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Abstract: We give a short overview on the decomposition property for integrable multifunctions,
i.e., when an “integrable in a certain sense” multifunction can be represented as a sum of one of its
integrable selections and a multifunction integrable in a narrower sense. The decomposition theorems
are important tools of the theory of multivalued integration since they allow us to see an integrable
multifunction as a translation of a multifunction with better properties. Consequently, they provide
better characterization of integrable multifunctions under consideration. There is a large literature on
it starting from the seminal paper of the authors in 2006, where the property was proved for Henstock
integrable multifunctions taking compact convex values in a separable Banach space X. In this paper,
we summarize the earlier results, we prove further results and present tables which show the state of
art in this topic.

Keywords: gauge multivalued integral; scalarly defined multivalued integral; decomposition
of a multifunction

MSC: 28B20; 26E25; 26A39; 28B05; 46G10; 54C60; 54C65

1. Introduction

Various investigations in mathematical economics, optimal control and multivalued image
reconstruction led to study of the integrability of multifunctions. In fact, the multivalued integration
has shown to be a useful tool when modeling theories in different fields [1–7]. Also, the study
of multivalued integrals arises in a natural way in connection with statistical problems (see,
for example, [8–10]). But the topic is interesting also from the point of view of measure and integration
theory, as we can see in the papers [1,7,11–38].

Here we examine two groups of the integrals: those functionally determined (we call them
“scalarly defined integrals”) (as Pettis, Henstock–Kurzweil–Pettis, Denjoy–Pettis integrals) and those
identified by gauges (we call them “gauge defined integrals”) as Henstock, McShane and Birkhoff
integrals. The last class also includes versions of Henstock and McShane integrals, when only
measurable gauges are allowed, and the variational Henstock and McShane integrals. We investigate
only multifunctions with weakly compact and convex values. More general theory of integration is
not sufficiently developped until now.

In particular, decomposition properties are considered both for scalarly defined integrals and
for gauge defined integrals. The results presented here are contained in some papers quoted in
the bibliography or can be easily obtained. Only some results are discussed. The novelty of the
present article relies in the fact that we sumarize the results known until now in the field. Moreover,
we compare them and in Table 2A,B we provide a clear view of the state of art in the topic.

Mathematics 2020, 8, 863; doi:10.3390/math8060863 www.mdpi.com/journal/mathematics1
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2. Preliminaries

Throughout the paper X is a Banach space with norm ‖ · ‖ and its dual X∗. The closed unit ball of
X is denoted BX . The symbol cwk(X) denotes the collection of all nonempty convex weakly compact
subsets of X. For every C ∈ cwk(X) the support function of C is denoted by s(·, C) and defined on X∗

by s(x∗, C) = sup{〈x∗, x〉 : x ∈ C}, for each x∗ ∈ X∗. We set ‖C‖h = dH(C, {0}) := sup{‖x‖ : x ∈ C},
where dH is the Hausdorff metric on the hyperspace cwk(X). Let ([0, 1], λ,L) be the unit interval
equipped with Lebesgue measure λ and Lebesgue measurable sets L, while I is the collection of all
closed subintervals of [0, 1]. L0 is the collection of all strongly measurable X-valued functions defined
on [0, 1]. Unless otherwise noted, all investigated multifunctions are defined on [0, 1] and take values
in cwk(X). A function f : [0, 1]→ X is called a selection of a multifunction Γ if f (t) ∈ Γ(t), for almost
every t ∈ [0, 1].

We recall that if Φ : L → Y is an additive vector measure with values in a normed space Y,
then the variation of Φ is the extended non negative function |Φ| whose value on a set E ∈ L is given
by |Φ|(E) = supπ ∑A∈π ‖Φ(A)‖, where the supremum is taken over all partitions π of E into a finite
number of pairwise disjoint members of L. If |Φ| < ∞, then Φ is called a measure of finite variation. If Φ

is defined only on I , the finite partitions considered in the definition of variation are composed by
intervals. In this case we will speak of finite interval variation and we will use the symbol Φ̃, namely:

Φ̃([0, 1]) = sup{∑
i
‖Φ(Ii)‖ : {I1, . . . , In} is a finite interval partition of [0, 1]}.

If {I1, . . . , Ip} is a partition in [0, 1] into intervals and tj ∈ [0, 1], j = 1, . . . , p, then {(Ij, tj)}p
j=1 is

called an I-partition. If δ is a gauge (that is positive function) on [0, 1] and Ij ⊂ [tj− δ(tj), tj + δ(tj)], j =
1, . . . , p, p ∈ N, then the I-partition is called δ-fine.

Moreover a usefull tool in our investigation is the notion of variational measure generated by an
interval multimeasure. Given an interval multimeasure Φ : I → cwk(X), we call variational measure
VΦ : L → R generated by Φ, the measure whose value on a set E ∈ L is given by

VΦ(E) := inf
δ
{Var(Φ, δ, E) : δ is a gauge on E} ,

where

Var(Φ, δ, E) = sup

{
p

∑
j=1
‖Φ(Ij)‖h : {(I j, tj)}p

j=1 is a δ−fine I−partition, with tj ∈ Ij ∩ E, j = 1, . . . , p

}
.

Now we recall here briefly the definitions of the integrals involved in this article. A scalarly
integrable multifunction Γ : [0, 1]→ cwk(X) is Pettis integrable (Pe) in cwk(X), if for every set A ∈ L
there exists a set MΓ(A) ∈ cwk(X) such that s(x∗, MΓ(A)) =

∫
A s(x∗, Γ) dλ for every x∗ ∈ X∗.

We write it as (P)
∫

A Γ dλ or MΓ(A). A multifunction Γ : [0, 1]→ cwk(X) is called Bochner integrable
if it is Bochner measurable (i.e., there exists a sequence of simple multifunctions Γn : [0, 1]→ cwk(X)

such that for almost all t ∈ [0, 1] one has limn dH(Γn(t), Γ(t)) = 0) and integrably bounded. We will
denote the family by L1.

A multifunction Γ : [0, 1]→ cwk(X) is said to be McShane (MS) (resp. Henstock (H)) integrable on
[0, 1], if there exists ΦΓ([0, 1]) ∈ cwk(X) with the property that for every ε > 0 there exists a gauge δ on
[0, 1] such that for each δ-fine I-partition {(I1, t1), . . . , (Ip, tp)} of [0, 1] (with ti ∈ Ii for all i), we have

dH

(
ΦΓ([0, 1]),

p

∑
i=1

Γ(ti)λ(Ii)

)
< ε. (1)

If the gauges above are taken to be measurable, then we speak ofH (resp. Birkhoff)-integrability
on [0, 1]. If I ∈ I , then ΦΓ(I) := ΦΓχI [0, 1].
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Finally if, instead of Formula (1), we have

p

∑
i=1

dH (ΦΓ(Ii), Γ(ti)λ(Ii)) < ε, (2)

we speak about variational Henstock (vH) (resp. McShane (vMS)) integrability on [0, 1].
The definition of variational Henstock (resp. McShane) integral comes from the classical

Saks-Henstock Lemma for real valued functions. In case of Banach valued functions, they coincide
with the definitions of Henstock (resp. McShane) integral if and only if the Banach space is of finite
dimension. In the other cases, the variational integrals possesse better properties than Henstock or
McShane integrals. In particular, the notion of variational Henstock integrability is a usefull tool
to study the diferrentiability of Pettis integrals (cf. [13] (Corollary 4.1)). Formula (2) is the natural
extension of such integrals to the multivalued case.

Moreover by [18] (Theorem 6.6) vH-integrability and vH integrability coincide. In all the cases ΦΓ :
I → cwk(X) is an additive interval multimeasure. A multifunction Γ : [0, 1]→ cwk(X) is said to be
Henstock-Kurzweil-Pettis (HKP) integrable in cwk(X) if it is scalarly Henstock-Kurzweil (HK)-integrable
and for each I ∈ I there exists a set NΓ(I) ∈ cwk(X) such that s(x∗, NΓ(I)) = (HK)

∫
I s(x∗, Γ(t))dt

for every x∗ ∈ X∗. If an HKP-integrable Γ is scalarly integrable, then it is called weakly McShane
integrable (wMS). We recall that a function f : [0, 1]→ R is Denjoy-Khintchine (DK) integrable ([39]
(Definition 11)), if there exists an ACG function (cf. [39]) F such that its approximate derivative is
almost everywhere equal to f .

A multifunction Γ : [0, 1]→ cwk(X) is Denjoy-Khintchine-Pettis (DKP) integrable in cwk(X), if for
each x∗ ∈ X∗ the function s(x∗, Γ(·)) is Denjoy-Khintchine integrable and for every I ∈ I there exists
CI ∈ cwk(X) with (DK)

∫
I s(x∗, Γ(t))dt = s(x∗, CI), for every x∗ ∈ X∗.

A multifunction Γ : [0, 1]→ cwk(X) satisfies the Db-condition (resp. DL-condition) if

sup esst diam(Γ(t)) < ∞ ( resp.
∫ 1

0
diam(Γ(t))dt < +∞, where

∫
denotes the upper integral).

We say that a multifunction Γ : [0, 1]→ cwk(X) is positive if s(x∗, Γ(·)) ≥ 0 a.e. for each x∗ ∈ X∗

separately. Of course, if 0 ∈ Γ(t) for almost every t ∈ [0, 1], then Γ is positive. As regards other
definitions of measurability and integrability that are treated here and are not explained and the known
relations among them, we refer to [3,15–20,26,36,38,40–42], in order not to burden the presentation.

3. Intersections

In this section we are going to highlight some relations among gauge integrability and functionally
defined integrability for multifunctions in order to understand better the examples given before.
Since we have inclusions

DP ⊃ HKP ⊃ wMS ⊃ Pe and DP ⊃ HKP ⊃ H ⊃ H ⊃ vH = vH

only the pairs of different types of integrals are interesting. For what concernes the symbol subscript
f v it means that the corresponding integral is of finite variation.

In Table 1 Henstock, H and vH-integrable functions possessing integrals of finite variation,
are not taken into consideration. The reason is simple. In [21] (Theorem 4.5) it is proven that such
multifunctions are McShane and Birkhoff integrable, respectively. For a similar reason wMS-integrable
multifunctions with integrals of finite variation are omitted. Φ is the indefinite integral of G.

3
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Table 1. Intersections. Arbitrary G.

GG vH H H

Pe f v L1 Remark 1 Bi f v [18] (Theorem 4.3) MS f v [18] (Theorem 3.3)

Pe Pe ∩ L0 + VΦ � λ Remark 1 Bi [18] (Theorem 4.3) MS [18] (Theorem 3.3)

wMS Pe ∩ L0 + VΦ � λ if c0 
⊆ X Remark 1 Bi if c0 
⊆ X Remark 1 MS if c0 
⊆ X Remark 1

Remark 1. Observe that, using the Rådström embedding: i : cwk(X)→ l∞(BX∗) (see for example [43] or [19])
given by i(A) := s(·, A), we have that:

1. directly from the definitions and the Rådström embedding, a multifunction G : [0, 1]→ cwk(X) is Birkhoff
(resp. Henstock, McShane, variationally Henstock) integrable if and only if i ◦ G is integrable in the same
sense. For the Pettis integrability this is not true. However, for Bochner measurable multifunctions, we have
that since {G(E) : E ∈ L} is separable for the Hausdorff distance and then G is Pettis integrable if and only
if i ◦ G is Pettis integrable ([26] (Proposition 4.5)), so we have Pe = MS = Bi ( for strongly measurable
vector valued functions, Pettis, McShane and Birkhoff integrability coincide (see [44] (Corollary 4C) and [45]
(Theorem 10)).

2. Pe f v ∩ vH = L1 in Table 1 solves the problem of [46], where the authors noticed that Pe ∩ vH 
= L1 in
case of functions. The inclusion Pe f v ∩ vH ⊃ L1 is clear. To prove the inclusion Pe f v ∩ vH ⊂ L1 take
G ∈ Pe f v ∩ vH. Then i ◦ G is strongly measurable ([17] (Proposition 2.8)) and vH-integrable.
If MG is the Pettis integral of G, then i ◦MG is a measure of finite variation and i ◦MG(I) = (vH)

∫
I i ◦G.

It follows that i ◦G is Pettis integrable and then Bochner integrable by [47] (Theorem 4.1) or [48] (Lemma 2).
Now we may apply [17] (Proposition 3.6) to obtain variational McShane integrability of G.

3. The results for the Pe row and vH column follow from Remark 1, by [17] (Theorem 4.3, d)⇔ e)) and [13]
(Corollary 4.1), since G is vH integrable if and only if the variational measure VΦ of its multivalued Pettis
integral Φ is λ-continuous ([19] (Theorem 3.3)). Example 1 shows what can happen in the Pe \ vH case.

4. The results given in wMS row follow from the Pe row and [49] (Theorem 18) or [50] (Theorem 4.4).

Example 1. There exists a Pettis integrable multifunction G : [0, 1]→ cwk(X) such that 0 ∈ G(t) for every
t ∈ [0, 1] and the variational measure associated to its Pettis integral VMG 
� λ.

Proof. Let g : [0, 1]→ X be a Pettis integrable function such that the variational measure associated
to its Pettis integral Vνg 
� λ, where νg(E) = (P)

∫
E g dλ, (for the existence see [13] (Corollary 4.2,

Remark 4.3)), then we take G(t) := conv{0, g(t)}. The multifunction G is Pettis integrable and
Vνg(E) ≤ VMG (E) ([17] (Proposition 2.7)). It follows that VMG 
� λ.

4. Decompositions

The decomposition of a multifunction Γ integrable in a certain sense into a sum of one of its
integrable selections and a multifunction integrable in a narrower sense, relies essentially in the
two facts:

(1) Existence of a selection of Γ integrable in the same sense as Γ.
(2) A particular behaviour with respect to the integration of a positive multifunction.

In particular, regarding the results on the existence of selections we can observe that:

Proposition 1. Let X be any Banach space and let Γ : [0, 1]→ cwk(X).

(i) If Γ is Pettis (resp. HKP, wMS or DKP) integrable in cwk(X), then each scalarly measurable selection
of Γ is Pettis (resp. HKP, wMS or DK) integrable (see [26] (Corollary 2.3, Theorem 2.5) and [31]
(Proposition 3, Remark 3)));

4
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(ii) if Γ is Henstock (resp. McShane) integrable, then it possesses at least one Henstock (resp. McShane)
integrable selection (see [33] (Theorem 3.1) or [30] (Theorem 2) in case of a separable X and compact
valued Γ);

(iii) if Γ is H (resp. Birkhoff) integrable, then it possesses at least one H (resp. Birkhoff) integrable selection
(see [17,30] (Theorem 3.4), [18] (Proposition 4.1));

(iv) if Γ is vH integrable, then there exists at least one vH integrable selection (see [18] (Theorem 5.1)); if Γ

takes convex compact values and is Bochner integrable, then it possesses at least one Bochner integrable
selection (see [17] (Theorem 3.9)).

While, for positive multifunctions, the following relations are known:

Proposition 2. Let X be any Banach space and let G : [0, 1]→ cwk(X). Then

(i) If G is Henstock integrable (resp. H-integrable) and positive, then it is also McShane (resp. Birkhoff)
integrable on [0, 1] (see [18] (Proposition 3.1));

(ii) If G is variationally Henstock integrable and positive, then G is Birkhoff integrable (see [17]
(Proposition 4.1));

(iii) If G is HKP (resp. DKP) integrable and positive, then G is Pettis integrable (see [31] (Lemma 1)).

In general it is not possible to write Γ = G + f with the meaning explained before. We present
below a few examples.

Example 2. There exists a Pettis integrable multifunction G : [0, 1]→ cwk(X) such that 0 ∈ G(t) for every
t ∈ [0, 1], but G is not McShane integrable.

Proof. Let g : [0, 1] → X be Pettis but not McShane integrable and let G(t) := conv{0, g(t)} be the
multifunction determined by g. Then G is positive and Pettis integrable (see [20] (Proposition 2.3)).
But according to [20] (Theorem 2.7) G is not McShane integrable.

Example 3. Any multifunction G from Example 2 cannot be represented as G = H + h, where H is McShane
integrable and h is Pettis integrable.

Proof. If h is a Pettis integrable selection of G, then there exists a measurable function α : [0, 1]→ [0, 1]
such that h(t) = α(t)g(t), for every t ∈ [0, 1].

We have for H(t) := G(t)− h(t) = conv{−α(t)g(t), [1− α(t)]g(t)}

s(x∗, H(t)) = sup0≤a≤1〈x∗,−aα(t)g(t) + (1− a)[1− α(t)]g(t)〉 = sup0≤a≤1〈x∗, g(t)[1− a− α(t)]〉
= 〈x∗, g(t)[1− α(t)]〉+ sup0≤a≤1〈x∗,−ag(t)〉 = 〈x∗, g(t)[1− α(t)]〉 − inf0≤a≤1〈x∗, ag(t)〉
= 〈x∗, g(t)[1− α(t)]〉+ 〈x∗, g(t)〉−

(3)

If H would be McShane integrable then, the family

{〈x∗, [1− α(·)]g(·)〉+ 〈x∗, g(·)〉− : ‖x∗‖ ≤ 1}

would be McShane equiintegrable. But in such a case −H is also McShane integrable. Since

s(x∗,−H(t)) = sup0≤a≤1〈x∗, aα(t)g(t) + (1− a)[−1 + α(t)]g(t)〉
= −〈x∗, [1− α(t)]g(t)〉+ 〈x∗, g(t)〉+ (4)

the family {〈x∗, [−1 + α(·)]g(·)〉 + 〈x∗, g(·)〉+ : ‖x∗‖ ≤ 1} would be also McShane equiintegrable.
Substracting (3) and (4), we obtain McShane equiintegrability of the family

5
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{[1− 2α(·)]〈x∗, g(·)〉 − 〈x∗, g(·)〉 : ‖x∗‖ ≤ 1} = {−2α(·)〈x∗, g(·)〉 : ‖x∗‖ ≤ 1}.
That means that if H is McShane integrable, then also h is McShane integrable. Consequently, G is

McShane integrable, contradicting our assumption.

Below, we make usage of multifunctions determined by functions, that is the multifunctions of
the shape G(t) = conv{0, g(t)}, where g is a Banach space valued function. We refere to [20], for the
relations of integrability between g and G. At this stage we recall only that Henstock integrability of g,
in general, does not imply Henstock integrability of G. In fact let g be a Henstock but non McShane
integrable function. If, by contradiction, G is Henstock integrable then, by [18] (Proposition 3.1), G is
McShane integrable and then, by [20] (Theorem 2.7), g is McShane integrable. For the relations among
different types of integrability for vector valued functions we refer also to [51].

Remark 2. There is now an obvious question: Let Γ : [0, 1]→ cwk(X) be a variationally Henstock (Henstock,
H) integrable multifunction. Does there exist a variationally Henstock (Henstock,H) integrable selection f of Γ

such that the integral of G := Γ− f is of finite variation?
Unfortunately, in general, the answer is negative. The argument is similar to that applied in [51].

Assume that X is separable and g is the X-valued function constructed in [46] that is vH-integrable (and so it is
strongly measurable by [52]) as well as Pettis but not Bochner integrable (see [46]). Let Γ(t) := conv{0, g(t)}.
Then, Γ is vH-integrable (see [17] (Example 4.7)) but it is not Bochner integrable because it possesses at least
one vH-integrable selection that is not Bochner integrable (see [17] (Theorem 3.7). Let now f ∈ SvH(Γ) and
consider the multifunction G := Γ− f . Clearly G is vH-integrable (hence also Henstock and H-integrable)
and G(t) = conv{− f (t), g(t)− f (t)} for all t ∈ [0, 1].

If the integral of G were of finite variation, then G would be Bochner integrable. In fact by Proposition 2,
G is Pettis integrable. Since G is compact valued and X is separable, an application of [25] (Proposition 3.5)
gives that also i(G) (i is the Rådström embedding) is Pettis integrable. Moreover, since G is Bochner measurable,
i(G) is strongly measurable. Now the finite variation of i(G) yields Bochner integrability of i(G). So since G is
Bochner measurable it becomes Bochner integrable (an equivalent proof can be deduced from Remark 1). Therefore,
the selections − f , g− f would be Bochner integrable since they are strongly measurable and dominated by
‖G‖h. But that would mean that g is Bochner integrable, contrary to the assumption.

The multifunction Γ is also an example of a strongly measurable and Birkhoff (McShane) integrable
multifunction (see [17] (Theorem 4.3)) that cannot be decomposed into Birkhoff (McShane) integrable
multifunction with integral of finite variation and a selection.

Example 4. There exists a McShane integrable multifunction G : [0, 1] → cwk(X) such that 0 ∈ G(t)
for every t ∈ [0, 1], but G is not Birkhoff integrable. Moreover, G cannot be represented as G = H + h,
where H : [0, 1]→ cwk(X) is Birkhoff integrable and h : [0, 1]→ X is McShane integrable. G may be chosen
with its integral of finite variation.

Proof. We take in Example 2 a function g that is McShane but not Birkhoff integrable and follow the
same calculations. The second assertion can be proved as that in Example 3. If g is bounded, then the
variation of the McShane integral of G is finite. Phillips’ function is an example of such a function.
As proved in [53] (Example 2.1) it is McShane integrable but not Birkhoff.

Example 5. Let X = �2[0, 1] and let {et : t ∈ (0, 1] be its orthonormal basis. Let G(t) := conv{0, et} , t ∈
(0, 1]. Then G is Birkhoff integrable and bounded (cf. [20] (Example 2.11)). G cannot be represented as
G = H + h, where h is a Birkhoff integrable selection of G and H is Bochner integrable.

Proof. Suppose that such a representation exists: G = H + h. Then there exists a measurable function
α : [0, 1] → [0, 1] such that h(t) = α(t)et for all t ∈ (0, 1]. We may assume that α is positive on a set
of positive Lebesgue measure. Then, H(t) = conv{α(t)et, (1− α(t))et}. Since H is - by definition -
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Bochner measurable, there exists a set K ⊂ [0, 1] of full measure such that {H(t) : t ∈ K} is separable
in dH . But if t 
= t′, then

dH(H(t), H(t′)) ≥ max{α(t), α(t′)}.
Hence there is ε > 0 such that dH(H(t), H(t′)) ≥ ε > 0 on a set of positive measure. However,

that contradicts the separability.

Proposition 3. Let G : [0, 1]→ cwk(X) be McShane integrable (hence also Henstock) such that its integral
MG : L → cwk(X) is of finite variation. If G := H + h, where h is a McShane integrable selection of G, then the
variation of the multiiintegral MH of H is finite. Moreover H is Birkhoff and variationally Henstock integrable.

Proof. Let G be McShane integrable and such that |MG| < ∞ (in [53] (Example 2.1) there is an example
of such a G that is also not Birkhoff integrable). Let νh be the McShane integral of h. Since h is a
selection of G, we have νh(E) ∈ MG(E) for every E ∈ L. Consequently |νh|[0, 1] ≤ |MG|[0, 1] < ∞
and then |MH |[0, 1] ≤ |MG|[0, 1] + |νh|[0, 1] < ∞. Moeover by [19] (Corollary 3.7) we get that H is
Birkhoff and variationally Henstock integrable.

Now, to provide the reader with a quick overview of decomposition results which can be derived
from Propositions 1 and 2 and from the articles quoted in the list of references, we have collected the
results in Table 2A,B for gauge integrals and in Tables 3 and 4 for scalarly defines integrals.

In the left column of the subsequent tables there are multifunctions G of different type. In the
first row there are functions f with the corresponding properties. In the intersection of a row α and a
column β one finds a class V of multifunctions Γ together with equality or an inclusion.

• The notation = V means that each element of V can be represented as G + f , where f is a selection
of Γ belonging to the class β and G is a member of the class α. And conversely, if G ∈ α and f ∈ β,
then G + f ∈ V.

• The inclusion ⊂ V means that if G ∈ α and f ∈ β, then G + f ∈ V. While � V means that if
G ∈ α and f ∈ β, then G + f ∈ V but there are elements Γ of V that cannot be represented as
Γ = G + f , where G ∈ α and f is a selection of Γ belonging to β. Clearly, one has always Γ = Γ + 0
but, if zero function is not a selection of Γ then this is not what we are looking for.

• The inclusion⊃ V means that each element of V can be represented as G + f , where f is a selection
of Γ belonging to the class β and G is a member of the class α. While � V means additionally that
sometimes G + f /∈ V for properly chosen G and f .

• Question tag indicates that we do not know something.

In Table 2A,B we describe decomposition into gauge integrable multifunction and function.
Similarly as in case of Table 1 Henstock,H and vH-integrable functions possessing integrals of finite
variation, are not taken into consideration, because such functions are McShane and Birkhoff integrable,
respectively ([21] (Theorem 4.5)).

In the tables that follow the most significant results will be highlighted by a box.
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Table 4. Γ = G + f . Arbitrary G and f .

G f Pe wMS HKP DP

Pe + DL = Pe+ DL = wMS+ DL = HKP + DL = DP + DL

Pe + Db = Pe+ Db = wMS+ Db = HKP + Db = DP + Db

Remark 3. We observe that

1. (Bi, H)-cell and (Bi∩ vH, H)-cell: Multifunction Γ that is Henstock integrable but notH-integrable cannot
be decomposed as Γ = G + f with Birkhoff integrable G. G is only McShane integrable.

2. (Bi ∩ vH,H)-cell: Multifunction Γ that is H-integrable but not vH-integrable cannot be represented as
Γ = G + f with Birkhoff and vH-integrable G.

3. The Henstock (resp. H) integrability of G, together with 0 ∈ G(t) a.e. implies that G is McShane integrable
(resp. Bi) by [18] (Proposition 3.1) and then the characterization any class of Γ is contained in the MS and
Bi rows.

4. The vH integrability of G, together with 0 ∈ G(t) a.e. implies that G is Birkhoff integrable by [17] (Theorem
4.1), in particular if the selection f is vH-integrable then we have vH � Γ = G + f by [18] (Theorem 5.3),
or [19] (Cor. 3.7).

5. (MS, MSv f )-cell: Let f be McShane integrable with |ν f |[0, 1] = +∞ . Define Γ by Γ(t) =

conv{ f (t)/2, f (t)}. The multifunction Γ is McShane integrable and the integral of each scalarly measurable
selection of Γ is of infinite variation.

6. (Bi, L1) and (Bi, Biv f )-cells: The same as in (5) but with a Birkhoff integrable function.

Now we are going to describe decompositions into scalarly integrable multifunctions and
functions. In Table 3 there are no multifunctions that are wMS, HKP or DP integrable and their
integrals are of finite variation. In virtue of [54] (Theorem 3.2) such multifunctions are Pettis integrable.

If we assume in addition that G satisfies the Db-condition (resp. DL-condition) we are able to find
the relations below (cfr. [54] (Theorem 4.1)).

Remark 4. It seems that the decomposition Γ = G + f with G ∈ wMS ∪ HKP ∪ DP is useless if Γ is Pettis
or stronger integrable. If Γ Henstock,H or vH integrable, then Table 2A,B give better decompositions. As an
example in Table 5 we assume Pettis integrability of G.

Table 5. Decomposition: Γ = G + f , scalarly def. G and gauge def. f

G f L1 Bi f v Bi MSf v MS H H vH = vH
Pe � L1 � Bi f v � Bi � MS f v � MS � MS � Bi � vH

Pe f v � L1 � Pe f v � Bi f v � MS f v � MS f v � MS f v � Bi f v � L1

Remark 5. One would like to have yet decompositions Γ = G + f with gauge defined G and scalarly defined
f . Unfortunately, the Pettis row in Table 3 seems to be top of what can be obtained. Pettis integrability seems
to be resistant to gauge integrable selections. If f is a Henstock integrable selection of a Pettis integrable
Γ : [0, 1]→ cwk(X), then Γ = G + f and f is Pettis integrable. Hence f is McShane integrable and G is Pettis
integrable. We are unable to conclude any stronger type integrability for G (see Examples 2 and 3). Therefore,
we do not present the corresponding table.

One could expect that if we assume Bochner measurability of G and strong measurability of f in the above
tables, then we should get more information. Unfortunately, the answer is negative. The only positive fact
is the equality of Pettis, McShane and Birkhoff integrabilities for multifunctions and functions and Bochner
integrability in case of integrals of finite variation. Other interrelations remain exactly the same as in the tables
presented above.
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Moreover, we want to recall that results on decompositions were also obtained for scalarly defined and
gauge integrals in the fuzzy setting, as generalization of the multivalued case, in the papers [55–57].

5. Conclusions

As we wrote in the introduction, a more general theory for the multivalued integration is not
sufficiently developped until now. In the particular case of closed convex sets, only some results are
known [21]. It should be interesting to also develop the theory in such a more general case.
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2. Cichoń, K.; Cichoń, M. Some Applications of Nonabsolute Integrals in the Theory of Differential Inclusions in
Banach Spaces. In Vector Measures, Integration and Related Topics; Curbera, G.P., Mockenhaupt, G., Ricker, W.J.,
Eds.; Operator Theory: Advances and Applications; BirHauser-Verlag: Basel, Switzerland, 2010; Volume 201,
pp. 115–124, ISBN 978-3-0346-0210-5.

3. Di Piazza, L.; Marraffa, V.; Satco, B. Set valued integrability and measurability in non separable Fréchet
spaces and applications. Math. Slovaca 2016, 66, 1119–1138. [CrossRef]

4. Di Piazza, L.; Marraffa, V.; Satco, B. Closure properties for integral problems driven by regulated functions
via convergence results. J. Math. Anal. Appl. 2018, 466, 690–710. [CrossRef]

5. Di Piazza, L.; Satco, B. A new result on impulsive differential equations involving non-absolutely convergent
integrals. J. Math. Anal. Appl. 2009, 352, 954–963. [CrossRef]

6. Hu, S.; Papageorgiou, N.S. Handbook of Multivalued Analysis I and II. In Mathematics and Its Applications,
419; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1997.

7. Labuschagne, C.C.A.; Marraffa, V. On spaces of Bochner and Pettis integrable functions and their set-valued
counterparts. Nonlinear Math. Uncertainty Appl. AISC 2011, 100, 51–59.

8. Kudo, H. Dependent experiments and sufficient statistics. Nat. Sci. Rep. Ochanomizu Univ. 1954, 4, 151–163.
9. Richter, H. Verallgemeinerung eines in der Statistik benötigten Satzes der Masstheorie, (German). Math. Ann.

1963, 150, 85–90. [CrossRef]
10. Shang, Y. The limit behavior of a stochastic logistic model with individual time-dependent rates. J. Math.

2013, 2013, 1–8. [CrossRef]
11. Boccuto, A.; Candeloro, D.; Sambucini, A.R. Henstock multivalued integrability in Banach lattices with

respect to pointwise non atomic measures. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 2015 26, 363–383.
[CrossRef]

12. Boccuto, A.; Sambucini, A.R. A note on comparison between Birkhoff and McShane-type integrals for
multifunctions. Real Anal. Exch. 2011, 37, 315–324. [CrossRef]

13. Bongiorno, B.; Di Piazza, L.; Musiał, K. A variational Henstock integral characterization of the
Radon-Nikodym property. Ill. J. Math. 2009, 53, 87–99. [CrossRef]

14. Boxer, L. Multivalued Functions in Digital Topology. Note di Matematica 2017, 37, 61–76. [CrossRef]
15. Candeloro, D.; Croitoru, A.; Gavrilut, A.; Sambucini, A.R. An extension of the Birkhoff integrability for

multifunctions. Mediterr. J. Math. 2016, 13, 2551–2575. [CrossRef]
16. Candeloro, D.; Croitoru, A.; Gavrilut, A.; Iosif, A.; Sambucini, A.R. Properties of the Riemann-Lebesgue

integrability in the non-additive case. Rend. Circ. Mat. Palermo II Ser. 2019. [CrossRef]
17. Candeloro, D.; Di Piazza, L.; Musiał, K.; Sambucini, A.R. Gauge integrals and selections of weakly compact

valued multifunctions. J. Math. Anal. Appl. 2016, 441, 293–308. [CrossRef]

11



Mathematics 2020, 8, 863

18. Candeloro, D.; Di Piazza, L.; Musiał, K.; Sambucini, A.R. Relations among gauge and Pettis integrals for
multifunctions with weakly compact convex values. Annali di Matematica 2018, 197, 171–183. [CrossRef]

19. Candeloro, D.; Di Piazza, L.; Musiał, K.; Sambucini, A.R. Some new results on integration for multifunction.
Ricerche Mat. 2018, 67, 361–372. [CrossRef]

20. Candeloro, D.; Di Piazza, L.; Musiał, K.; Sambucini, A.R. Multifunctions determined by integrable functions.
Inter. J. Approx. Reason. 2019, 112, 140–148. [CrossRef]

21. Candeloro, D.; Di Piazza, L.; Musiał, K.; Sambucini, A.R. Integration of multifunctions with closed convex
values in arbitrary Banach spaces. in press J. Convex Anal. 2020, 27.

22. Candeloro, D.; Sambucini, A.R. A Girsanov result through Birkhoff integral. In Computational Science and
Its Applications ICCSA; Gervasi, O., Murgante, B., Misra, S., Stankova, E., Torre, C.M., Rocha, A.M.A.C.,
Taniar, D., Apduhan, B.O., Tarantino, E., Ryu, Y., Eds.; LNCS 10960; Springer: Cham, Switzerland, 2018;
pp. 676–683.

23. Candeloro, D.; Sambucini, A.R.; Trastulli, L. A vector Girsanov result and its applications to conditional
measures via the Birkhoff integrability. Mediterr. J. Math. 2019, 16, 144. [CrossRef]

24. Caponetti, D.; Marraffa, V.; Naralenkov, K. On the integration of Riemann-measurable vector-valued
functions. Monatsh. Math. 2017, 182, 513–536. [CrossRef]

25. Cascales, C.; Kadets, V.; Rodríguez, J. Birkhoff integral for multi-valued functions. J. Math. Anal. Appl. 2004,
297, 540–560. [CrossRef]

26. Cascales, C.; Kadets, V.; Rodríguez, J. Measurable selectors and set-valued Pettis integral in non-separable
Banach spaces. J. Funct. Anal. 2009, 256, 673–699. [CrossRef]

27. Cascales, C.; Kadets, V.; Rodríguez, J. The Gelfand integral for multi-valued functions. J. Convex Anal. 2011,
18, 873–895.

28. D’Aniello, E.; Mauriello, M. Some Types of Composition Operators on Some Spaces of Functions. arXiv 2020,
arXiv:2005.07735.

29. Di Piazza, L.; Marraffa, V.; Musiał, K. Variational Henstock integrability of Banach space valued function.
Math. Bohem. 2016, 141, 287–296. [CrossRef]

30. Di Piazza, L.; Musiał, K. A decomposition theorem for compact-valued Henstock integral. Monatsh. Math.
2006, 148, 119–126. [CrossRef]

31. Di Piazza, L.; Musiał, K. A decomposition of Denjoy-Khintchine-Pettis and Henstock-Kurzweil-Pettis
integrable multifunctions. In Vector Measures, Integration and Related Topics; Curbera, G.P., Mockenhaupt, G.,
Ricker, W.J., Eds.; Operator Theory: Advances and Applications; Birkhauser Verlag: Basel, Switzerland, 2009;
Volume 201, pp. 171–182.

32. Di Piazza, L.; Musiał, K. Henstock-Kurzweil-Pettis integrability of compact valued multifunctions with
values in an arbitrary Banach space. J. Math. Anal. Appl. 2013, 408, 452–464. [CrossRef]

33. Di Piazza, L.; Musiał, K. Relations among Henstock, McShane and Pettis integrals for multifunctions with
compact convex values. Monatsh. Math. 2014, 173, 459–470. [CrossRef]

34. Di Piazza, L.; Porcello, G. Radon-Nikodym theorems for finitely additive multimeasures. Z. Anal. Ihre.
Anwend. (ZAA) 2015, 34, 373–389. [CrossRef]

35. Kaliaj, S.B. The New Extensions of the Henstock–Kurzweil and the McShane Integrals of Vector-Valued
Functions. Mediterr. J. Math. 2018, 15, 22. [CrossRef]

36. Musiał, K. Pettis Integrability of Multifunctions with Values in Arbitrary Banach Spaces. J. Convex Anal.
2011, 18, 769–810.

37. Musiał, K. Approximation of Pettis integrable multifunctions with values in arbitrary Banach spaces.
J. Convex Anal. 2013, 20, 833–870.

38. Naralenkov, K.M. A Lusin type measurability property for vector-valued functions. J. Math. Anal. Appl.
2014, 417, 293–307. [CrossRef]

39. Gordon, R.A. The Denjoy extension of the Bochner, Pettis and Dunford integrals. Stud. Math. 1989, 92, 73–91.
[CrossRef]

40. Candeloro, D.; Sambucini, A.R. Order-type Henstock and McShane integrals in Banach lattices setting.
In Proceedings of the Sisy 20014- IEEE 12th International Symposium on Intelligent Systems and Informatics,
Subotica, Serbia, 11–13 September 2014; Volume 9.

41. El Amri K.; Hess, C. On the Pettis integral of closed valued multifunctions. Set-Valued Anal. 2000, 8, 329–360.
[CrossRef]

12



Mathematics 2020, 8, 863

42. Shang, Y. Continuous-time average consensus under dynamically changing topologies and multiple
time-varying delays. Appl. Math. Comput. 2014, 244, 457–466. [CrossRef]

43. Labuschagne, C.C.A.; Pinchuck, A.L.; van Alten, C.J. A vector lattice version of Rådström’s embedding
theorem. Quaest. Math. 2007, 30, 285–308. [CrossRef]

44. Fremlin, D.H. The generalized McShane integral. Ill. J. Math. 1995, 39, 39–67. [CrossRef]
45. Fremlin, D.H. The McShane and Birkhoff Integrals of Vector-Valued Functions; Mathematics Department Research

Report 92-10, Version 18.5; University of Essex: Colchester, UK, 2007.
46. Di Piazza, L.; Marraffa, V. The McShane, PU and Henstock integrals of Banach valued functions. Czechoslov.

Math. J. 2002, 52, 609–633. [CrossRef]
47. Musiał, K. Topics in the theory of Pettis integration. Rend. Istit. Mat. Univ. Trieste 1991, 23, 177–262.
48. Di Piazza, L.; Musiał, K. A characterization of variationally McShane integrable Banach-space valued

function. Ill. J. Math. 2001, 45, 279–289. [CrossRef]
49. Gordon, R.A. The McShane integral of Banach-valued functions. Ill. J. Math. 1990, 34, 557–567.
50. Saadoune, M.; Sayyad, R. The weak Mc Shane integral. Czechoslov. Math. J. 2014, 64, 387–418. [CrossRef]
51. Di Piazza, L.; Musiał, K. Set-Valued Kurzweil-Henstock-Pettis Integral. Set-Valued Anal. 2005, 13, 167–179.

[CrossRef]
52. Cao, S. The Henstock integral for Banach-valued functions, The Henstock integral for Banach-valued

functions. SEA Bull. Math. 1992, 16, 35–40.
53. Rodríguez, J. Some examples in Vector Integration. Bull. Aust. Math. Soc. 2009, 80, 384–392. [CrossRef]
54. Candeloro, D.; Di Piazza, L.; Musiał, K.; Sambucini, A.R. Multi-integrals of finite variation. Boll. dell’Unione

Matematica Italiana 2020. [CrossRef]
55. Bongiorno, B.; Di Piazza, L.; Musiał, K. A Decomposition Theorem for the Fuzzy Henstock Integral.

Fuzzy Sets Syst. 2012, 200, 36-47. [CrossRef]
56. Di Piazza, L.; Marraffa, V. Pettis integrability of fuzzy mappings with values in arbitrary Banach spaces,

functions. Math. Slovaca 2017, 67, 1359–1370. [CrossRef]
57. Musiał, K. A decomposition theorem for Banach space valued fuzzy Henstock integral. Fuzzy Sets Syst. 2015,

259, 21–28. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

13





mathematics

Article

Kuelbs–Steadman Spaces for Banach
Space-Valued Measures

Antonio Boccuto 1,*,†, Bipan Hazarika 2,† and Hemanta Kalita 3,†

1 Department of Mathematics and Computer Sciences, University of Perugia, via Vanvitelli,
1 I-06123 Perugia, Italy

2 Department of Mathematics, Gauhati University, Guwahati 781014, Assam, India; bh_gu@gauhati.ac.in
3 Department of Mathematics, Patkai Christian College (Autonomous), Dimapur,

Patkai 797103, Nagaland, India; hemanta30kalita@gmail.com
* Correspondence: antonio.boccuto@unipg.it
† These authors contributed equally to this work.

Received: 2 June 2020; Accepted: 15 June 2020; Published: 19 June 2020

Abstract: We introduce Kuelbs–Steadman-type spaces (KSp spaces) for real-valued functions,
with respect to countably additive measures, taking values in Banach spaces. We investigate the main
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1. Introduction

Kuelbs–Steadman spaces have been the subject of many recent studies (see, e.g., [1–3] and
the references therein). The investigation of such spaces arises from the idea to consider the L1

spaces as embedded in a larger Hilbert space with a smaller norm and containing in a certain sense
the Henstock–Kurzweil integrable functions. This allows giving several applications to functional
analysis and other branches of mathematics, for instance Gaussian measures (see also [4]), convolution
operators, Fourier transforms, Feynman integrals, quantum mechanics, differential equations, and
Markov chains (see also [1–3]). This approach allows also developing a theory of functional analysis
that includes Sobolev-type spaces, in connection with Kuelbs–Steadman spaces rather than with
classical Lp spaces.

Moreover, in recent studies about integration theory, multifunctions have played an important role
in applications to several branches of science, like for instance control theory, differential inclusions,
game theory, aggregation functions, economics, problems of finding equilibria, and optimization. Since
neither the Riemann integral, nor the Lebesgue integral are completely satisfactory concerning the
problem of the existence of primitives, different types of integrals extending the previous ones have
been introduced and investigated, like Henstock–Kurzweil, McShane, and Pettis integrals. These topics
have many connections with measures taking values in abstract spaces, and in particular, the extension
of the concept of integrability to set-valued functions can be used in order to obtain a larger number
of selections for multifunctions, through their estimates and properties, in several applications (see,
e.g., [5–13]).

In this paper, we extend the theory of Kuelbs–Steadman spaces to measures μ defined on a
σ-algebra and with values in a Banach space X. We consider an integral for real-valued functions f

Mathematics 2020, 8, 1005; doi:10.3390/math8061005 www.mdpi.com/journal/mathematics15
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with respect to X-valued countably additive measures. In this setting, a fundamental role is played
by the separability of μ. This condition is satisfied, for instance, when T is a metrizable separable
space, not necessarily with a Schauder basis (such spaces exist; see, for instance, [1]), and μ is a Radon
measure. In the literature, some deeply investigated particular cases are when X = Rn and μ is the
Lebesgue measure, and when X is a Banach space with a Schauder basis (see also [1–3]). Since the
integral of f with respect to μ is an element of X, in general, it is not natural to define an inner product,
when it is dealt with by norm convergence of the involved integrals. Moreover, when μ is a vector
measure, the spaces Lp[μ] do not satisfy all classical properties as the spaces Lp with respect to a
scalar measure (see also [14–16]). However, it is always possible to define Kuelbs–Steadman spaces as
Banach spaces, which are completions of suitable Lp spaces. We introduce them and prove that they
are normed spaces and that the embeddings of Lq[μ] into KSp[μ] are completely continuous and dense.
We show that the norm of KSp spaces is smaller than that related to the space of all Henstock–Kurzweil
integrable functions (the Alexiewicz norm). We prove that KSp spaces are Köthe function spaces and
Banach lattices, extending to the setting of KSp[μ]-spaces some results proven in [16] for spaces of type
Lp[μ]. Furthermore, when X′ is separable, it is possible to consider a topology associated with the
weak convergence of integrals and to define a corresponding norm and an inner product. We introduce
the Kuelbs–Steadman spaces related to this norm and prove the analogous properties investigated for
KSp spaces related to norm convergence of the integrals. In this case, since we deal with a separable
Hilbert space, it is possible to consider operators like convolution and Fourier transform and to extend
the theory developed in [1–3] to the context of Banach space-valued measures.

2. Vector Measures, (HKL)- and (KL)-Integrals

Let T 
= ∅ be an abstract set, P(T) be the class of all subsets of T, Σ ⊂ P(T) be a σ-algebra, X be
a Banach space, and X′ be its topological dual. For each A ∈ Σ, let us denote by χA the characteristic
function of A, defined by:

χA(t) =

⎧⎪⎨⎪⎩
1 if t ∈ A,

0 if t ∈ T \ A.

A vector measure is a σ-additive set function μ : Σ → X. By the Orlicz–Pettis theorem (see
also [17] (Corollary 1.4)), the σ-additivity of μ is equivalent to the σ-additivity of the scalar-valued
set function x′μ : A �→ x′(μ(A)) on Σ for every x′ ∈ X′. For the literature on vector measures,
see also [14,15,17–21] and the references therein.

The variation |μ| of μ is defined by setting:

|μ|(A) = sup

{
r

∑
i=1
‖μ(Ai)‖ : Ai ∈ Σ, i = 1, 2, . . . , r; Ai ∩ Aj = ∅ for i 
= j;

r⋃
i=1

Ai ⊂ A

}
.

We define the semivariation ‖μ‖ of μ by:

‖μ‖(A) = sup
x′∈X′ ,‖x′‖≤1

|x′μ|(A). (1)

Remark 1. Observe that ‖μ‖(A) < +∞ for all A ∈ Σ (see also [17] (Corollary 1.19), [15] (§1)).

The completion of Σ with respect to ‖μ‖ is defined by:

Σ̃ = {A = B ∪ N : B ∈ Σ, N ⊂ M ∈ Σ with ‖μ‖(M) = 0}. (2)
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A function f : T → R is said to be μ-measurable if:

f−1(B) ∩ {t ∈ T : f (t) 
= 0} ∈ Σ̃

for each Borel subset B ⊂ R.
Observe that from (1) and (2), it follows that every μ-measurable real-valued function is also

x′μ-measurable for every x′ ∈ X′. Moreover, it is readily seen that every Σ-measurable real-valued
function is also μ-measurable.

We say that μ is Σ-separable (or separable) if there is a countable family B = (Bk)k in Σ such that,
for each A ∈ Σ and ε > 0, there is k0 ∈ N such that:

‖μ‖(AΔBk0) = sup
x′∈X′ ,‖x′‖≤1

[ |x′μ|(AΔBk0)] ≤ ε (3)

(see also [22]). Such a family B is said to be μ-dense.
Observe that μ is separable if and only if Σ is μ-essentially countably generated, namely there

is a countably generated σ-algebra Σ0 ⊂ Σ such that for each A ∈ Σ, there is B ∈ Σ0 with
μ(AΔB) = 0. The separability of μ is satisfied, for instance, when T is a separable metrizable
space, Σ is the Borel σ-algebra of the Borel subsets of T, and μ is a Radon measure (see also [23]
(Theorem 4.13), [24] (Theorem 1.0), [19] (§1.3 and §2.6), and [22] (Propositions 1A and 3)).

From now on, we assume that μ is separable, and B = (Bk)k is a μ-dense family in Σ with:

‖μ‖(Bk) ≤ M = ‖μ‖(T) + 1 for all k ∈ N. (4)

Now, we recall the Henstock–Kurzweil (HK) integral for real-valued functions, defined on
abstract sets, with respect to (possibly infinite) non-negative measures. For the related literature,
see also [5–13,25–33] and the references therein. When we deal with the (HK)-integral, we assume
that T is a compact topological space and Σ is the σ-algebra of all Borel subsets of T. We will not use
these assumptions to prove the results, which do not involve the (HK)-integral.

Let ν : Σ → R ∪ {+∞} be a σ-additive non-negative measure. A decomposition of a set A ∈ Σ
is a finite collection {(A1, ξ1), (A2, ξ2), . . . , (AN , ξN)} such that Aj ∈ Σ and ξ j ∈ Aj for every j ∈ {1,
2, . . . , N}, and ν(Ai ∩ Aj) = 0 whenever i 
= j. A decomposition of subsets of A ∈ Σ is called a

partition of A when
N⋃

j=1

Aj = A. A gauge on a set A ∈ Σ is a map δ assigning to each point x ∈ A a

neighborhood δ(x) of x. If D = {(A1, ξ1), (A2, ξ2), . . . , (AN , ξN)} is a decomposition of A and δ is a
gauge on A, then we say that D is δ-fine if Aj ⊂ δ(ξ j) for any j ∈ {1, 2, . . . , N}.

An example is when T0 is a locally compact and Hausdorff topological space and T = T0 ∪ {x0} is
the one-point compactification of T0. In this case, we will suppose that all involved functions f vanish
on x0. For instance, this is the case when T0 = Rn is endowed with the usual topology and x0 is a point
“at the infinity”, or when T is the unbounded interval [a,+∞] = [a,+∞) ∪ {+∞} of the extended real
line, considered as the one-point compactification of the locally compact space [a,+∞). In this last
case, the base of open sets consists of the open subsets of [a,+∞) and the sets of the type (b,+∞],
where a < b < +∞. Any gauge in [a,+∞] has the form δ(x) = (x− d(x), x + d(x)), if x ∈ [a,+∞]∩R,
and δ(+∞) = (b,+∞] = (b,+∞) ∪ {+∞}, where d denotes a positive real-valued function defined on

[a,+∞). Now, we define the Riemann sums by: S( f ,D) =
N

∑
j=1

f (ξ j)ν(Aj) if the sum exists in R, with

the convention 0 · (+∞) = 0. Note that for any gauge δ, there exists at least one δ-fine partition D such
that S( f ,D) is well defined.
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A function f : T → R is said to be Henstock–Kurzweil integrable ((HK)-integrable) on a set A ∈ Σ
if there is an element IA ∈ R such that for every ε > 0, there is a gauge δ on A with |S( f ,D)− IA| ≤ ε

whenever D is a δ-fine partition of A such that S( f ,D) exists in R, and we write:

(HK)
∫

A
f dν = IA.

Observe that, if A, B ∈ Σ, B ⊂ A, and f : T → R is (HK)-integrable on A, then f is also
(HK)-integrable on B and on A \ B, and:

(HK)
∫

A
f (t) dν = (HK)

∫
B

f (t) dν + (HK)
∫

A\B
f (t) dν (5)

(see also [25] (Propositions 5.14 and 5.15), [33] (Lemma 1.10 and Proposition 1.11)). From (5) used with
A = T and χB f instead of f , it follows that, if f is (HK)-integrable on T and B ∈ Σ, then:

(HK)
∫

T
χB(t) f (t) dν = (HK)

∫
B

f (t) dν.

We say that a Σ-measurable function f : T → R is Kluvánek–Lewis–Lebesgue μ-integrable, (KL)
μ-integrable (resp. Kluvánek–Lewis–Henstock–Kurzweil μ-integrable, or (HKL) μ-integrable) if the
following properties hold:

f is |x′μ|-Lebesgue (resp. |x′μ|-Henstock–Kurzweil) integrable for each x′ ∈ X′, (6)

and for every A ∈ Σ, there is x(L)
A (resp. x(HK)

A ) ∈ X with:

x′(x(L)
A ) = (L)

∫
A

f d|x′μ| (resp. x′(x(HK)
A ) = (HK)

∫
A

f d|x′μ|) for all x′ ∈ X′, (7)

where the symbols (L) and (HK) in (7) denote the usual Lebesgue (resp. Henstock–Kurzweil) integral
of a real-valued function with respect to an (extended) real-valued measure. A Σ-measurable function
f : T → R is said to be weakly (KL) (resp. weakly (HKL)) μ-integrable if it satisfies only condition (6)
(see also [18,21,34]). We recall the following facts about the (KL)-integral.

Proposition 1. (See also [21] (Theorem 2.1.5 (i))) If s : T → R, s =
r

∑
i=1

αiχAi is Σ-simple, with αi ∈ R,

Ai ∈ Σ, i = 1, 2, . . . , r and Ai ∩ Aj = ∅ for i 
= j, then s is (KL) μ-integrable on T, and:

(KL)
∫

A
s dμ =

r

∑
i=1

αi μ(A ∩ Ai) for all A ∈ Σ.

Proposition 2. (See also [21] (Theorem 2.1.5 (vi))) If f : T → R is (KL) μ-integrable on T and A ∈ Σ,
then χA f is (KL) μ-integrable on T and:

(KL)
∫

A
f dμ = (KL)

∫
T

χA f dμ.

The space L1[μ] (resp. L1
w[μ]) is the space of all (equivalence classes of) (KL) μ-integrable

functions (resp. weakly (KL) μ-integrable functions) up to the complement of μ almost everywhere
sets. For p > 1, the space Lp[μ] (resp. Lp

w[μ]) is the space of all (equivalence classes of) Σ-measurable

18



Mathematics 2020, 8, 1005

functions f such that | f |p belongs to L1[μ] (resp. L1
w[μ]). The space L∞[μ] is the space of all (equivalence

classes of) μ-essentially bounded functions. The norms are defined by:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
‖ f ‖Lp [μ] = ‖ f ‖Lp

w [μ]
= sup

x′∈X′ ,‖x′‖≤1

(
(L)

∫
T
| f (t)|p d|x′μ|

)1/p
if 1 ≤ p < ∞,

‖ f ‖L∞ [μ] = sup
x′∈X′ ,‖x′‖≤1

(|x′μ|-ess sup| f |)

(see also [35–37]).
If f : T → R is an (HKL)-integrable function, then the Alexiewicz norm of f is defined by:

|| f ||HKL = sup
x′∈X′ ,‖x′‖≤1

(
sup
A∈Σ

∣∣∣∣(HK)
∫

A
f (t) d|x′μ|

∣∣∣∣
)

(see also [38,39]). Observe that, by arguing analogously as in [30] (Theorem 9.5) and [40] (Example 3.1.1),

for each x′ ∈ X′, we get that f = 0 |x′μ|, almost everywhere if and only if (HK)
∫

A
f (t) d|x′μ| = 0

for every A ∈ Σ. Thus, it is not difficult to see that ‖ · ‖HKL is a norm. In general, the space of
the real-valued Henstock–Kurzweil integrable functions endowed with the Alexiewicz norm is not
complete (see also [39] (Example 7.1)).

