster sustainable forest monitoring.
Since the 1970’s, this was predominantly accomplished by using optical remote sensing systems due to
their more extensive archive, accessibility, as well as straightforward interpretation as compared to
microwave data [4,8,9]. Thus, forest cover monitoring using optical data from coarse to fine spatial
resolution was conducted on the regional to global scale [10–13]. Nevertheless, the impact of persistent
cloud cover/haze over many forested areas, leading to gaps in time series analysis, is a major limitation
of optical remote sensing data. This problem can be remediated by the joint use of SAR and optical
data [10]. In this context, it could be shown that using both, C- and L-Band SAR together with optical
data is capable of significantly improving the forest monitoring results [14–16] and minimizing issues
of data continuity [17].

With the start of Sentinel-1 and -2, which are acquiring data in the microwave and optical range of
the electromagnetic spectrum, data in high geometrical and temporal resolution became freely available.
Recent studies demonstrated the potential of Sentinel-2 data for the distinction of land cover classes
and forest types with high accuracy when applying single time steps or multi-date information [18–20].
Similarly, various studies analyzed the suitability of C-Band radar data from Sentinel-1 to investigate
land cover [15], forest extent [21], forest change [22], deforestation [23], and woody cover [24]. The fusion
of both data sources was reported to increase the classification quality in numerous applications, such
as crop [25], forest [26,27], and primary vegetation mapping [28]. The existence of more data sources
and fast growing data archives naturally led to an increasing demand for machine-learning approaches
that are capable of dealing with high-dimensional multi-source data for forest structure related
applications [29,30]. A large number of studies utilized such algorithms in the past to map various
land cover related metrics while using multi- and hyper-spectral [31,32] as well as radar data [33].
Similarly, these techniques were used to derive forest/land cover changes [6,34–36] and associated
parameters, such as tree species [18,37,38] on different scales, woody cover assessments [39,40], or forest
habitats [41]. Multiple studies investigated the potential of Sentinel-1 C-Band SAR data to improve the
classification accuracies of optically based approaches of estimating tree cover [42] and characterizing
forest ecosystems [17,43]. Further, Sentinel-1 proved to perform well in land cover mapping in
heterogeneous landscapes, such as the South African savanna [44].

This study aims at deriving forest cover structures in the study sites in Germany and South Africa
while using optical (Sentinel-2) and SAR (Sentinel-1) data in independent and joint approaches while
using an innovative CV procedure that takes spatial autocorrelation of the data into consideration.

2. Materials

2.1. Study Sites

The first study site is located in the federal state of Thuringia and is visualized in Figure 1. Located
in the center of Germany, it has an area of approximately 16,200 km2. Land cover predominantly
consists of homogeneous coniferous and deciduous forests, as well as agricultural land. The area
is characterized by regional climates that can be described as temperate oceanic, exhibiting warm
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summers with dry periods and cold winters. While the northern part of Thuringia, the ‘Thuringian
Basin’, is one of the driest areas of Germany, rainfall accumulates up to 1500 mm per year in the
Thuringian Forest, a mountain range located in the south-east of Thuringia. Precipitation is evenly
distributed throughout the year [45].

The second study region, visualized in Figure 2, comprises an area ranging from forest plantations
in the Mpumalanga province to the southern parts of Kruger National Park (KNP), covering an area of
approximately 19,800 km2. In contrast to the Thuringian study site, this site is highly heterogeneous
with regard to land cover, the amount of intra- and interannual rainfall, as well as climatic conditions.
While KNP is predominantly characterized by patchy patterns of loose aggregations of vegetation and
large portions being covered by bare soil (vegetation growth is heavily dependent on seasonal effects),
the elevated plateau in the west of the study area features dense forest structures. According to this,
rainfall varies between 500 mm and more than 1000 mm for KNP and the outer areas, respectively [46].

 

Figure 1. Study site in central Germany (Thuringia).

 

Figure 2. Study site in South Africa (southern KNP and forest plantations).
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2.2. Data

2.2.1. Satellite Data

Data from Sentinel-1 and -2 were acquired for the study sites that are shown in Figures 1 and 2.
Both data sources were collected in Level 1 format, which required several preprocessing steps prior
to image analysis (see Section 3.1). Dual-polarized (VV + VH) Sentinel-1 backscatter intensity and
Sentinel-2 data excluding the 60 m bands (B1, B9 + B10) were used in this study. Table 1 provides an
overview of the used predictor variables. Data for both study sites were collected multi-temporally.
Sentinel-1A data from 2015 to 2017 were used to calculate multi-temporal metrics for both study
sites to capture the temporal dynamics of varying land cover types and, thus, compensating for the
noticeable noise effects in the C-Band signal [47]. By using temporal features contrary to the application
of individual time steps, it is possible to utilize the information of intra-annual trends within the data.
To further analyze the impact of seasonality on the classification, these statistics were separated into
winter and summer seasons for the SAR time series. As summer period, we selected the months June
to September for Thuringia and November to March for the South African study site (predictor suffix
= ‘sum’). Winter was defined as the duration from December to March and May to September for
Thuringia and South Africa, respectively (predictor suffix = ‘win’). Only Sentinel-2A scenes with less
than 5% cloud coverage were considered for a mosaic for each study site of the dry season 2016. In total,
127 Sentinel-1A, as well as three Sentinel-2A scenes, and 92 Sentinel-1A as well as four Sentinel-2A
scenes, were collected for the Thuringia and the South African study site, respectively.

Table 1. List of predictor variables from Sentinel-1 and Sentinel-2.

Sentinel-1 (per Polarization & Season) Sentinel-2

minimum B2
maximum B3
midhinge B4

standard deviation B5
range (95th, 5th percentile) B6

5th percentile B7
25th percentile B8
75th percentile B8A
95th percentile B11

B12
LAI

FAPAR

2.2.2. Reference Data

Data provided by the State Office for Surveying and Geoinformation of Thuringia served as
reference information for the extent of forests in Thuringia. The data originate from a digital land cover
model (DLM) and comprise detailed information regarding the extent of forests as well as tree species
on a Sentinel sub-pixel level (<10 m). Located south-east of the city of Jena, the ‘Roda’ reference site
(visualized in Figure 3a), which was selected as training and validation subset for the classification
algorithm, extends over an area of 261 km2, of which approximately 50% is covered by coniferous
(85%) and deciduous (15%) forest. The forest patch size in the Thuringian training and validation site
varies between 0.1 ha and 4173 ha with a median of 1.4 ha.

As in any other protected landscape, freely available in situ data are scarce and difficult to acquire.
Therefore, for the South African study site, two sets of reference data were combined to characterize the
savanna ecosystem of KNP, as well as dense forest plantations west/north-west of the southern KNP
(indicated in Figure 3b). Firstly, forest compartment data from York Timbers forestry company were
used to define training areas for homogenous forests, as they can also be found within the German
study site. For this reference data set, an age and NDVI threshold was applied to filter compartments
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that were covered by mature forests, and that were not logged during the Sentinel-2 acquisition
dates and were also not altered throughout the Sentinel-1 time series period. Secondly, vegetation
height metrics that were based on airborne Light Detection and Ranging (LIDAR) measurements were
obtained from a canopy height model (CHM), which was made publicly available by Smit et al. [48].
Acquisition dates of this data set were April/May 2010, 2012 and 2014, respectively. For this study,
exclusively, the vegetation structure from the last mission date was used to minimize the time gap to
the Sentinel-1 acquisitions. The available LIDAR coverage is located on the southern boundary of KNP
near Malelane Gate and it comprises an area of 1.8 km by 26 km with a spatial resolution of 2 m. In a
next step, the vegetation height was limited to a value of more than 5 m according to FAO’s forest
definitions [49]. Additionally, we followed FAO’s forest cover definition with a tree canopy cover of
more than 10 percent and an area of more than 0.5 ha. The size of forest patches in the South African
varies significantly from the distribution that can be found in the German study site. While forest
patches with an area less than 0.01 ha could be found in the KNP, the forest plantations exhibited patch
sizes of up to 9350 ha. The median value for the whole study site is less than 0.1 ha. For both reference
sites, we extracted 500,000 data points in a stratified sampling approach to be used for hyperparameter
tuning, training, and CV, which were carried out after a spatial partitioning.

(a) 

 
(b) 

Figure 3. Reference data sets for both study sites. (a) Thuringia and (b) South Africa.
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3. Methods

The presented methodology comprises the preprocessing of microwave and optical Sentinel-2
data, acquisition of suitable reference information to characterize strongly different ecosystems as
well as the introduction of the concept of spatial autocorrelation to perform tuning and validation
procedures while taking spatial dependences in remotely sensed data sets into account. Based on this,
forest extents were estimated for Sentinel-1, Sentinel-2, and a fused product, including both sensors.
Figure 4 provides the overall workflow.

 
Figure 4. Workflow of the forest cover derivation using Sentinel-1 and Sentinel-2.

3.1. Preprocessing

Data from both satellites were gathered from ESA’s Copernicus Open Access Hub archive.
Preprocessing of Sentinel-1 data included multi-looking, geocoding, radiometric calibration, as well
as topographic normalization, and it was solely carried out using Gamma routines. Dual-polarized
multi-temporal microwave data sets were created at 10 m spatial resolution. Next, Sentinel-2 images
were atmospherically, cirrus, and terrain corrected using the Sen2Cor algorithm [50] and Shuttle
Radar Topography Mission (SRTM) with a spatial resolution of 1 arc-second (≈30 m). During
atmospheric correction, look-up-tables (LUT) for parameters, such as aerosol type and mid-latitude,
were automatically chosen based on metadata information. For analysis, Sentinel-2 bands with a
resolution of 60 m (channels 1, 9 & 10) were excluded, as their main purpose can be seen within
the preprocessing to detect cloud coverage. After preprocessing, multi-temporal Sentinel-1 metrics
and biophysical Sentinel-2 indices were calculated and grouped into seasons while using SNAP and
R. The latter included the vegetation parameters LAI and FAPAR, which were calculated using the
biophysical processor implemented in ESA’s SNAP v6.0.0 [51]. As mentioned earlier, the data was
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split into seasons, with April and October serving as transition months. This split allowed for a more
detailed analysis of the importance of predictor variables with respect to seasonality and the related
environmental conditions. Finally, predictor variables from both sensors were stacked and subsetted
to the respective study areas in R.

3.2. Forest Cover Derivation Using Random Forest

3.2.1. Classifier Algorithm Description and Parameter Tuning

For this study, the decision tree classifier random forest (RF) was utilized while using the
ranger implementation within the mlr package [52] of the statistical software R [53]. This non-linear,
hierarchical ensemble classifier predicts class memberships that are based on the concept of recursive
partitioning to create increasingly homogeneous subsets to retrieve a branched network of data
splits [54,55]. Out of all possible splits, the predictor variables are selected (randomly by mtry) that
minimize the Gini impurity (also referred to as ‘splitrule’). Throughout the process, the decision tree is
produced independently while being controlled by two main parameters, mtry and ntree. While mtry
describes the number of predictor variables that are used to split each node, ntree defines the number
of trees, which are generally characterized by high variance at relatively low bias [56]. The tuning of
these two hyperparameters is crucial, as they control not only the accuracy, but also the computation
time of the process [57].

By default, most RF implementations define the square root of the number of predictor variables
(limited by number of predictor variables) as the mtry value and 500 as the sufficient number of trees
(ntree). Few studies have investigated the impact of mtry towards computation time and the resulting
model performance [58,59].

As a first step, the hyperparameters that control the performance of the model needed to be
adjusted to retrieve the desired results while maintaining a certain computational effort. We used
a repeated CV while using 25 repetitions with five folds to ensure the derivation of stable results,
leading to consistent accuracies. Further, the procedure was conducted, including the correction of
biases possibly introduced by spatial autocorrelation. For the previously mentioned hyperparameters,
mtry and ntree separate feature spaces, retrieved from literature review, were defined, in which best
parameter sets were then estimated [38,59]. Tuning of the variables is crucial for allowing the user the
investigation of best performing parameter setups and their related computational costs. Feature spaces
were limited a priori to keep the amount of processing within bounds that meet existent computation
resources. Nevertheless, it should be noted that the hyperparameter tuning, theoretically, should
optimally not be restricted to fixed value ranges, since this does require expert knowledge of the
process as well as the applied training data. While ntree was tuned between 50 and 750, the limits
of mtry were set between 1 and 5. According to Belgiu and Dragut [29], numerous studies revealed
that 500 trees are leading to stable accuracies, which implies that the upper boundary is likely to be
found in this value range. Additionally, it was found that the number of trees did not tend to be very
sensitive to the prediction outcome when applying high-dimensional Sentinel-1/-2 data in combination
to derive forest cover [27]. The mtry parameter was limited to only a narrow portion of the value
domain, which represents the number of predictor variables within the data set. By default, the RF
algorithm sets the mtry parameter to the square root of the number of input variables [30]. However,
studies have shown that the optimal mtry value can be found below this value [60]. Therefore, we set
the upper boundary of the search space for this hyperparameter lower than the proposed square root
of the number of predictors.

3.2.2. Training and Prediction

Once optimal sets of hyperparameters have been defined for both study sites and the individual
sensor setups ((i) Sentinel-1 (S-1), (ii) Sentinel-2 (S-2), (iii) Sentinel-1 + Sentinel-2 (S-12)), these were used
to perform the training of the model while using the training data for the study site subsets. The trained
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models were then transferred to the respective study regions described earlier. The derived tuning
parameters were also applied for tree cover estimation over the complete study site while assuming
that the training data was sufficiently representing the regional landscape diversity. The results were
further processed while using a sieving algorithm to meet the selected forest definition, which limits
the tree aggregations to a minimum size of 0.5 ha and ten percent tree canopy coverage [49].

3.2.3. Importance of Predictor Variables

The analysis of the variable importance was carried out based on all datasets to identify which
variables were found to be most useful for the distinction between forest and non-forest in each study
site. Several filter methods were tested to assess each predictor variable’s value for the classification, in
order to find most distinctive input variables for the classification. The gain ratio (GR), which was
selected to evaluate variable importance, is an entropy-based algorithm that identifies the weights of
discrete attributes based on their correlation with a continuous target attribute. GR was utilized to
visualize the contribution of each predictor variable and it represents an extension of information gain
G, which calculates the average entropy of a single predictor entity A when a set of observations S is
split into subsets of Si. The entropy for data sets with C classes is calculated, as follows:

E =
C∑
i

pi log2 pi, (1)

where pi is defined as the probability of the random selection of an element of class i. Consequently,
the resulting information exhibits the decrease in entropy of each attribute [61]. The information gain
G is then calculated, as given below:

G(S, A) = E(S) − E(S, A) (2)

G is calculated for every attribute A and the sum of the entropy E with regard to the original set S
is then compared to every subset. The predictor entity that maximizes the difference most is selected
upon others, being defined as the variable importance within the predictor variable set. However,
information gain G is biased whenever the features are branching more complex, as it does not take
into account the size of branches as well as their quantity. By using an extension of the previously
explained algorithm, the intrinsive information I of each split can be included [61]. The equation of I is
given as:

I(S, A) = −
∑

i

|Si|
|S| log

( |Si|
|S|

)
(3)

The gain ratio GR then equals:

GR(S, A) =
G(S, A)

I(S, A)
(4)

The results of the calculation of the variable importance are displayed separately for both
study sites, respectively, and split up into each specific sensor setup in Section 4.2. Only the seven
most important variables were considered and displayed in a combined plot to limit the number of
selected predictors.

3.2.4. Cross-Validation and Statistical Comparison

A repeated CV was performed using approaches similar to the previously explained tuning
algorithm to assess not only the expected classification accuracy, but also to account for spatial
dependence in the validation. Within k-fold CV the reference information is spatially subdivided into k
equally sized partitions of which a single subsample is used for testing and the remaining k − 1 portions
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are used as training information. This process was then repeated k times to make use of all available
training data and estimated as an average to estimate a single prediction. Validation in this study
was accomplished while using a five-fold approach using 25 repetitions. Following, the average error
among all k runs is computed, adding up to 125 RF trials for each sensor setup and study site. A spatial
partitioning of the reference data was carried out to account for the existence of spatial autocorrelation,
which is omnipresent in remotely sensed data. The term ‘spatial portioning’ implies the creation
of spatially disjoint training and testing partitions while using a k-means clustering approach [62].
Typically, CV approaches are performed using random or stratified sampling methods [34,63,64].
However, these do not take the spatial dependence of observations in spatial data sets into account
and therefore ignore the bias introduced by non-spatial sampling [65,66]. Thus, commonly adapted
CV lacks in consistently generating training and test folds that are independent from each other [64].

A comparison with other FNF products was carried out to identify the quality of our forest
classifications. Thus, our results could be compared to completely independent data sets. For this,
10,000 randomly stratified samples were extracted and then used to compute the Jaccard Similarity
coefficient (J) between each other and with respect to the reference data sets for each study site [67]. J is
commonly used in data science as a tool to measure similarity/dissimilarity in vectors containing binary
values and it was found to provide reliable estimates while preventing overoptimistic results [68].
The Jaccard coefficient ranges between 0 and 1, with 0 representing the lowest possible similarity
between quantities. This coefficient measures the similarity between two sets of data by dividing the
size of the intersection between data set A and B by the size of the union of both sets.

JA,B =
|A∩ B|

|A|+ |B| − |A∩ B| (5)

For comparison, three different common FNF products with similar spatial resolution were chosen.
Table 2 provides an overview of these data sets.

Table 2. Data sets used for similarity analysis.

Author Pixel Size Period Data Study Region

Landsat FNF [10] 30 m 2000–2018 Landsat both
ALOS FNF [69] 25 m 2017 PALSAR-2 both

Copernicus HRL * [70] 20 m 2015 Sentinel-2, Landsat, SPOT-5, ResourceSat-2 Thu
CCI ** [71] 20 m 2015–2016 Sentinel-2 SA

Notes: * Copernicus High Resolution Layer (HRL)—Forest Type. ** ESA Climate Change Initiative (CCI) S2
Prototype Land Cover Map of Africa.

4. Results

4.1. Forest Cover Derivation

The final classification of forest cover was carried out using the hyperparameters ntree = 500 and
mtry = 1, which were found to produce reliable results with high accuracy while maintaining a certain
computational effort. Table 3, as well as Figure 5, display the accuracies for the CV of the RF based
classifications of forested areas in both study sites using Sentinel-1, Sentinel-2 and a fused data product.
The overall accuracy was calculated using the median value of all runs of the spatial CV, since this
provides a more realistic representation of the actual classification quality, as outliers tended to appear
especially in the South African study site.

Table 3. Averaged results (median) for each sensor setup from all CV repetitions.

Sentinel-1 Sentinel-2 Sentinel-1/-2

South Africa 84.3 90.4 92.3 90.9
Thuringia 90.6 93.3 93.7 93.2

87.5 91.9 93 Ø
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Figure 5. Results of CV for both study sites comparing all sensor setups.

