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1. Introduction

In recent decades, multispectral and hyperspectral remote sensing data provide un-
precedented opportunities for the initial stages of mineral exploration and environmental
hazard monitoring. Increasing demands for minerals because of industrialization and ex-
ponential growth in population emphasize the necessity for replenishing exploited reserves
by exploration of new potential zones of mineral deposits. Identification of host-rock
lithologies, geologic structural features, and hydrothermal alteration mineral zones are
the most conspicuous applications of multispectral and hyperspectral remote sensing satel-
lite data for mineral exploration in the metallogenic provinces and frontier areas around
the world [1–11]. Numerous ore deposits such as orogenic gold, porphyry copper, carbon-
atite, massive sulfide, epithermal gold, podiform chromite, uranium, magnetite, and iron
oxide copper-gold (IOCG) deposits have been successfully prospected and discovered
using multispectral and hyperspectral remote sensing satellite imagery [12–22].

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER),
Landsat data series, the Advanced Land Imager (ALI), Worldview-3, Hyperion, HyMap
and the Airborne Visible/IR Image Spectrometer (AVIRIS) remote sensing data serve
as low-cost tools for ore mineral exploration [3,7,11–13,20,23]. Additionally, Synthetic
Aperture Radar (SAR) data contains a high potential for structural mapping and linea-
ment extraction. The Phased Array type L-band Synthetic Aperture Radar (PALSAR)
satellite remote sensing data are particularly used for mapping structurally controlled
orogenic gold mineralization in the arid and tropical environments due to its penetration
capability [7,18,24–29].

Remote Sens. 2021, 13, 519. https://doi.org/10.3390/rs13030519 https://www.mdpi.com/journal/remotesensing
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Several advanced image processing algorithms and machine learning techniques can
be successfully used to extract essential information related to hydrothermal alteration
minerals and lithological units at pixel and sub-pixel levels for indicating high potential
zones of ore mineralizations. Different types of image processing algorithms have been
used to extract spectral information from multispectral and hyperspectral remote sensing
data for instance (i) band-ratio, indices, and logical operator based methods; (ii) principal
components and transformation based methods—such as principal component analysis
(PCA), independent component analysis (ICA), and minimum noise fraction (MNF); (iii)
shape-fitting based algorithms—such as spectral angle mapper (SAM), matched-filtering
(MF), and mixture-tuned matched-filtering (MTMF); and (iv) partial unmixing and target
detection methods—such as linear spectral unmixing (LSU), constrained energy mini-
mization (CEM), orthogonal subspace projection (OSP), and adaptive coherence estimator
(ACE) [2,8]. Machine learning techniques are developing progressively crucial to unravel
several image processing challenges in the coming future. Although the techniques are
subject to scientific interest for the remote sensing mineral exploration community, but
generic implementation is still in initial stages.

Furthermore, human-induced changes—in the form of mine excavation, open-pit
mining, transportation, mine tailing, mineral processing in mining zones, mine waste, dust
pollution, and acid runoff—necessitate a proper monitoring of mining areas by remote
sensing observations. Environmental pollution mapping and monitoring of mined areas
are the main challenges that need to be addressed for future sustainability and environmen-
tal management in metallogenic provinces and surrounding areas. Consequently, a special
issue entitled “Multispectral and Hyperspectral Remote Sensing Data for Mineral Explo-
ration and Environmental Monitoring of Mined Areas” is proposed, which is expected
to particularly motivate researchers for presenting the latest achievements in the field of
geological remote sensing for mineral exploration and environmental monitoring.

A total of 20 manuscripts have been submitted to this special issue, which were
evaluated by professional guest editors and reviewers. Subsequently, 14 papers attained
the level of quality and novelty anticipated by Remote Sensing and finally were revised,
accepted, and published in the special issue. The achievements of articles presented in this
special issue are summarized in the following section.

2. Summary of Papers Presented in This Special Issue

Noori et al. [3] compared different image processing algorithms for mapping hy-
drothermal alteration zones associated with polymetallic vein-type mineralization using
ASTER data in the Toroud–Chahshirin Magmatic Belt (TCMB), North Iran. Selective princi-
pal component analysis (SPCA), band ratio matrix transformation (BRMT), spectral angle
mapper (SAM), and mixture tuned matched filtering (MTMF) were implemented and com-
pared to map hydrothermal alteration minerals at the pixel and sub-pixel levels. Subtle
differences between altered and non-altered rocks and hydrothermal alteration mineral
assemblages were detected and mapped in the study area. Results indicate several high
potential zones of epithermal polymetallic vein-type mineralization in the northeastern
and southwestern parts of the study area, which can be considered for future systematic
exploration programs. Guha et al. [30] used emittance spectroscopy and ASTER broadband
thermal remote sensing data to map phosphorite associated with carbonate-rich sediments
of the Aravalli Super Group, Rajasthan, India. In this study, a relative band depth (RBD)
image using selected emissivity bands of ASTER (bands 11, 12, and 13) was developed for
mapping and delineating phosphorite from the dolomite or carbonate host-rock lithologies.
Additionally, the RBD is capable to differentiate low-grade phosphorite exposures from
high-grade phosphorite zones. The authors recommended that the RBD of broadband
ASTER thermal infrared (TIR) bands can be used for targeting phosphorite occurring under
similar geological systems around the world.

Pour et al. [10] mapped listvenite occurrences in the damage zones of northern Victoria
Land, Antarctica using ASTER Data. Principal component analysis (PCA)/independent
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component analysis (ICA) fusion technique, linear spectral unmixing (LSU), and con-
strained energy minimization (CEM) algorithms were implemented to extract spectral
information for detecting alteration mineral assemblages and listvenites. Mineralogical
assemblages containing Fe2+, Fe3+, Fe-OH, Al-OH, Mg-OH, and CO3 spectral absorption
features were detected by applying PCA/ICA fusion to visible and near infrared (VNIR)
and shortwave infrared (SWIR) bands of ASTER. Silicate lithological groups were mapped
and discriminated using PCA/ICA fusion to TIR bands of ASTER. Goethite, hematite,
jarosite, biotite, kaolinite, muscovite, antigorite, serpentine, talc, actinolite, chlorite, epidote,
calcite, and dolomite were detected using LSU and CEM algorithms. Several potential
zones for listvenite occurrences were identified, typically in association with mafic metavol-
canic rocks (Glasgow Volcanics) in the Bowers Mountains. Zoheir et al. [18] utilized Landsat
8-Operational Land Imager (OLI), ASTER, PALSAR and Sentinel-1 satellite data coupled
with field and microscopic investigations to unravel the setting and controls of gold miner-
alization in the Wadi Beitan–Wadi Rahaba area in the South Eastern Desert of Egypt. Band
ratios, RBD and mineralogical indices are used to extract the representative pixels form
Landsat 8-OLI and ASTER bands. Lineaments were manually and automatically extracted
from PALSAR and Sentinel-1 data. The data fusion approach was used and showed no
particular spatial association between gold occurrences and certain lithological units but
indicates a preferential distribution of gold–quartz veins in zones of chlorite–epidote al-
teration overlapping with high-density intersections of lineaments. A priority map with
zones defined as high potential targets for undiscovered gold resources were generated for
the Wadi Beitan–Wadi Rahaba area in this study.

Sun et al. [31] integrated ground-based hyperspectral imaging and geochemistry
data for resource exploration and exploitation of sediment-hosted disseminated Gold
at the Goldstrike District, UT, USA. Ground-based hyperspectral imaging was applied
to study a core drilled in the Goldstrike district covering the basal Claron Formation
and Callville Limestone. The integration of remote sensing and geochemistry data helped
to identify an optimum stratigraphic combination of limestone above and siliciclastic
rocks below in the basal Claron Formation, as well as decarbonatization, argillization,
and pyrite oxidation in the Callville Limestone, that are related with gold mineralization.
Zoheir et al. [17] used multi-sensor satellite imagery data, including Sentinel-1, PAL-
SAR, ASTER, and Sentinel-2, for mapping the regional structural control of orogenic gold
mineralization in the Barramiya–Mueilha sector. Feature-oriented principal component
selection (FPCS) was applied to polarized backscatter ratio images of Sentinel-1 and PAL-
SAR datasets for regional structural mapping and identification of potential dilation loci.
The PCA and band ratioing techniques are applied to ASTER and Sentinel-2 datasets for
lithological and hydrothermal alteration mapping. The radar and multispectral satellite
data abetted a better understanding of the structural framework and unraveled settings of
the scattered gold occurrences in the study area.

Pour et al. [11] utilized Landsat-8, ASTER and WorldView-3 multispectral remote
sensing imagery for prospecting copper-gold mineralization in the Northeastern Inglefield
Mobile Belt (IMB), Northwest Greenland at regional, local, and district scales. Hydrother-
mal alteration minerals such as iron oxide/hydroxide, Al/Fe-OH, Mg-Fe-OH minerals,
silicification (Si-OH), and SiO2 mineral groups were mapped using directed principal
components analysis (DPCA) technique, Linear spectral unmixing (LSU) and adaptive
coherence estimator (ACE) algorithms. Several high potential zones for Cu-Au prospecting
were identified in the IMB, Northwest Greenland, including (i) the boundaries between
the Etah metamorphic and meta-igneous complex rocks and sedimentary successions of
the Franklinian Basin in the Central Terrane, (ii) orthogneiss in the northeastern part of
the Cu-Au mineralization belt adjacent to Dallas Bugt, and (iii) the southern part of the Cu-
Au mineralization belt nearby Marshall Bugt. Bolouki et al. [12] investigated a remote
sensing-based application of Bayesian networks for epithermal gold potential mapping in
Ahar-Arasbaran area, NW Iran. Landsat Enhanced Thematic Mapper+ (Landsat-7 ETM+),
Landsat-8, and ASTER datasets were used to detect hydrothermal alteration zones associ-
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ated with epithermal gold mineralization using band ratio, relative absorption band depth
(RBD) and PCA techniques. The Bayesian network classifier was used to synthesize the the-
matic layers of hydrothermal alteration zones. Many new potential zones of epithermal
gold mineralization were identified in the Ahar-Arasbaran region.

Tuşa et al. [32] estimated mineral abundance in drill-core samples collected from
Bolcana porphyry copper-gold deposit by employing hyperspectral short-wave infrared
(SWIR) data and scanning electron microscopy-based image analyses using a mineral
liberation analyzer (SEM-MLA). Machine learning algorithms were executed to combine
the two data types and upscale the quantitative SEM-MLA mineralogical data to drill-core
scale. Quasi-quantitative maps over entire drill-core samples were acquired. Sekan-
dari et al. [13] used Landsat-8, Sentinel-2, ASTER, and WorldView-3 spectral imagery for
exploration of carbonate-hosted Pb-Zn deposits in the Central Iranian Terrane (CIT). Band
ratios and PCA techniques were adopted and implemented to map alteration minerals
and lithologies. Fuzzy logic modeling was applied to integrate the thematic layers pro-
duced by the image processing techniques for generating mineral prospectivity maps.
The most favorable/prospective zones for hydrothermal ore mineralizations and carbonate-
hosted Pb-Zn mineralization in the study region were particularly mapped and indicated
at regional and district scales. Shirmard et al. [33] integrated selective dimensionality
reduction techniques such as PCA, ICA, and minimum noise fraction (MNF) for mineral
exploration using ASTER satellite data. The fuzzy logic model was used for integrating
the most rational thematic layers derived from the techniques for mineral prospectivity
mapping in the Toroud-Chahshirin range, Central Iran.

Martín-Crespo et al. [34] presented the results of the geo-environmental characteriza-
tion of La Matildes riverbed, affected by mine tailings in the Cartagena–La Unión district,
Murcia (southeast Spain) using geophysical and geochemical techniques. Two electrical
resistivity imaging (ERI) profiles were carried out to obtain information about the thickness
of the deposits and their internal structure. The geochemical composition of borehole sam-
ples from the riverbed materials shows significantly high contents of As, Cd, Cu, Fe, Pb,
and Zn being released to the environment. Results demonstrated that surface extraction in
three open-pit mines have changed the summits of Sierra de Cartagena–La Unión and rock
and metallurgical wastes have altered the drainage pattern and buried the headwaters
of ephemeral channels. Jackisch et al. [35] integrated drone-borne photography, multi-
and hyperspectral imaging, and magnetics data for mapping a carbonatite-hosting outcrop
in Siilinjärvi, Finland. Structural orientations and lithological units are deduced based on
high-resolution, hyperspectral image-enhanced point clouds. Unmanned aerial system
(UAS)-based magnetic data allow an insight into their subsurface geometry through mod-
eling based on magnetic interpretation. A geologic map is resulted discriminating between
the principal lithologic units and distinguishes ore-bearing from waste rocks. Ma et al. [36]
investigated the dust dispersion characteristics in Kuancheng mining area, Hebei Province,
North China using the American Meteorological Society (AMS) and the U.S. Environmen-
tal Protection Agency (EPA) regulatory model (AERMOD). The spectral characteristics
of vegetation canopy under the dusty condition were simulated, and the influence of
dustfall on vegetation canopy spectra was studied based on the three-dimensional discrete
anisotropic radiative transfer (DART) model. The experimental results show that the dust
pollution along a haul road was more severe and extensive than that in a stope. Taking
dust dispersion along the road as an example, the variation of vegetation canopy spectra in-
creased with the height of dust deposited on the vegetation canopy. The findings would be
beneficial to decision-makers or researchers for the remote sensing application to mapping
and assessing the dust effect in mining areas.

3. Concluding Remarks

The sympathetic and judicious comments delivered by the reviewers enhanced each
of the papers published in this special issue, which came to fruition only because they were
willing to volunteer their time and attention. We hope that the investigations published in
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this special issue will assist mineral exploration communities and mining companies about
the application and integration of multispectral and hyperspectral remote sensing data for
mineral exploration and environmental monitoring of mined areas.
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Abstract: Polymetallic vein-type ores are important sources of precious metal and a principal type
of orebody for various base-metals. In this research, Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) remote sensing data were used for mapping hydrothermal alteration
zones associated with epithermal polymetallic vein-type mineralization in the Toroud–Chahshirin
Magmatic Belt (TCMB), North of Iran. The TCMB is the largest known goldfield and base metals
province in the central-north of Iran. Propylitic, phyllic, argillic, and advanced argillic alteration
and silicification zones are typically associated with Au-Cu, Ag, and/or Pb-Zn mineralization
in the TCMB. Specialized image processing techniques, namely Selective Principal Component
Analysis (SPCA), Band Ratio Matrix Transformation (BRMT), Spectral Angle Mapper (SAM) and
Mixture Tuned Matched Filtering (MTMF) were implemented and compared to map hydrothermal
alteration minerals at the pixel and sub-pixel levels. Subtle differences between altered and
non-altered rocks and hydrothermal alteration mineral assemblages were detected and mapped in
the study area. The SPCA and BRMT spectral transformation algorithms discriminated the propylitic,
phyllic, argillic and advanced argillic alteration and silicification zones as well as lithological units.
The SAM and MTMF spectral mapping algorithms detected spectrally dominated mineral groups
such as muscovite/montmorillonite/illite, hematite/jarosite, and chlorite/epidote/calcite mineral
assemblages, systematically. Comprehensive fieldwork and laboratory analysis, including X-ray
diffraction (XRD), petrographic study, and spectroscopy were conducted in the study area for
verifying the remote sensing outputs. Results indicate several high potential zones of epithermal
polymetallic vein-type mineralization in the northeastern and southwestern parts of the study area,
which can be considered for future systematic exploration programs. The approach used in this
research has great implications for the exploration of epithermal polymetallic vein-type mineralization
in other base metals provinces in Iran and semi-arid regions around the world.

Remote Sens. 2019, 11, 495; doi:10.3390/rs11050495 www.mdpi.com/journal/remotesensing7
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1. Introduction

Since the Bronze Age, polymetallic vein-type ores have been important sources of precious metal
and established a main type of deposit for various base-metals [1–5]. Polymetallic vein-type ore
deposits precipitated in the geological structures such as faults, fractures, brecciated rocks, and porous
layers, where the pressure, temperature, and several other chemical factors are suitable for the
precipitation [1,6]. Moreover, during the ore mineral precipitation processes, hydrothermal fluids react
with the mineral constituents of lithological units they are passing and produce hydrothermal alteration
zones with distinctive mineral assemblages [7]. The presence of intrusive rocks and hydrothermal
alteration zones associated with polymetallic vein-type deposits provide an important guide for
exploring this type of ore mineralization especially by the application of advanced satellite remote
sensing data [8,9].

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) contains
appropriate spectral and spatial resolution to detect spectral absorption features of hydrothermal
alteration minerals and lithological units [10–16]. ASTER datasets can be used to identify and remotely
map hydrothermal alteration zones associated with polymetallic vein-type ore deposits in vegetated
regions and well-exposed terrain, especially in a semi-arid environment [8,9,17]. ASTER measures
reflected radiation in three bands in the 0.52- to 0.86 μm (the visible and near-infrared (VNIR)), six bands
in the 1.6- to 2.43 μm (the shortwave infrared (SWIR)), and five bands of emitted radiation in the
8.125- to 11.65 μm (the thermal infrared (TIR)) with 15, 30, and 90 meter resolution, respectively [18,19].
Hydrothermal alteration zones associated with various ore deposits such as porphyry copper, orogenic
gold, epithermal gold, massive sulfide, iron, and chromite deposits have been successfully detected
and mapped using ASTER imagery in metallogenic provinces around the world [20–27]. Specifically,
some studies used ASTER data for the exploration of polymetallic vein-type ore deposits. Mahanta and
Maiti [8] used ASTER VNIR+SWIR spectral data for mapping alteration zones such as kaolinization,
ferruginization, silicification, phosphatization, and sulphidation associated with the polymetallic
vein-type mineralization in the South Purulia Shear Zone (SPSZ), East India. In a recent work,
Ahmadirouhani et al. [9] identified and mapped hydrothermal alteration zones, including propylitic,
phyllic, argillic, and gossan with Cu-Fe-Au vein-type mineralization using ASTER VNIR+SWIR
spectral bands in the Bajestan region, northern sector of the Lut Block, East Iran.

The Toroud–Chahshirin Magmatic Belt (TCMB) is located in Semnan province, central-north Iran
(Figure 1A) and contains numerous occurrences of epithermal polymetallic vein-type mineralization
(Figure 1B). The TCMB is the largest known goldfield and base metals province in central-north
Iran [28,29]. Hydrothermally altered zones are reportedly associated with polymetallic vein-type
mineralization in this belt [29–33]. Propylitic, phyllic, argillic, and advanced argillic alteration and
silicification occur generally with Au-Cu, Ag, and/or Pb-Zn mineralization. Therefore, mapping
and identification of hydrothermal alteration mineral assemblages using ASTER satellite remote
sensing data in the TCMB can be considered as a cost-effective and applicable tool for targeting and
prospecting epithermal polymetallic vein-type mineralization. In this research, the Moaleman region of
the TCMB was selected (Figure 1B). This region has a high potential for epithermal polymetallic
vein-type mineralization, particularly anomal Cu-Au values associated with altered dacite and
dacite-andesite and volcaniclastics rocks [30,34,35]. Since no report on a comprehensive remote
sensing investigation is available for epithermal Cu-Au exploration in the Moaleman region of the
TCMB, results of an ASTER remote sensing mapping are necessary for future systematic exploration
projects. The main objectives of this study are (i) to detect hydrothermal alteration mineral zones and
assemblages using VNIR and SWIR spectral bands of ASTER data by application of specialized image
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processing techniques, including Selective Principal Component Analysis (SPCA) [36,37], Band Ratio
Matrix Transformation (BRMT) [16], Spectral Angle Mapper (SAM) [38], and Mixture Tuned Matched
Filtering (MTMF) [39–41]; (ii) to compare the results derived from SPCA and BRMT transformation
algorithms and SAM and MTMF spectral mapping algorithms to map alteration minerals at the pixel
and sub-pixel levels and (iii) to prospect high potential zones of epithermal Cu-Au mineralization for
future systematic exploration programs in the study area.

Figure 1. (A) The geographical location of the Toroud–Chahshirin Magmatic Belt (TCMB) in North of
Iran (red rectangle). (B) Simplified geological map of the Moaleman region showing the distribution of
polymetallic vein-type mineralization (modified from [42]). Abbreviations: UDMB: Urumieh–Dokhtar
Magmatic Belt; MMB: Makran Magmatic Belt; AMB: Alborz Magmatic Belt.

2. Geology of the TCMB and Mineralization

The TCMB is situated in the central to eastern Alborz Magmatic Belt (AMB) and lies in the
northern part of the Central Iran Structural Zone (CISZ) (Figure 1A). It is restricted between the E–W
trending Toroud fault in the south and the E–W trending Anjilou fault in the north [29]. This magmatic
arc has a complex tectonic, magmatic, and stratigraphy history [29,30]. Alavi et al. [43] and Alavi [44]
and proposed that Torud–Chahshiran range and adjacent volcanic rocks are displaced to Eocene
magmatism in the CISZ to the south. The Magmatic arc contains mainly of igneous rocks of Tertiary age,
while there are also scattered outcrops of metamorphosed Paleozoic and Mesozoic rocks [45]. Most of
the magmatic activities in the TCMB occurred in the middle to late Eocene and have been divided into
three stages from oldest to youngest, including (i) explosive volcanic activity represented by rhyolite
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to rhyodacite tuffs and locally andesitic lava flows, with subordinate marls, tuffaceous marlstones,
and sandstones; (ii) lava flows and pyroclastic rocks of andesite, trachyandesite, and basaltic andesite
composition; and (ii) subordinate dacitic-rhyodacitic rocks and hypabyssal intrusive rocks [46].

In the magmatic belt, many of the known mined deposits (gold and base metals) are associated
with hydrothermally altered zones [30,31]. These deposits mostly include epithermal veins such as
Kuhe Zar (Au-Cu), Abolhassani (Pb-Zn-Ag-Au), Pousideh (Cu), Dian (Cu), Cheshmeh Hafez (Pb-Zn),
Gandy (Au-Ag, Pb-Zn), Chahmussa (Cu), Darestan (Cu), and Robae (Fe-Cu) mineralization zones.
Moreover, Baghu (placer gold, turquoise) and Challu (Cu), Khanjar (Pb-Ag-Zn) are other types of
mineralization in the sedimentary rocks of the TCMB [30,47–50]. Hydrothermal alterations such as
propylitic, phyllic, argillic and advanced argillic, and silicification are reported in this magmatic arc,
generally where alkaline to sub-alkaline plutonic rocks such as andesite are intruded into hosted
volcano pyroclastic rocks [29,47]. For instance, mineralization in the Gandy deposit occurs in
quartz-sulfide veins and breccias and is associated with alteration halos of argillic and propylitic
(approximately 4 km) as well as narrow supergene jarosite, kaolinite, and iron hydroxide [29,31].
The granodiorite rocks are intruded in pyroclasitic and andesitic lavas in the Kuh-Zar deposit and Au
and Cu rich hydrothermal fluids affected the host rocks which were followed by propylitic, phyllic,
argillic and silicification alterations [50]. In the Moaleman area, mineralization is controlled by major
faults. Numerous ore mineralizations such as Cu, Au, Pb, Zn, and Fe were reported in this area
(Figure 1B). Although these deposits have a small size, most of them contain valuable economic
mineralization [35].

3. Materials and Methods

3.1. Pre-processing of the Remote Sensing Data

A cloud-free level 1B ASTER in hierarchical data format (HDF) that was acquired on 25 March
2003 was used for remote spectral analyses in this study. This image was pre-georeferenced to
UTM zone 40 North projections with using the WGS-84 data. The SWIR bands re-sampled to the
spatial resolution of VNIR so that all pixels of nine bands (VNIR+SWIR) with 15*15 m2 pixel size
were stacked. The level 1B data product measures radiance at the sensor without atmospheric
corrections [18]. Therefore, atmospheric correction is necessary before image processing analysis for
converting radiance-calibrated data to apparent reflectance. The Log-residual atmospheric correction
technique was applied to the ASTER image in this study. The Log Residuals calibration is capable to
remove atmospheric transmittance, topographic effects, solar irradiance, and albedo effects [51,52].
It produces a pseudo reflectance image, which is highly applicable for detecting absorption features
related to alteration minerals. Additionally, Crosstalk correction was applied to the ASTER dataset [53].
We have performed this correction by Cross-Talk correction software that is available from www.gds.
aster.ersdac.or.jp. The ENVI (Environment for Visualizing Images, http://www.exelisvis.com) version
5.2 and ArcGIS version 10.3 software (Esri, Redlands, CA, USA) packages were used to process the
remote sensing datasets.

3.2. Image Processing Algorithms

The main target of the specialized image processing techniques adopted in this study was to
apply image processing techniques that are capable of mapping hydrothermal alteration minerals at
the pixel and sub-pixel levels using VNIR+SWIR spectral bands of ASTER data. Therefore, subtle
differences between altered and non-altered rocks and hydrothermal mineral assemblages could be
feasible by implementing specialized image processing techniques as follows.

3.2.1. Principal Component Analysis (PCA)

The PCA is a multivariate statistical technique that used to reduce the dimensionally of input data
and reduces the additional frequency among the data, as a result, the possibility of useful data loss is
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minimized. This information in terms of quantity is a very small part of the overall information content
available in original bands. Spectral bands are selected that contain absorption and reflection features
of alteration minerals. In this way, a new image (PC) is generated on the axes with the new coordinate
system [36,37]. The resulting component is more interpretable than are the original images. A PC image
contains the unique contribution of eigenvector loadings (magnitude and sign) for absorption and
reflection bands of alteration mineral or mineral group is able to enhance the mineral or mineral group.
If the loading is positive in the reflective band of a mineral the image tone will be bright, and if it is
negative, the image tone will be dark for the enhanced target mineral [37]. The PCA technique has been
applied to multispectral remote sensing data such as ASTER for highlighting spectral responses related
to specific hydrothermal alteration minerals associated with porphyry copper mineralization [54–59].

In this research, the Selective Principal Component Analysis (SPCA) [60], known also as Directed
Principal Component Analysis (DPCA) [61], was applied on VNIR+SWIR bands for mapping the
specific alteration zones associated with polymetallic vein-type mineralization in the study area.
The basic difference between the PCA and SPCA is that in the SPCA only a subgroup of bands is
selected depending on the aims that plan to be achieved. In this study, according to the known ASTER
band indices for hydrothermal alteration mineral mapping [62–65], some subsystems (specific bands)
were selected for SPCA analysis. Bands 1, 2, and 4 were selected for mapping iron oxides/hydroxide
minerals (Table 1A). Bands 4, 5, and 6 were designated for argillic alteration mapping (Table 1B). Bands
5, 6, and 7 were nominated to specify phyllic zone (Table 1C) and bands 7, 8, and 9 were used to map
propylitic alteration zones.

Table 1. Eigenvector loadings matrix calculated using Selective Principal Component Analysis (SPCA)
for selected Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) bands. (A) Iron
oxides/hydroxides minerals; (B) Argillic alteration; (C) Phyllic alteration; and (D) Propylitic alteration.

A Band1 Band2 Band4 B Band4 Band5 Band6

PC1 −0.57 −0.57 −0.58 PC1 0.58 −0.57 −0.57
PC2 −0.42 −0.39 0.81 PC2 −0.81 0.35 0.46
PC3 −0.7 −0.14 −0.14 PC3 −0.61 −0.73 0.67

C Band5 Band6 Band7 D Band7 Band8 Band9

PC1 −0.57 −0.57 −0.57 PC1 −0.58 −0.57 −0.57
PC2 −0.42 −0.39 0.81 PC2 −0.73 0.06 0.67
PC3 −0.69 0.71 0.02 PC3 0.35 −0.81 0.45

3.2.2. Band Ratio Matrix Transformation (BRMT)

The Band Ratio Matrix Transformation (BRMT) is a semiautomatic lithological-mineralogical
mapping technique, which is proposed and established for sedimentary strata discrimination [16].
This analytical method extracts key spectral characteristics using VNIR and SWIR spectral bands
of ASTER. Although BRMT methodology is proposed for sedimentary rocks discrimination,
the effectiveness of this technique for mapping hydrothermal alteration zones in igneous rocks
background is promising. The robustness of BRMT arises from a combination of statistical factors,
including variance percent (V%), positive and negative correlation averages (±r), correlation
averages (±rk), and contribution percent (C%). It maps key spectral characteristics using RGB
color composites and rule classifier of the band ratio (BR) and band transform (BT) bands. In this
study, the BRMT method was applied to VNIR+SWIR bands of ASTER data for detailed mapping
of hydrothermal alteration zones in the study area. Table 2 shows positive and negative correlation
and contribution percent of the band ratios n1–n36 used for BRMT transformation. Table 3 shows
eigenvalues, variance percent (%V), positive and negative correlation averages (+rk > 0.1 and −rk < 0.1),
and correlation percent of BT1 to BT10, which hold maximum spectral properties extracted from the
image. The selected BT bands containing specific spectral properties (negative and positive contribution
percent >3%) are listed in Table 4.
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Table 2. Positive and negative correlation (±r) and contribution percent (C%) of the band ratios n1–n36
used for Band Ratio Matrix Transformation (BRMT).

Band Ratio Negative Positive Band Ratio Negative Positive

−r C% +r C% −r C% +r C%
n1 −0.34 1.86 0.40 4.81 n19 −0.58 3.13 0.12 1.49
n2 −0.86 4.65 0.36 4.38 n20 −0.60 3.24 0.13 1.61
n3 −0.54 2.91 0.28 3.42 n21 −0.37 2.01 0.12 1.40
n4 −0.98 5.32 0.12 1.39 n22 −0.82 4.44 0.22 2.66
n5 −0.56 3.06 0.12 1.50 n23 −0.36 1.96 0.31 3.71
n6 −0.60 3.26 0.12 1.45 n24 −0.36 1.98 0.35 4.23
n7 −0.63 3.42 0.13 1.57 n25 −0.37 2.03 0.33 4.02
n8 −0.45 2.46 - - n26 −0.51 2.75 0.52 6.22
n9 −0.32 1.75 0.32 3.87 n27 −0.44 2.37 0.21 2.56
n10 −0.55 3.01 0.15 1.79 n28 −0.41 2.25 0.31 3.68
n11 −0.55 2.96 0.11 1.36 n29 −0.43 2.33 0.34 4.07
n12 −0.41 2.23 - - n30 −0.36 1.94 0.56 6.74
n13 −0.98 5.32 0.13 1.62 n31 −0.32 1.75 0.33 4.04
n14 −0.40 2.18 0.11 1.30 n32 −0.37 2.02 0.32 3.85
n15 −0.48 2.62 - - n33 −0.38 2.06 0.39 4.69
n16 −0.54 2.94 0.18 2.21 n34 −0.23 1.27 0.40 4.83
n17 −0.95 5.19 0.26 3.17 n35 −0.52 2.84 0.18 2.18
n18 −0.39 2.11 0.16 1.98 n36 −0.44 2.38 0.18 2.22

Table 3. Eigenvalues, variance percent (%V) and positive and negative correlation averages (+rk > 0.1
and −rk < 0.1) of the forward BRMT for BT1–BT10.

BT Number 1 2 3 4 5 6 7 8 9 10

Eigenvalue 0.12300000006606 0.00928 0.00643 0.00335 0.00255 0.00125 0.00098 0.00083 0.00005 0.00002
V% 83.24 6.28 4.35 2.27 1.72 0.85 0.66 0.56 0.03 0.01
+rk 0.40 0.25 0.17 0.22 0.23 0.27 0.21 0.24 - -
+rk% 20.07 12.70 8.51 11.02 11.39 13.67 10.58 12.06 - -
−rk −0.92 −0.42 −0.38 −0.36 −0.27 −0.24 −0.27 −0.26 - -
−rk% 29.48 13.36 12.08 11.54 8.78 7.62 8.82 8.32 - -

Table 4. The selected band transform bands (BTs) contain specific spectral properties (negative and
positive contribution percent > 3%).

Contribution > 3% BT

Positive n30 n26 n34 n1 n33 n2 n24 n29 n31 n25 n9 n32 n23 n28 n3 n17
Negative n10 n5 n19 n20 n6 n7 n22 n2 n17 n13 n4 - - - - -

3.2.3. Mixture Tuned Matched Filtering (MTMF)

The MTMF is a partial unmixing, hybrid method based on the combination of well-known signal
processing methodologies and liner mixture theory [39–41]. MTMF consist of two phases, an MF
calculation for abundance estimation and a mixture tuning calculation for the identification and rejection
of false positives [6–68]. In this study, the endmembers were extracted from the image using the Minimum
Noise Fraction (MNF), Pixel Purity Index (PPI), and n-dimensional visualization techniques [69,70].
The MNF method was accomplished to separate noise from the data. The PPI detects the highest
purity pixels in the image. The n-dimensional visualization was used to locate, identify, and cluster
the purest pixels and the most extreme spectral responses (endmembers) in the VNIR+SWIR ASTER
dataset. The threshold of 2.5 was applied to PPI. The output of PPI represents as bright pixels (more
purity) and dark pixels (less spectral purity). After applying the n-dimensional visualization method,
10 n-D classes (endmembers) were extracted, which indicate distinctive absorption features related to
alteration minerals. Figure 2 shows the extracted endmember spectra (n-D classes) for the study area.
Comparison of the absorption characteristics of the extracted endmembers (n-D classes) with the USGS
spectral library is considered for identification of alteration minerals.
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Figure 2. The endmember mineral extracted from the ASTER dataset using of n-Dimensional
visualization method. The reference spectra were resampled to the response function of ASTER
bands. The ASTER band center positions are also shown.

3.2.4. Spectral Angle Mapper (SAM)

The SAM is a classification method that classifies the pixels based on similar spectral properties
with reference spectra [38]. It uses endmember spectra that can be extracted directly from the image or
spectral library. This process of calculating the spectral angle between the reference spectra and image
determines the similarity of these two groups. The outputs of the algorithm are angles between zero
and one. The large angle shows less similarity and the smaller angle more similarity [71,72]. In this
analysis, the SAM was applied to VNIR+SWIR ASTER bands with default value 0.1 (radians) as a
threshold, and the spectra for running the algorithm were obtained from the USGS library as reference
spectra [73]. Figure 3 shows end-member minerals extracted from the USGS library, including hematite,
jarosite, montmorillonite, illite, muscovite, and chlorite.

3.3. Fieldwork Data, Laboratory Analysis and Verification

For collecting field data, 10 zones showing the high spatial distribution of hydrothermal alteration
minerals in the Moaleman region were selected. Global positioning system (GPS) survey was acquired
using a GPS (Garmin eTrix 10, Nanjing Sifang Mapping Equipment Ltd., Jiangsu, China) with an
average accuracy of 5m to find the exact location of the selected zones in the ASTER scene. Field
photos were taking from alteration zones. Seventy rock samples were collected from the alteration
zones and lithological units for laboratory analysis, including thin section preparation, X-ray diffraction
(XRD) analysis, and analytical spectral devices (ASD) spectroscopy. The XRD analysis was applied
using Advance-D8 XRD Bruker model at Central Laboratory of Damghan University, Damghan, Iran.
The exposure time of powder samples (1 g) was about one hour by a monochromatic ray in the
wavelength of 5.4 Å and ranging angles between 5 to 70 degrees. The step of diffraction was set
as 0.2 degrees to guarantee detection of clay minerals which are detectable in low angles. The copper
anode is used to generate X-rays with a voltage of 25 kilovolts (kV). The spectra of the representative
samples from altered zones were measured using a FieldSpec3®spectroradiometer operating in the
0.35-2.5 μm spectral range at the Department of Ecology, Institute of Science and High Technology
and the Environmental Sciences Graduate University of Advanced Technology, Kerman, Iran. The
fore-optics were at a small distance from the surface under observation. Spectralon of Labsphere which
is made of polytetrafluoroethylene (PTFE) and sintered halon G-80 was used as a white reference panel.
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About 10 measurements were performed per spot. Moreover, the Kappa coefficient was calculated
using a Matlab code developed by Askari et al. [74] for SAM and MTMF results for accuracy assessment
(Table 5A,B).

Figure 3. Reference endmember spectra of hematite, jarosite, montmorillonite, illite, muscovite, and
chlorite obtained from the USGS spectral library for mapping alteration zones in the study area. The
reference spectra were resampled to the response function of ASTER bands. The ASTER band center
positions are also shown.

Table 5. (A) The accuracy assessment for the Mixture Tuned Matched Filtering (MTMF) method based
on GPS survey collected during the field study. (B) The accuracy assessment for the Spectral Angle
Mapper (SAM) method based on GPS survey collected during the field study.

(A) Ground Truth Samples

Class Argillic Phyllic Propylitic User Acc. (Percent)

Unclassified 1 15 1 −
Argillic 57 0 0 98.2
Phyllic 0 84 0 84.8

Propylitic 0 0 49 98
Prod. Acc. 100 100 100

Over. acc. (Percent) Kappa Coef. (Percent)

95.7 0.93

(B) Ground Truth Samples

Class Argillic Phyllic Propylitic User Acc. (Percent)

Unclassified 1 2 9 -
Argillic 53 25 6 62
Phyllic 4 72 0 92.3

Propyllitic 0 0 35 79.5
Prod. Acc. 92.9 74.2 85.3 -

Over. acc. (Percent) Kappa Coef. (Percent)

84.4 0.78
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4. Results and Discussion

4.1. Alteration Mapping Results Derived from ASTER Data

Considering statistical results derived from SPCA (Table 1A–D), it evident that hydrothermally
altered rocks were mapped in the SPC images that contain a unique contribution of components
(eigenvectors) related to spectral characteristics of the alteration minerals. Table 1A shows eigenvector
values for mapping iron oxide/hydroxide minerals in the study area. Analyzing the eigenvector
loadings shows that the SPC2 contains a strong to moderate contribution of band 1 (−0.42) and band
2 (−0.39) with negative signs and a strong contribution of band 4 (0.81) with a positive sign. Iron
oxide minerals have absorption features in bands 1 and 2 and reflectance features in band 4 of ASTER,
respectively [54,62,75]. Therefore, the SPC2 is able to enhance oxide/hydroxide minerals as bright
pixels due to opposite signs of the eigenvector loadings in the absorption bands (negative signs in
bands 1 and 2) and reflection band (positive sign in band 4) (Figure 4A).

Looking at the eigenvector loadings in Table 1B for mapping argillic alteration indicates that
the SPC3 has a strong contribution of band 4 (−0.61) and band 5 (−0.73) with negative signs and a
strong contribution of band 6 (0.67) with a positive sign, respectively. Kaolinite and alunite are main
constituents of argillic alteration that normally exhibit Al-OH absorption features in bands 5 and 6
of ASTER [63]. Al-OH minerals show maximum reflectance features in band 4 of ASTER that covers
the spectral region of 1.6 μm [64]. Thus, the argillic alteration zone appears as dark pixels in the SPC3
image because of a negative sign in band 4 (reflection band). Dark pixels in the SPC3 image were
inverted to bright pixels by multiplication to −1 (Figure 4B).

Table 1C shows the eigenvector loadings for mapping phyllic alteration zone. The SPC3 shows
strong eigenvector loadings for band 5 (−0.69) and band 6 (0.71) with opposite signs, while band
7 (0.02) has a very small contribution in the SPC3. The phyllic zone composed of illite/muscovite
(sericite) produces an intense Al-OH absorption feature at band 6 of ASTER [52]. Phyllic alteration
zone in the study area manifests in bright pixels in the SPC3 image (Figure 4C). Considering the
eigenvector loadings in Table 1D for identification of propylitic alteration zone in the study area,
the SPC3 contains strong loadings of band 8 (−0.81) and moderate contribution of bands 7 (0.35) and
9 (0.45) with opposite signs, respectively. The propylitic alteration zone consisting of epidote, chlorite,
and calcite display strong absorption features in band 8 of ASTER [64]. For that reason, the SPC3
image depicts propylitic alteration zone as bright pixels in the study area (Figure 4D).

Propylitic, phyllic, argillic, and advanced argillic alteration zones were reported as dominated
alteration zones with epithermal polymetallic vein-type mineralization in the study area [30].
The surface distribution pattern of iron oxide/hydroxide minerals, argillic alteration zone, phyllic zone,
and propylitic zone is almost similar and mostly concentrated in the central and southwestern parts of
the study area (see Figure 4A–D). However, argillic zone and iron oxide/hydroxide minerals show
more similar spatial distribution and strong surface abundances compare to phyllic and propylitic
zones. Accordingly, a Red-Green-Blue (RGB) color composite was assigned to the SPC3 of argillic
alteration, SPC3 of phyllic alteration, and SPC3 of propylitic alteration images for providing a false
color-based classification image of the detected pixels. Figure 5 shows the resultant image for the study
area. Argillic alteration zone appears in red and yellow colors, it is evident that the red zone can be
considered as the advanced argillic and yellow zone is a combination of Argillic and phyllic alteration
zones (Figure 5). The phyllic alteration zone is represented in green and cyan colors. The mixture of
phyllic and propylitic alteration zones depict as cyan color. Propylitic alteration zone manifests as blue
color (Figure 5). Comparison with the geological map of the study area (see Figure 1B), most of the
ore mineralizations are concentrated in argillic and advanced argillic alteration zones (see Figure 5),
which are associated with dacite and dicite-andesite, spilitic basalt, trachyandesite basalt, and quartz
trachyandesite lithological units. Several advanced argillic (red mixed with yellow pixels) zones are
observable in the southwestern and northeastern parts of the study area, which could be considered as
prospective zones.

15



Remote Sens. 2019, 11, 495

Figure 4. SPC images derived from SPCA analysis. (A) SPC2 image showing oxide/hydroxide minerals
as bright pixels; (B) SPC3 image showing the argillic alteration zone as bright pixels; (C) SPC3 image
showing the phyllic alteration zone as bright pixels; and (D) SPC3 image showing the propylitic
alteration zone as bright pixels.

Figure 5. RGB false color composite of the SPC3 of argillic alteration (R), SPC3 of phyllic alteration (G),
and SPC3 of propylitic alteration (B) images covering the study area.
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Considering of statistical results calculated for the BRMT algorithm (Tables 2–4), the eigenvalues,
Vi%, positive and negative correlation averages (+rk > 0.1 and −rk < 0.1) for the BT1, BT2, and BT3
are considerable (Table 3). High number of eigenvalues, Vi%, and +rk% and −rk% were estimated
in the BT1, BT2, and BT3. The BT1 contain the highest eigenvalue (0.123) Vi% (83.24), +rk% (20.7),
and −rk% (29.48). The BT2 shows eigenvalue of 0.00928, Vi% of 6.28, +rk% of 12.70, and −rk% of
13.36. The BT3 has an eigenvalue of 0.00643, Vi% of 4.35, +rk% of 8.51, and −rk% of 12.08 (Table 3).
It shows that these BTs contain most of the spectral information that was extracted by the BRMT
algorithm from the image. Therefore, the BTs were used for producing RGB false color composite to
reveal the most spectrally dominated hydrothermal alteration zones and lithological units in the study
area (Figure 6). With reference to SPCA results, it is discernable that argillic, phyllic, and advanced
argillic alteration zones are most spectrally dominated alteration zones in the study area, which
appear as magenta color in Figure 6. These alteration zones are typically concentrated in the central,
southwestern, and northeastern parts of the study area, which contain mineralogically interesting
zones for ore exploration.

Figure 6. RGB false color composite of the BT1 (R), BT2 (G), and BT3 (B) derived from the BRMT
algorithm for the study area.

The analysis of the negative and positive contribution percent > 3% for BTs (see Tables 2 and 4)
indicates that the BTs contain a negative contribution holding more specific spectral properties attributed
to lithological units and hydrothermal alteration zones. Therefore, the BTs containing a negative
contribution > 3% (Table 4), such as n10, n5, n19, n20, n6, n7, n22, n2, n17, n13, and n4, were used for
running the rule image classifier. Figure 7 shows the resultant BRMT classification map for the study
area. Eight classes (C1 to C8) were identified. The class C1 (red pixels) can be considered a moderate
propylitic alteration zone that is combined with unaltered volcaniclastic rocks. This class (C1) mainly
covers the eastern and northeastern parts of the study area. The class C2 (blue pixels) includes the
advanced propylitic alteration zone, which is generally concentrated in the central and southwestern
part of the study area (Figure 7). The advanced argillic alteration zone is depicted in class 3 (green
pixels), which covers typically central and western parts and many other small exposures in the whole
of the study area. Class C4 (cyan pixels) is a combination of argillic, iron oxide, and propylitic mineral
assemblages and sedimentary rocks that weathered and transferred to the alluvial fan. Class 5 (brown
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pixels) is an accumulation of iron oxide minerals that are within the highly altered parts of argillic and
phyllic zones. Sandstone and alluvium can be considered in class 6 (light yellow pixels), while class 7
(magenta pixels) might be an admixture of some weathered rocks of classes 1, 2, and 3. Class 8 (mustard
pixels) represents unknown units that may consist of some weathered and transferred sedimentary rocks.
By using the geological map of the study area (see Figure 1) as a reference, it is obvious that the most of
the reported ore mineralizations in the study area are located in the interior of class 3 (advanced argillic
alteration zone) of the BRMT classification map (Figure 7). Thus, some perspective zones (green pixels)
could be considered in the southwestern and northeastern sectors.

Figure 7. BRMT classification map for the study area.

Within the VNIR+SWIR interval, for identification of the n-D classes (#1 to #10) derived from the
n-Dimensional visualization analysis technique (see Figure 3), diagnostic absorption features related
to electronic process intensities and crystal field transitions due to Fe2+, Fe3+, and REE transitional
metals in the VNIR [76,77] and vibrational overtones of the fundamental Al-OH/Fe-OH/Mg-OH and
CO3 in the SWIR [78,79] should be taken into consideration. Generally, dominant spectral patterns
correspond to the most abundant minerals or spectrally dominant mineral groups. Subordinate
spectral patterns produce spectral variability due to spectrally less active or less abundant phases in
the rock [80]. Therefore, the wavelength shift of the distinctive absorption features directly or inversely
depends on the abundance of spectrally active mineral groups within the rocks. Comparison of the
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absorption characteristics of the n-D classes extracted for the study area with the USGS spectral library
indicate some spectrally distinctive mineralogical phases (see Figure 2). The n-D class #1 does not
contain any distinctive absorption features related to alteration minerals and could be considered as an
unaltered/unknown class. The n-D class #2 represents diagnostic absorption features related to Fe3+
transitional metals, coinciding with bands 2 and 3 of ASTER. Thus, it contains iron oxide/hydroxide
absorption features, which are attributable to hematite. There are no recognizable absorption features
in the n-D class #3, which can be classified as unaltered/unknown.

Analyzing the n-D class #4 and n-D class #5 indicates spectral signatures attributed to jarosite,
which correspond with bands 2, 3, and 7 of ASTER (see Figure 2). In fact, band 7 of ASTER is able
to detect Fe-OH absorption features caused by jarosite and/or Fe-muscovite [81]. So, the n-D class
#4 might contain spectral signatures of other mineral groups with subordinate spectral patterns.
The n-D class #6 represents chlorite due to major Mg, Fe-OH absorption properties in band 8 of ASTER
(2.30–2.360 μm). A major Al-OH absorption feature positioned in band 6 of ASTER is obvious in the
n-D class #7, which reflects the spectral signatures of illite (see Figures 2 and 3). The n-D class #8 might
be considered as mixed spectral signatures of illite, muscovite, and montmorillonite. The n-D class #9
is characterized by a strong absorption feature centered at 2.20 μm (coinciding with band 6 of ASTER),
which is attributable to muscovite/montmorillonite (see Figures 2 and 3). The n-D class #10 exhibits
mixed spectral signatures of hematite and jarosite (see Figure 2).

Fraction images of end-members (the n-D classes #1 to #10) resulting from MTMF analysis appear
as a series of greyscale rule images (one for each extracted end-member) for the study area. High
digital Number (DN) values (bright pixels) in the rule image represents the subpixel abundance of
the end-member mineral in each pixel and map its location. The pseudo-color ramp of greyscale rule
images was generated to illustrate high fractional abundance (high DN value pixels) of end-members
(the n-D classes) in the study area (Figure 8). It helps to distinguish the contrast between subpixel
targets and surrounding areas. This contrast expresses the fractional abundance of the target mineral
present in the rule image. It should be noted here that unaltered/unknown class (the n-D class #1 and
n-D class #3) was omitted during the production of Figure 8.

Figure 8 shows the pseudo-color ramp of the n-D class fraction images derived from the MTMF
algorithm for the study area. Considering the fractional abundance of detected endmember minerals,
muscovite, montmorillonite, and illite spectrally governed the study area, while hematite, jarosite,
and chlorite have less contribution in total mixed spectral characteristics. Spatial distribution of the
minerals with similar spectral features such as muscovite and montmorillonite (absorption features
near 2.20 μm) and hematite and jarosite (absorption features near 0.48 μm to 0.85 μm) is comparable.
It derives from the fact that ASTER multispectral signatures contain some limitations for detecting
subtle differences between analogous absorption characteristics especially when mixture occurs.
However, the ASTER VNIR and SWIR bands are sufficiently positioned to detect spectral feature
differences between important key minerals [82]. Referencing geological map of the study area
(see Figure 1), muscovite/montmorillonite/illite mineral assemblages are typically concentrated in the
central, southwestern, and northeastern parts associated with dacitic and andesitic units. Nevertheless,
hematite/jarosite/chlorite mineral assemblages are present in low surface abundance (Figure 8). The high
concentration of iron oxide/hydroxide minerals is noticeable in the western and southwestern part
of the study area associated with trachyandesite basalt units. In this part, the fractional abundance of
muscovite/montmorillonite/illite is not high (Figure 8). Accordingly, the southwestern and northeastern
parts of the study area contain a number of mineralogically interesting zones for ore mineralizations and
holding high potential zones for future systematic exploration program.

SAM classification technique was implemented for mapping the spatial distribution of prevalent
minerals such as hematite, jarosite, montmorillonite, illite, muscovite, and chlorite in the alteration
zones. Hematite contains absorption features in bands 1 and 3 of ASTER. Jarosite shows absorption
characteristics in bands 1, 3, and 7 of ASTER. Montmorillonite displays weak absorption features
in band 5 and strong absorption features in band 6 of ASTER. Illite exhibits distinctive absorption
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properties in bands 5 and 6 of ASTER. Muscovite has absorption features in bands 1, 2, and 6 of
ASTER. Chlorite contains absorption characteristics in bands 1, 2, and 3 and diagnostic absorption
features in band 8 of ASTER (see Figure 3). Therefore, these spectral absorption signatures of alteration
minerals in the VNIR+SWIR bands of ASTER can be used for detecting subtle differences between
alteration minerals by running the SAM algorithm. Figure 9 shows the SAM classification map
for the study area. Detailed spatial distribution of the selected minerals was mapped within the
alteration zones. Montmorillonite, muscovite, and illite are the most dominated minerals in the argillic,
phyllic, and advanced argillic alteration zones. However, hematite and jarosite demonstrate moderate
surface distribution and chlorite has very low abundance in the argillic, phyllic, and advanced argillic
alteration zones. High concentration of chlorite is mapped only in the propylitic alteration zone that is
associated with hematite and jarosite. Several concentrations of muscovite and illite are mapped in the
southwestern and northeastern parts of the study area, which previously deliberated as high potential
zones for ore mineralizations (Figure 9).

Figure 8. Fraction images of the selected n-D classes derived from MTMF algorithm for the study area.
Pseudo-color ramp was applied to greyscale rule images. n-D class #2: hematite; n-D class #4 and n-D
class #5: jarosite; n-D class #6: chlorite; n-D class #7: illite; n-D class #8: mixed spectral signatures of
illite, muscovite, and montmorillonite; n-D class #9: muscovite/montmorillonite; n-D class #10: mixed
spectral signatures of hematite and jarosite.
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Figure 9. Spectral Angle Mapper (SAM) classification map for the study area.

4.2. Fieldwork, Laboratory Analysis and Verification Results

Comprehensive geological fieldworks were carried out in the study area especially in the detected
hydrothermal alteration zones. A number of prospects and mineralogically interesting zones were
visited. The precise location of the alteration zones was recorded using GPS survey. The lithological
units and alteration zones were checked and samples were collected. Part of the hand specimen was
split off for a thin section and the rest was crushed to a grain size of less than 2 mm for XRD analysis.
In particular, the study area contains a significant concentration of advanced argillic, argillic, and
phyllic alteration zones (Figure 10A–C). However, hematite-rich altered oxidized zones and propylitic
alteration zones cover also large parts of the study area (Figure 10D–F). Typically, hematite-rich altered
oxidized zones and phyllic alteration zones show the close spatial relationship in many parts of the
study area (See Figure 10D).

Petrographic studies were carried out on thin sections of the collected rock samples. Thin
section observations indicate the transformation of primary silicate minerals (feldspars) to secondary
altered minerals (sericite, clay minerals, calcite and epidote) (Figure 11A–F). Plagioclase is typically
replaced by sericite, clay minerals, calcite, epidote, and quartz in the most of alteration zones. Veins
and subhedral grains of opaque minerals are more observable in the thin sections of advanced
argillic, argillic, and phyllic alteration zones (see Figure 11A–D). In the propylitic zone, the original
minerals are fully replcaed by secondary minerals (calcite and epidote) (see Figure 11E,F). Minerals
identified in the collected rock samples from hydrothermal alteration zones using XRD analysis
include montmorillonite, illite, goethite, hematite, muscovite, albite, orthoclase and quartz in advanced
argillic and argillic zones (Figure 12A,B); muscovite, illite, hematite, magnetite, albite, epidote, calcite,
montmorillonite, and quartz in the phyllic zone (Figure 12C,D); epidote, calcite, chlorite, albite,
anorthite, and quartz in the propylitic zone (Figure 12E,F).
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Figure 10. Field photographs of the hydrothermal alteration zones in the study area. (A) A panoramic
view of argillic alteration zones; (B) a view of the advanced argillic alteration zone; (C) a regional view
of the phyllic alteration zone; (D) a regional view of hematite-rich altered oxidized zones in association
with phyllic alteration zones; (E) a view of the propylitic zone; (F) a close up of a specimen from the
propylitic alteration zone.

The ASD spectroscopy is sensitive to detect the presence of alteration minerals with strong
absorption features in the mineralogically interesting zones. Figure 13 shows the average reflectance
spectra of phyllic, gossan (hematite-rich altered oxidized zone), argillic and propylitic rock samples.
The reflectance spectra from phyllic samples show three prominent absorption features near 1.40 μm,
1.90 μm, and 2.20 μm, due to vibrational overtone and combination tones involving OH-stretching
modes [83,84]. The absorption features near 1.40 μm and 1.90 μm in the phyllic samples can be
attributed to OH stretches occurring at about 1.4 μm and the combination of the H-O-H bend with OH
stretches near 1.90 μm [78]. The feature near 2.20 μm is due to a combination of the OH-stretching
fundamental with Al-OH bending mode [84,85]. These spectral characteristics exhibit similarities to
the spectra of muscovite (dominant absorption features located around 2.20 μm), which is a main
alteration mineral in the phyllic zone.
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Strong absorption features near 0.50 μm and 1.0 μm in the gossan samples are due to electronic
transitions in iron ions (ferric and ferrous ions) [79,83]. Moreover, the feature near 2.27 μm is attributed
to a combination of OH stretch and Fe-OH bend [78]. The two strong absorption features at about
0.50 μm and 1.0 μm are normally considered for hematite and goethite in the VNIR regions [86].
Jarosite has a diagnostic absorption feature at 2.27 μm [78]. The OH and H2O vibrational bands near
1.40 μm and 1.90 μm are also commonly seen in iron oxides/hydroxides spectra [86]. Thus, hematite,
goethite, and jarosite are major alteration mineral constituents in the gossan zone.

Figure 11. Different types of alteration mineralogy in the alteration zones. Microphotographs of
(A) argillic zone: plagioclase has been replaced by sericite and clay mineral groups; (B) advanced
argillic zones: plagioclase crystals topotactically replaced by sericite and clay mineral groups; (C) phyllic
zone: vein of opaque minerals and relicts of plagioclase that replaced by clay mineral groups and quartz;
(D) phyllic zone: relicts of plagioclase replaced by sericite; (E) propylitic zone: completely replaced
original mineralogy by calcite, epidote, and quartz; (F) propylitic zone: variolitic to sub-ophytic
texture of plagioclase phenocrysts replaced by epidote. Abbreviation: plg = plagioclase, seri = sericite,
opq = opaque minerals, qtz = quartz, epi = epidote, cal = calcite.
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The reflectance spectra of argillic samples display two overall absorption features at about 1.40 μm
and 1.90 μm (due to the OH and H2O vibrational bands) and also consist of maximum absorption
near 2.17 μm and 2.20 μm (Figure 13). Montmorillonite, kaolinite, illite, and alunite show spectral
characteristics consisting of a major absorption feature at around 2.20 μm associated with a secondary
feature between 2.16 and 2.18 μm, which are related to stretching vibration of the inner and outer
hydroxyl groups (Al-OH bending mode) [85,87]. The spectra from Propylitic samples show also
characteristics absorption features near 0.50 μm and 1.0 μm (due to ferric and ferrous iron ions) and
the OH and H2O vibrational bands (about 1.40 μm and 1.90 μm) (Figure 13). The absorption feature
near 2.35 μm in the samples is due to a combination of OH-stretching fundamental with the Mg-OH
bending mode, and the feature near 2.50 μm can be attributed to combination and overtone bands of
CO3 fundamentals, respectively [78,83]. Chlorite and epidote show distinctive absorption features at
around 2.35 μm [85]. Carbonates (calcite, aragonite, and dolomite) have diagnostic absorption features
between 2.30 and 2.50 μm [88].

Figure 12. Results of XRD analysis shows minerals of representative samples collected from (A) and
(B) advanced argillic and argillic zones; (C,D) phyllic zone; and (E,F) propylitic zone.

Comparing the ASD spectroscopy results with XRD analysis indicates most diagnostic spectral
features in the phyllic zone derived from muscovite, in the argillic zone resulting from montmorillonite
and illite, and in the propylitic zone associated with chlorite, epidote, and calcite. Considering the
XRD and ASD analysis, iron oxide/hydroxide minerals are associated with the alteration mineral
assemblages in advanced argillic and argillic, phyllic, and propylitic alteration zones. Table 5A,B shows
the accuracy assessment results for the MTMF and SAM methods based on GPS survey collected during
fieldwork. Analysis of the statistical factors indicate that the overall accuracy and Kappa Coefficient
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for MTMF and SAM are 95.7 and 0.93 (see Table 5A) and 84.4 and 0.78 (see Table 5B), respectively.
The assessment emphasizes that both MTMF and SAM methods provide accurate mapping results
in the study area. However, the MTMF method was capable of providing more accurate results for
mapping the surface distribution of hydrothermal alteration minerals.

Figure 13. Laboratory reflectance spectra (average) of altered rock samples collected from phyllic,
gossan, argillic, and propylitic zones. The main absorption feature spectra attributed to Fe+2, Fe+3,
OH, H2O, Fe-OH, Al-OH, Fe, Mg-OH, and CO3 are annotated. A sensor-shift could be seen around
1.0 μm especially for gossan and argillic zone.

5. Conclusions

ASTER remote sensing data processing provides maps of surface alteration mineralogy for the
Moaleman region of the TCMB, which illustrate several high potential zones of polymetallic vein-type
mineralization. The image processing algorithms implemented in this analysis, including the SPCA,
BRMT, SAM, and MTMF provided a consistent way to identify and map hydrothermal alteration
zones in the study area. The SPCA, BRMT spectral transformation algorithms used in this study were
capable of mapping the surface distribution of hydrothermally altered rocks and lithological units.
The surface distribution pattern of iron oxide/hydroxide minerals, argillic alteration zone, phyllic zone,
and propylitic zone was mapped in the study area using a unique contribution of eigenvector loading
in the SPC3. Iron oxide/hydroxide minerals and propylitic zones showed similar spatial distribution,
while strong analogous surface distribution patterns were more obvious for argillic, phyllic, and iron
oxide/hydroxide minerals zones. The BT1, BT2, and BT3 hold most of the spectral information in the
image, which was extracted by the BRMT algorithm. The most spectrally dominated hydrothermal
alteration zones, including argillic, phyllic, and advanced argillic alteration zones were revealed.
Additionally, the BTs contain a negative contribution > 3% providing comprehensive information as
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eight different lithological/alteration/weathered classes (C1 to C8) for the study area. Therefore, more
alteration/lithological information can be obtained from the BRMT algorithm compare to the SPCA.

Ten endmembers (n-D classes) were extracted using n-dimensional visualization method, which
indicates distinctive absorption features related to alteration minerals in the study area. Spectrally
distinctive mineralogical phases were identified, such as hematite, jarosite, chlorite, illite, muscovite,
and montmorillonite, which may have some spectral signatures of subordinate mineralogical phases.
Fraction images of end-members derived from the MTMF algorithm showed the similar sub-pixel
distribution for minerals contain analogous spectral features, which can be attributed to some
limitations of ASTER data for detecting subtle differences between equivalent absorption characteristics
especially when mixture occurs. Detailed spatial distribution of prevalent minerals including hematite,
jarosite, montmorillonite, illite, muscovite, and chlorite in the alteration zones was mapped using the
SAM algorithm. Results indicate that montmorillonite, muscovite, and illite are the most dominated
minerals in the argillic, phyllic, and advanced argillic alteration zones. However, hematite and jarosite
demonstrate moderate surface distribution and chlorite has very low abundance in these alteration
zones. A high concentration of chlorite was mapped only in the propylitic alteration zone, which was
also associated with hematite and jarosite. The MTMF results confirmed the presence of alteration
minerals and their spatial distribution at the subpixel level in the study area, while SAM mapped
subtle differences between alteration minerals in the alteration zones. The accuracy assessment results
show the MTMF method is proficient to be responsible for more accurate outcomes for mapping the
surface distribution of hydrothermal alteration minerals. Hydrothermal alteration zones and minerals
that mapped using ASTER data processing demonstrate good correspondence with the results of
field survey, petrography, XRD analysis, and spectral measurements acquired by ASD spectrometer.
A number of high potential zones of epithermal polymetallic vein-type mineralization were identified
in the study area, particularly in the northeastern and southwestern sectors, which can be considered
for future systematic exploration programs. The approach developed in this study can be used for
the exploration of epithermal polymetallic vein-type mineralization in other base metals provinces in
semi-arid regions around the world.
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Abstract: The contrast in the emissivity spectra of phosphorite and associated carbonate rock can
be used as a guide to delineate phosphorite within dolomite. The thermal emissivity spectrum of
phosphorite is characterized by a strong doublet emissivity feature with their absorption minima at
9 μm and 9.5 μm; whereas, host rock dolomite has relatively subdued emissivity minima at ~9 μm.
Using the contrast in the emissivity spectra of phosphorite and dolomite, data obtained by the thermal
bands of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor were
processed to delineate phosphorite within dolomite. A decorrelation stretched ASTER radiance
composite could not enhance phosphorite rich zones within the dolomite host rock. However,
a decorrelation stretched image composite of selected emissivity bands derived using the emissivity
normalization method was suitable to enhance large surface exposures of phosphorite. We have
found that the depth of the emissivity minima of phosphorite gradually has increased from dolomite
to high-grade phosphorite, while low-grade phosphate has an intermediate emissivity value and
the emissivity feature can be studied using three thermal bands of ASTER. In this context, we also
propose a relative band depth (RBD) image using selected emissivity bands (bands 11, 12, and 13) to
delineate phosphorite from the host rock. We also propose that the RBD image can be used as a proxy
to estimate the relative grades of phosphorites, provided the surface exposures of phosphorite are
large enough to subdue the role of intrapixel spectral mixing, which can also influence the depth
of the diagnostic feature along with the grade. We have validated the phosphorite pixels of the
RBD image in the field by carrying out colorimetric analysis to confirm the presence of phosphorite.
The result of the study indicates the utility of the proposed relative band depth image derived using
ASTER TIR bands for delineating Proterozoic carbonate-hosted phosphorite.

Keywords: ASTER; emissivity; emissivity normalization method; dolomite; phosphorite;
relative band depth (RBD)

1. Introduction

Phosphorites are known as the source rock of fertilizer, and its exploration is very important for
agriculture-dependent countries like India that have huge populations. New methods are essential for
exploring additional pockets of phosphorite as India imports 85% of the phosphorite used to make
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fertilizer [1]. In this study, we propose a simple, easily reproducible thermal remote sensing-based
method for the delineation of phosphorite as the input for detailed exploration. Phosphate minerals are
known to have diagnostic absorption features within the spectral domain of 8.3 to 11.25 micrometers [2].
However, there are no records available on the attempts made to analyze and utilize the emissivity
spectra of phosphorite (constituted with phosphate-bearing minerals) for geological exploration.
This study aims to delineate phosphorite within host rocks based on the processing of broadband
thermal multispectral data using the emissivity contrast of phosphate and dolomite. Phosphorite
or sedimentary phosphate deposit is a sedimentary rock which is constituted varieties of phosphate
minerals such as apatite, fluroapatite, etc. [3]. In phosphorite, fluorine in phosphate minerals are
often replaced by hydroxyl, chlorine irons [3]. On the other hand, host rock or associated rock of
phosphorite is primarily dolomite. Dolomite is sedimentary rock primarily constituted with different
carbonate minerals like dolomite (predominant), calcite, quartz, etc. Main constituent minerals
of phosphorite (i.e., fluroapatite) and its host rock (predominantly dolomite) have their diagnostic
emissivity features within the spectral domain of 8.3 to 11.25 micrometers [3,4]. The study is relevant
for the exploration of Paleoproterozoic phosphorite. The phosphorites of Paleoproterozoic age are
primarily hosted by dolomite, dolomitic limestone, and associated carbonate rocks in different parts of
the world, for example, the Irece Basin (eastern-central Brazil), Simian series of rocks (central Gujhao,
China), and Heerapur (Madhya Pradesh, India) [5,6]. These phosphorites occur as bands, patches of
different size within the dolomite. These patches could be resolvable in the thermal images using
the emissivity spectra of phosphate minerals. Emissivity spectra of the target are the result of atomic
and molecular vibration. Vibrational spectroscopy in the thermal infrared (TIR) domain is sensitive
to the molecular structure and chemical composition of minerals [7]. All rock-forming minerals
display spectral signatures in their emissivity spectra due to the different vibrational modes resulting
from the stretching and bending vibrations of bonds in their crystal lattices [7,8]. Most importantly,
fundamental vibrational absorptions of geologic materials occur within the spectral range of 3 to
50μm [7,8]. However, the records of mapping geological material using thermal spectra were limited to
quartz-rich igneous intrusive rocks, other silicate mineral-dominant rock types and metasedimentary
rock units [9–14]. Records are also limited on the use of broadband thermal spectroscopy to study
economically important rocks, like phosphorite.

At present, no spaceborne thermal sensor is operative which can collect emissivity spectra with a
fine spectral resolution (for example, with a spectral resolution of 10 to 30 nm). However, the spectral
domain of 8.0 to 11.5 μm is being used for space-based broadband thermal spectroscopy as it is within
the atmospheric window and suitable for detecting various silicate minerals [9–12,14]. In the present
context, five thermal spectral bands of the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) sensor operative within the spectral domain of 8.125 to 11.625 μm [15,16]
are suitable for carrying out the study of phosphorite mapping using thermal bands as different
geological targets can be targeted using quantitative mineralogical parameter such as emissivity [17,18].
ASTER was launched with the Terra satellite in 1999 and gained popularity as spectral bands of
ASTER are capable for detecting spectrally sensitive minerals like calcite, different clay minerals,
mica, etc. [15,16]. This popularity is especially true for bands in the shortwave infrared (SWIR)
spectral domain and TIR spectral domain [19–24]. ASTER TIR bands have also been widely used
for delineating feldspar-rich intrusive, e.g., albite granitoids, alkali granite, and different granitoid
systems, and also for delineating mafic igneous complexes from their silicic counterparts in geological
mapping [10,11,25–29]. However, the spectral dimensionality of ASTER TIR bands is an issue as
these bands are also known to display striping noise and a poor signal to noise ratio (SNR) [28].
Furthermore, the spatial resolutions of spaceborne thermal sensors are coarse (ASTER has 90-meter
spatial resolution for its TIR bands). Therefore, the scene within the pixels of spaceborne thermal
sensors is also heterogeneous. This heterogeneity hinders the detailed characterization of the target
using its emissivity spectrum as the emissivity of a pixel (which is containing different target) is often
different to that of the target unless the pure target occupies a considerable portion of the pixel.
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There has been an attempt to delineate phosphorite from dolomite using the contrast of their
reflectance spectra [30]. This spectral contrast in the visible near infrared (VNIR) and SWIR domain
is due to the presence of a secondary vibrational feature (overtone and combination) of carbonate
mineral in dolomite and absence of such feature in the phosphorite [31,32]. Therefore, the detection of
phosphorite in the VNIR-SWIR domain is an indirect approach. On the other hand, the TIR domain is
characterized by the doublet vibrational feature of phosphate-bearing mineral (i.e., fluroapatite) of
phosphorite [2]. There are no records on the use of emissivity spectroscopy to delineate carbonate
and phosphate and corresponding upscaling to the broadband emissivity of ASTER bands. Here,
attempt has been made to derive an image enhanced product to delineate phosphorite and also use
the same product as the proxy to find the relative grade variation in phosphorite under specific
condition. Therefore, an approach is proposed for targeting Palaeoproterozoic phosphorite based on
the spectral contrast of phosphorite and the host rock dolomite in the TIR bands of ASTER. The potential
of broadband emissivity feature as a proxy to process the ASTER TIR bands to delineate low and
high-grade phosphorite from the host dolomite rock has been analyzed in this study. In this regard,
we studied the emissivity contrast of dolomite and phosphorite in their laboratory spectra and also in
ASTER TIR sensor resampled counterparts. Further, we compared the image-based emissivity spectra
of phosphorite pixels with their corresponding ASTER resampled laboratory spectra to ensure that the
spectral features of phosphorite have been translated from ASTER resampled laboratory spectra to
their image spectra. After confirming the translation, the relative spectral emissivity bands of ASTER
(derived from ASTER level 1B data) were processed to derive an appropriate index image to delineate
phosphorite. Potential of the relative emissivity extraction method in preserving the shape of the
emissivity spectra of minerals and rocks, provides the scope of deriving a simple and reproducible
method to delineate phosphorite using their broadband emissivity spectra [12,33–35].

2. Study Area and Geology

The study area is located 18 km southeast of Udaipur, one of the major towns of Rajasthan,
the largest state of India (Figure 1).

Table 1. ASTER thermal infrared (TIR) data specifications (here visible–near-infrared (VNIR) bands are
used for preparing the study area map while data processing is restricted to TIR bands). Band 6 to
Band 9 are part of ASTER short wave infrared(SWIR) region. These SWIR spectral bands are not used
in this study.

Sensor Type Band Number
Spectral Width or

Wavelength Range (μm)
Spatial Resolution

(meter)
Radiometric

Resolution (in bits)

Visible Infrared
(VNIR) 1 0.52–0.60 15 8

2 0.63–0.69 15 8

3N 0.78–0.86 15 8

Thermal Infrared
Sensor (TIR)

Band 10 8.125–8.475

90 12
Band 11 8.8475–8.825

Band 12 8.925–9.275

Band 13 10.25–10.95

Band 14 10.95–11.65
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Figure 1. The extent of the study area is shown on the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) false color composite image prepared using visible and near-infrared
bands of ASTER. In this false color composite image, Red = Band 3 of ASTER visible near infrared
(VNIR) sensor, Green =Band 2 of VNIR sensor, Blue =Band 1 of VNIR sensor of ASTER. For specification
of ASTER VNIR bands, please refer Table 1.

In the study area, phosphorite is associated with carbonate-rich sediments of the Aravalli Super
Group [36]. A geological map of the study area is presented in Figure 2. Although the grade of
the regional metamorphism is low for these sediments (metamorphosed under green-schist facies),
at places, higher grade metamorphism is also reported [37]. The distribution of different depositional
facies, particularly dolomite with stromatolitic phosphorite, is controlled by paleo sea floor topography
suggesting the presence of an epicontinental sea during the deposition of phosphorites [36]. It has also
been suggested that the deposition of phosphorite and dolomite were triggered in the Paleoproterozoic
period after the ephemeral relief in the platform part of the paleo sea was obliterated by intense
weathering [37,38]. Dolomitic marble, dolomite, stromatolitic limestone, cherty quartzite phyllite,
and quartzite are the major sedimentary rock units of the Aravalli Group while metavolcanics are
intermittent volcanic units of a volcano-sedimentary sequence of the lower Proterozoic period in the
study area. Granite gneiss, amphibolites, migmatites, etc. are part of the basement rock above which
Aravalli sediments were deposited (Figure 2).
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Figure 2. Lithological Map of the area (Source: Geological Survey of India (GSI); Unpublished).
Triangles are important locations where phosphorites are exposed.

3. Materials and Methods

3.1. Materials

3.1.1. Rock Samples

In the study area, we have identified two major types of phosphorite: one type is low-grade
phosphorite with P2O5 content 10–15% and another variant is high-grade Stromatolite bearing
phosphorite with P2O5 content 28–30%. Low-grade phosphorite is massive and rich in dolomite
mineral with fluroapatite. High-grade phosphorite is stromatolitic, easily weathered, and constituted
with primarily fluroapatite. In these stromatolitic phosphorites, we either have both dolomite and
fluroapatite as dominant minerals, or it is predominantly constituted with fluroapatite. Mode of
occurrence of the samples in the field (dolomite, low-grade, and high-grade phosphorite) is shown
in Figure 3. The dolomite and associated phosphorites are exposed on the denudational hills and
pediment surface. Samples are collected from the surface exposures of these geomorphic units
for the spectral analysis. Initially, large samples were broken from the surface exposures of rocks.
Each representative sample was broken into few fragments. One sample fragment was used for spectral
analysis, and other two fragments were used for X-Ray diffraction (XRD) and X-Ray fluorescence (XRF)
analysis, respectively.
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Figure 3. (a). Surface exposures of dolomite. (b) Surface exposures of low-grade rock phosphate (c).
Surface exposures of high-grade phosphorite.

3.1.2. ASTER Data

ASTER has nine bands in the VNIR and SWIR spectral domain and five bands in the TIR
domain [15,16,39,40] (Table 1). The TIR subsystem of the ASTER sensor operates within the spectral
domain of 8.125 to 11.65 μm and is characterized by five spectral bands. These channels collect spectral
data using a single telescope with a spatial resolution of 90 m. It has a “whiskbroom” scanning
mirror [40]. Each band uses ten mercury–cadmium–telluride detectors that are cooled to 80 K using
a mechanical split Sterling cycle [40]. We have used ASTER Level 1B data for the spatial mapping
of phosphorite rich zones within the study area. The reason for selection of ASTER Level 1B data
was guided by the previous study results obtained by different researchers using the same type of
dataset (ASTER Level 1B) on the derivation of the mineralogically sensitive geological index [11,12,25].
Use of Level 1B data would also help in reducing the uncertainties resulted from the implementation
of atmospheric correction algorithms on the radiance data [10,11]. Further, we assumed that the role
of the atmosphere would be minimal in the recorded radiance of the thermal multispectral sensor,
which has its spectral bands in atmospheric window of TIR domain. Further, records are available
on the derivation of relative emissivity from Level 1B data of ASTER TIR bands [33,34] Emissivity
normalization is one of such proven method which is known to be effective in deriving the shape of
emissivity spectra [41,42].
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3.1.3. Spectral Data

Emissivity spectra of representative samples of dolomite and major variants of phosphorite were
collected in the laboratory. We have collected thermal emissivity spectra within the spectral domain
of 8 to 12 μm using a portable Fourier-transformed (FT)-infrared (IR) spectrometer manufactured by
D&P Instruments, United States of America [43]. The spectrometer has a functional spectral range of 2
to 16 micrometers. However, we have not processed and analyzed the emissivity spectra of the rock
samples for the spectral domain of 2 to 8 μm as this domain is beyond the spectral range of ASTER TIR
bands. The spectral resolution of the spectrometer is 4 cm−1 wave number within the spectral range of
8.125 to 11.67μm (i.e., the spectral range of ASTER). The spectrometer is composed of a nitrogen-cooled
indium–gallium arsenide/mercury cadmium telluride detector [40] and worked on the principle of
Fourier-transform [44]. Therefore, it can collect spectral data for very large wavelength domains.

3.1.4. Mineralogical and Chemical Data

XRD data of representative samples of phosphorites are used to estimate the minerals present in
the samples to understand how mineralogy (i.e., dominant constituent minerals) contributes to shaping
the Emissivity spectra of phosphorite samples. We used a specialized diffractometer system (6E-XRD
3003 TT automated system) to carry out diffraction studies of the powdered samples (200 mesh size)
using the characteristic CuK(α) radiation (crystal monochromated).

A wavelength dispersive XRF instrument (MagiX Pro PW 244-PANalytical model) was used to
estimate the major oxides with the primary emphasis on understanding the variation of P2O5 content
in the phosphorite samples. Sample preparation method followed for collecting XRD and XRF data is
similar to the method; which has been discussed in the literature [30].

3.2. Methods

3.2.1. Spectral Data Collection and Analysis

We have collected representative samples of dolomite and major variants of phosphorite samples
from the study area. These samples were cut into rectangular blocks of 4-inch x 5-inch size to 5-inch
x 6-inch size range. Samples were placed under the optics of the spectrometer and viewed with
the optics to ensure that the emittance of the samples was collected from the sample surface only.
Emissivity spectra of representative samples of phosphorite and host rock were derived from the
collected emitted radiance of the sample and black body in the laboratory using an FTIR spectrometer
(Figure 4). An emissivity spectrum is a plot of emissivity as a function of wavelength. Here, emissivity
is derived by estimating the ratio of the emitted radiance of the sample to the emitted radiance of a
blackbody at a specified temperature. We collected the emitted radiance of the sample after elevating its
temperature using a heater to ensure that the emissivity spectra are collected with a high signal to noise
ratio (SNR). We also maintained the isothermal condition during the measurement of emitted radiance
by keeping the sample above a low conductive unit so that it would not conduct its accumulated
heat fast. Before measuring the emitted radiance of the sample, we calibrated the instrument by
measuring the emitted radiance of a blackbody at two different temperatures. One measurement was
taken at 10 ◦C (lower than ambient temperature), and another was taken a few degrees centigrade
higher than the temperature of the hot sample [44]. Measured emitted radiance of a black body at two
different temperatures (one higher than the sample temperature and the other lower than the sample
temperature) was helpful to estimate the emitted radiance of a blackbody at the same temperature with
that of the sample [44]. Black body emitted radiance was used to normalize the emitted radiance of the
sample to derive the emissivity of the sample temperature. The instrument performs satisfactorily
within the temperature range of 5◦ to 40◦ centigrade [43].
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Table 2. Results of XRD and X-ray fluorescence (XRF) analysis of representative samples of phosphorite
and dolomite to identify the presence of the dominant mineral phases and their relative proportion
along with the P2O5 Content [30].

Nature of Samples Sample No. and Details
Major Dominant Minerals Identified Using
XRD Data (Arranged as Per the Decreasing

Order of Relative Abundance)

P2O5 Content in %
(XRF)

Phosphorite and
dolomite

P1(low-grade
phosphorite) Fluroapatite, dolomite 13.94

P6 (Dolomite) Dolomite, quartz —-

P9 (Dolomite bearing
high-grade phosphorite) Fluroapatite, dolomite, 38.53

P11 (Dolomite depleted
high-grade phosphorite) Fluroapatite, quartz 39.11

Figure 4. Continuum removed thermal emissivity spectra of representative samples of dolomite and
phosphorites (P1 is low-grade; P11 and P9 are medium-to-high-grade phosphorite; P6 is dolomite ).
Broad mineralogy of the samples and P2O5 content of the samples are given in Table 2. Wavelength
positions of five TIR bands of ASTER are also shown (B1 to B5).

While collecting emissivity spectra, blackbody temperature is regulated using electrostatic
heating [44]. The facility to perform electrostatic heating is in-built in the spectrometer. We used a
gold plate having a low emissivity (0.2) to measure the contribution of downwelling radiance [44].
Downwelling radiance is subtracted from the emitted radiance of the sample and blackbody before
their respective emittance/emitted radiance values are used to derive emissivity. The conceptual
framework and methodology to collect emissivity spectra have been discussed in the literature [44,45].

In this study, the emissivity spectra of different grades of phosphorite (broadly two grades:
10–15% and 38–40% P2O5 content) were compared with the emissivity spectrum of dolomite (Figure 4).
Higher-grade phosphorites are represented by two specific types: one is dolomite-bearing phosphorite
and the other is stromatolite without the presence of dolomite as a constituent mineral. We compared
spectral contrast of major targets (different phosphorite and dolomite) and also analyzed the spectral
contrast of different samples of each variant of phosphorite and dolomite to understand the inter-rock
and intrarock variation of the emissivity spectra (Figures 4 and 5). Further, the emissivity spectra
of specified grade phosphorite samples and host rock were compared with the emissivity spectra of
respective dominant constituent minerals to understand how mineralogy influences the emittance
spectra of rocks [45,46] (Figure 6). Laboratory emissivity spectra of rock samples were also resampled
to the ASTER bandwidth to understand how spectral contrast of dolomite and host rock was translated
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from sample to ASTER bandwidth (Figure 7). An attempt was also made to understand how spectral
contrast between dolomite and phosphorite would be gradually reduced if the spectra of both the
end members are linearly mixed within a pixel of ASTER TIR sensor, which is of 90-m size (Figure 8).
In order to derive spectra of pixels mixed with dolomite and phosphorite in different proportion,
we added their respective pure spectra with different weights. Weights are assigned based on the
assumption that spatial extent (in terms of fraction) of the pixel is occupied by only these two targets
(i.e., dolomite and phosphorite) in different fractions. This was required to understand the role of other
factors such as intrapixel mixing in reducing the spectral contrast of dolomite and phosphorite except
for the grade (i.e., P2O5) of phosphorite. Detailed results related to the analysis of spectral data are
discussed in the results section.

Figure 5. (a) Emissivity spectra of different samples of host rock dolomite(different samples of same
rock type are denoted P6_1, P6_2, and so on). (b) Emissivity spectra of different samples of low-grade
phosphorite (different samples of same rock type are denoted P1_1, P1_2, and so on). (c) Emissivity
spectra of medium to high-grade phosphorite (different samples of same rock type are denoted P9_1,
P9_2, and so on). (d) Emissivity spectra of high-grade phosphorite (different samples of same rock type
are denoted P11_1, P11_2, and so on).
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(a) (b) 

(c) (d) 

Figure 6. (a). Continuum removed thermal spectrum of dolomite (P6) and the spectra of the dominant
constituent mineral are plotted. (b) Continuum removed thermal spectrum of low-grade phosphorite
(P1), and the spectra of dominant constituent minerals are plotted. (c) Continuum removed thermal
spectrum of medium to high-grade phosphorite (P11) and the spectra of dominant constituent minerals
are plotted (d). Continuum removed thermal spectrum of medium to high-grade phosphorite (P9) and
the spectra of dominant constituent minerals are plotted. Mineral spectra is collected from United
States Geological Survey (USGS) spectral library. The spectral data base is available with ENVI 5.1
software package. Wavelength positions of five TIR bands of ASTER are also shown (B1 to B5).

We also compared the shape of the broadband emissivity spectrum of phosphorite of ASTER
pixel with the ASTER resampled counterpart (Figure 9). This was required to confirm the fact that
image-based emissivity spectra of phosphorite could preserve the broadband emissivity feature of
the phosphorite that has been observed in the ASTER resampled laboratory spectra. Image-based
emissivity spectra were collected from a few regions of interests (ROI) distributed above the known
phosphorite exposures around Jhamar\Kotra and Sameta areas. This has made the basis for ASTER
TIR image processing for delineating phosphorite within its host rock.
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Figure 7. ASTER resampled spectra of representative samples of phosphorite and dolomite.
Wavelength positions of five TIR bands of ASTER are also shown (B1 to B5).

Figure 8. Comparison between phosphorite, dolomite and their intermediate mixed variants.
Intermediate mixed variants are derived by linear mixing Emissivity spectra of dolomite (S1) and
phosphorite (S2) to understand the role of intrapixel mixing in the detection of phosphorite. Wavelength
positions of five TIR bands of ASTER are also shown (B1 to B5).
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Figure 9. Comparison between the ASTER TIR band resampled mean high-grade phosphorite
spectrum and with the few image spectra of phosphorite pixels. These pixels are the known exposures
of phosphorite around the Jhamar Kotra mining area. Wavelength position of ASTER five TIR bands
are also shown (B1 to B5).

3.2.2. Mineralogical and Chemical Analysis

Original representative samples of phosphorite and dolomite were broken into three pieces to carry
out mineralogical and elemental analysis along with the analysis of emissivity spectra. One piece of the
sample of each type of rock was used for the collection and analysis of emissivity spectra. The other two
pieces of the same sample were used for XRF and XRD analysis respectively. A wavelength dispersive
XRF instrument was used to estimate the dominant oxides. Representative samples of phosphorite and
dolomite were pulverized and consequently sieved using 200-mesh sizes for XRF samples. The results
of XRF analysis are given in Table 2. In this study, P2O5 content is only used to relate this chemical
data with the depth of the broadband diagnostic emissivity feature of different phosphorite samples.

We used the diffractometer system (6E-XRD 3003 TT automated system) to utilize the CuK(α)
radiation (crystal monochromated) for X-ray diffraction studies of the powdered samples (200 mesh size).
Before performing XRD measurements, phosphorite rock samples were pulverized and consequently
sieved using 80-mesh sieves. After obtaining the desired grain size, we separated the lighter mineral
phases (e.g., phosphate and dolomite) from the heavier mineral fractions using methylene iodide
solution. We have separately analyzed powdered fractions of dolomite and apatite minerals using
the diffractometer to avoid the overlapping of peaks of different mineral phases in the diffractograms
of the samples. Predominant minerals (i.e., fluorapatite, dolomite, and quartz) were only identified
using XRD analysis based on their peaks at a specified incident angle (Figure 4). The mineralogy of
samples with their relative abundance derived from XRD study was used as a reference to analyze the
emissivity spectra of rocks.

3.2.3. ASTER Data Analysis and Field Validation

We analyzed ASTER Level 1B “at sensor radiance” data with reference to the geological map of the
study area. Paleoproterozoic phosphorites are primarily associated with dolomite or other carbonate
rocks. Therefore, we processed the ASTER data for a portion of the study area; which was covering the
spatial extent of the host rock—dolomite. In this regard, we used the lithological boundary of dolomite
as delineated in the geological map of the Geological Survey of India to spatially subset the ASTER
TIR image. The spatial subsetting of the ASTER image is useful in reducing the number of targets to be
delineated in ASTER thermal bands. This may enhance the mapping accuracy (as number of unknown
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to be detected will be few) as ASTER TIR bands are known for poor intrinsic dimensionality due to the
presence of striping noise and the poor signal received at band 14 of the sensor [28,29].

Based on the broadband emissivity features of phosphorite, we prepared image composite using
three radiance bands after attempting decorrelation stretching (Figure 10). We derived the radiance
image composite after extracting the desired portion from the ASTER scene using the lithological
outline of dolomite as “region of interest” (Figure 11). Further, we enhanced the separability of surface
exposures of phosphorite rich zones from host rock by deriving the emissivity image composite.
In this regard, we derived emissivity using the “emissivity normalization” method. The image-based
emissivity product derived using the above method is known for preserving the overall shape of
emissivity spectra and the wavelength of diagnostic emissivity features of the target [33,34,42]. In this
method, temperature values of the pixels were derived for each spectral band using a fixed emissivity
value (0.96) [42]. Consequently, we derived spectral emissivity for each pixel using the highest
temperature value of each pixel (i.e., from the set of different temperature values in different bands)
derived using fixed emissivity in the first instance. Before deriving relative emissivity from the ASTER
thermal radiance bands, we implemented “in-scene atmospheric correction” on ASTER radiance
bands based on the assumption that atmosphere remained uniform over the scene and a black body
is present in the scene [47]. In this method, we also assumed that the atmosphere is single layered
and downwelling component of atmosphere is absent. Atmosphere calibration is made based on
deriving gain and offset by regressing measured and theoretical radiance of blackbody at specified
wavelength. In the scene, pixels which record highest temperature are assumed as the mathematical
approximation of black body [47]. After calibrating the scene using thermal atmospheric correction,
emissivity normalization method was implemented. For delineating phosphorite, we also used three
emittance bands to derive decorrelation stretched emissivity composite image to delineate phosphorite
within dolomite (Figure 12).

Figure 10. Decorrelation stretched false color composite prepared using spectral bands of ASTER level
1B radiance data. In this image composite, Red = Band 13, Green =band 12, and Blue = band 11 of
ASTER thermal infrared sensor. Please refer to Table 1 for ASTER TIR band nuber detail.
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Figure 11. Decorrelation stretched emissivity normalization composite derived using red= emissivity of
band 13, green= emissivity of band 12, and blue= emissivity of band 11. In this figure, Phosphorite pixels
are enhanced with a red and pinkish-magenta color. Please refer to Table 1 for ASTER TIR band
nuber detail.

Figure 12. Density sliced relative band depth image derived using three emissivity bands of ASTER
(Band 13+Band 11)/Band 12. Relative subpixel abundance of phosphate is increasing with yellow to
red color, while blue zones are dolomite.
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Further, a relative band depth (RBD) image was derived using emissivities of bands 11, 12, and 13
(derived using the emissivity normalization method) to enhance the strong emissivity minima on
emissivity spectra of phosphorite (Figure 12). This RBD image was derived as per the contrast observed
in the ASTER resampled laboratory emissivity spectra of dolomite and phosphorite and their mixed
variants (Figures 8 and 9). We derived a relative band depth (RBD) image to delineate rock phosphate
using a single band product. Finally, we validated the TIR image enhanced products (RBD image
and emissivity image composite) by visiting the field locations of phosphorite pixels and confirming
the presence of phosphorite based on rapid colorimetric analysis of samples collected from the rock
exposures (small rectangles) (Figure 13). In this regard, the pulverized rock samples (rock samples
were broken and manually pulverized) were mixed with an acidic ammonium molybdate solution to
rapidly identify the presence of phosphate in the sample.

Figure 13. (a). Density sliced relative band depth image for Kharawarja (Matun). (b). Sameta and the
Jhmar Kotra mine. High phosphorite rich zones have been demarcated with red color. Field check
areas beyond the present mine are shown with a rectangle. Field validation in the east of the Kharwarja
area (c) and south of the Kharwarja area (d) and Sameta area (e).

4. Results and Discussion

We analyzed the emissivity spectra of representative samples of different rocks to understand
inter-rock emissivity variation (Figure 4) of phosphorite and dolomite. We also analyzed the contrast
in the emissivity spectra of different samples of same rock type (Figure 5). We found emissivity
spectra of different samples of the same rock were similar to each other and overlapping one over
the other. Therefore, emissivity spectra of different samples of same rock were stacked and plotted
(Figure 5a–c). It is quite evident that the emissivity contrast of different samples of same rock would be
indistinguishable when we would analyze their ASTER resampled counterpart or their image spectra
as the broad emissivity spectra would be further more generalized. Therefore, we concentrated our
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study to identify the inter-sample emissivity contrast in this study and used the inter-rock emissivity
variation as a reference for processing ASTER TIR bands. In the study area, we found one low-grade
and two high-grade variants of phosphorite. Details of these samples were discussed in the Section 3.1.
We further analyzed the mineralogical significance of emissivity spectra (and related contrast) of
dolomite and phosphorites using the XRD data of these samples as the reference (Table 2). Analysis of
Emissivity spectra is the basis for processing of the ASTER data. Therefore, we analyzed the emissivity
spectra of low-grade and high-grade phosphorite and host rock with reference to the emissivity spectra
of their constituent minerals (Figure 6). While analyzing the emissivity spectra of these samples, it was
observed that phosphorite had a strong doublet with minimal at 9 μm and 9.5 μm, while emissivity
spectrum of dolomite sample was characterized with emissivity minima at 11.2 μm [2] (Figures 4
and 6a). Similar to dolomite, a diagnostic emissivity minima (i.e., at 11.2 μm) was also observed
in the low-grade phosphorite (i.e., P1), but the same feature is obscured in the emissivity spectra
of dolomite depleted, high to moderate grade phosphorite samples (P11) (Figures 4 and 6a–c). We,
however, could identify the same feature in the emissivity spectra of dolomite-bearing high-grade
phosphorite (Figure 6d). The fundamental vibration of carbonate bonds governs the emissivity minima
at 11.2 μm [48]. In contrast, the emissivity doublet of phosphorite is absent in the emissivity spectra
of dolomite samples (sample P6) (Figure 4), and subdued emissivity minima are identified in the
dolomite emissivity spectrum (Figure 6a). The above details on the spectral contrast of dolomite and
phosphorite are subdued in the ASTER resampled emissivity spectra of these samples (Figure 8).

However, we observed that the ASTER resampled emissivity spectra of phosphorite samples
had the stronger depth of emissivity minima with respect to the dolomite emissivity feature at 9.2 μm
(Figure 7). Depth of the emissivity feature of high-grade variant was more than the low-grade variant
of phosphorite.

It is known that the emissivity minima of emissivity spectra of rocks and constituent minerals can
be studied to estimate relative grade or compositional variation based on the assumption that the grain
size has a negligible influence on the quantitative parameters (i.e., depth and width) of emissivity
features [48,49]. In the study, this assumption may be true as dolomite, and different phosphorites had
similar grain size. This provided us a scope to relate emissivity minima with the grade or P2O5 content.
We found that the depth of broadband emissivity minima of phosphorite correlates broadly with two
phosphorite grade or variants present in the study area (Figure 8 and Table 2). This assumption is
made based on the observation that high-grade phosphorite (high P2O5 content) has a larger depth
of its diagnostic emissivity feature with respect to lower grade phosphorite. However, in addition
to grade, the spectral purity of the pixels of the ASTER image may also influences the depth of
emissivity minima. The depth of the broad emissivity feature gradually reduces (i.e., the depth will be
reduced) if the dolomite is linearly mixed with different proportions of phosphorite within the spatial
extent of the large pixels of the ASTER bands. The role of intrapixel mixing in reducing the depth of
emissivity feature has been analyzed based on deriving mixed pixel spectra by linearly combining
ASTER resampled emissivity spectra of dolomite and phosphorite (high-grade variants) with different
weights (proportional to their respective spatial abundance in the pixel) (Figure 8). We found that
the depth of the emissivity feature of phosphorite would be gradually reduced with the decrease in
the relative spatial abundance of phosphorite within the pixel. Therefore, delineation of phosphorite
within the dolomite would be difficult if the patchy or very small phosphorite exposures are mixed with
the exposure of dolomite occupying the major portion of the pixel. However, broadband emissivity
minima of phosphorite can be used to derive ASTER based image products to delineate large exposures
of phosphorite and also can be used to relatively delineate the grade of phosphorite exposures from
the low-grade variants provided the exposures are of larger size.