3. Construction of the Kuelbs–Steadman Spaces and Main Properties

We begin with giving the following technical results, which will be useful later.

Proposition 3. Let (ak)k and (ηk)k be two sequences of non-negative real numbers, such that a = sup
k

ak <

+∞, and

∞

∑
k=1

ηk = 1, (8)

and p > 0 be a fixed real number. Then, (
∞

∑
k=1

ηk ap
k

)1/p

≤ a. (9)

Proof. We have ηk ap
k ≤ ap ηk for all k ∈ N, and hence:

∞

∑
k=1

ηk ap
k ≤ ap

∞

∑
k=1

ηk = ap,

getting (9).

Proposition 4. Let (bk)k, (ck)k be two sequences of real numbers, (ηk)k be a sequence of positive real numbers,
satisfying (8), and p ≥ 1 be a fixed real number. Then,(

∞

∑
k=1

ηk|bk + ck|p
)1/p

≤
(

∞

∑
k=1

ηk(|bk|+ |ck|)p

)1/p

≤
(

∞

∑
k=1

ηk|bk|p
)1/p

+

(
∞

∑
k=1

ηk|ck|p
)1/p

. (10)

Proof. It is a consequence of Minkowski’s inequality (see also [41] (Theorem 2.11.24)).

Let B = (Bk)k be as in (4), and set Ek = χBk , k ∈ N.
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For 1 ≤ p ≤ ∞, let us define a norm on L1[μ] by setting:

‖ f ‖KSp [μ] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

sup
x′∈X′ ,‖x′‖≤1

⎧⎨⎩
[

∞

∑
k=1

ηk

∣∣∣∣(L)
∫

T
Ek(t) f (t)d|x′μ|

∣∣∣∣p
]1/p

⎫⎬⎭ if 1 ≤ p < ∞,

sup
x′∈X′ ,‖x′‖≤1

[
sup
k∈N

∣∣∣∣(L)
∫

T
Ek(t) f (t)d|x′μ|

∣∣∣∣
]

if p = ∞.

(11)

The following inequality holds.

Proposition 5. For any f ∈ L1[μ] and p ≥ 1, it is:

‖ f ‖KSp [μ] ≤ ‖ f ‖KS∞ [μ]. (12)

Proof. By (9) used with:

ak =

∣∣∣∣(L)
∫

T
Ek(t) f (t)d|x′μ|(t)

∣∣∣∣ , (13)

where x′ is a fixed element of X′ with ‖x′‖ ≤ 1, we have:(
∞

∑
k=1

ηk

∣∣∣∣(L)
∫

T
Ek(t) f (t)d|x′μ|(t)

∣∣∣∣p
)1/p

≤ sup
k∈N

∣∣∣∣(L)
∫

T
Ek(t) f (t)d|x′μ|

∣∣∣∣ . (14)

Taking the supremum in (14) as x′ ∈ X′, ‖x′‖ ≤ 1, we obtain:

‖ f ‖KSp [μ] = sup
x′∈X′ ,‖x′‖≤1

⎧⎨⎩
[

∞

∑
k=1

ηk

∣∣∣∣(L)
∫

T
Ek(t) f (t)d|x′μ|

∣∣∣∣p
]1/p

⎫⎬⎭
≤ sup

x′∈X′ ,‖x′‖≤1

[
sup
k∈N

∣∣∣∣(L)
∫

T
Ek(t) f (t)d|x′μ|

∣∣∣∣
]
= ‖ f ‖KS∞ [μ],

getting the assertion.

Now, we prove that:

Theorem 1. The map f �→ ‖ f ‖KSp [μ] defined in (11) is a norm.

Proof. Observe that, by definition, ‖ f ‖KSp [μ] ≥ 0 for every f ∈ L1[μ]. Let f ∈ L1[μ] with ‖ f ‖KSp [μ] = 0.
We prove that f = 0 μ, almost everywhere. It is enough to take 1 ≤ p < ∞, since the case p = ∞ will
follow from (12). For k ∈ N, let ak be as in (13). As the ηk’s are strictly positive, from:(

∞

∑
k=1

ηk ap
k

)1/p

= 0

it follows that ak = 0 for every k ∈ N. Hence,∣∣∣∣(L)
∫

T
Ek(t) f (t) d|x′μ|(t)

∣∣∣∣ = 0 for each k ∈ N and x′ ∈ X′ with ‖x′‖ ≤ 1. (15)

Proceeding by contradiction, suppose that f 
= 0 μ, almost everywhere. If E+ = f−1(]0,+∞[),
E− = f−1(]−∞, 0[), then E+, E− ∈ Σ, since f is Σ-measurable, and we have μ(E+) 
= 0 or μ(E−) 
= 0.
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Suppose that μ(E+) 
= 0. By the Hahn–Banach theorem, there is x′0 ∈ X′ with ‖x′0‖ ≤ 1, x′0 μ(E+) 
= 0,
and hence, |x′0 μ(E+)| > 0. Moreover, if f ∗(t) = min{ f (t), 1}, t ∈ T, then E+ = {t ∈ T : f ∗(t) > 0}.
For each n ∈ N, set:

E+
n =

{
t ∈ T :

1
n + 1

< f ∗(t) ≤ 1
n

}
.

Since E+ =
∞⋃

n=1

E+
n and x′0μ is σ-additive, there is n ∈ N with |x′0μ|(E+

n ) > 0. Put B = E+
n , and

choose ε such that:

0 < ε < min
{

1
n + 1

|x′0μ|(B), 1
}

. (16)

By the separability of μ, in correspondence with ε and B, there is Bk0 ∈ B satisfying (3), that is:

‖μ‖(BΔBk0) = sup
x′∈X′ ,‖x′‖≤1

[ |x′μ|(BΔBk0)] ≤ ε. (17)

From (16) and (17), we deduce:

‖μ‖(Bk0) ≤ ‖μ‖(B) + ‖μ‖(BΔBk0) < ‖μ‖(T) + 1 = M,

so that Bk0 ∈ B, and:∣∣∣∣(L)
∫

T
χBk0

(t) f (t) d|x′0μ|(t)
∣∣∣∣ ≥ (L)

∫
T
Ek0(t) f (t) d|x′0μ|(t)

= (L)
∫

Bk0

f (t) d|x′0μ|(t) ≥ (L)
∫

Bk0

f ∗(t) d|x′0μ|(t)

≥ (L)
∫

B
f ∗(t) d|x′0μ|(t)− (L)

∫
BΔBk0

f ∗(t) d|x′0μ|(t) (18)

≥ 1
n + 1

|x′0μ|(B)− |x′μ|(BΔBk0) ≥
1

n + 1
|x′0μ|(B)− ε > 0,

which contradicts (15). Therefore, μ(E+) = 0.
Now, suppose that μ(E−) 
= 0. By proceeding analogously as in (18), replacing f with − f and

f ∗ with the function f∗ defined by f∗(t) = min{− f (t), 1}, t ∈ T, we find an x′1 ∈ X′ with ‖x′1‖ ≤ 1,
an n ∈ N, a B ∈ Σ, an ε > 0, and a Bk1 ∈ B with ‖μ‖(Bk1) < M, and:∣∣∣∣(L)

∫
T

χBk1
(t) f (t) d|x′1μ|(t)

∣∣∣∣ ≥ (L)
∫

Bk1

f∗(t) d|x′1μ|(t) ≥ 1
n + 1

|x′1μ|(B)− ε > 0,

getting again a contradiction with (15). Thus, μ(E−) = 0, and f = 0 almost everywhere.
The triangular property of the norm can be deduced from Proposition 4 for 1 ≤ p < ∞, and it is

not difficult to see for p = ∞; the other properties are easy to check.

For 1 ≤ p ≤ ∞, the Kuelbs–Steadman space KSp[μ] (resp. KSp
w[μ]) is the completion of L1[μ] (resp.

L1
w[μ]) with respect to the norm defined in (11) (see also [2–4,35–37]). Observe that, to avoid ambiguity,

we take the completion of L1[μ] rather than that of Lp[μ], but since the embeddings in Theorem 2 are
continuous and dense, the two methods are substantially equivalent.

By proceeding similarly as in [2] (Theorem 3.26), we prove the following relations between the
spaces Lq[μ] and KSp[μ].
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Theorem 2. For every p, q with 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞, it is Lq[μ] ⊂ KSp[μ] continuously and densely.
Moreover, the space of all Σ-simple functions is dense in KSp[μ].

Proof. We first consider the case 1 ≤ p < ∞. Let f ∈ Lq[μ], with 1 ≤ q < ∞, and M be as in (4).

Note that M
q−1

q ≤ M, since M ≥ 1. As |Ek(t)| = Ek(t) ≤ 1 and |Ek(t)|q ≤ Ek(t) for any k ∈ N and
t ∈ T, taking into account (9) and applying Jensen’s inequality to the function t �→ |t|q (see also [23]
(Exercise 4.9)), we deduce:

‖ f ‖KSp [μ] = sup
x′∈X′ ,‖x′‖≤1

⎧⎨⎩
[

∞

∑
k=1

ηk

∣∣∣∣(L)
∫

T
Ek(t) f (t)d|x′μ|

∣∣∣∣
pq
q
]1/p

⎫⎬⎭
≤ sup

x′∈X′ ,‖x′‖≤1

⎧⎨⎩
[

∞

∑
k=1

ηk

(
(|x′μ|(Bk))

q−1 · (L)
∫

T
Ek(t)| f (t)|qd|x′μ|

)p/q
]1/p

⎫⎬⎭ (19)

≤ M
q−1

q sup
x′∈X′ ,‖x′‖≤1

[
sup
k∈N

(
(L)

∫
T
Ek(t)| f (t)|qd|x′μ|

)1/q
]

≤ M sup
x′∈X′ ,‖x′‖≤1

[(
(L)

∫
T
| f (t)|qd|x′μ|

)1/q
]
= M ‖ f ‖Lq [μ],

where M is as in (4). Now, let 1 ≤ p < ∞ and q = ∞. We have:

‖ f ‖KSp [μ] = sup
x′∈X′ ,‖x′‖≤1

⎧⎨⎩
[

∞

∑
k=1

ηk

∣∣∣∣(L)
∫

T
Ek(t) f (t)d|x′μ|

∣∣∣∣p
]1/p

⎫⎬⎭
≤ sup

x′∈X′ ,‖x′‖≤1
[(|x′μ|(Bk))

p · ess sup| f |p]1/p ≤ M · ‖ f ‖L∞ [μ]. (20)

The proof of the case p = ∞ is analogous to that of the case 1 ≤ p < ∞. Therefore, f ∈ KSp[μ],
and the embeddings in (19) and (20) are continuous.

Moreover, observe that every Σ-simple function belongs to Lq[μ], and the space of all Σ-simple
functions is dense in L1[μ] with respect to ‖ · ‖L1[μ] (see also [21] (Corollary 2.1.10)). Moreover, since
KSp[μ] is the completion of L1[μ] with respect to the norm ‖ · ‖KSp [μ], the space L1[μ] is dense in KSp[μ]

with respect to the norm ‖ · ‖KSp [μ] (see also [42] (§4.4)).

Choose arbitrarily ε > 0 and f ∈ KSp[μ]. There is g ∈ L1[μ] with ‖g − f ‖KSp [μ] ≤
ε

M + 1
.

Moreover, in correspondence with ε and g, we find a Σ-simple function s, with ‖s− g‖L1[μ] ≤
ε

M + 1
.

By (19) and (20), ‖ · ‖KSp [μ] ≤ M‖ · ‖L1[μ], and hence, we obtain:

‖s− f ‖KSp [μ] ≤ ‖s− g‖KSp [μ] + ‖g− f ‖KSp [μ]

≤ M‖s− g‖L1[μ] + ‖g− f ‖KSp [μ] ≤
Mε

M + 1
+

ε

M + 1
= ε,

getting the last part of the assertion. Thus, the embeddings in (19) and (20) are dense.

Proposition 6. KS∞[μ] ⊂ KSp[μ] for every p ≥ 1.

Proof. The assertion follows from (12), since KSp[μ] (resp. KS∞[μ]) is the completion of L1[μ] with
respect to ‖ f ‖KSp [μ] (resp. ‖ f ‖KS∞ [μ]).

Remark 2. (a) Notice that, for q 
= ∞, by Theorem 2 and Proposition 6, this holds also when Lq[μ]

and KSp[μ] are replaced by Lq
w[μ] and KSp

w[μ], respectively.
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(b) If f is (HKL)-integrable, then for each x′ ∈ X′ and k ∈ N, Ek f is both Henstock–Kurzweil
and Lebesgue integrable with respect to |x′μ|, since f is Σ-measurable, and the two integrals coincide,
thanks to the (HK)-integrability of the characteristic function χE for each E ∈ Σ and the monotone
convergence theorem (see also [25,33]). Thus, taking into account (14), for every p with 1 ≤ p < ∞,
we have:

sup
x′∈X′ ,‖x′‖≤1

⎡⎣(
∞

∑
k=1

ηk

∣∣∣∣(L)
∫

T
Ek(t) f (t) d|x′μ|

∣∣∣∣p
)1/p

⎤⎦ ≤ sup
x′∈X′ ,‖x′‖≤1

(
sup
k∈N

∣∣∣∣(L)
∫

T
Ek(t) f (t) d|x′μ|

∣∣∣∣
)

= sup
x′∈X′ ,‖x′‖≤1

(
sup
k∈N

∣∣∣∣(HK)
∫

T
Ek(t) f (t) d|x′μ|

∣∣∣∣
)

= sup
x′∈X′ ,‖x′‖≤1

(
sup
k∈N

∣∣∣∣(HK)
∫

Bk

f (t) d|x′μ|
∣∣∣∣
)

≤ sup
x′∈X′ ,‖x′‖≤1

(
sup
A∈Σ

∣∣∣∣(HK)
∫

A
f (t) d|x′μ|

∣∣∣∣
)

= ‖ f ‖HKL.

The next result deals with the separability of Kuelbs–Steadman spaces, which holds even for
p = ∞, differently from Lp spaces.

Proposition 7. For 1 ≤ p ≤ ∞, the space KSp[μ] is separable.

Proof. Observe that, by our assumptions, μ is separable, and this is equivalent to the separability of
the spaces Lp[μ] for all 1 ≤ p < ∞ (see also [35] (Proposition 2.3), [22] (Propositions 1A and 3)).

Now, letH = {hn : n ∈ N} be a countable subset of L1, dense in L1[μ] with respect to the norm
‖ · ‖L1[μ]. By Theorem 2, H ⊂ KSp[μ]. We claim that H is dense in KSp[μ]. Pick arbitrarily ε > 0 and

f ∈ KSp[μ]. There is g ∈ L1[μ] with ‖g− f ‖KSp [μ] ≤
ε

M + 1
. In correspondence with ε and g, there

exists n0 ∈ N such that ‖hn0 − g‖L1[μ] ≤
ε

M + 1
. By (19), ‖ · ‖KSp [μ] ≤ M‖ · ‖L1[μ], and hence:

‖hn0 − f ‖KSp [μ] ≤ ‖hn0 − g‖KSp [μ] + ‖g− f ‖KSp [μ] ≤ M‖hn0 − g‖L1[μ] + ‖g− f ‖KSp [μ]

≤ Mε

M + 1
+

ε

M + 1
= ε,

getting the claim.

Now, we prove the following.

Theorem 3. For 1 ≤ p, q < ∞, the embeddings in (19) are completely continuous, namely map weakly
convergent sequences in Lq[μ] into norm convergent sequences in KSp[μ].

Proof. Pick arbitrarily 1 ≤ q < ∞, and let ( fn)n be a sequence of elements of Lq[μ], weakly convergent
in Lq[μ]. Then, we get:

V = sup
n∈N
‖ fn − f ‖Lq [μ] < +∞ (21)

(see also [23] (Proposition 3.5 (iii))) and:

lim
n→+∞

(KL)
∫

T
χA(t)( fn(t)− f (t)) dμ = 0 for every A ∈ Σ (22)

(see also [14,15]). Now, let us consider the family of operators Wk : Lq[μ]→ X, k ∈ N, defined by:

Wk(g) = (KL)
∫

T
Ek(t) g(t) dμ, g ∈ Lq[μ].
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It is not difficult to check that Wk is well defined and is a linear operator for every k ∈ N. Moreover,
since 0 ≤ Ek(t) ≤ 1 for all k ∈ N and t ∈ T and taking into account [21] (Theorem 2.1.5 (iii)), for every
g ∈ Lq[μ], we get:

sup
x′∈X′ ,‖x′‖≤1

∣∣∣∣(L)
∫

T
Ek(t) g(t) d|x′μ|

∣∣∣∣q
≤ sup

x′∈X′ ,‖x′‖≤1

(
(L)

∫
T
|g(t)|q d|x′μ|

)
= ‖g‖q

Lq [μ]
< +∞, (23)

and hence, sup
k
‖Wk(g)‖X < +∞. From (23), it follows also that Wk is a continuous operator for every

k ∈ N. From (21) and the uniform boundedness principle, we deduce:

+∞ > W = sup
k,n
‖Wk( fn − f )‖X = sup

x′∈X′ ,‖x′‖≤1

(
sup
k,n

∣∣∣∣(L)
∫

T
Ek(t) ( fn(t)− f (t)) d|x′μ|

∣∣∣∣
)

. (24)

Now, choose arbitrarily ε > 0 and 1 ≤ p < ∞. Note that, by Theorem 2, f , fn ∈ KSp[μ] for
all n ∈ N. By arguing similarly as in [14] (Appendix 2.3), we find a positive integer K0 such that

∞

∑
k=K0+1

ηk ≤ ε. Taking into account (9), from (24), we obtain:

∞

∑
k=K0+1

ηk

∣∣∣∣(L)
∫

T
Ek(t)( fn(t)− f (t))d|x′μ|

∣∣∣∣p
≤ ε Wp (25)

for each n ∈ N and x′ ∈ X′ with ‖x′‖ ≤ 1. Moreover, by (22) used with A = Bk, k = 1, 2, . . . , K0,
we find a positive integer n∗ with:

K0

∑
k=1

ηk

∣∣∣∣(L)
∫

T
Ek(t)( fn(t)− f (t))d|x′μ|

∣∣∣∣p
≤ ε (26)

whenever n ≥ n∗ and x′ ∈ X′, ‖x′‖ ≤ 1. From (25) and (26), we obtain:

‖ fn − f ‖KSp [μ] = sup
x′∈X′ ,‖x′‖≤1

⎧⎨⎩
[

∞

∑
k=1

ηk

∣∣∣∣(L)
∫

T
Ek(t)( fn(t)− f (t))d|x′μ|

∣∣∣∣p
]1/p

⎫⎬⎭ ≤ ε1/p(1 + Wp)1/p

for all n ≥ n∗. Thus, the sequence ( fn)n norm converges in KSp[μ]. This ends the proof.

Now, we prove that KSp[μ] spaces are Banach lattices and Köthe function spaces. First, we recall
some properties of such spaces (see also [43,44]).

A partially ordered Banach space Y, which is also a vector lattice, is a Banach lattice if ‖x‖ ≤ ‖y‖
for every x, y ∈ Y with |x| ≤ |y|.

A weak order unit of Y is a positive element e ∈ Y such that, if x ∈ Y and x ∧ e = 0, then x = 0.
Let Y be a Banach lattice and ∅ 
= A ⊂ B ⊂ Y. We say that A is solid in B if for each x, y with

x ∈ B, y ∈ A and |x| ≤ |y|, it is x ∈ A.
Let λ be an extended real-valued measure on Σ. A Banach space Y consisting of (classes of

equivalence of) λ-measurable functions is called a Köthe function space with respect to λ if, for every
g ∈ Y and for each measurable function f with | f | ≤ |g| λ, almost everywhere, it is f ∈ Y and
‖ f ‖ ≤ ‖g‖, and χA ∈ Y for every A ∈ Σ with λ(A) < +∞.

Theorem 4. If p ≥ 1, then KSp[μ] is a Banach lattice with a weak order unit and a Köthe function space with
respect to a control measure λ of μ.
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Proof. By the Rybakov theorem (see also [17] (Theorem IX.2.2)), there is x′0 ∈ X′ with ‖x′0‖ ≤ 1,
such that λ = x′0μ is a control measure of μ. If f , g ∈ KSp[μ], | f | ≤ |g| λ, almost everywhere, k ∈ N

and x′ ∈ X′ with ‖x′‖ ≤ 1, then:(
(L)

∫
T
Ek(t)| f (t)|d|x′μ|

)p
≤

(
(L)

∫
T
Ek(t)|g(t)|d|x′μ|

)p
(27)

(see also [16] (Proposition 5)), and hence, ‖ f ‖KSp [μ] ≤ ‖g‖KSp [μ]. By (27), we can deduce that KSp[μ] is
a Banach lattice, because KSp[μ] is the completion of L1[μ] with respect to ‖ · ‖KSp [μ], L1[μ] is a Banach
lattice, and the lattice operations are continuous with respect to the norms (see also [44] (Proposition
1.1.6 (i))). Since L1[μ] is solid with respect to the space of λ-measurable functions (see also [21]) and the
closure of every solid subset of a Banach lattice is solid (see also [44] (Proposition 1.2.3 (i))), arguing
similarly as in (27), we obtain that, if f is λ-measurable, g ∈ KSp[μ], and | f | ≤ |g| μ, almost everywhere,
then g ∈ KSp[μ].

If A ∈ Σ, then λ(A) < +∞ and χA ∈ L1[μ] (see also [16] (Proposition 5)), and hence, χA ∈ KSp[μ].
Therefore, KSp[μ] is a Köthe function space.

Finally, we prove that χT is a weak order unit of KSp[μ]. First, note that χT ∈ Lp[μ], and hence,
χT ∈ KSp[μ]. Let f ∈ KSp[μ] be such that f ∗ = f ∧ χT = 0 μ, almost everywhere. We get:

{t ∈ T : f ∗(t) = 0} = {t ∈ T : f (t) = 0},

and hence, f = 0 μ, almost everywhere. This ends the proof.

Note that, by the definition of the (KL)-integral, the norm defined in (11) corresponds, in a certain
sense, to the topology associated with the norm convergence of the integrals (μ-topology; see also [14]
(Theorem 2.2.2)). However, with this norm, it is not natural to define an inner product in the space
KS2, since m is vector-valued.

On the other hand, when X′ is separable and {x′h: h ∈ N} is a countable dense subset of X′,
with ‖x′h‖ ≤ 1 for every h, it is possible to deal with the topology related to the weak convergence of
integrals (weak μ-topology; see also [14] (Proposition 2.1.1)), whose corresponding norm is given by:

‖ f ‖KSp [wμ] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
∞

∑
h=1

ωh

(
∞

∑
k=1

ηk

∣∣∣∣(L)
∫

T
Ek(t) f (t) d|x′hμ|

∣∣∣∣p
)]1/p

if 1 ≤ p < ∞,

sup
h∈N

[
sup
k∈N

∣∣∣∣(L)
∫

T
Ek(t) f (t)d|x′hμ|

∣∣∣∣
]

if p = ∞,

(28)

where Ek, k ∈ N, is as in (11) and (ηk)k, (ωh)h are two fixed sequences of strictly positive real numbers,

such that
∞

∑
k=1

ηk =
∞

∑
h=1

ωh = 1. Note that, in general, a weak μ-topology does not coincide with a

μ-topology, but there are some cases in which they are equal (see also [16] (Theorem 14)). Analogously,
in Proposition 5, it is possible to prove the following:

Proposition 8. For each f ∈ L1[μ] and p ≥ 1, it is:

‖ f ‖KSp [wμ] ≤ ‖ f ‖KS∞ [wμ]. (29)

Now, we give the next fundamental result.

Theorem 5. The map f �→ ‖ f ‖KSp [wμ] defined in (28) is a norm.

25



Mathematics 2020, 8, 1005

Proof. First of all, note that ‖ f ‖KSp [μ] ≥ 0 for any f ∈ L1[μ]. Let f ∈ L1[μ] be such that ‖ f ‖KSp [μ] = 0.
We prove that f = 0 μ, almost everywhere. It will be enough to prove the assertion for 1 ≤ p < ∞,
since the case p = ∞ follows from (29). Arguing analogously as in (15), we get:∣∣∣∣(L)

∫
T
Ek(t) f (t) d|x′hμ|(t)

∣∣∣∣ = 0 for every h, k ∈ N.

By contradiction, suppose that f 
= 0 μ, almost everywhere. If E+ = f−1(]0,+∞[), E− =

f−1(] −∞, 0[), then E+, E− ∈ Σ, since f is Σ-measurable, and we have μ(E+) 
= 0 or μ(E−) 
= 0.
Suppose that μ(E+) 
= 0. By the Hahn–Banach theorem, there is x′0 ∈ X′ with ‖x′0‖ ≤ 1, x′0 μ(E+) 
= 0,
and hence, |x′0 μ(E+)| > 0. Since the set {x′h: h ∈ N} is dense in x′ with respect to the norm of X′,
there is a positive integer h0 with:

|x′h0
μ(E+)| > 0. (30)

Without loss of generality, we can assume ‖x′h0
‖ ≤ 1. Now, it is enough to proceed analogously as

in Theorem 1, by replacing the linear continuous functional x′0 in (18) with the element x′h0
found in

(30), by finding another element x′h1
∈ X′ with |x′h1

μ(E−)| > 0, and by arguing again as in (18).
The triangular property of the norm is straightforward for p = ∞ and for 1 ≤ p < ∞ is a

consequence of the inequality:[
∞

∑
h=1

ωh

(
∞

∑
k=1

ηk|bk,h + ck,h|p
)]1/p

≤
[

∞

∑
h=1

ωh

(
∞

∑
k=1

ηk(|bk,h|+ |ck,h|)p

)]1/p

≤
[

∞

∑
h=1

ωh

(
∞

∑
k=1

ηk|bk,h|p
)]1/p

+

[
∞

∑
h=1

ωh

(
∞

∑
k=1

ηk|ck,h|p
)]1/p

(31)

which holds whenever (bk,h)k,h, (ck,h)k,h are two double sequences of real numbers and (ηk)k, (ωh)h are

two sequences of positive real numbers, such that
∞

∑
h=1

ωh =
∞

∑
k=1

ηk = 1. The inequality in (31), as that

in (10), follows from Minkowski’s inequality. The other properties are easy to check.

Now, in correspondence with the norm defined in (28), we define the following bilinear functional
〈·, ·〉 : L1[μ]× L1[μ]→ R by:

〈 f , g〉KS2[wμ] =
∞

∑
h=1

ωh

[
∞

∑
k=1

ηk

(
(L)

∫
T
Ek(t) f (t)d|x′hμ|(t)

) (
(L)

∫
T
Ek(s)g(s)d|x′hμ|(s)

)]
. (32)

Arguing similarly as in Theorem 5, it is possible to see that the functional 〈·, ·〉KS2[wμ] in (32) is an
inner product, and:

‖ · ‖KS2[wμ] = (〈·, ·〉KS2[wμ])
1/2.

For 1 ≤ p ≤ ∞, the Kuelbs–Steadman space KSp[wμ] is the completion of L1[μ] with respect to
the norm defined in (28). Observe that, using Proposition 3, we can see that:

‖ · ‖KSp [wμ] ≤ ‖ · ‖KSp [μ] and ‖ · ‖KSp [wμ] ≤ ‖ · ‖HKL for 1 ≤ p ≤ ∞.

As in Theorems 2 and 3, it is possible to prove the following:

Theorem 6. For each p, q with 1 ≤ p, q ≤ ∞, it is Lq[μ] ⊂ KSp[wμ] with continuous and dense embedding,
and the space of all Σ-simple functions is dense in KSp[wμ]. Moreover, if 1 ≤ p, q < ∞, the embedding is
completely continuous. Furthermore, KSp[wμ] is a separable Banach lattice with a weak order unit and a Köthe
function space with respect to a control measure λ of μ.
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Since (KS2[wμ], 〈·, ·〉KS2[wμ]) is a separable Hilbert space, by applying [2] (Theorems 5.15 and 8.7),
it is possible to consider operators like, for instance, convolution and Fourier transform and to extend
the theory there studied to the context of vector-valued measures (see also [45], [2] (Remark 5.16)).

4. Conclusions

We introduced Kuelbs–Steadman spaces related to the integration for scalar-valued functions
with respect to a σ-additive measure μ, taking values in a Banach space X. We endowed them with
the structure of the Banach space, both in connection with the norm convergence of integrals and in
connection with the weak convergence of integrals (KSp[μ] and KSp[wμ], respectively). A fundamental
role is played by the separability of μ. We proved that these spaces are separable Banach lattices and
Köthe function spaces. Moreover, we saw that the embeddings of Lq[μ] into KSp[μ] (KSp[wμ]) are
continuous and dense, and also completely continuous when 1 ≤ p, q < ∞. When X′ is separable, we
endowed KS2[wμ] with an inner product. In this case, KS2[wμ] is a separable Hilbert space, and hence,
it is possible to deal with operators like convolution and Fourier transform and to extend to Banach
space-valued measures the theory investigated in [1–3].
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1. Introduction

In recent decades, fractional equations and inclusions have proven to be interesting tools in
the modeling of many physical or economic phenomena. In addition, there has been a significant
development in fractional differential theory and applications in recent years [1–7]. In the case of the
sole inclusion, Dαu(t) ∈ F(t, u(t)), one can find an important piece of literature. For examples,
in following papers, study is made with different boundary conditions [8–12], with use of the
non-compactness measure [13,14], with use of contraction principle in the space of selections of the set
valued map instead in the space of solutions [15], with compactness conditions [16] or inclusions with
infinite delay [17]. To the best of our acknowledge, a very few study is available in the fractional order
differential inclusion coupled with a time and state dependent maximal monotone operator ([18] with
subdifferential operators).

The main objective of the present work is to develop the existence theory for a coupled system of
evolution inclusion driven by fractional differential equation and time and state dependent maximal
monotone operators. The developments of the article are as follows.

Mathematics 2020, 8, 1395; doi:10.3390/math8091395 - www.mdpi.com/journal/mathematics31
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At first, we investigate a second order problem governed a time and state dependent maximal
monotone operator with Lipschitz perturbation in a separable Hilbert space E (The second order is in
the state variable x).

(1.1)

⎧⎪⎨⎪⎩
x(t) = x0 +

∫ t
0 u(s)ds, t ∈ [0, T]

u(t) ∈ D(At,x(t)), t ∈ [0, T]
−u̇(t) ∈ At,x(t)u(t) + f (t, x(t), u(t)) a.e.

Secondly, we investigate a class of fractional order problem driven by a time and state dependent
maximal monotone operator with Lipschitz perturbation in E of the form

(1.2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Dαh(t) + λDα−1h(t) = u(t), t ∈ [0, 1]

Iβ
0+h(t) |t=0 := limt→0

∫ t
0

(t−s)β−1

Γ(β)
h(s)ds = 0, h(1) = Iγ

0+h(1) =
1∫

0

(1−s)γ−1

Γ(γ) h(s)ds

−u̇(t) ∈ At,h(t)u(t) + f (t, h(t), u(t)) a.e.

where α ∈]1, 2], β ∈ [0, 2− α], λ ≥ 0, γ > 0 are given constants, Dα is the standard Riemann–Liouville
fractional derivative , Γ is the gamma function, (t, x)→ A(t,x) : D(A(t,x))→ 2E is a maximal monotone
operator with domain D(A(t,x)) and f : [0, 1]× E× E→ E is a single valued Lipschitz perturbation
w.r.t y ∈ E.

Thirdly, we finish the paper with a Fillipov theorem and relaxation theorem for fractional
differential inclusion in a separable Banach space E

(PF)

{
Dαu(t) + λDα−1u(t) ∈ F(t, u(t)), a.e. t ∈ [0, 1]
Iβ
0+u(t) |t=0 = 0, u(1) = Iγ

0+u(1)

and

(PcoF)

{
Dαu(t) + λDα−1u(t) ∈ coF(t, u(t)), a.e. t ∈ [0, 1]
Iβ
0+u(t) |t=0 = 0, u(1) = Iγ

0+u(1)

where F is closed valued L(I)×B(E)-measurable and Lipschitz w.r.t x ∈ E.
Within the framework of studies concerning coupled systems of evolution inclusion driven by

fractional differential equation and time and state dependent maximal monotone operator, our results
are fairly general and new and give further insight into the characteristics of both evolution inclusion
and fractional order boundary value problems.

2. Notations and Preliminaries

In the whole paper, I := [0, T] (T > 0) is an interval of R and E is a separable Hilbert space with
the scalar product 〈·, ·〉 and the associated norm ‖ · ‖. BE denotes the unit closed ball of E and rBE
its closed ball of center 0 and radius r > 0. We denote by L(I) the sigma algebra on I, λ := dt the
Lebesgue measure and B(E) the Borel sigma algebra on E. If μ is a positive measure on I, we will
denote by Lp(I, E, μ) p ∈ [1,+∞[, (resp. p = +∞), the Banach space of classes of measurable functions
u : I → E such that t �→ ‖u(t)‖p is μ-integrable (resp. u is μ-essentially bounded), equipped with its
classical norm ‖ · ‖p (resp. ‖ · ‖∞). We denote by C(I, E) the Banach space of all continuous mappings
u : I → E, endowed with the sup norm.
The excess between closed subsets C1 and C2 of E is defined by e(C1, C2) := supx∈C1

d(x, C2), and the
Hausdorff distance between them is given by

dH(C1, C2) := max
{

e(C1, C2), e(C2, C1)
}

.

The support function of S ⊂ E is defined by: δ∗(a, S) := supx∈S〈a, x〉, ∀a ∈ E.
If X is a Banach space and X∗ its topological dual, we denote by σ(X, X∗) the weak topology on X,
and by σ(X∗, X) the weak* topology on X∗.
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Let A : E ⇒ E be a set-valued map. We denote by D(A), R(A) and Gr(A) its domain, range
and graph. We say that A is monotone, if 〈y1 − y2, x1 − x2〉 ≥ 0 whenever xi ∈ D(A), and yi ∈ A(xi),
i = 1, 2. In addition, we say that A is a maximal monotone operator of E, if its graph could not be
contained properly in the graph of any other monotone operator. By Minty’s Theorem, A is maximal
monotone iff R(IE + A) = E.

If A is a maximal monotone operator of E, then, for every x ∈ D(A), A(x) is nonempty closed
and convex. We denote the projection of the origin on the set A(x) by A0(x).

Let λ > 0; then, the resolvent and the Yosida approximation of A are the well-known operators
defined respectively by JA

λ = (IE + λA)−1 and Aλ = 1
λ (IE − JA

λ ). These operators are single-valued
and defined on all of E, and we have JA

λ (x) ∈ D(A), for all x ∈ E. For more details about the theory of
maximal monotone operators, we refer the reader to [5,19,20].

Let A : D(A) ⊂ E→ 2E and B : D(B) ⊂ E→ 2E be two maximal monotone operators, then we
denote by dis(A, B) the pseudo-distance between A and B defined by

dis(A, B) = sup
{ 〈y− y′, x′ − x〉

1 + ‖y‖+ ‖y′‖ : x ∈ D(A), y ∈ Ax, x′ ∈ D(B), y′ ∈ Bx′
}

. (1)

This pseudo-distance due to Vladimiro [21] is particularly well suited to the study of operators
(see its use in [22]) and also, in the sweeping process, for its links with the Hausdorff distance in convex
analysis. Indeed, if NC(t,x) is the normal cone of the closed convex set C(t, x), we have

dis(NC(t,x), NC(s,y)) = dH(C(t, x), C(s, y)).

This property will be used in this paper.
For the proof of our main theorems, we will need some elementary lemmas taken from

reference [23].

Lemma 1. Let A be a maximal monotone operator of E. If x ∈ D(A)) and y ∈ E are such that

〈A0(z)− y, z− x〉 ≥ 0 ∀z ∈ D(A),

then x ∈ D(A) and y ∈ A(x).

Lemma 2. Let An (n ∈ N), A be maximal monotone operators of E such that dis(An, A)→ 0. Suppose also
that xn ∈ D(An) with xn → x and yn ∈ An(xn) with yn → y weakly for some x, y ∈ E. Then, x ∈ D(A)

and y ∈ A(x).

Lemma 3. Let A, B be maximal monotone operators of E. Then,
(1) for λ > 0 and x ∈ D(A)

‖x− JB
λ (x)‖ ≤ λ‖A0(x)‖+ dis(A, B) +

√
λ
(
1 + ‖A0(x)‖)dis(A, B).

(2) For λ > 0 and x, x′ ∈ E
‖JA

λ (x)− JA
λ (x′)‖ ≤ ‖x− x′‖.

Lemma 4. Let An (n ∈ N), A be maximal monotone operators of E such that dis(An, A)→ 0 and ‖A0
n(x)‖ ≤

c(1 + ‖x‖) for some c > 0, all n ∈ N and x ∈ D(An). Then, for every z ∈ D(A), there exists a sequence (ζn)

such that
ζn ∈ D(An), ζn → z and A0

n(ζn)→ A0(z). (2)
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3. On Second Order Problem Driven by a Time and State Dependent Maximal Operator

Let I = [0, T] and let E be a separable Hilbert space. In this part, we are interested in solving the
problem (1.1).

Lemma 5. Let (t, x)→ A(t,x) : D(A(t,x))→ 2E a maximal monotone operator satisfying:
(H1) ‖A0

(t,x)y‖ ≤ c(1 + ‖x‖+ ‖y‖) for all (t, x, y) ∈ I × E× D(A(t,x)), for some positive constant c,
(H2) dis(A(t,x), A(τ,y)) ≤ a(t)− a(τ) + r‖x− y‖, for all 0 ≤ τ ≤ t ≤ T and for all (x, y) ∈ E× E, where
r is a positive number, a : I → [0,+∞[ is nondecreasing absolutely continuous on I with ȧ ∈ L2, shortly
a ∈W1,2(I).
Then, the following hold:

Fact I : For any absolutely continuous x ∈W1,2
E (I) and for any u0 ∈ D(A(0,x(0))), the problem⎧⎪⎨⎪⎩

−u̇(t) ∈ A(t,x(t))u(t), a.e. t ∈ I
u(t) ∈ D(A(t,x(t))), ∀t ∈ I
u(0) = u0 ∈ D(A(0,x(0)))

has a unique absolutely continuous solution with ‖u̇(t)‖ ≤ K(1 + β̇(t)) where β(t) =∫ t
0 [ȧ(s) + r‖ẋ(s))‖]ds, ∀t ∈ I and K is a positive constant depending on ‖u0‖, c, T, x and β.

Fact J : Assume that
(H3) (t, x, y)→ J

A(t,x)
λ (y) is L(I)⊗B(E)⊗B(E)-measurable.

Then, the composition operator Ax : D(Ax) ⊂ L2(I, E, dt)→ 2L2(I,E,dt) defined by

Axu = {v ∈ L2(I, E, dt) : v(t) ∈ A(t,x(t))u(t) a.e. t ∈ I}

for each u ∈ D(Ax) where
D(Ax) := {u ∈ L2(I, E, dt) : u(t) ∈ D(A(t,x(t))) a.e. t ∈ I, for which ∃ y ∈ L2(I, E, dt) : y(t) ∈
A(t,x(t))u(t), a.e. t ∈ I}
is maximal monotone. Consequently, the graph of Ax : D(Ax) ⊂ L2(I, E, dt)→ 2L2(I,E,dt) is strongly-weakly
sequentially closed in L2(I, E, dt)× L2(I, E, dt).

Proof. Fact I . The mapping Bt = A(t,x(t)) is a time dependent absolutely continuous in variation
maximal monotone operator: For all 0 ≤ τ ≤ t ≤ T, we have by (H2)⎧⎪⎪⎪⎨⎪⎪⎪⎩

dis(Bt, Bτ) = dis(A(t,x(t)), A(τ,x(τ)))

≤ |a(t)− a(τ)|+ r||x(t)− x(τ)||
≤ ∫ t

τ ȧ(s)ds + r
∫ t

τ ‖ẋ(s)‖ds
= β(t)− β(τ)

where β(t) =
∫ t

0 [ȧ(s) + r‖ẋ(s)‖]ds, ∀t ∈ I. Furthermore, by (H1), we have{
‖B0

t y‖ = ‖A0
(t,x(t))y‖ ≤ c(1 + ‖x(t)‖+ ‖y‖)

≤ c1(1 + ‖y‖)
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for all y ∈ D(A(t,x(t))), where c1 is a positive generic constant. Consequently, by [22] (Theorem 3.5),
for every u0 ∈ D(B0), a unique absolutely continuous mapping u : I → E exists satisfying⎧⎪⎨⎪⎩

−u̇(t) ∈ Btu(t) = A(t,x(t))u(t), a.e. t ∈ I
u(t) ∈ D(Bt) = D(A(t,x(t))), ∀t ∈ I
u(0) = u0 ∈ D(B0) = D(A(0,x(0)))

with ‖u̇(t)‖ ≤ K(1 + β̇(t)), where β(t) =
∫ t

0 [ȧ(s) + r‖ẋ(s))‖]ds, ∀t ∈ I and K is a positive constant
depending on ‖u0‖, c, T, β.

Fact J . Taking account J , it is clear that D(Ax) is nonempty and Ax is well defined. It is
easy to see that Ax is monotone. Let us prove that Axis maximal monotone. We have to check that
R(IL2(I,E,dt) + λAx) = L2(I, E, dt) for each λ > 0. Let g ∈ L2(I, E, dt). Then, from (H3) t �→ v(t) =

J
A(t,x(t))
λ g(t) = g(t)− λA

A(t,x(t))
λ g(t) is measurable. Set

h(t) = λA
A(t,x(t))
λ g(t) = λA

A(t,x(t))
λ g(t)− λA

A(t,x(t))
λ u(t) + λA

A(t,x(t))
λ u(t)

where u denotes the absolutely continuous solution to − du
dt (t) ∈ A(t,x(t))u(t) using Fact I . Then, h is

measurable with
‖h(t)‖ ≤ 2‖g(t)− u(t)‖+ λ‖A

A(t,x(t))
λ u(t)‖

by noting that A
A(t,x(t))
λ is 2

λ -Lipschitz and so we deduce that h ∈ L2(I, E, dt) because g ∈ L2(I, E, dt)

and t �→ A
A(t,x(t))
λ u(t) ∈ L∞(I, E, dt) using (H1). This proves that v ∈ L2(I, E, dt) and g ∈ v + λAxv so

that R(IL2(I,E;dt) + λAx) = L2(I, E, dt).

Here is a useful application.

Corollary 1. With hypotheses and notation of the preceding lemma, let (vn) and (un) be two sequences in
L2(I, E, dt) such that vn(t) ∈ A(t,x(t))un(t) a.e for all n ∈ N. If vn → v weakly in L2(I, E, dt) and un → u
strongly in L2(I, E, dt), then v(t) ∈ A(t,x(t))u(t) a.e.

Theorem 1. Let I = [0, T]. Let (t, x)→ A(t,x) : D(A(t,x))→ 2E a maximal monotone operator satisfying:
(H1) ‖A0

(t,x)y‖ ≤ c(1 + ‖x‖+ ‖y‖) for all (t, x, y) ∈ I × E× D(A(t,x)), for some positive constant c,
(H2) dis(A(t,x), A(τ,y)) ≤ a(t)− a(τ) + r‖x− y‖ , for all 0 ≤ τ ≤ t ≤ T and for all (x, y) ∈ E× E, where
r is a positive number, a : I → [0,+∞[ is nondecreasing absolutely continuous on I with ȧ ∈ L2(I,R, dt),
(H3) D(A(t,x)) is boundedly-compactly measurable in the sense, for any bounded set B ⊂ E, there is a
measurable compact valued integrably bounded mapping ΨB : I → E such that D(A(t,x)) ⊂ ΨB(t) ⊂ γ(t)BE
for all (t, x) ∈ I × B where γ ∈ L2(I,R, dt).

Then, for any (x0, u0) ∈ E×D(A(0,x0)
), there exist an absolutely continuous x : I → E and an absolutely

continuous u : I → E such that ⎧⎪⎪⎪⎨⎪⎪⎪⎩
x(t) = x0 +

∫ t
0 u(s)ds, ∀t ∈ I

x(0) = x0, u(0) = u0 ∈ D(A(0,x0)
)

−u̇(t) ∈ A(t,x(t))u(t) a.e. t ∈ I
u(t) ∈ D(A(t,x(t))), ∀t ∈ I

Proof. Let us consider the closed convex subset Xγ in the Banach space CE(I) defined by

Xγ : {h ∈W1,2(I, E) : h(t) = x0 +
∫ t

0
ḣ(s)ds, ||ḣ(s)|| ≤ γ(s) a.e., γ ∈ L2(I, R, dt)}.
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Then, Xγ is equi-absolutely continuous. By the fact that J , for each h ∈ Xγ, there is a unique
W1,2(I, E) mapping uh : I → E, which is the W1,2(I, E) solution to the inclusion⎧⎪⎨⎪⎩

−u̇h(t) ∈ A(t,h(t))uh(t) a.e. t ∈ I
uh(t) ∈ D(A(t,h(t))), ∀t ∈ I
uh(0) = u0 ∈ D(A(0,h(0))) = D(A(0,x0))

),

with ‖u̇h(t)‖ ≤ K(1 + β̇(t)), where β(t) =
∫ t

0 [ȧ(s) + γ(s)]ds, ∀t ∈ I and K is a positive constant
depending on ||u0||, c, T, β. We refer to [22] (Theorem 3.5) for details of the estimate of the velocity.
Now, for each h ∈ Xγ, let us consider the mapping

Φ(h)(t) := x0 +
∫ t

0
uh(s)ds, t ∈ I.

As uh(s) ∈ D(A(s,h(s))) ⊂
⋃

x∈Xγ(s) D(A(s,x)) ⊂ Ψγ(s) ⊂ γ(s)BE for all s ∈ [0, T], where Ψγ :
I → E is a compact valued measurable mapping given by condition (H3). It is clear that Φ(h) ∈ Xγ.
Our aim is to prove the existence theorem by applying some ideas developed in [24] via a generalized
fixed point theorem [25] (Theorem 4.3), [26] (Lemma 1). Nevertheless, this needs a careful look using
the estimation of the absolutely continuous solution given above. For this purpose, we first claim that
Φ : Xγ → Xγ is continuous and, for any h ∈ Xγ and for any t ∈ I, the inclusion holds

Φ(h)(t) ∈ u0 +
∫ t

0
coΨγ(s)ds.

Since s �→ coΨγ(s) is a convex compact valued and integrably bounded multifunction, the second
member is convex compact valued [27] so that Φ(X ) is equicontinuous and relatively compact in the
Banach space CE(I). Now, we check that Φ is continuous. It is sufficient to show that, if (hn) converges
uniformly to h in Xγ, then the AC solution uhn associated with hn⎧⎪⎪⎨⎪⎪⎩

uhn(0) ∈ D(A(0,hn(0)))

uhn(t) ∈ D(A(t,hn(t))), ∀t ∈ I

−u̇hn(t) ∈ A(t,hn(t))uhn(t) a.e. t ∈ I

uniformly converges to the AC solution uh associated with h⎧⎪⎪⎨⎪⎪⎩
uh(0) = u0 ∈ D(A(0,h(0)))

uh(t) ∈ D(A(t,h(t))), ∀t ∈ I

−u̇h(t) ∈ A(t,h(t))uh(t) a.e. t ∈ I

As (uhn) is equi-absolutely continuous with the estimate ||u̇hn(t)|| ≤ K(1 + β̇(t)) a.e for all n ∈ N,

we may assume that (uhn) converges uniformly to a AC mapping u and (
duhn

dt ) converges weakly in
L2

E(I, dt) to w ∈ L2
E(I, dt) with ‖w(t)‖ ≤ K(1 + β̇(t)) a.e. t ∈ I so that

weak- lim
n

uhn = weak- lim
n

uhn(0) + weak- lim
n

∫
I

duhn

dt

= u(0) +
∫

I
w dt := z(t), t ∈ I
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By identifying the limits, we get u(t) = z(t) = u(0) +
∫

I w dt, t ∈ I with u(0) =

weak- limn uhn(0) = limn uhn(0) and du
dt = w. As uhn(t) ∈ D(A(t,hn(t))), ∀t ∈ I and uhn(t) → u(t),

A0
(t,hn(t))

uhn(t) is bounded using (H1) for every t ∈ [0, T] and

dis(A(t,hn(t)), A(t,h(t))) ≤ r‖hn(t)− h(t)‖ → 0

when n→ ∞ by (H2), from Lemma 2, we deduce that u(t) ∈ D(A(t,h(t))), ∀t ∈ I. Now, we are going
to check that u satisfies the inclusion

−du
dt

(t) ∈ A(t,h(t))u(t) a.e. t ∈ I

As duhn
dt → du

dt weakly in L2(I, E, dt), we may assume that ( duhn
dt ) Komlos converges to du

dt . There is
a dt-negligible set N such that for t ∈ I \ N

lim
n→∞

1
n

n

∑
j=1

duhj

dt
(t) =

du
dt

(t). (3)

− duhn

dt
(t) ∈ A(t,hn(t))un(t). (4)

Let η ∈ D(A(t,h(t))).
Using Lemma 4, there is a sequence (ηn) such that ηn ∈ D(A(t,hn(t))), ηn → η and A0

(t,hn(t))
ηn →

A0
(t,h(t))η. From (4), by monotonicity,

〈duhn

dt
, uhn(t)− ηn〉 ≤ 〈A0

(t,hn(t))ηn, ηn − uhn(t)〉. (5)

From

〈duhn

dt
(t), u(t)− η

〉
=

〈duhn

dt
(t), uhn(t)− ηn

〉
+

〈duhn

dt
(t), u(t)− uhn(t)− (η − ηn)

〉
,

let us write

1
n

n

∑
j=1

〈duhj

dt
(t), u(t)− η

〉
=

1
n

n

∑
j=1

〈duhj

dt
(t), uhj

(t)− ηj
〉
+

1
n

n

∑
j=1

〈duhj

dt
(t), u(t)− uhj

(t)
〉

+
n

∑
j=1

〈duhj

dt
(t), ηj − η

〉
,

so that

1
n

n

∑
j=1

〈duhj

dt
(t), u(t)− η

〉 ≤ 1
n

n

∑
j=1

〈
A0
(t,hj(t))

ηj, ηj − uhj
(t)

〉
+ K(1 + β̇(t))

1
n

n

∑
j=1
‖u(t)− uhj

(t))‖.

+K(1 + β̇(t))
1
n

n

∑
j=1
‖ηj − η‖.

Passing to the limit using (3) when n→ ∞, this last inequality gives immediately

〈du
dt

(t), u(t)− η
〉 ≤ 〈

A0
(t,h(t))η, η − u(t)

〉
a.e.

37



Mathematics 2020, 8, 1395

As a consequence, by Lemma 1, we get − du
dt (t) ∈ A(t,h(t))u(t) a.e. with u(0) ∈ D(A(0,h(0))) so

that, by uniqueness, u = uh.
Now, let us check that Φ : X → X is continuous. Let hn → h. We have

Φ(hn)(t)−Φ(h)(t) =
∫ t

0
uhn(s)ds−

∫ t

0
uh(s)ds =

∫ t

0
[uhn(s)− uh(s)]ds

As ||uhn(.)− uh(.)|| → 0 pointwisely and is uniformly bounded, we conclude that

sup
t∈I
||Φ(hn)(t)−Φ(h)(t)|| ≤ sup

t∈I

∫ t

0
||uhn(.)− uh(.)||ds→ 0

so that Φ(hn)−Φ(h)→ 0 in CE(I). Since Φ : Xγ → Xγ is continuous and Φ(Xγ) is relatively compact
in CE(I), by [25] (Theorem 4.3), [26] (Lemma 1), Φ has a fixed point, say h = Φ(h) ∈ Xγ that means

h(t) = Φ(h)(t) = x0 +
∫ t

0
uh(s)ds, t ∈ I,⎧⎨⎩

uh(t) ∈ D(A(t,h(t)))

− duh
dt

(t) ∈ A(t,h(t))uh(t) dt-a.e.

the proof is complete.

There is a direct application to sweeping process.

Corollary 2. Let C : I × E→ E be a convex compact valued mapping satisfying
(i) C(t, x) ⊂ γ(t)BE, ∀(t, x) ∈ I × E, where γ ∈ L2(I,R, dt),
(ii) dH(C(s, x), C(t, y)) ≤ a(t)− a(τ) + r||x− y|| , for all 0 ≤ τ ≤ t ≤ 1 and for all (x, y) ∈ E× E, where
r is a positive number, a : I → [0,+∞[ is nondecreasing absolutely continuous on I with ȧ ∈ L2(I,R, dt),
(iii) For any t ∈ I , for any bounded set B ⊂ E, C(t, B) is relatively compact.
Then, for any (x0, u0) ∈ E× C(0, x0), there exist an absolutely continuous x : I → E and and absolutely
continuous u : I → E such that ⎧⎪⎪⎪⎨⎪⎪⎪⎩

x(t) = x0 +
∫ t

0 u(s)ds, ∀t ∈ I
x(0) = x0, u(0) = u0 ∈ C(0, x0)

−u̇(t) ∈ NC(t,x(t))u(t) a.e. t ∈ I
u(t) ∈ C(t, x(t)), ∀t ∈ I

Proof. It is easy to apply Theorem 1 with A(t,x(t)) = NC(t,x(t))

Now, we proceed to the Lipschitz perturbation of the preceding theorem.