Classification accuracies were found to be consistently higher in the German (93.2%) as compared to
the South African study site (90.9%) when being averaged over all available sensor setups. Considerably
strong variations between these configurations could be observed in both study sites. As visualized in
Figure 5, the standard deviation, which was calculated over all CV runs, was significantly larger in
the South African study site (0.33), while the results in Thuringia did not differentiate between all CV
runs as much (0.012). The difference in the variance visible in the boxplot range can be attributed to
the existence of more sufficient training data in the German study site, as well as the appearance of
forests in this area, which is much more homogeneous when compared to the South African study site,
making it easier for the algorithm to reliably detect forest based sites. It should be noted that the plot is
cropped to a lower boundary of 0.75 for visualization reasons as very few values of the Sentinel-1 based
classification in South Africa ranged around 0.2. In both study sites, Sentinel-2 tended to outperform
Sentinel-1 in the single-sensor approach leading to higher classification accuracies. While the fusion of
Sentinel-1 and Sentinel-2 led to the highest classification accuracy in the German site, the potentially
lower overall classification accuracy in South Africa also impacted the fused approach.

Figure 6 displays the results of the classifications using all available combinations of sensor setups
for the South African study site. Here, Sentinel-1 predicted a greater amount of forest extent in parts
of the KNP as well as the area just outside the park (brown) when compared to setups utilizing
optical data. It can also be seen that Sentinel-2 only classified few forests/tree aggregations in the
reserve area while capturing forest plantations in the west of the KNP very well (dark green). The
optical sensor also misclassified agricultural fields that were located south of the Kruger National Park.
This was not visible in the multi-temporal SAR classification. Combining both classifications, this
was found to positively impact the optical classification. The forest prediction using Sentinel-1 and
Sentinel-2 showed a good fit with homogenous forests in the western part of the study area and an
underestimation of forest in the Kruger National Park.

In the Thuringian study site, the algorithm achieved higher overall accuracies compared to the
South African study area. Results are visualized in Figure 7. Here, it was found that the optical,
microwave and the fused FNF classification produced quite similar results, which was also reflected in
the accuracies (see Table 3). While the SAR based forest cover map (brown) showed a larger number of
noisy and, thus, misclassified pixels, gaps in the optical data caused by cloud cover could be filled by
applying data fusion prior to the classification.
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Figure 6. FNF map of the South African study site showing pixels being classified by Sentinel-1,
Sentinel-2, a fused product (S12) and combinations of these setups; ‘F’ represents pixels classified as
‘forest’ by all sensor setups; ‘NF’ represents the pixels classified as ‘non-forest’ by all sensor setups.

Figure 7. FNF map of Thuringia showing pixels being classified by Sentinel-1, Sentinel-2, a fused
product (S12) and combinations of these setups; ‘F’ represents pixels classified as ‘forest’ by all sensor
setups; ‘NF’ represents the pixels classified as ‘non-forest’ by all sensor setups.

The discrepancy between varying single sensor setups (microwave vs. optical) was found to
be much stronger in the more heterogeneous landscape of the South African study site comprising
savanna and forest ecosystems. Here, a sub-classification was performed dividing the study site
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into two parts, a) the forested areas spreading over from Mpumalanga to the province of Limpopo
and b) the savannas of the southern KNP. The results suggested that both sensors produced reliable
classifications in the western part of the study site while the savanna part and its vegetation was
strongly underestimated by the Sentinel-2 predictors. In contrast, Sentinel-1 C-Band data were able to
capture greater portions of tree aggregations in this part of the site. However, the Sentinel-1 setup
might led to misclassifications in open savanna, due to limitations of the savanna LIDAR training
data set to represent especially lower vegetation (<2 m) and the strong impact of soil moisture, as
well as surface roughness. Forest sites with denser canopies were found to be underestimated by
the RF classifier when applying SAR data only in both study sites. Here, closed tree canopies force a
limited penetration of the C-Band signal. This corresponds to findings of other studies working in this
area [39]. Nevertheless, Sentinel-2 outperformed Sentinel-1 only classifications in all study sites in
terms of accuracy. This can partly be attributed to the internal variable selection of the RF algorithm
that was based on the underlying training data. Consequently, the distinction of FNF in both study
sites relied stronger on optical predictor variables, despite the information content stored in the SAR
time series.

4.2. Analysis of Variable Importance in Varying Sensor Setups

4.2.1. Thuringia

Variable importance in both study areas was calculated based on the equations that are given in
Section 3.2.3. As visualized in Figure 8, variables that represent the lower range of the SAR time series,
such as the minimum or the 25th percentile of the summer season, were found to be the most distinctive
predictors for the Sentinel-1 time series in this study site. Here, GR does not vary significantly between
the seven most important variables, leading to comparable contributions to the classification result.
As the minimum backscatter values throughout the summer months tend to occur towards the end of
the growing season for C-Band similar to L-Band SAR data when the signal received from ground
surfaces is increased, a better distinction can be found during this period of the year [72]. It was also
found that polarization and orientation of the signal being received and emitted do strongly influence
the detection of plant structure. Predictors with VH polarization showed to be the most relevant SAR
variables for the classification in the German study site. This corresponds to findings of Olesk [22],
who found that cross-polarized SAR data from Sentinel-1 is more suitable in most cases when detecting
forests as compared to like-polarized microwave radiation.

The analysis of variable importance of the Sentinel-2 classification revealed that the biophysical
parameters FAPAR and LAI, which are directly relatable to photosynthetic primary production and
activity, exhibited the best differentiation for Thuringian temperate forests [73]. The latter proved to
be the most important predictor for forest cover in this study site, which is due to the homogenous
tree canopies that can be found in this study site with GR of above 0.3. SWIR (B11, B12), RGB (B2,
B3, B4), as well as the shortest red edge band (B5) were also of great importance for the classification
performance in the optical setup. Recent studies confirm our findings, which consider the SWIR
bands to be among the most important Sentinel-2 channels for vegetation cover mapping [18,74]. The
near-infrared (NIR) channels B8 and B8A were found to be only partly capable for a FNF distinction
when being compared to the remaining channels of Sentinel-2, which does not correspond with other
studies, as these wavelengths tend to be most representative for photosynthetic active vegetation [75].

Analysis of the combined predictor variables from Sentinel-1 and -2 showed that the GR of optical
predictors clearly outperformed Sentinel-1 features in terms of variable importance, which was also
visible in the final classification. Besides two SAR features (min_VH_sum and p25_VH_sum), optical
variables or their derivatives were found to be the most dominant in the classification process and
hence the prediction. As Sentinel-2 was favored over the SAR variables in the classification process, this
effect could also be seen in the variable importance of the S12 sensor setup (Sentinel-1 and Sentinel-2).
Here, no significant differences between the Sentinel-2 variables (SWIR and RGB) with the highest

280



Remote Sens. 2020, 12, 302

importance were observed, while LAI and FAPAR remained as the most important variables in the
optical sensor setup. In general, the variables that were most distinctive in the single-sensor approach
of the optical data were also found to be the most important ones for the fused approach.

Figure 8. Variable importance in the Thuringian study site (seven best predictors).

4.2.2. South Africa

Variable importance was separately analyzed for the KNP and the remaining areas of this study
area to account for the substantial differences in the appearance of these landscapes due to the great
heterogeneity of the South African study site. Figures 9 and 10 display the feature importance for each
of the three applied sensor setups in the South African sub study sites.

Similar to the Thuringian study site, the Sentinel-1 features exhibited higher GR values when
they were derived from VH-polarized variables in both sub sites. As VH-polarized C-Band data is
more sensitive to volume scattering and, therefore, able to monitor vegetation structure it was more
important during the classification when compared to co-polarized data. Due to the interaction of
cross-polarized predictor variables with shrubs covering large portions of the Kruger National Park,
these were found to be more important in the model predictions within the protected savanna ecosystem
as compared to their optical counterparts. Between the multi-temporal SAR metrics, differences in
GR were relatively small, while variables representing the dry season (winter) ranked higher. This
might be due to differences in the vegetation status during the dry season between tree aggregations
and their surroundings, thus making it more feasible for the algorithm to detect forests with higher
accuracy. Several studies confirm the findings stating that the ‘leaf-off’ season should be favored
for monitoring vegetation structure in savanna ecosystems with SAR information [76–78]. This can
be attributed to the increased transparency of deciduous tree canopies and the associated increased
penetration depth of the C-Band signal, as well as the decrease of the impact of soil moisture change in
this period [75,79]. Consequently, Sentinel-1 was also seen to be more important in the fused approach
while using both sensors in combination in the sub site of the open savanna. These results indicate the
potential of multi-temporal microwave remote sensing instruments to improve vegetation monitoring
in savanna ecosystems.
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Figure 9. Variable importance within the KNP (seven best predictors).

Figure 10. Variable importance outside of the KNP (seven best predictors).

Outside the KNP (west), variable importance shifted strongly towards the use of Sentinel-2
predictors by the RF algorithm, as visualized in Figure 10. Similar to the Thuringian study site, the
results indicated that the SWIR bands 11 and 12, as well as the channels in the visible bandwidth,
are the most important bands for the optical and the fused classification. In contrast, the biophysical
parameters were not as distinctive for the classification, as it was observed in Thuringia. This could
possibly be explained with the highly heterogeneous composition of land use and land cover in this
area. While, dense forest plantations in the west can be represented well by using these indices that
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can be directly related to vegetation structure, extensive transition regions towards the savanna flora
are often characterized by scarcity in terms of plant size and covered area. Information from NIR
wavelength were found to be of small importance for the distinction between forest and non-forested
areas, which is consistent with the analysis in temperate German forests that was conducted in this
and other studies [18]. As this effect could be observed in both study sites, this suggests that the
near-infrared channels of Sentinel-2 are only of limited significance for the derivation process of tree
cover or tree species mapping when SWIR channels are being implemented in the classification.

Sentinel-1 predictors representing the lower ranges of the SAR time series in VH polarization
were also found to be superior to the co-polarized data in terms of variable importance. In contrast,
to the protected park area in the east of the South African study site, dry and wet season were found to
equally contribute to the model performance. This might also be related to the stability in the forest
plantations and their surroundings originating from the weaker seasonal changes of vegetation in
this area.

4.3. Comparison with Existing FNF Products

In comparison with the chosen reference products, the FNF classifications using Sentinel-1 and
Sentinel-2 produced higher J values (Ø = 0.87 vs. Ø = 0.77) in both of the study areas. As given
in Figure 11, the similarity of a given set of samples of reference with the data sets reveal a distinct
relationship between the composition of the study sites and used sensors. While J of classifications
based on mostly optical data (S-2, CCI, Landsat) exhibited generally higher values in the Thuringian
study site than SAR based (Ø = 0.9 vs Ø = 0.8), this trend was found to be reversed in the South
African study site (Ø = 0.68 vs Ø = 0.88), which exhibits a much higher degree of homogeneity. This
indicates the ability of multi-temporal SAR data to detect vegetation in savanna ecosystems adequately
representing the intra-annual variability of this complex ecosystem better and, thus, showing that
optical data might not be sufficient in this area, at least when few time steps are utilized.

 

Figure 11. J for classifications of all sensor setups (Sentinel-1, Sentinel-2, and Sentinel-1/-2) in the
Thuringian and South African site compared with reference data and independent FNF products.

4.4. Test of Homogeneity between Classification Distributions

To assess whether the results of the classifications vary significantly from each other, we performed
McNemar’s test to each individual sensor setup. This non-parametric statistical test is suited to
compare the performance of machine-learning-based classifications [80]. The results of McNemar’s
test indicate that, except for the comparison of classification S-2 vs. S-12 in Thuringia, all of the
classifications were considered to significantly differ from each other.
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5. Discussion

This study investigated the use of multi-source and multi-temporal remote sensing data in varying
ecosystems. Firstly, the results revealed that the overall accuracy of the machine-learning based
classification while using the RF algorithm increased from using single sensor setups as compared to
using Sentinel-1 and Sentinel-2 in a joint approach in both study sites. Combining optical and SAR
data led to very high classification accuracies, as illustrated in Table 3. Comparing all available sensor
setups, the Sentinel-1 classifications provided the lowest accuracy while still performing reasonably
(84.3% to 90.6%) in both study sites. While Thuringia is characterized by relatively homogenous forests,
the South African study site comprises forest plantations and savanna ecosystems, thus exhibiting a
gradient of increasing heterogeneity from East to West, which also led to great differences in the variable
importance for the RF model. In both study sites, the SWIR bands 11 and 12 of Sentinel-2 ranged the
highest among the most distinctive optical variables, which other studies also confirmed [18,26]. From
Sentinel-1, VH polarized variables were selected as the most important variables in the single sensor
and fused data set.

The savanna is a highly variable ecosystem in terms of vegetation composition, as reflected in a
non-trivial spectral and spatial appearance, as well as phenology, which drastically changes between
dry and wet season [81]. Subsequently, classification results of this study site featured the highest
variability in CV-runs over all sensor setups, as visualized in Figure 5.

Further, it could be observed that the SAR data was capable of detecting smaller aggregations of
trees in the scarce South African savanna than its optical counterpart, while overestimating tree cover
in this area. This can be mainly attributed to the impact of surface roughness to which the C-Band
radar is very sensitive, especially in sparsely vegetated areas. This effect was also shown in a study
that was conducted in savanna ecosystems using Sentinel-1/-2 data [82]. Due to the heterogeneous
training data, which may not represent the complete study area adequately, the accuracy does not fully
reflect the positive impact of Sentinel-1 on the savanna classification. Here, the quality of the training
and validation data is a major key in obtaining satisfactory and reliable classification results [83]. Thus,
a separated variable importance analysis for the South African study site proved the significant role that
SAR data plays in the detection of vegetation in open savannas. It should be noted that a separation of
the South African study site into two internally more homogenous study areas would potentially lead
to an increase in classification accuracy and a strong decrease of the root mean square error.

The high-resolution optical Sentinel-2 data proved to be capable of detecting forests with high
accuracy in both study sites, especially in areas with homogenous forest sites. It is important to
highlight that Sentinel-2 tends to underestimate savanna vegetation during dry season with the
exception of larger tree aggregations, which are often located along river streams. Switching from
single time steps to deploying the fully available cloud-free time series of Sentinel-2 data might lead to
an improvement to further increase classification accuracy in this ecosystem and, thus, improve the
ability to take the strong seasonality of South African savannas into account.

This study further analyzed the impact of sensor fusion of Sentinel-1 and Sentinel-2 to improve
forest monitoring in highly variable ecosystems. Similarly to findings of forest monitoring related
studies while using optical and radar satellites, the addition of Sentinel-1 data did not significantly
improve the overall classification accuracy [26,28]. In both studies, differences between the accuracy
of a Sentinel-2 only and fused classification (Sentinel-1 and Sentinel-2) ranged between 1 to 3 %.
These results are comparable with our findings. By joining optical and SAR data, the dense Sentinel-1
time series could capture vegetation dynamics in open savanna while being prevented from possible
overestimation by Sentinel-2 when vegetation is scarce. The results also indicated that sensor fusion
increases the classification accuracy in both study sites averaged over multiple runs of CV. The
accuracies show that the individual classifications of sensor setups S-2 and S-12 did not differ as much
when compared to the S-1 classification in both study sites. A statistical McNemar test was conducted
to check the homogeneity of the distribution of the classifications. The results show that all of the
distributions differ (given a significance level of p = 0.05 and one degree of freedom) significantly from
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each other (except for S-2 vs. S-12 in Thuringia), as given in Table 4, with S-1 classifications exhibiting
the greatest differences. This indicates the different perception and potential that is provided from the
sensors for the varying ecosystems.

Table 4. McNemar’s test results for varying sensor setups in both study sites. A p-value greater than
0.05 defines a difference between two distributions that is not significant and vice versa.

Product
Thuringia South Africa

X2 p-Value X2 p-Value

S-1 vs. S-2 48.3 <0.05 61.6 <0.05
S-1 vs. S-12 66.9 <0.05 57.2 <0.05
S-2 vs S-12 1.4 0.23 4.8 <0.05

The results of this study demonstrate the ability of machine-learning techniques to produce
reliable results from a large number of variables given a relatively low quantity of reference information.
Our findings suggest that the RF algorithm favored optical data over multi-temporal SAR data for
the detection of forests in the different ecosystems of both study sites. Further, C-Band was found
to be a promising data source for the detection of vegetation in dry savanna ecosystems. However,
due to the internal variable selection of the RF classifier, this was not acknowledged strong enough
within the classification itself. Using in situ data that provides a better representation of the study
area might increase the impact of applying a dense Sentinel-1 time series, so that more of the pixels
showing strong intra-annual dynamics are being used for training of the model.

6. Conclusions

In this study, we investigated the ability of high resolution optical and microwave Sentinel data
to derive forest cover in substantially different ecosystems while using machine-learning techniques
accounting for the impact of spatial autocorrelation during cross-validation. As study sites, we selected
the state of Thuringia in Germany, which is characterized by homogenous dense temperate forests,
and an area in South Africa including the southern Kruger National Park, as well as neighboring forest
plantations, featuring both homogenous tree aggregations and scarce open savanna vegetation. The
results indicated that optical sensors are capable of detecting homogenous tree aggregations with
high accuracies while failing at locating large portions of tree cover in open savannas. The addition
of multi-temporal microwave information to this data set showed multiple advantages. These are
the correction of falsely classified cloud pixels, as well as an improved delineation of small forests
in the savanna ecosystem. Thus, our results show that the fusion across wavelengths can lead to
classifications with a minimized quantity of misclassifications, while the magnitude is rather small,
especially when comparing optical and fused classification. This finding is also reflected in considerably
high accuracies of classifications using the joint data sets, which were all cross-validated with multiple
repetitions to avoid spatial redundancy and account for outliers. The analysis of variable importance
revealed that SWIR and RGB channels range among the most important predictors from Sentinel-2,
which corresponds to the findings of other recent publications. The biophysical parameters used in
this study (LAI and FAPAR) were found to be useful in detecting forest cover mainly in homogenous
temperate environments. As most important multi-temporal Sentinel-1 features, the classifier identified
VH-polarized predictors and those representing the lower value range of the time series, such as
minimum and the lower percentiles in both study sites. Sentinel-1 variables were not favored strong
enough to reveal their full predictive power in some parts of our study sites due to a certain level of
‘black box’ behavior of the RF algorithm. We further split the South African study site into two parts
to reveal their potential impact on the classification, so that the microwave predictors proved their
capability to predict tree cover in open savanna ecosystems.