Further, we also confirmed that the shape of the image spectra of phosphorite pixels was
comparable with the ASTER resampled laboratory counterpart of emissivity spectrum of phosphorite.
This was ascertained by cross-comparing the spectra of phosphate mines at selected places with
the ASTER resampled emissivity spectrum of high-grade phosphorite (Figure 9). The comparative
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assessment of image spectra of phosphorite with respect to ASTER resampled laboratory counterpart
is essential to ascertain the spectral consistency of target from ground to sensor.

Consequently, we processed the ASTER TIR bands based on the analysis of the emittance spectra of
dolomite and the two major variants of phosphorite, as discussed in the previous section. ASTER data
were further processed for the portions covering the spatial extent of host rock dolomite as the main
or large exposures of phosphorite occur within dolomite/dolomitic marble. We prepared the ASTER
radiance image composite using selected radiance bands after attempting the decorrelation stretching.
In the radiance-composite image of ASTER TIR bands (prepared using bands 11–13) we could not
delineate phosphorite exposures effectively (except some patches on Jhamarkotra mine (Figure 10).
Consequently, we prepared an emissivity composite to delineate large surface exposures of phosphorite
using the emissivities of bands 11–13. In this image product, phosphorite exposures were enhanced
with pinkish-red color (Figure 11). We also derived a relative band depth (RBD) image (Figure 12) using
the emissivity patterns defining the shoulders (bands 11 and 13) and absorption minima (band 12) of
the broadband emissivity feature of phosphorite (Figure 7). A higher value of this RBD image was
indicative of progressive phosphorite enrichment within the dolomite as the depth of the emissivity
feature was broadly related to the phosphate grade (i.e., higher grade phosphorite had a larger depth
than the lower grade variant), provided the phosphorite exposures were large (Figures 7, 8 and 12).
In this colour density sliced RBD image, “red colored” pixels were indicative of high-grade phosphorite
while yellow colored pixels were indicative of low-grade phosphorite. Blue pixels indicated the
presence of dolomite.

We carried out field validation to clarify the results of RBD images at the selected sites. We collected
rock samples from the exposures identified with red or yellow pixels in the RBD image. Most of the
areas are phosphate bearing. Phosphorite-bearing rock powders were found to have changed color
from colorless to yellow as ammonium molybdate reacts with phosphate to precipitate “yellow colored”
ammonium phosphate [50].

In this regard, we identified phosphorite within dolomite by injecting acidic ammonium molybdate
solution in the pulverized sample of rock collected from the rock exposure at the west of Kharwarja.
The RBD image shows an intermediate value with yellow color at this site (shown with rectangle).
The phosphorite is associated with the dolomite, and the reported grade was low [37] (Figure 13a,c).
We could also identify the presence of stromatolitic phosphorite at a site occurring at the south of
Kharwarja, The site had relative high value in RBD image as it was above the red pixels of RBD image
(Figure 13a,d). Stromatolitic phosphorites are high-grade phosphorite in the study area [37]. Similarly,
stromatolitic phosphorite was also identified in a site situated to the north of Sameta (Figure 13b,e).
We showed the field location of this site with a small rectangle on the RBD image and site was above
the high-value pixels (i.e., it is red colored) of RBD image.

The proposed method of phosphorite mapping using TIR bands would be applicable for any
Proterozoic dolomite hosted phosphorite deposit in any part of the world. The proposed RBD image
can also be used to identify the relative grade variations in the phosphorite exposures provided the
exposures are large enough to make band depth values of RBD image invariant to the modifications;
which could be due to intrapixel mixing and the mapping was attempted within the spatial extent
of host rock of phosphorite. The proposed method is rapid and can be used to identify areas with
high phosphorite content for the detailed exploration of rock-phosphate. Index-based delineation of
phosphorite using ASTER TIR bands is guided by characteristic absorption feature of phosphorite.
Therefore, index images derived from ASTER relative emissivity bands would not only help in the
delineation of phosphorite, but also would help in relatively estimating grade of phosphorite with large
and homogeneous surface exposures. Similar grade estimation may not be possible in VNIR-SWIR
spectral domain as grade sensitive spectral feature is absent in the VNIR-SWIR domain. However,
small patchy exposures of phosphorite which can be detected using spectral contrast of dolomite
and phosphorite in ASTER SWIR band product based on the implementation of subpixel mapping
approach can be subdued in the TIR band based product proposed for phosphorite [30]. This is due
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to intratarget spectral mixing of dolomite and small patchy exposure of phosphorite, which would
hinder the detection of small exposures in broadband, coarse resolution thermal bands of ASTER.
However, the proposed approach of TIR band based mapping of phosphorite can be supplemented
with a geophysical survey like caliper logging or gammy ray logging (phosphate is often associated
with radioactive minerals) for the detailed exploration of identified anomaly [51].

5. Conclusions

Based on the methodology adopted and the results obtained, the following conclusions are derived
from the present study.

a. Emissivity spectra of dolomite and phosphorite are distinct from each other. A strongly emissive
doublet characterizes the emissivity spectra of phosphorite samples while dolomite is devoid of
such emissivity minima.

b. The spectral contrast of dolomite and phosphorite has been further generalized in the ASTER
image spectra, and ASTER resampled laboratory spectra (Figure 6). The contrast in the emissivity
is limited to the depth variation of the emissivity feature at 9.1 μm for dolomite and phosphorite.
Phosphorite emissivity spectra have a larger depth with respect to the emissivity spectrum of
dolomite having negligible depth at the wavelength.

c. We proposed an RBD image-based on the emissivity contrast of dolomite and phosphate.
The proposed RBD image of ASTER TIR bands can be used to delineate phosphorite provided
the spatial mapping using the RBD image is restricted within the spatial extent of the host
rock, i.e., dolomite or carbonate rocks. In this study, low-grade phosphorite exposures have
intermediate value (yellow color), while high-grade phosphorite have high value (identified with
yellow pixels)

d. The proposed approach of broadband TIR band based phosphorite mapping is simple,
reproducible and can be used for targeting phosphorite occurring under similar geological setups.
Many important carbonate phosphorite deposits in the world have a similar geological setup.

Author Contributions: The details of the contribution made by all the authors in different segment of work
are as follows: (a) Conceptualisation: A.G. and K.V.K.; (b) Methodology: A.G., K.R.; Validation, A.G. and
K.R.; Formal Analysis with suggestions to improve part of the analysis of the final result: A.G., Y.Y., S.C.;
Writing-Original Draft Preparation: A.G., Y.Y., S.C.; Writing-Review & Editing: A.G., S.C., Y.Y.; Supervision:
K.V.K.; Funding Acquisition: K.V.K., A.G. (for internal fund of Indian Space Research Organisation, Department
of Space, Govt. of India) and Yashushi Yamaguchi(Publication Charge).

Funding: This research received no external funding.

Acknowledgments: The authors are thankful to the Director of the National Remote sensing Centre for his overall
guidance. The authors are thankful to the authorities of the Atomic Mineral Directorate for exploration and
research, Hyderabad, India (AMD) for providing analytical support. The authors are also thankful to the Officers
of the AMD and Geological Survey of India for their guidance during validation of result.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Choudhuri, R. Two Decades of Phosphorite Investigations in India; Geological Society: London, UK, 1990;
Volume 52, pp. 305–311.

2. Lane, M.D.; Dyar, M.D.; Bishop, J.L. Spectra of phosphate minerals as obtained by visible-near infrared
reflectance, thermal infrared emission, and Mössbauer laboratory analyses. In Proceedings of the Lunar and
Planetary Science Conference, League City, TX, USA, 12–16 March 2007; Volume 38, p. 2210.

3. Tucker, M.E. Sedimentary Petrology: An Introduction to the Origin of Sedimentary Rocks, 3rd ed.; John Wiley &
Sons: Hoboken, NJ, USA, 1 April 2009.

4. Buettner, K.J.; Kern, C.D. The determination of infrared emissivities of terrestrial surfaces. J. Geophys. Res.
1965, 70, 1329–1337. [CrossRef]

48



Remote Sens. 2019, 11, 1003

5. Misi, A.; Kyle, J.R. Upper Proterozoic carbonate stratigraphy, diagenesis, and stromatolitic phosphorite
formation, Irecê Basin, Bahia, Brazil. J. Sediment. Res. 1994, 64, 299–310.

6. Cook, P.T.; Shergold, J.H. Phosphate Deposits of the World, Proterozoic and Cambrian Phosphorites;
Cambridge University Press: Cambridge, UK, 1986; Volume 1, p. 386.

7. Salisbury, J.W.; Walter, L.S. Thermal infrared (2.5–13.5 μm) spectroscopic remote sensing of igneous rock
types on particulate planetary surfaces. J. Geophys. Res. 1989, 94, 9192–9202. [CrossRef]

8. Salisbury, J.W.S.; D’Aria, D.M. Emissivity of terrestrial materials in the 8–14 μm atmospheric windows.
Remote Sens. Environ. 1992, 42, 83–106. [CrossRef]

9. Ninomiya, Y.; Fu, B.; Cudahy, T.J. Detecting lithology with advanced spaceborne thermal emission and
reflection radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data. Remote Sens. Environ.
2005, 99, 127–139. [CrossRef]

10. Ding, C.; Liu, X.; Liu, W.; Liu, M.; Li, Y. Mafic and ultramafic and quartz-rich rock indices deduced from
ASTER thermal infrared data using a linear approximation to the planck function. Ore Geol. Rev. 2014, 60,
161–173. [CrossRef]

11. Ding, C.; Li, X.; Liu, X.; Zhao, L. Quartzose–mafic spectral feature space model: A methodology for extracting
felsic rocks with ASTER thermal infrared radiance data. Ore Geol. Rev. 2015, 66, 283–292. [CrossRef]

12. Guha, A.; Kumar, V. New ASTER derived thermal indices to delineate mineralogy of different granitoids of
Archaean Craton and analysis of their potentials with reference to Ninomiya’s indices for delineating quartz
and mafic minerals of granitoids-an analysis in Dharwar Craton, India. Ore Geol. Rev. 2016, 74, 76–87.

13. Rani, K.; Guha, A.; Pal, S.K.; Vinod Kumar, K. Comparative analysis of potentials of ASTER thermal infrared
band derived emissivity composite, radiance composite and emissivity-temperature composite in geological
mapping of Proterozoic rocks in parts Banswara, Rajasthan. J. Indian Soc. Remote Sens. 2019. [CrossRef]

14. Van der Meer, F.D.; Van der Werff, H.M.A.; Van Ruitenbeek, F.J.A.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.;
Van der Meijde, M.; Carranza, E.J.M.; De Smeth, J.B.; Woldai, T. Multi-and hyperspectral geologic remote
sensing: A review. Int. Appl. Earth Observ. Geoinf. 2012, 14, 112–128. [CrossRef]

15. Yamaguchi, Y.; Kahle, A.B.; Tsu, H.; Kawakami, T.; Pniel, M. Overview of advanced spaceborne thermal
emission and reflection radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 1998, 36, 1062–1071. [CrossRef]

16. Abrams, M. The advanced spaceborne thermal emission and reflection radiometer (ASTER): Data products
for the high spatial resolution imager on NASA’s Terra platform. Int. J. Remote Sens. 2000, 21, 847–859.
[CrossRef]

17. Becker, F.; Li, Z.L. Surface temperature and emissivity at various scales: Definition, measurement and related
problems. Remote Sens. Rev. 1995, 12, 225–253. [CrossRef]

18. Tang, H.; Li, Z.L. Quantitative Remote Sensing in Thermal Infrared: Theory and Applications; Springer: Heidelberg,
Germany, 2014.

19. Hubbard, B.E.; Crowley, J.K. Mineral mapping on the Chilean–Bolivian Altiplano using co-orbital ALI,
ASTER and Hyperion imagery: Data dimensionality issues and solutions. Remote Sens. Environ. 2005, 99,
173–186. [CrossRef]

20. Hewson, R.D.; Cudahy, T.J.; Mizuhiko, S.; Ueda, K.; Mauger, A.J. Seamless geological map generation using
ASTER in the Broken Hill-Curnamona province of Australia. Remote Sens. Environ. 2005, 99, 159–172.
[CrossRef]

21. Chen, X.; Warner, T.A.; Campagna, D.J. Integrating visible, near-infrared and short-wave infrared
hyperspectral and multispectral thermal imagery for geological mapping at Cuprite, Nevada. Remote Sens.
Environ. 2007, 110, 344–356. [CrossRef]

22. Bell, J.H.; Bowen, B.B.; Martini, B.A. Imaging spectroscopy of jarosite cement in the Jurassic Navajo Sandstone.
Remote Sens. Environ. 2010, 114, 2259–2270. [CrossRef]

23. Brandmeier, M. Remote sensing of Carhuarazo volcanic complex using ASTER imagery in Southern Peru
to detect alteration zones and volcanic structures–a combined approach of image processing in ENVI and
ArcGIS/ArcScene. Geocarto Int. 2010, 25, 629–648. [CrossRef]

24. Bedini, E. Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER
remote sensing data. Adv. Space Res. 2011, 47, 60–73. [CrossRef]

49



Remote Sens. 2019, 11, 1003

25. Ninomiya, Y.; Matsunaga, T.; Yamaguchi, Y.; Ogawa, K.; Rokugawa, S.; Uchida, K.; Muraoka, H.; Kaku, M.
A comparison of thermal infrared emissivity spectra measured in situ, in the laboratory, and derived from
thermal infrared multispectral scanner (TIMS) data in Cuprite, Nevada, USA. Int. J. Remote Sens. 1997, 18,
1571–1581. [CrossRef]

26. Aboelkhair, H.; Ninomiya, Y.; Watanabe, Y.; Sato, I. Processing and interpretation of ASTER TIR data for
mapping of rare-metal-enriched albite granitoids in the Central Eastern Desert of Egypt. J. Afr. Earth Sci.
2010, 58, 141–151. [CrossRef]

27. Matar, S.S.; Bamousa, A.O. Integration of the ASTER thermal infra-red bands imageries with geological map
of Jabal Al Hasir area, AsirTerrane, the Arabian Shield. J. Taibah Univ. Sci. 2013, 7, 1–7. [CrossRef]

28. Yajima, T.; Yamaguchi, Y. Geological mapping of the Francistown area in north-eastern Botswana by surface
temperature and spectral emissivity information derived from advanced spaceborne thermal emission and
reflection radiometer (ASTER) thermal infrared data. Ore Geol. Rev. 2013, 53, 134–144. [CrossRef]

29. Son, Y.S.; Kang, M.K.; Yoon, W.J. Lithological and mineralogical survey of the Oyu Tolgoi region, Southeastern
Gobi, Mongolia using ASTER reflectance and emissivity data. Int. J. Appl. Earth Observ. Geoinf. 2014, 26,
205–216. [CrossRef]

30. Guha, A.; Vinod Kumar, K.; Porwal, A.; Rani, K.; Singaraju, V.; Singh, R.P.; Khandelwal, M.K.; Raju, P.V.;
Diwakar, P.G. Reflectance spectroscopy and ASTER based mapping of rock-phosphate in parts of
Paleoproterozoic sequences of Aravalli Group of rocks, Rajasthan, India. Ore Geol. Rev. 2018. [CrossRef]

31. Gaffey, S.J. Spectral reflectance of carbonate minerals in visible and near infrared: Anhydrous carbonate
minerals. J. Geophys. Res. 1987, 92, 1429–1440. [CrossRef]

32. Gaffey, S.J. Spectral reflectance of-carbonate minerals in the visible and near infrared (0.35–2.55 microns):
Calcite, aragonite, and dolomite. Am. Mineral. 1986, 71, 151–162.

33. Li, Z.L.; Becker, F.; Stoll, M.P.; Wan, Z. Evaluation of six methods for extracting relative emissivity spectra
from thermal infrared images. Remote Sens. Environ. 1999, 69, 197–214. [CrossRef]

34. Li, Z.L.; Tang, B.H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite derived land surface
temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [CrossRef]

35. Guha, A.; Vinod Kumar, K. Integrated approach of using aster derived emissivity and radiant temperature
for delineating different granitoids—a case study in parts of Dharwar Craton, India. Geocarto Int. 2015, 31,
860–869. [CrossRef]

36. Roy, A.B.; Paliwal, B.S.; Shekhawat, S.S.; Nagori, D.K.; Golani, P.R.; Bejarniya, B.R. Stratigraphy of the
Aravalli Supergroup in the type area. Geol. Soc. India Mem. 1988, 7, 121–138.

37. Banerjee, D.M.; Schidlowski, M.; Arneth, J.D. Genesis of upper proterozoic Cambrian phosphorite deposits
of India: Isotopic inferences from carbonate fluroapatite, carbonate and organic carbon. Precambrian Res.
1986, 33, 239–253. [CrossRef]

38. Roy, A.B.; Paliwal, B.S. Evolution of lower Proterozoic epicontinental deposits: Stromatolite-bearing Aravalli
rocks of Udaipur, Rajasthan, India. Precambrian Res. 1981, 14, 49–74. [CrossRef]

39. Abrams, M.; Tsu, H.; Hulley, G.; Iwao, K.; Pieri, D.; Cudahy, T.; Kargel, J. The advanced spaceborne thermal
emission and reflection radiometer (ASTER) after fifteen years: Review of global products. Int. J. Appl. Earth
Observ. Geoinf. 2015, 38, 292–301. [CrossRef]

40. NASA. ASTER. Available online: https://asterweb.jpl.nasa.gov/ (accessed on 1 January 2016).
41. Hook, S.J.; Gabell, A.R.; Green, A.A.; Kealy, P.S. A comparison of techniques for extracting emissivity

information fromthermal infrared data for geologic studies. Remote Sens. Environ. 1992, 42, 123–135.
[CrossRef]

42. Kealy, P.S.; Hook, S.J. Separating temperature and emissivity in thermal infrared multispectral scanner data:
Implications for recovering land surface temperatures. IEEE Trans. Geosci. Remote Sens. 1993, 31, 1155–1164.
[CrossRef]

43. D&P Instruments. Available online: http://www.dpinstruments.com/ (accessed on 15 June 2018).
44. Ruff, S.W.; Christensen, P.R.; Barbera, P.W.; Anderson, D.L. Quantitative thermal emission spectroscopy of

minerals: A laboratory technique for measurement and calibration. J. Geophys. Res. 1997, 102, 14899–14913.
[CrossRef]

45. Christensen, P.R.; Bandfield, J.L.; Hamilton, V.E.; Howard, D.A.; Lane, M.D.; Piatek, J.L.; Ruff, S.W.;
Stefanov, W.L. A thermal emission spectral library of rock-forming minerals. J. Geophys. Res. Planets 2000,
105, 9735–9739. [CrossRef]

50



Remote Sens. 2019, 11, 1003

46. Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.;
Lowers, H.A.; Driscoll, R.L.; et al. USGS Spectral Library Version 7; No. 1035; US Geological Survey: Reston,
VA, USA, 2017.

47. Johnson, B.R.; Young, S.J. In-Scene Atmospheric Compensation: Application to SEBASS Data Collected at the ARM
Site, Technical Report, Space and Environment Technology Center; The Aerospace Corporation: El Segundo, CA,
USA, 1998.

48. Hamilton, V.E.; Christensen, P.R.; McSween, H.Y., Jr. Determination of Martian meteorite lithologies and
mineralogies using vibrational spectroscopy. J. Geophys. Res. Planets 1997, 102, 25593–25603. [CrossRef]

49. Hamilton, V.E. Thermal infrared emission spectroscopy of the pyroxene mineral series. J. Geophys. Res.
Planets 2000, 105, 9701–9716. [CrossRef]

50. Mission, G. Colorimetric estimation of phosphorus in steels. Chemiker Zeitung 1908, 32, 633.
51. Wynn, J.C.; Bazzari, M.; Bawajeeh, A.; Tarabulsi, Y.; Showail, A.; Hajnoor, M.O.; Techico, L.; Wynn, J.P.

Phosphate Content Derived from Well Logging, Al Jalamid Phosphate Deposit, Northern Saudi Arabia; U.S. Geological
Survey Mission Data File Report IR-869; U.S. Geological Survey: Reston, VA, USA, 1994; 9p.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

51





remote sensing 

Article

Mapping Listvenite Occurrences in the Damage
Zones of Northern Victoria Land, Antarctica Using
ASTER Satellite Remote Sensing Data

Amin Beiranvand Pour 1,2,*, Yongcheol Park 1, Laura Crispini 3, Andreas Läufer 4,

Jong Kuk Hong 1, Tae-Yoon S. Park 1, Basem Zoheir 5,6, Biswajeet Pradhan 7,8, Aidy M. Muslim 2,

Mohammad Shawkat Hossain 2 and Omeid Rahmani 9

1 Korea Polar Research Institute (KOPRI), Songdomirae-ro, Yeonsu-gu, Incheon 21990, Korea;
ypark@kopri.re.kr (Y.P.); jkhong@kopri.re.kr (J.K.H.); typark@kopri.re.kr (T.-Y.S.P.)

2 Institute of Oceanography and Environment (INOS), University Malaysia Terengganu (UMT), 21030 Kuala
Nerus, Terengganu, Malaysia; shawkat@umt.edu.my (M.S.H.); aidy@umt.edu.my (A.M.M.)

3 DISTAV—University of Genova—Corso Europa 26, 16132 Genova, Italy; laura.crispini@unige.it
4 Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Germany;

andreas.laeufer@bgr.de
5 Department of Geology, Faculty of Science, Benha University, Benha 13518, Egypt;

basem.zoheir@ifg.uni-kiel.de
6 Institute of Geosciences, University of Kiel, Ludewig-Meyn Str. 10, 24118 Kiel, Germany
7 Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and

Information Technology, University of Technology Sydney, New South Wales 2007, Australia;
Biswajeet.Pradhan@uts.edu.au

8 Department of Energy and Mineral Resources Engineering, Choongmu-gwan, Sejong University, 209
Neungdong-ro Gwangjin-gu, Seoul 05006, Korea

9 Department of Natural Resources Engineering and Management, School of Science and Engineering,
University of Kurdistan Hewlêr (UKH), Erbil, Kurdistan Region 44001, Iraq; omeid.rahmani@ukh.edu.krd

* Correspondence: Amin.Beiranvand@kopri.re.kr; Tel.: +82-3-27605472

Received: 20 May 2019; Accepted: 10 June 2019; Published: 13 June 2019

Abstract: Listvenites normally form during hydrothermal/metasomatic alteration of mafic and
ultramafic rocks and represent a key indicator for the occurrence of ore mineralizations in orogenic
systems. Hydrothermal/metasomatic alteration mineral assemblages are one of the significant
indicators for ore mineralizations in the damage zones of major tectonic boundaries, which can be
detected using multispectral satellite remote sensing data. In this research, Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) multispectral remote sensing data were used
to detect listvenite occurrences and alteration mineral assemblages in the poorly exposed damage
zones of the boundaries between the Wilson, Bowers and Robertson Bay terranes in Northern Victoria
Land (NVL), Antarctica. Spectral information for detecting alteration mineral assemblages and
listvenites were extracted at pixel and sub-pixel levels using the Principal Component Analysis
(PCA)/Independent Component Analysis (ICA) fusion technique, Linear Spectral Unmixing (LSU)
and Constrained Energy Minimization (CEM) algorithms. Mineralogical assemblages containing
Fe2+, Fe3+, Fe-OH, Al-OH, Mg-OH and CO3 spectral absorption features were detected in the damage
zones of the study area by implementing PCA/ICA fusion to visible and near infrared (VNIR)
and shortwave infrared (SWIR) bands of ASTER. Silicate lithological groups were mapped and
discriminated using PCA/ICA fusion to thermal infrared (TIR) bands of ASTER. Fraction images of
prospective alteration minerals, including goethite, hematite, jarosite, biotite, kaolinite, muscovite,
antigorite, serpentine, talc, actinolite, chlorite, epidote, calcite, dolomite and siderite and possible
zones encompassing listvenite occurrences were produced using LSU and CEM algorithms to ASTER
VNIR+SWIR spectral bands. Several potential zones for listvenite occurrences were identified,
typically in association with mafic metavolcanic rocks (Glasgow Volcanics) in the Bowers Mountains.
Comparison of the remote sensing results with geological investigations in the study area demonstrate
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invaluable implications of the remote sensing approach for mapping poorly exposed lithological
units, detecting possible zones of listvenite occurrences and discriminating subpixel abundance of
alteration mineral assemblages in the damage zones of the Wilson-Bowers and Bowers-Robertson
Bay terrane boundaries and in intra-Bowers and Wilson terranes fault zones with high fluid flow.
The satellite remote sensing approach developed in this research is explicitly pertinent to detecting
key alteration mineral indicators for prospecting hydrothermal/metasomatic ore minerals in remote
and inaccessible zones situated in other orogenic systems around the world.

Keywords: Bowers Terrane; listvenite; hydrothermal/metasomatic alteration minerals; damage zones;
ASTER; Northern Victoria Land; Antarctica

1. Introduction

Hydrothermal/metasomatic alteration mineral assemblages are one of the significant indicators for
ore mineralizations in the damage zones of lithotectonic units in orogenic systems [1–3]. They can be
detected and mapped by the application of multispectral satellite remote sensing data [4–12]. Listvenite
is a metasomatic rock composed of variable amounts of quartz, magnesite, ankerite, dolomite, sericite,
calcite, talc and sulfide minerals. It is formed by interaction of mafic and ultramafic rocks with low to
intermediate temperature CO2- and S-rich fluids, and is commonly found along the major fault and
shear zones at terrane boundaries or major tectonic units in orogenic systems [13–16]. As such, listvenite
is spatially associated with ophiolites, greenstone belts and suture zones in orogenic belts [17–24].
Listvenite occurrences are considered to represent key indicators for certain mineral associations
connected with ore mineralizations such as gold and other hydrothermal deposits like Ag, Hg, Sb, As,
Cu, Ni, Co, as well as magnesite and talc [14,18,20,25,26].

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral
remote sensing satellite data provide appropriate spatial, spectral and radiometric resolutions
suitable for mapping hydrothermal/metasomatic alteration mineral assemblages [6–12,27–31].
Iron oxide/hydroxide, hydroxyl-bearing and carbonate mineral groups present diagnostic spectral
absorption features due to electronic processes of transition elements (Fe2+, Fe3+ and REE) and
vibrational processes of fundamental absorptions of Al-OH, Mg-OH, Fe-OH, Si-OH, CO3, NH4 and
SO4 groups in the visible and near infrared (VNIR) and shortwave infrared (SWIR) regions [32–35].
These mineral groups can be detected using three VNIR (from 0.52 to 0.86 μm; 15-m spatial resolution)
and six SWIR (from 1.6 to 2.43 μm; 30-m spatial resolution) spectral bands of ASTER [36,37].
Additionally, thermal infrared bands (TIR; 8.0–14.0 μm; 90-m spatial resolution) of ASTER are
capable of discriminating silicate lithological groups due to different characteristics of the emissivity
spectra derived from Si–O–Si stretching vibrations in the TIR region [36,38–42]. Accordingly, ASTER
remote sensing satellite datasets are particularly useful for the detection of listvenites and alteration
mineral assemblages occurring in damage zones of terrane and major tectonic boundaries in orogens
around the world. However, only a few studies exist, which used ASTER remote sensing data for the
regional mapping of listvenite occurrences, such as Rajendran et al. [43], who used ASTER VNIR+SWIR
spectral bands for the detection of listvenites along the serpentinite–amphibolite interface of the Semail
Ophiolite in the Sultanate of Oman.

In Northern Victoria Land (NVL) of Antarctica, the widespread occurrence of listvenites was
documented as one of the main types of hydrothermal/metasomatic fault-related rocks in the
damage zones between the Wilson Terrane (WT) and the Bowers Terrane (BT) (Figures 1 and 2) [44].
Thisboundary coincides with the Lanterman suture zone, where mafic and ultramafic rocks with
indications of UHP (ultrahigh pressure) metamorphism implies ancient subduction processes at
the palaeo-Pacific active continental margin of East Gondwana during the Late-Ediacaran to Early
Paleozoic Ross Orogeny [45–48]. Structural investigations in the poorly exposed damage zones of the
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terrane boundaries reveal that the dominant features are (i) steeply dipping reverse and strike-slip
faults; (ii) diffuse veining; and (iii) hydrothermal/metasomatic alteration mineral assemblages and
listvenites (Figure 2) [47,49–51].

Figure 1. Geological map of Northern Victoria Land (NVL). Modified from [7,48] based on the
GIGAMAP series [52]. The black rectangle shows the coverage of ASTER images used in this study.

 
Figure 2. (A) Sketch map with the location of the fault (damage) zones where the hydrothermal
alteration and veining is more intense (modified from [51]). (B) Sketch map of lithological-mineralogical
sequences in the damage (fault) zone at the boundary of WT and BT (modified from [44]).

Another occurrence of listvenites was reported from the upper Dorn Glacier at the eastern side
of the northern Bowers Mountains only a few km west of the BT-RBT boundary represented by the
Millen Schist Belt [1,50]. In the aforementioned paper, the authors reported gold mineralization in
the listvenite bodies and the surrounding hydrothermal alteration mineral zones. The gold-bearing
quartz veins (Dorn lodes) are hosted by hydrothermally altered rocks (approximately up to 300 m
wide), which are mainly characterized by variable amounts of ankerite, muscovite, chlorite, pyrite and
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arsenopyrite. The mineralization is located in a brittle-ductile reverse high-strain shear zone in lower
greenschist facies metavolcanic and metasedimentary rocks [1].

Recently, remote sensing studies have been conducted by Pour et al. [6,7] for regional-scale
lithological mapping in NVL and local-scale alteration mineral mapping in the Morozumi Range and
Helliwell Hills areas of the WT. However, no comprehensive remote sensing study is yet available
for the boundary region between the WT and the BT further to the east, where listvenite bodies, in
particular, occur in the damage zones. Consequently, the main objectives of this study are: (i) to extract
spectral information directly from ASTER image spectra at pixel and sub-pixel levels for detecting
alteration mineral assemblages and listvenites in the damage (fault) zones particularly of the WT-BT
boundary using a series of specialized/standardized image processing algorithms; (ii) to prospect
listvenite occurrences in the poorly exposed damage zones of the WT-BT boundary; (iii) to verify
and compare ASTER image processing results with available field and laboratory data collected from
the fault zones of the WT-BT boundary; and (iv) to test the results of the listvenites along the WT-BT
terrane on particular listvenite occurrences in intra-BT fault zones in the northern Bowers Mountains
and thus its general potential in detecting similar synorogenic mineral alteration zones in NVL and
other orogens around the world.

2. Geological Setting of NVL and the Bowers Terrane

Northern Victoria Land (NVL) is composed of three NW-trending litho-tectonic units or terranes of
late Proterozoic–Ordovician age, which are from west to east (i) the Wilson Terrane (WT), (ii) the Bowers
Terrane (BT), and (iii) the Robertson Bay Terrane (RBT) (Figures 1 and 2) [53–55]. They are generally
interpreted to have formed during west-directed subduction processes at the palaeo-Pacific active
continental margin of East Gondwana during the Latest Ediacaran to Early Palaeozoic Ross Orogeny [45].
The WT encompasses polydeformed low- to high-grade (up to granulite facies) metasedimentary
sequences intruded by the Granite Harbour Igneous Complex (calc-alkaline plutons with magmatic arc
affinity of the latest Ediacaran to Cambro-Ordovician age) [45,56–58]. The BT comprises very low-grade
to low-grade (prehnite-pumpellyite to lower-greenschist facies) metavolcanic and metasedimentary
rocks, which are considered to be an intra-oceanic arc complex [59,60] or a fore-arc volcanic complex
at the Ross-orogenic active continental margin [54]. The RBT is a very low- to locally in its western
part low-grade (zeolite to prehnite-pumpellyite facies) turbidite sequence, which is interpreted as a
synorogenic sedimentary pile in an accretionary environment [61–63]. The tectonic boundary between
the WT and the BT is generally referred to as the Lanterman Fault Zone (LaFZ), whereas the Leap Year
Fault Zone (LYFZ) separates the BT from the RBT by the strongly sheared Millen Schist Belt (Figures 1
and 2) [47,64,65]. These fault zones represent long-lived structures in the structural edifice of NVL,
which were repeatedly reactivated [66].

After the Ross orogeny, the three terranes were intruded by Devonian/Carboniferous
calcalkaline intrusions (Admiralty Intrusives) and associated felsic volcanics (Gallipoli Volcanics) [67].
A subsequent erosion/exhumation phase produced a regional peneplain surface, on which the
Late Carboniferous-Early Jurassic terrestrial sedimentary sequence of the Beacon Supergroup was
deposited [68,69]. This was followed by tholeiitic magmatism of late Early Jurassic age (Ferrar Dolerite
and Kirkpatrick Basalt) [70]. The Cenozoic tectonics in NVL is predominantly linked to the development
of the West Antarctic Rift System (WARS), which involved repeated reactivation of the former Paleozoic
discontinuities of the NVL crust [66,71,72]. The Cenozoic transtensional structures influenced the
emplacement of alkaline magmatic rocks of the McMurdo Igneous Complex (see Figure 1) [60].

The BT consists of three lithostratigraphic sequences of likely Cambrian to Ordovician in age,
including from bottom to top the Sledgers, the Mariner, and the Leap Year groups, respectively [73].
The Sledgers Group includes: (i) the Glasgow Volcanics with basalts, spilites, volcanic breccia and tuffs
and (ii) the Molar Formation with sandstone, conglomerate, mudstone and subordinate limestone.
The Mariner Group comprises a regressive sequence of shallow marine sandstone, subordinate
conglomerate, mudstone and limestone. The Leap Year Group consists of quartz-rich sandstone and
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conglomerate [74–76]. Figure 2B shows a schematic section of the WT-BT boundary, the strip close to
the contact with the metaconglomerates on the BT side is characterized by xenolithic blocks of eclogite,
amphibolite, serpentinite and listvenite as the main lithologies [77]. The metamorphic grade in the WT
ranges from greenschist to amphibolite and up to the granulite facies, which is notably higher and
more diverse than the entire BT. In the BT, higher metamorphic grades, including HP metamorphism,
are confined only to the proximity of the Lanterman suture zone at the tectonic boundary between the
WT and the BT [45,46,78].

3. Materials and Methods

3.1. ASTER Data Characteristics and Pre-processing

Twelve ASTER level 1T (Precision Terrain Corrected Registered At-Sensor Radiance) scenes
obtained from U.S. Geological EROS (http://glovis.usgs.gov/) were used for mapping the poorly
exposed damage zones of the WT-BT boundary. Table 1 shows the dataset characteristics of the ASTER
images used in this research. Atmospheric correction was applied to the ASTER data using Fast
Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH) algorithm [79,80], which is
available in the ENVI (Environment for Visualizing Images, http://www.exelisvis.com) version 5.2
software package. The Sub-Arctic Summer (SAS) atmospheric and the Maritime aerosol models were
used for running the FLAASH algorithm [81]. Crosstalk correction is required before processing
of ASTER data to remove the influences of energy overflow from band 4 into bands 5 and 9 [82].
Hence, it was implemented with respect to the ASTER SWIR bands used in this research. The ASTER
images were pre-georeferenced to the UTM zone 58 South projection using the WGS-84 datum and
rotated to the north up to the UTM projection. Furthermore, the 30-m-resolution SWIR bands were
re-sampled to have spatial dimensions of 15 m (corresponding to the VNIR 15-m resolution) using
the nearest neighbour re-sampling technique for producing a stacked layer of VNIR+SWIR bands.
A masking procedure was used to remove the snow/ice, cloud and shadow by applying the Normalised
Difference Snow Index (NDSI) [7,30,83,84]. Radiance at the sensor TIR data without atmospheric
corrections was used in this analysis for retaining the original radiance signature. The digital number
(DN) value of each pixel in level 1T data at band i (i = 10–14) is linearly converted to radiance registered
at the sensor (Lsen) (Wm−2·Sr−1·μm−1) [41,42], by the application of Equation (1):

Li
sen = cofi × (DNi − 1) (1)

where, cof 10 = 0.006882, cof 11 = 0.006780, cof 12 = 0.006590, cof 13 = 0.005693, and cof 14 = 0.005225.

Table 1. The dataset characteristics of ASTER images used in this research.

Granule ID
Date and Time of

Acquisition
Path/Row

Cloud
Coverage

Sun
Azimuth

Sun
Elevation

AST_L1T_00312282003214501 2003/01/01, 21:45:01 66/110 1% 55.417 34.625
AST_L1T_00301012003215056 2003/01/01, 21:51:05 66/110 2% 56.520 34.555
AST_L1T_00301012003215105 2003/01/01, 21:51:05 66/111 1% 56.972 34.077
AST_L1T_00301012003215114 2003/01/01, 21:51:14 66/111 1% 57.568 33.573
AST_L1T_00301192003213854 2003/01/19, 21:38:54 66/111 3% 61.896 29.830
AST_L1T_00301192003213845 2003/01/19, 21:38:45 66/111 1% 61.357 30.402
AST_L1T_00312022006215521 2006/12/02, 21:55:21 67/110 1% 52.247 34.707
AST_L1T_00312022006215530 2006/12/02, 21:55:30 67/110 3% 52.693 34.114
AST_L1T_00312022006215539 2006/12/02, 21:55:39 67/111 5% 53.417 33.845
AST_L1T_00301022005221335 2005/01/02, 22:13:35 68/110 1% 52.821 35.641
AST_L1T_00301022005221344 2005/01/02, 22:13:44 68/110 2% 53.395 35.254
AST_L1T_00301022005221353 2005/01/02, 22:13:53 68/111 4% 53.756 35.665
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3.2. Image Processing Algorithms

Spectral information for detecting alteration mineral assemblages and listvenites in the damage
zones of the WT-BT boundary were extracted at pixel and sub-pixel levels using specialized/standardized
image processing algorithms. For regional-scale mapping of the WT-BT boundary, pixel-based
algorithms, including Principal Component Analysis (PCA) and Independent Component Analysis
(ICA) were used. Sub-pixel-based algorithms, namely Linear Spectral Unmixing (LSU) and Constrained
Energy Minimization (CEM), were applied for detailed mapping in some selected subsets of the damage
zones at local scale. Figure 3 shows an overview of the BT and surrounding area (the coverage of
ASTER images used in this study), along with six selected subsets of the fault zones (zones 1–6) for
detailed mineral mapping. A flowchart of the methodology used in this research is shown in Figure 4.
For processing the datasets, the ENVI (Environment for Visualizing Images, http://www.exelisvis.com)
version 5.2 and ArcGIS version 10.3 (Esri, Redlands, CA, USA) software packages were used.

Figure 3. ASTER mosaic of the Bowers Terrane (BT) and surrounding area (the coverage of ASTER
images used in this study). Magenta rectangles indicate selected subsets of fault zones (zones 1–6) for
detailed mineral mapping.
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• VNIR+SWIR bands and TIR bands as 
input datasets 
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covariance matrix to the spectral 
bands as forward PC rotation 
with X resize factor: 1.000000 and 
Y resize factor: 1.000000 

• Application of ICA to PCs outputs 
as forward IC rotation with 
sample X resize factor: 1.000000, 
Y resize factor: 1.000000, change 
threshold: 0.00010000, maximum 
iterations: 100, maximum 
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dimensional (2-D) coherence 
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(ASH) processing to extract 
image spectra: MNF bands:9, PPI 
Iteration:5000, PPI Threshold 
Value:2500, Maximum number of 
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selection: 10000, and Unmix Unit 
Sum Constraint:0.85.   

• Application of CEM using end-
member mineral spectra from 
USGS spectral library version 7.0. 
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using Subspace Background 
Threshold of 0.900. 

Mapping exposed lithologies 

and alteration zones at regional 

Fieldwork data and 
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Detection of alteration 
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Detection of Listvenites in the 

fault zones of the WT-BT 

boundary 

Figure 4. An overview of the methodological flowchart used in this study. Characterizations of the
techniques can be found in ENVI Tutorials. Research Systems, Inc., Boulder, CO [81].

3.2.1. Spectral Information Extraction at the Pixel Level

A fusion of PCA and ICA algorithms was implemented to the ASTER VNIR+SWIR and TIR
datasets for extracting image spectra at the pixel level to map poorly exposed lithologies and alteration
mineral assemblages. The PCA technique selects uncorrelated linear combinations (Eigenvector
loadings) of variables in such a way that each component successively extracted linear combination
and contains a smaller variance [85–88]. The Eigenvector loadings contain important information for
identifying hydrothermal/metasomatic alteration mineral assemblages. By computing the correlation
of each band k with each component p, it is possible to determine how each band “loads” or are
associated with each principal component (Equation (A1), see Appendix A) [86].

A PC image with moderate to high eigenvector loading for the indicative bands (reflection and/or
absorption bands) of the mineral with opposite signs enhance that mineral [89]. If the loading is positive
in the reflection band of the mineral, the enhanced pixels related to the mineral will manifest as bright
pixels. On the contrary, if the loading is negative in the reflection band of the mineral, the enhanced
pixels related to the mineral will manifest as dark pixels [90]. Consequently, eigenvector loadings in

59



Remote Sens. 2019, 11, 1408

each PCA will identify the PC image in which the spectral information of the specific alteration mineral
is loaded as bright or dark pixels [91]. The ICA is a statistical and computational technique for array
processing and data analysis, aiming at recovering unobserved signals or ‘sources’ from observed
mixtures, exploiting only the assumption of mutual independence between the signals [92,93]. It is
a method for separating the combinations with the most non-Gaussian possible probability density
functions from the more Gaussian signal mixtures [94,95]. These are identified as the “independent
components” (ICs) of the observations [96].

For pixel-based image spectra extraction, PCA analysis can remove correlations, but it is not
capable of omitting higher-order dependence. However, the ICA removes both correlations and
higher-order dependence. Accordingly, a fusion of PCA and ICA has great capability to identify
pixels related to poorly exposed lithologies and alteration minerals in the background of extensive
snow/ice cover (Antarctic environments). The PCA can be used to give weight to the components and
remove the correlation before applying ICA for revealing hidden factors. As a result, this fusion has a
great performance to identify the pixels containing the spectral signature of the alteration minerals
or mineral groups that are maximally independent of each other. In this study, four spatial subset
scenes (include six selected damage zones; see Figure 3) covering exposed lithologies in the WT-BT
boundary and intra-BT fault zones in the northern Bowers Mountains were selected for implementing
the PCA/ICA fusion technique. The performance characteristics of the technique are summarized
in Figure 4. The image eigenvectors were obtained for the PCA analysis using a covariance matrix
of VNIR+SWIR and TIR bands (Table A1; Table A2, see Appendix A). Subsequently, a forward ICA
rotation was applied to the PCs images (see Figure 4). The IC images were statistically examined
for each of the selected spatial subset scenes (Tables A1 and A2, see Appendix A). The ICs contain
maximally independent pixels of alteration minerals or mineral groups were selected to produce
Red-Green-Blue (RGB) color composite image maps.

3.2.2. Spectral Information Extraction at the Sub-pixel Level

The LSU and CEM algorithms were applied to VNIR+SWIR bands for detailed mapping of
alteration minerals and listvenites at the sub-pixel level in the six selected subsets of fault zones
(see Figure 3). The LSU is a sub-pixel sampling algorithm [97–99], the reflectance at each pixel of the
image is assumed to be a linear combination of the reflectance of each material (or end-member) present
within the pixel. The LSU is used to determine the relative abundance of end-members within a pixel
based on the end-members’ spectral characteristics. In this algorithm, it is assumed that the observed
pixel reflectance can be modeled as a linear mixture of individual component reflectance multiplied
by their relative proportions. Mathematically, the LSU can be represented as Equation (A2) [100]
(see Appendix A).

In this study, the Automated Spectral Hourglass (ASH) technique [81,101,102] was employed
to extract reference spectra directly from the ASTER image for producing fraction images of
end-members using the LSU. The ASH technique uses the spectrally over-determined data for
finding the most spectrally pure pixels (end-members) to map their locations and estimates their
sub-pixel abundances [81]. It includes several steps, namely: (i) the Minimum Noise Fraction
(MNF) [103,104]; (ii) the Pixel Purity Index (PPI) [105]; and (iii) automatic end-member prediction
from the n-Dimensional Visualizer [104,106]. The performance characteristics of MNF, PPI and the n-D
Visualizer used in this study are shown in Figure 4. The continuum-removal process was applied to the
extracted end-members for isolating their spectral features and putting them on a level playing field
so they may be intercompared. Continuum-removal and feature comparison is the key to successful
spectral identification [34,107,108].

The CEM is a target detection algorithm [109–111] that implements a partial unmixing of spectra
to estimate the abundance of user-defined end-member materials from a set of reference spectra
(either image or laboratory spectra) [112]. It specifically constrains the desired target spectra using a
Finite Impulse Response (FIR) filter [113,114], while minimizing effects caused by unknown background
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signatures [115,116]. Mathematical details of the CEM performance can be found in Chang et al. [112]
and Manolakis et al. [111]. For running the CEM, only prior knowledge of desired target spectra
(end-member materials) is needed. In this study, the reference spectra of some hydrothermal
alteration minerals (typically associated with listvenites) were selected from the USGS spectral library
(version 7.0; [117]) for executing the CEM. The performance characteristics of the CEM are summarized
in Figure 4. End-member spectra of goethite, hematite, jarosite, biotite, kaolinite, muscovite, antigorite,
serpentine, talc, actinolite, chlorite, epidote, calcite, dolomite, siderite and chalcedony were selected
and convolved to response functions of ASTER VNIR+SWIR bands (Figure 5). The end-member
spectra of the target minerals were used to generate fraction images of prospective alteration minerals
associated with listvenites in the poorly exposed fault zones along the WT-BT boundary and intra-BT
fault zones in the northern Bowers Mountains.

Figure 5. Cont.
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Figure 5. Laboratory reflectance spectra of the selected alteration minerals resampled to response
functions of ASTER VINR+SWIR bands [117]. Cubes show the location of the ASTER VINR+SWIR
bands (B1 to B9) from 0.50 μm to 2.5 μm. (A) goethite; (B) hematite; (C) jarosite; (D) biotite; (E) kaolinite;
(F) muscovite; (G) antigorite; (H) serpentine; (I) talc; (J) actinolite; (K) chlorite; (L) epidote; (M) calcite;
(N) dolomite; (P) siderite; and (Q) chalcedony.

3.3. Fieldwork Data and Laboratory Analysis

Different locations of exhumed fault systems that are systematically associated with hydrothermal
alterations in the poorly exposed damage zones along the WT-BT and BT-RBT boundaries, as well
as along major faults and shear zones within the BT and in the easternmost WT along the Rennick
Glacier, were investigated. Geological field work was performed during various Italian (PNRA) and
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German Scientific Expeditions (GANOVEX) in Northern Victoria Land (NVL) and was particularly
conducted at several major outcrop sites in the Lanterman Range area, the Molar Massif, and the
Bowers Mountains, the Explorers Range on the Rennick Glacier side to the western part facing the
Lillie Glacier. Locations of alteration zones and listvenites were recorded using a Garmin Montana 608t
handheld GPS with an average accuracy of 5 m and an iPhone SE using GPS plus GLONASS (Table A3,
see Appendix A). Field photos were taken of exposed lithologies, hydrothermally fault-bounded altered
rocks and listvenites occurrences during most recent expeditions (2015–2016 and 2016–2017 summer
season) and several rock samples were also collected for laboratory analysis. The rock samples were
examined by optical microscopy of thin sections and investigated by X-ray diffraction (XRD) analysis
for determining their mineralogical composition. Mineral phases were investigated by a Philips
PW3710 X-Ray diffractometer (current: 20 mA, voltage: 40 kV, range 2θ: 5–80◦, step size: 0.02◦ 2θ,
time per step: 2 s) at DISTAV (University of Genova, Italy), which mounted a Co-anode, as in [49].
Acquisition and processing of the XRD data were carried out using the Philips High Score software
package. Additionally, confusion matrix (error matrix) and Kappa Coefficient were calculated for LSU
classification mineral maps versus field data (Table A4, see Appendix A).

4. Results

4.1. Regional Overview of the BT and Surrounding Areas

A regional view of the poorly exposed lithological units was generated for the BT and surrounding
areas using a mosaic of ASTER images (Figure 6). ASTER Fe-MI = (band 4/band 3) × (band 2/band
1), Al-OH-MI= (band 5 × band 7)/(band 6 × band 6) and Fe, Mg-OH-MI= (band 7 × band
9)/(band 8 × band 8) spectral-band ratio indices [7] were assigned to RGB color composite, respectively.
Spatial distribution of iron oxide/hydroxide minerals, Al-OH minerals and Fe,Mg-O-H minerals is
manifested by a variety of false color composite in the exposures (Figure 6). Exposed lithologies
with a high content of iron oxide/hydroxide minerals are represented as red, magenta and orange
colors. The Bowers Mountains and many other parts of the BT and neighbouring areas such as
Morozumi Range, Helliwell Hills and Lanterman Range contain a high surface abundance of iron
oxide/hydroxide minerals (red, magenta and orange pixels) (Figure 6). Regarding the geological maps of
the region, the lithological units in these zones mostly consist of the Wilson Terrane metamorphic rocks,
Granite Harbour Igneous Complex, metavolcanic rocks (Glasgow Volcanics), Admiralty Intrusives,
Ferrar Dolerite and Kirkpatrick Basalt.

Most of the sedimentary rock units in the study area comprise the Beacon Supergroup, Robertson
Bay Group, Molar Formation, Mariner Group and Leap Year Group, which appear in green and blue
colors (Figure 6). Generally, sedimentary rocks contain large amounts of Al-OH and Fe,Mg-O-H mineral
assemblages (detrital clay minerals). Very poorly exposed outcrops adjacent to the Morozumi Range,
Helliwell Hills and ANARE Mountains are represented as cyan color (Figure 6). The exposures in the
central part of the Mirabito Range, the southern part of the Alamein Range and the central-northern
part of the Everett Range are depicted as yellow color (Figure 6). This indicates that these exposures
mostly contain iron oxide/hydroxide minerals in association with Al-OH minerals. Some of the exposed
rocks in the southern and western parts of the Mirabito Range and the northern part of the ANARE
Mountains are manifested in purple color (Figure 6) due to the admixture of iron oxides/hydroxides
with Fe,Mg-O-H mineral groups.
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Figure 6. ASTER mosaic image of Fe-MI, Al-OH-MI and Fe,Mg-OH-MI as RGB color composite.
It shows exposed lithologies in the Bowers Terrane (BT) and surrounding areas. The locations of some
large mountain ranges are shown.

4.2. Alteration and Lithological Mapping in the Fault Zones at Regional Scale

The analysis of the eigenvector matrix for VNIR+SWIR bands (Table A1) and the visual examination
of the output IC images indicate the existence of maximally independent pixels related to alteration
minerals or mineral groups in some PCAs that contain unique contributions (magnitude and sign
of eigenvector loadings) of the minerals. The eigenvector loadings calculated for the spatial subset
covering zone 1 and the surrounding areas (Table A1A) reveal that PCA5 has a strong contribution of
band 1 (0.571038) and band 3 (−0.731120) with opposite signs. PCA6 shows moderate loadings of band
5 (−0.281197), band 6 (0.308307) and band 7 (0.264687) and strong loadings of band 8 (−0.553969) and
band 9 (0.588366), each with opposite signs. PCA7 contains strong weightings of band 5 (0.497821),
band 6 (−0.618179) and band 7 (0.507327) with opposite signs, and moderate to low weightings of band
8 (−0.246778) and band 9 (0.048065).

Iron oxide/hydroxide minerals (hematite, goethite, jarosite and limonite) exhibit diagnostic
absorption characteristics in band 1 (0.52–0.60 μm), band 2 (0.63–0.69 μm) and band 3 (0.78–0.86 μm)
of ASTER [31,118]. The Al-OH minerals (kaolinite, alunite and muscovite) contain absorption features
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in band 5 (2.145–2.185 μm), band 6 (2.185–2.225 μm) and band 7 (2.235–2.285 μm) of ASTER [119].
On the other hand, the Fe,Mg-O-H and CO3 minerals (chlorite, epidote and calcite) have distinctive
absorption features in band 8 (2.295–2.365 μm) and band 9 (2.360–2.430 μm) of ASTER [120,121].
Accordingly, PCA5, PCA6 and PCA7 have great potential to hold maximally independent pixels related
to iron oxide/hydroxide minerals, Al-OH minerals and Fe,Mg-O-H and CO3 minerals, which can be
specifically revealed using ICA analysis. Examination of the Z-Profiles (interactively plot the spectrum
for the pixel under the cursor [81]) of the output IC images indicated that the identified pixels are
independently and spectrally related to the indicated minerals.

PCA5, PCA7 and PCA6 were assigned to the RGB color composite for mapping iron
oxide/hydroxide minerals, Al-OH minerals and Fe,Mg-O-H and CO3 minerals, respectively. Figure 7A
shows the resultant image map for the spatial subset covering zone 1 and the surrounding areas.
Magenta, red, yellow and light yellow pixels predominate in the exposed zones, and green and blue
pixels are less in abundance (Figure 7A). Thus, iron oxide/hydroxide minerals have high surface
abundance in the exposed lithologies in zone 1. However, Al-OH minerals and Fe,Mg-O-H and CO3

mineral assemblages have low surface abundance and are generally associated with iron mineral groups
as magenta, yellow and light yellow pixels. With reference to the geological map of zone 1 and the
surrounding areas, the exposed lithological units mostly consist of Wilson Terrane metamorphic rocks,
Granite Harbour Igneous Complex, Beacon Supergroup and Ferrar Dolerite. Surface distribution of
iron oxide/hydroxide minerals (red and magenta pixels) is typically associated with the Ferrar Dolerite
and Granite Harbour Igneous Complex (Figure 7A), for instance, the exposures of Ferrar Dolerite in the
northern part of the Alamein Range and the exposed zones of the Granite Harbour Igneous Complex
along the Hunter Glacier in the southern part of the Lanterman Range. The Al-OH and Fe,Mg-O-H
and CO3 minerals (green, blue, yellow and light yellow pixels) are mainly concentrated in exposures
of the Beacon Supergroup and Wilson Terrane metamorphic rocks (particularly amphibolite-facies
metasedimentary rocks).

Table A1B shows the eigenvector loadings for the spatial subset covering zones 2 and 3. PCA3
shows strong contributions of band 1 (−0.470308) and band 3 (0.711152) with opposite signs. PCA6
contains strong loadings of band 8 (0.440341) and band 9 (−0.347880) with opposite signs. PCA7 has
strong to moderate contributions of band 5 (0.612809), band 6 (−0.398723) and band 7 (0.186662) with
opposite signs, and strong loadings of band 8 (0.403665) and band 9 (−0.344018). Considering the
eigenvector loadings in PCA7, this PCA contains the contribution of both Al-OH and Fe,Mg-O-H
and CO3 mineral groups. ICA rotation is able to separate maximally independent pixels related to
two different mineral groups. Therefore, PCA3, PCA7 and PCA6 were selected for ICA rotation
and subsequent generation of an RGB color composite to detect iron oxide/hydroxide, Al-OH and
Fe,Mg-O-H and CO3 minerals, respectively. Figure 7B displays the resultant image map for the
spatial subset covering zones 2 and 3. Several types of mineral assemblages are detected. Prevalent
distribution of iron oxide/hydroxide minerals (red and magenta pixels) is associated with most of the
exposures, while Al-OH minerals (green pixels) and Fe,Mg-O-H and CO3 minerals (blue pixels) are
specifically predominant in some exposed zones. The admixture of the mineral groups (yellow and
cyan pixels) is also observable in some small exposures (Figure 7B). Comparison with the geological
map of the study zones indicates that iron oxide/hydroxide minerals are typically associated with
exposures of the Granite Harbour Igneous Complex of the WT, Glasgow metavolcanic rocks of the BT,
Robertson Bay Group of the RBT and Admiralty Intrusives. The Al-OH minerals and Fe,Mg-O-H and
CO3 minerals characterize the exposed zones of metasedimentary rocks (the Molar Formation, Mariner
Group and Leap Year Group) of the BT, Wilson Terrane metamorphic rocks and Ferrar Dolerite.
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Figure 7. ASTER image maps derived from the ICA rotation and subsequent RGB color composite
to VNIR+SWIR bands. (A) Spatial subset covering zone 1 and surrounding areas; (B) Spatial subset
covering zones 2 and 3; (C) Spatial subset covering zone 4 and surrounding areas; and (D) Spatial
subset covering zones 5 and 6.

Considering eigenvector loadings for the spatial subset covering zone 4 and surrounding areas
(Table A1C), it is evident that PCA4, PCA5 and PCA6 contain spectral information to identify iron
oxide/hydroxide, Al-OH and Fe,Mg-O-H and CO3 mineral groups at the pixel level. PCA4 shows
strong weightings of band 1 (0.646205) and band 3 (−0.741104) with opposite signs. PCA5 has strong to
moderate contributions of band 5 (0.617458), band 6 (0.257579) and band 7 (−0.353971) with opposite
signs. PCA6 contains strong loadings of band 8 (0.722429) and band 9 (−0.484494) with opposite signs
(Table A1C). Therefore, the ICA rotation and subsequent RGB color composite were applied to PCA4,
PCA5 and PCA6 for mapping the iron oxide/hydroxide, Al-OH and Fe,Mg-O-H and CO3 mineral
groups, respectively. Figure 7C displays the resultant image map for the spatial subset covering zone
4 and the surrounding areas. The iron oxide/hydroxide mineral group appears as red and magenta
color pixels, which mainly predominate in exposed lithologies associated with the Litell Rocks region
(consists of Kirkpatrick Basalts/Ferrar Dolerite) in the south-western part of the image. The Al-OH
mineral group is represented as green and cyan color pixels, which are associated with exposed rocks
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in the Bowers Mountains (Figure 7C). Conceivably, they are exposures of the Molar Formation and the
Mariner Group that contain a high content of clay minerals. The Fe,Mg-O-H and CO3 minerals manifest
in blue color pixels, which have low surface abundance in the study zone. However, they are generally
associated with iron oxide/hydroxide minerals in several exposed zones (Figure 7C). The exposures
could possibly contain a high content of Fe,Mg-O-H and iron oxide/hydroxide minerals in the Bowers
Mountains are Glasgow metavolcanic rocks of the BT. The Autobahn Moraine is a prominent and
linear large moraine stretching over several 10s of kilometres along the Rennick Glacier [122]. The iron
oxide/hydroxide and Al-OH mineral groups are mapped in the Autobahn Moraine (the central part of
Figure 7C).

Analysing the eigenvector loadings for the spatial subset covering zones 5 and 6 (Table A1D)
indicate that PCA4 has strong contribution of band 1 (−0.576526) and band 3 (0.760114), PCA6 contains
strong loadings of band 8 (−0.676196) and band 9 (0.342499) and PCA7 shows strong weightings of
band 5 (0.454540), band 6 (−0.555810) and band 7 (0.600908). Thus, PCA4, PCA7 and PCA6 were
selected for the ICA rotation and were subsequently assigned to an RGB color composite for identifying
iron oxide/hydroxide, Al-OH and Fe,Mg-O-H and CO3 mineral groups. Figure 7D shows the resultant
image map for the spatial subset covering zones 5 and 6, which covers the Bowers Mountains, Millen
Schist and Robertson Bay Terrane (RBT) from west to east. Magenta, red, yellow and green pixels
govern most of the exposures, while blue pixels are much less abundant. Hence, iron oxide/hydroxide
and Al-OH mineral groups and their admixture are dominant mineral assemblages in the study zone.
The Glasgow Volcanics, the Molar Formation, Millen Schist, Robertson Bay Group and Admiralty
Intrusives are exposed in zones 5 and 6 with reference to the geological map. It is discernible that the
exposures of Glasgow Volcanics and Admiralty Intrusives contain a high surface distribution of iron
oxide/hydroxide with some admixture of Al-OH minerals, which appear as magenta, red and yellow
pixels in Figure 7D. The Molar Formation, Millen Schist and Robertson Bay Group appear in green
color pixels due to the high content of Al-OH mineral assemblages (Figure 7D).

TIR radiation has been stated to be a function of temperature and emissivity [38,123]. In the
ASTER TIR dataset, bands 10, 11 and 12 comprise spectral emissivity and temperature information,
while in bands 13 and 14, surface temperature dominates the spectral emissivity information [7,123].
Additionally, ultramafic/mafic rocks (gabbro, dolerite and dunite; 40–45% SiO2) show high spectral
emissivity in bands 10 to 12 (8–9 μm) and low emissivity in bands 13 and 14 (10–12 μm), as well as high
surface temperature due to low albedos and low thermal inertia [41,42,123–125]. Felsic rocks (granite and
granitoid; 60–80% SiO2) show low spectral emissivity in bands 10 to 12 and high emissivity in bands
13 and 14, as well as low surface temperatures attributable to high albedos [41,42,123,124]. In view
of this, ASTER TIR bands incorporate maximally independent pixels related to ultramafic-to-mafic,
intermediate and felsic lithological units, which can be specifically detected using PCA/ICA analysis.

The analysis of the eigenvector matrix for TIR bands in Table A2 shows unique contributions of
eigenvector loadings (magnitude and sign) in some specific PCAs. The Z-Profiles of detected pixels
indicate distinctive spectral emissivity features related to different lithological units (ultramafic, mafic,
intermediate and felsic rocks) in the output IC images. Table A2A shows eigenvector loadings for
the spatial subset of zone 1 and the surrounding areas. PCA2 shows strong contributions of band
12 (−0.793719) and band 14 (0.566669) with opposite signs. PCA3 contains strong loadings of band
10 (−0.639764) and band 11 (−0.511314) with negative signs and band 14 (0.432023) with a positive
sign. PCA4 has strong weightings of band 10 (0.630731) and band 11 (−0.744700) with opposite signs.
Considering the characteristics appearing in the eigenvector loadings (Table A2A), PCA2 contains
maximally independent pixels related to ultramafic-to-mafic units, while PCA3 and PCA4 include the
independent pixels of intermediate and felsic units.

The RGB color composite was generated for the zone 1 and the surrounding areas after ICA
rotation of PCA2, PCA4 and PCA3 for mapping maximally independent pixels of ultramafic/mafic,
felsic and intermediate lithological units, respectively (Figure 8A). The image map contains red,
magenta, yellow, light yellow and green pixels. Comparison with the geological map indicates that
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red and magenta pixels generally match the Wilson Terrane metamorphic rocks and Ferrar Dolerite,
which are composed of ultramafic-to-mafic lithological units. The yellow and light yellow pixels
match well with exposures of the Granite Harbour Igneous Complex (Figure 8A). The green pixels
match the Beacon Supergroup (arkosic quartz sandstone). The intermediate trend can be expected
with the quartz-rich/feldspar-rich rocks (granite and granitoid), while the felsic trend is correlated with
quartz-rich rocks (quartzose sedimentary rocks) due to the high content of SiO2 and spectral property
of quartz [42,124].

Based on the eigenvector loadings for the spatial subset of zones 2 and 3 (Table A2B), PCA2 shows
strong positive loading of band 12 (0.733503) and strong negative loading of band 14 (−0.567605);
PCA3 contains strong negative contribution of band 10 (−0.739002) and strong positive contribution
of band 12 (0.467340); and PCA4 has strong negative weighting of band 10 (−0.528835) and strong
positive weighting of band 11 (0.806255). Hence, PCA2, PCA3 and PCA4 images comprise maximally
independent pixels related to ultramafic-to-mafic, intermediate and felsic lithological units, respectively.
These PCA images were selected for ICA rotation and a false-color composite image map was generated
by allocating red color to ultramafic-to-mafic rocks (the ICA2 image), green color to felsic rocks (the ICA4
image) and blue color to intermediate rocks (the ICA3 image) (Figure 8B). Green, cyan, yellow and red
color pixels are depicted in the image map. Yellow pixels refer to combined mafic and felsic trends,
while cyan pixels contain felsic in the intermediate signature. With reference to the geological map of
the study area, red pixels are mainly associated with exposures of the Glasgow metavolcanic rocks of
the BT and Ferrar Dolerite; yellow pixels are mostly considered with exposed zones of the Granite
Harbour Igneous Complex and Wilson Terrane metamorphic rocks; green and cyan pixels are generally
represented in the exposures of metasedimentary rocks (the Molar Formation, Mariner Group and
Leap Year Group) of the BT, Robertson Bay Group and Admiralty Intrusives.

Table A2C shows the eigenvector matrix for the spatial subset covering zone 4 and the surrounding
areas. PCA2 has high eigenvector loadings in band 12 (0.734577) and band 14 (−0.594568) with opposite
signs. PCA3 shows a strong negative contribution of band 10 (−0.749770) and strong positive
contribution of band 12 (0.439774). PCA4 contain strong positive loading of band 10 (0.532694)
and high negative loading of band 11 (−0.814304). After ICA rotation, red, green and blue colors
were used to produce a false-color composite image map of the ICA2 (ultramafic-to-mafic rocks),
ICA4 (felsic rocks) and ICA3 (intermediate rocks). Figure 8C shows the resultant image map for zone 4
and the surrounding areas. Green, cyan, blue and red color pixels are observable. The concentration of
red pixels mostly corresponds with the Litell Rocks region (Ferrar Dolerite) and Glasgow metavolcanic
rocks, while green and cyan pixels are likely associated with metasedimentary rocks (Molar Formation,
Mariner Group and Leap Year Group) of the BT. Blue pixels are probably the admixture of the
metavolcanic and metasedimentary rocks in the Bowers Mountains, which show an intermediate trend
in the image map (Figure 8C). The green, red and magenta pixels that appear as long linear/curve
patterns in the central part of the image (corresponding with the Rennick Glacier) seem to be the
Autobahn Moraine [122].

Considering the eigenvector loadings for the spatial subset covering zones 5 and 6 (Table A2D),
PCA2 shows high weighting with a negative sign in band 12 (−0.765517) and great contribution with
a positive sign in band 14 (0.585714). PCA3 has strong loading of band 10 (0.667689) and band 12
(−0.419996) with opposite signs. PCA4 contains a strong contribution of band 10 (0.605752) with
a positive sign and high loading of band 11 (−0.766295) with a negative sign. The ICA rotation
was applied to PCA2, PCA3 and PCA4. Accordingly, the ICA2, ICA4 and ICA3 were assigned to
RGB false-color composite for mapping ultramafic-to-mafic rocks, felsic rocks and intermediate rocks,
respectively. Figure 8D shows the resulting image map of the selected zone. Red and magenta pixels are
mainly associated with the exposure of the Glasgow Volcanics, which are mainly mafic in composition.
Yellow pixels with an intermediate composition likely correspond to the exposed zones of Admiralty
Intrusives and the admixture of the metasedimentary and metavolcanic rocks of the Bowers Mountains.
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Green and cyan pixels reflect felsic lithologies that typically characterize the Molar Formation, Millen
Schist and Robertson Bay Group exposures (Figure 8D).

Figure 8. ASTER image maps derived from the ICA rotation and subsequent RGB color composite to
TIR bands. (A) Spatial subset covering zone 1 and surrounding areas; (B) Spatial subset covering zones
2 and 3; (C) Spatial subset covering zone 4 and surrounding areas; and (D) Spatial subset covering
zones 5 and 6.

4.3. Detection of Hydrothermal Alteration Minerals and Prospecting Listvenites in the Selected Subset of
Damage Zones

The LSU and CEM algorithms were used for sub-pixel level mapping of alteration mineral
assemblages and prospecting listvenites in the six selected subsets of damage (fault) zones (zones 1–6)
(see Figure 3). A set of unique pixels (corresponding to a pure end-member) was defined using the
n-Dimensional analysis technique for each selected subset. Figure 9 shows end-member (mean) spectra
extracted for each selected subset of the six study zones. Subsequently, end-member spectra extracted
for each selected subset from the apparent reflectance data were used to act as end-members for LSU
spectral mapping. Comparison with selected end-member reflectance spectra of minerals from the
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USGS spectral library that resampled to response functions of ASTER VINR+SWIR bands (see Figure 5)
indicates that the extracted end-members or a subset of the extracted end-members can be considered
for LSU classification.

 
Figure 9. End-member (mean) spectra extracted from ASTER VINR+SWIR bands using the
n-Dimensional analysis technique for the six selected subsets of the damage (fault) zones. (A) Zone 1;
(B) Zone 2; (C) Zone 3; (D) Zone 4; (E) Zone 5; and (F) Zone 6. ASTER band center positions are shown
for the selected zones.

The spectral patterns are classified based on the relative absorption intensities. The most
dominant spectral patterns often characterize the most abundant minerals (spectrally dominant
species) in the rock, which could also be influenced by subordinate phases (spectrally less active
or less abundant groups). Generally, in a mineral mixture or association, the identification of
different mineralogical phases is complicated when more than one spectrally active mineral group is
present [126]. As a result, the extracted end-member spectra for the study zones could be classified to
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seven spectrally active groups based on Fe2+, Fe3+, Fe-OH, Al-OH, Mg-OH and CO3 spectral absorption
features, namely (i) goethite/hematite/jarosite group; (ii) kaolinite group; (iii) biotite/muscovite group;
(iv) chlorite/epidote/actinolite group; (v) serpentine/antigorite/talc group; (vi) calcite/dolomite/siderite
group; and (vii) unaltered/unknown mineral group.

Figure 9A shows extracted end-member spectra for the subset zone (1). Some obvious distinctions
between spectral signatures for a variety of minerals are recognizable especially for iron oxide/hydroxide,
kaolinite and biotite/muscovite groups. n-D class #1, n-D class #2, n-D class #8, n-D class #9 and
n-D class #10 typically represent iron oxide/hydroxide absorption characteristics. Goethite, hematite
and jarosite show strong Fe3+ and Fe-OH absorption features at 0.48 μm, 0.83–0.97 μm and 2.27 μm,
coinciding with bands 1, 3 and 7 of ASTER, respectively [6,33]. Thus, n-D class #1, n-D class #8 and
n-D class #10 can be attributed to jarosite (strong 2.27 μm; Fe-OH absorption) and n-D class #2 and n-D
class #9 could be considered for goethite and hematite (0.48 μm and 0.83–0.97 μm; Fe3+ absorption)
(Figure 9A). n-D class #3 and n-D class #7 can be grouped as unaltered/unknown minerals because these
classes do not show any distinctive absorption features related to hydrothermal alteration minerals. n-D
class #4 represents biotite due to major Mg,Fe-OH absorption near 2.30 μm and minor Fe3+ absorption
features at 0.85 μm [108,120], which correspond with bands 3 and 8 of ASTER (see Figure 5D). n-D
class #5 exhibits a distinct Al-OH absorption feature at 2.2 μm attributable to muscovite, coinciding
with band 6 of ASTER [32,119,121]. n-D class #6 contains Al-OH absorption features of kaolinite at
2.17 μm and 2.2 μm that correspond with bands 5 and 6 of ASTER [33,108,120].

The fraction images of end-members resulting from LSU analysis for zone (1) appear as a series
of greyscale rule images, one for each extracted end-member. High digital Number (DN) values
(bright pixels) in the rule image represent the subpixel abundance of the target mineral in each pixel
and map its location. Considering the resultant fraction images and extracted end-member spectra
for zone (1), it is evident that goethite, hematite, jarosite, biotite, muscovite and kaolinite are the
dominant minerals. For post classification of the fraction images, the rule image classifier tool was
applied using a maximum value option. It should be noted that in spectral mixture analysis, a material
with a spectral signature similar, but not identical, to that of an end-member can be modeled along
with that end-member and be mapped in that end-member’s fraction image [127]. For that reason,
the rule image classifier tool is not capable of assigning all end-member minerals into their different
classes. However, spectral signatures different from the background and other minerals can certainly be
discriminated and classified. Thus, the red color class was designated for the goethite/hematite/jarosite
group, the yellow color class was assigned to the biotite/muscovite group and the green color class was
selected for the kaolinite group. The unaltered/unknown mineral group was not considered for post
classification in the present study.

Figure 10A shows the LSU classification mineral map for zone (1). The results indicate that zone (1)
is spectrally governed by the goethite/hematite/jarosite group, while the biotite/muscovite and kaolinite
groups have a smaller contribution to the total mixed spectral characteristics. In zone (1), the Wilson
Terrane metamorphic rocks, Granite Harbour Igneous Complex, Beacon Supergroup and Ferrar Dolerite
are exposed. Therefore, a high surface abundance of iron oxide/hydroxide minerals is related to the
crystal-field transitions of iron ions (Fe+2 and Fe+3) in the primary mafic minerals (olivine, pyroxenes
and plagioclase) and/or the alteration of primary mafic minerals within mafic rock units such as
the Wilson Terrane metamorphic rocks and Ferrar Dolerite. Kaolinite high abundance zones are
mostly associated with the detrital clay minerals of the Beacon Supergroup. The biotite/muscovite
group seems to be a phyllic alteration zone associated with the Granite Harbour Igneous Complex.
Accordingly, the presence of listvenite bodies in zone (1) is slightly feasible.
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Figure 10. LSU classification mineral maps derived from fraction images of the extracted end-members.
(A) Zone 1; (B) Zone 2; (C) Zone 3; (D) Zone 4; (E) Zone 5; and (F) Zone 6. Spectrally dominant mineral
groups (concertation more than 10%) are depicted as colored pixels.

Analysis of the extracted end-member spectra for the subset zone (2) (Figure 9B) indicates
several distinguishable spectral signatures for the alteration minerals. Hematite, jarosite, kaolinite,
biotite, muscovite, actinolite, epidote and chlorite are recognizable (Figure 9B). n-D class #1 shows
the spectral characteristics of jarosite and n-D class #2 shows the distinctive absorption features of
kaolinite. n-D class #3 represents actinolite due to the iron absorption features in bands 2 and 3,
and Mg, Fe-OH absorption in bands 7 and 8 of ASTER (see Figure 5J). n-D class #4 and n-D class
#9 lack any distinct spectral features related to the alteration minerals, which can be considered an
unaltered/unknown mineral group in zone (2). n-D class #5 and n-D class #8 represent epidote and
chlorite because they display a slight iron absorption at 0.85–0.97 μm and a major Mg, Fe-OH absorption
at 2.30–2.35 μm [33,108,128], corresponding to bands 2, 3 and 8 of ASTER data, respectively [121].
n-D class #6 and n-D class #7 characterize muscovite and biotite, respectively. n-D class #10 can be
considered as mixed spectral features of goethite, hematite and jarosite.

Fraction images of end-members for zone (2) were classified using the rule image classifier
tool. The blue color class was assigned for chlorite/epidote/actinolite group and added to the

73



Remote Sens. 2019, 11, 1408

previous classes for producing the LSU classification mineral map. Figure 10B shows the resultant
classification map for the subset of zone (2). Goethite/hematite/jarosite and chlorite/epidote/actinolite
groups show high surface abundance, whereas kaolinite and biotite/muscovite groups exhibit
moderate to less spectral contribution and spatial distribution in zone (2). The association of
goethite/hematite/jarosite and chlorite/epidote/actinolite groups is observable with exposures of the
Glasgow metavolcanic rocks and metasedimentary rocks (Molar Formation, Mariner Group and Leap
Year Group). Kaolinite, biotite/muscovite and iron oxide/hydroxide assemblages are associated with
the Granite Harbour Igneous Complex. The Wilson Terrane metamorphic rocks and Ferrar Dolerite
exposures are generally dominated by goethite/hematite/jarosite group, while the Beacon Supergroup is
governed by kaolinite group. For that reason, listvenite bodies could be located in a zone that spatially
contains all of the four alteration mineral assemblages. Please note that the large greenish-colored spot
in the area of the Sledgers Glacier is a dense crevasse field, which may contain contamination of clay
mineral groups (Figure 10B). Several prospect zones for listvenite bodies are identifiable in zone (2);
some of them are delimited by yellow rectangles in Figure 10B.

In zone (3), some spectral signatures related to alteration minerals such as goethite, hematite,
jarosite, kaolinite, biotite and muscovite are discernible (Figure 9C). n-D class #1, n-D class #4, n-D class
#8 and n-D class #9 can be considered to be an unaltered/unknown mineral group. They do not illustrate
any significant absorption features related to the target alteration minerals. n-D class #2 and n-D class #3
represent jarosite. Spectral signatures related to kaolinite, biotite and muscovite are apparent in n-D class
#5, n-D class #6 and n-D class #7, respectively. n-D class #10 can be characterized as having mixed spectral
features of hematite and goethite. Figure 10C displays the LSU classification mineral map for zone (3).
The goethite/hematite/jarosite and biotite/muscovite groups are spectrally predominant. The kaolinite
group shows very low surface abundance. Iron oxide/hydroxide and biotite/muscovite mineral groups
are concentrated in the exposures of the Glasgow metavolcanic rocks and metasedimentary rocks in
the Bowers Mountains. Small exposures of the Granite Harbour Igneous Complex and Admiralty
Intrusives contain kaolinite group minerals associated with iron oxide/hydroxide and biotite/muscovite
mineral groups, which can be attributed to the alteration products of argillic and phyllic alteration
zones. Hence, zone (3) has very low potential for containing listvenites.

Typical spectral signatures for a variety of mineral assemblages are decipherable for zone (4)
(Figure 9D). n-D class #1 represents antigorite, which contains Fe3+ absorption features and Mg,Fe-OH
absorption near 2.30 μm [128,129], coinciding with bands 2, 3 and 8 of ASTER (see Figure 5G). n-D class
#2 shows 0.48 μm and 0.83–0.97 μm Fe3+ absorption and seems to be a combined spectral signature
of goethite and hematite. The unaltered/unknown mineral group can be assigned to n-D class #3.
Serpentine shows spectral characteristics related to crystal-field transitions in the Fe2+ near 0.4 and 0.5
μm and Fe3+ near 0.65 μm and a combination of OH-stretching fundamental with the Al-OH-bending
and Fe,Mg-OH-bending modes near 2.20 and 2.30 μm [128,130,131]. Therefore, it seems that n-D class
#4 has a serpentine spectral signature, which displays distinctive absorption features in bands 2, 3, 7
and 8 of ASTER (see Figure 5H). n-D class #5 appears to be a combined spectral signature of muscovite
and biotite. n-D class #6 is characterized by chlorite and epidote spectral features. n-D class #7 can
be considered as a mixed spectral signature for calcite and dolomite. Broad Fe2+ absorption features
occur in calcite and dolomite spectra near 0.9–1.2 μm and vibrational processes of CO3 radical cause
absorption properties near 2.30–2.35 μm [132,133], which are equivalent to bands 4, 7 and 8 of ASTER.
n-D class #8 exhibits siderite due to absorption characteristics related to Fe2+, Fe3+ and CO3 in bands 2,
3, 7 and 8 of ASTER (see Figure 5P). n-D class #9 exhibits the kaolinite spectral signature, and n-D class
#10 can be considered to be a mixed spectral signature of hematite and jarosite.

Figure 10D shows the LSU classification mineral map for zone (4). Biotite/muscovite,
goethite/hematite/jarosite and chlorite/epidote/actinolite mineral groups are spectrally significant
and have high surface abundance. However, kaolinite, serpentine/antigorite/talc (cyan color class)
and calcite/dolomite/siderite (purple color class) mineral assemblages are weakly distributed in the
exposed zones. Since zone (4) covers the Bowers Mountains, biotite/muscovite mineral assemblages
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(yellow pixels) are likely associated with the Molar Formation and the Mariner Group metasedimentary
sequences that contain high contents of detrital clay minerals. Glasgow Metavolcanic rocks contain
goethite/hematite/jarosite and chlorite/epidote/actinolite mineral groups because of the alteration of
primary mafic mineral within basalts, spilites, volcanic breccia and tuffs. The Autobahn Moraine in
the Rennick Glacier [122] is mapped as green pixels in the southwestern part of zone (4) (Figure 4D).
Erratic metasedimentary or sedimentary rocks and detritus delivered to this moraine from the Bowers
Mountains and/or the Lanterman Range could possibly contain large amounts of kaolinite mineral
groups. Zone (4) is a highly likely prospective area for listvenites, where the most of the alteration
mineral groups are specifically concentrated and are associated particularly with the Glasgow Volcanics.
Some of the prospects in zone (4) are shown by yellow rectangles and circles in Figure 10D.

Deciphering the extracted end-member spectra for zone (5) reveals several distinct spectral
signatures for the alteration minerals (Figure 9E). n-D class #1 and n-D class #2 obviously represent
chlorite and epidote, respectively. n-D class #3 seems to be the combination of antigorite and talc spectral
signatures. Mixed spectra of biotite and muscovite can be seen in n-D class #4. Diagnostic absorption
features related to alteration minerals could not be realized in n-D class #5 (unaltered/unknown
mineral group). n-D class #6 characterizes actinolite spectral properties. n-D class #7 has the combined
spectra of hematite and jarosite. It seems that the spectral signatures of kaolinite are exhibited in
n-D class #8. Serpentine, antigorite and talc might display mixed spectral properties in n-D class
#9. n-D class #10 represents serpentine. Figure 10E shows the LSU classification mineral map for
zone (5). The goethite/hematite/jarosite, kaolinite and serpentine/antigorite/talc mineral groups are
considerably predominant. Conversely, biotite/muscovite and chlorite/epidote/actinolite mineral
assemblages show low spatial distributions and abundances in this zone. The association of iron
oxide/hydroxide, serpentine/antigorite/talc, chlorite/epidote/actinolite mineral assemblages are mostly
concentrated in the exposures of Glasgow Volcanics due to the alteration of mafic minerals within
meta-basalts, spilites, volcanic breccia and tuffs. Kaolinite is mostly associated with the Molar
Formation because of the high content of conglomerate and mudstone. Zone (5) may comprises several
listvenite occurrences especially associated with Glasgow Volcanics, where a high surface distribution
of serpentine/antigorite/talc group is detected with biotite/muscovite and iron oxide/hydroxide mineral
groups. Yellow rectangles and circles show some of the prospective zones (Figure 10E).

Analyzing the spectral signatures related to alteration minerals for zone (6) indicates the presence
of goethite, hematite, jarosite, biotite, muscovite, chlorite, actinolite, serpentine and talc (Figure 9F).
n-D class #1 shows chlorite. n-D class #2 and n-D class #4 may have mixed spectral signatures
related to goethite, hematite and jarosite. n-D class #3 and n-D class #8 do not have any indicative
absorption features related to alteration minerals and can be considered an unaltered/unknown mineral
group. Biotite and muscovite spectral characteristics can be found in n-D class #5 and n-D class
#6, respectively. n-D class #7 represents actinolite. n-D class #9 and n-D class #10 characterize
serpentine and talc. The LSU classification mineral map for zone (6) is shown in Figure 10F.
Iron oxide/hydroxides (goethite, hematite and jarosite) and chlorite/epidote/actinolite mineral
assemblages are spectrally major components, while biotite/muscovite and serpentine/antigorite/talc
mineral groups are minor components in this zone. The Glasgow Volcanics show high content
of iron oxide/hydroxides minerals, which are locally associated with chlorite/epidote/actinolite,
biotite/muscovite and serpentine/antigorite/talc mineral groups. Listvenite bodies could be found in
the local association of these mineral assemblages within Glasgow Volcanics exposures in the Bowers
Mountains. Several locations could be taken into consideration for listvenite occurrences, some of
which are demarcated by yellow rectangles and circles in Figure 10F.

The CEM algorithm was implemented to produce fraction images of selected end-member spectra
from the USGS spectral library, including goethite, hematite, jarosite, biotite, kaolinite, muscovite,
antigorite, serpentine, talc, actinolite, chlorite, epidote, calcite, dolomite, siderite and chalcedony
(see Figure 5). The subset of the zones (2), (4) and (5) was selected for running the CEM because they
exhibit a variation of mineral assemblages and several highly likely prospective zones for listvenite
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occurrences in the LSU classification mineral maps (see Figure 10B,D,E). The spatial subset of zone (2)
covering the Lanterman Range and surrounding areas was selected to present in this paper. Fraction
images of sixteen selected end-member minerals were produced using the CEM algorithm. Fractional
abundance of target end-member minerals appears as a series of greyscale rule images, one for each
selected mineral. Pseudo-color ramp of greyscale rule images was generated to illustrate high fractional
abundance (high DN value pixels) of the target minerals in zone (2) (Figure 11). This comfortably
distinguishes the contrast between subpixel targets and surrounding areas. This contrast expresses the
fractional abundance of the target mineral present in the rule image.

Figure 11. Fraction images of the selected end-member minerals derived from CEM algorithm for zone
(2) covering the Lanterman Range and surrounding areas. Pseudo-color ramp was applied to greyscale
rule images.

Considering Fe2+, Fe3+, Fe-OH, Al-OH, Mg-OH, Si-OH and CO3 spectral absorption characteristics
of target minerals and the limitations of VNIR+SWIR ASTER spectral bands, seven groups of mineral
assemblages could also be discernible here. There might be some confusion for distinctive separation of
the absorption features (electronic transitions and molecular vibrational overtones) present in alteration
minerals using VNIR+SWIR spectral bands of ASTER, particularly when mixtures occur [134,135].
Therefore, some of the target alteration minerals may have a similar manifestation of the fractional
abundances in the CEM rule images. For iron oxide/hydroxide mineral group, fractional abundances
of goethite and hematite show almost similar appearance and high mixtures, while jarosite shows low
mixtures with them and different spatial fractional abundance in some parts of zone (2) (Figure 11).
Examination of the end-member spectra extracted from ASTER VINR+SWIR bands using n-Dimensional
analysis for zone (2) indicates the presence of jarosite spectral characteristics as n-D class #1 and mixed

76



Remote Sens. 2019, 11, 1408

spectral features of goethite, hematite and jarosite in n-D class #10 (see Figure 9B). Comparison of the
fraction images of biotite and muscovite shows different spatial abundances and low combinations
(Figure 11). Looking at the n-Dimensional analysis results for zone (2) shows the identification of
spectral signatures for muscovite and biotite in n-D class #6 and n-D class #7, respectively (see Figure 9B).

Fractional abundance of kaolinite exhibits comparable manifestation with the spatial abundance
of muscovite in many parts (Figure 11). n-D class #2 derived from n-Dimensional analysis for zone (2)
is considered to be kaolinite (see Figure 9B); however, the CEM results indicate that this n-D class can
be a mixture of kaolinite and muscovite. Antigorite, serpentine and talc display fractional abundance
analogous to actinolite (Figure 11). n-D class #3 extracted from n-Dimensional analysis for zone
(2) represents actinolite due to some distinctive spectral signatures (see Figure 9B), which are very
similar to spectral features of serpentine/antigorite/talc group (see Figure 5G–J). Hence, there may be
some confusion between these minerals when using VINR+SWIR bands of ASTER, and their spectral
signatures could appear in only one n-D class (n-D class #3) (see Figure 9B). Fractional abundances
of chlorite and epidote show some small spatial differences and high combination. Considering n-D
classes for zone (2) (see Figure 9B), n-D class #5 and n-D class #8 are determined to be epidote and
chlorite, respectively. Fraction images of calcite, dolomite, siderite and chalcedony exhibit similar
spatial abundance and high mixtures with each other, although siderite has a lower distribution in some
places (Figure 11). With respect to n-D classes for zone (2) (see Figure 9B), there is a high probability
that n-D class #4 can be considered to be the mixed spectral signatures of the calcite/dolomite/siderite
group, which was previously considered an unaltered/unknown mineral group in zone (2). Please note
that a high degree of spectral contrast is required to distinguish the end-member mineral from the
background materials [127]. n-D class #9 (see Figure 9B) might have mixed spectral signatures of
chalcedony with other minerals, which was formerly assigned to the unaltered/unknown mineral
group in zone (2). This is due to the fact that all mixed-pixel spectra always lie on the line that connects
the component spectra [111].

4.4. Petrography and Mineralogy of Hydrothermal Alteration Minerals and Listvenites

Petrographic studies were carried out on samples of hydrothermally altered rocks from the
major damage zones of the terrane boundaries and along intra-terrane faults or shear zones.
The country rocks comprise low-grade metamorphic basalts and volcaniclastic rocks, low- high-grade
metamorphic ultramafic and mafic igneous rocks and granitoids. The observed types of alteration
can be divided into the following main groups: (i) Mg-Ca-Fe carbonation and/or silicification of
metavolcanic rocks associated with syntectonic carbonate coatings on fault planes, hydraulic brecciation,
and quartz-carbonate veining occurring along intra-BT faults and shear zones in the Bowers Mountains
and along the BT-RBT boundary damage zone; (ii) epidote-bearing slickensides, epidote veining
and epidotization occurring in low-grade metabasalts and in amphibolites in the Lanterman Range
and the Bowers Mountains; (iii) epidote-chlorite-prehnite-bearing cataclastites, ultracataclastites,
and indurated gouges in fault cores, as well as saussuritization of K-feldspar in the wallrock of
granitoid rocks in the western Lanterman Range [136]; (iv) foliated listvenites with Mg-Ca carbonates,
quartz, Cr-phengite, Cr-chlorite, magnesite, and talc derived from carbonation of mafic and ultramafic
rocks along brittle-ductile shear zones within the WT-BT boundary damage zone and within the
BT [1,137] (see Table A3). Figure 12A–H shows some exposures of typical altered rocks and listvenites.
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Figure 12. Field photographs of the typical altered rocks and listvenites. (A) Helicopter view of the fault
zone characterized by epidote–prehnite–quartz coatings, and epidotization in Glasgow Volcanics country
rocks, Mt Gow, Bowers Mountains; (B) Helicopter view of the reddish (iron oxide/hydroxide minerals)
to greenish (chlorite-epidote minerals) alterations of Glasgow Volcanics along fault zones, NE slopes of
Mt Gow, Bowers Mountains; (C) Helicopter view of the metasomatic alteration (carbonate dominated)
of Glasgow Volcanics around a quartz–carbonate fault vein system (Dorn Glacier, for details see [1];
(D) Close view of reddish alteration (iron oxide/hydroxide minerals dominated) along fault zones
in Glasgow Volcanics, NE slopes of Mt Gow, Bowers Mountains; (E) Close view of shear zone with
magnesite-talc-quartz mylonite derived from mafic and ultramafic rocks at the WT-BT boundary,
Lanterman Range; (F) View of layers of alternating foliated ultramafite and amphibolite within
mylonitic shear zone characterised by listvenite and magnesite-talc-quartz rich mylonite, WT-BT
boundary, Lanterman Range; (G) Close view of listvenites from a shear zone at the WT-BT boundary,
Lanterman Range. The foliated green rock is rich in Cr-muscovite and chlorite, the light brown part is
rich in Fe-Mg carbonates; (H) Close view of a damage zone with intense epidotization (greenish to
pinkish color) and silicification of the host Glasgow Volcanics Mt Gow, Bowers Mountains.
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Petrographic studies of the upper Dorn Glacier at the eastern side of the northern Bowers
Mountains indicated the transformation of primary mafic minerals such as pyroxene (augite), olivine,
plagioclase, ilmenite and amphibole to secondary altered minerals such as muscovite, Mg,Fe-chlorite,
titanite, calcite, epidote-prehnite, hematite/limonite and siderite/ankerite in the hydrothermal alteration
zones [1]. Figure 13A–D shows thin sections of epidote+prehnite+chlorite alteration on a fault in
Glasgow Volcanics (A), carbonated basalt (B) and foliated listvenites (C and D). Primary mafic minerals
in fine-grained green metabasalt (Glasgow Volcanics) replaced by epidote-chlorite-prehnite-bearing
cataclastites in the fault zone. The phenocrysts of epidote and prehnite display a cataclastic fabric,
while chlorite forms thin veinlets in the backgmass (Figure 13A). Mg-Ca-Fe carbonation has completely
replaced the primary mafic minerals of the metabasalt. Some of the carbonates are phenocrystalline and
anhedral (Figure 13B). Muscovite, Mg-Ca carbonates, quartz in foliated listvenites are characterized
by very fine-grained brittle-ductile deformation along microfractures, and also disseminated in the
background (Figure 13C–D). The mineral contents of some selected samples were also examined
using XRD analysis (Figure 14A–E). The XRD analysis demonstrated that the predominant minerals in
the altered rocks and listvenites were ankerite, muscovite, magnesite, kaolinite, hematite, dolomite,
epidote, spinel, talc, clinochlore and quartz.

Figure 13. Different types of alteration mineralogy in hydrothermally altered rocks. Microphotographs
of (A) epidote+prehnite+chlorite-dominated alteration in the damage zone of a fault in Glasgow
Volcanics (plane-polarized light; #09.12.03GL 9); (B) carbonated basalt in the damage zone of a
shear zone (Dorn Glacier—plane-polarized light; #08.12.05GL6); and (C,D) foliated listvenites from
two brittle-ductile shear zones at the WT-BT boundary (C: crossed-polarized light, #23.12.96 GL 6;
D: plane-polarized light, #19.12.96 GL 6). Abbreviation: Ep = epidote, Prh = prehnite, Chl = chlorite,
Cb = carbonate, Wmica =white mica, Qtz = quartz.
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Figure 14. Cont.
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Figure 14. Representative XRD analysis of samples collected from listvenites (A–C) and altered Glasgow
volcanics (reddish to greenish alterations) at Mt Gow, Bowers Mountains (D–E).

5. Discussion

Terrane boundaries are major tectonic discontinuities that often display a complex and polyphase
structural evolution, and a variety of ore mineralizations were reported in these boundaries [2,3].
Listvenite, a carbonate-silica-dominated rock that forms as a result of CO2- and K-metasomatism of
ultramafic/mafic rocks, represents a key indicator for the occurrence of ore mineralizations along shear
zones or major tectonic boundaries [20–23,138–140]. The ability to map hydrothermal alteration mineral
and listvenites using spectral bands of ASTER satellite remote sensing data has been successfully
established in many parts of the world [6–12,27–29,31,43]. Features in the spectra of lithological units
are dependent upon their constituent minerals and intensities. The intensities are a function of the
concentration, absorption coefficient and accessibility to the recording radiation of each constituent
mineral [128]. Thus, the extraction of mineralogical information of interest from the remote sensing
imagery required standardized/specialized image processing techniques to detect spectrally active
minerals and revealing hidden key end-member spectra.