Theorem 2. Let I = [0, T]. Let (t, x)→ A(t,x) : D(A(t,x))→ 2E be a maximal monotone operator satisfying:
(H1) ‖A0

(t,x)y‖ ≤ c(1 + ‖x‖+ ‖y‖) for all (t, x, y) ∈ I × E× D(A(t,x)), for some positive constant c,
(H2) dis(A(t,x), A(τ,y)) ≤ a(t)− a(τ) + r‖x− y‖ , for all 0 ≤ τ ≤ t ≤ T and for all (x, y) ∈ E× E, where
r is a positive number, a : I → [0,+∞[ is nondecreasing absolutely continuous on I with ȧ ∈ L2(I,R, dt),
(H3) D(A(t,x)) is boundedly-compactly measurable in the sense, for any bounded set B ⊂ E, there is a
measurable compact valued integrably bounded mapping ΨB : I → E such that D(A(t,x)) ⊂ ΨB(t) ⊂ γ(t)BE
for all (t, x) ∈ I × B, where γ ∈ L2(I,R, dt).
Let f : I × E× E→ E such that
(i) f (., x, y) is Lebesgue measurable on I for all (x, y) ∈ E× E
(ii) f (t, ., .) is continuous on E× E,
(iii) || f (t, x, y)|| ≤ M for all (t, x, y) ∈ I × E× E,
(iv) || f (t, x, y)− f (t, x, z)|| ≤ M||y− z||, for all (t, x, y, z) ∈ I × E× E× E
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for some positive constant M.
Then, for any (x0, u0) ∈ E× D(A(0,x0)

), there exists an absolutely continuous x : I → E and an absolutely
continuous u : I → E such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

x(t) = x0 +
∫ t

0 u(s)ds, ∀t ∈ I
x(0) = x0, u(0) = u0 ∈ D(A(0,x0)

)

−u̇(t) ∈ A(t,x(t))u(t) + f (t, x(t), u(t)) a.e. t ∈ I
u(t) ∈ D(A(t,x(t))), ∀t ∈ I

Proof. Let us consider the closed convex subset Xγ in the Banach space CE(I) defined by

Xγ : {h ∈W1,2(I, E) : h(t) = x0 +
∫ t

0
ḣ(s)ds, ||ḣ(s)|| ≤ γ(s) a.e., γ ∈ L2(I, R, dt)}.

Then, Xγ is equi-absolutely continuous. By fact J , for each h ∈ Xγ, there is a unique W1,2(I, E)
mapping uh : I → E, which is the W1,2(I, E) solution to the inclusion⎧⎪⎨⎪⎩

−u̇h(t) ∈ A(t,h(t))uh(t) + f (t, h(t), uh(t)) a.e. t ∈ I
uh(t) ∈ D(A(t,h(t))), ∀t ∈ I
uh(0) = u0 ∈ D(A(0,h(0))) = D(A(0,x0))

),

with ||u̇h(t)|| ≤ K(1 + β̇(t)) + M(K + 1) = η(t) where β(t) =
∫ t

0 [ȧ(s) + γ(s)]ds, ∀t ∈ I and K is a
positive constant depending on ||u0||, c, T, β. We refer to (Theorem 3.5) for details of the estimate of
the velocity. Now, for each h ∈ Xγ, let us consider the mapping

Φ(h)(t) := x0 +
∫ t

0
uh(s)ds, t ∈ I.

As uh(s) ∈ D(A(s,h(s))) ⊂
⋃

x∈Xγ(s) D(A(s,x)) ⊂ Ψγ(s) ⊂ γ(s)BE for all s ∈ [0, T], where Ψγ :
I → E is a compact valued measurable mapping given by condition (H3). It is clear that Φ(h) ∈ Xγ.
Our aim is to prove the existence theorem by applying some ideas developed in Castaing et al. [24]
via the same generalized fixed point theorem already used [25,26]. Nevertheless, this needs a careful
look using the estimation of the absolutely continuous solution given above. For this purpose, we first
claim that Φ : Xγ → Xγ is continuous, and, for any h ∈ Xγ and for any t ∈ I, the inclusion holds

Φ(h)(t) ∈ u0 +
∫ t

0
coΨγ(s)ds.

Since s �→ coΨγ(s) is a convex compact valued and integrably bounded multifunction, the second
member is convex compact valued [27] so that Φ(X ) is equicontinuous and relatively compact in the
Banach space CE(I). Now, we check that Φ is continuous. It is sufficient to show that, if (hn) converges
uniformly to h in Xγ, then the AC solution uhn associated with hn⎧⎪⎪⎨⎪⎪⎩

uhn(0) ∈ D(A(0,hn(0)))

uhn(t) ∈ D(A(t,hn(t))), ∀t ∈ I

−u̇hn(t) ∈ A(t,hn(t))uhn(t) + f (t, hn(t), uhn(t)), a.e. t ∈ I

uniformly converges to the AC solution uh associated with h⎧⎪⎪⎨⎪⎪⎩
uh(0) ∈ D(A(0,h(0)))

uh(t) ∈ D(A(t,h(t))), ∀t ∈ I

−u̇h(t) ∈ A(t,h(t))uh(t) + f (t, h(t), uh(t)) a.e. t ∈ I
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As (uhn) is equi-absolutely continuous with the estimate ||u̇hn(t)|| ≤ K(1 + β̇(t)) + (K + 1)M =

ψ(t) a.e for all n ∈ N, we may assume that (uhn) converges uniformly to a AC mapping u and (
duhn

dt )

converges weakly in L2
E(I, dt) to w ∈ L2

E(I, dt) with ||w(t)|| ≤ K(1+ β̇(t)) + (K + 1)M a.e. t ∈ I so that

weak- lim
n

uhn = weak- lim
n

uhn(0) + weak- lim
n

∫
[0,t]

duhn

dt

= u(0) +
∫
[0,t]

w dt := z(t), t ∈ I

By identifying the limits, we get
u(t) = z(t) = u(0) +

∫
[0,t] w dt, t ∈ I with u(0) = weak- limn uhn(0) = limn uhn(0) and du

dt = w.

As uhn(t) ∈ D(A(t,hn(t))), ∀t ∈ I and uhn(t) → u(t), A0
(t,hn(t))

uhn(t) is bounded using (H1) for every
t ∈ I and

dis(A(t,hn(t), A(t,h(t)) ≤ r||hn(t)− h(t)|| → 0

when n→ ∞ by (H2), from Lemma 2, we deduce that u(t) ∈ D(A(t,h(t))), ∀t ∈ I.
Now, we are going to check that u satisfies the inclusion

−du
dt

(t) ∈ A(t,h(t))u(t) + f (t, h(t), uh(t)) a.e. t ∈ I

As u̇hn → u̇ weakly in L2
H([0, 1]), u̇hn → u̇ Komlos. Note that f (t, hn(t), uhn(t))→ f (t, h(t), u(t))

weakly in L2
E([0, 1]). Thus, zn(t) := f (t, hn(t), uhn(t)) → z(t) := f (t, h(t), u(t)) Komlos. Hence,

u̇hn(t) + f (t, hn(t), uhn(t) → u̇(t) + f (t, h(t), u(t)) Komlos. Apply Lemma 4 to A(t,hn(t)) and A(t,h(t))

to find a sequence (ηn) such that ηn ∈ D(A(t,hn(t))), ηn → η, A0
(t,hn(t)

ηn → A0
(t,h(t))u(t). From

−u̇hn(t) ∈ A(t,hn(t))uhn(t) + f (t, hn(t), uhn(t))

by monotonicity

〈duhn

dt
+ zn(t), uhn(t)− ηn〉 ≤ A0

(t,hn(t))ηn, ηn − uhn(t)〉.
From 〈duhn

dt
(t) + zn(t), u(t)− η

〉
=

〈duhn

dt
(t) + zn(t), uhn(t)− ηn

〉
+
〈duhn

dt
(t) + zn(t), u(t)− uhn(t)− (η − ηn)

〉
,

let us write
1
n

n

∑
j=1

〈duhj

dt
(t) + zj(t), u(t)− η

〉
=

1
n

n

∑
j=1

〈duhj

dt
(t) + zj(t), uhj

(t)− ηj
〉

+
1
n

n

∑
j=1

〈duhj

dt
(t) + zj(t), u(t)− uhj

(t)
〉

+
n

∑
j=1

〈duhj

dt
(t) + zj(t), ηj − η

〉
,

so that

1
n

n

∑
j=1

〈duhj

dt
(t) + zj(t), u(t)− η

〉 ≤ 1
n

n

∑
j=1

〈
A0
(t,hj(t))

ηj, ηj − uhj
(t)

〉
+ (ψ(t) + M)

1
n

n

∑
j=1
‖v(t)− uhj

(t))‖.
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+(ψ(t) + M)
1
n

n

∑
j=1
‖ηj − η‖.

Passing to the limit using (3) when n→ ∞, this last inequality gives immediately

〈du
dt

(t) + z(t), u(t)− η
〉 ≤ 〈

A0
(t,h(t))η, η − u(t)

〉
a.e.

As a consequence, by Lemma 1, we get − du
dt (t) ∈ A(t,h(t))u(t) + z(t) a.e. with u(t) ∈ D(A(t,h(t)))

for all t ∈ [0, 1] so that, by uniqueness, u = uh.
Since hn → h, we have

Φ(hn)(t)−Φ(h)(t) =
∫ 1

0
uhn(s)ds−

∫ 1

0
uh(s)ds

=
∫ 1

0
[uhn(s)− uh(s)]ds

≤
∫ 1

0
‖uhn(s)− uh(s)‖ds

As ‖uhn(·)− uh(·)‖ → 0 uniformly, we conclude that

sup
t∈[0,1]

‖Φ(hn)(t)−Φ(h)(t)‖ ≤
∫ 1

0
‖uhn(·)− uh(·)‖ds→ 0

so that Φ(hn)→ Φ(h) in CE([0, 1]). Since Φ : Xγ → Xγ is continuous and Φ(Xγ) is relatively compact
in CE(I), by [25,26] Φ has a fixed point, say h = Φ(h) ∈ Xγ that means

h(t) = Φ(h)(t) = x0 +
∫ t

0
uh(s)ds, t ∈ I,⎧⎨⎩

uh(t) ∈ D(A(t,h(t)))

− duh
dt

(t) ∈ A(t,h(t))uh(t) + f (t, h(t), uh(t)) dt-a.e.

The proof is complete.

4. Towards a Fractional Order of Evolution Inclusion with a Time and State Dependent Maximal
Monotone Operator

Now, I = [0, 1] and we investigate a class of boundary value problem governed by a fractional
differential inclusion (FDI) in a separable Hilbert space E coupled with an evolution inclusion governed
by a time and stated dependent maximal monotone operator:

Dαh(t) + λDα−1h(t) = u(t), t ∈ I, (6)

Iβ
0+h(t) |t=0 := lim

t→0

∫ t

0

(t− s)β−1

Γ(β)
h(s)ds = 0, h(1) = Iγ

0+h(1) =
1∫

0

(1− s)γ−1

Γ(γ)
h(s)ds, (7)

− du
dt

(t) ∈ A(t,h(t))u(t) a.e. t ∈ I. (8)

where α ∈]1, 2], β ∈ [0, 2− α], λ ≥ 0, γ > 0 are given constants, Dα is the standard Riemann–Liouville
fractional derivative, and Γ is the gamma function.
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4.1. Fractional Calculus

For the convenience of the reader, we begin with a few reminders of the concepts that will be
used in the rest of the paper.

Definition 1 (Fractional Bochner integral). Let E be a separable Banach space. Let f : I = [0, 1] → E.
The fractional Bochner-integral of order α > 0 of the function f is defined by

Iα
a+ f (t) :=

∫ t

a

(t− s)α−1

Γ(α)
f (s)ds, t > a.

In the above definition, the sign “
∫

” denotes the classical Bochner integral.

Lemma 6 ([10]). Let f ∈ L1([0, 1], E, dt). We have

(i) If α ∈]0, 1[ then Iα f exists almost everywhere on I and Iα f ∈ L1(I, E, dt).
(ii) If α ∈ [1, ∞), then Iα f ∈ CE(I).

Definition 2. Let E be a separable Banach space. Let f ∈ L1(I, E, dt). We define the Riemann–Liouville
fractional derivative of order α > 0 of f by

Dα f (t) := Dα
0+ f (t) =

dn

dtn In−α
0+ f (t) =

dn

dtn

∫ t

0

(t− s)n−α−1

Γ(n− α)
f (s)ds,

where n = [α] + 1.

In the case E ≡ R, we have the following well-known results.

Lemma 7 ([1,3]). Let α > 0. The general solution of the fractional differential equation Dαx(t) = 0 is given by

x(t) = c1tα−1 + c2tα−2 + · · ·+ cNtα−N , (9)

where ci ∈ R, i = 1, 2, . . . , N (N is the smallest integer greater than or equal to α).

Remark 1. Since Dα
0+ Iα

0+v(t) = v(t), for every v ∈ C(I), Dα
0+ [I

α
0+Dα

0+x(t)− x(t)] = 0 and, by Lemma 7,
it follows that

x(t) = Iα
0+Dα

0+x(t) + c1tα−1 + · · ·+ cNtα−N , (10)

for some ci ∈ R, i = 1, 2, . . . , N.

We denote by Wα,1
B,E(I) the space of all continuous functions in CE(I) such that their

Riemann–Liouville fractional derivative of order α− 1 are continuous and their Riemann–Liouville
fractional derivative of order α are Bochner integrable.

4.2. Green Function and Its Properties

Let α ∈]1, 2], β ∈ [0, 2− α], λ ≥ 0, γ > 0 and G : [0, 1]× [0, 1]→ R be a function defined by

G(t, s) = ϕ(s)Iα−1
0+ (exp(−λt)) +

⎧⎪⎨⎪⎩
exp(λs)Iα−1

s+ (exp(−λt)), 0 ≤ s ≤ t ≤ 1,

0, 0 ≤ t ≤ s ≤ 1,
(11)

where

ϕ(s) =
exp(λs)

μ0

[(
Iα−1+γ
s+ (exp(−λt))

)
(1)−

(
Iα−1
s+ (exp(−λt))

)
(1)

]
(12)
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with
μ0 =

(
Iα−1
0+ (exp(−λt))

)
(1)−

(
Iα−1+γ
0+ (exp(−λt))

)
(1). (13)

We recall and summarize a useful result ([28]).

Lemma 8. Let E be a separable Banach space. Let G be the function defined by (11)–(13).

(i) G(·, ·) satisfies the following estimate

|G(t, s)| ≤ 1
Γ(α)

(
1 + Γ(γ + 1)
|μ0|Γ(α)Γ(γ + 1)

+ 1
)
= MG.

(ii) If u ∈Wα,1
B,E ([0, 1]) satisfying boundary conditions (7), then

u(t) =
1∫

0

G(t, s)
(

Dαu (s) + λDα−1u(s)
)

ds for every t ∈ [0, 1].

(iii) Let f ∈ L1
E ([0, 1]) and let u f : [0, 1]→ E be the function defined by

u f (t) :=
1∫

0

G(t, s) f (s)ds for t ∈ [0, 1].

Then,
Iβ
0+u f (t) |t=0 = 0 and u f (1) =

(
Iγ
0+u f

)
(1).

Moreover u f ∈Wα,1
B,E([0, 1]) and we have

(
Dα−1u f

)
(t) =

t∫
0

exp(−λ(t− s)) f (s)ds + exp(−λt)
1∫

0

ϕ(s) f (s)ds for t ∈ [0, 1], (14)

(
Dαu f

)
(t) + λ

(
Dα−1u f

)
(t) = f (t) for all t ∈ [0, 1]. (15)

Remark 2. From Lemma 8, we can claim that, if

u f (t) =
∫ 1

0
G(t, s) f (s)ds, f ∈ L1

E([0, 1]),

then, for all t ∈ [0, 1],∥∥∥u f (t)
∥∥∥ ≤ MG ‖ f ‖L1

E([0,1]) and
∥∥∥Dα−1u f (t)

∥∥∥ ≤ MG ‖ f ‖L1
E([0,1]) , (16)

Indeed, by Lemma 8(i), it suffices to prove that
∥∥∥Dα−1u f (t)

∥∥∥ ≤ MG ‖ f ‖L1
E([0,1]).

It follows from (14) that ∥∥∥Dα−1u f (t)
∥∥∥ ≤ ∫ 1

0
(1 + |ϕ(s)|)| f (s)|ds.

This, by an increase of ϕ (See [28] (2.9)), gives∥∥∥Dα−1u f (t)
∥∥∥ ≤ Γ(α)MG ‖ f ‖L1

E([0,1])

and, since α ∈ [1, 2], implies our conclusion.
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4.3. Topological Structure of the Solution Set

From Lemma 8, we summarize a crucial fact.

Lemma 9. Let E be a separable Banach space. Let f ∈ L1(I, E, dt). Then, the boundary value problem{
Dαu(t) + λDα−1u(t) = f (t), t ∈ I
Iβ
0+u(t) |t=0 = 0, u(1) = Iγ

0+u(1)

has a unique Wα,1
B,E(I)-solution defined by

u(t) =
∫ 1

0
G(t, s) f (s)ds, t ∈ I.

Theorem 3. Let E be a separable Banach space. Let X : I → E be a convex compact valued measurable
multifunction such that X(t) ⊂ γBE for all t ∈ I, where γ is a positive constant and S1

X be the set of all
measurable selections of X. Then, the Wα,1

B,E(I)-solutions set of problem{
Dαu(t) + λDα−1u(t) = f (t), f ∈ S1

X , a.e. t ∈ I
Iβ
0+u(t) |t=0 = 0, u(1) = Iγ

0+u(1)
(17)

is compact in CE(I).

Proof. By virtue of Lemma 6, the Wα,1
B,E([0, 1])-solutions set X to the above inclusion is characterized by

X = {u f : I → E, u f (t) =
∫ 1

0
G(t, s) f (s)ds, f ∈ S1

X , t ∈ I}

Claim: X is bounded, convex, equicontinuous and compact in CE(I).
From definition of the Green function G, it is not difficult to show that {u f : f ∈ S1

X} is bounded,

equicontinuous in CE(I). Indeed, let
(

u fn

)
be a sequence in X . We note that, for each n ∈ N, we have

u fn ∈Wα,1
B,E(I), and

u fn(t) =
∫ 1

0
G(t, s) fn(s)ds, t ∈ I,

with

• Iβ
0+u fn(t)|t=0 = 0, u fn(1) = Iγ

0+u(1),

•
(

Dα−1u fn

)
(t) =

∫ t

0
exp(−λ(t− s)) fn(s)ds + exp(−λt)

∫ 1

0
ϕ(s) fn(s)ds, t ∈ I,

•
(

Dαu fn

)
(t) + λ

(
Dα−1u fn

)
(t) = fn(t), t ∈ I.
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For t1, t2 ∈ I, t1 < t2, we have

u fn(t2)− u fn(t1) =
∫ 1

0
G(t, s)( fn(t2, s)− fn(t1, s))ds

=
∫ 1

0
ϕ(s) fn(s)ds

(∫ t2

0

e−λτ

Γ(α− 1)
(t2 − τ)α−2dτ −

∫ t1

0

e−λτ

Γ(α− 1)
(t1 − τ)α−2dτ

)
+
∫ t2

0
eλs

(∫ t2

s

(t2 − τ)α−2

Γ(α− 1)
e−λτdτ

)
f (s)ds−

∫ t1

0
eλs

(∫ t1

s

e−λτ

Γ(α− 1)
(t1 − τ)α−2dτ

)
f (s)ds

=
∫ 1

0
φ(s) f (s)ds

[∫ t1

0
e−λτ (t2 − τ)α−2 − (t1 − τ)α−2

Γ(α− 1)
dτ +

∫ t2

t1

e−λτ (t2 − τ)α−2

Γ(α− 1)
dτ

]
+

∫ t1

0
eλs

(∫ t1

s
e−λτ (t2 − τ)α−2 − (t1 − τ)α−2

Γ(α− 1)
dτ

)
f (s)ds

+
∫ t1

0
eλs

(∫ t2

t1

e−λτ (t2 − τ)α−2

Γ(α− 1)
dτ

)
f (s)ds +

∫ t2

t1

eλs
(∫ t2

s

(t2 − τ)α−2

Γ(α− 1)
e−λτdτ

)
f (s)ds.

Then, we get

‖u fn(t2)− u fn(t1)‖ ≤
∫ 1

0

(
|ϕ(s)|+ eλs

)
|X(s)|ds

∫ t1

0
e−λτ (t1 − τ)α−2 − (t2 − τ)α−2

Γ(α− 1)
dτ

+
∫ 1

0

(
|ϕ(s)|+ eλs

)
|X(s)|ds

∫ t2

t1

e−λτ (t2 − τ)α−2

Γ(α− 1)
dτ

+
∫ t2

t1

eλs|X(s)|ds
∫ t2

t1

e−λτ (t2 − τ)α−2

Γ(α− 1)
dτ.

It is easy to obtain, after an integration by part, that

∫ t2

t1

e−λτ (t2 − τ)α−2

Γ(α− 1)
dτ = e−λt1

(t2 − t1)
α−2

Γ(α)
+ λ

∫ t2

t1

e−λτ (t2 − τ)α−1

Γ(α)
dτ ≤ 1 + λ

Γ(α)
(t2 − t1)

α−1

and ∫ t1

0
e−λτ (t1 − τ)α−2 − (t2 − τ)α−2

Γ(α− 1)
dτ ≤

∫ t1

0

(t1 − τ)α−2 − (t2 − τ)α−2

Γ(α− 1)
dτ

=
(t2 − t1)

α−1 + tα−1
1 − tα−1

2
Γ(α)

Using the inequality that |ap − bp| ≤ |a− b|p for all a, b ≥ 0 and 0 < p ≤ 1, we yield

∫ t1

0
e−λτ (t2 − τ)α−2 − (t1 − τ)α−2

Γ(α− 1)
dτ ≤ 2

Γ(α)
(t2 − t1)

α−1

Then, since α ∈]1, 2], we can increase ‖u fn(t2)− u fn(t1)‖ by

‖u fn(t2)− u fn(t1)‖ ≤ K|t2 − t1|α−1

with K =
∫ 1

0

[
(3 + λ)|φ(s)|+ (4 + 2λ)eλs] |X(s)|ds This shows that

{
u fn : n ∈ N

}
is equicontinuous

in CE(I). Moreover, for each t ∈ I, the set
{

u fn(t) : n ∈ N
}

is contained in the convex compact set∫ 1
0 G(t, s)X(s)ds [27,29] so that X is relatively compact in CE(I) as claimed. Thus, we can assume that

lim
n→∞

u fn = u∞ ∈ CE(I)
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As S1
X is σ(L1

E, L∞
E∗)-compact, e.g., [29], we may assume that ( fn) σ(L1

E, L∞
E∗)-converges to f∞ ∈ S1

X ,
so that u fn weakly converges to u f∞ in CE(I) where u f∞(t) =

∫ 1
0 G(t, s) f∞(s)ds and so, for every t ∈ I,

u∞(t) = w- lim
n→∞

u fn(t) = w- lim
n→∞

∫ 1

0
G(t, s) fn(s)ds =

∫ 1

0
G(t, s) f∞(s)ds = u f∞(t),

and

w- lim
n→∞

(
Dα−1u fn

)
(t) = w- lim

n→∞

[∫ t

0
exp(−λ(t− s)) fn(s)ds + exp(−λt)

∫ 1

0
ϕ(s) fn(s)ds

]
=

∫ t

0
exp(−λ(t− s)) f∞(s)ds + exp(−λt)

∫ 1

0
ϕ(s) f∞(s)ds

=
(

Dα−1u f∞

)
(t), t ∈ I.

This means u∞ ∈ X , and the proof of the theorem is complete.

Remark 3. In the course of the proof of Theorem 3, we have proven the continuous dependence of the mappings
f �→ u f and f �→ Dα−1u f on the convex σ(L1

E, L∞
E∗)-compact set S1

X. This fact has some importance in
further applications.

Theorem 4. Let I = [0, 1]. Let (t, x)→ A(t,x) : D(A(t,x))→ 2E a maximal monotone operator satisfying:
(H1) ||A0

(t,x)y|| ≤ c(1 + ||x||+ ||y||) for all (t, x, y) ∈ I × E× D(A(t,x)), for some positive constant c,
(H2) dis(A(t,x), A(τ,y)) ≤ a(t)− a(τ) + r||x− y|| , for all 0 ≤ τ ≤ t ≤ 1 and for all (x, y) ∈ E× E, where r
is a positive number, a : I → [0,+∞[ is nondecreasing absolutely continuous on I with ȧ ∈ L2(I,R, dt),
(H3) D(A(t,x)) ⊂ X(t) ⊂ γBE for all (t, x) ∈ I × E, where X : I → E is a convex compact valued measurable
mapping and γ is a positive number.
Then, there is a Wα,1

B,E(I) mapping x : I → E and an absolutely continuous mapping u : I → E satisfying⎧⎪⎪⎪⎨⎪⎪⎪⎩
Dαx(t) + λDα−1x(t) = u(t), t ∈ I
Iβ
0+x(t) |t=0 = 0, x(1) = Iγ

0+x(1)
u(t) ∈ D(A(t,x(t)))

− du
dt (t) ∈ A(t,x(t))u(t) a.e. t ∈ I.

Proof. Let us consider the convex compact subset X in the Banach space CE(I) defined by

X := {u f : I → E : u f (t) =
∫ 1

0
G(t, s) f (s)ds, f ∈ S1

X , t ∈ I}

We note that X is convex compact and equi-Lipschitz. Cf the proof of Theorem 3. Now, for each
h ∈ X , let us consider the unique absolutely continuous solution uh to⎧⎪⎨⎪⎩

−u̇h(t) ∈ A(t,h(t))uh(t) a.e. t ∈ I
uh(t) ∈ D(A(t,h(t))), ∀t ∈ I
uh(0) = u0 ∈ D(A(0,h(0)))

For each h, let us set

Φ(h)(t) =
∫ 1

0
G(t, s)uh(s)ds, t ∈ I
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Since uh(s) ∈ D(A(s,h(s))) ⊂ X(s), then it is clear that Φ(h) ∈ X .
Now, we check that Φ is continuous. It is sufficient to show that, if (hn) converges uniformly to h in X ,
then the absolutely continuous solution uhn associated with hn⎧⎪⎪⎨⎪⎪⎩

uhn(0) = un
0 ∈ D(A(0,hn(0)))

uhn(t) ∈ D(A(t,hn(t))), ∀t ∈ I

−u̇hn(t) ∈ A(t,hn(t))uhn(t) a.e. t ∈ I

uniformly converges to the absolutely solution uh associated with h⎧⎪⎪⎨⎪⎪⎩
uh(0) = u0 ∈ D(A(0,h(0)))

uh(t) ∈ D(A(t,h(t))), ∀t ∈ [0, T]

−u̇h(t) ∈ A(t,h(t))uh(t) a.e. t ∈ [0, T]

This fact is ensured by repeating the proof of Theorem 1. Since hn → h, we have

Φ(hn)(t)−Φ(h)(t) =
∫ 1

0
G(t, s)uhn(s)ds−

∫ 1

0
G(t, s)uh(s)ds

=
∫ 1

0
G(t, s)[uhn(s)− uh(s)]ds

≤
∫ 1

0
MG||uhn(s)− uh(s)||ds

As ||uhn(·)− uh(·)|| → 0 uniformly, we conclude that

sup
t∈I
||Φ(hn)(t)−Φ(h)(t)|| ≤

∫ 1

0
MG||uhn(·)− uh(·)||ds→ 0

so that Φ(hn)→ Φ(h) in CE(I). Since Φ : X → X is continuous, Φ has a fixed point, say h = Φ(h) ∈ X .
This means that

h(t) = Φ(h)(t) =
∫ 1

0
G(t, s)uh(s)ds,

with ⎧⎪⎪⎨⎪⎪⎩
uh(0) ∈ D(A(0,h(0)))

uh(t) ∈ D(A(t,h(t))), ∀t ∈ I

−u̇h(t) ∈ A(t,h(t))uh(t) a.e. t ∈ I

Coming back to Lemma 9 and applying the above notations, this means that we have just shown
that there exists a mapping h ∈Wα,∞

E (I) satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dαh(t) + λDα−1h(t) = uh(t),

Iβ
0+h(t) |t=0 = 0, h(1) = Iγ

0+h(1)

uh(0) ∈ D(A(0,h(0)))

uh(t) ∈ D(A(t,h(t))), ∀t ∈ I

−u̇h(t) ∈ A(t,h(t))uh(t) a.e. t ∈ I

Now, we present an extension of the preceding theorem dealing with a Lipschitz perturbation.
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Theorem 5. Let I = [0, 1]. Let (t, x)→ A(t,x) : D(A(t,x))→ 2E a maximal monotone operator satisfying:
(H1) ||A0

(t,x)y|| ≤ c(1 + ||x||+ ||y||) for all (t, x, y) ∈ I × E× D(A(t,x)), for some positive constant c,
(H2) dis(A(t,x), A(τ,y)) ≤ a(t)− a(τ) + r||x− y|| , for all 0 ≤ τ ≤ t ≤ 1 and for all (x, y) ∈ E× E, where r
is a positive number, a : I → [0,+∞[ is nondecreasing absolutely continuous on I with ȧ ∈ L2(I,R, dt),
(H3) D(A(t,x)) ⊂ X(t) ⊂ γBE for all (t, x) ∈ I × E, where X : I → E is a convex compact valued measurable
mapping and γ is a positive number.
Let f : I × E× E→ E such that

(i) f (., x, y) is Lebesgue measurable on I for all (x, y) ∈ E× E
(ii) f (t, ., .) is continuous on E× E,
(iii) || f (t, x, y)|| ≤ M for all (t, x, y) ∈ I × E× E,
(iv) || f (t, x, y)− f (t, x, z)|| ≤ M||y− z||, for all (t, x, y, z) ∈ I × E× E× E

for some positive constant M.
Then, there is a Wα,1

B,E(I) mapping x : I → E and an absolutely continuous mapping v : I → E satisfying⎧⎪⎪⎪⎨⎪⎪⎪⎩
Dαx(t) + λDα−1x(t) = v(t), t ∈ I
Iβ
0+x(t) |t=0 = 0, x(1) = Iγ

0+x(1)
v(t) ∈ D(A(t,x(t))), t ∈ I
− dv

dt (t) ∈ A(t,x(t))v(t) + f (t, x(t), v(t)) a.e. t ∈ I.

Proof. Let us consider the convex compact subset X in the Banach space CE(I) defined by

X := {u f : I → E : u f (t) =
∫ 1

0
G(t, s) f (s)ds, f ∈ S1

X , t ∈ I}

We note that X is convex compact and equi-Lipschitz. Cf the proof of Theorem 3. Now, for each
h ∈ X , let us consider the unique absolutely continuous solution uh to⎧⎪⎨⎪⎩

−u̇h(t) ∈ A(t,h(t))uh(t) + f (t, h(t), uh(t)) a.e. t ∈ I
uh(t) ∈ D(A(t,h(t))), ∀t ∈ I
uh(0) = u0 ∈ D(A(0,h(0)))

Existence and uniqueness of absolutely solution uh are ensured by the fact that the operator
Bh(t) = A(t,h(t)) is a time dependent maximal monotone operator absolutely continuous in variation
(See Lemma 5), and the mapping fh(t, x) := f (t, h(t), y) is measurable with t ∈ I and Lipschitz with
y ∈ E. Furthermore, we have the estimate ||u̇h(t)|| ≤ ψ(t) a.e for all h ∈ X where ψ ∈ L2(I) by the
consideration given in Lemma 5 and the estimate of velocity given in ([22], Theorem 1). For each h,
let us set

Φ(h)(t) =
∫ 1

0
G(t, s)uh(s)ds, t ∈ I.

Since uh(s) ∈ D(A(s,h(s))) ⊂ X(s), then it is clear that Φ(h) ∈ X .
Now, we check that Φ is continuous. It is sufficient to show that, if (hn) converges uniformly to h

in X , then the absolutely continuous solution uhn associated with hn⎧⎪⎪⎨⎪⎪⎩
uhn(0) = un

0 ∈ D(A(0,hn(0)))

uhn(t) ∈ D(A(t,hn(t))), ∀t ∈ I

−u̇hn(t) ∈ A(t,hn(t))uhn(t) + f (t, hn(t), uhn(t)) a.e. t ∈ I

48



Mathematics 2020, 8, 1395

uniformly converges to the absolutely solution uh associated with h⎧⎪⎪⎨⎪⎪⎩
uh(0) ∈ D(A(0,h(0)))

uh(t) ∈ D(A(t,h(t))), ∀t ∈ I

−u̇h(t) ∈ A(t,h(t))uh(t) + f (t, h(t), uh(t)) a.e. t ∈ I

This need careful look. We note that uhn is equicontinuous with ||u̇hn(t)|| ≤ ψ(t) for almost
all t ∈ I and for all n ∈ N where ψ ∈ L2 and uhn(t) ∈ D(A(t,hn(t))) ⊂ X(t) for all t ∈ I and for all

n ∈ N. Thus, by extracting subsequence, we may assume that uhn(t)→ v(t) = v(0) +
∫ t

0 v̇(s)ds with
v̇ ∈ L2

E(I) for all t ∈ I and u̇hn → v̇ weakly in L2
E(I). Let us check that v(t) ∈ D(A(t,h(t))) for all t ∈ I.

We have dis(A(t,hn(t), A(t,h(t))) ≤ r||hn(t)− h(t)|| → 0. It is clear that (yn = A0
(t,hn(t)

uhn(t)) is bounded
and hence relatively weakly compact. By applying Lemma 2 to uhn(t)→ v(t) and to a convergence
subsequence of (yn) using uhn(t) ∈ X(t) ⊂ γBE to show that v(t) ∈ D(A(t,h(t))). As u̇hn → v̇ weakly
in L2

E(I), u̇hn → v̇ Komlos. Note that f (t, hn(t), uhn(t)) → f (t, h(t), uh(t)) weakly in L2
E(I). Thus,

zn(t) := f (t, hn(t), uhn(t)) → z(t) := f (t, h(t), v(t)) Komlos. Hence, u̇hn(t) + f (t, hn(t), uhn(t) →
v̇(t) + f (t, h(t), v(t)) Komlos. Apply Lemma 4 to A(t,hn(t)) and A(t,h(t)) to find a sequence (ηn) such
that such that ηn ∈ D(A(t,hn(t))), ηn → η, A0

(t,hn(t)
ηn → A0

(t,h(t))v(t) From

−u̇hn(t) ∈ A(t,hn(t))uhn(t) + f (t, hn(t), uhn(t))(
∗∗)

by monotonicity

〈duhn

dt
+ zn(t), uhn(t)− ηn〉 ≤ A0

(t,hn(t))ηn, ηn − uhn(t)〉.(∗∗∗)

From 〈duhn

dt
(t) + zn(t), v(t)− η

〉
=

〈duhn

dt
(t) + zn(t), uhn(t)− ηn

〉
+
〈duhn

dt
(t) + zn(t), v(t)− uhn(t)− (η − ηn)

〉
,

let us write
1
n

n

∑
j=1

〈duhj

dt
(t) + zj(t), v(t)− η

〉
=

1
n

n

∑
j=1

〈duhj

dt
(t) + zj(t), uhj

(t)− ηj
〉
+

1
n

n

∑
j=1

〈duhj

dt
(t) + zj(t), v(t)− uhj

(t)
〉

+
n

∑
j=1

〈duhj

dt
(t) + zj(t), ηj − η

〉
,

so that

1
n

n

∑
j=1

〈duhj

dt
(t) + zj(t), v(t)− η

〉 ≤ 1
n

n

∑
j=1

〈
A0
(t,hj(t))

ηj, ηj − uhj
(t)

〉
+ (ψ(t) + M)

1
n

n

∑
j=1
‖v(t)− uhj

(t))‖.

+(ψ(t) + M)
1
n

n

∑
j=1
‖ηj − η‖.

Passing to the limit using (5) when n→ ∞, this last inequality gives immediately

〈dv
dt

(t) + z(t), v(t)− η
〉 ≤ 〈

A0
(t,h(t))η, η − v(t)

〉
a.e.
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As a consequence, by Lemma 1, we get
− dv

dt (t) ∈ A(t,h(t))v(t) + z(t) a.e. with v(t) ∈ D(A(t,h(t))) for all t ∈ I so that, by uniqueness, v = uh.
Since hn → h, we have

Φ(hn)(t)−Φ(h)(t) =
∫ 1

0
G(t, s)uhn(s)ds−

∫ 1

0
G(t, s)uh(s)ds

=
∫ 1

0
G(t, s)[uhn(s)− uh(s)]ds

≤
∫ 1

0
MG||uhn(s)− uh(s)||ds

As ||uhn(·)− uh(·)|| → 0 uniformly, we conclude that

sup
t∈I
||Φ(hn)(t)−Φ(h)(t)|| ≤

∫ 1

0
MG||uhn(·)− uh(·)||ds→ 0

so that Φ(hn)→ Φ(h) in CE(I). Since Φ : X → X is continuous, Φ has a fixed point, say h = Φ(h) ∈ X .
This means that

h(t) = Φ(h)(t) =
∫ 1

0
G(t, s)uh(s)ds,

with ⎧⎪⎪⎨⎪⎪⎩
uh(0) ∈ D(A(0,h(0)))

uh(t) ∈ D(A(t,h(t))), ∀t ∈ I

−u̇h(t) ∈ A(t,h(t))uh(t) + f (t, h(t), uh(t)) a.e. t ∈ I

Coming back to Lemma 9 and applying the above notations, this means that we have just shown
that there exists a mapping h ∈Wα,∞

B,E (I) satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dαh(t) + λDα−1h(t) = uh(t),

Iβ
0+h(t) |t=0 = 0, h(1) = Iγ

0+h(1)

uh(0) ∈ D(A(0,h(0)))

uh(t) ∈ D(A(t,h(t))), ∀t ∈ I

−u̇h(t) ∈ A(t,h(t))uh(t) + f (t, h(t), uh(t)) a.e. t ∈ I

We finish the paper by investigating a fractional order to a sweeping process [30,31].
We begin recall the existence of absolutely continuous solution to a class of sweeping

process [18,32].

Theorem 6. Let f : [0, T] → E be a continuous mapping such that || f (t)|| ≤ β for all t ∈ [0, T], let v :
[0, T]→ R+ be a positive nondecreasing continuous function with v(0) = 0. Let C : [0, T]→ E be a convex
weakly compact valued mapping such that dH(C(t), C(τ)) ≤ |v(t)− v(τ)| for all t, τ ∈ [0, T]. Let A : E→ E
be a linear continuous coercive symmetric operator and let B : E→ E be a linear continuous compact operator.
Then, for any u0 ∈ E, the evolution inclusion

f (t) + Bu(t)− A
du
dt

(t) ∈ NC(t)(
du
dt

(t))

u(0) = u0

admits a unique W1,∞
E ([0, T]) solution u : [0, T]→ E.
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Theorem 7. Let f : I × E → E be a bounded continuous mapping such that || f (t, x)|| ≤ M for all (t, x) ∈
I × E, for some positive constant M, let v : I → R+ be a positive nondecreasing continuous function with
v(0) = 0. Let C : I → E be a convex compact valued mapping such that dH(C(t), C(τ)) ≤ |v(t)− v(τ)| for
all t, τ ∈ I. Let A : E→ E be a linear continuous coercive symmetric operator and let B : E→ E be a linear
continuous compact operator.
Then, for any u0 ∈ E, there exists a Wα,1

B,E(I) mapping x : I → E and an absolutely continuous mapping
u : I → E satisfying ⎧⎪⎪⎪⎨⎪⎪⎪⎩

u(0) = u0 ∈ E
Dαx(t) + λDα−1x(t) = u(t), t ∈ I
Iβ
0+x(t) |t=0 = 0, x(1) = Iγ

0+x(1)
f (t, x(t)) + Bu(t)− A du

dt (t)) ∈ NC(t)(
du
dt (t)), a.e. t ∈ I

Proof. By Theorem 6 and the assumptions on f , for any bounded continuous mapping h : I → E,
there is a unique absolutely continuous solution vh to the inclusion{

vh(0) = u0 ∈ E
f (t, h(t)) + Bvh(t)− A dvh

dt (t)) ∈ NC(t)(
dvh
dt (t)), a.e. t ∈ I

with dvh
dt (t) ∈ C(t) a.e. so that vh(t) = u0 +

∫ t
0

dvh
ds (s)ds ∈ u0 +

∫ t
0 C(s)ds, ∀t ∈ I. By our assumption,

C is scalarly upper semicontinuous convex compact valued integrably bounded: C(t) ⊂ ρBE, ∀t ∈ I,
hence, by [33], t �→ Ψ(t) := u0 +

∫ t
0 C(s)ds is a scalarly upper semicontinuous convex compact valued

integrably bounded mapping with Ψ(t) := u0 +
∫ t

0 C(s)ds ⊂ u0 + ρBE, ∀t ∈ I. Let us consider the
closed convex subset X in the Banach space CE(I) defined by

X := {u f : I → E : u f (t) =
∫ 1

0
G(t, s) f (s)ds, f ∈ S1

u0+ρBE
, t ∈ I},

where S1
u0+ρBE

denotes the set of all integrable selections of the convex weakly compact valued constant

multifunction u0 + ρBE. Now, for each h ∈ X , let us consider the mapping defined by

Φ(h)(t) :=
∫ t

0
G(t, s)vh(s)ds,

for t ∈ I. Then, it is clear that Φ(h) ∈ X . Since u0 +
∫ t

0 C(s)ds is a convex compact, Φ(X ) is
equicontinuous and relatively compact in the Banach space CE(I) by virtue of Theorem 3 using the
compactness of Ψ(t). Now, we check that Φ is continuous. It is sufficient to show that, if (hn) uniformly
converges to h in X , then the absolutely continuous solution vhn associated with hn{

vhn(0) = u0 ∈ E
f (t, hn(t)) + Bvhn(t)− A dvhn

dt (t)) ∈ NC(t)(
dvhn

dt (t)), a.e. t ∈ I

uniformly converges to the absolutely continuous solution vh associated with h{
vh(0) = u0 ∈ E
f (t, h(t)) + Bvh(t)− A dvh

dt (t)) ∈ NC(t)(
dvh
dt (t)), a.e. t ∈ I

As (vhn) is equi-absolutely continuous with vhn t) ∈ u0 +
∫ t

0 C(s)ds, ∀t ∈ I, we may assume that
(vhn) uniformly converges to an absolutely continuous mapping z.
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Since vhn(t) = u0 +
∫
]0,t]

dvhn
ds (s)ds, t ∈ I and dvhn

ds (s) ∈ C(s), a.e. s ∈ I, we may assume that ( dvhn
dt )

weakly converges in L1
E(I) to w ∈ L1

E(I) with w(t) ∈ C(t), t ∈ I so that

lim
n

vhn(t) = u0 +
∫ t

0
w(s)ds := u(t), t ∈ I.

By identifying the limits, we get

u(t) = z(t) = u0 +
∫ t

0
w(s)ds

with u̇ = w. Therefore, by applying the arguments in the variational limit result in [34], we get

f (t, h(t)) + Bu(t)− A
du
dt

(t)) ∈ NC(t)(
du
dt

(t)), a.e. t ∈ I

with u(0) = u0 ∈ E, so that, by uniqueness, u = vh. Since hn → h, we have

Φ(hn)(t)−Φ(h)(t) =
∫ 1

0
G(t, s)vhn(s)ds−

∫ 1

0
G(t, s)vh(s)ds

=
∫ 1

0
G(t, s)[vhn(s)− vh(s)]ds

≤
∫ 1

0
MG||vhn(s)− vh(s)||ds

As ||vhn(·)− vh(·)|| → 0 uniformly, we conclude that

sup
t∈I
||Φ(hn)(t)−Φ(h)(t)|| ≤

∫ 1

0
MG||vhn(·)− vh(·)||ds→ 0

so that Φ(hn) → Φ(h) in CE(I). Since Φ : X → X is continuous and Φ(X ) is relatively compact in
CE(I), by [25,26] Φ has a fixed point, say h = Φ(h) ∈ X . This means that

h(t) = Φ(h)(t) =
∫ 1

0
G(t, s)vh(s)ds,

with ⎧⎪⎪⎪⎨⎪⎪⎪⎩
vh(0) = u0 ∈ E
Dαh(t) + λDα−1h(t) = vh(t), t ∈ I
Iβ
0+h(t) |t=0 = 0, h(1) = Iγ

0+h(1)
f (t, h(t)) + Bvh(t)− A dvh

dt (t)) ∈ NC(t)(
dvh
dt (t)), a.e. t ∈ I

The proof is complete.

Theorem 8. Theorems 6 and 7 results are inspired by some ideas in [18]. At this point, some variants are
available, mainly when the second member is a time dependent subdifferential operator [35], namely, for any
u0 ∈ E, there exists a Wα,1

B,E(I) mapping x : I → E and an absolutely continuous mapping u : I → E satisfying⎧⎪⎪⎪⎨⎪⎪⎪⎩
u(0) = u0 ∈ E
Dαx(t) + λDα−1x(t) = u(t), t ∈ I
Iβ
0+x(t) |t=0 = 0, x(1) = Iγ

0+x(1)
f (t, x(t)) + Bu(t)− A du

dt (t) ∈ ∂ϕ(t, du
dt (t)), a.e. t ∈ I

52



Mathematics 2020, 8, 1395

5. On a Fillipov Theorem

We end this section with a Fillipov theorem and a relaxation theorem for the fractional
differential inclusion {

Dαu(t) + λDα−1u(t) ∈ F(t, u(t)), a.e. t ∈ I
Iβ
0+u(t) |t=0 = 0, u(1) = Iγ

0+u(1)

where F : I × E→ E is a closed valued Lipschitz mapping w.r.t.o x ∈ E.

Theorem 9. Assume that E is a separable Banach space. Let F : I × E → E be a closed valued L(I) ⊗
B(E)-measurable mapping such that
(H1): dH(F(t, x), F(t, y)) ≤ l(t)||x− y|| for all t, x, y where l ∈ L1

R(I)) such that ρ := MG||l||L1
R(I) < 1.

Assume further that
(H2) : there exists g ∈ L1

E(I) such that d(g(t), F(t, ug(t))) < l(t)
∑∞

n=1 nρn−1 where ug(t) =∫ 1
0 G(t, s)g(s)ds, ∀t ∈ I.

Then, the fractional differential inclusion{
Dαu(t) + λDα−1u(t) ∈ F(t, u(t)), a.e. t ∈ I
Iβ
0+u(t) |t=0 = 0, u(1) = Iγ

0+u(1)

has at least a Wα,1
B,E(I)-solution u : I → E.

Proof. We use the ideas in the proof of Theorem 4.3 in [36], Remark 2 and Lemma 9.
It is worth mentioning that the series Λ := ∑∞

n=1 nρn−1 is convergent. Indeed, we have

lim
n→∞

(n + 1)ρn

nρn−1 = lim
n→∞

n + 1
n

ρ = ρ < 1.

Thus, by d’Alembert’s ratio test, the series ∑∞
n=1 nρn−1 is convergent

Step 1. We shall construct inductively sequence { fn(·)}∞
n=1 where f1 = g such that the following

conditions are fulfilled, for all n ≥ 1,

fn ∈ L1
E(I) and fn+1(t) ∈ F(t, u fn(t)), t ∈ I, (18)

‖ fn+1(t)− fn(t)‖ ≤ (n + 1)ρn−1l(t)Λ−1, (19)∥∥∥u fn+1(t)− u fn(t)
∥∥∥ =

∥∥∥∥∫ 1

0
G(t, s)[ fn+1(s)− fn(s)]ds

∥∥∥∥ ≤ (n + 1)ρnΛ−1, (20)

for all t ∈ I. We note that the passage from (18) to (19) is obtained, thanks to (16) of Remark 2, with

∥∥∥u fn+1(t)− u fn(t)
∥∥∥ =

∥∥∥∥∫ 1

0
G(t, s)[ fn+1(s)− fn(s)]ds

∥∥∥∥ ≤ MG ‖ fn+1(t)− fn(t)‖

By (H2), we have d( f1(t), F(t, u f1(t)) < l(t)Λ−1, t ∈ I. Let us consider the multifunction
Σ1 : I → c(E) defined by

Σ1(t) =
{

v ∈ F(t, u f1(t)) : ‖v− f1(t)‖ ≤ 2l(t)Λ−1
}

.

Clearly, Σ1 is Lebesgue measurable with nonempty closed values. In view of the existence theorem
of measurable selections (see [29]), there is a measurable function f2 : I → E such that f2(t) ∈ Σ1(t)
for all t ∈ I. This yields

f2(t) ∈ F(t, u f1(t)), ‖ f2(t)− f1(t)‖ ≤ 2l(t)Λ−1,
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for all t ∈ I. Thus, it is easy to see that f2 ∈ L1
E(I) and

∥∥∥u f2(t)− u f1(t)
∥∥∥ =

∥∥∥∥∫ 1

0
G(t, s)[ f2(s)− f1(s)]ds

∥∥∥∥ ≤ 2ρΛ−1,

for all t ∈ I.

� Suppose that we have constructed integrable functions f1, f2, . . . , fn such that

fi+1(t) ∈ F(t, u fi
(t)), t ∈ I,

‖ fi+1(t)− fi(t)‖ ≤ (i + 1)ρi−1l(t)Λ−1,

for all i = 1, 2, . . . , n− 1. Then,∥∥∥u fi+1
(t)− u fi

(t)
∥∥∥ =

∥∥∥∥∫ 1

0
G(t, s)[ fi+1(s)− fi(s)]ds

∥∥∥∥ ≤ (i + 1)ρiΛ−1,

for i = 1, 2, . . . , n− 1.
� The function fn+1 is constructed as follows. We have

d
(

fn(t), F
(

t, u fn(t))
))
≤ dH

(
F(t, u fn−1(t)), F(t, u fn(t))

)
≤ l(t)

∥∥∥u fn(t)− u fn−1(t)
∥∥∥

≤ nρn−1l(t)Λ−1.

The multifunction Σn : I → c(E), defined by

Σn(t) =
{

v ∈ F (t, un(t)) : ‖v− fn(t)‖ ≤ (n + 1)ρn−1l(t)εΛ−1
}

,

is Lebesgue measurable with nonempty closed values. Thus, there exists a measurable function
fn+1 such that

fn+1(t) ∈ F
(

t, u fn(t)
)

, ‖ fn+1(t)− fn(t)‖ ≤ (n + 1)ρn−1l(t)Λ−1,

for all t ∈ I. Then, it is clear that, for all t ∈ I,∥∥∥u fn+1(t)− u fn(t)
∥∥∥ =

∥∥∥∥∫ 1

0
G(t, s)[ fn+1(s)− fn(s)]ds

∥∥∥∥ ≤ (n + 1)ρnΛ−1,

Thus, such a sequence { fn}∞
n=1 with the required properties exists.

Step 2. It follows that, for all n ≥ 1, we have

‖ fn+1 − fn‖L1
E(I) =

∫ 1

0
‖ fn+1(t)− fn(t)‖ dt ≤ (n + 1)ρn−1 ‖l‖L1

R+(I) Λ−1. (21)
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On the other hand, by ρ < 1 the series ∑∞
n=1(n + 1)ρn−1 is convergent (using d’Alembert’s ratio

test). Now, we assert that { fn(·)}∞
n=1 is a Cauchy sequence in L1

E(I). Indeed, using (10), for n, m ∈ N

such that m > n, we have the estimate

‖ fm − fn‖L1
E(I) ≤ ‖ fn+1 − fn‖L1

E(I) + ‖ fn+2 − fn+1‖L1
E(I) + · · ·+ ‖ fm − fm−1‖L1

E(I)

≤
[
(n + 1)ρn−1 + (n + 2)ρn + · · ·+ mρm−2

]
‖l‖L1

R+(I) Λ−1

≤
(

∞

∑
k=n

(k + 1)ρk−1

)
‖l‖L1

R+(I) Λ−1

Letting n → ∞ in the above inequality, we see that ‖ fm − fn‖L1
E(I) goes to 0 when m, n goes to

∞. Since the normed space L1
E(I) is complete, ( fn) norm converges to an element f ∈ L1

E(I). By the
properties of our Green function and the definition of u fn , we conclude that u fn pointwise converge
with respect to the norm topology to u f

u f (t) =
∫ 1

0
G(t, s) f (s)ds, ∀t ∈ I.

Now, we claim that f (t) ∈ F(t, u f (t)), a.e. t ∈ I. Let us write

d( f (t), F(t, u f (t)) ≤
∣∣∣d( f (t), F(t, u f (t)))− d( fn(t), F(t, u f (t))

∣∣∣
+ d( fn(t), F(t, u f (t)). (22)

On the other hand,∣∣∣d( f (t), F(t, u f (t))− d( fn(t), F(t, u f (t)))
∣∣∣ ≤ ‖ f (t)− fn(t)‖ , (23)

and, by fn(t) ∈ F(t, u fn−1(t)), t ∈ I, we have

d( fn(t), F(t, u f (t)) ≤ dH

(
F(t, u fn−1(t)), F(t, u f (t))

)
≤ l(t)

∥∥∥u fn−1(t)− u f (t)
∥∥∥ . (24)

Since ( fn)n∈N norm converges to f ∈ L1
E(I), we may, by extracting subsequences, assume that

|| fn(t)− f (t)||E → 0 a.e. Now, passing to the limit when n→ ∞ in the preceding inequality, we get

d( f (t), F(t, u f (t))) = 0 a.e. t ∈ I

This implies that f (t) ∈ F(t, u f (t)), a.e.t ∈ I because F is closed valued. Thus, by Lemma 9,
we have shown that u f is a solution of the problem{

Dαu f (t) + λDα−1u f (t) ∈ F(t, u f (t)), a.e. t ∈ I
Iβ
0+u f (t) |t=0 = 0, u f (1) = Iγ

0+u f (1)

The proof of theorem is complete.

A relaxation theorem is available using the machinery developed in [36] Theorem 4.2 and
Lemma 9.

Theorem 10. Relaxation Assume that E is a separable Banach space. Let F : I × E→ E be a closed valued
L(I)⊗B(E)-measurable mapping such that
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(H1): dH(F(t, x), F(t, y)) ≤ l(t)||x− y|| for all t, x, y where l ∈ L1
R(I)) such that ρ := MG||l||L1

R(I) < 1.
Assume further that
(H2) : there exists g ∈ L1

E(I) such that d(g(t), F(t, ug(t))) < l(t)
∑∞

n=1 nρn−1 where ug(t) =∫ 1
0 G(t, s)g(s)ds, ∀t ∈ I.