This study demonstrated the beneficial effects of synergistically combining Sentinel-1 and
Sentinel-2 to detect forest cover at fine spatial scale. Using CV procedures that account for the existence
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of spatial dependence within remote sensing data sets our methodology could potentially contribute
to improve reliability of activity data (AD) under REDD+Measurement, Reporting, and Verification.
We also applied the robust RF classifier to highly variable ecosystems to examine the robustness of the
approach. Future studies could potentially focus on extending from Sentinel-2 time steps to proper time
series information to obtain an even better understanding of intra- and inter-annual alterations in the
vegetation status. Furthermore, it would be essential to gain more control over how predictor variables
are used in machine-learning approaches and, thus, fully reflect their importance in the individual
classifications (single sensor) to increase the beneficial effect on the fused models (multi-sensor).
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Abstract: Accurate estimates of growth and structural changes are key for forest management tasks
such as determination of optimal rotation times, optimal rotation times, site indices and for identifying
areas experiencing difficulties to regenerate. Estimation of structural changes, especially for biomass,
is also key to quantify greenhouse gas (GHG) emissions/sequestration. We compared two different
modeling strategies to estimate changes in V, BA and B, at three different spatial aggregation levels
using auxiliary information from two light detection and ranging (LiDAR) flights. The study area is
Blacks Mountains Experimental Forest, a ponderosa pine dominated forest in Northern California for
which two LiDAR acquisitions separated by six years were available. Analyzed strategies consisted
of (1) directly modeling the observed changes as a function of the LiDAR auxiliary information
(δ-modeling method) and (2) modeling V, BA and B at two different points in time, including a
term to account for the temporal correlation, and then computing the changes as the difference
between the predicted values of V, BA and B for time two and time one. We analyzed predictions and
measures of uncertainty at three different level of aggregation (i.e., pixels, stands or compartments
and the entire study area). Results showed that changes were very weakly correlated with the LiDAR
auxiliary information. Both modeling alternatives provided similar results with a better performance
of the δ-modeling for the entire study area; however, this method also showed some inconsistencies
and seemed to be very prone to extrapolation problems. The y-modeling method, which seems to
be less prone to extrapolation problems, allows obtaining more outputs that are flexible and can
outperform the δ-modeling method at the stand level. The weak correlation between changes in
structural attributes and LiDAR auxiliary information indicates that pixel-level maps have very
large uncertainties and estimation of change clearly requires some degree of spatial aggregation;
additionally, in similar environments, it might be necessary to increase the time lapse between LiDAR
acquisitions to obtain reliable estimates of change.

Keywords: forest structure change; EBLUP; small area estimation; multitemporal LiDAR and
stand-level estimates
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1. Introduction

Light detection and ranging LiDAR data have been extensively used in forest inventories to
provide auxiliary information that is highly correlated with multiple forest structural attributes [1–3].
This strong correlation allows estimating forest structural attributes more efficiently than if only field
measurements are available [4]. In addition, the spatially explicit nature of LiDAR enables the mapping
of forest attributes at fine resolutions (e.g., [2,5]). Accurate estimates of growth and structural changes
are key for forest management as multiple management tasks such as determination of optimal rotation
times, calculation of site indexes or the identification of areas experiencing difficulties in regeneration.
Estimation of biomass is also key to quantifying greenhouse gas (GHG) emissions/sequestration,
to comply with the International Panel on Climate Change (IPCC) reporting and good practice
guidelines [6], and to develop a correct appraisal of forest resources for carbon markets. The extensively
used area based approach (ABA) [1] provides a way to estimate forest attributes at multiple levels
ranging from single pixels to large areas using LiDAR auxiliary information [7]. Availability of repeated
LiDAR data acquisitions has opened the door to estimation of changes in forest structural attributes
over time (e.g., [8,9]) using the ABA method.

In the ABA, the area under study is covered by a regular grid that will define a population of
pixels or grid cells. In this approach, the field plots used to train models and the grid cells are of the
same size, typically between 400 m2 and 900 m2. A direct application of predictive models will render
predictions for grid units of size too small to be considered of interest for reporting in forest inventories.
Areas of interest (AOIs) (i.e., the areas for which estimates are needed) are typically geographic units
that can vary in size depending on the particular application. For worldwide inventories or inventories
over continents or countries, AOIs are typically administrative or political units such as countries or
municipalities. In forest management applications, AOIs are typically stands, compartments or even
complete forests or landscapes. All these AOIs require spatial aggregation of grid units. However,
validations of predictive models in the ABA literature are typically performed using global metrics of
model fit, such as the sample-based root mean square error or bias, that provide average measures
of uncertainty for predictions made for pixels or plots. These measures of uncertainty derived from
the model fitting stage do not directly translate into measures of uncertainty for predictions for AOIs
composed of multiple pixels (i.e., countries, municipalities, forests, stands, etc.). In addition, even when
considering single pixels, they are not AOI-specific, as they only provide an average value, across the
entire population, of the error that can be expected using a given model.

Thus, it is clear that uncertainty measures used as quality controls in forest inventories need to
be made at the AOI-level and change estimation is not an exception. For large areas holding large
sample sizes, AOI-specific estimates of means or totals and their measures of uncertainty can be
obtained using direct estimators (e.g., [10–12]) that use only use sample data from the AOI under
consideration. However, if the AOI sample sizes are not large enough to support direct estimates with
reliable precision, then they must be regarded as small areas [13].

Small area estimation (SAE) techniques, especially empirical best linear unbiased predictors
(EBLUPs) in combination with the ABA approach have been used to obtain estimates, and their
corresponding measures of uncertainty for subpopulations such as municipalities [14], groups or
management units [15] and stands [4,14,16,17]. SAE techniques allow correcting the potential bias
problems of synthetic predictions (i.e., predictions developed assuming that a general model developed
at the population level holds for all subpopulations) and also permit reducing the large variance
problems of direct estimators when AOIs sample sizes are small [13]. In addition, while EBLUPs have
been extensively used in SAE contexts, they can also be used to produce estimates for subpopulations or
AOIs with large sample sizes and preserve important advantages over other methods. First, they allow
obtaining model-unbiased estimates and their corresponding measures of uncertainty for all AOIs
using a single model that explicitly considers potential variations between AOIs. This is a clear
advantage over synthetic methods that assume that a certain relation derived for the entire population
holds in all AOIs. A second advantage of EBLUPs is that it is possible to reduce the modeling effort
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required by direct model-based or model-assisted methods where a model is needed for each AOI.
It is thus clear that SAE techniques in combination with LiDAR auxiliary information have potential
applications in multiple forest inventories contexts. Unfortunately, to the best of our knowledge,
all studies on SAE and forest inventories have focused on estimation of structural attributes at a given
point in time, and little is known about: (1) their performance when applied to forest structure change
estimation, and (2) about how these techniques compare to other methods used for estimation of
changes in AOIs comprising entire populations [10,12,18,19] and especially subpopulations [20].

In this study, we analyzed the two most commonly used strategies to model changes in structural
forest attributes using repeated LiDAR acquisitions, and analyzed their performance when used to
obtain EBLUPs for AOIs of different size. The first strategy, referred hereafter as the δ-modeling method,
considers the change, δ, over the time between LiDAR acquisitions as the model response. The second
strategy, which we will call y-modeling method, focuses on modeling the structural attributes y,
and their derived change over time. As a novelty, in the y-modeling method, the temporal correlation
of both model errors and AOI random effects were taken into account. We considered changes in
three structural variables, and AOIs at three different spatial aggregation levels in order to provide
insights for future applications where estimates for an entire population and for subpopulations of
different sizes are needed. Variables under study are standing volume (V), above ground biomass
(B) and basal area (BA) and AOIs subject to analysis are (1) an entire forested area or landscape,
(2) subpopulations that in this case are forest stands and (3) pixels as gridded maps are common output
in mapping applications.

2. Materials and Methods

2.1. Study Area

The study area is Blacks Mountains Experimental Forest (BMEF), a 3715 ha forest managed by the
United States Forest Service, located northeast of Lassen National Park in northern California, USA
(Figure 1). Elevation ranges from 1700 m to 2100 m above sea level. Slopes are gentle (<10%) on the
lower parts of the forest and moderate (10%–40%) at higher elevations. Climate is Mediterranean with
a certain degree of continentality, with dry summers and wet and cold winters when precipitation is
in the form of snow. Average precipitation is 460 mm per year with monthly average temperatures
that range from −9 ◦C to 29 ◦C. Soils are developed over basalts with depths that range from 1 to 3
m. Ponderosa pine (Pinus ponderosa Lawson & C. Lawson) dominated forest occupies the majority of
the area. Incense cedar (Calocedrus decurrens (Torr.) Florin), white fir (Abies concolor (Gordon & Glend)
Hildebr) and Jeffrey Pine (Pinus jeffreyi Grev & Balf.) are abundant accompanying species. Forest
structure is relatively open and the canopy cover varies greatly within the forest (see Figure 1). A more
detailed description of the study area can be found in [21,22].
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Figure 1. Study area location map, delineated stands and field plots, and detailed diagram showing the
light detection and ranging LiDAR field plots grid over the permanent Blacks Mountains Experimental
Forest (BMEF) grid of permanent makers.

2.2. Sampling Design and Field Data

In total, 106 forested stands were delineated in BMEF. Small non-forested patches were masked
in the study area and hence were not considered part of the population under study. Out of the 106
forested stands, 24 were selected and sampled in the field. Nine of the remaining 82 unsampled
stands were subject to thinning during the period between two available LiDAR acquisitions (i.e.,
2009–2015) and all thinning operations were finished by fall 2011. These nine stands are located on
the southwestern edge of BMEF and were analyzed separately because the sample of field plots used
to train the LiDAR models did not include any stand subject to similar silvicultural interventions
(Figure 1). Sampled stands come from a long-term research project initiated in BMEF in 1991 and,
excluding the nine thinned stands, were representative of the forest structures and forest management
treatments applied in rest of BMEF.

Sampled stands were subject to six different types of treatments resulting from crossing two
different factors. The first factor is the structural diversity. It has three levels referred hereafter
as low structural diversity (LoD), high structural diversity (HiD) and research natural areas, RNA,
or controls. Low structural diversity stands are subject to thinning operations aiming to generate
simplified single-strata structures. High diversity stands are subject to thinning where all canopy
layers and age groups are preserved, resulting in a multi-storied forest structure with trees of different
sizes and ages. Neither the HiD stands nor the LoD stands were subject to thinnings during the period
between the two available LiDAR flights. Finally, RNA stands are not subject to any thinning or harvest
operation. In total, 10 LoD, 12 HiD and two RNA stands were measured in the field. The second factor
under consideration was the presence or absence of prescribed forest fires. Half of the LoD, HiD and
RNA stands sampled in the field had been subject to prescribed fires, but only one of the RNA stands
was subject to prescribed fires during the period 2009–2015.
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A sample of 151, 16 m radius plots (804 m2) were measured in the field during the summer of 2009
and then remeasured during the summer of 2016. All field plots were located on nodes of the 100 m
by 100 m grid of monumented markers at BMEF. Coordinates of the makers were determined using
traverse methods and survey grade GPS observations and have an accuracy of 15 cm or better (see [23]).
For each of the 26 stands selected for sampling, a node of the BMEF 100 m grid was randomly selected
and used as a starting node for a 282 m by 282 m grid formed by selecting every other plot of the 100 m
grid moving in the diagonal directions. Field measurements were taken on the nodes of the 282 m by
282 m grid (see Figure 1).

Within each field plot all live trees with DBH larger than 9 cm, and all dead standing trees with
DBH larger than 12 cm, were stem mapped and measured for DBH and height. Plot basal area (BA)
was derived directly from the field measurements. Volume (V) and above ground biomass (B) were
computed as the sum of the individual tree volumes and biomasses of all standing trees. Individual
tree volumes and biomasses were estimated using species-specific allometric models included in the
national volume estimation library (NVEL) and in the national biomass estimation library (NBEL).
To account for the one-year difference between acquisition of field measurements in 2016, and the
second LiDAR data acquisition obtained in 2015; plot-level values of the variables under analysis were
computed for 2015 by linearly interpolating between the values obtained for 2009 and 2016. Finally,
for each field plot we computed the change of V, B and BA on a per year basis, as the difference of
the plot-level values in 2009 and 2015 divided by 6. For two plots close to the southeastern boundary
of the forest, changes in V were extremely large, more than three standard deviations away from the
mean value for the change in volume. These anomalous plots were removed from the analysis because
such large changes seemed to be derived from edge effects. Plot-level values for 2009, 2016 and per
year increments for the period, 2009-2015, for V, B and BA, in the remaining 149 plots are summarized
in Table 1.

Table 1. Minimum (Min), mean (Mean), standard deviation (Sd), and maximum (Max) of the plot-level
values for 2009, 2015 and yearly increments for the period 2009–2015. Values of volume V, basal area
BA and biomass B are expressed on a per-hectare basis.

Variable (Units) Period Min Mean Sd Max

V(m3 ha−1)
2009

19.87 166.93 119.66 619.43
BA(m2 ha−1) 3.81 23.43 12.02 66.54
B(Mg ha−1) 8.31 83.65 61.55 323.30

V(m3 ha−1)
2015

17.20 175.52 117.04 644.30
BA(m2 ha−1) 3.42 25.45 12.01 67.47
B(Mg ha−1) 8.34 89.38 60.29 335.03

V(m3 ha−1year−1)
Increment
2009–2015

−10.89 1.43 3.88 11.19
BA(m2 ha−1year−1) −0.91 0.34 0.45 1.74
B(Mg ha−1year−1) −5.81 0.95 1.97 5.99

For the nine unsampled stands thinned during the period 2009–2015 all thinning operations were
completed by fall 2011. In total 427.40 hectares were thinned with prescriptions that varied among
stands. Approximately 80% of the area was thinned from below, leaving a residual basal area of
17.22 m2 ha−1 to 25.25 m2 ha−1. For the remaining 20% of the area, approximately one quarter was not
thinned while the other three quarters were thinned to a residual BA that ranged from 6.89 m2 ha−1

to 13.77 m2 ha−1. Fresh weight of total extractions for the 427.40 hectares subject to thinning was
11,009.38 Mg of logs and 23,164.32 Mg of chipped material.

2.3. LiDAR Data Acquisitions

Two LiDAR acquisitions are available for BMEF. The first LiDAR dataset was acquired during
the summer of 2009 using a Leica ALS 50 discrete return sensor. Flying altitude was 900 m, side-lap
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between adjacent flight lines was at least 50% and scanning angle was ±14◦. The LiDAR data vendor
generated digital terrain models (DTMs) with an accuracy of 15 cm at 95% confidence level. Additional
details on the LiDAR data collection for the 2009 acquisition can be found in [24]. The same vendor
in the study area performed a second LiDAR acquisition during the summer of 2015 using the same
sensor, flying altitude and side-lap specifications. DTMs were also created for 2015 by the vendor.

Four sets of auxiliary variables were considered in this study. The first two sets are composed of 42
LiDAR predictors computed for each acquisition date. Set 1 will represent the predictors for 2009 and
Set 2 the predictors for 2015. These predictors are descriptors of the point cloud height distributions
and were all relative quantities to avoid introducing noise due to local differences in the point cloud
densities of 2009 and 2015 [25]. The third set of predictors, Set 3, was computed as the differences
between the 2009 and the 2015 LiDAR predictors. Finally, the fourth set of predictors, Set 4, included
the incoming solar radiation computed using the Environmental Systems Research Institute (ESRI)
ArcGIS Area Solar Radiation tool [26] with the 2009 digital surface model (DSM) as input; and two
treatments: (1) single- or multi-story structural diversity and (2) presence or absence of prescribed
fires. All predictors were computed for each field plot and for a grid with a cell size of 805 m2 covering
the entire BMEF. The cell size matched the field plot size and each cell of the grid was considered a
population unit, equivalent to the field plots. Predictors and their corresponding acronyms used in
further sections are summarized in Table A1.

2.4. AOIs, Target Parameter and Overview of Modelling Strategies

Two different types of subsets of population units will be repeatedly used throughout the
manuscript in remaining sections. These subsets and their corresponding notation are: the sample
of plots measured in the field, denoted using sub-index s and the target AOIs represented by pixels,
denoted using sub-index α.

Three different groups of AOIs representing different levels of spatial aggregation were analyzed.
The first group represents the largest level of spatial aggregation and represents the entire population
under study. Within this group, we considered the set of all sampled stands, SS, and the entire BMEF
study area after removing the nine thinned and unsampled stands, SA (i.e., sampled and unsampled
but not thinned stands). The second group consists of the 106 forested stands in BMEF. In this group,
we considered separately the unsampled and thinned stands (nine stands), unsampled and not thinned
stands (73 stands) and sampled and not thinned stands (24 stands). Finally, the third group is the set of
all pixels of the LiDAR grid covering the forested area in BMEF.

The main objective of this study was to analyze AOI-specific estimates of the change between 2009
and 2015 for three different structural variables, (V, B and BA). We will use the generic term variable of
interest and the letter y to refer to the forest structural variables, and the term target parameter and
Greek letter Δ to refer to the quantities that we seek to estimate. Hereafter, target parameters will
always refer to changes over time for the totals of the variables of interest in the considered AOIs, and
will be expressed in a per hectare and year basis.

Considering that all pixels have the same area, the target parameter Δα for a generic AOI or subset
of population units, α, can be expressed as:

Δα =
Nα∑
i=1

Kyα(yiα15 − yiα09) =

Nα∑
i=1

Kδαδiα, (1)

where Nα is the number of population units (i.e., pixels) in the AOI. The terms yiα15 and yiα09 respectively
represent the value of the variable of interest for 2009 and 2015 for the ith population unit of α, and δiα
is the change, for the ith pixel of α, in the variable of interest during the period 2009 to 2015. Finally,
for comparability with previous studies, the variables of interest will be expressed in a per unit area
basis, and the increments δiα will be expressed in a per unit area and year basis. Thus, to ensure that
Δα is expressed in the correct units, it is necessary to introduce the factors Kyα and Kδα. When yiα15
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and yiα09 are expressed in a per unit area basis Kyα =
1

6Nα and for δiα in a per unit area and year basis
Kδα = 1

Nα .
We calculated AOI estimates using two different methods. The first, δ-modeling method,

for estimation of change uses models similar to those in approach A5 of Poudel et al. [8]. In this
approach, the change in a structural variable at the plot/pixel-level (δiα) is directly modeled as a
function of the LiDAR auxiliary variables available for the study area. The second, the y-modeling
method, uses a modified version of approach A4 of Poudel et al. [8] to obtain AOI-specific estimates of
change. Models in this approach jointly relate structural variables (yα15 and yα09) and LiDAR auxiliary
information at a given point in time and account for the correlation between errors obtained for the
same plot/pixel at different times. For both methods, variability between stands was accounted by
considering them as small areas. Thus, stand-level random effects were included in the models.

2.5. δ-Modeling Method

2.5.1. Model δ-modeling Method

Models in the δ-modeling method relate the change (per year) of the variable of interest in a
population unit to the auxiliary variables for the population unit. To indicate that these models consider
change in the variables of interest directly, model parameters, stand-level random effects and model
errors will include the subscript δ. Three different types of auxiliary variables were considered as
potential predictors in the δ-modeling method. First, changes in the LiDAR auxiliary variables for the
period 2009-2015, Set 3, were considered following Poudel et al. [8] as changes in LiDAR predictors are
expected to correlate with growth or changes in forest attributes. Forest structure relates to growth.
Thus, the LiDAR auxiliary variables for 2009, Set 1, were also considered as potential predictors that
act as proxies for forest structure at the beginning of the period 2009-2015. Finally, the incoming
solar radiation and the structural diversity factors and presence of prescribed fires, Set 4, were also
considered as potential predictors.