In this study, implementation of robust and standardized/specialized image processing techniques
consisting of PCA/ICA fusion, LSU and CEM analysis to ASTER VNIR+SWIR and TIR bands provides
a consistent way to detect spectrally active alteration mineral assemblages and lithological units
at both pixel and sub-pixel levels in the poorly exposed damage zones of the WT-BT and BT-RBT
boundaries and along intra-terrane faults and shear zones in NVL of Antarctica. Fusion technique
of PCA and ICA was used to extract the image spectra at the pixel level for mapping alteration
mineral assemblages and lithological units. The resultant image maps derived from PCA/ICA fusion
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identified the pixels containing the spectral signature of the alteration minerals or mineral groups
that are maximally independent of each other using VNIR+SWIR and TIR bands of ASTER. PCA
images contain high eigenvector loadings and opposite signs in the indicative bands (in the VNIR
and SWIR regions) for oxide/hydroxide minerals, Al-OH minerals and Fe,Mg-O-H and CO3 minerals
were identified and used for ICA rotation to extract maximally independent pixels of the minerals.
Maximally independent pixels related to ultramafic-to-mafic, intermediate and felsic lithological units
(in the TIR region) particularly detected using PCA/ICA analysis. Sub-pixel abundances of spectrally
pure pixels (end-members) related to alteration minerals were mapped using ASH technique and
LSU classification, which directly derived from ASTER image reference spectra (in the VNIR+SWIR
bands). Fraction images of end-members (extracted from the USGS library) obtained by CEM analysis
were similar to LSU classification mineral maps, though some spectral mixing and confusion between
minerals contain absorption features with subtle differences are undoubted.

Considering image maps of alteration minerals (Figure 7A–D), iron oxide/hydroxides minerals
are spectrally dominated in the study zones. The exposures of Granite Harbour Igneous Complex,
Glasgow metavolcanic rocks, Admiralty Intrusives and Ferrar Dolerite contain a high surface abundance
of iron oxide/hydroxides minerals. Iron oxide spectral signatures are produced due to crystal-field
transitions of iron ions (Fe+2 and Fe+3) in the primary mafic minerals (olivine, pyroxenes and plagioclase)
or caused by the alteration of the primary minerals to iron oxide/hydroxide mineral (hematite, goethite,
jarosite and limonite) [126,128]. Therefore, the iron spectral signature can be mapped in both altered
and unaltered exposures. The (meta-)sedimentary sequences of the Wilson Terrane metamorphic rocks,
Molar Formation, Mariner Group, Leap Year Group, Robertson Bay Group and Beacon Supergroup
predominantly show vibrational processes of fundamental absorptions of Al-OH, Fe,Mg-O-H and
CO3 modes. These groups of spectral features appear to be quite diagnostic of detrital clay minerals
in the (meta-)sedimentary units. Furthermore, some of the alteration minerals are the products of
regional metamorphic processes in the WT, BT and RBT. However, these mineral assemblages could
also be weathering products of rocks taking into account the paleo-latitude of the rocks at the time of
deposition, e.g., in the case of the redbeds of the Leap Year Group. Also, other metasedimentary rocks
deposited in the accretionary environment (like the Robertson Bay Group) would have received detritus
rich in Fe- or Al-rich oxides/hydroxides in a particular weathering environment as for these rocks in the
early Ordovician (deep-reaching, intensive weathering in equatorial latitudes). Accordingly, only the
exposures contain a strong combination of absorption features and intensities for iron oxide/hydroxide,
Al-OH and Fe,Mg-O-H and CO3 modes can be considered as hydrothermal/metasomatic alteration
mineral zones, specifically in the Bowers Mountains and Lanterman Range (Figure 7A–D).

The stretching vibration of Si–O–Si tetrahedra in TIR regions was determined to discriminate
silicate rocks by applying PCA/ICA fusion (Figure 8A–D). An ultramafic/mafic trend was mapped mostly
in the exposures of the Glasgow Volcanics and Ferrar Supergroup (Ferrar Dolerite/Kirkpatrick Basalts).
The Wilson Terrane metamorphic rocks, the Granite Harbour Igneous Complex and the Admiralty
Intrusives show an intermediate trend. The (meta-)sedimentary rocks of the Molar Formation, Mariner
Group, Leap Year Group, Robertson Bay Group and Beacon Supergroup were classified in the felsic
trend (Figure 8A–D). Spatial distributions of spectrally active minerals containing Fe2+, Fe3+, Fe-OH,
Al-OH, Mg-OH and CO3 spectral absorption features, including goethite/hematite/jarosite, kaolinite,
biotite/muscovite, chlorite/epidote/actinolite, serpentine/antigorite/talc and calcite/dolomite/siderite,
were detected using n-Dimensional analysis technique and LSU classification in the six selected
subsets of damage zones (Figure 10A–F). Goethite, hematite, jarosite, biotite, muscovite, kaolinite,
actinolite, epidote and chlorite were the predominating minerals, while serpentine, antigorite, talc,
calcite, dolomite and siderite were in a minority in the selected subsets. The results derived from LSU
(Figure 10A–F) show good agreement with the PCA/ICA mapping results (Figure 7A–D). However,
alteration minerals were detected systematically in the fraction images of end-members for the selected
subsets. Several prospective zones for listvenite occurrences were identified in zones (2), (4), (5) and (6)
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(Figure 10B,D–F), which were mostly concentrated and associated with the Glasgow Volcanics in the
Bowers Mountains.

The fraction images derived from the CEM algorithm for detecting alteration minerals using the
end-member spectra from the USGS spectral library confirmed the capability of ASTER VNIR+SWIR
spectral bands to identify some important alteration minerals for prospecting listvenite occurrences.
However, some confusion between the alteration minerals may occur due to spectral and spatial
limitations of the ASTER multispectral bands, especially when mineral spectral signatures are mixed
and/or contain subtle differences. Confusion between minerals with similar absorption bands near
0.9 μm, 2.2 μm and 2.30 μm, such as goethite, hematite, kaolinite, muscovite, chalcedony, serpentine,
chlorite, epidote and calcite, is high. As a consequence, CEM fraction images of the alteration
minerals show comparable surface abundances in zone (2) (Figure 11). Comprehensive fieldwork
data, microscopy-based petrographic studies and XRD analysis in the major fault zones of the terrane
boundaries and along the intra-terrane fault or shear zones verified the occurrence of Mg-Ca-Fe
carbonation, epidotization and listvenites, especially in Glasgow Volcanics in the Bowers Mountains
and Lanterman Range. Comparison of the LSU classification mineral maps with field data using a
confusion matrix approach and Kappa Coefficient shows a very good match, which indicates the
overall accuracy of 71.42% and the Kappa Coefficient of 0.57, respectively (Table A4, see Appendix A).
Consequently, the remote sensing approach developed in this study is explicitly applicable for mapping
alteration minerals and lithological units associated with ore mineralizations in remote and inaccessible
areas such the Antarctic and Arctic regions, where access to field data is challenging.

6. Conclusions

Application of ASTER multispectral remote sensing data for detecting hydrothermal alteration
mineral assemblages, and particularly listvenites, in the poorly exposed damage zones of the WT-BT
boundary, the BT-RBT boundary and within the BT and in the eastern WT (NVL, Antarctica) confirmed
alteration mineral patterns at several locations, including the predominance of iron oxide/hydroxide,
biotite/muscovite, chlorite/epidote/actinolite, Mg-Ca-Fe carbonates and listvenites. The PCA/ICA
fusion successfully helped to map and discriminated alteration minerals containing Fe2+, Fe3+, Fe-OH,
Al-OH, Mg-OH and CO3 spectral absorption features in the VNIR+SWIR bands, and silicate lithological
units contained different characteristics of emissivity spectra derived from stretching vibration of
Si–O–Si tetrahedra in TIR bands. n-Dimensional analysis technique confirmed the presence of
several end-member alteration minerals such as goethite/hematite/jarosite, kaolinite, biotite/muscovite,
chlorite/epidote/actinolite, serpentine/antigorite/talc, calcite/dolomite/siderite in the selected damage
zones, the fraction abundances and spatial distributions of which were subsequently mapped by
the LSU classification. The results showed that listvenite occurrences are mostly associated with
metavolcanic rocks of Glasgow Volcanics in zones (2), (4), (5) and (6) in the Bowers Mountains,
while the association of alteration minerals is generally associated with other sedimentary and igneous
lithological units in the study zones. The CEM results verified the identification of some important
alteration minerals for detecting listvenite occurrences, although some confusion between the alteration
minerals may present using ASTER VNIR+SWIR spectral bands. Furthermore, geological fieldwork
and laboratory investigations proved essential implications of the remote sensing data analysis for
detecting alteration minerals in remote and inaccessible (Antarctic) environments. The mapping results
indicate that ASTER data processing using the pixel/sub-pixel algorithms can provide an efficient
approach to map hydrothermal alteration minerals, lithological units (ultramafic, mafic, intermediate
and felsic) and listvenite occurrences in inaccessible parts of the NVL and can be broadly applicable in
other tectonic boundaries or major tectonic fault zones around the world.
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Appendix A

PCA computing equation (Equation (A1)):

RKP =
aKP ×

√
λP√

VarK
(A1)

where, akp = eigenvector for band k and component p; λP = Pth eigenvalue; and VarK = variance of Kth

band in the covariance matrix [86]. This computation results in a new n × n matrix filled with factor
loadings. This data is typically represented in quantitative terms, which is a very small fraction of the
total information content of the original bands. It is expected that the loaded information is indicated
in the spectral signature of the desired mineral or mineral group [91].

Table A1. Eigenvector matrix for VNIR+SWIR bands of ASTER. (A): Spatial subset covering zone 1
and surrounding areas; (B): Spatial subset covering zones 2 and 3; (C): Spatial subset covering zone 4
and surrounding areas; and (D): Spatial subset covering zones 5 and 6.

(A)

Eigenvector Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 9

PCA 1 0.467805 0.509694 0.512981 0.217468 0.176799 0.246614 0.248711 0.197151 0.134638
PCA 2 −0.300431 −0.288970 −0.263316 0.338230 0.386615 0.342808 0.283244 0.363021 0.404354
PCA 3 0.157609 0.161323 −0.103135 0.006767 0.226125 −0.358278 −0.615519 0.073713 0.612094
PCA 4 0.044681 0.011848 −0.069971 0.090291 −0.633560 −0.438259 0.344247 0.463711 0.240442
PCA 5 0.571038 0.143893 −0.731120 −0.148991 0.161062 0.025766 0.172102 0.073443 −0.186704
PCA 6 0.085901 −0.004662 −0.067071 −0.301431 −0.281197 0.308307 0.264687 −0.553969 0.588366
PCA 7 −0.076892 −0.036997 0.134514 −0.155125 0.497821 −0.618179 0.507327 −0.246778 0.048065
PCA 8 0.068572 0.059992 −0.169358 0.829896 −0.117622 −0.150630 0.013344 −0.485437 −0.044016
PCA 9 0.565673 −0.777720 0.257238 0.065265 0.008201 −0.026038 −0.057528 0.007880 0.024873

(B)

Eigenvector Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 9

PCA 1 −0.479262 −0.517939 −0.509952 −0.225048 −0.160278 −0.238705 −0.238099 −0.191397 −0.123923
PCA 2 0.288066 0.267422 0.266615 −0.388911 −0.371102 −0.336818 −0.273033 −0.365435 −0.404865
PCA 3 −0.470308 −0.335548 0.711152 −0.063002 −0.061806 0.155815 0.278307 −0.089651 −0.207174
PCA 4 0.089149 0.081563 −0.378102 0.066965 −0.262842 0.327757 0.541766 0.014714 −0.606397
PCA 5 0.005198 −0.011714 0.013230 −0.289525 −0.571447 −0.297938 0.372870 0.457705 0.389860
PCA 6 −0.143194 0.033396 0.100700 0.637725 −0.213061 −0.346181 −0.285287 0.440341 −0.347880
PCA 7 0.048756 −0.037063 −0.000810 −0.381573 0.612809 −0.398723 0.186662 0.403665 −0.344018
PCA 8 0.019200 −0.050602 0.037382 −0.368910 −0.118495 0.574367 −0.492425 0.505200 −0.133907
PCA 9 −0.659478 0.731979 −0.091948 −0.132052 0.046537 0.019598 −0.007121 −0.002060 0.028260

(C)

Eigenvector Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 9

PCA 1 0.436596 0.474941 0.478323 0.259162 0.202467 0.288422 0.293737 0.233995 0.150469
PCA 2 −0.361523 −0.339702 −0.304584 0.341346 0.339529 0.323638 0.270272 0.338853 0.369764
PCA 3 −0.113406 −0.131491 0.013472 −0.038953 −0.199768 0.301020 0.615036 −0.041133 −0.676513
PCA 4 0.646205 0.069871 −0.741104 0.063857 0.083737 0.043079 0.029404 0.011287 −0.119854
PCA 5 −0.081856 0.003684 0.073346 0.258757 0.617458 0.257579 −0.353971 −0.466145 −0.361612
PCA 6 −0.081361 0.054497 0.026637 0.134626 0.188319 −0.340347 −0.252269 0.722429 −0.484494
PCA 7 −0.038421 0.062948 0.062948 0.128723 −0.501280 0.651852 −0.509411 0.194283 −0.050948
PCA 8 0.065332 −0.071443 0.035478 −0.833862 0.356670 0.335182 −0.066825 0.222638 0.021186
PCA 9 −0.478726 0.790450 −0.345997 −0.117250 0.039925 0.012703 0.092941 −0.045796 0.007618
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Table A1. Cont.

(D)

Eigenvector Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 9

PCA 1 0.457469 0.496121 0.484720 0.241961 0.190767 0.264428 0.267634 0.222557 0.153665
PCA 2 −0.318221 −0.311611 −0.309208 0.348166 0.377922 0.352360 0.263388 0.321127 0.381217
PCA 3 0.050573 0.100867 0.065376 −0.074127 0.348897 −0.190996 −0.603883 −0.184339 0.648564
PCA 4 −0.576526 −0.199530 0.760114 −0.121149 −0.074678 −0.014245 0.117300 −0.037045 0.120188
PCA 5 0.062048 0.065969 −0.120679 −0.198503 −0.582283 −0.293206 0.201001 0.452767 0.517116
PCA 6 0.076383 0.014735 −0.110901 −0.152342 −0.282329 0.477741 0.275588 −0.676196 0.342499
PCA 7 0.082735 −0.021608 −0.059222 −0.230230 0.454540 −0.555810 0.600908 −0.236367 0.060691
PCA 8 0.018744 0.033687 −0.043334 −0.827212 0.260085 0.381570 −0.039539 0.303178 −0.075067
PCA 9 −0.581066 0.774987 −0.234825 0.012884 0.021499 −0.022616 0.039495 −0.044352 −0.044133

Table A2. Eigenvector matrix for TIR bands of ASTER. (A): Spatial subset covering zone 1 and
surrounding areas; (B): Spatial subset covering zones 2 and 3; (C): Spatial subset covering zone 4 and
surrounding areas; and (D): Spatial subset covering zones 5 and 6.

(A)

Eigenvector Band 10 Band 11 Band 12 Band 13 Band 14

PCA 1 −0.387065 −0.400716 −0.418903 −0.501105 −0.512857
PCA 2 0.124757 −0.148619 −0.793719 0.106037 0.566669
PCA 3 −0.639764 −0.511314 0.328506 0.186276 0.432023
PCA 4 0.630731 −0.744700 0.169973 0.079875 −0.111041
PCA 5 0.165821 0.036321 0.240257 −0.834608 0.465714

(B)

Eigenvector Band 10 Band 11 Band 12 Band 13 Band 14

PCA 1 −0.393525 −0.404088 −0.412766 −0.496019 −0.515209
PCA 2 0.068174 0.244757 0.733503 −0.274307 −0.567605
PCA 3 −0.739002 −0.349952 0.467340 0.209083 0.263226
PCA 4 −0.528835 0.806255 −0.213160 −0.138353 0.075548
PCA 5 0.121244 −0.065522 0.166595 −0.784770 0.580852

(C)

Eigenvector Band 10 Band 11 Band 12 Band 13 Band 14

PCA 1 −0.387916 −0.409696 −0.430823 −0.491519 −0.504450
PCA 2 0.059723 0.202526 0.734577 −0.249602 −0.594568
PCA 3 −0.749770 −0.351003 0.439774 0.248107 0.244302
PCA 4 0.532694 −0.814304 0.224886 0.010234 0.049680
PCA 5 −0.006039 0.069557 0.175536 −0.796521 0.574340

(D)

Eigenvector Band 10 Band 11 Band 12 Band 13 Band 14

PCA 1 −0.386572 −0.407245 −0.432094 −0.491312 −0.506577
PCA 2 0.007595 −0.170349 −0.765517 0.204563 0.585714
PCA 3 0.667689 0.466491 −0.419996 −0.168193 −0.363168
PCA 4 0.605752 −0.766295 0.140070 0.132069 −0.093781
PCA 5 0.194321 -0.017612 0.176809 −0.819167 0.509541

LSU mathematical equation (Equation (A2)):

Ri =
N∑

i=1

FeRe + Ei (A2)

where, Ri = Surface reflectance in band i of the sensor; Fe = Fraction of end-member e; Re = Reflectance
of end-member e in the sensor wave band i; N = Number of spectral end-members; and Ei = Error in
the sensor band i for the fit of N end-members [100].
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Table A3. Locations of alteration zones and listvenites recorded by Global Positioning System
(GPS) readings.

Altered Rock Types Coordinates

Listvenites 71◦36.026′S–163◦16.302′E
Listvenites 71◦36.011′S–163◦16.364′E

Carbonitization 70◦47.459′S–162◦39.438′E
Carbonitization 70◦47.349′S–162◦38.688′E

Listvenites + sulfides+ albitites 71◦33.638′S–163◦11.716′E
Epidotization + fault zone 71◦23.702′S–162◦47.968′E

Reddish to greenish alteration zone 71◦19.056′S–162◦35.167′E
Epidotization + chlorite in granitoids 71◦31.135′S–162◦59.086′E

Epidotization + prehnite in granite 71◦49.569′S–161◦18.145′E
Epidotization + prehnite in granite 71◦29.123′S–162◦38.567′E

Epidotization in granite 71◦44.753′S–162◦59.358′E
Epidote + serpentine + talc in high grade mafic-ultramafic rocks 71◦27.635′S–162◦53.098′E

Listvenite + serpentine in ultramafic rocks 71◦34.546′S–163◦11.185′E
Listvenite + carbonates in volcanoclastic rocks 71◦32.738′S–163◦31.602′E

Listvenite + carbonates + talc 71◦36.768′S–163◦16.407′E
Carbonitization + silica in volcanoclastic rocks 71◦33.075′S–163◦ 31.949′E

Epidotization in Glasgow Volcanics 71◦11.159′S–163◦00.378′E
Epidote + prehnite + quartz in volcanoclastic rocks 71◦23.048′S–162◦48.796′E

Listvenite + quartz + hydraulic breccia in Glasgow Volcanics 71◦27.078′S–163◦26.689′E
Epidote coating fault in Glasgow Volcanics 71◦11.292′S–162◦35.369′E

Listvenites in ultramafic rocks 71◦38.525′S–162◦24.458′E

Table A4. Confusion matrix for LSU classification mineral maps versus field data.

Class Listvenites Carbonitization Epidotization
Totals

(Field data)
User’s

Accuracy

Listvenites 5 0 1 6 83.33%
Carbonitization 1 5 1 7 71.42%
Epidotization 1 2 5 8 62.50%

Totals (LSU maps) 7 7 7 21
Producer’s Accuracy 71.42% 71.42% 71.42%

Overall accuracy = 71.42%, Kappa Coefficient = 0.57
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Abstract: Satellite-based multi-sensor data coupled with field and microscopic investigations are used
to unravel the setting and controls of gold mineralization in the Wadi Beitan–Wadi Rahaba area in the
South Eastern Desert of Egypt. The satellite-based multispectral and Synthetic Aperture Radar (SAR)
data promoted a vibrant litho-tectonic understanding and abetted in assessing the regional structural
control of the scattered gold occurrences in the study area. The herein detailed approach includes
band rationing, principal component and independent component analyses, directional filtering,
and automated and semi-automated lineament extraction techniques to Landsat 8- Operational Land
Imager (OLI), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Phased
Array L-band Synthetic Aperture Radar (PALSAR), and Sentinel-1B data. Results of optical and SAR
data processed as grayscale raster images of band ratios, Relative Absorption Band Depth (RBD),
and (mafic–carbonate–hydrous) mineralogical indices are used to extract the representative pixels
(regions of interest). The extracted pixels are then converted to vector shape files and are finally
imported into the ArcMap environment. Similarly, manually and automatically extracted lineaments
are merged with the band ratios and mineralogical indices vector layers. The data fusion approach
used herein reveals no particular spatial association between gold occurrences and certain lithological
units, but shows a preferential distribution of gold–quartz veins in zones of chlorite–epidote alteration
overlapping with high-density intersections of lineaments. Structural features including en-echelon
arrays of quartz veins and intense recrystallization and sub-grain development textures are consistent
with vein formation and gold deposition syn-kinematic with the host shear zones. The mineralized,
central-shear quartz veins, and the associated strong stretching lineation affirm vein formation amid
stress build-up and stress relaxation of an enduring oblique convergence (assigned as Najd-related
sinistral transpression; ~640–610 Ma). As the main outcome of this research, we present a priority
map with zones defined as high potential targets for undiscovered gold resources.

Keywords: multispectral and radar data; data fusion; gold mineralization; Wadi Beitan–Wadi Rahaba;
structural control; Najd Fault System; South Eastern Desert; Egypt

1. Introduction

Remote-sensing applications and the recently made free-of-charge or low-cost satellite data
boosted scientific research and helped the industry to understand features controlling mineral resources.
The ideal cases are areas uncovered by vegetation and characterized by arid or semi-arid atmospheric
conditions. The Nubian Shield is a typical example of well-exposed crystalline basement rocks with
historically known resources, i.e., gold and copper. The South Eastern Desert (SED) terrane, a part of the
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Nubian Shield, is underlain by Neoproterozoic crystalline rock belts of mainly dismembered ophiolites,
island arc metavolcanic/metasedimentary rocks, and less abundant poorly dated gneissic and schistose
metasedimentary rocks. The tectonic build-up of the SED terrane was mainly shaped during the
final assembly of East- and West-Gondwanas [1–3]. Accretion-related structures document two
principal episodes of shortening at ca. 715–700 Ma and 685–665 Ma [4]. Deformation was initiated by
northeast (NE)–southwest (SW) pure shear and progressed to simple shearing along the east-northeast
(ENE)–west-southwest (WSW) direction. The first event is expressed by SW-verging intrafolial tight
and overturned folds and thrusts, while the second event is documented by NW–NNW-trending
large-scale open folds, piggyback thrusts strongly segmented by N–S and NW–SE to WNW–ESE
sinistral strike–slip faults [5]. The SED terrane encompasses three major structural systems, namely
the NW–WNW-trending Allaqi-Heiani suture, N–S Hamisana zone, and NW–SE Wadi Hodein–Wadi
Kharit shear corridor (Figure 1) [1,2,6,7]. Deformation along the Wadi Hodein–Wadi Kharit shear
corridor includes sinistral shearing and northwest-directed thrusting, extension, and tectonic escape,
collectively resulting in a dominant northwesterly structural trend. The latter is considered the western
extension of the Najd fault system in the Arabian Shield into the Nubian Shield [8].

Several gold occurrences are located in the SED terrane, mostly along second- or third-order shear
zones assigned to as post-accretionary structures (Figure 1) [9,10]. The gold–quartz veins and related
hydrothermal alteration halos in the SED occur in distinctive geologic/structural settings [10], namely
(i) steeply or moderately dipping silicified, carbonated brittle–ductile shear zones between allochthonous
listvenized ophiolitic blocks and island arc-metavolcanic and metasedimentary rocks, i.e., where acid and
intermediate dykes and flat extensional granophyre dykes are abundant (e.g., Hutit, El-Beida, and El-Anbat
deposits), (ii) steeply dipping anastomosing ductile shear zones wrapped around or cutting syn- or
late-orogenic granitoid intrusions (e.g., Korbiai, Madari, Romite, Egat), and (iii) in ductile shear zones
in highly deformed ophiolitic or island arc terranes cutting locally carbonaceous pelitic or volcanogenic
metasedimentary rocks (e.g., Um El-Tuyor, Betam, Seiga, Shashoba, Um Garayat, and Haimur).

In the Wadi Rahaba–Wadi Beitan area, auriferous quartz veins are controlled mainly by NNW–SSE
shear zones, but gold occurrences along the ENE–WSW or NE–SW fault/fractures zone are also less
commonly observed. Generally, gold occurrences in the Wadi Rahaba–Wadi Beitan area are small-scale,
with a few mineralized quartz veins that are generally < 100 m long. However, shafts, dumps, buildings
and leaching basins left behind by ancient miners refer to extensive mining activities.

Band combination and false color composite (FCC) images are used in geological applications
based on known optical and Synthetic Aperture Radar (SAR) characteristics in specific wavelength
regions [11–21]. The satellite imagery spectral data used for mineral exploration span the visible to
infrared regions. As hydrothermal alteration is a typical associate with hydrothermal mineral deposits,
mapping or detecting the hydrothermal alteration zones is a prime focus of mineral exploration
programs using the remote-sensing data. Most of the hydrothermal alteration mineral species have
distinctive features in the shortwave infrared (SWIR) region, making the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) and Landsat-8 Operational Land Imager (OLI) sensors
important free-of-charge data sources for mineral mapping, particularly in arid geographical regions.
Several techniques developed for the analysis of the SWIR data include band-rationing (BR), principal
component analysis (PCA), the relative absorption band depth (RBD), and the spectral mineralogical
indices that are proven effective in lithological and hydrothermal alteration mapping if integrated with
field data [22–31].

96



Remote Sens. 2019, 11, 1450

 

Figure 1. Simplified geological map of the South Eastern Desert (SED) of Egypt with the major deformation
systems and gold occurrences shown.

The Phased Array Type L-Band Synthetic Aperture Radar (PALSAR) acquires data in the quad mode,
i.e., horizontal-horizontal (HH), horizontal-vertical (HV), vertical-horizontal (VH), and Vertical-Vertical
(VV). Also, a European radar imaging satellite Sentinel-1 is equipped with a synthetic aperture radar
(SAR-C). The band math operator and directional filtering are used to generate backscatter images
from SAR data, where the resultant images serve as a suitable data source for manual and automated
techniques [32,33]. Extraction of structural lineaments from satellite-based imagery data is accomplished
using edge enhancement, directional filtering, and manual digitizing techniques [34,35]. The automatic
lineament extraction (ALE) technique is done using software algorithms, i.e., Canny Edge Detection [36].
However, the reference of the trustworthiness of the ALE with this algorithm is the manual extraction of
lineaments that are verified by fieldwork.

The present work examines the spatial relationship between gold mineralization and structural
elements, providing a meaningful hypothesis in relating gold metallogeny to the structures and
evolution of the SED. Lithological and structural mapping is based on integrated field, microscopic,
and multi-sensor imagery data (Landsat-8 OLI, ASTER, PALSAR, and Sentinel-1). Interpretations of
the outcrop-scale and microscopic-scale structural elements are detailed herein to provide valuable
information about the known occurrences for the sake of promoting the determination of new
exploration targets along the regional structures.

2. Geologic Setting

The Wadi Beitan–Wadi Rahaba area comprises two major lithologic units: (1) autochthonous gneisses
and migmatites in the west, and (2) allochthonous ophiolitic mélange and island arc-metavolcanic
assemblage rocks in the east (Figure 2). The gneissic rocks are mainly hornblende–biotite granodiorite
gneisses. They are light gray, coarse-grained, with feldspar and quartz as the main constituents in
addition to less common hornblende, biotite, and garnet. Regionally, these gneisses are affected by
extensive stromatic migmatization and show a well-developed banding. The ophiolitic mélange rocks
(admixed serpentinite, metabasalt, chert, and carbonaceous metasedimentary rocks) occupy the central
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part of the study area as two elongated NNW-trending thrust sheets separated by a belt of island
arc-metavolcanic/metavolcaniclastic rocks. The regional foliation generally strikes NW–SE and dips to
the NE or to SW at moderate angles.

The ophiolitic mélange and arc assemblages are intruded by gabbro–diorite, granodiorite,
and younger gabbro/granite, and also dissected by later dykes, quartz veins, and plugs. The
gabbro–diorite intrusions are heterogeneous in composition, commonly of diorite, foliated with
minor folds at their peripheries. The mylonitized syn-tectonic granodiorite is confined to the
gneisses/ophiolitic mélange contact in the western part of the study area. They exhibit a well-developed
mylonitic foliation, and are composed essentially of stretched orthoclase and quartz porphyroclasts,
set in a fine- to medium-grained sheared matrix of orthoclase and quartz with a lower percentage of
plagioclase and mafic minerals. The post-tectonic granites are common in the eastern part of the study
area, but also exposed as dispersed blocks in the southwestern part (Figure 2). These rocks vary from
buff and white coarse-grained granite to pink, fine-grained aplitic leucogranite.

 

Figure 2. Geological map of Wadi Beitan–Wadi Rahaba area in South Eastern Desert (SED) of Egypt.
Modified from Conoco Coral [37]. The unlabeled yellow filled circles are either insignificant or yet not
studied occurrences.

The Wadi Hodein area is 20 km west of the Red Sea coast in the SED and is occupied by a
Neoproterozoic greenstone belt of variably deformed ophiolite and island arc-volcanic/plutonic rocks.
These metamorphic rocks are intruded by syn-tectonic granites and late- to post-tectonic gabbros and
granites. Moreover, the Neoproterozoic rocks are unconformably overlain by Cretaceous sandstones
and intruded by Tertiary basalt [38]. The ophiolite rocks (serpentinite, metagabbro, and less common
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pillow metabasalt) form discontinuous NW–SE-trending sheets (10–20 km in length) overthrusted
on the island arc-metavolcanic/volcaniclastic rocks along steeply east-dipping thrust/strike–slip fault
structures. Serpentinite and talc–carbonate rocks form large NW–SE-trending elongated masses.
Moreover, small elongated slices (<100 m) of highly sheared serpentinite and talc–carbonate schist are
tectonically incorporated within the island arc-metavolcanic/volcaniclastic terrains [1,39,40]. The island
arc-metavolcanic/volcaniclastic assemblages form NNW–SSE- and NW–SE-trending belts of highly
foliated and sheared basic–intermediate to acidic metavolcanic/volcaniclastic rocks [39–42].

Deformation history of the Wadi Hodein wrench includes multi-deformational stages
D1–D4 [38,40,42–44]. The early NNE–SSW crustal shortening (D1) led to the creation of WNW–ESE
tight intrafolial or overturned folds (F1) and axial planar foliations (S1) parallel to the primary
(lamination) bedding (So) of the island arc-metavolcanic/volcaniclastic rocks. The second event
(D2) involved subsequent sinistral transpression along thrust segments at the base of the ophiolitic
blocks and formed steeply dipping, left-lateral NNW–SSE ductile shear zones and major faults that
deformed most of the exposed lithologies. Macroscopic and mesoscopic NNW–SSE folds (F2), verging
commonly to the WSW, are associated with pervasive axial planar crenulation cleavage (S2) in the
metavolcanic/volcaniclastic rocks.

Gold-bearing quartz lodes are commonly observed where S2 is superimposed on S1. Finally, during
the youngest deformational stage, a weak brittle deformation led to ENE–WSW dextral strike–slip
faults cutting across the syn-orogenic granodiorite and pre-existing rocks. The brittle deformation
event might be attributed to the Red Sea rift [42].

3. Remote-Sensing Data Processing

3.1. Data Characteristics and Methods

Fusion of satellite optical and microwave data is applied herein for comprehensive lithologic
mapping and geological structures to inspect the regional and mine-scale setting of gold mineralization
in the study area. The ASTER data (Table 1) cover a wide spectral range of 14 spectral bands, measuring
reflected radiation in three bands between 0.52 and 0.86 μm (visible-near infrared, VNIR) with 15-m
resolution, and six bands from 1.6 to 2.43 μm (shortwave Infrared, SWIR) with 30-m resolution.
The emitted radiation is measured at 90-m resolution in five bands through the 8.125–11.65-μm
wavelength region (thermal infrared; TIR). The ASTER standard data also include topographic
information digital elevation models (DEM) [28]. The Landsat-8 OLI data comprise nine spectral bands
from which seven bands measure the reflected VNIR and SWIR radiation with 30-m spatial resolution
for bands 1–7 and 9, while the panchromatic band 8 has 15-m resolution. The ultra-blue band 1 is
operative in coastal and aerosol targets, whereas band 9 is valued for cloud detection. The TIR bands
collects two thermal bands (10 and 11) that measure the emitted radiation through the 10.6–12.5 μm
wavelength region (TIR) with 100-m spatial resolution [29]. The applied projection method for the
ASTER and Landsat-8 OLI/TIRS data is UTM (Universal Transverse Mercator), Zone N36 according to
the WGS-84 datum.

In this study, subsets of cloud-free level 1B ASTER (AST_L1B_ 00312252006082422, acquired
on 25 December 2006) and cloud-free level 1T OLI (Terrain-corrected, LC81730442019067LGN00,
Path 173/Row 44, acquired on 8 March 2019) VNIR–SWIR data were processed using the ENVI software,
version 5.1, provided by ITT Visual Information Solutions (now Exelis Visual Information Solutions).
The spectral response curves of some selective minerals, acquired from U.S. Geological Survey spectral
library [45], were employed to evaluate the diagnostic spectral features of rock forming minerals and
assess lithological mapping and delineating the major mylonitic zones.

The active synthetic aperture radar (SAR) data were integrated with ASTER and ASTER–GDEM
(global digital elevation model) data for structural enhancement, lineament extraction, and mapping of
major fault/shear zones controlling the distribution of gold occurrences in the study area. The microwave
SAR data are an important source of professional data used for mapping of geological structures [46].
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The PALSAR sensor is an L-band SAR, with fully polarized (HH, HV, VH, and VV) and multi observation
modes (fine, polarimetric, and ScanSar) with 10-, 30-, and 100-m spatial resolution, respectively [47,48].
The C-band SAR sensors of Sentinel-1 satellites have a dual-polarization (co-polarized VV or HH,
and cross-polarized VH or HV), interferometric wide-swath (IW) mode and a spatial resolution of
5 × 20 m [49]. Subsets of Fine Beam Dual (FBD) HH + HV polarization, level 1.5 ALOS_PALSAR
scenes (ALPSRP075090450 and ALPSRP077570445, acquired on 22 June and 9 July 2007, respectively)
and Sentinel-1B data (S1B_IW_GRDH_1SDV_20180712t033727-20180712t033752, acquired on 12 July
2018) were processed for lineament extraction and structural mapping in this study.

Table 1. Summarized characteristics of the ASTER and Landsat-8 OLI/TIRS data.

Aster Landsat-8 OLI/TIRS

Bands
Spectral
Region

Wavelength
(μm)

Resolution
(m)

Bands
Spectral
Region

Wavelength
(μm)

Resolution
(m)

Band 1
VNIR

0.52–0.60
15

Band 1 Coastal 0.433–0.453

30

Band 2 0.63–0.69 Band 2 Blue 0.450–0.515

Band 3 0.78–0.86 Band 3 Green 0.525–0.600

Band 4

SWIR

1.60–1.70

30

Band 4 Red 0.630–0.680

Band 5 2.145–2.185 Band 5 NIR 0.845–0.885

Band 6 2.185–2.225 Band 6
SWIR

1.560–1.660

Band 7 2.235–2.285 Band 7 2.100–2.300

Band 8 2.295–2.365 Band 8 Panchromatic 0.500–0.680 15

Band 9 2.360–2.430 Band 9 Cirrus 1.360–1.390 30

Band 10

TIR

8.125–8.475

90

Band 10
TIR

10.60–11.19
100

Band 11 8.475–8.825 Band 11 11.50–12.51

Band 12 8.925–9.275

Band 13 10.25–10.95

Band 14 10.95–11.65

Methods applied for rigorous analysis of the SWIR data include band-rationing (BR), principal
component analysis (PCA), independent component analysis (ICA), and the relative absorption band
depth (RBD). Ninomiya’s mineralogical indices were also used to effectively help in lithological
and hydrothermal alteration mapping, integrated with fieldwork data (Figure 3) [22–31]. Adaptive
filtering, band math, PCA, and directional filtering were applied to PALSAR and Sentinel-1 data
for lineament extraction by manual and automated means. The latter was achieved though edge
enhancement of the microwave data using the LINE extraction algorithm tool in the PCI-Geomatica
software package (version 2017). The LINE algorithm includes edge detection, thresholding, and curve
extraction [36,50,51]. The algorithm merges pairs of facing and close parallel polylines controlled by
defining specific parameters. The final polylines could be exported as a vector layer and imported into
the ArcGIS environment. Figure 3 illustrates the flowchart and techniques applied for the different
data types in this study.

3.2. Pre-Processing of Satellite Data

Removing the atmospheric effects is an important pre-processing step needed for qualitative and
quantitative analysis of surface reflectance data [52,53]. The atmospheric correction involves re-scaling
and conversion of the radiance data collected by optical sensors to surface reflectance data; therefore,
the obtained reflectance spectra can be calibrated directly with the standard reflectance spectra collected
in the laboratory and field. In the present study, the FLAASH (fast line-of-sight atmospheric analysis of
spectral hypercube) algorithm was employed for the atmospheric correction and reflectance conversion
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of Landsat-8 OLI and ASTER VNIR–SWIR data [54]. The VNIR and SWIR bands of ASTER and
OLI sensors were subjected to radiometric calibration, layer-stacked, and re-sampled to 30-m spatial
resolution. The fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) algorithm [54]
was then applied to the radiometrically calibrated radiance data with the band interleaved by line
(BIL) format. Thermal atmospheric correction and emissivity normalization parameters were applied
to the TIR bands.

The side-looking architecture of the microwave SAR sensors resulted in foreshortening, layover,
and shadowing as the main distortions in the SAR images [55,56]. Foreshortening is predominant in the
elevated mountainous geographic terrains, especially if the side-looking architecture is steep and the
mountains slant toward the sensor. Layover occurs in the terrains of sufficiently steep slopes, where the
layover zones appear with bright tone. Shadows in the SAR images occur as dark regions tarnished by
thermal noise. In this study, such distortions were minimized by applying ortho-rectification of SAR
subsets using the 12.5-m digital elevation model (DEM) of ALOS–PALSAR data. The SAR images are
commonly corrupted by speckles that diminish the differentiation ability between objects and reduce
the accuracy of feature extraction. In this study, we applied Lee adaptive filtering to the PALSAR and
Sentinel-1B data to remove the radar speckles while preserving edges, lineaments, and structural features.
The Lee filter enables smoothing of the speckled data based on statistics computed in filter windows,
where the calculated pixel values replace the original pixel values using the surrounding pixels [57,58].

Figure 3. Flowchart of methods and data types and the succession of processing steps applied for the
present study.
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3.3. Optical Data-Based Lithological Mapping

3.3.1. Band Ratios and Relative Absorption Band Depth

Band-rationing, a powerful image processing technique, enhances the spectral variations between
surface materials and highlights target anomalies, while suppressing some information such as the
difference in albedo and topographic slope effects [59]. Band ratios are mathematical transformations
in which the digital numbers (DN) of one band are divided by those of another band. They signify
differences between DN values of diagnostic reflectance and adsorption features in the spectral bands.
The relative absorption band depth (RBD) is a useful three-band math transformation in which the sum
of the two shoulders having reflectance maxima is divided by the third band including the absorption
feature minima [31]. Accordingly, this technique typifies the relative absorption depth of absorption
peaks, and is utilized commonly for identifying rock-forming minerals that have diagnostic Fe, Mg-OH,
and CO3 absorption features. The OLI-band ratios (6/7, 6/2, 5/6, 4/2, 6/5 × 4/5) and the ASTER–RBD
(6 + 9/8, 5 + 7/6, 6 + 9/82, 5 + 7/62) values were processed to improve the identification of the Fe,
Mg-OH, Al-OH-bearing, and carbonate rocks in the study area.

The OLI-band ratio 6/7 (1.61/2.20 μm) is equivalent to the ASTER-band ratio 4/6 (1.656/2.209 μm)
and the Enhanced Thematic Mapper (ETM)-band ratio 5/7 (1.65/2.22 μm) analyzed for CO3 and
OH-bearing minerals [28,60–62]. The grayscale image of this ratio brings out clay minerals, serpentine,
and many alteration zones with a bright image signature (Figure 4A). The OLI-band ratio 6/5 (1.610/0.865)
coincides with the ASTER-band ratio 4/3 (1.656/0.807 μm) and the ETM-band ratio 5/4 (1.650/0.825 μm).
This ratio converts the ferrous iron (Fe+2)–silicate-bearing minerals (i.e., olivine and pyroxene) into
bright pixels and clearly distinguishes the mafic from non-mafic rocks [62,63]. The OLI-band ratio
4/2 (0.6550/0.4825) approaches much of the ASTER-band ratio 2/1 (0.661/0.556 μm) and the ETM-ratio
3/1 (0.6600-0.4825 μm) that are used to highlight rocks rich in hematite [61]. The FCC image of three
OLI-band ratios (6/7 in red (R), 6/5 in green (G), 4/2 in blue (B)) was used to characterize the mixed
serpentinite, quartz–carbonate (listvenite), and talc–carbonate schist in yellow and reddish pixels
(Figure 4B). The highly tectonized metavolcanic rocks and carbonaceous metasedimentary rocks appear
in purple and lemon colors, respectively. The island arc-metavolcanic and metavolcaniclastic rocks
appear as dark-green pixels, while granitic rocks exhibit a bluish-green spectral signature. The FFC
OLI-band ratio image (R: 6/7, G: 6/2, B: 6/5 × 4/5) highlights the talc–carbonate schist, serpentinite, and
graphite-bearing metasedimentary rocks as rose, red, and magenta pixels, respectively (Figure 5A).
This image enables the distinction between mafic rocks as blue pixels and felsic rocks as green ones.
The ASTER-based RBD (6 + 9/82) image (Figure 5B) and (7 + 9/8) image (not shown) intensify the
spectral signature of amphibole, chlorite, and other Fe–Mg-OH-bearing minerals and show them
as bright pixels, whereas the RBD (5 + 7/6) discriminates the Al-OH-bearing silicate minerals, i.e.,
muscovite, sericite, and kaolinite, commonly described for altered felsic rocks.
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Figure 4. Spectral discrimination of ophiolitic rocks by a processed Landsat-8 OLI scene of the study area.
(A) Grayscale band ratio (6/7) image; (B) false color composite (FCC) band ratio image (red (R): 6/7, green
(G): 6/5, blue (B): 4/2) of the study area. The ophiolitic rocks are highlighted by yellow or lemon-yellow
pixels and clearly display signs of shearing and dislocation. Note that the ophiolitic rocks are rather
abundant along the eastern shear zone which accommodates the Hutit mine. The yellow-filled circles are
gold occurrences and/or locations of old gold mines as in the geological map (Figure 2).

Figure 5. Ophiolitic mélange mapping promoted by processing OLI and ASTER data. (A) The FCC
OLI-band ratio (R: 6/7, G: 6/2, B: 6/5 × 4/5) image discriminates terranes of the mafic rocks in the study
area; (B) the grayscale ASTER RBD (6 + 9/82) image clearly highlight the ophiolitic mélange terrane in
the central part of the study area and is surrounded by felsic rocks (granites and granitic gneisses) in
the eastern and western parts of the image.
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3.3.2. Mineralogical Indices

The spectral mineralogical indices are reflectance combinations of two or more spectral bands
signifying the relative abundance of target objects. Accordingly, the spectral indices of rock-forming
minerals are mathematical expressions and band ratios used to facilitate the mapping of lithology
and hydrothermally mineral alteration zones. Using the six ASTER–SWIR bands, four spectral
mineralogical indices (OH-bearing mineral index, OHI; kaolinite index, KLI; alunite index, ALI; calcite
index, CLI) were developed by Ninomiya [64] for mapping the hydrothermally altered zones and
mineral anomalies. The OHI is calculated as (band 7/band 6) × (band 4/band 6), the KLI is developed
by way of (band 4/band 5) × (band 8/band 6), and the ALI is formulated as (band 7/band 5) × (band
7/band 8), while the CLI is calculated as (band 6/band 8) × (band 9/band 8). Three spectral indices
using ASTER TIR bands (quartz index, QI; carbonate index, CI; mafic index, MI) were advocated to
facilitate the mapping of quartz, carbonate, and mafic–ultramafic rocks [65]. New spectral indices
(Fe-mineral index, Fe-MI; Al-OH-bearing mineral index, Al-OH-MI; Fe–Mg-OH-bearing mineral index,
Fe-Mg-OH-MI) were developed to evaluate the abundance of iron oxide/hydroxide minerals, Al-OH,
CO3, and Fe–Mg-OH-bearing alteration minerals [21]. For the Landsat-8 VNIR–SWIR data, the Fe-MI
is calculated as (band 6/band 5) × (band 4/band 3), and the Al-OH-MI as (band 6/band 7) − (band
4). For ASTER VNIR–SWIR data, the Fe-MI is calculated through (band 4/band 3) × (band 2/band 1),
the Al-OH-MI by means of (band 5) × (band 7/band 6), and the Fe-Mg-OH-MI as a result of (band 7) ×
(band 9/band 8). In this study, the QI, CI, and MI of Ninomiya et al. [65] and the Fe-Mg-OH-MI of
Pour et al. [21] were processed using the ASTER SWIR–TIR bands. A better differentiation between the
mafic and non-mafic rocks was attained by the MI and QI grayscale images, while the ultramafic rocks
and associating carbonate and Fe–Mg-OH-bearing alteration zones were clearly differentiated in the
grayscale images of CI and Fe-Mg-OH-MI (Figure 6A,B).

 

Figure 6. Mineralogical indices images based on the ASTER–SWIR data of the study area. (A) Grayscale
image of the carbonate index (CI) of Ninomiya [65]; (B) grayscale image of the Fe-Mg-OH-MI after
Pour et al. [21].
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3.3.3. Principal and Independent Component Analyses (PCA and ICA)

The loading of Operational Land Imager (OLI) and ASTER multispectral data is attained to reduce
dimensionality of correlated data and suppress the redundant information [66]. The resultant principal
components are subjected to a nonlinear band generation method of the ICA transformation for finer
classification and to remove correlation and detect the self-determining components. The eigenvector
loadings of principal component 1 (PC1) show high contributions (0.480 and −0.490) for the ASTER
relative band depth (6 + 9)/82 and Fe-Mg-OH MI, respectively (Table 2). The PC2 loadings
indicate strongly negative contributions (−0.618 and −0.746) for the QI and relative band depth
(5 + 7)/6, respectively, while PC3 shows highly positive loading (0.691) for the OLI-band ratio (5/6).
The eigenvector loadings of PC5 show strongly positive (0.631) and negative (−0.596) contributions for
the OLI-band ratios (5/6) and (6/7), respectively. The RGB composite combination of PC5, PC2, and PC3
distinguishes the undifferentiated mafic metavolcanic rocks of Wadi Rahaba from the felsic/mafic
island arc metavolcanic rocks of G. El-Urga.

Table 2. Eigenvector loadings of principal component analysis (PCA) for OLI-band ratios and
ASTER−RBD mineralogical indices. PC—principal component, QI—quartz index, Var.%—variation
in percentage.

Eigenvector Fe–Mg-OH QI (5 + 7)/6 (6 + 9)/82 (6/7) (4/5) (4/2) (5/6) Var.%

PC1 −0.492 −0.276 −0.013 0.480 0.313 0.375 −0.419 0.193 44.4
PC2 0.011 −0.618 −0.746 −0.173 −0.001 −0.084 0.081 −0.135 19.8
PC3 0.135 0.027 −0.078 −0.068 0.537 −0.017 0.452 0.691 16.3
PC4 −0.240 −0.101 0.176 0.135 0.398 −0.822 −0.041 −0.218 7.8
PC5 −0.202 −0.158 0.046 −0.052 −0.596 −0.367 −0.202 0.631 5.7
PC6 −0.041 0.651 −0.626 0.372 −0.048 −0.172 −0.101 0.048 2.9
PC7 0.016 −0.209 0.100 0.677 −0.304 −0.001 0.623 −0.088 1.9
PC8 −0.800 0.198 −0.046 −0.343 −0.074 0.113 0.416 −0.103 1.2

The PC5, PC2, and PC3 image highlights the post-tectonic granites of Wadi Rahaba, and the
granodiorite gneisses and migmatites of Wadi Beitan (Figure 7A). The ophiolitic serpentinite,
talc–chlorite schist, and talc–carbonate altered zones appear as indigo blue and pink pixels, whereas
chlorite–tremolite–actinolite schists and Fe-OH-bearing alteration zones appear as green pixels. The RGB
combination of independent components IC3, IC1, and IC2 efficiently discriminates the gabbroic rocks and
mafic metavolcanic rocks with light-blue and cyan image signatures, while the island arc-metavolcanic
rocks and chlorite–amphibole-bearing schists appear as pink pixels (Figure 7B). The ophiolitic serpentinite,
talc–chlorite schist, and talc–carbonate alteration zones have yellow signatures, and the stream sediments
of Wadi Na‘am and Wadi Beitan appear with a lemon image signature.
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Figure 7. Principal and independent component analysis (PCA and ICA) images of OLI-band ratios,
ASTER–RBD, and mineralogical indices. (A) FCC principal component (PC) image (R: PC5, G: PC2, B:
PC3); (B) FCC independent component (IC) image (R: IC3, G: IC1, B: IC2).

3.4. SAR Data-Based Lineament Extraction

The band math operator was used to generate backscatter images from the Sentinel-1B (VV + VH,
VV − VH, VV/VH, VV + VH/VH, VV − VH/VH) and PALSAR (HH + HV, HH − HV, HH/HV,
HH + HV/HV, HH − HV/HV) bands. The resultant images were statistically analyzed using the
PCA transformation (Tables 3 and 4). The PALSAR PC2 and Sentinel PC3 show the highest positive
eigenvector loadings (0.894 and 0.810) for the subtraction and addition images (HH−HV and VV + VH,
respectively). Meanwhile, the PALSAR PC3 has a strongly positive loading (0.874) for the addition
image (HH + HV) and moderately negative loading (−0.448) for the subtraction image (HH − HV).
In contrast, the Sentinel PC2 exhibits moderately positive loading (0.463) for the addition image
(VV + VH) and highly negative loading (−0.653) for the ratio image (VV − VH/VH). The PALSAR PC4
and PC5 have highly negative eigenvector values (−0.761 and −0.805) for the ratio images (HH/HV
and HH + HV/HV, respectively), while PC4 shows a strongly positive value (0.637) for the ratio image
(HH − HV/HV). The Sentinel PC4 and PC5 have highly negative (−0.664) and positive (0.709) loadings
for the ratio images (VV − VH/VH and VV/VH, respectively).

Because of its ability to outline structural lineaments, the backscatter PALSAR PC2 and Sentinel
PC3 images were subjected to four directional filters (0◦, 45◦, 90◦, and 135◦) to enhance the linear
features and realize the major structural trends (N–S, NE–SW, E–W, and NW–SE, respectively). Also, the
false color composite images of PALSAR PC (PC2, PC5, and PC4), Sentinel PC (PC2, PC4, and PC3), and
directional filters (90◦, 135◦, and 45◦) were employed in RGB mode to improve the visualization of the
extensive lineaments (Figure 8A,B). Using Coral Draw and ArcMap software, the structural lineaments
were manually traced to produce a vector lineament layer. In the PCI Geomatica, the user-defined
parameters (Table 5) of the ALE algorithm LINE were applied to the directional filters of PALSAR PC2
and Sentinel PC3 (Figure 9A,B). Hence, afterward, manual editing was carried out to improve the
accuracy of lineament auto-detection by adding new or relocating existing segments.
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Table 3. Eigenvector loadings of PCA for Sentinel-1B band math images.

Eigenvector VV + VH VV − VH VV/VH VV + VH/VH VV − VH/VH Var.%

PC1 −0.030 0.567 −0.568 −0.480 0.353 47.29
PC2 0.463 0.353 −0.356 0.329 −0.653 30.28
PC3 0.810 −0.222 0.209 −0.492 0.093 20.05
PC4 −0.358 −0.083 0.071 −0.648 −0.664 2.34
PC5 0.005 0.706 0.709 −0.010 −0.006 0.05

Table 4. Eigenvector loadings of PCA for PALSAR band math images.

Eigenvector HH + HV HH − HV HH/HV HH + HV/HV HH − HV/HV Var.%

PC1 0.205 −0.013 0.562 0.569 0.564 60.19
PC2 0.441 0.894 −0.054 −0.045 −0.040 20.59
PC3 0.874 −0.448 −0.109 −0.106 −0.113 17.64
PC4 −0.003 −0.010 −0.761 0.121 0.637 1.20
PC5 0.005 −0.002 0.300 −0.805 0.512 0.39

Table 5. Parameters used for the LINE extraction algorism applied to the SAR data.

Parameter Value (pixel)

Edge filter radius 5
Edge gradient threshold 20
Curve length threshold 30
Line fitting error threshold 2
Angular difference threshold 15
Linking distance threshold 40

The basic statistical parameters of extracted lineaments are shown in Table 6. The manually
extracted lineaments have smaller count (691) and greater maximum length (11.96 km) compared to
those of automated lineaments extracted from PALSAR (count = 6324, max length = 3.78 km) and
Sentinel-1 (count = 7062, max length = 3.47 km). The manually and automatically extracted lineaments
were imported as data layers to the ArcMap environment, and the lineament density maps were, thus,
generated using the line density module in the spatial analyst toolbox (Figure 10A,B). The manually
extracted lineaments are overlain on the directionally filtered FCC images (R: 90◦, G: 135◦, B: 45◦) of the
Sentinel-1B PC3 (Figure 11A) and the automatically extracted lineaments on the directionally filtered
PALSAR PC2 FCC (R: 90◦, G: 135◦, B: 45◦) image (Figure 11B). The comparison weighs the manually
extracted and directionally filtered Sentinel-1B results.

Table 6. Basic statistics of extracted lineaments from SAR data.

Method Visual Extraction Automated Extraction

Used Data RGB PC Images and Filters Filtered PALSAR PC2 Filtered Sentinel PC3

Count 691 6324 7062
Minimum 0.49 0.38 0.34
Maximum 11.96 3.78 3.47
Sum 1949.07 4307.17 4448.77
Mean 2.82 0.68 0.63
Standard Deviation 1.74 0.33 0.30
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Figure 8. Structural mapping promoted using PALSAR and Sentinel-1B PCA data. (A) Grayscale image
of PALSAR PC2; (B) FCC image of Sentinel-1 PCs (R: PC2, G: PC4, B: PC3).

 

Figure 9. Geological lineament extracted from the SAR data of the study area. (A) Manually extracted
lineaments aided by edge enhancement techniques of PALSAR and Sentinel-1 PCA images verified
in the fieldwork; (B) results of the automated lineament extraction technique (ALE) using the same
images as in Figure 8 after applying the directional filters. Insets are rose diagrams showing the main
structural trends in the study area. The manually extracted lineament results obviously show the two
main northwest (NW)–southeast (SE) and north-northwest (NNW)–south-southeast (SSE) structural
trends, whereas the automated extraction shows only the prevailing NNW–SSE trend.
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Figure 10. Density maps of the extracted structural lineaments in the study area. (A) Line density map of
manually extracted lineaments aided by edge enhancement and directional filtering techniques; (B) line
density map of lineaments extracted automatically by the LINE algorithm (see the text for more details).

 

Figure 11. (A) Manually extracted lineaments overlaying a FCC image of directional filters (R: 90◦,
G: 135◦, B: 45◦) on the Sentinel-1B PC3; (B) automatically extracted lineaments superimposed on an
FCC (R: 90◦, G: 135◦, B: 45◦) image directionally filtered with PALSAR PC2.
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4. Gold Occurrences

In this section, details of the significant gold occurrences in the study area are given. Aside from
the comprehensive description of the geological setting of each of the gold occurrences, a pivotal
emphasize is given to the deformation fabrics exhibited by the mineralized quartz veins and the
structural elements observed in the mine areas and at the regional map scale.

4.1. Um Eleiga Gold Deposit

The Um Eleiga area, ~45 km west of the Red Sea coast, hosts a historic gold deposit in the SED.
The gold mine lies along the NNW–SSE-trending Wadi Um Eleiga (Figure 12A), where traces of placer
mining and shallow pits, dumps, ancient mining camps, stone anvils, hammers, and grinding date
back to the Roman–Byzantine and early Islamic times [67–69]. Gold contents in quartz dumps collected
from shallow pits grade as high as 28 g/t [69], whereas the fine-grained alluvium at the base of the
Wadi deposits/terraces yield anomalous concentrations of up to 36 g/t Au [40,70].

The Um Eleiga mine area is hosted by an elliptical, zoned intrusive complex (ca. 32 km2)
encompassing quartz–gabbro, diorite, tonalite, and granodiorite (Figure 12A). The intrusive complex
cuts through allochthonous ophiolitic blocks of serpentinite–chromitite (Gebel Abu Dahr) embedded
in a highly tectonized matrix of pelitic and carbonaceous metasedimentary and metavolcanic rocks
(see Figures 5A and 7A). The different rock varieties in the complex are separated from each other by
gradational contacts. WNW-, NNW-, and N-trending fault/fracture sets densely dissect the complex.
The central part of the complex features olivine-, pyroxene-, and/or hornblende-rich gabbros, whereas
diorite surrounds the gabbroic core and locally shows a distinct porphyritic texture. Tonalite and
granodiorite form the outer parts of the complex. A small body of albitized microdiorite and sets of
lamprophyre and andesite dykes cut the western parts of the complex. In the eastern part, the highly
tectonized gabbro and diorite contain intensely kaolinitized and oxidized zones in which massive and
disseminated goethite, malachite, and azurite are abundant.

The mineralized quartz veins trend mainly NE–SW or ENE–WSW and cut the gabbroic rocks in the
central part of the complex and extend beyond the gabbro–diorite boundary (Figure 12B). A later barren
generation of N-, NW-, and E-trending quartz veins are restricted to fault intersections and tension
gashes in the highly deformed gabbroic rocks. Zoheir et al. [71] suggested that fault/joint intersections
are the main structural control of intensely hydrothermal alteration zones and high gold contents in the
central part of the Um Eleiga complex. The E-trending fractures cutting the gabbroic rocks are locally
associated with chlorite–calcite and chalcedonic quartz alteration assemblage. Sulfide-bearing quartz
veins (5–40 cm thick) cutting the gabbro–diorite complex are scarce, and cannot be compared with the
extensive old workings. It is herein considered that the old miners worked quartz veins, scattered
quartz blocks, and the friable wadi alluvium underneath the consolidated terraces. These milky quartz
veins have brecciated borders in which quartz fragments are cemented by chalcedonic quartz, calcite,
chlorite, and sulfides (Figure 12C).

Gold-bearing quartz dumps enclose chlorite–sericite–calcite selvages and pyrite–malachite–
limonite gossans (Figure 12D,E). The main ore minerals are pyrite, chalcopyrite, sphalerite, pyrrhotite,
and gold. Pyrrhotite and sulfarsenide form scarce primary inclusions, whereas pyrite, chalcopyrite,
sphalerite, and free gold are late in the paragenetic sequence. Pyrite forms disseminated euhedral to
subhedral grains with pyrrhotite inclusions. Chalcopyrite and sphalerite are intergrown with subhedral
pyrite grains and also occur as inclusions in pyrite grains. Free-milling gold blebs and specks occur
along fine ribbons and selvages of wallrock enclosed in the quartz veins. Hydrothermal alteration
phases associated with gold–sulfide quartz veins include fine-grained quartz, chlorite, calcite, sericite,
rutile, and sulfides. These hydrothermal minerals are clearly late relative to the igneous paragenesis of
the host zoned intrusion. Pyrite, chalcopyrite, and sphalerite are disseminated in domains of pervasive
quartz–sericite–chlorite alteration.
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Figure 12. (A) Geological map of the Um Eleiga gold mine, modified from Zoheir et al. [71]; (B) milky
quartz vein cuts across the gabbroic central part of the Um Eleiga intrusive complex; (C) transmitted,
crossed polar light photomicrograph of the mineralized quartz veins showing dominant calcite,
chlorite, and sulfide minerals; (D,E) Reflected light photomicrographs of the mineralized quartz veins
showing disseminated euhedral to subhedral pyrite, and botryoidal malachite replacing chalcopyrite
or other Cu-sulfides.

4.2. Hutit Gold Occurrence (Also Known as Huzama or Rahaba Mine)

The Hutit gold occurrence lies between the head of Wadi Huzama and Wadi Hutit, a small
tributary of Wadi Rahaba (Figure 13A). The mine area is occupied by conspicuous, high to moderately
elevated hills of serpentinite, mafic metavolcanics, and pelitic/psammopelitic metasedimentary rocks.
Old mining in the area dates back to the early 20th century, but millstones from diorite and gabbro point
to old workings, possibly from the Islamic times (seventh to eighth century). Recently, exploration
mapping, structural survey, rock chip, and trench sampling, complemented by a ~30,000-m diamond
core drilling program completed by Thani Ashanti (now Thani Stratex Resources Ltd.) between 2009
and 2013, indicate an in-house, non-Joint Ore Reserves Committee Code (non-JORC) resource estimate
of ~0.5 Moz gold (http://thanistratex.com/projects/projects-overview/).
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The old miners extracted the ore bodies from two main (northern and southern) mines. The mine
area was mapped at the 1:1000 scale and the mine area was subdivided into northern and southern [69].
Abundant remains of grinding and separation plants are observed in the northern mine (Figure 13B).
Nevertheless, the preserved crusher stages, leaching basins, and loading station in the southern mine
reflect significant mining activities in the past. In both mines, a main entrance through a horizontal
~E–W adit leads to the veins at a distance of 20 or 35 m.

The gold-bearing quartz veins occur along the contact between elongate allochthonous serpentinite
masses and successions of intercalated metavolcanic and metasedimentary rocks. Field criteria indicate
that these rocks are tectonically intermixed and intercalated with graphite-bearing schists forming a
distinct mélange unit, in which serpentinite blocks are embedded. Contacts between the serpentinite
blocks and the underlying rocks are zones of intensive shearing, grain size reduction and abundant
talc-, quartz-, and carbonate- rich rocks. Serpentinite is composed essentially of antigorite, relict olivine,
subordinate talc, calcite, tremolite, and minor chromite and magnetite. In the sheared horizons, no
relics of olivine or pyroxene are found, where the rocks are composed mainly of antigorite and talc.
Blocks of ophiolitic metabasalt and metagabbro are embedded in the sheared matrix and stretched
parallel to the NW–SE foliation (Figure 13B).

 

Figure 13. (A) Geological map of the Hutit gold mine and surroundings, compiled from field work
and remote-sensing data interpretations and adapted from Hassan and El-Manakhly [69]; (B) detailed
geological map of the main lode in the northern mine and southern mine areas.

Alternating mafic metavolcanic and metasedimentary rocks prevail in the northern mine.
The mélange rocks are characterized by moderate to high deformation, especially in proximity to
the large faults. The elongation of clasts within the mélange matrix locally defines a moderately
north-northwest plunging lineation. The metavolcanic rocks are mainly dark-colored, foliated, and
slightly or intensively contorted. These rocks occupy the western part of the mine area and form
an NW–SE-trending belt. The intact massive blocks of these rocks assume basaltic and ultramafic
protoliths (Figure 13C,D). The schistose varieties are mainly tremolite–actinolite and chlorite schists. They
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are intercalated locally with bands of metasedimentary rocks (i.e., metasiltstone and metamudstone),
composed essentially of chlorite± biotite, epidote, and quartz. These schistose rocks are graphite-bearing,
especially in the northern part of the mine area.

An NNW–SSE elongate intrusion of gabbro cuts into the tectonized serpentinite in the northern mine.
Small masses of micro-granodiorite dyke-like bodies (NW–SE), and dykes with different compositions
cut the country serpentinite, metavolcanic, and gabbro rocks in the northern mine. Most of the dykes
strike NW–SE, but a small number of the mafic dykes are NE-trending. Rhyodacite, dacite, and andesite
dykes are generally porphyritic with tabular plagioclase and rhombic hornblende, embedded in a fine- to
very fine-grained groundmass. The mafic dykes, mainly basalt to basaltic andesite, are notably abundant
in the northern mine.

NW–SE thrust segments bound the ophiolitic serpentinite masses and dip moderately or steeply to
the NE. Emplacement of the serpentinite slices is interpreted as being from east to west, constrained from
moderately to steeply east-northeast dipping shear planes and consistently NW-trending stretching
lineation, generally consistent with the W-directed tectonic transport of ophiolitic rocks in Wadi Ghadir
area, north of the present study area [7]. A kilometer-scale shear zone striking in an NW-SE direction is
superimposed on the thrust zone and related fabrics. Analyzing the shear planes, asymmetrical fabrics,
and slickensides indicates that this shear zone is a reverse fault zone (Figure 14A), which accommodates
a left-lateral displacement. Although nearly parallel to the thrust segments, this shear zone dips steeply
to the west (Figure 14B). Conjugate joints and faults are common in the northern mine. Fractures in the
country rocks follow two main trends, N 40◦ E and N 50–60◦ W. No direct cross-cutting relationship
was observed between the quartz veins and dykes.

The mineralized quartz veins occur along a 150-m-wide shear zone, where quartz veins have
anastomosing and undulating morphologies, both down-dip and along the strike. The shear zone,
quartz veins, and associated hydrothermal alteration overprint the metamorphic mineral assemblage
and fabrics in the host metavolcanic and serpentinite rocks. Two types of gold-bearing quartz veins
are reported in the mine area, including bluish-gray and milky quartz veins. In the northern mine,
a 180-m-long bluish-gray quartz vein varies in thickness from less than 30 up to 150 cm [69]. It strikes
parallel to the shear zone (NW–SE) and dips 80◦ SW in the northern mine. This vein is made up mainly
of gray quartz, carbonate, and subordinate colorless quartz and rare sulfides. The main entrance,
along an adit from east to west, was used to work out this vein. A milky quartz vein of 20–50 cm
thickness and 90 m length occurs in the vicinity of the main quartz vein. The bluish quartz veins
are common in the northern mine, whereas milky quartz veins are rather dominant in the southern
mine. The banded appearance of the bluish quartz veins (Figure 14C) and their association with
intensively altered host rocks, with abundant signs of strain and the absence of gashes and tensional
gaps, suggest that these veins were formed under a compressional stress regime through formation of
the shear zone. Asymmetric bent quartz lenses (Figure 14E) provide signs of left-lateral shearing, but
sub-vertical slickensides along the vein walls also corroborate the reverse nature of the shear zone.
Field observations indicate that the milky quartz veins are younger than the bluish-gray quartz veins,
on the basis of cross-cutting relationships (Figure 14F).

The bluish-gray quartz veins are surrounded by carbonated, ferruginated, and less commonly
kaolinitized wallrocks. The milky quartz veins in the southern mine are commonly surrounded by
sericite–chlorite and less commonly epidote where they cut through metavolcanic rocks. In both types
of quartz veins, signs of plastic and brittle deformation are abundant. Sub-grain development is the
most characteristic feature of zones where the quartz veins are narrow and branchiate. Ribbon-shaped
grain formation and less commonly mortar texture are also observed in the quartz veins. All interstitial
quartz grains show undulatory extinction, deformation bands, and minor development of tiny
equidimensional recrystallized grains around grain margins.
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Figure 14. (A) Equal area stereographic projection (lower hemisphere) of planes of the shear zone
and poles to the associated slickensides; (B) sketch drawing explaining the geometrical relationship
between the quartz veined shear zone in the Hutit mine and the thrust structures. Note the deflection of
the foliation about the shear zone (based on field observations); (C) nearly vertical, bluish-gray quartz
veins associated with highly sheared serpentinite in the northern mine (looking NW); (D) milky quartz
vein cutting metavolcanic rocks in the southern mine (looking N); (E) S-shaped quartz vein indicating a
sinistral sense of shearing (looking W); (F) grayish quartz vein traversed by milky veinlets. The sample
is from the northern mine lode.

The mineralogy of the quartz veins also includes arsenopyrite, pyrite, and less commonly gold.
Both arsenopyrite and pyrite are usually altered into goethite. In this case, appearance of tiny gold,
streaky or wire-like particles along the rhythmic zones of goethite is common. This indicates that
oxidation led to remobilization of structure-bound gold from pyrite and arsenopyrite to form native
gold in secondary sites. Data concerning the ore grade include fire assay concentrations of some
samples from the grayish and milky quartz veins. Gabra [70] reported 1–40 g/t in quartz veins from
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the northern mine and 1–36 g/t in samples from quartz veins intercalated with sheared rocks in the
southern mine. Takla et al. [72] analyzed samples from the two different types of quartz veins and
reported an average of 20 g/t. They also investigated the hydrothermal alteration zone for its gold
content and indicated that the adjacent altered wallrocks contain 8 g/t Au on average [72].

4.3. Um Teneidab Gold Mine (Also Known as Um Kalieb or Um Kalieba Mine)

The Um Teneidab mine is situated 3 km west of Gebel Um Teneidab and 13 km southwest of
the Hutit mine. The Um Teneidab mine area is underlain by gabbroic rocks that are cut by abundant
offshoots of fine-grained granite (Figure 15A). The contact between granite and the gabbroic host
rocks is irregular and sharp (Figure 15B). The area was mapped at the 1:1000 scale and these rocks are
assigned as metagabbro–diorite and late-orogenic granite [69]. Takla et al. [72] discussed the features
in detail, implying that these rocks belong to the younger gabbroic rocks of the Egyptian basement
complex. In the present work, we agree with Hassan and El-Manakhly [69], and classify the gabbroic
rocks in the mine area as an island arc-metagabbro–diorite complex. This interpretation is based on
some local foliated textures, a corona texture with brown hornblende bounding hypersthene crystals,
and presence of more differentiated bosses with diorite composition.

Chlorite is common as an alteration mineral after the ferromagnesian mineral constituents of
the host gabbros. The granitic rocks are composed of andesine, orthoclase, quartz, and intensively
chloritized biotite. Approaching the quartz veins, plagioclase is more or less completely replaced by
sericite and kaolinite. Pyrite is most common as alteration mineral disseminated in the hydrothermally
altered granite and gabbroic rocks. Alteration is pervasive where the tectonized gabbro is densely
seamed with granitic offshoots.

Structurally, the Um Teneidab mine area is traversed by conjugate NW–SE and NE–SW fault sets.
Faults with no obvious lateral displacement dissect the granite body and offshoots in the western part
of the mine area. Stretching lineation and slickensides along the quartz vein walls suggest that the
shear zone experienced also little ductile deformation (Figure 15C). Formation of this shear zone is
attributed to the competence heterogeneity between coarse-grained gabbro and fine-grained granite.
Granularity gives additional cohesion contrast that might proceed to a discontinuity zone or plane
between these two different lithologies. Abundant quartz veins and felsic dykes are controlled by
NW–SE shear/fault sets, but show no direct cross-cutting relations. Deformation is intense in zones
where the granite offshoots traverse the gabbroic rocks.

Gold in the Um Teneidab mine area is related to a system of 10–40-cm-thick milky quartz veins
extending for more than 200 m along a wrenched shear zone (Figure 15A). These veins are NW- or
NNW-trending and are commonly sub-vertical. The main lode is a zone of stockwork of veinlets (70 cm
wide) bounded by hydrothermally altered wallrocks forming together a ~2-m-wide mineralization
zone. The granite is notably sericitized and silicified close to the quartz veins (Figure 15D). The latter
are massive, composed of coarse-grained quartz crystals locally fractured and filled with newly formed
quartz, characteristically colorless (less than 3-cm-wide veinlets).

Most quartz veins in the mine area, particularly the thin ones, are completely recrystallized.
Porphyroclasts embedded in less recrystallized, mosaic-like, strain-free quartz are observed along the
flanks of quartz veins. The quartz porphyroclasts are lensoid and show strong undulose extinction,
deformation lamellae, and sub-grain development; they contain numerous fluid inclusions of various
generations. The boundaries of the shears are sharp, and the sulfides are clearly confined to zones of
shearing and alteration.

Gold is disseminated as flakes in altered pyrite, associated with galena or as fillings in the
microfractures of the quartz veins. Gold is also present in the hydrothermally altered wallrocks, i.e.,
the altered granite (quartz–sericite rocks). Less commonly, relics of pyrite are seen disseminated in the
quartz veins, whereas gold wires along rhythmic zones in goethite are accidently seen. Gold occurs as
native globules disseminated in the quartz veins, mostly along the grain boundaries. The quartz veins
contain from <1 up to 30 g/t gold, with an average of 8 g/t in the altered wallrocks [72].
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Figure 15. (A) Geologic map of the Um Teneidab gold mine, modified from Hassan and El-Manakhly [69].
The inset photo shows the mine shafts along the ~N–S line as in the map (photo looking to N); (B) granite
offshoots cut the host gabbroic rocks and are associated with zones of discoloration in the mine area
(photo looking to W); (C) shear zone with quartz veins between tectonized gabbro and fine-grained
granite (photo looking to N); (D) milky quartz vein cutting across granite at the Um Teneidab gold
mine. Notice the color bleaching of the wallrocks.

4.4. Urga Ryan Gold Occurrence

The Urga Ryan gold occurrence is located 17 km SW of the Hutit mine, ~10 km west of Gebel
Um Teneidab. The location is ca. 2.5 km south of the intersection of the E–W Wadi Hutib and the
nearly N–S Wadi Urga Ryan along the main wadi. The area surrounding the Urga Ryan occurrence is
underlain by island arc-metavolcanic rocks, dominated by metaandesite and epidote–chlorite schist
(Figure 16A). The metavolcanic sequence is locally affected by a several kilometer-scale shear system
that led to intense shearing in an NNW–SSE direction overprinting the WNW–ESE schistosity of the
metavolcanic rocks. In the eastern part of the mine area, a large granitoid intrusion of granodiorite
or quartz diorite composition cuts the metavolcanic rocks. The granitoid rocks are slightly foliated
and tapered along the foliation in the metavolcanic rocks and enclose elongated enclaves parallel to
the metavolcanic rock schistosity. The old mine workings are situated in a low hill terrane that is
underlain by sheared metavolcanic rocks (Figure 16A) along the main Wadi Urga Ryan, whereas mine
houses spread over many tributaries around the area, likely reflecting considerable mine activities.
The mineralization is, however, limited to small locations, particularly where the shearing is intense
and quartz lenses are abundant.

The mineralization is confined to a local NNW–SSE shear zone, which dips steeply to westward,
cutting across the sheared metavolcanic rocks (Figure 16B). The main lode is composed of boudinaged
quartz veins and lenses, ranging in thickness from less than 5 cm to 30 cm and extending along
the strike for more than 40 m. The host shear zone exhibits features of brittle and ductile regimes
manifested by mylonitization, asymmetric boudinaged quartz lenses, and partial recrystallization
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(Figure 16C). The sense of shear along this shear zone is derived from the lensoidal quartz pockets that
point to a left-lateral movement concurrent with vein emplacement (Figure 16D). This observation
suggests a spatial and temporal relationship between the shear zone and gold-bearing quartz veins.

The local dynamic recrystallization of the host metavolcanic rocks is assumed to have been
strongly catalyzed by fluid flow through dilatant zones and promoted ductility-enhancing mineral
reactions. These high-fluid-pressure features likely develop in rocks buried at great depths, indicating
mesothermal conditions typical of orogenic gold deposits. In the mine area, hydrothermal alteration is
confined to narrow zones of sheared wallrocks bounding the quartz veins and veinlets. The quartz
veins gave a gold content ranging from 1–7 g/t [70].

 

Figure 16. (A) Simplified geological map of the Urga Ryan gold occurrence (compiled from
satellite-imagery data coupled with our fieldwork), (B) moderately dipping, strongly foliated, and
sheared metavolcanic rocks at the Urga Ryan gold mine with zones of discoloration due to variable
hydrothermal alteration distal and proximal to the gold-bearing veins; (C) boudinaged quartz lenses
along the shear zone surrounded by ferruginated, sericitized wallrocks; (D) lensoid (sigmoidal) quartz
lenses indicating sinistral sense of shear along the host shear zone. Inclined slickensides on the vein
wall surfaces suggest that movement was oblique with lateral and vertical components.

5. Discussion

The ASTER and Landsat-8 OLI band ratio images showed the effective absorption features of
the mafic rock-forming minerals and their metasomatic products. Carbonate minerals had diagnostic
absorption features in the wavelength region 2.1–2.5 μm corresponding to the OLI-SWIR band 7 and
ASTER–SWIR bands 6, 7, and 8. On the contrary, these minerals showed high-reflectance features in
the wavelengths of OLI–SWIR band 6 and ASTER–SWIR band 4. Talc, antigorite, and other Mg-OH
minerals showed diagnostic absorption responses at the wavelengths (1.39 and 2.3 μm) matching
with the OLI–SWIR bands 6 and 7 and ASTER–SWIR bands 4 and 8. Such minerals exhibited strong
reflectance through the wavelengths of OLI band 4 and ASTER bands 2 and 6. Kaolinite, muscovite,
and other Al-OH-bearing minerals exhibited diagnostic absorption features within the wavelength
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range 2.1–2.2 μm equivalent to the OLI–SWIR band 7 and ASTER–SWIR bands 5 and 6. The diagnostic
absorption features of Fe–Mg-OH-bearing minerals including amphiboles, chlorite, and epidote
appeared through the wavelengths of ASTER–SWIR band 8, while their high-reflectance features were
recorded within the ASTER–SWIR band 6. The OLI-band ratio (6/7), CI and ASTER–RBD (6 + 9/82 and
5 + 7/62) images were effective in discrimination of carbonate and clay-rich zones, talcous serpentinite,
and highly tectonized Mg-OH-bearing rocks. Alternatively, the OLI-band ratio (6/5) and the mafic
index (MI) were used to separate the mafic–ultramafic rocks from felsic rocks, while the RBD (6 + 9/8
and 7 + 9/8) and Fe-Mg-OH-MI were utilized to amplify the spectral signature of amphibole-, chlorite-,
and epidote-bearing zones (Figures 4–7).

The automated extraction technique produces short dense lineaments that are difficult to relate
to tectonically significant structures. Dray valleys (wadis) along the weakness zones correspond to
the major faults in the automated lineament extraction results, such as Wadi Hutib, W Urga Ryan,
and Urga Atshan. These results are not necessarily accurate. The manual extraction of lineaments
results in long lineaments corresponding to the major structures deforming the lithological units in the
study area (Figure 9A). The line density map represents the number of lineaments per square unit
area. The line density maps show a high concentration of lineaments in the central and northern parts,
where the NW–SE and NNW–SSE structural trends dominate (Figure 10A).

Thresholding the resultant grayscale images from band ratios, RBD, and mineralogical indices
allowed the extraction of representative pixels (regions of interest), which were converted into vector
shape files and then added to the ArcMap environment. Finally, the extracted lineaments were laid
over the vector data layers of ratios and mineralogical indices to engender a final semi-automated
image on which the litho-structural relationships and the spatial distribution of gold occurrences
and lineament intersections were best presented (Figure 17). The high deformation and fracturing
zones bounding the sheared ophiolitic belt contain most of the shear-associated gold occurrences (see
Figure 4A,B). Such zones are propitious features, indicating high probability of zone potential for
undiscovered gold resources.

The Wadi Beitan shear zone (Figure 17) discriminates the gneissic granite and gabbro–diorite
complex from strongly foliated metavolcanic and metavolcaniclastic rocks in the western part of the
map area. Shearing along this zone is oblique with a high-angle dip component along moderately
to steeply eastward planes and a left-lateral strike (lateral) component. Widespread shearing bands,
pervasive sericite, and carbonate alteration are observed along this zone. Together with the Wadi
Khashab shear zone further south, the Wadi Beitan shear zone is part of an extensive (~100-km-long)
shear corridor accommodating several, although generally small-scale, gold occurrences. Quartz veins
showing signs of ductile shearing are locally sulfide-bearing and are associated with green malachite
alteration zones. The Wadi Rahaba shear zone is a steeply east-dipping left-lateral brittle–ductile shear
zone separating tectonically mixed ophiolitic rocks from schistose island arc rocks. The ophiolitic and
metavolcanic rocks on both sides of the shear zone show S-shaped fault–drag folds, consistent with the
sinistral movement. The Hutit gold mine occurs along the Wadi Rahaba shear zone. The Bir Beitan fault
is a steeply dipping, ESE-trending strike–slip fault, with local silicification and hydrothermal breccia
zones. Hydrothermal brecciation and silica alteration are locally coinciding zones with disseminated
sulfide and local malachite staining.

The NNW–SSE shear zones seem to have rather high potential for hydrothermal alteration and
quartz veining where intersected by the extensive WNW–ESE shear zones (Figure 17). These shear
zones accommodate a prominent sinistral displacement, measured 5 km farther south [42]. A good
example is the location of the Urga Ryan occurrence. Younger ~E–W or ENE–WSW faults cut the
regional structural trend and dislocate the lithologic boundaries with apparent dextral displacements
of 1–2 km. The mixed kinematic shear sense indicators (sigmoidal lenses and stretching lineation)
along the WNW–ESE faults may imply that early left-lateral shearing along these faults was obliterated
later by a right-lateral displacement, or as a result of rejuvenation of shears antithetic to the master
NNW–SSE sinistral shear zones.
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Fusion of the field remote-sensing results indicates a prominent difference in the structural setting
of gold occurrences. Occurrences confined to the main shear zones in the central parts of the shear
corridor (i.e., Hutit and Urga Ryan occurrences) show abundant signs of plastic deformation and tinge
with the main NNW–SSE shear trend. Gold occurrences in gabbro–diorite complexes (Um Eleiga and
Um Teneidab) show a weaker association with shear zones, but occupy instead zones where shear
splays fringe apart. The Um Eleiga and Um Teneidab occurrences are apparently controlled by the older
WNW–ESE or NW–SE shear/fault zones that were later overprinted by the more prominent NNW–SSE
shear zones. This could bear a temporal relationship suggesting that these two occurrences and other
occurrences in identical settings predate the main shearing and the related gold occurrences. In other
words, the spatial association revealed from the remote-sensing data and the structural observations
during fieldwork may support the idea of gold introduction to the study area at different time episodes.
The extracted mineral maps interpreted in terms of hydrothermal alteration and lithological controls
on the gold mineralization emphasize the role played by the mylonitic zones (zones of finer grain
size and carbonate and Fe-OH-mineral species) in controlling the distribution of the scattered gold
occurrences in the study area. In accordance with this observation, we see that domains where the
NW–SE and NNW–SSE shear/fault zones intersect are very likely zones of fluid focusing through the
time of the shear system (Najd-related) development. Verification made through the mineralogical
indices showed overlapping carbonate and hydrous minerals in such lineament intersection zones.

6. Conclusions

Fused satellite radar and radiometer data were integrated with comprehensive field studies of
the gold occurrences in the Wadi Beitan–Wadi Rahaba area, supplemented by petrography of the
quartz veins, highlighting the gold mineralization controlled by kilometer-scale shear zones. Field and
microscopic investigations revealed that most of the mineralization occurs in the central-shear quartz
veins within the main shear zone and are associated with strong stretching and mylonitic lineation in
the wallrock. These features and the S-folded quartz lenses suggest that formation of the mineralized
quartz veins took place under a sinistral transpression regime.

The multispectral and SAR data promoted a robust and fast automated mapping technique
of the study area and promoted a better understanding of factors controlling the distribution of
gold occurrences. The band-rationing technique, principal component and independent component
analyses, spectral mineralogical indices, directional filtering, and automated lineament extraction
algorithms were found to be powerful in highlighting and extracting lineaments and hydrothermal
alteration zones. A density lineament map and the hydrothermal alteration images indicate that gold
occurrences are mostly confined to chlorite–epidote alteration zones coinciding with high lineament
intersections. This study concluded with a priority map with zones defined as exploration targets with
high potential (Figure 17). These zones and the extensive ~WNW–ESE displacement shear/fault zones
associated with epidote–chlorite and silicified hydrothermal breccia have to be sampled and assayed.
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Abstract: The Goldstrike district in southwest Utah is similar to Carlin-type gold deposits in Nevada
that are characterized by sediment-hosted disseminated gold. Suitable structural and stratigraphic
conditions facilitated precipitation of gold in arsenian pyrite grains from ascending gold-bearing fluids.
This study used ground-based hyperspectral imaging to study a core drilled in the Goldstrike district
covering the basal Claron Formation and Callville Limestone. Spectral modeling of absorptions at
2340, 2200, and 500 nm allowed the extraction of calcite, clay minerals, and ferric iron abundances
and identification of lithology. This study integrated remote sensing and geochemistry data and
identified an optimum stratigraphic combination of limestone above and siliciclastic rocks below
in the basal Claron Formation, as well as decarbonatization, argillization, and pyrite oxidation in
the Callville Limestone, that are related with gold mineralization. This study shows an example of
utilizing ground-based hyperspectral imaging in geological characterization, which can be broadly
applied in the determination of mining interests and classification of ore grades. The utilization of this
new terrestrial remote sensing technique has great potentials in resource exploration and exploitation.

Keywords: hyperspectral; Goldstrike; gold mineralization; Carlin-type; decarbonatization; argillization

1. Introduction

The Great Basin of western North America has produced a significant amount of gold, making the
United States one of the largest gold producers in the world [1]. Among the gold mines, the most famous
ones are of the Carlin-type, carbonate rock-hosted disseminated gold deposits that formed in the
Eocene Epoch [1,2]. Since the discoveries of Nevada Carlin-type gold deposits, similar sediment-hosted
gold has been searched for around the world [3–6] and in nearby states [7–9]. The Goldstrike district is
a gold deposit in southwest Utah similar to Carlin-type deposits [10,11]. The modern production of
disseminated gold in Goldstrike was active from 1988 to 1996 producing 209,835 ounces of gold and
197,654 ounces of silver, which ceased because of falling gold price, increasing strip ratios, production
costs, and safety concerns [12]. The remaining gold is currently being explored by Pilot Goldstrike Inc.,
Elko, USA [11].

The exploration and mining of precious metals have been a challenge because of the high expense
of drilling, geochemical analyses, and metallurgy tests. On the other hand, hyperspectral imaging
as a non-destructive, low cost, and large areal coverage, remote sensing technique, can provide
high-resolution mineralogical analyses and is becoming popular in geologic studies [13–16]. To test
the applicability of hyperspectral imaging in mineral exploration, this study combines hyperspectral
imaging with fire assay metallurgy and inductively coupled plasma mass spectrometry (ICP-MS)
geochemistry data in the study of gold mineralization in a drilled core from the Goldstrike district.
The identification of an optimum stratigraphic combination and the rock alterations related to gold
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precipitation using hyperspectral imaging demonstrate applications of this state-of-art technique in
the mining industry.

Geological Settings

The Goldstrike district locates in the Bull Valley Mountains, Washington County, southwest Utah
(Figure 1). This area is on the eastern edge of the Great Basin [17,18]. The oldest structures found
in the Goldstrike region are the southeastward thrust faults related with the Late Cretaceous Sevier
orogenic event, which emplaced Paleozoic strata over the Mesozoic rocks on the Colorado Plateau,
as well as several coeval asymmetrical folds [17]. Unconformably above the Paleozoic and Mesozoic
rocks lies Tertiary siliciclastic and volcanic ash-flow tuff rocks. A major basin and range faulting event
and localized drag folding trending east-northeast and west-northwest most likely formed in the
Miocene following the tuff deposits [17]. These created high-angle faults with normal and strike-slip
displacements, which then created the Goldstrike graben trending east–west and the Arsenic Gulch
graben trending northwest–southeast [17]. Gold deposits were mostly found near the high-angle faults
bounding the Goldstrike graben (Figure 1) and along the Covington Hill fault [11,12].

Figure 1. (A) Geologic map of the Hamburg pit and nearby area; (B) location of the Goldstrike district
and Washington County, Utah in the basin and range setting of eastern Great Basin (red); and (C) location
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of the Goldstrike district (red) in Washington County, Utah. The core location is shown with a large
green circle in (A), and the map view trajectory of the retrieved core samples is shown with small green
dots, pit outlines and names are shown in red. Mapped geologic units in (A) are: Tql = Leach Canyon
Formation; Tin = Isom Formation and Wah Wah Springs Formation; Tcu = Claron Formation upper unit;
Tcm=Claron Formation middle unit; Tcl=Claron Formation lower unit; Pq = Queantoweap Sandstone;
Pp = Pakoon Formation; IPc = Callville Limestone; Msc = Scotty Wash Quartzite and Chainman Shale;
Mr = Redwall Limestone. Original geologic map in (A) retrieved from Rowley et al. [19], the original
scale of the map is 1:24,000. The magenta lines in (B) represent the mid-Tertiary magmatic fronts that
swept the Great Basin from northeast to southwest (from Muntean et al. [2]), the ages of the magmatic
fronts are also labeled. The black rectangle in (C) shows the extent of the map area in (A) within the
Goldstrike District.

The stratigraphy of the Goldstrike district is shown in Figure 2. This district is underlain by a series
of Tertiary ash-flow tuffs, limestone, sandstone, and conglomerate, and Mississippian through Permian
carbonate and clastic sediments interbeds [10,11]. Late Cenozoic rocks include an undifferentiated
tuff and andesite on top and the Quichapa ash-flow sheets. Below them are the early Cenozoic
Isom limestones and tuff, the Needles Range Tuff, and the Claron Formation, which consists of an
upper limestone, a middle Red Beds member of shale, siltstone, mudstone, sandstone, conglomerate,
and limestone, and then the basal Claron sandstone and conglomeratic sandstone [20]. Triassic
and Jurassic sediments are not widely exposed in the area, which consist of the Grapevine Wash
Conglomerate and Navajo Sandstone. Paleozoic rocks include the Queantoweap—Coconino Sandstone,
Pakoon Dolomite, Callville Limestone, Chainman Shale and Scotty Wash Quartzite, Redwall Limestone,
and Muddy Peak Dolomite [10,11,19]. Gold mineralization in the Goldstrike district is hosted primarily
in sandstone and conglomeratic sandstone of the basal Claron Formation, and in favorable carbonate
rocks that underlie the unconformity including the Callville Limestone and the middle unit of the
Pakoon Dolomite [10,11]. Karst cavities, collapse breccias, high-angle faults, and anticlinal folds are
the main structural controls of mineralization [11,17].
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Figure 2. Stratigraphic column of the Goldstrike area, modified from Rowley et al. [19].

2. Materials and Methods

This study focused on a core drilled by Pilot Goldstrike Inc. at easting 244,910.51 m, northing
4,141,510.69 m (UTM Zone 12N), on an azimuth of 275◦ and a dip of −65◦. Drilling retrieved core from
apparent depths of 24 to 448 ft. (7.3 to 136.6 m), which was 8.5 cm in diameter. The core was split into
halves, and one half was again split into two 1

4 samples. Half of the core was sent for metallurgical
test, one 1

4 cut was sent for inductively coupled plasma mass spectrometry (ICP-MS) measurements,
and the other 1

4 cut was segmented into mostly 5 ft. (1.5 m) long sections and imaged by ground-based
hyperspectral cameras (Figure 3A). The imaged core sections spanned 273 to 448 ft. (83.2 to 136.6 m),
in which the core sections from 288 to 293 and 418 to 423 ft. (87.8 to 89.3 and 127.4 to 128.9 m) were
duplicated for quality control of metallurgy and geochemical tests and were not scanned.
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Figure 3. (A) A core box with five 3-ft-long columns containing core samples, with depth markers
separating core sections; (B) each hyperspectral scan covers three core boxes, a white reference panel
is included for calibration; (C) metallurgy and geochemical results are labeled for each core section;
and (D) field setup of hyperspectral cameras mounted on a pan and tilt rotating head (FLIR Systems,
Wilsonville, USA) to scan core samples.

2.1. Hyperspectral Imaging

Hyperspectral imaging is a remote sensing technique that collects the reflected light spectrum
from material surfaces. The reflectance curve contains physical and chemical properties of the material
since chemical bonds absorb light at specific wavelengths [21]. Ground-based hyperspectral imaging
has been widely used in geologic characterizations [15,22–28], in which variations of the sub-centimeter
or sub-millimeter scale can be resolved. This study used hyperspectral imaging to identify mineralogy
as well as to extract relative abundances of the minerals.

The core samples were placed in fifteen core boxes and scanned with a Specim dual-camera system
(Spectral Imaging Ltd., Oulu, Finland). Each scan imaged three core boxes that were placed on a table,
and the table was held at around 20◦ towards the cameras by two people while scanning (Figure 3B).
The hyperspectral camera system consisted of a visible and near-infrared (VNIR) camera over the
spectral range of 394–1008 nm at a spectral resolution of 2.8 nm, and a short wave infrared (SWIR)
camera over the spectral range of 896–2504 nm at a spectral resolution of 10 nm, and both cameras
were push-broom scanners (Figure 3D). The cameras were mounted with roughly a −10◦ tilt towards
samples on the two arms of a pan and tilt rotating head (FLIR Systems, USA) on top of a tripod, and the
rotating head rotated on a horizontal plane so that the push broom cameras swept the core samples.
The cameras were about 1.3 to 2.0 m away from the samples, and the spatial resolutions were 1.7 to
2.6 mm for VNIR (with four times of spatial binning) and 1.7 to 2.7 mm for SWIR. Dark current images
were taken with lens caps covering lenses, these represented random background noises from the
electronics and internal temperature. Due to the inevitable shaking by people holding the inclined
table, the hyperspectral imagery is distorted in the across-track direction. The two cameras have
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different scanning angles on the two sides of the rotating head, thus produces different geometries in
imagery (Figure 4). No efforts were made to correct the geometric distortions since geometry was not
the focus of the study.

Figure 4. (A) True-color image of the core samples; and (B) false-color composite of bands 206-217-228
in the short wave infrared (SWIR) data of the core samples. Pixels other than the core samples have been
masked out. The RGB bands in (B) have wavelengths of 2203, 2271, and 2340 nm, respectively. The red
lines show the interpreted unconformity between the basal Claron Formation and the underlying
Callville Limestone.

The dark current images were subtracted from the image spectra, and the results were converted
into at-sensor reflectance using a flat field calibration with a white diffuse reflectance standard. Image
stripes were corrected by comparing reflectance values of bad pixels with adjacent pixels. Assuming
the noise were spatially related, the images were processed with forward and inverse minimum
noise fraction [29] to smooth the spectra and to maximize the signal-to-noise ratio. After smoothing,
the five scans were mosaicked together for more straightforward data processing. Regions of interest
were manually created on the images for core samples, the other pixels, including core boxes, depth
markers, and the white reference panel were masked out (Figure 4). Minerals were identified by
comparing pixel spectra with the U.S. Geological Survey spectral library [30]. The spectra of identified
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mineral absorption features were continuum removed to isolate the non-selective scattering and
spectrally inactive mineral effects [31,32]. These absorption features were then modeled with the
modified Gaussian model [33] to extract the absorption depth as well as the absorption wavelength.
This model is a deconvolution method that models electronic transition bands in reflectance spectra,
enables the isolation of absorptions from the continuum and distinct absorption from overlapping
wavelengths [33,34]. The absorption depth is a proxy of the mineral abundance [31,35], and the
absorption wavelength helps to differentiate similar minerals and to imply mineral chemistry in solid
solutions [36,37]. All these image processing steps were performed by Matlab 2016a (MathWorks,
Natick, USA) and ENVI 5.5 (Harris Geospatial, Boulder, USA).