(H3) : d(0, F(t, x)) < c(t)(1 + ||x||), ∀(t, x) ∈ I × E where c is a positive integrable function.
Then, the following holds:
(a)

(PF)

{
Dαu(t) + λDα−1u(t) ∈ F(t, u(t)), a.e. t ∈ I
Iβ
0+u(t) |t=0 = 0, u(1) = Iγ

0+u(1)

and

(PcoF)

{
Dαu(t) + λDα−1u(t) ∈ coF(t, u(t)), a.e. t ∈ I
Iβ
0+u(t) |t=0 = 0, u(1) = Iγ

0+u(1)

have at least a solution in Wα,1
B,E(I).

(b) Let f0 ∈ L1
E(I)) such that

f0(t) ∈ coF(t, u f0(t))

u f0(t) =
∫ 1

0
G(t, s) f0(s)ds, ∀t ∈ I

Then, for every ε > 0, there exists f ∈ L1
E(I) such that

f (t) ∈ F(t, u f (t)), a.e.

u f (t) =
∫ 1

0
G(t, s) f (s)ds, ∀t ∈ I

and
sup
t∈I
||u f (t)− u f0(t)|| ≤ ε.

Proof. We will proceed in several steps.

Step 1. (a) follows from Theorem 9 applied to both F and coF taking account of (H1)− (H2). Let u f0(·)
be a Wα,1

B,E(I)-solution of the problem (PcoF) that is, u f0 ∈ SPcoF

f0(t) ∈ coF(t, u f0(t)), a.e. t ∈ I, (25)

u f0(t) :=
∫ 1

0
G(t, s) f0(s)ds, ∀t ∈ I (26)

Let S1
F and S1

coF denote the set of all L1
E(I)-selections of the set valued mappings t→ F(t, u f0(t))

and t→ coF(t, u f0(t)) By (H3), the multifunction t �→ F(t, u f0(t)) is closed valued and integrable:

d(0, F(t, u f0(t)) < c(t)(1 + ||u f0(t)||)

so that S1
F is non empty. Then, according to Hiai–Umegaki [37], S1

coF = coS1
F where co is taken in L1

E(I).
This equality along with f0(t) ∈ coF(t, u f0(t)), a.e. t ∈ I yields f0 ∈ coS1

F. Let ε > 0. There exists
gε ∈ L1

E(I) such that gε ∈ coS1
F and || f0 − gε||L1

E(I) ≤ 1
2 εΛ−1M−1

G so that

||u f0(t)− ugε(t)|| <
1
2

εΛ−1.
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As gε ∈ coS1
F, then gε = ∑n

i=1 λi f I with fi ∈ L1
E(I), fi(t) ∈ F(t, u f0(t)), λi ≥ 0, ∑n

i=1 λi = 1.
Let Φ(t) := { fi(t : 1 ≤ i ≤ n}, then Φ(t) is a compact valued integrably bounded mapping with
|Φ(t)| ≤ r(t) := sup1≤i≤n | fi(t)|. Then, from [38], there exists

h1 ∈ L1
E(I), h1(t) ∈ Φ(t) ⊂ F(t, u f0(t))), ∀t ∈ I

such that
sup

0≤t<τ≤1
||
∫ τ

t
[h1(s)− gε(s)]ds|| ≤ 1

2
εM−1

G Δ−1

so that

||uh1(t)− ugε(t)|| = ||
∫ 1

0
G(t, s)[h1(s)− gε(s)ds|| ≤ MG||

∫ 1

0
[h1(s)− gε(s)ds|| ≤ 1

2
εΔ−1.

Consequently,

(∗) ||uh1(t)− u f0(t)|| ≤ εΔ−1.

Step 2. We shall construct inductively sequence {hn(·)}∞
n=1 such that the following conditions are

fulfilled, for all n ≥ 1,
hn ∈ L1

E(I) and hn+1(t) ∈ F(t, uhn(t)), t ∈ I, (27)

‖hn+1(t)− hn(t)‖ ≤ (n + 1)ρn−1l(t)εΛ−1, (28)∥∥∥uhn+1(t)− uhn(t)
∥∥∥ =

∥∥∥∥∫ 1

0
G(t, s)[hn+1(s)− hn(s)]ds

∥∥∥∥ ≤ (n + 1)ρnεΛ−1, t ∈ I (29)

� The multifunction F(·, uh1(·)) is Lebesgue-measurable and

dH

(
F(t, uh1(t)), F(t, u f0(t))

)
≤ l(t)

∥∥∥uh1(t)− u f0(t)
∥∥∥

This implies that, for t ∈ I,

dH

(
F(t, uh1(t)), F(t, u f0(t))

)
≤ l(t)εΛ−1,

As h1(t) ∈ F(t, u f0(t)), we have d(h1(t), F(t, uh1(t)) ≤ l(t)εΛ−1, t ∈ I. Let us consider the
multifunction Σ1 : I → c(E) defined by

Σ1(t) =
{

v ∈ F(t, uh1(t)) : ‖v− h1(t)‖ ≤ 2l(t)εΛ−1
}

.

Clearly, Σ1 is Lebesgue measurable with nonempty closed values. In view of the existence
theorem of measurable selections (see [29]), there is a measurable function h2 : I → E such that
h2(t) ∈ Σ1(t) for all t ∈ I. This yields

h2(t) ∈ F(t, uh1(t)), ‖h2(t)− h1(t)‖ ≤ 2l(t)εΛ−1,

for all t ∈ I. Thus, it is easy to see that h2 ∈ L1
E(I) and

∥∥uh2(t)− uh1(t)
∥∥ =

∥∥∥∥∫ 1

0
G(t, s)[h2(s)− h1(s)]ds

∥∥∥∥ ≤ 2ρεΛ−1,

for all t ∈ I.
� Suppose that we have constructed integrable functions h1, h2, . . . , hn such that

hi+1(t) ∈ F(t, uhi
(t)), a.e.t ∈ I,
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‖hi+1(t)− hi(t)‖ ≤ (i + 1)ρi−1l(t)εΛ−1,

for all i = 1, 2, . . . , n− 1. Then,∥∥∥uhi+1
(t)− uhi

(t)
∥∥∥ =

∥∥∥∥∫ 1

0
G(t, s)[hi+1(s)− hi(s)]ds

∥∥∥∥ ≤ (i + 1)ρiεΛ−1,

for i = 1, 2, . . . , n− 1.
� The function hn+1 is constructed as follows. We have

d(hn(t), F(t, uhn(t))) ≤ dH(F(t, uhn−1(t)), F(t, uhn(t)))

≤ l(t)‖uhn(t)− uhn−1(t)‖ ≤ nρn−1l(t)εΛ−1

The multifunction Σn : I → c(E), defined by

Σn(t) =
{

v ∈ F (t, uhn(t)) : ‖v− hn(t)‖ ≤ (n + 1)ρn−1l(t)εΛ−1
}

,

is Lebesgue measurable with nonempty closed values. Thus, there exists a measurable function
hn+1 such that

hn+1(t) ∈ F (t, uhn(t)) , ‖hn+1(t)− hn(t)‖ ≤ (n + 1)ρn−1l(t)εΛ−1,

for all t ∈ I. Then, it is clear that, for all t ∈ I,

∥∥∥uhn+1(t)− uhn(t)
∥∥∥ =

∥∥∥∥∫ 1

0
G(t, s)[hn+1(s)− hn(s)]ds

∥∥∥∥ ≤ (n + 1)ρnεΛ−1,

Thus, a sequence {hn}∞
n=1 satisfying (27)–(29)exists.

Step 3. It follows from (28) that, for all n ≥ 1, we have

‖hn+1 − hn‖L1
E(I) =

∫ 1

0
‖hn+1(t)− hn(t)‖ dt ≤ (n + 1)ρn−1 ‖l‖L1

R+(I) εΛ−1. (30)

On the other hand, by ρ < 1, the series ∑∞
n=1(n + 1)ρn−1 is convergent (using d’Alembert’s ratio

test). Now, we assert that {hn(·)}∞
n=1 is a Cauchy sequence in L1

E(I). Indeed, using (30), for n, m ∈ N,
such that m > n, we have the estimate

‖hm − hn‖L1
E(I) ≤ ‖hn+1 − hn‖L1

E(I) + ‖hn+2 − hn+1‖L1
E(I) + · · ·+ ‖hm − hm−1‖L1

E(I)

≤
[
(n + 1)ρn−1 + (n + 2)ρn + · · ·+ mρm−2

]
‖ł‖L1

R+(I) εΛ−1

≤
(

∞

∑
k=n

(k + 1)ρk−1

)
‖l‖L1

R+(I) εΛ−1

Letting n → ∞ in the above inequality, we see that ‖hm − hn‖L1
E(I) goes to 0 when m, n goes to

∞. Since the normed space L1
E(I) is complete, (hn) norm converges to an element f ∈ L1

E(I). By the
properties of our Green function and the definition of uhn , we conclude that uhn pointwise converges
with respect to the norm topology to u f where

u f (t) =
∫ 1

0
G(t, s) f (s)ds.
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Moreover, from (29), we deduce that∥∥∥uhn(t)− u f0(t)
∥∥∥ ≤ ||uh1(t)− u f0(t)||+ ||uh2(t)− uh1(t)||+ . . . + ||uhn(t)− uhn−1(t)||

≤
(

n

∑
j=1

jρj−1

)
εΛ−1

for all t ∈ I. Recall that Λ = ∑∞
n=1 nρn−1. Thus, by letting n→ ∞ in the last inequality, we get∥∥∥u f − u f0

∥∥∥
CE(I)

= max
t∈I

∥∥∥u f (t)− u f0(t)
∥∥∥ ≤ ε.

Now, we claim that f (t) ∈ F(t, u f (t)), a.e. t ∈ I. Let us write

d( f (t), F(t, u f (t)) ≤
∣∣∣d( f (t), F(t, u f (t))− d(hn(t), F(t, u f (t))

∣∣∣
+ d(hn(t), F(t, u f (t)). (31)

On the other hand,∣∣∣d( f (t), F(t, u f (t))− d(hn(t), F(t, u f (t)))
∣∣∣ ≤ ‖ f (t)− hn(t)‖ , (32)

and, by hn(t) ∈ F(t, uhn−1(t)), t ∈ I, we have

d(hn(t), F(t, u f (t)) ≤ dH

(
F(t, uhn−1(t)), F(t, u f (t))

)
≤ l(t)

∥∥∥uhn−1(t)− u f (t)
∥∥∥ (33)

Since (hn)n∈N norm converges to f ∈ L1
E(I) we may, by extracting subsequences, assume that

||hn(t)− f (t)||E → 0 a.e. Now, passing to the limit when n→ ∞ in (31)–(33), we get

d( f (t), F(t, u f (t)) = 0 a.e. t ∈ I

This implies that f (t) ∈ F(t, u f (t)), a.e. t ∈ I because F is closed valued. Hence, u f is a solution
of the problem (PF), satisfying the required density property. The proof of theorem is complete.

6. Conclusions

In the context of separable Hilbert space, our algorithm and tools are fairly general and they
allow for treating several variants of system of fractional differential inclusion coupled with a time and
state dependent maximal monotone operators with Lipschitz perturbation, in particular the second
order solution of evolution inclusion governed time and state dependent maximal monotone operators
with Lipschitz perturbation. Our results contain novelties. Nevertheless, there are several issues—for
instance, the existence of solutions for the case of closed unbounded Lipschitz perturbation that is
needed in the optimal control.
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Abstract: In this article, we introduce the ∗-fuzzy (L+)p spaces for 1 ≤ p < ∞ on triangular
norm-based ∗-fuzzy measure spaces and show that they are complete ∗-fuzzy normed space and
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Function spaces, especially Lp spaces, play an important role in many parts in analysis. The impact
of Lp spaces follows from the fact that they offer a partial but useful generalization of the fundamental
L1 space of integrable functions. The standard analysis, based on sigma-additive measures and
Lebesgue–Stieltjess integral, including also several integral inequalities, has been generalized in
the past decades into set-valued analysis, including set-valued measures, integrals, and related
inequalities. Some subsequent generalizations are based on fuzzy sets [1,2] and include fuzzy measures,
fuzzy integrals and several fuzzy integral inequalities. Our aim is the further development of fuzzy
set analysis, expanding our original proposal given in [3]. In fact, we use a new model of the fuzzy
measure theory (∗-fuzzy measure) which is a dynamic generalization of the classical measure theory.
Our model of the fuzzy measure theory created by replacing the non-negative real range and the
additivity of classical measures with fuzzy sets and triangular norms. Moreover, the ∗-fuzzy measure
theory has been motivated by defining new additivity property using triangular norms. Our approach
is related to the idea of fuzzy metric spaces [4–7] and can be apply for decision making problems [8,9].

In this paper, we shall work on a fixed triangular norm-based ∗-fuzzy measure space (X, C, μ, ∗)
introduced in [3] which was derived from the idea of fuzzy and probabilistic metric spaces [5–7,10,11].
Using the concept of fuzzy measurable functions and fuzzy integrable functions we define a special
class of function spaces named by ∗-fuzzy (L+)p. After some overview given in Sections 2–4 and
devoted to the basic information concerning ∗-fuzzy measures and related integration, in Section 5 we
define a norm on ∗-fuzzy (L+)p spaces and show these spaces are complete ∗-fuzzy normed space in
the sense of Cheng-Mordeson and others [12–15]. This definition of ∗-fuzzy norm helps us to prove
Chebyshev’s Inequality and Hölder’s Inequality.

Mathematics 2020, 8, 1984; doi:10.3390/math8111984 www.mdpi.com/journal/mathematics63
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1. ∗–Fuzzy Measure

First, we recall some basic concepts and notations that will be used throughout the paper. Let X
be a non-empty set, C be a σ-algebra of subsets of X. Unless stated otherwise, all subsets of X are
supposed to belong to C. Here, we let I = [0, 1].

Definition 1. ([10,11]) A continuous triangular norm (shortly, a ct-norm) is a continuous binary operation ∗
from I2 = [0, 1]2 to I such that

(a) ς ∗ τ = τ ∗ ς and ς ∗ (τ ∗ υ) = (ς ∗ τ) ∗ υ for all ς, τ, υ ∈ [0, 1];
(b) ς ∗ 1 = ς for all ς ∈ I;
(c) ς ∗ τ ≤ υ ∗ ι whenever ς ≤ υ and τ ≤ ι for all ς, τ, υ, ι ∈ I.

Some examples of the ct-norms are as follows.

1. ς ∗P τ = ςτ (: the product t-norm);
2. ς ∗M τ = min{ς, τ} (: the minimum t-norm);
3. ς ∗L τ = max{ς + τ − 1, 0} (: the Lukasiewicz t-norm);
4.

ς ∗H τ =

⎧⎨⎩ 0, if ς = τ = 0,
1

1
ς +

1
τ−1

, otherwise,

(: the Hamacher product t-norm).

We define
∗k

i=1ςi = ς1 ∗ ς2 ∗ · · · ∗ ςk,

for k ∈ {2, 3, · · · }, which is well defined due to the associativity of the operation ∗. Moreover,

∗∞
i=1ςi = lim

k→∞
∗k

i=1ςi,

which is well defined due to the monotonicity and boundedness of the operation ∗.
Now, we introduce the concept of ∗-fuzzy measure.

Definition 2 ([3]). Let X be a set and C be a σ-algebra consisting of subsets of X. A fuzzy measure on
C × (0, ∞) is a fuzzy set μ : C × (0, ∞)→ I such that

(i) μ(∅, τ) = 1, ∀τ ∈ (0, ∞);
(ii) if Ai ∈ C, i = 1, 2, · · · , are pairwise disjoint, then

μ(∪∞
i=1Ai, τ) = ∗∞

i=1μ(Ai, τ), ∀τ ∈ (0, ∞).

Saying the Ai are pairwise disjoint means that Ai ∩ Aj = ∅, if i 
= j.

Definition 2 is known as countable ∗-additivity. We say a fuzzy measure μ is finitely ∗-additive if,
for any n ∈ N

μ(∪n
i=1Ai, τ) = ∗n

i=1μ(Ai, τ), ∀τ ∈ (0, ∞).

whenever A1, · · · ,An are in C and are pairwise disjoint. The quadruple (X, C, μ, ∗) is called a ∗-fuzzy
measure space (in short, ∗-FMS).
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Example 1. Let (X, C, m) be a measurable space. Let ∗ = ∗H and define

μ0(A, τ) =
τ

τ + m(A)
, ∀τ ∈ (0, ∞),

then (X, C, μ0, ∗) is a ∗-FMS.

Example 2. Let (X, C, m) be a measurable space. Let ∗ = ∗P. Define

μ0(A, τ) = e
−m(A)

τ , ∀τ ∈ (0, ∞).

Then, μ0 is a ∗-FM on C × (0, ∞).

2. ∗-Fuzzy Measurable Functions

Now, we review the concept of ∗-fuzzy normed spaces, for more details, we refer to the works
in [12–15].

Definition 3. Let X be a vector space, ∗ be a ct-norm and the fuzzy set N on X× (0, ∞) satisfies the following
conditions for all x, y ∈ X and τ, σ ∈ (0, ∞),

(i) N(x, τ) > 0.
(ii) N(x, τ) = 1⇔ x = 0.

(iii) N(αx, τ) = N
(

x,
τ

|α|
)

for every α 
= 0.

(iv) N(x, τ) ∗ N(y, σ) ≤ N(x + y, τ + σ).
(v) N(x, .) : (0, ∞)→ (0, 1] is continuous.
(vi) lim

τ→∞
N(x, τ) = 1 and lim

τ→0
N(x, τ) = 0.

Then, N is called a ∗-fuzzy norm on X and (X, N, ∗) is called ∗-fuzzy normed space.

Assume that (R, |.|) is a standard normed space, we define: N(x, τ) =
τ

τ + |x| with ∗ = ∗P, it is

obvious (R, N, ∗P) is a ∗-fuzzy normed space.
Let (X, N, ∗) be a ∗-fuzzy normed space. We define the open ball B(x, r, τ) and the closed ball

B[x, r, τ] with center x ∈ X and radius 0 < r < 1, τ > 0 as follows,

B(x, r, τ) = {y ∈ X : N(x− y, τ) > 1− r}, (1)

B[x, r, τ] = {y ∈ X : N(x− y, τ) ≥ 1− r}. (2)

Let (X, N, ∗) be a ∗-fuzzy normed space. A set E ⊂ X is said to be open if for each x ∈ E, there is
0 < rx < 1 and τx > 0 such that B(x, rx, τx) ⊆ E. A set F ⊆ X is said to be closed in X in case its
complement Fc = X− F is open in X.

Let (X, N, ∗) be a ∗-fuzzy normed space. A subset E ∈ X is said to be fuzzy bounded if there exist
τ > 0 and r ∈ (0, 1) such that N(x− y, τ) > 1− r for all x, y ∈ E.

Let (X, N, ∗) be a ∗-fuzzy normed space. A sequence {xn} ⊂ X is fuzzy convergent to an x ∈ X
in ∗-fuzzy normed space (X, N, ∗) if for any τ > 0 and ε > 0 there exists a positive integer Nε > 0
such that N(xn − x, τ) > 1− ε whenever n ≥ Nε.

Now, we define ∗-fuzzy measurable functions.

Definition 4. Let (X, C) and (Y,D) be ∗-fuzzy measurable spaces. A mapping f : X → Y is called ∗-fuzzy
(C,D)-measurable if f−1(E) ∈ C for all E ∈ D. If X is any ∗-fuzzy normed space, the σ-algebra generated by
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the family of open sets in X (or, equivalently, by the family of closed sets in X) is called the Borel σ-algebra on X
and is denoted by BX.

3. ∗-Fuzzy Integration

In this section, we recall the concept of ∗-fuzzy integration by using fuzzy simple functions on the
∗-FMS (X, C, ∗, μ) and add some new results.

Definition 5. Let (X, C, ∗, μ) be ∗-FMS, we define

L+ = { f : X → [0, ∞) | f is fuzzy (C,BR)-measurable function} .

If φ is a simple fuzzy ((C,BR)-measurable) function in L+ with standard representation φ =
n
∑

i=1
aiχEi ,

where ai > 0 and Ei ∈ C for i = 1, ..., n, and Ei
⋂

Ej = ∅ for i 
= j, we define the fuzzy integral of φ as

∫
X

φ(x)dμ(x, τ) =
∫

X

n

∑
i=1

aiχEi dμ(x, τ) = ∗n
i=1μ

(
Ei,

τ

ai

)
.

In [3], the authors have shown that, with respect to μ(A, τ), μ satisfies the following statement;

(i) μ : (A, .) : (., ∞)→ [0, 1] is increasing and continuous.

(ii) μ

(
A,

τ

a + b

)
≥ μ

(
A,

τ

a

)
∗ μ

(
A,

τ

b

)
for every a, b > 0, τ ∈ (0, ∞).

(iii) lim
τn−→τ0

(
∗k

i=1 μ(Ai, τn)

)
= ∗k

i=1 lim
τn−→τ0

μ(Ai, τn) for every Ai ∩ Aj = ∅.

(iv) lim
τ−→0

μ(E, τ) = 0 and lim
τ−→∞

μ(E, τ) = 1.

(v) lim
τn−→τ0

lim
m−→∞

(
μ

(
Em,

τn

am

))
= lim

m−→∞
lim

τn−→τ0

(
μ

(
Em,

τn

am

))
.

If A ∈ C, then φχA is also fuzzy simple function
(

φχA =
n
∑

i=1
aiχA∩Ei

)
, and we define∫

φ(x)dμ(x, τ) to be
∫

φχAdμ(x, τ).

Theorem 1 ([3]). Let φ and ψ be simple functions in L+. Then, we have

(i)
∫

X 0dμ(x, τ) = 1.

(ii) If c ∈ (0, 1] then
∫

X(cφ)(x)dμ(x, τ) ≥ c
∫

X φ(x)dμ(x, τ), and for c ∈ [1, ∞) we have∫
X(cφ)(x)dμ(x, τ) ≤ c

∫
X φ(x)dμ(x, τ), ∀τ ∈ (0, ∞).

(iii) If φ ≤ ψ, then
∫

X φ(x)dμ(x, τ) ≥ ∫
X ψ(x)dμ(x, τ).

(iv) The map A→ ∫
A φ(x)dμ(x, τ) is a fuzzy measure on C, ∀τ ∈ (0, ∞).

In the next theorem, we prove an important fuzzy integral inequality for fuzzy simple functions.

Theorem 2. Let φ and ψ be fuzzy simple functions in L+, then

∫
(φ + ψ)(x)dμ(x, τ) ≥

( ∫
φ(x)dμ(x, τ)

)
∗
( ∫

ψ(x)dμ(x, τ)

)
.
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Proof. Let φ and ψ be fuzzy simple functions in L+, then we have∫
X
(φ + ψ)(x)dμ(x, τ), (3)

=
∫

X

((
n

∑
i=1

aiχEi (x)

)
+

(
m

∑
j=1

bjχFj(x)

))
dμ(x, τ),

=
∫

X

(
∑
i,j
(ai + bj)χEi∩Fj(x)

)
dμ(x, τ),

= ∗n
i=1 ∗m

j=1 μ

((
Ei ∩ Fj

)
,

τ

(ai + bj)

)
.

On the other hand, (∫
X

φ(x)dμ(x, τ) ∗
∫

X
ψ(x)dμ(x, τ)

)
, (4)

=

(∫
X

(
n

∑
i=1

aiχEi (x)

)
dμ(x, τ)

)
∗
(∫

X

(
m

∑
j=1

bjχFj(x)

)
dμ(x, τ)

)
,

=

(
∗n

i=1 ∗m
j=1 μ

((
Ei ∩ Fj

)
,

τ

ai

))
∗
(
∗m

j=1 ∗n
i=1 μ

((
Ei ∩ Fj

)
,

τ

bj

))
,

= ∗n
i=1 ∗m

j=1

(
μ

((
Ei ∩ Fj

)
,

τ

ai

)
∗ μ

((
Ei ∩ Fj

)
,

τ

bj

))
,

≤ ∗n
i=1 ∗m

j=1

(
μ

((
Ei ∩ Fj

)
,

τ

(ai + bj)

))
.

From (3) and (4), we get

∫
X
(φ + ψ)(x)dμ(x, τ) ≥

( ∫
X

φ(x)dμ(x, τ)

)
∗
( ∫

X
ψ(x)dμ(x, τ)

)
.

Now, we extend the concept of fuzzy integral to all functions in L+.

Definition 6. Let f be a fuzzy measurable function in L+, we define fuzzy integral by∫
X

f (x)dμ(x, τ)

= inf
{∫

X
φ(x)dμ(x, τ) | 0 ≤ φ ≤ f , φ is fuzzy simple function

}
.

By Theorem 1 (iii), the two definitions of
∫

f agree when f is fuzzy simple function, as the family
of fuzzy simple functions over which the infimum is taken includes f itself. Moreover, it is obvious
from the definition that

∫
f ≥ ∫

g whenever f ≤ g, and
∫

c f ≥ c
∫

f for all c ∈ (0, 1] and
∫

c f ≤ c
∫

f
for all c ∈ [1, ∞) and

∫
( f + g) ≥ (

∫
f ) ∗ (∫ g).

Definition 7. If f ∈ L+, we say that f is fuzzy integrable if
∫

f dμ(x, τ) > 0 for each τ > 0. Let (X, C, μ, ∗)
be a ∗-FMS. We define

L+ :=
{

f : X → [0, ∞), f is measurable function and
∫

f (x)dμ(x, τ) > 0
}

.
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Theorem 3 ([3]). (The fundamental convergence theorem). Let (X, C, μ, ∗) be a ∗-FMS. Let fn be a
sequence in L+ such that fn −→ f almost everywhere, then f ∈ L+ and

∫
f = lim

n−→∞

∫
fn.

∗-Fuzzy L+ Spaces

Here, we are ready to show that every L+ is a ∗-fuzzy normed space. It is clear if we define

L := { f : X −→ R, f is fuzzy measurable function},

then (L,+, .)R is a vector space. Moreover, in [3] the authors proved that if f , g ∈ L+, then | f − g| ∈ L+.
Using definition L and L+ we can show L+ ⊆ L. In L+ we define f ≤ g if and only if f (x) ≤ g(x) and
so (L+,≤) is a cone.

Note. Recall that, due to the continuity of t-norm ∗, for any systems {an}n∈N and {bn}n∈N of
elements form I we have inf{an ∗ bn} = inf{an} ∗ inf{bn}.

In the next theorem we define a fuzzy norm on L+ and prove that (L+, N, ∗) is a ∗-fuzzy
normed space.

Theorem 4. Let N : L+× (0, ∞) −→ (0, 1] be a fuzzy set, such that N( f , τ) =
∫

f dμ(x, τ), then (L+, N, ∗)
is a ∗-fuzzy normed space.

Proof.

(FN1) N( f , τ) =
∫

f dμ(x, τ) > 0.

(FN2) By theorem 4.5 of [3] we have

N( f , τ) = 1⇐⇒
∫

f dμ(x, τ) = 1⇐⇒ f = 0

almost everywhere.

(FN3) Let f = φ =
n
∑

i=1
aiχEi and c > 0 so,

N(cφ, τ) =
∫

cφdμ(x, τ), (5)

=
∫ n

∑
i=1

aiχEi dμ(x, τ),

= ∗n
i=1μ

(
Ei,

τ

cai

)
.

On the other hand,

N
(

φ,
τ

c

)
=

∫
φdμ

(
x,

τ

c

)
, (6)

=
∫ n

∑
i=1

aiχEi dμ
(

x,
τ

c

)
,

= ∗n
i=1μ

(
Ei,

τ

cai

)
.

From (5) and (6) we conclude that

N(cφ, τ) = N
(

φ,
τ

c

)
. (7)
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Now, if f ∈ L+ we have {φn} ⊆ L+ such that φn ↑ f , then cφn ↑ c f so∫
cφndμ(x, τ) ↓

∫
c f dμ(x, τ).

By (7), we have
∫

cφndμ(x, τ) =
∫

φndμ(x,
τ

c
), and so

∫
φndμ(x,

τ

c
) ↓

∫
c f dμ(x, τ). (8)

On the other hand, ∫
φndμ(x,

τ

c
) ↓

∫
f dμ(x,

τ

c
), (9)

by (8) and (9) we have, ∫
c f dμ(x, τ) =

∫
f dμ(x,

τ

c
),

N(c f , τ) = N( f ,
τ

c
).

(FN4) Let f =
m
∑

i=1
aiχEi , g =

n
∑

j=1
bjχFj then,

N(φ + ψ, s + τ) =
∫
(φ + ψ)dμ(x, τ + s),

=
∫

∑
i,j
(ai + bj)χEi∩Fj dμ(x, τ + s),

= ∗i,jμ

(
Ei ∩ Fj,

τ + s
ai + bj

)
.

On the other hand

N(φ, s) ∗ N(ψ, τ) =

( ∫
φdμ(x, s)

)
∗
( ∫

ψdμ(x, τ)

)
, (10)

=

( ∫
∑
i,j

aiχEi∩Fj dμ(x, s)
)
∗
( ∫

∑
i,j

bjχEi∩Fj dμ(x, τ)

)
,

=

(
∗i,j μ

(
Ei ∩ Fj,

s
ai

)) ∗( ∗i,j μ
(
Ei ∩ Fj,

τ

bj

))
,

= ∗i,j

(
μ
(
Ei ∩ Fj,

s
ai

) ∗ μ
(
(Ei ∩ Fj,

τ

bj

))
,

≤ ∗i,j

(
min

{
μ
(
Ei ∩ Fj,

s
ai

)
, μ

(
(Ei ∩ Fj,

τ

bj

)})
.

Now, we assume
s
ai

<
τ

bj
. From (10), we conclude

N(φ, s) ∗ N(ψ, τ) ≤ ∗i,jμ

(
Ei ∩ Fj,

s
ai

)
. (11)
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Again, from
s
ai

<
τ

bj
, we get

s
ai

<
τ + s

ai + bj
because

bjs < aiτ,

then

ais + bjs < ais + aiτ,

and (
ai + bj

)
s < ai

(
τ + s

)
,

and so
s
ai

<
τ + s

ai + bj
.

Therefore, from (11) we have

N(φ, s) ∗ N(ψ, τ) ≤ ∗i,jμ

(
Ei ∩ Fj,

s
ai

)
, (12)

and

∗i,jμ

(
Ei ∩ Fj,

s
ai

)
≤ ∗i,jμ

(
Ei ∩ Fj,

τ + s
ai + bj

)
. (13)

From (12) and (13) we have

N(φ, s) ∗ N(ψ, τ) ≤ ∗i,jμ

(
Ei ∩ Fj,

τ + s
ai + bj

)
,

= N
(

φ + ψ, s + τ

)
.

Now let f , g ∈ L+, then there exist {φn} ⊆ L+ such that φn ↑ f . Similarly, there exist
{ψn} ⊆ L+ such that ψn ↑ g, and φn + ψn ↑ f + g, then

inf
{ ∫ (

φn + ψn

)
dμ(x, τ + s)

}
=

∫ (
f + g

)
dμ(x, τ + s).

Also according to (12), we get∫ (
φn + ψn

)
dμ(x, τ + s) ≥

∫
φndμ(x, s) ∗

∫
ψndμ(x, τ),

and ∫ (
f + g

)
dμ(x, τ + s) = inf

{ ∫ (
φn + ψn

)
dμ(x, τ + s)

}
≥ inf

{ ∫
φndμ(x, s) ∗

∫
ψndμ(x, τ)

}
,

≥ inf
{ ∫

φndμ(x, s)
}
∗ inf

∫
ψndμ(x, τ)

=
∫

f dμ(x, s) ∗
∫

gdμ(x, τ),
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then ∫ (
f + g

)
dμ(x, τ + s) ≥

∫
f dμ(x, s) ∗

∫
gdμ(x, τ).

(FN5) Let f =
k
∑

i=1
aiχEi , then

N( f , τn) =
∫ k

∑
i=1

aiχEi dμ(x, τn),

= ∗k
i=1μ

(
Ei,

τn

ai

)
,

and

lim
τn−→τ0

N( f , τn) = lim ∗k
i=1μ

(
Ei,

τn

ai

)
.

According to Definition 5 (iii), we get

lim
τn−→τ0

N( f , τn) = lim
τn−→τ0

∗k
i=1μ

(
Ei,

τn

ai

)
,

= ∗k
i=1 lim

τn−→τ0

(
Ei,

τn

ai

)
,

and by Definition 5 (i),

lim
τn−→τ0

N( f , τn) = ∗k
i=1 lim

τn−→τ0

(
Ei,

τn

ai

)
,

= ∗k
i=1μ

(
Ei,

τ0

ai

)
,

=
∫

f dμ(x, τ0),

= N( f , τ0).

Now, let f ∈ L+, then

N( f , τn) =
∫

f dμ(x, τn),

= inf
{ ∫

φmdμ(x, τn)|φm ↑ f
}

,

= lim
m−→∞

∫
φmdμ(x, τn).

and

lim
τn−→τ0

N( f , τn) = lim
τn−→τ0

lim
m−→∞

∫
φmdμ(x, τn),

= lim
τn−→τ0

lim
m−→∞

∫ k

∑
i=1

am
i χEm

i
dμ(x, τn),

= lim
τn−→τ0

lim
m−→∞

∗k
i=1μ

(
Em

i ,
τn

am
i

)
.
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According to Definition 5 (v), we get

lim
τn−→τ0

N( f , τn) = lim
τn−→τ0

lim
m−→∞

∗k
i=1μ

(
Em

i ,
τn

am
i

)
,

= lim
m−→∞

lim
τn−→τ0

∗k
i=1μ

(
Em

i ,
τn

am
i

)
,

and by Definition 5 (iii), we get

lim
τn−→τ0

N( f , τn) = lim
m−→∞

lim
τn−→τ0

∗k
i=1μ

(
Em

i ,
τn

am
i

)
,

= lim
m−→∞

∗k
i=1 lim

τn−→τ0
μ

(
Em

i ,
τn

am
i

)
.

Using Definition 5 (i), we get

lim
τn−→τ0

N( f , τn) = lim
m−→∞

∗k
i=1 lim

τn−→τ0
μ

(
Em

i ,
τn

am
i

)
,

= lim
m−→∞

∗k
i=1μ

(
Em

i ,
τ0

am
i

)
,

= lim
m−→∞

∫
φmdμ(x, τ0),

= inf
{ ∫

φmdμ(x, τ0)

}
,

=
∫

f dμ(x, τ0),

= N( f , τ0).

(FN6) Let f =
k
∑

i=1
aiχEi , then

N( f , τ) =
∫

f dμ(x, τ),

=
∫ n

∑
i=1

aiχEi dμ(x, τ),

= ∗k
i=1μ

(
Ei,

τ

ai

)
.

and

lim
τ−→τ0

N( f , τ) = lim
τ−→τ0

∗k
i=1μ

(
Ei,

τ

ai

)
.

According to Definition 5 (iii), we have

lim
τ−→0

N( f , τ) = lim
τ−→0

∗k
i=1μ

(
Ei,

τ

ai

)
,

= ∗k
i=1 lim

τ−→0
μ

(
Ei,

τ

ai

)
,
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and by Definition 5 (iv),

lim
τ−→0

N( f , τ) = ∗k
i=1 lim

τ−→0
μ

(
Ei,

τ

ai

)
,

= ∗k
i=10,

= 0.

Now let f ∈ L+, so

N( f , τ) =
∫

f dμ(x, τ) = inf
{ ∫

φmdμ(x, τ)

}
,

= lim
m−→∞

{ ∫
φmdμ(x, τ)

}
,

= lim
m−→∞

{
N(φm, τ)

}
.

Then,

lim
τ−→0

N( f , τ) = lim
τ−→0

lim
m−→∞

{
N(φm, τ)

}
,

= lim
τ−→0

lim
m−→∞

∗k
i=1μ

(
Em

i ,
τ

am
i

)
.

According to Definition 5 (v), we get

lim
τ−→0

N( f , τ) = lim
τ−→0

lim
m−→∞

∗k
i=1μ

(
Em

i ,
τ

am
i

)
,

= lim
m−→∞

lim
τ−→0

∗k
i=1μ

(
Em

i ,
τ

am
i

)
,

and from Definition 5 (iii), we get

lim
τ−→0

N( f , τ) = lim
m−→∞

lim
τ−→0

∗k
i=1μ

(
Em

i ,
τ

am
i

)
,

= lim
m−→∞

∗k
i=1 lim

τ−→0
μ

(
Em

i ,
τ

am
i

)
.

From Definition 5 (iv), we get

lim
τ−→0

N( f , τ) = lim
m−→∞

∗k
i=1 lim

τ−→0
μ

(
Em

i ,
τ

am
i

)
,

= lim
m−→∞

∗k
i=10,

= 0.

Similarly,

lim
τ−→∞

N( f , τ) = 1.

We have proved (L+, N, ∗) is a ∗-fuzzy normed space. Define M : L+ × L+ × (0, ∞) −→ (0, 1] by
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M( f , g, τ) = N
(
| f − g|, τ

)
=

∫
| f − g|dμ(x, τ),

then M is a fuzzy metric on L+ and (L+, M, ∗) is called the ∗-fuzzy metric induced by the ∗-fuzzy
normed space (L+, N, ∗).

Theorem 5 ([3]). If f ∈ L+ and ε > 0, there is an integrable fuzzy simple function φ =
n
∑

j=1
ajχEJ such that∫ | f − φ|dμ(x, τ) > 1− ε for each τ > 0 (that is, the integrable simple functions are dense in L+).

Now, we show L+ is a complete space.

Theorem 6. L+ is a ∗-fuzzy Banach space.

Proof. Let { fn} ⊆ L+ is a Cauchy sequence, then { fn(x)} ⊂ R+ is a Cauchy sequence for every
x ∈ X and R is complete so there exist y ∈ R such that fn(x) −→ y. We get f : X −→ R, f (x) = y
according to corollary 3.16 [3], f is fuzzy measurable so f ∈ L+ and according to Theorem (3), f ∈ L+

so, lim
n−→∞

fn(x) = f (x) almost everywhere or lim
n−→∞

fn = f .

4. ∗-Fuzzy (L+)p Spaces

In this section, by the concept of fuzzy measurable functions and fuzzy integrable functions we
define a class of function spaces.

Definition 8. Let (X, C, ∗) be a ∗-fuzzy measure space. We define

(L+)p

=

{
f : X −→ R+ in which f is fuzzy measurable function and

∫
f pdμ(x, τ) > 0, p ≥ 1

}
.

There is an order on ((L+)p,≤) such that f , g ∈ (L+)p we have f ≤ g if and only if f (x) ≤ g(x).
Furthermore, if f , g ∈ (L+)p then | f − g| ∈ (L+)p, and | f − g|p ≤ f p or gp hence

∫ | f − g|pdμ(x, τ) ≥
max[

∫
f pdμ(x, τ),

∫
gpdμ(x, τ)].

In the next theorem we prove ∗-fuzzy (L+)p is a ∗- fuzzy normed space.

Theorem 7. Define Np : (L+)p × (0, ∞) −→ (0, 1] by Np( f , τ) =
∫

f pdμ(x, τ) then ((L+)p, Np, ∗) is a ∗-
fuzzy normed space.

Proof.

(FN1) Np( f , τ) =
∫

f pdμ(x, τ) > 0.
(FN2) By theorem 4.5 of [3] we have,

Np( f , τ) = 1⇐⇒ ∫
f pdμ(x, τ) = 1⇐⇒ f p = 0⇐⇒ f = 0, almost everywhere.

(FN3) Let f = φ =
n
∑

i=1
aiχEi then,

Np(cφ, τ) =
∫
(cφ)pdμ, (14)

=
∫ ( n

∑
i=1

caiχEi

)p

dμ,

= ∗n
i=1μ

(
Ei,

τ

cpap
i

)
.

74



Mathematics 2020, 8, 1984

On the other hand,

Np(φ,
τ

cp ) =
∫

φpdμ(x,
τ

cp ), (15)

=
∫ ( n

∑
i=1

aiχEi

)p

dμ(x,
τ

cp ),

=
∫ n

∑
i=1

ap
i χEi dμ(x,

τ

cp ),

= ∗n
i=1μ

(
Ei,

τ

cpap
i

)
.

From (14) and (15) we conclude that

Np(c f , τ) = Np

(
f ,

τ

c

)
.

Now let f ∈ (L+)p, then we have

Np(c f , τ) =
∫
(c f )pdμ(x, τ) = inf

{ ∫
(cφn)

pdμ(x, τ) : (cφn)
p ↑ (c f )p

}
. (16)

On the other hand,

Np( f ,
τ

c
) =

∫
f pdμ(x,

τ

c
) (17)

= inf
{ ∫

φ
p
ndμ(x,

τ

c
) : φ

p
n ↑ f p

n

}
.

From (14) and (15) we get∫
(cφn)

pdμ(x, τ) = Np(cφn, τ) = Np(φn,
τ

c
) =

∫
φ

p
ndμ(x,

τ

c
).

Using (16) and (17) we get

Np(c f , τ) = Np( f ,
τ

c
).

(FN4) Let f = φ and g = ψ be simple functions. Then,

Np

(
φ + ψ, s + τ

)
= Np

( n

∑
i=1

aiχEi +
m

∑
j=1

bjχFj , s + τ

)
, (18)

= Np

(
∑
i,j
(ai + bj)χEi∩Fj , s + τ

)
,

=
∫ (

∑
i,j
(ai + bj)χEi∩Fj

)p

dμ(x, s + τ),

=
∫

∑
i,j
(ai + bj)

pχEi∩Fj dμ(x, s + τ),

= ∗i,jμ

(
Ei ∩ Fj,

s + τ

(ai + bj)p

)
.
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On the other hand,

Np(φ, s) ∗ Np(ψ, τ) =

( ∫
φpdμ(x, s)

)
∗
( ∫

ψpdμ(x, τ)

)
, (19)

=

( ∫ ( n

∑
i=1

aiχEi∩Fj

)p
dμ(x, s)

)
∗
( ∫ ( m

∑
j=1

bjχEi∩Fj

)p
dμ(x, τ)

)
,

=

( ∫ n

∑
i=

ap
i χEi∩Fj dμ(x, s)

)
∗
( ∫ m

∑
j=1

bp
j χEi∩Fj dμ(x, τ)

)
,

=

(
∗i,j μ

(
Ei ∩ Fj,

s
ap

i

))
∗
(
∗i,j μ

(
Ei ∩ Fj,

τ

bp
j

))
,

= ∗i,j

(
μ

(
Ei ∩ Fj,

s
ap

i

)
∗ μ

(
Ei ∩ Fj,

τ

bp
j

))
,

≤ ∗i,j

(
μ

(
Ei ∩ Fj, min

{
s

ap
i

,
τ

bp
j

}))

≤ ∗i,jμ

(
Ei ∩ Fj,

s + τ

(ai + bj)
p

)
.

(FN5) Let f =
k
∑

i=1
aiχEi , then

Np( f , τn) =
∫ ( k

∑
i=1

aiχEi

)p

dμ(x, τn),

= ∗k
i=1μ

(
Ei,

τn

(ai)p

)
,

and so

lim
τn−→τ0

Np( f , τn) = lim ∗k
i=1μ

(
Ei,

τn

(ai)p

)
.

Using Definition 5 (iii), we get

lim
τn−→τ0

Np( f , τn) = lim
τn−→τ0

∗k
i=1μ

(
Ei,

τn

(ai)p

)
= ∗k

i=1 lim
τn−→τ0

μ

(
Ei,

τn

(ai)p

)
,

and according to Definition 5 (i),

lim
τn−→τ0

Np( f , τn) = ∗k
i=1 lim

τn−→τ0
μ

(
Ei,

τn

(ai)p

)
= ∗k

i=1μ

(
Ei,

τ0

(ai)p

)
=

∫
f pdμ(x, τ0),

= Np( f , τ0).
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Now let f ∈ (L+)p, we have

Np( f , τn) =
∫

f pdμ(x, τn)

= inf
{ ∫

(φm)
pdμ(x, τn)|φm ↑ f

}
= lim

m−→∞

∫
(φm)

pdμ(x, τn).

Then,

lim
τn−→τ0

Np( f , τn) = lim
τn−→τ0

lim
m−→∞

∫
(φm)

pdμ(x, τn),

= lim
τn−→τ0

lim
m−→∞

∫ ( k

∑
i=1

(am
i χEm

i
)pdμ(x, τn)

)
= lim

τn−→τ0
lim

m−→∞
∗k

i=1μ

(
Em

i ,
τn

(am
i )

p

)
.

Using Definition 5 (v), we get

lim
τn−→τ0

Np( f , τn) = lim
τn−→τ0

lim
m−→∞

∗k
i=1μ

(
Em

i ,
τn

(am
i )

p

)
,

= lim
m−→∞

lim
τn−→τ0

∗k
i=1μ

(
Em

i ,
τn

(am
i )

p

)′

and according to Definition 5 (iii)

lim
τn−→τ0

Np( f , τn) = lim
m−→∞

lim
τn−→τ0

∗k
i=1μ

(
Em

i ,
τn

(am
i )

p

)
,

= lim
m−→∞

∗k
i=1 lim

τn−→τ0
μ

(
Em

i ,
τn

(am
i )

p

)
.

By Definition 5 (i), we have

lim
τn−→τ0

Np( f , τn) = lim
m−→∞

∗k
i=1 lim

τn−→τ0
μ

(
Em

i ,
τn

(am
i )

p

)
,

= lim
m−→∞

∗k
i=1μ

(
Em

i ,
τ0

(am
i )

p

)
,

= lim
m−→∞

∫
(φm)

pdμ(x, τ0),

= inf
{ ∫

(φm)
pdμ(x, τ0)

}
,

=
∫

f pdμ(x, τ0),

= Np( f , τ0).
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(FN6) Let f =
k
∑

i=1
aiχEi , then

Np( f , τ) =
∫

f pdμ(x, τ),

=
∫ ( k

∑
i=1

aiχEi

)p

dμ(x, τ),

= ∗k
i=1μ

(
Ei,

τ

(ai)p

)
,

and so

lim
τ−→τ0

Np( f , τ) = lim
τ−→τ0

∗k
i=1μ

(
Ei,

τ

(ai)p

)
.

Using Definition 5 (iii),

lim
τ−→0

Np( f , τ) = lim
τ−→0

∗k
i=1μ

(
Ei,

τ

(ai)p

)
,

= ∗k
i=1 lim

τ−→0
μ

(
Ei,

τ

(ai)p

)
and by Definition 5 (iv), we have

lim
τ−→0

Np( f , τ) = ∗k
i=1 lim

τ−→0
μ

(
Ei,

τ

(ai)p

)
,

= ∗k
i=10,

= 0.

Now, let f ∈ (L+)p, then

NP( f , τ) =
∫

f pdμ(x, τ) = inf
{ ∫

(φm)
pdμ(x, τ) : φm ↑ f

}
,

= lim
m−→∞

{ ∫
(φm)

pdμ(x, τ)

}
,

and so

lim
τ−→0

Np( f , τ) = lim
τ−→0

lim
m−→∞

{
Np(φm, τ)

}
,

= lim
τ−→0

lim
m−→∞

∗k
i=1μ

(
Em

i ,
τ

(am
i )

p

)
.

Using Definition 5 (v), we get

lim
τ−→0

Np( f , τ) = lim
τ−→0

lim
m−→∞

∗k
i=1μ

(
Em

i ,
τ

(am
i )

p

)
,

= lim
m−→∞

lim
τ−→0

∗k
i=1μ

(
Em

i ,
τ

(am
i )

p

)
,
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and by Definition 5 (iii), we have

lim
τ−→0

Np( f , τ) = lim
m−→∞

lim
τ−→0

∗k
i=1μ

(
Em

i ,
τ

(am
i )

p

)
,

= lim
m−→∞

∗k
i=1 lim

τ−→0
μ

(
Em

i ,
τ

(am
i )

p

)
.

from Definition 5 (iv), we get

lim
τ−→0

Np( f , τ) = lim
τ−→0

∗k
i=10,

= 0.

We proved ((L+)p, Np, ∗) is a ∗-fuzzy normed space. Now, define the fuzzy set M : (L+)p ×
(L+)p × (0, ∞) −→ (0, 1] by

M( f , g, τ) = Np

(
| f − g|, τ

)
=

∫
| f − g|pdμ(x, τ).

Then, M is a fuzzy metric on ∗-fuzzy (L+)p and ((L+)p, M, ∗) is called the ∗-fuzzy metric
space induced by the ∗-fuzzy normed space ((L+)p, Np, ∗). Now, we study further properties of
∗-fuzzy (L+)p.

Theorem 8. For 1 ≤ p < ∞, the set of simple functions g =
n
∑

i=1
aiχEi where μ(Ei, τ) > 0 for all

i ∈ {1, 2, ..., n} and for all τ > 0, is dense in ∗-fuzzy (L+)p.

Proof. Clearly simple functions g =
n
∑

i=1
aiχEi are in ∗-fuzzy (L+)p. Let f ∈ (L+)p, by theorem 3.20

in [3] we can choose a sequence { fn} of simple functions such that fn ↑ f almost everywhere, and so
( f − fn)p ↓ 0.

We assert ( f − fn)p ∈ L+ because

( f − fn)
p ≤ f p,

and so ∫
( f − fn)

pdμ(x, τ) ≥
∫

f pdμ(x, τ) > 0,

then ( f − fn)p ∈ L+ and ( f − fn)p −→ 0. Using the fundamental convergence Theorem 3, we get

lim
n−→∞

∫
( f − fn)

pdμ(x, τ) =
∫

0dμ(x, τ) = 1.

Then, lim
n−→∞

Np( f − fn, τ) = 1 i.e., fn
Np−→ f .

In the next theorem we prove that ∗-fuzzy (L+)p spaces are complete.

Theorem 9. For 1 ≤ p < ∞, ∗-fuzzy (L+)p is a ∗-fuzzy Banach space.

Proof. Let { fn} ⊆ (L+)p be a Cauchy sequence, then for every x ∈ X, { fn(x)} ⊆ R is a Cauchy
sequence in R and since R is complete, there exist y ∈ R such that fn(x) −→ y, we define f : X −→ R

by f (x) = y. Since fn −→ f almost everywhere, so ( fn)p −→ ( f )p almost everywhere, and ( fn)p ∈ L+
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by the fundamental converge Theorem 3 we have ( f )p ∈ L+ and lim
∫
( fn)pdμ(x, τ) =

∫
( f )pdμ(x, τ),

hence f ∈ (L+)p.

5. Inequalities on ∗-Fuzzy (L+)p

In this section, we are ready to prove some important inequalities on ∗-fuzzy (L+)p.

Lemma 1 ([16]). If a ≥ 0, b ≥ 0, and 0 < λ < 1, then

aλb1−λ ≤ λa + (1− λ)b,

we have equality if and only if a = b.

Theorem 10 (Hölder’s Inequality). Suppose 1 < p < ∞ and
1
p
+

1
q
= 1. If f and g are fuzzy measurable

functions on X then,

N( f g, τ) ≥ Np

(
f , (p)

1
p τ

)
∗ Nq

(
g, (q)

1
q τ

)
.

Proof. We apply Lemma 1 with ( f (x))p = a, b = (g(x))q, and λ =
1
p

to obtain

(
( f (x))p

) 1
p

.
(
(g(x))q

)1− 1
p

≤ 1
p
( f (x))p + (1− 1

p
)(g(x))q,

then

f (x).g(x) ≤
(
(

1
p
)

1
p f (x)

)p

+

(
(

1
q
)

1
q g(x)

)q

.

Takeing integral of both sides, we get

∫
f (x).g(x)dμ(x, τ) ≥

∫ [(
(

1
p
)

1
p f (x)

)p

+

(
(

1
q
)

1
q g(x)

)q]
dμ(x, τ),

≥
( ∫ (

(
1
p
)

1
p f (x)

)p

dμ(x, τ)

)
∗
( ∫ (

(
1
q
)

1
q g(x)

)q

dμ(x, τ)

)
,

= Np

(
(

1
p
)

1
p f , τ

)
∗ Nq

(
(

1
q
)

1
q g, τ

)
,

= Np

(
f , (p)

1
p τ

)
∗ Nq

(
g, (q)

1
q τ

)
.

Then,

N1

(
f .g, τ

)
≥ Np

(
f , (p)

1
p τ

)
∗ Nq

(
g, (q)

1
q τ

)
.

In the next theorem we compare two ∗-fuzzy (L+)p spaces.

Theorem 11. If 0 < p < q < r < ∞, then (L+)q ⊆ (L+)p + (L+)r, that is, each f ∈ (L+)q is the sum of a
function in ∗-fuzzy (L+)p and a function in ∗-fuzzy (L+)r.
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Proof. If f ∈ (L+)q, let E = {x : f (x) > 1} and set g = f χE and h = f χEc , then

f = f .1,

= f (χE + χEc),

= f χE + f χEc ,

= g + h.

However,

gp = ( f χE)
p = f pχE ≤ f qχE,

then, ∫
gpdμ ≥

∫
f qχEdμ > 0,

then,

g ∈ (L+)P.

On the other hand,

hr = ( f χEc)r = f rχEc ≤ f qχEc ,

then, ∫
hrdμ ≥

∫
f qχEc dμ > 0,

and so

h ∈ (L+)r.

Now, we apply Hölder’s inequality Theorem 10 to prove next theorem.