For the jth population unit in the ith stand, models of the δ-modeling method have the form:

δi j = xt
δi jβδ + vδi + εδi j, (2)

where t indicate the transpose operator and xt
δi j is a vector of auxiliary variables in which the first

element takes the value 1 for the intercept. The term βδ is a vector of model coefficients where the
first element is the intercept of model (2). Selection of auxiliary variables included in the model
was performed using the method described in [27]. Stand-level random effects vδi are assumed to
be independently and identically distributed (i.i.d.) normal random variables vδi ∼ N(0, σ2

δv) for all
i = 1, . . . , D, where D is the total number of stands in the study area. Model errors are i.i.d. normal
random variables εδi j ∼ N(0, σ2

δε) independent of the stand-level random effects (i.e., Cov(εδi jvδ,k) = 0,
for all i, j and k). Models with spatially correlated errors and with non-constant error variances were
initially considered but discarded in the model selection stage, as they were not found to be significant
(see Section 2.5.3).

For a generic set of population units denoted by subscript ξ (which can represent either s or α),
the relation in matrix notation between vector of changes of structural variables δyξ, and the auxiliary
variables included in the model (Xδξ), is expressed as:

δξ = Xδξβδ + Zδξvδ + εδξ, (3)

where δξ = (δ1, . . . , δNξ)
t, with δk being the yearly change for the forest structural variable y, in the kth

unit of ξ, and Nξ is the number of elements in the set ξ. The kth element of ξ will be an element of
a given stand. To explicitly indicate this membership we will use, when necessary, the sub-indexes
ith and jth to respectively indicate the stand and index of the element within the stand. The kth row
of the matrix Xδξ is xt

δk. The vector vδ = (vδ1, . . . , vδD)
t is a vector of stand-level random effects with
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variance covariance matrix Gδ = σ2
δvID, where ID is the identity matrix of dimension D. The matrix

Zξδ is a Nξ x D incidence matrix that describes stand membership for each population unit. The rth

row of Zξδ have zeros at all positions except at position i, where i is the index of the stand to which
the kth unit of ξ belongs. Finally, εξδ is a vector of Nξ model errors with diagonal variance covariance
matrix Rξδ = σ2

δεINξ .
To simplify the notation, hereafterθδ = (σ2

δε, σ
2
δv), will represent the vector of variance parameters.

The variance covariance matrix of δξ is:

Vδξ(θδ) = ZδξGδ(θδ)Zt
δξ + Rδξ(θδ). (4)

Model (3) is a linear mixed effect model and a special case of the basic unit-level described in [28]
(pp. 174).

2.5.2. Target Parameter δ-modeling Method

Under model (2) the target parameter (1) for a generic AOI α can be expressed as:

Δα =
1

Nα

Nα∑
i=1

δiα =
1

Nα
1tδα =

1
Nα

1t(Xδαβδ + Zt
δαvδ + εδα) = lt

δαβδ + mt
δαvδ + qt

δαεδα, (5)

Thus, the target parameter is a linear target parameter similar to the one considered in [4] where 1t

is a vector of ones and lt
δα =

1
Nα 1tXδα, mt

δα
= 1

Nα 1tZt
δα and qt

δα
= 1

Nα 1t are vectors of known constants
for the target AOI α.

2.5.3. Model Selection and Estimator δ-modeling Method

The target parameter Δα was estimated for all considered AOIs using Δ̂α the empirical best linear
unbiased predictor (EBLUP) described in [29]. For each variable of interest, auxiliary variables included
in Xδα were preselected using the best subset selection procedure described in [29] (pp. 179–180).
When models with similar values of model root mean square error or coefficients of determination
were compared, the preferred option was to select the model with smallest values of σ2

δv. This criterion
is appropriate to minimize the leading term of the AOI specific mean square errors [29] (pp. 176).
Pre-selected models considered constant model error variances and no spatial correlation of model
errors were fitted using maximum likelihood (ML). In a subsequent stage, models were re-fitted using
ML including: (1) an exponential spatial correlation model for the model errors and (2) a non-constant
error variance where εδi j ∼ N(0, σ2

δεk
2wδ
i j ). The term kij is the value of the predictor included in

the model most correlated to δ and wδ is an additional parameter to account for heteroscedasticity.
For all variables, no clear patterns of spatial correlation or non-constant variances were observed,
which supports the model form described in Section 2.5.1.

Final estimates θ̂δ of the variance parameters θδ were obtained using restricted maximum
likelihood (REML) with the R [30] package nlme [31]. REML estimates β̂δ(θ̂δ) of βδ were functions of
the estimated variance parameters (6):

β̂δ(θ̂δ) = {Xt
δsV̂δs(θ̂δ)

−1Xδs}
−1

Xt
δsV̂δs(θ̂δ)

−1
δs. (6)

Matrices V̂δs(θ̂δ), Ĝδ(θ̂δ) and R̂δs(θ̂δ) are obtained replacing the estimated variance parameters
θ̂δ in Vδs(θδ) Gδ(θδ) and Rδs(θδ), by their REML estimates θ̂. EBLUPs Δ̂α are also functions of γ̂ and
are obtained using Equation (7):

Δ̂α(θ̂δ) = lt
δαβ̂δ(θ̂δ) + mt

δαv̂δ(θ̂δ), (7)
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where v̂δ(θ̂δ) equals:
v̂δ(θ̂δ) = Ĝδ(θ̂δ)Zt

δsVδs(θ̂δ)
−1{δs −Xδαβ̂δ(θ̂δ)}. (8)

It is important to note that for AOIs in unsampled stands (i.e., pixels in unsampled compartments
or the unsampled stands themselves), estimation will be made assuming that the model fit for the
sampled stands also holds for the unsampled stands. Under that assumption, mt

δα
v̂δ(θ̂δ) = 0 and

Δ̂α(θ̂δ) = lt
δαβ̂δ(θ̂δ) is a synthetic predictor.

2.5.4. MSE Estimators for the δ-modeling Method

For all AOIs, the mean squared error of the EBLUP was estimated using the estimator provided
by [32] and extended in [4] to account for the fact that AOIs can contain a small number of population
units. This estimator is the sum of three components where the last one, 2g3,α(θ̂δ), is a bias
correction factor:

ˆMSE{Δ̂δα(θ̂δ)} = g1δα(θ̂δ) + g2δα(θ̂δ)+2g3,α(θ̂δ), (9)

The first term of (9) equals:

g1δα(θ̂δ) = mt
δα{Ĝ(θ̂δ) − Ĝ(θ̂δ)Zt

δsV̂δα(θ̂δ)
−1ZδsĜ(θ̂δ)}mδα + qt

δαRδα(θ̂δ)qδα. (10)

The second term of (9) is:

g2αδ(θ̂δ) = dt
δα{Xt

δsVδs(θ̂δ)
−1Xδs}

−1
dδα (11)

with dt
δα = lt

δα −mt
δα

Ĝ(θ̂δ)Zt
δsV̂δs(θ̂δ)

−1Xδs. The term g1δα(θ̂δ) of ˆMSE{Δ̂δα(θ̂δ)} accounts for the
uncertainty due to the estimation of the random effects while g2δα(θ̂δ) accounts for the uncertainty
due to estimating βδ.

For model (2), it is possible to compute a bias correction factor for the mean square error estimator,
that accounts for the uncertainty due to estimating θδ. This correction factor equals:

g3δα(θ̂δ) = tr

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎝ ∂bt

δα

∂θδ

∣∣∣∣∣∣
θ̂y

⎞⎟⎟⎟⎟⎟⎠Vδs(θ̂δ)−1

⎛⎜⎜⎜⎜⎝ ∂bt
δα

∂θδ

∣∣∣∣∣∣
θ̂δ

⎞⎟⎟⎟⎟⎠t

Vδs(θ̂δ)

⎫⎪⎪⎬⎪⎪⎭, (12)

where, bt
δα = mt

δα
G(θδ)Zt

δsVδs(θδ)
−1 and Hδs(θ̂) is the Fisher information matrix for the fitted model.

Explicit formulas for g3δα(θ̂δ) are provided [29] (pp. 179–180). This bias correction factor was used as
a reference in comparisons with the y-modeling method.

All estimators of the mean square errors for AOIs in unsampled stands were made assuming
that the model fitted for the sampled stands holds in the unsampled stands. Under this assumption,
the leading term g1δα(θ̂δ), of ˆMSE{Δ̂δα(θ̂δ)} will be larger than if the stand containing the AOI was
sampled. This occurs because the negative term mt

δα
Ĝ(θ̂δ)Zt

δsV̂δs(θ̂δ)
−1ZδαĜ(θ̂δ)mδα makes the term

g1δα(θ̂) smaller as the stand sample size increases.

2.6. y-Modeling Method

2.6.1. Model y-modeling Method

Models in the y-modeling method relate the forest structural variables in a population unit at
different points in time with the auxiliary variables for that population unit. To indicate that these
models directly consider the variables of interest, model parameters, stand-level random effects and
model errors will include the subscript y. Auxiliary variables considered in the y-modeling method
include the LiDAR auxiliary variables for 2009 and 2015, (i.e., Set 1 and Set 2, respectively) plus the
incoming solar radiation and the factors structural diversity and presence of prescribed fires, Set 4 for
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both 2009 and 2015. The modeling for the method started obtaining models for the variable of interest
for 2009 and models for the variable of interest in 2015.

For given time t, the variable of interest in the jth population unit in the ith stand is expressed as:

yijt = xt
yi jtβyt + uyit + eyijt, (13)

where xt
yi jt is a vector of auxiliary variables, specific for time t, in which the first element takes the

value 1. The term βyt is a vector of time-specific coefficients with the first element representing the
model intercept. The random components of model (13) are the stand-level random effects uyit and the
model errors eyijt. To account for heteroscedasticity, model errors eyijt were of the form eyijt = εyijtk

ωyt

i jt

with εyijt ∼ N(0, σ2
yεt); the term kijt, the predictor included in the model for time t, is most correlated to

yt, and ωyt is a parameter to model the change in the error variance. The stand-level random effects
uyit were assumed to be independently and identically distributed (i.i.d.) normal random variables
uyit ∼ N(0, σ2

yut) for all i = 1, . . . , D, where D is the total number of stands in the study area. Model
errors were assumed independent of the stand-level random effects (i.e., Cov(eyijt, uykt) = 0, for all
i, j and k). Finally, model errors were consider independent with Cov(εyijt, εyklt) = 0 if i � k or j � l
for both t = 2009 and t = 2015. Models with spatially correlated errors were initially considered, but
discarded for both years in the selection stage as no clear spatial correlation patterns were observed in
the residuals. Auxiliary variables included in the model were selected following the same procedure
used in the δ-modeling method, using the best subsets selection procedure described in [27].

To account for expected correlations, models for 2009 and 2015 were combined into a single model
where stand-level random effects and model errors for 2009 and 2015 were allowed to be time correlated.
Then for the jth population unit in the ith stand the two-dimensional vector yi j = (yij09, yij15)

t of
variables of interest was related to the auxiliary variables through the following model:

yi j = Xi jβy + Bi jvyi + eyij (14)

with:

Xi j =

⎛⎜⎜⎜⎜⎜⎝ xt
yi j09 0t

p15

0t
p09 xt

yi jt15

⎞⎟⎟⎟⎟⎟⎠,βy =

(
βy09

βy15

)
, Bi j =

(
1 1 0
1 0 1

)
, vyi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
vyi

vyi09

vyi15

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, eyij =

(
eyij09

eyij15

)
, (15)

where 0t
p2009 and 0t

p2015 are, respectively, row vectors of zeroes of dimensions equal to xt
yi j09 and xt

yi j2015.
As with the time-specific models, to account for heteroscedasticity in the combined model, model

errors eyijt were of the form eyijt = εyijtk
ωyt

i jt with εyijt ∼ N(0, σ2
yεt). The parameters ωyt were updated

when fitting the combined model. Spatial correlation of model errors was not found to be significant
when considering each year separately, therefore, no spatial correlation patterns were considered in the
combined model. The only source of correlation of model errors present in the combined model was
temporal correlation. For a given location, the variables εyijtyi j09 ∼ N(0, σ2

yε09) and εyij15 ∼ N(0, σ2
yε15)

were allowed to be correlated random variables. The correlation between εyij2009 and εyij2015 is ρε and
the variance-covariance matrix of eyij is:

Cov
(

eyij09

eyij15

)
= Ryij =

⎛⎜⎜⎜⎜⎜⎜⎝ σ2
yε09k

2ωy09

i j09 ρεσ09k
ωy09

i j09 σ09k
ωy15

i j15

ρεσ09k
ωy09

i j09 σ09k
ωy15

i j15 σ2
yvk

2ωy15

i j15

⎞⎟⎟⎟⎟⎟⎟⎠. (16)

To model correlation between stand-level random effects, three random components vyi, vyi2009

and vyi2015, independent of each other, were considered. These random components had distributions
vyi ∼ N(0, σ2

yv), vyi09 ∼ N(0, σ2
yv09) and vyi15 ∼ N(0, σ2

yv15). Stand-level random effect for a given point,
at time t, uyit, are the sum of a pure stand effect, independent of time t, vyi, and a time-specific stand
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random effect vyi09 or vyi15. The term Bi jvyi = uyi =

(
vyi + vyi09

vyi + vyi15

)
=

(
uyi05

uyi09

)
represents these sums.

The variance covariance matrix of vyi is diagonal, therefore, the variance covariance matrix of uyi is:

Cov
(

uyi09

uyi15

)
= Gyi =

⎛⎜⎜⎜⎜⎜⎝ σ2
yv + σ

2
yv15 σ2

yv

σ2
yv σ2

yv + σ
2
yv15

⎞⎟⎟⎟⎟⎟⎠ (17)

The fact that the random effect vyi is present for both 2009 and 2015 results in a positive correlation

of the terms of uyi, with a correlation coefficient ρu =
σ2

yv

(σ2
yv+σ

2
yv09)(σ

2
yv+σ

2
yv15)

. In a last step, models with a

simpler structure of random effects were fitted and compared to the original models using a likelihood
ratio test. Simplified models contained only random effects vyi that did not depend on time (i.e., models
did not contain time-specific random effects vyi09 and vyi15). For simplified models uyi09 = uyi15 = vyi.

For a generic set of population units ξ, the combined model can be expressed in matrix notation as:

yξ = Xyξβy + Zyξvy + eyξ, (18)

where yξ, eyξ, and Xyξ, are obtained stacking the vectors yi j, eyij, or the matrices Xi j of all units in ξ. As no
spatial correlation patterns were found, the variance covariance matrix of eyξ is, Ryξ = diagi, j∈ξ(Ryij),
a block diagonal matrix of dimension 2Nξx2Nξ with 2x2 blocks equal to Ryij. The vector of stand-level
random effects v = (vt

i1, vt
i2, . . . , vt

iD)
t and the matrix Zyξ is an incidence matrix of dimension 2NξxD

for the simplified models and 2Nξx3D for the models with time-specific random effects. The variance
covariance matrix of yξ can be expressed as:

Vyξ(θy) = ZyξGy(θy)Zt
yξ + Ryξ(θy). (19)

In Equation (19), it is explicitly indicated that matrices Vyξ(θy), Gy(θy) and Ryξ(θy) depend

on the vector of variance-covariance parameters θy = (σ2
yv, σ2

yv09, σ2
yv15, σ2

yε09, σ2
yε15,ρε)

t. For the
models with simplified random effects the vector of variance covariance parameters reduces to
θy = (σ2

yv, σ2
yε09, σ2

yε15,ρε)
t. Model (18) is a special case of linear mixed effect model with block

diagonal covariance structure.

2.6.2. Target Parameter y-modeling Method

Under model (18) the target parameter (1) for a generic AOI, α is a linear combination of the form:

Δα =
1

6Nα

∑
Nα
i=1(yiα15 − yiα09) = lt

yαβδ + mt
yαuy + qt

yαeyα, (20)

where lt
yα = qt

yαXyα, mt
yα = qt

yαZyα and qt
yα are vectors of known constants for the target AOIα, with qt

yα

a vector of dimension 2Nα where the kth element equals (−1)k

6Nα . It is important to remark that for models
with a simplified structure of stand random effects, the target parameters do not depend on uy. For
these models, yij15 − yij15 = (xt

yi j15βy15 − xt
yi j09βy09) + (eyij15 − eyij09), and uyi09 − uyi15 = vyi − vyi = 0.

For these type of models, one can expect significant gains in accuracy because it is not necessary to
estimate random effects.

2.6.3. Estimator y-modeling Method, and Estimator of the MSE

Model (18) is a linear mixed effects model with block diagonal structure and Δα a linear model
parameter; thus, after [29] (pp. 108–110), the EBLUP Δ̂y(θ̂y) of Δα is:

Δ̂yα(θ̂y) = lt
yαβ̂y(θ̂y) + mt

yαv̂y(θ̂y), (21)
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where β̂y(θ̂y) equals:

β̂y(θ̂y) = {Xt
ysV̂ys(θ̂y)

−1Xys}
−1

Xt
ysV̂ys(θ̂y)

−1ys. (22)

Matrices V̂ys(θ̂y), Ĝy(θ̂y) and R̂ys(θ̂y) are obtained by replacing the estimated variance parameters
θy in Vyξ(θy), Gy(θy) and Ryξ(θy), by their REML estimates θ̂y. EBLUPs Δ̂α are also functions of γ̂
and are obtained using formula (7), where v̂δ(θ̂δ) equals:

v̂y(θ̂y) = Ĝy(θ̂y)Zt
ysVys(θ̂y)

−1{ys −Xyαβ̂y(θ̂y)}. (23)

As with the δ-modeling method, estimates for AOIs in unsampled stands were made assuming
that the model fit for the sampled stands also applied in the unsampled stands, which leads to
mt

yαv̂y(θ̂y) = 0 and Δ̂yα(θ̂y) = lt
yαβ̂y(θ̂y) is a synthetic predictor.

For all AOIs, the estimator of the mean square error of the EBLUP under the y-modeling method,
ˆMSE{Δ̂yα(θ̂y)}, is:

ˆMSE{Δ̂yα(θ̂y)} = g1yα(θ̂δ) + g2yα(θ̂y). (24)

The terms g1yα(θ̂y) and g2yα(θ̂y) in (24) are analogous to those in (10) and (11) and have similar
interpretation. To compute g1yα(θ̂y) and g2yα(θ̂y), matrices Ĝδs(θ̂δ), R̂δs(θ̂δ), V̂δs(θ̂δ) and R̂δα(θ̂δ)
must be replaced by Ĝys(θ̂y), R̂ys(θ̂y), V̂ys(θ̂y) and R̂yα(θ̂y). For the y-modeling method we did not
compute the second-order correction factors.