The reflected spectrum hosts several distinctive absorption features, including the overtones of
C–O stretch and O–H stretch, combinations of O–H stretch and metal-OH bend vibrations, as well as
crystal fields transitions of metal elements, these absorption features enables identification of many
minerals [38–40]. Common carbonate and phyllosilicate minerals in sedimentary rocks (Figure 5A)
show an Al–OH absorption near 2.2 μm, and a CO3

2− absorption near 2.34 μm [39,40]. Common ferric
iron oxide and hydroxide minerals (Figure 5B) show absorption features near 0.5 and 0.66 μm [41].
There is another ferric iron absorption near 0.9 μm [41]. However, the bands with long wavelengths
(>800 nm) of the VNIR camera had low signal-to-noise ratios, so the absorption feature near 900 nm
was not studied. In this study, we examined 50 spectral bands (2109 to 2416 nm) in the SWIR spectrum
to look for two absorption bands near 2200 nm and 2340 nm, and examined 118 spectral bands (400 to
736 nm) in the VNIR spectrum to look for the absorption bands near 500 nm and 660 nm. For each
core sample section, an average value of absorption depth was calculated for all pixels of the section,
and this average absorption depth was compared with geochemical measurements.

Figure 5. (A) Continuum removed spectra of common carbonate and phyllosilicate minerals in
sedimentary rocks, and (B) continuum removed spectra of common ferric iron oxide and hydroxides,
data from Clark et al. [30].
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2.2. Geochemistry

The dry samples were crushed to 70% less than 2 mm particle size and then riffle-split. A 250 g
sub-sample was pulverized to 85% less than 75 μm with ring-mill. Of the pulps 30 g was analyzed for
gold by fire assay atomic absorption. After aqua regia digestion, another 1 g sub-sample of the pulps
was analyzed by ICP-MS.

Multivariate principal component analyses (PCA) [42,43] were performed on the element
concentration data and hyperspectral data to show the variability of different elements and affinity
of elements. Eigenvectors of element concentrations (vectors showing correlation coefficients) and
principal component scores of samples (points showing the linear combinations of eigenvectors) are
plotted in bi-plots; the closer the vectors or dots are to each other, the closer affinity or similarity
they have.

3. Results

3.1. Hyperspectral Imaging

An average was calculated for all the spectral bands and all the core sample pixels with the same
lithology (Figure 6; for lithology classification see the text in this section); the mean spectral reflectance
curves show the major spectral characteristics of core samples. The mean spectral reflectance curves
in the SWIR spectrum (Figure 6A,C) show two strong absorption features at 2340 nm and 2200 nm.
The depths of these absorption features were automatically modeled, which represent the relative
abundances of calcite and clay minerals, respectively. Possible interference of chlorite with calcite
because of chlorite’s absorption near 2340 nm was ruled out due to the lack of absorption from chlorite
near 2250 nm (Figure 6A,C). The distinctive duplet absorptions of kaolinite at 2165 nm and 2200 nm
were also not observed (Figure 6A,C). As a result, the clay minerals should be illitic or smectitic. Illite
and smectite have similar overlapping Al–OH absorption with each other; this study does not attempt
to distinguish between the two species. With the presence of abundant calcite, detection of possible
interference of the Mg–OH absorption near 2300 nm was not possible because this weak absorption
would be masked out by the strong asymmetric absorption of CO3

2− represented by two Gaussians
at 2340 and 2300 nm in the modified Gaussian model. The Mg–OH feature only interferes with the
Gaussian at 2300 nm and does not affect the abundance quantification based on the Gaussian at
2340 nm. All three mean spectral reflectance curves in the VNIR spectrum (Figure 6B,D) displayed the
strong ferric iron absorption near 500 nm without an obvious absorption near 670 nm. The lack of the
absorption feature near 670 nm indicated the presence of secondary oxidized ferric iron in ferrihydrite
and the lack of primary ferric iron in cementing goethite and hematite [44]. The absorption depth at
500 nm was modeled to represent the relative abundance of the ferric iron.

It is shown that the upper sections were mostly deficient in calcite and the lower sections were rich
in calcite (Figure 7A). Compared with the stratigraphic column and the drilling records, these sections
were most probably the siliciclastic sediments of the basal Claron Formation on the top and the
underlying Callville Limestone on the bottom. The unconformity separating them was probably near
the third core column from the left side of Scan3 (Figure 7A).
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Figure 6. (A) Mean spectral reflectance curves of scanned core samples in the SWIR spectrum; (B) mean
spectral reflectance curves of scanned core samples in the visible and near-infrared (VNIR) spectrum;
(C) mean continuum removed reflectance curves of scanned core samples in the SWIR spectrum;
and (D) mean continuum removed reflectance curves of scanned core samples in the VNIR spectrum.
Some siliciclastic rocks showed strong red-yellow colors with abundant ferric iron, these rocks were
plotted separately in the VNIR spectra (B,D).

Above the unconformity, the calcite abundance in the basal Claron Formation is generally very
low, except for a section of high calcite content in the fifth and sixth core column from the left side
of Scan2 (Figure 7A). Calcite abundance is variable in Callville Limestone, including some spots of
high calcite concentrations in sections of mostly low calcite content. Clay mineral abundances are
significantly higher and display more variability in the basal Claron Formation than in the Callville
Limestone (Figure 7B). Within the siliciclastic sections of the basal Claron Formation, the samples with
medium calcite content usually are higher in clay contents. In contrast, within the sections of higher
calcite abundance in the Callville Limestone, the clay content is lower. The carbonate-rich section in
the basal Claron Formation also shows lower clay content than the siliciclastic sections. Ferric iron
abundance is generally higher in the basal Claron Formation than in the Callville Limestone (Figure 7C).
Most of the core samples above the section of high calcite content in Scan 2 (Figure 7B) display much
higher ferric iron content than other samples (Figure 7C), which is consistent with the red-yellow colors
in the VNIR true-color image (Figure 4A). Some core samples in the Callville Limestone display higher
ferric iron content.
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Figure 7. (A) Depths of continuum removed absorption features at 2340 nm representing calcite
abundance; (B) depths of continuum removed absorption feature at 2200 nm representing clay mineral
abundances; and (C) depths of continuum removed absorption feature at 500 nm representing ferric
iron abundances. Red to yellow colors mean higher abundances, and blue to green colors mean lower
abundances. Five scans were mosaicked together, core samples were shallower on the left and up,
and deeper on the right and down. The red line in (A) shows the interpreted unconformity between the
basal Claron Formation and the underlying Callville Limestone. The identified aquitard and samples
with medium calcite content in the basal Claron Formation, and patches of decarbonatization in the
Callville Limestone are labeled in (A); some argillization samples with medium clay contents are circled
in (B); and some carbonate samples with relatively higher contents of pyrite oxidized into ferric iron
are circled in (C).

3.2. Geochemistry

Fire assay metallurgy measured gold concentrations for the core sections, and fifty-one (51)
element concentrations were measured with ICP-MS (see Table S1 in supplemental data). Gold (Au)
concentrations reported from ICP-MS had fewer significant digits than measurements by the fire assay,
so the values from the fire assay were used in the analyses. Concentrations of boron (B), germanium
(Ge), indium (In), niobium (Nb), rhenium (Re), tantalum (Ta), and titanium (Ti) were often below the
detection limit and were therefore not reported.

Forty-four (44) element measurements from fifty core sections from 213 to 448 ft. (64.9 to 136.6 m)
were analyzed by PCA (Figure 8). Silver (Ag), tellurium (Te), and lead (Pb) showed closest affinities to
Au; sulfur (S), mercury (Hg), thallium (Tl), arsenic (As), bismuth (Bi), antimony (Sb), selenium (Se),
and iron (Fe) were also close to Au. Major elements like calcium (Ca), magnesium (Mg), aluminum (Al),
and phosphorus (P) showed little or no affinity to Au; transition metals like copper (Cu), molybdenum
(Mo), and zinc (Zn) that often co-occurred with Au in porphyry mines did not show characteristic
affinity with Au.
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Figure 8. Bi-plot of principal components from the geochemical analyses. Blue vectors show loadings
(correlation coefficients) of element concentrations, and red dots show sample scores (linear combinations
of eigenvectors). The lengths of element vectors were magnified 30 times to increase legibility.

4. Discussion

4.1. Gold Mineralization in Carlin-Type Deposits

Carlin-type gold deposits form several spatial trends spanning the central Great Basin, northern
Nevada, and central Nevada, and are characterized by concentrations of very finely micrometer
to sub-micrometer sized disseminated arsenian pyrite grains found in structurally controlled, silty,
carbonaceous, and calcareous rocks [1]. Regionally, after the flattening of the subducting Farallon plate
under the North America plate around 65 Ma [45], extension prevailed in the Great Basin, and the
rollback or delamination of the slab renewed magmatism in Eocene and Oligocene that swept the
Great Basin southwestward from northern Nevada and Idaho to southern Nevada, southwest Utah,
and north Arizona [2,46]. The dehydration of the slab, upwelling of asthenosphere, and the extensional
environment enabled formation of hydrous, S- and Au-bearing, high-K, calc-alkaline magma with
elevated Au/Cu ratio [47,48], which then released CO2-, H2S-, and Au-bearing aqueous fluid at a
significantly deeper depth (about 10 km) than typical porphyry Cu–Au and associated deposits [2,49].
The fluid ascended along high-angle faults, and released vapor with high S/Fe ratios, which was
trapped in permeable and reactive rocks by impermeable rocks, and precipitated gold in micro-sized
arsenian pyrite grains, forming typical Carlin-type gold deposits. The Goldstrike district in southwest
Utah is near the southeastward extension of the 25 million years magmatic front [2] with an active
tectonic setting and high angle faults (Figure 1). Therefore gold mineralization may result from similar
geologic processes to the Carlin-type deposits.
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The host rock alteration of Carlin-type deposits is typically manifested by decarbonatization,
argillization, silicification and/or jasperoid, fine-grained disseminated sulfide minerals and oxidation
of sulfide minerals, remobilization and/or addition of carbon, and late-stage barite and/or calcite
veining, with incipient collapse brecciation that enhances the migration of mineralization fluids [1,11].
Carlin-type deposits are typically stratiform, with mineralization localized with specific favorable
stratigraphic units.

4.2. Stratigraphic Control

Gold concentrations measured with fire assay metallurgy were used to colorize outlines of
scanned core sections and then compared with the mapped calcite and clay abundances (Figure 7)
to infer the influences or patterns of mineralogy on gold mineralization. Gold concentrations are
not homogeneous throughout whole core sections. Therefore necessary signals may be missed from
sampling. However, geochemical analyses cannot sample small enough areas to be comparable to
the resolution of hyperspectral imaging. Nevertheless, gold concentration data can show the general
variations of the Au-bearing fluid flow patterns.

Gold mineralization is significantly influenced by stratigraphic and structural control in Carlin-type
deposits. As shown in Figure 1 the oblique core in this study cut across a fault, which may have
facilitated fluid flow. Rocks of low porosity and permeability act as aquitards to prevent fluid from
ascending and the Au-bearing fluids react with the permeable rocks below aquitards to precipitate
disseminated gold. The calcite-rich section in Scan2, the basal Claron Formation is such an aquitard
due to its lower permeability compared with siliciclastic rocks below. Gold concentrations in the
calcite-rich section were very low, then very high in the section below that, and decreasing downward
(Figure 9B). Those samples with medium calcite content also showed relatively low gold concentrations.
The combination of low permeability carbonate aquitard and high permeability siliciclastic rocks below
in Carlin-type deposits were similar to the seal and reservoir rocks in conventional oil and gas industry.
Exploration can be focused on such stratigraphic combinations near high-angle faults.

4.3. Mineralogical Alterations

Macroscopic rock alterations that are reported to be related to gold mineralization in the Goldstrike
district as well as in the Carlin-type deposits include silicification, decarbonatization, argillization,
and pyrite oxidation [1,11]. Quartz, chert, and amorphous silica are all not spectrally active in the
visible to the short-wave infrared spectrum, only in the thermal infrared, so could not be studied by the
hyperspectral cameras used in this study. Decarbonatization stands for the removal of carbonate, so the
decline or diminishment of CO3

2− absorption near 2340 nm represents decarbonatization. Argillization
stands for the addition of argillic minerals (most commonly illite and kaolinite), so the increase or
appearance of Al–OH absorption near 2200 nm represents argillic alteration. These argillic minerals
may come from alterations of felsic minerals or the ore fluids. The basal Claron Formation is sandstone
or conglomerate sandstone, which may have argillaceous material, but without a lateral comparison
with unaltered strata, it is hard to confirm the argillic alteration in a single core. More cores or outcrops
may be helpful. However, the authors only had limited access. On the other hand, Callville Limestone
rarely has argillaceous components [50,51], and the detection of Al–OH absorption is interpreted to
represent argillic alteration. Pyrite and arsenian pyrite in the strata can be oxidized into ferric iron
minerals after mineralization, which is especially common in pyrite-rich silty limestones or limey
siltstones [1], so the detection of ferric iron absorption near 500 nm may represent pyrite oxidation.
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Figure 9. Cont.
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Figure 9. (A) Depths of continuum removed absorption features at 2340 nm representing calcite
abundance; (B) core samples colorized by gold concentrations from fire assay metallurgy; (C) depths of
continuum removed absorption features at 2200 nm representing clay mineral abundances; (D) core
samples colorized by gold concentrations from fire assay metallurgy; (E) depths of continuum removed
absorption feature at 500 nm representing ferric iron abundance; and (F) core samples colorized by
gold concentrations from fire assay metallurgy. Identified aquitard, samples with medium calcite
content, some argillization samples with medium clay contents, patches of decarbonatization, and
some carbonate samples with relatively higher contents of pyrite oxidized into ferric iron are labeled.

Much of the scanned Callville Limestone has undergone various degrees of decarbonatization.
Patches of high calcite content surrounded by areas of lower calcite content can be seen below the
unconformity in Scan3, are prevalent in Scan4, and in some columns in Scan5. Some sections have
gone through strong decarbonatization removing all the calcite. Decarbonatization may reflect more
active gold mineralization, as the gold concentrations are relatively higher in these sections (Figure 9B).
Some of the scanned Callville Limestone has also undergone various degrees of argillization. Samples
of medium clay contents can be seen in Figure 9C, with argillization corresponding to more active
gold mineralization and relatively higher gold concentrations (Figure 9D). Some samples in Callville
Limestone showed higher ferric iron (Figure 9E), which might correlate with pyrite oxidation after
mineralization with higher gold concentrations (Figure 9F).

These interpretations were supported by PCA of absorption depths together with element
concentrations (Figure 10). Due to the significant differences in lithology and alteration patterns,
measurements of seventeen (17) siliciclastic and seventeen carbonate rock sections (including the
carbonate aquitard section in the basal Claron Formation) were processed separately. The average
pixel value of absorption depths and 12 selected elements were analyzed by PCA since only seventeen
sections were available. Analyses in siliciclastic rocks showed that calcite, clay, and ferric iron depths
all had minimal affinities with gold (Figure 10A; See Table S2 in supplemental data). This confirmed
that decarbonatization and argillization in siliciclastic rocks could not be easily mapped from a single
core and correlate with gold mineralization. However, stratigraphic control by different lithologies
played a major role (Figure 9). It was also shown that calcite and clay absorption depths were close to
each other, supporting the observation that samples with medium calcite content usually were higher
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in clay contents. On the other hand, analyses in carbonate rocks showed that both clay and ferric iron
depths had close affinities to silver and a little less affinity to gold, while calcite depth showed very
limited affinity to gold, silver, and clay depth (Figure 10B) (See Table S4 in supplemental data). These
facts confirmed that decarbonatization, argillization, and pyrite oxidation in carbonate rocks could
be mapped from core samples, and correlated with gold mineralization. The identification of these
mineralogical alterations could be used as a classifier for ore grades; intense alterations might correlate
with higher grades, and weak alterations correlate with lower grades.

Figure 10. (A) Bi-plot of the principal components from average absorption depths and selected
elements in the siliciclastic rocks of the basal Claron Formation; and (B) bi-plot of principal components
from average absorption depths and selected elements in the carbonate rocks of the Callville Limestone
as well as the carbonate section in the basal Claron Formation. Vectors show loadings of elements and
absorption depths, and dots show sample scores. The lengths of element vectors were magnified ten
times to increase legibility.

Besides the macroscopic alterations, some trace elements like As, Hg, and Sb are associated with
gold mineralization, and they form sulfide minerals like orpiment, realgar, cinnabar, and stibnite.
These minerals appeared in trace amount, and no investigation was performed on these minerals.

4.4. Implications

This study showed an example of using hyperspectral imaging to identify the optimum
stratigraphic combination of limestone above and siliciclastic rocks below, as well as mineralogical
alterations including decarbonatization, argillization, and pyrite oxidation that are related to gold
mineralization. Such mineralogical information may shed light on the geologic mechanism of
mineralization, and help in the determination of mining interests with similar stratigraphic and
structural conditions, as well as help in the classification of ore grades based on the alteration
patterns. Without expenses in chemical consumables and procedure, most of the costs of hyperspectral
imaging are for personnel. As a result, hyperspectral imaging may be a cost-effective alternative or
complementary method for geochemical methods [52,53]. Besides, the sub-centimeter spatial resolution
and detailed mineralogical identification/semi-quantification from hyperspectral imaging are superior
to lithologic logging that accompanies exploration drilling. Ground-based hyperspectral imaging,
as a new direction in earth sciences, provides high spatial and spectral resolution measurements,
fast data collection, sizeable areal coverage, and easy data processing. We envision more studies with
hyperspectral imaging in various fields of earth sciences.
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5. Conclusions

Hyperspectral imaging was used to scan a core covering the basal Claron Formation and Callville
Limestone in the Goldstrike district, southwest Utah, which is believed to be similar to Carlin-type
gold deposits in Nevada with sediment-hosted disseminated gold. This study used spectral modeling
to identify and semi-quantify calcite, clay minerals, and ferric iron. Variations in mineralogy are used
to identify lithology, as well as decarbonatization, argillization, and pyrite oxidation alterations within
the core samples. Compared with metallurgy and ICP-MS geochemical data of the core, this study
confirmed the correlation between stratigraphic control as well as mineralogical alterations with gold
mineralization. Although the silicification and formation of jasperoids are essential indicators of
gold mineralization, silica is not spectrally active in the reflected spectrum and cannot be studied by
hyperspectral imaging. This state-of-art technology has excellent potentials in broader applications in
the mining industry.
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depths and element concentrations in carbonate rocks.
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Abstract: Multi-sensor satellite imagery data promote fast, cost-efficient regional geological mapping
that constantly forms a criterion for successful gold exploration programs in harsh and inaccessible
regions. The Barramiya–Mueilha sector in the Central Eastern Desert of Egypt contains several
occurrences of shear/fault-associated gold-bearing quartz veins with consistently simple mineralogy
and narrow hydrothermal alteration haloes. Gold-quartz veins and zones of carbonate alteration and
listvenitization are widespread along the ENE–WSW Barramiya–Um Salatit and Dungash–Mueilha
shear belts. These belts are characterized by heterogeneous shear fabrics and asymmetrical or
overturned folds. Sentinel-1, Phased Array type L-band Synthetic Aperture Radar (PALSAR),
Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER), and Sentinel-2 are
used herein to explicate the regional structural control of gold mineralization in the Barramiya–Mueilha
sector. Feature-oriented Principal Components Selection (FPCS) applied to polarized backscatter ratio
images of Sentinel-1 and PALSAR datasets show appreciable capability in tracing along the strike of
regional structures and identification of potential dilation loci. The principal component analysis
(PCA), band combination and band ratioing techniques are applied to the multispectral ASTER and
Sentinel-2 datasets for lithological and hydrothermal alteration mapping. Ophiolites, island arc
rocks, and Fe-oxides/hydroxides (ferrugination) and carbonate alteration zones are discriminated
by using the PCA technique. Results of the band ratioing technique showed gossan, carbonate, and
hydroxyl mineral assemblages in ductile shear zones, whereas irregular ferrugination zones are
locally identified in the brittle shear zones. Gold occurrences are confined to major zones of fold
superimposition and transpression along flexural planes in the foliated ophiolite-island arc belts.
In the granitoid-gabbroid terranes, gold-quartz veins are rather controlled by fault and brittle shear
zones. The uneven distribution of gold occurrences coupled with the variable recrystallization of
the auriferous quartz veins suggests multistage gold mineralization in the area. Analysis of the host
structures assessed by the remote sensing results denotes vein formation spanning the time–space
from early transpression to late orogen collapse during the protracted tectonic evolution of the belt.

Keywords: Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER); Sentinel
2; Synthetic Aperture Radar (SAR) data; Egyptian Eastern Desert; gold mineralization; structural
control; transpression and transtension zones
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1. Introduction

Remote sensing satellite imagery has a high capability of providing a synoptic view of geological
structures, alteration zones and lithological units in metallogenic provinces. Typically, application of
multi-sensor satellite imagery can be considered as a cost-efficient exploration strategy for prospecting
orogenic gold mineralization in transpression and transtension zones, which are located in harsh regions
around the world [1–13]. Synthetic Aperture Radar (SAR) is an active microwave remote sensing
sensor that transmits and detects radiation with wavelengths between 2.0 and 100 cm, typically at
2.5–3.8 cm (X-band), 4.0–7.5 cm (C-band), and 15.0–30.0 cm (L-band) [7]. Longer wavelengths (L-band)
can enhance the depth of penetration of radar signals through the Earth’s surface and therefore provide
valuable information for structural geology mapping related to orogenic gold mineralization [8,9].
The C-band and L-band SAR data, i.e., the Sentinel-1 and Phased Array type L-band Synthetic Aperture
Radar (PALSAR) data, have successfully promoted mapping of structural lineaments that are associated
with hydrothermal gold mineralization in tropical, arid, and semi-arid environments [4,14–18].

The hydrothermal alteration zones are normally impregnated with iron oxides, clay and carbonate
± sulfate, which have diagnostic spectral signatures in the visible, near infrared, and shortwave infrared
radiation regions [19]. The electronic processes caused by the transitional elements in these minerals,
such as Fe2+, Fe3+, Mn, Cr, Co and Ni, produces absorption features in the visible near infrared region
(VNIR) (0.4 to 1.1 μm) [19]. The hydrous mineral phases with the OH groups (Mg–O–H, Al–O–H,
Si–O–H) and CO3 acid group have diagnostic absorption features in short wave infrared region
(SWIR) (2.0–2.50 μm) [20,21]. Using data of multispectral and hyperspectral remote sensing sensors for
lithological and mineralogical mapping in metallogenic provinces have been continually demonstrated
around the world [6,22–24]. The Advanced Space-borne Thermal Emission and Reflection Radiometer
(ASTER) and Sentinel-2 data have high capabilities in discriminating lithological units and alteration
zones associated with hydrothermal ore deposits using the VNIR and SWIR spectral data [11–13,25–27].

The Central Eastern Desert (CED) of Egypt is built up mainly of tectonized ophiolites,
metasedimentary rock successions, granitoid intrusions, and subordinate volcanic rocks and molasse
sediments generally of Neoproterozoic age [28]. Gold–quartz veins cutting mainly through the
metavolcanic–metasedimentary rock successions or in small granitic intrusions have been intensely
mined out and produced gold during ancient times [29]. Gold mineralization is thought to have occurred
during episodes of calc-alkaline granite magmatism in the evolution of the Eastern Desert shield [30–32].
Shear-related gold lodes have been described in several occurrences in the South and Central Eastern
Desert (SED, CED) [33–38]. Zoheir [39] discussed the possibility of temporal and spatial relationships
between discrete gold occurrences and regional transpression shear zones particularly between the
ophiolite and island arc terranes. The Au-quartz veins are typically hosted by brittle–ductile ductile
and fault zones attributed to post-accretionary, wrench-dominated defromation [40,41].

In this study, Sentinel-1, PALSAR, ASTER, and Sentinel-2 data are analyzed to decode the
distribution of geological structures and hydrothermal alteration zones associated with gold–quartz
veins in the Barramiya–Mueilha Sector of the CED (Figure 1). This contribution comes in response to
the present-day surge in gold exploration in the Eastern Desert of Egypt and other parts of the Nubian
Shield (i.e., Sudan, Arabia, Eritrea, and Ethiopia). The main objectives of this study are: (i) To map
the major lineaments, curvilinear structures, and intersections in the study area using Sentinel-1 and
PALSAR datasets by employing the Feature-oriented Principal Components Selection (FPCS) technique;
(ii) to identify the alteration zones and lithological units in association with brittle and ductile shear
zones by applying principal component analysis (PCA), band combination and specialized band
ratioing techniques to ASTER and Sentinel-2 datasets; (iii) to integrate field, structural analysis, and
multi-sensor satellite imagery for an ample understanding of the setting and structural controls of
gold occurrences in the study area; and (iv) to inaugurate a cost-effective multi-sensor satellite imagery
approach for orogenic gold in transpression and transtension zones in the Egyptian Eastern Desert and
analogous areas.
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2. Geologic Setting

The Neoproterozoic shield rocks of the western part of the CED is dominated by dismembered
ophiolites, tectonic mélange of allochthonous blocks of serpentinite incorporated and intermixed with
an intensively deformed pelitic and calcareous schists, locally with intercalations of quartzite and black
marble bands [42]. In the Barramiya–Mueilha sector (Figure 1), serpentinite represents greenschist
facies metamorphosed cumulus ultramafic rocks of an ophiolite sequence [43–46]. The island arc
metavolcanic rocks in the study area (Figure 1) comprise metabasalt, basaltic meta- andesite, interbedded
with dactic tuffs and agglomerate, with accidental carbonate fragments. In the Wadi Dungash area,
the island arc assemblages comprises mainly medium- to fine-grained, massive or foliated metabasalt
and meta-andesite and epidote-chlorite schist. Pillowed morphologies are commonly observed in
exposures of the less tectonized metabasalt in the area between Wadi Dungash and Wadi Barramiya [47].
Metagabbro-diorite complexes are weakly deformed rocks underlying extensive areas around Wadi
Beizah. Large sub-rounded masses and discrete elongate masses of tonalite and granodiorite cut the
ophiolitic mélange, island arc rocks, and the syn-orogenic granitoids in the northern part of the study
area. The late- or post-orogenic intrusions are mainly alkali-feldspar granites, granite porphyries, and
less commonly albitite, i.e., the G. Mueilha (Figure 1).

 

Figure 1. Simplified geological map of the Barramiya–Mueilha sector in the western part of the
Central Eastern Desert of Egypt. Compiled from [35,36,44–47] and modifications based on new field
verifications. Insets show the location of Egypt in Africa and the study area in Egypt.
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Oval shaped and elongate masses of late- or post-tectonic granites cut the ophiolitic mélange,
arc metavolcanics, and metagabbro-diorite rocks in the western and northern parts of the study area.
These intrusions are cut by a system of NW- and NE-trending faults and shear zones. The Gabal
Mueilha albite granite intrusion is known for historical economic Sn resources [48,49]. It exhibits sharp
contacts with the country rocks and is intersected by NE and NW-trending faults/fracture sets filled by
dikes and pegmatite veins. Rhyodacite–rhyolite rocks and their subvolcanic equivalents form a small
exposure in the extreme southern part of the study area. The subvolcanic rocks are less deformed
relative to the surrounding rocks and occur at the fault intersection zones [50,51]. Numerous sets of
basaltic and dacitic dikes cut the granitoid rock terranes in different directions. The dominance of the
ENE-trending dikes in the northern part of the study area adjacent to the ENE–WSW Barramiya–Um
Salatit belt. The ~NNW-trending dikes in the south may imply different timing and geometry of the
tensile deformation in the tectonic evolution of the area. The Barramiya–Mueilha sector contains several
gold deposits that show ostensible features of structural control and association with hydrothermal
carbonate zones.

3. Materials and Methods: SAR and Multispectral Satellite Data

3.1. Data Characteristics

Sentinel-1, Phased Array type L-band Synthetic Aperture Radar (PALSAR), Advanced Space
borne Thermal Emission and Reflection Radiometer (ASTER), and Sentinel-2 datasets were used
for this study. Sentinel-1 is a C-band synthetic aperture radar (SAR) instrument (frequency = 5.40
gigahertz) with a spatial resolution of down to 5 m and an up to 400 km-wide swath. Sentinel-1
was launched on 3 April 2014 (www.esa.int/copernicus). It has four operational modes, namely
(i) Strip Map (SM) mode with 5 × 5 m spatial resolution and a 80 km swath, (ii) Interferometric
Wide Swath (IW) mode with 5 × 20 m spatial resolution and a 250 km swath, (iii) Extra Wide Swath
(EW) mode with 25 × 100 m spatial resolution and a 400 km swath, and (iv) Wave (WV) mode with
5 × 20 m resolution and a low data rate (20 × 20 km images along the orbit every 100 km) [52,53].
Sentinel-1 contains single polarization (VV or HH) for the Wave mode and dual polarization (VV +
VH or HH + HV) for all other modes [54]. In this study, Sentinel-1 Wave Mode data (Granule ID:
S1B_IW_GRDH_1SDV_20181130T154622_20181130T154647_013836_019A55, acquired on November
30, 2018) were obtained from the European Space Agency (ESA).

PALSAR sensor is L-band (1.27 gigahertz) synthetic aperture radar, and has a multi-mode
observation function, which enables Fine, Direct Downlink, ScanSar, and Polarimetric modes. It contains
multi-polarization configurations, namely HH, VV, HV, and VH, with variable off-nadir angles between
9.9 to 50.8 degrees, and different spatial resolutions of 10 m (Fine mode), 30 m (Polarimetric),
and 100 m (ScanSar mode). The swath width is 30 km for the Polarimetric mode, 70 km for the
Fine mode, and 250–350 km for the ScanSar mode [55–57]. A PALSAR scene covering the study
area was acquired from the Earth and Remote Sensing Data Analysis Center (ERSDAC) Japan
(http://gds.palsar.ersdac.jspacesystems.or.jp/e/). It was a Fine Mode Dual polarization (FBD) of HH +
HV Level 1.5 product (ALPSRP080050480) acquired on 26 July 2007. The scene was of good quality
(12.5 m pixel spacing), with an off-nadir angle of 34.3 and an incident angle of 38.8 degree, and was
already geo-referenced to the UTM Zone 36 North projection with the WGS-84 datum.

ASTER is a multispectral sensor with 14 spectral bands, including three visible and near infrared
radiation bands (VNIR; 0.52 to 0.86 μm) with a spatial resolution of 15 m, six shortwave infrared
radiation bands (SWIR; 1.6 to 2.43 μm) with a spatial resolution of 30 m, and five thermal infrared
radiation bands (TIR; 8.125 to 11.65 μm) with a spatial resolution of 90 m. A cloud-free, level 1T ASTER
scene (AST_L1T_00303112003083059) of the study area was obtained from the U.S. Geological Survey
Earth Resources Observation and Science Center (EROS) (https://earthexplorer.usgs.gov/). The scene
was acquired on 11 March 2003 and was georeferenced to the UTM zone 36 North projection using the
WGS-84 datum.
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Sentinel-2 is multispectral sensor, launched on 23 June 2015, and provides 13 spectral bands,
comprising of four bands in the VNIR region (0.45 to 0.66 μm), three narrow red edge bands (0.70 to
0.78 μm), two narrow NIR bands (0.84 to 0.86 μm) and two bands in SWIR region (1.6 to 2.20 μm),
with spatial resolution ranging from 10, 20–60 m) with large swath width of 290 km [58,59]. In this
study, a cloud-free, level-1 C Sentinel-2 (Granule ID: S2B_MSIL1C_20181207T082329_ N0207_R121_
T36RWN_20181207T120140, acquired on 7 December 2018) was obtained from the European Space
Agency (ESA) (https://scihub.copernicus.eu/).

Processing of the different multispectral and radar data was made by using various software
including the ENVI®(version 5.2, developed by L3Harris.com) and ArcGIS (version 10.3, developed
by esri.com) packages.

3.2. Pre-Processing Methods

In this study, the Enhanced Lee filter was used to reduce speckle in Sentinel-1 and PALSAR
radar imagery though concurrently conserving the texture evidence [60]. The Enhanced Lee filter is a
revision of the Lee filter and likewise uses coefficient of variation within separate filter spaces [61,62].
The Enhanced Lee filter parameters used in this analysis are 7 × 7 m filter size, 1.00 damping factor,
and the coefficient of variation in cutoffs for homogenous and heterogonous areas were arranged as
0.5230 and 1.7320, respectively. Every pixel is placed by applying the Enhanced Lee filter in one of the
following three classes: (i) Homogeneous class—pixel value is replaced by the average of the filter
window; (ii) heterogeneous treatment—pixel value is substituted by a weighted mean; and finally (iii)
point target class—pixel value remains unchanged.

The atmospheric correction is used to minimize the influences of atmospheric factors in
multispectral data. The Internal Average Relative Reflection (IARR) method was applied to the
ASTER and Sentinel-2 data. The IARR technique for mineral mapping requires no prior knowledge of
the geological features [63]. The IARR normalizes the images to a scene with an average spectrum.
The 30 m-resolution ASTER SWIR bands were re-sampled to match with the VNIR 15-m. Sentinel-2
bands were geo-referenced to the zone 36 North UTM projection using the WGS-84 datum and the
spectral bands were stacked on the 10-meter resolution bands via the nearest neighbor resampling
method to preserve the original pixel values.

3.3. Image Processing Methods

The inverse relationship of HH or VH and HV or VV polarizations of the SAR data can optimize
the geological features with different orientations. This is principally useful for the topographic
applications and mapping structural pattern [4]. The combination of the different polarizations (HH or
VH and HV or VV) results in numerous cross-polarized backscatter ratio pictures. In this study, ratio
images of VV, VH, VH/VV and VH + VV of Sentinel-1 and HV, HH, HH/HV and HH +HV of PALSAR
were produced. We used the Feature-oriented Principal Components Selection (FPCS) technique
to analyze the backscatter ratio polarization images of Sentinel-1 and PALSAR datasets [64,65]. We
assessed the PCA eigenvector loadings on the basis of correlation matrix in order to choose the most
suitable PC which ascertains the important backscatter signatures and variability. A correlation matrix
is normally used if the variances of individual variates are high, or if the units of measurement of the
individual variates differ. The factor model is based on summarizing the total variances. Unities are
used in the diagonal of the correlation matrix for PCA to imply that all variance is common or shared.
Whether a surface feature appears as dark or bright pixels, it is based on the sign of the eigenvector
loadings, coupled with the effect of topographic perception on the radar backscatter response [65].
Consistent improvements in image enhancement and signal to noise ratio (SNR) are possible by using
a correlation matrix in the principal component analysis [4]. The computed correlation eigenvector
values for Sentinel-1 and PALSAR datasets are shown Tables 1 and 2, respectively.
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Table 1. Eigenvector matrix of copolarized and cross-polarized backscattering for Sentinel-1 Feature-
oriented Principal Components Selection (FPCS) images.

Eigenvector VH VV VH/VV VH + VV

FPCS 1 0.230369 0.563194 0.563194 0.563194
FPCS 2 0.783316 −0.591162 0.591162 0.591162
FPCS 3 −0.003523 −0.003523 0.999990 0.999990
FPCS 4 −0.999990 −0.577350 −0.000000 0.577350

VH = verical horizontal, VV = vertical veritcal.

Table 2. Eigenvector matrix of copolarized and cross-polarized backscattering for PALSAR FPCS images.

Eigenvector HH HV HH/HV HH + HV

FPCS 1 0.589359 0.194688 0.004823 0.784047
FPCS 2 −0.564816 0.792703 −0.025923 0.227887
FPCS 3 0.017490 −0.019617 −0.999652 −0.002127
FPCS 4 −0.577350 −0.577350 0.000000 0.577350

HH = horizontal horizontal, HV = horizontal vertical.

The principal component analysis (PCA), band combination and specialized band ratios techniques
were applied to ASTER and Sentinel-2 data to extract information related to lithological and
hydrothermal alteration mapping. The PCA is a standard statistical method applied to minimize the
independent principal components and highlight most of the variability inherited from the numerous
combined band images [66,67]. In this study, the PCs are calculated using the covariance matrix (scaled
sums of squares and cross products) of ASTER VNIR + SWIR and Sentinel-2 spectral bands. Sentinel-2
bands 1, 9, and 10 were excluded from this analysis as they do not contain mineralogical/geological
information. These bands contain information related to atmospheric issues (e.g., aerosol scattering,
water vapor absorption, and detection of thin cirrus) irrelevant to this study [64]. The eigenvector
matrix for the ASTER and Sentinel-2 data derived from the PCA are given in Tables 3 and 4.

The PCA is capable of determining the direction of space containing the highest sample variance,
and moving on to the orthogonal subspace in this direction to find the next highest variance. The result
is iteratively discovering an ordered orthogonal basis of the highest variance. The subspace defined by
the first n PCA vectors can explain a given percentage of the variance. The subspace of dimension n
explains the largest possible fraction of the total variance [66]. The PCA1 contains the albedo is related
largely to the topographic features. Three first PCA images (PCA1, PCA2, and PCA3), containing the
highest topographical and spectral information, are suitable for lithological discrimination. The PCA
images (except PCA 1) may have information related to alteration minerals, which could be reproduced
in the eigenvector loading of the absorption and reflection bands. A PC image with moderate to
high eigenvector loadings for the indicative bands (reflection and/or absorption bands) and opposite
signs promotes an efficient discrimination of a given mineral. If the loading in the reflection band of
a given mineral is positive, the enhanced pixels related to the mineral will appear as bright pixels.
On the contrary, the enhanced related pixels will appear as dark if the loading to a given mineral in
the reflection band is negative [67]. For inverting the dark pixels to bright pixels, negation can be
accomplished by multiplication by −1.
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Several ASTER VNIR + SWIR and Sentinal-2 band combinations and band ratio images are tested
and adopted for mapping lithological units associated with gold occurrences in the study area. Band
ratio technique is used for reducing the effects of topography and enhancing the spectral differences
between bands. It is a technique where the digital number value of one band is divided by the
digital number value of another band. Band ratios are very useful for emphasizing hydrothermal
alteration minerals and lithological units. Dividing one spectral band by another produces an image
that provides relative band intensities. The final goal is to minimize the illumination differences due to
topography [68]. Ratio images can be meaningfully interpreted because they can be directly related
to the spectral properties of minerals. Ratioing can enhance minor differences between minerals
by defining the slope of spectral curve between two bands. The band ratio technique is, therefore,
specifically applicable to highly exposed areas and rugged terrains in arid regions [6]. The ASTER band
combination images (R:4, G:3, B:1) and (R:4, G:7, B:3) are processed to map Fe2O3/MgO and Al2O3-rich
rocks in the study area. The Sentinel-2 band combination (R:11, G:8, B:2) and (R:11, G:12, B:7) images are
generated to map Fe2O3/MgO and Al2O3 -rich rocks [25]. The band ratio of ASTER bands, 4/2 (gossan),
4/3 (ferric oxide), (7+9)/8 (chlorite/epidote/clcite) [68], are used here to highlight the distribution of
ophiolitic and island arc rocks in the study area. The hydrothermal alteration zones are characterized
by substantial contents of hydrous ferromagnesian silicate and iron oxides. The Sentinel-2 band ratios,
11/4 (gossan), 11/8a (ferric oxide), 12/11 (ferrous silicates) and 11/12 (hydroxyl alteration) are used to
map the different rock units [59] and to emphasize on the hydrothermal alteration zones.

4. Results

4.1. Remote Sensing Data Analysis

Analyzing the eigenvector loadings for Sentinel-1 cross-polarized backscatter ratio images indicates
that the FPCS2 has strong loadings of VH (0.783316) and VV (−0.591162) with opposite signs (Table 1).
Cross polarization (VH) is extremely sensitive to geologic structures, while surface roughness is
reflected in robust reflection and high VV backscatter [4]. The inverse relationship between the VH and
VV loadings in the FPCS2 emphasizes the topographic features with different orientations, contrast,
and textural signatures. Figure 2A,B shows the FPCS2 Sentinal-1 image-map of the selected spatial
subset covering the study area. Structural elements related to the transtension and transpression zones
are traceable in Figure 2A, and are annotated in Figure 2B. Well-developed foliations and shear cleavages
are dominated in the transpression zone (ductile zone), while zones accommodating displacements and
form discontinuities are considered as transtension zones. The ENE-striking foliation and related close
and overturned folds extend for several kilometers and enfold the huge ophiolite blocks. A considerable
difference in the topography and foliation trajectories in terranes of the ophiolite nappes relative to the
island arc metavolcanic rocks emphasizes distinctive deformation histories, where shortening should
have brought together tectonically different terranes now are juxtaposed.

The depth of penetration of radar signal is improved by using the L-band radar data, therefore,
PALSAR data have the capability to map geological structures that may be covered by sand in arid
regions. The FPCS technique is applied to cross-polarized backscatter ratio images of PALSAR, including
HV, HH, HH/HV and HH+HV (Table 2). Different polarizations are sensitive to ground surface features
of different dimensions; they collectively bring out greater geological–geomorphological–structural
details [4]. Considering the eigenvector loadings for PALSAR cross-polarized backscatter ratio images,
it is evident that the FPCS2 contains information for structural mapping and topographic enhancement
due to the strong contribution of HH (−0.564816) and HV (0.792703) with opposite signs (Table 2).
Figure 3A,B shows the FPCS2 PALSAR image-map of the selected spatial subset covering the study
area. The FPCS2 image-map clearly discriminates the relatively high topographic, intensely sheared
ophiolitic nappes from the tectonically underlying, low topographic, island arc metavolcanic and
metavolcaniclastic rocks. Folding of the ophiolitic rocks appears to be more recognizable in the southern
part than in the northern part of the study area. Typically, high brightness contrast, textural variability,
and tonal variation are recorded in the FPCS2 PALSAR image-map compared to the Sentinel-1 images.
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Figure 2. Processed Sentinel-1 data of the Barramiya–Mueilha area showing: (A) Feature-oriented
Principal Components Selection (FPCS2) highlighting the variable styles of deformation in the study
area. (B) Same as in A with interpreted structural elements and locations of gold deposits/occurrences.
For more details please refer to the next sections.

A 9-band PCA is constructed from the original 9-band (VNIR+ SWIR) of ASTER image covering the
study area (Table 3). The PC1 band contains the largest percentage of data variance and albedo related
to topographical features. The second and third PC bands contain the second largest data variance
and spectral information. Thus, the first three high order PCs (1, 2, and 3) contain approximately 99%
of spectral information, which can be used for lithological mapping rather than the subsequent low
order principal components (4, 5, 6, etc.) which usually contain < 1% of spectral information and low
signal-to-noise ratios. The last PCA bands may contain information related to alteration minerals or
can appear noisy because they contain very little variance [4,11,12]. Accordingly, PC1, PC2, and PC3
can be considered in lithological mapping as Red–Green–Blue color composite, especially for arid
region such study area. Figure 4A shows RGB color composite of the PC1, PC2, and PC3 for ASTER
VNIR + SWIR bands covering the study area.

Most of the lithological units contain distinguishable spectral characteristics compliant with the
geological map (Figure 1). However, the lithologies with analogous spectral features are hard to
discriminate. The highly tectonized ophiolites, metasediments, and schists are expressed by yellow to
orange pixels, demarcating the ductile shear zones in the central part of the study area (Figure 4A).
Post-orogenic granites in the northwestern part of the study area appear as bluish green pixels,
locally with pinkish yellow pixels. Spectral signature comparable to the granitic rocks are explained as
alteration products of feldspar to clay minerals in brittle (transtension) shear zones. Metagabbro–diorite
complex and the Nubian Sandstone appear as magenta to purple pixels. In Figure 4A, the ophiolitic
rock terranes are notably separated from the island arc rocks by the pale green color, whereas the
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island arc metavolcaniclastic rocks, with a reddish image signature, form an autochthonous block in
the southwestern part of the area and is surrounded by major thrusts.

Figure 3. Processed Phased Array type L-band Synthetic Aperture Radar (PALSAR) data of the
Barramiya–Mueilha area: (A) Feature-oriented Principal Components Selection (FPCS2) image showing
fold traces and foliation trajectories most prominent in the central part of the area, (B) Same as A with
interpreted structural elements and locations of gold deposits/occurrences. The different structural
elements are classified based on fieldwork as detailed in the text.

Analysis of the eigenvector loadings for the ASTER VNIR + SWIR dataset shows that the
PC4 has strong loadings of band 1 (−0.608617) and band 4 (0.496999) with opposite signs (Table 3).
Hematite, jarosite, goethite, and limonite tend to have strong absorption features in 0.4–1.1 μm,
coinciding with bands 1, 2, and 3 of ASTER, and high reflectance in 1.56–1.70 μm, coinciding with
band 4 of ASTER [68,69]. Therefore, this PC image contains spectral information for mapping iron
oxide/hydroxide minerals. The PC5 has high loadings of band 4 (−0.545338) and band 6 (0.563536)
with opposed signs (Table 3). Al–OH mineral groups contain spectral absorption features in 2.1–2.2 μm
and reflectance in 1.55–1.75 μm, which coincide with bands 5 and 6 (2.145 to 2.225 μm) and 4 (1.600 to
1.700 μm) of ASTER [69]. Accordingly, the PC5 can enhance kaolinite, alunite, and sericite (muscovite)
mineral groups. It should be noted that the dark pixels in PC5 need to be inverted to bright pixels by
negation. The PC6 shows strong positive loading in band 5 (0.557757) and strong negative loading
in band 9 (−0.438202) (Table 3). Fe, Mg-OH-bearing alteration minerals and CO3 mineral groups
show high absorption characteristics in the position defined by bands 8 and 9 (2.295–2.430 μm) and
low absorption features in band 5 (2.145–2.185 μm) of ASTER [69]. So, the PC6 may has spectral
information for mapping epidote, chlorite, and calcite. Figure 4B shows an RGB color composite
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image of PC4 (R), PC5 (G), and PC6 (B) covering the study area. The red and magenta pixels have
high surface abundance of iron oxide/hydroxide minerals, which are mostly associated with ophiolitic
serpentinite, chromitite, and ultramafic rocks, highly tectonized ophiolites, metasediments and schists,
and Nubian sandstone. The yellow pixels (admixture of iron oxide/hydroxide and Al–OH mineral
groups) are typically occurred in alkali-feldspar granite and granitoids background (transtension
zones). The green pixels are associated with Nubian sandstone, recent alluvium, ophiolitic serpentinite,
chromitite and ultramafic rocks, syn-orogenic granitoids, and post-orogenic alkali-feldspar granites.
The blue pixels strongly develop in the mafic and ultramafic rocks such as serpentinite, chromitite,
and metagabbro-diorite complex (Figure 4B).

Figure 4. False-color composite, ASTER PCA images for the study area: (A) PC1, PC2, and PC3
(in RGB channels) shows the island arc metavolcanic/metavolcaniclastic rocks as red pixels, whereas
the ophiolitic rocks and ophiolitic mélange rocks exhibit a greenish image signature. The unconformity
boundary is marked by the transition to pale blue areas (of the Nubian Sandstone) in the southwestern
part of the area, (B) PC4, PC5, and PC6 (in RGB channels) differentiates the iron oxide/hydroxide
minerals (red pixels), Al–OH mineral groups (green pixels) and Fe, Mg–OH–bearing alteration minerals
and CO3 mineral groups (blue pixels). Solid black lines refer to the main lineaments (i.e., fault and
shear zones) in the area. Notice that the curvilinear morphologies of the linements (transpression
zones) in the central part, whereas straight lineaments (herein classified as transtension zones) prevail
in the northern and extreme sourthern parts of the area.

155



Remote Sens. 2019, 11, 2122

Figure 5A (PC1, PC2, and PC3) shows the island arc metavolcanic/metavolcaniclastic rocks as
reddish pixels. The light green domains in the ophiolitic mélange terranes are those which experienced
high strain and demarcating transpression, which is highly tectonized ophiolites and schists as in the
geological map. The boundary between ophiolites and island arc rocks appears prominent, and fold
trajectories are easy to trace. The boundary between the Nubian sandstone and adjacent lithological units
appear as light blue lines and changes into red and blue color towards the western part due to irregular
abundance of ferrous silicates in this Phanerozoic sedimentary rocks. Post-orogenic alkali-feldspar
granite and syn-orogenic granitoids represent in greenish-blue to blue color in northwestern part of the
study area, while metagabbro–diorite complex depicts as magenta to light brown color (Figure 5A).

Figure 5. False-color composite, Sentinel-2 PCA images for the study area: (A) PC1, PC2, and PC3
in R, G, and B channels, respectively. Notice the island arc metavolcanic/metavolcaniclastic rocks
are conspicuously distinctive as reddish color pixels. The light color domains within the ophiolitic
mélange terranes are those experienced high strain and demarcating transpression. The boundary
between ophiolites and island arc rocks appears prominent and fold trajectories are easy to trace,
(B) PC6, PC5, and PC4 in R, G, and B channels, respectively. Iron oxide/hydroxide minerals (red pixels),
Al–OH and Fe, Mg–OH-bearing and CO3 alteration minerals (green pixels) and ferrous silicates mineral
groups (blue pixels). The yellow lines refer to the main structural elements (faults, thrusts, and shear
zones), while the yellow arrows are traces of the fold axial planes and the arrowhead point towards the
plunge direction.

The magnitude and sign of eigenvector loadings for Sentinel-2 (Table 4) reveal that the PC4
contains a strong negative loading for band 2 (−0.504592), a strong positive loading for band 8 (0.653589)
and a moderate negative loading for band 11 (−0.162823). Ferrous silicates such as biotite, chloride,
and amphibole can be detected using band 2 (0.450–0.550 μm), band 8 (0.800–0.910 μm) and band 11
(1.520–1.850 μm) of Sentinel-2 due to their spectral features [25,27]. The PCA5 shows a strong loading
for band 11 (0.690943) and band 12 (−0.692817) with opposite signs (Table 4). A PCA5 image can,
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therefore, discriminate between the hydrous and intensely deformed ophiolitic mélange rocks from
the island arc rocks. Compressional structures are conspicuous in the central part of the study area,
where hydroxyl mineral zones prevail. The PCA6 has great contribution for band 6 (−0.368827) and
band 8a (0.789284) with opposite signs and a moderate contribution for band 2 (0.250524) (Table 4).
The PCA6 image contains important information about Fe-oxides/hydroxides that are mainly enriched
in the ultramafic rocks, i.e., ophiolites. A RGB (PC6, PC5 and PC4) composite image (Figure 5B) shows
the different lithological units and alteration zones with distinct image signatures. The areas with high
abundance of hydrous minerals and Fe-oxides/hydroxides appear as yellow pixels exemplify the highly
tectonized ophiolites and schists. The yellow pixels also represent the post-orogenic alkali-feldspar
granite, syn-orogenic granitoids and island arc metavolcanic and metavolcaniclastic rocks. Intense
foliation and shear cleavages by aligned hydrous minerals typify the ductile shear (transpression) zones.
Carbonate alteration is also associated with the transpression zones. Ferrugination zones that are
associated with faults/brittle shear (transtension) zones are commonly irregular in shape and scattered.

When comparing the Sentinel-2 image (Figure 5B) with the ASTER image (Figure 4B), the hydroxyl
minerals and iron oxide/hydroxide zones are found better discriminated on the ASTER image.
The ASTER spectral bands are particularly designed to depict the Al–OH, Fe, Mg–OH–bearing
alteration and CO3 mineral groups and iron oxide/hydroxides. Bands 11 and 12 of Sentinel-2 do
not have enough spectral width for distinguishing specific Al–OH, Fe, Mg–OH and CO3 mineral
assemblages. Bands 2–9 (0.450–1.20 μm) of Sentinel-2 contain enough spectral and spatial data for
mapping iron absorption feature parameters [25], and can therefore be used for detecting goethite,
jarosite, and hematite. In the Sentinel-2 image (Figure 5B), mafic and ultramafic lithological units
such as metagabbro–diorite complex appear as magenta pixels because of the high content of iron in
their composition.

Figure 6A shows an ASTER RGB combination image of band 4 (R), band 3 (G), and band
1(B) for mapping Fe2O3/MgO-rich rocks in the study area. It demarcates ophiolitic serpentinite as
dark pixels, whereas rocks with lesser contents of ferromagnesian minerals exhibit lighter image
signatures. Post-orogenic alkali-feldspar granite and syn-orogenic granitoids appear in light pink to
white due to the low contents of Fe2O3 and MgO, while the mafic to ultramafic lithological units are
expressed by dark green pixels (ophiolitic serpentinite, chromitite, and ultramafic rocks), green pixels
(metagabbro–diorite complex) and brown to magenta pixels (the highly tectonized ophiolites and
island arc metavolcanic and metavolcaniclastic rocks). Figure 6B displays an ASTER RGB combination
image of band 4 (R), band 7 (G), and band 3 (B) for enhancing Al2O3-rich rocks. This image highlights
post-orogenic alkali-feldspar granite, syn-orogenic granitoids and Nubian sandstone as green areas
and carbonate alteration zones as greenish rafts in the high strain zones in the eastern part of the
belt. The lithological units such as metagabbro–diorite complex and schists and metavolcaniclastic
rocks contain moderate content of aluminosilicate minerals appear as dark green pixels. The ophiolitic
serpentinite, chromitite, and ultramafic rocks and the highly tectonized ophiolites represent in black
pixels attributed to very low content of Al2O3 in their composition.

Figure 7A,B are Sentinel-2 RGB combination images of band 11 (R), band 8 (G), and band 2
(B) for mapping Fe2O3/MgO-rich rocks and band 11 (R), band 12 (G) and band 7 (B) for identifying
Al2O3-rich rocks. Mafic mineral-rich rocks are clearly delineated in Figure 7A as dark green in color,
including the ophiolitic serpentinite, chromitite, and ultramafic rocks and highly tectonized ophiolites.
The metagabbro–diorite complex appears as green color because of a high to moderate contribution of
ferromagnesian minerals. Moreover, the different content of ferromagnesian minerals in ophiolitic
and island arc rocks promotes the ease differentiation based on RGB color composite (Figure 7A).
The folded ophiolitic rocks are noticeably distributed adjacent to the variably deformed island arc
rocks in the southern part of the study area. The Al2O3-rich rocks are enhanced in Figure 7B as
green color. The post-orogenic alkali-feldspar granite and syn-orogenic granitoids, Nubian sandstone,
metagabbro–diorite complex and island arc metavolcanic and metavolcaniclastic rocks depict as
green color. However, ophiolitic serpentinite, chromitite and ultramafic rocks and highly tectonized
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ophiolites only represent as black pixels. Compared to the Sentinel-2 image (Figure 7A,B), the ASTER
RGB images (Figure 6A,B) are strongly capable of discriminating lithological units with different
content of Fe2O3/MgO and Al2O3.

Figure 6. False-color composite, ASTER band combination images for the study area: (A) (R: Band 4, G:
Band 3, B: Band 1) used to map Fe2O3/MgO-rich rocks, (B) (R: Band 4, G: Band 7, B: Band 3) used to
enhance the signature of Al2O3-rich rocks to promote detailed mapping of the folded ophiolitic rocks.

Figure 8A–C are ASTER band ratio images for mapping gossan (4/2), ferric oxide (4/3), and the
chlorite/epidote/calcite mineral group (7+9)/8. High digital number (DN) value pixels that appear as
bright pixels indicate the spectral signatures of particular mineral or mineral groups [68,69]. Figure 8A
shows the gossan zone as bright pixels, mostly associated with the highly tectonized ophiolites and
schists, island arc metavolcanic and metavolcaniclastic rocks. The ferric oxide-rich zones are typically
expressed by bright pixels in Figure 8B. The island arc rocks are seen as bright pixels in Figure 8C, most
likely because of the abundant hydrous minerals such as mica, amphiboles, chlorite, and epidote. This
observation ascertains that these rocks were tectonically overlain by thrusted ophiolitic nappes. Talc
carbonate and listvenite zones in the ophiolitic domains appear as bright zones, and are commonly
confined to the transpression zones. The bright pixels in the Nubian sandstone background can be
attributed to the abundant detrital clay minerals.
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Hydrothermal alteration zones also appear as bright pixels on the band ratios images of Sentinel-2
(Figure 9A–D). Band ratio 11/4 image shows gossan zones associated with tectonized ophiolites and
island arc metavolcanic rocks (Figure 9A). Ferric oxides detected by band ratio 12/11 are mostly
associated with the granitic rocks (Figure 9B). Ferrous silicates (biotite, chloride, and amphibole)
mapped by band ratio 12/11 are distinguished in island arc metavolcanic and metavolcaniclastic
rocks and highly tectonized ophiolites (Figure 9C). Band ratio 11/12 enhances highly carbonated and
deformed ophiolitic rocks in the ductile deformation zone, which are associated with highly tectonized
ophiolites, metasediments and schists and island arc metavolcanic and metavolcaniclastic rocks. The
results of alteration mapping derived from ASTER and Sentinel-2 datasets match and show the altered
zones in both ductile and brittle deformation zones. Gossan, the chlorite/epidote/calcite mineral group,
ferrous silicates and hydroxyl alteration zones are mapped in ductile (transpression) deformation
zones, whereas ferric oxides are identified in the brittle (transtension) deformation zones.

Figure 7. False-color composite, Sentinel-2 band combination images for the study area: (A) (R: Band
11, G: Band 8, B: Band 2), and (B) (R: Band 11, G: Band 12, B: Band 7) used to map Fe2O3/MgO
and Al2O3-rich rocks, respectively. These images helped in differentiating the mafic and ultramafic
ophiolitic from felsic rocks.
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Figure 9. Band ratios of Sentinel-2 data used to map hydrothermal alteration zones in the study area:
(A) band11/band4 image (for gossan mapping), (B) band11/band8a image (for ferric oxide-rich rocks),
(C) band12/band11 image (for ferrous silicate-rich rocks), and (D) band11/band12 image (for hydroxyl
alteration mapping).
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4.2. Fieldwork Data Analysis

4.2.1. Structural Evolution of the Barramiya–Mueilha Area

Superimposed structural elements in the Barramiya–Mueilha area (Figure 10) are considered
as manifestations of three phases of ductile deformations (D1, D2, D3). Extensional structures, e.g.,
fault/fracture zones and dike swarms cutting most of the ductile structures in different directions are
signs of late brittle deformation (D4), most likely related to terrane cooling and exhumation during the
orogen collapse [44,70–77].

Figure 10. Simplified structural map of the Barramiya–Mueilha sector compiled from field measurements
and satellite data interpretations. Several occurrences of gold–quartz veins are located in the area,
but only significant gold occurrences/deposits are shown in the key. Insets are lower hemisphere
stereographic projection for poles of the different generations of foliations.
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4.2.2. NNW–SSE Shortening and Southward Tectonic Transport

This event in characterized by stacking and imbrication of large ophiolitic nappes and best
exemplified by S1 foliation (Figure 11A). Serpentinite in Barramiya and Dungash areas occurs as
steeply dipping WNW- to NE-trending belts emplaced along thrust planes and stretched parallel to the
penetrative foliation in the ophiolitic mélange. S1 is ENE–striking shear foliation developed around
the thrust-bound ophiolites. ENE-trending mineral stretching lineation (L1) plunge gently (10–35◦)
mainly towards the ENE (Figure 11B). Schists, talc–magnesite rocks, listvenite and chromite pockets
mark the tectonic contacts between the allochthonous serpentinite masses and the metasedimentary
mélange matrix.

4.2.3. NNE-SSW Shortening Structures

Steeply dipping NW–SE to WNW–ESE mineral foliation (S2), i.e., hornblende, epidote–chlorite,
chlorite, tremolite, and graphite, are best developed in schistose rocks as well as sheared metagabbro,
meta–agglomerate and metatuffs. The NW–SE Dungash–Beizah shear zone is marked by an
intensification of S2 schistosity (Figure 11C) and locally by NE-dipping mylonitic foliation. Feldspar-rich
and amphibole-rich bands define S2 foliation in the ophiolitic metagabbro. Mineral and stretching
lineations are oriented close to fold axial plane.

4.2.4. E–W Oblique Convergence

This phase of deformation was characterized by the main stress component (sigma 1) swinging
between NE and SE, but the main shortening is considered E–W coinciding with the Arabian–Nubian
Shield collision with the Nile Craton in the west. During D3a deformation, the Wadi Beizah imbricated
thrust sheets of ophiolitic serpentinte and metagabbro were openly folded into a series of kilometre-scale
NNW-trending asymmetric and plunging synclinal and anticlinal folds (F3a). These folds progressively
open up westward, where fold hinges (L3a) plunge gently (∼25◦) to the NNW. Minor F3a folds around
the Dungash–Beizah shear zone display complex interference geometry with the development of both
S and Z patterns commonly seen in scattered exposures (Figure 11E). Three types of NE- to ENE-
striking cleavage (S3b) are recognized in the Barramiya–Mueilha area: Slaty, scaly and rhombohedral.
Scaly and rhombohedral cleavage prevail in moderate to low strain sectors and in limbs of Z type and
upright folds especially around Wadi Dungash and Mueilha (Figure 11F). A major NNE-trending shear
zone occurs between metavolcanic and metavolcaniclastic rocks in the area between Wadi Dungash
and Wadi Mueilha. This shear zone resembles a palm-tree structure, with the main segment striking
NNE–SSW and dips steeply to WNW.

4.2.5. Exhumation Tectonics

This phase is marked by sub vertical fractures including major brittle strike slip faults and
micro-faults (Figure 11G,H) and dykes associated with intrusion of late to post tectonic granites.
Structures assigned to this deformation stage comprise WNW–ESE dextral and NNW–SSE sinistral
strike–slip faults that locally controlling felsic and mafic dikes in Gebel el–Rukham syn-tectonic granites
as well as Um Salam and Urf Abu Hamam post tectonic granite.

4.2.6. Gold Occurrences in the Barramiya–Mueilha Area

Several gold occurrences in the study area are mainly associated with high strain zones along
the segmented thrust-bound ophiolitic belts in the central part of the map area. In the following we
present some features of four important gold occurrences/deposits in the area, namely, Barramiya,
Dungash, Bokari, and Samut (Figure 12).
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Figure 11. Field relationships of (A) NE-striking fold and S1 foliation preserved in the island arc
metavolcanic rocks in north of Dungash mine, (B) Boudinage and shallowly-plunging stretching
lineations (L1) in strongly foliated chlorite schist north of Dungash mine, (C) Steeply-dipping thrust
contact between island arc and ophiolitic rocks and best preserved ENE-striking S2 foliation east
of Dungash mine, (D) Carbonated ophiolitic serpentinite tectonically overlying chlorite schist and
separated by a WNW-striking thrust fault north of the Barramiya mine, (E) F3a fold with a sinisterly
asymmetry developed in metasedimentary rocks south of the Barramiya mine, (F) F3b asymmetrical
fold indicating a dextral shear sense and is associated with dilation-controlled quartz pods, (G) ~E–W
fracture system in talc carbonate north of the Barramiya mine, (H) Dissecting joint/fracture sets with
quartz-hosted ones displaced by later sinistral exposure-scale faults south of the Dungash mine.
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Figure 12. Detailed geological maps of the selected gold occurrences/deposits in the study area,
(A) Barrmaiya deposit area, after [36], (B) Dungash deposit area, after [37], (C) Bokari deposit area,
after [78], and (D) Samut gold deposit area, after [46].

Barramiya Gold Deposit

The Barramiya gold deposit (Figure 12A) is expressed in auriferous quartz and quartz–carbonate
veins cutting altered and carbonaceous ophiolitic mélange serpentinite and metasiltstone (Figure 13A).
The main ore body or the main lode extends for 900–1,100 m along the strike and exhibits common
pinch and swell morphologies [79,80]. The internal structure of the mineralized veins comprises
massive and laminated quartz veins with abundant slivers of pervasively carbonated wallrock. Zoheir
and Lehmann [35] proposed a genetic relationship between gold mineralization and listvenite and
listvenitized ophiolitic rocks in the Barramiya mine area (Figure 13A–D). Cr-chlorite and Cr-sericite are
manifestations of K-metasomatism of the ophiolitic serpentinite, and reflect the crucial role played by
a small granitic intrusion (exposed north of the ophiolitic belt) in formation of the Barramiya gold
deposit. Fire assay analysis of the highly ferruginated/silicified listvenite samples gave high gold
contents (up to 11 ppm) in several cases [81]. Gold-associated sulfides include arsenopyrite, pyrite
and subordinate sphalerite, chalcopyrite, pyrrhotite, tetrahedrite, galena, and gersdorffite. Marcasite
and covellite occur as supergene replacements of pyrite and chalcopyrite, respectively. Free gold
and electrum blebs and scattered spikes are seen in the micro-fractured sulfides and recrystallized
quartz veins.
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Figure 13. Field relationships at the Barramiya mine area and its surroundings, including: (A) Sheared
ophiolitic serpentinite and talc carbonate exposures north of the Barramiya mine where scattered old
mining activities are observed, (B) ~E–W trending quartz vein significantly worked out by old miners
and still preserves the trend of the main lode of the Barramiya deposit, (C) Listvenite sheet embedded
within shear hornblende and actinolite schist north of the Barramiya mine, and (D) Typical listvenite
exposure in the underground mine levels dissected by milky quartz veins.

Dungash Gold Deposit

The Dungash gold deposit is related to ~E-trending dilation zones in variably sheared island arc
metavolcanic and metavolcaniclastic rocks (Figure 12B). The vein morphology and structures suggesting
gold–quartz vein formation synchronous with dextral transpression and flexural displacement of
heterogeneously folded greenstone belts (Figure 14A). In the eastern part of the mine area, the main
quartz vein occurs along an undulating shear zone between the schistose rocks and heterogeneously
foliated trachyandesite and extends further E into andesite and plunges into SE and is associated
with pervasive epidote–chlorite alteration (Figure 14B). The hydrothermal alteration assemblages
related to the gold–quartz veins include sulfide, carbonate, epidote, chlorite, iron oxides, and sericite
(Figure 14B–D) replacing feldspar and ferromagnesian minerals in rhyodacitic metavolcanic rocks
in the western mine [82,83]. The mineralized quartz veins are sulfide-rich and are associated with
mylonite zones along reverse faults (Figure 14E). In places, quartz veins are bound by carbonate pockets
with well crystalline calcite apparently late than ankerite disseminations (Figure 14F). Arsenopyrite,
As-pyrite, gersdorffite and less abundant pyrrhotite are replaced in part by a late-paragenetic sulfide
assemblage comprising tetrahedrite, chalcopyrite, sphalerite, galena, and free gold.
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Figure 14. Field relationships at the Dungash mine area and its surroundings, including: (A) Ophiolitic
metabasalt tectonically overlie the idland arc metavolcaniclastic rocks north of the Dungash mine,
(B) Traces of ~ E–W trending gold-bearing quartz vein (main lode) and associated epitore–chlorite
alteration in Dungash mine, (C) Deformed felsic metavolcanic rocks embedded in pervasively
carbonated and chloritized material, (D) Disseminated altered sulfides and iron oxides (ferrugination)
in the vicinity of mineralized quartz–ankerite vein, (E) Carbonate alteration along slicken planes on a
reverse fault and associated mylonite zone in the underground levels of Dungash mine, (F) Ankerite
and calcite associated with quartz veins.

Bokari Gold Occurrence

The Bokari gold occurrence (also known as Bakriya occurrence; 25◦15′30”N, 33◦45′15”E) occurs
along Wadi Bokari to the north of Wadi el-Miyah, some 20 km north of the Barramiya mine. Gold
mineralization is related mostly to milky quartz veins along fault and fracture zones cutting across
variably deformed quartz–diorite to granodiorite intrusion and country gabbro–diorite complex
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(Figure 12C). Shearing in the area is dominantly brittle, with alteration zones and quartz veins are
generally associated with mylonite zones (commonly <0.5 m wide; Figure 15A). Scattered mine ruins
of quartz vein and Wadi alluvium workings dating back to the Pharaohs and Early Arab times, but also
from the Roman-Byzantine era, have been reported [78]. In places, sericite alteration is pervasive
and kaolinite associates basic dikes and quartz veins (Figure 15B). The main feature in the Bokari
mine is that gold-bearing quartz veins and ruins of old mining are confined to zones where the host
granodioritic rocks are intensely brecciated (Figure 15C). The main quartz veins trend consistently to
N (Figure 15D).

 

Figure 15. Field relationships of the mineralized quartz veins in the Bokari mine area: (A) Mylonite zone
and associated quartz vein on one side and clay mineral alteration on the other side, (B) Kaolinite and
quartz veins bordered by sericitized granodiorite and altered basic dike at the Bokari mine, (C) Scattered
quartz vein segments and pockets in brecciated granodiorite near old miner huts at the Bokari mine
area, (D) Thick (~1 m-thick) quartz vein trending ~N–S and is mined out selectively in areas where
hydrothermal alteration selvages are abundant, whereas zones lacking the altered wallrock are not
mined (barren?).

Samut Gold Deposit

The Samut gold deposit is related to milky and reddish quartz that cut through terranes of
gabbro–diorite complex adjacent to its lithological contact with a quartz diorite/trondhjemite intrusion
(Figure 12D). The main quartz vein (~2 m-thick) extends for more than 400 m along the ~ NNE–SSW
strike direction. Other minor quartz veins are parallel to ~N or NNE-trending mafic dikes within
and external of the Samut mine area [84]. The internal structures of the auriferous lodes comprise
laminated quartz–chalcedony bands and vuggy comb, well-crystalline quartz. Hematite, sericite,
kaolinite, ankerite, and calcite are common alteration phases in the marginal zones of quartz veins
(Figure 16A–C). Quartz–carbonate veins (Figure 16D) are reported as the high grade ore bodies in
the mine area. Gold-associated sulfides include abundant pyrite and minor sphalerite, chalcopyrite,
galena, arsenopyrite, and marcasite scattered in the auriferous quartz veins
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Figure 16. Field relationships of the orebodies at the Samut mine area showing: (A), (B), (C) Mineralized
quartz veins at the Samut mine area, commonly associated with sericite, kaolinite, and sulfide alteration.
Notice that the alteration zones are of limited thickness (commonly <0.5 m-wide), (D) Brecciated quartz
vein exposed in the underground mine levels with abundant wall rock material and disseminated
pyrite and chalcopyrite, locally altered into malachite and limonite, respectively.

5. Discussion

Orogenic gold deposits are commonly associated with large-scale, terrane-bounding fault systems
and deformation belts, commonly described as orogenic belts [85,86]. Transpression and transtension
tectonics occur where deformation is supplemented by a significant volume change, i.e., in oblique
subduction margins in the arc, forearc, and back-arc environments [87–90]. These zones can also
develop in restraining and releasing bends of major transform and dislocation zones, particularly
throughout the early stages of continental rifting or during the late orogenic extension [87–95]. In such
high strain zones, mineral deposits other than orogenic gold include different associations of elements
such as Sn, W, U, Th, Mo, Cu, Au, Pb, Zn, Ag, Nb, Ta, Be, Sc, Li, Y, Zr, Sb, F, Bi, As, Hg, Fe, Ga,
REEs [96–100]. Space-borne multispectral and radar imagery data provide great information for
detailed structural, lithological, and alteration mapping to prospect a variety of these mineral resources
in regional transpression and transtension zones [90].

Multi-sensor satellite imagery data, including Sentinel-1, PALSAR, ASTER, and Sentinel-2 are
integrated here with field data are found efficient in mapping the different geological structures
and alteration zones in the Barramiya–Mueilha sector of the Nubian Shield in Egypt. The belt is
characterized by highly sheared ophiolite blocks, oppositely dipping, ENE–WSW thrusts, and less
abundant NW-trending fault/shear zones [78,101,102]. Ductile shear zones developed in the highly
sheared, refolded ophiolitic and island are rocks in the central part of the study area host several
occurrences of orogenic gold in the ophiolitic mélange (e.g., the Barramiya deposit) or along the
decollement boundaries between ophiolites and island arc domains (e.g., the Dungash deposit)
(Figure 17).
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Figure 17. Sketch drawing explains the fold interference and location of transpression and transtension
structures in the Barramiya–Mueilha sector. Notice that the Barrramiya and Dungash deposits (and
many small occurrences from which only Um Rashid is shown) are confined to transpression zones
within the highly strained rocks or at their margins. The Samut and Bokari gold deposits, in contrast,
are hosted by transtension zones within the granitoid/gabbroid terranes.

Gold–quartz veins in these deposits show characteristically abundant plastic deformation textures,
consistently in ~E–W direction conformable with the variably carbonated, talcous ophiolitic belts
of serpentinite, chromitites, and listvenite. On the other hand, gold occurrences in the northern
and southern parts of the study area are restricted to zones brittle (transtension) deformation in
gabbro–diorite complex where cut by quartz-diorite/trondhjemite and alkali feldspar granite intrusions.
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Gold–quartz veins in these occurrences are controlled mainly by rather narrow NNE–SSW or N–S
fault/fracture zones (Figure 17) with abundant brecciation and mylonitization textures.

The FPCS2 image-maps (Figures 2 and 3) of Sentinel-1 and PALSAR data derived from
cross-polarized backscatter ratio images detect structural elements related to transtension and
transpression zones in the study area. The transtension zone is identified based on lack of intensity
in foliation or any development of shear cleavage. However, intense foliation and shear cleavage
are detected in transpression zones. PALSAR data hold more proficiency to map the geological
structures covered by desert sand, hence, detailed textural variability and tonal variation are mapped
for intensely sheared ophiolitic nappes and island arc metavolcanic and metavolcaniclastic rocks
in FPCS2 PALSAR image-maps. The RGB color composite of the PC1, PC2, and PC3 of ASTER
(VNIR + SWIR) and Sentinel-2 bands (Figures 4A and 5A) map variety of the lithological units
contain discernible spectral features in the study area, while the lithologies with identical spectral
characteristics exhibit similar hue in the image-maps. RGB color composite image of PC4, PC5, and PC6
of ASTER VNIR + SWIR bands highlights alteration mineral assemblages associated with the highly
tectonized ophiolites and schists, island arc metavolcanic rocks, alkali-feldspar granite and granitoids
background, ophiolitic serpentinite, chromitite and ultramafic rocks and metagabbro–diorite complex
(Figure 4B). The RGB color composite image-map derived from PC6, PC5, and PC4 of Sentinel-2
datasets (Figure 5B) is capable of mapping hydrous minerals and Fe-oxides/hydroxides associated
with the highly tectonized ophiolites, metasediments and schists, post-orogenic alkali-feldspar granite,
syn-orogenic granitoids and island arc metavolcanic and metavolcaniclastic rocks in both ductile
and brittle zones. Compressional structures in the central part of the study area accommodate
hydrothermal extensive zones. Hydroxyl minerals and iron oxide/hydroxide zones are specifically
mapped and discriminated by ASTER, despite the fact that they are mixed with each other in the
Sentinel-2 results. Iron oxide/hydroxide minerals and mafic lithologies (metagabbro–diorite complex)
are strongly detected by Sentinel-2 bands.

Fe2O3/MgO-rich rocks (ophiolitic serpentinite and metagabbro–diorite complex) and Al2O3–rich
rocks (alkali-feldspar granite and granitoids) are easily mapped by ASTER and Sentinel-2 data band
combination (Figures 6 and 7). A series of band ratio indices images for ASTER and Sentinel-2 data
enabled the delineation of the hydrothermal alteration zones, which most associate with the major
shear ductile zones. However, the resultant image-maps of alteration minerals derived from ASTER
and Sentinel-2 datasets are almost identical. The alteration minerals zones are found in both ductile
and brittle deformation zones. Gossan, the chlorite/epidote/calcite mineral group, ferrous silicates
and hydroxyl alteration zones are mostly mapped in the transpression zones, whereas ferric oxides
are typically detected in the transtension zones. Fieldwork and GPS surveying verified the scatter of
alteration minerals and zones and their association with geological structures in the study area.

6. Conclusions

The space-borne radar (Sentinel-1 and PALSAR) and multispectral (ASTER and Sentinel-2)
imagery data were coupled with comprehensive field observations and structural measurements to
unravel the structural control of gold occurrences and alteration zones in the Barramiya–Mueilha sector.
Gold mineralization in particular locations is constrained by the combined effect of transpression
and transtension tectonics throughout the deformational history of the area. Application of the
FPCS technique to the backscatter ratio images of Sentinel-1 and PALSAR datasets promoted detailed
mapping of the major lineaments, curvilinear structures, and intersections associated with transpression
and transtension zones in the study area. The results revealed that foliation and shear cleavage
superimposition and shear-controlled gossan and carbonate alteration can be used as a criterion to
distinguish the transpression zones. The transtension zones, on the other hand, are characterized by
heterogeneous strain and irregular haloes of ferrugination and hydroxyl alteration. The PCA of the
ASTER and Sentinel-2 bands, band combination and band ratioing techniques promoted the spectral
discrimination between the lithological units and alteration zones. The combination of the remote
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sensing results and field data designates that gold-bearing quartz veins are restricted to high strain
(transpression) zones in the ophiolite-island arc belts, particularly where carbonated or listvenized.
Gold occurrences in granitoid–gabbroid domains are controlled by fault and brittle shear zones assigned
to as antithetic sets in a rejuvenated transpression–transtension regime operated intermittently from
the orogenic collision to orogen collapse. The radar and multispectral satellite data abetted a better
understanding of the structural framework and unraveled settings of the scattered gold occurrences in
the study area. An outlook study will need to consider the GIS-based morphometric analysis of the
different geomorphometric features (i.e., regional ductile and brittle structures) based on high spatial
resolution DEM data.
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Abstract: Several regions in the High Arctic still lingered poorly explored for a variety of mineralization
types because of harsh climate environments and remoteness. Inglefield Land is an ice-free region
in northwest Greenland that contains copper-gold mineralization associated with hydrothermal
alteration mineral assemblages. In this study, Landsat-8, Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER), and WorldView-3 multispectral remote sensing data were
used for hydrothermal alteration mapping and mineral prospecting in the Inglefield Land at
regional, local, and district scales. Directed principal components analysis (DPCA) technique
was applied to map iron oxide/hydroxide, Al/Fe-OH, Mg-Fe-OH minerals, silicification (Si-OH),
and SiO2 mineral groups using specialized band ratios of the multispectral datasets. For extracting
reference spectra directly from the Landsat-8, ASTER, and WorldView-3 (WV-3) images to generate
fraction images of end-member minerals, the automated spectral hourglass (ASH) approach was
implemented. Linear spectral unmixing (LSU) algorithm was thereafter used to produce a mineral
map of fractional images. Furthermore, adaptive coherence estimator (ACE) algorithm was applied
to visible and near-infrared and shortwave infrared (VINR + SWIR) bands of ASTER using laboratory
reflectance spectra extracted from the USGS spectral library for verifying the presence of mineral
spectral signatures. Results indicate that the boundaries between the Franklinian sedimentary
successions and the Etah metamorphic and meta-igneous complex, the orthogneiss in the northeastern

Remote Sens. 2019, 11, 2430; doi:10.3390/rs11202430 www.mdpi.com/journal/remotesensing179



Remote Sens. 2019, 11, 2430

part of the Cu-Au mineralization belt adjacent to Dallas Bugt, and the southern part of the
Cu-Au mineralization belt nearby Marshall Bugt show high content of iron oxides/hydroxides
and Si-OH/SiO2 mineral groups, which warrant high potential for Cu-Au prospecting. A high spatial
distribution of hematite/jarosite, chalcedony/opal, and chlorite/epidote/biotite were identified with
the documented Cu-Au occurrences in central and southwestern sectors of the Cu-Au mineralization
belt. The calculation of confusion matrix and Kappa Coefficient proved appropriate overall accuracy
and good rate of agreement for alteration mineral mapping. This investigation accomplished
the application of multispectral/multi-sensor satellite imagery as a valuable and economical tool
for reconnaissance stages of systematic mineral exploration projects in remote and inaccessible
metallogenic provinces around the world, particularly in the High Arctic regions.

Keywords: Landsat-8; ASTER; WorldView-3; the Inglefield Mobile Belt (IMB); copper-gold
mineralization; High Arctic regions

1. Introduction

The application of multispectral satellite imagery for mineral prospecting in remote and inaccessible
metallogenic provinces is noteworthy for mining companies and the mineral exploration community for
reconnaissance stages of systematic exploration projects. Many regions in the High Arctic remain poorly
investigated for mineral exploration due to cold climate environments and remoteness, especially
the northern part of Greenland containing Zn-Pb and Cu-Au mineralization [1–3]. The visible and
near-infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) bands of multispectral
remote sensing data contain unprecedented spectral and spatial capabilities for detecting hydrothermal
alteration minerals and lithological units associated with a variety of ore mineralization [4–22]. Numerous
investigations successfully used Landsat data series, Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER), and the Advanced Land Imager (ALI) multispectral data with moderate
spatial resolution for the reconnaissance stages of mineral exploration around the world [23–29].

Landsat-8 carries two-sensors, including the Operational Land Imager (OLI) and the Thermal
Infrared Sensor (TIRS). These two instruments collect data for nine visible, near-infrared, shortwave-
infrared bands (from 0.433 to 2.290 μm) and two thermal-infrared bands (from 10.60 to 12.51 μm).
The OLI bands have a 30 m spatial resolution, while the TIRS have a 100 m spatial resolution, which
acquire in 185 km swaths and segmented into 185 × 180 km scenes. The data have a high signal
to noise (SNR) radiometer performance, and 12-bit quantization of the data permits measurement
of subtle variability in surface conditions [30,31]. High radiometric sensitivity in the TIR bands
shows great potential for mapping exposed lithological units in polar regions through variation in
temperature as felsic to mafic rocks show a modified response to solar heating due to different mineral
compositions [31–33]. ASTER contains three VNIR bands from 0.52 to 0.86 μm with 15-m spatial
resolution, six SWIR bands from 1.6 to 2.43 μm with 30-m spatial resolution, and five TIR bands
from 8.0 to 14.0 μm with 90-m spatial resolution. Each scene of ASTER cuts 60 × 60 km2 [34]. Iron
oxide/hydroxide, hydroxyl-bearing, and carbonate mineral groups can be detected using VNIR and
SWIR bands of ASTER due to diagnostic spectral absorption features of transition elements (Fe2+,
Fe3+ and REE) in the VNIR region and Al-OH, Mg-OH, Fe-OH, Si-OH, CO3, NH4, and SO4 groups
in the SWIR region [35–37]. Discrimination of silicate lithological groups is feasible using TIR bands
of ASTER due to different characteristics of the emissivity spectra derived from Si–O–Si stretching
vibrations in the TIR region [18,38–41].

The multispectral commercial WorldView-3 (WV-3) sensor contains the highest spatial, spectral
and radiation in the VNIR (eight bands with 1.2 m spatial resolution) and SWIR (eight bands with
3.7 m spatial resolution) portions among the multispectral satellite sensors, presently. WV-3 swath
width is 13.2 km [42–45]. The VNIR and SWIR bands of WV-3 are worthy of particular attention
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for inclusive research related to detailed mineral exploration at district scale, particularly for remote
and inaccessible regions in the High Arctic where availability of field data is limited. Recently, some
investigations successfully used the VNIR and SWIR bands of WV-3 for mineral exploration and
mapping of hydrothermal alteration zones and lithologies [14,19,32,46–49]. These studies established
the efficiency of spatial resolution of the WV-3 dataset and emphasized the high capability of the
VNIR and SWIR spectral bands as a valuable multispectral remote sensing data for detailed geological
mapping and hydrothermal alteration mineral detection at district scale (1:10,000). The integration
of multispectral/multi-sensor satellite imagery contains great applicability as a cost-effective tool
compared to geophysical and geochemical techniques for mapping hydrothermal alteration minerals
and lithological units at regional, local, and district scales in remote and inaccessible metallogenic
provinces around the world.

Inglefield Land is an ice-free region (78◦N–79◦N and 72◦30′W–66◦W) in northwest Greenland
(Figure 1), which contains copper-gold mineralization hosted by garnet-sillimanite paragneiss,
orthogneiss, and mafic-ultramafic rocks [1–3,50–52]. A few geological investigations were carried out
in Inglefield Land by the Geological Survey of Denmark and Greenland (GEUS) during years 1994
(an airborne geophysical survey) and 1995 (fieldwork geological mapping, mineralization studies,
and a regional stream-sediment geochemical survey). A set of thematic maps with digital data in
geographic information system (GIS) format were generated using the data acquired from these
two field seasons [53,54]. From July to August 1999, fieldwork conducted in Inglefield Land by
the GEUS (as part of a multidisciplinary Kane Basin 1999 project) was directed to the exploration
of several remarkable gold mineralizations in the northeastern part of the Inglefield Mobile Belt
(IMB) [55,56]. Since there is no remote sensing study available for hydrothermal alteration mineral
and lithological mapping in the northeastern IMB, this study represents the first investigation on
multispectral/multi-sensor satellite imagery for copper-gold prospecting in this region.

 

Figure 1. Geological map of the Inglefield Land. Cu-Au mineralized belt in the northeastern part of
Inglefield Land shown as a yellow color semi-transparent polygon (modified after [3,42]).

In this research, Landsat-8, ASTER, and WV-3 data were used for hydrothermal alteration
and lithological mapping at regional, local, and district scales in the northeastern Inglefield Mobile

181



Remote Sens. 2019, 11, 2430

Belt (IMB), Northwest Greenland (Figure 1). Mineralization in Inglefield Land is characterized by
copper-gold ore associated with hydrothermal alteration assemblages such as hematite, jarosite, biotite,
sericite, chlorite, epidote, and quartz (silicification), which overprint the altered areas (rust zones) and
wall-rocks [2,3]. Typical landscape in the Cu-Au mineralization belt (rust zones) is extensive gossan in
hilly terrain and meter-sized pyrrhotite mounds covered by gossan [3]. Consequently, this research
has three main purposes: (1) to map hydrothermal alteration minerals associated with copper-gold
mineralization in the northeastern IMB using Landsat-8, ASTER, and WV-3 satellite imagery at regional,
local, and district scales; (2) to implement specialized/standardized image processing algorithms to
VNIR/SWIR/TIR bands of multispectral/multi-sensor satellite imagery that are amendable for mineral
detection and analysis; and (3) to establish the applicability of multispectral/multi-sensor satellite
imagery as a valuable and cost-effective approach compared to costly geophysical and geochemical
techniques for mining companies and the mineral exploration community for reconnaissance stages of
systematic exploration projects in remote and inaccessible metallogenic provinces, specifically in the
High Arctic regions.

2. Geological Setting of Inglefield Mobile Belt (IMB)

The IMB in northwest Greenland (approximately 7000 km2) (Figure 1) forms the northern boundary
of the Rae Craton and continues to the west across the Smith Sound into the Ellesmerian Belt in
Canada [57,58]. It consists of quartzo-feldspathic gneisses, meta-igneous, and supracrustal rocks
of the Palaeoproterozoic age [59–61]. The IMB is subdivided into two terranes by the E-W striking
Sunrise Pynt Shear Zone, including (i) the Central Terrane and (ii) the Southern Terrane (Figure 1) [58].
The Central Terrane comprises of the Etah Group and Etah Meta-igneous Complex [57]. The Etah
Group is characterized by paragneiss, marble, calc-silicate rocks, ultramafic rocks, amphiboloite,
and quartzite [57–59]. The Etah Meta-igneous Complex consists of orthogneiss, tonalite, diorite,
granodiorite and minor gabbro, monzogranite, and syenite [58].

The Southern Terrane is interpreted as the margin of the Rae Craton, where Paleoproterozoic
sedimentation occurred probably in a passive margin setting [58]. In the Southern Terrane in
Prudhoe Land, Paleoproterozoic rocks overly and intrude to Neoarchean rocks of the Rae Craton [58].
The Prudhoe Land Supracrustal Complex consists of garnet-mica schist, quartzite, marble, mafic
granulite, and ultramafic rocks [55]. The IMB is unconformably overlain by an unmetamorphosed cover
containing the successions of two sedimentary basins (Figure 1), including (i) the sedimentary–igneous
rocks of the Mesoproterozoic Thule Basin that also includes basaltic sills and (ii) the Lower Palaeozoic
sedimentary rocks of the Franklinian Basin [56,62]. The Cambrian rocks of the Franklinian Basin only
remained in the IMB [60,61].

The copper-gold mineralization is delimited within an NE-trending structural belt (~70 × 4 km)
in the northeastern part of Inglefield Land (Figure 1). This crustal-scale structural belt consists of
sulphide + graphite-bearing bands, hydrothermal alteration zones (including hematite, jarosite, biotite,
chlorite, epidote, sericite assemblages, and silicification) and quartzo-feldspathic gneiss that named
rust zones [1,2,63,64]. Sulfide mineralization typically comprises of pyrrhotite, pyrite, chalcopyrite,
graphite, and cubanite that endured intense supergene alteration. Mylonitic or cataclastic textures
were also reported locally in the rust zones. Gossans strike for several meters to up to 5 km in the
mylonite and cataclasite [2,3]. Gold in several rock samples was assayed up to 12.5 ppm Au and
was characteristically associated with copper (up to 4 wt%) and enriched in Zn, Mo, Ni, Co, Ba, La,
and Th [2,3].

3. Materials and Methods

3.1. Satellite Remote Sensing Data and Characteristics

Landsat-8, ASTER, and WV-3 data were used in this research for mapping and detection of
hydrothermal alteration minerals and lithological units associated with copper-gold mineralization in
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the northeastern IMB at regional, local, and district scales. Technical characteristics of the Landsat-8,
ASTER, and WV-3 sensors are shown in Table 1. Landsat-8 and ASTER data are successfully used
in numerous mineral exploration projects around the world [6–12,15,16,27]. WV-3 is a high-spatial
resolution commercial multispectral satellite sensor with eight VNIR (0.42 to 1.04 μm) and eight
SWIR bands (1.2 to 2.33 μm), which was launched on 13 August 2014, by DigitalGlobe Incorporated
from Vandenberg Air Force Base [43]. It provides high spatial resolution in panchromatic, VNIR,
and SWIR with a nominal ground sample distance of 0.31 m, 1.24 m and 3.7 m, respectively (Table 1)
(www.digitalglobe.com). Comparison between the spectral bands of WV-3 with Landsat-8 and ASTER
emphasizes their priority and high potential for detailed mapping of alteration minerals in the VNIR
and SWIR regions (Figure 2). Iron oxides/hydroxide minerals can be comprehensively mapped and
discriminated by VNIR bands of WV-3 [14,19,47]. Additionally, SWIR bands of WV-3 contain excellent
capability for detailed mapping of Al-OH, Mg-Fe-OH, CO3, and Si-OH key hydrothermal alteration
minerals [44,45,47,49].

Table 1. Technical characteristics of the Landsat-8, Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER), and WorldView-3 (WV-3) sensors [31,43,65].

Sensors Subsystem Band Number
Spectral Range

(μm)
Ground

Resolution (m)
Swath

Width(m)

Landsat-8

VNIR

1 0.433–0.453

30

185

2 0.450–0.515
3 0.525–0.600
4 0.630–0.680
5 0.845–0.885

SWIR
6 1.560–1.660

157 2.100–2.300
Pan 0.500–0.680

TIR
9 1.360–1.390

10010 10.30–11.30
11 11.50–12.50

ASTER

VNIR
1 0.520–0.600

15

60

2 0.630–0.690
3 0.780–0.860

SWIR

4 1.600–1.700

30

5 2.145–2.185
6 2.185–2.225
7 2.235–2.285
8 2.295–2.365
9 2.360–2430

TIR

10 8.125–8.475

90
11 8.475–8.825
12 8.925–9.275
13 10.25–10.95
14 10.95–11.65
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Table 1. Cont.

Sensors Subsystem Band Number
Spectral Range

(μm)
Ground

Resolution (m)
Swath

Width(m)

WV3

VNIR

Costal (1) 0.400–0.450

1.24

13.1

Blue (2) 0.450–0.510
Green (3) 0.510–0.580
Yellow (4) 0.585–0.625

Red (5) 0.630–0.690
Red edge (6) 0.705–0.745
Near-IR1 (7) 0.770–0.895
Near-IR2 (8) 0.860–1.040

SWIR

SWIR-1 (9) 1.195–1.225

3.70

SWIR-1 (10) 1.550–1590
SWIR-1 (11) 1.640–1.680
SWIR-1 (12) 1.710–1.750
SWIR-1 (13) 2.145–2.185
SWIR-1 (14) 2.185–2.225
SWIR-1 (15) 2.235–2.285
SWIR-1 (16) 2.295–2.365

Figure 2. Comparison of the spectral bands of WV-3 with Landsat-8 and ASTER in the visible and
near-infrared (VNIR) and shortwave infrared (SWIR) regions [46].

In this study, two Landsat-8 scenes (LC80350032018233LGN00 and LC80350042018233LGN00)
covering Inglefield Land were acquired from the U.S. Geological Survey Earth Resources Observation
and Science Center (EROS) (https://earthexplorer.usgs.gov/). The data set attributes of these images are
summarized as follows: acquisition date: 21 August 2018, collection category: T1 (terrain corrected),
Path/Raw: 035/003 and 035/004, scene cloud cover: 11.97% and 2.18%, sun elevation: 22.115 and
23.400 and sun azimuth: −158.241 and −163.695. An ASTER scene (AST_L1T_00307022003234340)
covering the northeastern IMB was obtained from the EROS, USGS Global Visualization Viewer (GloVis)
(https://glovis.usgs.gov/). It is a level 1T product which is cloud-free and it was acquired on 3 July 2003.
The ASTER Level 1 Precision Terrain Corrected Registered At-Sensor Radiance (AST_L1T) data contains
calibrated at-sensor radiance, which corresponds with the ASTER Level 1B (AST_L1B), that has been
geometrically corrected, and rotated to a north up UTM projection (https://lpdaac.usgs.gov). Some WV-3
scenes were obtained by courtesy of the DigitalGlobe Foundation (www.digitalglobefoundation.org).
The VNIR imagery (M2AS-059185278010_01_P001) of the northeastern IMB was granted by the
DigitalGlobe Foundation (Copyright 2019 DigitalGlobe, Inc., Longmont CO USA 80503-6493), which
was cloud-free, standard level 2 A and acquired on 25 August 2018. The Level 2A standard WV-3
imagery product contains a uniform Ground Sample Distance (GSD), which is radiometrically corrected,
sensor corrected, and geometrically projected to the Universal Transverse Mercator (UTM) with the
World Geodetic System 84 (WGS-84) datum [66,67]. The Environment for Visualizing Images (ENVI)
(http://www.exelisvis.com) version 5.2 and ArcGIS version 10.3 (Esri, Redlands, CA, USA) software
packages were utilized for processing Landsat-8, ASTER, and WV-3 datasets.
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3.2. Pre-Processing of the Datasets

The Landsat-8 images were pre-georeferenced to the UTM zone 19 and 20 North projection
using the WGS84 datum. The ASTER and WV-3 images were also pre-georeferenced to UTM zone
19 North projection using the WGS-84 datum. Atmospheric correction is required to eradicate the
impact of atmospheric attenuation from remote sensing imagery and to re-scale the radiance at the
sensor data to the surface reflectance data. The absolute radiometric correction and conversion to the
top-of-atmosphere (TOA) spectral radiance are required for the WV-3 relative radiometrically corrected
images [66]. Hence, these corrections were applied to WV-3 VNIR data used in this study. Crosstalk
correction [68] was applied to ASTER data and layer staked of VNIR+ SWIR bands with 15-meter spatial
dimensions was generated. The Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH)
algorithm [69] were applied to the remote sensing datasets used in this research by implementing the
sub-arctic summer (SAS) atmospheric and the Maritime aerosol models [70]. ASTER TIR (radiance at
the sensor) data without atmospheric corrections were used in this analysis for retaining the original
radiance signature.