Theorem 12. If 0 < p < q < r < ∞, then Lp ∩ Lr ⊆ Lq and

Nq( f , τ) ≥ Np

(
f ,
(

p
λq

) 1
p

τ

)
∗ Nr

(
f ,
(

r
(1− λ)q

) 1
r

τ

)
,

where λ ∈ (0, 1) is defined by λ =

1
q − 1

r
1
p − 1

r
.
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Proof. From
∫

f qdμ(x, τ) =
∫

f λq. f (1−λ)qdμ(x, τ) and Hölder’s inequality Theorem 10, we have∫
f qdμ(x, τ) =

∫
f λq. f q(1−λ)dμ(x, τ),

≥
( ∫ (

(
λq
p
)

λq
p f λq

) p
λq

dμ(x, τ)

)
∗
( ∫ (

(1− λ)q
r

) (1−λ)q
r

f q(1−λ)dμ(x, τ)

) r
(1−λ)q

,

≥
( ∫

λq
p

f pdμ(x, τ)

)
∗
( ∫ (

(1− λ)q
r

)
f rdμ(x, τ)

)
,

=

( ∫ (
λq
p

) 1
p

f
)p

dμ(x, τ)

)
∗
( ∫ ((

(1− λ)q
r

) 1
r

f
)r

dμ(x, τ)

)
,

= Np

((
λq
p

) 1
p

f , τ

)
∗ Nr

((
(1− λ)q

r

) 1
r

f , τ

)
,

= Np

(
f ,
(

p
λq

) 1
p

τ

)
∗ Nr

(
f ,
(

r
(1− λ)q

) 1
r

τ

)
.

then,

Nq( f , τ) ≥ Np

(
f ,
(

p
λq

) 1
p

τ

)
∗ Nr

(
f ,
(

r
(1− λ)q

) 1
r

τ

)
.

Another application of Hölder’s inequality Theorem 10 helps us to prove next theorem.

Theorem 13. If μ(X, τ) > 0 and 0 < p < q < ∞, then Lp(μ) ⊃ Lq(μ) and,

Np( f , τ) ≥ Nq

(
f , (

q
p
)

p
q τ

)
∗ μ

(
X, (

q
q− p

)
q−p

q τ

)
.

Proof. By Theorem 7 and Hölder’s inequality Theorem 10, we get

Np( f , τ) =
∫

f p.1dμ(x, τ),

≥ N q
p

(
f p, (

q
p
)

p
q τ

)
∗ N q

q−p

(
1, (

q
q− p

)
q−p

q τ

)
,

=
∫
( f p)

q
p dμ

(
x, (

q
p
)

p
q τ

)
∗
∫

1dμ

(
x, (

q
q− p

)
q−p

q τ

)
,

=
∫

f qdμ

(
x, (

q
p
)

p
q τ

)
∗ μ

(
X, (

q
q− p

)
q−p

q τ

)
,

= Nq

(
f , (

q
p
)

p
q τ

)
∗ μ

(
X, (

q
q− p

)
q−p

q τ

)
.

Finally, we prove the Chebyshev’s Inequality in ∗-fuzzy (L+)p spaces.

Theorem 14 (Chebyshev’s Inequality). If f ∈ (L+)p(0 < p < ∞) then for any a > 0, Np( f , τ) ≤
Np(χEa , τ

a ) with respect to Ea = {x : f (x) > a}.
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Proof. We have,

f p > ( f χEa)
p = f pχEa ,

then ∫
f pdμ(x, τ) ≤

∫
f pdμ(x, τ)χEa =

∫
Ea

f pdμ(x, τ), (20)

and on Ea we have ∫
Ea

f pdμ(x, τ) ≤
∫

Ea
apdμ(x, τ) =

∫
apχEa dμ(x, τ). (21)

By (20) and (21) we get ∫
f pdμ(x, τ) ≤

∫
apχEa dμ(x, τ),

=
∫ (

aχEa

)p

dμ(x, τ).

Then,

Np( f , τ) ≤ Np(aχEa , τ),

= Np(χEa ,
τ

a
).

6. Conclusions

We have considered an uncertainty measure μ based on the concept of fuzzy sets and continuous
triangular norms named by ∗-fuzzy measure. In fact, we worked on a new model of the fuzzy measure
theory (∗-fuzzy measure) which is a dynamic generalization of the classical measure theory. ∗-fuzzy
measure theory has gotten by replacing the non-negative real range and the additivity of classical
measures with fuzzy sets and triangular norms. Moreover, the ∗-fuzzy measure theory has been
motivated by defining new additivity property using triangular norms. Our approach can be apply for
decision making problems [8,9].

We have restricted fuzzy measurable functions and fuzzy integrable functions and defined
important classes of function spaces named by ∗-fuzzy (L+)p. Moreover, we have got a norm on
∗-fuzzy (L+)p spaces and proved that ∗-fuzzy (L+)p spaces are ∗-fuzzy Banach spaces. Finally,
we have proved Chebyshev’s Inequality and Hölder’s Inequality.
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Abstract: In the present paper, we are interested in studying first-order Stieltjes differential
inclusions with periodic boundary conditions. Relying on recent results obtained by the authors
in the single-valued case, the existence of regulated solutions is obtained via the multivalued
Bohnenblust–Karlin fixed-point theorem and a result concerning the dependence on the data of
the solution set is provided.

Keywords: periodic boundary value inclusion; Stieltjes derivative; Stieltjes integrals; Bohnenblust–Karlin
fixed-point theorem; regulated function

1. Introduction

Allowing the study in a unique framework of many classical problems: ordinary differential or
difference equations (in the case of an absolutely continuous measure—with respect to the Lebesgue
measure—respectively of a discrete measure), impulsive differential problems (for a sum of Lebesgue
measure with a discrete one), dynamic equations on time scales (see [1]) and generalized differential
equations (e.g., [2,3]), it is clear why the theory of differential equations driven by measures has seen a
significant growth (e.g., [1,4]).

Using a natural notion of Stieltjes derivative with respect to a non-decreasing function (c.f. [5],
see also [6] or [7,8] for applications), measure-driven differential equations can be expressed, in an
equivalent form, as a Stieltjes differential equation.

On the other hand, the set-valued setting covers a wider range of problems ([9–12], see also [13–15]),
therefore passing from the single-valued to the multivalued case brings a real improvement.

Based on the results obtained in [4] for measure-driven differential equations with periodic
boundary conditions, in the present paper we focus on nonlinear differential inclusions of the form:{

u′g(t) + b(t)u(t) ∈ F(t, u(t)), t ∈ [0, T]
u(0) = u(T)

(1)

where u′g denotes the Stieltjes derivative of the state u with respect to a left-continuous non-decreasing
function g : [0, T] → R. This form is preferred since in many real-world problems the linear,
respectively the nonlinear term has different practical meanings.

In the particular case of the identical function g, periodic differential problems have been widely
considered in the literature; to mention only a few works, we refer to [16–18] for the single-valued
setting and to [19,20] (without impulses) or [21,22] (allowing impulses) in the set-valued framework.

Mathematics 2020, 8, 2142; doi:0.3390/math8122142 www.mdpi.com/journal/mathematics85
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As far as the authors know, periodic differential problems driven by a non-decreasing left-continuous
function g have been studied only in the single-valued case in [4].

Applying Bohnenblust–Karlin set-valued fixed-point theorem, we prove that the specified
problem (1) possesses solutions and characterize the solutions as Stieltjes integrals with an appropriate
Green function.

We then study the dependence of the solution set of (1) on the data; specifically, we want to
estimate the perturbation of the corresponding solution set if perturbations occur in the values of b and
F. Such an estimation is provided in the case where the multifunction does not depend on the state.

New results for impulsive periodic inclusions (studied, e.g., in [21,22]) can be deduced by
considering as function g the sum of an absolutely continuous function with step functions. Moreover,
no restrictions are imposed on the number of impulses (it can be countable, so Zeno behavior
is allowed).

Having in mind that the theory of measure-driven equations is equivalent, in most situations,
with the theory of dynamic equations on time scales ([1], see also [23]), our study could be used to
deduce new existence and dependence on the data results for periodic dynamic inclusions on time
scales (see [24,25]).

The outline of the paper is as follows. After introducing the notations and recalling some necessary
known facts, in Section 3 we present an existence result for the single-valued case and then we proceed
to the main results in Section 4: we prove (for the multivalued setting) an existence result and also a
result on the dependence of the solution set on the data.

2. Notations and Known Facts

A regulated map u : [0, T]→ Rd [26] is a map with right and left limits u(t+) and u(s−) at every
point t ∈ [0, T) and s ∈ (0, T]. It is known that regulated functions have at most countably many
discontinuities [27] and that the space G([0, T],Rd) of regulated functions u : [0, T]→ Rd is a Banach
space with respect to the norm ‖u‖C = supt∈[0,T] ‖u(t)‖.

A collection A ⊂ G([0, T],Rd) is said to be equiregulated if the following conditions hold:

• for each t ∈ (0, T] and ε > 0, one can choose δε,t ∈ (0, T] such that for all u ∈ A

‖u(t′)− u(t−)‖ < ε, for every t′ ∈ (t− δε,t, t)

• for each t ∈ [0, T) and ε > 0, one can choose δε,t ∈ (0, T − t] such that for all u ∈ A

‖u(t′)− u(t+)‖ < ε, for every t′ ∈ (t, t + δε,t).

Let us recall an Ascoli-type result.

Lemma 1. ([26], Corollary 2.4) A set A ⊂ G([0, T],Rd) is relatively compact if and only if it is equiregulated
and pointwise bounded.

It is not difficult to check that:

Remark 1. A set A of regulated functions is equiregulated if

‖u(t)− u(t′)‖ ≤ |χ(t)− χ(t′)|, ∀ 0 ≤ t < t′ ≤ T, ∀ u ∈ A

for some regulated function χ : [0, T]→ R.
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In the whole paper, g : [0, T]→ R will be a non-decreasing left-continuous function and μg the
Stieltjes measure defined by g. Without any loss of generality, suppose g(0) = 0. We deal with the
Kurzweil–Stieltjes integral; we recall below the basic facts concerning this integral.

Definition 1. (Refs [2,3,27,28] or [29]) One says that f : [0, T] → Rd is Kurzweil–Stieltjes integrable (or
KS-integrable) with respect to g : [0, T] → R if there is

∫ T
0 f (s)dg(s) ∈ Rd with the property that for every

ε > 0, one can find δε : [0, T]→ R+ satisfying∥∥∥∥∥ k

∑
i=1

f (ξi)(g(ti)− g(ti−1))−
∫ T

0
f (s)dg(s)

∥∥∥∥∥ < ε

for every δε-fine partition {([ti−1, ti], ξi) : i = 1, ..., k} of [0, T]. ( A partition {([ti−1, ti], ξi) : i = 1, ..., k} of
[0, T] is δε-fine iff [ti−1, ti] ⊂ (ξi − δε(ξi), ξi + δε(ξi)) , for all 1 ≤ i ≤ k).

The well-known Henstock–Kurzweil integral (see [30–32]) is recovered in the case where g is the
identical function and d = 1.

In general, the Lebesgue–Stieltjes integrability with respect to g (i.e., the abstract Lebesgue
integrability with respect to the Stieltjes measure μg) yields the Kurzweil–Stieltjes integrability with
respect to g. When g is left-continuous and non-decreasing, by ([28], Theorem 6.11.3) (or ([27],
Theorem 8.1)),∫ t

0
f (s)dg(s) =

∫
[0,t]

f (s)dμg(s)− f (t)(g(t+)− g(t)) =
∫
[0,t)

f (s)dμg(s), ∀t ∈ [0, T].

(Ref [29], Proposition 2.3.16) asserts that the KS-primitive F : [0, T]→ Rd, F(t) =
∫ t

0 f (s)dg(s) is
regulated whenever g is regulated, it is left-continuous if g is left-continuous and for every t ∈ [0, T),

F(t+)− F(t) = f (t) [g(t+)− g(t)] .

Consequently, if g is continuous at some point, then F is also continuous.
To recall more properties of the primitive, we need a notion of (Stieltjes) derivative of a function

with respect to another function, given in [5] (see also [33]).

Definition 2. Let g : [0, T] → R be non-decreasing and left-continuous. The derivative of f : [0, T] → Rd

with respect to g (or the g-derivative) at the point t ∈ [0, T] is

f ′g(t) = lim
t′→t

f (t′)− f (t)
g(t′)− g(t)

if g is continuous at t,

f ′g(t) = lim
t′→t+

f (t′)− f (t)
g(t′)− g(t)

if g is discontinuous at t,

if the limit exists.

The g-derivative has found interesting applications in solving real-world problems where periods
of time where no activity occurs and instants with abrupt changes are both present, such as [7] or [8].

Define the following set:

Dg = {t ∈ [0, T] : g(t+)− g(t) > 0},
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namely the collection of atoms of μg; remark that if t ∈ Dg, then

f ′g(t) =
f (t+)− f (t)
g(t+)− g(t)

.

There is a set where Definition 2 has no meaning, more precisely,

Cg = {t ∈ [0, T] : g is constant on (t− ε, t + ε) for some ε > 0}.

It is convenient, when working with the g-derivative, to also disregard the points of the set

Ng = {un, vn : n ∈ N} \ Dg,

where Cg =
⋃

n∈N(un, vn) is a pairwise disjoint decomposition of Cg (such a writing is possible due to
the fact that Cg is open in the usual topology of the real line, see [5]).

To warrant this, take into account that μg(Cg) = μg(Ng) = 0 [5] and, when studying differential
equations, the equation has to be satisfied μg-almost everywhere.

The connection between Stieltjes integrals and the Stieltjes derivative is given by Fundamental
Theorems of Calculus ([5], Theorems 5.4, 6.2, 6.5).

Theorem 1. ([5], Theorem 6.5) Let f : [0, T] → Rd be KS-integrable with respect to the non-decreasing
left-continuous function g : [0, T]→ R. Then its primitive

F(t) =
∫ t

0
f (s) dg(s), t ∈ [0, T],

is g-differentiable μg-a.e. in [0,T] and F′g(t) = f (t), μg-a.e. in [0,T].

As our aim is to study a differential inclusion, we end this section with basic notions of set-valued
analysis (the reader is referred to [34,35] or [36]).

Let Pbc(R
d) be the space of all non-empty bounded, closed and convex subsets of Rd endowed

with the Hausdorff–Pompeiu distance

D(A, A′) = max(e(A, A′), e(A′, A)),

where the (Pompeiu-) excess of the set A ∈ Pbc(R
d) over A′ ∈ Pbc(R

d) is given by

e(A, A′) = sup
a∈A

inf
a′∈A′

‖a− a′‖.

If A ∈ Pbc(R
d), denote by |A| = D(A, {0}) = supa∈A ‖a‖.

Let X, Y be Banach spaces and let F : X → P(Y) be a multimapping. F is said to be upper
semicontinuous at u0 ∈ X if for each ε > 0 there is δε,u0 > 0 such that whenever ‖u− u0‖ < δε,u0 ,

F(u) ⊂ F(u0) + εB,

B being the closed unit ball of Y.
Moreover, F has closed graph if for all (un)n∈N ⊂ X, (vn)n∈N ⊂ Y with

un → u ∈ X, vn → v ∈ Y, vn ∈ F(un), n ∈ N,

we have v ∈ F(u).
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3. Preliminary Result—Existence Theory for the Single-Valued Problem

In this section, relying on the theory in [4], we present an existence result for the linear Stieltjes
differential equation with periodic boundary conditions{

u′g(t) + b(t)u(t) = f (t), μg −a.e. in [0, T],
u(0) = u(T),

(2)

where g : [0, T] → R is non-decreasing and left-continuous and b : [0, T] → R is a μg-measurable
function satisfying the non-resonance condition:

1− b(t)μg({t}) 
= 0, for every t ∈ [0, T]. (3)

Definition 3. A function u : [0, T] → Rd is a solution of problem (2) if it is left-continuous and regulated,
constant on the intervals where g is constant, g-differentiable μg-a.e. in [0, T] satisfying

u′g(t) + b(t)u(t) = f (t), μg − a.e. in [0, T]

and
u(0) = u(T).

Let us remark that when b ∈ L1(μg), the following condition is fulfilled:

∑
t∈Dg

∣∣log|1− b(t)μg({t})|
∣∣ < ∞. (4)

Indeed, if Dg is countable, we note its elements by {t̃n}n∈N and we get

∞

∑
n=1
|b(t̃n)μg({t̃n})| ≤ ‖b‖L1(μg)

< ∞

which implies b(t̃n)μg({t̃n})→ 0 as n→ ∞. Then, since

lim
n→∞

∣∣log|1− b(t̃n)μg({t̃n})|
∣∣

|b(t̃n)μg({t̃n})| = 1, (5)

(4) comes from the Limit Comparison Criterion for the convergence of numerical series. If Dg is finite,
then (4) is trivially fulfilled.

It turns out (see [4]) that for some positive constant δ,

|1− b(t)μg({t})| > δ, ∀t ∈ Dg .

Moreover, t → |b(t)μg({t})| is bounded on [0, T] since on [0, T] \ Dg it vanishes, while on Dg

we may see that is obviously bounded if Dg is finite, respectively b(t̃n)μg({t̃n})→ 0 as n→ ∞ if Dg

is countable.
To solve the problem (2), the sign of 1− b(t)μg({t}) has to be taken into account.
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As in [7], if b ∈ L1
g([0, T]), the set

D−g = {t ∈ Dg : 1− b(t)μg({t}) < 0}

is finite since
∞ > ‖b‖L1

g
> ∑

t∈D−g

b(t)μg({t}) > ∑
t∈D−g

1.

Denote by t1 < ... < tk its elements and, for simplicity, let t0 = 0 and tk+1 = T. Let

α(t) =

{
1, i f 0 ≤ t ≤ t1

(−1)i, i f ti < t ≤ ti+1, i = 1, ..., k

and

b̃(t) =

{
b(t), i f t ∈ [0, T] \ Dg
−log|1−b(t)μg({t})|

μg({t}) , i f t ∈ Dg.

Applying Theorem 1, the following existence result can be proved:

Theorem 2. Let b : [0, T] → R be LS-integrable with respect to g, satisfying (3) and let f : [0, T] → Rd be
such that f̃ (t) = f (t)

1−b(t)μg({t}) is KS-integrable with respect to g.
Denoting by

g̃(t, s) =
1

α(T)e
∫ T

0 b̃(r)dg(r) − 1

{
α(T)e

∫ T
0 b̃(r)dg(r)−∫ t

s b̃(r)dg(r), i f 0 ≤ s ≤ t ≤ T

e−
∫ t

s b̃(r)dg(r), i f 0 ≤ t < s ≤ T,

the function u : [0, T]→ Rd,

u(t) =
1

α(t)

∫ T

0

α(s)
1− b(s)μg({s}) g̃(t, s) f (s)dg(s),

is a solution of problem (2).

Proof. Obviously, the LS-integrability of b̃ with respect to g follows from condition (4) and the
LS-integrability of b.

One can see that for all t ∈ [0, T],

u(t) = (6)

=
1

α(T)e
∫ T

0 b̃(r)dg(r) − 1

[
α(T)
α(t)

e
∫ T

0 b̃(r)dg(r)e−
∫ t

0 b̃(r)dg(r)
∫ t

0
α(s)e

∫ s
0 b̃(r)dg(r) · f̃ (s)dg(s)

+
1

α(t)
e−

∫ t
0 b̃(r)dg(r)

∫ T

t
α(s)e

∫ s
0 b̃(r)dg(r) · f̃ (s)dg(s)

]
.

Let t ∈ [0, T] \ Dg be a point where the maps
∫ ·

0 b̃(r)dg(r) and
∫ ·

0 α(s)e
∫ s

0 b̃(r)dg(r) · f̃ (s)dg(s) are
g-differentiable (we know that it happens μg-a.e.).
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We notice that α is constant on a neighborhood of t, so, by the product differentiation rule (see [5],
Proposition 2.2),

u′g(t) =
1

α(T)e
∫ T

0 b̃(r)dg(r) − 1
·[

α(T)
α(t)

e
∫ T

0 b̃(r)dg(r)e−
∫ t

0 b̃(r)dg(r)(−b̃(t))
∫ t

0
α(s)e

∫ s
0 b̃(r)dg(r) · f̃ (s)dg(s)

+
α(T)
α(t)

e
∫ T

0 b̃(r)dg(r)e−
∫ t

0 b̃(r)dg(r)α(t)e
∫ t

0 b̃(r)dg(r) · f̃ (t)

+
1

α(t)
e−

∫ t
0 b̃(r)dg(r)(−b̃(t))

∫ T

t
α(s)e

∫ s
0 b̃(r)dg(r) · f̃ (s)dg(s)

+
1

α(t)
e−

∫ t
0 b̃(r)dg(r)(−α(t)e

∫ t
0 b̃(r)dg(r) · f̃ (t))

]

=
1

α(T)e
∫ T

0 b̃(r)dg(r) − 1
·
{
−b̃(t) ·

[
α(T)
α(t)

∫ t

0
α(s)e

∫ T
0 b̃(r)dg(r)−∫ t

s b̃(r)dg(r) f̃ (s)dg(s)

+
1

α(t)

∫ T

t
α(s)e−

∫ t
s b̃(r)dg(r) f̃ (s)dg(s)

]
+ [α(T)e

∫ T
0 b̃(r)dg(r) − 1] f̃ (t)

}

= −b̃(t)
1

α(t)

∫ T

0
α(s)g̃(t, s) f̃ (s)dg(s) + f̃ (t)

= −b̃(t)u(t) + f̃ (t) = −b(t)u(t) + f (t) (recall that t ∈ [0, T] \ Dg).

When calculating the g-derivative of the exponential function, we used a chain rule ([5],
Theorem 2.3) together with Theorem 1, namely:

(
e−

∫ t
0 b̃(r)dg(r)

)′
g

= e−
∫ t

0 b̃(r)dg(r) ·
(
−

∫ t

0
b̃(r)dg(r)

)′
g

= e−
∫ t

0 b̃(r)dg(r) · (−b̃(t)).

The equality u′g(t) = −b(t)u(t) + f (t) at the points in Dg can be proved exactly as in ([4],
Theorem 17).

Remark 2. If we impose the LS-integrability with respect to g of f , then the LS-integrability (therefore,
the KS-integrability) of f (t)

1−b(t)μg({t}) comes from the inequality

1
|1− b(t)μg({t})| ≤ max

(
1,

1
δ

)
, ∀t ∈ [0, T].

Remark 3. The reciprocal assertion of Theorem 2 is also valid (see [4], Theorem 19). Specifically, if b, g̃, f are as
postulated in Theorem 2 and u : [0, T]→ Rd is a solution of (2), then

u(t) =
1

α(t)

∫ T

0

α(s)
1− b(s)μg({s}) g̃(t, s) f (s)dg(s), t ∈ [0, T].

Remark 4. As seen in [4], the application (s′, s′′) ∈ [0, T] × [0, T] → e
∫ s′′

s′ b̃(s)dg(s) is regulated in both
variables, therefore it is bounded. If

M = sup
(s′ ,s′′)∈[0,T]×[0,T]

e
∫ s′′

s′ b̃(s)dg(s)
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then from the definition of g̃ it can easily be deduced that

|g̃(t, s)| ≤ max(M, M2)∣∣∣α(T)e∫ T
0 b̃(r)dg(r) − 1

∣∣∣ , ∀s, t ∈ [0, T].

Obviously, if
1− b(t)μg(t) > 0 for all t ∈ [0, T],

then α(t) = 1 for every t ∈ [0, T], therefore the formulas and the computations become much simpler.

4. Main Results

4.1. Existence of Solutions

We aim to obtain the existence of solutions for the set-valued periodic boundary value problem (1):{
u′g(t) + b(t)u(t) ∈ F(t, u(t)), μg − a.e. in [0, T],
u(0) = u(T).

The notion of solution adapted from the single-valued case (Definition 3) reads as follows.

Definition 4. A function u : [0, T] → Rd is a solution of problem (1) if it is left-continuous and regulated,
constant on the intervals where g is constant, g-differentiable μg-a.e. in [0, T] and

u′g(t) + b(t)u(t) = f (t)

with f (t) ∈ F(t, u(t)), μg − a.e. in [0, T].

We shall apply the following fixed-point theorem for multivalued operators.

Theorem 3. (Bohnenblust–Karlin) Let X be a Banach space,M ⊂ X be closed and convex and the operator
A :M→ P(M) with closed, convex values be upper semicontinuous such that A(M) is relatively compact.
Then the operator has a fixed point.

Theorem 4. Let b : [0, T]→ R be LS-integrable with respect to g and suppose that (3) is fulfilled.
Let F : [0, T]×Rd → Pbc(R

d) satisfy the following hypotheses:

• for every t ∈ [0, T], F(t, ·) is upper semicontinuous;
• for every u ∈ Rd, F(·, u) is μg-measurable;
• there exists a function φ LS-integrable with respect to g such that

|F(t, u)| ≤ φ(t)

for every t ∈ [0, T], u ∈ Rd.

Then the Stieltjes differential inclusion (1) has solutions. Moreover, the solution set of (1) is ‖‖C-bounded.

Proof. Let Xg be the subspace of G([0, T],Rd) consisting of the functions being continuous on
[0, T] \ Dg.

Condition (4) together with the LS-integrability with respect to g of b imply that b̃ has the
same feature.

Following Remark 4, we note by

M = sup
(s′ ,s′′)∈[0,T]×[0,T]

e
∫ s′′

s′ b̃(s)dg(s).
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By condition (4), for every t ∈ [0, T],

1
|1− b(t)μg({t})| |F(t, u)| ≤ max

(
1,

1
δ

)
· φ(t)

so we shall denote by

φ(t) = max
(

1,
1
δ

)
· φ(t), ∀t ∈ [0, T].

Consider

M =

⎧⎪⎨⎪⎩v ∈ Xg : ‖v‖C ≤ max(M, M2)∣∣∣α(T)e∫ T
0 b̃(r)dg(r) − 1

∣∣∣
∫ T

0
φ(s)dg(s)

⎫⎪⎬⎪⎭ .

and the operator A :M→ P(M) given, for each u ∈ M, by

Au =

{
v ∈ Xg : v(t) =

1
α(t)

∫ T

0

α(s)
1− b(s)μg({s}) g̃(t, s) f (s)dg(s) : f ∈ SF(·,u(·))

}
with g̃ as in Theorem 2 and

SF(·,u(·)) =
{

f ∈ L1(μg,Rd) : f (t) ∈ F(t, u(t)) μg − a.e.
}

.

A is well defined: for each u ∈ Xg, SF(·,u(·)) is non-empty and whenever u ∈ Xg, i.e., u is regulated
and continuous on [0, T] \ Dg, each element of Au has the same feature. Indeed, we note that α is
constant in a neighborhood of t ∈ [0, T] \ Dg, and writing each element of Au as in (6), by ([29],
Proposition 2.3.16) we deduce that it is regulated and continuous on [0, T] \ Dg.

We next show that ‖u‖C ≤ max(M,M2)∣∣∣∣α(T)e∫ T
0 b̃(r)dg(r)−1

∣∣∣∣
∫ T

0 φ(s)dg(s) implies that every v ∈ Au satisfies the

same inequality.
Indeed, fix t ∈ [0, T]. Then every v ∈ Au is given (by the definition of the operator A) by some

selection f of F(·, u(·)) and we can see, by Remark 4, that

‖v(t)‖ ≤ max
(

1,
1
δ

) ∫ T

0
|g̃(t, s)| · | f (s)| dg(s)

≤ max
(

1,
1
δ

)
max(M, M2)∣∣∣α(T)e∫ T

0 b̃(r)dg(r) − 1
∣∣∣
∫ T

0
| f (s)|dg(s)

≤ max
(

1,
1
δ

)
max(M, M2)∣∣∣α(T)e∫ T

0 b̃(r)dg(r) − 1
∣∣∣
∫ T

0
φ(s)dg(s),

whence

‖v‖C ≤ max(M, M2)∣∣∣α(T)e∫ T
0 b̃(r)dg(r) − 1

∣∣∣
∫ T

0
φ(s)dg(s).

Let us next check that the operator has closed, convex values.
Let u ∈ M. Obviously, SF(·,u(·)) is convex (recall that F has convex values), therefore, Au is convex

as well.
To prove that it is closed, take (vn)n∈N ⊂ Au uniformly convergent to v ∈ M; specifically, for each

n ∈ N, one can find fn ∈ SF(·,u(·)) such that

vn(t) =
1

α(t)

∫ T

0

α(s)
1− b(s)μg({s}) g̃(t, s) fn(s)dg(s), t ∈ [0, T] and vn → v uniformly.
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One can see that
‖ fn(t)‖ ≤ φ(t), ∀n ∈ N, t ∈ [0, T],

so there exists a subsequence ( fnk )k∈N weakly L1(μg,Rd) convergent to a function f ∈ L1(μg,Rd)

(Dunford-Pettis Theorem). In a classical way (Mazur’s theorem and properties of norm-convergent
sequences in L1(μg,Rd)), a sequence of convex combinations tends pointwise μg -a.e. to f , whence

f (·) ∈ SF(·,u(·)).

By a dominated convergence result (see [28], Theorem 6.8.7) applied for the components of
( fnk )k∈N, f , one deduces that

vnk (t) =
1

α(t)

∫ T

0

α(s)
1− b(s)μg({s}) g̃(t, s) fnk (s)dg(s)→

1
α(t)

∫ T

0

α(s)
1− b(s)μg({s}) g̃(t, s) f (s)dg(s)

and so,

v(t) =
1

α(t)

∫ T

0

α(s)
1− b(s)μg({s}) g̃(t, s) f (s)dg(s), t ∈ [0, T],

thus Au is closed.

We will prove that A satisfies the hypotheses of Theorem 3.
We check that A(M) is relatively compact, using Lemma 1.
Take 0 ≤ t < t′ ≤ T.
For each u ∈ M and each v ∈ Au (defined via a selection f of F(·, u(·)) LS-integrable with respect

to g),

∥∥v(t)− v(t′)
∥∥ ≤

∥∥∥∥ 1
α(t)

∫ T

0

α(s)
1− b(s)μg({s}) (g̃(t, s)− g̃(t′, s)) f (s))dg(s)

∥∥∥∥
+

∥∥∥∥( 1
α(t)
− 1

α(t′)

) ∫ T

0

α(s)
1− b(s)μg({s}) g̃(t′, s) f (s))dg(s)

∥∥∥∥ .
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We note that |α(t)| = 1 for each t ∈ [0, T], so we can write∥∥∥∥ 1
α(t)

∫ T

0

α(s)
1− b(s)μg({s}) (g̃(t, s)− g̃(t′, s)) f (s))dg(s)

∥∥∥∥
≤ 1∣∣∣α(T)e∫ T

0 b̃(r)dg(r) − 1
∣∣∣[∥∥∥∥α(T)

∫ t

0

α(s)
1− b(s)μg({s}) (e

∫ T
0 b̃(r)dg(r)−∫ t

s b̃(r)dg(r) − e
∫ T

0 b̃(r)dg(r)−∫ t′
s b̃(r)dg(r)) f (s)dg(s)

∥∥∥∥
+

∥∥∥∥∫ T

t′
α(s)

1− b(s)μg({s}) (e
− ∫ t

s b̃(r)dg(r) − e−
∫ t′

s b̃(r)dg(r)) f (s)dg(s)
∥∥∥∥

+

∥∥∥∥∫ t′

t

α(s)
1− b(s)μg({s}) (e

− ∫ t
s b̃(r)dg(r) − α(T)e

∫ T
0 b̃(r)dg(r)−∫ t′

s b̃(r)dg(r)) f (s)dg(s)
∥∥∥∥]

=
1∣∣∣α(T)e∫ T

0 b̃(r)dg(r) − 1
∣∣∣[∥∥∥∥∫ t

0

α(s)
1− b(s)μg({s}) e

∫ T
0 b̃(r)dg(r)−∫ t

s b̃(r)dg(r)(1− e−
∫ t′

t b̃(r)dg(r)) f (s)dg(s)
∥∥∥∥

+

∥∥∥∥∫ T

t′
α(s)

1− b(s)μg({s}) e−
∫ t′

s b̃(r)dg(r)(e
∫ t′

t b̃(r)dg(r) − 1) f (s)dg(s)
∥∥∥∥

+

∥∥∥∥∫ t′

t

α(s)
1− b(s)μg({s}) (e

− ∫ t
s b̃(r)dg(r) − α(T)e

∫ T
0 b̃(r)dg(r)−∫ t′

s b̃(r)dg(r)) f (s)dg(s)
∥∥∥∥] .

On the other hand, again by |α(t)| = |α(t′)| = 1,∥∥∥∥( 1
α(t)
− 1

α(t′)

) ∫ T

0

α(s)
1− b(s)μg({s}) g̃(t′, s) f (s)dg(s)

∥∥∥∥
= |α(t)− α(t′)|

∥∥∥∥∫ T

0

α(s)
1− b(s)μg({s}) g̃(t′, s) f (s)dg(s)

∥∥∥∥
and using the definition of g̃ together with Remark 2 one gets∥∥∥∥( 1

α(t)
− 1

α(t′)

) ∫ T

0

α(s)
1− b(s)μg({s}) g̃(t′, s) f (s)dg(s)

∥∥∥∥
≤ |α(t)− α(t′)|
|α(T)e

∫ T
0 b̃(r)dg(r) − 1|

[∥∥∥∥∫ t′

0

α(s)
1− b(s)μg({s}) e

∫ T
0 b̃(r)dg(r)−∫ t′

s b̃(r)dg(r) f (s)dg(s)
∥∥∥∥

+

∥∥∥∥∫ T

t′
α(s)

1− b(s)μg({s}) e−
∫ t′

s b̃(r)dg(r) f (s)dg(s)
∥∥∥∥]

≤ max
(

1,
1
δ

) |α(t)− α(t′)|
|α(T)e

∫ T
0 b̃(r)dg(r) − 1|

[∫ t′

0

∥∥∥∥e
∫ T

0 b̃(r)dg(r)−∫ t′
s b̃(r)dg(r) f (s)

∥∥∥∥ dg(s)

+
∫ T

t′

∥∥∥∥e−
∫ t′

s b̃(r)dg(r) f (s)
∥∥∥∥ dg(s)

]
.

But
e
∫ T

0 b̃(r)dg(r)−∫ t
s b̃(r)dg(r) ≤ M2 and e

∫ T
0 b̃(r)dg(r)−∫ t′

s b̃(r)dg(r) ≤ M2.
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We thus get∥∥v(t)− v(t′)
∥∥

≤ M∣∣∣α(T)e∫ T
0 b̃(r)dg(r) − 1

∣∣∣ max
(

1,
1
δ

) [
M

∫ t

0

∣∣∣∣1− e−
∫ t′

t b̃(r)dg(r)
∣∣∣∣ · ‖ f (s)‖dg(s)

+
∫ T

t′

∣∣∣∣e∫ t′
t b̃(r)dg(r) − 1

∣∣∣∣ · ‖ f (s)‖dg(s)

+ (1 + M)
∫ t′

t
‖ f (s)‖ dg(s)

]
+

|α(t)− α(t′)|
|α(T)e

∫ T
0 b̃(r)dg(r) − 1|

max
(

1,
1
δ

) [
M2

∫ t′

0
‖ f (s)‖dg(s)

+M
∫ T

t′
‖ f (s)‖dg(s)

]
,

so, taking into account the definition of φ, it follows that∥∥v(t)− v(t′)
∥∥

≤ M∣∣∣α(T)e∫ T
0 b̃(r)dg(r) − 1

∣∣∣
[

M
∣∣∣∣1− e−

∫ t′
t b̃(r)dg(r)

∣∣∣∣ · ∫ T

0
φ(s)dg(s)

+

∣∣∣∣e∫ t′
t b̃(r)dg(r) − 1

∣∣∣∣ · ∫ T

0
φ(s)dg(s) + (1 + M)

∫ t′

t
φ(s)dg(s)

+(M + 1)|α(t)− α(t′)|
∫ T

0
φ(s)dg(s)

]
.

But ∣∣∣∣1− e−
∫ t′

t b̃(r)dg(r)
∣∣∣∣ ≤ M

∣∣∣∣e− ∫ t
0 b̃(r)dg(r) − e−

∫ t′
0 b̃(r)dg(r)

∣∣∣∣
and similarly for

∣∣∣∣e∫ t′
t b̃(r)dg(r) − 1

∣∣∣∣ , while

∫ t′

t
φ(s)dg(s) =

∫ t′

0
φ(s)dg(s)−

∫ t

0
φ(s)dg(s).

Remark 1 yields now that the set A(M) is equiregulated.
The pointwise boundedness is immediate, therefore Lemma 1 implies that {Au : u ∈ M} is

relatively compact.
Next, let us prove that A is upper semicontinuous. As A(M) is relatively compact, it suffices to

verify that A has closed graph (see [36], Proposition 2.23).
Let (un)n∈N ⊂ M converge uniformly to u ∈ M and (vn)n∈N ⊂ M converge uniformly to

v ∈ M be such that vn ∈ Aun for all n ∈ N.
One can find, for every n ∈ N, fn ∈ SF(·,un(·)) such that

vn(t) =
1

α(t)

∫ T

0

α(s)
1− b(s)μg({s}) g̃(t, s) fn(s)dg(s), t ∈ [0, T].

As before,
‖ fn(t)‖ ≤ φ(t), ∀n ∈ N, t ∈ [0, T],
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so there is a subsequence ( fnk )k∈N convergent in the weak-L1(μg,Rd) topology to a function f ∈
L1(μg,Rd). It follows that a sequence of convex combinations of { fnk : k ∈ N} tends pointwise
(μg-a.e.) to f . On the other hand, F is upper semicontinuous with respect to the second value also with
closed values , thus it has closed graph with respect to the second value (see [36], Proposition 2.17).
Combining these two facts, we may easily check that

f ∈ SF(·,u(·)).

By a dominated convergence result (see [28], Theorem 6.8.7) applied for the components of
( fnk )k∈N and f , one deduces that the corresponding sequence of convex combinations of (vnk )k
converges to

1
α(t)

∫ T

0

α(s)
1− b(s)μg({s}) g̃(t, s) f (s)dg(s)

whence

v(t) =
1

α(t)

∫ T

0

α(s)
1− b(s)μg({s}) g̃(t, s) f (s)dg(s), t ∈ [0, T]

and consequently v ∈ Au.
Finally, Bohnenblust–Karlin fixed-point theorem yields that the operator has fixed points,

which are solutions to problem (1) by Theorem 2.

4.2. Dependence on the Data

Let us now study in which manner the solution set of problem (1) depends on the data. For this
purpose, we are forced to drop the dependence on the state of the right-hand side. To be more precise,
if we consider functions b1, b2 as in Theorem 4 and multifunctions F1, F2 : [0, T]→ Pbc(R

d) such that
the considered problem has solutions, we are interested in finding the relation between the solution
set S1 of {

u′g(t) + b1(t)u(t) ∈ F1(t), μg−a.e. in [0, T]
u(0) = u(T)

and the solution set S2 of {
u′g(t) + b2(t)u(t) ∈ F2(t), μg−a.e. in [0, T]
u(0) = u(T).

The perturbation of b shall be measured through

‖b1 − b2‖C = sup
t∈[0,T]

|b1(t)− b2(t)| or ‖b1 − b2‖L1 =
∫ T

0
|b1(s)− b2(s)|dg(s)

while the perturbation of F through

DC(F1, F2) = sup
t∈[0,T]

D(F1(t), F2(t)) or DL1(F1, F2) =
∫ T

0
D(F1(s), F2(s))dg(s).

Correspondingly, one can measure the distance between the ‖‖C-bounded sets S1, S2 of regulated
functions in the following ways:

DC(S1,S2) = max(eC(S1,S2), eC(S2,S1)),
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where the Pompeiu-excess of the set S1 over the set S2 is defined by

eC(S1,S2) = sup
u∈S1

inf
u′∈S2

‖u− u′‖C

or
DL1(S1,S2) = max(eL1(S1,S2), eL1(S2,S1)),

where the excess of S1 over S2 is

eL1(S1,S2) = sup
u∈S1

inf
u′∈S2

‖u− u′‖L1 .

Let us note that

Remark 5. For any x1, x2 ∈ [a, b] ⊂ R,

(i)
|ex1 − ex2 | ≤ eb|x1 − x2|.

(ii) if a > 0,

| log |x1| − log |x2|| ≤ 1
a
|x1 − x2|.

Theorem 5. Let b1, b2 : [0, T]→ R be LS-integrable with respect to g and suppose that (3) is fulfilled for both
b1 and b2.
Let F1, F2 : [0, T]→ Pbc(R

d) satisfy the following hypotheses:

• F1, F2 are μg-measurable;
• there exists a function φ LS-integrable with respect to g such that

|Fi(t)| ≤ φ(t), i = 1, 2, ∀t ∈ [0, T].

Then there exist positive constants Ci, i = 1, 6 such that for every u1 ∈ S1, one can find u2 ∈ S2 satisfying,
for all t ∈ [0, T],

‖u1(t)− u2(t)‖
≤ C1

∫ T

0
|b1(s)− b2(s)|dg(s) + C2|α1(T)− α2(T)|

+C3

∫ T

0
φ(s)|α1(s)− α2(s)|dg(s) + C4

∫ T

0
|b1(s)− b2(s)|φ(s)dg(s)

+C5

∫ T

0
D(F1(s), F2(s))dg(s) + C6|α1(t)− α2(t)|.

Proof. Let u1 ∈ S1. Then there exists a selection f1 of F1 which is LS-integrable with respect to g
such that

u1(t) =
1

α1(t)

∫ T

0

α1(s)
1− b1(s)μg({s}) g̃1(t, s) f1(s)dg(s), t ∈ [0, T],

where
D1,−

g = {t ∈ Dg : 1− b1(t)μg({t}) < 0} = {t1
1, ..., t1

k}
(with the obvious convention t1

0 = 0 and t1
k+1 = T),

α1(t) =

{
1, i f 0 ≤ t ≤ t1

1
(−1)i, i f t1

i < t ≤ t1
i+1, i = 1, ..., k,
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b̃1(t) =

{
b1(t), i f t ∈ [0, T] \ Dg
−log|1−b1(t)μg({t})|

μg({t}) , i f t ∈ Dg

and

g̃1(t, s) =
1

α1(T)e
∫ T

0 b̃1(r)dg(r) − 1

{
α1(T)e

∫ T
0 b̃1(r)dg(r)−∫ t

s b̃1(r)dg(r), i f 0 ≤ s ≤ t ≤ T

e−
∫ t

s b̃1(r)dg(r), i f 0 ≤ t < s ≤ T.

By ([34], Corollary 8.2.13) we can choose f2 as the μg-measurable selection of F2 satisfying

‖ f1(t)− f2(t)‖ = d( f1(t), F2(t)), ∀ t ∈ [0, T]

so, by the very definition of the Pompeiu-Hausdorff distance,

‖ f1(t)− f2(t)‖ ≤ D(F1(t), F2(t)), ∀ t ∈ [0, T].

Consider now the function u2 : [0, T]→ Rd given by

u2(t) =
1

α2(t)

∫ T

0

α2(s)
1− b2(s)μg({s}) g̃2(t, s) f2(s)dg(s), t ∈ [0, T],

where
D2,−

g = {t ∈ Dg : 1− b2(t)μg({t}) < 0} = {t2
1, ..., t2

l }
(again, with the convention t2

0 = 0 and t2
l+1 = T),

α2(t) =

{
1, i f 0 ≤ t ≤ t2

1
(−1)i, i f t2

i < t ≤ t2
i+1, i = 1, ..., l,

b̃2(t) =

{
b2(t), i f t ∈ [0, T] \ Dg
−log|1−b2(t)μg({t})|

μg({t}) , i f t ∈ Dg

and

g̃2(t, s) =
1

α2(T)e
∫ T

0 b̃2(r)dg(r) − 1

{
α2(T)e

∫ T
0 b̃2(r)dg(r)−∫ t

s b̃2(r)dg(r), i f 0 ≤ s ≤ t ≤ T

e−
∫ t

s b̃2(r)dg(r), i f 0 ≤ t < s ≤ T.

Obviously, u2 ∈ S2 by Theorem 2. Let us see that it satisfies the requested inequality for some
well-chosen constants Ci, i = 1, ..., 6.

First, we may write

‖u1(t)− u2(t)‖
=

∥∥∥∥ 1
α1(t)

∫ T

0

α1(s)
1− b1(s)μg({s}) g̃1(t, s) f1(s)dg(s)

− 1
α2(t)

∫ T

0

α2(s)
1− b2(s)μg({s}) g̃2(t, s) f2(s)dg(s)

∥∥∥∥
≤

∥∥∥∥ 1
α1(t)

∫ T

0

α1(s)
1− b1(s)μg({s}) g̃1(t, s) f1(s)dg(s)

− 1
α1(t)

∫ T

0

α2(s)
1− b2(s)μg({s}) g̃2(t, s) f2(s)dg(s)

∥∥∥∥
+

∥∥∥∥ 1
α1(t)

∫ T

0

α2(s)
1− b2(s)μg({s}) g̃2(t, s) f2(s)dg(s)

− 1
α2(t)

∫ T

0

α2(s)
1− b2(s)μg({s}) g̃2(t, s) f2(s)dg(s)

∥∥∥∥
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Using the remark that |α1(t)| = 1 and also |α2(t)| = 1 for every t ∈ [0, T], we obtain

‖u1(t)− u2(t)‖
≤

∥∥∥∥∫ T

0

(
α1(s)

1− b1(s)μg({s}) g̃1(t, s) f1(s)− α2(s)
1− b2(s)μg({s}) g̃2(t, s) f2(s)

)
dg(s)

∥∥∥∥
+

∥∥∥∥(α1(t)− α2(t))
∫ T

0

α2(s)
1− b2(s)μg({s}) g̃2(t, s) f2(s)dg(s)

∥∥∥∥ (7)

(please note that
∣∣∣∣ 1
α1(t)

− 1
α2(t)

∣∣∣∣ = |α1(t)− α2(t)|, for every t ∈ [0, T]).

Let us evaluate the first term of the sum (7):∥∥∥∥∫ T

0

(
α1(s)

1− b1(s)μg({s}) g̃1(t, s) f1(s)− α2(s)
1− b2(s)μg({s}) g̃2(t, s) f2(s)

)
dg(s)

∥∥∥∥
≤

∥∥∥∥∫ T

0

(
α1(s)

1− b1(s)μg({s}) g̃1(t, s)− α2(s)
1− b2(s)μg({s}) g̃2(t, s)

)
f1(s)dg(s)

∥∥∥∥
+

∥∥∥∥∫ T

0

α2(s)
1− b2(s)μg({s}) g̃2(t, s)( f1(s)− f2(s))dg(s)

∥∥∥∥
and by Remark 2,∣∣∣∣ α1(s)

1− b1(s)μg({s}) g̃1(t, s)− α2(s)
1− b2(s)μg({s}) g̃2(t, s)

∣∣∣∣
≤

∣∣∣∣ α1(s)
1− b1(s)μg({s}) (g̃1(t, s)− g̃2(t, s))

∣∣∣∣+ ∣∣∣∣( α1(s)
1− b1(s)μg({s}) −

α2(s)
1− b2(s)μg({s})

)
g̃2(t, s)

∣∣∣∣
=

∣∣∣∣ α1(s)
1− b1(s)μg({s}) (g̃1(t, s)− g̃2(t, s))

∣∣∣∣+ ∣∣∣∣ α1(s)− α2(s) + (α2(s)b1(s)− α1(s)b2(s))μg({s})
(1− b1(s)μg({s}))(1− b2(s)μg({s})) g̃2(t, s)

∣∣∣∣
≤ max

(
1,

1
δ1

)
|g̃1(t, s)− g̃2(t, s)|

+max
(

1,
1
δ1

)
max

(
1,

1
δ2

)
|g̃2(t, s)|(|α1(s)− α2(s)|

+|α1(s)− α2(s)| · |b2(s)μg({s})|+ |b1(s)− b2(s)|μg({s})),

where δ1 , δ2 are the corresponding positive constants in Remark 2 for b1 , b2 respectively.
Since the condition (4) is verified, |b2(s)μg({s})| is bounded, say by m2. Then∥∥∥∥∫ T

0

(
α1(s)

1− b1(s)μg({s}) g̃1(t, s)− α2(s)
1− b2(s)μg({s}) g̃2(t, s)

)
f1(s)dg(s)

∥∥∥∥
≤ max

(
1,

1
δ1

) ∫ T

0
|g̃1(t, s)− g̃2(t, s)|‖ f1(s)‖dg(s)

+max
(

1,
1
δ1

)
max

(
1,

1
δ2

) ∫ T

0
(1 + m2)|g̃2(t, s)|‖ f1(s)‖|α1(s)− α2(s)|dg(s)

+max
(

1,
1
δ1

)
max

(
1,

1
δ2

)
g(T)

∫ T

0
|g̃2(t, s)||b1(s)− b2(s)|‖ f1(s)‖dg(s).

We can also see, by the choice of f2 that∥∥∥∥∫ T

0

α2(s)
1− b2(s)μg({s}) g̃2(t, s)( f1(s)− f2(s))dg(s)

∥∥∥∥
≤ max

(
1,

1
δ2

) ∫ T

0
|g̃2(t, s)| · D(F1(s), F2(s))dg(s).
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We are now evaluating the second term of the sum (7):∥∥∥∥(α1(t)− α2(t))
∫ T

0

α2(s)
1− b2(s)μg({s}) g̃2(t, s) f2(s)dg(s)

∥∥∥∥
≤ max

(
1,

1
δ2

)
|α1(t)− α2(t)|

∫ T

0
‖g̃2(t, s) f2(s)‖dg(s).

As in Remark 4, we denote by

M1 = sup
(s′ ,s′′)∈[0,T]×[0,T]

e
∫ s′′

s′ b̃1(s)dg(s),

respectively

M2 = sup
(s′ ,s′′)∈[0,T]×[0,T]

e
∫ s′′

s′ b̃2(s)dg(s)

and so,

|g̃1(t, s)| ≤ max(M1, M2
1)∣∣∣α1(T)e

∫ T
0 b̃1(r)dg(r) − 1

∣∣∣ = M1

respectively

|g̃2(t, s)| ≤ max(M2, M2
2)∣∣∣α2(T)e

∫ T
0 b̃2(r)dg(r) − 1

∣∣∣ = M2.

It follows that

‖u1(t)− u2(t)‖
≤ max

(
1,

1
δ1

) ∫ T

0
|g̃1(t, s)− g̃2(t, s)|‖ f1(s)‖dg(s)

+max
(

1,
1
δ1

)
max

(
1,

1
δ2

) ∫ T

0
(1 + m2)|g̃2(t, s)|‖ f1(s)‖|α1(s)− α2(s)|dg(s)

+max
(

1,
1
δ1

)
max

(
1,

1
δ2

)
g(T)

∫ T

0
|g̃2(t, s)||b1(s)− b2(s)|‖ f1(s)‖dg(s)

+max
(

1,
1
δ2

) ∫ T

0
|g̃2(t, s)| · D(F1(s), F2(s))dg(s)

+max
(

1,
1
δ2

)
|α1(t)− α2(t)|

∫ T

0
‖g̃2(t, s) f2(s)‖dg(s)

so

‖u1(t)− u2(t)‖ ≤ max
(

1,
1
δ1

) ∫ T

0
|g̃1(t, s)− g̃2(t, s)|φ(s)dg(s)

+max
(

1,
1
δ1

)
max

(
1,

1
δ2

)
(1 + m2)M2

∫ T

0
φ(s)|α1(s)− α2(s)|dg(s)

+max
(

1,
1
δ1

)
max

(
1,

1
δ2

)
M2g(T)

∫ T

0
|b1(s)− b2(s)|φ(s)dg(s)

+max
(

1,
1
δ2

)
M2

∫ T

0
D(F1(s), F2(s))dg(s)

+max
(

1,
1
δ2

)
M2|α1(t)− α2(t)|

∫ T

0
φ(s)dg(s). (8)
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We are now evaluating the difference g̃1(t, s)− g̃2(t, s). It can be seen that

g̃1(t, s)− g̃2(t, s)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1(T)

α1(T)e
∫ T

0 b̃1(r)dg(r)−1
e
∫ T

0 b̃1(r)dg(r)−∫ t
s b̃1(r)dg(r) − α2(T)

α2(T)e
∫ T

0 b̃2(r)dg(r)−1
e
∫ T

0 b̃2(r)dg(r)−∫ t
s b̃2(r)dg(r),

i f 0 ≤ s ≤ t ≤ T
1

α1(T)e
∫ T

0 b̃1(r)dg(r)−1
e−

∫ t
s b̃1(r)dg(r) − 1

α2(T)e
∫ T

0 b̃2(r)dg(r)−1
e−

∫ t
s b̃2(r)dg(r),

i f 0 ≤ t < s ≤ T.

In the first case (0 ≤ s ≤ t ≤ T),

|g̃1(t, s)− g̃2(t, s)|
≤ 1

|(α1(T)e
∫ T

0 b̃1(r)dg(r) − 1)(α2(T)e
∫ T

0 b̃2(r)dg(r) − 1)|[
e
∫ T

0 b̃1(r)dg(r)e
∫ T

0 b̃2(r)dg(r)
∣∣∣e− ∫ t

s b̃1(r)dg(r) − e−
∫ t

s b̃2(r)dg(r)
∣∣∣

+
∣∣∣α1(T)e

∫ T
0 b̃1(r)dg(r)−∫ t

s b̃1(r)dg(r) − α2(T)e
∫ T

0 b̃2(r)dg(r)−∫ t
s b̃2(r)dg(r)

∣∣∣]
≤ 1

|(α1(T)e
∫ T

0 b̃1(r)dg(r) − 1)(α2(T)e
∫ T

0 b̃2(r)dg(r) − 1)|[
e
∫ T

0 b̃1(r)dg(r)e
∫ T

0 b̃2(r)dg(r)
∣∣∣e− ∫ t

s b̃1(r)dg(r) − e−
∫ t

s b̃2(r)dg(r)
∣∣∣

+
∣∣∣α1(T)

(
e
∫ T

0 b̃1(r)dg(r)−∫ t
s b̃1(r)dg(r) − e

∫ T
0 b̃2(r)dg(r)−∫ t

s b̃2(r)dg(r)
)∣∣∣

+|α1(T)− α2(T)|e
∫ T

0 b̃2(r)dg(r)−∫ t
s b̃2(r)dg(r)

]
and, by Remark 5(i),

|g̃1(t, s)− g̃2(t, s)|
≤ 1

|(α1(T)e
∫ T

0 b̃1(r)dg(r) − 1)(α2(T)e
∫ T

0 b̃2(r)dg(r) − 1)|[
M1M2 max(M1, M2)

∣∣∣∣∫ t

s
b̃1(r)dg(r)−

∫ t

s
b̃2(r)dg(r)

∣∣∣∣
+max(M2

1, M2
2)

∣∣∣∣∫ T

0
b̃1(r)dg(r)−

∫ t

s
b̃1(r)dg(r)−

∫ T

0
b̃2(r)dg(r) +

∫ t

s
b̃2(r)dg(r)

∣∣∣∣
+|α1(T)− α2(T)|M2

2

]
≤ 1

|(α1(T)e
∫ T

0 b̃1(r)dg(r) − 1)(α2(T)e
∫ T

0 b̃2(r)dg(r) − 1)|[(
M1M2 max(M1, M2) + max(M2

1, M2
2)
) ∫ T

0
|b̃1(s)− b̃2(s)|dg(s) + |α1(T)− α2(T)|M2

2

]
.