2.7. Comparison of Methods

Methods were compared using three different criteria. First, we used general measures of accuracy
providing the average error or uncertainty of prediction at the pixel-level (2.7.1); then, we compared
methods using AOI-specific estimates and measures of uncertainty (2.7.2). Finally, we assessed the
risk of generating biased predictions when using the δ-modeling method and y-modeling method in
unsampled stands (Section 2.7.3).

2.7.1. General Accuracy Assessment

To compare the δ-modeling method and y-modeling method, a fist assessment was made using
the cross-validated model mean squared error, mRMSE, and the model bias mBias:

mRMSE =

√∑n
i, j∈s (δi j − δ̂i j)

2

n
, (25)

mBias =

∑
i, j∈s (δi j − δ̂i j)

n
, (26)

where δi j is the observed value of change for the jth plot included in the ith sampled stand and δ̂i j is
the predicted value for that plot when model coefficients are obtained removing that plot from the
training dataset. For the y-modeling method δ̂i j is obtained using the observed and fitted values of
the variable of interest, as δ̂i j =

1
6 (ŷi j15 − ŷi j09) where ŷi j09 and ŷi j15 are the predictions of yij09 and

yij15 are obtained fitting the corresponding y-model without the observations for plot i j. In addition,
we computed mRMSE and mBias in terms relative to the average changes observed in the sampled
plots. These quantities are denoted as mRRMSE = mRMSE/Δ̂ f and mRBias = mBias/Δ̂ f where Δ̂ f is
the mean of the changes observed in the field plots.

2.7.2. AOI-specific Comparisons.

For each of the considered areas of interest an estimate by each method (i.e., EBLUPs using either
Δ̂δα(θ̂y) or Δ̂yα(θ̂y)) and their corresponding mean square error estimators (i.e., ˆMSE{Δ̂δα(θ̂y)} or

ˆMSE{Δ̂yα(θ̂y)}) were available. First, for each AOI and method, we directly compared Δ̂δα(θ̂y) and
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Δ̂yα(θ̂y), and the square roots of ˆMSE{Δ̂δα(θ̂δ) and ˆMSE{Δ̂yα(θ̂y). To simplify the notation, we will
omit the subscript indicating the target AOI unless it is necessary and refer to Δ̂δ as Δ̂y. Similarly,
after omitting the subscript α, the AOI specific root mean square errors will be denoted as:

RMSEδ =
√

ˆMSE{Δ̂δα(θ̂δ)}, (27)

RMSEy =
√

ˆMSE{Δ̂yα(θ̂y)}, (28)

To perform an assessment relative to the predicted values the following coefficient of variation:

CV{Δ̂δα(θ̂δ)} =
√

ˆMSE{Δ̂δα(θ̂δ)}
Δ̂δα(θ̂δ)

, (29)

CV{Δ̂yα(θ̂y)} =
√

ˆMSE{Δ̂yα(θ̂y)}
Δ̂yα(θ̂y)

, (30)

was computed for each AOI and method. Finally, for each AOI we compared CV{Δ̂δα(θ̂y)} to
CV{Δ̂yα(θ̂y)}. To simplify the notation we will refer to these coefficients of variation as CVδ and CVy.
Finally, for each sampled AOI we computed, using only the field information, the sample mean Δ̂ fα
and its standard error:

SE fα =

√√√∑nα
i, j∈s (δi j − Δ̂ f ,α)

2

(nα − 1)nα
, (31)

and its coefficient of variation CV fα. In Equation (31), nα is the number of field plots in the considered
AOI and the sub-index f is used to indicate that these quantities are calculated using only field data.
Again, to simplify the notation we removed the sub-indexes α unless they were necessary. Finally,
the sample mean and the coefficient of variation were then compared to their counterparts (7) and (29)
and (21) and (30) obtained by the δ-modeling method and y-modeling method, respectively.

2.7.3. Extrapolation to Thinned Stands

The fact that thinned stands were not represented in the sample of field plots raises the question of
how applicable the models obtained are using either the δ-modeling method or the y-modeling method
to these stands. Applying the models to these stands involves a degree of extrapolation to a different
population and a high risk of producing biased predictions. We assessed this risk by comparing
the distributions of the LiDAR predictors included in the models for the δ-modeling method and
the y-modeling method for the sample of field plots to the distributions of the predictors in: (1) the
sampled stands, (2) the unsampled and not thinned stands and (3) unsampled and thinned stands.
Within each group (i.e., field plots, FP; sampled stands not thinned, SS; unsampled stands not thinned,
UN; and unsampled stands subject to thinning, UT), we estimated density functions for each LiDAR
predictor using a Gaussian kernel and a bandwidth determined using Silverman’s rule [33]. Note that
we considered two AOIs for the largest level of aggregation, the first one is SS and the other one, SA,
is the union of SS and UN. We first considered each predictor separately and graphically compared
their density functions. Predictors for 2009 and 2015 in the y-modeling method were considered
separately. For each predictor and group, we computed the area of overlap, AO, with the density
function for the field plots which takes value 0 if there is no overlap and value 1 if the distribution of
the predictor in the considered group equals the distribution for the sample.

In addition to the area of overlap and aiming to consider all predictors in a given model at once,
we calculated NT2, the average of Mesgaran’s novelty index NT2 for each model and group [34].
This quantity provides the average Mahalanobis distance from the pixels of the group to the mean of
the sample of field plots, and it is expressed in terms relative to the maximum Mahalanobis distance
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observed in the sample. Values of NT2 above one indicate that on average pixels in a group are at
a distance to the mean of the field plots larger than the distance from the extreme field observation
to the mean of the field plots. We also calculated NT2mean, the average of NT2, but using the mean
Mahalanobis distance as normalizing constant instead of the maximum. The reference value of one for
NT2mean indicates that the average Mahalanobis distance from pixels, to the mean of the field plots,
is the same as the average of the Mahalanobis distances observed in the sample. Means and variance
covariance matrices for computation of Mahalanobis distances are always estimated using the sample
of field plots.

3. Results

3.1. Selected Models δ-modeling Method and y-modeling Method

Selected models for the δ-modeling method included auxiliary variables from Set 1 and Set 3.
It was possible to find alternative models including fixed effects for the diversity treatments (i.e.,
predictors from Set 4) with similar values of mRMSE and mRBias; however, those models did not
improve the model fit. From a practical point of view, models that only depend on the LiDAR variables
but do not depend on the structural diversity treatments or the presence/absence of prescribed fires
make the models more portable and applicable to stands without needing to know exactly which one
of these treatments was applied. Considering that models using the structural diversity and presence
of prescribed fires as predictors did not result in important gains in accuracy, we selected models that
were not dependent on these treatments (Table 2).

Table 2. Summary models for the δ-modeling method. Model coefficients, standard errors of the model
coefficients, variance parameters and general metrics for accuracy assessment are provided. Predictor
acronyms are explained in Table A1. Coef is the value of the coefficient and Std.Error its corresponding
standard error. V indicates volume, BA indicates basal area and B indicates biomass.

Model Predictor Coef Std. Error σ̂2
δv σ̂2

δε
mRMSE mRRMSE mBias mRBias

V(m3 ha−1 year−1)
Intercept 1.16 0.31

0.50 10.53 3.47 241.99% −1.83 × 10−4 −0.01%δElev_P5015-09 1.33 0.27
δPcFstAbv215-09 0.23 0.07

BA(m2 ha−1 year−1)

Intercept 0.31 0.12

0.01 0.14 0.39 116.30% −8.2 × 10−4 −0.25%
δPcAllAbv215-09 0.05 0.01

Elev_P7509 −0.03 0.01
PcAllAbv215-09 0.02 <0.01

B(Mg ha−1 year−1)

Intercept 1.03 0.17

0.19 2.52 1.72 180.20% −1.09 × 10−3 −0.11%
δElev_var15-09 0.05 0.02
δElev_P5015-09 1.03 0.20
δCRR15-09 −16.67 6.58

For the models in the δ-modeling method, the variance of random the effects, σ̂2
δv, was very small

compared to the variance of the model errors, σ̂2
δε, (Table 2). This indicated that, in this forest and for

these variables, the use of synthetic estimators that do not account for the variability between stands
should not cause a strong bias problem.

Models for the y-modeling method showed a pattern similar to that observed for the δ-modeling
and only included predictors from Set 1 and Set 2 (Table 3). Errors showed non-constant variance
patterns for all variables. The predictor most correlated with the variable of interest (i.e., the predictor
used to model the error variance) was the same for 2009 and 2015. For V and B, the variance of model
errors was a function of the square of the mean LiDAR elevation (Elev_mean2), and the exponents
of the error variance function were very close to those obtained in [4,17,27] for V, and in [27] for B.
For BA, variance of model errors was a function of the percentage of first returns above two meters
(PcFstAbv2). Based on the results of the likelihood ratio tests, that for all variables resulted in p-values
larger than 0.87, simplified models were selected and used for prediction.
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3.2. General Accuracy Assessment and Comparison of Methods

For all variables and modeling alternatives, values of mBias and mRBias were orders of magnitude
smaller than mRMSE and mRRMSE (Tables 2 and 3). For all variables and methods, the percentages
of explained variance for the change in V, BA and B were low. For the δ-modeling method,
models explained 34.38%, 31.37% and 39.04% of the variance of the change in V, BA and B, respectively.
For the y-modeling method, models explained only 10.65% and 5.37% of V and B, respectively, while
for BA the prediction using the y-modeling method was not better than the sample mean. In addition,
δ-models had values of mRBias lower than those obtained for the y-models. When instead of the change
we considered the forest structural attributes with the y-modeling method, percentages of explained
variance were 82.16% for V, 82.53% for BA and 82.93% for B. Considering only 2009, the percentage of
explained variance for V, BA and B was 81.60%, 83.45%, and 82.84%, respectively. Considering only
2015, the percentage of explained variance for V, BA and B was 82.72%, 81.42% and 82.98%, respectively.

3.3. AOI-Specific Estimates

3.3.1. Entire Study Area

Estimates for the sampled stands and for the whole study area using either the δ-modeling method
or the y-modeling method were consistent with the estimates obtained using only the field information
except for BA and B in SA. For the entire study area values of RMSEδ tended to be smaller than RMSEy.
When considering the sampled stands, SS, approximate confidence intervals computed as Δ̂ f ± 2SE f for
the field estimates, and as Δ̂δ ± 2RMSEδ and Δ̂y ± 2RMSEy for each one of the LiDAR based methods,
overlapped for all variables (Table 4) and contained estimates derived from other methods. Differences
between the uncertainty of estimates obtained from LiDAR-based methods and the uncertainty of
estimates obtained from field-based methods tend to be of small magnitude.

Table 4. Average increments of volume V, basal area BA and biomass B in the entire study area
excluding the thinned stands (SA) and for the union of the sampled stands (SS). Estimates (Δ̂), root
mean square errors (RMSE), coefficients of variation (CV) and confidence intervals (CI) obtained using
the δ-modeling method and the y-modeling method are compared to estimates (Δ̂ f ), standard errors
(SE f ) coefficients of variation (CV f ), and confidence intervals (CI f ) using only the field information.

Variable Area
δ-modeling Method y-modeling Method Field Only Estimates

Δ̂δ RMSEδ CVδ CIδ Δ̂y RMSEy CVy CIy Δ̂f SEf CVf CIf

V(m3 ha−1

year−1)
SS 1.66 0.27 16.29% 1.12 2.20 1.95 0.32 16.48% 1.31 2.60

1.43 0.32 22.21% 0.80 2.07SA 1.67 0.30 17.98% 1.07 2.27 1.98 0.29 14.67% 1.40 2.56

BA(m2 ha−1

year−1)
SS 0.36 0.03 8.68% 0.30 0.42 0.37 0.04 9.93% 0.30 0.45

0.34 0.04 10.87% 0.26 0.41SA 0.42 0.04 8.41% 0.35 0.49 0.44 0.04 9.61% 0.35 0.52

B(Mg ha−1

year−1)
SS 1.07 0.13 12.35% 0.81 1.34 1.24 0.17 13.61% 0.90 1.57

0.95 0.16 16.89% 0.63 1.28SA 1.15 0.16 13.66% 0.83 1.46 1.29 0.15 11.83% 0.98 1.59

3.3.2. Stands

Estimated change of V, BA and B in the sampled stands by both the δ-modeling method and the
y-modeling method agreed with their field-based counterparts in most stands (Figure 2). However,
the width of the confidence intervals obtained using the δ-modeling method tended to be larger than
the confidence intervals of the estimates derived using the y-modeling method (Figure 2).
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Figure 2. Estimates of V, BA and B change for the sampled stands of Blacks Mountains Experimental
Forest. LiDAR-derived estimates using the δ-modeling method are indicated by blue dots,
LiDAR-derived estimates obtained using the y-modeling method are indicated with red dots and
field-based estimates are indicated using black.

For unsampled stands, estimates and confidence intervals had larger variability in stands where
the forested area was small (Figure 3). This variability cannot be avoided, and indicates that certain
sources of errors cannot be compensated if the number of pixels that are aggregated is low. Finally,
for both methods, values of RMSEδ and RMSEy were in the range of 0.25 to 1 m3 ha−1year−1 for V,
of 0.02 to 0.15 m2 ha−1year−1 for BA and of 0.10 to 0.80 Mg ha−1year−1 for B. However, for B and
V, the RMSEy tended to be smaller than RMSEδ while negligible differences between methods were
observed for BA (Figures 3 and 4).
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Figure 3. Estimates of V, BA and B change for the unsampled stands of Blacks Mountains Experimental
Forest. LiDAR-derived estimates using the δ-modeling method are indicated by blue dots and
LiDAR-derived estimates obtained using the y-modeling method are indicated with red dots. Thinned
stands are to the left and non-thinned stands to the right.

For the thinned (and unsampled) stands, differences between δ-modeling method and the
y-modeling method for BA were large and their confidence intervals did not overlap (Figure 3).
For these stands, the estimates for BA using the δ-modeling method tended to indicate almost no
changes in BA. Estimates for the thinned stands using the δ-modeling method provided inconsistent
results indicating gains in B, and changes close to zero for V and BA. Certain inconsistencies were also
observed for stands subject to thinning when using the y-modeling method where predictions of the
change in V and B were positive for three and five stands respectively. These inconsistencies seem to
derive from the fact that the distribution of predictors in Set 3 (i.e., changes in LiDAR predictors) in the
thinned stands was rather different to the distribution of these predictors in the sample of field plots,
in the sampled stands and in the unsampled and not thinned stands. For predictors of the y-modeling
method, modeled differences between thinned stands and the remaining groups were of much smaller
magnitude. Results for the analysis of the extrapolation risks are presented in detail in Section 3.4.
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Figure 4. Values of RMSEδ (blue), RMSEy (red) and SE f (black) for the stand-level estimates of V,
BA and B.

3.3.3. Pixel-level

For both methods, inconsistencies observed at the stand level were observed at the pixel-level,
especially the positive predictions of change obtained with the δ-modeling method in the thinned
stands (Figure A1). In addition, due to the low correlations of LiDAR predictors with the change in V,
BA, and B, predictions at this level have large uncertainties. Mean and median values of RMSEδ were
2.30 m3 ha−1 year−1 and 3.30 m3 ha−1 year−1 for V, 0.39 m2 ha−1 year−1 and 0.38 m2 ha−1 year−1 for
BA, and 1.67 Mg ha−1 year−1and 1.65 Mg ha−1 year−1 for B. Mean and median values of RMSEy were
2.49 m3 ha−1 year−1 and 2.20 m3 ha−1 year−1 for V, 0.48 m2 ha−1 year−1 and 0.48 m2 ha−1 year−1 for
BA and 1.89 Mg ha−1 year−1 and 1.76 Mg ha−1 year−1 for B (Table 5 and Figure A1). Predictions from
the δ-modeling method tend to be smoother than predictions from the y-modeling method. For all
variables, the proportion of pixel-level predictions using the δ-modeling method within the range of
values observed for the field plots, was always 99.84% or larger (Figure A2). Considering that these
results were obtained in the presence of thinned stands and the relatively small fraction of the forest
that was sampled, obtaining less than 0.16% of the predictions outside of the measurement range
seems to be a clear sign of over smoothing (see Appendix B).

Table 5. Minimum (Min), 5th percentile (p05), mean, median, 95th percentile (p95) and maximum
(Max) of RMSEδ (27) and RMSEy (28) for the pixels of the study area.

Variable Method Min p05 Mean Median p95 Max

V(m3 ha−1 year−1)
δ-modeling method 0.42 0.42 2.30 3.30 3.59 9.41
y-modeling method 0.08 0.37 2.49 2.20 6.01 32.69

BA(m2 ha−1 year−1)
δ-modeling method 0.38 0.38 0.39 0.38 0.40 0.59
y-modeling method 0.11 0.30 0.48 0.48 0.64 1.47

B(Mg ha−1 year−1)
δ-modeling method 1.62 1.63 1.67 1.65 1.76 4.57
y-modeling method 0.47 1.10 1.89 1.76 3.09 10.45
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3.4. Extrapolation to Thinned Stands

Estimates of change in B for the thinned stands by both methods were clearly subject to bias
problems. The predicted change in B for the total area subject to thinning for the period 2009–2015,
using the δ-modeling method was an increase in biomass of 40,469.22 Mg. The predicted change
using the y-modeling method was a removal of B. However, the predicted removal for the period
2009–2015 was only 1750.29 Mg while the weighted extractions for the thinned stands were orders of
magnitude larger. For BA both methods estimated extractions in BA, which is consistent with the fact
that these stands were thinned. Estimated changes in BA using the δ-modeling method for the thinned
stands ranged from −0.05 m2 ha−1 to −1.88 m2 ha−1, which seems to be a very small change in basal
area. Estimated changes in BA using the y-modeling method ranged from −3.58 m2 ha−1 to −7.01 m2

ha−1. An advantage of the y-modeling method is that it allows obtaining the values of the structural
attributes at a given point in time. Using the y-model we estimated BA for the thinned stands for
2015. For those stands where thinning prescriptions dictated leaving a residual BA of 17.22 m2 ha−1

to 25.25 m2 ha−1, estimated BA for 2015 ranged from 19.87 m2 ha−1 to 26.22 m2 ha−1, which is in
accordance with the thinning prescriptions. For the remaining area subject to thinning the estimated
BA for 2015 was 17.64 m2 ha−1, while the prescriptions dictated leaving a residual BA ranging from
6.89 m2 ha−1 to 13.77 m2 ha−1 in 75% of the area and leaving the remaining area untouched. In general,
the estimated BA for 2015 are consistent with the prescriptions, which indicates that the y-modeling
method produces reasonable estimates of BA when extrapolating to the thinned stands. In summary,
for the estimation of changes, biases derived from extrapolation seemed to be of larger magnitude for
the δ-modeling method although they were also present for the y-modeling method.