3.3. Image Processing Algorithms

3.3.1. Directed Principal Components Analysis (DPCA) Technique

The DPCA is a direct information extraction technique to analyze the principal component
(PC) eigenvector loadings for selecting the most appropriate PC that focuses the most noteworthy
information of interest [71–73]. The magnitude and sign of eigenvector loadings specify whether
interesting information is characterized by a bright (positive loading) or a dark pixel (negative loading)
in the DPCA image [74]. To map hydrothermal alteration mineral assemblages, including (i) hematite
and jarosite (iron oxide/hydroxide group), (ii) biotite and sericite (Al/Fe-OH group), (iii) chlorite and
epidote (Mg-Fe-OH group), and (iv) silicification (Si-OH group (opal/chalcedony) and/or SiO2 group)
in the study area, some specialized band ratios were defined to be used as input datasets for running
the DPCA. The variance due to similarities in the spectral responses of the interfering component
and the component of interest appear in eigenvector loadings of similar signs on input band ratio
images. The DPCA contains strong eigenvector loadings of different signs on the input band ratio
images, showing a specific contribution of the component [73,74].

For mapping hydrothermal alteration minerals associated with rust zones in the copper-gold
mineralization belt, spectral characteristics of hematite, jarosite, biotite, muscovite, chlorite, epidote,
chalcedony (hydrous-silica), and opal (hyalite) were considered to identify using the DPCA technique.
Figure 3A–C shows laboratory reflectance spectra of hematite, jarosite, biotite, muscovite, chlorite,
epidote, chalcedony (hydrous-silica), and opal (hyalite) resampled to response functions of VNIR
+ SWIR bands of Landsat-8, ASTER, and WV-3, that were extracted from the USGS spectral library
version 7.0 [75]. For mapping the alteration mineral groups using Landsat-8 spectral bands, several
band ratio indices were adopted and developed [7,8,76]. Band ratio indices of 4/2 (all iron oxides),
6/4 (ferrous iron oxides), 6/5 (ferric oxides), and 6/7 (hydroxyl bearing alteration) can be allotted as
significant indicators of Fe3+, Fe2+, Al/Fe-OH, Mg-Fe-OH, and Si-OH groups using Landsat-8 spectral
bands (see Figure 3A). Additionally, the normalized difference snow index (NDSI), Al-OH-bearing
alteration minerals index (Al-OH-MI) and thermal radiance lithology index (TRLI) were used for
mapping snow/ice, cloud, water, alteration OH minerals, and land and lithologies [7]. For mapping
iron oxide/hydroxide mineral groups using Landsat-8 bands, three band ratios were developed on the
basis of the laboratory spectra of the minerals [77,78]. Hematite, jarosite, goethite, and limonite tend to
have strong absorption features in 0.4 to 1.1 μm (absorption features of Fe3+ near 0.45 to 0.90 μm and
Fe2+ near 0.90 to 1.2 μm) [77,78] coincident with bands 2, 4, and 5 and high reflectance at 1.56 μm to
1.70 μm equivalent with band 6 (Figure 3A). As a result, bands 2, 4, 5, and 6 of Landsat-8 can be used
for detecting Fe3+/Fe2+ and Fe-OH iron oxides (4/2), ferrous iron oxides (6/4), and ferric oxides (6/5).
Hydroxyl-bearing (Al-OH and Fe, Mg-OH) alteration has spectral absorption features in 2.1–2.4 μm
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and reflectance in 1.55–1.75 μm [35], corresponding band 7 (2.11–2.29 μm) and band 6 (1.57–1.65 μm) of
Landsat-8 (Figure 3A), respectively. Therefore, band ratio of 6/7 can map hydroxyl bearing alteration.
The DPCA was applied to the Landsat-8 band ratio indices (4/2, 6/4, 6/5, and 6/7) using a covariance
matrix for obtaining the image eigenvectors and eigenvalues.

Figure 3. Cont.
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Figure 3. Cont.
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Figure 3. Laboratory reflectance spectra of hematite, jarosite, biotite, muscovite, chlorite, epidote,
chalcedony (hydrous-silica), and opal (hyalite) resampled to response functions of VINR + SWIR
bands of Landsat-8 (A), ASTER (B), and WV-3 (C) that were extracted from the USGS spectral library
version 7.0 [75]. Cubes indicate the position of the VINR + SWIR bands of Landsat-8, ASTER, and WV-3
in the range of 0.4 μm to 2.5 μm.
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Several band ratio indices were tested for mapping the alteration mineral groups using ASTER
spectral bands (see Figure 3B). The band ratios of 2/1 and 4/2 were selected to map Fe3+/Fe2+ iron
oxides; (5 + 7)/6 was adopted to detect Al/Fe-OH minerals; (7 + 9)/8 was assigned to identify
Mg-Fe-OH minerals [79]; and (6 + 8)/7 were developed to map Si-OH minerals, respectively. Bands 1
(0.520–0.600 μm), 2 (0.630–0.690 μm) and 4 (1.600–1.700 μm) of ASTER cover the spectral absorption
and reflectance features of iron oxide/hydroxide minerals. Thus, band ratios of 2/1 and 4/2 can be
utilized for detecting Fe3+/Fe2+ iron oxides. Al-OH absorption features at 2.17 to 2.20 μm [35,77,78]
are corresponded with bands 5 and 6, whereas Mg-Fe-OH absorption features are situated in 2.30 to
2.35 μm [35,77,78] that are equivalent with bands 7 and 8 of ASTER (Figure 3B). Si-OH absorption
features are mostly concentrated at 2.20 to 2.30 μm, which are coincident with bands 6 and 7 of ASTER
(Figure 3B). Subsequently, relative absorption band depth (RBD) [80] of these bands can be used to
map Al/Fe-OH ((5 + 7)/6), Mg-Fe-OH ((7 + 9)/8), and Si-OH ((6 + 8)/7) minerals. The DPCA was
implemented to the band ratio indices (2/1, 4/2, (5 + 7)/6 and (7 + 9)/8) using a covariance matrix for the
spatial selected subset covering the Cu-Au mineralization belt and surrounding areas. Furthermore,
for mapping silica-rich rocks containing SiO2 group, Quartz Index (QI) = 11 × 11/10 × 12, Carbonate
Index (CI) = 13/14, and Mafic Index (MI) = 12/13 were selected [81] and applied to TIR bands of ASTER.
These lithologic indices were defined by Ninomiya et al. [81] for discriminating quartz, carbonate,
and mafic-ultramafic rocks, especially for mapping lithological units in arid and semi-arid regions.
The DPCA was employed to these indices. Eigenvector matrix was calculated using a covariance
matrix for the spatial selected subset covering the Cu-Au mineralization belt and surrounding areas.

The VNIR spectral bands of WV-3 contain the high capability to map Fe3+ and Fe2+ iron oxides
(gossan), ferric, and ferrous silicates. Considering the laboratory reflectance spectra of selected minerals
(see Figure 3C), the band ratio indices of 4 + 2/3 to map Fe3+ iron oxides, 6 + 8/7 for identifying Fe2+

iron oxides, 3 + 5/4 to detect ferric silicates (chlorite/epidote), and 5 + 7/6 for enhancing ferrous silicates
(biotite) were developed. These indices were used to implement the DPCA using a covariance matrix
for the spatial selected subset covering the southern part of the Cu-Au mineralization belt. The DPCA
statistical results were also calculated for the WV-3 band ratio indices.

3.3.2. Linear Spectral Unmixing (LSU)

The LSU is a sub-pixel image processing algorithm, which is utilized to define the relative
abundance of materials that can be diagnosed within optical imagery based on the materials’ spectral
properties [82–84]. The reflectance at each pixel of the image is presumed to be a linear combination
of the reflectance of each material (or end-member) existing within the pixel. It is advocated in this
algorithm that the pixel reflectance could be shown as a linear mixture of individual component
reflectance multiplied by its relative fractions [85]. For extracting reference spectra directly from the
Landsat-8, ASTER, and WV-3 images to generate fraction images of end-members using the LSU,
the automated spectral hourglass (ASH) approach was implemented [86,87]. This approach contains
the minimum noise fraction (MNF), the pixel purity index (PPI) and automatic end-member prediction
from the n-Dimensional Visualizer to extract the most spectrally pure pixels (end-members) from
the image [36,88]. Additionally, the continuum-removal process was performed to the extracted
end-members for isolating their spectral features [89]. Then, the end-members were compared with
the USGS library reflectance spectra of target minerals, including hematite, jarosite, biotite, muscovite,
chlorite, epidote, chalcedony (hydrous-silica), and opal (hyalite) (see Figure 3A–C). Umix unit-sum
constrained was adjusted 1.0 for running the LSU algorithm. This weighted unit-sum constraint is
then added to the system of simultaneous equations in the unmixing inversion process. Larger weights
in relation to the variance of the data cause the unmixing to honor the unit-sum constraint more closely.
To strictly honor the constraint, the weight should be many times the spectral variance of the data.
It also permits proper unmixing of MNF transform data, with zero-mean bands [70]. For interactive
stretching histogram, auto apply option was selected to have stretching or histogram changes applied
to the images automatically. Rule image classifier tool was used for post classification of the LSU rules
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images. Maximum value option was selected. Threshold value for classification of fraction images
derived from the LSU algorithm was 0.750.

3.3.3. Adaptive Coherence Estimator (ACE)

The ACE is a target detection algorithm that carries out a partial unmixing approach to isolate
feature of interest from the background and its input is a single score (abundance of the target)
per pixel [90]. It is generated from the generalized likelihood ratio (GLR) approach, which is a
homogenously most powerful invariant detection statistic [91,92]. The ACE is invariant to the relative
scaling of input spectra and has a constant false alarm rate (CFAR) for such scaling [93]. Geometrically,
it determines the squared cosine of the angle between a known target vector and a sample vector in a
whitened coordinate space. The space is faded based on assessing the background statistics, which
straightforwardly influences the presentation of the statistic as a target detector [94]. The standard
formulation of the ACE detection statistic is defined as follows:

ACE(x) =
[(t− μ)TΣ−1(x− μ)]2

[(t− μ)TΣ−1(t− μ)][(x− μ)TΣ−1(x− μ)]
(1)

where t is a known target signature (reference spectra from a spectral library signature) and x is a data
sample. The background is assumed to be a Gaussian distribution parametrized by u and

∑
which

represent the mean and covariance, respectively. The ACE statistic is a number between zero and
one, which can be interpreted as a measurement of the presence of t in x. The ACE can be estimated
as the square of the cosine of the angle between x and t, in a coordinate space transformed by the
background estimation. For example, if ACE produces 0.85, indicating a relatively strong presence
of t in x. The key to effective ACE performance is accurate background estimation. Furthermore,
the ACE does not need information about all the end-members within an image scene. In this study,
the ACE algorithm was applied to VNIR + SWIR bands of ASTER covering the Cu-Au mineralization
belt and surrounding areas. Laboratory reflectance spectra of hematite, jarosite, biotite, muscovite,
chlorite, epidote, chalcedony (hydrous-silica), and opal (hyalite) extracted from USGS spectral library
version 7.0 [75] were used for running the ACE algorithm. New covariance statistics were computed
and subspace background was used. Background threshold was adjusted 0.900. The results of ACE
appear as a series of grayscale images, one for each selected end-member.

4. Results

4.1. Regional Lithological-Mineralogical Mapping in Inglefield Land Using Lansat-8 Data

A regional view of the northwestern part of Greenland was generated using a mosaic of Landsat-8
images (Figure 4). The NDSI, Al-OH-MI, and TRLI [7] were used for mapping snow/ice, cloud, water,
land, and lithologies. The NDSI (B3 − B6/B3 + B6), Al-OH-MI (B6/B7) × (B7), and TRLI (B10/B11)
× (B11) were assigned to Red-Green-Blue false-color composite, respectively (Figure 4). The ice/snow
zones appear in magenta, red, and orange shades that correspond to the different snow/ice facies.
Stratocumulus cloud coverage is represented as golden yellow especially in the east and northeastern
parts (inland ice) of the mosaic image-map. Water is depicted in a dark blue color. The Inglefield
Land and Washington Land in the west and northwestern parts of the scene appear in light blue
and cyan shades. The shelf-platform carbonate of the Franklinian Basin in the Washington Land and
northwestern parts of the Inglefield Land (adjacent to Smith Sound) typically contains cyan shade.
The exposed lithologies, including the complex metamorphic rocks of the Central Terrane and the
Southern Terrane and Mesoproterozoic sedimentary–igneous rocks of the Thule Basin manifest in a
light blue tone (Figure 4).

Band ratio indices of B4/B2, B4/B6, and B6/B7 were assigned to the RGB false-color composite
for mapping iron oxides/hydroxides, ferrous iron oxides, and hydroxyl bearing alteration zones in
the IMB at the regional scale, respectively. Figure 5A shows the resultant image-map. Regarding the
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geology map of the IMB (see Figure 1), the sedimentary successions of the Franklinian Basin and Thule
Supergroup appear typically in cyan, pink, orange, and rose blush. Carbonate and siliciclastic rocks
are dominant lithological units in these two sedimentary basins, which are mostly represented as cyan
color. It could be due to the fact that most of Al-OH, Mg-Fe-OH, CO3, and Si-OH mineral groups
show high reflectance at 1.55–1.75 μm and strong absorption at 2.1–2.4 μm coincident with bands 6
and 7 of Landsat-8, respectively [7,76]. Pink, orange, and rose blush zones may contain dolomite
(Fe2+ absorption at 0.9–1.2 μm; the equivalent of band 5 of Landsat-8) or iron oxides/hydroxides
minerals. Basaltic sills in the Thule Basin are depicted in purple color (western part of image-map) due
to the high content of iron oxides/hydroxides minerals. Several golden yellow areas are recognizable
at the boundaries between sedimentary successions and the Etah metamorphic complex rocks in the
Central Terrane, which comprise Fe3+ and Fe2+ iron oxides/hydroxides. Paragneiss of the Etah Group
manifests in magenta to tangerine tone in both the Southern and Central Terranes due to a strong
amount of iron oxides/hydroxides, while Quaternary deposits appear as cyan color because of detrital
clay minerals. Syenite of the Etah meta-igneous complex is characterized by brown color adjacent to
the Sunrise Pynt Shear Zone. Orthogneiss in the western and northeastern parts of the IMB shows up
in gray shade (Figure 5A). Syenite and orthogneiss probably contain a high amount of ferrous iron
oxide minerals attributable to alteration products of primary mafic minerals such as biotite, hornblende,
amphibole, and clinopyroxene (augite).
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Figure 4. A regional view of the northwestern part of Greenland generated using a mosaic of Landsat-8
images as RGB false-color composite of the normalized difference snow index (NDSI), Al-OH-bearing
alteration minerals index (Al-OH-MI), and thermal radiance lithology index (TRLI). Yellow rectangle
shows the location of the Cu-Au mineralization belt.

Table 2 shows the eigenvector matrix of the Landsat-8 band ratio indices (4/2, 4/6, 6/5, and 6/7)
derived from the DPCA for the selected subset covering the IMB. Analyzing the magnitude and sign
of the eigenvector loadings derived from DPCA technique for the IMB selected subset scene (Table 2)
indicates the DPCA1 contains positive eigenvector loadings for all input band ratio indices. Thus, it
does not have any unique contribution of input band ratio indices and the discrimination of alteration
mineral groups is impossible. The DPCA2 has a strong negative contribution (−0.770751) for ferric
oxides (B6/B5). However, it contains moderate loadings of other alteration mineral groups with the
opposite sign (Table 2). Ferric oxides manifest as dark pixel in the DPCA2 image due to negative
loading. The DPCA3 contains strong positive loadings of B4/B2 (0.686248) and B4/B6 (0.714648) for
iron oxides/hydroxides and ferrous iron oxides mineral groups, respectively (Table 2). However,
the eigenvector loadings in the DPCA3 for ferric oxides (B6/B5) and hydroxyl bearing alteration
(B6/B7) indices are weak and negative (−0.124892 and −0.052382). Therefore, the DPCA3 image shows
desired information related to Fe3+ and Fe2+ iron oxides/hydroxides as bright pixel. Figure 5B shows a
pseudocolor ramp of the DPCA3 rule image. The high concentration of Fe3+/Fe2+ iron oxides/hydroxide
minerals is observable in the boundaries between the Etah metamorphic complex rocks and sedimentary
successions of the Franklinian Basin and Thule Supergroup in the Central Terrane. Moderate to low
abundance of iron oxides/hydroxide minerals are associated with carbonate and siliciclastic rocks in
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both sedimentary basins. The southern part of the Cu-Au mineralization belt nearby Marshall Bugt
contains high surface abundance of iron oxides/hydroxide minerals. The Etah group and meta-igneous
complex rocks show moderate to low spatial distribution of iron oxides/hydroxide minerals. Some of
the highly abundant iron oxides/hydroxide zones are located in Quaternary deposits and associated
with Basaltic sills in the Thule Basin (Figure 5B).

Figure 5. Cont.
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Figure 5. Landsat-8 image-maps of the IMB. (A) RGB false-color composite of B4/B2, B4/B6, and B6/B7
band ratio indices covering the IMB. (B) Pseudocolor ramp of the DPCA3 rule image covering the IMB.
(C) Pseudocolor ramp of the DPCA4 rule image covering the IMB.
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Table 2. Eigenvector matrix of the Landsat-8 band ratio indices derived from the directed principal
components analysis (DPCA) for the Inglefield Mobile Belt (IMB) selected subset scene.

Eigenvector B4/B2 B6/B4 B6/B5 B6/B7

DPCA 1 0.412529 0.470934 0.624086 0.467501
DPCA 2 0.459849 0.282028 −0.770751 0.339030
DPCA 3 0.686248 0.714648 −0.124892 −0.052382
DPCA 4 −0.383955 −0.433543 −0.029349 0.814713

The Al-OH, Mg-Fe-OH, CO3 and Si-OH alteration mineral groups are mapped in the DPCA4
image due to the great positive contribution of B6/B7 ratio index (0.814713) (Table 2). On the other
hand, iron oxides/hydroxides (−0.383955), ferrous iron oxides (−0.433543), and ferric oxides (−0.029349)
indices show moderate to weak eigenvector loadings with a negative sign in the DPCA4 (Table 2). It is
evident that the DPCA4 image shows the alteration OH mineral groups as bright pixels. A pseudocolor
ramp of the DPCA4 rule image was generated (Figure 5C). High spatial distribution of the alteration
OH mineral groups is mostly associated with carbonate and siliciclastic units of the Franklinian Basin
and Thule Supergroup as well as Quaternary deposits in the Central Terrane. Moreover, orthogneiss
of the Etah meta-igneous complex and marble, amphibolite, and calc-silicate rocks of the Etah group
show a high surface abundance of alteration OH mineral groups. The central part of the Cu-Au
mineralization belt contains a remarkable concentration of the alteration OH mineral groups, which
might be related to amphibolite or alteration products of quartz diorite units. Paragneiss of the Etah
Group includes low to moderate surface distribution of the alteration OH minerals.

Figure 6A displays end-member spectra (n-D classes) extracted from the n-Dimensional analysis
technique for a selected spatial subset of Landsat-8 covering the Cu-Au mineralization belt and
surrounding areas. The n-D classes correspond to a set of unique pixels (a pure end-member), which
are used to act as end-members for the LSU spectral mineral-mapping. Comparison of the extracted
n-D classes with selected end-member reflectance spectra of the target minerals from the USGS spectral
library (see Figure 3A) indicates that some of the n-D classes could be considered for the LSU spectral
mineral-mapping. Some noticeable similarities between spectral signatures of the n-D classes and
the target minerals could be utilized for identifying iron oxide/hydroxide, clay mineral groups and
ferrous silicates (biotite, chlorite and epidote). The n-D class #1 and n-D class #6 typically represent
Al-OH/Si-OH absorption characteristics (Figure 6A). Muscovite, chalcedony, and opal show high
reflectance in band 6 (1.560–1.660 μm) and strong absorption in band 7 (2.100–2.300 μm) of Landsat-8
(see Figure 3A). The n-D class #2 and n-D class #4 can be considered as snow/ice/cloud group because
these classes show high reflectance in the visible wavelengths from 0.40 μm to 0.75 μm (band 1 to band
4 of Landsat-8), lower reflectance in the near-infrared from 0.80 μm to 0.90 μm (band 5 of Landsat-8),
and strong absorption in the short wave infrared from 1.57 μm to 1.78 μm (band 6 of Landsat-8) [95–97].
The n-D class #3 does not show any typical absorption features related to any geological materials and
hydrothermal alteration minerals. The n-D class #5 contains some similar spectral signatures related to
Mg-Fe-OH alteration minerals (ferrous silicates). Iron oxide (Fe+2/Fe+3) absorption features in bands 2
to 3 (0.50–0.60 μm) and bands 4 to 5 (0.70–0.90 μm) and Mg, Fe-OH absorption in bands 7 of Landsat-8
are recognizable for the n-D class #5 (Figure 6A). The n-D class #7 and n-D class #8 might be attributed
to the iron oxide/hydroxide minerals because of Fe3+ and Fe-OH absorption features at 0.45 μm to
0.70 μm, 0.80-0.90 μm, and 2.20-2.30 μm coinciding with bands 2, 3, 4, 5, and 7 of Landsat-8.

Fraction images of the end-members resulted from the LSU algorithm manifest as a series of
greyscale rule images (one for each extracted end-member). Considering the resultant fraction images
and the n-D classes (extracted end-member spectra) for the Landsat-8 selected subset, it is evident that
iron oxide/hydroxide minerals, clay minerals and ferrous silicates are main alteration mineral groups
in the study area. For post-classification of the fraction images (excluding snow/ice/cloud group) the
interactive density slicing tool was used to select colors for highlighting the high digital number (DN)
value areas (bright pixels) in the grayscale rule images. The red color class was considered for iron
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oxide/hydroxide group, the green color class was selected for clay mineral groups, and the yellow color
class was assigned for ferrous silicates, respectively. Figure 6B shows the LSU spectral mineral-map
for the Landsat-8 selected subset covering the Cu-Au mineralization belt and surrounding areas.
Iron oxide/hydroxide minerals (red pixels) are spectrally dominated in the image-map, whereas clay
minerals and ferrous silicates show less spatial distribution in the selected subset. Comparison to the
geological map of the study zone, suggests that an iron oxide/hydroxide group is typically concentrated
in the southwestern part of the Cu-Au mineralization belt at the boundary between orthogneiss and
paragneiss with the sedimentary succession of carbonate and basal siliciclastic rocks. However, an iron
oxide/hydroxide group is also detected in the Franklinian Basin sedimentary succession (central north)
and many other zones in orthogneiss and paragneiss of the Etah complex in the southwestern and
southeastern parts of the scene (Figure 6B). The high surface abundance of clay minerals (green pixels)
was mapped in orthogneiss, amphibolite, and quartz diorite units especially in the central part of the
Cu-Au mineralization belt. Basal siliciclastic rocks of the Franklinian Basin show high concentrations
of clay minerals in the central part of the scene. Ferrous silicates are lesser in the surface abundance
and generally associated with an iron oxide/hydroxide mineral group (Figure 6B).

Figure 6. Cont.
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Figure 6. (A) The n-D classes (end-member spectra) extracted for a selected spatial subset (Landsat-8)
covering Cu-Au mineralization belt and surrounding areas. Landsat-8 band center positions are shown.
(B) LSU mineral map produced from fraction images overlaid on band 5 of Landsat-8 for the selected
spatial subset covering the Cu-Au mineralization belt and surrounding areas.

4.2. Hydrothermal Alteration Mapping in the Northeastern IMB Using ASTER Data

Analyzing the eigenvector matrix of the band ratio indices for mapping hydrothermal alteration
minerals using VNIR + SWIR bands of ASTER (Table 3) shows that the DPCA technique detected the
surface distribution of Fe3+/Fe2+ iron oxide/hydroxides, Al/Fe-OH, Mg-Fe-OH, and Si-OH minerals in
some specific DPCA images with a strong contribution of the input band ratio components. Figure 7A–E
shows the pseudocolor ramp of the DPCA rule images covering the selected spatial subset of the
Cu-Au mineralization belt and surrounding areas (similar size as the Landsat-8 LSU image-map).
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Table 3. Eigenvector matrix of the ASTER VNIR + SWIR band ratio indices derived from the DPCA for
the selected subset covering the Cu-Au mineralization belt and surrounding areas.

Eigenvector B2/B1 B4/B2 B5 + B7/B6 B7 + B9/B8 B6 + B8/B7

DPCA 1 −0.219557 −0.347765 −0.900627 −0.123124 −0.067567
DPCA 2 −0.547623 0.589087 −0.177962 −0.235635 −0.434915
DPCA 3 0.263209 0.141891 −0.759215 0.418035 0.399283
DPCA 4 −0.027870 −0.119071 0.531229 0.709489 −0.288482
DPCA 5 −0.568874 0.044535 0.108190 0.314737 −0.750756

Figure 7. Pseudocolor ramp of the ASTER (VNIR + SWIR) DPCA rule images covering the selected
spatial subset of the Cu-Au mineralization belt and surrounding areas. (A) Ferrous iron oxides
(Fe+2)/Si-OH image-map; (B) ferric iron (Fe+3) oxide/hydroxides image-map; (C) Al/Fe-OH minerals
image-map; (D) Mg-Fe-OH minerals image-map; (E) Si-OH minerals image-map.

The DPCA2 contains a strong contribution of Fe3+/Fe2+ iron oxide/hydroxides in the B2/B1
(−0.547623) and B4/B2 (0.589087), while the contributions of Al/Fe-OH, Mg-Fe-OH, Si-OH minerals are
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weak to moderate with negative signs (−0.177962, −0.235635, and −0.434915, respectively) (Table 3).
Therefore, ferrous iron oxides (Fe+2) can be characterized as dark pixels due to the strong magnitude
and negative sign of eigenvector loadings (−0.547623) in the DPCA2. Considering the eigenvector
loadings in this DPCA (see Table 3), the contribution of other mineral groups as dark pixels, especially
Si-OH minerals, is also feasible. These dark pixels were converted to bright pixels by multiplication to
−1, and then a pseudocolor ramp of greyscale rule image was generated for the DPCA2. Figure 7A
shows the resultant image-map of ferrous iron oxides (Fe+2) and silica-rich units. Referring to the
geological map of the study area, high to moderate concentration of ferrous oxides/Si-OH was mostly
mapped in the sedimentary successions of the Franklinian Basin, which can be attributed to dolomite
and basal siliciclastic rocks. In the Cu-Au mineralization belt, some small zones show a high to
moderate spatial distribution of ferrous oxides/Si-OH components.

In the DPCA2, ferric iron (Fe+3) oxide/hydroxides can be mapped explicitly as bright pixels due
to strong and positive loadings of the B4/B2 (0.589087) (Table 3). Figure 7B shows the pseudocolor
ramp of the DPCA2 for ferric iron components. High to moderate surface abundance of ferric iron
components is typically detected at the contact of orthogneiss and paragneiss with the Franklinian
sedimentary successions. However, high concentration of ferric iron was also mapped in association
with orthogneiss and quartz diorite in the northeastern part of the selected subset near Dallas Bugt.
Carbonate successions of the Franklinian Basin and paragneiss of the Etah Group generally show a
moderate to high surface abundance of ferric iron in some parts of the selected subset (Figure 7B).
Several small zones of high to moderate concentration of ferric iron were identified within the Cu-Au
mineralization belt, which can be considered as gossan zones (rust zones). The 4/2 band ratio of ASTER
was documented as a reliable indicator for identifying gossan zones associated with massive sulfide
mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia and many
porphyry copper deposits around the world [98,99].

Al/Fe-OH minerals can be robustly detected in the DPCA3 image as dark pixels due to a high
negative contribution of the B5+B7/B6 (−0.759215) (Table 3). For inverting the dark pixels to bright pixels,
the DPCA3 image was negated. The pseudocolor ramp of the DPCA3 is shown in Figure 7C. The high
concentration of Al/Fe-OH minerals was only mapped in some small sites in the carbonate/siliciclastic
units of the Franklinian Basin, Quaternary deposits, quartz diorite, and amphibolite of the Etah
Group. The orthogneiss and paragneiss units show low to moderate distribution of Al/Fe-OH minerals.
The central part of the Cu-Au mineralization belt contains moderate to high spatial distribution of the
mineral groups, which is related to the quartz diorite and amphibolite units (Figure 7C). The DPCA4
contains strong loadings of B7+ B9/B8 (0.709489) and B5+ B7/B6 (0.531229) with a positive sign (Table 3).
Therefore, Mg-Fe-OH minerals can be mapped as bright pixels in the DPCA4 image. Although, this
image might have some contribution of Al/Fe-OH minerals due to great and positive eigenvector
loading of the B5 + B7/B6 component. Figure 7D shows a pseudocolor ramp of the DPCA4 image. High
spatial distribution of Mg-Fe-OH minerals is typically concentrated in the Franklinian sedimentary
successions and paragneiss units proximate to Marshall Bugt. However, the orthogneiss and quartz
diorite units adjacent to Dallas Bugt also contain a strong surface abundance of the mineral groups.
Few small locations inside the Cu-Au mineralization belt comprise high concentrations of Mg-Fe-OH
minerals that are associated with rust zones (Figure 7D).

The B6 + B8/B7 component in the DPCA5 has strong weighting (−0.750756) with a negative sign,
which can represent Si-OH minerals as dark pixels. Besides, the B2/B1 (ferrous iron oxides) shows high
contribution (−0.568874) with a negative sign in the DPCA5 (Table 3). This image was negated for
converting the dark pixels to bright pixels before applying pseudocolor ramp (Figure 7E). The resultant
image-map shows spatial distribution of Si-OH minerals that may have some contribution of ferrous
iron oxides. The high concentration of Si-OH minerals is characteristically mapped associated with
quartz diorite and at the contact of orthogneiss and paragneiss with the Franklinian sedimentary
successions. In the Cu-Au mineralization belt, the high concentration of Si-OH minerals was mapped in
several localities associated with rust zones, especially in the southwestern part of the belt (Figure 7E).
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Table 4 shows the eigenvector matrix of the ASTER TIR band ratio indices, including Quartz Index
(QI) = 11 × 11/10 × 12, Carbonate Index (CI) = 13/14, and Mafic Index (MI) = 12/13 [81], for the selected
subset covering the Cu-Au mineralization belt and surrounding areas. Considering eigenvector
loadings for mapping altered silica-rich rocks (containing SiO2 group), it is evident that the DPCA2 is
able to detect altered silica-rich rocks as bright pixels because of the strong contribution of QI (0.792423)
with a positive sign. The CI (−0.302209) and MI (−0.097008) components contain weak contributions
with a negative sign in the DPCA2 (Table 4). Figure 8A shows a pseudocolor ramp of the DPCA2
for the QI component. High to moderate concentration of quartz content was mostly mapped at the
contact of orthogneiss with the Franklinian Basin successions, orthogneiss, and quartz diorite units.
The low surface abundance of quartz was recorded for paragneiss and amphibolite. Several zones
containing intense concentration of quartz content were identified in the Cu-Au mineralization belt
(Figure 8A).

Table 4. Eigenvector matrix of the ASTER TIR band ratio indices derived from the DPCA for the
selected subset covering the Cu-Au mineralization belt and surrounding areas.

Eigenvector QI CI MI

DPCA 1 −0.596505 −0.527385 −0.605018
DPCA 2 0.792423 −0.302209 −0.097008
DPCA 3 −0.106481 0.790280 −0.530590

Figure 8. Pseudocolor ramp of the ASTER (TIR) DPCA rule images covering the selected spatial
subset of the Cu-Au mineralization belt and surrounding areas. (A) Quartz Index (QI) image-map;
(B) Carbonate Index (CI) image-map; (C) Mafic Index (MI) image-map.
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The DPCA3 shows strong loadings for the CI (0.790280) with a positive sign and the MI (−0.530590)
with a negative sign, respectively (Table 4). Therefore, carbonate minerals can be detected as bright
pixels and mafic minerals as dark pixels in the DPCA3 rule image. Figure 8B displays a pseudocolor
ramp of the DPCA3 for the CI component. High to moderate concentration of carbonate minerals
were identified in carbonate successions of the Franklinian Basin. The Etah meta-igneous complex
(orthogneiss and quartz diorite) and the Etah Group (paragneiss and amphibolite) generally show
a low to moderate surface abundance of carbonate minerals. The Cu-Au mineralization belt mostly
locates in a low to moderate range of carbonate content zone (Figure 8B). Moreover, a pseudocolor
ramp of the MI was generated using the negation of the DPCA3 rule image (Figure 8C). Quartz-rich
zones (contact boundaries of sedimentary successions with metamorphic units) appear in a very low
range of mafic content in the MI image-map (Figure 8C). Mafic minerals show high to moderate
ranges in the entire image-map, which are mostly concentrated in the Franklinian Basin, paragneiss,
and orthogneiss units (Figure 8C).

The end-member spectra (n-D classes) extracted from the n-Dimensional analysis technique for
the ASTER selected spatial subset covering the Cu-Au mineralization belt and surrounding areas are
shown in Figure 9A. The n-D classes were compared with the end-member spectra of target minerals
from the USGS spectral library (see Figure 3B). Results indicate that some of the n-D classes contain
recognizable features similar to the target minerals. The n-D class #1 has an identical spectral signature
with chalcedony and opal (see Figures 3B and 9A). Strong absorption features in bands 7, 8, and 9
could be attributed to Si-OH absorption characteristics. The n-D class #2 represents a combined
spectral signature of jarosite and hematite due to Fe3+ (0.48 μm and 0.83–0.97 μm) and Fe-OH (2.27 μm)
absorption features [89], coinciding with bands 1, 2, 3, and 7 of ASTER. The n-D class #3 and n-D
class #5 do not contain any prominent spectral signatures related to the alteration minerals and can be
considered as an unaltered/unknown mineral group. Snow/ice spectral signatures are recognizable in
the n-D class #4 and n-D class #10 (Figure 9A). Strong reflectance in the VNIR portion (0.520–860 μm;
bands 1, 2 and 3 of ASTER) and low reflectance in the SWIR portion (1.60–2.430 μm; bands 4 to 9 of
ASTER) specify the snow/ice spectral properties [95]. The n-D class #6 contains spectral characteristics
close to chlorite and epidote, which shows a dominant Mg, Fe-OH absorption at 2.30–2.35 μm [100]
equivalent to bands 8 and 9 of ASTER. Biotite might be represented in the n-D class #7 because of
slight iron absorption and a major Mg, Fe-OH absorption (Figure 9A). The n-D class #8 reveals mixed
spectral features of hematite and jarosite. The n-D class #9 shows strong Al-OH spectral absorption
features at 2.20 μm [89], which is related to muscovite/kaolinite spectral signatures coinciding with
band 6 of ASTER.

Figure 9. Cont.
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Figure 9. (A) The n-D classes (end-member spectra) extracted for a selected spatial subset (ASTER
VNIR + SWIR) covering the Cu-Au mineralization belt and surrounding areas. ASTER band center
positions are shown. (B) ASTER LSU classification mineral map for the selected spatial subset covering
the Cu-Au mineralization belt and surrounding areas.

Figure 9B shows the LSU classification mineral map derived from fraction images of end-members
(excluding snow/ice and unaltered/unknown groups) for the selected spatial subset covering the Cu-Au
mineralization belt and surrounding areas. Results indicate that hematite/jarosite, muscovite/kaolinite,
and biotite are spectrally strong, while chalcedony/opal and chlorite/epidote have a moderate
contribution in total mixed spectral characteristics of the selected spatial subset. Comparison with
the geological map of the study area (see Figure 1) suggests that muscovite/kaolinite is dominant in
the Cu-Au mineralization belt, which is typically concentrated in the orthogneiss and amphibolite
lithological units. In addition, a high surface abundance of biotite was mapped in both orthogneiss
and paragneiss of the Etah meta-igneous complex and Etah group. The association of hematite/jarosite,
chlorite/epidote, chalcedony/opal, and muscovite/kaolinite was identified in several parts of the central
and southwestern sectors of the Cu-Au mineralization belt (Figure 9B), which are matched with the
distribution of the main Cu-Au occurrences as documented by Pirajno et al. [2]. The Franklinian
Basin sequences contain a high surface abundance of hematite/jarosite and chlorite/epidote and
muscovite/kaolinite and a moderate to low surface abundance of chalcedony/opal and biotite. The high
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concentration of hematite/jarosite was mapped in the carbonate succession, while chlorite/epidote
and muscovite/kaolinite were detected in the basal siliciclastic rocks. Chalcedony/opal is mostly
concentrated at the contact between the Franklinian Basin sequences and Etah meta-igneous complex
and Etah group. Low spatial distribution of biotite was detected in the basal siliciclastic rocks of the
Franklinian Basin sequences (Figure 9B).

4.3. Mapping Iron Oxide/Hydroxide Minerals in the Southern Part of the Cu-Au Mineralization Belt Using
WV-3 Data

A spatial selected subset of WV-3 imagery covering the southern part of the Cu-Au mineralization
belt was considered (Figure 10) for mapping Fe3+ and Fe2+ iron oxides and ferric and ferrous silicates.
Table 5 shows the eigenvector matrix of the WV-3 band ratio indices derived from the DPCA analysis,
including B4 + B2/B3 (for mapping Fe3+ iron oxides), B6 + B8/B7 (for mapping Fe2+ iron oxides), B3 +
B5/B4 (for mapping ferric silicates), and B5 + B7/B6 (for mapping ferrous silicates). The DPCA1 does
not contain any specific contribution of band ratio indices with different signs (all of the eigenvector
loadings are negative). Thus, this image-map contains spectral similarities and does not enhance any
group of target minerals. The DPCA2 shows strong and positive eigenvector loading for mapping Fe3+

iron oxides (0.762743). However, the eigenvector loading for Fe2+ iron oxides (–0.369967) is weak and
negative. The ferric (0.461865) and ferrous (0.262084) silicates have moderate to weak contribution with
positive signs in the DPCA2 image. Therefore, the DPCA2 image-map represents the Fe3+ iron oxides
as bright pixels, which might contain a very low contribution of ferric and ferrous silicates. Figure 10A
shows a pseudocolor ramp of the DPCA2 covering the southern part of the Cu-Au mineralization
belt, which includes two Cu-Au mineralization occurrences that have been already documented by
Pirajno et al. [2]. High to moderate concentration of Fe3+ iron oxides is mapped in the vicinity of Cu-Au
mineralization occurrences (Figure 10A). Moreover, many other parts inside the Cu-Au mineralization
belt show strong to moderate spatial distribution of Fe3+ iron oxides (Figure 10A), which could be
considered as high potential zones for Cu-Au mineralization.

The DPCA3 contains a significant contribution of Fe2+ iron oxides (–0.949469) and very low
eigenvector loading of Fe3+ iron oxides (0.049338) and ferric silicates (0.090503), while a moderate
contribution of ferrous silicates (0.396450) with a positive sign is present in this DPCA. Hence, the Fe2+

iron oxides will appear as dark pixels. The DPCA3 was negated (multiplication by −1) to generate the
Fe2+ iron oxides as bright pixels. A pseudocolor ramp of the DPCA3 was generated to map Fe2+ iron
oxides (Figure 10B). The high surface abundance of Fe2+ iron oxides was also detected proximate to the
mineralization localities. For mapping ferrous silicates, a pseudocolor ramp was applied to the DPCA3
without negation (Figure 10C). Spatial distribution of ferrous silicates can be seen in many parts of the
selected subset, especially in drainage systems and geological structures. However, a low concentration
of the ferrous silicates is mapped close to the Cu-Au mineralization occurrences (Figure 10C).

The DPCA4 has a strong negative eigenvector loading of ferric silicates (−0.864801) and moderate
positive contribution of Fe3+ iron oxides (0.496839), whereas eigenvector loadings for Fe2+ iron oxides
(−0.004738) and ferrous silicates (0.072448) are meager. As a result, the ferric silicates will manifest
as dark pixels in the DPCA4, which could be inverted to bright pixels by negation. The moderate
contribution of Fe3+ iron oxides can affect the resultant map. Figure 10D shows a pseudocolor ramp
for ferric silicates. In many parts, the surface abundance of ferric silicates is much stronger compared
to ferrous silicates, especially adjacent to Cu-Au mineralization occurrences. The high concentration of
ferric silicates shows a close spatial relationship with Fe3+ and Fe2+ iron oxides. The high to moderate
surface abundance of ferric silicates was mapped nearby the Cu-Au mineralization localities in the
selected subset (Figure 10D).
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Figure 10. Pseudocolor ramp of the WV3 (VNIR) DPCA rule images covering the selected spatial
subset of the southern part of the Cu-Au mineralization belt. (A) Fe3+ iron oxides image-map; (B) Fe2+

iron oxides image-map; (C) ferric silicates image-map; (D) ferrous silicates image-map (WV-3 image,
courtesy of the DigitalGlobe Foundation (www.digitalglobefoundation.org)).

Table 5. Eigenvector matrix of the WV-3 band ratio indices derived from the DPCA for the selected
subset covering the southern part of Cu-Au mineralization belt.

Eigenvector B4 + B2/B3 B6 + B8/B7 B3 + B5/B4 B5 + B7/B6

DPCA 1 −0.155644 −0.927722 −0.174958 −0.290683
DPCA 2 0.762743 −0.369967 0.461865 0.262084
DPCA 3 0.049338 −0.949469 0.090503 0.396450
DPCA 4 0.496839 −0.004738 −0.864801 0.072448
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End-member spectra (n-D classes) extracted from the n-Dimensional analysis technique for the
WV-3 selected spatial subset of the southern part of the Cu-Au mineralization belt are presented in
Figure 11A. Comparison with selected end-member reflectance spectra of the target minerals from
the USGS spectral library (see Figure 3C) shows the presence of some n-D classes containing similar
spectral characteristics with hematite, jarosite, ferric, and ferrous silicates. The n-D class #1, n-D class
#3, n-D class #5, and n-D class #8 do not contain any particular spectral signature related to alteration
minerals, which might be water/ice (snow/slush) or unknown geologic materials. The concentration of
transition metal cations such as Fe3+ and Fe2+ can affect the intensities of absorption features [99]. Fe3+

produces absorption features near 0.45 to 0.90 μm, while broad absorption features near 0.90 to 1.2 μm
are related to Fe2+ [100]. The n-D class #2 has absorption features related to ferric iron (Fe3+), which
corresponds with bands 5 (Red), 6 (Red edge), and 7 (Near-Infrared 1) of WV-3. It seems that this
n-D class is related to ferric silicates. The n-D class #4 shows a similar spectral pattern with hematite
(see Figures 3C and 11A). The n-D class #6 can be considered for jarosite. The n-D class #7 can be
attributed to the admixture of hematite and jarosite. Charge transfer absorption features between 0.48
to 0.72 μm and crystal-field absorption properties between 0.63 to 0.72 μm are documented for iron
oxide/hydroxide minerals such as hematite, limonite, goethite, and jarosite [101–103]. The n-D class #9
contains robust absorption features related to Fe2+, coinciding with bands 7 (Near-Infrared 1) and 8
(Near-Infrared 2) of WV-3. Hence, it can be characterized by ferrous silicate.

Figure 11. Cont.
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Figure 11. (A) The n-D classes (end-member spectra) extracted for the WV-3 selected spatial subset
covering the southern part of the Cu-Au mineralization belt. WV-3 band center positions are shown.
(B) LSU mineral map produced from fraction images for the selected spatial subset covering the
southern part of the Cu-Au mineralization belt (WV-3 image, courtesy of the DigitalGlobe Foundation
(www.digitalglobefoundation.org)).

The LSU spectral mineral-map of the WV-3 spatial selected subset covering the southern part of the
Cu-Au mineralization belt was generated using fraction images derived from the n-D classes contain
end-member reflectance spectra of the target minerals. Figure 11B shows the resultant image-map.
In the vicinity of Cu-Au mineralization occurrences, high concentration of hematite, jarosite, and ferric
silicates was identified. On the other hand, carbonates (calcite and dolomite) also appear in association
with ferric silicate, especially in the central and northwestern parts of the selected subset. Most of the
ferrous silicates are detected in the drainage systems and geological structures.
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4.4. ACE Analysis for Detecting End-Member Minerals Using VINR + SWIR Bands of ASTER

For verifying the presence of mineral spectral signatures detected in the selected spatial subset
covering the Cu-Au mineralization belt and surrounding areas, the ACE algorithm was applied to
the VINR + SWIR bands of ASTER using laboratory reflectance spectra of hematite, jarosite, biotite,
muscovite, chlorite, epidote, chalcedony (hydrous-silica), and opal (hyalite) extracted from the USGS
spectral library [75]. Fraction images of the selected end-member were generated as a series of greyscale
rule images using the ACE algorithm. To show the high fractional abundance (high DN value pixels)
of the target minerals, a pseudo-color ramp of greyscale rule images was produced, one for each
selected mineral (Figure 12). The ACE image-maps were visually compared with the LSU classification
image-maps (see Figures 6B, 9B, 11B and 12). Results indicate that fractional abundances of hematite,
chlorite, epidote, chalcedony, and opal are high, whereas jarosite and biotite are low in the detected
altered zones. Spatial distribution of muscovite is typically different from other target minerals in the
identified altered zones and selected subset (Figure 12). However, some of the high abundance zones
contain jarosite, chalcedony, and opal that are spatially matched with muscovite. Comparison of the
DPCA image-maps and LSU classification image-map of ASTER (see Figure 7 and Figure 9B) with
the ACE fraction images indicates a little spatial dissimilarity between the DPCA4 image (Figure 7D)
for mapping Mg-Fe-OH minerals and fraction images of biotite, chlorite, and epidote (Figure 12).
However, the LSU classification image-map (Figure 9B) shows a high spatial similarity with fraction
images of hematite, jarosite, biotite, muscovite, chlorite, epidote, chalcedony, and opal.

Figure 12. Cont.
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Figure 12. Fraction images of the selected end-member minerals derived from the adaptive coherence
estimator (ACE) algorithm for the selected spatial subset covering the Cu-Au mineralization belt and
surrounding areas. Pseudo-color ramp was applied to greyscale rule images.

4.5. Virtual Verification Assessment

Confusion matrix (error matrix) and Kappa Coefficient [101–103] were calculated for the LSU
classification image-maps derived from Landsat-8, ASTER, and WV-3 versus the ACE fraction images
derived from VINR + SWIR bands of ASTER (Tables 6–8). In this analysis, the confusion matrix was
assumed based on one-class per pixel classifications. The pixels were selected inside the altered zones
with high digital number values. The spatial resolutions of the pixels were considered and resampled
to a similar size to the ACE fraction images using a pixel aggregation (neighborhood averaging).
Furthermore, highly dissimilar pixels were excluded using a standard deviation threshold. Finally,
160 pixels of Landsat-8, 300 pixels of ASTER, and 200 pixels of WV-3 were selected and analyzed,
respectively (Tables 6–8).
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Table 6. Confusion matrix for the LSU classification image-maps derived from Landsat-8 versus the
ACE fraction images derived from VINR + SWIR bands of ASTER.

LSU Classification
Map Landsat-8

Detected Pixel Spectra by the ACE Algorithm

Iron Oxide/Hydroxides Clay Minerals Ferrous Silicates Totals User’s Accuracy

Iron oxide/hydroxides 46 2 8 56 82%
Clay minerals 2 48 4 54 88%

Ferrous silicates 12 10 28 50 56%

Totals 60 60 40 160

Producer’s Accuracy 76% 80% 70%

Overall accuracy = 76.25% Kappa Coefficient = 0.64

Table 7. Confusion matrix for the LSU classification image-maps derived from ASTER versus the ACE
fraction images derived from VINR + SWIR bands of ASTER.

LSU Classification
Map ASTER

Detected Pixel Spectra by the ACE Algorithm

Hematite/Jarosite Chlorite/Epidote Muscovite/Kaolinite Chalcedony/Opal Biotite Totals User’s Accuracy

Hematite/jarosite 42 8 3 10 8 71 59%
Chlorite/epidote 6 39 1 7 6 59 66%

Muscovite/kaolinite 0 1 43 2 5 51 84%
Chalcedony/opal 7 8 8 38 6 67 56%

Biotite 5 4 5 3 35 52 67%

Totals 60 60 60 60 60 300

Producer’s Accuracy 70% 65% 71% 63% 58%

Overall accuracy = 65.66% Kappa Coefficient = 0.57

Table 8. Confusion matrix for the LSU classification image-maps derived from WV-3 versus the ACE
fraction images derived from VINR + SWIR bands of ASTER.

LSU Classification
Map WV-3

Detected Pixel Spectra by the ACE Algorithm

Hematite Jarosite Ferric Silictes Ferrous Silicates Totals User’s Accuracy

Hematite 39 6 5 1 51 76%
Jarosite 7 40 4 3 54 74%

Ferric Silictes 3 4 38 9 54 70%
Ferrous Silicates 1 0 3 37 41 90%

Totals 50 50 50 50 200

Producer’s Accuracy 78% 80% 76% 74%

Overall accuracy = 77% Kappa Coefficient = 0.69

Table 6 shows confusion matrix for the LSU classification image-maps derived from Landsat-8
versus the ACE fraction images derived from VINR + SWIR bands of ASTER. The overall accuracy and
Kappa Coefficient are 76.25% and 0.64, respectively. Producer’s accuracy (omission error) indicates
the probability of a reference pixel being correctly classified and user’s accuracy (commission error)
shows the total number of correct pixels in a category, which is divided by a total number of pixels that
were classified in the category [104,105]. The highest producer’s accuracy (80%) and user’s accuracy
(88%) were achieved for the clay minerals class. However, the lowest producer’s accuracy (70%) and
user’s accuracy (56%) were recorded for the ferrous silicates class. It shows that spectral mixing and
confusion between the ferrous silicates and iron oxide/hydroxides classes is more feasible than the clay
minerals class using Landsat-8 spectral bands.

The overall accuracy of 65.66% and Kappa Coefficient of 0.57 were assessed for the LSU classification
image-maps versus the ACE fraction images derived from VINR + SWIR bands of ASTER (Table 7).
The muscovite/kaolinite class has the highest producer’s accuracy (71%) and user’s accuracy (84%).
The biotite class shows the lowest producer’s accuracy (58%) and the chalcedony/opal class contains
the lowest user’s accuracy (56%). So, the muscovite/kaolinite class pixels were strongly mapped
compared to other mineral classes in this study. Spectral mixing has been recorded for pixels contain
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hematite/jarosite, chlorite/epidote, chalcedony/opal, and biotite mineral assemblages. Consequently,
detecting the subtle spectral differences between alteration mineral classes are challenging and might
have some confusion using ASTER data. Calculation of confusion matrix for LSU classification
image-maps derived from WV-3 versus the ACE fraction images derived from VINR + SWIR bands
of ASTER indicates the overall accuracy of 77% and Kappa Coefficient of 0.69 (Table 8). Producer’s
accuracy and user’s accuracy for ferrous silicates class pixels are 74% and 90%, respectively. The jarosite
class pixels contain the highest producer’s accuracy (80%). The ferric silicates class pixels show the
lowest user’s accuracy (70%). Results indicate some spectral mixing effects between mineral classes,
but the overall accuracy (77%) and Kappa Coefficient (0.69) have a good potential for separating the
classes using WV-3 VNIR spectral bands.

5. Discussion

Mineral exploration is very challenging in the Arctic regions due to cold and harsh environments
and inaccessibility, especially in the northern part of Greenland that contains a variety of ore mineral
resources [3,104]. Application of remote sensing satellite/airborne imagery for mineral identification,
exploration, and prospecting in Greenland has been documented in the Sarfartoq carbonatite complex,
southern West Greenland [105,106] and the Kap Simpson complex area, East Greenland [107] as
well as the Franklinian Basin, North Greenland [8]. The Inglefield Mobile Belt (IMB), Northwest
Greenland contains copper-gold mineralization hosted by garnet-sillimanite paragneiss, orthogneiss,
and mafic-ultramafic rocks, which are confined in hydrothermal alteration zones (rust zones) [1–3].
In this study, the application of Landsat-8, ASTER, and WV-3 multispectral satellite remote sensing data
were evaluated for mapping hydrothermal alteration minerals associated with Cu-Au mineralization
in the IMB.

Using ratio indices of Landsat-8 spectral bands (B4/B2, B4/B6, and B6/B7) discriminate a variety of
sedimentary, metamorphic, and igneous lithological units at the regional scale based on different content
of iron oxides/hydroxides, ferrous iron oxides, and hydroxyl minerals (see Figure 5A). The sedimentary
successions of the Franklinian Basin and Thule Supergroup were mapped due to high amounts
of Al-OH, Mg-Fe-OH, CO3, and Si-OH mineral groups related to carbonate and siliciclastic rocks
and Fe2+ absorption that might be attributed to dolomitization. Basaltic sills of the Thule Basin,
paragneiss of the Etah Group, and syenite and orthogneiss of the Etah meta-igneous complex were
discriminated because of different surface abundance of Fe3+ and Fe2+ iron oxides/hydroxide minerals
(see Figure 5A). Quaternary deposits were mapped owing to the high surface distribution of detrital
clay minerals. The DPCA3 and DPCA4 images derived from Landsat-8 band ratio indices identified
Fe3+/Fe2+ iron oxides/hydroxide minerals and Al-OH, Mg-Fe-OH, CO3, and Si-OH alteration mineral
groups, respectively (see Figure 5B,C).

In the DPCA3 image-map (Figure 5B), the boundaries between the Etah metamorphic complex
rocks and sedimentary successions of the Franklinian Basin and Thule Supergroup in the Central
Terrane, as well as the southern part of the Cu-Au mineralization belt nearby Marshall Bugt, show
high surface abundance of iron oxide/hydroxide minerals. These locations are typically matched
with the documented rust zones, which are identified as Cu-Au sulfide mineralization areas [1–3].
Furthermore, a high concentration of the OH-alteration mineral groups was mapped in the DPCA4
image-map (see Figure 5C) that could be considered with some parts of the rust zones. The XRD
analyses, as documented by Pirajno et al. [2] for mineralogy of rust zones indicate the presence of biotite,
sericite, and chlorite. High spatial distribution of iron oxide/hydroxide minerals along the boundaries
between the metamorphic complex rocks and sedimentary successions in the southwestern part of
the Cu-Au mineralization belt was also detected in the LSU spectral mineral-map of the Landsat-8
(see Figure 6B). Ferrous silicates (biotite, chlorite, and epidote) were typically mapped with iron
oxide/hydroxide minerals, while clay minerals, detected in the central part of the Cu-Au mineralization
belt, are mostly adjacent to the amphibolite and quartz diorite lithological units (see Figures 1 and 6B).
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Detailed maps of the spatial distribution of Fe3+/Fe2+ iron oxide/hydroxides, Al/Fe-OH, Mg-Fe-OH,
and Si-OH minerals in the Cu-Au mineralization belt and surrounding areas (see Figure 7) were
generated by implementing the DPCA technique to ASTER band ratio components (B2/B1, B4/B2,
B5 + B7/B6, B7 + B9/B8, and B6 + B8/B7). The DPCA2 mapped the Fe3+/Fe2+ iron oxide/hydroxide
minerals, which are highly concentrated at the contact of metamorphic complex rocks with the
Franklinian sedimentary successions and orthogneiss in the northeastern and southern parts of the
Cu-Au mineralization belt (see Figure 7A,B). Numerous zones of high to moderate concentration of
iron oxide/hydroxide minerals were mapped inside the Cu-Au mineralization belt together with the
rust zones. The occurrence of iron minerals such as rozenite, jarosite, cacoxenite, and jahnsite was
reported in the Cu-Au mineralization belt as oxidation products of sulfide minerals associated with the
rust zones [2]. The DPCA3 and DPCA4 images represented the spatial distribution of Al/Fe-OH and
Mg-Fe-OH minerals, which show low abundances in the mineralization belt (Figure 7C,D). The DPCA5
detected Si-OH minerals and ferrous silicates, which are typically associated with quartz diorite and the
contact between metamorphic complex rocks with the Franklinian sedimentary successions (Figure 7E).
The high concentration of Si-OH minerals was mapped as associated with rust zones, particularly
in the southwestern part of the mineralization belt. Pirajno et al. [2] documented the association of
hydrolitic alteration assemblages (chlorite and biotite) and silicification that overprint the wallrocks
and rust zones in the Cu-Au mineralization belt.

The implementation of the DPCA to ASTER TIR band ratio indices (QI, CI, and MI) provided
complementary information for mapping of altered, silica-rich rocks (containing SiO2 group),
carbonates, and mafic minerals in the DPCA2 and DPCA3 (Figure 8A–C). The boundaries of orthogneiss
with the Franklinian Basin successions and quartz diorite units show a high to moderate concentration
of quartz content, which is matched with the DPCA5 derived from the ASTER VNIR + SWIR ratio
indices (see Figure 7E). In the Cu-Au mineralization belt, several zones containing high concentration of
quartz content were identified (see Figure 8A). Carbonate minerals were clearly detected in carbonate
successions of the Franklinian Basin, while mafic minerals were mostly mapped in the paragneiss
and orthogneiss units (see Figure 8A,B). Boundaries of sedimentary successions with metamorphic
rocks show a very low range of carbonates and mafic minerals. According to Pirajno et al. [1,2] and
Kolb et al. [3] Cu–Au mineralization in rust zones is restricted to the NE-trending strip, which has a
close spatial relationship with the contact of carbonate successions of the Franklinian Basin and the
basement metamorphic rocks.

Hematite/jarosite, muscovite/kaolinite, and biotite are spectrally dominated in the ASTER LSU
classification mineral map (Figure 9A), whereas chalcedony/opal and chlorite/epidote have a moderate
contribution in the total mixed spectral properties. The assemblage of hematite/jarosite, chlorite/epidote,
chalcedony/opal, and muscovite/kaolinite was detected in many parts of the Cu-Au mineralization belt
(Figure 9B), especially in the central and southwestern parts, where the main occurrences of Cu-Au
mineralization were reported by Pirajno et al. [2]. Muscovite/kaolinite has a high surface abundance in
the Cu-Au mineralization belt, which is typically concentrated in the orthogneiss and amphibolite
lithological units. Chalcedony/opal is generally concentrated at the contact between the Franklinian
Basin sequences and basement metamorphic complex (Figure 9B). The spatial distribution of the
alteration minerals in the ASTER LSU classification image-map was comparable with ASTER DPCA
image-maps, however, a detailed surface abundance of alteration minerals was more apparent in the
LSU classification image-map (see Figure 7A–E and Figure 9B).

Fe3+ and Fe2+ iron oxides and ferric and ferrous silicates were comprehensively mapped in
the southern part of the Cu-Au mineralization belt by applying DPCA to WV-3 band ratio indices
(see Figure 10 and Table 5). High to moderate surface abundance of Fe3+ iron oxides was mapped
near to Cu-Au mineralization occurrences (reported by Pirajno et al. [2]) in the DPCA2 image-map
(Figure 10A). Furthermore, ferric silicates and Fe2+ iron oxides were also mapped in the vicinity
of Cu-Au mineralization occurrences, which are recorded in the DPCA3 and DPCA4 image-maps
(Figure 10B–D). A number of zones containing high to moderate spatial distribution of Fe3+ and Fe2+ iron
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oxides and ferric silicates are recorded as feasible Cu-Au mineralization occurrences. The LSU spectral
mineral-map of the WV-3 shows spatial distribution of hematite, jarosite, ferric silicates/calcite/dolomite,
and ferrous silicates (see Figure 11B). The high concentration of hematite, jarosite, and ferric silicates
was mapped in the vicinity of Cu-Au mineralization occurrences, which is coincident with the DPCA
image-map (see Figure 10). As stated by Pirajno et al. [2], the whole-rock XRD analyses of the rust
zones have shown hydrous Fe sulfate and phosphate, jarosite, biotite, sericite, and chlorite, which are
paralleled with the remote sensing results derived from WV-3 VNIR data.

The presence of hematite, jarosite, biotite, muscovite, chlorite, epidote, chalcedony, and opal in
the selected spatial subset covering the Cu-Au mineralization belt and surrounding areas was verified
using the ACE fraction images (see Figure 12). Hematite, chlorite, epidote, chalcedony, and opal
show high surface abundances in the altered zones, while jarosite, biotite, and muscovite are lesser
in the altered zones and they are mostly associated with specific lithological units in the study area.
The DPCA image-maps of ASTER dataset show a little spatial dissimilarity with the ACE fraction
images, especially in the DPCA4 image (Figures 7 and 12). High spatial similarity with fraction images
was recorded in the LSU classification image-map (see Figure 9B). The overall accuracy and Kappa
Coefficient calculated for the LSU classification image-maps derived from Landsat-8 versus the ACE
fraction images derived from VINR + SWIR bands of ASTER were 76.25% and 0.64, respectively
(see Table 6). The overall accuracy of 65.66% and Kappa Coefficient of 0.57 were assessed for the
ASTER LSU classification image-maps (see Table 7). Using ASTER datasets, muscovite/kaolinite was
intensely mapped compared to hematite/jarosite, chlorite/epidote, chalcedony/opal, and biotite. On
the other hand, spectral mixing for hematite/jarosite, chlorite/epidote, chalcedony/opal, and biotite
was more feasible.

The overall accuracy of 77% and Kappa Coefficient of 0.69 were calculated for the WV-3 LSU
classification image-maps (see Table 8), which show a good potential for separating iron mineral classes.
Subsequently, the virtual verification indicates that the alteration zones mapped by the Landsat-8,
ASTER, and WV-3 datasets reveal a good rate of agreement (Kappa Coefficient of 0.57 to 0.69) and
reasonable accuracy (overall accuracy of 65.66% to 77%), which could be pondered for prospecting
Cu-Au mineralization. As a result, the boundaries between the Etah metamorphic and meta-igneous
complex and sedimentary successions of the Franklinian Basin in the Central Terrane, orthogneiss in
the northeastern part of the Cu-Au mineralization belt adjacent to Dallas Bugt, as well as the southern
part of the Cu-Au mineralization belt nearby Marshall Bugt, can be considered as high potential zones
for Cu-Au prospecting in the IMB.

6. Conclusions

Landsat-8, ASTER, and WV-3 multispectral remote sensing datasets were processed, interpreted,
and integrated for mapping hydrothermal alteration minerals and prospecting Cu-Au mineralization
in the IMB, Northwest Greenland. Iron oxides/hydroxide minerals and Al-OH, Mg-Fe-OH, CO3

and Si-OH/SiO2 alteration mineral groups were mapped by executing the DPCA, LSU, and ACE
image processing techniques to the Landsat-8, ASTER, and WV-3 datasets. The discrimination of
lithological units and the zones contain high concentration of iron oxides/hydroxide and clay minerals
in the IMB were achieved using Landsat-8 data at the regional scale. The information extracted from
Landsat-8 provides a synoptic view of alteration mineral zones in the IMB metallogenic province. Iron
oxides/hydroxide minerals typically concentrated at the contact between sedimentary successions of
the Franklinian Basin and Thule Supergroup with the Etah metamorphic and meta-igneous complex
rocks. ASTER datasets helped to map the spatial distribution of Fe3+/Fe2+ iron oxide/hydroxides,
Al/Fe-OH, Mg-Fe-OH, Si-OH/SiO2 mineral groups in the Cu-Au mineralization belt and surrounding
areas, comprehensively. Fe3+/Fe2+ iron oxide/hydroxides and Si-OH/SiO2 were also detected in the
contact between sedimentary successions and metamorphic and meta-igneous rocks, orthogneiss,
and quartz diorite. Intense concentration of iron oxide/hydroxides and Si-OH/SiO2 was identified
within documented rust zones (Cu-Au mineralization).
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Furthermore, fraction abundance of hematite, jarosite, biotite, muscovite, chlorite, epidote,
chalcedony, and opal was detected in the Cu-Au mineralization belt and surrounding areas using the
VNIR + SWIR bands of ASTER. Hence, the rust zones contain the assemblage of hematite/jarosite,
chalcedony/opal, and chlorite/epidote with little amount of muscovite/kaolinite. Using the WV-3 dataset,
Fe3+ and Fe2+ iron oxides and ferric and ferrous silicates were broadly mapped and discriminated
in the southern part of the Cu-Au mineralization belt. High to moderate spatial distribution of Fe3+

and Fe2+ iron oxides and ferric silicates were detected in the rust zones. Strong fraction abundance of
hematite, jarosite, and ferric silicates was also mapped in the rust zones. The virtual verification shows
an appropriate overall accuracy and reasonable rate of agreement for mapping alteration mineral zones
using image processing techniques and remote sensing multispectral/multi-sensor satellite imagery.
Consequently, high potential zones for Cu-Au prospecting were identified in the IMB, Northwest
Greenland, including (i) the boundaries between the Etah metamorphic and meta-igneous complex
rocks and sedimentary successions of the Franklinian Basin in the Central Terrane, (ii) orthogneiss in
the northeastern part of the Cu-Au mineralization belt adjacent to Dallas Bugt, and (iii) the southern
part of the Cu-Au mineralization belt nearby Marshall Bugt. It is recommended that these high
prospective zones be considered for future comprehensive fieldwork and detailed geophysical and
geochemical surveys in the IMB, Northwest Greenland. This investigation suggests the necessity
of multispectral/multi-sensor satellite image processing analysis as a cost-effective tool for mining
companies for reconnaissance stages of mineral prospecting before costly fieldwork, geophysical,
and geochemical surveys in remote and inaccessible metallogenic provinces around the world.
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Abstract: Mapping hydrothermal alteration minerals using multispectral remote sensing satellite
imagery provides vital information for the exploration of porphyry and epithermal ore mineralizations.
The Ahar-Arasbaran region, NW Iran, contains a variety of porphyry, skarn and epithermal ore
deposits. Gold mineralization occurs in the form of epithermal veins and veinlets, which is associated
with hydrothermal alteration zones. Thus, the identification of hydrothermal alteration zones is
one of the key indicators for targeting new prospective zones of epithermal gold mineralization
in the Ahar-Arasbaran region. In this study, Landsat Enhanced Thematic Mapper+ (Landsat-7
ETM+), Landsat-8 and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
multispectral remote sensing datasets were processed to detect hydrothermal alteration zones
associated with epithermal gold mineralization in the Ahar-Arasbaran region. Band ratio techniques
and principal component analysis (PCA) were applied on Landsat-7 ETM+ and Landsat-8 data to
map hydrothermal alteration zones. Advanced argillic, argillic-phyllic, propylitic and hydrous silica
alteration zones were detected and discriminated by implementing band ratio, relative absorption
band depth (RBD) and selective PCA to ASTER data. Subsequently, the Bayesian network classifier
was used to synthesize the thematic layers of hydrothermal alteration zones. A mineral potential
map was generated by the Bayesian network classifier, which shows several new prospective zones
of epithermal gold mineralization in the Ahar-Arasbaran region. Besides, comprehensive field
surveying and laboratory analysis were conducted to verify the remote sensing results and mineral
potential map produced by the Bayesian network classifier. A good rate of agreement with field
and laboratory data is achieved for remote sensing results and consequential mineral potential map.
It is recommended that the Bayesian network classifier can be broadly used as a valuable model for
fusing multi-sensor remote sensing results to generate mineral potential map for reconnaissance
stages of epithermal gold exploration in the Ahar-Arasbaran region and other analogous metallogenic
provinces around the world.

Keywords: epithermal gold; hydrothermal alteration; Ahar-Arasbaran region; ASTER; Landsat-7
ETM+; Landsat-8; Bayesian Network Classifiers
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1. Introduction

Hydrothermal alteration minerals such as iron oxide/hydroxides, Al-OH, Fe,Mg-OH, S-O, Si-OH
and carbonate minerals show indicative spectral absorption signatures in the visible near-infrared
(VNIR) and the shortwave infrared (SWIR) regions [1–5]. Multispectral and hyperspectral satellite
imagery with appropriate spatial and spectral resolution is capable of recording the spectral absorption
signatures of alteration minerals in the VNIR and SWIR spectral bands, which can be utilized to map
and remotely detect hydrothermal alteration mineral zones associated with ore mineraliztions [6–9].
Recently, the identification of alteration mineral zones using remote sensing sensors is effectively and
extensively used for prospecting porphyry copper, epithermal gold, uranium and massive sulfide
deposits in metallogenic provinces around the world [10–20].

The Landsat-7 ETM+ imagery was used for mapping hydrothermal alteration zones related
to epithermal gold and porphyry copper deposits in the reconnaissance stages of copper/gold
exploration. The VNIR spectral bands of Landsat-7 ETM+ were utilized to map iron oxides/hydroxide
minerals (gossan), while, SWIR spectral bands were used to detect hydroxyl-bearing minerals and
carbonates [21–24]. Band ratio of 3/1 is able to identify iron oxides/hydroxide minerals (hematite, jarosite
and limonite) due to strong reflectance in band 3 (0.63–0.69 μm) and absorption features in band 1
(0.45–0.52μm) [23]. Band ratio of 5/7 is sensitive to hydroxyl-bearing minerals and carbonates because of
reflectance features in band 5 (1.55–1.75 μm) and strong absorption in band 7 (2.09–2.35 μm) [23,25–27].
Equivalent bands of Landsat-8, bands 2 and 4 responsive to iron oxides/hydroxides and bands 6 and 7
sensitive to hydroxyl-bearing minerals and carbonates, were also extensively used for hydrothermal
alteration mineral mapping in metallogenic provinces [12,16,18,19,28]. Discrimination of particular
alteration zones and minerals (i.e., argillic, phyllic propylitic zones and muscovite, chlorite and
kaolinite) using Landsat-7 ETM+ and Landsat-8 VNIR and SWIR spectral bands is challenging due to
position, number and the broad extent of the bands [28,29].

Distinguishing hydrothermal alteration zones or specific mineral assemblages as an indicator
of high-economic potential zones for exploring ore mineralizations is significant [30,31]. For
instance, discriminating phyllic zone within the inner shell of mineralization for porphyry copper
exploration is important and identification of advanced argillic zone situated near to hydrothermal
mineralization system for epithermal gold exploration is essential [32–34]. ASTER multispectral satellite
imagery is particularly useful for discriminating hydrothermal alteration zones associated with ore
mineralizations [6,35–37]. Three VNIR spectral bands of ASTER (0.52 to 0.86 μm) are used for detecting
iron oxide/hydroxide minerals [6,35]. Phyllic, argillic and propylitic zones are recognizable using six
SWIR spectral bands of ASTER (1.6 to 2.43 μm) [35]. The phyllic zone containing illite/muscovite
(sericite) and strong Al-OH absorption feature at 2.20 μm is detectable by band 6 of ASTER. The argillic
zone (kaolinite/alunite) has Al-OH absorption feature at 2.17 μm, which is coincident with band 5 of
ASTER. The propylitic zone comprising epidote, chlorite and calcite shows absorption features around
2.35 μm, which is corresponded with band 8 of ASTER [35–39].

Obtaining information from multi-sensor remote sensing satellite data can produce relevant
results for detailed mapping of hydrothermal alteration zones [12]. The integration of the multi-sensor
remote sensing results using geostatistical techniques can quickly produce a mineral potential map,
which indicates the high potential zones of hydrothermal ore mineralizations [40]. Mineral potential
map of a region is generally realized as the predictive classification of each spatial unit contains a
particular combination of spatially coincident predictor patterns as mineralized or barren zones [41,42].
A Bayesian network is a type of statistical model (probabilistic graphical model), which represents a
set of variables and their conditional dependencies through a Directed Acyclic Graph (DAG) [41,43,44].
It predicts the likelihood that anyone of several possible known causes was the contributing factor [45].
Therefore, the Bayesian network is a suitable model for fusing thematic layers derived from multi-sensor
remote sensing satellite data to generate a mineral potential map.

In this study, Landsat-7 ETM+, Landsat-8 and ASTER multispectral remote sensing datasets
were used to identify hydrothermal alteration zones associated with epithermal gold mineralization

220



Remote Sens. 2020, 12, 105

and producing thematic layers, which were afterward synthesized in the Bayesian networks for
mineral potential mapping in the Ahar-Arasbaran region, NW Iran (Figure 1). This region is a
well-endowed terrain hosting numerous known epithermal gold deposits, several porphyry and
skarn Cu-Mo deposits, Fe skarn deposits, Cu-Au porphyry deposits and many other Cu-Mo-Au vein
mineralizations [46–50]. The deposits are associated with extensive hydrothermal alteration mineral
zones such as iron oxide/hydroxides, advanced argillic, argillic, phyllic and propylitic [48,51,52]. The
Ahar-Arasbaran region has a high potential for exploring new prospective zones of epithermal gold
and many other ore mineralizations. Pazand et al. [52] used ASTER satellite data for hydrothermal
alteration mapping in the Ahar area, NW Iran. Some geo-referenced hydrothermal alteration maps were
produced using RBD (relative absorption band depth), principal component analysis (PCA), minimum
noise fraction (MNF) and matched filtering (MF) image processing techniques for reconnaissance stages
of porphyry copper exploration in the Ahar area. Furthermore, Pazand and Hezarkhani [48] generated
a favorability map for Cu porphyry mineralization using fuzzy modeling in the Ahar–Arasbaran zone,
NW Iran. There is no comprehensive remote sensing research available for mapping hydrothermal
alteration zones in the Ahar-Arasbaran region using multi-sensor satellite imagery at a regional scale.
This study characterizes an extensive remote sensing analysis using Landsat-7 ETM+, Landsat-8 and
ASTER datasets, detailed fieldwork and laboratory analysis for mineral potential mapping. Therefore,
the primary purposes of the research are: (1) to map hydrothermal alteration mineral zones using
Landsat-7 ETM+, Landsat-8 and ASTER datasets by implementing the band ratio, PCA, RBD and
selective PCA image processing techniques; (2) to generate mineral potential map by fusing the
alteration thematic layers using the Bayesian networks; and (3) to verify the high potential zones by
checking the detailed global positioning system (GPS) surveying in the field and analyzing several
microphotographs of hydrothermal alteration minerals and gold mineralization and X-ray diffraction
(XRD) analysis of collected rock samples from alteration zones.

2. Geology of the Ahar-Arasbaran Region

The Ahar-Arasbaran region covers an area (approximately 5000 km2), which is located between
latitudes 38◦07′N and 38◦52′N and longitudes 46◦15′E and 47◦30′E (Figure 1). This zone is a part of
Lesser Caucasus metallogenic zone and corresponding to tectono-magmatism activity from Jurassic to
Quaternary [46,47,53,54]. The volcano-plutonic belt of Arasbaran-Lesser Caucasus is a mountainous
and uplifted region that trending NW-SE from Georgia (Republic of Azerbaijan) to the Talesh region
(Iran) [50]. Magmatic rocks in the Ahar-Arasbaran region containing tholeiitic, calc-alkaline, high
calcium calc-alkaline, shoshonitic, adakitic, alkaline sodic and potassic rocks, which are formed in a
continental margin of a subduction zone (subduction to post-collision stages) [50]. Cretaceous units
(limestone and shale), flysch deposits, Paleocene and Eocene volcanic rocks are also exposed in the
study area (Figure 1). Several intrusive bodies having different sizes are penetrated in the Eocene
and Cretaceous volcanic-sedimentary rocks and caused folding, alteration and mineralization [49,51].
Structural trends of folds, faults, dykes and veins are mostly NW-SE, E-W and NE-SW, which show the
main stresses that affected the study area [50,51].

The intrusion of the Oligo-Miocene batholiths into the Cretaceous to Eocene sedimentary and
volcano-sedimentary deposits along with hydrothermal fluids is formed intensive alteration halos in
the Eocene volcanic rocks [55]. The alteration zones such as argillic, silica and alunite are associated
with Cu, Au, Mo, Ag, Pb and Zn mineralizations [49]. Moreover, several skarn zones are formed in the
contact zone of intrusive masses with Cretaceous limestone [51]. A variety of ore mineralization zones
were identified in the Ahar-Arasbaran region, including Fe, Cu, Pb-Zn, Cu-Au, Cu-Mo, Au-Ag, Fe-Au,
which occurred in the form of sprains, veins, stokes and in relation to the skarn zones [49,51]. The gold
mineralization in the study area is observed in the form of epithermal veins [55]. The Masjed Daghi
(Siahrood) and AliJavad valley (Anjerd) are considered to be Au-Cu porphyry deposits. The Sharaf-abad,
Hize-jan, Nabi-jan, Zailig, Miveh-roud, Safi-Khanloo, Noqdouz, Anniqh and Khoyneh-roud are known
as epithermal gold deposits in the study area [55].
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Figure 1. Geological map of the Ahar-Arasbaran region. Modified from five 1:100,000 geological map
sheet provided by the Geological Survey of Iran [56]. Abbreviation to epithermal gold mineralization:
ANI = Annigh; AST = Astamal; AND = Andiryan; KLJ = Kalijan; SHF = Sharaf-abad; HIZ = Hize-jan;
KYN = Khoyneh-roud; DYM = Day-mamagh; NAB = Nabi-jan; ARP1 = Arpaligh1; ARP2 = Arpaligh2;
YRL = Yaralojeh; ANJ = Anjerd; ALV = Alavigh; JVS = Javan-sheykh; SHL = Shaleh-boran;
ASB = Asb-abad; SNJ = Sonajil; YSF = Yosoufloo; NOG =Noghdouz; NYZ =Niyaz; ZY1 = Zailigh1;
ZY2 = Zailigh2; KH1 = Khiarloo1; KH2 = Khiarloo1.

3. Materials and Methods

3.1. Remote Sensing Data and Pre-Processing

The Landsat-7 ETM+, Landsat-8 and ASTER satellite remote sensing datasets were used in this
study. Technical characteristics of Landsat-7 ETM+, Landsat-8 and ASTER remote sensing sensors are
summarized in Table 1.
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Table 1. Technical characteristics of the Landsat-7 ETM+, Landsat-8 and ASTER remote sensing
sensors [23,57–59].

Landsat 7
Enhanced Thematic Mapper

Plus (Landsat-7 ETM+)

Bands Wavelength (μm) Resolution (m)

Band 1—Blue 0.45–0.52 30

Band 2—Green 0.52–0.60 30

Band 3—Red 0.63–0.69 30

Band 4—Near Infrared (NIR) 0.77–0.90 30

Band 5—Shortwave Infrared (SWIR) 1 1.55–1.75 30

Band 6—Thermal 10.40–12.50 60 * (30)

Band 7—Shortwave Infrared (SWIR) 2 2.09–2.35 30

Band 8—Panchromatic 0.520–0.900 15

Landsat 8
Operational Land Imager (OLI)

and Thermal Infrared Sensor
(TIRS)

Bands Wavelength (μm) Resolution (m)

Band 1—Ultra Blue (coastal/aerosol) 0.435 –0.451 30

Band 2—Blue 0.452–0.512 30

Band 3—Green 0.533–0.590 30

Band 4—Red 0.636–0.673 30

Band 5—Near Infrared (NIR) 0.851–0.879 30

Band 6—Shortwave Infrared (SWIR) 1 1.566–1.651 30

Band 7—Shortwave Infrared (SWIR) 2 2.107–2.294 30

Band 8—Panchromatic 0.503–0.676 15

Band 9—Cirrus 1.363–1.384 30

Band 10—Thermal Infrared (TIRS) 1 10.60–11.19 100 * (30)

Band 11—Thermal Infrared (TIRS) 2 11.50–12.51 100 * (30)

ASTER
Advanced Space borne
Thermal Emission and
Reflection Radiometer

Band Label Wavelength (μm) Resolution (m) Description

B1 VNIR_Band1 0.520–0.60 15 Visible green/yellow

B2 VNIR_Band2 0.630–0.690 15 Visible red

B3N VNIR_Band3N 0.760–0.860 15
Near infrared

B3B VNIR_Band3B 0.760–0.860 15

B4 SWIR_Band4 1.600–1.700 30

Short-wave infrared

B5 SWIR_Band5 2.145–2.185 30

B6 SWIR_Band6 2.185–2.225 30

B7 SWIR_Band7 2.235–2.285 30

B8 SWIR_Band8 2.295–2.365 30

B9 SWIR_Band9 2.360–2.430 30

B10 TIR_Band10 8.125–8.475 90

Long-wave infrared or
thermal IR

B11 TIR_Band11 8.475–8.825 90

B12 TIR_Band12 8.925–9.275 90

B13 TIR_Band13 10.250–10.950 90

B14 TIR_Band14 10.950–11.650 90

* The 60 m thermal band of Landsat-7 ETM+ is resampled and co-registered to the 30 m VNIR and SWIR bands. The
100 m TIRS bands are resampled and co-registered to the 30 m OLI bands.

A Landsat-7 ETM+ scene (Path/Raw: 168/33) covering the Ahar-Arasbaran region was acquired
on 15 June 2001. A level 1T (terrain corrected) Landsat 8 scene (Path/Raw: 168/33) was also acquired
on 10 June 2016 for the study area. Seven level 1B ASTER scenes covering the study area were
acquired from 8 to 29 June 2002–2004. The data were obtained from the U.S. Geological Survey’s
Earth Resources Observation System (EROS) Data Center (EDC) (https://earthexploere.usgs.gov/ and
https://glovis.usgs.gov). The scenes were cloud-free and have been already georeferenced to the
UTM zone 38 North projection using the WGS-84 datum. For converting Landsat-7 ETM+ digital
numbers to spectral radiance or exoatmospheric reflectance (reflectance above the atmosphere), the
Landsat Calibration technique was adopted from Chander et al. [60]. This technique uses the published
post-launch gain and offset values [61,62]. The mathematical details of the technical performance
can be found in Chander et al. [60]. For Landsat 8 and ASTER datasets, Internal Average Relative
Reflectance (IARR) was utilized. The IARR calibration method normalizes images to a scene average
spectrum [61,63]. This is particularly effective for reducing imaging spectrometer data to relative
reflectance in an area where no ground measurements exist and little is known about the scene [61,63].
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It works best for arid areas with no vegetation. The IARR calibration is performed by calculating an
average spectrum for the entire scene and using this as the reference spectrum. Apparent reflectance is
calculated for each pixel of the image by dividing the reference spectrum into the spectrum for each
pixel. The atmospheric correction was implemented to ASTER data after Crosstalk correction [64].
Moreover, the 15 m VNIR bands of ASTER were resampled to the 30 m SWIR bands using the cubic
convolution technique. A masking procedure was applied to the remote sensing datasets for removing
the effects of vegetation and Quaternary deposits. Normalized Difference Vegetation Index (NDVI) was
calculated for the remote sensing datasets. As a result, a masking procedure was executed to the remote
sensing datasets for eliminating the influences of sparse vegetation in the study area. For Quaternary
deposits, we used geological map of the study area to identify the location of the Quaternary units, then
a masking procedure was implemented to the remote sensing datasets. The ENVI (Environment for
Visualizing Images, http://www.exelisvis.com) version 5.2 and ArcGIS version 10.3 (Esri, Redlands, CA,
USA) software packages were employed for processing Landsat-7 ETM+, Landsat-8 and ASTER data.

3.2. Image Processing Techniques

The main objective of image processing techniques implemented in this analysis is to map
hydrothermal alteration zones for generating thematic layers from multi-sensor remote sensing satellite
datasets. Then, the thematic layers are fused using a Bayesian network model for producing a mineral
potential map of the Ahar-Arasbaran region. Fieldwork and laboratory analysis are used to verify the
results. A view of the methodological flowchart applied in this study is shown in Figure 2.

Figure 2. An overview of the methodological flowchart applied in this analysis.
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3.2.1. Band Ratio

The band ratio technique is one of the most applicable image processing techniques for mapping
hydrothermal alteration minerals and zones such muscovite, jarosite, gossan, advanced argillic,
argillic-phyllic, propylitic and hydrous silica-affected zones [23,39,65,66]. The digital number (DN)
value of a band is partitioned by the DN value of other band, which highlights particular spectral
features related to minerals or materials that planned to map [23]. Relative Absorption Band Depth
(RBD) uses three-point ratio formulation for detecting typical absorption features related to a specific
mineral or alteration zone [67]. For a specific absorption characteristic, the numerator is the sum of
the bands demonstrating the shoulders and the denominator is the band positioned adjoining the
absorption feature minimum [67]. Therefore, the absorption intensities attributed to Al-OH, Fe,Mg-OH,
Si-OH and CO3 can be formulated for mapping advanced argillic, argillic-phyllic, propylitic and
hydrous-silica alteration zones [35].

In this study, iron oxide-bearing minerals (gossan) were mapped using Landsat-7 ETM+ band
ratio of band 3/band 1, Landsat-8 band ratio of band 4/band 2 and ASTER band ratio of band 2/band 1,
respectively [23,39,68]. As mentioned before, iron oxide/hydroxide minerals contain diagnostic spectral
characteristics coincident with selected bands of different sensors [19,23,28,35]. Hydroxyl-bearing
(Al-OH and Fe,Mg-OH) and carbonates minerals were typically identified in the study region through
Landsat-7 ETM+ band ratio of band 5/band 7, Landsat-8 band ratio of band 6/band 7 and ASTER
band ratio of band 4/band 9, respectively [23,28,29,68]. The advanced argillic alteration (alunite and
kaolinite) contain strong absorption about 2.17 μm (corresponding band 5 of ASTER) [35], thus, ASTER
band ratio of band 4/band 6 was used to highlight the advanced argillic alteration zone [69] in the
study area. The argillic-phyllic alteration zone is mostly dominated by sericite (muscovite/illite), which
shows high absorption feature at 2.20 μm (equivalent to band 6 of ASTER) [35,36]. This alteration zone
was detected by applying ASTER band ratio of band 5/band 6 [36]. Moreover, the propylitic alteration
zone was mapped using ASTER band ratio of band 5/band 8 [35,36] in this analysis.

For detailed mapping of advanced argillic, argillic-phyllic, propylitic and hydrous silica-affected
alteration zones, four RBDs were adopted using SWIR bands of ASTER (Table 2). The RDB1 = (band 4 +
band 6)/band 5 for detecting advanced argillic zone, the RDB2 = (band 5 + band 7)/band 6 for identifying
argillic-phyllic zone [38,39], the RDB3 = (band 6 + band 9)/(band 7+ band 8) for discriminating
propylitic zone and RDB4 = (band 5 + band 8)/(band 6 + band 7) for mapping hydrous silica zone [70]
were implemented.

Table 2. The RBD indices applied for hydrothermal alteration mapping in the study area using
ASTER imagery.

Alteration Zone Mineral Assemblages RBD Band

Advanced Argillic Alunite-Kaolinite-Pyrophyllite (4 + 6)/5
Argillic-Phyllic Sericitic-Illite-Smectite (5 + 7)/6

Propylitic Epidote-Chlorite-Amphibole-Biotite (6 + 9)/(7 + 8)
Hydrous Silica Hydrous Silica-Jarosite-Sericite (5 + 8)/(6 + 7)

3.2.2. Principal Component Analysis

Principal Component Analysis (PCA) is a statistical approach that broadly and successfully used
for decorrelation and enhancing the spectral contrast in remote sensing imagery [71]. This method
transforms a number of correlated variables into several uncorrelated variables that termed PCs [72].
The eigenvector loadings (uncorrelated linear combinations) of variables were selected in a consistent
way that each PC contains a smaller variance of extracted linear combination, sequentially [71,73].
The eigenvector loadings include key information linked to spectral features, which are anticipated
from spectral bands of a remote sensing sensor [74]. For instance, a PC contains strong eigenvector
loadings for indicative bands (reflection and absorption bands) of an alteration mineral with opposite
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signs enhances that mineral as bright pixels (if loading is positive in reflection band) or dark pixels (if
loading is negative in reflection band) in the PC image [74,75].

In this study, the PCA method was implemented to some selected bands of Landsat-7 ETM+,
Landsat-8 and ASTER using a covariance matrix for mapping hydrothermal alteration minerals. For
identifying iron oxide-affected zones (gossan), bands 1, 3, 4 and 5 of Landsat-7 ETM+, bands 2, 4, 5
and 6 of Landsat-8 and bands 1, 2, 3 and 4 of ASTER were selected. The selected bands cover the iron
oxide/hydroxide spectral properties in the VNIR region [3–5]. The eigenvector matrix for the selected
bands and satellite sensors for mapping iron oxide/hydroxides are shown in Table 3A–C. Bands 1,
4, 5 and 7 of Landsat-7 ETM+, bands 2, 5, 6 and 7 of Landsat-8 and bands 1, 3, 4 and 6 of ASTER
were used for detecting hydroxyl-bearing minerals. These bands cover the reflectance and absorption
features of OH-minerals in the VNIR and SWIR regions [1,2]. Table 4A–C shows the eigenvector matrix
for the selected bands and satellite sensors for mapping hydroxyl-bearing minerals. The reflectance
properties and absorption intensities related to Al-OH, Fe,Mg-OH and CO3 can be mapped by ASTER
VNIR+SWIR bands [23,35,38]. Bands 1, 4, 6 and 7 of ASTER were utilized for mapping advanced
argillic zone. Bands 1, 3, 5 and 6 of ASTER were executed to detect argillic-phyllic zone. Bands 1, 3,
5 and 8 of ASTER were performed for discriminating propylitic alteration zone. Table 5A–C shows
eigenvector matrix for the selected bands of ASTER for mapping advanced argillic, argillic-phyllic and
propylitic alteration zones. After implementing the algorithms for all band ratios and PCAs, firstly the
obtained DN values were normalized, then the X+3S was used to obtain definite anomaly. It means all
the DN values showing the number more than the X+3S have been considered as target alteration
minerals and zones.

Table 3. The Eigenvector matrix values derived from principal component analysis (PCA) for mapping
iron oxide/hydroxides. (A) Bands 1, 3, 4 and 5 of Landsat-7 ETM+; (B) Bands 2, 4, 5 and 6 of Landsat-8;
and (C) Bands 1, 2, 3 and 4 of ASTER.

(A)

Eigenvector Band 1 Band 3 Band 4 Band 5

PCA 1 0.442 0.536 0.386 0.605
PCA 2 0.095 0.616 −0.771 −0.123
PCA 3 0.420 0.258 0.383 −0.780
PCA 4 0.786 −0.515 −0.328 0.091

(B)

Eigenvector Band 2 Band 4 Band 5 Band 6

PCA 1 0.399 0.444 0.544 0.587
PCA 2 −0.374 0.037 −0.555 0.741
PCA 3 −0.566 −0.510 0.614 0.201
PCA 4 0.616 −0.734 −0.126 0.253

(C)

Eigenvector Band 1 Band 2 Band 3 Band 4

PCA1 0.320 0.360 0.562 0.671
PCA2 0.265 0.506 −0.779 0.253
PCA3 −0.396 −0.539 −0.259 0.695
PCA4 0.817 −0.567 −0.092 −0.008
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Table 4. The Eigenvector matrix values derived from PCA for mapping hydroxyl-bearing minerals.
(A) Bands 1, 4, 5 and 7 of Landsat-7 ETM++; (B) Bands 2, 5, 6 and 7 of Landsat-8; and (C) Bands 1, 3, 4
and 6 of ASTER.

(A)

Eigenvector Band 1 Band 4 Band 5 Band 7

PCA 1 0.455 0.401 0.629 0.484
PCA 2 −0.002 −0.839 0.129 0.528
PCA 3 0.865 −0.130 −0.475 −0.086
PCA 4 −0.208 0.343 −0.599 0.692

(B)

Eigenvector Band 2 Band 5 Band 6 Band 7

PCA 1 0.388 0.529 0.573 0.490
PCA 2 0.294 0.698 −0.410 −0.506
PCA 3 0.841 −0.426 −0.298 0.142
PCA 4 −0.232 0.223 −0.643 0.694

(C)

Eigenvector Band 1 Band 3 Band 4 Band 6

PCA1 0.284 0.498 0.599 0.558
PCA2 0.062 −0.839 0.202 0.499
PCA3 0.839 0.011 −0.527 0.127
PCA4 0.457 −0.215 0.567 −0.649

Table 5. The Eigenvector matrix values derived from PCA for mapping advanced argillic, argillic-phyllic
and propylitic alteration zones using ASTER VNIR+SWIR bands. (A) Bands 1, 4, 6 and 7 for advanced
argillic zone mapping; (B) Bands 1, 3, 5 and 6 for argillic-phyllic zone mapping; and (C) Bands 1, 3, 5
and 8 for propylitic zone mapping.

(A)

Eigenvector Band 1 Band 4 Band 6 Band 7

PCA1 −0.28 −0.593 −0.553 −0.514
PCA2 −0.787 0.589 −0.08 −0.166
PCA3 −0.543 −0.549 0.509 0.382
PCA4 −0.089 0.003 −0.655 0.75

(B)

Eigenvector Band 1 Band 3 Band 5 Band 6

PCA1 0.297 0.512 0.551 0.586
PCA2 0.01 −0.845 0.366 0.389
PCA3 0.954 −0.15 −0.154 −0.207
PCA4 0.027 −0.004 −0.733 0.679

(C)

Eigenvector Band 1 Band 3 Band 5 Band 8

PCA1 0.307 0.528 0.568 0.552
PCA2 0.014 −0.832 0.341 0.438
PCA3 0.95 −0.154 −0.233 −0.142
PCA4 −0.059 0.073 −0.712 0.696

3.3. Bayesian Networks Model

A Bayesian network is an interpreted directed acyclic graph (DAG), which is able to model
uncertain relationships between variables in a complex system [76–79]. The mathematical concepts
of the Bayesian networks model can be summarized as follows [43,77]. The subclass x belongs to a
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class of a set of classes ω1, ω2, . . . , ωn, if a class is defined by the highest conditional probability. The
conditional probability is calculated using Equation (1):

P(ωi|x) =
P(ωi

∣∣∣x)P(ωi)

P(x)
, (1)

where P(x) is the non-conditional probability and P(ωi) is the prior probability of each class. The
prior probability is calculated by dividing the number of samples in each class by the total number of
samples [43]. In this method, a probability distribution function (PDF) is assigned for each class. Then,
the training data is exploited to estimate the parameters involved in the PDF. The covariance matrix
and the mean vector are calculated as the parameters of a Gaussian probability function provided that
the data is normally distributed [76]. In other words, it is mathematically formulated as follows:

gi(x) =
1

(2π)
m
2 |∑ i |

1
2

exp
[

1
2 (x− μi)

T∑−1
i (x− μi)

]
× P(ω i)

i = 1, 2, . . . , c
(2)

In this equation (Equation (2)), m is the number of variables, which is added to μi and Σi of the
mean vector and an m*m covariance matrix of the ith class that calculated using Equations (3) and (4):

μi =
1
ni

ni∑

j=1

xji (3)

∑

i

=
1
ni

ni∑

j=1

(
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)(
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Bayesian networks model uses a structural graph known as a DAG to represent the knowledge
about different domains or random variables [41]. The DAG is defined by the nodes and the directed
edges. The former and the latter represent random variables and the relationship among variables,
respectively, as it is shown in Figure 3. As can be seen from the direction of the arrow in Figure 3, there
is a direct relationship between xi and xj. The xi (known as the parent node) is a dependent variable of
the xj (known as an offspring node) [43].