Similarly, in the second case (0 ≤ t < s ≤ T) it can be proved that

|g̃1(t, s)− g̃2(t, s)|
≤ 1

|(α1(T)e
∫ T

0 b̃1(r)dg(r) − 1)(α2(T)e
∫ T

0 b̃2(r)dg(r) − 1)|[
(M1M2 + max(M1, M2))

∫ T

0
|b̃1(s)− b̃2(s)|dg(s) + |α1(T)− α2(T)|M1M2

]
.
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Denoting by

M̃1 = max
(

M1M2 max(M1, M2) + max(M2
1, M2

2), M1M2 + max(M1, M2)
)

respectively
M̃2 = max

(
M2

2, M1M2

)
,

we may say that for every s, t ∈ [0, T],

|g̃1(t, s)− g̃2(t, s)| ≤ M̃1

∫ T

0
|b̃1(s)− b̃2(s)|dg(s) + M̃2|α1(T)− α2(T)|. (9)

We use next Remark 5(ii) and the fact that from (4), any t ∈ Dg satisfies

|1− b1(t)μg({t})| > δ1 and |1− b2(t)μg({t})| > δ2

to see that for each t ∈ Dg,

|b̃1(t)− b̃2(t)| =

∣∣∣∣− log |1− b1(t)μg({t})|+ log |1− b2(t)μg({t})|
μg({t})

∣∣∣∣
≤ max

(
1
δ1

,
1
δ2

)
|b1(t)− b2(t)|.

It is immediate that for each t ∈ [0, T],

|b̃1(t)− b̃2(t)| ≤ max
(

1,
1
δ1

,
1
δ2

)
|b1(t)− b2(t)|. (10)

Finally, exploiting (8), (9), (10) we obtain that for all t ∈ [0, T],

‖u1(t)− u2(t)‖
≤ max

(
1,

1
δ1

) ∫ T

0
φ(s)dg(s)

(
M̃1

∫ T

0
|b̃1(s)− b̃2(s)|dg(s) + M̃2|α1(T)− α2(T)|

)
+max

(
1,

1
δ1

)
max

(
1,

1
δ2

)
(1 + m2)M2

∫ T

0
φ(s)|α1(s)− α2(s)|dg(s)

+max
(

1,
1
δ1

)
max

(
1,

1
δ2

)
M2g(T)

∫ T

0
|b1(s)− b2(s)|φ(s)dg(s)

+max
(

1,
1
δ2

)
M2

∫ T

0
D(F1(s), F2(s))dg(s)

+max
(

1,
1
δ2

)
M2|α1(t)− α2(t)|

∫ T

0
φ(s)dg(s)
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so

‖u1(t)− u2(t)‖
≤ M̃1

∫ T

0
φ(s)dg(s) ·max

(
1,

1
δ1

)
·max

(
1,

1
δ1

,
1
δ2

)
·
∫ T

0
|b1(s)− b2(s)|dg(s)

+M̃2 max
(

1,
1
δ1

) ∫ T

0
φ(s)dg(s) · |α1(T)− α2(T)|

+(1 + m2)M2 max
(

1,
1
δ1

)
max

(
1,

1
δ2

)
·
∫ T

0
φ(s)|α1(s)− α2(s)|dg(s)

+M2g(T)max
(

1,
1
δ1

)
max

(
1,

1
δ2

)
·
∫ T

0
|b1(s)− b2(s)|φ(s)dg(s)

+M2 max
(

1,
1
δ2

)
·
∫ T

0
D(F1(s), F2(s))dg(s)

+M2 max
(

1,
1
δ2

) ∫ T

0
φ(s)dg(s) · |α1(t)− α2(t)|.

Denoting thus by

C1 = M̃1

∫ T

0
φ(s)dg(s) ·max

(
1,

1
δ1

)
·max

(
1,

1
δ1

,
1
δ2

)
,

C2 = M̃2 max
(

1,
1
δ1

) ∫ T

0
φ(s)dg(s), C3 = (1 + m2)M2 max

(
1,

1
δ1

)
max

(
1,

1
δ2

)
,

C4 = M2g(T)max
(

1,
1
δ1

)
max

(
1,

1
δ2

)
,

C5 = M2 max
(

1,
1
δ2

)
, C6 = M2 max

(
1,

1
δ2

) ∫ T

0
φ(s)dg(s)

one gets the required inequality.

Consider now

C1 = M̃1

∫ T

0
φ(s)dg(s) ·max

(
1,

1
δ1

,
1
δ2

)2
,

C4 = max(M2, M1)g(T)max
(

1,
1
δ1

)
max

(
1,

1
δ2

)
,

C5 = max(M2, M1)max
(

1,
1
δ1

,
1
δ2

)
.

Corollary 1. Under the assumptions of Theorem 5, if for every t ∈ [0, T]

1− b1(t)μg(t) > 0 and 1− b2(t)μg(t) > 0

then:

(i)

DC(S1,S2) ≤
(

C1g(T) + C4

∫ T

0
φ(s)dg(s)

)
· ‖b1 − b2‖C + C5g(T) · DC(F1, F2).

(ii) if φ is bounded,

DL1(S1,S2) ≤
(

C1 + C4 sup
t∈[0,T]

φ(t)

)
g(T)‖b1 − b2‖L1 + C5g(T)DL1(F1, F2).
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Proof. Under the additional hypothesis on b1 and b2, it can be seen that α1(t) = α2(t) = 1 on the
whole interval and so, Theorem 5 yields that for every u1 ∈ S1 one can find u2 ∈ S2 such that for all
t ∈ [0, T],

‖u1(t)− u2(t)‖ ≤ C1

∫ T

0
|b1(s)− b2(s)|dg(s) + C4

∫ T

0
|b1(s)− b2(s)|φ(s)dg(s)

+ C5

∫ T

0
D(F1(s), F2(s))dg(s). (11)

(i) By taking the supremum in (11) over t ∈ [0, T],

‖u1 − u2‖C ≤
(

C1g(T) + C4

∫ T

0
φ(s)dg(s)

)
· ‖b1 − b2‖C + C5g(T) · DC(F1, F2).

By the definition of the Pompeiu-excess, it follows that

eC(S1,S2) ≤
(

C1g(T) + C4

∫ T

0
φ(s)dg(s)

)
· ‖b1 − b2‖C + C5g(T) · DC(F1, F2)

and, by interchanging the roles of S1 and S2, one obtains the announced estimation.

(ii) If φ is bounded, the inequality (11) implies that

‖u1(t)− u2(t)‖ ≤
(

C1 + C4 sup
t∈[0,T]

φ(t)

)
‖b1 − b2‖L1 + C5DL1(F1, F2)

By integrating it with respect to g on [0, T] we get

‖u1 − u2‖L1 ≤
(

C1 + C4 sup
t∈[0,T]

φ(t)

)
g(T)‖b1 − b2‖L1 + C5g(T)DL1(F1, F2)

whence

eL1(S1,S2) ≤
(

C1 + C4 sup
t∈[0,T]

φ(t)

)
g(T)‖b1 − b2‖L1 + C5g(T)DL1(F1, F2).

and the inequality comes from interchanging the roles of S1 and S2.
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Abstract: In this paper we investigate the unified theory for solutions of differential equations without
impulses and with impulses, even at variable times, allowing the presence of beating phenomena, in the
space of regulated functions. One of the aims of the paper is to give sufficient conditions to ensure that a
regulated solution of an impulsive problem is globally defined.
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variable times
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1. Introduction

In recent years, impulse theory has been significantly developed, especially in the cases of
impulsive differential equations or differential inclusions with fixed moments; see the monographs of
Lakshmikantham et al. [1], Samoilenko and Perestyuk [2] and Perestyuk et al. [3] and the references
therein. The study of impulsive problems with variable times presents more difficulties due to the
state-dependent impulses, and in a large part of the literature, a finite number of impulses are still
allowed. Some extensions to impulsive differential equations with variable times have been done
by Bajo and Liz [4] and Frigon and O’Regan [5,6], and in the multivalued case, for instance, by
Baier and Donchev or Gabor and Grudzka [7–9]. In the case of impulses at variable times, a "beating
phenomenon" may occur, i.e., a solution of the differential equation may hit a given barrier several times
(including infinitely many times). Then we will be in the presence of "pulse accumulation" whenever a
solution has an infinite number of pulses which accumulate to a finite time t∗. Impulsive differential
equations or inclusions have applications in physics, engineering or biology where discontinuities,
which can be seen as impulses, occur [3,10]. In this paper we consider a class of initial value problems
(IVPs) for differential equations with impulses at variable times on [a, b], allowing pulse accumulation:⎧⎪⎪⎪⎨⎪⎪⎪⎩

x′(t) = f (t, x(t)), t 
∈ τ(x)
x(a) = x0,
x(t)− x(t−) = Il(x(t−)), t ∈ τ(x)
x(t+)− x(t) = Ir(x(t)), t ∈ τ(x)

where f : [a, b]× R → R, if not otherwise stated, is a continuous function; τ(x) ⊂ [a, b] is at most
countable; and Ir, Il : R → R and x0 ∈ R. Our consideration is presented for single-valued
problems, but it is still valid for multivalued problems, as can be observed in [3,11], eventually
by using multivalued integration [12–14].

Mathematics 2020, 8, 2164; doi:10.3390/math8122164 www.mdpi.com/journal/mathematics109



Mathematics 2020, 8, 2164

Note that for a given function x the set τ(x) need not be a singleton. We study the case
of accumulation points for the set τ(x). For an interesting discussion in this topic; see [15],
where necessary and sufficient conditions are given to assure pulse accumulation. For problems
having more than one common point of a solution and a barrier sufficient conditions are described in
[16] (Theorem 4) or [1–3,17].

In this paper we study impulsive IVPs in the space G([a, b]) of regulated functions, which seems
to be the natural space of solutions for impulsive problems (see [18–20]), and we investigate properties
of solutions as elements of this space. This allows us to cover and extend earlier approaches. Note
that usual IVPs should be treated as impulsive problems with negligible jumps. In this case the
space C([a, b]) or C1([a, b]) are considered, and they are subspaces of G([a, b]). We should note that
impulsive differential equations with varying times of impulses are treated in [21] (Section 5) as
generalized ordinary differential equations, but accumulation points for the set of discontinuity points
are not allowed and solutions are functions of bounded variation. In [22] BV solutions are expected
for impulsive problems. This approach was initiated by Silva and Vinter for the study of optimality
problems driven by impulsive controls, but this space is not a proper choice in our study, as we need
to consider only operators preserving bounded variation of functions and the norm in BV([a, b]) is not
directly related to the supremum norm in C([a, b]). One of our goals is to unify the study for impulsive
and non-impulsive problems. In the literature, IVPs with impulses at finite and fixed times have been
studied in the subspace PC([a, b], t1, t2, ..., tk) of the space PC([a, b]) of piecewise continuous functions,
so that the space of solutions depends on times of jumps. In [23,24] the case of finite number of jumps is
considered and the space of solutions is independent on times of jumps. In case of impulsive problems
with variable times of jumps (state dependent jumps), a new space CJk([a, b]) is considered in [8,9,11]
(for multivalued problems); it is a good choice for problems having the property that every solution has
exactly k jumps; still, the space of solution depends on the choice of impulsive problem. We generalize
previous approaches; indeed we have (some inclusions are taken in the sense of isometric copies)

C1([a, b]) ⊂ C([a, b]) ⊂ PC([a, b], t1, ..., tk) ⊂ CJk([a, b]) ⊂ PC([a, b]) ⊂ G([a, b]).

One of the advantages is that we are able to cover the case of beating phenomenon, till now
studied separately and in very particular cases.

The paper is organized as follows. In Section 2 we recall basic notions on the space G([a, b]),
and introduce, as space of solutions, the subspace ZGL of regulated functions which admit only left
accumulation points and have a canonical decomposition. We consider impulsive IVPs and provide
conditions on the barriers which guarantee that solutions are global. In particular, condition [B4]
requires that the sum of jumps (left and right) is finite and this condition implies that any solution is
continuable to the point b. In Section 3 we give the equivalent representation of impulsive IVPs by
means of operators acting on the space of regulated functions, and in the remaining part of the section
we provide sufficient conditions for [B4]. An example is given in Section 4. Finally, in Section 5 we
compare our results with earlier ones.

2. Impulsive Problems, Regulated Functions and Barriers

We denote by G([a, b]) the space of all real-valued regulated functions x defined on the interval
[a, b]; that is, G([a, b]) is the set of all x : [a, b] → R such that there exist finite the right x(t+) and
left x(s−) limits for every points t ∈ [a, b) and s ∈ (a, b]. The space G([a, b]) is a Banach space when
equipped with the supremum norm (see [25]). The space C([a, b]) of continuous functions and the
space BV([a, b]) of functions of bounded variation on [a, b] are proper subspaces of G([a, b]), so on
BV([a, b]) the induced norm is considered. Every regulated function is bounded, has a countable
set of discontinuities and is the limit of a uniformly convergent sequence of step functions (cf. [26]).
Given a regulated function x ∈ G([a, b]) we denote its set of discontinuity points by τ(x); if necessary,
we distinguish the points of left-discontinuity τL(x) and right-discontinuity τR(x).
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The following result, being an immediate consequence of a result by Bajo [15] (Theorem 1), implies
that we need to restrict ourselves to some subspaces of regulated functions. Some necessary properties
of solutions are described in the lemma below. We focus our attention on the subspace of regulated
functions, denoted by GL([a, b]), of all x ∈ G([a, b]), for which τ(x) has at most a finite number of left
accumulation points (see [B2] for a more precise formulation).

Lemma 1. If t∗ ∈ [a, b] is an accumulation point for the set of discontinuity points τ(x) of a regulated function
x : [a, b]→ R, then the size of the jumps is convergent to 0 when tn → t∗; i.e.,

lim
t∈τ(x),t→t∗−

|x(t)− x(t∗−)| = 0 and lim
t∈τ(x),t→t∗+

|x(t∗+)− x(t)| = 0.

Now for x ∈ GL([a, b]), we denote the left and right jump functions, respectively, by

JL(x)(t) = x(t)− x(t−) and JR(x)(t) = x(t+)− x(t),

for t ∈ [a, b], where x(a−) = x(a) and x(b+) = x(b). Moreover for t ∈ [a, b] we define

HL(x)(t) = ∑
tk∈τL(x),a ≤tk≤t

JL(x)(tk)

and
HR(x)(t) = ∑

tk∈τR(x),a ≤tk<t
JR(x)(tk)

with HR(x)(a) = 0. In the case of a finite number of left accumulation points it is understood that
we will calculate the sum of the series of jumps separately for each such a point. Thus, we allow for
conditional convergence of series as well. The key point of the paper is to decompose such a class
of regulated functions as a sum of continuous and steplike functions (cf. [27]). Denote by ZGL the
subspace of GL([a, b]) consisting of regulated functions for which the sums HL(x)(t) and HR(x)(t) are
finite for each t ∈ [a, b]. Then a function x ∈ ZGL can be uniquely written as the sum of a continuous
function and a steplike function.

The functions xd, xc : [a, b]→ R defined by setting

xd(t) = HL(x)(t) + HR(x)(t)

and
xc(t) = x(t)− xd(t)

for t ∈ [a, b] are called discrete and continuous parts of x. We will refer to x = xd + xc as
to the canonical decomposition of x; such a decomposition is unique with xd(a) = x(a) (cf.
also [28] (Theorem 3)). We observe that for t ∈ τ(x) we have JL(x)(t) = xd(t) − xd(t−) and
xc(t)− xc(t−) = 0, and analogously JR(x)(t) = xd(t+)− xd(t) and xc(t+)− xc(t) = 0, and

−∞ < ∑
tk∈τL(x),a ≤tk≤b

JL(x)(tk) + ∑
tk∈τR(x),a ≤tk<b

JR(x)(tk) < ∞.

Moreover all functions x ∈ ZGL are characterized by the condition that JL(x), JR(x) ∈ l1([a, b]).
The spaces C([a, b]) and BV([a, b]) both are subspaces of ZGL . Moreover, also the space CJk([a, b])

is a subspace of ZGL . Let us stress that the function xd is of bounded variation, but xc need not have
this property. For the sake of completeness we have to recall that a decomposition is possible for any
function x ∈ G([a, b]), but without uniqueness (see [27–29]).
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Let us consider the IVP for differential equations with impulses at variable times on [a, b]⎧⎪⎪⎪⎨⎪⎪⎪⎩
x′(t) = f (t, x(t)), t 
∈ τ(x)
x(a) = x0,
x(t)− x(t−) = Il(x(t−)), t ∈ τ(x)
x(t+)− x(t) = Ir(x(t)), t ∈ τ(x),

(1)

where f : [a, b]×R→ R, τ(x) ⊂ [a, b] is at most countable and Ir, Il : R→ R, and x0 ∈ R. Here Ir and
Il describe right and left jumps when x(t) "touch" the barrier τ; i.e., t ∈ τ(x). If we expect one-side
continuous solutions (cádlàg functions, for instance), then Il or Ir should be trivial.

As a barrier we will understand a curve of the plane τ = {(t, x) : t = α(s), x = β(s), s ∈ R} or
simply the graph of an equation x = γ(t) for t ∈ [a, b]. Therefore, τ(x) = {t ∈ [a, b] : x(t−) ∈ τ},
and the functions Ir and Il describe, respectively, right and left jumps of a solution x(t) in the point
t ∈ [a, b] for which x(t−) "touches" the barrier τ.

Throughout, we will consider the following conditions:

[B1] The point (a, x0) 
∈ τ.
[B2] If the set τ(x), for a solution x of (1), is not finite, then τ(x) has at most a finite number of

accumulation points. For any accumulation point t∗ of τ(x) there is an increasing sequence
{tk}k∈N in τ(x) such that tk → t∗ and t /∈ τ(x) whenever t ∈ (tk, tk+1).

[B3] In case of presence of more than one barrier (or connected components of the barrier) τk,
they should be disjoint sets on a plane (τk ∩ τj = ∅ for k 
= j). These barriers will be always
assumed to be piecewise continuous curves.

[B4] For any accumulation point t∗ of τ(x) the jump functions Ir, Il have locally bounded sums of
jumps in t∗; i.e.,

−∞ < ∑
tk∈τ(x),a ≤tk<t∗

Il(x)(tk) + ∑
tk∈τ(x),a ≤tk<t∗

Ir(x)(tk) < ∞. (2)

Moreover, either τ is bounded or if a solution x has the property that x(tk) → ∞ for some
tk ∈ τ(x), k = 1, 2..., then (2) holds with the sums taking over k.

Conditions [B1]–[B4] allow one to cover existing cases and to study the problem of the solvability
of the impulsive differential equation in presence of the beating phenomenon. The first three
assumptions are quite natural and are usually assumed in earlier papers. In particular, [B1] implies
that we have always a time t1 > a such that x(t−), for t ∈ [a, t1), does not touch the barrier. This
enables us to propose a step-by-step procedure for t1 < t2 < ... at least to the first accumulation point
of τ(x). We observe that [B1] can be relaxed, if a is a point of discontinuity, then it should be isolated
in τ(x) and we need to replace the initial condition x(a) = x0 by x(a+) = x0. In the sequel we are
interested in obtaining sufficient conditions for [B4]; we point out that condition [B4] implies that any
solution is continuable to the point b. In case of more than one barrier (or connected components of the
barrier), it may happen than the jump functions can transfer points between them. Let us recall that
we have two jump conditions and then when x(t1−) ∈ τ1 we have the first left jump. Thus, if after the
jump x(t1) ∈ τ2, it is still not a reason to get again the new left jump (as x(t1−) 
∈ τ2). Only the right
jump occurs and x(t1+) is calculated as x(t1+) = x(t1) + Ir(x(t1)). As we assume that a couple of
actions for τ1 is always required, it is the jump function associated with the first barrier τ1, a trajectory
continues with the new initial value condition x(t1+); i.e., the mapping does not jump twice or more
than once at the same moment. Condition [B3] guarantees that any solution of (1) does not jump more
than once at the same moment.

Definition 1. A function x ∈ GL([a, b]) is said to be a regulated solution of the impulsive IVP (1) if it is
differentiable except at most countable set τ(x) = {tk : k ∈ N}. Moreover, if a 
∈ τ(x), then x coincides with
the interval [a, t1), where t1 = min τ(x), with the solution of the differential equation z′(t) = f (t, z(t)) with
initial condition z(0) = x0, and x coincides with the interval (tk, tk+1) with the solution of the differential
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equation z′(t) = f (t, z(t)) with initial condition z(tk) = x(tk+), and the function x satisfies, at the points of
the set τ(x), jump conditions with functions Il and Ir, respectively.

Remark 1. If we expect only that x ∈ AC((tk, tk+1)) for k ∈ N, i.e., differentiability a.e. on such intervals, then
the above definition can be also considered (the Carathéodory case instead of continuous functions f ). In the case
of lack of jumps (i.e., for all x we get τ(x) = ∅) we have C1-solutions. In the case of the connected components of
the barrier in the form of vertical lines τ(x) = {t1, t2, ..., tk} for any x, we have piecewise continuous solutions.
For the case of CJk-solutions we need to identify such solutions with regulated solutions with precisely k barriers,
each of them describing exactly one point tk, i.e., τk(x) = tk. Let us mention that even solutions being of
bounded variation considered in some papers are also included in our class of regulated solutions.

We look for regulated solutions globally defined on [a, b]. Let us consider the IVP of the ODE
associated with (1) {

x′(t) = f (t, x(t))
x(a) = x0.

(3)

If for a given solution of the impulsive IVP (1) we have only a finite number of discontinuity
points, then the solution is global iff the solution of the IVP (3) is so, and thus usual assumptions
guaranteeing globality of solutions are sufficient for impulsive problems too. The case of countable
number of discontinuity points for some solutions is more complicated. Indeed, as claimed in [3] (p. 9),
it is not true that if a solution of the IVP (3) cannot be extended to some interval, then a solution of the
impulsive IVP (1) cannot also be extended to the same interval. We will show that it depends rather on
the barrier and jump functions than on the solution of the impulsive IVP. So it is important to have
combined assumptions for the barrier and jump functions. Note that also the growth of the function f
is important. Let us discuss the following example, modified from [17] (Example 3.1).

Example 1. Consider the following (IVP) problem in [0, 2π].⎧⎪⎪⎪⎨⎪⎪⎪⎩
x′(t) = 1 t 
∈ τ(x)
x(0) = −π

x(t+)− x(t) = Ir(x)(t) t ∈ τ(x) ,
x(t)− x(t−) = Il(x)(t) t ∈ τ(x),

where τ(x) = arctan(x) + π, Ir(x)(t) ≡ 1 and Il(x)(t) ≡ 0. Clearly, the Cauchy problem x′(t) = 1,
x(0) = −π has unique solution x(t) = t− π defined globally on [0, 2π]. This solution touches the barrier,
for the first time for t1 = π, so a jump occurs and we get x(π+) = 1 and the solution of the IVP is defined as
x(t) = t− π + 1 up to the next point when its trajectory touch the barrier, say t2. We can proceed with points
tk and we get limk→∞ tk =

3π
2 , so we have an accumulation point for τ(x) and the solution of the IVP is not

defined globally on [0, 2π], despite the fact that Cauchy problem has a global solution.
Now consider the same problem with Ir(x)(t) = 1

(x(t))2+1 . In this case we have the same solution on [0, t1]

and even the first jump is the same and the next jumps are: x(t2+)− x(t2) = 1
(x(t2))2+1 , etc. We can also

easily calculate the points tk and we get ∑∞
k=1 [x(tk+)− x(tk)] = M < ∞ and as tk → T < 3π

2 and we can
put x(t) = x + M− T for t ∈ [T, 2π]. We still get a global solution for the impulsive problem.

3. Integral Form of Impulsive Problems

We will study impulsive problem (1), representing it by means of operators acting on the space of
regulated functions. To this end, let us consider the operator F defined on the space GL([a, b]) in the
the following way:

F(x)(t) = x0 +
∫ t

a
f (s, x(s)) ds + ∑

tk∈τL(x),a ≤tk≤t
Il(x)(tk−) + ∑

tk∈τR(x),a ≤tk<t
Ir(x)(tk). (4)
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Notice that for x ∈ ZGL , t ∈ [a, b], we have

∑
tk∈τL(x),a ≤tk≤t

Il(x)(tk−) = ∑
a≤s≤t

Il(xd(s−)) and ∑
tk∈τR(x),a ≤tk<t

Ir(x)(tk) = ∑
a≤s<t

Ir(xd(s)).

The discrete part Fd(x) of the operator F, which will depend only on xd, has to preserve the
finiteness of sums of jumps, whenever xd has this property. This condition depends on the barrier and
jump functions Ir, Il . In case of pulse accumulation, their acting on barriers should decrease jumps
and the corresponding conditions for jump functions should compensate possible divergence, so in
the presence of pulse accumulation they should be rapidly decreasing in the neighborhood of such
a point. We allow one to have a finite number of such points, and we will present some sufficient
conditions guaranteeing that even in this case all solutions are global. In case of finite number of jumps
there are no new restrictions. Let us observe that for any discontinuity point t ∈ τ(x) we have direct
dependence of the values of both x(tk) and x(tk+) on the value x(tk−), so they also depend on the
barrier τ considered in (1); indeed:

x(tk+) = x(tk) + Ir(x(tk)) = x(tk−) + Il(x(tk−)) + Ir [x(tk−) + Il(x(tk−))] . (5)

We will investigate operators on ZGL of the following form:

F(x)(t) = x0 +
∫ t

a
f (s, x(s)) ds + ∑

a≤s≤t
Il(xd(s−)) + ∑

a≤s<t
Ir(xd(s)). (6)

We need to check the existence of the integral, the convergence of discrete parts and that this
decomposition is canonical. Some differentiability properties of x outside of τ(x) and finite limits on
τ(x) are also necessary to be solutions of (1).

Proposition 1. Assume that the conditions [B1]–[B3] hold true and that

(F1) f ∈ C([a, b]×R);
(J1) for any x ∈ ZGL and t ∈ [a, b]

−∞ < ∑
a≤s≤t

Il(xd(s−)) + ∑
a≤s<t

Ir(xd(s)) < ∞.

Then F, defined in (6), maps ZGL into itself. Moreover, the operator F has the unique canonical decomposition
F(x) = Fc(x) + Fd(x), with

Fc(x)(t) = x0 +
∫ t

a
f (s, x(s)) ds

and
Fd(x)(t) = ∑

a≤s≤t
Il(xd(s−)) + ∑

a≤s<t
Ir(xd(s)),

so Fc(x) is the continuous part of F(x) and Fd(x) is its discrete part.

Proof. Let us recall that if f ∈ C([a, b]×R), the superposition operator Nf (x)(t) = f (t, x(t)) maps
GL([a, b]) into itself (cf. [30] (Theorem 3.1) and [31]). Hence, the operator Fc is well-defined and
Fc(x) ∈ C([a, b]). Assumption (J1) implies that Fd : ZGL → ZGL ; since Fc : ZGL → C([a, b]), we have
that F maps ZGL into itself. Let x ∈ ZGL and decompose F(x) canonically as yc + yd. We need to
prove that yc = Fc(x) and yd = Fd(x). First we investigate the discrete part. As no jump occurs,
due to [B1], at the point a we have yd(a) = 0 = Fd(x)(a). Clearly, both functions yd and Fd(x)
should have exactly the same points of discontinuity. Thus, for t ∈ [a, t1) both are null functions.
As y(t1−) = JL(y)(t1) = Fd(x)(t1−) and y(t1+) = JR(y)(t) = Fd(x)(t1+) we get the same jumps
at t = t1, so the values y(t1) and Fd(x)(t1) are the same. Thus, the left limits at the next point of
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discontinuity, say t2, are the same (both are equal to the right limits at t1). Due to our assumption on
the set of discontinuity points for x we can proceed until the endpoint of existence of both functions,
so that yd = Fd(x). Then, yc = F(x)− yd = F(x)− Fd(x) = Fc(x).

It is important to provide a sufficient condition to check the assumption (J1) occurs (cf. also [B4]).
Let us observe that we need to verify only the convergence of jumps at accumulation points t∗ of
sets τ(x). For an interesting discussion about the presence or absence of such points, see [15] or [32].
For a given solution function x, if the set τ(x) has no accumulation points and the barrier and jump
functions are bounded, then it can be defined on a whole interval (global solutions) (cf. example in [15]
(Remark)). If we allow it to have some accumulation points, the problem is much more complicated.
We need to find some conditions ensuring that all solutions pass through the accumulation points
of τ(x), so they are global and can be prolonged up to the point b (see [16,33], for instance). As the
problem in a whole generality is very hard to be described, we restrict ourselves to one non-trivial
jump function and to the barrier defined as the graph of a continuous function.

Example 2. Let f (t, x) = 1
cos2 t for 0 ≤ t < π

2 and f (t, x) = 0 for t ≥ π
2 . Consider the following problem:

x′(t) = f (t, x), x(0) = 0, Il(u) = −1, Ir(u) = 0 and γ(t) ≡ 1. It is easy to see that this problem has a
unique solution x defined on [0, ∞) with τ(x) = arctan (N). Clearly, τ(x) has a left dense accumulation point
t = π

2 . Despite that γ and x are bounded and defined for all t ≥ 0, the assumption [B4] is not satisfied and
x ∈ GL([0, π

2 )) \ ZGL and x 
∈ GL([0, π
2 ]).

Let us present some extensions for [15] (Theorem 2) and (Corollary 1).

Proposition 2. Let f ∈ C([a, b]×R), γ : [a, b]→ R be a continuous function, the barrier τ be the graph of
x = γ(t) and Il ∈ C(R,R) be associated with γ. Let t∗ ∈ (a, b] and let x be a regulated solution of the problem
(1) such that the point t∗ is a left accumulation point for the set τ(x). Assume that the following conditions hold:

1. There exists a positive constant M such that | f (t, x)| ≤ M for all t ∈ [a, b] and x ∈ ZGL ;
2. The barrier τ satisfies [B1]–[B3];
3. γ is nonincreasing on the interval (t∗ − c, t∗) for some c > 0;
4. Il is nondecreasing and Il(u) < 0 for u ∈ (γ(t1), γ(t∗)) and some t1 ∈ (t∗ − c, t∗).

Then ∑a≤s≤t∗ −Il(xd(s−)) < ∞ and x can be extended to the right of t∗, [B4] holds true, and so any
solution of the problem belongs to ZGL .

Proof. Let x be a regulated solution of the impulsive problem (1) for which t∗ is a left accumulation
point of τ(x). Set u∗ = γ(t∗); then, due to the continuity of γ, the point (t∗, u∗) ∈ τ. Let (tk) be
a sequence in [a, t∗) convergent to t∗. Without loss of generality, we may assume that t1 > t∗ − c,
so γ is nonicreasing on (t1, t∗). Fix an arbitrary regulated solution x of the impulsive problem (1).
Fix k ∈ N. Denote uk = x(tk−) = γ(tk). Then (tk, uk) ∈ τ. We can estimate the position of the next
point. Consider the system of equations: x = γ(t) and x = M · t + uk + Il(uk)−M · tk and denote by
t∗k+1 the first solution to right of tk. Moreover, as |x′(t)| = | f (t, x(t)| ≤ M for t 
∈ τ(x), we also have
t∗k+1 ≤ tk+1. Since t∗k+1 is a solution of the equation M · t + uk + Il(uk)−M · tk = γ(t), using the fact
that γ is nonincreasing, we have

M · tk+1 + uk − (−Il(uk))−M · tk ≥ M · t∗k+1 + uk − (−Il(uk))−M · tk = γ(t∗k+1) ≥ γ(tk+1) = uk+1.

From the latter we deduce

M · (tk+1 − tk)− (uk+1 − uk) ≥ −Il(uk) > 0.
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Thus, for any N ≥ 1, we have

N

∑
k=1

(−Il(uk)) ≤ M ·
N

∑
k=1

(tk+1 − tk)−
N

∑
k=1

(uk+1 − uk),

and passing to the limit, we obtain

∞

∑
k=1
−Il(uk) =

∞

∑
k=1
−Il(x(tk−)) = ∑

a≤s≤t
−Il(xd(s−))

≤ lim
N→∞

(
M ·

N

∑
k=1

(tk+1 − tk)−
N

∑
k=1

(uk+1 − uk)

)
= lim

N→∞
M · (tN+1 − t1)− lim

N→∞
(uN+1 − u1) = M · (t∗ − t1) + (u1 − u∗) < ∞.

The analogy of Proposition 2 holds when γ is nondecreasing.

Proposition 3. Let f ∈ C([a, b]×R), γ : [a, b] → R be a continuous function, the barrier τ be a the graph
of x = γ(t) and Il ∈ C(R,R) be associated with γ. Let t∗ ∈ (a, b] and let x be a regulated solution of the
problem (1) such that the point t∗ is a left accumulation point for the set τ(x). Assume that conditions 1 and 2
of Proposition 2 hold true and also:

3′. γ is nondecreasing on the interval (t∗ − c, t∗) for some c > 0;
4′. Il is nonincreasing and Il(u) > 0 for u ∈ (γ(t1), γ(t∗)) and some t1 ∈ (t∗ − c, t∗).

Then ∑a≤s≤t∗ Il(xd(s−)) < ∞ and x can be extended to the right of t∗, [B4] holds true and so any solution
of the problem belongs to ZGL .

Proof. In this case we have an equation x = −M · t+ uk + Il(uk)+ M · tk, and if t∗k+1 denotes a solution
of the equation −M · t + uk + Il(uk) + M · tk = γ(t), then

M · (tk+1 − tk) + (uk+1 − uk) ≥ Il(uk).

Arguing as above we obtain

∞

∑
k=1

Il(x(tk−)) = ∑
a≤s≤t

Il(xd(s−)) =
∞

∑
k=1

Il(uk) < ∞.

In view of (5) we can formulate similar sufficient conditions considering both left and right
jump functions.

Theorem 3.1. Let f ∈ C([a, b]×R), γ : [a, b] → R be a continuous function, the barrier τ be the graph of
x = γ(t) and Il , Ir ∈ C(R,R). Let t∗ ∈ (a, b] and let x be a regulated solution of the problem (1) such that the
point t∗ is a left accumulation point for the set τ(x). Assume that the following conditions hold:

1. There exists a positive constant M such that | f (t, x)| ≤ M for all t ∈ [a, b] and x ∈ ZGL ,;
2. The barrier τ satisfies [B1]–[B3];
3. γ is nonincreasing on the interval (t∗ − c, t∗) for some c > 0;
4. Il and Ir are nondecreasing and Il(u) < 0, Ir(u) < 0 for u ∈ (γ(t1), γ(t∗)) and some t1 ∈ (t∗ − c, t∗).

Then (J1) holds true; i.e., −∞ < ∑a≤s≤t Il(xd(s−)) + ∑a≤s<t Ir(xd(s)) < ∞, and x can be extended to
the right of t∗.
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Proof. We consider the affine function:

x = M · t + uk + Il(uk) + Ir(uk + Il(uk))−M · tk

and we get similar estimation as in Proposition 2,

uk+1 = γ(tk+1) ≤ γ(t∗k+1) = M · t∗k+1 + uk + Il(uk) + Ir(uk + Il(uk))−M · tk.

As Il(uk) < 0, then uk + Il(uk) < uk. Thus

−Il(x(tk−)) + Ir(x(tk)) ≤ M(tk+1 − tk) + (uk − uk+1).

The convergence of the series can be deduced as previously.

Remark 2. An analogous result of the previous Theorem can be obtained considering hypotheses (3′) and (4′)
of Proposition 3.

Corollary 1. Under the assumptions of Proposition 3.1 there exists constant A such that all solutions x of the
IVP (1) have equi-bounded sums of jumps:

∑
a≤s≤t

|Il(xd(s−))|+ ∑
a≤s<t

|Ir(xd(s))| ≤ A.

Proof. We restrict ourselves to proving the result in the case of left jumps. Put ak = γ(t∗k ), where (t∗k )
is the sequence constructed in Proposition 2, and let A = ∑∞

k=1 ak. Observe that for any solution x
points of jumps tk ≥ t∗k , so by the property of γ we get γ(t∗k ) ≥ γ(tk) and then Il(γ(t∗k )) ≥ Il(γ(tk)).
For any x we get ∑a≤s≤t Il(xd(s−)) = ∑∞

k=1 Il(uk) ≤ ∑∞
k=1 ak = A < ∞.

Finally, we show that existence of solutions of IVP (1) is equivalent to existence of fixed points of
operator F defined in (6) that are solutions of the following integral equation:

x(t) = x0 +
∫ t

a
f (s, x(s)) ds + ∑

a≤s≤t
Il(x(s−)) + ∑

a≤s<t
Ir(x(s)). (7)

Theorem 3.2. Assume that the conditions [B1]–[B3] hold true and conditions (F1) and (J1) are satisfied. Then a
function x : [a, b] → R is a regulated solution of problem (1) on [a, b] if and only if it is a fixed point of the
operator F given by (6), i.e., a regulated solution of the integral Equation (7).

Proof. (⇐) Let x be a solution of (7). Due to Proposition 1 we know that it belongs to ZGL ⊂ ZG ⊂
G([a, b]) and has a decomposition into a continuous part x0 +

∫ t
a f (s, x(s)) ds and a discrete part

∑a≤s≤t Il(x(s−)) + ∑a≤s<t Ir(x(s)).
Immediately, we get that x satisfies the initial condition. Let t ∈ [a, b] be a point of continuity,

i.e., t 
∈ τ(x). Then x′(t) = (
∫ t

a f (s, x(s)) ds)′ = f (t, x(t)) so the differential equation is satisfied at
such a point t. Now, let t ∈ τ(x). Let us calculate the jumps at this point. We have

x(t)− x(t−) = x0 +
∫ t

a
f (s, x(s)) ds + ∑

a≤s≤t
Il(xd(s−)) + ∑

a≤s<t
Ir(xd(s))

−
[

x0 +
∫ t

a
f (s, x(s)) ds + ∑

a≤s<t
Il(xd(s−)) + ∑

a≤s<t
Ir(xd(s))

]
= Il(x(t−)),

so the jump is precisely described by the function Il . For the right jump we have similar calculation,
so that x(t+)− x(t) = Ir(x(t)).
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(⇒) Let x be a regulated solution of the problem (1). As the superposition f (·, x(·)) is again
regulated (cf. Proposition 1), it is an integrable function. Then if t ∈ [a, b] is a point of continuity,
we get (

∫ t
a f (s, x(s)) ds)′ = x′(t).

Since its left and right jumps at the points t ∈ τ(x) are described by jump functions Il(x(t))
and Ir(x(t)), respectively, then by the definition of the discrete part, xd is a sum of jumps, so xd(t) =
∑a≤s≤t Il(xd(s−)) + ∑a≤s<t Ir(xd(s)) and finally x(t) = xc(t) + xd(t) = Fc(x)(t) + Fd(x)(t).

Now, let us present some consequences of our approach to the theory of differential inclusions.
We will restrict our attention to the case of impulsive differential inclusions considered, for example,
in [34] or [10] (cf. also [8,9]): ⎧⎪⎪⎪⎨⎪⎪⎪⎩

x′(t) ∈ F(t, x(t)), t 
∈ τ(x)
x(0) = x0,
x(t)− x(t−) = Il(x(t)), t ∈ τ(x)
x(t+) = x(t), t ∈ τ(x)

(8)

where F : [0, 1]×Rd → Pck(R
d) is a multifunction with compact non-necessarily convex values in a

real Euclidean space. In order to draw the readers’ attention especially to new aspects of the paper,
and not to focus their attention on the concepts of multi-valued analysis, let us refer them to [34] for
definitions from multivalued analysis which will be used here after. In our evidence, we will only
focus on the application of the previously obtained results, and the remaining details can be found in
the literature.

We need to recall that in [34] the jump condition is of the form

Δx|t=τi(x) = Si(x), i = 1, . . . , p, x(t) ∈ Rd. (9)

By an R-solution we mean an absolutely continuous function on each (τi, τi+1) for i = 0, 1, . . . , p, p +
1 (τ0 = 0 and τp+1 = 1) with impulses Δx|t=τi(x) = Si(x(τi(x)−)); i.e., x(τi(x)+) = x(τi(x)−) +
Si(x(τi(x)−), which satisfy x′(t) ∈ F(t, x(t)), x(0) = x0 with t 
= τi(x) and (9).

The definition of R-solutions is more general than continuous or piecewise continuous solutions,
but still it is more restrictive than ours. Consequently, we are ready to prove some results under less
restrictive assumptions. Indeed, from our point of view, the most restrictive assumptions are those
relating to barriers (cf. [34] (Assumptions (A1) and (A2))), which implies existence of at most p points
of discontinuity for any solution x. Clearly, any R-solution is a regulated one, but not conversely.

Let us present two immediate generalizations of Proposition 2.

Proposition 4. (cf. [34] (Theorem 2.3)) Let F : [0, 1]×Rd → Rd be almost usc multifunction with convex
(and compact) values. Assume that the following conditions hold:

1. There exists a constant C such that |F(t, x)| ≤ C for every x and a.e. t ∈ [0, 1].;
2. The barrier τ satisfies [B1]–[B3];
3. γ is nonincreasing on the interval (t∗ − c, t∗) for some c > 0, provided that the point t∗ is a left

accumulation point for the set τ(x) and for any continuous function x satisfying x′(t) ∈ F(t, x(t)) and
x(0) = x0;

4. Il is nondecreasing and Il(u) < 0 for u ∈ (γ(t1), γ(t∗)) and some t1 ∈ (t∗ − c, t∗).

Then there exists at least one regulated solution x for (8) and all solutions for this problem are global,
i.e., they can be extended up to the right endpoint of the interval.

Proof. The proof is quite classical, so we want to draw attention to the differences resulting from
our approach and related to the new definition of regulated solutions. The boundedness of F
(hypothesis (A3) of [34] (Theorem 2.3)) allows us to conclude that if Gε(t, x) = co F(([t− ε, t + ε] ∩
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[0, 1]) \ A, x + εB) then |Gε(t, x)| ≤ C, where A is a null set and B ⊂ Rd is the open unit ball. Then the
set of functions being solutions of the initial value problem x′ ∈ F(t, x) , x(0) = x0 is nonempty.

Let 0 be a point of impulse. Then we consider (8) with an initial condition x0 + Irx(0).
Consequently, one can suppose without loss of generality that 0 is not a point of discontinuity.
Thus, the differential inclusion without impulses{

x′(t) ∈ F(t, x(t)) t ∈ [0, 1] a.e.,

x(0) = x0

has continuous solutions (and the set of such solutions is compact in in C([0, 1],Rd). For any such
function x, either its graph touches the barrier γ on a set τ(x) consisting of finite numer of points,
so by classical procedure (cf. [2,3]) it can be prolonged up to the point 1, or there exists some left
accumulation point t∗ for the set of τ(x).

Now, we take a solution of the above problem on [0, t1], where t1 = min τ(x) (see Definition 1),
and step by step we construct our regulated solution on the whole interval [0, t∗]. We can repeat our
procedure presented in Section 3; i.e., by Proposition 2 we get a function from ZGL defined to the right
of the point t∗. Recall, that this procedure is one of the main goals of this paper.

This procedure replaces the original one from [34] without any additional assumptions
guarantying solutions with a number of discontinuity points prescribed by additional assumptions.
Moreover, Proposition 2 implies that any solution exists on the interval [0, 1].

Let us consider also the lower semicontinuous case. The main idea of how to change the proof is
essentially the same as in previous proposition.

Proposition 5 ( cf. [34] (Theorem 2.8)). Let F : [0, 1]×Rd → Rd be an almost lower semi-continuous on
A, with some negligible set A; F(·, x) is measurable for every x; F(t, ·) is upper semi-continuous with convex
values on ([0, 1]×Rd) \ A.

Assume that the following conditions hold:

1. There exists a constant C such that |F(t, x)| ≤ C for every x and a.e. t ∈ [0, 1];
2. The barrier τ satisfies [B1]–[B3];
3. γ is nonincreasing on the interval (t∗ − c, t∗) for some c > 0, provided that the point t∗ is a left

accumulation point for the set τ(x) and for any continuous function x satisfying x′(t) ∈ F(t, x(t)) and
x(0) = x0;

4. Il is nondecreasing and Il(u) < 0 for u ∈ (γ(t1), γ(t∗)) and some t1 ∈ (t∗ − c, t∗).

Then there exists at least one regulated solution x for (8) x and all solutions for this problem are global,
i.e., they can be extended up to the right endpoint of the interval.

4. Example

We present an explanatory example. We consider a classical Cauchy problem without uniqueness
with the impulsive "stopping condition" on the interval [0, a]. To show the idea, it is sufficient to
consider only one surface τ(x) with the property, that any solution with its graph reaching this surface
has a jump. Put H(x)(t) = x(t)− J(x), where J(x) = 0 for x ≤ 1 and J(x) = 1 for x > 1, so τ(x) is the
set of points t with x(t)− 1 = 0. Clearly Hc(x) = x and Hd(x) = −J(x).⎧⎪⎨⎪⎩

x′(t) = 2
√

x(t) t 
∈ τ(x)
x(0) = x(0+) = 0

x(t+)− x(t−) = Hd(x(t)) t ∈ τ(x).
(10)
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As claimed above, let us find all the positions and the number of the points of discontinuity,
i.e., the set τ(x). This set is depending on a solution x and then earlier results are not applicable in
such a case.

Let us consider the integral form of this problem with F(x)(t) =
∫ t

0 2
√

x(s) ds + Hd(x(t)),
with x0 = 0. The operator F takes the set of regulated functions ZG into itself. For any x ∈ ZG we know
that Hd(xd) has uniformly bounded sums ∑N

k=0

√
k, where N is the number of jumps for a solution x,

i.e., provided this sum is still less than a.
I. First let us present a general form for an arbitrary solution of (10). Since we know the formulae

for all the solutions for the Cauchy problem (without the impulse condition), i.e., a trivial one x0(t) ≡ 0
and xC(t) = 0 for t ∈ [0, C] ⊂ [0, a] and xC(t) = (t− C)2 for a ≥ t > C, we can easily describe the set
S0 of all solutions for (10). All the intervals are considered here as intersections with [0, a]; i.e., t ≤ a.
Clearly, if x0(t) ≡ 0, then x0 ∈ S0. Consider now an arbitrary function xC. For t1 = C + 1 we have
xC(t1) = 1, so, using our condition, the function is "stopped" and xC(t1+) = 0. In such a way, we are
again in the axis y = 0 and we are able to continue our procedure. The solution could be zero till the
next point Ck+1 in which we take xC(t) = (t− Ck+1)

2 or up to a. That means, the solution need not be
determined by selecting only one point C. Then, for any set Q = {Ck ∈ [0, a] : k ∈ K ⊂ N}, satisfying
Ck+1 ≥ Ck +

√
k (k ∈ K), we associate a function xQ having the form xQ(t) = (t− Ck)

2 with some
intervals (Ck, Ck +

√
k] for all Ck ∈ Q and vanishing elsewhere. Since xQ is a bounded and regulated

function, S0 ⊂ ZG ⊂ G([0, a],R).
II. Note that different solutions of the considered problem can have different number of

discontinuity points. Clearly, we have also infinitely many continuous solutions of our problem
(x ≡ 0 and all functions having values zero up to a point Ck for which (t− Ck)

2 < 1 for t ∈ [Ck, a]).
The strength of our approach is more visible when we consider multivalued problems. Such a

case is of special interest for unifying continuous and discontinuous approaches. Consider a modified
problem from the previous example with the differential inclusion

x′(t) ∈
{

0, 2
√

x(t)
}

, t 
∈ τ(x),

with the same set of conditions for impulses. Now, for arbitrary solution of previously considered
problem at any point of its trajectory we can either prolong it as a constant function or continue as
in Example 4. However, all solutions, both continuous and discontinuous, are still in our space ZG.
The case of convexified values of the above multifunction can be studied in the same manner.

5. Remarks about an Earlier Approach

In [9] (cf. also [8]) the following multivalued impulsive problem was studied:

y′(t) ∈ F(t, y(t)) , for t ∈ [0, a], t 
= τj(y(t)), j = 1, . . . , m,

y(0) = y0,

y(t+) = y(t) + Ij(y(t)) , for t = τj(y(t)), j = 1, . . . , m,

(11)

where F : [0, a]×RN → 2R
N

, Ij : RN → RN , j = 1, . . . , m, are given impulse functions, τj ∈ C1(RN ,R)
with 0 < τj(y) < a, and ty = {t|t = τk(y(t))}. The hypersurface t− τj(y) = 0 is called the j-th pulse
hypersurface and will be denoted by σj. If for each j = 1, . . . , m, τj is a different constant function,
then impulses are in the fixed times.
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The authors are looking for (discontinuous) solutions in a special space. Let CJm([0, a]) :=
C([0, a])× (R×RN)m with following interpretation: the element (ϕ, (lj, vj)

m
j=1), where lj ∈ [0, a] we

will interpret as the function with m jumps in the times jk defined as follows:

ϕ̂(t) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϕ(t), 0 ≤ t ≤ lσ(1),

ϕ(t) +
j

∑
i=1

vσ(i), lσ(j) < t ≤ lσ(j+1),

ϕ(t) +
m
∑

i=1
vσ(i), lσ(m) < t ≤ a,

where σ is a permutation of {1, 2, . . . , m} such that lσ(i) ≤ lσ(i+1).
The authors announced a mutual correspondence between the functions on interval [0, a] with m

jumps and the sets {(ϕ, (lj, vj)
m
j=1) ∈ CJm([0, a]) : lj < lj+1}, with ζ �→ (ζ̌, (lj, Ij(ζ̌(lj)))

m
j=1), where the

function ζ̌ is ζ with reduced jumps, lj is j-th time of jump and the function Ij is an impulse function.
The space CJm([0, a]) with the norm

‖(ϕ, (lj, vj)
m
j=1)‖ := sup

t∈[0,a]
‖ϕ(t)‖+

m

∑
j=1

(|lj|+ ‖vj‖)

is a Banach space. In our approach it means that the considered functions are sums of continuous
parts and discrete parts having finite number of discontinuity points. As the nature of mutual
correspondences is not investigated in [9], solutions of the considered problem are included in this
space CJm([0, a]). Thus, the problem is defined on a subset of continuous functions and the solution
set is in a different space. Our approach allows one to eliminate such a problem. In contrast to our
approach, the number of discontinuity points for solutions is then prescribed.

It is worthwhile to stress that our approach is based on analytical rather than topological methods
and can be easily used for differential problems of various types having discontinuous solutions.

Let us mention that the main result in [9] is devoted to investigate the structure of the set of
solutions for (11), and it was proved that under some assumptions this set is an Rδ set in CJm([0, a]).
Despite that it exceeds the scope of this paper, it is an interesting problem and will be studied. Let
us mention one big difference: our approach allows one to study problems with numbers of jumps
depending on the solutions, including possibly infinite numbers of jumps.

The key difference in both cases is that we do not expect that all solutions of the considered
should have prescribed (finite) number of discontinuity points. In [8,9] the authors have a finite
number of "barriers" such that any solution meets each barrier (exactly one time). This means that
several technical assumptions on that curves are required (conditions (H1)–(H3) in [11], for instance).
As claimed above (and in our Example 4), the solutions studied by us have neither finite numbers of
discontinuity points, nor the same number and placements of these points. An added value is that the
space of solutions is universal for all problems having discontinuous solutions.

As claimed in Section 3, the same idea of solutions for differential inclusions having limited
number of (possible) discontinuity points indicated by barriers met at once can be found in [34]
or [10]. The space of solutions considered there consists of all functions x which are L-Lipschitz on
[τi(x)+, τi+1(x)] and have no more than p jump points τ1(x) < τ2(x) < · · · < τp(x). Note that in
general τi depends on x; i.e., the impulses are not fixed times. Clearly, all such solutions are regulated.

Remark 3. We propose to treat all such problems in an unified manner. First, we need to choose a proper
subspace of G([a, b], Y) and to define an operator on this space. Then either we have already a decomposition
of this operator in its continuous and discrete parts (defined as in the formulation of a problem), or we need to
decompose it like in our main theorem.
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Abstract: We study Riemann-Lebesgue integrability for interval-valued multifunctions relative to an
interval-valued set multifunction. Some classic properties of the RL integral, such as monotonicity,
order continuity, bounded variation, convergence are obtained. An application of interval-valued
multifunctions to image processing is given for the purpose of illustration; an example is given in case
of fractal image coding for image compression, and for edge detection algorithm. In these contexts,
the image modelization as an interval valued multifunction is crucial since allows to take into account
the presence of quantization errors (such as the so-called round-off error) in the discretization process
of a real world analogue visual signal into a digital discrete one.

Keywords: Riemann-Lebesgue integral; interval valued (set) multifunction; non-additive set function;
image processing
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1. Introduction

The theory of multifunctions is an important field of research. Since interval arithmetic,
introduced by Moore in [1], it appears a natural option for handling the uncertainty in data and in
sensor measurements, particular attention was addressed to the study of interval-valued multifunctions
and multimeasures because of their applications in statistics, biology, theory of games, economics,
social sciences and software, to keep track of rounding errors in calculations and of uncertainties
in the knowledge of the exact values of physical and technical parameters (see for example [2–5]).
In fact, since the uncertainty of information could affect an expert’s opinion, the ability to consider the
uncertainty information during the process could be very important, see for example [2–4,6–11] and
the references therein.