The extrapolation indexes NT2 and NT2mean showed that predictions in thinned stands, involved a
large amount of extrapolation when using the δ-modeling method. For the y-modeling method,
differences between thinned stands and stands not subject to thinning were of smaller magnitude
(Figures 5 and A3). The inspection of the distribution of the LiDAR predictors in the field plots,
the sampled and not thinned stands, unsampled and not thinned stands and the unsampled and
thinned stands showed similar results for all variables, being the distributions of predictors from Set 3
(i.e., changes in LiDAR predictors for the period 2009–2015) very sensitive to the thinning operations
(Figures 6, A4 and A5).
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Figure 5. Indexes of extrapolation. Average of Mesgaran’s novelty index [35], NT2, for the sampled
and not thinned stands (dark blue), unsampled stands not thinned (green) and unsampled and thinned
stands (red). The value of this index for the field plots (light blue) provides the baseline value (i.e.,
the value observed for the sample of field plots).

Figure 6. Comparison of density functions for the predictors in the models used to estimate changes in
Volume using the δ-modeling method and y-modeling method in field plots (light blue), sampled and
not thinned stands (dark blue), unsampled and not thinned stands (light blue) and unsampled and
thinned stands (red). For each group the area of overlap, AO, with the density function for the field
plots (green) is provided for each predictor.
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4. Discusion

4.1. General Accuracy Assessment and Comparison of Methods.

The smallest values of mRMSE were obtained using the δ-method, which is consistent with
previous results reported by Poudel et al. [8] for V and B in coastal coniferous forest of Western
Oregon and by Temesgen et al. [9] for B in spruce-dominated forest of Alaska (Tables 2 and 3).
We observed, however, smaller differences between methods. Additionally, as observed in previous
studies, (e.g., [8,21,35,36]) where LiDAR auxiliary variables showed a much stronger correlation with
structural attributes at a given point in time than with their change.

Values of mRMSE for V were 3.47 m3 ha−1year−1 when using the δ-method and 3.76 m3 ha−1

year−1 when using the y-method. These values are slightly smaller than the mRMSE obtained by
Poudel et al. [8] using the δ-method (4.74 m3 ha−1 year−1) and two lidar acquisitions separated in
time by five years. For B, mRMSE using the δ-method and the y-method were, respectively, 1.72 Mg
ha−1year−1 and 1.94 Mg ha−1 year−1. These values were very close to those reported by Poudel et
al. [8] using the δ-method (1.88 Mg ha-1 year-1) and worse than those reported by Temesgen et al.
(1.25 Mg ha−1year−1 and 1.63 Mg ha−1 year−1), also using two LiDAR acquisitions separated in time
by five years. Values of RMSE for BA were similar to those obtained by Næsset and Gobakken [20]
in coniferous forest in Norway, using the y-method with log-transformed models and two LiDAR
acquisitions that were two years apart from each other. In relative terms, for V and B, the values that
we obtained for mRRMSE were considerably larger than those obtained by Poudel et al. [8]. These
differences are due to the fact that observed growth rates in Poudel et al [8] are much higher than we
observed at BMEF.

4.2. AOI-Specific Estimates

4.2.1. Entire Study Area

Most studies on estimation of change of structural variables using repeated LiDAR measurements
have focused on analyzing indexes of model fit and reported only global measures of accuracy
developed at a plot level. There is an important difference between the values of RMSEδ and RMSEy

and mRMSEδ and mRMSEy being mRMSEδ and mRMSEy an order of magnitude larger than RMSEδ
and RMSEy. Model root mean square errors mRMSEδ and mRMSEy provide an average measure of
the errors that can occur when predicting a single pixel. For large areas, there will be some level of
compensation of overpredicted and underpredicted pixels. Knowing how important that compensation
is requires calculating AOI-specific root mean square errors. These AOI-specific measures cannot be
directly derived from mRMSE because RMSEδ and RMSEy consider factors such as the uncertainty
in the estimation of the fixed and random effects that are not accounted for in mRMSEδ or mRMSEy.
The effect of these factors in RMSEδ and RMSEy can cause that the way two models with similar
values of mRMSE rank based on this metric could change when attending to RMSE. But the most
important consequence of the disconnect between mRMSEδ and mRMSEy and AOI-specific measures
of uncertainty, is that the former cannot be used as quality controls in LiDAR based inventories.

While numerous studies on estimation of changes using LiDAR rely on global measures of
accuracy such as mRMSE, exceptions to this trend can be found in the literature [10,12,18–20]. The last
four studies used model assisted techniques to derive either landscape or stratum level changes.
Reported errors in those studies changed depending on the modeling techniques and study areas,
but they all were of similar magnitude for changes in biomass per hectare and year (Table 4). Errors
for the methods tested in this study were smaller than those reported by [10], where changes in live
carbon stocks in Norway were estimated using generalized regression estimators (GREG). Differences
with the errors reported in [10] for carbon, using the same 0.5 biomass to carbon conversion factor,
were in the range of 0.12–0.09 Mg ha−1 year−1. These differences seem to be due to multiple factors
such as differences between study areas, changes in live biomass versus changes in standing biomass,
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time between LiDAR acquisitions and field plot sizes etc. Further investigation is needed to test if the
model-based estimators studied here and the GREG estimators in [10] have a similar performance
when used under the same conditions.

The study from Magnussen et al. [18] also included model based estimators using the y-modeling
method. Reported errors were slightly larger than the ones observed here but at the same time smaller
in terms relative to the observed mean change. An important result from the comparisons of [18] was
the drastic improvement in model accuracy when developing stratum specific models (i.e., a set of
model coefficients per stratum) as opposed to a global model for the whole study area. The mixed
effect models used in this study can be used in combination with stratification if sample sizes are large.
The introduction of stand level random effects allows for certain variability between AOIs that can be
applied in situations where AOI sample sizes are limited.

4.2.2. Stands

One of the novelties of this study was the analysis of estimates for AOIs with small sample
sizes to develop AOI specific models (i.e., stands). While at large scales both LiDAR-based and
field-based estimates were very similar and had equivalent accuracies, at the stand-level, LiDAR based
estimates, clearly had smaller errors than their field-based counterparts do. Qualitatively, this result
for the change in V, BA and B is similar to the results obtained in [15,17] for the structural variables
themselves and shows that the LiDAR auxiliary information allows for gains in efficiency when
estimating changes in AOIs with small sample sizes. However, due to the low correlation of LiDAR
and structural changes, values of CVδ and CVy were oftentimes larger than 50%. These values of CV
are larger than those observed for structural variables in similar AOIs in previous studies [4,14,17].
While differences were not of large magnitude RMSEy, tended to be smaller than RMSEδ. In addition,
RMSEy had a larger variability because errors did not have constant variance. Finally, stand level
estimates using the δ-modeling method in the thinned and unsampled stands involved an important
degree of extrapolation that can cause inconsistent estimates and severe biases, which indicates that
the δ-modeling method is more sensitive to extrapolating than the y-modeling method.

4.2.3. Pixel-level

For the most detailed level of disaggregation, the magnitude of the errors was very large. This is
due to the low correlation between LiDAR auxiliary variables and the change in structural attributes.
First-order and second-order texture indexes [37] are auxiliary variables with a promising potential for
future research aiming to improve the prediction of structural changes. While for structural variables,
maps at the pixel-level can provide a reliable reference about the forest structure; for growth and
changes, pixel-level maps like the one in Figure A1 should be taken as mere approximations. They
could be used to infer certain trends and patterns, but the high values of RMSEδ and RMSEy show that
estimates for a particular location made at the pixel scale can differ significantly with reality. These
results clearly indicate that, predictions at such a fine scale are highly unreliable, and it is necessary
either to perform some level of spatial aggregation or to increase the lapse between LiDAR acquisitions.

4.3. Advantages of Modeling Alternatives

In general, the δ-modeling method was found to be a better alternative to estimate changes
for the entire study area than the y-modeling method; however, the y-modeling method produced
better results at the stand-level and also seemed to be advantageous to prevent problems related to
extrapolation to values of the covariates outside of those included in model development.

The δ-modeling method offers a faster model developments and fitting, and is significantly
simpler than the modeling with the y-modeling method, as it is not necessary to consider differences
between years and time correlations. The main disadvantage of this method is that it seems to be
more prone to extrapolation errors. Predictors from Set 3 are sensitive to intense changes in the forest
structure caused for example by thinning (see Figures 5, 6, A4 and A5). The inspection of predictors
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of alternative models for V and B using this method revealed that inconsistencies of predictions in
unthinned stands could be attenuated including more predictors from Set 1. The sensitivity to changes
of predictors from Set 3 can be an advantage if all possible changes are correctly represented in the
field sample. However, for relatively short periods of time between acquisitions and a low amount of
forest operations, changes that are not very frequent in the landscape can be misrepresented or even
not included in the sample. Thus, results for areas subject to those changes can be severely biased
and inconsistent.

The more complex model development for the y-modeling method may be compensated by its
ability to produce a richer set of outputs, by its apparently smaller risk of extrapolation and by its
more accurate estimates for AOIs with small sample sizes (i.e., stands). In this study we analyzed the
performance of the y-modeling method when estimating change, but estimates of V, BA and B for all
the AOIs in 2009 and 2015 could have been readily obtained using this method. Results from our study
also support the idea that the y-modeling method has advantages over the δ-modeling method in
terms of protection against inconsistent extrapolations. The distributions of predictors from Set 1 and
Set 2 in thinned stands were relatively similar to the distributions observed for the sample while the
distributions of predictors in Set 3 used in the δ-modeling method, these distributions were rather
different (see Figures 5, 6, A4 and A5). The greater similarity between thinned stands and the sample of
field plots, for predictors from Set 1 and Set 2, indicates that the effect of thinning, in terms of auxiliary
information, can be seen as transition from one situation in 2009 to another in 2015, and both seem
to be represented in the field sample (e.g., Figure 5). If structures before and after the thinning (or
other changes) are represented in the sample, the need for extrapolation will be limited. Within certain
limits, if the sampling design covers all structures present at both points in time, even if there is a
particular change from one structure to another that is not represented in the sample, predictions from
the y-modeling method will not involve large extrapolations.

5. Conclusions

The four main conclusions obtained from this study include:

• The change of structural attributes and LiDAR auxiliary information are weakly correlated.
This weak correlation seems to more evident in BMEF than in previous studies because of the
slower growth in the study area and the relatively short lapse of time between LiDAR acquisitions,
which indicates that for future studies in similar areas it might be necessary to increase the time
lags between LiDAR flights.

• In general, the δ-modeling method was found to be a slightly more accurate alternative to obtain
estimates of change for the whole study area; however, the y-modeling method was able to
produce better estimates at the stand level. In addition, the y-modeling method method also
seemed to be less prone to extrapolation problems. This indicates that field campaigns for the
δ-modeling method have to be carefully designed while the y-modeling method might be less
sensitive to certain bias problems.

• Despite the weak correlations with the changes in structural attributes, LiDAR auxiliary information
allows obtaining estimates of growth for stands that improve over those derived using only
field information.

• The large uncertainty observed for pixel-level predictions indicated that high-resolution maps of
growth, generated using LiDAR auxiliary information in similar conditions, should be taken as
approximated products.
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Appendix A

Table A1. Sets of candidate predictors used in the study. Predictors included in the models to predict
structural changes are highlighted with a boldface font. HiD, LoD and RNA represent the high diversity,
low diversity and research natural areas respectively.

Description Auxiliary
Variables Sets 1, 2 and 3

Acronym
Description Auxiliary

Variables Set 4

Acronym

Set 1 Year: 2009 Set 2 Year: 2015
Set 3, Difference

2015-2009
Set 4

Minimum, maximum, mean,
mode, standard deviation,

variance, coefficient of
variation and interquartile
range of the distribution of
heights of the point cloud.

Elev_min09 Elev_min15 δElev_min15-09 Incoming solar radiation Solar_radiationElev_max09 Elev_max15 δElev_max15-09

Elev_mean09 Elev_mean15 δElev_mean15-09 Structural diversity, factor
with three levels HiD, LoD
and RNA. Coded using two

dummy variables. RNA
reference level.

HiDElev_mean2
09 Elev_mean2

15 δElev_mean2
15-09

Elev_mode09 Elev_mode15 δElev_mode15-09

Elev_stddv09 Elev_stddv15 δElev_stddv15-09 LoDElev_var09 Elev_var15 δElev_var15-09

Elev_CV09 Elev_CV15 δElev_CV15-09
Presence absence of

prescribed fires. Coded
using a dummy variable
taking value 1 for stands

where prescribed fires are
applied and 0 otherwise.

Burned
Elev_IQ09 Elev_IQ15 δElev_IQ15-09

Elev_AAD09 Elev_AAD15 δElev_AAD15-09
Elev_MADmed09 Elev_MADmed15 δElev_MADmed15-09
Elev_MADmod09 Elev_MADmod15 δElev_MADmod15-09

Percentiles of the
distribution of heights of the

point cloud.

Elev_P0109 Elev_P0115 δElev_P0115-09
Elev_P0509 Elev_P0515 δElev_P0515-09
Elev_P1009 Elev_P1015 δElev_P1015-09
Elev_P2009 Elev_P2015 δElev_P2015-09
Elev_P3009 Elev_P3015 δElev_P3015-09
Elev_P4009 Elev_P4015 δElev_P4015-09
Elev_P5009 Elev_P5015 δElev_P5015-09

Elev_P6009 Elev_P6015 δElev_P6015-09
Elev_P7009 Elev_P7015 δElev_P7015-09
Elev_P7509 Elev_P7515 δElev_P7515-09
Elev_P8009 Elev_P8015 δElev_P8015-09
Elev_P9009 Elev_P9015 δElev_P9015-09
Elev_P9509 Elev_P9515 δElev_P9515-09
Elev_P9909 Elev_P9915 δElev_P9915-09

Canopy relief ratio CRR09 CRR15 δCRR15-09

Percentage of first (Fst) and
all (All) returns above 2 m

PcFstAbv209 PcFstAbv215 δPcFstAbv215-09

PcAllAbv209 PcAllAbv215 δPcAllAbv215-09

Ratio all returns above 2 m
to first returns AllAbv2Fst09 AllAbv2Fst15 δAllAbv2Fst15-09

Percentage of first returns
above the mean and mode

PcFstAbvMean09 PcFstAbvMean15 δPcFstAbvMean15-09
PcFstAbvMode09 PcFstAbvMode15 δPcFstAbvMode15-09

Percentage of all returns
above the mean and mode

PcAllAbvMean09 PcAllAbvMean15 δPcAllAbvMean15-09
PcAllAbvMode09 PcAllAbvMode15 δPcAllAbvMode15-09

Ratio of all returns above the
mean and mode to number

of first returns

AllAbvMeanFst09 AllAbvMeanFst15 δAllAbvMeanFst15-09
AllAbvModeFst09 AllAbvModeFst15 δAllAbvModeFst15-09

Proportion of points in the
height intervals [0,0.5),

[0.5,1), [1,2), [2,4), [4,8) and
[8,16) meters.

Prop0_0509 Prop0_0515 δProp0_0515-09
Prop05_109 Prop05_115 δProp05_115-09
Prop1_209 Prop1_215 δProp1_215-09
Prop2_409 Prop2_415 δProp2_415-09
Prop4_809 Prop4_815 δProp4_815-09

Prop8_1609 Prop8_1615 δProp8_1615-09

Appendix B

Predictions from the δ-modeling method tend to be smoother than predictions from the y-modeling
method (Figure A1). For all variables, the proportion of pixel-level predictions using the δ-modeling
method within the range of values observed for the field plots, was always 99.84% or larger. Considering
the presence of thinned stands and the relatively small fraction of the forest that is sampled. Obtaining
less than 0.15% of the predictions outside of the measurement range seems to be a clear sign of over
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smoothing. Predictions using the y-modeling method showed a greater variability, especially for
BA, and the proportions of predictions inside the range of observed values, Py, were 99.45% for V,
95.82% for BA and 99.29% for B. For BA, pixel-level predictions using the y-modeling method were
oftentimes negative and of larger magnitude than the changes in BA observed for the plots. However,
these pixels represent a small proportion of the total predictions (i.e., 4.02%), and a significant portion
of them correspond to pixels in thinned stands. It is important to note that these comparisons of
predicted values inform about how similar predictions are by the two analyzed methods and cannot
be considered as indicators of accuracy or reliability. For all variables, pixel-level predictions by both
methods were strongly correlated with Pearson’s correlation coefficients of 0.92, 0.82 and 072 for V,
BA and B, respectively (Figure A2). Finally, considering the unsampled and thinned stands, pixel-level
predictions obtained by both methods showed the same inconsistencies observed at the stand-level
especially for B using the δ-modeling method where only about 4%, of the predicted values were
negative (i.e., removals of B). These inconsistencies are clearly due to extrapolations in the thinned
stands and are analyzed in more detail in next section.

Figure A1. Maps of change in V, BA and B and corresponding pixel-level RMSE maps for the
δ-modeling method.
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Figure A2. Comparison pixel-level predictions for V, BA and B using the δ-modeling method and
y-modeling method predictions for the unsampled stands subject to thinnings are in red. The range
of V, BA and B observed in the sample is indicated by the grey ribbons. The proportions, Pδ and
Py, of predictions within the range of values observed in the sample, and the correlation between
predictions from both methods are indicated in the upper left corner. The proportion of pixels in the
thinned stands where the δ-modeling method and y-modeling method predict losses (i.e., P(δ̂i,δ < 0)
and P(δ̂i,y < 0)) are indicated on the lower left quadrant of the figure.

Appendix C

Figure A3. Indexes of extrapolation. Average of Mesgaran’s novelty index relative to the mean,
NT2mean, for the sampled and not thinned stands (dark blue), unsampled stands not thinned (green)
and unsampled and thinned stands (red). The value of this index for the field plots (light blue) provides
the baseline value (i.e., the value observed for the sample of field plots).
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Figure A4. Comparison of density functions for the predictors in the models used to estimate changes
in Basal Area using the δ-modeling method and y-modeling method in field plots (light blue), sampled
and not thinned stands (dark blue), unsampled and not thinned stands (light blue) and unsampled and
thinned stands (red). For each group the area of overlap, AO, with the density function for the field
plots (green) is provided for each predictor.
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Figure A5. Comparison of density functions for the predictors in the models used to estimate changes
in Biomass using the δ-modeling method and y-modeling method in field plots (light blue), sampled
and not thinned stands (dark blue), unsampled and not thinned stands (light blue) and unsampled and
thinned stands (red). For each group the area of overlap, AO, with the density function for the field
plots (green) is provided for each predictor.
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Abstract: For tropical countries that do not have extensive ground sampling programs such as
national forest inventories, the gain-loss approach for greenhouse gas inventories is often used.
With the gain-loss approach, emissions and removals are estimated as the product of activity data
defined as the areas of human-caused emissions and removals and emissions factors defined as the
per unit area responses of carbon stocks for those activities. Remotely sensed imagery and remote
sensing-based land use and land use change maps have emerged as crucial information sources
for facilitating the statistically rigorous estimation of activity data. Similarly, remote sensing-based
biomass maps have been used as sources of auxiliary data for enhancing estimates of emissions and
removals factors and as sources of biomass data for remote and inaccessible regions. The current
status of statistically rigorous methods for combining ground and remotely sensed data that comply
with the good practice guidelines for greenhouse gas inventories of the Intergovernmental Panel on
Climate Change is reviewed.