Figure 3. A schematic diagram depicting a general Bayesian network model [43].

There are different forms of Bayesian networks (See Reference [41] and references therein). One
of the most popular forms of Bayesian networks is Naive Bayes (NB) classifier [80,81]. It is a simple
structured algorithm with a single parent node and a number of offspring nodes [76,79,80]. A typical
NB classifier diagram is shown in Figure 4. It is not only straightforward and easy to construct but also,
no training procedure is required in the NB classifier [81]. The NB classifier undertakes comprehensive
conditional independence between characteristics, which is impracticable for several predictor patterns
utilized in mineral potential mapping [41]. In this study, the NB classifier was used for fusing the
thematic layers derived from Landsat-7 ETM+, Landsat-8 and ASTER satellite sensors for generating a
mineral potential map for the Ahar-Arasbaran region.
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Figure 4. A typical Naive Bayes classifier diagram [79].

3.4. Fieldwork Data and Laboratory Analysis

The locations of hydrothermal alteration zones and their spatial relation with epithermal gold
mineralization were systematically investigated using Global positioning system (GPS) survey in the
study area (several field campaigns from June to August 2018). A handheld GPS (Garmin, Etrex Vista
Hcx), with an average accuracy of 7 m, was used to record the hydrothermal alteration locations.
Numerous field photographs and rock samples (120 samples) were collected from the alteration
zones and ore mineralization. Rock samples were utilized for laboratory analysis to prepare thin and
polished sections of altered rocks and ore mineralization as well as X-ray diffraction (XRD) analysis.
Mineralogical compositions were analyzed using an Asenware AW-XDM 300 X-ray diffractometer
(voltage: 40 Kv, current: 30 mA, step time: 1s and step size: 0.05◦ 2θ) at the Zarazma Mineral Studies
Company, Tehran, Iran. Besides, the confusion matrix (error matrix) and Kappa Coefficient were
calculated for hydrothermal alteration mineral mapping derived from remote sensing analysis versus
field data.

4. Results

4.1. Generating Thematic Layers Using Multi-Sensor Remote Sensing Data

Figure 5A–C shows iron oxide/hydroxide zones (gossan) derived from 3/1 band ratio of Landsat-7
ETM+, 4/2 band ratio of Landsat-8 and 2/1 band ratio of ASTER, respectively. Figure 5A shows the
spatial distribution of iron oxide/hydroxide minerals derived from the Landsat-7 ETM+ band ratio as
red pixels. Most of the documented gold mineralizations are associated with iron oxide/hydroxide
zones (gossan), especially in the northern and northeastern parts of the study area. The spatial
distribution of iron oxide/hydroxide minerals in the Landsat-8 band ratio image (Figure 5B) is almost
similar to Landsat-7 ETM+ resultant image. But, it is extensive in some locations in the northwestern
and southeastern parts of the selected subset scene. Figure 5C shows the ASTER band ratio resultant
image. The surface abundance of iron oxide/hydroxides in this image is lower compared to the
Landsat-7 ETM+ and Landsat-8 results. However, the high concentration of iron oxide/hydroxides was
mapped in the northwestern part of the study area using the ASTER band ratio (Figure 5C). Regarding
the geological map of the Ahar-Arasbaran region (see Figure 1), iron oxide/hydroxide minerals were
mapped along with geological lineament features and igneous rocks (granite, granodiorite, biotite
granite, andesite, dasite and basalt), volcano sedimentary units and massive and bedded limestone.

Typically, hydroxyl-bearing (Al-OH and Fe,Mg-OH) minerals and carbonates zones were mapped
in Figure 6A–C using the 5/7 band ratio of Landsat-7 ETM+ (A), 6/7 band ratio of Landsat-8 (B)
and 4/9 band ratio of ASTER (C). The green pixels depict OH-alteration and carbonates, which are
normally concentrated in igneous rock (granite, granodiorite, biotite granite, andesite and dasite),
volcano sedimentary units and limestone. The OH-alteration minerals are more strongly mapped in
the Landsat-8 and ASTER resultant images compared to Landsat-7 ETM+ image (Figure 6A–C). Almost
all of the documented gold occurrences have an adjoining spatial relationship with hydroxyl-bearing
alteration minerals; it is particularly observable in the Landsat-8 resultant image (Figure 6B). It may
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be due to the high signal to noise radiometer performance of Landsat-8 data, which allows detecting
subtle variation in surface conditions [58].

Figure 5. Spatial distribution of iron oxide/hydroxide zones (gossan) in the study area overlaid on hill
shade. (A) The 3/1 band ratio image of Landsat-7 ETM+; (B) the 4/2 band ratio image of Landsat-8;
(C) the 2/1 band ratio image of ASTER.

Figure 6. Spatial distribution of hydroxyl-bearing minerals and carbonates in the study area overlaid on
hill shade. (A) The 5/7 band ratio image of Landsat-7 ETM+; (B) the 6/7 band ratio image of Landsat-8;
(C) the 4/9 band ratio image of ASTER.
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ASTER band ratios were used to specifically map the surface distribution of hydrothermal
alteration zones in the study area. Figure 7A–C shows the advanced argillic alteration zone derived
from 4/6 (A), the argillic-phyllic alteration zone derived from 5/6 (B) and the propylitic alteration
zone derived from 5/8 (C), respectively. Concerning the geology map of the study area (see Figure 1),
the advanced argillic alteration zone is corresponded to igneous, volcano sedimentary units and
limestone; the argillic-phyllic alteration zone is associated with granite, granodiorite, andesite, dasite,
rhyolite, trachyte, limestone units and sedimentary rocks; the propylitic alteration zone is typically
concentrated with andesite, dasite, volcano sedimentary units and limestone (Figure 7A–C). The
high surface abundance of argillic-phyllic and propylitic alteration zones was mainly mapped in the
northwestern part of the study area. The spatial distribution of the advanced argillic alteration zone
(Figure 7A) is intensely matched with hydroxyl-bearing mineral zones that mapped by Landsat-7
ETM+ and Landsat-8 band ratio images (Figure 6A,B). The documented gold mineralizations have
closer spatial relationship with the advanced argillic alteration zone compared to the argillic-phyllic
and propylitic alteration zones in the study area.

Figure 7. Spatial distribution of hydrothermal alteration zones in the study area overlaid on hill shade.
(A) The advanced argillic alteration zone (4/6 band ratio image of ASTER); (B) the argillic-phyllic
alteration zone (5/6 band ratio image of ASTER); (C) the propylitic alteration zone (5/8 band ratio image
of ASTER).

Detailed mapping of advanced argillic, argillic-phyllic, propylitic and hydrous silica-affected
alteration zones was obtained using the RDB1 (4 + 6/5), RDB2 (5 + 7/6), RDB3 (6 + 9/7 + 8) and
RDB4 (5 + 8/6 + 7) of ASTER (Figure 8). Red pixels show advanced argillic zones, which are mostly
distributed in the eastern and southeastern parts of the selected subset scene. Comparison to the
geological map of the study area (see Figure 1), suggests that the advanced argillic zones are typically
associated with granite and granodiorite rocks. Some of the documented gold mineralizations show
close spatial relationship with the advanced argillic zones, especially in the eastern part of the study area
(Figure 8). Argillic-phyllic alteration zone depict as green pixels. This alteration zone is distributed in
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many parts of the study area, which are normally associated with andesite, dasite, volcano sedimentary
units and sedimentary rocks (e.g., sandstone, siltstone, marl and conglomerates). Due to high content of
detrital clays (montmorillonite, illite and kaolinite) in the sedimentary units, argillic-phyllic alteration
zone could also be mapped with exposures of sedimentary rocks [35]. The surface abundance of
hydrous silica-affected alteration zone (blue pixels) is low and mostly detected in the southwestern and
northwestern parts of the study zone (Figure 8). The hydrous silica zone was commonly identified with
sedimentary units (conglomerates and sandstone), although this alteration zone is correspondingly
adjacent to some of the gold mineralization zones in the northwestern part of the study area. Propylitic
zone (yellow pixels) was strongly mapped in the selected subset scene (Figure 8). With regard to the
geology map of the study area (see Figure 1), the spatial distribution of the propylitic zone typically
corresponds with massive and bedded limestone, volcano sedimentary units and intermediate to
mafic igneous rocks. It is because carbonates and alteration products of mafic minerals contain the
strong contribution of CO3 and Fe,Mg-OH mineral groups, which produce similar spectral features to
propylitic alteration zone. However, this alteration zone is one of the dominant mineral assemblages
that mapped near to the gold mineralization zones, especially in the northwestern and northern parts
of the study area (Figure 8).

Figure 8. The RDB1(4 + 6/5), RDB2 (5 + 7/6), RDB3 (6 + 9/7 + 8) and RDB4 (5 + 8/6 + 7) of ASTER shows
advanced argillic, argillic-phyllic, propylitic and hydrous silica-affected alteration zones in the study
area overlaid on hill shade.

Table 3 shows the eigenvector loadings derived from PCA for mapping iron oxide/hydroxides
(gossan) using bands 1, 3, 4 and 5 of Landsat-7 ETM+, bands 2, 4, 5 and 6 of Landsat-8 and bands 1,
2, 3 and 4 of ASTER. Analyzing the eigenvector loadings for Landsat-7 ETM+ selected bands (1, 3,
4 and 5) indicates that the PCA3 contains unique contribution (magnitude and sign of eigenvector
loadings) of iron oxide/hydroxide minerals. The PCA3 has moderate loadings of band 1 (0.420) and
strong loadings of band 5 (−0.780) with opposite signs (Table 3A). Band 1 (0.45–0.52 μm) of Landsat-7
ETM+ is positioned at absorption features of iron oxide/hydroxides (band 1 is considered an absorption
band herein), while band 5 (1.55–1.75 μm) of Landsat-7 ETM+ is positioned at reflectance properties
of iron oxide/hydroxides (band 5 is considered a reflection band herein). Thus, iron oxide/hydroxide
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minerals appear as dark pixels in the PCA3 due to negative sing in the reflection band (band 5), which
were subsequently converted to bright pixels by negation. Figure 9A shows the resultant PCA3 image.
Iron oxide/hydroxide minerals (red pixels) are mainly represented in the northern and northwestern
parts of the study area, which are associated with some of the gold occurrences. However, a number
of epithermal gold mineralizations do not show the spatial relationship with high abundance of iron
oxide/hydroxide minerals, which are located in the southern and western parts of the study area.

Figure 9. The PCA images derived from Landsat-7 ETM+, Landsat-8 and ASTER selected bands for
mapping iron oxide/hydroxide zones (gossan) in the study area overlaid on hill shade. (A) The PCA3
image of Landsat-7 ETM+; (B) the PCA2 image of Landsat-8; (C) the PCA3 image of ASTER.

Analysis of the eigenvector loadings of Landsat-8 selected bands (2, 4, 5 and 6) shows that the
PCA2 can be used for mapping oxide/hydroxide minerals. The PCA2 contains moderate to strong
contribution of bands 2 (−0.374) and 5 (−0.555) as absorption bands and strong contribution of band 6
(0.741) with a positive sign as reflection band (Table 3B). As a result, iron oxide/hydroxide minerals
manifest as bright pixels in the PCA2 image (Figure 9B). The spatial distribution of iron oxide/hydroxide
minerals (red pixels) in Landsat-8 results is identical with Landsat-7 ETM+ PCA3 image but it is stronger
in some parts, mainly in the southern and western sectors. Iron oxide/hydroxide minerals can be
detected using the PCA3 derived from ASTER selected bands (1, 2, 3 and 4). The PCA3 shows moderate
to strong loadings in absorption bands, including band 1 (−0.396), band 2 (−0.539) and band 3 (−0.259)
with a negative sign and strong and positive loading in band 4 (0.695) as reflection band (Table 3C).
Hence, iron oxide/hydroxide minerals represent bright pixels (Figure 9C). A higher abundance of iron
oxide/hydroxide minerals was mapped in the ASTER PCA2 image compared to Landsat-7 ETM+ and
Landsat-8 PCA images, which is typically matched with most of the gold mineralizations.

The pixels contain iron oxide/hydroxide minerals mapped by PCA images show a better spatial
relationship with the gold mineralization zones compared to band ratio images (see Figure 5A–C).
It indicates that the selective PCA can specially detect the alteration pixels in the spatial domain.
Table 4 shows the eigenvector loadings derived from PCA for mapping hydroxyl-bearing minerals
using bands 1, 4, 5 and 7 of Landsat-7 ETM+, bands 2, 5, 6 and 7 of Landsat-8 and bands 1, 3, 4 and
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6 of ASTER. Considering the eigenvector loadings contain unique contribution of hydroxyl-bearing
minerals in the absorption and reflection bands, it is discernible that the PCA4 includes the unique
contribution of OH-minerals for all selected datasets (Table 4A–C). The PCA4 derived from Landsat-7
ETM+ selected bands (1, 4, 5 and 7) shows a strong negative loading in band 5 (−0.599) and a strong
positive loading in band 7 (0.692) (Table 4A). Because of negative loading in the reflection band (band 5),
the hydroxyl-bearing minerals are represented as dark pixels in the PCA4, which are inverted to bright
pixels by multiplication to −1, subsequently (Figure 10A). Surface distribution of hydroxyl-bearing
minerals (green pixels) depicts in the PCA4 image of Landsat-7 ETM+. The PCA4 derived from
Landsat-8 selected bands (2, 5, 6 and 7) contains a strong negative loading of band 6 (−0.643) (the
reflection band) and a strong positive loading of band 7 (0.694) (the absorption band) (Table 4B).
Therefore, the PCA4 image was negated to depict the OH-minerals as bright pixels. Figure 10B
shows the resultant image. For ASTER selected bands (1, 3, 4 and 6), the PCA4 has a strong positive
contribution of band 4 (0.567) and a strong negative contribution of band 6 (−0.649) (Table 4C). Hence,
the hydroxyl-bearing minerals appear as bright pixels in the PCA4 image. Figure 10C manifests the
spatial distribution of the OH-minerals as green pixels in the PCA4 image of ASTER. Comparison of
the PCA images to the band ratio images (see Figure 6A–C) suggests that the pixels detected in the
selective PCA method show a closer spatial relationship to the gold mineralization zones and have a
stronger manifestation in the image-maps.

Figure 10. The PCA images derived from Landsat-7 ETM+, Landsat-8 and ASTER selected bands for
mapping hydroxyl-bearing minerals in the study area overlaid on hill shade. (A) The PCA4 image of
Landsat-7 ETM+; (B) the PCA4 image of Landsat-8; (C) the PCA4 image of ASTER.

Table 5 shows the eigenvector loadings for mapping advanced argillic, argillic-phyllic and
propylitic alteration zones using ASTER bands such as bands 1, 4, 6 and 7 for the advanced argillic
zone, bands 1, 3, 5 and 6 for the argillic-phyllic zone and bands 1, 3, 5 and 8 for the propylitic zone.
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Considering the magnitude and sign of eigenvector loadings for mapping advanced argillic zone
(Table 5A), it is evident that the PCA3 contains spectral information to map advanced argillic zone
due to a strong negative loading in band 4 (−0.549) and a strong positive loading in band 6 (0.509).
Dark pixels depict the alteration zone due to a negative sign in the reflection band (band 4), which are
afterward converted to bright pixels. The analysis of eigenvector loadings for mapping argillic-phyllic
zone indicates that the PCA4 can mainly detect argillic-phyllic zone because of the strong contribution
of bands 5 (−0.733) and 6 (0.679) with inverse signs (Table 5B). Muscovite (as a typical and dominant
mineral in the phyllic zone) shows strong absorption in band 6 of ASTER, while lower absorption in
band 5 of ASTER [35,37]. Thus, band 5 is assumed to be a reflection band and band 6 is considered
as a strong absorption band herein. As a result, argillic-phyllic zone manifests as dark pixels due
to negative sign in the band 5 (reflection band). Then, dark pixels were inverted to bright pixels by
negation. Propylitic alteration zone can be mapped in the PCA4 image because of strong eigenvector
loadings in band 5 (−0.712) and band 8 (0.696) with opposed signs (Table 5C). Herein, band 5 is
pondered as reflection band and band 8 is deliberated as absorption band. Fe,Mg-OH and CO3

mineral groups (propylitic zone: chlorite, epidote and calcite) have high absorption properties in
band 8 (2.295–2.365 μm) and reflection (very low absorption) features in band 5 (2.145–2.185 μm) of
ASTER [35,39]. Accordingly, propylitic alteration zone appears as dark pixels that were negated to
bright pixels in the PCA4 image.

Figure 11 shows PCA image-map derived from the PCA3 image for advanced argillic mapping,
the PCA4 image for argillic-phyllic zone mapping and the PCA4 image for propylitic zone mapping.

Figure 11. The PCA image-map derived from ASTER selected PCAs for mapping advanced argillic,
argillic-phyllic and propylitic alteration zones in the study area that overlaid on hill shade.

The spatial distribution of advanced argillic zones is stronger in the northeastern parts and weaker
in southeastern part of the study area compared to RDBs image-map (see Figure 8). The advanced
argillic zone resulting from PCA shows remarkable vicinity to the gold mineralization (Figure 11).
The argillic-phyllic zone shows nearly similar surface distribution to RDBs image-map. However, the
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high concentration of propylitic zone was mapped in the northwestern part of the study area in the
PCA image-map compared to RDBs image-map (see Figure 8). On the other hand, the propylitic zone
shows lower spatial distribution in the northeastern and southeastern parts of the PCA image-map
(Figure 11).

4.2. Fusing Thematic Layers Using Naive Bayes (NB) Classifier

The thematic layers of hydrothermal alteration zones derived from Landsat-7 ETM+, Landsat-8
and ASTER datasets were fused using the NB classifier to generate a mineral potential map for the
Ahar-Arasbaran region. A DAG was designed for the thematic layers produced by image processing
techniques in this study (Figure 12). Eight distinct layers were employed as independent predictive
layers, including iron oxide minerals derived from Landsat-7 ETM+, hydroxyl-bearing minerals derived
from Landsat-7 ETM+, iron oxide minerals derived from Landsat-8, hydroxyl-bearing minerals derived
from Landsat-8, iron oxide minerals derived from ASTER, advanced argillic alteration derived from
ASTER, argillic-phyllic alteration derived from ASTER and propylitic alteration derived from ASTER.

Figure 12. The DAG diagram used in this study for the fusing the thematic layers produced by image
processing techniques.

The DAG was used to integrate the predictor variables. It yields a posterior probability map
showing the probability of gold mineralization occurrences. Subsequently, the following steps were
taken to generate the posterior probability map. To train the DAG, 25 known gold mineralizations
in the study area were selected as positive sites and 26 non-mineralized locations were selected as
non-deposit (negative) sites, which have already been verified by field survey. In the next stage, the
thematic layers (alteration image-maps) were resampled to a cell size of 150 * 150 m and a buffer
zone of 300 m was considered around the positive and negative sites. The training data, the pixels
superimposed by the positive and negative sites, containing a total of 468 pixels. Each pixel was
considered as a vector of 8 arrays, including the values of 8 thematic (alteration) layers. To train
the model, 70% of these pixels were used, while 30% of the pixels were used to validate the model
generated. The calculation of the confusion matrix shows a total accuracy of 85.1%, which indicates
that the model has been hypothesized and established. Having the trained NB model, all the data were
used as the input of the model to generate the posterior probability map. However, the map is also
required subsequent classification; thus the natural breaks algorithm [81] was used for classification of
the posterior probability map. Three threshold values (produced by the foregoing algorithm) were
used to generate a four-class map showing the probability of epithermal gold occurrences. The classes
are highly probable (red), probable (green), moderately probable (yellow) and improbable (gray). As a
result, a mineral potential map for the Ahar-Arasbaran region was produced (Figure 13). Most of the
known gold mineralizations are located in the highly probable (red) zone, although a small number of
the gold occurrences can be seen in the probable (green) and moderately probable (yellow) zones. Many
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high probable zones in the northwestern, northern, northeastern, southeastern and southwestern parts
of the study area contain high potential for undiscovered epithermal gold mineralizations (Figure 13).

Figure 13. Mineral potential map of the Ahar-Arasbaran region produced using the NB classifier. For
abbreviation to epithermal gold mineralizations, refer to Figure 1.

4.3. Verifying the Results Using Field Data and Laboratory Analysis

Several GPS surveys were carried out in different parts of the Ahar-Arasbaran region for verifying
the mineral potential map and discovering new prospective zones of epithermal gold mineralizations,
especially in highly probable zones. Numerous field photographs and rock samples were collected
from different types of alteration zones related to gold mineralization such as advanced argillic,
argillic-phyllic, propylitic and hydrous silica. In this investigation, some of the gold mineralization
areas (highly probable zone), such as Zailig, Noghdouz, Javan-Sheikh, Nabi-Jan and Sonajil, were
selected for a detailed field excursion, petrographic study and XRD analysis. The advanced argillic
alteration, argillic-silica alteration, silica alteration and propylitic alteration were identified in the Zailig
area (Figure 14A–D). The advanced argillic alteration is the most extensive alteration zone in the vicinity
of gold mineralizations in the Zailig area (Figure 14A,B). The silica alteration is identified in the form of
silica major clasts along with iron oxides (Figure 14C). The other type of alteration zones is argillic-silica
alteration, which is placed around the silica veins associated with gold mineralization (Figure 14D).
Figure 15A,B) shows microphotographs of argillic-silica alteration. Primary plagioclase replaced by
sericite, clay minerals and jarosite (Figure 15A). Recrystallized quartz and relics of plagioclase are
surrounded by clay minerals (Figure 15B). Propylitic alteration zone were also found as distal alteration
zone in the Zailig area (Figure 16A–D). Secondary minerals for instance, chlorite, epidote and calcite
replaced original mineralogy (feldspars) as vesicular and amygdaloidal textures in the propylitic zone
(Figure 16B). Microphotographs of the propylitic zone show that the phenocrysts of plagioclase are
replaced by chlorite, epidote and calcite (Figure 16C,D). Quartz is phenocrystalline and anhedral in
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the background, while plagioclase is euhedral and partially replaced by epidote (Figure 16C). The
amygdaloidal texture is observable in Figure 16D, which amygdales are filled with calcite and quartz.

Figure 14. Field photographs of typical hydrothermal alteration zones in the Zailig area. (A) View of
argillic alteration zone close to the quartz veins; (B) Regional view of advanced argillic alteration zone;
(C) View of silicification alteration zone with iron oxides, (D) Close view of argillic-silica alteration and
a sample of crustiform and colloform banded chalcedonic gold-quartz vein.

Figure 15. Microphotographs of argillic-silica alteration. (A) Original mineralogy (feldspars) replaced
by sericite, jarosite and clay minerals; (B) Recrystallized large-grained quartz and relics of plagioclase
in the background of clay minerals.
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Figure 16. Propylitic alteration zone in the Zailig area. (A) View of Propylitic alteration zone;
(B) Vesicular and amygdaloidal textures in a hand specimen of propylitic zone; (C) Microphotographs
of plagioclase that is partially replaced by epidote and recrystallized large-grained quartz in the
background; (D) Microphotographs of amygdaloidal texture in the propylitic zone that amygdales are
filled with calcite, chlorite and quartz.

Some typical silicified and breccia (quartz veins) zones occur in altered granitic and andesitic
rocks in the Noghdouz gold mineralization area (Figures 17 and 18). The specimens of silicified zone
show breccia and clastic textures. The cement and major clasts of the breccia textures are composed of
silicate minerals (Figure 17A–C). Epithermal gold mineralization occurs in the breccia zone (quartz
veins) in the altered granitic host rocks. This mineralization is also associated with advanced argillic
alteration (Figure 18A,B).

Figure 17. Silicified zone in the Noghdouz gold mineralization area. (A) Regional view of Silicified
zone; (B) Close view of breccia textures in a hand specimen of the andesitic host rock; (C) View of silica
clasts in a hand specimen of the breccia textures.
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Figure 18. Breccia zone (quartz veins) in the granitic host rocks in the Noghdouz gold mineralization
area. (A) View of breccia zone (quartz veins) in the granitic host rocks (Ahar-Meshkinshahr road);
(B) Close view of quartz veins in the breccia zone and advanced argillic alteration.

Iron oxide alteration zone (limonitic-hematite rocks) and oxidized breccia with banded chalcedonic
quartz are identified in Javan-Sheikh gold mineralization area (Figure 19A,B). The well-developed
gossan covers (limonitic-hematite-silicic rocks) show rough and geologic relief features compared to
surrounding altered rocks (Figure 19A). The size of gossan covers are around 200 to 300 m that are
surrounded by more extensive zones of propylitic and phyllic-argillic alteration zones. Although,
silicified zone is also associated with the gossan covers, partially. The epithermal gold mineralization
of the Nabi-Jan area is located in quartz-sulfide veins and developed at the top of an intrusive body of
granodiorite (Figure 20A,B). Gold mineralization is typically in the zones where intensely silicified
and located in the advanced argillic alteration. In the Nabi-Jan area, the distal alteration zone is also
propylitic alteration. The Sonajil gold mineralization occurs as a stock-work of thin quartz veins in
granitoid rocks. The development of the argillic-phyllic alteration zone along with the siliceous zones
and iron oxides were identified in the Kalijan area. Sphalerite, galena, chalcopyrite and pyrite are
main sulfide mineralization associated with native gold mineralization (Figure 21A–E). Quartz, iron
oxide/hydroxide and minor calcite are gangue minerals.

Mineralogical compositions of hydrothermal alteration zones were investigated by XRD
analysis. Thirty samples from different hydrothermal alteration zones were analyzed for this study.
Representative XRD analysis of samples collected from the iron oxide/hydroxide alteration (gossan
covers), advanced argillic alteration, argillic-phyllic alteration, propylitic alteration and hydrous silica
alteration (silicified zone) are shown in this paper (Figure 22A–E). Goethite, jarosite, gypsum and
quartz are mineral phases that detected in the gossan cover (Figure 22A). In the advanced argillic
alteration (Figure 22B), muscovite, illite, kaolinite, gypsum, orthoclase, albite and quartz are main
mineralogical phases. The predominant minerals detected in the argillic-phyllic alteration are kaolinite,
muscovite, illite, jarosite, albite and quartz (Figure 22C). Epidote, chlorite, calcite, albite and quartz are
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identified in the propylitic alteration (Figure 22D). Quartz, albite, jarosite, goethite, calcite, chlorite,
gypsum and dolomite are observed in the silicified alteration zone (Figure 22E).

Figure 19. The iron oxides (limonitic-hematite rocks) in Javan-Sheikh area. (A) View of limonitic-hematite
rocks; (B) View of oxidized breccia with banded chalcedonic quartz infill.

Figure 20. Gold mineralization in the Nabi-Jan area. (A) View of quartz-sulfide veins that developed at
the top of an intrusive body of granodiorite; (B) Close view of quartz-sulfide gold mineralization in a
hand specimen.
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Figure 21. Microphotographs of sulfide mineralization in the Kalijan area (polished section). (A) Coarse
anhedral sphalerite (Sp) in concordance with galena (Gn) and chalcopyrite (Chpy) (magnification:
10XPL); (B) Coarse anhedral sphalerite (Sp) intergrowth with galena (Gn) (white) and chalcopyrite
(Chpy) (yellow) in quartz gangue (magnification: 10XPL); (C) Large anhedral form of chalcopyrite
(Chpy), pyrite (Py) and sphalerite (Sp) (magnification: 20XPL); (D) Gold (Au) detected as an insulator
inside the sphalerite (Sp) fracture (glossy yellow) (magnification: 20XPL); (E) Gold (Au) mineralization
with a particle size of 10 microns along with an iron hydroxide (Lim) crystal surrounded by sphalerite
(Sp) (magnification: 20XPL).

Figure 22. Cont.
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Figure 22. Representative XRD analysis of samples collected from hydrothermal alteration zones in
the study area. (A) Iron oxide/hydroxide alteration (gossan covers); (B) Advanced argillic alteration;
(C) Argillic-phyllic alteration; (D) Propylitic alteration; (E) Hydrous silica alteration (silicified zone).

In this analysis, confusion matrix and Kappa Coefficient [82–86] were used for assessing the
accuracy of alteration mineral mapping derived from remote sensing analysis versus systematic
GPS surveys collected from different alteration zones during fieldwork in the study area. Thirty
representative GPS points were used for calculating the confusion matrix and Kappa Coefficient in
this paper. Table 6 shows the locations of hydrothermal alteration zones recorded by a systematic
GPS survey. Table 7 shows the confusion matrix for alteration mineral mapping versus field data.
The results show the overall accuracy of 76.66% and Kappa Coefficient of 0.71. The advanced argillic
alteration, argillic-phyllic and propylitic classes show the producer’s accuracy of 83%, while the
producer’s accuracy for the iron oxide/hydroxide and hydrous silica classes is 67%. The highest user’s
accuracy is achieved for the argillic-phyllic and propylitic classes (100%), whereas the lowest user’s
accuracy is recorded for the iron oxide/hydroxide class (50%). The advanced argillic has the user’s
accuracy of 83% and hydrous silica class shows the user’s accuracy of 67% (Table 7). Accordingly,
the accuracy assessment results indicate that the alteration mineral mapping has appropriate match
(overall accuracy: 76.66%) and very good degree of agreement (Kappa Coefficient: 0.71) with field
data. However, some spectral mixing and confusion between alteration classes are also distinguishable.
The iron oxide/hydroxide and hydrous silica classes show the highest feasibility for spectral mixing
and confusion compared to other classes. The propylitic and argillic-phyllic classes contain the lowest
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spectral mixing and confusion. The advanced argillic class has some spectral mixing and confusion
with the argillic-phyllic class.

Table 6. Locations of representative hydrothermal alteration zones recorded by systematic GPS survey
during fieldwork in the study area.

Alteration Zones Coordinates

1 Advanced argillic 38◦26.324′N–47◦21.279′E
2 Advanced argillic 38◦11.796′N–47◦15.995′E
3 Advanced argillic 38◦20.514′N–46◦58.566′E
4 Advanced argillic 38◦32.717′N–47◦03.374′E
5 Advanced argillic 38◦49.398′N–46◦16.417′E
6 Advanced argillic 38◦43.269′N–47◦00.223′E
7 Iron oxide minerals 38◦30.095′N–47◦07.023′E
8 Iron oxide minerals 38◦44.378′N–46◦23.321′E
9 Iron oxide minerals 38◦08.975′N–47◦27.312′E
10 Iron oxide minerals 38◦40.687′N–46◦42.420′E
11 Iron oxide minerals 38◦43.525′N–46◦48.243′E
12 Iron oxide minerals 38◦37.564′N–46◦29.257′E
13 argillic-phyllic 38◦10.102′N–47◦28.384′E
14 argillic-phyllic 38◦24.794′N–47◦24.250′E
15 argillic-phyllic 38◦36.792′N–46◦43.712′E
16 argillic-phyllic 38◦37.814′N–46◦22.895′E
17 argillic-phyllic 38◦21.812′N–46◦51.621′E
18 argillic-phyllic 38◦35.575′N–47◦00.520′E
19 Hydrous silica 38◦41.894′N–46◦41.574′E
20 Hydrous silica 38◦25.525′N–47◦20.882′E
21 Hydrous silica 38◦44.511′N–46◦46.563′E
22 Hydrous silica 38◦36.700′N–46◦51.888′E
23 Hydrous silica 38◦36.931′N–46◦31.907′E
24 Hydrous silica 38◦43.265′N–46◦25.118′E
25 Propylitic 38◦37.090′N–46◦28.190′E
26 Propylitic 38◦50.119′N–46◦22.157′E
27 Propylitic 38◦45.696′N–46◦49.787′E
28 Propylitic 38◦25.034′N–47◦24.969′E
29 Propylitic 38◦40.665′N–46◦22.871′E
30 Propylitic 38◦31.197′N–46◦17.014′E

Table 7. Confusion matrix for alteration mineral mapping versus field data.

Class
Advanced

Argillic
Iron Oxide/
Hydroxides

Argillic-Phyllic
Hydrous

Silica
Propylitic

Totals
(Field Data)

User’s
Accuracy

Advanced argillic 5 0 1 0 0 6 83%
Iron oxide/hydroxides 0 4 0 2 1 8 50%

Argillic-phyllic 1 0 5 0 0 5 100%
Hydrous silica 0 2 0 4 0 6 67%

Propylitic 0 0 0 0 5 5 100%

Totals (Remote
sensing analysis) 6 6 6 6 6 30

Producer’s Accuracy 83% 67% 83% 67% 83%

Overall accuracy = 76.66% Kappa Coefficient = 0.71

5. Discussion

Hydrothermal alteration mineral assemblages associated with gold mineralization that formed
under low to medium temperatures (≤150 ◦C~300 ◦C) are deliberated as one of the most significant
indicators for epithermal gold exploration [33,34,87–89]. Remote sensing satellite imagery is extensively
and successfully used for mapping hydrothermal alteration zones for gold minerals exploration in many
metallogenic provinces around the world [7,12,15,17–20,36,38,90–94]. In the Ahar-Arasbaran region,
NW Iran, a variety of ore mineralizations such as Au, Cu-Au, Au-Ag, Fe-Au, Cu-Mo, Fe, Cu, Pb-Zn are
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identified, which are associated with widespread hydrothermal alteration minerals [47,49,51,95–97].
In this investigation, Landsat-7 ETM+, Landsat-8 and ASTER multi-sensor remote sensing satellite
imagery was used to map hydrothermal alteration zones associated with epithermal gold mineralization
in the Ahar-Arasbaran region. A Bayesian network model was subsequently used to fuse thematic
layers of hydrothermal alteration zones derived from the multi-sensor satellite imagery for producing
a mineral potential map of the study area.

Iron oxide/hydroxide zones (gossan cover), hydroxyl-bearing (Al-OH and Fe,Mg-OH) minerals
and carbonates zones, advanced argillic, argillic-phyllic, propylitic and hydrous silica (silicified zone)
alteration zones were mapped using band ratio, RBD and selective PCA image processing techniques.
Using band ratios of 3/1 (Landsat-7 ETM+), 4/2 (Landsat-8) and 2/1 (ASTER) identify the spatial
distribution of iron oxide/hydroxide zones, which are mainly associated with lineament features and
igneous rocks, volcano sedimentary units and massive and bedded limestone (See Figure 5A–C).
The documented epithermal gold occurrences mostly show close spatial locations with detected iron
oxide/hydroxide zones. The PCA3 image of Landsat-7 ETM+ selected bands (1, 3, 4 and 5), the
PCA2 image of Landsat-8 selected bands (2, 4, 5 and 6) and the PCA3 image of ASTER selected
bands (1, 2, 3 and 4) were also represented iron oxide/hydroxide spatial distribution in the study
area (see Figure 9A–C). The identified iron oxide/hydroxide zones using PCA are characteristically
better matched with most of the gold mineralizations compared to band ratio images. Using band
ratios of 5/7 (Landsat-7 ETM+), 6/7 (Landsat-8) and 4/9 (ASTER) detect the hydroxyl-bearing minerals
and carbonates zones (see Figure 6A–C), which are generally matched with igneous rock, volcano
sedimentary units and limestone. The gold mineralizations are typically located in the high abundance
zones of hydroxyl-bearing/carbonate minerals. The advanced argillic, argillic-phyllic and propylitic
alteration zones are mapped using ASTER band ratios of 4/6 (advanced argillic), 5/6 (argillic-phyllic),
5/8 (propylitic), respectively (see Figure 7A–C). The advanced argillic alteration shows closer spatial
location with the gold mineralizations in comparison with the argillic-phyllic and propylitic alteration
zones. The PCA4 image of Landsat-7 ETM+ selected bands (1, 4, 5 and 7), Landsat-8 selected bands (2, 5,
6 and 7) and ASTER selected bands (1, 3, 4 and 6) detects the surface distribution of hydroxyl-bearing
minerals in the study area (see Figure 10A–C). The pixels detected in the PCA images show a stronger
manifestation of OH-minerals compared to band ratio images and closer spatial relationship to the
documented gold mineralization zones.

Implementing the RDB1 (4 + 6/5), RDB2 (5 + 7/6), RDB3 (6 + 9/7 + 8) and RDB4 (5 + 8/6 + 7) of
ASTER reveal the advanced argillic, argillic-phyllic, propylitic and hydrous silica-affected alteration
zones in the study area, comprehensively (see Figure 8). Some of the gold mineralizations in the eastern
part of the study area are mainly situated in the advanced argillic zones. The hydrous silica zone
was also mapped near some of the gold mineralization zones in the northwestern part of the study
area. The propylitic zone is one of the main mineral assemblages associated with gold mineralization
zones in the northern and northwestern parts of the study area. Only few gold occurrences were
identified in the argillic-phyllic alteration zone. The PCA3 image derived from ASTER bands 1, 4,
6 and 7 for advanced argillic mapping, the PCA4 image derived from ASTER bands 1, 3, 5 and 6
for argillic-phyllic zone mapping and the PCA4 image derived from ASTER bands 1, 3, 5 and 8 for
propylitic zone mapping show surface abundance of advanced argillic, argillic-phyllic and propylitic
zone with some spatial discrepancies (see Figure 11) compared to RDBs image-map (see Figure 8).
Notable vicinity to the documented gold mineralizations was mapped in the advanced argillic zone,
which is detected with the PCA technique.

The produced thematic layers (see the DAG diagram in Figure 12) derived from band ratio and
PCA image processing techniques are fused using the NB classifier. Consequently, a mineral potential
map for the Ahar-Arasbaran region is produced (see Figure 13), which includes four classes such as
highly probable, probable, moderately probable and improbable. Maximum numbers of the known
gold occurrences are situated in highly probable class, while some of the gold mineralizations are
located in the probable and moderately probable classes. Accordingly, several parts of the study
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area, such as the northwestern, northern, northeastern, southeastern and southwestern sectors, can
be considered to be highly prospective zones for epithermal gold mineralizations and may contain
undiscovered Au deposits (see Figure 13).

Detailed field expedition, petrographic study and XRD analysis in some of the prospective areas
located in the highly probable zone show the presence of hydrothermal alteration zones associated
with gold mineralizations. Extensive alteration mineral assemblages of the advanced argillic and
argillic-silica alteration zones are found in the vicinity of gold mineralizations in the Zailig area (see
Figure 14A–D). Microphotographs of argillic-silica alteration show that primary plagioclase replaced
by sericite, clay minerals and jarosite and relics of plagioclase are surrounded by clay minerals. The
distal alteration zone in the Zailig area is propylitic alteration zone, which contains chlorite, epidote
and calcite that replaced original mineralogy (feldspars) as vesicular and amygdaloidal textures (see
Figure 16A–D). In the Noghdouz area, gold mineralization is occurred in the breccia zone (quartz veins)
in the altered granitic host rocks, which is associated with advanced argillic alteration (see Figure 17A–C
and Figure 18A,B). Limonitic-hematite rocks and oxidized breccia with banded chalcedonic quartz
are identified in Javan-Sheikh gold mineralization area (see Figure 19A,B), which are surrounded by
propylitic and phyllic-argillic alteration zones. In the Nabi-Jan area, gold mineralization is associated
with quartz-sulfide veins hosted by granodiorite (see Figure 20A,B), which strongly silicified and
placed in advanced argillic alteration. Development of the argillic-phyllic alteration zone associated
with the siliceous zones and iron oxides in granitoid rocks were identified with gold mineralization in
the Sonajil area. Native gold mineralization is associated with sphalerite, galena, chalcopyrite and
pyrite (see Figure 21A–E).

The XRD analysis of rock samples collected from different alteration zones is verified the presence
of hydrothermal alteration minerals, including (i) goethite, jarosite, gypsum and quartz in the gossan
cover; (ii) muscovite, illite, kaolinite, gypsum, orthoclase, albite and quartz in the advanced argillic
alteration, (iii) kaolinite, muscovite, illite, jarosite, albite and quartz in the argillic-phyllic alteration;
(iv) epidote, chlorite, calcite, albite and quartz in the propylitic alteration (see Figure 22A–E). The
accuracy assessment results show the overall accuracy of 76.66% and Kappa Coefficient of 0.71 for
hydrothermal alteration mapping using remote sensing datasets. It indicates that the alteration
mineral mapping contains a suitable match and a very good degree of agreement with field data.
Analyzing the producer’s accuracy and user’s accuracy shows that some spectral mixing and confusion
between alteration classes are also feasible, especially for iron oxide/hydroxide and hydrous silica
alteration groups and the advanced argillic and the argillic-phyllic alteration groups. Accordingly,
the mineral potential map produced in this study using multi-sensor remote sensing imagery and
Bayesian network model is viable and can be broadly applicable for epithermal gold exploration in the
Ahar-Arasbaran region.

6. Conclusions

This investigation was accomplished to produce a mineral potential map for prospecting epithermal
gold mineralization in the Ahar-Arasbaran region, NW Iran using multi-sensor remote sensing
satellite imagery (e.g., Landsat-7 ETM+, Landsat-8 and ASTER) and the Bayesian network model.
Iron oxide/hydroxide zones, hydroxyl-bearing minerals and carbonates zones, advanced argillic,
argillic-phyllic, propylitic and silicified alteration zones were mapped in the Ahar-Arasbaran region
using band ratio, RBD and selective PCA image processing techniques. The NB classifier was
successfully implemented to fuse the thematic layers of hydrothermal alteration zones derived from
the multi-sensor satellite imagery. As a result, a mineral potential map for the Ahar-Arasbaran region
was produced, which highlighted the prospective zones as highly probable, probable and moderately
probable zones. The northwestern, northern, northeastern, southeastern and southwestern parts of the
study area were considered high potential zones for epithermal gold mineralizations, which might have
undiscovered epithermal gold deposits. The high potential zones were verified by field and laboratory
analysis such as systematic GPS surveying, analyzing several microphotographs of hydrothermal
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alteration minerals and ore mineralization and XRD analysis of collected rock samples from alteration
zones. The advanced argillic and argillic-silica alteration zones were typically found in the vicinity of
gold mineralizations. However, limonitic-hematite rocks, oxidized breccia and propylitic alteration
zones were also documented as high potential zones in the study area. The field and laboratory
results verified that the mineral potential map of the Ahar-Arasbaran region successfully indicates the
known epithermal gold mineralizations and several new high prospective zones in the study area. The
approach developed in this study is a cost-effective technique that can be used for epithermal gold
exploration in metallogenic provinces before costly geophysical and geochemical studies. Briefly, this
study suggests that geostatistical techniques (e.g., Bayesian network model, Fuzzy model, Artificial
Neural Network Model etc.) are valuable approaches to fuse thematic layers of the multi-sensor
imagery for generating the remote sensing-based mineral potential map for metallogenic provinces.
The mineral exploration community and mining companies can consider the remote sensing-based
mineral potential map as an economical and cost-effective tool for mineral prospecting before pricey
geophysical and geochemical surveys in the metallogenic provinces.
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Laura Tuşa *, Mahdi Khodadadzadeh, Cecilia Contreras, Kasra Rafiezadeh Shahi, Margret Fuchs,

Richard Gloaguen and Jens Gutzmer

Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf,
Chemnitzer Straße 40, 09599 Freiberg, Germany
* Correspondence: l.tusa@hzdr.de

Received: 16 March 2020; Accepted: 9 April 2020; Published: 9 April 2020

Abstract: Due to the extensive drilling performed every year in exploration campaigns for the
discovery and evaluation of ore deposits, drill-core mapping is becoming an essential step. While
valuable mineralogical information is extracted during core logging by on-site geologists, the process
is time consuming and dependent on the observer and individual background. Hyperspectral
short-wave infrared (SWIR) data is used in the mining industry as a tool to complement traditional
logging techniques and to provide a rapid and non-invasive analytical method for mineralogical
characterization. Additionally, Scanning Electron Microscopy-based image analyses using a Mineral
Liberation Analyser (SEM-MLA) provide exhaustive high-resolution mineralogical maps, but can
only be performed on small areas of the drill-cores. We propose to use machine learning algorithms to
combine the two data types and upscale the quantitative SEM-MLA mineralogical data to drill-core
scale. This way, quasi-quantitative maps over entire drill-core samples are obtained. Our upscaling
approach increases result transparency and reproducibility by employing physical-based data
acquisition (hyperspectral imaging) combined with mathematical models (machine learning). The
procedure is tested on 5 drill-core samples with varying training data using random forests, support
vector machines and neural network regression models. The obtained mineral abundance maps are
further used for the extraction of mineralogical parameters such as mineral association.

Keywords: hyperspectral imaging; drill-core; SWIR; mineral abundance mapping; mineral association;
machine learning

1. Introduction

Exploration campaigns are fundamental steps towards the discovery and evaluation of mineral
deposits required to fulfil the global demand of raw materials. Drilling is an essential part of
exploration surveys and consists of the extraction of long cylindrical core samples from underground
areas associated with relevant exploration potential. Traditionally, drill-cores are visually analyzed
by on-site geologists, who document characteristics such as mineralization type, lithology, structures
and alteration types [1]. Subsequently, core samples are used for laboratory-based geochemical and
mineralogical measurements to complement core logging results. While bulk geochemical analyses
are often available for entire boreholes, quantitative mineralogical information is usually restricted to
selected representative regions of interest. Standard quantitative analyses include X-Ray diffraction
(XRD) applied on powder samples [2] or Scanning Electron Microscopy (SEM) based image analyses
techniques [3] applied on polished thin sections prepared from areas of interest in the drill-cores.
Additionally, qualitative mineralogical analyses are performed through optical microscopy on thin
sections. These laboratory techniques provide valuable mineralogical information and derived
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mineralogical and metallurgical parameters, but they are of small scale, highly time-consuming,
destructive, and rather expensive. This represents a challenge since thousands of meters of core are
acquired during exploration campaigns.

Hyperspectral imaging is currently being used in the mining and exploration industries as an
alternative tool to complement traditional logging techniques and to provide a rapid and non-invasive
analytical method to obtain mineralogical information [4–7]. Typical hyperspectral core imaging
systems can deliver data from a whole core tray (which holds approximately 5 m of core) in a matter of
seconds. Available sensors cover a wide range of the electromagnetic spectrum and record data in
several hundreds of contiguous spectral bands. Minerals have different spectral responses in specific
portions of the electromagnetic spectrum. These responses are influenced by the vibrational and
electronic absorption processes dependent on the bonds between atoms and electron orbitals [8].
Sensors covering the visible to near-infrared (VNIR) and short-wave infrared (SWIR) are commonly
used to identify and estimate the relative abundance of minerals such as phyllosilicates, amphiboles,
carbonates, iron oxides and hydroxides as well as sulphates [9].

Because of the increasing interest in hyperspectral data in the raw materials industry, with a wealth
of hyperspectral data becoming available, the development of methods to effectively analyze these data
is required. Traditional mapping methods include the use of spectral reference libraries (e.g., USGS
spectral library) for mineral identification and mapping on hyperspectral imagery [10,11]. Slightly
more automatic approaches, such as band ratios, or wavelength parameters such as position, depth
and width of the absorption features are also used to map the distribution and relative abundance of
specific minerals [12–14]. One of the most common procedures makes use of some of available tools
in a software called Environment for Visualizing Images (ENVI, Exelis Visual Information Solutions,
Boulder, Colorado). Such tools comprise endmember extraction, identification of the minerals using
the Spectral Analysis or Material Identification by comparison to a specific library in the software
(e.g., in ENVI) or online reference (e.g., USGS), and finally the mineral mapping task using similarity
measure algorithms or determination of partial abundances using unmixing algorithms [5,15–17].

Although these approaches may produce good results, they require continuous expert input
and thus, they tend to be time-consuming and difficult to automate for large dataset analysis. More
importantly, the performance of available unmixing algorithms highly relies on the determination of
the number of end-members and the selection of their representative spectra. In drill-core hyperspectral
data, highly mixed pixels of hardly pure mineral associations represent a challenge. Methods such
as unmixing, band ratios and minimum wavelength analysis can only provide mineral abundances
for spectrally diagnostic phases. Additionally, due to the nature of the hyperspectral data and the
spatial resolution allowed by commercially available sensors, the estimation of important mineralogical
parameters in the characterization of complex ores (e.g., mineral association), is currently challenging.

We propose a novel machine learning approach to estimate mineral quantities in drill-core
hyperspectral data. The procedure comprises four steps: 1) drill-core hyperspectral scanning (VNIR
–SWIR), 2) computing mineral abundances in a small but representative area of a drill-core by using
high-resolution mineralogical analyses (e.g., SEM-based image analyses using a Mineral Liberation
Analyser), 3) linking the mineral abundances in this small area to their corresponding spectra by
a multivariate regression model, and 4) estimating mineral abundances for the whole drill-core
hyperspectral data by using the learned model. The multivariate regression problem in the proposed
scheme is solved using three algorithms: random forest (RF), support vector machines (SVM) and
feedforward artificial neural networks (FF-ANN). The proposed procedure allows the abundance
estimation of the main mineral groups using their spectral characteristics (SWIR active) and using those
SWIR active minerals additionally as proxies for the SWIR non-active minerals or mineral groups such
as quartz, feldspar and sulphide. The obtained mineral abundance mapping results can be used for the
calculation of additional mineralogical parameters, relevant to exploration and mining projects. As an
example, the concept of mineral association at hyperspectral pixel scale based on relative abundances
is introduced in the current study.
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2. Data Acquisition

2.1. Hyperspectral Data

The hyperspectral data used in this study were acquired from unpolished halves of diamond
drilling core samples with a SisuROCK drill-core scanner equipped with an AisaFENIX hyperspectral
sensor (Spectral Imaging Ltd., Oulu, Finland). The scanner is a fully automatic hyperspectral imaging
workstation which employs a tray table which carries the drill-core trays or samples under the
field-of-view of the spectrometer. The AisaFENIX camera implements two sensors to cover the VNIR
and SWIR regions of the electromagnetic spectrum. The sensor specifications and acquisition settings
are presented in Table 1.

Table 1. AisaFENIX sensor specification and setup for hyperspectral data acquisition.

Wavelength Range
VNIR 380–970 nm
SWIR 970–2500 nm Integration Time

VNIR 15 ms
SWIR 4 ms

Sampling Distance
VNIR 1.7 nm
SWIR 5.7 nm Spatial Binning

VNIR 2
SWIR 1

Number of Bands 450 Frame Rate 15 Hz
Samples 384 Scanning Speed 25.06 mm/s

Spatial Resolution 1.5 mm/pixel Field of View (FOV) 32.3◦

Detector
CMOS (VNIR)

Stirling cooled MCT (SWIR) Spectral Binning
VNIR 4
SWIR 1

The conversion from radiance to reflectance of the hyperspectral data was performed within
the acquisition software (LUMO Scanner version 2018-5, Spectral Imaging Ltd., Oulu, Finland) using
PTFE reference panels (>99% VNIR and >95% SWIR). To correct the sensor-specific optical distortions
(i.e., fish-eye and slit-bending effects on the images) and the spatial shift between the VNIR and
SWIR sensors, the toolbox MEPHySTo [18] was used. To avoid bands with little or no coherent
information, the data were spectrally resampled to 480—2500 nm by removing the first 30 bands. The
Savitzky–Golay filter was applied to decrease noise while preserving spectral features [19]. Principal
component analysis (PCA) [20] was performed on the hyperspectral dataset for data dimensionality
reduction and de-correlation while preserving 99.9% of the information.

2.2. Scanning Electron Microscopy-Based Mineral Liberation Analysis

Regions considered representative based on visual observations for the mineralogical variation
within the drill-core samples were cut and prepared into polished thin sections. The preparation
process consisted of grinding and polishing the sample surface followed by coating with a thin carbon
layer to avoid surface charging during data acquisition. The grinding and polishing led to the removal
of around 300 μm of material between the surface analyzed with the hyperspectral sensor and the
surface subjected to the high-resolution mineralogical analysis. Considering the sample morphology
and orientation of structural features the mineralogical variation is considered negligible for the
encountered shift.

The quantitative mineralogical data were acquired from the thin sections using an automated
approach. The analyses were carried out using Scanning Electron Microscope (SEM)-based Mineral
Liberation Analysis (MLA) [3,21]. For this, a FEI Quanta 650 F field emission SEM instrument (FEI,
Hillsboro, OR, USA), equipped with two Bruker Quantax X-Flash 5030 energy dispersive X-ray (EDX)
detectors (Bruker, Billerica, MA, USA) and the MLA Suite software package (version 3.1.4.686, FEI,
Hillsboro, OR, USA) were used. The grain-based X-ray mapping (GXMAP) mode was used to collect
the mineralogical information as follows: the MLA software collects the back-scattered electron images
(BSE) and uses them to effectively distinguish individual mineral grain boundaries based on the grey
scale variations. The grey scale values of the BSE images are proportional to the average atomic density
of the mineral grains and are used to provide a first mineralogical segmentation. The identification of
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minerals is performed based on X-ray analysis by placing a closely-spaced grid on a particle in the BSE
image and collecting the X-ray data at the defined points of the grid. When dealing with fine grained
material of lower size than the placed grid, the GXMAP mode allows us to collect additional spectra
where variations in the BSE image are observed in between the measured grid points. Finally, the
mineral is determined by matching the resultant spectrum of energy peaks with a reference library
of X-ray spectra provided by the instrument company (FEI, Hillsboro, OR, USA), or from sample
extracted spectra analyzed based on peak locations and intensities [22]. Specifications of the operating
conditions used in this study are shown in Table 2.

Table 2. Operating conditions and parameters used for the acquisition of high-resolution SEM-MLA
mineralogical data.

SEM Settings MLA Settings

Acceleration voltage (kV) 25 Pixel size (μm) 3
Probe current (nA) 10 Step size (pixels) 6 × 6

Frame width (pixels) 1500 Acquisition time (ms) 5

BSE calibration (Au) 254 Minimum grain size
(pixels) 4

For classification, a mineral list was developed using the mineral reference editor in online mode.
The resulting mineral list contained a total of 59 entries. However, for the integration of the HSI with
SEM-MLA, further grouping was performed in this paper, such as considering all feldspars in one
class, all white micas in another or, all sulphides, sulphosalts and gold in another. Accessory minerals
were included in the final grouping labelled as “others”. As a result, ten main mineral groups are
considered: white mica (WM), biotite (Bt), chlorite (Chl), amphibole (Amp), carbonate (Cb), gypsum
(Gp), feldspar (Fsp), quartz (Qz), sulphide (Sp) and other.

3. Data Description

For testing the proposed methodology, 5 samples, labelled DC-1 to DC-5, from different locations
within the Bolcana porphyry copper-gold system [23–26] were analyzed. Hyperspectral images were
acquired on the halves cores after which thin sections were prepared from selected regions of interest
and analyzed by SEM-MLA. Each region is further labelled as a, b and/or c starting from the left-hand
side of the drill-core sample as illustrated in Figure 1. The ore minerals in the studied system are
chalcopyrite, bornite, covellite, chalcocite and gold. Gold is dominantly present as fine inclusions in
pyrite and chalcopyrite. The main encountered alteration types are potassic, sodic—calcic, phyllic
and argillic. In the studied samples the first three are present, some samples presenting a transitional
character and are described in this section. Please see Sillitoe, 2010 [27] for details on the mineralogical
characteristics of the alteration styles typically associated with porphyry Cu-Au systems.

While the summary of the results for each sample is presented in the results section, an emphasis
is made on DC-1 in order to illustrate all the potential information that can be extracted using the
proposed methodology. Therefore, a more detailed description of this sample is available in the
current section. Sample DC-1 consists of a diorite porphyry. Hydrothermal alteration in this sample
appears transitional between potassic, represented by the presence of biotite and potassic feldspar
and sodic-calcic characterized by the plagioclase-chlorite assemblage. Chlorite is more abundant than
biotite in the first two thin sections, “a” and “b”. The third thin section, though, due to the lower vein
density and implicit associated alteration presents significant amounts of biotite disseminated as well
as in clusters in the matrix. Plagioclase feldspar is dominant in all three thin sections, near the veins
however, an increase in potassic feldspar is observed.
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Figure 1. RGB photograph of the analyzed drill-cores (labelled on the left-hand side from DC-1 to
DC-5) with overlain high-resolution mineral maps (labelled a, b and c) obtained by SEM-MLA.

Thin section “a” of sample DC-1 captures three main vein types: an oblique early quartz vein
which exhibits a low intensity white mica alteration halo likely associated with a younger cross-cutting
gypsum vein that has a sulphide centerline and a wide white mica-chlorite alteration halo (top). The
alteration halo here is mica-dominant in the proximity of the vein and chlorite-dominant towards its
edges. The third vein present in section “a” consists of quartz with a gypsum centerline and a spotty,
low intensity white mica alteration halo (bottom). Thin section “b” captures three main vein types as
well: two sub-vertical veins consist of variable ratios of gypsum and quartz and are surrounded by a
strong white mica low-chlorite alteration halo. Compositionally, these veins appear to be a mixture
between the first and third veins mentioned for thin section “a”; they have, however, a different
morphology. In proximity to sub-horizontal veinlets in the lower half of the thin section, an increase in
the pyrite and chlorite content is observed. The two sub-horizontal veinlets show strong similarity with
the horizontal veins in the first thin section. The alteration intensity surrounding the sub-horizontal
veinlets appears to be related to complex interactions with pre-existing veinlets in this area of section
“b”. Thin section “c” hosts several fine veinlets, of highest width, the two cross-cutting ones near the
top of the thin section. The veinlets consist of variable amounts of quartz, gypsum, pyrite and white
mica and present a white mica and chlorite alteration halo. Similar to the subvertical veins in thin
section “b” these veins appear to have a composition intermediate between the horizontal veins in
thin section “a”. Unlike the two veins in thin section “b” however, the extent of the alteration halo is
much lower.
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Sample DC-2 is marked by pervasive potassic alteration characterized by the presence of K-feldspar,
biotite and minor chlorite. Two main vein types are present in this sample: veins hosting dominantly
sulphide which show a strong phyllic alteration halo caused by the late reaction of mineralizing
hydrothermal fluids with the host rock. The second vein type comprises dominantly quartz with
sulphide or with sulphide-calcium sulphate (gypsum or anhydrite) centerline. Additional veins of
varying composition are present in the sample (left-hand side as illustrated in Figure 1). They appear to
be the result of complex reopening and cross-cutting of the previously described veins. A sodic-phyllic
rock matrix hosting two main vein-types characterizes sample DC-3. The first vein comprises of
sulphide and presents a large white mica alteration halo. The second vein type consists predominantly
of quartz, calcium sulphate and sulphide. The changing symmetry and mineral association in these
latter veins indicate the reopening of an initially present quartz vein. Sample DC-4 is characterized by
the presence of intense phyllic alteration in the matrix related to the thick pyrite-quartz-gypsum vein
cross-cutting the sample. Additional fine veinlets comprising mostly quartz and pyrite are cutting the
mica-rich matrix. The matrix in sample DC-5 consists of dominantly feldspar and subordinately white
mica. Three main vein types can be observed in the samples: a sulphide dominant vein with a broad
white mica alteration halo, quartz veinlets and carbonate iron-oxide veins which show low or absent
alteration halos.

For the understanding of the modal composition of the available thin sections, the abundances
of the minerals or mineral groups for all the analyzed thin sections are illustrated in the bar charts
in Figure 2 (left). For most samples, quartz and feldspar represent the main rock-forming minerals.
There is, however, a variation in the extent of alteration of feldspar to white mica ranging from low
(DC-2a) to high (DC-4). In most of the analyzed samples, the amphibole is to a large extent altered to
chlorite and/or biotite. Biotite is only present in significant amounts in sample DC-2 and DC-1 “c”.
The variation of the quartz, carbonate and gypsum contents is related to the surface abundance of
the veins and veinlets filled mostly by these three minerals. While quartz and gypsum are present in
significant amounts in all thin sections, carbonate is mainly represented in sample DC-5. The class
“sulphide” comprises mainly pyrite, chalcopyrite, bornite, chalcocite and covellite but minor amounts
of native gold hosted as inclusions in pyrite and chalcopyrite is also considered. While pyrite is not
an ore mineral by itself, it frequently represents the host of micron-size native gold inclusions. The
sulphide content in the thin sections ranges from around 1 area % in DC-5b to almost 30 area % in
DC-4b. The main target being the quantification and understanding of the distribution of sulphide
minerals within the presented samples, their mineral association is also analyzed and presented in the
bar chart in Figure 2 (right).

Figure 2. Modal mineralogy and mineral association of analyzed thin sections illustrated through
mineral maps in Figure 1. The labels of each sample and thin section are illustrated between the two
bar charts.
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While an influence of the modal mineralogy can be observed on the mineral association, a strong
increase in the white mica, chlorite, biotite, carbonate and gypsum can be seen. This is the result of
the distribution of these minerals within or surrounding the veins also hosting the bulk of sulphides.
The listed gangue minerals, unlike the sulphide, show distinct absorption features in the VNIR-SWIR
region of the electromagnetic spectrum and may, therefore, be used as proxies for the distribution of
the ore minerals.

4. Methodological Framework

4.1. HSI—SEM-MLA Data Integration

For the proposed approach, the SEM-MLA data is upscaled by adopting a re-sampling procedure.
The two-dimensional SEM-MLA mineral map with high spatial resolution is transformed to a
three-dimensional mineral abundance map with the lower spatial resolution of the hyperspectral
data [7]. The third dimension consists of the relative abundance of each mineral present in each
SEM-MLA map re-sampled to the hyperspectral pixel size (Figure 3). Note that a co-registration stage
is needed after the re-sampling of the SEM-MLA data. Following Acosta et al., 2019, the structural
features, such as veins, the mineral composition, and spectral responses are used to find suitable
tie points. As a result of the co-registration each pixel where the SEM-MLA data is available is
characterised by two vectors: the hyperspectral feature vector Xi of dimension d (i.e., the number of
bands in the hyperspectral data) or r (number of extracted features) and a mineral abundance vector Yi
containing the corresponding fractional abundances of the minerals identified by SEM-MLA.

Figure 3. Graphical illustration of the co-registration and resampling process for the SEM-MLA to
hyperspectral data. In red, the size of a hyperspectral pixel characterized by a mineral mixture in the
SEM-MLA data and a spectrum in the hyperspectral data. The color of the spectra (left) is given by the
mixture ratio of the minerals illustrated in the SEM-MLA simplified example (right).

Once the hyperspectral and SEM-MLA data are co-registered, they are divided into training and
testing. For this procedure the following approach is adopted:

• Using 50% randomly selected pixels from all thin section regions within one drill-core sample
for training, the remaining drill-core hyperspectral data for testing. The validation is performed
using the remaining 50% data points from the MLA regions.

• Using 1 thin section for training and the second for testing and validation for all drill-core samples.
• For DC-1, where 3 thin sections are available, an additional test is performed using 2 thin sections

for training and the last for testing and validation.

As can be seen from the main flowchart, shown in Figure 4, the proposed workflow is carried out
in three main phases. In the training phase, different regression models (i.e., RF, SVM and FF-ANN) are
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trained following any of the three approaches mentioned before. In the prediction phase, the learned
models are used to predict the mineral abundances on the entire drill-core samples. Finally, in the
validation phase, the root mean square error (RMSE) [28] is calculated on the remaining SEM-MLA
test data to assess the performance of the abundance mapping.

Figure 4. Flowchart illustrating the three main stages of the proposed workflow.

Two analysis types are further performed on the resulting mineral abundance data. For each
validation set, the modal mineralogy is calculated based on the average abundance of each mineral
phase in each pixel and compared to the modal mineralogy data obtained from SEM-MLA. Additionally,
the concept of mineral association is adapted from the automated mineralogy field (Figure 2). There,
the mineral association is calculated by counting the neighboring pixels to a specific target mineral.
Slight changes in the approach have to be made when the spatial resolution of the hyperspectral data
is used. The association of the main target group, i.e., sulphide, is a fundamental aspect in the present
geological study. For each hyperspectral pixel the estimated mineral abundance of each mineral phase,
except of the target, is normalized by the abundance of sulphide in the respective pixel. While this
approach does not directly indicate the grain contact between the two minerals (or rather mineral
groups) it can be seen as the probability of their association and occurrence at the scale of hyperspectral
data resolution. The mineral association is calculated on the ground truth or validation data as well as
on the estimated abundances calculated with the three proposed regression models.

4.2. Random Forest Regression

Random forests (RFs) are currently one of the most popular supervised learning techniques for
classification and regression problems [29–31]. RFs are ensemble-based algorithms in which several
models (trees) are running in parallel with randomized sampling. The individual results of these trees
are then combined into the final prediction by an averaging process [32]. For regression purposes, the
trees are given numerical values as predictors whereas in classification problems they are fed class
labels. The RF technique is desirable in cases where only few training samples are available, as is
usually the case in drill-core hyperspectral imaging.

4.3. Support Vector Regression

The aim of support vector machines (SVMs) is to search for hyperplane decision boundaries to
define a linear prediction model [33,34]. To locate and orientate the hyperplane, only the samples that
are close to the hyperplane, so-called support vectors, have an influence. Therefore, SVMs perform
well when a limited number of well-chosen training samples are available [31,33,34]. This model
can be used for classification or regression tasks. SVMs were originally proposed to solve linear
problems. However, decision boundaries are often non-linear. To cope with the non-linearity problem,
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the kernel-based SVMs were introduced to project the data points into a higher dimensional feature
space where the samples are linearly separable [31].

4.4. Artificial Neural Network Regression

Artificial neural networks have become some of the most popular methods in regression and
classification because of their success in capturing the non-linearity relation between independent and
dependent variables [35]. We chose a so-called “feedforward neural network” (FF-ANN) [36], as it
fits the requirements of the problem at hand. In a feedforward network, each neuron in one layer
is directly connected to neurons of the next layer with no cycle between layers. The applied neural
network consists of an input layer, one hidden layer, and an output layer. Each neuron of a layer is
computed by the product sum of the neurons of the previous layers plus a bias for the neuron [31].
A sigmoid function is applied for activation.

5. Experimental Results

In order to showcase the suitability of the proposed approach, the first drill-core sample presented
in the data section (DC-1) is used. The remaining four samples have been analyzed following the same
procedure. A summary of the results is presented in this section followed by a complete illustration
of the results in Appendix A. Additionally, all numerical results are presented in the Electronic
Supplementary Materials (Table S1).

From the entire drill-core sample (DC-1), the VNIR-SWIR hyperspectral data of size 33 by 189
pixels. The 420 spectral bands cover wavelengths from 480 nm to 2500 nm. The hyperspectral data is
subjected to PCA leading to the reduction in dimensionality to 13 principal components in the third
dimension. Moreover, the high-resolution mineralogical data obtained from representative regions
(thin sections “a”, “b” and “c”) were used. In the thin section regions of the drill-core sample, each
hyperspectral pixel covers an area of 1.5 by 1.5 mm2, which is characterized by about 250,000 pixels
in the SEM-MLA image. The fractional abundances were computed by considering the frequency of
the identified minerals in the corresponding region of the SEM-MLA image for each hyperspectral
pixel. To have more consistent results, we considered a threshold of 250,000 pixels (i.e., a hyperspectral
pixel size) in each thin section region, for discarding minerals which have a very low frequency in
the original SEM-MLA image. Taking this factor into consideration, the following six mineral classes
remained: white mica (WM), biotite (Bt), chlorite (Chl), amphibole (Amp), gypsum (Gp), feldspar
(Fsp), quartz (Qz), sulphide including sulphosalts and native gold (SP); less abundant minerals were
grouped as “other”. Because of the low abundance of biotite and accessory minerals in thin sections
“a” and “b”, the number of mineral classes considered was decreased accordingly. The test setups
presented in the methodological framework section are used.

Cross-validation has been used to find the optimal parameters in order to train three models by
internally resampling the training data. The main tested parameter ranges for each algorithm are
presented in Table 3. The setups were chosen according to the lowest associated root-mean-square
error (RMSE) based on cross-validation within 30 averaged iterations.

Table 3. Parameters and parameter ranges for the choice in optimum setup of the three tested algorithms.

RF SVM FF-ANN

Nb. of trees – 500 : 600
Kernel – Radial Basis Function Training function – Scaled conjugate

gradient backpropagation
Cost – 2 : 0.5 : 4 Nb. of hidden layers – 1

Sigma – 5 : 0.5 : 7 Nb. of neurons – 30 : 10 : 80

5.1. Mineral Abundance and Association Mapping

With the first experimental setup, presented in the methodological framework, 50% randomly
distributed samples of the available thin section regions were used to train the regression models the
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mineral abundances estimation in the entire drill-core sample (Figure 5). Based on the visual analysis
of the core and results analysis, RF and FF-ANN show better results in estimating the abundance of
minerals with local distribution and small concentrations. With respect to matrix mineralogy, while
biotite is well estimated by SVM in comparison with RF and FF-ANN, other major components of the
matrix such as feldspar present a rather poor estimation. Similar performances of the algorithms can
be observed for vein mineral components such as gypsum and sulphide.

Figure 5. Drill-core mineral abundance maps of white mica (WM), biotite (Bt), chlorite (Chl), amphibole
(Amp), gypsum (Gp), feldspar (Fsp), quartz (Qz), sulphide (SP) and accessory minerals (Other) using
randomly distributed 50% of the available ground truth data for training for random forest (RF),
support vector machine (SVM) and feed-forward neural network (FF-ANN) regressions.

With regards to the samples DC-2 (Figure A1), DC-3 (Figure A3), DC-4 (Figure A5) and DC-5
(Figure A7), using 50% of the available ground truth data for training, RF and FF-ANN show good,
similar performances, while SVM shows limitations specifically in transitional areas between veins
and matrix. Among the SWIR-diagnostic minerals, white mica, biotite and carbonate appear well
mapped in all the samples, chlorite is slightly underestimated in samples DC-2 and DC-3 and gypsum
is overestimated in sample DC-5. Among the SWIR non-diagnostic minerals, quartz shows the highest
mapping inconsistencies between vein and matrix, particularly for samples DC-4 and DC-5. Sulphide,
however, appears to be well mapped in most areas of the samples.

The quantitative evaluation of the mineral abundance mapping through the calculation of the
RMSE supports the visual observations (Table 4). All three tested algorithms present low RMSEs and
prove suitable to be used for mineral abundance mapping purposes. RF shows the lowest overall
RMSE of 0.07, followed by FF-ANN with 0.08 and SVM with 0.1. Regarding the per class RMSE, RF
and FF-ANN show similar results with the largest error associated with quartz, which can be the
result of the lack of diagnostic absorption features in the VNIR-SWIR regions of the electromagnetic
spectrum. SVM on the other hand shows larger per class errors for feldspar together with an increase
in the error on white mica distribution. This can be explained by a misclassification between the two
mineral groups. The mineral association of the sulphide in each pixel was calculated from the results
of the mineral abundance mapping. Based on this calculation an equivalent overall performance of the
methods was obtained (Table 5). For each of the methods, the error for the association of sulphide with
feldspar is the largest.
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Table 4. Evaluation of the three tested methods for the mineral abundance mapping of DC-1 through
overall RMSE and per class RMSE values.

Method RMSE
RMSE per Class

WM Bt Chl Amp Gp Fsp Qz SP Other

RF 0.07 0.06 0.06 0.06 0.06 0.06 0.05 0.08 0.06 0.05
SVM 0.10 0.12 0.03 0.05 0.01 0.12 0.21 0.12 0.04 0.02
NN 0.08 0.06 0.06 0.07 0.06 0.06 0.07 0.09 0.07 0.07

Table 5. Evaluation of the three tested methods for the mineral association mapping of DC-1 through
overall RMSE and per class RMSE values.

Method RMSE
RMSE per Class

WM Bt Chl Amp Gp Fsp Qz Other

RF 0.05 0.05 0.00 0.01 0.00 0.02 0.13 0.05 0.00
SVM 0.06 0.06 0.01 0.02 0.00 0.02 0.15 0.06 0.00
NN 0.05 0.05 0.00 0.01 0.00 0.02 0.13 0.05 0.00

To assess the importance of sampling and representativeness of the SEM-MLA regions, thin
sections “a”, “b” (Figure 6) and “a + b” (Figure 7) of sample DC-1 were used for training the models in
order to estimate the mineral abundance and association in thin section “c”.

Figure 6. White mica (WM), chlorite (Chl), amphibole (Amp), gypsum (Gp), feldspar (Fsp), quartz
(Qz) and sulphide (SP) abundance maps of TS-1c using TS-1a and TS-1b, respectively, for the training
of random forest (RF), support vector machine (SVM) and feed-forward neural network (FF-ANN)
regressions. The ground truth (GT) resized MLA data is presented for comparison.

For the three used methods, strong differences in the estimates of sample “c” mineralogy can
be observed when using thin sections “a” and “b” for training (Table 6). The use of thin section “a”
provides particularly better results for white mica and feldspar, which are confused using region “b”
that hosts distinctly lower amounts of feldspar. On the other hand, using thin section “a” for training
leads to an overestimation of the gypsum content. The use of both thin sections (“a” + “b”) for training
improves the classification leading to lower overall and per class RMSE values. As for the remaining
drill-core samples, RF outperforms SVM and FF-ANN for most training scenarios, except when using
thin section “b” for training. A similar effect of sampling on the RMSE evaluation can be seen for the
mineral association mapping of DC-1 in all the scenarios (Table 7).
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Figure 7. White mica (WM), biotite (Bt), chlorite (Chl), amphibole (Amp), gypsum (Gp), feldspar (Fsp),
quartz (Qz), sulphide (SP) and accessory minerals (Other) abundance maps of TS-c using TS-a + TS-b
for the training of random forest (RF), support vector machine (SVM) and feed-forward neural network
(FF-ANN) regressions. The ground truth (GT) MLA data is presented for comparison.

Table 6. Evaluation of the three tested methods for the mineral abundance mapping of DC-1 thin
section “c” through overall RMSE and per class RMSE values using different samples for training.

Train and Valid.
Data

Overall
RMSE

RMSE per Class

WM Bt Chl Amp Gp Fsp Qz SP Other

R
F

50%–50% rand. sel 0.07 0.06 0.06 0.06 0.06 0.06 0.05 0.08 0.06 0.05
Train a—Test—c 0.10 0.08 0.06 0.01 0.06 0.18 0.13 0.03
Train b—Test—c 0.12 0.15 0.05 0.01 0.05 0.24 0.09 0.03

Train a + b—Test c 0.08 0.09 0.04 0.05 0.01 0.04 0.18 0.11 0.03 0.01

SV
M

50%–50% rand. sel 0.10 0.12 0.03 0.05 0.01 0.12 0.21 0.12 0.04 0.02
Train a—Test—c 0.10 0.10 0.06 0.02 0.06 0.20 0.12 0.04
Train b—Test—c 0.09 0.11 0.06 0.02 0.04 0.18 0.10 0.04

Train a + b—Test c 0.09 0.09 0.05 0.06 0.03 0.07 0.21 0.09 0.05 0.03

FF
-A

N
N 50”–50% rand. sel 0.08 0.06 0.06 0.07 0.06 0.06 0.07 0.09 0.07 0.07

Train a—Test—c 0.17 0.12 0.07 0.02 0.14 0.28 0.27 0.06
Train b—Test—c 0.12 0.12 0.07 0.02 0.06 0.25 0.14 0.04

Train a + b—Test c 0.10 0.10 0.05 0.06 0.01 0.05 0.20 0.16 0.04 0.01

For the remaining samples, each having two regions analyzed by SEM-MLA, the mineral
abundance estimations obtained using the second setup are illustrated in Figure A2 (DC-2), Figure A4
(DC-3), Figure A6 (DC-4) and Figure A8 (DC-5).

The tested methods show similar results for mineral abundance and association mapping on the
remaining four drill-cores (Table 8). Overall, RF performs best, followed by FF-ANN and then SVM.
For samples DC-1, DC-2, DC-3 and DC-5 each method results in comparable errors where similar
amounts of training data are used. For sample DC-4 the overall RMSE values are higher, exceeding
0.2 depending on training data. For each sample the selection of the training data location plays an
important role that is reflected into the RMSE evaluation.
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Table 7. Evaluation of the three tested methods for the mineral association mapping of DC-1 thin
section “c” through overall RMSE and per class RMSE values using different samples for training.

Train and
Validation Data

Overall
RMSE

RMSE per Class

WM Bt Chl Amp Gp Fsp Qz Other

R
F

50%–50% rand. sel 0.05 0.05 0.00 0.01 0.00 0.02 0.13 0.05 0.00
Train a—Test—c 0.06 0.05 0.04 0.01 0.05 0.05 0.10
Train b—Test—c 0.03 0.04 0.03 0.00 0.01 0.01 0.02

Train a + b—Test c 0.02 0.01 0.01 0.04 0.01 0.00 0.01 0.06 0.00

SV
M

50%–50% rand. sel 0.06 0.06 0.01 0.02 0.00 0.02 0.15 0.06 0.00
Train a—Test—c 0.05 0.05 0.02 0.02 0.07 0.06 0.06
Train b—Test—c 0.04 0.05 0.05 0.01 0.01 0.02 0.05

Train a + b—Test c 0.03 0.05 0.03 0.01 0.03 0.06 0.03 0.00 0.03

FF
-A

N
N 50%–50% rand. sel 0.05 0.05 0.00 0.01 0.00 0.02 0.13 0.05 0.00

Train a—Test—c 0.17 0.13 0.05 0.01 0.15 0.24 0.28
Train b—Test—c 0.07 0.07 0.04 0.00 0.04 0.15 0.00

Train a + b—Test c 0.05 0.09 0.00 0.05 0.01 0.02 0.06 0.10 0.00

Table 8. Methods evaluation for the mineral abundance and association mapping of the remaining
four samples through overall RMSE and per class RMSE values using different data for training.

Sample
ID

Train and
Validation Data

Mineral Abundance Mapping Mineral Association Mapping

RF SVM FF-ANN RF SVM FF-ANN

DC-2
50%–50% rand. sel 0.07 0.09 0.08 0.07 0.07 0.07
Train a—Test—b 0.11 0.18 0.10 0.09 0.17 0.09
Train b—Test—a 0.14 0.14 0.19 0.13 0.16 0.13

DC-3
50%–50% rand. sel 0.08 0.11 0.09 0.12 0.12 0.12
Train a—Test—b 0.14 0.14 0.17 0.09 0.18 0.07
Train b—Test—a 0.11 0.14 0.14 0.10 0.11 0.09

DC-4
50%–50% rand. sel 0.12 0.20 0.14 0.12 0.12 0.12
Train a—Test—b 0.24 0.29 0.24 0.08 0.10 0.05
Train b—Test—a 0.16 0.20 0.19 0.04 0.16 0.07

DC-5
50%–50% rand. sel 0.07 0.10 0.08 0.03 0.03 0.03
Train a—Test—b 0.11 0.13 0.11 0.05 0.18 0.05
Train b—Test—a 0.13 0.13 0.15

5.2. Modal Mineralogy

The modal mineralogy in area % is calculated by averaging the mineral abundances over the entire
tested sample. To evaluate the modal mineralogy estimates sample DC-1 is used and the estimates are
compared to the ground truth, using 50% of the available SEM-MLA data for training and 50% for
testing (Table 9).

Table 9. Ground truth and estimated modal mineralogy of the SEM-MLA test regions of DC-1, using
50% randomly selected data for training.

Method
Modal Mineralogy (Area %)

WM Bt Chl Amp Gp Fsp Qz SP Other

GT 16.0% 1.1% 4.3% 1.8% 7.3% 42.3% 24.9% 1.8% 0.5%
RF 15.8% 1.1% 4.3% 1.7% 7.4% 42.2% 25.1% 2.0% 0.5%

SVM 14.2% 1.2% 3.8% 1.8% 7.8% 44.3% 24.4% 1.8% 0.6%
NN 15.8% 1.1% 4.3% 1.7% 7.3% 42.6% 24.8% 1.9% 0.5%

The estimates for all methods show good results with the highest RMSE value of 0.01 obtained
with SVM. The complete modal mineralogy results are available in Table S1. The results for all the
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setups and all samples and methods are illustrated in Figure 8 by plotting the estimated values from RF
(left), SVM (centre) and FF-ANN (right) against the ground truth values known from the re-sampled
SEM-MLA data. The estimated and true values for RF and FF-ANN show overall a good correlation
with local outliers related to mineral groups such as feldspar, as these do not have distinct spectral
features in the VNIR-SWIR regions of the electromagnetic spectrum. Outliers can also be observed
for white mica where the training and testing classes were unbalanced and confusions between mica
and feldspar occurred. SVM, on the other hand, shows higher deviations from a linear correlation.
Additionally, an important factor influencing the results is the data used for sampling. All test scenarios
results are included in Figure 8 and as observed in the mineral abundance mapping results (Table 8),
sampling plays a critical role in method performance.

Figure 8. Scatter-plots of the ground truth vs. estimated mineral area % in all analyzed scenarios and
samples using A. RF, B. SVM and C. FF-ANN.

5.3. Mineral Association

The overall mineral association is calculated by averaging the sulphide association in each
classified pixel. The results for the setup consisting of 50% of the SEM-MLA regions of DC-1 for training
and 50% for testing are presented in Table 10. For each regression method, the association of sulphide
with white mica, chlorite, gypsum and quartz is underestimated, while the feldspar association is
overestimated. The same tendency is observed for the rest of the calculated mineral associations in
all samples and setups (Appendix A, Figures A1–A8). The relationship between ground truth and
estimated data is illustrated in the scatter-plots in Figure 9. The results of the mineral association are
strongly influenced by the estimation of the sulphide abundance as well as of the other mineral groups.
Therefore, the highest errors in sulphide abundance mapping are consistent with the largest errors for
sulphide association.

Table 10. Ground truth and estimated mineral association of the SEM-MLA test regions of DC-1, using
50% randomly selected data for training.

Method
Sulphide Association

WM Bt Chl Amp Gp Fsp Qz Other

GT 21.0% 0.7% 5.6% 1.5% 9.9% 30.1% 30.5% 0.6%
RF 16.2% 1.1% 4.4% 1.8% 7.6% 42.8% 25.7% 0.5%

SVM 14.5% 1.2% 3.9% 1.9% 7.8% 45.1% 24.8% 0.6%
NN 16.2% 1.1% 4.4% 1.8% 7.5% 43.2% 25.3% 0.5%
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Figure 9. Scatter-plots of the ground truth vs. estimated mineral association in all analyzed scenarios
and samples using A. RF, B. SVM and C. FF-ANN.

6. Discussion

The proposed approach for data preparation and analysis illustrates the potential to arrive
at robust quantitative mineral abundance estimates from hyperspectral drill-core data—even for
those minerals that do not have diagnostic absorption features in the VNIR-SWIR regions of the
electromagnetic spectrum (e.g., feldspars, quartz, sulphides). Three regression methods were tested in
this paper for mineral abundance estimation: random forest (RF), support vector machines (SVM) and
feedforward artificial neural networks (FF-ANN). These methods were applied to quantify mineral
abundances—also of minerals devoid of characteristic HS spectral features (here sulphide minerals).
In addition, attempts were made to extract mineral association data from HS information at a lateral
resolution far below the actual size of mineral grains in the studied ore. For this purpose, the abundance
of each gangue mineral in each HS pixel is normalized to the content of ore minerals that are the
main target in the currently studied porphyry system, thus constituting a rather simple proxy for the
opportunity of two minerals or mineral groups to occur in direct contact with each other.

The abundance estimation of SWIR diagnostic mineral phases and groups is good overall,
particularly for white mica, amphibole and chlorite. For the case of gypsum, however, due to its
pervasive association with white mica in some training samples, errors in the abundance estimation
occurred. Even though it is present in minor amounts in comparison to white mica, the estimation error
can reach similar amplitudes as those of white mica. An additional reason for high errors associated
with gypsum is related to its composition. The higher the degree of hydration of anhydrite towards
gypsum the stronger and more distinct its absorption features. While SEM-MLA methods cannot
measure the amount of water in the structure of the hydrated calcium sulphate, hyperspectral sensors
are highly sensitive to these changes. Therefore, having training samples hosting mostly calcium
sulphate with low amount of water can cause miss-estimation in test samples which may have low
amounts of highly hydrated calcium sulphate. The local high errors in the estimation of biotite content
can be assigned to the low amount of training samples containing relevant amounts of biotite. Sulphide
is the main target in the current case study and this group comprises dominantly of pyrite, chalcopyrite,
bornite, covellite, chalcocite, minor sulphosalts and native gold as an inclusion in the sulphides. While
locally sulphide can be present as disseminations in the matrix, the highest fraction is present in veins.
For all methods, the abundance estimation for SWIR non-diagnostic minerals is highly dependent on
their association with the hydrothermal alteration minerals. To be able to estimate their abundance,
representative sampling is required to avoid the erroneous estimation of these minerals based on local
association with SWIR minerals that are not consistent at drill-core scale. For the analyzed samples
the highest per-class errors are obtained for feldspar and quartz, both SWIR non-diagnostic minerals.
In many cases feldspar was overestimated, particularly in samples where white mica abundance was
underestimated. As white mica is present as an alteration product of feldspar in the proximity of veins,
it can be assumed that the training samples consisted of lower alteration degrees of the feldspar to
white mica while the test samples showed contrasting composition. As a result, feldspar particularly
represented a bottleneck for the evaluation of the mineral association where their association with
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sulphide was in each case overestimated. Besides the fact that this mineral group does not show
distinctive absorption features in the VNIR-SWIR regions of the electromagnetic spectrum, the spatial
resolution of the used sensor can highly influence the misclassification and the overestimation in
its association with sulphide. Feldspar is usually present in the host-rock matrix and is expected to
have a low association with sulphide, usually being altered to white mica in the proximity of the
sulphide-bearing veins. When the vein alteration halo is thinner than the spatial resolution of the
sensor (here 1.5 mm), an increase in the apparent association of sulphide with feldspar is observed.

A potential limitation resides in the removal of the mineral fractions present in low concentrations
(lower total surface abundance than the size of a hyperspectral pixel). Additionally, the compositional
variation of minerals such as white mica and chlorites is not analyzed in the current work, but could
be performed by auxiliary methods such and minimum wavelength analysis.

To evaluate the performance of the three regression methods employed in this paper, the RMSE
was calculated. In general, for the mineral abundance estimation RF performed well and derived the
lowest errors. The errors produced by FF-ANN tend to be higher than by SVMs in all the test scenarios,
except in the case when 50% of the ground truth was randomly selected as the training data. This
highlights the capabilities of SVM to perform well when a limited number of training samples are
available and of FF-ANN to achieve good results when enough training data are available. The random
selection of the training data allows for a more representative sampling per class than it is for the other
two test scenarios where one thin section is used for training and the other thin section is used for the
test. This is because certain minerals can be more abundant in one part of the core than in the other as
it was previously stated for DC-1 in the results section. Although larger per class RMSE are obtained
by minerals without diagnostic absorption features in the VNIR-SWIR, this is countered by random
sampling and errors decrease considerably. From the analysis and evaluation of the results obtained
by the utilized regression methods, the RF algorithm is the most suitable for the current dataset.

The proposed framework allows for fast evaluation of the modal mineralogy of analyzed samples
and it shows potential for further upscaling. It proves that hyperspectral drill-core scanning provides
a fast, non-invasive mineral identification and quantification if suitable training samples are available.
Domaining of the hyperspectral data before the selection of representative samples for detailed
analysis can minimize and focus the effort and amount of invasive measures related to sampling and
high-resolution mineralogical analyses. The automated character of the approach can be later used
on mine sites provided that hyperspectral drill-core scanning is available to support the geologists
in the core-logging procedure, as well as training samples characterized by high resolution methods
of mapping mineral distributions, such as SEM-based image analyses. The derived mineralogical
parameters such as modal mineralogy and mineral association can additionally prove useful past
exploration stages as they are essential in defining geometallurgical domains [37].

7. Conclusion and Remarks

Hyperspectral drill-core imaging provides fast, extensive and non-destructive mapping of certain
minerals with spectral characteristic features in the VNIR-SWIR regions of the electromagnetic spectrum.
SEM-MLA analyses allow a precise and exhaustive mineral mapping of selected small samples. We
propose to combine both analytical techniques using machine learning in order to provide mineral
abundance and association mapping over entire drill-cores. The proposed methodological framework
is illustrated on samples collected from a porphyry type deposit, but the procedure is easily adaptable
to other ore types. All tested ML algorithms deliver good results but RF is more robust to unbalanced
and sparse training sets and is recommended for further work. As a result, quasi-quantitative maps
are also produced and evaluated. The mineral abundance results can be further used to calculate
parameters such as modal mineralogy, mineral association and other mineralogical indices. Therefore,
this approach can be integrated in the standard core-logging procedure, complementing the on-site
geologists, and can serve as background for the geometallurgical analysis of numerous ore types.
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Appendix A

The results of mineral abundance mapping for DC-2 to DC-5 are shown in Figures A1–A8 using
all test scenarios.

Figure A1. Drill-core abundance maps of white mica (WM), biotite (Bt), chlorite (Chl), amphibole
(Amp), gypsum (Gp), feldspar (Fsp), quartz (Qz), sulphide (SP) and accessory minerals (Other) for
DC-2 using randomly distributed 50% of the available ground truth data for training for random forest
(RF), support vector machine (SVM) and feed-forward neural network (FF-ANN) regressions.
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Figure A2. White mica (WM), biotite (Bt), chlorite (Chl), amphibole (Amp), gypsum (Gp), feldspar (Fsp),
quartz (Qz) and sulphide (SP) abundance maps of TS-2a using TS-2b for training and of TS-2b using
TS-2a respectively for training of random forest (RF), support vector machine (SVM) and feed-forward
neural network (FF-ANN) regressions. The ground truth (GT) represented by resized MLA data is
presented for comparison.

Figure A3. Drill-core abundance maps of white mica (WM), biotite (Bt), chlorite (Chl), amphibole
(Amp), gypsum (Gp), feldspar (Fsp), quartz (Qz), sulphide (SP) and accessory minerals (Other) for
DC-3 using randomly distributed 50% of the available ground truth data for training for random forest
(RF), support vector machine (SVM) and feed-forward neural network (FF-ANN) regressions.
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Figure A4. White mica (WM), chlorite (Chl), amphibole (Amp), gypsum (Gp), feldspar (Fsp), quartz
(Qz) and sulphide (SP) abundance maps of TS-3a using TS-3b for training and of TS-3b using TS-3a
respectively for training of random forest (RF), support vector machine (SVM) and feed-forward neural
network (FF-ANN) regressions. The ground truth (GT) represented by resized MLA data is presented
for comparison.

Figure A5. Drill-core abundance maps of white mica (WM), chlorite (Chl), gypsum (Gp), feldspar
(Fsp), quartz (Qz) and sulphide (SP) for DC-4 using randomly distributed 50% of the available ground
truth data for training for random forest (RF), support vector machine (SVM) and feed-forward neural
network (FF-ANN) regressions.
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Figure A6. White mica (WM), gypsum (Gp), feldspar (Fsp), quartz (Qz) and sulphide (SP) abundance
maps of TS-4a using TS-4b for training and of TS-4b using TS-4a respectively for training of random
forest (RF), support vector machine (SVM) and feed-forward neural network (FF-ANN) regressions.
The ground truth (GT) represented by resized MLA data is presented for comparison.

Figure A7. Drill-core abundance maps of white mica (WM), biotite (Bt), chlorite (Chl), amphibole (Amp),
carbonate (Cb), gypsum (Gp), feldspar (Fsp), quartz (Qz), sulphide (SP) and accessory minerals (Other)
for DC-5 using randomly distributed 50% of the available ground truth data for training for random
forest (RF), support vector machine (SVM) and feed-forward neural network (FF-ANN) regressions.

272



Remote Sens. 2020, 12, 1218

Figure A8. White mica (WM), chlorite (Chl), amphibole (Amp), carbonate (Cb), gypsum (Gp), feldspar
(Fsp), quartz (Qz) and sulphide (SP) abundance maps of TS-5a using TS-5b for training and of TS-5b
using TS-5a respectively for training of random forest (RF), support vector machine (SVM) and
feed-forward neural network (FF-ANN) regressions. The ground truth (GT) represented by resized
MLA data is presented for comparison.
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Abstract: The exploration of carbonate-hosted Pb-Zn mineralization is challenging due to the
complex structural-geological settings and costly using geophysical and geochemical techniques.
Hydrothermal alteration minerals and structural features are typically associated with this type of
mineralization. Application of multi-sensor remote sensing satellite imagery as a fast and inexpensive
tool for mapping alteration zones and lithological units associated with carbonate-hosted Pb-Zn
deposits is worthwhile. Multiple sources of spectral data derived from different remote sensing sensors
can be utilized for detailed mapping a variety of hydrothermal alteration minerals in the visible near
infrared (VNIR) and the shortwave infrared (SWIR) regions. In this research, Landsat-8, Sentinel-2,
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and WorldView-3
(WV-3) satellite remote sensing sensors were used for prospecting Zn-Pb mineralization in the central
part of the Kashmar–Kerman Tectonic Zone (KKTZ), the Central Iranian Terrane (CIT). The KKTZ has
high potential for hosting Pb-Zn mineralization due to its specific geodynamic conditions (folded
and thrust belt) and the occurrence of large carbonate platforms. For the processing of the satellite
remote sensing datasets, band ratios and principal component analysis (PCA) techniques were
adopted and implemented. Fuzzy logic modeling was applied to integrate the thematic layers
produced by image processing techniques for generating mineral prospectivity maps of the study
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area. The spatial distribution of iron oxide/hydroxides, hydroxyl-bearing and carbonate minerals and
dolomite were mapped using specialized band ratios and analyzing eigenvector loadings of the PC
images. Subsequently, mineral prospectivity maps of the study area were generated by fusing the
selected PC thematic layers using fuzzy logic modeling. The most favorable/prospective zones for
hydrothermal ore mineralizations and carbonate-hosted Pb-Zn mineralization in the study region
were particularly mapped and indicated. Confusion matrix, field reconnaissance and laboratory
analysis were carried out to verify the occurrence of alteration zones and highly prospective locations
of carbonate-hosted Pb-Zn mineralization in the study area. Results indicate that the spectral data
derived from multi-sensor remote sensing satellite datasets can be broadly used for generating remote
sensing-based prospectivity maps for exploration of carbonate-hosted Pb-Zn mineralization in many
metallogenic provinces around the world.