However, in some recent papers, interval-valued multifunctions have been applied also to some
new directions, involving signal and image processing. Digital images are in fact the result of a
discretization of the reality; namely sampled version of a continuous signal. Hence, there are different
sources of uncertainty and ambiguity to be considered when performing image processing tasks, see for
example [12,13]. For instance, the applications of fractal image coding for image compression [14,15] is
one of the topic in which interval-valued multifunctions have been applied. Clearly, image compression
techniques [16] are very useful in order to speed up the processes of digital image transmission and to
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improve the efficiency of image storage for high dimensional databases [17]. Further, applications of
interval-valued multifunctions to the implementation of edge detection algorithms can also be found
(see e.g., [13,18]).

In the literature several methods of integration for functions and multifunctions have been studied
extending the Riemann and Lebesgue integrals. In this framework a generalization of Riemann sums
was given in [19–37] while another generalization is due to Kadets and Tseytlin [38], who introduced the
absolute Riemann-Lebesgue |RL| and unconditional Riemann-Lebesgue RL integrability, for Banach
valued functions with respect to countably additive measures. They proved that in finite measure
space, the Bochner integrability implies |RL| integrability which is stronger than RL integrability that
implies Pettis integrability. Regarding this last extension contributions are given also in [21,23,34,39].

In the last decade the study of non-additive set functions and multifunctions has recently received
a wide recognition, (see also [3,9,10,40–46]). In this paper, motivated by the large number of fields in
which the interval-valued multifunction can be applied, we introduce a new type of integral of an
interval-valued multifunction G with respect to an interval-valued submeasure M with respect to the
weak interval order relation introduced in [4] by Guo and Zhang. Although the construction procedure
of the integral is similar to the one given in [34,38,39], the integral proposed is a generalization of
it since we are concerned with the study of a Riemann-Lebesgue set-valued integrand with respect
to an arbitrary interval-valued set function, not necessarily countably additive. So the novelty of
this construction concerns not only the codomain of the integrands but also the non-additivity of the
measure with respect to which they are integrated. The main results on this subject are Theorem 1,
in which the additivity of the integral is proved even if the pair (G, M) does not satisfy this property;
the monotonicity and the order continuity are established in Theorems 2 and 4 and a convergent result
given in Theorem 5.

The paper is organized as follows: in Section 2 the basic concepts and terminology are introduced
together with some remarks. In Section 3 we introduce the RL-integral of an interval-valued
multifunction with respect to an interval valued subadditive multifunction and we provide a
comprehensive treatment of the integration theory together with a comparison with other integrals
defined in the same setting (Remark 8). An example of an application in image processing is given in
Section 3.1. The applications concerning image processing discussed in the present paper is given for
the purpose of illustration and is new. The main reason for which we discuss the above application
is to provide examples and justifications of the uses of interval-valued multifunctions to concrete
applications in Image Processing. The advantage of using the notion of interval-valued multifunction
in signal analysis is that this formalism allows to include in a unique framework possible uncertainty
or the noise on the evaluation of an image at any given pixel.

2. Preliminaries

Let S be a nonempty at least countable set, P(S) the family of all subsets of S and A a σ-algebra of
subsets of S. The symbol R+

0 denotes, as usual, the set of non negative real numbers.

Definition 1 ([34], Definition 2.1).

(i) A finite (countable) partition of S is a finite (countable) family of nonempty sets P = {Ai}i=1,...,n

({An}n∈N) ⊂ A such that Ai ∩ Aj = ∅, i 
= j and
n⋃

i=1
Ai = S (

⋃
n∈N

An = S ).

(ii) If P and P′ are two partitions of S, then P′ is said to be finer than P, denoted by P ≤ P′ (or P′ ≥ P),
if every set of P′ is included in some set of P.

(iii) The common refinement of two finite or countable partitions P = {Ai} and P′ = {Bj} is the partition
P ∧ P′ = {Ai ∩ Bj}.

(iv) A countable tagged partition of S if a family {(Bn, sn), n ∈ N} such that (Bn)n is a partition of S and
sn ∈ Bn for every n ∈ N.
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We denote by P the class of all the countable partitions of S and if A ∈ A is fixed, by PA we
denote the class of all the countable partitions of the set A.

Definition 2 ([34], Definition 2.2). Let m : A → [0,+∞) be a non-negative function, with m(∅) = 0.
A set A ∈ A is said to be an atom of m if m(A) > 0 and for every B ∈ A, with B ⊂ A, it is m(B) = 0 or
m(A\B) = 0.

m is said to be:

(i) monotone if m(A) ≤ m(B), ∀ A, B ∈ A, with A ⊆ B;
(ii) subadditive if m(A ∪ B) ≤ m(A) + m(B), for every A, B ∈ A, with A ∩ B = ∅;

(iii) a submeasure (in the sense of Drewnowski [47]) if m is monotone and subadditive;

(iv) σ-subadditive if m(A) ≤ +∞
∑

n=0
m(An), for every sequence of (pairwise disjoint) sets (An)n∈N ⊂ A,

with A =
+∞⋃
n=0

An.

(v) order-continuous (shortly, o-continuous) if lim
n→∞

m(An) = 0, for every decreasing sequence of sets

(An)n∈N ⊂ A, with An ↘ ∅;
(vi) exhaustive if lim

n→∞
m(An) = 0, for every sequence of pairwise disjoint sets (An)n∈N ⊂ A.

(vii) null-additive if m(A ∪ B) = m(A), for every A, B ∈ A, with m(B) = 0;

Moreover m satisfies property (σ) if the ideal of m-zero sets is stable under countable unions (see for
example [34], Definition 2.3).

We denote by the symbol ck(R) the family of all non-empty convex compact subsets of R,
by convention, {0} = [0, 0]. We consider on ck(R) the Minkowski addition (A + B := {a + b : a ∈
A, b ∈ B}) and the standard multiplication by scalars. ‖A‖ := sup{|x| : x ∈ A}. dH is the Hausdorff
distance in ck(R), while e(A, B) = sup{d(x, B), x ∈ A} and dH(A, B) = max{e(A, B), e(B, A)}.

(ck(R), dH) is a complete metric space ([48,49]), but is not a linear space since the subtraction is
not well defined.

If A = [a, b] then ‖A‖ = max{|a|, |b|}. Moreover

dH([a, b], [c, d]) = max{|a− c|, |b− d|}, ∀ a, b, c, d ∈ R

dH([0, a], [0, b]) = |b− a| ∀ a, b ∈ R+
0 .

In the family ck(R) the following operations are also considered, for every a, b, c, d ∈ R:

(i) [a, b] · [c, d] = [ac, bd];
(ii) [a, b] ⊆ [c, d] if and only if c ≤ a ≤ b ≤ d;

(iii) [a, b] ! [c, d] if and only if a ≤ c and b ≤ d; (weak interval order)
(iv) [a, b] ∧ [c, d] = [min{a, c}, min{b, d}];
(v) [a, b] ∨ [c, d] = [max{a, c}, max{b, d}].

In general there is no relation between ′′ !′′ (iii) and ′′ ⊆′′ (ii); they only coincide on the subfamily
{[0, a], a ≥ 0}. Let ck(R+

0 ) := {[a, b], a, b ∈ R and 0 ≤ a ≤ b}.
In this paper we consider (ck(R+

0 ), dH ,!), namely the space ck(R+
0 ) is endowed with the

Hausdorff distance and the weak interval order. As a particular case of [20] (Definition 2.1) we have:

Definition 3. Let (an)n, (bn)n be two sequences of real numbers so that 0 ≤ an ≤ bn, ∀n ∈ N.
The series ∑∞

n=0[an, bn] := {∑∞
n=0 yn : an ≤ yn ≤ bn, ∀n ∈ N } is called convergent if the sequence of

partial sums Sn := [∑n
k=0 ak, ∑n

k=0 bk] is dH-convergent to it.

Remark 1. It is easy to see that ∑∞
n=0[an, bn] = [u, v], with 0 ≤ u ≤ v < ∞, if and only if ∑∞

n=0 an = u and
∑∞

n=0 bn = v.
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We recall the following definition for the integrable Banach-valued functions f : S → X with
respect to non-negative measures given in [38,39]:

Definition 4. A function f is called unconditional Riemann-Lebesgue (RL ) m-integrable (on S) if there exists
b ∈ X such that for every ε > 0, there exists a countable partition Pε of S, so that for every countable partition
P = {An}n∈N of S with P ≥ Pε, f is bounded on every An, with m(An) > 0 and for every tn ∈ An, n ∈ N,
the series ∑+∞

n=0 f (tn)m(An) is unconditional convergent and

‖
+∞

∑
n=0

f (tn)m(An)− b‖ < ε.

The vector b (necessarily unique) is called the Riemann-Lebesgue m-integral of f on S and it is

denoted by (RL)

∫
S

f dm. The RL definition of the integrability on a subset A ∈ A is given in the

classical manner.

Remark 2. We remember that, in the countably additive case, unconditional RL-integrability is stronger
than Birkhoff integrability (in the sense of Fremlin), see Ref. [23] and the references therein; while the notion
of unconditional Riemann-Lebesgue integrability coincides with Birkhoff’s one given in [21] (Definition 1,
Proposition 2.6 and note at p. 8).

For the properties of this integral with respect to a submeasure we refer to the results given in [34].
Moreover we have that

Proposition 1. Let gn : S→ R+
0 be an increasing sequence of bounded RL integrable function with respect to

a submeasure μ : A → R+
0 of bounded variation. If there exists a g : S→ R+

0 such that

(a) gn → g uniformly,

(b) supn (RL)

∫
S

gndμ < +∞,

then g is RL integrable with respect to μ and

lim
n→∞

(RL)

∫
S

gn dμ = (RL)

∫
S

g dμ.

Proof. Since gn ↑, by the monotonicity we have that (RL)

∫
S

gndμ ↑ so supn (RL)

∫
S

gn dμ =

lim
n→∞

(RL)

∫
S

gn dμ = u ∈ R+
0 . Thanks to uniform convergence g is bounded; let L > 0 an upper

bound for g.
Let ε > 0 be fixed and consider k(ε) ∈ N be such that

|g(t)− gk(ε)(t)| <
ε

3μ(S)
∀ t ∈ S, and∣∣∣∣(RL)

∫
S

gk(ε)dμ− u
∣∣∣∣ < ε

3
.

For every countable partition P := (An)n finer than Pε/3,k(ε) (the one that verifies Definition 4 for gk(ε))
and for every tn ∈ An we have that ∑+∞

n=0 g(tn)μ(An) converges, since μ is of bounded variation.
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In fact g(tn)μ(An) ≤ Lμ(An) for every n ∈ N and, for every k ∈ N, it is 0 ≤ ∑k
n=0 μ(An) ≤

μ(S). Moreover ∣∣∣∣∣+∞

∑
n=0

g(tn)μ(An)− u

∣∣∣∣∣ ≤
∣∣∣∣∣+∞

∑
n=0

g(tn)μ(An)−
+∞

∑
n=0

gk(ε)(tn)μ(An)

∣∣∣∣∣+
+

∣∣∣∣∣+∞

∑
n=0

gk(ε)(tn)μ(An)− (RL)

∫
S

gk(ε)dμ

∣∣∣∣∣+
+

∣∣∣∣(RL)

∫
S

gk(ε)dμ− u
∣∣∣∣ ≤ ε.

Remark 3. We can extend Proposition 1 to the bounded sequences (gn)n that converge μ-almost uniformly on
S (namely to the sequences (gn)n such that for every ε > 0 there exists B(ε) ∈ A with μ(B(ε)) ≤ ε and gn

converges uniformly to g on S \ B(ε)), if we assume that even g is bounded.
We can proceed in fact in the same way, as in the previous proof, taking P∗ε := Pε/3,k(ε) ∧ {S \ B(ε), B(ε)}

and, for every countable partition P := (An)n finer than P∗ε , dividing ∑+∞
n=0 g(tn)μ(An) in two parts: the one

relative to S \ B(ε), where the uniform convergence is assumed, and the remining part.
Convergence results in Gould integrability of functions with respect to a submeasure of finite variation are

established for instance in [50].

Given two submeasures μ1, μ2 : A → R+
0 with μ1(A) ≤ μ2(A) for every A ∈ A let M : A →

ck(R+
0 ) defined by

M(A) = [μ1(A), μ2(A)]. (1)

M is called an interval submeasure. For results in this subject see for example [3,43].
Let M : A → ck(R+

0 ). We say that M is an interval valued multisubmeasure if

• M(∅) = {0};
• M(A) ! M(B) for every A, B ∈ A with A ⊆ B (monotonicity);
• M(A ∪ B) ! M(A) + M(B) for every disjoint sets A, B ∈ A (subadditivity).

In literature the multimeasures that satisfy the first two statements are also called set valued fuzzy
measures (see for example [4] (Definition 1), [3,11,42–44] and the references therein).

A very interesting case of interval-valued multisubmeasure was given, for the first time, in [6,8]
where Dempster and Shefer proposed a mathematical theory of evidence using non additive measures:
Belief and Plausibility in such a way for every set A the Belief interval of the set is [Bel(A), Pl(A)].
This theory is capable of deriving probabilities for a collection of hypotheses and it allows the system
inferencing with the imprecision and uncertainty. If the target space is ck([0, 1]) it is used for example
in decision theory.

We say that M is an additive multimeasure if M(A ∪ B) = M(A) + M(B) for every disjoint sets
A, B ∈ A.

If a multimeasure M is countably additive in the Hausdorff metric dH , then it is called a
dH-multimeasure. In this case we have that limn→∞ dH (∑n

k=1 M(Ak), M(A)) = 0, for every sequence of
pairwice disjoint sets (An)n ⊂ A such that ∪n An = A.

Remark 4. By Ref. [43] (Remark 3.6) M(A) = [μ1(A), μ2(A)] is a multisubmeasure with respect to ! if
and only if μ1, μ2 are submeasures in the sense of Definition 2 (iii). Moreover M is monotone, finitely additive,
order-continuous, exhaustive respectively if and only if the set functions μ1 and μ2 are the same (see [40]
(Proposition 2.5, Remark 3.3)).
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Definition 5. Let M : A → ck(R+
0 ). The variation of M is the set function M : P(S)→ [0,+∞] defined by

M(E) = sup{
n

∑
i=1
||M(Ai)||, {Ai}n

i=1 ⊂ A, Ai ⊆ E, Ai ∩ Aj = ∅, i 
= j}.

M is said to be of finite variation if M(S) < ∞.

Remark 5. We can observe that if E ∈ A, then in the definition of M one may consider the supremum over all
finite partitions {Ai}n

i=1∈ PE. If M is finitely additive, then M(A) = M(A), for every A ∈ A.
If M is subadditive (countably subadditive, respectively) of finite variation, then M is finitely additive

(countably additive, respectively). Finally, if M(A) = [μ1(A), μ2(A)], for every A ∈ A, then M = μ2.

3. RL Interval Valued Integral and Its Properties

In this section, we introduce and study Riemnn-Lebesgue integrability of interval-valued
multifunctions with respect to interval-valued set multifunctions, pointing out various properties
of this integral. For this, unless stated otherwise, in what follows suppose S is a nonempty set,
with card S ≥ ℵ0 (card S is the cardinality of S), A is a σ-algebra of subsets of S.

The multisubmeasure M here considered is an interval-valued one and satisfies (1).
Given g1, g2 : S→ R+

0 with g1(s) ≤ g2(s) for all s ∈ S, let G : S→ ck(R+
0 ) be the interval-valued

multifunction defined by G(s) = [g1(s), g2(s)] for every s ∈ S. For every countable tagged partition
Π := {(Bn, sn), n ∈ N} of S we denote by

σG,M(Π) :=
∞

∑
n=1

G(sn) · M(Bn) =
∞

∑
n=1

[g1(sn)μ1(Bn), g2(sn)μ2(Bn)] =

= {
∞

∑
n=1

yn, yn ∈ [g1(sn)μ1(Bn), g2(sn)μ2(Bn)], n ∈ N }.

By [20] (Lemma 2.2) the set σG,M(Π) is closed and convex in R+
0 , so it is an interval [u(Π)

G,M, v(Π)
G,M].

Definition 6. A multifunction G : S→ ck(R+
0 ) is called Riemann-Lebesgue RL integrable with respect to M

(on S) if there exists [a, b] ∈ ck(R+
0 ) such that for every ε > 0, there exists a countable partition Pε of S, so that

for every tagged partition P = {(An, tn)}n∈N of S with P ≥ Pε, the series σG,M(P) is convergent and

dH(σG,M(P), [a, b]) < ε. (2)

[a, b] is called the Riemann-Lebesgue integral of G with respect to M and it is denoted

[a, b] = (RL)

∫
S

G dM.

Obviously, if it exists, is unique.

Example 1. Suppose S = {sn|n ∈ N} is countable, {sn} ∈ A, for every n ∈ N, and let G : S→ ck(R+
0 ) be

such that the series
∞

∑
n=0

gi(sn)μi({tn}), i = 1, 2 are convergent. Then G is RL integrable with respect to M and

(RL)

∫
S

G dM =

[
∞

∑
n=0

g1(sn)μ1({sn}),
∞

∑
n=0

g2(sn)μ2({sn})
]

.
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Observe moreover that, in this case, the RL-integrability of such G with respect to M implies that the
product G · G, as defined in i), is integrable in the same sense. In particular, if such G is a discrete or countable

interval-valued signal, the (RL)

∫
S

G · G dM represents the energy of the signal.

If M is of bounded variation and G : S→ ck(R+
0 ) is bounded and such that G = {0} M-a.e., then,

by [34] (Theorem 3.4), G is M-integrable and (RL)

∫
S

GdM = {0}.
From now on we suppose that G is bounded and μ2 is of finite variation.

Proposition 2. An interval multifunction G = [g1, g2] is RL integrable with respect to M on S if and only if
gi are RL integrable with respect to μi, i = 1, 2 and

∫
S

GdM =

[
(RL)

∫
S

g1dμ1, (RL)

∫
S

g2dμ2

]
. (3)

Proof. Suppose that G = [g1, g2] is RL integrable with respect to M = [μ1, μ2], that means there exists
[a, b] ∈ ck(R+

0 ) such that for every ε > 0, there exists a countable partition Pε of S, so that for every
tagged partition P = {(An, tn)}n∈N of S with P ≥ Pε, the series σG,M(P) is convergent and

dH([u
(P)
G,M, v(P)

G,M], [a, b]) := max{|u(P)
G,M − a|, |v(P)

G,M − b|} < ε.

By this inequality it follows that

max{|
∞

∑
n=1

g1(tn)μ1(An)− a|, |
∞

∑
n=1

g2(tn)μ2(An)− b| } ≤ ε, ∀ n ∈ N,

for every tagged partition P = {(An, tn)}n∈N of S with P ≥ Pε and then gi are RL integrable with
respect to μi, i = 1, 2. Formula (3) follows from the convexity of the RL integral.

For the converse, for every ε > 0, let Pε,gi , i = 1, 2 two countable partitions that verify the
definition of RL integrability for gi, i = 1, 2. Let Pε be a countable partition of S with Pε ≥ Pε,g1 ∧ Pε,g2 .
Then, for every P := {Bn, n ∈ N} ≥ Pε and for every tn ∈ Bn it is∣∣∣∣∣+∞

∑
n=0

gi(tn)μi(Bn)− (RL)

∫
S

gidμi

∣∣∣∣∣ < ε, i = 1, 2.

Since gi, i = 1, 2 are selections of G this means that

dH

(
[u(P)

G,M, v(P)
G,M],

[
(RL)

∫
S

g1dμ1, (RL)

∫
S

g2dμ2

])
≤ ε

and then the assertion follows.

Remark 6. By Definition 6 and Proposition 2 we obtain the following definitions for the following cases:

• If M = {μ} : A → R+
0 is an arbitrary set function and G = [g1, g2] with g1(s) ≤ g2(s) for every

s ∈ S then ∫
S

GdM =

[
(RL)

∫
S

g1dμ, (RL)

∫
S

g2dμ

]
.

• If M = [μ1, μ2] as in (1) and G = {g} : S→ R+
0 then

∫
S

GdM =

[
(RL)

∫
S

gdμ1, (RL)

∫
S

gdμ2

]
.
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Proposition 3. Let G be an interval valued multifuncion. The RL integrability with respect to M is hereditary
on subsets A ∈ A . Moreover G is RL integrable with respect to M on A if and only if GχA (where χA is the
characteristic function of the set A) is RL integrable with respect to M on S. In this case, for every A ∈ A,

(RL)

∫
A

G dM = (RL)

∫
S

GχA dM.

Proof. Assume that G is RL integrable in S with respect to M. Let A ∈ A and denote by [a, b] the
integral of G; then, for every ε > 0, there exists a countable partition Pε of S, such that, for every finer
countable partition P′ := {An}n∈N and for every tn ∈ An it is

dH
(
σG,M(P′), [a, b]

) ≤ ε.

Let P0 be a partition such that P0 ≥ Pε ∧ {A, T \ A}, and we denote by PA ⊂ P0 the corresponding
partition of the set A. Let ΠA be a partition of A finer than PA, and extend it with a common partition
of S \ A in such a way the new partition is finer than Pε.

It is possible to prove that σG,M(ΠA) satisfy a Cauchy principle in ck(R+
0 ), and so the first

claim follows by the completeness of the space. The equality follows from [34] (Theorem 3.2) and
Proposition 2.

Remark 7. It is easy to see that, if G is RL integrable with respect to M, for every α ≥ 0 it is:

(a) αG is RL integrable with respect to M and (RL)

∫
S
αG dM = α(RL)

∫
S

G dM.

(b) G is RL integrable with respect to αM and (RL)

∫
S

G d(αM) = α(RL)

∫
S

G dM.

Theorem 1. If G is an interval valued RL integrable with respect to M multifunction, then IG : A → ck(R+
0 )

defined by

IG(A) := (RL)

∫
A

G dM

is a finitely additive multimeasure.

Proof. By Proposition 3 we have that IG(A) ∈ ck(R+
0 ) for every A ∈ A. In order to prove the additivity

we can observe that, for every A, B ∈ A with A ∩ B = ∅

IG(A ∪ B) = (RL)

∫
S

GχA∪B dM = (RL)

∫
S
(GχA + GχB) dM. (4)

If we prove that for every pair of interval valued RL integrable with respect to M multifunctions
G1, G2 we have that

(RL)

∫
S
(G1 + G2) dM = (RL)

∫
S

G1 dM + (RL)

∫
S

G2 dM (5)

the assertion follows. In order to prove formula (5) let ε > 0 be fixed. Since G1, G2 are RL integrable
with respect to M, for every ε > 0 there exists a countable partition Pε ∈ P such that for every
P = {An}n∈N ≥ Pε and every tn ∈ An, n ∈ N, the series σGi ,M(P), i = 1, 2 are convergent and

dH

(
σGi ,M(P), (RL)

∫
S

Gi dM
)
<

ε

2
, i = 1, 2.

Then σG1+G2,M(P) is convergent and, by [48] (Proposition 1.17),

dH

(
σG1+G2,M(P), (RL)

∫
S

G1 dM + (RL)

∫
S

G2 dM
)
< ε.
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So G1 + G2 is RL integrable with respect to M and formula (5) is satisfied.
Now applying formula (5) with G1 = GχA, G2 = GχB to formula (4) we obtain the additivity

of IG.

The set-valued integral is monotone relative to the order relation "!" and the inclusion one,
with respect to the interval-valued integrands.

Proposition 4. If F, G are two RL integrable with respect to M interval valued multifunctions with F ! G
then, for every A ∈ A, IF(A) ! IG(A).

Proof. We will prove for A = S. Let F(s) := [ f1(s), f2(s)], G(s) = [g1(s), g2(s)]. By the integrability of
F and G we have, by Proposition 2

IF(S) :=(RL)

∫
S

F dM =

[
(RL)

∫
S

f1dμ1, (RL)

∫
S

f2dμ2

]
,

IG(S) :=(RL)

∫
S

G dM =

[
(RL)

∫
S

g1dμ1, (RL)

∫
S

g2dμ2

]
.

Since fi(s) ≤ gi(s) for all s ∈ S and i = 1, 2 by [34] (Theorem 3.10) we have that

(RL)

∫
S

f1dμ1 ≤ (RL)

∫
S

g1dμ1, (RL)

∫
S

f2dμ2 ≤ (RL)

∫
S

g2dμ2,

and so by the weak interval order, iii), we have that IF(S) ! IG(S).

Corollary 1. If F, G, F ∧ G, F ∨ G are RL integrable with respect to an interval valued multisubmeasure M
then, for every A ∈ A,

(a) (RL)

∫
S

F ∧ G dM ! IF(A) ∧ IG(A);

(b) IF(A) ∨ IG(A) ! (RL)

∫
S

F ∨ G dM.

Proof. Let F(s) = [ f1(s), f2(s)], G(s) = [g1(s), g2(s)], h∗(s) = min{ f1(s), g1(s)}, h∗(s) =

min{ f2(s), g2(s)}. By [34] (Theorem 3.10) (RL)

∫
S
h∗dμ1 ≤

{
(RL)

∫
S

f1dμ1, (RL)

∫
S

g1dμ1

}
and an

analogous result holds for (RL)

∫
S
h∗dμ2. So the result given in 1.a) follows from the definition of

! and ∧.
The second statement follows analogously.

Proposition 5. Let F, G : S→ ck(R+
0 ) be bounded so that F, G are RL integrable with respect to M. If F ⊆ G,

then IF(A) ⊆ IG(A) for all A ∈ A.

Proof. As before we will prove for S. Let ε > 0 be arbitrary. Since F, G are RL integrable with
respect to M, there exists a countable partition Πε of S so that for every other countable partition
Π = {Bn}n∈N ∈ P , with Π ≥ Πε and every choise of points sn ∈ Bn, n ∈ N, the series

∞

∑
n=0

F(sn) · M(Bn),
∞

∑
n=0

G(sn) · M(Bn)

are convergent and

dH

(
IF(S),

∞

∑
n=0

F(sn) · M(Bn)

)
<

ε

3
; dH

(
IG(S),

∞

∑
n=0

G(sn) · M(Bn)

)
<

ε

3
.
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Then, by the triangular property of the eccess e,

e(IF(S), IG(S)) ≤ dH

(
IF(S),

∞

∑
n=0

F(sn) · M(Bn)

)
+ e(

∞

∑
n=0

F(sn) · M(Bn),
∞

∑
n=0

G(sn) · M(Bn)) +

+ dH

(
∞

∑
n=0

G(sn) · M(Bn), IG(S)

)
<

2ε

3
+ e(

∞

∑
n=0

F(sn) · M(Bn),
∞

∑
n=0

G(sn) · M(Bn)).

Since the series
∞

∑
n=0

F(sn) · M(Bn) and
∞

∑
n=0

G(sn) · M(Bn) are convergent in ck(R+
0 ), and, by hypothesis,

∞

∑
n=0

F(sn) · M(Bn) ⊆
∞

∑
n=0

G(sn) · M(Bn), then

e(
∞

∑
n=0

F(sn) · M(Bn),
∞

∑
n=0

G(sn) · M(Bn)) = 0.

Consequently, from the arbitrariety of ε > 0, e(IF(S), IG(S)) = 0, which implies IF(S) ⊆ IG(S).

We can observe moreover that

Proposition 6. If G is bounded and RL integrable with respect to M, with M of bounded variation, then

(a) ‖IG(S)‖ = (RL)

∫
S

g2 dμ2 = (RL)

∫
S
‖G‖ d‖M‖.

(b)

IG(S) = sup{
n

∑
i=1
|IG(Ai)|, {Ai, i = 1, . . . , n} ∈ P} =

= sup{
n

∑
i=1

(RL)

∫
Ai

g2 dμ2, {Ai, i = 1, . . . , n} ∈ P} = (RL)

∫
S

g2 dμ2.

Proof. It is a consequence of the properties of dH and [34] (Proposition 3.3, Theorem 3.5).

Proposition 7. Let G : S→ ck(R+
0 ) be a bounded multifunction such that G is RL integrable with respect to

M on every set A ∈ A.

(a) If M is of bounded variation, then IG � M (in the ε-δ sense) and IG is of finite variation.
(b) If moreover M is o-continuous (exhaustive respectively), then IG is also o-continuous

(exhaustive respectively).

Proof. The statements easily follow by Proposition 6.

Moreover

Theorem 2. Let G : S→ ck(R+
0 ) be a multifunction such that G is RL integrable with respect to M on every

set A ∈ A. The following statements hold:

(a) If M is monotone, then IG is monotone too.
(b) If M is a dH-multimeasure of bounded variation then IG is countably additive.

Proof. Let A, B ∈ A with A ⊆ B. By monotonicity μi(A) ≤ μi(B) for i = 1, 2. We divide B in A, B \ A
and we apply [34] (Theorem 3.2, Corollary 3.6). The conclusion follows by (iii).

Since M is a dH-multimeasure, then M is countably additive too and o-continuous.
Applying Proposition 7 IG is o-continuous too. Let (An)n∈N ⊂ A be an arbitrary sequence of pairwise
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disjoint sets, with
∞⋃

n=1
An = A ∈ A. We denote by Bn the set Bn :=

∞⋃
k=n+1

Ak. Since Bn ↘ ∅, then

limn→∞ ‖IG(Bn)‖ = 0. Since IG is finitely additive, we have

lim
n→∞

dH(IG(A),
n

∑
k=1

IG(Ak)) = lim
n→∞

dH(
n

∑
k=1

IG(Ak) + IG(Bn),
n

∑
k=1

IG(Ak)) ≤ lim
n→∞

‖IG(Bn)‖ = 0

which ensures that IG is a dH-multimeasure.

Proceeding as in to the proof of the formula (5) and applying [34] (Theorem 3.8) we obtain the
following result:

Proposition 8. Let be M1, M2 : A → ck(R+
0 ) , with M1(∅) = M2(∅) = {0} and suppose G : S→ ck(R+

0 )

is RL integrable with respect to both M1 and M2. If M : A → ck(R+
0 ) is the interval-valued multisubmeasure

defined by M(A) = M1(A) + M2(A), for every A ∈ A, then G is RL integrable with respect to M and

(RL)

∫
S

G d(M1 + M2) = (RL)

∫
S

G dM1 + (RL)

∫
S

G dM2.

Theorem 3. Let M be of bounded variation and F, G : T → ck(R+
0 ) be bounded interval-valued multifunctions.

If F, G are RL integrable with respect to M, then

dH

(
(RL)

∫
S

FdM, (RL)

∫
S

G dM
)
≤ sup

s∈S
dH(F(s), G(s)) ·M(S).

Proof. Since F, G are M-integrable then f1, g1 are μ1-integrable and f2, g2 are μ2-integrable functions.
According to [34] (Theorem 3.9), we have for i = 1, 2,∣∣∣∣(RL)

∫
S

fi dμi − (RL)

∫
S

gidμi

∣∣∣∣ ≤ sup
s∈S
| fi(s)− gi(s)|μi(S). (6)

Therefore, by (6) and Remark 5, it follows

dH

(
(RL)

∫
S

F dM, (RL)

∫
S

G dM
)
= max

{∣∣∣∣(RL)

∫
S

f1dμ1 − (RL)

∫
S

g1dμ1

∣∣∣∣ ,
∣∣∣∣(RL)

∫
S

f2dμ2 − (RL)

∫
S

g2dμ2

∣∣∣∣}
≤ max

{
sup
s∈S
| f1(s)− g1(s)|μ1(S), sup

s∈S
| f2(s)− g2(s)|μ2(S)

}
≤

≤ max

{
sup
s∈S
| f1(s)− g1(s)|, sup

s∈S
| f2(s)− g2(s)|

}
μ2(S) ≤

= sup
s∈S

dH(F(s), G(s))M(S).

Theorem 4. Let M1, M2 : A → ck(R+
0 ) and G : S→ ck(R+

0 ) be RL integrable with respect to both M1 and
M2. Then

(a) If M1 ! M2, then (RL)

∫
S

G dM1 ! (RL)

∫
S

G dM2.

(b) If M1 ⊆ M2, then (RL)

∫
S

G dM1 ⊆ (RL)

∫
S

G dM2.

Proof. Let M1 := [μ∗, μ∗] and M2 := [ν∗, ν∗]. Both the results are consequences of Theorem 2 and [34]
(Theorem 3.11). It is enough to observe that if M1 ! M2 then μ∗ ≤ ν∗ and μ∗ ≤ ν∗, while if M1 ⊆ M2

then ν∗ ≤ μ∗ ≤ μ∗ ≤ ν∗.
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As a particular case of Theorem 4 and Corollary 1 we have that for every G which is RL integrable
with respect to both positive submeasures μ1 and μ2 then

(RL)

∫
S

G d(μ1 ∧ μ2) ! (RL)

∫
S

G dμ1 ∧ (RL)

∫
S

G dμ2.

Moreover a convergence result can be obtained using Proposition 1.

Theorem 5. Let Gn = [g(n)1 , g(n)2 ] be a sequence of bounded RL-integrable interval valued multifunction with
respect to M = [μ1, μ2] such that Gn ! Gn+1 for every n ∈ N. If M is of bounded variation and there exists a
function G = [g1, g2] such that:

(a) dH(Gn, G)→ 0 uniformly;

(b) supn

∥∥∥∥(RL)

∫
S

GndM
∥∥∥∥ < +∞,

then G is RL-integrable with respect to M and

lim
n→∞

dH

(
(RL)

∫
S

Gn dM, (RL)

∫
S

G dM
)
= 0.

Proof. Since Gn ! Gn+1 we have that g(n)i ↑ for i = 1, 2, this is a consequence of Proposition 4 and

Definition 6. By dH(Gn, G)→ 0 uniformly we have that max{|g(n)i − gi|, i = 1, 2} converges uniformly
to zero. We can use now Proposition 1 and we obtain

lim
n→∞

(RL)

∫
S

g(n)i dμi = (RL)

∫
S

gidμi, i = 1, 2.

For every ε > 0 let k(ε) ∈ N be such that

dH(G(t), Gk(ε)(t)) < ε ∀ t ∈ S, and
∣∣∣∣(RL)

∫
S

g(k(ε))i dμi − (RL)

∫
S

gidμi

∣∣∣∣ < ε, i = 1, 2.

So,

dH

(
(RL)

∫
S

Gk(ε) dM,
[
(RL)

∫
S

g1dμ1, (RL)

∫
S

g2dμ2

])
≤ ε.

Let Pε be the countable partition of S given by
∧

i=1,2 Pε,i, (the ones that verify Definition 4 for

gk(ε)
i , i = 1, 2 respectively). Then, for every countable partition P = {An}n∈N of S with P ≥ Pε

and for every tn ∈ An the series σG,M(P) is convergent and

dH

(
σG,M(P),

[
(RL)

∫
S

g1dμ1, (RL)

∫
S

g2dμ2

])
< dH

(
σG,M(P), σGk(ε) ,M(P)

)
+

+ dH

(
σGk(ε) ,M(P), (RL)

∫
S

Gk(ε)dM
)
+

+ dH

(
(RL)

∫
S

Gk(ε)dM,
[
(RL)

∫
S

g1dμ1, (RL)

∫
S

g2dμ2

])
.

From previous inequalities and by the arbitrariety of ε the RL-integrability of G follows.

Remark 8. Since this research starts from the papers [34,43], this part ends with a comparison between the two
types of integral considered: the RL integral with the Gould one given in [43] (Definition 4.7).

If the interval-valued multifunction F is bounded and μ2 is of finite variation then, analogously to
Proposition 2 it is, by [43] (Proposition 4.9),

(G)
∫

S
FdM =

[
(G)

∫
S

f1 dμ1, (G)
∫

S
f2dμ2

]
.
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So, the two kinds of integral coincide on bounded interval-valued multifunctions with values in ck(R+
0 ) when

μi, i = 1, 2 are complete countably additive measures by [34] (Proposition 4.5) or μi, i = 1, 2 are monotone,
countably -subadditive by [34] (Theorem 4.7).

Without countable additivity the equivalence does not hold; an example can be constructed using [34]
(Example 4.6). In the general case only partial results can be obtained on atoms when μi, i = 1, 2 are monotone,
null additive and satisfy property (σ): the proof follows from [34] (Theorem 4.8).

Accordingly with the comparison between Gould and Birkoff integrals given in [28] we have that Birkhoff,
Gould, RL integrals of the bounded single valued functions agree in the countably additive case, see [28]
(Theorem 3.10), while in [43] (Remark 5.5) an analogous comparison is given with the Choquet integral.

A comparison between simple Birkhoff and RL integrabilities, introduced in [23,28], in this non additive
setting can be obtained using [34] (Theorem 4.2).

Finally we would like to observe that the Rådström’s embedding tell us that (ck(X), dH ,⊆),
when X finite dimensional, is a near vector space with 0 element and order unit BX. In this case,
using [51] (Theorem 5.1), it is a near vector space (see [51] (Definition 2.1) for its definition) that
could be embedded, for example, in �∞ or in C(Ω) with Ω compact and Hausdorff in such a way the
embedding is an isometric isomorphism which takes into account the ordering on the hyperspace.

If we consider instead (ck(R+
0 ), dH ,!), since in general there is no relation between “!” and “⊆”

the Rådström embedding provide only the integrability of the interval-valued functions and does not
take the weak interval order into account. For this reason we preferred to give the the construction of
the RL integral and the proofs, both related to !, independently of the Rådström’s embedding.

3.1. Applications of Interval Valued Multifunctions

Now, in order to explain what could be the benefits of this approach we give an example of an
application of interval valued multifunctions on interval valued multisubmeasure in image processing.
In fact a signal can be modeled as an interval-valued multifunction as in [12]. In fact, when the value of
the points can not be assigned with precision, it might be preferable to use a measure-based approach.

The advantage of using the notion of interval-valued multifunction in signal analysis is that this
formalism allows to include in a unique framework possible uncertainty or the noise on the value of
a point.

This situation usually occurs in signal and image processing when images are derived by a
measure process, as happens for instance for biomedical images (in CT images, MR images, etc), and in
several other applied sciences. In particular, we can apply this representation to a digital image in such
a way:

Example 2. To each pixel (or to a set of pixels) of the image is associated an interval which measures the
round-off error which is that committed on the detection on the signal due by the tolerances and by the limits
on computational accuracy of the measurements tools ([52]).

When we consider subsets of pixels we are taking into account the so-called time-jitter error, i.e., the error
that occur in the measure of a given signal when the sampling values can not be matched exactly at the theoretical
node but just in a neighborhood of it (see, e.g., [53]).

In this sense, if I = (mi,j) is the matrix associated to a n×m static, gray-scale image, we can consider the
space S := (0, n]× (0, m] ⊂ R2, and hence the interval-valued multifunction UI : S → K+

C corresponding to
I, will be given by:

UI(x) := [u1(x), u2(x)], x ∈ S .

The model of a digital image by an interval-valued multifunction as UI, and obtained by a certain discretization
(algorithm) of an analogue image, allows to control the round-off error in the sense that, the true value assumed
by original signal at the pixel x belongs to the interval [u1(x), u2(x)], in fact providing a lower and an upper
bound on the possible oscillations of the sampled image.
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For example, in fractal image coding, the functions u1 and u2 represent respectively the lower and upper
contraction maps of an image, which take into account of the round-off error in the contraction procedure, and can
be chosen as follows:

u1(x) := α1 u(x) + β1(x), u2(x) := α2 u(x) + β2(x), x ∈ S ,

where αi, i = 1, 2, are suitable integer scaling parameters, βi : S → N, i = 1, 2, are suitable functions,
and u : S → N is the continuous model associated to the starting image I. The functions u1 and u2 provide for
each pixel the interval containing the true value of the compressed image.

In particular, in the algorithm considered in [15], the functions u1 and u2 are piecewise constant, and for a
starting image of 225× 225 pixel size, they have been defined as follows:

UI(x) = [u1(x), u2(x)] = [u(x)− β(x), u(x) + β(x)], x ∈ S , (7)

where:
u(x) := mi,j, x ∈ (i− 1, i]× (j− 1, j], i, j = 1, ..., 225,

and

β(x) :=

⎧⎪⎨⎪⎩
0, x ∈ (0, 115]× (0, 115],
40, x ∈ (115, 225]× (115, 225],
20, otherwise.

(8)

As an example we use the interval-valued multifunction (7) to operate with the well-known image of
"Baboon" given in Figure 1 (left); the images generated by u1 and u2 using the function β defined in (8) are
given in Figure 1 (center and right).

Figure 1. Baboon (left); The images generated by u1 (center) and u2 (right) using the interval valued
multifunction (7), with β defined in (8).

Here, also numerical truncation have been taken into account, in order to maintain the values of the pixels
in the (integer) gray scale [0, 255].

For other examples of functions u1 and u2, see, e.g., [13,54]. For instance, in [13] the image representation
by multifunctions is used for the implementation of edge detection algorithms, and in this case the corresponding
functions u1 and u2 are:

u1(x) := max
{

0, min
x′∈n(x)

{
I(x′)− 1

}}
, u2(x) := min

{
255, max

x′∈n(x)

{
I(x′) + 1

}}
,

where I(x) represents the value of a pixel at a position x ∈ S , while n(x) denotes any set of 3× 3 pixels centered
at x. For more details, or other applications, see [13,18].

This example was built with the aim to highlight a useful link between the abstract theory of the
interval-valued multifunction and the concrete application to image processing. One of the crucial
tool in the above set-valued theory is provided by the Hausdorff distance between sets. This special
metric plays an important role in the context of digital image processing, where it is used, for example,
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in order to measure the accuracy of certain class of algorithms, such as those of edge detection,
already mentioned in the previous list of possible applications. More precisely, if A is the region of
interest (ROI) of a given image and B is the corresponding approximation of the ROI A detected by a
suitable edge detection algorithm, the Hausdorff distance measure the displacement between A and
B, in fact evaluating the accuracy (i.e., the approximation error) of the method. For instance, in [55]
the Hausdorff distance has been used in order to evaluate the degree of accuracy of an algorithm
for the detection of the pervious area of the aorta artery from CT images without contrast medium.
This procedure is useful, for example, in the diagnosis of aneurysms of the abdominal aorta artery,
especially for patients with severe kidneys pathology for which CT images with contrast medium
can not be performed. A similar use of the Hausdorff distance could be done for the edge detection
algorithms considered in [13,18].

4. Conclusions

A Riemann Lebesgue integral is defined for interval-valued multifunction with respect to
interval-valued multisubmeasures. Properties of the integral are established showing in particular that
the multimeasure generated is finitely additive. Sufficient conditions for the monotonicity, the order
continuity, bounded variation and convergence results are also obtained. A comparison with other
integrals is sketchced; an example of an applications in image processing is given highlighting that the
advantage of using the notion of interval-valued multifunction in signal analysis is that this formalism
allows to include in a unique framework possible uncertainty or the noise on the evaluation of an
image at any given pixel. In a future research we will generalize these results in the setting of Banach
lattices and we will compare this method with other DIP (digital image processing) algorithms.
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1. Introduction

Romanian mathematician D. Pompeiu in [1] initiated the study of distance between
two sets and introduced the Pompeiu metric. Hausdorff [2] further studied this concept
and thereby introduced the Hausdorff–Pompeiu metric H induced by the metric d of a
metric space (X, d), as follows:

For any two subsets A and B of X, the function H given by H(A, B) = max{supx∈A
d(x, B), supx∈B d(x, A)} is a metric for the set of compact subsets of X. Note that

H(A, B) = max{β sup
x∈A

d(x, B) + (1− β) sup
x∈B

d(x, A), β sup
x∈B

d(x, A)

+ (1− β) sup
x∈A

d(x, B)} for β = 0 or 1. (1)

Nadler [3] extending the Banach contraction principle introduced multi-valued con-
traction principle in a metric space using the Hausdorff–Pompieu metric H. Thereafter
many extensions and generalizations of multi-valued contraction appeared (see [4–7]).
In 1998, Czerwik [8] introduced the Hausdorff–Pompeiu b-metric Hb as a generalization of
Hausdorff–Pompeiu metric H and proved the b-metric space version of Nadler contrac-
tion principle. Czervik’s result drew attention of many researchers who further obtained
many generalized multi-valued contractions, named q-quasi contraction [9], Hardy Rogers
contraction [10], weak quasi contraction [11], Ciric contraction [12], etc. and proved the
existence theorem for such contraction mappings in a b-metric space. The aim of this work
is to introduce new variants of the Hausdorff–Pompeiu b-metric and thereby introduce
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various types of multi-valued Hβ-contraction and prove fixed point theorems for such
types of contractions in a b-metric space. It is shown that for any b-metric space (X, ds)
and β ∈ [0, 1], the function given in (1) defines a b-metric for the set of closed and bounded
subsets of X. We call this metric Hβ-Hausdorff–Pompeiu b-metric induced by the b-metric
ds. Thereafter, using this Hβ-Hausdorff–Pompeiu b-metric, we have introduced various
types of multi-valued Hβ-contraction and proved fixed point theorems for such types of
contractions in a b-metric space. The multi-valued Nadler contraction [3], Czervik con-
traction [8], q-quasi contraction [9], Hardy Rogers contraction [10], Ciric contraction [12],
weak quasi contraction [11] existing in literature are all one or the other type of multi-
valued Hβ-contraction; however, it is shown with proper examples that the converse is
not necessarily true. Finally to demonstrate the applications of our results, we prove the
existence of a unique multi-valued fractal of an iterated multifunction system defined on
a b-metric space and also an existence theorem of Filippov type for an integral inclusion
problem by introducing a generalized norm on the space of selections of the multifunction.

2. Preliminaries

Bakhtin [13] introduced b-metric space as follows:

Definition 1 ([13]). Let X be a nonempty set and ds : X× X → [0, ∞) satisfies:

1. ds(x, y) = 0 if and only if x = y for all x, y ∈ X;
2. ds(x, y) = d(y, x) for all x, y ∈ X;
3. there exist a real number s ≥ 1 such that d(x, y) ≤ s[ds(x, z) + ds(z, y)] for all x, y, z ∈ X.

Then, ds is called a b-metric on X and (X, ds) is called a b-metric space with coefficient s.

Example 1. Let X = R and d : X×X → [0, ∞) be given by d(x, y) = |x− y|2, for all x, y ∈ X.
Then (X, d) is a b-metric space with coefficient s = 2.

Definition 2 ([13]). Let (X, ds) is a b-metric space with coefficient s.

(i) A sequence {xn} in X, converges to x ∈ X, if limn→∞ds(xn, x) = 0.
(ii) A sequence {xn} in X is a Cauchy sequence if for all ε > 0, there exist a positive integer n(ε)

such that ds(xn, xm) < ε for all n, m ≥ n(ε).
(iii) (X, ds) is complete if every Cauchy sequence in X is convergent.

For some recent fixed point results of single valued and multi-valued mappings in a
b-metric space, see [9,14–18]. Throughout this paper, (X, ds) will denote a complete b-metric
space with coefficient s and CBds(X) the collection of all nonempty closed and bounded
subsets of X with respect to ds.

For A, B ∈ CBds(X), define ds(x, A) = inf{ds(x, a) : a ∈ A}, δds(A, B) = supa∈A ds(a, B)
and Hds(A, B) = max

{
δds(A, B), δds(B, A)

}
. Czerwik [8] has shown that Hds is a b-metric

in the set CBds(X) and is called the Hausdorff–Pompeiu b-metric induced by ds.

Motivated by the fact that a b-metric is not necessarily continuous (as
1
s2 ds(x, y) ≤

limn→∞ds(xn, yn) ≤ limn→∞ds(xn, yn) ≤ s2ds(x, y) and
1
s

ds(x, y) ≤ limn→∞ds(xn, y) ≤
limn→∞ds(xn, y) ≤ sds(x, y) see [19–21]), Miculescu and Mihail [12] introduced the follow-
ing concept of ∗-continuity.

Definition 3 ([12]). The b-metric ds is called ∗-continuous if for every A ∈ CBds(X), every x ∈ X
and every sequence {xn} of elements from X with limn→∞xn = x, we have limn→∞ds(xn, A) =
ds(x, A).

Proposition 1 ([17]). For any A ⊆ X,

a ∈ Ā⇐⇒ ds(a, A) = 0.
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Lemma 1 ([12]). Let {xn} be a sequence in (X, ds). If there exists λ ∈ [0, 1) such that ds(xn, xn+1) ≤
λds(xn−1, xn) for all n ∈ N, then {xn} is a Cauchy sequence.

The following lemma can also be proved using the same technique of proof of the
above Lemma.

Lemma 2. Let {xn} be a sequence in (X, ds). If there exists λ, ε ∈ [0, 1), with λ < ε such that
ds(xn, xn+1) ≤ λds(xn−1, xn) + εn for all n ∈ N, then {xn} is a Cauchy sequence.

Czerwik [8] introduced multi-valued contraction in a b-metric space and proved that
every multi-valued contraction mapping in a b-metric space has a fixed point.

Definition 4 ([8]). A mapping T : X → CBds(X) is a multi-valued contraction if there exists

α ∈ (0,
1
s
), such that gı, gj ∈ X implies Hds(Tgı, Tgj) ≤ α ds(gı, gj).

Theorem 1 ([8]). Every multi-valued contraction mapping defined on (X, ds) has a fixed point.

Thereafter using Hausdorff–Pompieu b-metric Hds , many authors introduced sev-
eral generalized multi-valued contractions in a b-metric space (see Definitions 5 to
8 below) and proved the existence of fixed points for such generalized multi-valued
contraction mappings.

Definition 5 ([9]). A mapping T : X → CBds(X) is a q-multi-valued quasi contraction if there

exists q ∈ (0,
1
s
), such that gı, gj ∈ X implies

Hds(Tgı, Tgj) ≤ q max{ds(gı, gj), ds(gı, Tgı), ds(gj, Tgj), ds(gı, Tgj), ds(gj, Tgı)}.

Definition 6 ([12]). A mapping T : X → CBds(X) is a q-multi-valued Ciric contraction if there
exists q, c, d ∈ (0, 1), such that gı, gj ∈ X implies

Hds(Tgı, Tgj) ≤ q max{ds(gı, gj), c ds(gı, Tgı), c ds(gj, Tgj),
d
2
(ds(gı, Tgj) + ds(gj, Tgı))}.

Definition 7 ([10]). A mapping T : X → CBds(X) is a multi-valued Hardy–Roger’s contraction
if there exists a, b, c, e, f ∈ (0, 1), a + b + c + 2(e + f ) < 1, such that gı, gj ∈ X implies
Hds(Tgı, Tgj) ≤ a ds(gı, gj) + b ds(gı, Tgı) + c ds(gj, Tgj) + e ds(gı, Tgj) + f ds(gj, Tgı).

Definition 8 ([11]). A mapping T : X → CBds(X) is a multi-valued weak quasi contrac-
tion if there exists q ∈ (0, 1) and L ≥ 0 such that gı, gj ∈ X implies Hds(Tgı, Tgj) ≤
q max{ds(gı, gj), ds(gı, Tgı), ds(gj, Tgj)}+ L ds(gı, Tgj).

3. Main Results

3.1. The Hβ Hausdorff–Pompieu b-metric

Definition 9. For U, V ∈ CBds(X), β ∈ [0, 1], we define

Rβ(U, V) = βδds(U, V) + (1− β)δds(V, U)

and
Hβ(U, V) = max

{
Rβ(U, V), Rβ(V, U)

}
.

Proposition 2. Let U, V, W ∈ CBds(X), we have

(i) Hβ(U, V) = 0 if and only if U = V.
(ii) Hβ(U, V) = Hβ(V, U).
(iii) Hβ(U, V) ≤ s[Hβ(U, W) + Hβ(W, V)].
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Proof. (i) By definition, Hβ(U, V) = 0 implies max
{

βδds(U, V) + (1− β)δds(V, U), (1−
β)δds(U, V) + βδds(V, U)

}
= 0. This gives δds(U, V) = 0 and δds(V, U) = 0. Now,

δds(U, V) = 0 implies ds(u, V) = 0 for all u ∈ U. By Proposition 1, we have u ∈ V̄ = V
for all u ∈ U and so U ⊆ V. Similarly, δds(V, U) = 0 will imply V ⊆ U and so U = V.
The reverse implication is clear from the definition.

(ii) Follows from the definition of Hβ(U, V).
(iii) Let u, v, w be arbitrary elements of U, V, W, respectively. Then we have

ds(u, V) ≤ s[ds(u, w) + ds(w, V)].

Since w is arbitrary, we get

ds(u, V) ≤ s[ds(u, w) + δds(W, V)] ≤ s[ds(u, W) + δds(W, V)].

Again, since u is arbitrary, we get

δds(U, V) ≤ s[δds(U, W) + δds(W, V)].

Similarly, we have

δds(V, U) ≤ s[δds(V, W) + δds(W, U)].

Therefore,

Rβ(U, V) = βδds(U, V) + (1− β)δds(V, U)

≤ βs[δds(U, W) + δds(W, V)] + (1− β)s[δds(V, W) + δds(W, U)]

= s[βδds(U, W) + (1− β)δds(W, U)] + s[βδds(W, V) + (1− β)δds(V, W)]

= s[Rβ(U, W) + Rβ(W, V)].

Similarly

Rβ(V, U) ≤ s[Rβ(V, W) + Rβ(W, U)].

Then, we have

Hβ(U, V) = max
{

Rβ(U, V), Rβ(V, U)
}

≤ max
{

s[Rβ(U, W) + Rβ(W, V)], s[Rβ(V, W) + Rβ(W, U)]
}

≤ max
{

sRβ(U, W), sRβ(W, U)
}
+ max

{
sRβ(W, V), sRβ(V, W)

}
= s[Hβ(U, W) + Hβ(W, V)].