Keywords: statistical estimator; IPCC good practice guidelines; activity data; emissions factor;
removals factor

1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) [1] (p.17) identifies five carbon pools to
be monitored for forest-related carbon emissions and removals: aboveground biomass, below-ground
biomass, litter, dead wood and soil organic carbon. Within the agriculture, forestry and other land use
sector, greenhouse gas (GHG) inventories for all these pools are typically conducted using either the
stock difference approach or the gain-loss approach [1] (p. 22), [2] (Vol. 4, Chap 2, p. 2.10). With the
stock-difference approach, mean annual carbon emissions or removals are estimated as the ratio of
the difference in carbon stock estimates at two points in time and the number of intervening years [1]
(Chap. 3), [2] (Vol. 4, Chap. 3). For countries with established and comprehensive forest sampling
programs, such as national forest inventories (NFI), the stock difference approach is fairly easy to
implement. However, for tropical countries that do not have NFIs or that only have a single set of NFI
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measurements, the gain-loss approach is used more often. With the gain-loss approach, emissions are
estimated as differences between additions to and removals from carbon pools. Specifically, emissions
are estimated as the product of activity data defined as the areas of “human activity causing emissions
and removals” and emissions factors defined as the per unit area responses of carbon stocks for those
activities [1] (pp. xvii, 22], [2] (Vol. 1, Chap. 1, Sect. 1.2).

The IPCC characterizes GHG methods for estimating emissions and removals with respect to
three tiers or levels of data detail and analytical complexity [1] (p. 19), [3]. Tier 1 is the default method
and permits use of default, national, ecological zone, or global emissions factors based on canopy cover
reductions, thus making it applicable for any country. However, emissions factors from these sources
are subject to considerable uncertainty. Tier 2 is based on the same conceptual structure as Tier 1,
but with the expectation that activity data aggregate land use changes between categories and emissions
factors are based on national level data. Tier 3 uses models, data from repeated inventories, and fine
resolution land use and land use change activity data to produce spatially continuous, sub-national
estimates. Gain-loss methods can be implemented at all three tier levels.

Within tiers, the IPCC further documents three approaches for estimating activity data, all
involving land use class areas [1] (p. 19). Approach 1 uses aggregations of land use class areas such as
would be reported by an NFI, but without regard to the specific geographic locations of those areas of
those land use classes; Approach 2 differentiates among land use change classes, but like Approach 1,
does not identify the specific locations of individual segments of the classes; and Approach 3 tracks
individual land parcels over time.

Regardless of the approach and method, the IPCC specifies two good practice guidelines for GHG
inventories: (i) “neither over- nor underestimates so far as can be judged,” and (ii) “uncertainties
are reduced as far as practicable” [1] (p. 15), [2] (Vol 1. Chap. 1, Sect. 1.2). From a statistical
perspective, the satisfaction of these criteria requires use of unbiased estimators and, at minimum,
rigorous estimation of uncertainty. In particular, there can be little assurance that uncertainties are
reduced until they are first rigorously estimated [4,5].

Considerable recent attention has been devoted to developing and illustrating methods for
implementing the gain-loss approach, particularly for estimating activity data, but less so for estimating
emissions and removals factors for the aboveground biomass pool [1] (p. 17). The objective of the
review is to document and summarize the current role of remote sensing for gain-loss methods for Tier
1 and Tier 2 GHG inventories, with particular emphasis on the two IPCC good practice guidelines.
A subordinate objective is to submit statistical guidance developed for the Methods and Guidance
Document (MGD) of the Global Forest Observations Initiative to journal-level peer review [1]. As per
the MGD, the review focuses on forest land use, particularly forest remaining forest and conversions
from and to forest land use. The structure of the review closely follows the structure of the MGD,
with an initial focus on estimation of activity data followed by estimation of emissions and removals
factors. Within these two categories, the focus is on the statistical estimators, as is the MGD, with the
discussion logically proceeding from less complex to more complex.

2. Estimating Total Emissions

The ultimate objective is an inference in the form of a confidence interval,

Ê
tot ± t·

√
V̂ar

(
Ê

tot)
(1)

where Ê
tot

is the estimate of total emissions and removals, V̂ar
(
Ê

tot)
is an estimate of the corresponding

variance, and t is a percentile from Student’s t-distribution corresponding to the desired confidence and
degrees of freedom determined by the sample size and sampling design. With the gain-loss approach,
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total emissions and removals are estimated as the sum over activities of the products of estimates of
activity class areas and corresponding estimates of activity class emissions and removals factors,

Ê
tot

=
C∑

c=1

Â
c·ÊF

c
(2)

where c=1, . . . , C indexes activity classes, Â
c

is the estimate of the area for activity class c, and ÊF
c

is
the estimate of the emission factor for activity class c [1] (pp. xvii, 22), [2] (Vol.1, Chap.1, Sect. 1.2).
An estimator of the variance of Ê

tot
can be formulated using a first-order Taylor series as,
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Reference [6] (Appendix). If activity areas and emission factors are estimated independently, then
ˆCov

(
Â

c
, ÊF

c)
= 0 may be assumed. The technical challenge with the gain-loss method is to formulate

the activity data estimators, Â
c

and V̂ar
(
Â

c)
, and the estimators for the emissions and removals

factors, ÊF
c

and V̂ar
(
ÊF

c)
. Multiple country-level examples of the use of the gain-loss method for

estimating total emissions and removals can be found in the country Fact Sheets at the REDD+Web
Platform [7], although rigorous uncertainty estimation is not always documented. Illustrations that
include uncertainty assessments and that document estimation details can be found in [1] (p. 158)
and [6].

3. Activity Data

The estimation of activity data typically entails three components: reference data, auxiliary
data, and statistical estimators. When estimating activity data, auxiliary data are typically acquired
from external sources, so that the primary purpose of reference data is to serve as the basis for
estimates. However, when estimating emissions and removals factors (Section 4), auxiliary data are
often developed by the user, so that reference data may have multiple purposes, including as training
data for constructing remote sensing-based maps, as map validation data, and as a source of data for
calculating estimates. For estimating activity data, reference data can be obtained from both ground
and remote sensing sources. The primary purpose of auxiliary data is to enhance or improve estimates
based on reference data, most often to increase precision. Auxiliary data, like reference data, can be
obtained from both ground and remote sensing sources.

3.1. Data

3.1.1. Reference Data

For the estimation of activity data, the reference data are the most accurate information on land
use change classes available and are typically acquired as measurements of ground plots, or more
commonly as image interpretations. To facilitate design-based inference, reference data are most often
acquired using a probability sampling design [8,9] (Section 3.2).

Regardless of the estimator used with reference data (Section 3.2), observation errors and other
uncertainties in reference data tend to induce bias into estimators [10–13]. Sun et al. [14] reported that
manual interpretations of Google Earth and other fine resolution imagery by three trained interpreters
were not as reliable as ground observations for seven land cover classes in Central Asia. Thus, for
most applications, ground reference data are considered to be preferable, although Foody [10,11]
argues that even ground reference data may be subject to error. However, the acquisition of probability
samples of ground reference data for remote and inaccessible regions may be prohibitively expensive,
if not logistically infeasible. The common alternative is to acquire reference data in the form of
visual image interpretations, albeit with the caveat that such reference data are of greater quality than
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any auxiliary map data (Section 3.1.2), with respect to factors such as resolution and accuracy [1]
(pp. 125, 139) [8,15,16].

Mowrer and Congalton [17] characterize reference data with non-negligible uncertainty as
imperfect reference data. Næsset [18,19] reported that interpretations of crown coverage for structurally
homogenous Norwegian boreal forests differed statistically significantly among interpreters and among
different times of year for the same interpreter. Further, interpretations of broad tree species groups
by 12 professional interpreters using stereo aerial photography produced only 31–79% agreement
with field reference data. These results were consistent with the results of a review of more than
10 studies from the Nordic countries from the 1970s and 1980s. An additional finding was, as might be
expected, that interpretations were less accurate for more complex forests. For five trained interpreters
of videography, Powell et al. [20] reported interpreter disagreement of almost 30% for five land cover
classes in the Brazilian Amazon. Pengra et al. [21] examined duplicate interpretations of land-cover
reference class labels obtained by well-trained interpreters from a probability subsample of 2900 pixels
(30 m × 30 m) of the United States of America. For the 8-class land cover legend, the overall agreement
between interpreters was 88%, but agreement by class ranged from 46% for the disturbed class to 94%
for water, with more prevalent classes having greater agreement than rare classes. Thus, reference
data in the form of visual interpretations of remotely sensed data, even by well-trained professional
interpreters, could be subject to substantial interpreter disagreement and error.

McRoberts et al. [13] used a combination of photo interpretations by multiple professional
interpreters and simulation data to assess the effects of imperfect reference data on the bias and
precision of estimators of land cover class proportions, to characterize conditions that affect the
magnitudes of bias and precision, and to develop a variance estimator that incorporates the effects of
interpreter error. Several relevant conclusions were drawn from the study. First, estimator bias resulting
from interpreter error is greater for greater inequality in areas of land cover classes, greater for smaller
map and interpreter accuracies, greater for fewer interpreters, and greater for greater correlations
among interpretations for different interpreters. For some scenarios, seven or more interpreters were
necessary to reduce biases to acceptable levels. Second, failure to incorporate the effects of interpreter
error into variance estimators led to underestimates of standard errors by factors as great as 2.0.

The important lesson from these studies is that imperfect reference data induce bias into statistical
estimators, sometimes substantial bias despite only small errors [10–13], and lead to non-compliance
with the first IPCC good practice guideline. In addition, failure to incorporate the uncertainty associated
with imperfect reference data into statistical variance estimators leads to under-estimation of variances
and non-compliance with the second IPCC good practice guideline.

Multiple strategies for dealing with imperfect reference data may be considered. First, greater
numbers of interpreters reduce the effects of imperfect reference data [13]. Second, prior to operational
interpretation, interpreters can calibrate their interpretations, with respect to known field conditions
and/or to each other [22] (p. 82). Third, in the absence of unanimous interpretations, interpreters may
discuss the specific sample units and agree on a consensus interpretation. Finally, instead of using
majority interpretations leading to categorical reference observations (e.g., 0 for non-forest, 1 for forest),
continuous reference observations in the form of the proportions of forest interpretations among
interpreters for the same sample unit are possible.

3.1.2. Auxiliary Data

For purposes of estimating activity data, auxiliary data are secondary, i.e., the reference data
are the primary source of information on which estimates are based, whereas the auxiliary data are
used only to improve the estimation process by increasing the precision of estimates. Because activity
data are estimates of change in areas of land use classes, both the reference and auxiliary data are
closely related to change. In particular, auxiliary data are often in the form of a map or spatial product
whose classes reflect or can be aggregated to reflect land use change classes related to human activities,
such as deforestation, reforestation, afforestation, and forest remaining forest, including the special
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case of forest degradation, which entails the substantial loss of biomass, but no conversion from forest
to other land use.

Although the scope of this review does not include techniques and methods for constructing
remote sensing-based maps, regional and global land use and land use change maps can be used as
auxiliary data when estimating activity data. The most widely known example is the Global Forest
Change dataset [23], a percentage tree cover map for the year 2000, in which trees are defined as
vegetation taller than 5m in height at a 30-m pixel size. Annual forest gain and loss data from 2001 to
2019 are also included. Forest loss is a binary layer (1: loss, 0: no loss), and is understood as complete
or the comprehensive removal of forest cover and “defined as a stand-replacement disturbance, or a
change from a forest to non-forest state.” Forest gain is the complete or comprehensive recovery of
forest cover and “defined as the inverse of loss, or a non-forest to forest change entirely within the
study period”. Examples of uses of the Global Forest Change dataset for estimating land cover class
areas include Sannier et al. [24], Næsset et al. [25], and McRoberts et al. [26]. In addition, the Global
Forest Change dataset can be adapted to match national forest definitions [24,25,27]. Although few
examples appear in the literature, maps for this purpose can be produced locally, and are typically
more accurate than global maps [22,28]. McRoberts et al. [26] demonstrate how data from multiple
maps can be combined to produce a new, more accurate map.

A potentially important issue is that while activity data are defined in terms of land use change,
auxiliary data in the form of maps based on satellite spectral data inevitably depict land cover change.
Further, land cover change does not necessarily correspond to land use change. For example, forest
land that has been completely harvested loses its forest cover, but retains its forest land use. For use
with the stratified (Section 3.2.3) and model-assisted (Section 3.2.4) estimators, auxiliary data in the
form of land cover change maps in lieu of land use change maps do not induce bias into the estimators,
but rather just reduce precision.

3.2. Statistical Estimators

3.2.1. Design-Based Inference

Design-based inference, also characterized as probability-based inference, is based on three
assumptions. First, a probability sample incorporating some form of randomization is used and
constitutes the basis for validity. Second, apart from negligible observation or measurement error, each
population unit is assumed to have one, and only one, possible value. Third, the selection of population
units into the sample is based on positive and known probabilities of selection. Familiar sampling
designs include simple random (SRS), systematic (SYS), stratified (STR), multi-phase and multi-stage
sampling designs. The design-based simple expansion (Section 3.2.2), stratified (Section 3.2.3),
post-stratified (Section 3.2.4) and model-assisted (Section 3.2.5) estimators herein considered for the
estimation of activity data are either unbiased or asymptotically unbiased. The uncertainty estimation
for these estimators entails comparing observations to their corresponding means or model predictions.
Of importance, for statistical estimators to be unbiased, they must be consistent with the probability
sampling design used to collect the reference data, i.e., the known probabilities of selection must
be incorporated into the estimators. For example, the simple expansion estimator, Equation (6),
is generally biased if used with reference data collected with a stratified sampling design.

If the reference data are categorical, then for land use change class, c, a new variable is defined,
such that for each reference sample unit, yc

i = 1 if class c is observed, or yc
i = 0 if any class other than c

is observed. If the reference data are continuous, such as differences in proportion forest cover at two
times, then for each land use change class, c, the new variable takes on a value in the interval [0,1]
corresponding to the difference in proportions of the reference sample unit in class c. Letting μc be the
proportion of the area of interest in class c, the estimator of the area of class c is,

Â
c
= Atot·μ̂c (4)
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with
SE

(
Â

c)
= Atot·SE(μ̂c) (5)

where Atot is the total area which is assumed to be without error. The activity data challenge, then,
is to formulate the estimators, μ̂c and SE(μ̂c).

3.2.2. Simple Expansion Estimator

The simple expansion (EXP) estimator of μc is,

μ̂c
EXP =

1
n

n∑
i=1

yc
i , (6)

with

SE
(
μ̂c

EXP

)
=

√√
1

n·(n− 1)

n∑
i=1

(
yc

i − μ̂c
EXP

)2
(7)

where n is the sample size. Of importance, the EXP estimators use no auxiliary data, which further
establishes that the reference data are the primary source of information on which estimates are based.

3.2.3. Stratified Estimators

Stratified (STR) estimation uses a map or similar spatial product to increase the precision of
estimates. If the map classes are the same as the land use change activity classes, an intuitive estimator
of μc is simply the sum of the areas of all map units classified as activity class c. However, this estimator,
characterized as pixel-counting, is biased, because it does not account for classification errors and,
therefore, does not comply with the first IPCC good practice guideline pertaining to avoiding under- and
over-estimation; this approach should be avoided. The reason for the bias is that due to classification
error, the map class of interest may include some units that are not actually of the activity class of
interest and, similarly, other map classes may include some map units that are of the activity class
of interest.

For the purposes of estimating activity data, STR estimators assume that reference data are
acquired using a STR sampling design, guided by an activity class map, for which the classes serve as
strata. An advantage of the combination of stratified sampling and estimation is that within-stratum
sample sizes can be controlled and selected for the primary purpose of more precisely estimating the
areas of key land use change classes such as deforestation. In particular, when the class of interest is
small, SRS and SYS sampling designs generally do not produce sample sizes sufficiently large enough
to satisfy precision requirements. STR designs facilitate the allocation of greater sample sizes for
smaller strata corresponding to land use change classes, and smaller sample sizes for larger strata
corresponding to stable land use classes.

Cochran [29] (p. 134) recommends no more than 6–8 strata. Särndal et al. [30] (pp. 267, 407)
recommend minimum within-stratum sample sizes of 10–20; Cochran [29] (p. 134) recommends
minimum within-stratum sample sizes of 20; and for temperate forest inventories, Westfall et al. [31]
recommend within-stratum sample sizes of at least 20.

The STR estimator of the proportion of the total area in class c is,

μ̂c
STR =

H∑
h=1

wh·μ̂c
h (8)

with

SE
(
μ̂c

STR

)
=

√√√ H∑
h=1

w2
h·
σ̂2

h

nh
(9)
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where h = 1, . . . , H indexes the strata, wh is the stratum weight calculated as the proportion of the
population in the hth stratum, and nh is the sample size for the hth stratum,

μ̂c
h =

1
nh

nh∑
i=1

yc
hi, (10)

σ̂2
h =

1
nh − 1

nh∑
i=1

(
yc

hi − μ̂c
h

)2
, (11)

and yc
hi is the observation for the ith sample reference unit in the hth stratum. An additional advantage

of the combination of stratified sampling and estimation is that the SEs are typically smaller than for
the simple expansion estimators.

For many forests, both natural change and human-induced disturbance occur most frequently
in the vicinity of the forest/non-forest boundary. In addition, classification uncertainty for most
maps is greatest at boundaries between map classes. Finally, because of both classification error
and geo-reference errors, the erroneous assignment of ground plots to strata inconsistent with
their observations is often most severe near map class boundaries. Some of the adverse effects of
these phenomena on precision can be alleviated by constructing an additional small stratum with
corresponding small stratum weight along class boundaries. Thus, heterogeneous ground plots
found near the boundaries can be confined to small strata with small stratum weights, thereby
having less detrimental effects on precision. For a stratification based on a forest/non-forest map,
McRoberts et al. [32] constructed a forest edge stratum consisting of a multi-pixel buffer on the forest
side of the forest/non-forest map boundary and a non-forest edge stratum consisting of a multi-pixel
buffer on the non-forest side of the boundary. The effect of the two additional strata was to decrease
the SEs of the estimated forest area by as much as 12%.

These buffer strata have an additional beneficial effect. Activity data are often required at relatively
short intervals, perhaps as frequently as annually or biennially. For such short reporting intervals,
area change may be small. For the purposes of precisely estimating area change, STR designs based
on change maps commonly entail using a small change stratum with a small stratum weight, but a
disproportionately large sample size; similarly, no-change strata would have large stratum weights,
but with disproportionately small sample sizes. A risk associated with this approach is that only a few
sample units with change observations erroneously assigned to a no-change stratum can both greatly
inflate standard errors and induce a much greater range in estimates of the mean, even though the
estimator remains unbiased. Buffer strata, as previously described, can be used to alleviate at least
some of these adverse effects [33].