Keywords: band ratios; principal component analysis (PCA); fuzzy logic modeling; Kashmar–Kerman
tectonic zone (KKTZ); carbonate-hosted Pb-Zn mineralization; Iran

1. Introduction

Remote sensing has provided tools for geological exploration for almost four decades. Nowadays,
many satellite remote sensing datasets are accessible freely and can be extensively used for mineral
exploration projects [1–15]. Pb-Zn sulfide mineralization is typically associated with hydrothermal
alteration zones, the contact boundaries of lithological units and structural features such as faults
and fractures [5,16–19]. According to World Bank Commodities Price Forecast (WBCPF), the price
and consumption of Pb and Zn are increasing annually [20]. Pb and Zn are a necessity for the
steady development of many countries around the world [21]. Accordingly, the exploration of Pb-Zn
deposits using remote sensing satellite imagery as an available and inexpensive tool is of practical and
economic interest.

Carbonate-hosted Pb-Zn deposits are some of the most significant sources of Pb and Zn [22].
The major hydrothermal alteration zones associated with carbonate-hosted Pb-Zn deposits are: (i)
dissolution and hydrothermal brecciation, (ii) dolomite and calcite alteration, (iii) silicification and
(iv) clay, mica, and feldspar diagenesis [22–24]. Besides, gossans as oxidation products of sulphide
mineralized rocks are documented with carbonate-hosted Pb-Zn mineralization [25]. Particularly,
studies on carbonate-hosted Pb-Zn deposits in Iran, India, China and Greenland have shown the
possibility to identify hydrothermal alteration and iron oxides associated with Pb–Zn deposits using
Landsat-8 and ASTER satellite imagery [5,16–19]. The application of multi-sensor remote sensing
satellite imagery and fusing the most informative alteration thematic layers using geostatistical models
can provide a low-cost exploration approach for generating remote sensing-based prospectivity
maps [15]. Multiple sources of spectral data derived from different remote sensing sensors can be
utilized for detailed mapping a variety of hydrothermal alteration minerals in the VNIR and the
SWIR regions.

Landsat-8 imagery contains nine bands (0.433 to 2.290 μm; 30 m spatial resolution) in the VNIR
and SWIR regions (Table 1). The VNIR spectral bands are particularly sensitive for mapping iron
oxides/hydroxides, while SWIR spectral bands are responsive for detecting hydroxyl-bearing minerals
and carbonates. These spectral bands have been broadly used for mapping hydrothermal alteration
zones associated with hydrothermal ore mineralizations [3,5,12,15]. Sentinel-2 has thirteen spectral
bands in the VNIR and the SWIR regions (0.433 to 2.280 μm; spatial resolutions from 10 to 60 m) (Table 1)
which are useful to identify iron oxides/hydroxides and hydroxyl-bearing minerals [6]. Six spectral
bands in the SWIR range (1.600 to 2.430 μm; 30 m spatial resolution) allow the ASTER sensor to map clay
and carbonate minerals (Table 1). Detailed detection and discrimination of hydroxyl-bearing minerals
and carbonates using ASTER SWIR bands is documented [1,4,8,13]. Moreover, ASTER VNIR bands
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(0.52 to 0.86 μm; 15 m spatial resolution) can map iron oxides/hydroxides [2,9]. The VNIR spectral
bands of WV-2 and WV-3 (0.400 to 1.040 μm; 1.24 m spatial resolution) were used to discriminate
Fe2+ and Fe3+ mineral groups [10,14]. Al-OH, Mg-Fe-OH, CO3, and Si-OH alteration minerals were
mapped in detail using SWIR bands of WV-3 (1.195 to 2.365 μm; 3.70 m spatial resolution) (Table 1) [10].
Therefore, multi-sensor satellite imagery can provide multiple sources of spectral data for mapping
and discriminating hydrothermal alteration minerals to generate remote sensing-based prospectivity
maps for metallogenic provinces.

The Central Iranian Terrane (CIT) of Iran has high potential for carbonate-hosted Pb-Zn deposits as
a result of tectonic conditions related to its folded and thrust belt and the occurrence of large carbonate
platforms [26]. The CIT consists of three N-S oriented crustal domains, namely the Lut, Tabas and Yazd
blocks [27]. The Tabas and Yazd blocks are separated by a long, arcuate and structurally complex belt
defined as the Kashmar–Kerman Tectonic Zone (KKTZ) (Figure 1), which has several occurrences of
carbonate-hosted Pb-Zn deposits [28]. The KKTZ contains metamorphic rocks, limestones, pyroclastic
and volcanic rocks, sandstone, dolomite and sandstone, slate and phyllite [28]. Ghanbari et al. [29]
investigated the potential of rare earth element (REE) mineralization in the KKTZ using a fuzzy model.
Geophysics, geochemistry, geology and remote sensing data were fused to indicate the prospective
zones of REE mineralization. The favorability areas for REE mineralization sites were identified and
prospectivity map for the study area was generated. However, lack of detailed geology map and
comprehensive field surveying are the main issues that can be easily seen for the analysis.

Detailed mapping of hydrothermal alteration mineral zones associated with the carbonate-hosted
Pb-Zn mineralization is one the essential factors for reconnaissance stages of Pb-Zn exploration in
the CIT. However, there is no comprehensive remote sensing study for detailed identification of
hydrothermal alteration mineral zones and lithological units for exploration Pb-Zn mineralization in
the CIT, yet. In this research, Landsat-8, Sentinel-2, ASTER and WV-3 satellite remote sensing data
were used for prospecting the carbonate-hosted Pb-Zn mineralization in the central part of the KKTZ,
the CIT (Iran, Figure 1). The main objectives of this study are: (i) to map hydrothermal alteration
minerals and lithological units by implementing band ratios and Principal Component Analysis (PCA)
techniques to Landsat-8, Sentinel-2, ASTER and WV-3 datasets; (ii) to generate mineral prospectivity
maps by fusing the most rational thematic layers using fuzzy logic modeling; and (iii) to verify the
remote sensing results by field reconnaissance, laboratory analysis and confusion matrix.

2. Geologic Setting of the KKTZ

The formation of the CIT is attributed to the Late Precambrian Katangan/Pan-African
orogenesis [30–32]. The KKTZ closely follows the trends of the predominant fault structures of
the CIT. Three first-order fault systems are identified within the CIT, including (i) the N-trending system
such as Nayband and Nehbandan faults, (ii) the NE system such as Poshteh-Badam and Kalmard
faults and (iii) the NW system such as Kuhbanan and Rafsanjan faults. The NE and NW fault systems
dominate the western part of the terrane, which also includes the KKTZ [31,33]. The KKTZ is part of
the Poshte Badam-Bafgh basin [34]. Lithological outcrops in the KKTZ have an N-S trend. The folding
and formation of these rocks is followed by a N-S faulting event [35]. Lithological units in this area are
volcanic and schist units, dolomitic units and Quaternary deposits [33,36,37] (Figure 1).

The occurrence of magmatism in the Poshte Badam-Bafgh basin is associated with a back-arc
extension zone during the Late Neoproterozoic to Early Cambrian [35,38,39]. Numerous ore
mineralizations in the region have occurred in connection with the alkaline volcanic activity and
extensional tectonics [36]. The carbonate-hosted Pb-Zn mineralization in the study area was formed
during synchronous faulting activities with sedimentation, detrital sedimentation associated with
faulting activities, emplacement of rhyolitic volcanic rocks and formation of rift sediments and
subsidence [35,38]. In the KKTZ, Upper Precambrian series of volcano-sediments, detrital and
carbonate rocks (especially dolomites) are overlying sandstone, conglomerate and tuff (the Tashk
Formation) with a discontinuity [28,40,41].
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Figure 1. Geology map of the study area (modified from [36]).

3. Materials and Methods

3.1. Multi-Sensor Data Characteristics

In this investigation, multi-sensor satellite imagery, including Landsat-8, Sentinel-2, ASTER, and
WV-3, was utilized for prospecting the carbonate-hosted Pb-Zn mineralization in the central part of the
KKTZ region. Table 1 summarizes the technical performance and attributes of the Landsat-8, Sentinel-2,
ASTER and WV-3 sensors. Broad spectral bands of Landsat-8 and Sentinel-2 were selected and used to
discriminate lithological units and alteration zones for regional mapping of the study area. Narrow
spectral bands of ASTER and WV-3 were used for detailed mapping of clay and carbonate minerals
and Fe2+ and Fe3+ mineral groups.

Table 1. Technical performance and attributes of the Landsat-8, Sentinel-2, ASTER, and WV-3
sensors [42–47].

Sensor Subsystem Band Number
Spectral Range

(μm)
Ground

Resolution (m)
Swath

Width (km)
Year of
Launch

Landsat-8

VNIR

PAN (8) 0.500–0.680 15

185 2013

Coastal aerosol (1) 0.433–0.453

30

Blue (2) 0.450–0.515
Green (3) 0.525–0.600
Red (4) 0.630–0.680
NIR (5) 0.845–0.885

SWIR
SWIR1 (6) 1.560–1.660
SWIR2 (7) 2.100–2.300
Cirrus (9) 1.360–1.390

TIR
TIRS1 (10) 10.60–11.19

100TIRS2 (11) 11.50–12.51
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Table 1. Cont.

Sensor Subsystem Band Number
Spectral Range

(μm)
Ground

Resolution (m)
Swath

Width (km)
Year of
Launch

Sentinel-2

VNIR

Coastal aerosol (1) 0.433–0.453 60

290

Blue (2) 0.458–0.523
10Green (3) 0.543–0.578

Red (4) 0.650–0.680

Vegetation Red Edge (5) 0.698–0.713
20Vegetation Red Edge (6) 0.733–0.748 2015–2017

Vegetation Red Edge (7) 0.773–0.793

NIR (8) 0.785–0.900 10

Water-vapour (9) 0.935–0.955
60

SWIR
SWIR–Cirrus (10) 1.360–1.390

SWIR1 (11) 1.565–1.655
20SWIR2 (12) 2.100–2.280

ASTER

VNIR

1 0.52–0.60

15

60 1999

2 0.63–0.69
3N 0.76–0.86
3B 0.76–0.86

SWIR

4 1.600–1.700

30

5 2.145–2.185
6 2.185–2.225
7 2.235–2.285
8 2.295–2.365
9 2.360–2.430

TIR

10 8.125–8.475

90
11 8.475–8.825
12 8.925–9.275
13 10.25–10.95
14 10.95–11.65

WV3

VNIR

Coastal blue (1) 0.400–0.450

1.24

13.1 2014

Blue (2) 0.450–0.510
Green (3) 0.510–0.580
Yellow (4) 0.585–0.625

Red (5) 0.630–0.690
Red-edge (6) 0.705–0.745

NIR1 (7) 0.770–0.895
NIR2 (8) 0.860–1.040

SWIR

SWIR-1 (9) 1.195–1.225

3.70

SWIR-1 (10) 1.550–1.590
SWIR-1 (11) 1.640–1.680
SWIR-1 (12) 1.710–1.750
SWIR-1 (13) 2.145–2.185
SWIR-1 (14) 2.185–2.225
SWIR-1 (15) 2.235–2.285
SWIR-1 (16) 2.295–2.365

A cloud-free Landsat-8 scene (LC08_L1TP_161038_20170517, Path/Raw: 161/038) covering the
central part of KKTZ was obtained from the U.S. Geological Survey Earth Resources Observation and
Science Center (EROS) [48] for this analysis. It is level 1T (terrain corrected) data, which was acquired
on 17 June 2017. A cloud-free Sentinel-2 (S2A_OPER_PRD_MSIL1C_PDMC_ 20160929T125040) scene
covering the central part of KKTZ was obtained from the European Space Agency (Copernicus
Open Access Hub), which was acquired on 29 September 2016. The Sentinel-2A utilized in this
study is a Level-1C top-of-atmosphere (TOA) reflectance (100 km × 100 km tile) product, which
includes radiometric and geometric corrections (UTM projection with WGS84 datum) along with
orthorectification [49]. An ASTER scene covering the study region was acquired on 16 March 2003.
It was cloud-free level 1T product that obtained from USGS EROS center [50]. A level 2 A WV-3 image
(M2AS-056451539010_01_P001) covering the study area was purchased from the Arka Company (Tehran,
Iran). Unfortunately, SWIR bands were not available for the study region. The WV-3 VNIR imagery was
cloud-free and acquired on 20 April 2017. The level 2A WV-3 is a sensor and radiometrically corrected
product, which is geometrically projected to the UTM with WGS84 datum [51,52]. The Landsat-8,
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Sentinel-2, ASTER and WV-3 images used in this study have been already georeferenced to the UTM
zone 40 North projection using the WGS84 datum. For processing the remote sensing datasets, the
ENVI (Environment for Visualizing Images) [53], version 5.2 and ArcGIS version 10.3 (ESRI, Redlands,
CA, USA) software packages were used.

3.2. PrePprocessing of the Remote Sensing Datasets

The Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) algorithm [54] were
applied to Landsat-8 (Operational Land Imager (OLI) bands) by implementing the Mid-Latitude
Summer (MLS) and Rural aerosol models [55]. Sentinel-2 data layer stacked of VNIR+SWIR bands
(bands 2, 3, 4, 8, 11 and 12) with 10 m spatial dimension was generated to obtain a six-band dataset.
The QUick Atmospheric Correction (QUAC) was performed on this dataset by using mud filtering
to eliminate highly structured materials such as shallow water, mud and vegetation [55]. ASTER
data layer stacked of VNIR+SWIR bands with 30-meter spatial dimensions was generated by using
Pan-sharpening method [56]. Internal Average Relative Reflectance (IARR) calibration [57] was
applied to Crosstalk corrected [58] ASTER data for atmospheric correction. The conversion to the
Top-of-Atmosphere (TOA) spectral radiance and absolute radiometric correction are required for the
WV-3 relative radiometrically corrected images [59]. Therefore, the corrections were executed and
FLAASH algorithm was applied to the WV-3 data.

3.3. Image Processing Techniques

Band Ratios and Principal Components Analysis (PCA) image processing procedures were
executed to extract key information related to alteration minerals and lithological units from the
pre-processed remote sensing datasets. Successively, the most rational thematic layers of the alteration
zones were fused using fuzzy logic modeling to generate mineral prospectivity maps of the study
area. Finally, field reconnaissance, laboratory analysis and confusion matrix were carried out for
verifying the remote sensing results. An overview of the methodological flowchart used in this study
is displayed in Figure 2.

3.3.1. Band Ratios

Band ratios method is broadly used for mapping hydrothermal alteration minerals and lithological
units [2–4,60–63]. By ratioing bands that correspond to certain absorptions and reflectance, the pixels
with particular mineral or mineral groups are highlighted [64–67]. Furthermore, this technique is
proficient in reducing the topographic effects generated by slope orientations and solar illumination
angles [68]. Several mathematical expressions were used for detecting alteration minerals or mineral
groups, which are generally called Relative Absorption Band Depth (RBD) [69]. It includes three-point
ratio formulation for revealing the mineral spectral intensities attributed to Fe2+, Fe3+, Fe-OH, Al-OH,
Fe, Mg-OH, Si-OH, SO, CO3 and SiO2 [60,70–72]. For a particular absorption or emissivity distinction,
the numerator is the sum of the bands indicating the shoulders and the denominator is the band placed
nearby the absorption or emissivity feature minimum [69].
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Figure 2. An overview of the methodological flowchart used in this study.

To characterize iron oxide/hydroxides (hematite, goethite and jarosite), the VNIR spectral bands
contain the most important information due to electronic transitions of Fe3+/Fe2+ in the VNIR region
from 0.45 to 1.2 μm [73,74] (Figure 3). In this study for detecting iron oxide at a regional scale,
4/2 band ratio of Landsat-8, Sentinel-2 and ASTER was selected to highlight iron oxide/hydroxides.
Hydroxyl-bearing (Al-OH) alteration and carbonates (muscovite, kaolinite, gypsum, calcite and
dolomite) show spectral absorption features in the 2.1–2.5 μm region due to overtones and combinations
of the fundamental vibrations [75], whereas their spectral reflectance typically occur in 1.55–1.75 μm in
the SWIR regions (Figure 3). These characteristics are matched with band 7 (2.11–2.29 μm) and band
6 (1.57–1.65 μm) of Landsat-8, as well as band 12 (2.100–2.280 μm) and band 11 (1.565–1.655 μm) of
Sentinel-2, respectively (Figure 3). Therefore, the 6/7 band ratio of Landsat-8 and 11/12 band ratio of
Sentinel-2 were used to map hydroxyl bearing alteration minerals and carbonates in this study at the
regional scale.

283



Remote Sens. 2020, 12, 1239

 

Figure 3. The laboratory reflectance spectra of hematite, jarosite, goethite, muscovite, kaolinite,
calcite, dolomite, gypsum and chlorite resampled to response functions of VINR+SWIR bands of
Landsat-8, Sentinel-2, ASTER and WV-3. Cubes indicate the position of the VINR+SWIR bands of
Landsat-8, Sentinel-2, ASTER and WV-3 in the range of 0.4 μm to 2.5 μm. The main absorption feature
spectra attributed to Fe+2, Fe+3, OH, H2O, Fe-OH, S-O, Al-OH, Fe, Mg-OH, and CO3 are delimited by
dashed rectangles.
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The Al-OH absorption features at 2.17 to 2.20 μm are corresponded with bands 5 and 6 of ASTER,
whereas Mg-Fe-OH and CO3 absorption features are situated in 2.30 to 2.35 μm equivalent with
bands 7 and 8 of ASTER [73,74,76] (Figure 3). Additionally, dolomite absorption features are mostly
concentrated at 2.20 to 2.30 μm, which are coincident with bands 6 and 7 of ASTER [77] (Figure 3).
Hence, calcite and dolomite minerals can be discriminated by different absorption features between 2.33
and 2.45 μm [76,78] (Figure 3). Subsequently in this study, (i) to map Al/Fe-OH minerals (muscovite,
kaolinite and jarosite) the RBD1: (5 + 7)/6 was implemented; (ii) to identify Mg-Fe-OH/CO3 minerals
(chlorite and calcite) the RBD2: (7 + 9)/8 was used; and (iii) for detecting dolomite the RBD3: (6 + 8)/7)
was executed to ASTER (VNIR+SWIR) bands [67,76,77].

The VNIR spectral bands of WV-3 have high potential to map Fe3+, gossan and dolomite/Fe2+.
Ferric/ferrous iron oxides contain a set of absorption features about 0.40 to 1.2 μm, which are matched
with WV-3 VNIR bands 2, 3, 4, 6 and 8 [79–81] (Figure 3). The absorption features related to Fe3+

is typically at 0.49, 0.70 and 0.87 μm, while Fe2+ shows absorption properties at 0.51, 0.55 and
1.20 μm [73–75,82]. Considering the laboratory reflectance spectra of dolomite (Figure 3) indicate that
band 7 (0.770–0.895 μm) of WV-3 can be assumed as a reflectance band, whereas band 4 (0.585–0.625 μm)
can be considered as absorption features related to Fe2+ for detecting dolomite. The Fe2+ absorption in
the dolomite spectrum normally can occur about 0.60 μm (in addition to 1.20 μm) [82] that is coincident
with band 4 (yellow band) of WV-3. Accordingly, the band ratio of 5/3, 5/2 and 7/4 were adopted and
developed for mapping Fe3+ and iron-stained alteration and dolomite/Fe2+, respectively

3.3.2. Principal Components Analysis (PCA)

PCA is a mathematical technique that transforms a quantity of correlated variables into a number
of uncorrelated linear variables called principal components (PCs) [83–85]. The PCA is usually
implemented on a square symmetric matrix. It can be based on the covariance matrix (scaled sums of
squares and cross products) or correlation matrix (sums of squares and cross products from standardized
data) [83,86,87]. The PCA is broadly used to map hydrothermal alteration minerals and lithological
units using spectral bands of remote sensing sensors [8,61,62,84,88–92]. The uncorrelated linear
combinations (eigenvector loadings) contain indicative information allied to spectral characteristics
of alteration minerals that can be expected from the specific spectral bands in the VNIR and SWIR
regions [84,89]. Accordingly, a PC contains strong eigenvector loadings for indicative bands such as
reflective and absorptive bands of an alteration mineral or mineral group with opposite signs enhances
that mineral or mineral group as bright or dark pixels in the PC image. Positive loading in a reflective
band enhances the alteration mineral as bright pixels, while negative loading is in a reflective band
depicts the alteration mineral as dark pixels [84,89]. In this analysis, the PCA method was implemented
based on covariance matrix to the selected bands of Landsat-8 (OLI bands), Sentinel-2 (bands 2, 3, 4, 8,
11 and 12) and ASTER (VNIR+SWIR bands) and WV-3 (VNIR bands) for identifying hydrothermal
alteration mineral assemblages in the study area. Tables 2–5 show the eigenvector matrix for the
selected bands of the remote sensing datasets.

Table 2. Eigenvector matrix derived from PCA for the selected bands of Landsat-8 bands (1 to 7) used
in this study.

Eigenvector Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7

PC 1 0.098888 0.127588 0.222642 0.352134 0.470622 0.580154 0.49225
PC 2 0.322223 0.372444 0.433008 0.426627 0.230446 −0.374857 −0.440827
PC 3 −0.312408 −0.354582 −0.279999 0.084637 0.59951 0.168321 −0.550787
PC 4 0.247724 0.269361 0.117557 −0.327086 −0.247048 0.667216 −0.48894
PC 5 0.380773 0.318038 −0.297366 −0.579504 0.516661 −0.207254 0.140427
PC 6 −0.42878 −0.07607 0.726821 −0.486822 0.193733 −0.079913 0.034331
PC 7 0.631338 −0.734703 0.232424 −0.083794 0.022232 −0.007336 0.00581
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Table 3. Eigenvector matrix derived from PCA for the selected bands of Sentinel-2 bands (2, 3, 4, 8, 11,
12) used in this study.

Eigenvector Band 2 Band 3 Band 4 Band 8 Band 11 Band 12

PC 1 −0.15188 −0.235458 −0.383398 −0.466736 −0.570938 −0.480298
PC 2 0.355822 0.405278 0.438872 0.333419 −0.451093 −0.44931
PC 3 −0.486574 −0.409713 0.064894 0.557800 0.208124 −0.486532
PC 4 −0.310768 −0.246002 0.203541 0.259173 −0.641949 0.567634
PC 5 −0.454829 0.100882 0.698634 −0.523627 0.113057 −0.088865
PC 6 −0.556887 0.736037 −0.355904 0.135992 −0.048461 0.024823

Table 4. Eigenvector matrix derived from PCA for the selected bands of ASTER bands (VNIR+SWIR)
used in this study.

Eigenvector Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 9

PC 1 −0.996499 0.082351 −0.008442 0.008905 0.000780 0.005820 0.004598 −0.000774 −0.000742
PC 2 0.075083 0.954242 0.247544 −0.134085 −0.022691 −0.054521 −0.030563 0.009170 −0.004727
PC 3 −0.020004 −0.185786 −0.022226 0.564435 −0.157899 −0.054898 0.020914 −0.896111 −0.019443
PC 4 0.000139 0.812776 0.124735 −0.429509 −0.228138 −0.025162 0.314993 −0.251698 −0.002611
PC 5 −0.021063 −0.157428 0.221774 −0.668838 0.095360 0.425904 −0.014838 0.174277 0.507113
PC 6 0.013032 0.083318 −0.013620 0.319148 0.388530 0.009249 0.277101 −0.329300 −0.069032
PC 7 −0.006760 −0.037927 −0.034844 −0.164716 −0.322506 −0.352677 −0.157608 −0.042499 0.084469
PC 8 −0.016975 −0.119326 0.256410 0.404433 0.558407 0.158777 −0.623420 −0.103705 −0.140444
PC 9 0.002032 0.009398 −0.061213 0.025598 −0.153333 −0.047990 0.033235 −0.028976 −0.983741

Table 5. Eigenvector matrix derived from PCA for the selected bands of WV3 band (1 to 8 VNIR) used
in this study.

Eigenvector Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8

PC 1 −0.314986 −0.330951 −0.348156 −0.359256 −0.364601 −0.367182 −0.369097 −0.370119
PC 2 0.655926 0.454510 0.183457 −0.046042 −0.154854 −0.251952 −0.320189 −0.370709
PC 3 −0.331273 −0.598506 0.354295 −0.129646 0.661001 −0.220796 0.341420 0.108973
PC 4 −0.244961 0.345377 0.145561 0.631659 0.012267 0.368220 −0.509311 −0.142316
PC 5 −0.384633 0.279151 0.433976 −0.092808 0.081588 −0.370014 −0.142544 0.187618
PC 6 0.236442 −0.427799 −0.515988 −0.065670 0.646312 0.248715 0.043257 0.095274
PC 7 0.257771 −0.301701 −0.070317 −0.389055 0.471694 0.225588 −0.427691 0.035215
PC 8 0.174655 −0.560947 0.307690 −0.163685 −0.332755 0.108819 0.068151 −0.001993

3.3.3. Fuzzy Logic Modeling

Fuzzy logic modeling is based on the fuzzy set theory, which was proposed by Zadeh [93]. It is a
form of many-valued logic in which the true values of variables may be any real number between 0
and 1 both inclusive [94]. A fuzzy set of A is a set of ordered pairs:

A = {(x, μ_A (x) | x ε X}, (1)

where μ_A (x) is termed the membership function or membership grade of x in A. μ_A (x) maps x to
membership space (M), when M contains only the two points 0 and 1. The range of μ_A (x) is [0, 1],
where zero expresses non-membership and one expresses full membership [93]. Fuzzy logic modeling
has been successfully applied for mineral prospectivity mapping in metallogenic provinces [29,95–98].
The application of fuzzy logic modeling for mineral prospectivity mapping normally includes three
main feed-forward stages: (i) fuzzification of evidential data; (ii) logical integration of fuzzy evidential
maps with the aid of an inference network and appropriate fuzzy set operations; and (iii) defuzzification
of fuzzy mineral prospectivity output to aid its interpretation [96]. A set of fuzzy membership values is
expressed in a continuous series from 0 to 1. This 0–1 scale, however, does not constitute a probability
density function. Function-member values are established for each evidence map that will be integrated.
In the fuzzy logic method, a total of sheet maps (fuzzy membership) based on the significance distance
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of features are weighted (for each pixel or spatial position, a particular weight between 0 and 1 is
appointed) [96,99].

Five operators that are useful for combining mineral exploration datasets include the fuzzy AND,
fuzzy OR, fuzzy algebraic product, fuzzy algebraic sum and fuzzy gamma [95,100–102]. In this analysis,
the multiclass evidential image-maps were reclassified in 10 classes of equal interval and then were
fuzzified using the linear membership function. The fuzzy gamma operator was used for mapping the
prospective areas using Landsat-8, Sentinel-2, ASTER and WV-3 alteration thematic input layers. After
testing several values for the γ parameter, it was adjusted 0.70 for ensuring a flexible compromise
between the fuzzy algebraic sum and the fuzzy algebraic product [99]. Table 6 shows the fuzzification
parameters for the input layers used in this analysis.

Table 6. Fuzzification parameters for the input layers used in this analysis.

Data Origin Input Layer Detection Membership Type Fuzzy Operator

Landsat-8 Dataset
PC4 OH-minerals and Carbonates

Linear Gamma (γ = 0.7)PC5 Iron Oxide

Sentinel-2 Dataset
PC4 OH-minerals and Carbonates
PC5 Iron Oxide

ASTER Dataset
PC4 Iron oxide/hydroxides

minerals
Linear Gamma (γ = 0.7)

PC5 OH/S-O/CO3-bearing minerals
PC8 Dolomite

WV-3 Dataset
PC3 Iron-stained alteration

Linear Gamma (γ = 0.7)PC4 Dolomite/Fe2+ oxides
PC6 Fe3+ oxides

3.4. Fieldwork Data and Laboratory Analysis

Geological survey and laboratory analysis were carried out to confirm the image processing results
and mineral prospectivity mapping for the central part of the KKTZ region. A global positioning
system (GPS) survey was conducted in the study area for verifying the spatial distribution of alteration
zones and lithological units using a handheld Monterra GPS (average accuracy of 3 m; Garmin, New
Taipei City, Taiwan). Additionally, numerous photos were taken from alteration zones and lithological
units during the field surveys. Thirty hand specimens were collected from alteration zones, ore
mineralization and lithological units for laboratory analysis. Polish sections of ore mineralization and
thin sections of alteration zones and lithological units were prepared. For a detailed mineralogical
study of alteration zones, X-ray diffraction (XRD) analysis was implemented using an X’pert Pro
XRD diffractometer (Philips, Amsterdam, The Netherlands) located at the Iran Mineral Processing
Research Center (IMPRC, Tehran, Iran). Moreover, analytical spectral devices (ASD) spectroscopy was
performed to the samples collected from the main lithological units exposed in the study area using a
FieldSpec3® spectroradiometer (Malvern Panalytical Ltd., Malvern, UK, operating from 0.35 μm to
2.5 μm) located at the University of Kerman Institute of Science and High Technology (Kerman, Iran).

4. Results

4.1. Lithological and Alteration Mapping Using Landsat-8, Sentinel-2 and ASTER

For generating a regional view of lithological units in the study region, the Red-Green-Blue (RGB)
false color composite of bands 2, 5 and 7 for Landsat-8 and bands 2, 8 and 12 for Sentinel-2 were
considered, respectively. The resultant images show most of the lithological units having spectral
features related to Fe3+ and Fe3+/Fe2+ iron oxides and clay and carbonate minerals. Regarding the
geological map of the study area (see Figure 1), the identification and lithological discrimination of
the units in Landsat-8 and Sentinel-2 resultant images were almost similar. Therefore, the RGB false
color composite image of the Sentinel-2 spectral bands was selected and presented herein (Figure 4).
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The lithological units such as the rhyolite and acidic tuff interbedded with crystalline limestone (PEr)
unit, alternation of limestone, dolomite and shale (the Shemshak, Espahk and Surkh Formations) (TR),
the alternation of light green sandstone, slate and phyllite (Cph.s) and the Zarigan granite (Zrg) show a
mixture of Fe3+ iron oxides and clay and carbonates (brown, blue and purple shades). The marble,
garnet schist, biotite schist and quartzite (PE1.s) unit, light brown thin bedded dolomite and limestone,
red shale and siltstone and white to red quartzite (Kuhbanan Formation) (E1), marl interbedded with
gypsum and conglomerate (Ngc) unit and the massive to thick bedded limestone (K1) unit mostly
contain Fe3+/Fe2+ iron oxides mixed with clay and carbonates (light green and cyan hues). The sphilite,
basalt, tuff and grey to light brown limestone (PEv) unit is characterized as dark brown color due to
high content of Fe3+ iron oxides. The northeastern part of the scene (yellow polygon) shows a variety
of colors related to absorption features of target alteration minerals including Fe3+ and Fe3+/Fe2+ iron
oxides and clay and carbonate minerals. The massive to medium bedded limestone and dolomite
(C1d) unit, gypsum interbedded with grey limestone (DCg), the Cph.s unit and the PEr unit are the
main lithological units in this zone. A high level of Fe3+ iron oxides (orange, pink to rose blush
shades), mixture of Fe3+ and Fe3+/Fe2+ iron oxides (yellow tone) and clay and carbonate minerals
(light blue hue) in the zone is notable (Figure 4). Note that the occurrence of carbonate-hosted Pb-Zn
mineralization is reported in this zone (yellow polygon) and detailed alteration mapping is presented
by authors during this study.

Figure 4. Regional view of lithological units and alteration zones in the study region. RGB false color
composite of bands 2, 8 and 12 for Sentinel-2. Yellow polygon demarcates WV-3 imagery.
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The RGB false color composite of bands 6, 2 and 8 of ASTER discriminate most of the lithological
units containing Al/Fe-OH, Fe+2/Fe3+ and Mg-Fe-OH/CO3 absorption properties (Figure 5). The PEr

unit, the Zarigan granite (Zrg), thin bedded limestone and dolomite (PEEd) unit and some parts of
the Kuhbanan Formation (E1) appear in purple due to Al/Fe-OH minerals that is slightly mixed with
Mg-Fe-OH/CO3 minerals. The DCg unit is depicted as a green tone because of Fe+2/Fe3+ minerals.
The Cph.s unit is characterized in cyan hue attributed to mixture of Fe+2/Fe3+ and Mg-Fe-OH/CO3

minerals. The Ngc unit and the K1 unit are represented as bright yellow shade probably because of
combination between Mg-Fe-OH/CO3, Al/Fe-OH and Fe+2/Fe3+ minerals. The PEv unit is considered as
dark shade due to high content of Fe3+ iron oxides. The TR unit having Al/Fe-OH and Mg-Fe-OH/CO3

minerals is presented in a dark purple tone. The C1d unit is manifested in brown-golden color due
to Mg-Fe-OH/CO3 minerals mixed with Fe+2/Fe3+ minerals. The E unit, PEr and some parts of the
Kuhbanan Formation (E1) appear as dark green hue because of Fe+2/Fe3+ minerals (Figure 5).

Figure 5. Regional view of lithological units and alteration zones in the study region. RGB false color
composite of bands 6, 2 and 8 for ASTER. Yellow polygon demarcates WV-3 imagery.

Figure 6A–D shows the results of band ratios for mapping iron oxide/hydroxides and clay and
carbonate minerals derived from Landsat-8 and Sentinel-2 spectral bands. The 4/2 band ratio of
Landsat-8 and Sentinel-2 shows the spatial distribution of iron oxide/hydroxide minerals (red pixels),
which are mostly mapped in the PE1.s unit, the Ngc unit, the K1 unit, the PEr unit, the DCg unit
and Quaternary deposits (Qt) (Figure 6A,B). The 6/7 band ratio of Landsat-8 and 11/12 band ratio
of Sentinel-2 map the surface distribution of hydroxyl-bearing alteration minerals and carbonates
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(green pixels) (Figure 6C,D). Accordingly, the PE1.s unit, tuff and thick bedded of red silty shale (E)
unit, the K1 unit, the PEr unit, the pink to white granite (Zarigan granite) (Zrg), the C1d unit and
the Qt deposits are mapped due to high content of clay and carbonate minerals in their composition.
Clay and carbonate minerals show higher surface abundance in the Landsat-8 ratio-image (Figure 6C)
compared to the Sentinel-2 ratio-image (Figure 6D). The K1 unit is particularly mapped in the Landsat-8
ratio-image (Figure 6C), while it shows the smaller spatial distribution in the Sentinel-2 ratio-image
(Figure 6D). It is because the band 12 (2.100–2.280 μm) of Sentinel-2 mostly covers the absorption
features of hydroxyl-bearing minerals (2.10–2.20 μm), while the absorption features of carbonates
typically concentrate around 2.350 to 2.450 μm [69,82]. Hence, carbonates could not be mapped using
11/12 band ratio of Sentinel-2, properly.

Figure 6. Band ratio image-maps showing spatial distribution of iron oxide/hydroxides and clay and
carbonate minerals. (A) The 4/2 band ratio image-map of Landsat-8 showing iron oxide/hydroxides
minerals as red pixels; (B) the 4/2 band ratio image-map of Sentinel-2 showing iron oxide/hydroxides
minerals as red pixels; (C) the 6/7 band ratio image-map of Landsat-8 showing clay minerals and
carbonates as green pixels; (D) the 11/12 band ratio image-map of Sentinel-2 showing hydroxyl-bearing
minerals as green pixels. Yellow polygon demarcates WV-3 imagery.

The 4/2 band ratio of ASTER shows the iron oxide/hydroxide minerals in red pixels, which are
typically mapped in the PE1.s unit, the K1 unit, the PEr unit, the DCg unit, the PEEd unit, the Kuhbanan
Formation (E1) and the C1d unit (Figure 7A). The Al/Fe-OH minerals are specifically mapped as
mustard pixels in the RBD1 image of ASTER (Figure 7B). Comparison to the geology map of the study
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area, the high abundance of Al/Fe-OH minerals (mustard pixels) are associated with the lithological
units of the Cph.s, the PEr, the Kuhbanan Formation (E1), the PEv unit, the PEEd unit, the TR and
Quaternary deposits (Qt) (Figure 7B). The RBD2 image of ASTER shows the surface abundance of
Mg-Fe-OH/CO3 minerals (green pixels; Figure 7C), which are typically associated with the K1 unit and
the C1d unit. Although the Kuhbanan Formation (E1), the PE1.s unit, the Ngc unit and the PEr unit are
also partially mapped in Figure 7C. Dolomitic units are specifically mapped in the RBD3 image of
ASTER as yellow pixels (Figure 7D). The C1d lithological unit is strongly represented in yellow pixels.
Additionally, some parts of the Kuhbanan Formation (E1), the TR unit, PEEd unit, the PE1.s unit and the
PEr unit are mapped in Figure 7D due to the high content of dolomite in their lithological composition.

Figure 7. Band ratio image-maps showing spatial distribution of iron oxide/hydroxides Al/Fe-OH
and Mg-Fe-OH/CO3 minerals and dolomite. (A) The 4/2 band ratio image-map of ASTER showing
iron oxide/hydroxides minerals as red pixels; (B) the RBD1 image-map of ASTER showing Al/Fe-OH
minerals as mustard pixels; (C) the RBD2 image-map of ASTER showing Mg-Fe-OH/CO3 minerals as
green pixels; (D) the RBD3 image-map of ASTER showing dolomite as yellow pixels. Yellow polygon
delineates WV-3 imagery.

Analyzing the eigenvector loadings derived from the PCA method for Landsat-8 and Sentinel-2
indicates that the PC4 and PC5 contain key information related to the hydroxyl-bearing and carbonate
and iron oxide/hydroxide minerals. Table 2 shows the eigenvector matrix for Landsat-8 selected bands.
The PC4 has strong loadings of bands 6 (0.667216) and 7 (−0.48894) with opposite signs. Thus, the PC4
image identify hydroxyl-bearing minerals and carbonates as bright pixels due to a positive sign in the
reflection band (band 6). Figure 8A) shows the PC4 image of Landsat-8. The spatial distribution of
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hydroxyl-bearing minerals and carbonates (green pixels) is mostly identified with the units of the PE1.s,
the PEr, the K1, the Cph.s, the DCg, the C1d and Qt deposits. The Zarigan granite (Zrg) and Kuhbanan
Formation (E1) also show some hydroxyl-bearing minerals in the PC4 image of Landsat-8 (Figure 8A).
The PC5 of Landsat-8 has moderate positive contribution in band 2 (0.318038), negative strong loadings
in band 4 (−0.579504) and strong positive contribution (0.516661) in band 5 (Table 2). Accordingly, iron
oxide/hydroxide (Fe3+/Fe2+) minerals manifest as dark pixels in the PC5 image because of negative
contribution of band 4 (reflection band). The dark pixels were inverted to bright pixels by negation
(multiplication to −1). Figure 8B displays the spatial distribution of iron oxide/hydroxides (red pixels)
in the study area. The units of the PE1.s, the Cph.s, the Ngc, the PEr, the Zarigan granite (Zrg), the TR
and the DCg show a high abundance of oxide/hydroxides in the PC5 image of Landsat-8 (Figure 8B).
Comparison of the Landsat-8 PCA results to the band ratio indicates that the spatial distribution of
iron oxide/hydroxides minerals and hydroxyl-bearing minerals and carbonates in the PC images is
generally less widespread. Moreover, the alteration zones mapped by the PCA method show better
spatial relationship with the documented ore mineral occurrences in the study area.

Figure 8. PC image-maps showing spatial distribution of iron oxide/hydroxides minerals and clay
minerals and carbonates. (A) The PC4 image-map of Landsat-8 showing OH-bearing minerals and
carbonates as green pixels; (B) the PC5 image-map of Landsat-8 showing iron oxide/hydroxides
minerals as red pixels; (C) the PC4 image-map of Sentinel-2 showing OH-bearing minerals as green
pixels; (D) the PC5 image-map of Sentinel-2 showing iron oxide/hydroxides minerals as red pixels.
Yellow polygon demarcates WV-3 imagery.
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Considering eigenvector loadings for selected bands of Sentinel-2 (see Table 3), the PCA4 includes
a great contribution of band 11 (−0.641949) with a negative sign and band 12 (0.567634) with a positive
sign. Hence, hydroxyl-bearing minerals represent in dark pixels of the PC4 image (Figure 8C). The dark
pixels were converted to bright pixels by negation, subsequently. Results show that the spatial
distribution of hydroxyl-bearing minerals is typically associated with the units of the PE1.s, the Cph.s,
the Kuhbanan Formation (E1), the PEr, the K1, the Zarigan granite (Zrg), the Ngc, the C1d and Qt

deposits (Figure 8C). Iron oxide/hydroxide (Fe3+/Fe2+) minerals appear as bright pixels in the PCA5
image of Sentinel-2 due to a strong positive loading in band 4 (0.698634) and negative loadings of band
2 (−0.454829) and band 8 (−0.523627), respectively (see Table 3). Iron oxide/hydroxide minerals are
represented in bright pixels as a result of a positive loading in the reflection band (band 4) (Figure 8D).
The high surface abundance of iron oxide/hydroxide (red pixels) is highlighted with the PE1.s unit,
the Cph.s unit, the Ngc unit, the PEr unit, the DCg unit, the Zarigan granite (Zrg), the TR unit and Qt

deposits (Figure 8D). The spatial distribution of iron oxide/hydroxides minerals in the PCA5 image of
Sentinel-2 is less prevalent compared to the PCA5 of Landsat-8 (see Figure 8B,D). Nevertheless, the
PC4 image of Landsat-8 and Sentinel-2 are almost identical in many parts (see Figure 8A,C).

The PCA technique was also implemented on ASTER VNIR+SWIR bands for mapping the
target alteration minerals. The eigenvector matrix for ASTER data is shown in Table 4. The PC3
contains strong positive loading in band 4 (0.564435) and strong negative loading in band 8 (−0.896111).
The Mg-Fe-OH/CO3 has high reflectance about 1.6 μm that is coincident with band 4 of ASTER.
The Fe-Mg-OH and CO3 minerals exhibit diagnostic absorption features near 2.350 μm, which is
matched with bands 8 of ASTER [60,75]. So, the PC3 image maps Mg-Fe-OH/CO3 minerals as
bright pixels because of positive loading in band 4 (reflection band). Figure 9A shows the PC3
image-map of the study area that overlain by green color. The green pixels show a high concentration
of Mg-Fe-OH/CO3 minerals. Referring to the local geology map of the study zone, the Mg-Fe-OH/CO3

minerals are typically identified in the K1 unit, the Ngc unit and the C1d. The Kuhbanan Formation
(E1), the PEr unit, the Zarigan granite (Zrg) and the PE1.S unit are also weakly mapped in the PC3
image (Figure 9A). These lithological units contain a high abundance of carbonates and Mg-Fe-OH
minerals, which can be detected by band 8 (2.295–2.365 μm) of ASTER. The detected pixels in the PC3
image-map are comparable to the RBD2 image-map (see Figure 7C).

The PC4 has strong positive loadings in band 2 (0.812776), while it shows strong negative loadings
in band 4 (−0.429509) (see Table 4). Iron oxide/hydroxides minerals characterize by high absorption
features about 0.40 to 1.10 μm and high reflection around 1.60 μm [75]. Considering the spectral
location of bands 2 (0.63–0.69 μm) and 4 (1.60–1.70 μm) of ASTER and the eigenvector loadings in
PC4, it is discernable that iron oxide/hydroxides minerals depict as dark pixels in the PC4 image,
which consequently negated to bright pixels and overlain by red color (Figure 9B). The Ngc unit,
the Kuhbanan Formation (E1) and the PEEd unit are strongly mapped in the image. However, some
zones located in the K1 unit, the PE1.S unit, the PEr unit and Qt deposits are also distinguishable
(Figure 9B). The PC5 shows a strong contribution in band 4 (-0.668838) and band 6 (0.425904) and band
9 (0.507113) with opposite signs (see Table 4). The OH/S-O/CO3-bearing minerals exhibit diagnostic
absorption features at 2.20 to 2.50 μm, which are coincident with bands 6 to 9 of ASTER [74]. Therefore,
OH/S-O/CO3-bearing minerals can be mapped as dark pixels in the PC5 image. Figure 9C shows the
PC5 image that dark pixels are converted to bright and overlain by mustard color. Spatial distribution
of OH/S-O/CO3-bearing minerals is clearly observable in the Cph.s unit, the DCg unit, the PEEd unit the
TR unit the PEr unit and Qt deposits. Some small parts of the Kuhbanan Formation (E1) and the PE1.S

unit are also appeared as mustard pixels (Figure 9C). The results of PC5 image is almost matched to
the RBD1 image-map (see Figure 7).
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Figure 9. The PC image-maps of ASTER. (A) The PCA3 image-map showing Mg-Fe-OH/CO3 minerals
as green pixels; (B) the PC4 image-map showing iron oxide/hydroxides minerals as red pixels; (C) the
PC5 image-map showing OH/S-O/CO3-bearing minerals as mustard pixels; (D) the PC8 image-map
showing dolomite as yellow pixels. Yellow polygon delineates WV-3 imagery.

Checking the PC6 and PC7 images indicate that they are mostly noisy and uninformative.
Considering the laboratory reflectance spectra of dolomite resampled to response functions of
VINR+SWIR bands of ASTER (see Figure 4) reveals that the PC8 image feasibly contains vital
information related to the spatial distribution of dolomite. Bands 4 and 5 can be considered reflection
bands, whereas band 7 can be deliberated absorption bands for detecting dolomite. The PCA8 has
strong positive loadings in band 4 (0.404433) and band 5 (0.558407) and great contribution of band
7 (−0.623420) with a negative sign (see Table 4). The PC8 image-map of the study zone is shown in
Figure 9D. Regarding the geology map of the study zone, the C1d unit clearly appears as bright pixels
in the PC8 image. Moreover, the Kuhbanan Formation (E1), the TR, the PEr unit, the PE1.S unit and the
PEEd unit are partially characterized in yellow pixels. The resultant image-map of the PC8 is similar to
the RBD3.
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4.2. Detailed Detection of Iron Oxide/Hydroxides and Dolomit Using WV-3

Figure 10 shows the WV-3 scene covering the selected subset of the study area contains Zn–Pb
mineralization. The band ratio image-map of 5/3 for mapping Fe3+oxides (A), the band ratio image-map
of 5/2 for identifying iron-stained alteration (B), the band ratio image-map of 7/4 for detecting
dolomite/Fe2+ (C), and RGB false color composite image-map of 7/4, 5/3 and 5/2 for discriminating
lithological units (D) are shown in Figure 10. The surface distribution of Fe3+oxides (bright pixels) is
generally associated with the DCg unit, the PEr unit and PEEd unit (Figure 10A).

Figure 10. WV-3 scene covering the selected subset of the study area containing Zn–Pb mineralization.
(A) The band ratio image-map of 5/3 for mapping Fe3+oxides; (B) the band ratio image-map of
5/2 for identifying all iron oxides (iron-stained alteration); (C) the band ratio image-map of 7/4 for
detecting dolomite/Fe2+; (D) RGB false color composite image-map of 7/4, 5/3 and 5/2 for discriminating
lithological units.
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The band ratio image-map of 5/2 generates analogous results for mapping all iron oxides
(iron-stained alteration) associated with the above-mentioned lithological units (Figure 10B).
This similarity of iron oxide mapping results might be related to extensive iron-stained occurrences
in the lithological units. The spatial distribution of dolomite/Fe2+ (bright pixels) is typically mapped
in the eastern part of the selected subset (Figure 10C). The PEr unit, PEEd unit and the C1d unit are
highlighted in the image-map of the 7/4 band ratio (Figure 10C). Figure 10D shows RGB false color
composite of 7/4, 5/3 and 5/2 band ratio images for the selected subset. The discrimination of lithological
units is characteristically discernable based on different composition of iron oxide/hydroxide minerals.

The lithological units with a high abundance of iron oxide/hydroxide minerals such as the DCg
unit appear in cyan. The exposures of the PEr, PEEd and C1d units contain the high abundance of
dolomite/Fe2+ represent as whitish-yellow, golden yellow and light brown. On the other hand, the
Kuhbanan Formation (E1), Qt deposits and the Cph.s unit having a low abundance of iron oxides show
recognizable colors (shades of gray) and boundaries with other lithologies (see Figure 10D).

Analyzing the PCA statistical results for the WV-3 selected subset shows the PC3, PC4 and PC6
contain essential information for mapping iron-stained alteration, dolomite/Fe2+ and Fe3+oxides,
respectively. The PC3 shows high negative loading in band 2 (−0.598506) and strong positive loading
in band 5 (0.661001) (see Table 5). Thus, iron-stained alteration can be mapped as bright pixels because
of band 5 that is assumed as a reflection band. Figure 11A shows the DCg unit and some small parts
of the PEr unit as bright pixels. The PC4 has moderate positive loading in band 2 (0.345377), strong
positive loading in band 4 (0.631659) and high negative loading in band 7 (−0.509311) (see Table 5).
Dolomite/Fe2+ can be mapped as dark pixels due to the negative sign in the reflection band (band
7). Figure 11B shows the negated image-map of the PC4. The PEr unit, the PEEd unit and the C1d

unit are represented as bright pixels. The image-map of the PC4 is identical to the 7/4 band ratio
resultant (see Figure 10C). The PC6 contains a strong contribution in band 2 (−0.427799) and band
3 (−0.515988) with a negative sign and strong loading in band 5 (0.646312) with a positive sign (see
Table 5). Accordingly, Fe3+oxides manifest in bright pixels because of positive sign in band 5, which is
assumed as a reflection band (Figure 11C). The DCg unit, the PEr unit and the PEEd unit are mapped in
the PC6 image-map. Figure 11D shows RGB false color composite image-map of the PC4, PC6 and
PC3, respectively. Lithological units are differentiated stronger than RGB false color composite of band
ratios (see Figure 10D). The lithological boundaries of the PEr unit, the PEEd unit and the C1d unit
(represented as golden to orange-yellow) with other lithological units such as the DCg, the Cph.s and
the E1 units (depicted in shades of gray and purple) are distinguishable (Figure 11D).

4.3. Generating Mineral Prospectivity Maps for the Study Area

The fuzzy-logic model was utilized to produce mineral prospectivity maps of the favorable areas
for ore mineralizations in the study region using most rational alteration thematic layers derived
from image processing techniques (see Table 6). In this analysis, the PCA output was considered
more informative compared to band ratios output. It is due to the fact that the PCA is statistically
based algorithm and uses uncorrelated linear combinations (eigenvector loadings) to map spectral
characteristics of alteration minerals. Therefore, the PC4 and PC5 thematic layers of Landsat-8 and
Sentinel-2 and PC4, PC5 and PC8 thematic layers of ASTER were selected to be integrated by application
of the fuzzy gamma operator (γ = 0.7) for generating mineral prospectivity map at a regional scale.
Figure 12 shows the regional mineral prospectivity map of the study area. Evaluating the fuzzy
membership indicates that the high favorability index is associated with some of the lithological units
in the study area. The PE1s unit, the PEr unit, the Kuhbanan Formation (E1), the TR unit, the Cph.s unit,
the Ngc unit, the Zarigan granite (Zrg) and the DCg unit show high value (0.7 to 1.0) of the favorability
index. Most of the mines and ore indications are located in the high value zones of the favorability
index and associated with fault systems in the study area (Figure 12). Results demonstrate that the PE1s

unit, the PEr unit and the Zarigan granite (Zrg) show the highest value (0.9 to 1.0) of the favorability
index. The alteration zones associated with these lithological units are the most favorable/prospective
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areas for ore mineralizations at the regional scale. Some of the high prospective zone demarcated
using dashed black ellipsoids and circles in Figure 12, which can be considered for future mineral
exploration in the study region.

Figure 11. WV-3 scene covering the selected subset of the study area containing Zn–Pb mineralization.
(A) The PC3 image-map showing iron-stained alteration as bright pixels; (B) the PC4 image-map
showing dolomite/Fe2+ as bright pixels; (C) the PC6 image-map showing Fe3+oxides as bright pixels;
(D) RGB false color composite image-map of the PC4, PC6 and PC3 discriminates lithological units.

Figure 13 shows the local mineral prospectivity map of the study area derived from the PC3,
PC4 and PC6 thematic layers (most rational alteration thematic layers) for WV-3 data. The fuzzy
fuzzy gamma operator (γ = 0.7) was used to fuse the selected alteration thematic layers (see Table 3).
The highest value of (0.8 to 1.0) the favorability index is obtained for the PEr unit, the PEED unit and the
C1d unit. In addition, the DCg unit shows a high value (0.6 to 0.9) of the favorability index in some parts
of the study area. The Pb-Zn mineralization zones have moderate to high favorability index value (0.6
to 1.0) and are also adjoining to fault systems (Figure 13). Accordingly, the most favorable/prospective
zones for Pb-Zn mineralization in the study area are alterations (especially dolomitic zone) associated
with the PEr unit, the PEED unit and the C1d unit, mainly in fault contact zones with impermeable
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lithological units. Black polygons, ellipsoids and circles show some of the high prospective zones
for future mineral prospecting in the study region (Figure 13). These high prospective zones were
selected to check during filed reconnaissance in this study. Locations of in situ observation are shown
in Figure 13.

Figure 12. Mineral prospectivity map of the study area at regional scale derived from Landsat-8,
Sentinal-2 and ASTER selected alteration thematic layers. Magenta polygon delineates WV-3 imagery.

Figure 13. Mineral prospectivity map of the study area at local scale derived from WV-3 selected
alteration thematic layers.
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4.4. Verifying the Spatial Distribution of Alteration Zones and High Prospective Areas

Field reconnaissance was conducted to verify the occurrence of alteration zones and high
prospective locations of Pb-Zn mineralization in the study area. The global positioning system (GPS)
survey was undertaken for estimating the overall accuracy of the image processing techniques. Several
field photos were taken to record the location, contact and characteristics of alteration zones and
lithological units. Rock sample collection was carried out in several parts of the study regions and
high prospective zones for laboratory analysis such as polish and thin sections and XRD analysis and
the ASD spectroscopy. Surface manifestations of mineral assemblages such as iron oxide/hydroxides,
dolomite, shale, calcite and gypsum are widespread in the study area. Some of the highly prospective
zones, mineralogically interesting alteration zones and lithological units in the study area were
particularly visited. The argillic alteration, sericitic zones, iron oxides and dolomitization were found
in the PEr unit, the PEED unit, the E1 unit and the C1d unit, which showed some surface expression of
hematite, malachite, pyrite, galena and sphalerite. Some old open-pit quarries were also found in the
alteration zones of the lithological units. In many parts of the study area, surface expression of Pb-Zn
mineralization was typically observed in the fault contact of dolomite with other lithological units
(Figure 14A–F).

Polish section study shows the presence of chalcopyrite, pyrite, malachite, smithsonite, sphalerite,
galena, hematite and limonite. Thin section study typically displays the association of iron
oxide/hydroxides with dolomite that mostly concentrated in the fractures. The XRD analysis of
the samples collected from alteration zones inside old open-pit quarries and surrounding areas
shows the presence of quartz, dolomite, calcite, muscovite, chlorite, gypsum, albite, illite, jarosite and
malachite. The ASD spectroscopy analysis for main lithological units such as shale, gypsum, dolomite
and calcite were measured in this study (Figure 15). The laboratory reflectance spectra from the shale
sample display three distinguishable absorption features about 1.40 μm attributed to OH/H2O stretches,
1.90 μm related to H2O stretches and 2.20 μm due to combination of the OH-stretching fundamental
with Al-OH bending mode, respectively (Figure 15). These absorption features occur in shale because
of the high content of clay minerals (Al-rich phyllosilicates) [103]. The reflectance spectra derived
from gypsum exhibits three absorption features, which are identical to the shale sample (Figure 15).
But, the absorption feature at 1.90 μm (due to H2O stretches) is stronger than the shale sample and
the absorption feature near 2.20 μm is related to S-O bending mode [104]. The reflectance spectra of
dolomite contain two main absorption features related to Fe2+ at 0.9 to 1.2 μm and CO3 in 2.35 μm
(Figure 15). Calcite absorption properties typically concentrated about 2.35 μm (Figure 15), which is
attributed to the vibrational processes of the CO3 bending mode [82]. Furthermore, the confusion
matrix and Kappa Coefficient were calculated for alteration mapping results versus field GPS surveys
(Table 7). The overall accuracy for Landsat-8 and Sentinel-2 datasets is 86.66% and 83.33%, respectively.
The Kappa Coefficient of 0.83 for Landsat-8 and 0.81 for Sentinel-2 is also assessed. For the ASTER
dataset, the overall accuracy and Kappa Coefficient are 70% and 0.68, respectively. The calculation of
the confusion matrix for WV-3 shows the overall accuracy of 83.33% and Kappa Coefficient of 0.82
(Table 7).
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Figure 14. Field photographs of the alteration zones associated with Pb-Zn mineralization in the study
area. (A) View old open-pit quarry located in the PEr and E1 lithological units; (B) view of old open-pit
quarry located in the PEr, PEED and E1 lithological units; (C) view of ore mineralization associated
with fault contact in the PEr unit; (D) view of the hematite mineralization filling fault contact in the C1d

unit; (E) view of surface occurrence of malachite and zinc oxide/hydroxides in the PEr unit; (F) view of
galena mineralization in the dolomitic background in the C1d unit.
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Figure 15. ASD spectroscopy results (0.35 to 2.5 μm spectral range) for rock samples collected from
shale, gypsum, dolomite and calcite lithological units in the study area.

Table 7. Confusion matrix for alteration mapping derived from remote sensing datasets versus field
GPS survey. (A) Landsat-8 data; (B) Sentinel-2 data; (C) ASTER data; (D) WV-3 data.

(A) Alteration
Map Landsat-8

GPS Survey

Iron Oxide/Hydroxides OH-Bearing and Carbonate Minerals Totals
User’s

Accuracy

Iron
oxide/hydroxides 4 2 6 67%

OH-bearing and
carbonate
minerals

2 22 24 91%

Totals 6 24 30

Producer’s
accuracy 67% 91%

Overall accuracy = 86.66% Kappa Coefficient = 0.83

(B) Alteration
Map Sentinel-2

GPS Survey

Iron Oxide/Hydroxides OH-Bearing Minerals Totals
User’s

Accuracy

Iron
oxide/hydroxides 5 2 7 71%

OH-bearing
minerals 1 10 11 90%

Totals 6 12 18

Producer’s
accuracy 83% 83%

Overall accuracy = 83.33% Kappa Coefficient = 0.81

(C) Alteration
Map ASTER

GPS Survey

Iron Oxide/
Hydroxides

Argillic Alteration+
Shale

Gypsum Calcite Dolomite Totals
User’s

Accuracy

Iron
oxide/hydroxides 4 0 0 0 1 5 80%

Argillic alteration
+ Shale 0 4 2 1 0 7 57%

Gypsum 0 2 4 0 0 6 67%

Calcite 0 0 0 5 1 6 83%

Dolomite 2 0 0 0 4 6 67%

Totals 6 6 6 6 6 30

Producer’s
accuracy 67% 67% 67% 83% 67%

Overall accuracy = 70% Kappa Coefficient = 0.68
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Table 7. Cont.

(D) Alteration
Map WV-3

GPS Survey

Iron Oxide/Hydroxides Dolomite Totals
User’s

Accuracy

Iron
oxide/hydroxides 5 1 6 83%

Dolomite 1 5 6 83%

Totals 6 6 12

Producer’s
accuracy 83% 83%

Overall accuracy = 83.33% Kappa Coefficient = 0.82

5. Discussion

Remote sensing satellite imagery has been successfully utilized to detect the major hydrothermal
alteration minerals associated with the carbonate-hosted Pb-Zn deposits in metallogenic provinces
around the world [5,16–19]. In this investigation, multiple sources of spectral data derived from
Landsat-8, Sentinel-2, ASTER and WV-3 sensors were utilized for detailed mapping a variety of
hydrothermal alteration minerals in the central part of the KKTZ region, the CIT, Iran. Band ratios and
PCA image processing techniques were used to produce thematic maps of hydrothermal alteration
minerals for indicating the high prospective zones. Lithological units and alteration mineral zones
were mapped based on spectral absorption characteristics of Fe3+/Fe2+ and Al-OH/CO3 minerals
by implementing band ratios and PCA techniques to spectral bands of Landsat-8 and Sentinel-2.
The spatial distribution of iron oxide/hydroxide minerals was mapped in the lithological units of the
PE1s, the Ngc, the K1, the PEr, the DCg and Qt deposits using the 4/2 band ratio and PC5 of Landsat-8
and Sentinel-2. Analyzing confusion matrix for mapping iron oxide/hydroxide minerals using these
sensors (see Table 7) indicates that the highest the user’s accuracy (71%) and producer’s accuracy (83%)
were obtained for Sentinel-2 dataset. It shows that the higher spatial resolution of Sentinel-2 (10 m)
clearly impacts on mapping minerals. The 6/7 band ratio of Landsat-8 and 11/12 band ratio of Sentinel-2
and the PC4 images were used to identify the surface distribution of hydroxyl-bearing alteration
minerals and carbonates in the study region. The alteration zones associated with lithological units of
the PE1s, the E, the K1, the PEr, the Zrg, the C1d and the Qt were highlighted. The Landsat-8 show user’s
accuracy (91%) and producer’s accuracy (91%) for hydroxyl-bearing alteration minerals and carbonates,
which are higher than user’s accuracy (90%) and producer’s accuracy (83%) of Sentinel-2 (see Table 7).
It probably can be attributed to spectral coverage of band 12 (2.100–2.280 μm) of Sentinel-2, which is
not able to map carbonates, properly. The overall accuracy of Landsat-8 for mapping target alteration
minerals is 86.66% and higher than Sentinel-2 (83.33%) because of better spectral band placement
in Landsat-8 for detection of hydroxyl-bearing alteration minerals and carbonates. Fuzzy logic
modeling was used to fuse the most informative thematic alteration layers (the PC4 and PC5 images).
Subsequently, mineral prospectivity map for the study area was generated. Several prospective zones
were identified (see Figure 12), which are mostly associated with alteration zones in the PE1s unit,
the PEr unit, the Zarigan granite (Zrg), the Ngc, the Cph.s and PEEd lithological units. Most of the
prospective zones are located adjacent to the NW-SE and N-S fault systems, which likely acted as fluid
pathways for hydrothermal ore mineralizations. Documented mineral occurrences show also close
spatial relationship to the fault systems in the study area.

The ASTER dataset was used for detailed mapping iron oxide/hydroxides, Al/Fe-OH minerals,
Mg-Fe-OH/CO3 minerals and dolomite associated with carbonate-hosted Pb-Zn deposits. The spatial
distribution of these alteration minerals was comprehensively mapped. Results derived from the PCA
for the study area show that calcite, gypsum, hematite and goethite are the main spectrally-spatially
minerals. However, dolomite, jarosite, kaolinite and muscovite are minor spectrally-spatially minerals.
The analysis of confusion matrix shows that calcite has the highest user’s accuracy (83%) and producer’s
accuracy (83%). However, the lowest user’s accuracy (57%) was obtained for argillic alteration + Shale
(kaolinite and muscovite) (see Table 7). It means that the spectral mixing and confusion of calcite with
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other alteration minerals is low, while for argillic alteration + Shale is high. Iron oxide/hydroxides
shows the user’s accuracy of 80% and producer’s accuracy of 67%. Gypsum and dolomitization have
similar user’s accuracy of 67% and producer’s accuracy of 67%. Thus, spectral mixing with other
alteration minerals especially dolomite could be feasible for iron oxide/hydroxides. The spectral mixing
and confusion between gypsum and argillic alteration + shale can be expected.

Moreover, dolomite has some spectral mixing with calcite. ASTER dataset shows the overall
accuracy of 70% and Kappa Coefficient of 0.68. Accordingly, ASTER can map and discriminate
different alteration minerals appropriately, but some spectral mixing and confusion are also associated
with alteration mapping. ASTER PC image-maps show iron oxide/hydroxides, OH/S-O/CO3-bearing
minerals and dolomite associated with the C1d unit, the PEr unit, the PEED unit, the Kuhbanan Formation
(E1) and the Cph.s are high favorable/prospective zones for carbonate-hosted Pb-Zn mineralization (see
Figure 12). The N-S faults are dominant structural features associated with the high potential zones;
however, the NW-SE and NE-SW faults are also associated with few of the prospective zones.

More detailed surface distribution of Fe3+oxides, iron-stained alteration and dolomite in the
highly prospective zones were identified using WV-3 dataset. Dolomite is mostly identified associated
with the PEr unit, PEEd unit and the C1d unit. Calculation of user’s accuracy (83%) and producer’s
accuracy (83%) for iron oxide/hydroxides and dolomite shows a low rate of spectral mixing and
confusion. The overall accuracy of 83.33% and Kappa Coefficient of 0.82 show a very good rate of
accuracy and agreement for WV-3 dataset (see Table 7). WV-3 mineral prospectivity map (see Figure 13)
shows the zones of most favorable/prospective zones for the Pb-Zn mineralization in the study area.
The dolomitic zones in the PEr unit, the PEED unit and the C1d unit are typically indicated as the
highest potential zone. In the vicinity of N-S, NW-SE and NE-SW fault systems, several of the most
prospective zones are identified in the study area (see Figure 13).

Fieldwork was conducted comprehensively in the highly prospective zones for observing
surface expression of Pb-Zn mineralization and related alteration zones and lithological units. Iron
oxide/hydroxides and dolomite as well as weak argillic/sericitic zones was found with surface expression
of hematite, malachite, pyrite, galena and sphalerite in the PEr unit, the PEED unit, the E1 unit and
the C1d unit. Surface manifestation of Pb-Zn mineralization was typically recorded in the fault
contact of dolomite with impermeable lithological units. The presence of quartz, dolomite, calcite,
muscovite, chlorite, gypsum, albite, illite, jarosite and malachite is verified by XRD analysis. These
evidences emphasized that the fault systems provided fluid conduits for Pb-Zn mineralization that
hydrothermally altered the host lithologies and afterwards oxidized during supergene processes.
The ASD spectroscopy analysis of main lithological units showed distinct absorption features related to
Fe2+, OH/H2O, H2O, Al-OH, S-O and CO3 for collected rock samples such as dolomite, shale, gypsum
and calcite. Generally, confusion matrix and Kappa Coefficient calculated for alteration mapping
results versus field GPS survey show reasonable overall accuracy (70% to 86.66%) and good rate
of agreement (0.68 to 0.83). Landsat-8 and Sentinel-2 generally mapped iron oxide/hydroxides and
hydroxyl-bearing and carbonate minerals and indicated favorable/prospective zones, while ASTER
and WV-3 comprehensively detected and discriminated hematite, goethite, jarosite, gypsum, calcite,
dolomite, kaolinite and muscovite and the highest prospective zones.

6. Conclusions

This investigation demonstrates the application of multi-source spectral data in the range of
VNIR and SWIR wavelengths provided by Landsat-8, Sentinel-2, ASTER and WV-3 for indicating the
highly prospective zones of carbonate-hosted Pb-Zn deposits in the KKTZ of the CIT region of Iran.
Results show that significant information related to the iron oxide/hydroxide and hydroxyl-bearing
and carbonate minerals can be easily obtained by implementing some specialized band ratio (e.g.,
4/2, 6/7 and 11/12) and PCA technique to Landsat-8 and Sentinel-2 datasets. Fusing of the most
informative alteration thematic layers by the fuzzy-logic model is a reliable approach for generating
remote sensing-based mineral prospectivity map. Landsat-8/Sentinel-2/ASTER mineral prospectivity
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map for the KKTZ indicated the potential zones are mostly located in the altered zones of the
PE1s unit, the PEr unit and the Zarigan granite (Zrg), which normally are near to the NW-SE and
N-S fault systems. Detailed surface distribution of Al/Fe-OH minerals, Mg-Fe-OH/CO3 minerals
and dolomite was detected using RBD and PCA methods to ASTER dataset. The alteration zones
(especially gossan and dolomite) associated with C1d, the PEr, the PEED, the Kuhbanan Formation
(E1) and the Cph.s lithological units and close to N-S, NW-SE and NE-SW faults are considered highly
favorable/prospective zones for carbonate-hosted Pb-Zn mineralization in the study area. Detailed
identification of Fe3+oxides, iron-stained alteration and dolomite in the highly prospective zones
was obtained using WV-3 VNIR spectral bands processing (e.g., band ratios of 5/3, 5/2 and 7/4; PCA
techniques). The most favorable/prospective zones for Pb-Zn mineralization in the study area are
dolomite and gossan alteration zones located in the PEr, the PEED and the C1d lithological unit,
which are exclusively placed in the fault contact zones of dolomitic occurrences with impermeable
lithological units. The N-S, NW-SE and NE-SW trends fault systems provided fluid conduits for Pb-Zn
mineralization and deposition and subsequent alteration zones in the study area. Therefore, it is
recommended that detailed structural analysis of lineaments using Synthetic Aperture Radar (SAR)
remote sensing data such as the Phased Array type L-band Synthetic Aperture Radar (PALSAR) is also
required for future mineral prospection in the CIT. Additionally, SWIR bands of WV-3 can provide high
spectral and spatial data for detailed alteration mapping. On the other hand, thermal infrared (TIR)
data from Landsat-8 and ASTER are also valuable to map minerals like quartz, andradite, gypsum,
calcite, dolomite, diopside and albite, comprehensively. In conclusion, the application of multi-sensor
remote sensing satellite imagery and fusing the most informative alteration thematic layers using the
fuzzy-logic model can provide a low-cost exploration approach for prospecting carbonate-hosted Pb-Zn
mineralization in the KKTZ of CIT and other metllogenic provinces around the world. The results
demonstrated in this investigation represent a significant contribution of space-borne multispectral
systems to generate mineral prospectivity maps at various scales (regional, district and local scale).
This approach could be very interesting for stakeholders and mining/exploration companies to use
different types of space-borne multispectral data for distinct phases of mineral exploration.
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Abstract: There are a significant number of image processing methods that have been developed
during the past decades for detecting anomalous areas, such as hydrothermal alteration zones, using
satellite images. Among these methods, dimensionality reduction or transformation techniques
are known to be a robust type of methods, which are helpful, as they reduce the extent of a study
area at the initial stage of mineral exploration. Principal component analysis (PCA), independent
component analysis (ICA), and minimum noise fraction (MNF) are the dimensionality reduction
techniques known as multivariate statistical methods that convert a set of observed and correlated
input variables into uncorrelated or independent components. In this study, these techniques were
comprehensively compared and integrated, to show how they could be jointly applied in remote
sensing data analysis for mapping hydrothermal alteration zones associated with epithermal Cu–Au
deposits in the Toroud-Chahshirin range, Central Iran. These techniques were applied on specific
subsets of the advanced spaceborne thermal emission and reflection radiometer (ASTER) spectral
bands for mapping gossans and hydrothermal alteration zones, such as argillic, propylitic, and phyllic
zones. The fuzzy logic model was used for integrating the most rational thematic layers derived from
the transformation techniques, which led to an efficient remote sensing evidential layer for mineral
prospectivity mapping. The results showed that ICA was a more robust technique for generating
hydrothermal alteration thematic layers, compared to the other dimensionality reduction techniques.
The capabilities of this technique in separating source signals from noise led to improved enhancement
of geological features, such as specific alteration zones. In this investigation, several previously
unmapped prospective zones were detected using the integrated hydrothermal alteration map and
most of the known hydrothermal mineral occurrences showed a high prospectivity value. Fieldwork
and laboratory analysis were conducted to validate the results and to verify new prospective zones
in the study area, which indicated a good consistency with the remote sensing output. This study
demonstrated that the integration of remote sensing-based alteration thematic layers derived from
the transformation techniques is a reliable and low-cost approach for mineral prospectivity mapping
in metallogenic provinces, at the reconnaissance stage of mineral exploration.

Keywords: dimensionality reduction; principal component analysis; independent component
analysis; minimum noise fraction; ASTER; hydrothermal alteration; fuzzy logic
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1. Introduction

The interaction of hydrothermal fluids and wall rocks during the uprising process through conduits
(e.g., faults and fractures), which results in the alteration of mineralogy and chemical composition of
rocks, can lead to the generation of polymetallic epithermal and porphyry deposits [1–4]. The footprints
of various types of hydrothermal alteration on the surface are key indicators through the exploration
of outcropping or deep-seated deposits [5–8]. Each alteration type shows a specific spectral behavior
due to different mineral assemblages. Exploration geologists use these spectral characteristics as
diagnostic features for detecting and discriminating between different alteration types, using remote
sensing data [9–11]. Detailed spectral information on the mineralogy and geochemistry of rock types
comprising the Earth’s surface are provided by multispectral and hyperspectral remote sensing
instruments, and this technology has been used for decades to map rocks, mineral assemblages, and
weathering characteristics in different regions [9,10,12–18]. Mapping prospective zones of various
types of the hydrothermal alteration minerals is one of the most important applications of remote
sensing in the field of mineral exploration [11,18–22].

The spectral and spatial resolution provided by the advanced spaceborne thermal emission
and reflection radiometer (ASTER) sensor makes the identification of specific alteration assemblages
feasible. The ASTER spectral subsets, including visible and near infrared, short-wave infrared, and
thermal infrared wavelength regions provide complementary data for lithologic mapping and mineral
exploration. The ASTER remote sensing data have been extensively used for alteration and lithological
mapping [16,23–25]. Image processing approaches such as dimensionality reduction or transformation
techniques are considered as efficient tools in identifying hydrothermal alteration zones in metallogenic
provinces [10,15,16,26–29]. Transformation techniques such as principal component analysis (PCA),
independent component analysis (ICA), and minimum noise fraction (MNF) are powerful statistical
techniques that can be used for suppressing irradiance effects that dominate all bands, therefore,
enhancing the spectral reflectance features of geological materials [30,31]. These techniques can be
applied to multivariate data sets, such as multispectral satellite images, to extract specific spectral
responses, as in the case of hydrothermal alteration minerals.

PCA has been used to transform remote sensing data in the form of image to uncover the
most important features [32,33], by extracting a smaller set of variables with less redundancy from
high-dimensional data sets [34,35]. This technique has been widely used for mapping lithological
features and hydrothermal alteration zones, using different types of remote sensing data [23,36–38].
ICA has less been considered to be a common technique in image processing, although it has a wide range
of applications in signal processing [39]. The lack of a comprehensive understanding of the underlying
theory and foundations of ICA is one of the main reasons that ICA has not been applied commonly in
geosciences, particularly, for multi- or hyper-spectral image-processing. There are only a few studies
focused on the application of ICA in alteration mapping [40,41]. MNF is used to determine the inherent
dimensionality of image data, segregate noise in the data, and reduce the computational requirements for
subsequent processing [42,43]. This transformation can identify spectral signatures of spectral anomalies.
MNF is of interest to exploration geologists because spectral anomalies are often indicative of hydrothermal
alteration zones and has been applied on different data types for detecting such anomalies [44–46].

The integration and comparison of the dimensionality reduction techniques provide
comprehensive information for creating the most informative thematic layers and generating a
remote sensing evidential layer. In this study, we used the PCA, ICA, and MNF for mapping
hydrothermal alteration zones, using ASTER remote sensing data in the Toroud-Chahshirin range,
Central Iran (Figure 1). This region is mostly known for several epithermal polymetallic vein-type
mineral occurrences, and anomalous Cu and Au concentration values have been reported to be
associated with altered dacite, dacite-andesite, and volcaniclastics rocks. The presence of several
mineral occurrences associated with widespread alteration zones suggests that the Toroud-Chahshirin
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range is a prospective zone for high-grade gold veins and base metal epithermal deposits [47]. There is
no regional prospectivity map available for the study area. Accordingly, the main objectives of this
study are: (1) to compare the PCA, ICA, and MNF techniques for mapping gossans and hydrothermal
alteration zones, including argillic, phyllic, and propylitic, using selected spectral subsets of the ASTER
data; (2) to select the most informative thematic layers for detecting gossans, argillic, phyllic, and
propylitic zones, using statistical analyses; (3) to integrate the most informative thematic layers for
generating a remote sensing evidential layer using fuzzy logic; and (4) to verify the prospective zones
through detailed fieldwork and laboratory analysis.

2. Geological Setting

The magmatic arc of Toroud-Chahshirin located in Central Iran, lies between the Anjilow
and Toroud faults (Figure 1) [48]. The rock outcrops of the study area are composed of Eocene
volcano-pyroclastic rocks with an intermediate composition (andesite), which have been affected by
Oligo-Miocene intrusive bodies. The magmatic activities commenced in the first and second geological
eras along with tectonic events, gradually. The peak of magmatic activities occurred from middle to
upper Eocene, which constitute the heights of the Toroud-Chahshirin region. Most of the magmatic
products are made of andesite and basalt, which have an acidic or trachytic state. On the other hand,
some magmatic products are basic in terms of composition and have changed into andesite lavas,
breccias, and tuffs, at the end of Eocene. The volcanic rocks of the study area have been cut by multiple
intrusive bodies aged Oligo-Miocene, which are known to be one of the key factors of mineralization.
These rocks include granite, micro-granite, granodiorite, micro-granodiorite, micro-quartz monzonite,
micro-monzonite, micro-monzodiorite, and micro-quartz monzodiorite. The major constituent minerals
include quartz, alkali-feldspar, plagioclase, biotite, amphibole, pyroxene, apatite, titanite, zircon,
tourmaline, magnetite, and ilmenite. The volcanic rocks are mainly from magmatic, subalkaline, and
alkaline series [47]. The Toroud-Chahshirin range is the largest known gold and base metal province
of Iran [47,49]. In this province, the Northern Iranian region hosts five gold and base metal deposits.
Other types of deposits in this range include placer gold, an underground mine for turquoise at Baghu,
skarn deposits, and Pb-Zn deposits in carbonate rocks.

 

Figure 1. (a) Simplified tectonic scheme of Iran; and (b) geological map of the Toroud-Chahshirin range
located in Central Iran [50].

313



Remote Sens. 2020, 12, 1261

3. Materials and Methods

3.1. ASTER Data Characteristics and Pre-Processing

The ASTER remote sensing data are the result of a joint plan between the United States and
Japan, with a strong focus on geological and mineral exploration applications [51]. This sensor, which
is aboard the Earth observing system (EOS) Terra platform, records solar radiation in 14 spectral
bands [14,52]. It measures the reflected radiation in three subsets, including visible and near infrared
(VNIR), short-wave infrared (SWIR), and thermal infrared (TIR). The VNIR consists of three bands
between 0.52 and 0.86 micrometers (μm), the SWIR includes six bands from 1.6 to 2.43 μm, and emitted
radiation in five bands in the 8.125–11.65 μm wavelength region constitute the TIR. The resolution of
VNIR, SWIR, and TIR is 15 meters (m), 30 m, and 90 m, respectively [53]. Many clay and carbonate
minerals show diagnostic spectral features in the short-wave infrared range, where the ASTER sensor
provides six spectral bands [54]. According to the geological setting and metallogenetic characteristics
of the study area, and different types of the hydrothermal alteration associated with epithermal mineral
deposits [55–58], we used the ASTER data for mapping the hydrothermal alteration zones.

We used two cloud-free level 1 precision terrain corrected and registered at-sensor radiance
(AST_L1T) ASTER scenes in this study. These scenes downloaded from the US Geological Survey
Earth Explorer [59], were both acquired on October 3, 2004. The ASTER AST_L1T data was calibrated
at-sensor radiance, which corresponded to ASTER Level 1B (AST_L1B); which was geometrically
corrected, and rotated to a north-up universal transverse Mercator projection [60]. The ASTER scenes
used in this study were pre-georeferenced to the UTM zone 40 North. The QUAC module within the
ENVI software package [61], which works with the visible and near-infrared to short-wave infrared
(VNIR–SWIR) wavelength range, was used to provide an atmospheric-corrected surface reflectance
image of the study area. Moreover, this module was a quick solution for converting radiance-calibrated
data to apparent reflectance. Eventually, the SWIR bands were resampled to the spatial resolution of
VNIR using the nearest neighbor technique.

3.2. Image Processing

3.2.1. Principal Component Analysis

Principal component analysis aims at finding a set of linearly uncorrelated components called
principal components, which can be considered to be projections from the original data [62–64]. In other
words, the principal components are the projection of input data onto the principal axes or eigenvectors.
The output components are arranged on the basis of the variance, in descending order. The first
principal component has the largest variance and the next component has the next highest variance.
There is a constraint that each component has to be orthogonal to the preceding components [65,66].
In PCA, the same number of output principal components as input spectral bands can be generated.
Although, a small number of principal components often involve the majority of the variance in the
data and provide most of the information about the structure of the data [67,68]. In this study, we
assumed a normal data distribution and used the covariance matrix for calculating the principal
components. The principal component with the loadings, which shows a similar trend to the spectral
characteristics of the target alteration minerals, is considered to be the appropriate component for
enhancing the target zones. The selected principal component image contains a unique contribution of
eigenvector loadings in terms of magnitude and sign, for the absorption and reflection bands of an
alteration mineral or mineral group. This feature helps by enhancing the target alteration zone.

3.2.2. Independent Component Analysis

Independent component analysis is known to be an efficient statistical signal processing technique
for decomposing a set of multivariate signals into statistically independent streams, without losing
much information [69]. ICA is able to reveal hidden features that underlie sets of random signals and
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attempts to make the separated signals as independent as possible. The independent components
and the mixture signals are always assumed to have a zero mean and a unit variance, in order to
simplify the model without a loss of generality. This assumption leads to no variance ranking of the
independent components. There are many mature algorithms available for implementing ICA using
various estimators of independence. In this study, we choose the fast ICA that uses a fixed-point
algorithm for an approximation of negentropy as a measurement of independence, for data processing,
due to its computing efficiency, flexible parameters, and robustness [70]. In information theory and
statistics, negentropy is used as a measure of distance to normality [71]. Unlike the PCA, which
is based on the assumptions of uncorrelation and normality, ICA is rooted in the assumption of
statistical independence. PCA only requires the second-order statistics, while ICA looks for statistically
independent components, a much stronger condition than being uncorrelated. In addition, ICA
components are not necessarily geometrical orthogonal. The most important difference is that ICA
needs a linear model to describe data while PCA does not. Therefore, ICA cannot be considered as a
generalization of PCA [72].

3.2.3. Minimum Noise Fraction

Minimum noise fraction is known to be an efficient technique for reducing the dimensions of
a large dataset into a smaller number of components that involve the majority of information [42].
This technique was similar to the PCA, but the resulting components were not necessarily orthogonal
and were arranged according to the signal-to-noise ratio, in descending order. MNF is applied for
discriminating between noise and signal in a dataset. Moreover, this technique is able to determine the
inherent dimensionality of an image [28]. The MNF transform implemented in this study involved
two cascaded PCA transformations. The first transformation is called noise-whitening and is based
on an estimated noise covariance matrix that aims at decorrelating and rescaling the noise in the
data. The second step is a standard PCA transformation of the noise-reduced data. The number
of output components can be as many as the input bands, with a decreasing overall variance of
the dataset from the first component to the last. Similar to other transformation techniques, only a
small number of components were often required to describe most of the information for the entire
dataset. The contribution of each component to the overall information in a multivariate dataset, such
as multispectral or hyperspectral images, is measured by an eigenvalue. The output components
can be divided into two parts, including the part associated with large eigenvalues and the other
with near-unity eigenvalues and noise-dominated images. The part with large eigenvalues separates
the noise from the data, and improves spectral results [42]. The contribution of each band to each
component is measured by an eigenvector, which can be interpreted akin to a correlation coefficient [73].
The dimensionality reduction techniques used in this study, were executed using the ENVI software
package [61].

3.2.4. Hydrothermal Alteration Mapping by the PCA, ICA, and MNF Techniques

In this study, the PCA, ICA, and MNF techniques were applied to specific subsets of the ASTER
spectral bands. The subsets were selected according to the characteristic spectral features of key
alteration minerals in the VNIR and SWIR ranges of the electromagnetic spectrum. The selected
spectral bands involved absorption and reflection diagnostic features of the indicative minerals in each
alteration zone. In this study, we targeted the detection of gossans and different types of hydrothermal
alterations, including argillic, propylitic, and phyllic, which were mainly related to the epithermal
ore deposits. The laboratory spectra of these types of alteration minerals are available in Figure 2,
which were resampled to the ASTER spectral bands [74]. Gossans are important guides to buried
metallic ore deposits and are usually found in the upper and exposed part of an ore deposit or mineral
vein, which involves intensely oxidized and weathered rocks [75]. Iron oxide and hydroxide minerals
such as goethite, hematite, jarosite, and limonite are known to be indicative minerals of a gossan [75].
According to Figure 2a, these minerals showed an absorption feature in bands 1–3, located in the VNIR
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portion of the electromagnetic spectrum due to electronic transitions, and a reflectance feature in band
4 (1.65 μm). Therefore, we selected bands 1–4 as the input to the PCA, ICA, and MNF techniques for
mapping gossans.

 

Figure 2. Laboratory spectra of the indicative minerals in (a) gossans, (b) argillic, (c) propylitic, and
(d) phyllic hydrothermal alteration zones. These spectra were resampled to the advanced spaceborne
thermal emission and reflection radiometer (ASTER) spectral bands and are shown against wavelength
and band numbers in the second and third columns, respectively [74].

The indicative minerals that were considered for each hydrothermal alteration zone included
alunite, illite, kaolinite, and montmorillonite for argillic; calcite, chlorite, and epidote for propylitic;
and illite and muscovite for the phyllic alteration zones. As shown in Figure 2b, the clay minerals that
constituted the major part of argillic alteration and usually exhibited aluminum hydroxide spectral
features caused by vibrational processes, showed an absolute and relative reflectance feature in bands
4 (1.65 μm) and 7 (2.26 μm), respectively. Moreover, there was an absolute absorption in band 5
(2.165 μm). Therefore, we selected bands 1, 4, 5, and 7 as a spectral subset for enhancing the argillic
alteration zones. According to Figure 2c, the indicative minerals of propylitic alteration, particularly
chlorite and epidote showed an absolute and relative reflection in bands 5 (2.165 μm) and 4 (1.65 μm).
Additionally, there was an absolute absorption in band 8 (2.33 μm) that was attributed to the vibrations
of OH groups bound to the Fe and Mg cations. Therefore, we selected bands 1, 4, 5, and 8 as a
spectral subset for enhancing propylitic alteration zones. According to the field observation, illite
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and muscovite minerals constituted most of the phyllic alteration zones in the study area. As shown
in Figure 2d, there was an absolute and relative reflectance in bands 4 (1.65 μm) and 7 (2.26 μm),
respectively. Additionally, there was an absolute absorption in band 6 (2.205 μm), due to the presence
of aluminum hydroxide compound. Therefore, we selected bands 1, 4, 6, and 7 as a spectral subset for
enhancing the phyllic alteration zones.

We used statistical analyses for selecting the meaningful component for enhancing each alteration
type, derived from different transformation techniques. The concentration-area (C-A) fractal method
was applied for determining an appropriate threshold for discriminating between the anomaly
population and the background in each selected component [76]. The number of correctly classified
rock samples was used to assess the accuracy of each selected component in terms of consistency with
field observations, and to help us find the appropriate transformation technique for mapping each
alteration type [77].

3.3. Integration of Hydrothermal Alteration Thematic Layers Using Fuzzy Logic

We used a logistic function for scaling input components to the integration process between
0 and 1 [78]. These components were integrated using a knowledge-driven approach based on
fuzzy logic. The components were weighted from 1 to 10, using a subjective judgement based on
the metallogenic models presented for hydrothermal mineralization and expert knowledge [79–81].
The more favorable the alteration type, the higher weight it took. The phyllic alteration is known to
be highly associated with hydrothermal mineralization and is usually found close to the center of a
mineralization system [82,83]. This alteration type is given the highest weight equal to 9. The argillic
alteration and gossans are considered to be exploration guides and are usually not associated with target
hydrothermal mineralization [84]. They are usually found in the surrounding regions of mineralization
and were weighted 7. The propylitic alteration usually constitute the outermost ring of hydrothermal
mineralization on the ground surface [85] and was given the lowest weight equal to 3. We applied
the fuzzy gamma operator for integrating input components. The fuzzy gamma operator allowed
a judicious choice of gamma, leading to an output that ensured a flexible compromise between the
increasing trend of fuzzy algebraic sum and the decreasing effect of fuzzy algebraic product [86].
In this study, the fuzzy gamma operator was experimented with changing gamma values in the range
of 0 and 1. The most satisfying map was obtained when the gamma equaled 0.9, which yielded the
highest prediction rate based on the prediction-area (P-A) plots. We used the prediction-area plots
in order to quantitatively validate the remote sensing evidential layers derived from the integration
of transformation techniques, using different gamma values [87]. Moreover, we investigated the
spatial association of anomalous zones and known hydrothermal mineral occurrences. The detailed
methodology flowchart of this study is presented in Figure 3.

3.4. Field Survey

A field survey was planned for collecting samples from the detected hydrothermal alteration
zones and verifying the results. We used a handheld global positioning system navigator (Garmin eTrex
10), with an accuracy of less than 15 m, for recording the coordinates of the samples. Overall, 55 rock
samples were collected from different alteration zones and lithological units, for the microscopic studies
and X-ray diffraction (XRD) analysis. The XRD analysis was carried out using Bruker AXS D8 Advance
at the University of Tehran. The field data were used for selecting the appropriate transformation
technique for enhancing each alteration type.
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Figure 3. Methodology flowchart for generating a remote sensing evidential layer. We used ASTER
remote sensing data as the input to this flowchart, which can be replaced with other types of
satellite images.

4. Results

4.1. Hydrothermal Alteration Mapping Using PCA

The eigenvectors of each selective principal component analysis used for enhancing the gossans,
argillic, propylitic, and phyllic alteration zones presented in Tables 1–4, respectively. The eigenvectors
of each selective PCA are plotted in Figure 4. According to the spectral characteristics of the indicative
minerals in the gossans shown in Figure 2a and the graphs presented in Figure 4a, negated PC 2 in PCA
(1234) was considered for enhancing the gossans. This principal component showed a high negative
loading in band 4 and an average constant and positive loading in bands 1–3. The relevant eigenvector
showed a similar, but reverse trend, compared to the spectral graphs of the indicative minerals in
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gossans, such as jarosite. Therefore, the target areas appear in dark pixels in the original component,
which had to be negated.

According to Table 2 and Figure 4b, the negated PC 4 in PCA (1457) was considered to be the
component that could be used for enhancing the argillic alteration zones. In the relevant eigenvector,
there was a large difference between the loadings in bands 5 and 7, and they showed opposite signs.
This large difference was consistent with the spectral behavior of the indicative minerals in argillic
alteration zones, such as alunite and kaolinite. The target areas appeared as dark pixels due to the
reverse trend of the relevant eigenvector, compared to the target spectral behavior, thus the negated
component was used for mapping the anomalous pixels. Based on the results presented in Table 3
and Figure 4c, the negated PC 4 in PCA (1458) enhanced the propylitic alteration zones. The relevant
eigenvector to this PC showed a large difference between the loadings in bands 5 and 8, with opposite
signs. This was similar to the spectral behavior of the indicative minerals in the propylitic alteration
zones, such as chlorite and epidote. Similar to the reason mentioned above for the argillic alteration
zones, the target zone in this component also appeared in dark pixels, and the negated component was
used for enhancing the phyllic alteration zones.

According to Table 4 and Figure 4d, PC 3 in PCA (1467) was considered to be the component that
could be used for enhancing the phyllic alteration zones. The relevant eigenvector showed a large
difference between the loadings in bands 6 and 7, with opposite signs. Although PC 4 showed a larger
difference, only the relevant eigenvector to PC 3 followed a similar trend to the spectral graphs of the
indicative minerals in the phyllic alteration zones, such as muscovite. The anomalous areas in this
component are displayed in bright pixels.

Table 1. Eigenvectors of the principal component analysis on a spectral subset of the ASTER data for
detecting the gossans in the study area.

Eigenvectors Band 1 Band 2 Band 3 Band 4

PC 1 0.341997 0.472648 0.499262 0.640608
PC 2 0.321681 0.413772 0.371346 −0.76643
PC 3 −0.680078 −0.19108 0.706279 −0.046394
PC 4 0.563075 −0.754244 0.337652 −0.007266

Table 2. Eigenvectors of the principal component analysis on a spectral subset of the ASTER data for
detecting the argillic alteration zones in the study area.

Eigenvectors Band 1 Band 4 Band 5 Band 7

PC 1 0.207235 0.505504 0.51344 0.66174
PC 2 0.947905 −0.240599 −0.203849 0.045107
PC 3 0.202174 0.78474 −0.113303 −0.574867
PC 4 0.132878 −0.266011 0.825825 −0.47916

Table 3. Eigenvectors of the principal component analysis on a spectral subset of the ASTER data for
detecting the propylitic alteration zones in the study area.

Eigenvectors Band 1 Band 4 Band 5 Band 8

PC 1 −0.264923 −0.649083 −0.657148 −0.276883
PC 2 −0.953077 0.22522 0.19047 −0.068121
PC 3 −0.050172 −0.725165 0.666135 0.166981
PC 4 −0.13763 −0.045865 −0.296886 0.943829
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Table 4. Eigenvectors of the principal component analysis on a spectral subset of the ASTER data for
detecting the phyllic alteration zones in the study area.

Eigenvectors Band 1 Band 4 Band 6 Band 7

PC 1 0.18246 0.442498 0.657435 0.581965
PC 2 0.961565 −0.24002 −0.130325 0.028251
PC 3 0.120262 0.801479 −0.585627 0.014461
PC 4 −0.166245 −0.322827 −0.455889 0.812595

 

Figure 4. Trends of eigenvectors related to the selective principal component analysis on the ASTER
spectral bands presented in Tables 1–4, are shown in (a–d), respectively.

The principal components obtained were in the form of grayscale images and needed to be
converted into binary images, through mapping alteration zones. Based on the pixel values, C-A
plots were generated on a logarithmic scale for each principal component selected, to enhance the
different alteration zones. These plots are presented in Figure 5. The inflection points in these plots
were considered to be the appropriate thresholds for separating the different populations, including
background and anomaly. In Figure 6, we present the enhanced alteration zones, using PCA based on
the C-A fractal method. The alteration zones were overlaid on the hillshade of the study area created
by the ASTER digital elevation model.

320



Remote Sens. 2020, 12, 1261

 

Figure 5. Logarithmic scaled plots of area versus the pixel values for the selected principal components
for enhancing the (a) gossans, (b) argillic, (c) propylitic, and (d) the phyllic alteration zones.

 

Figure 6. Anomalous pixels of different principal components determined using the C-A plots for
enhancing (a) gossans, (b) argillic, (c) propylitic, and (d) phyllic alteration zones, overlaid on the
hillshade of the study area.