Remark 1. In view of Proposition 2, the function Hβ : CBds(X)× CBds(X) → [0,+∞), is a
b-metric in CBds(X) and we call it the Hβ-Hausdorff–Pompeiu b-metric induced by ds.

Remark 2. For β ∈ [0, 1] Hβ(A, B) ≤ Hds(A, B) and for β = 0∨ 1 Hβ(A, B) = Hds(A, B).

Remark 3. The Hausdorff–Pompeiu b-metric Hβ is equivalent to the Hausdorff–Pompeiu b-
metric Hds in the sense that for any two sets A and B, Hβ(A, B) ≤ Hds(A, B) ≤ 2Hβ(A, B).
However, the examples and applications provided in this paper illustrates the advantages of using
Hβ-Hausdorff–Pompeiu b-metric in fixed point theory and its applications.

Theorem 2. For all u, v ∈ X, U, V ∈ CBds(X) and β ∈ [0, 1], the following relations holds:

(1) ds(u, v) = Hβ({u}, {v}),
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(2) U ⊂ S(V, r1), V ⊂ S(U, r2) ⇒ Hβ(U, V) ≤ r where r = max
{

β r1 + (1− β)r2, β r2 +
(1− β)r1

}
,

(3) Hβ(U, V) < r ⇒ ∃r1, r2 > 0 such that r = max
{

β r1 + (1− β)r2, β r2 + (1− β)r1
}

and
U ⊂ S(V, r1), V ⊂ S(U, r2).

Proof. (1) This is immediate from the definition of Hβ.
(2) Since U ⊂ S(V, r1), V ⊂ S(U, r2), we have that

∀u ∈ U, ∃vu ∈ V satisfying ds(u, vu) ≤ r1

and
∀v ∈ V, ∃uv ∈ U satisfying ds(uv, v) ≤ r2

⇒ inf
v∈V

ds(u, v) ≤ r1 for every u ∈ U and inf
u∈U

ds(u, v) ≤ r2 for every v ∈ V.

⇒ sup
u∈U

(
inf
v∈V

ds(u, v)
)
≤ r1 and sup

v∈V

(
inf

u∈U
ds(u, v)

)
≤ r2.

Then, Hβ(U, V) ≤ r where r = max
{

β r1 + (1− β)r2, β r2 + (1− β)r1
}

.
(3) Let Hβ(U, V) = k < r. Then, there is some k1, k2 > 0 satisfying

k = max
{

β k1 + (1− β)k2, β k2 + (1− β)k1
}

,

δ(U, V) = sup
u∈U

( inf
v∈V

ds(u, v)) = k1, δ(V, U) = sup
v∈V

( inf
u∈U

ds(u, v)) = k2.

Since 0 < k < r, we can find r1, r2 > 0 such that k1 < r1, k2 < r2 and r = max
{

β r1+
(1− β)r2, β r2 + (1− β)r1

}
. Thus,

inf
v∈V

ds(u, v) ≤ k1 < r1 for every u ∈ U and inf
u∈U

ds(u, v)) ≤ k2 < r2 for every v ∈ V.

Then, for any u ∈ U there is some vu ∈ V satisfying

ds(u, vu) < inf
v∈V

ds(u, v) + r1 − k1 ≤ r1.

and, for any v ∈ V there is some uv ∈ U satisfying

ds(uv, v) < inf
u∈U

ds(u, v) + r2 − k2 ≤ r2.

Thus, for any u ∈ U and v ∈ V we have

u ∈ ⋃
v∈V

S(v; r1) and v ∈ ⋃
u∈U

S(u; r2),

which implies
U ⊂ S(V, r1) and V ⊂ S(U, r2).

Remark 4. From Theorem 2 (2) and (3), it follows that the following statements also hold:
(2′) U ⊂ S(V, r1), V ⊂ S(U, r2) ⇒ Hβ(U, V) ≤ r where r = max

{
β r1 + (1 −

β)r2, β r2 + (1− β)r1
}

and
(3′) Hβ(A, B) < r ⇒ ∃r1, r2 > 0 such that r = max

{
β r1 + (1 − β)r2, β r2 + (1 −

β)r1
}

and U ⊂ S(V, r1), V ⊂ S(U, r2).

Theorem 3. Let U, V ∈ CBds(X) and β ∈ [0, 1]. Then the following equalities holds:
(4) Hβ(U, V) = inf{r > 0 : U ⊂ S(V, r1), V ⊂ S(U, r2)};
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(5) Hβ(U, V) = inf{r > 0 : U ⊂ S(V, r1), U ⊂ S(V, r2)},
where r = max

{
β r1 + (1− β)r2, β r2 + (1− β)r1

}
.

Proof. By (2′), we have

Hβ(U, V) ≤ inf{r > 0 : U ⊂ S(V, r1), U ⊂ S(V, r2)}, r = max
{

β r1 + (1− β)r2, β r2 + (1− β)r1
}

. (2)

Now let Hβ(U, V) = k, and let t > 0. Then Hβ(U, V) < k + t. By Condition (3) of
Theorem 2 we can find t1, t2 > 0 with max

{
β t1 + (1− β)t2, β t2 + (1− β)t1

}
= t such that

U ⊂ S(V; k + t1) and V ⊂ S(U; k + t2). Thus,

{r > 0 : U ⊂ S(V, r1), B ⊂ S(U, r2)} ⊃ {k + t : t > 0, U ⊂ S(V, k + t1), V ⊂ S(U, k + t2)}.

This implies that

inf{r > 0 : U ⊂ S(V, r1), V ⊂ S(U, r2)} ≤ inf{k + t : t > 0} = k = Hβ(U, V).

To conclude,

Hβ(U, V) = inf{r > 0 : U ⊂ S(V, r1), V ⊂ S(U, r2)}, r = max
{

β r1 + (1− β)r2, β r2 + (1− β)r1
}

. (3)

Theorem 4. If (X, ds) is a complete b-metric space, then (CBds(X), Hβ) for any β ∈ [0, 1] is also
complete. Moreover, C(X) is a closed subspace of (CBds(X), Hβ).

Proof. Suppose (X, ds) is complete and the sequence {An}n∈N in CBds(X) is a Cauchy
sequence. Let B = {x ∈ X : ∀ε > 0, m ∈ N, ∃ n ≥ m for which S(x, ε) ∩ An 
= ∅}.

Let ε > 0. By definition of Cauchy sequence, we can find m(ε) ∈ N for which,
n ≥ m(ε) implies Hβ(An, Am(ε)) < ε. By Theorem 3 (4), ∃ ε1, ε2 > 0 with ε = max

{
β ε1 +

(1− β)ε2, β ε2 + (1− β)ε1
}

and m(ε1), m(ε2) ∈ N such that min{m(ε1), m(ε2)} ≥ m(ε),
An ⊂ S(Am(ε1)

, ε1) for n ≥ m(ε1) and Am(ε2)
⊂ S(An, ε2) n ≥ m(ε2). Then we have

B ⊂ S(Am(ε1)
, ε1), and so

(i) B ⊂ S(Am(ε1)
, 4ε1) holds.

Now set εk =
ε1

2k , k ∈ N, and choose nk = m(εk) ∈ N such that sequence {nk}k∈N is

strictly increasing and
Hβ(An, Ank ) < εk, ∀n ≥ nk.

For some p ∈ An0 = Am(ε1)
, consider the sequence {pnk}k∈N with pn0 = p, pnk ∈ Ank

and ds(pnk , pnk−1) <
ε1

2k−2 . It follows that the sequence {pnk}k∈N is a Cauchy sequence in

the complete b-metric space (X, ds) and so converges to some point l ∈ X.

Additionally, ds(pnk , pn0) < 4 ε1 implies ds(l, p) ≤ 4 ε1 and so in f
y∈B

ds(p, y) ≤ 4 ε1, that

is, p ∈ S(B, 4ε1), from which we get

(ii) An0 ⊂ S(B, 4ε1).

Now, relations (i), (ii) from above and Theorem 2 (2) yields Hβ(An0 , B) ≤ 4 ε1. Since
Hβ is a b-metric on CBds(X), we have

Hβ(An, B) ≤ s[Hβ(An, An0) + Hβ(An0 , B)] < 5s ε1,

for any n ≥ m(ε1) = n0. Hence, sequence {An}n∈N is convergent and (CBds(X), Hβ) is
complete.
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For the second part, consider the Cauchy sequence {An}n∈N in C(X) and consequently
in CBds(X) and converging to some A ∈ CBds(X). Thus, if ε > 0 is chosen, we can find
m(ε) ∈ N for which

Hβ(An, A) <
ε

2
∀n ≥ m(ε), n ∈ N.

Using (4) of Theorem 3, we get ∃ ε1, ε2 > 0 with ε = max
{

β ε1 + (1− β)ε2, β ε2 + (1−
β)ε1

}
and m(ε1), m(ε2) ∈ N such that min{m(ε1), m(ε2)} ≥ m(ε), An ⊂ S(A,

ε1

2
) for

n ≥ m(ε1) and A ⊂ S(An,
ε2

2
) for n ≥ m(ε2).

For any fixed n0 ≥ m(ε2), we have, A ⊂ S(An0 ,
ε2

2
) and the compactness of An0 in X

(due to which it is also totally bounded) gives us xε2
i , i ∈ 1, p such that An0 ⊂

p⋃
i=1

S(xε2
i ,

ε2

2
),

whence A ⊂
p⋃

i=1
S(xε2

i , ε2). Therefore, A ∈ C(X).

3.2. Applications to Fixed Point Theory

We begin this section by introducing various classes of multi-valued Hβ-contractions
in a b-metric space:

Definition 10. T : X → CBds(X) is a multi-valued Hβ-contraction if we can find β ∈ [0, 1] and
k ∈ (0, 1), such that

Hβ(Tgı, Tgj) ≤ k · ds(gı, gj) for all gı, gj ∈ X. (4)

Definition 11. T : X → CBds(X) is a multi-valued Hβ-Ciric contraction if we can find β ∈ [0, 1]

and k ∈ (0,
1
s
), such that for all gı, gj ∈ X,

Hβ(Tgı, Tgj) ≤ k ·max{ds(gı, gj), ds(gı, Tgı), ds(gj, Tgj),
ds(gı, Tgj) + ds(gj, Tgı)

2s
}. (5)

Definition 12. T : X → CBds(X) is a multi-valued Hβ-Hardy–Rogers contraction if we can find
β ∈ [0, 1] and a, b, c, e, f ∈ (0, 1) with a + b + s(c + e) + f < 1, min{s(a + e), s(b + c)} < 1
such that for all gı, gj ∈ X,

Hβ(Tgı, Tgj) ≤ a · ds(gı, Tgı) + b · ds(gj, Tgj) + c · ds(gı, Tgj) + e · ds(gj, Tgı) + f · ds(gı, gj). (6)

Definition 13. We say that T : X → CBds(X) is a multi-valued Hβ-quasi contraction if we can

find β ∈ [0, 1] and k ∈ (0,
1
s
), such that for all gı, gj ∈ X,

Hβ(Tgı, Tgj) ≤ k ·max{ds(gı, gj), ds(gı, Tgı), ds(gj, Tgj), ds(gı, Tgj), ds(gj, Tgı)}. (7)

Definition 14. We say that T : X → CBds(X) is a multi-valued Hβ-weak quasi contraction if we

can find β ∈ [0, 1], k ∈ (0,
1
s
) and L ≥ 0, such that for all gı, gj ∈ X,

Hβ(Tgı, Tgj) ≤ k ·max{ds(gı, gj), ds(gı, Tgı), ds(gj, Tgj)}+ Lds(gı, Tgj). (8)

Example 2. Let X = [0,
7
9
]
⋃{1} and ds(gı, gj) = |gı − gj|2 for all gı, gj ∈ X.

Then {X, ds} is a b-metric space. Define the mapping T : X → CBds(X) by
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T(gı) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{ gı

4
}, for gı ∈ [0,

7
9
]

{0,
1
3

,
5
12

}
, for gı = 1.

Then T is a multi-valued Hβ-contraction with β =
3
4

and
217
256
≤ k < 1 as shown below.

We will consider the following different cases for the elements of X.

(i) gı, gj ∈ [0,
7
9
].

By Theorem 2(1), we have H
3
4 (Tgı, Tgj) = ds(

gı

4
,

gj

4
) ≤ k ds(gı, gj), k ≥ 1

16
.

(ii) gı ∈ [0,
7
9
], gj = 1.

We have the following sub cases:

(ii)(a) gı ∈ [0,
2
3
], gj = 1. Then Tgı = { gı

4
} and 0 ≤ gı

4
≤ 1

6
. Therefore, we have

δds(Tgı, T1) = δds({
gı

4
}, {0,

1
3

,
5
12
}) and δds(T1, Tgı) = δds({0,

1
3

,
5
12
}, { gı

4
}). Note

that for 0 ≤ gı

4
≤ 1

6
,

gı

4
is nearest to 0 and farthest from

5
12

. Therefore, δds(Tgı, T1) =

| g
ı

4
− 0|2 =

gı2

16
and δds(T1, Tgı) = | 5

12
− gı

4
|2 =

9gı2 − 30gı + 25
144

Therefore,

H
3
4 (Tgı, T1) = max

{3
4

δds(Tgı, T1) +
1
4

δds(T1, Tgı),
3
4

δds(T1, Tgı) +
1
4

δds(Tgı, T1)
}

= max
{ 25

576
− 10gı

192
+

4gı2

64
,

75
576
− 30gı

192
+

4gı2

64
}

=
75

576
− 30gı

192
+

4gı2

64
≤ k ds(gı, 1), k ≥ 279

576
.

(
279
576

is the maximum value of k which satisfies the above inequality for different values of

gı in [0,
2
3
].)

(ii)(b) gı ∈ (
2
3

,
7
9
], gj = 1.

Then Tgı = { gı

4
} and

6
36

<
gı

4
≤ 7

36
.

Therefore, we have δds(Tgı, T1) = δds({
gı

4
}, {0,

1
3

,
5
12
}) and δds(T1, Tgı) = δds({0,

1
3

,
5
12
},

{ gı

4
}). Note that for

6
36

<
gı

4
≤ 7

36
,

gı

4
is nearest to

1
3

and farthest from
5

12
. Therefore,

δds(Tgı, T1) = | g
ı

4
− 1

3
|2 =

gı2

16
− 2gı

12
+

1
9

and δds(T1, Tgı) = | g
ı

4
− 5

12
|2 =

gı2

16
− 10gı

48
+

25
144

.
Then, we have

H
3
4 (Tgı, T1) = max

{3
4

δds(Tgı, T1) +
1
4

δds(T1, Tgı),
3
4

δds(T1, Tgı) +
1
4

δds(Tgı, T1)
}

= max
{ 73

576
− 34gı

192
+

4gı2

64
,

91
576
− 38gı

192
+

4gı2

64
}

=
91

576
− 38gı

192
+

4gı2

64
≤ k ds(gı, 1), k ≥ 217

256
.
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However, we see that for gı =
7
9

, gj = 1,

H(T(
7
9
), T(1)) =

4
81

= ds(
7
9

, 1)

and hence T does not satisfy the contraction Condition of Nadler [3] and Czervic [8].

Example 3. Let X = {0,
1
4

, 1}, ds(gı, gj) = |gı − gj|2 for all gı, gj ∈ X and T : X → CB(X)

be as follows: T(gı) =

{
{0}, for gı ∈ {0,

1
4
}

{0, 1}, for gı = 1,

We will show that T is a multi-valued Hβ-contraction mapping with β ∈ (
7
16

,
9
16

). If gı, gj ∈
{0,

1
4
}, then the result is clear. Suppose gı ∈ {0,

1
4
} and gj = 1. Then δds(Tgı, T1) = 0 and

δds(T1, Tgı) = 1 so that Hβ(Tgı, T1) = max{β, 1− β}. In addition, we have ds(gı, 1) = 1

or
9
16

. If β ∈ (
7
16

,
1
2
], then Hβ(Tgı, T1) = 1 − β. Now 1 − β ∈ [

8
16

,
9
16

). Therefore,

1− β =
16
9
(1− β)

9
16

and 1− β <
16
9
(1− β)1, that is 1− β ≤ 16

9
(1− β)ds(gı, 1). Thus, we

have Hβ(Tgı, T1) = 1− β ≤ kds(gı, 1), where k =
16
9
(1− β) < 1. Similarly if β ∈ [

1
2

,
9
16

), we

get Hβ(Tgı, T1) = β ≤ kds(gı, 1) where k =
16
9

β < 1. Thus, T is a multi-valued Hβ-contraction.

However T is not a multi-valued quasi contraction mapping. Indeed, for gı =
1
4

and gj = 1,
we have

Hds(T(
1
4
), T(1)) = max{δds(T(

1
4
), T1), δds(T1, T(

1
4
))} = 1

> k ·max{ds(
1
4

, 1), ds(
1
4

, T(
1
4
), ds(1, T1), ds(

1
4

, T1), ds(1, T(
1
4
))}

for any k ∈ (0, 1). Therefore, T does not satisfy the contraction conditions given in Definitions 4–7.

Now we will present our main results in which we establish the existence of fixed
points of generalized multi-valued contraction mappings using Hβ Hausdorff–Pompeiu
b-metric. Hereafter, F{T} will denote the fixed point set of T.

Theorem 5. Suppose ds is ∗-continuous and T : X → CBds(X) is a multi-valued mapping
satisfying the following conditions:

(i) There exists β ∈ [0, 1], a, b, c, e, f , h, j ≥ 0, a + b + s(c + e +
h
2
) + f + j < 1 and min{s(a +

e +
h
2
), s(b + c +

h
2
)} < 1 such that for all gı, gj ∈ X,

Hβ(Tgı, Tgj) ≤ a · ds(gı, Tgı) + b · ds(gj, Tgj) + c · ds(gı, Tgj) + e · ds(gj, Tgı)

+ h · ds(gı, Tgj) + ds(gj, Tgı)

2
+ j · ds(gı, Tgı)ds(gj, Tgj)

1 + ds(gı, gj)
+ f · ds(gı, gj). (9)

(ii) For every gı in X, gj in T(gı) and ε > 0, there exists g in T(gj) satisfying

ds(gj, g) ≤ Hβ(Tgı, Tgj) + ε. (10)

Then F{T} 
= φ.
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Proof. For some arbitrary gı
0 ∈ X, if gı

0 ∈ Tgı
0 then gı

0 ∈ F{T}. Suppose gı
0 /∈ Tgı

0. Let
gı

1 ∈ Tgı
0. Again, if gı

1 ∈ Tgı
1 then gı

1 ∈ F{T}. Suppose gı
1 /∈ Tgı

1. By (10), we can find
gı

2 ∈ Tgı
1 such that

ds(gı
1, gı

2) ≤ Hβ(Tgı
0, Tgı

1) + ε.

If gı
2 ∈ Tgı

2 then gı
2 ∈ F{T}. Suppose gı

2 /∈ Tgı
2. By (10), we can find gı

3 ∈ Tgı
2 such that

ds(gı
2, gı

3) ≤ Hβ(Tgı
1, Tgı

2) + ε2.

In this way we construct the sequence {gı
n} such that gı

n /∈ Tgı
n, gı

n+1 ∈ Tgı
n and

ds(gı
n, gı

n+1) ≤ Hβ(Tgı
n−1, Tgı

n) + εn.

Then, using (9), we have

ds(gı
n, gı

n+1) ≤ Hβ(Tgı
n−1, Tgı

n) + εn

≤ a · ds(gı
n−1, Tgı

n−1) + b · ds(gı
n, Tgı

n) + c · ds(gı
n−1, Tgı

n) + e · ds(gı
n, Tgı

n−1)

+ h · ds(gı
n−1, Tgı

n) + ds(gı
n, Tgı

n−1)

2
+ j · ds(gı

n−1, Tgı
n−1)ds(gı

n, Tgı
n)

1 + ds(gı
n−1, gı

n)
+ f · ds(gı

n−1, gı
n) + εn,

that is,

(1− b− sc− j) · ds(gı
n, gı

n+1) ≤ (a + sc +
sh
2

+ f ) · ds(gı
n−1, gı

n) + εn. (11)

Using symmetry of Hβ, we also have

(1− a− se− j) · ds(gı
n, gı

n+1) ≤ (b + se +
sh
2

+ f ) · ds(gı
n−1, gı

n) + εn. (12)

Adding (11) and (12), we get

ds(gı
n, gı

n+1) ≤ (a + b + s(c + e +
h
2
) + f + j) · ds(gı

n−1, gı
n) + εn.

By Lemma 2, the sequence {gı
n} is a Cauchy sequence. Completeness of (X, ds) gives

limn→+∞ ds(gı
n, gı∗) = 0 for some gı∗ ∈ X. We now show that gı∗ ∈ Tgı∗. Suppose, on the

contrary, that gı∗ /∈ Tgı∗. Then,

β · δds(Tgı
n, Tgı∗) + (1− β) · δds(Tgı∗, Tgı

n) ≤ Hβ(Tgı
n, Tgı∗)

≤ a · ds(gı
n, Tgı

n) + b · ds(gı∗, Tgı∗) + c · ds(gı
n, Tgı∗) + e · ds(gı∗, Tgı

n)

+h · ds(gı
n, Tgı∗) + ds(gı∗, Tgı

n)

2
+ j · ds(gı

n, Tgı
n)ds(gı∗, Tgı∗)

1 + ds(gı
n, gı∗) + f · ds(gı

n, gı∗)

≤ a · ds(gı
n, gı

n+1) + b · ds(gı∗, Tgı∗) + c · ds(gı
n, Tgı∗) + e · ds(gı∗, gı

n+1)

+h · ds(gı
n, Tgı∗) + ds(gı∗, gı

n+1)

2
+

ds(gı
n, gı

n+1)ds(gı∗, Tgı∗)
1 + ds(gı

n, gı∗) + f · ds(gı
n, gı∗).

and using the *-continuity of ds, we get

lim inf
n→∞

β · δds(Tgı
n, Tgı∗) + (1− β) · δds(Tgı∗, Tgı

n) ≤ (b + c +
h
2
) · ds(gı∗, Tgı∗).

Similarly,

lim inf
n→∞

β · δds(Tgı∗, Tgı
n) + (1− β) · δds(Tgı

n, Tgı∗) ≤ (a + e +
h
2
) · ds(gı∗, Tgı∗).
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It follows that

ds(gı∗, Tgı∗) = β · ds(gı∗, Tgı∗) + (1− β) · ds(Tgı∗, gı∗) ≤ s[β · δds(Tgı
n, Tgı∗)

+(1− β) · δds(Tgı∗, Tgı
n)] + s.ds(gı

n+1, gı∗)

that is,

ds(gı∗, Tgı∗) ≤ s[lim inf
n→∞

[β δds(Tgı
n, Tgı∗) + (1− β)δds(Tgı∗, Tgı

n)]] + s[lim inf
n→∞

ds(gı
n+1, gı∗)]

≤ s(b + c +
h
2
)ds(x∗, Tgı∗)

and

ds(Tgı∗, gı∗) = β · ds(Tgı∗, gı∗) + (1− β) · ds(gı∗, Tgı∗) ≤ s[β · δds(Tgı∗, Tgı
n)

+(1− β) · δds(Tgı
n, Tgı∗)] + s · ds(gı∗, gı

n+1)

that is,

ds(Tgı∗, gı∗) ≤ s[lim inf
n→∞

[β · δds(Tgı∗, Tgı
n) + (1− β) · δds(Tgı

n, Tgı∗)]] + s[lim inf
n→∞

ds(gı∗, gı
n+1)]

≤ s(a + e +
h
2
) · ds(Tgı∗, x∗).

Since min{s(a+ e+
h
2
), s(c+ e+

h
2
} < 1, we get ds(gı∗, Tgı∗) = 0 which from Proposition 1

implies that gı∗ ∈ Tgı∗ and since Tgı∗ is closed it follows that gı∗ ∈ Tgı∗.

Remark 5. Theorem 5 is true even if we replace (9) by any of the following conditions:

For some 0 ≤ k <
1
s

,

Hβ(Tgı, Tgj) ≤ k ·max{ds(gı, gj), ds(gı, Tgı), ds(gj, Tgj),
ds(gı, Tgj) + ds(gj, Tgı)

2s
,

ds(gı, Tgı)ds(gj, Tgj)

1 + ds(gı, gj)
}, (13)

Hβ(Tgı, Tgj) ≤ k ·max{ds(gı, gj), ds(gı, Tgı), ds(gj, Tgj), ds(gı, Tgj),

ds(gj, Tgı),
ds(gı, Tgı)ds(gj, Tgj)

1 + ds(gı, gj)
}} (14)

The following result is a consequence of Theorem 5 and Remark 5:

Corollary 1. Suppose ds is ∗-continuous and T : X → CBds(X) satisfy Condition (10) and any
of the following conditions:

(i) T is a multi-valued Hβ-Ciric contraction.
(ii) T is a multi-valued Hβ-Hardy–Roger’s contraction.
(iii) T is a multi-valued Hβ-quasi contraction.
(iv) T is a multi-valued Hβ-weak quasi contraction.
(v) T is a multi-valued Hβ-contraction.

Then F{T} 
= φ.
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Taking T : X → X in Corollary 1 (ii) and using Theorem 2 (i), we have the follow-
ing corollary.

Corollary 2. Suppose ds is ∗-continuous and T : X → X. If there exists non-negative real
numbers a, b, c, e, f such that a + b + s(c + e) + f < 1, min{s(a + e), s(b + c)} < 1 and

ds(Tgı, T j) ≤ a · ds(gı, gj) + b · ds(gı, Tgı) + c · ds(gj, T j) + e · ds(gı, T j) + f · ds(gj, Tgı), for all gı, gj ∈ X, (15)

then F (T) 
= φ.

Remark 6. For β = 1, Condition (10) is obviously satisfied and hence, (Theorem 5 [3]), (Theo-
rem 2.1 [8]), (Theorem 2.2 [9]), (Theorem 2.11 [10]), (Theorem 3.1 [12]) and (Theorem 3.1 [11]) are
all particular cases of Corollary 1. However, the examples which follow illustrate that the converse is
not necessarily true.

We now furnish the following examples to validate our results.

Example 4. Let X, ds and T be as in Example 2. Then, as shown above, T belongs to the class of

multi-valued Hβ-contraction with β ∈ (
7
16

,
9
16

) and consequently T satisfies all the contraction
conditions given in Definitions 11–14. We will show that T satisfies (10):

For gı ∈ [0,
7
9
], Tgı is singleton and so the result is obvious. Now for gı = 1, if gj = 0 ∈ Tgı

then g = 0 ∈ Tgj will satisfy (10). If gj =
1
3
∈ Tgı, then g =

1
12
∈ Tgj and if gj =

5
12
∈ Tgı

then g =
5

48
∈ T j will satisfy (10). Thus, T satisfies conditions of Theorem 5 and Corollary 1 and

0, 1 ∈ F (T).
However, as shown in Example 2, T does not satisfy the contraction condition of Nadler [3]

and Czervic [8].

Example 5. Let X, ds and T be as in Example 3. Then as shown above, T belongs to the class of

multi-valued Hβ-contraction with β ∈ (
7
16

,
9
16

) and consequently T satisfies all the contraction
conditions given in Definitions 11–14.

We will show that T satisfies (10):

For gı ∈ {0,
1
4
}, Tgı is singleton and so the result is obvious. Now for gı = 1, if gj = 0 ∈ Tgı

then g = 0 ∈ Tgj will satisfy (10). If gj = 1 ∈ Tgı then g = 1 ∈ Tgj will satisfy (10).
Thus, Theorem 5 and Corollary 1 are applicable and 0, 1 ∈ F (T). However, we see that T does not
satisfy the conditions of (Theorem 2.2 [9]), (Theorem 2.11 [10]) and (Theorem 3.1 [12]).

Example 6. Let X = {0,
1
12

,
1
3

,
5

12
,

34
48

, 1}, ds(gı, gj) = |gı− gj| for all gı, gj ∈ X and T : X →
CBds(X) be as follows:

T(0) = T(
1
12

) = {0}, T(
1
3
) = T(

5
12

) = T(
34
48

) =
{ 1

12

}
, T(1) =

{
0,

1
3

,
34
48

, 1
}

.

Then, T is a multi-valued Hβ-quasi contraction for β =
3
4

with
34
44
≤ k < 1 as shown

below:

(1) If gı =
34
48

and gj = 1, then δds(T(
34
48

), T1) = δds({
1
12
}, {0,

1
3

,
34
48

, 1}) =
1
12

and

δds(T1, T(
34
48

)) = δds({0,
1
3

,
34
48

, 1}, { 1
12
}) = 11

12
.
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H
3
4 (T(

34
48

), T1) = max{3
4

δds(T(
34
48

), T1) +
1
4

δds(T1, T(
34
48

),
3
4

δds(T1, T(
34
48

)) +
1
4

δds(T(
34
48

), T1)}

= max{3
4

.
1
12

+
1
4

.
11
12

,
3
4

.
11
12

+
1
4

.
1

12
} = 34

48

≤ k
44
48

, for any k ≥ 34
44

= kds(1, T(
34
48

))

≤ k max{ds(
34
48

, 1), ds(
34
48

, T(
34
48

), ds(1, T1), ds(
34
48

, T1), ds(1, T(
34
48

))}.

(2) If gı =
1
12

and gj = 1. δds(T(
1
12

), T1) = δds({0, {0,
1
3

,
34
48

, 1}) = 0. δds(T1, T(
1
12

)) =

δds({0,
1
3

,
34
48

, 1}, 0}) = 1.

H
3
4 (T(

1
12

), T1) = max{3
4

δds(T(
1

12
), T1) +

1
4

δds(T1, T(
1
12

),
3
4

δds(T1, T(
1
12

)) +
1
4

δds(T(
1
12

), T1)} = 3
4

≤ k.1, for any k ≥ 3
4

= k · ds(1, T(
1
12

))

≤ k ·max{ds(
1

12
, 1), ds(

1
12

, T(
1
12

), ds(1, T1), ds(
1

12
, T1), ds(1, T(

1
12

))}.

(3) If gı =
1
12

and gj =
1
3

, then δds(T(
1
12

), T(
1
3
)) = δds({0, { 1

12
}) =

1
12

and

δds(
1
3

, T(
1
12

)) = δds({
1
12
}, 0}) = 1

12
.

H
3
4 (T(

1
12

), T(
1
3
)) = max{3

4
δds(T(

1
12

), T(
1
3
)) +

1
4

δds(T(
1
3
), T(

1
12

),
3
4

δds(T(
1
3
), T(

1
12

) +
1
4

δds(T(
1

12
), T(

1
3
))}

=
1

12
≤ k.

4
12

, for any k ≥ 1
4

= k · ds(
1
3

, T(
1

12
)

≤ k ·max{ds(
1
12

,
1
3
), ds(

1
12

, T(
1
12

), ds(
1
3

, T(
1
3
)), ds(

1
12

, T(
1
3
)), ds(

1
3

, T(
1

12
))}.

For all other values of gı and gj, a similar argument as above follows. Thus, T is a multi-

valued Hβ-quasi contraction. We will show that T satisfies (10): For gı ∈ {0,
1

12
,

1
3

,
5

12
,

34
48
},

Tgı is singleton and so the result is obvious. Now, for gı = 1, if gj = 0 ∈ Tgı then

g = 0 ∈ Tgj will satisfy (10). If gj =
1
3

or
34
48
∈ Tgı then, g =

1
12
∈ Tgj will satisfy (10).

Thus, Theorem 5 and Corollary 1 are applicable and 0, 1 ∈ F (T). However, we see

that H(T(
34
48

), T(1)) =
11
12

, where d(
34
48

, 1) =
14
48

, d(
34
48

, T(
34
48

)) =
30
48

, d(1, T(1)) = 0,

d(
34
48

, T(1) = 0 and d(1, T(
34
48

))
}
=

11
12

and so T does not satisfy the conditions of (Theorem
2.2 [9]), (Theorem 2.11 [10]), (Theorem 3.1 [12]) and (Theorem 3.1 [11]).

Proposition 3. Let T1, T2 : X → CBds(X), satisfy the following:
(3.1) For all q, r ∈ {1, 2}, every gı in X, gj in Tq(gı) and ε > 0, there exists g in Tr(gj) satisfying

ds(gj, g) ≤ Hβ(Tqgı, Trgj) + ε.
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(3.2) Any of the following conditions holds:

(i) T1 and T2 is a multi-valued Hβ-Ciric contraction;
(ii) T1 and T2 is a multi-valued Hβ-quasi contraction;
(iii) T1 and T2 is a multi-valued Hβ-weak quasi contraction;

Then, for any u ∈ F{Tq}, there exist w ∈ F{Tr} (q 
= r) such that

ds(u, w) ≤ s
1− k

sup
x∈X

Hβ(Tqx, Trx),

where k is the Lipschitz’s constant.

Proof. Let gı
0 ∈ F{T1}. By (3.1) we can find gı

1 ∈ T2gı
0 such that

ds(gı
0, gı

1) ≤ Hβ(T1gı
0, T2gı

1) + ε.

By (3.1), choose gı
2 ∈ T2gı

1 such that

ds(gı
1, gı

2) ≤ Hβ(T2gı
0, T2gı

1).

Inductively, we define sequence {gı
n} such that gı

n+1 ∈ T2(gı
n) and

ds(gı
n, gı

n+1) ≤ Hβ(T2gı
n−1, T2gı

n) + ε. (16)

Now, following the same technique as in the proof of Theorem 5, we see that the sequence
{gı

n} converges to some gı∗ in X and gı∗ ∈ F{T2}. Since ε is arbitrary, taking ε→ 0 in (16)
we get

ds(gı
n, gı

n+1) ≤ Hβ(T2gı
n−1, T2gı

n).

Then, using (Section 3.2), we get

ds(gı
n, gı

n+1) ≤ knds(gı
0, gı

1).

Then, we have d(gı
0, gı∗) ≤ ∑∞

n=0 sn+1ds(gı
n+1, gı

n) ≤ s(1 + sk + (sk)2 + · · · )ds(gı
1, gı

0) ≤
s

1− sk
(Hβ(T2gı

0, T1gı
0) + ε). Interchanging the roles of T1 and T2 and proceeding as above,

it gives that for each gj
0 ∈ F{T2} there exist gj

1 ∈ T1gj
0 and g� ∈ F(T1) such that

d(gj
0, g�) ≤ s

1− sk
(Hβ(T1gj

0, T2gj
0) + ε).

Now the result follows as ε > 0 is arbitrary.

3.3. Application to Multi-Valued Fractals

Inspiring from some recent works in [18,22,23], we provide an application of our result
to multi-valued fractals. Let Pi : X → CBds(X), i = 1, 2, · · · n be upper semi continuous
mappings. Then, P = (P1, P2, · · · Pn) is an iterated multifunction system (in short IMS)
defined on the b-metric space (X, ds). The operator TP : CB(X) → CB(X) defined by
TP(Y) =

⋃n
i=1 Pi(Y) is called the extended multifractal operator generated by the IMS

P = (P1, P2, · · · Pn). Any non empty compact subset of X which is a fixed point of TP is
called a multi-valued fractal of the iterated multifunction system P = (P1, P2, · · · Pn).

Theorem 6. Let Pi : X → CB(X), i = 1, 2, · · · n be upper semi continuous mappings such that
for each i = 1, 2, · · · n the following conditions hold:
We can find β ∈ [0, 1] and a, e ∈ (0, 1), a + 2se < 1, such that for all x, y ∈ X, i = 1, 2 · · · n

Hβ(Pix, Piy) ≤ a ds(x, y) + e[ds(x, Piy) + ds(y, Pix)]. (17)
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Then,

(i) For all U1, U2 ∈ CB(X), Hβ(TP(U1), TP(U2)) ≤ a Hβ(U1, U2) + e[Hβ(U1, TP(U2)) +

Hβ(U2, TP(U1))].
(ii) A unique multi-valued fractal U∗ exists for the iterated multifunction system

P = (P1, P2, · · · Pn).

Proof. Suppose condition (17) holds. Then, for U1, U2 ∈ CB(X), we have

Rβ(Pi(U1), Pi(U2)) = βδ(Pi(U1), Pi(U2)) + (1− β)δ(Pi(U2), Pi(U1))

= β sup
x∈U1

( inf
y∈U2

Hβ(Pi(x), Pi(y)) +

(1− β) sup
y∈U2

( inf
x∈U1

Hβ(Pi(x), Pi(y))

≤ β sup
x∈U1

( inf
y∈U2

{
a ds(x, y) + e[ds(x, Piy) + ds(y, Pix)]

}
+(1− β) sup

y∈U2

( inf
x∈U1

{
a ds(x, y) + e[ds(x, Piy) + ds(y, Pix)]

}
= a Hβ(U1, U2) + e[Hβ(U1, Pi(U2) + Hβ(U2, Pi(U1))].

Similarly, we get

Rβ(Pi(U2), Pi(U1)) ≤ a Hβ(U2, U1) + e[Hβ(U2, Pi(U1) + Hβ(U1, Pi(U2))].

Thus, we have, for i = 1, 2, · · · n,

Hβ(Pi(U1), Pi(U2)) ≤ a Hβ(U1, U2) + e[Hβ(U2, Pi(U1) + Hβ(U1, Pi(U2))].

Note that

Hβ(
n⋃

i=1

Pi(U1),
n⋃

i=1

Pi(U2)) ≤ max{Hβ(P1(U1), P1(U2)), Hβ(P2(U1), P2(U2)), · · ·Hβ(Pn(U1), Pn(U2))}

and so

Hβ(TP(U1), TP(U2)) ≤ a Hβ(U1, U2) + e[Hβ(U1, TP(U2)) + Hβ(U2, TP(U1))].

Thus, TP : CB(X) → CB(X) satisfies the conditions of Corollary 2 in the metric space
{CB(X), Hβ}, with b = c = 0 and e = f and hence has a fixed point U∗ in CB(X),
which in turn is the unique multi-valued fractal of the iterated multifunction system
P = (P1, P2, · · · Pn).

Remark 7. Since Hβ(A, B) ≤ H(A, B), Theorem 6 is a proper improvement and generalization
of (Theorem 3.4 [18]), (Theorem3.1 [22]) and (Theorem 3.8 [23]).

3.4. Application to Nonconvex Integral Inclusions

We will begin this section by introducing the following generalized norm on a vec-
tor space:

Definition 15. Let V be a vector space over the field K. For some ρ > 0 and γ ≥ 1, a real valued
function ‖.‖ρ

γ : V → R is a generalized (ρ, γ)-norm if for all x, y ∈ V and λ ∈ K

(1) ‖x‖ρ
γ ≥ 0 and ‖x‖ρ

γ = 0 if and only if x = 0.
(2) ‖λ x‖ρ

γ ≤ |λ|ρ‖x‖ρ
γ.

(3) ‖x + y‖ρ
γ ≤ γ[‖x‖ρ

γ + ‖y‖ρ
γ].

157



Mathematics 2021, 9, 12

We say that (V, ‖.‖ρ
γ is a generalized (ρ, γ)-normed linear space.

Remark 8. The following are immediate consequences of the above definition:

(i) Every norm is a generalized (ρ, γ)-norm with ρ = 1 and γ = 1.
(ii) Every generalized (ρ, γ)-norm induces a b-metric with coefficient γ, given by dγ(x, y) =

‖x− y‖ρ
γ.

Example 7. Every norm defined on a vector space is a generalized (ρ, γ)-norm.

Example 8. Let V = R. Define ‖x‖ρ
γ = |x|2. Then ‖.‖ρ

γ is a generalized (2, 2)-norm.

Example 9. Let V = Rn. Define ‖x‖ρ
γ = ∑k |xk|p, 1 ≤ p < ∞. Then ‖.‖ρ

γ is a generalized
(p, 2p−1)-norm.

The convergence, Cauchy sequence and completeness in a generalized (ρ, γ)-normed
linear space is defined in the same way as that in a normed linear space.

Throughout this section we will use the following notations and functions:

(i) A = [0, τ], τ > 0.
(ii) L(A): is the σ-algebra of all Lebesgue measurable subsets of A.
(iii) Z: is a real separable Banach space with the generalized (ρ, γ)-norm ‖.‖ρ

γ, for some
ρ > 0 and γ ≥ 1.

(iv) P(Z): is the family of all nonempty closed subsets of Z.
(v) dγ is the b-metric induced by the generalized (ρ, γ)-norm ‖.‖ρ

γ and Hβ is the Hβ-
Hausdorff–Pompeiu b-metric on P(Z), induced by the b-metriv dγ.

(vi) B(Z): is the collection of all Borel subsets of Z.
(vii) C(A, Z): is the Banach space of all continuous functions g(.) : A → Z with norm

‖g(.)‖∗ = supt∈A ‖g(t)‖ρ
γ.

(viii) λ�(.) : A→ Z.
(ix) p(., .) : A× Z → Z.
(x) Q(., .) : A× Z → P(Z).
(xi) q(., ., .) : A× A× Z → Z.
(xii) V : C(A, Z)→ C(A, Z).
(xiii) α1, α2 : A× A→ (−∞,+∞).
(xiv) Lλ� ,σ(t) = Q(t, V(xσ,λ�)(t)), x ∈ Z, λ� ∈ C(A, Z), σ ∈ L1(A, Z).
(xv) Sλ�(σ) = {ψ(.) ∈ L1(A, Z) : ψ(t) ∈ Lλ� ,σ(t)}.
(xvi) L1(A, Z) : is the Banach space of all integrable functions u: A → Z, endowed with

the norm

‖u(.)‖1 =
∫ T

0
e−α(M4 M2+M5 M1)M3m(t)‖u(t)‖ρ

γ dt,

where m(t) =
∫ t

0 k(s) ds, t ∈ A, M1, M2, M3, M4, M5 are positive real constants.

It is well known (see [24]) that Lλ� ,σ(t) is measurable and S�
λ(σ) is nonempty with

closed values.
We consider the following integral inclusion

x�(t) = λ�(t) +
∫ t

0
[α1(t, s) p(t, u(s)) + α2(t, s) q(t, s, u(s))], ds (18)

u(t) ∈ Q(t, V(x�)(t)) a.e. t ∈ A. (19)

We will analyze the above problem (18) and (19) under the following assumptions:
(AS1) Q(·, ·) is L(I)⊗B(X) measurable.
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(AS2(i)) There exists k(·) ∈ L1(A, R+) such that, for almost all t ∈ A, Q(t, ·) satisfies

Hβ(Q(t, x), Q(t, y)) ≤ k(t) ‖x− y‖ρ
γ

for all x, y in Z.

(AS2(ii)) For all x, y ∈ Z, ε > 0, if w1 ∈ Q(t, x) then there exists w2 ∈ Q(t, y) such that

‖w1(t)− w2(t)‖ρ
γ ≤ Hβ(Q(t, x), Q(t, y)) + ε.

(AS2(iii)) For any σ ∈ L1(A, Z), ε > 0 and σ1 ∈ Sλ�(σ), there exists σ2 ∈ Sλ�(σ1) such that

‖σ1 − σ2‖1 ≤ Hβ(Sλ�(σ), Sλ�(σ1)) + ε.

(AS3) The mappings f : A× A× Z → Z, g : A× Z → Z are continuous, V : C(A, Z)→
C(A, Z)

and there exist the constants M1, M2, M3, M4 > 0 such that (AS3(i)) and either
(AS3(ii)(a))

or (AS3(ii)(b)) holds ∀t, s ∈ A, u1, u2 ∈ L1(A, Z), x1, x2 ∈ C(A, Z).

(AS3(i))‖V(x1)(t)−V(x2)(t)‖ρ
γ ≤ M3‖x1(t)− x2(t)‖ρ

γ.

(AS3(ii)(a)) ‖q(t, s, u1(s))− q(t, s, u2(s))‖ρ
γ ≤ M1 N(u1, u2),

‖p(s, u1(s))− p(s, u2(s))‖ρ
γ ≤ M2 N(u1, u2).

(AS3(ii)(b)) ‖q(t, s, u1(s))− q(t, s, u2(s))‖ρ
γ ≤ M1 n(u1, u2),

‖p(s, u1(s))− p(s, u2(s))‖ρ
γ ≤ M2 n(u1, u2),

where

N(u1, u2) = max {‖u1(s)− u2(s)‖ρ
γ, ‖u1(s)− Sλ�(u1)‖ρ

γ, ‖u2(s)− Sλ�(u2)‖ρ
γ, ‖u1(s)− Sλ�(u2)‖ρ

γ, ‖u2(s)− Sλ�(u1)‖ρ
γ},

n(u1, u2) = max {‖u1(s)− u2(s)‖ρ
γ, ‖u1(s)− Sλ�(u1)‖ρ

γ, ‖u2(s)− Sλ�(u2)‖ρ
γ}+ K ‖u1(s)− Sλ�(u2)‖ρ

γ

and
‖u(s)− S�

λ(v)‖ρ
γ = inf

w∈S
λ�
(v)
‖u(s)− w(s)‖ρ

γ.

(AS4) α1, α2 are continuous, |α1(t, s)|ρ ≤ M4 and |α2(t, s)|ρ ≤ M5.

Theorem 7. Suppose assumptions (AS1) to (AS4) hold and let λ�(·), μ�(·) ∈ C(A, Z), v(·) ∈
L1(A, Z) be such that d(v(t), Q(t, V(y�)(t)) ≤ l(t) a.e. t ∈ A, where l(·) ∈ L1(A, R+) and
y�(t) = μ�(t, u(t))+Φ(u)(t), ∀ t ∈ A with Φ(u)(t) =

∫ t
0 [α1(t, τ)p(τ, u(τ))+ α2q(t, τ, u(τ))]

dτ, t ∈ A. Then, for every η > γ and ε > 0, we can find a solution x�(·) of the problem (18) and (
19) such that for every t ∈ A

‖x�(t)− y�(t)‖ ≤ ‖λ� − μ�‖∗
[
1 +

γ eη(M4 M2+M5 M1)M3m(T)

η − γ

]

+
γη

η − γ
(M4M2 + M5M1)eη(M4 M2+M1)M3m(T)

∫ T

0
e−η(M4 M2+M5 M1)M3m(t)l(t)dt.
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Proof. For λ� ∈ C(A, Z) and u ∈ L1(A, Z), define

x�u,λ�(t) = λ�(t) +
∫ t

0
[α1(t, s) p(t, u(s)) + α2(t, s)q(t, s, u(s))] ds.

Let σ1, σ2 ∈ L1(A, Z), w1 ∈ Sλ�(σ1) and

H(t) := Lλ� ,σ2(t) ∩
{

z ∈ Z : ‖w1(t)− z‖ ≤ (M4M2 + M5M1)M3k(t)
∫ t

0
N(σ1, σ2) ds + δ

}
.

By assumption (AS2(ii)), we have

dγ(w1(t), Lλ� ,σ2
) ≤ Hβ

(
Q(t, V(xσ1,λ�)(t)), Q(t, V(xσ2,λ�)(t))

)
+ ε

≤ k(t)‖V(xσ1,λ�)(t))−V(xσ2,λ�)(t))‖ρ
γ + ε

≤ M3k(t)‖xσ1,λ�(t)− xσ2,λ�(t)‖ρ
γ + ε

≤ M3k(t)
[ ∫ t

0
|α1(t, s)|ρ‖p(t, σ1(s))− p(t, σ2(s))‖ρ

γds

+
∫ t

0
|α2(t, s)|ρ‖q(t, s, σ1(s))− q(t, s, σ2(s))‖ρ

γds
]
+ ε

≤ M3k(t)
[
(M4M2 + M5M1)

∫ t

0
N(σ1, σ2)ds

]
+ ε.

Since ε is arbitrary, we conclude thatH(·) is nonempty, closed, bounded and measur-
able.

Let w2(·) be a measurable selector of H(·). Then, w2 ∈ Sλ�(σ2). If assumption
AS3(ii)(a) is assumed, then we have

‖w1 − w2‖1 =
∫ T

0
e−η(M4 M2+M5 M1)M3m(t)‖w1(t)− w2(t)‖ρ

γdt

≤
∫ T

0
e−η(M4 M2+M5 M1)M3m(t)M3k(t)

[
(M4M2 + M5M1)

∫ t

0
N(σ1, σ2)ds

]
dt

+δ
∫ T

0
e−η(M4 M2+M5 M1)M3m(t)dt

≤ 1
η

N1(σ1, σ2) + δ
∫ T

0
e−η(M4 M2+M5 M1)M3m(t)dt,

where N1(σ1, σ2) = max {‖σ1−σ2‖1, ‖σ1−Sλ�(σ1)‖1, ‖σ2−S�
λ(σ2)‖1, ‖σ1−Sλ�(σ2)‖1, ‖σ2−

Sλ�(σ1)‖1}. Since δ is arbitrary, we have

dγ(w1, Sλ�(σ2) = inf
w2∈S

λ�
(σ2)
‖w1 − w2‖1 ≤ 1

η
N1(σ1, σ2).

Therefore,

δγ(Sλ�(σ1), Sλ�(σ2) = sup
w1∈S

λ�
(σ1)

dγ(w1, Sλ�(σ2) ≤ 1
η

N1(σ1, σ2). (20)

Similarly, we also get

δγ(Sλ�(σ2), Sλ�(σ1) = sup
w1∈S

λ�
(σ1)

dγ(w1, Sλ�(σ2) ≤ 1
η

N1(σ1, σ2). (21)
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Multiplying (20) by β and (21) by 1− β and adding, we get

Hβ(Sλ�(σ1), Sλ�(σ2)) ≤ 1
η

N1(σ1, σ2).

Thus, Sλ�(·) is a Hβ-quasi contraction on L1(A, Z).
Now let

Q̃(t, x) := Q(t, x) + l(t),

M̃λ� ,σ(t) := Q̃(t, V(xσ,λ�)(t)), t ∈ I,

S̃μ�(σ) := {ψ(·) ∈ L1(A, Z); ψ(t) ∈ L̃μ� ,σ(t).

It is obvious that Q̃(·, ·) satisfies Hypothesis 5.1.
Let φ ∈ Sλ�(σ), δ > 0 and define

H̃(t) := L̃λ� ,σ(t) ∩
{

z ∈ Z : ‖φ(t)− z‖ ≤ M3k(t)‖λ� − μ�‖∗ + l(t) + δ
}

.

Proceeding in the same way as in the case ofH(·) above, we see that H̃(·) is measur-
able, nonempty and has closed values.

Let ω(·) ∈ Sμ�(σ). Then

‖φ−ω‖1 ≤
∫ T

0
e−η(M4 M2+M5 M1)M3m(t)‖φ(t)−ω(t)‖ρ

γdt

≤
∫ T

0
e−η(M4 M2+M5 M1)M3m(t)[M3k(t)‖λ� − μ�‖∗ + l(t) + δ]dt

= ‖λ� − μ�‖∗
∫ T

0
e−η(M4 M2+M5 M1)M3m(t)M3k(t)dt

+
∫ T

0
e−η(M4 M2+M5 M1)M3m(t)l(t)dt + δ

∫ T

0
e−η(M4 M2+M5 M1)M3m(t)dt

≤ 1
η(M4M2 + M5M1)

‖λ� − μ�‖∗

+
∫ T

0
e−η(M4 M2+M5 M1)M3m(t)l(t)dt + δ

∫ T

0
e−η(M4 M2+M5 M1)M3m(t)dt.

As δ→ 0 we get

Hβ(Sλ�(σ), S̃μ�(σ)) ≤ 1
η(M4M2 + M5M1)

‖λ� − μ�‖∗

+
∫ T

0
e−η(M4 M2+M5 M1)M3m(t)l(t)dt.

(22)

Since Sλ�(., .) and S̃�
μ(., .) are Hβ-quasi contractions with Lipschitz constant

1
η

and since

v(·) ∈ F{S̃μ�} by Proposition 3 there exists u(·) ∈ F{Sλ�} such that

‖v− u‖1 ≤ γη

η − γ
sup
x∈X

Hβ(S̃μ�x, Sλ�x).

Using (22), we have

‖v− u‖1 ≤ γ

(η − γ)(M4M2 + M5M1)
‖λ� − μ�‖∗

+
γη

η − γ

∫ T

0
e−η(M4 M2+M5 M1)M3m(t)l(t)dt.

(23)
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Now let

x�(t) = λ�(t) +
∫ t

0
[α1(t, s) p(t, u(s)) + α2(t, s)q(t, s, u(s))] ds.

Then, we have

‖x�(t)− y(t)‖ ≤ ‖λ�(t)− μ�(t)‖+ (M4M2 + M5M1)
∫ t

0
‖u(s)− v(s)‖ds

≤ ‖λ� − μ�‖∗ + (M4M2 + M5M1)eη(M4 M2+M5 M1)M3m(T)‖u− v‖1.

Using (23) we get

‖x�(t)− y�(t)‖ ≤ ‖λ� − μ�‖∗
[
1 +

γ eη(M4 M2+M5 M1)M3m(T)

η − γ

]

+
γη

η − γ
(M4M2 + M5M1)eη(M4 M2+M1)M3m(T)

∫ T

0
e−η(M4 M2+M5 M1)M3m(t)l(t)dt.

This completes the proof.

Remark 9. Since Hβ(A, B) ≤ H(A, B) and the class of generalized (ρ, γ)-norms includes the
usual norm ‖.‖, we note that the hypothesis conditions AS2(i) and AS3(i), (ii) are much weaker
than the corresponding hypothesis conditions (Hypothesis 2.1 (ii) and (iii)) of [24]).

3.5. Conclusions

The Hβ-Hausdorff–Pompeiu b-metric is introduced as a new tool in metric fixed
point theory and new variants of Nadler, Ciric, Hardy–Rogers contraction principles for
multi-valued mappings are established in a b-metric space. The examples and applications
provided illustrates the advantages of using Hβ-Hausdorff–Pompeiu b-metric in fixed
point theory and its applications. The new tool of Hβ-Hausdorff–Pompeiu b-metric can
be utilized by young researchers in extending and generalizing many of the fixed point
results for multi-valued mappings existing in literature and investigate how the new tool
would enhance, extend and generalize the applications of the fixed-point theory to linear
differential and integro-differential equations, nonlinear phenomena, algebraic geometry,
game theory, non-zero-sum game theory and the Nash equilibrium in economics.
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