3.2.4. Post-Stratified Estimators

Even though reference data may have been acquired using an SRS or SYS sampling design, some
of the benefits of stratified estimation can still be realized using the post-stratified (PSTR) estimators.
The primary difference between the combination of STR sampling and stratified estimation and the
combination of SRS or SYS sampling and post-stratified estimation is that with the former combination,
the map-based stratification guides the sampling, whereas with the latter combination, the map has no
influence on the sampling. Further, whereas within-stratum sample sizes are considered fixed with
the STR estimators, they are considered random with the PSTR estimators. The PSTR estimator of
the class proportion is the same as for the STR estimator of Equation (8), i.e., μ̂c

PSTR = μ̂c
STR. However,

the PSTR variance estimator has a slightly different form to accommodate the random within-stratum
sample sizes,

SE
(
μ̂c

PSTR

)
=

√√√ nh∑
h=1

⎡⎢⎢⎢⎢⎣wh·
σ̂2

h

n
+ (1−wh)·

σ̂2
h

n2

⎤⎥⎥⎥⎥⎦2

(12)
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Some researchers consider the variance and SE to be conditional on the sample, in which case
the estimator of Equation (9) can be used instead of Equation (12) [34] (pp. 152–156). The same
recommendations regarding the maximum number of strata and the minimum within-stratum sample
sizes for stratified estimation pertain for post-stratified estimation.

3.2.5. Model-Assisted Estimators

The model-assisted (MA) estimators can be used with any probability sampling designs. The first
component of model-assisted estimators of the proportion, μc, is formulated as the synthetic
(SYN) estimator,

μ̂c
SYN =

1
N

N∑
i=1

ŷc
i , (13)

where N is the total number of population units and ŷc
i is a prediction for the ith population unit.

However, the SYN estimator may be biased because of prediction error. For SRS and SYS designs,
the bias can be estimated as,

ˆBias
(
μ̂c

SYN

)
=

1
n

n∑
i=1

(
ŷc

i − yc
i

)
. (14)

The asymptotically unbiased model-assisted estimator of the proportion of the total area is then,

μ̂c
MA = μ̂c

SYN − ˆBias
(
μ̂c

SYN

)
= 1

N

N∑
i=1

ŷc
i − 1

n

n∑
i=1

(
ŷc

i − yc
i

) (15)

with standard error,

SE
(
μ̂c

MA

)
=

√√
1

n·(n− 1)
·

n∑
i=1

(εi − ε)2, (16)

where

εi = yc
i − ŷc

i and ε =
1
n

n∑
i=1

εi. (17)

When the prediction technique used to obtain ŷc
i is formulated and calibrated using data external

to the area of interest, or otherwise does not use observations of y from the sample, the estimator is
characterized as the difference (DIF) estimator, whereas if the prediction technique is calibrated using
data internal to the area of the interest, the estimator is characterized as the generalized regression
(GREG) estimator [35]. For sampling designs other than SRS and SYS, Equations (14)–(16) must be
revised to accommodate the features of the designs (e.g., [25]).

Representative examples, as opposed to an exhaustive list of tropical applications which are sparse,
of uses of the STR, PSTR, DIF and GREG estimators for estimating land cover and/or land use area and
area change are reported in Table 1. For categorical response variables, the STR and PSTR estimators are
generally expected to produce greater precision than the model-assisted estimators [26,36], although
Stehman [36] notes three exceptions: (i) large overall accuracies, (ii) small true proportions, and
(iii) small reference sets. For continuous response variables, the model-assisted estimators are generally
more precise than the STR and PSTR estimators. Exceptions are when the PSTR estimator is formulated
as a model-assisted estimator [16], and possibly when the map resolution is much coarser than the
resolution of the reference data [37].
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Table 1. Representative examples of land cover class area and area change estimation.

Parameter
Response
Variable

Estimator * References

Area

Class

STR Stehman [36]

PSTR McRoberts et al. [6,26,32,38], Stehman [16,36]

DIF Stehman [36], Khan et al. [39]

GREG Gallego [40], Stehman [16], Vibrans et al. [41],
McRoberts et al. [26,38]

Proportion

STR Stehman [42]

PSTR McRoberts [43]

DIF McRoberts [43]

GREG Sannier et al. [24,44]

Area change

Class

STR Olofsson et al. [8,9,33],
Ying et al. [45]

PSTR McRoberts et al. [6], Næsset et al. [46]

DIF

GREG Stehman [16], Næsset et al. [46], McRoberts
and Walters [47], McRoberts et al. [48]

Proportion

STR Claggett et al. [49],
Tyukavina et al. [50]

PSTR Pickering et al. [51]

DIF Zimmerman et al. [52]

GREG Stehman [16], Sannier et al. [24,44]

* STR: Stratified, PSTR: Post-stratified, DIF: Difference, GREG: Generalized regression.

3.3. Time Series Analyses

With the increasing availability of free Landsat and Sentinel 2 spectral data at regular temporal
intervals over many years, opportunities for tracking land cover and land use changes over time are
greatly enhanced [3]. Two applications are attracting attention. First, trajectory analyses track metrics
for individual pixels over time for purposes of characterizing phenomena, such as gradual forest
degradation, abrupt disturbances such as harvest followed by recovery, and dates of change [53–60].
The second application entails estimating differences or trends in forest area or forest area change at
multi-year intervals, or perhaps even annually. With this approach, a remote sensing-assisted estimate
of area or area change and an associated SE are calculated, as per Section 3.2, for each temporal point
of interest.

For both applications, compliance with the second IPCC good practice guideline related to rigorous
uncertainty assessment presents challenges. For the first application, for which dates of individual
pixel-level changes are estimated, very large numbers of tests of significance will inevitably lead to large
numbers of false positives and false negatives. For the second application which focuses on multi-year
trends of annual differences, an intuitive approach would be to use a regression or similar prediction
technique for estimating trends or an ANOVA technique followed by a simultaneous multiple inference
method for determining which, if any, temporal estimates differ statistically significantly from other
temporal estimates. A complicating factor, however, is that both regression and ANOVA techniques
assume that the response variable, in this case forest area change, is observed with at most negligible
uncertainty. For this kind of trend analysis, this assumption is not satisfied, because the standard errors
associated with the individual change estimates are likely non-negligible. Special techniques similar to
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hybrid inference would be necessary to accommodate and account for the uncertainty in the temporal
area or area change estimates [35,61–63].

4. Emissions and Removals Factors

Emissions and removals factors, by definition, represent carbon change per unit area. Estimates
of these factors can be obtained from three primary sources: published default values [64], ground
biomass observations that are converted to carbon, and remote sensing-based biomass maps from
which estimates can be converted to carbon. For this review, the focus is remote sensing-assisted
estimation of biomass change per unit area, particularly aboveground, live tree biomass change per
unit area.

The state-of-the-science for estimating biomass change as a precursor to estimating emissions
and removals factors is considerably less mature than for estimating activity data. To estimate
biomass change, reference data for two dates are required, although an exception may be for complete
deforestation, for which there is no remaining biomass at the second time. Two approaches for
estimating change can be used, the indirect approach and the direct approach. With the indirect
approach, total or mean biomass per unit area is estimated for an activity as the difference in two
biomass estimates, one based on a sample acquired at time 1 and the second based on a sample acquired
at time 2, usually for a different set of sample unit locations, because otherwise, the direct approach
would be used. With the direct approach, biomass change is estimated directly, using biomass change
observations as reference data. Of necessity, the direct approach requires ground level observations of
biomass for the same locations at the two times, a requirement that is currently difficult to satisfy for
many tropical applications. Thus, at the current time, the indirect approach is more commonly used.

For estimating either biomass or biomass change, remote sensing-based maps are used for three
purposes: first, as auxiliary data to enhance design-based estimates using probability samples of
ground reference data; second, for direct estimation when constructed using either probability or
non-probability samples of ground reference data; and, third, as sources of reference data. Multiple
biomass maps are available for the first and third purposes: a circa year 2001, 250-m, MODIS-based
map for the USA [65]; a global, circa year 2005, 1-ha GLAS, ALOS, and Landsat-based map constructed
by NASA’s Jet Propulsion Laboratory [66]; the year 2010, 1-ha, lidar and SAR-based GlobBiomass
map [67]; a circa 2007-2008, 500-m, GLAS and MODIS-based, pan-tropical map [68]; and the European
Space Agency’s year 2017 global datasets of AGB [69]. Global, regional, or even large area biomass
change maps are not commonly available, at least partially as a result of the lack of ground biomass
change observations. The emphasis of the sections that follow relates to the use of maps to estimate
biomass, although the estimation of biomass change is completely analogous.

4.1. Probability Samples of Ground Reference Data

Remote sensing-based forest attribute maps, not just biomass or biomass change maps, can be
used as sources of auxiliary data for increasing the precision of ground-based estimates of both biomass
and biomass change. If observations of biomass or biomass change are obtained using a probability
sampling design, any of the design-based STR, PSTR, or model-assisted estimators described in
Section 3.2 can be used, albeit with μc denoting mean biomass or mean biomass change rather than an
area proportion.

The statistical forms of the STR and PSTR estimators are the same as described for estimating
activity data. For both estimators, the primary purpose of the maps is to serve as a basis for stratifications,
which, in turn, are used to increase precision. For both these estimators, the map values are aggregated
into a small number of contiguous classes that serve as strata [6,35,70]. The map-based stratifications
can also be used to guide sample allocations to strata.

For use with the model-assisted estimators, the primary purpose of the maps is to serve as a source
of predictions. The forms of both model-assisted estimators are the same as described for estimating
activity data in Equations (13)–(16). Although many of the early applications used linear regression
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models, additional prediction techniques have been used, including nonlinear models [36,71,72];
k-nearest neighbors [73,74], and random forests [73,75].

Representative examples, as opposed to an exhaustive list of tropical applications which are
sparse, of the uses of maps as auxiliary data for the estimation of biomass and biomass change, are
reported in Table 2.

Table 2. Representative examples of biomass and biomass change estimation.

Parameter Estimator * References

Biomass (volume)

STR Næsset et al. [76,77]
PSTR McRoberts et al. [6,37,69], Tomppo et al. [74] (p. 56)
DIF McRoberts et al. [37], Næsset et al. [77]

GREG Næsset et al. [25,76,77], Poorazimy et al. [71]

Biomass (volume) change

STR Næsset et al. [78]
PSTR McRoberts et al. [7,48], Næsset et al. [46]
DIF

GREG Gregoire et al. [79], McRoberts et al. [6,48],
Næsset et al. [46,78], Esteban et al. [75]

* STR: Stratified, PSTR: Post-stratified, DIF: Difference, GREG: Generalized regression.

4.2. Non-Probability Samples of Ground Reference Data

Although probability samples of ground data may not be available to support design-based
inferential methods, ground observations and measurements may still be available from other sources,
such as long-term research plots, local forest management plots, and pre-harvest plots. If conditions
associated with these plots conform to the features of activities of interest such as forest-remaining-forest,
pre-harvest as a form of deforestation, or thinning treatments as a form of degradation, they can be
used for estimating emissions and removals factors. Two key challenges are associated with the use
of data from these kinds of plots. First, differences in data features acquired from these kinds of
plots must be reconciled before the ground data can be combined with remotely sensed data, and
second, the lack of a consistent probability sampling design means that less familiar and more complex
model-based inferential methods must be used instead of design-based inferential methods.

4.2.1. Data-Related Challenges

The data-related challenges result from the different plot configurations and different measurement
protocols inevitably used for the different sources of reference data. In general, smaller plots tend
to have more extreme per unit area observations than larger plots that are at least marginally more
representative of the entire population. Thus, combining data for mixed size plots runs the risk of
skewing relationships with remotely sensed data toward the data from the smaller, less representative
plots. For modeling applications, multiple studies have shown the advantages of larger plots with
smaller area to perimeter ratios that minimize edge effects [78,80,81]. Although no studies evaluating
the effects of constructing models using data for mixtures of small and large plots are known, the effects
are expected to be a form of heteroscedasticity and possibly model predictions skewed toward the data
for the smaller plots. Differences in measurement protocols include, but are not limited to, differences
in minimum diameters of trees to be measured and minimum height at maturity. For otherwise
comparable plot configurations, plot-level biomass would be larger for smaller minimum diameters.
Moreover, plots with trees that only marginally satisfy a small minimum height criterion might not
even be measured if the criterion was larger.

If data for plots with different configurations and measurement protocols are to be combined,
some form of data harmonization is necessary. For example, the smallest among multiple plot radii
can be selected, and data for the now smaller plot can be recalculated. Similarly, the largest among
multiple minimum diameters can be selected. The issue of harmonization of national forest inventories
in Europe has received considerable attention, including the development of useful harmonization
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methods. Although developed for temperate forests, these methods are likely also applicable for
tropical forests [82,83].

4.2.2. Model-Based Inference

Model-based inference, also characterized as model-dependent inference, relies on a quite different
set of underlying assumptions than the more familiar design-based inference [72]. First, validity is
based on correct model specification rather than a probability sample. Second, an entire distribution
of possible values is assumed for each population unit, rather than just a single value. Third,
randomization is via the realized observations from the distributions characterizing the population
units selected for the sample rather than the sampling design. An important consequence of the
first assumption is that model-based inference does not require probability samples of reference
data for constructing the model. Although probability samples may be used and, in fact, may be
preferable, purposive and other non-probability samples may also produce entirely valid model-based
inferences [30] (p. 534). The absence of a requirement for a probability sample means that model-based
inference can be used for applications for which design-based inference is not possible, such as when a
non-probability sample is used to construct the model.

The model-based estimator of the mean is simply the synthetic estimator of Equation (13).
As noted in Section 3.2.5, the synthetic estimator may be biased. The model-based SE of the estimate
requires three sources of uncertainty information: (1) variances and covariances among population
unit predictions due to sampling variability associated with the training data used to construct the
map, (2) residual uncertainty in the form of differences between the map’s training data and the
corresponding map unit values, and (3) spatial correlation among the residuals. Of these three sources,
the effects of sampling variability are often the greatest. Examples of model-based inference relevant
for greenhouse gas inventories include McRoberts et al. [72] and Saarela et al. [84].

4.3. Remote Sensing-Based Maps as Sources of Reference Data

In the absence of ground data, large area, regional, or global biomass maps can be used as
sources of reference data for estimating biomass. However, because the maps consist of map unit
predictions subject to uncertainty, compliance with the IPCC good practice guidelines requires special
considerations. In particular, the map must be validated, if not in its entirety, then preferably for a
validation unit coincident with the area of interest and/or perhaps for a sample of validation units.
Validation consists of a statistically rigorous test of the hypothesis of no difference between the
map-based estimate and an estimate obtained using independent (ind) data of the form,

t =
μ̂map − μ̂ind√

V̂ar
(
μ̂map

)
+ V̂ar(μ̂ind)

. (18)

where t follows Student’s t-distribution with degrees of freedom determined by the sum of the sample
sizes for the two variance estimates. Although these independent data serve as reference data for
this analysis, for this discussion, they continue to be characterized only as independent data to
avoid confusion with the reference data to be acquired from the map. Four estimates are therefore
required: (1) the estimate based on the independent data, μ̂ind; (2) the variance of the independent
data estimate, V̂ar(μ̂ind); (3) the map-based estimate for the validation unit, μ̂map; and (4) the variance

of the map-based estimate, V̂ar
(
μ̂map

)
.

4.3.1. Reference Data Estimates

McRoberts et al. [37] demonstrate two inferential approaches for acquiring the independent data
necessary for the comparison of Equation (18). The first approach uses a sample of the independent
data and auxiliary data to calculate an estimate for the validation unit that can be compared to the map
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estimate. If the independent data are obtained from a probability sample, one of the design-based
estimators of Section 3.2 can be used, for which the map that is subject to validation can be used
as auxiliary data. If the independent data are not obtained using a probability sampling design,
the model-based estimators described in Section 4.2.2. and by McRoberts et al. [37] can be used.

The second approach uses a local map of greater quality than the biomass map as the source of
independent data. Greater quality is with respect to factors such as finer resolution, use of additional
auxiliary data, and use of local training data. The local map is sampled to obtain independent data
using any convenient sampling intensity and sampling design, although probability sampling designs
greatly simplify estimation. Because the local map also consists of predictions rather than observations,
the uncertainty in the local map must be incorporated into the estimation of overall uncertainty using
hybrid inference [35,61–63].

4.3.2. Map-Based Estimates

The map-based mean for Equation (18) is simply the mean over all map units obtained using the
SYN estimator of Equation (13). Because the data used to construct the map are typically not available,
estimation of the SE for the map-based estimate can be particularly challenging and typically entails
model-based inferential methods, as described in Section 4.2.2. However, unlike Section 4.2.2, where
the remote sensing-based map is constructed by the user, global maps used as sources of reference data
are generally not constructed by the user. Thus, information on the sources of uncertainty necessary for
calculation of the SE must be provided by the map authors. Unfortunately, however, they rarely provide
such information, presumably because they do not know it is necessary or they do not know how to
produce it. McRoberts et al. [37] describe some approximations and bounds on the uncertainty, but the
validation process would be greatly facilitated if map authors were cognizant of these requirements.

5. Summary

Remotely sensed imagery and land use change maps are crucial for the statistically rigorous
estimation of activity data. The post-stratified estimators are appropriate and effective for use with
land use change maps and data obtained from an existing probability ground sampling program.
When such ground data are unavailable or cannot be readily obtained, the combination of land use
change maps, land use change interpretations of stratified samples from imagery, and the stratified
estimators have been demonstrated to be particularly efficient. When sample unit data are continuous,
such as plot- or pixel-level proportions of land use change, the model-assisted estimators can be
used. In general, the design-based stratified, post-stratified and model-assisted estimators are more
frequently used and are easier to use than model-based estimators.

Methods for estimating emissions and removals factors are much less mature than methods for
estimating activity data, likely because the former rely much more heavily on ground data which may
not be available. When probability-based samples of ground data are available or can be acquired,
remote sensing-based biomass maps can be used as sources of auxiliary data for increasing the precision
of estimates of emissions and removals factors obtained using any of the design-based stratified,
post-stratified, and model-assisted estimators.

When some ground data are available, but were not acquired using probability sampling designs
and/or not with similar plot configurations and measurement protocols, model-based inferential
methods can be used to estimate biomass or biomass change. If the ground data are acquired from
multiple sources, a degree of data harmonization will inevitably be necessary.

When sufficient ground data are not available or cannot be acquired, biomass maps can be used
in lieu of ground data. However, the required statistical methods are more complex, because the
uncertainty in the maps must be accommodated to comply with the IPCC good practice guidelines for
greenhouse gas inventories. These methods typically require model-based inferential methods that are
difficult to implement, apart from substantial meta-data regarding sources and effects of uncertainty
(Section 4.2.2) that must be provided by the map authors.
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Additional research should focus in several areas: (1) the documentation of actual tropical
applications, (2) the development of rigorous uncertainty assessment methods for use with time series
methods, and (3) greater attention by map authors on providing meta-data for global maps to facilitate
uncertainty estimation.
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