4.2. Hydrothermal Alteration Mapping Using ICA

We applied the same spectral subsets used in PCA for independent component analysis and
for enhancing the target alteration zones. Before performing the independent component forward
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calculation, we used the principal component rotation for data whitening with the same eigenvectors,
as presented in Tables 1–4. Two main discrepancies for extracting components using ICA were: (i) There
was no order of magnitude associated with each component in ICA. This meant that no better or worse
component could be selected and other criteria such as two-dimensional (2D) spatial coherence might
be considered by the user. (ii) The extracted components were invariant to the sign of the sources [88].
There are different ways to determine the most suitable IC for enhancing a target alteration zone. One
way is to compare the spectral profile of both anomalous bright and dark pixels of each IC with the
reference spectra. The other is to compare anomalous pixels of each IC with known criteria, such as
the known color of each alteration zone, in specific false color composite images. For instance, argillic,
propylitic, and phyllic alteration zones are displayed in pink, light green, and dark magenta, in the
false color composite image created using bands 4, 6, and 8 of the ASTER data in red, green, and blue
channels, respectively.

In this study, the independent components were sorted, based on the 2D spatial coherence, which
is the average of the two correlation coefficients. One correlation coefficient was calculated between
each spectral band and a version of itself, offset by one line. The other correlation coefficient was
calculated between each spectral band and a version of itself, offset by one sample. Using the 2D
spatial coherence sorting, independent components that contained the spatial structure and most of the
information, appeared first, and those that contained little spatial structure and more noise appeared
last. Based on these results, negated IC 2, IC 3, negated IC 2, and negated IC 3 were recognized as
the most suitable components for enhancing gossans, argillic, propylitic, and phyllic alteration zones,
respectively. As shown in Figure 7, the appropriate threshold for separating the anomalous pixels of
the selected ICs were determined using the C-A fractal plots. The enhanced alteration zones using the
ICA and based on the C-A fractal plots are presented in Figure 8.

 

Figure 7. Logarithmic scaled plots of area versus pixel values for the selected independent components
for enhancing the (a) gossans, (b) argillic, (c) propylitic, and (d) phyllic alteration zones.

322



Remote Sens. 2020, 12, 1261

 

Figure 8. Anomalous pixels of different independent components determined using the C-A plots for
enhancing the (a) gossans, (b) argillic, (c) propylitic, and (d) phyllic alteration zones, overlaid on the
hillshade of the study area.

4.3. Hydrothermal Alteration Mapping Using MNF

We used identical spectral subsets to the PCA and ICA as input to this technique. We presented
the transformation vectors of each selective MNF analysis used for enhancing the gossans, argillic,
propylitic, and phyllic alteration zones in Tables 5–8, respectively. The transformation vectors of each
analysis are shown in Figure 9. According to the spectral characteristics of the indicative minerals in
gossans (shown in Figures 2a and 9a), the second component (C 2) in MNF (1234) was considered for
enhancing gossans. This component showed a relatively similar trend to the spectral graphs of the
indicative minerals in gossans. Therefore, the target areas appeared in bright pixels in this component.

Table 5. Transformation vectors of minimum noise fraction (MNF) analysis on a spectral subset of the
ASTER data for detecting gossans in the study area.

Transformation Vectors Band 1 Band 2 Band 3 Band 4

C 1 0.001754 −0.00002 0.000029 −0.01711
C 2 −0.01966 −0.00557 0.007738 0.005621
C 3 −0.024987 0.004426 0.018885 −0.00362
C 4 0.022636 −0.033569 0.017022 −0.000533
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Table 6. Transformation vectors of MNF analysis on a spectral subset of the ASTER data for detecting
the argillic alteration zones in the study area.

Transformation Vectors Band 1 Band 2 Band 3 Band 4

C 1 0.001734 −0.013649 −0.011389 0.005532
C 2 −0.005871 0.034231 −0.025712 −0.005107
C 3 0.014524 0.007016 −0.019229 0.005719
C 4 −0.008015 −0.004828 −0.015279 0.018378

Table 7. Transformation vectors of MNF analysis on a spectral subset of the ASTER data for detecting
the propylitic alteration zones in the study area.

Transformation Vectors Band 1 Band 2 Band 3 Band 4

C 1 −0.001556 0.016958 0.013699 −0.028643
C 2 −0.006848 0.031257 −0.016662 −0.03121
C 3 −0.009486 −0.015755 0.028617 −0.024276
C 4 −0.013196 −0.00112 −0.012047 0.044362

Table 8. Transformation vectors of MNF analysis on a spectral subset of the ASTER data for detecting
the phyllic alteration zones in the study area.

Transformation Vectors Band 1 Band 2 Band 3 Band 4

C 1 0.001676 −0.01846 −0.003035 0.004273
C 2 0.004374 −0.032869 0.020412 0.001996
C 3 0.016131 0.003897 −0.010992 0.004757
C 4 0.005622 0.007379 0.010819 −0.019848

 

Figure 9. Trends of transformation vectors related to the selective MNF analysis on the ASTER spectral
bands presented in Tables 5–8, are shown in (a–d), respectively.
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According to Table 6 and Figure 9b, we considered C 2 in MNF (1457) as the appropriate component
for enhancing argillic alteration zones. In the relevant transformation vector, there was a relatively
high difference between the loadings in bands 5 and 7. This difference was consistent with the spectral
behavior of the indicative minerals in the argillic alteration zones, such as alunite and kaolinite. The
target areas appeared in bright pixels in this component. Based on the results in Table 7 and Figure 9c,
negated C 4 in MNF (1458) enhanced the propylitic alteration zones. The relevant transformation
vector to this component showed a relatively high difference between the loadings in bands 5 and 8,
with opposite signs. This was similar to the spectral behavior of the indicative minerals in propylitic
alteration zones, such as chlorite and epidote. The target zone in this component appeared in dark
pixels, and the negated component was used for enhancing the phyllic alteration zones.

According to Table 8 and Figure 9d, we considered negated C 2 in MNF (1467) as the component
that could be used for enhancing the phyllic alteration zones. The relevant transformation vector
showed a relatively large difference between the loadings in bands 6 and 7, with opposite signs.
Although C 4 showed a higher difference, only the relevant transformation vector to C 2 followed
a similar trend to the spectral graphs of the indicative minerals of phyllic alteration zones, such as
muscovite. The anomalous areas in this component are displayed in dark pixels.

As shown in Figure 10, we determined the appropriate thresholds for separating anomalous pixels
of the selected MNF components, using the C-A fractal method. We present the enhanced alteration
zones using the MNF analysis based on the C-A fractal method in Figure 11.

 

Figure 10. Logarithmic scaled plots of area versus pixel values for the selected MNF components for
enhancing the (a) gossans, (b) argillic, (c) propylitic, and (d) phyllic alteration zones.
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Figure 11. Anomalous pixels of different MNF components determined using the C-A plots for
enhancing the (a) gossans, (b) argillic, (c) propylitic, and (d) phyllic alteration zones, overlaid on the
hillshade of the study area.

4.4. Field Data and Laboratory Analysis

A comprehensive geological fieldwork was carried out in the study area, particularly in the
alteration zones detected using the applied transformation techniques. The photos taken from different
alteration types, such as phyllic, argillic, propylitic, and gossan are presented in Figure 12. We collected
55 rock samples from the prospects and used some of them for creating thin sections and the rest
were sent for the XRD analysis (Figure 15). We carried out petrographic studies on the thin sections
shown in Figure 13, which indicated the transformation of primary silicate minerals (feldspars) such as
plagioclase to secondary altered minerals (calcite, clay minerals, epidote, and sericite). The opaque
minerals constituted a notable part of the thin sections created using the rock samples collected from
argillic and phyllic alteration zones. In the propylitic zone, the original minerals were fully replaced
with secondary minerals (calcite and epidote). The minerals identified using the XRD analysis shown
in Figure 14, included montmorillonite, illite, goethite, hematite, muscovite, albite, orthoclase, and
quartz in the argillic zone; epidote, calcite, chlorite, albite, anorthite, and quartz in the propylitic zone;
muscovite, illite, hematite, magnetite, albite, epidote, calcite, montmorillonite, and quartz in the phyllic
zone; and goethite, hematite, kaolinite, muscovite, illite, and quartz in gossans.

The results using the XRD analysis indicated that most of the diagnostic spectral features in the
argillic alteration zones were due to the presence of montmorillonite and illite; in the propylitic zone
these were associated with chlorite, epidote, and calcite; in the phyllic zone these were derived from
muscovite; and in gossans these were related to goethite and hematite. Moreover, we found that iron
oxide or hydroxide minerals were associated with the alteration mineral assemblages in the argillic,
propylitic, and phyllic alteration zones.
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Figure 12. Photos taken from different alteration types including (a) phyllic alteration, (b) phyllic
alteration associated with clay minerals known as the indicators of argillic alteration, (c) phyllic
alteration associated with iron oxide and hydroxide minerals, (d) propylitic alteration, and (e) gossan.
(f) Close view of a vein-type mineralization hosted by a silicified rock.
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Figure 13. Thin sections of different types of alteration mineralogy. Microphotographs of (a,b) argillic
alteration zone—plagioclase replaced with sericite and clay mineral groups; (c,d) phyllic zone—opaque
minerals and plagioclase replaced with clay mineral groups and quartz; and (e,f) propylitic
zone—completely replaced original mineralogy by calcite, epidote, chlorite, and quartz.
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Figure 14. Results of the XRD analysis showing the indicative minerals of the representative samples
collected from (a) argillic zone; (b) propylitic zone; (c) phyllic zone; and (d) gossans.

4.5. Integration of Selected Components
Fifty-five rock samples that were collected from the study area (shown in Figure 15) were used

to generate the confusion matrix of each transformation technique (Table 9). The component with
the highest number of correctly classified samples was selected for enhancing each alteration type.
These components were integrated by generating the remote sensing evidential layer. Moreover, the
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overall accuracy of each transformation technique is presented in Table 9, which was the ratio of the
total number of correctly classified samples in each confusion matrix to the total number of samples.
The overall accuracy was used to assess the accuracy of each transformation technique. This ratio had
a clear meaning and was simple to estimate [89].

 

Figure 15. Samples collected from different alteration zones overlaid on the hillshade of the study area.

Table 9. Confusion matrices of the transformation techniques used for enhancing different alteration types.

Ground Truth
PCA Gossan Argillic Propylitic Phyllic

Gossan 14 1 0 0
Argillic 1 11 0 3

Propylitic 1 0 9 0
Phyllic 0 2 0 13

Overall accuracy 0.85
ICA

Gossan 13 1 0 1
Argillic 0 13 0 2

Propylitic 2 0 8 0
Phyllic 0 1 0 14

Overall accuracy 0.87
MNF

Gossan 12 2 0 1
Argillic 0 14 0 1

Propylitic 3 0 7 0
Phyllic 0 3 0 12

Overall accuracy 0.81

We experimented with different gamma values for integrating the weighted components selected
for enhancing different alteration types. Based on the prediction rates obtained by the P-A plots, gamma
0.9 was used for generating the remote sensing evidential layer. Using a P-A plot, we showed the
cumulative percentage of predicted mineral occurrences and the corresponding cumulative occupied
area, with respect to the total area, against the pixel values. Therefore, the prediction ability of the
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integrated map and its ability to delimit the exploration area for further investigation was evaluated in
a scheme. The P-A plot showed a curve of the percentage (prediction rate) of known mineralization
and a curve of the percentage of the occupied area corresponding to the classes of a map [90]. When
an intersection point of the two curves was at a higher place, it portrayed a small area containing a
large number of known mineral occurrences. The prediction rate in the P-A plots helped analyze the
efficiency and association of a map in predicting target mineralization. We presented the P-A plot of
the integrated map obtained using gamma 0.9 in Figure 16, which showed a higher prediction rate
compared to other gamma values. According to the plot, the integrated map was able to predict 70%
of the mineral occurrences in 30% of the study area. It is noteworthy that for assigning probabilistic
values to the map, in terms of prospecting for the hydrothermal mineralization and distribution of the
pixel values between 0 and 1, these were transformed to a fuzzy space using a linear function. We used
the C-A fractal plot for classifying the integrated map and separating the anomaly population; shown
in Figure 17. The classified integrated map which was suggested to be used as the remote sensing
evidential layer, was presented in Figure 18a. The red-colored class could be considered to be the
certain anomaly population. Moreover, we presented another map classified using the Jenks Natural
Breaks [91] in Figure 18b, to provide a higher number of classes.

 

Figure 16. P-A plot of the integrated map obtained using fuzzy gamma operator (gamma = 0.9).

 

Figure 17. C-A plot of the integrated map used for classifying and separating the anomaly population.
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Figure 18. Known hydrothermal mineral occurrences overlaid on the classified integrated maps by (a)
the C-A plot, and (b) Natural Jenks Breaks, generated by integrating the weighted-selected components.

5. Discussion

In this study, we applied different dimensionality reduction or transformation techniques on
the ASTER data for mapping the gossans and hydrothermal alteration zones in a mineral-rich range
located in Central Iran called Toroud-Chahshirin. It is thought that subpopulation samples, such
as hydrothermal alteration zones, are more distinguishable using the components derived from the
transformation techniques, such as PCA, ICA, and MNF. Thus, these components might provide clear
geological meanings for interpretation. However, principal and independent components do not
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genetically correspond to distinct geological features, due to the intimate mixing of geological units or
alteration types. The transformation techniques provided exploratory tools to view data from another
perspective. We used this type of techniques to provide useful information, based on the knowledge of
actual geological problems.

Principal component analysis is an orthogonal decomposition and we used it based on covariance
matrix analysis and the Gaussian assumption, while independent component analysis is based on a
non-Gaussian assumption of independent sources. The PCA and MNF use only second-order statistics,
while the ICA uses higher-order statistics. Higher-order statistics is a stronger statistical assumption
that reveals interesting features in the usually non-Gaussian datasets. If the feature of interest, such as
a hydrothermal alteration zone only occupies a small portion of all pixels, it makes an insignificant
contribution to the covariance matrix. In the PCA, the feature of interest would be probably buried in
the noisy bands, while in ICA and MNF, the features are distinguished from the noisy bands. Based
on the spectral characteristics of the indicative minerals of each hydrothermal alteration zone, we
selected four spectral bands with diagnostic absorption and reflection characteristics as the input
to the transformation techniques. The selective approach was preferred to the standard approach,
due to the ease of interpreting the results based on the characteristic spectral behavior of each target
zone. In PCA and MNF, we used the eigenvectors and transformation vectors for determining the
appropriate component for detecting each alteration zone. In the ICA, we determined the target
components based on the spectral behavior of known alteration zones.

We used the C-A plots for discriminating between the anomalous pixels and the background in
each component were determined to be appropriate for enhancing the target zones. The maps created
using the PCA and ICA for enhancing the gossans, showed a similar pattern, along with the number
of correctly classified samples, whereas the ICA component showed a less noisy pattern. The MNF
technique yielded a less accurate map and interference of vegetation and iron oxide/hydroxide-bearing
pixels could be observed. The PCA failed to provide an acceptable map for enhancing the argillic
alteration zones and the relevant component showed a noisy pattern and a low number of correctly
classified samples. The ICA and MNF components showed a relatively similar pattern for the argillic
alteration zones, whereas the ICA provided a less noisy pattern. The respective transformations
applied in this study, showed a relatively similar number of correctly classified samples and pattern
for the propylitic alteration zones. However, the MNF component was noisier compared to the other
components. The ICA and MNF components provided a similar map for enhancing the phyllic
alteration zones, while the PCA yielded a noisy map. Nevertheless, the number of correctly classified
samples for all components was almost the same.

According to the field observations and Table 9, the applied techniques and to a greater extent, ICA,
efficiently revealed the alteration halos. The components derived from the ICA showed the highest
overall accuracy. The results indicated that the ICA has a great ability for providing comprehensive
and significant exploration information at a regional scale. In general, the study area was dominantly
covered by advanced argillic, argillic, and phyllic alteration zones. Additionally, gossans and propylitic
alteration zones covered large parts of the study area. The argillic and phyllic alteration zones, along
with gossans were mostly focused in the central and western portions of the study area. The propylitic
alteration zone was located in the southwestern portion of the study area. Typically, gossans and
phyllic alteration zones showed the closest spatial relationship in many parts of the study area with the
hydrothermal mineralization. According to the results, there were a number of pixels which showed
anomalous values for different alteration zones. This confirmed the presence of alteration minerals
and their spatial distribution at the subpixel level in the study area.

According to the geological map presented in Figure 1, the gossans detected using the ICA were
correlated with andesitic and dacitic units. The argillic alteration zones were associated with andesitic
and dacitic units in central and northwestern, and the rhyolitic units in the southwestern portions of
the study area. The propylitic alteration zones located mostly in the southwest of the study area were
related to andesitic and rhyolitic units. The phyllic alteration zones in the central portion of the study
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area were associated with the andesitic and dacitic units, and were correlated with the dioritic units in
the western portion.

Based on the number of correctly classified samples presented in Table 9, we selected the
appropriate technique for enhancing each alteration type. The PCA components were selected for
enhancing the gossans and propylitic alteration, and we considered the ICA and MNF components for
enhancing phyllic and argillic alteration, respectively. The integrated map generated by combining the
weighted selected components using the fuzzy gamma operator (see Figure 18) showed an acceptable
prediction rate, based on the relevant P-A plot (see Figure 16). The results of fieldwork and XRD analysis
verified the presence of gossan, argillic, phyllic, and propylitic zones in the study area. Distinctive
spectral features related to montmorillonite, illite, chlorite, epidote, calcite, muscovite, goethite, and
hematite were found in the alteration zones. Moreover, new prospective areas were detected in the
western portions of the study area, along with the ring structures in northeast. The central portion
of the study area was a high-altered zone associated with different metallic ore deposits. This map
could be used as an efficient evidential layer through mineral prospectivity mapping of the study area.
This methodology could be extrapolated to the unexplored regions for identifying new prospects of
high-potential base metal mineralization zones in Central Iran and other arid or semi-arid regions
on earth.

6. Conclusions

This study compared the efficiency of different dimensionality reduction or transformation
techniques in terms of enhancing various types of the hydrothermal alteration in the Toroud-Chahshirin
range located in Central Iran, using ASTER satellite data. Moreover, a framework was proposed for
selecting and integrating the appropriate techniques through enhancing each alteration type, which
led to generating a reliable remote sensing evidential layer. In this framework, a selective approach
was used for implementing the transformation techniques based on the spectral characteristics of the
indicative minerals in each alteration zone. Based on the field observations, we used the number of
correctly classified rock samples for investigating the accuracy of each component in detecting different
types of hydrothermal alteration zones. In parts of the study area, different alteration types were
collocated and the results confirmed the presence of alteration minerals and their spatial distribution
at the subpixel level. In general, ICA provided more accurate and less noisy maps, compared to the
other techniques. We selected the components with the highest number of correctly classified samples
for the integration process by providing a remote sensing evidential layer. The fuzzy gamma operator
was used for generating an integrated map based on the components derived from the transformation
techniques. The integrated map showed a high prediction rate that implied the efficiency of the
proposed framework. Moreover, this map was consistent with the results of petrographic and XRD
analysis. Using the integrated map, high potential zones of the hydrothermal mineralization were
identified in the study area, particularly in the western and northeastern portions, which could be
considered for future systematic exploration programs. The methodology used in this study could be
applied for mapping hydrothermal alteration zones in other metallogenic provinces in the arid and
semi-arid regions around the world.
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Abstract: This study presents the results of the geoenvironmental characterization of La Matildes
riverbed, affected by mine tailings in the Cartagena–La Unión district, Murcia (southeast Spain).
Soils and riverbeds in this area are highly polluted. Two Electrical Resistivity Imaging (ERI) profiles
were carried out to obtain information about the thickness of the deposits and their internal structure.
For the mine tailings deposits of La Murla, a tributary of the El Miedo riverbed, the geophysical
method imaged two different units: the upper one characterized by low resistivity values and 5–8 m
thickness, correlated with the mine tailings deposits; and the lower more resistive unit corresponding
to the Paleozoic metasediments bedrock. The ERI profile transverse to the Las Matildes dry
riverbed revealed the existence of three different units. The uppermost one has the lowest resistivity
values and corresponds to the tailings deposits discharged to the riverbeds. An intermediate
unit, with intermediate resistivity values, corresponds to the riverbed sediments before the mining
operations. The lower unit is more resistive and corresponds to the bedrock. Significant amounts of
pyrite, sphalerite, and galena were found both in tailings and riverbed sediments. The geochemical
composition of borehole samples from the riverbed materials shows significantly high contents of As,
Cd, Cu, Fe, Pb, and Zn being released to the environment. Mining works have modified the natural
landscape near La Unión town. Surface extraction in three open-pit mines have changed the summits
of Sierra de Cartagena–La Unión. Rock and metallurgical wastes have altered the drainage pattern
and buried the headwaters of ephemeral channels. The environmental hazards require remediation
to minimize the environmental impact on the Mar Menor coastal lagoon, one of the most touristic
areas in SE Spain.

Keywords: riverbed; metals; electrical resistivity imaging; tailings; Mar Menor; Cartagena–La Unión
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1. Introduction

The Province of Murcia, situated in the southeastern most part of the Iberian Peninsula, is one of
those mining areas in Spain that today still suffer from serious environmental problems due to the
presence of nearly eighty abandoned mineral waste structures, especially in the Sierra de Cartagena area
and La Unión town [1]. A large amount of mine wastes was abandoned up until the 1980s, representing
serious geochemical hazards. The composition and emplacement sites of these mine wastes have
generated environmental hazards related to geochemical pollution (among others), that negatively
affect soils, groundwater, flora, fauna, and humans [1,2]. It is therefore necessary to gain deeper
knowledge of the current condition of these deposits with high potential risk. There are examples
of studies on tailings ponds using (i) magnetometry, enabling us to deduce the variations of the
tailings structures [3,4]; (ii) electromagnetics, used to investigate the structural and hydrogeological
settings of oil sands tailings dykes [5]; (iii) seismic, to derive the internal pond boundaries by means
of refraction and reflection waves [6,7]; and direct-current geoelectrical imaging surveys [8], where
the electrical resistivity tomography (ERI) method is strongly affected by the variation of some
important properties of tailings such as moisture, soil salinization, particle size distribution, acid mine
drainage, etc. [9,10]. The ERI method has been the fundamental tool to support physical–chemical
analysis in phytoremediation works on the abandoned mining ponds in the Sierra de Cartagena area.
The application of geophysical, mineralogical, and geochemical techniques, together with landscape
evolution studies, could allow the analysis and quantitative assessment of the pollution risk [11–15].

This work presents the results obtained by the joint application of geophysical, mineralogical,
and geochemical techniques to both mine tailings and riverbed sediments from Las Matildes
(Cartagena–La Unión district, Murcia, SE Spain). The shallow non-destructive geophysical technique
applied in the study was electrical resistivity imaging. To gain better control of the geophysical results,
aerial photographs of the area from different times have been used to evaluate the changes in relief
that have progressively occurred due to the tailings accumulation. Geochemical and mineralogical
characterization techniques include X-ray diffraction, Inductively Coupled Plasma Mass Spectrometry
(ICP-MS), and Atomic Absorption Spectroscopy (AAS). Thus, a representative characterization of
the riverbed affected by mine tailings has been established based on the geometry and internal
structure of deposits, mineralogical and chemical composition, and thickness of tailings and alluvial
sediments. Besides the high levels of contamination in abandoned mine sites, the land surface is
intensely transformed. The transfer of huge amounts of earth causes the destruction of natural
landscapes and the formation of new landforms. As these new environments are also modelled
by earth surface processes (involving water, wind, mass movement), different studies have recently
focused on geomorphic changes due to mining activity ([16,17] and references therein). In the area of
100 km2 of the Sierra de Cartagena–La Unión mining district, 12 open-pits and 2351 waste deposits
from ore-processing have been documented [1]. Some of these residues are in the headwaters of
ephemeral channels to the east of La Unión town. To identify the geomorphic changes through time in
this area, we have mapped the main mining wastes and excavations by means of aerial photograms,
orthoimages, and anaglyphs from 1956 and 2016. The temporal evolution has also been used to
evaluate landscape changes at the two survey sites and gain better control of the geophysical results.

Thus, the main objective of this study was to characterize the present conditions of tailings and
riverbed sediments to identify potential environmental problems. This part of SE Spain is still highly
polluted because the numerous mine wastes and mining structures (buildings, shafts, . . . ) remain
abandoned. The goal is particularly relevant as this situation provokes a continual flow of Acid
Mine Drainage (AMD) with associated metal pollution of soils and waters that are dispersed to the
Mediterranean Sea.

2. Location and Features of the Mine Site

The mine tailings area studied is located around 1 km to the east of the town of La Unión (SE Spain)
(Figure 1). The Descargador mine pond is located just on a tributary of the El Miedo ephemeral
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riverbed and shows maximum dimensions of 180 m × 30 m. The mine tailings are flotation deposits of
medium-to-fine-grained, sand-size material. They were produced from grinding and metallurgical
processing of pyrite, sphalerite, and galena from the Emilia mine, in works carried out between 1952
and 1981 [18,19]. The main ore minerals are pyrite, sphalerite, galena, and cassiterite. Other minor
sulfides include chalcopyrite, minerals of the tetrahedrite-tenantite group, and arsenopyrite. Gangue
minerals include chalcedony, quartz, siderite, and greenalite [20,21].

 

Figure 1. (a) Location of the Cartagena–La Unión mine district, the geophysical surveys, and the
sampling points; (b) mine tailings and metallurgical slag, mixed with riverbed sediments in the Las
Matildes riverbed; (c) remaining medium-to-fine-grained mine tailings deposits, showing embedded
metamorphic bedrock fragments.

This mine pond was placed on Palaeozoic schists, gneisses, and metabasites from the so-called
“Complejo Nevado-Filábride” of the Betic Cordillera, and the riverbed ran upon limestone and phyllites
from the “Complejo Alpujárride” of the same Cordillera. In this area, significant amounts (tonnes) of
metallurgical slag were dumped in ponds over the riverbed sediments. The Las Matildes riverbed is an
ephemeral watercourse running from the Descargador area to the Mediterranean Sea. Both ephemeral
rivers flow into the Mar Menor coastal lagoon. The Mar Menor is one of the largest hypersaline
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coastal lagoons of the Mediterranean Area, measuring about 170 km2 with a mean depth of 2.5 m. It is
separated from the Mediterranean Sea by a narrow sandy coastal barrier and is surrounded by the
Campo de Cartagena, one of the most intensive agricultural zones of Spain. This fragile ecosystem
suffers intense human pressure, such as excess nutrient and sediment inputs from agriculture and
abandoned mining activities, respectively, as well as decreases in salinity.

The region is characterized by a semiarid Mediterranean climate with dry summers and mild
winters [22,23]. According to data collected by the closest and most complete automatic weather
station of the Agricultural Information System of Murcia (La Aljorra, 2000–2016 period; [24], the mean
annual temperature was 18 ◦C, with a minimum in January (−2 ◦C) and a maximum in July (41 ◦C).
Rainfall was extremely variable, with intense storms in October and September (maximum rainfall
event in a 24 h period of 163 mm). Due to the low precipitation (annual average of 279 mm) and high
evapotranspiration (annual average from the Penman–Monteith method: 1368 mm) only ephemeral
streams that drain into the Mar Menor coastal lagoon during heavy rainfalls exist. The area is subjected
to strong annual stormy episodes that can induce significant flash flooding. As an example of these
episodes, in October 1972, an extremely intense rainfall event caused a flash flood of the tailings from
the Brunita mine pond, located only 2 km to the west of the studied area, killing one person and
causing serious material damage [14,25].

3. Methodology

3.1. Temporal Evolution of the Mining Landscape

This study focused on an area of ~4 km2 to the east of La Unión town, where numerous mining
works extend along the small headwaters of the El Miedo and Las Matildes dry riverbeds in the Sierra
de Cartagena–La Unión region. The geophysical and geochemical survey was conducted in deposits
located in both riverbeds. The mountain range (Sierra) extends ~26 km from east to west, parallel to
the Mediterranean coast. The headwater tributaries transport sediments under torrential rainfall from
the highest peak (Sancti Spiritus 3, 396 m) to the Mar Menor lagoon, ~8 km away to the North.

Main fluvial channels, mining wastes (rock and slag dumps, tailings ponds), and mining
excavations (canals, open-pit mines) were mapped by using orthoimages from the years 1956 and
2016 using ArcMap 10.4.1 (GIS software, ESRI España Soluciones Geoespaciales, S.L.: Madrid, Spain).
The orthoimages were added from the cartography service of the Murcia Region (https://geoportal.
imida.es/gis/rest/services/2_03_ORTOIMAGENES). Aerial photograms from 1956 (USA Army Map
Service flight-Geographic Service of the Spanish Army, scale of 1:32,000) were used to distinguish
landscape changes by means of a stereoscope. The stereo pairs were downloaded from the IGN website
(Instituto Geográfico Nacional, https://fototeca.cnig.es/). Regarding the 2016 orthoimage (IGN flight),
an anaglyph was checked in the cartographic viewer of IGN (https://www.ign.es/iberpix2/visor/) with
a 3D red cyan glass.

3.2. Non-Destructive Geophysical Method

Electrical resistivity imaging (ERI) is a shallow geophysical prospecting method designed
to unravel complex geological structures with changes in both vertical and horizontal resistivity.
The fundamentals of the resistivity methods can be found in different reviews [8,26–29]. The method
implies the use of a variable number of electrodes, typically between 24 and 96, connected to a switching
box via a multi-core cable [30]. The electrodes are switched to obtain measurements of subsurface
resistivity at different depths. By means of a computer connected to the resistivity meter, different
combinations of four electrodes are selected automatically for each measurement. By using different
electrode spacing at different locations along the cable, a 2-D profile of the subsurface is finally obtained
(e.g., [8]). As a rule of thumb, it is important to note that the measurements for each quadripole
provide values of apparent resistivity at different depths, in such a manner that the greater the spacing
between the electrodes, the deeper the depth of investigation. A Syscal Junior Switch 48 equipment
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was used in this work. The number of electrodes is 48 with a maximum electrode spacing of 5 m.
This equipment uses an injection cycle of 4 s with an output voltage of up to 400 V and rejection filters
for 50 and 60 Hz. Noise reduction is obtained by applying a continuous stacking selectable from 1 to
255 stacks. With these parameters, an average value (and the associated level of uncertainty) of the
apparent resistivity is obtained for each quadripole. For the geolocation of the profiles, a MAGELLAN
MobileMapper CX GPS with a submetrical accuracy has been used.

After the acquisition of the apparent resistivity values, the data must be processed to remove
spurious data points. This is done by filtering raw data with low signal values (V/I < 10-6 Ω) or
repeatability errors greater than 2%. In addition to this, topography data for each electrode of the
profile must also be included at this stage. Once filtered, an iterative inversion process must be carried
out to obtain a cross-section of true resistivity along the survey’s profile. The code selected to iteratively
convert the apparent resistivity values to true resistivity values is RES2DINV, which uses the L1 norm
for the data misfit and the inversion is performed using the L1 norm (robust) for the model roughness
filter [31]. A robust inversion has been chosen because this kind of inversion is more accurate when
sharp discrete boundaries exist in the model. In the study area, sharp boundaries exist between the
high resistive metamorphic rocks constituting the basement and the low resistive loose materials that
define both the mine pond and dry riverbed infilling, so robust inversion is the most appropriate
choice. The method uses a finite element scheme for solving the 2-D forward problem and blocky
inversion method for inverting the ERI data [31]. The result of the process is a true resistivity image for
each profile that is used to obtain the final interpretation of the variations of the subsurface lithology.

Regarding the application of electrical techniques for the characterization of mine waste deposits,
good examples can be found in [32,33]. The ERI technique has mainly been used on waste piles [34] and
tailings dams [35], whereas few studies have focused on the internal structure of mine tailings ponds
(e.g., [2,11–14,36–39]). To combine a good penetration depth, a reasonable vertical and horizontal
resolution, and a good signal-to-noise ratio, the Wenner-Schlumberger array was chosen for this study.
This array has been successfully used in similar studies (e.g., [2,14]).

3.3. Description of Sampling Methods

In the Las Matildes dry riverbed, sequential sampling was carried out using a TP-50/400 rotary
drilling machine, with a minimum core bit diameter of 100 mm (Figure 1). Non-disturbed rock drill
core samples were collected with a constant vertical spacing of 50 cm, up to a sampling depth of 8 m.
This sampling was carried out by digging down below the surface of each pond, casting aside the parts
corresponding to surficial sealing to prevent wall material falling during drilling. In total, 17 unaltered
samples (five from the borehole, 11 from the ponds and one from the bedrock) were collected, air-dried
for 7 days, passed through a 2-mm sieve, homogenized, and stored in plastic bags at room temperature
prior to laboratory analyses. Sampling was conducted in March.

3.4. Mineralogical and Geochemical Methods

Mineralogical characterization of samples was performed by X-ray diffraction (XRD) using a
Philips X’Pert powder device with a Cu anticathode and standard conditions: speed 2◦ 20/min between
2◦ and 70◦ at 40 mA and 45 KV. The whole sample was studied by crystalline non-oriented powder
diffraction on a side-loading sample holder. Semi-quantitative results were obtained by the normalized
reference intensity ratio (RIR) method. The XRD analyses were performed at the Centro de Apoyo
Tecnológico (CAT Universidad Rey Juan Carlos, Móstoles, Spain, http://www.urjc.es/cat). From the
total list of major, minor and trace elements analyzed, 12 were chosen for the geochemical study
(Ag, As, Cd, Cr, Cu, Fe, Ni, Pb, S, Sb, Sn and Zn) owing to their abundance in these types of sludge
and also because most of them are included in the priority contaminant list of the environmental
protection agencies [40]. The selected elements were analyzed by TD (Total Digestion) or FUS (lithium
metaborate/tetraborate fusion) ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) at Activation
Laboratories Ltd. (1428 Sandhill Drive, Ancaster, Ontario, Canada; http://www.actlabs.com). Quality
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control at Actlabs is done by analyzing duplicate samples and blanks to check precision, whereas
accuracy is ensured by using Certified Reference Materials (GXR series; see http://www.actlabs.com).
Detection limits for the analyzed elements are (data in μg.g−1): Ag (0.3), As (5), Cd (0.5), Cr (20),
Cu (1), Fe (100), Ni (1), Pb (5), S (10), Sb (0.5), Sn (1), and Zn (1). Concentrations of Pb > 5000
and Zn > 10000 μg·g−1 (above the ICP-MS maximum detection limits) were measured by an Atomic
Absorption Spectrometer (AAnalyst 800, Perkin Elmer spectrometer) using flame or graphite-furnace
technique in the Universidad Politécnica de Cartagena (Murcia, Spain) laboratories. pH was measured
using an electronic pH meter (CRISON), calibrated at two points (pH 7 and pH 4) using standard
buffer solutions. This parameter was determined in a slurry system with an air-dried sample (10 g)
mixed with distilled water (25 mL). Before reading the pH values, the mixture was vigorously stirred
in a mechanical shaker for 10 min and left to stand for 30 min.

Statistical data processing was done using Minitab 17 software (Minitab Ltd., Brandon Court,
Unit E1-E2, Progress Way, Coventry CV3 2TE, United Kingdom). The multivariate analysis was based
on clustering (group average linkage dendrograms, Euclidean distance) of the set of samples and
significant metals (Ag, Sb, Fe, Cd, Cu, Pb, Zn, and Sn) plus As.

4. Results and Discussion

The landscape evolution in a sector of the La Union mining district, as well as the results of
the geophysical study concerning the structure of the tailings and riverbed, and those obtained
from mineralogical and geochemical characterization of the borehole samples, are presented and
discussed here.

4.1. Temporal Evolution of Mining Landscape of La Union

In the 1956 orthoimage (Figure 2), the orography to the E of La Unión consisted of N–S to
NNW–SSE V-shaped valleys with headwaters in Sancti Spiritus hill (431 m: [41]). The westernmost one,
the La Murla riverbed (~900 m long), is a tributary of the El Miedo riverbed, whereas the rest (average
length of ~600 m) are tributaries of the Las Matildes riverbed. Some works related to underground
mines are recognized in the southern slopes of Sancti Spiritus. The first operations at the Emilia open
pit mine are visible at the easternmost tributary headwater. However, the most important modifications
occur on the northern slopes of Sancti Spiritus where many waste residues are scattered over valley
bottoms and foothills. The mapped deposits originated to a certain extent by rock accumulations from
open-pits and mines and mainly from waste accumulation during metallurgical processes (slag dumps
from melting and tailings heaps from the post-flotation process); 35 rock and slag dumps and the five
tailings dams occupy an area of ~0.4 km2 and modified some hydrological pathways. Several slag
deposits abruptly changed the courses of Las Señales, El Humo, and La Hoya del Agua riverbeds,
and a tailings dam interrupted the flow of La Hoya del Agua tributary. Therefore, two canals had to be
built to evacuate surface runoff.

Geomorphic changes mapped in the 2016 orthoimage (Figure 2) are mostly related to the movement
of huge rock volumes from the open pit of Emilia, San Valentín, and Tomasa. The mineral extraction
from San Valentín and Tomasa mines completely changed the summit orography in Sancti Spiritus
hill (Santi Spiritus 3, 396 m: [42]). At present, the open-pit mines are partially filled with wastes from
metallurgical, building, and industrial activities [1]. Another profound transformation is associated
with the growth of open-pit spoils in the vicinity of mines, which buried the Las Señales and El Humo
headwaters as well as the channel of La Hoya del Agua and its tributaries. Residues from mineral
treatment accumulated in the previous tailings dams located in La Murla and Las Señales riverbeds,
increasing their sizes, but also in Las Matildes riverbed. Furthermore, these younger materials buried
previous polluted residues wastes (see, for example, the area of the open-pit spoils to the west of Emilia
mine, or the tailings dams in Las Matildes riverbed). Regarding the slags, some dumps are smaller
because they were excavated. The area of mine deposits (21 rock and slag dumps and 10 tailings ponds)
on the 2016 image is ~0.8 km2, two times larger than that in 1956.
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Figure 2. Mapping of the temporal evolution of the mining landscape to the east of La Unión town:
(a) orthoimage from 1956 (Cartography Service of the Murcia Region); (b) orthoimage from 2016
(Cartography Service of the Murcia Region). Yellow rectangles: areas where geophysical prospection
has been carried out: 1. Descargador mine pond, and 2. Las Matildes riverbed.

The temporal evolution of the mining works explains the geophysical results (Section 4.2) and the
stratigraphic sequence of the core samples collected from Las Matildes riverbed (Section 4.3). Sludge in
the Descargador mine pond in the La Murla valley was initially deposited in the riverbed (Figure 2a).
However, due to the continued discharge, the tailings dam was raised over the metamorphic rocks
of the foothill (Figure 2b). The uppermost material at the Las Matildes site, identified both in the
borehole and the geophysical surveys, is related to the tailings deposit mapped in the riverbed in the
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2016 orthoimage (Figure 2b). This mining waste overlapped the alluvial sediments that were identified
in the 1956 orthoimage (Figure 2a). The intensive mining activities have deeply affected the landscape
in this sector of the Sierra de Cartagena–La Unión. Open-pit mines and mining and metallurgical
residues disrupted the natural fluvial network; furthermore, new canals were created to evacuate
surface runoff. Polluted waste that accumulated in riverbeds and foothills as colluvium and alluvium
sediments can be eroded and therefore mobilized by mass movements and surface runoff. The volume
of tailings in the three largest dams has reached 623,000 m3 [19].

Particulate and dissolved contaminants move from the anthropic deposits along the El Miedo
and Las Matildes ephemeral riverbeds to the Mar Menor lagoon. Indeed, high concentrations of Pb
and Zn have been measured in the sediments of the nearby El Beal riverbed (mean values of 39,000
and 2000 ppm, respectively: [1]). Therefore, the environmental impact of modified landscapes should
also be considered, both in the estimation of potential risk, and in the proposal of management and
reclamations solutions [17].

4.2. Structure of the Mine Pond and Riverbed Deposits

ERI has provided information about both the thickness and geometry of the waste deposits related
to the mine tailings. Two ERI profiles have been carried out (one longitudinal to the mine pond and
one transverse to the watercourse) (Figure 1). The borehole provided (from top to bottom) thicknesses
of 2 m of mine tailings, 1.5 m of tailings mixed with riverbed sediments, and 4 m of riverbed sediments.

4.2.1. Mine Pond

The ERI profile (Figure 3) imaged two different units: the upper one is characterized by low
resistivity (<20 ohm·m) values and a thickness ranging from 5–8 m. It can be correlated with the
mine tailings deposits observed at the outcrop (Figure 1). In contrast, the lower unit is more resistive
(>200 ohm·m) and corresponds to the Paleozoic metasediments that constitute the bedrock of the area.

 

Figure 3. Descargador mine pond: (a) general view of the non-eroded remaining tailings; (b) ERI
profile showing the two identified units.
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As can be seen in the profile, the bedrock below the mine pond deposits is very homogeneous
and consequently, the occurrence of faults or discontinuities can be disregarded. The ERI profile does
not have enough lateral and vertical resolution to discriminate different units inside the mine pond
deposits. Extremely low resistivity values characterize the occurrence of AMD inside the mine ponds,
as demonstrated in nearby similar areas (e.g., Brunita mine pond, [14]), or even different mine districts
(e.g., Mina Concepción, [15]). In Mina Concepción, values lower than 5 ohm·m delineate the preferential
path of AMD (pH ranging from 2.5 to 3) flow inside the mine ponds. In the case of Descargador mine
pond, the low (5–20 ohm·m) resistivity values measured in the mine pond infilling are compatible
with the clayish to sandy-clayish texture and high water content of the deposits, as observed in
the field, and thus internal AMD flow can be disregarded. A certain acidic character of the water
(pH ~5–6) has been obtained for the same resistivity values in similar mine ponds (e.g., San Quintin
mine pond, [15]) and this would be the case here. Moreover, the highly homogeneous and resistive
character of the metamorphic bedrock imaged below the mine pond allows us to confirm that there is
no AMD flow escaping from the bottom of the mine pond that could be affecting the groundwater of
nearby fractured aquifers.

4.2.2. Dry Riverbed

The ERI profile transverse to the dry riverbed (Figure 4) has revealed the existence of three different
units whose interpretation has been made by comparing them with the borehole data. The uppermost
one, with a mean thickness of 2–3 m, extends from 21 to 100 m along the profile and has the lowest
resistivity values (<15 ohm·m). It corresponds to the tailings deposits transported episodically by the
riverbed during periods of strong rainfall. An intermediate unit, with resistivity values ranging from
15 to 40 ohm·m and varying thickness (1 to 4 m), corresponds to the watercourse sediments before the
construction of the mine tailings pond located upstream. The lower unit is more resistive (>50 ohm·m)
and corresponds to the bedrock.

 

Figure 4. Las Matildes riverbed: (a) general view with borehole location; (b) ERI profile showing the
three identified units; BH: borehole.
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Two small heterogeneous highly resistive (>200 ohm·m) units located at both ends of the profile
can be associated with debris deposits from the neighboring slag heap. As for the Descargador mine
pond, the resistivity values observed at the uppermost unit (5–15 ohm·m) are not low enough to infer
that AMD flow occurs in the transported tailings deposits. The mean pH value obtained from the
borehole samples is close to 5, confirming the slightly acidic character of the deposits but far from
the extremely low pH values of ~2.5 typical of AMD observed in similar deposits, as previously
cited. The EC values obtained from the borehole samples, although greater than the intermediate
and lower units (3–8 mS/cm vs. 0.2–3 mS/cm) are also very far from the extremely high EC values
(>8000 mS/cm) obtained in the nearby Brunita mine pond where AMD flow has been detected [14].
For the intermediate unit, the measured pH values are higher than 6, in good agreement with the
higher resistivity values and coarse texture of the deposit that characterizes this unit. No evidence of
faulting or AMD can be observed in the lower resistive unit corresponding to the bedrock.

4.3. Mineralogical Characterization

The semi-quantitative data on the mineralogical composition of the Las Matildes samples from
the borehole (BH) are displayed in Table 1.

Table 1. Semi-Quantitative Mineralogical Composition (wt %) of the Studied Samples from the Las
Matildes Riverbed Borehole. Qtz: Quartz, Ill-kn: Illite-Kaolinite; Chl: Chlorite; Gre: Greenalite;
Py: Pyrite; Sp: Sphalerite; Gn: Galena; Ang: Anglesite; St: Stannite; Ja: Pb-Jarosite; Sd: Siderite;
Gp: Gypsum. Groups of Samples: Tailings, Tailings and Riverbed Sediments (T+S), Riverbed Sediments,
and Bedrock (R).

Sample Depth (m) Qtz Ill-kn Chl Gre Py Sp Gn Ang St Ja Sd Gp

MAT-1

Ta
ili

ng
s

0 30 10 5 1–5 10 10 5 5 5 5 15
MAT-2 0.5 30 10 10 5 10 5 5 5 5 15
MAT-3 1 30 10 1–5 5 5 5 5 5 15 5 15
MAT-4 1.5 25 5 5 10 5–10 5 5 15 5 15
MAT-5 2 25 5 5–10 5 5–10 1–5 5 15 5 15

MAT-6

T
+

S 2.5 40 15 5 10 5 5 5–10 10 5
MAT-7 3 45 10 5 1–5 5 5 5 10 10
MAT-8 3.5 45 10 5 1–5 5 1–5 10 15

MAT-9

R
iv

er
be

d
Se

di
m

en
ts 4 50 20 5 5 5 10 5

MAT-10 4.5 55 20 1–5 5 5 10
MAT-11 5 60 20 5 1–5 10 5
MAT-12 5.5 55 20 5 5 10 5
MAT-13 6 60 25 1–5 5 5 5
MAT-14 6.5 55 25 1–5 1–5 10 5
MAT-15 7 60 35 1–5 5
MAT-16 7.5 60 20 10 10

MAT-17 R 8 65 30 5

Three levels showing different but nearly homogeneous mineralogical compositions can be
inferred from the X-ray diffraction data (Table 1): an upper level (2 m thick) of reddish clay mine
tailings, an intermediate 1.5 m of tailings mixed with riverbed sediments, and a lower, 4 m level
of coarse to sandy riverbed sediments. Significant amounts of pyrite, sphalerite, and galena from
the mined ore deposit have been identified in all three levels, although they are higher in the mine
tailings upper levels (10%) and lower in the riverbed sediments (5%), probably reflecting less efficient
ore benefiting processes. The upper level still includes a significant proportion of the original ore.
Fe-carbonates (siderite), secondary sulfates (Pb-jarosite, gypsum), and ore-sulfides (stannite) have also
been determined in the mine tailings upper levels. It can be inferred that silicates make up 30–50 wt%
of the mine tailings upper level, 60–65 wt% of the intermediate level, and 70–95 wt% of the riverbed
sediments’ deeper level. Quartz, and Illite-kaolinite interstratified are the main minerals. In addition,
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a 5–10 wt% greenalite (Fe2-3Si2O5(OH)4) content has also been estimated in the three sampled levels.
Greenalite is an ore mineral associated with the hydrothermal alteration caused by intense volcanic
processes. Anglesite (5–10%) has also been identified in all samples from the three levels. The transition
to the in-situ host rock was nearly sharp, with the only presence of silicates (quartz, illite-kaolinite,
and chlorite. This assemblage may indicate the occurrence of hydrothermal alteration in the volcanic
host rocks.

4.4. Geochemical Characterization

The chemical analyses confirmed the similar infilling structure and major and trace element
contents for Las Matildes riverbed. The total Fe2O3 contents, the trace-element content, and pH at the
different sampling depths are shown in Table 2.

The geochemistry of the sampled mine tailings and riverbed sediments matches the described
mineral abundances and geophysical features well. Distribution with depth plots of these geochemical
data (Figure 5) clearly shows the three-level structure previously described: tailings from the surface
down to a 2.0 m depth, tailings mixed with riverbed deposits from 2.0 to 3.5 m depth, and riverbed
deposits from 3.5 to 7.5 m depth. High contents of Fe, Pb, Zn, and other heavy and transitional
metals characterize the composition of all borehole samples. The total iron content ranges from
9.1 to 45.3 wt%, Pb from 2340 to 8640 μg/g, and Zn from 897 to 12,310 μg/g. Other trace elements
also show high contents: As (up to 1620 μg/g), Cd (up to 306 μg/g), Cu (up to 730 μg/g), and Sb
(up to 236 μg/g). These significant amounts are due to the nature of the deposits, composed of pyrite,
sphalerite, galena, and cassiterite. [43] reported similar trace element contents in other riverbeds of the
district. The metamorphic host rock (8 m depth) in turn displays significantly lower amounts of metals,
as is usually the case in mine deposits [2,14]. Variation in trace element trends and iron contents are
related to the textural features and mineralogical composition previously described in Section 4.3.
The highest values are generally observed to be associated with the surficial level (0–2 m), representing
mine tailings directly stored over the riverbed sediments. The highest Ag, As, Fe, Pb, and Zn contents
are clearly located at this uppermost level (Figure 5).

The lowest contents are clearly observed in the data from the deepest borehole samples (4–7.5 m).
Textural (coarse to sandy), mineralogical (silicate content), and geochemical features clearly define the
deepest level as riverbed sediments. Intermediate trace elements and iron contents are correspondingly
shown in the intermediate level (2.5–3.5 m depth) and are related to mixing between tailings and the
riverbed sediment level. Samples from the tailings level show lower pH values ranging from 2.5 to
5.3 compared to the almost neutral (6.0 to 7.7) pH in riverbed deposits and host rock. The lowest pH
and highest electrical conductivity (EC) values from Table 2 are also associated with the upper level,
confirming the three-level structure previously described.
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Figure 5. Distribution-with-depth profiles for total ferric iron and trace element concentrations from
Las Matildes borehole samples.

The dendrogram (cluster membership) of metals (Ag, Sb, Fe, Cd, Cu, Pb, Zn, Sn) and As in
the borehole samples (Figure 6a) is consistent with the metallic signature of the ore in the district
(Pb-Zn-Cd-Cu-Sn, and Ag-As-Sb-Fe [20,21]), with As being mainly related to Sb (tetrahedrite-tenantite
mineral group). The Ag-Pb-Cd-Zn signature is strongly defined due to the source of the minerals:
the Emilia mine. [2,13,14] reported the same geochemical behavior in other works on similar mine ponds.

The cluster analysis of samples from the Las Matildes borehole shows the existence of two groups
defining two main associations: mine tailings (MT) and mine tailings mixed with riverbed deposits
(MTR) (Figure 6b). The MT association displays the uppermost 2 m thick level, characterized by
the presence of ore minerals galena and sphalerite (with lower amounts of pyrite, stannite, jarosite,
and siderite). The MTR association represents the mine tailings mixed with riverbed deposits and
is characterized by higher amounts of silicates (quartz, illite-kaolinite, chlorite, and greenalite) and
anglesite, with sulphide abundance decreasing at depth.

The highest trace element values observed in the upper mine tailings level are related to inefficient
metallurgical processing of the benefited ore during the working years. High trace elements and iron
contents in mine tailings have been obtained by the authors in similar deposits from Cartagena–La
Unión [14], Mazarrón [2], Valle de Alcudia [13,44], and Iberian Pyrite Belt districts [11,12]. Significant
metal amounts at the deepest level (riverbed sediments) is noticeable, probably related to the strong
annual stormy episodes in this Mediterranean coastal area. Significant flash flood phenomena have
also been described affecting abandoned mine deposits and structures [14,45].
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Figure 6. (a) Dendrogram (distance: simple) of metals from all borehole samples; (b) dendrogram
(distance: Euclidean) defining two main associations of samples: mine tailings (MT) and mine tailings
mixed with riverbed deposits (MTR).

4.5. Environmental Concerns

Potential environmental concerns are usually classified into three broad categories: (i) human
health risks; (ii) ecosystem risks; and (iii) physical hazards. Physical hazards (open pits, open shafts,
instable ponds) are broadly found in the Cartagena–La Unión district. Ecosystem and human risks have
been assessed using the Geoaccumulation Index (Igeo). Igeo enables the assessment of contamination of
sediments by comparing current and pre-industrial concentrations of heavy metals [46]. It is expressed
as Igeo= log2 Cn/1.5Bn, where Cn is the concentration of an element in the sediment sample and Bn is
the background concentration of that element in the Earth’s crust, according to [47]. The factor 1.5 is
usually used to address possible variations due to lithogenic effects. [46] defined six possible ranges:
uncontaminated (Igeo ≤ 0), uncontaminated to moderately contaminated (0 < Igeo < 1), moderately
contaminated (1 < Igeo < 2), moderately to strongly contaminated (2 < Igeo < 3), strongly contaminated
(3 < Igeo < 4), strongly to extremely contaminated (4 < Igeo < 5), and extremely contaminated (Igeo > 5).
Metal and As Igeo values in borehole samples were calculated and are shown in Figure 7. As expected
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from contents in Table 2 and Figure 5, most trace elements (As, Cd, Pb, Sb, and Zn) show strong
to extreme contamination in all borehole samples. Tailings samples (0–2 m depth) are plotted in
the extremely contaminated range (Igeo > 5), whereas tailings mixed with riverbed sediments and
riverbed sediments show strongly to extremely contaminated ranges. Cu and Sn show moderate to
uncontaminated values, and Ag is classified as a non-pollutant due to low Igeo values. The present
study reveals the significant contamination of riverbed sedimentary deposits from mine tailings,
not only at the surface, but also at depth. Martínez-Martínez, et al [48] calculated similar Igeo values for
tailings ponds and natural soils from the southern slope of the mine district. The same behavior has
also been observed by the authors in similar abandoned Spanish mine sites: Iberian Pyrite Belt [11,12],
San Quintín mining group [13], and Mazarrón district [2].

Figure 7. Variation at depth of the Geoaccumulation Index (Igeo) of metals and for the borehole samples.

Mineral wastes, intensive agricultural activities, and the population of the Campo de Cartagena
area (400,000 people; 600,000 people in summertime) overlap within the district. Cultivated lands
(50,000 hectares of horticultural irrigated crops) are located in the adjacent areas downstream of the
Cartagena–La Unión mine district (Figure 1). Thus, dispersion of metal-rich particles to agricultural
soils surrounding the mine tailings has revealed an important hazard for the environment. This is
especially significant in the Mediterranean context, where river courses remain dry for a 5–10-year
period due to the semi-arid climate of SE Spain, except when sporadic and torrential rainfall occurs.
Since all mining activities ceased in 1991, potentially toxic elements from the mine tailings are being
released by water and aeolian erosion. Thus, intense water erosion removes and transports particles
from tailings during strong stormy episodes, and aeolian erosion induces the fine particle dispersion.
In the study area, the aeolian dispersion of tailings could be considered negligible because of low to
moderate wind velocity (2–4 m/s) [49]. The most important erosion mechanism in the Cartagena–La
Unión mine district is hydraulic erosion by stormy episodes inducing erosive flash flood phenomena.
As a result, very significant amounts of abandoned mine tailings from the Descargador mine pond
have been eroded (Figure 2), transported, and re-deposited in El Miedo riverbed, and finally, in the
Mar Menor.
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There, 100,000 people usually spend the summer in the surrounding touristic areas. There is a
perceptible environmental concern, as the sediments from the Mar Menor lagoon are highly polluted
by heavy metals transferred from the Cartagena–La Unión mine district [50]. Reference [51] measured
concentration values of Zn (>3500 μg/g) and Pb (≈3000 μg/g) 48 and 43 times higher, respectively, than
those in the Mediterranean Sea reference sediment sample. Erena et al. [52] develops an operational
system to monitor the evolution and variability of the turbidity and chlorophyll-a levels through the
joint use of remote sensing techniques (Operational Land Imager and SPOT images) and in situ data.

Together with the use of geochemical data to infer environmental concerns, as previously stated,
the geophysical characterization of abandoned mine deposits constitutes a useful, cheap, and fast
acquisition technique to obtain complementary information. The use of ERI allows obtaining crucial
information necessary for a proper evaluation, such as the thickness and internal structure of the
deposits, the occurrence or not of AMD flows that would affect both the surface and groundwater,
and the computation of the volume of potentially hazardous material stored in the mine deposits.
The latter constitutes essential information in the case where reclamation and/or remediation of the
deposits is envisaged. Urgent work must be clearly focused on (i) gaining in-depth knowledge of
hydraulic erosion and dispersion, (ii) permanent monitoring of toxic element contents in waters flowing
towards the Mar Menor, (iii) remediating resulting soils, and (iv) re-analyzing agricultural practices
from an ecotoxicological point of view.

The inputs that can be highlighted compared to previous works are (i) a more detailed geochemical
and mineralogical characterization of tailings and riverbed sediments from surface to bedrock samples
(borehole), not only from surficial ones; (ii) the assessment of contamination of riverbed sediments
estimated using the Geoaccumulation Index; (iii) application of the ERI method in this area to obtain
more detailed information about the internal structure of the deposits and bedrock; (iv) the temporal
evolution of the mining landscape of La Unión area by the use of orthoimages covering the last 70 years,
the most active mining period.

5. Conclusions

The joint use of landscape evolution studies, and geophysical, mineralogical, and geochemical
techniques has been confirmed as providing a complete environmental characterization of abandoned
mine sites, also allowing estimations of the pollution grade and the extent of affected zones. The natural
landscape to the E of La Unión town has been deeply modified by the mining activity. The former
summits of Sierra de Cartagena–La Unión disappeared while huge depressions were created due
to mineral extraction in open-pit mines. Rock, molten slags, and tailings deposits accumulated in
ephemeral riverbeds and foothills, altering the drainage pattern and burying the fluvial channels.
Nearly one fourth of the studied territory is overlaid by mining wastes. These transformations are
evidenced in the geophysical, mineralogical, and geochemical results obtained in this work. At the
Descargador mine site, geophysical surveys and mineralogical–geochemical data from borehole
samples provide similar results. For the mine pond infilling, ERI surveys have allowed imaging a 5 to
8 m thick three-unit sequence with low resistivity values, in good agreement with the alternating layers
of clay and sandy texture seen at the available outcrop in the area. The geometry of the mine pond
boundary is clearly imaged at depth due to the high resistivity values and high dielectric permittivity
contrast of the metasediments bounding the mine pond.

At the dry riverbed site, a ~4-m-thick upper unit of low resistivity values and a ~3.5–4-m-thick
lower unit of higher resistivity values were distinguished and respectively correlated with surficial
mine tailings and underlying riverbed sediments. The highest resistivity values correspond to the
metasediments located below the two previous units. These results are in good agreement with
borehole data. Significant amounts of pyrite, sphalerite, and galena were identified in the borehole
samples, and are much more concentrated in the tailings upper levels than in the sediment’s lower ones.
The alluvial material from the riverbed showed significant toxic metal contents (As, Cd, Fe, Pb, and Zn)
as well. Mineralogical and geochemical data have proved the important removal of pollutants by water
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erosion from mine waste deposits that finally reach the water courses. In fact, rock and metallurgical
wastes alter the drainage pattern and bury the headwaters of ephemeral channels. The strongly
seasonal character of the Mediterranean climate, which concentrates almost all the annual rainfall in
heavy, episodic storms, increases the potential hazard in this area. Thus, strong water erosion and
the transport of extremely contaminated tailings (Igeo) affect the agricultural soils and the Mar Menor,
one of the most important touristic destinations in SE Spain. Both reclamation of the Cartagena–La
Unión mining district and intensive monitoring of waters and soils are highly recommended to recover
one of the most problematic yet tourist-popular areas of SE Spain from the environmental point of view.
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Abstract: Mapping geological outcrops is a crucial part of mineral exploration, mine planning and
ore extraction. With the advent of unmanned aerial systems (UASs) for rapid spatial and spectral
mapping, opportunities arise in fields where traditional ground-based approaches are established
and trusted, but fail to cover sufficient area or compromise personal safety. Multi-sensor UAS are
a technology that change geoscientific research, but they are still not routinely used for geological
mapping in exploration and mining due to lack of trust in their added value and missing expertise and
guidance in the selection and combination of drones and sensors. To address these limitations and
highlight the potential of using UAS in exploration settings, we present an UAS multi-sensor mapping
approach based on the integration of drone-borne photography, multi- and hyperspectral imaging
and magnetics. Data are processed with conventional methods as well as innovative machine learning
algorithms and validated by geological field mapping, yielding a comprehensive and geologically
interpretable product. As a case study, we chose the northern extension of the Siilinjärvi apatite mine
in Finland, in a brownfield exploration setting with plenty of ground truth data available and a survey
area that is partly covered by vegetation. We conducted rapid UAS surveys from which we created
a multi-layered data set to investigate properties of the ore-bearing carbonatite-glimmerite body.
Our resulting geologic map discriminates between the principal lithologic units and distinguishes
ore-bearing from waste rocks. Structural orientations and lithological units are deduced based
on high-resolution, hyperspectral image-enhanced point clouds. UAS-based magnetic data allow
an insight into their subsurface geometry through modeling based on magnetic interpretation.
We validate our results via ground survey including rock specimen sampling, geochemical and
mineralogical analysis and spectroscopic point measurements. We are convinced that the presented
non-invasive, data-driven mapping approach can complement traditional workflows in mineral
exploration as a flexible tool. Mapping products based on UAS data increase efficiency and maximize
safety of the resource extraction process, and reduce expenses and incidental wastes.

Keywords: unmanned aerial systems; hyperspectral; multispectral; magnetic; geologic mapping;
drones; UAV
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1. Introduction

Investigating the earth’s surface using unmanned aerial systems (UASs) is becoming popular
in the earth sciences, as they provide a tool for fast, flexible and high-resolution data acquisition.
The integration of spectral and geophysical UAS-based information offers a refined scale between
airborne and ground surveys. Numerous studies and reviews have investigated the potential of
UASs for various applications, e.g., in the fields of agriculture and forestry, structural geology,
and sedimentology [1–7].

UASs offer multiple potential applications in the exploration and mining industry. In mining
environments, UASs are nowadays routinely used for topographical surveys, material volume
calculation and post-mining environmental monitoring [8,9]. In the context of mineral exploration,
UASs provide a non-invasive way to determine vectors towards ore occurrence at deposit scale.

Successful applications of UAS-based surveys in mineral exploration were used to explore rare
earths using spectral imaging [10] and target uranium deposits using radiometric gamma survey [11].
UAS geophysical magnetic mapping was employed in exploration for iron, zinc, chromite, or gold
deposits [12–15]. UAS-based photogrammetric surface models were used to explore structurally
controlled gold deposits [16].

Within the development of an exploration project, drilling is the decisive step for validation
and modeling. It represents one primary decision-making tool [17] and at the same time is the most
cost-intensive part of mine planning [18]. Hence, UAS-based non-invasive and socially acceptable
data acquisition (e.g., geophysical and hyperspectral) combined with robust data-processing methods
can help decision-makers minimize investment risks and optimize the drilling program [19].

Most of the above-mentioned studies only employ single sensors to derive geoscientific data.
A combination of information from different sensors allows for a more robust geological interpretation.
The combination of spectral and magnetic data has long been recognized as a potent tool in airborne
mineral exploration [20], because of their capability to provide both surface and subsurface information.
Bridging the observation gap between airborne and ground surveying, UASs provide the possibility of
carrying different sensors to acquire high-resolution spatial, spectral and temporal data [21,22] which
contribute to the understanding of geologic settings [23].

UAS-based hyperspectral imaging and magnetics were identified as a promising sensor
combination for direct targeting of iron ores [24], using surficial proxy iron-bearing minerals and
high magnetic susceptibility. While there is ample scientific literature on using UAS for geological
investigations, UAS are not established in the mineral exploration and mining industry. Arguably,
that is due to a lack of case studies, processing and validation schemes, and dedicated software.
This study showcases the value of multi-sensor UAS data and provides a guideline to maximize UAS
potential in exploration scenarios in order to provide support to exploration geologists.

Here, multi- and hyperspectral drone-based imagery is used to delineate and classify surface
lithologies using data fusion. Magnetic data are used to survey the extension of lithologic features
and close observation gaps. The data provided by the different sensors are fused and supervised
image classification is used to separate spectrally non-distinct rock types. Thus, we can link surface
and subsurface information as indicators for mineral occurrences, relating surface classifications to
magnetic minerals as lithologic proxies. Our final result is a UAS-borne digital geologic outcrop
model, augmented by UAS data-based magnetic forward modeling and validated by a ground-truthing
strategy for indirect exploration targeting. This study, to our knowledge at the time, is the first to
attempt this integrated approach used for UAS data in geologic mapping and mineral exploration.

Our area of investigation is the Siilinjärvi apatite ore mine in Finland [25]. The site is an
ideal testing ground due to the wealth of existing evaluation data, including geophysical [26–29]
structural–geological [30–32], geochronological, and mineralogical information [33,34]. We used two
on-site survey days to acquire high-resolution UAS data and ground validation in an area of about
1 km2. We introduce our general and transferable workflow, which we adapt to the specifications of
our survey site, show results and interpretation and finalize in five concluding statements.
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2. Materials and Methods

In this section, we lay out the UAS survey approach. Our proposed workflow is based upon
two fixed-wing UASs, one for magnetic and one for RGB and multispectral measurements, and one
multicopter UAS for detailed hyperspectral data acquisition. Both fixed-wings cover the complete
target area with high spatial resolution but in reduced spectral detail. The multicopter, on the other
hand, provides high spectral resolution but reduced spatial coverage as it acquires data at a lower
altitude and pace. This allows higher detail for selected areas of interest within the survey area.
We show that the methodic combination of fixed-wings and multicopter complement each other.
In the following subsection, we define the proposed workflow (Figure 1), introducing data processing
routines and the used ground truthing methods that include spectroscopy, magnetic susceptibility,
and structural measurements for a successful field campaign.

 
Figure 1. Detailed chart of proposed data-driven unmanned aerial system (UAS) based integration and
modeling workflow.

2.1. UAS Data Acquisition Method

We collect RGB and multispectral images (MSI) with a fixed-wing UAS. Structure-from-motion
multi view stereo (SfM-MVS) photogrammetric workflows allow us to construct a digital surface
model and an orthomosaic from RGB and MSI orthophotos. RGB information, that provides the
highest spatial resolution, is used to identify geological structures. MSIs provide additional spectral
information compared to RGB images, and a much larger footprint than hyperspectral image (HSI)
data in this acquisition setup. All images are geotagged from the drone’s onboard GPS. Images are
rectified using a number of ground control points.

The resulting SfM-MVS digital surface model (DSM) is used for topographic correction and
referencing of the HSIs, and for structural analysis. By means of CloudCompare (www.danielgm.net/cc,
vers. 2.11) and its Compass tool plugin [35], we semi-automatically trace and define best-fit planes for
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faults, foliation, and lithologic contacts directly on the point cloud. For ambiguous areas, supporting
UAS data layers (e.g., HSIs, magnetics) are re-examined in the 3D environment.

We acquire UAS-based hyperspectral data frames with pre-coded flight paths in stop-and-go mode
along the outcrop to maximize UAS surface coverage. We employ UAS-borne frame-based cameras
because of their advantage in creating full image frames which, in our experience, are inherently
less distorted than push-broom scanner data. For all HSI data, we manually crop water bodies and
non-geologic structures such as roads and vegetated zones from the mosaics, or use semi-automatic
masking with a spectral vegetation index.

We conduct UAS-based magnetic surveys using a fixed-wing drone to collect a high-resolution
magnetic data set over the survey area, using predefined flight plans. Subsequently, we apply standard
magnetic interpretation methods to inspect the shape and dimensions of the measured magnetic
anomalies. The analytic signal or total gradient amplitude method [36] is utilized to estimate the
location and depth of anomaly sources, as this function is independent of source magnetization
direction [37]. Furthermore, we compute the first vertical derivative from total magnetic intensity
(TMI) data to enhance the magnetic anomalies and reduce residual influences [38].

2.2. Data Products: Feature Extraction, Supervised Image Classification and Magnetic Forward Modeling

We perform data fusion on a “noisy” outcrop to reduce ambiguity of interpretation while
increasing detection confidence and accuracy of classifications [39]. The feasibility of such a fusion
approach was laid out for different lithologies at laboratory scale where multi-source hyperspectral and
photogrammetric techniques were combined [40]. We apply spatially constrained feature extraction on
the UAS-based optical imagery for a consistent classification as part of our multi-sensor data approach
to enhance image classification results. The orthogonal total variation component analysis (OTVCA) is
used to reduce data dimensionality [41]. It optimizes a cost function to obtain the best representation
for multi-layer image data in lower-dimensional feature space, while giving a spatial smoothness
over local neighboring pixels by minimizing the total variation of the image signal. OTVCA is robust
towards non-systematic, random noise (e.g., salt-and-pepper noise) and has increased weight on
neighboring pixels during the dimensionality reduction [42].

For supervised image classification, we choose the support vector machine (SVM) algorithm with
Gaussian radial basis function (RBF) kernel, using the library for support vector machines (LibSVM)
toolbox [43]. RBF-SVM is proven to perform well with heterogeneous classes and sparse training data,
both of which are common cases in geological mapping [42]. Training and validation samples or pixels
are defined by selecting pixel aggregates from the HSI data in a GIS environment from points with
defined lithologies. The number of training/validation classes varies according to our field observations
of the local lithologies.

For a 3D integration and interpretation of our UAS magnetic data, we use forward modeling.
Model geometries are established by the UAS-based orthoimagery, hyperspectral mosaics and the
DSM. The photogrammetric 3D outcrop model and ground measurements provide constraints on
strike/dip and azimuth of the source bodies. Magnetic susceptibility values assigned to the modeled
bodies are taken from published literature [27,28,44] and from additional measurements collected with
a handheld susceptibility sensor over selected rock samples.

2.3. The Adapted Workflow Conducted for This Survey

We summarize the main characteristics of used sensors here (Table 1) and for specific technical
details of our UAS workflow and data acquisition, we refer to Appendix A and [24].
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Table 1. Sensors with technical specifications and platforms used for experimental data during
this study.

Senor Type/Carrier
Platform

Sensor
Resolution

Spatial/Spectral
Bands/Sampling
Range/Frequency

Data Product

Snapshot
camera/Fixed-wing UAS Parrot S.O.D.A. 5472 × 3648/ – 3/RGB/0.3 Hz

Orthomosaic-RGB,
digital surface

model
Snapshot

camera/Fixed-wing UAS Parrot Sequoia 1280 × 960/10–40 nm
(FWHM) 4/550–790 nm/0.3 Hz Orthomosaic

multispectral
Frame-based

camera/Multicopter UAS Senop Rikola 1010 × 648/8 nm 50/504–900 nm/manual Orthomosaic
hyperspectral

Three-component
fluxgate/Fixed-wing UAS

Radai
magnetometer – /0.5 nT 1/±100,000 nT/10 Hz Magnetic raster

grid

We used the senseFly eBee Plus fixed-wing (www.sensefly.com, senseFly, Cheseaux-sur-Lausanne,
Switzerland) equipped with either a high-resolution RGB camera (www.parrot.com, Parrot S.O.D.A.,
Parrot SA, Paris, France), or a multispectral camera (Parrot Sequoia). Processing of RGB and
multispectral drone-based data was conducted in Agisoft Photoscan (vers. 1.4, Agisoft Ltd.,
St.Petersburg, Russia) following recommended protocols [45,46].

Our used hyperspectral frame camera was the Senop Rikola hyperspectral imager (www.senop.fi,
Senop, Oulu, Finland). The camera was stabilized by a gimbal (roll and pitch axes) and transported
on board of the Aibotix Aibot X6v2 multicopter (www.leica-geosystems.com, Leica Geosystems,
Heerbrugg, Switzerland). Automatic HSI georeferencing, mosaicking and application of topographic
corrections (c-factor method) on each HSI scene based on the photogrammetric DSM was conducted
after Jakob et al., 2017 [47]. We applied the empirical line method [48] to convert the images from
radiance to reflectance units, using ground calibration targets.

Magnetics were flown with a composite material fixed-wing UAS Albatros VT2 from Radai Oy
(www.radai.fi, Radai Ltd., Oulu, Finland). This UAS utilizes a three-component fluxgate magnetometer,
a cost-reducing drone-based sensor [49], attached to the drone’s tail boom. With 2.5 m of wingspan and
a flight endurance of roughly 3 h, it can easily cover outcrops at square kilometer scales. The survey was
flown with traverse lines at 30 m spacing, 99.40 azimuth and tie lines at 60 m spacing and 9.40 azimuth.
The fixed-wing follows the topography along the flight plan based on any available high-resolution
digital elevation model. In this case, we used publicly available data from the National Land Survey
of Finland.

Magnetic data processing involved removal of spikes and duplicate points, compensation of the
fluxgate magnetometer, computation of the total magnetic intensity from the compensated component
magnetic data and removal of diurnal effects. Position coordinates, time stamps, barometric pressure
and the three-component magnetic data were recorded simultaneously by data logging hardware.
An equivalent source algorithm (equivalent layer model (ELM) after [50]) was utilized to prepare the
final TMI grid for the survey with the minimum curvature gridding method of ELM data at 15 m cell
size. The software Model Vision (vers. 16.0, Tensor Research Pty Ltd., Greenwich, Australia) was used
for subsequent forward modeling. Five magnetic profiles crossing along the E–W direction on top and
near the main trenches were used in the forward model. A number of simplified bodies with tabular
geometries were modeled until a reasonable root mean square error (3–5%) between the measured and
synthetic TMI response was achieved.

Covering the known lithologies, ground sampling locations of rock specimens (n = 23) and
ground control points (n = 19) were localized with a Trimble global navigation satellite system (GNSS)
kit (Trimble R5 base station, Trimble R10 rover; Trimble Inc., Sunnyvale, USA). An overview of the
complete workflow is shown in Figure 1.
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2.4. Ground Truthing and Laboratory Validation

Data integration at multiple scales, using local ground truth, airborne magnetics, and regional
geology is an established method that can provide excellent results and meaningful geologic
interpretations [51]. Our ground-truthing program involves rock sampling, as well as structural
(n = 38) and spectral measurements (n = 336) and ground-based photogrammetry. All ground samples
are geolocated using GNSS. All rock samples are cut and polished for optical investigation and some
for analysis with selected geochemical and mineralogical methods.

We take several structural measurements (geological compass), which we incorporate in forward
modeling of magnetic data. Main observations are made for contacts, orientation of dykes, and foliation.

During the outcrop studies, we record point representative spectra using a portable
spectroradiometer in the available wavelength range of 400–2500 nm. We use selected scans as reference
for the supervised image classifications (see Appendix A for point distribution and spectrometer
specifications).

Laboratory validation methods, which represent traditional geological, mineralogical,
and petrophysical verification methods, are selected to confirm our field observations, and to extract
further geologic information from the study site itself. All measurements are conducted on collected
rock specimens in the laboratory. Thin section samples are created from specimens covering all
main lithologies of the outcrop and examined with optical and polarized light microscopy. Magnetic
susceptibility and X-ray diffraction analysis is applied on selected samples (see Appendix D for
additional information).

3. Case Study: The Siilinjärvi Carbonatite Complex

Here, we introduce the test area together with the geology. The Siilinjärvi carbonatite complex is
situated 20 km north of the city of Kuopio in central Finland and extends for 16 km in N–S and 1.5 km
in E–W directions (Figure 2a), with an estimated depth of 800 m [27]. It is one of the oldest known
carbonatites with an Archean age of 2.6 Ga±10 Ma, according to U-Pb zircon dating [52]. The Siilinjärvi
mine extracts carbonatite–glimmerite-hosted apatite ore for fertilizer production as one of the biggest
producers in Europe.

3.1. Local Geology and Study Area

The carbonatite intrusion was emplaced into basement gneiss and deformed by the Svecofennian
orogeny at 1.8 Ga [53]. Local rock types are fenite, gneiss, carbonatite–glimmerite, diabase, and other
dykes (e.g., local diorites). The central carbonatite–glimmerite ore body has a tabular form, is up
to 900 m in width, and is surrounded by a fenite margin created by carbonatite-derived alkali
metasomatism of the granite–gneiss country rock and syenite [54].

Brittle and ductile deformation caused structural segmentation of the carbonatite complex and
surrounding rock, expressed as sharp boundaries within some areas of intermixed diabase, fenite,
tonalite and carbonatite–glimmerite. Fenites as metasomatic products of diorite and gneiss are found
in the magmatic contact zones between country rock and carbonatite–glimmerite [25]. This halo of
fenitized rocks contains microcline, orthoclase, amphibole, and pyroxene, as well as carbonate, zircon,
and quartz.

Several generations of mafic dykes (dolerite) cut the Siilinjärvi intrusion in NW–SE and NNW–SSE
directions, with widths ranging from centimeters to meters [54]. Most of the dykes are steeply
dipping and, depending on their generation, were subjected to deformation [31]. Sheared feldspar-rich
pegmatite dykes with widths varying from 1–50 m were recently discovered by a large-scale drilling
program in the Jaakonlampi area [55] and are exposed on the surface. Structural emplacement of
the dykes is still not fully understood, but given their size and increased magnetic susceptibilities,
they could be an important component of forward modeling.
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Figure 2. (a) Official geologic map (bedrock of Finland scale-free map© Geological Survey of Finland
2019, http://hakku.gtk.fi) that combines data of different map scales. The Jaakonlampi region of interest
(ROI) includes our test area for UAS survey. (b) UAS-based orthophoto of the Jaakonlampi ROI,
showing structural measurements, rock sample positions and ground spectroscopy.

3.2. The Jaakonlampi Test Area

Situated 1.2 km north of the Särkijärvi main pit, the Jaakonlampi area (Figure 2b) provided the test
zone for our UAS survey. Jaakonlampi extends ~1 km in the northern direction and is characterized
by three distinct exploration trenches, which from north to south, henceforth we refer to as trench
1, trench 2, and trench 3. The mine company expanded the exploration program for trench 3 in
2018 and removed significant soil overburden, uncovering a large exploration trench (Figure 3c).
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However, the recent uncovering resulted in some remains of sand and clays on top of trench 3’s surface,
challenging subsequent image classifications.

 
Figure 3. Photographic illustrations of the applied field methods, data acquisition by UASs and ground
truthing, and overviews for the visited outcrops in the Jaakonlampi area. (a) Hyperspectral survey
using multicopter UAS. (b) Magnetic fixed-wing UAS. (c) Ground spectroscopy and geo-locating
on trench 3. (d) Trench 1 during hyperspectral survey. (e) Ground sampling on trench 2 including
structural measurements and spectral surface scans. (f) Contact between dolerite dyke and feldspar-rich
pegmatite intrusions. (g) Photograph of the test pit wall that marks the southern survey end zone.

Within the glimmerite, the carbonatite is featured as thin, sub-vertical veins. The composition
of carbonatite is mainly calcite, apatite (1.4–2.3 vol.%,) and magnetite (1 vol.%). On average, the ore
contains 65% phlogopite, 19% carbonates, 10% apatite, 5% richterite, and 1% accessories that are mainly
magnetite and zircon [54]. The composition of the three trenches (Figure 3c–f) is similar to the general
configuration of the Siilinjärvi deposit. The southern-located trench 3 connects seamlessly to a so-called
test pit (Figure 3g), an outcrop wall which presents a vertical geologic cross section of the lithological
units further used in this study:

• Carbonatite–glimmerite (CGL) and carbonatite (CRB)
• Dolerite (DL)
• Felspar-rich pegmatite veins (FSP-PEG)
• Fenite (resp. syenitic fenite or fenite-syenite) (FEN-SYN)
• Glimmerite (GL)
• Granite–gneiss (GRGN)
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4. Results

We present the mapping results sorted by method. Survey conditions, camera settings,
and technical UAS-related data are found in Appendix A (Table A1). All trenches and the forested
areas in between were surveyed by high-resolution RGB and multispectral UAS images and UAS
magnetics. Additional hyperspectral imaging covers trench 1 completely, the western half of trench 2
(the other half was submerged by water), and the northern half of trench 3. Visual observation of the
test pit wall showed dipping bodies between 70–90◦, broadly striking along N–S.

4.1. Ground Spectroscopy and Principal Lithologic Representation

We measured the three trenches in situ with a representative dense spectral point sampling
campaign (Figure 2b) at trench 1 and 2 (275 locations). For trench 3, we conducted a broader sampling
sweep (61 locations, 37 of those covered by UAS-based HSIs and MSIs). While understanding the
spectral differences of the lithologies, we selected training samples for the supervised classification
(Figure 1, last row) guided by the ground spectra (representative spectra in Figure 4), the RGB mosaic,
and the OTVCA layers.

 
Figure 4. (a–f) Representative hyperspectral image (HSI) drone-based spectra compared to
handheld point scans from the same lithologies and in direct spatial neighborhood, plotted between
504–900 nm. Spectra were manually extracted from representative spots of the main lithologies.
GCL = Carbonatite–glimmerite; CRB = Carbonatite; GL = Glimmerite; FEN-SYN = Fenite–syenite;
DL = Dolerite; FSP-PEG = Feldspar–pegmatite.
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A relatively broad absorption between 900~1200 nm is attributed to the Fe2+ content in calcite
and dolomite-rich carbonatite [56]. We detected rare earth element (REE) related absorptions at
580 ± 10 nm, 740 ± 10 nm, and 800 ± 10 nm (Figure 5b) [57]. A spectral shift from calcite-rich to
dolomite-rich carbonatite is visible in our point scans, at the spectral minima transition from 2320 nm
to 2340 nm (Figure 5c), related to vibrational processes of CO3 combinations and overtones [58,59].
For glimmerite spectra, rich in phlogopite and biotite, we observe characteristic OH- features at
1380 ± 10 nm and Mg-OH vibrational bands at 2320 ± 10 nm and 2380 ± 5 nm [58]. Carbonates are
likely to influence the position of the absorption minima here. Hydroxyl group absorption features are
seen for fenitized syenite spectra at 2315 nm and 2385 nm. Dolerite spectra show the lowest overall
reflectance, weak Fe2+/Fe3+ charge-transfer absorptions at 800 nm [60] due to iron alteration but a
prominent absorption at 1920 nm (OH- related). Feldspar-rich pegmatites, expressing a larger spectral
variety and incorporating Fe2+ and pronounced OH- features are found at 1410 nm, 2200 nm (Al-OH),
and 2350 nm (Mg-OH). We observed apatite in carbonatite–glimmerite rock samples as a possible
proxy for REE occurrence.

 
Figure 5. (a) Six selected handheld scans, representative for the mapped lithologies, plotted between
450–2500 nm and with indicated positions of spectral absorptions. (b) Zoom within the available UAS-based
HSI wavelength window (504–900 nm) showing two carbonatites, where both apatite-rich carbonatites
express some rare earth element-related absorption. (c) Enhanced view of the shortwave-infrared
region between 2000–2500 nm, same color legend. DL =Dolerite; FSP-PEG = Feldspar–pegmatite;
CRB = Carbonatite; CGL = Carbonatite–glimmerite; FEN-SYN = Fenite–syenite; GL = Glimmerite.

4.2. UAS-Based Optical Remote Sensing Observations

The RGB orthophoto (Figure 6a), the MSI mosaic (Figure 6b) and the HSI mosaics (Figure 6c)
provide first-order information for subsequent interpretation. Low ceiling clouds were present during
the RGB acquisition flight, producing horizontal gray stripes in the data. Occasional leftover dirt
patches reduce the spectral quality in some HSI scans of trench 3. Topographic expressions are seen
in the UAS-based DSM (ground sampling distance 10.6 cm; Figure 6d). The eBee RGB and MSI
orthomosaics envelope the complete rock outcrop extension, which is covered by vegetation stripes

370



Remote Sens. 2020, 12, 2998

between trenches 1 and 2 and between trenches 2 and 3. HSI mosaics were acquired completely for
trenches 1 and 2. Trench 2 was partly covered with water on large surface portions. Low illumination
conditions during the HSI acquisition of trench 3 reduced the spectral quality for all scans there.
We augment the data set of trench 3 by using two additional data layers (DSM, MSIs) from the area.
Those additional layers were resampled to the common lowest resolution (from the DSM) and fused
with the HSI data set before applying the dimensionality reduction by OTVCA to improve supervised
image classification.

 
Figure 6. Overview of image-based data products showing the three trenches, with the test pit at
the southern end of trench 3. (a) RGB orthomosaic from the eBee Plus UAS and S.O.D.A. camera.
(b) Multispectral false-color infrared mosaic from the eBee Plus UAS and Sequoia camera (bands
735 nm, 660 nm, 550 nm). (c) Hyperspectral false-color RGB mosaic from Rikola camera images
(bands 650 nm, 551 nm, 504 nm) flown on multicopter UAS. (d) Hillshaded digital surface model
derived from SfM-MVS photogrammetry, based on eBee Plus orthophotos, elevation in meters above
sea level.

The OTVCA-based false-color band combinations we selected for high variations are shown in
Figure 7a,b. Only the merged multi-sensor OTVCA bands for trench 3 (Figure 7c) contain MS, RGB,
and DSM data. Fusing those additional data layers for the classification of trench 3 helped to close some
data coverage gaps of the hyperspectral survey (Figure 7c). The final classification produced by the
SVM classifier and visual inspection was used to create the surface geology map. The resulting overall
accuracy (OA) for all three trenches (>90% OA each) is acceptable. Overall supervised classification
accuracies with used ground truth are as follows in mean accuracy (MA), OA, and kappa coefficient
(κ): trench 1—MA 96.5, OA: 95.3, κ: 0.94; trench 2—MA 91.0, OA: 90.0, κ: 0.88; trench 3—MA 95.3,
OA: 95.3, κ: 0.95. We refer to Appendix A for visualized training and validation samples, as well as
confusion matrices per trench classification.

Although we achieved high classification accuracies, three falsely classified zones are identified
(Figure 7f), i.e., a large block of carbonatite (25 m length) in the fenitized syenite and a stripe of dolerite
extending into the feldspar–pegmatites and the mine road.
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Figure 7. Display of feature extractions (a–c) and supervised classification maps, where only the
geologically meaningful classes are shown for comparison (d–f), plotted on a grayscale UAS-RGB
background orthophoto. (a) Trench 1—Orthogonal total variation component analysis (OTVCA)
color combination bands 2,1,4. (b) Trench 2—OTVCA color combination bands 2,1,3. (c) Trench
3—OTVCA color combination bands 3,5,2. (d) Trench 1—Support vector machine (SVM) supervised
image classification. (e) Trench 2—SVM supervised image classification. (f) Trench 3—SVM supervised
image classification. Black frames highlight misclassified zones.

4.3. UAS-Based Magnetic Observations

Magnetic data interpretation is based on the processed TMI (Figure 8a) and filtered data products.
The total survey length was ~ 39 km, with a mean flight height of 48 m above sea level (a.s.l.), a sampling
line point distance of 2.1 m, and a mean velocity of 17.7 m/s. We show regional airborne magnetics ([61]
modified after Geologic Survey of Finland © 2016) for comparison (Figure 8b). The regional field
shows a decreasing tendency towards the west. A pronounced magnetic anomaly, with values reaching
400 nT, is heading in the north to south direction. At the center of trench 3, the TMI trend is decreasing.
A TMI field strength reduction is visible at the southern end of trench 3 above the vertical wall of the
test pit.
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Figure 8. (a) Total magnetic intensity data plotted with shaded relief and UAS flight paths as stippled
lines from fixed-wing magnetics. Recovered in-line sampling distance after processing varies between
1.5–2.2 m. Bold black profile lines are used in magnetic forward modeling. (b) Regional aeromagnetic
data from the Geological Survey of Finland (40 m nominal flight altitude, 200 m line spacing; colors are
hard-coded; definitive magnetic reference field version 1965 removed from the data).

The first vertical derivative (1VD, Figure 9a) sharpens the edge of the N–S trending anomaly
and the 1VD outlines the distinct transition from low to high TMI values, which we interpreted
as possible lithologic contact between country rock and fenite. By using the analytic signal (AS),
which serves to minimize the impact of any magnetic remanence on the observed magnetic anomaly
pattern, we enhance magnetic contacts, interpreted here as carbonatite–glimmerite and country rock
(Figure 9b). Based on the aforementioned image classification (Figure 7f), the western border of the
dolerite unit could be traced, which is running from N–S through the whole study area. A decrease in
the vertical gradient magnitude is seen again in the center of trench 3, where the shear zone is located
(Figures 2 and 9) [55]. The spatial width and field strength of the central anomaly could be related to
the volume of material replaced by the non-magnetic feldspar-rich pegmatite dykes. The magnetic low
at the center of trench 3, starting 50 m north from the test pit, is measured atop the observed fold and
shear tectonics, where magnetic minerals are altered, displaced, or destroyed [62]. The two spatially
large, oval-shaped anomalies cross above the eastern map border of Figure 8a.
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Figure 9. Comparison of magnetic data at different scales with black outlines representing the trenches.
(a) Analytical signal from UAS total magnetic intensity (TMI) data. (b) First vertical derivative from
UAS TMI data.

4.4. Geologic Modeling and Ground Magnetic Susceptibility

Magnetic susceptibility measurements are imperative for a supporting forward model as a
secondary data derivative, based on UAS magnetics. The susceptibility ranges of our sampled
lithologies are aligned with values presented in the literature and our own sampling. Table 2 lists
susceptibility ranges for the relevant lithologies.

Table 2. Augmented value range for magnetic susceptibilities based on reference literature and own
measurements, values given in SI units.

Lithology Almqvist et al., 2017 [44] V. Laakso, 2019 [28] Measured Used

Dolerite 1.26 × 10−4 – 1.29 × 10−3 1.0 × 10−2 – 1.6 × 10−1 7.0 × 10−4 – 1.35 × 10−2 1.0 × 10−5 – 1.7 × 10−2

Carbonatite–Glimmerite 4.27 × 10−4 – 2.09 × 10−1 1.3 × 10−1 – 2.1 × 10−1 1.0 × 10−4 – 1.1 × 10−2 3.2 × 10−3 – 2.5 × 10−2

Feldspar–Pegmatite – 0 – 5.0 × 10−4 7 × 10−5 – 1.4 × 10−4 1.0 × 10−5 – 5.0 × 10−4

Fenite – 1.3 × 10−1 – 1.5 × 10−1 1 × 10−6 – 1 × 10−5 –
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We constructed a model, starting with simple cuboidal geometries, and advanced to polygonal
tabular sheets, with their surface geometry constrained by our UAS-based surface geologic map
(Figure 10). UAS-based DSM data were used to constrain the top surface of each polygon.
An approximate maximum depth of 250 m meters was imposed, based here on available
literature information for the study area. Body geometry (strikes and dip, width, azimuth) were
taken from photogrammetric interpretation and compared with our own ground measurements.
Initial susceptibility values were assigned to geological units on the basis of the literature and measured
susceptibilities (Table 2). Optimization of the model was achieved using the inversion tool provided
with the ModelVision software. After continuous reiterations, a root mean squared error between
synthetic and modeled TMI response of 3–5% was reached per profile. In our model (cross section in
Appendix B) one implication could be that the dolerites we measured can reach magnetic susceptibilities
close to carbonatite–glimmerite. Yet, this could be an observation at only some depth or related to
shearing. The dolerites are known to be low or non-magnetic in the mine area (personal communication,
Yara chief mine geologist). The modeling results are integrated in Section 5.1 with the surface data for
the final mapping. Extracted body boundaries are used to refine the surface map in a 2D cross section
depth map over trench 3 (Figure 10c).
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Figure 10. Structural and geological information is synthesized. A semi-transparent MSI mosaic is set
as a background for referencing on both maps. (a) Extracted isolines from magnetics (Mag contour)
are shown together with structural interpretations as observed discontinuities and lithologic contacts,
based on UAS-based point clouds, digital surface model (DSM), and orthophotos. (b) Interpreted
geologic map of surface lithologies. Color legend valid for (b) and (c), which shows an interpreted
profile plot crossing trench 3. Main lithologies are drawn from surface mapping and extended in
depth, based on forward modeling and structural measurements from photogrammetry; TMI response
plotted above DSM. Orientation of planar features is indicated in dip→dip direction. In the shear
zone, the magnetic anomaly is diminished, possibly caused by subsequent alteration and relocation of
magnetite. A small diorite intrusion was observed during field mapping.
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5. Data Integration and Validation

In this section, we present the integrated results of our UAS mapping approach, bringing together
data acquired with UAS platforms and ground survey. All analyses and maps were conducted and
created in Quantum GIS (vers. 3.4, QGIS development team). The inferred lithologies between
the outcrop trenches are mapped using the UAS magnetic observations. The following link to the
integrated 3D model is available online at https://skfb.ly/6U6Xo.

5.1. Geologic Mapping and Interpretation

Structural features (e.g., foliations, discontinuities, lineaments) and contours are interpreted
visually in magnetic and DSM data, and with finer detail aided by the RGB orthophotos (Figure 8a).
We produced magnetic contours from TMI, AS, and 1VD data. To do so, we calculated the contour
lines from TMI and for filtered magnetics, to obtain magnetic isolines per data set in quartered data
range steps and subsequently kept only each isoline representing the 50% data threshold. Thus, one
isoline shows the arithmetic data threshold representing a mean. We observe that the TMI and 1VD
isoline are superimposed along the western border of the main anomaly in the center of trench 3.
This might reflect a well-expressed, deep contact of carbonatite–glimmerite and country rock. The ‘mag
gradient’ outlines the observed field decrease (center of trench 3; Figure 9). The geologic surface
interpretation (Figure 10b) brings together all data sources: RGB orthophoto, supervised classification
of HSIs, and fused data. We extracted 66 discontinuities manually for the three trenches (sum of length:
4.46 km), with a mean length of 50 m per structure. We mapped a high density of features along trench
3, as a result of high contrast in both RGB and HSI mosaics. The visual overlap of RGB, HSIs, DSM and
magnetics aided the extraction when contacts or boundaries were blurred or ambiguous. The shear
zone in the south-east of trench 3 (Figure 10c) expresses visible lineament offsets and a dense fracture
pattern in RGB data. We do not infer fenite as there are too few surface observations for reference,
but the magnetics indicate a contact between carbonatite–glimmerites and fenites.

We infer that the lithologies carbonatite–glimmerite, dolerite, and feldspar–pegmatite continue
their N–S trend and intersect with the surficial identified structures. A good example is the case for
dolerite and feldspar–pegmatite, which we can observe for trenches 1 and 2 (Figure 10a,b compare
observed vs. inferred lithologies). Additionally, we map the smaller carbonatite features based on HSI
classifications and show them as overlaying foliation (Figure 11). A 3D representation of the pit wall is
seen in Figure 12.

By applying the Cloud Compare compass tool [35], we could extract 21 contact planes between
feldspar–pegmatite and glimmerite, 10 dolerite contacts, and 6 glimmerite–fenite contact planes, all of
which were located in trench 3 (Figure 12). The largest dolerite dyke had a diameter of ~30 m. Trenches
1 and 2 expressed few topographic differences to extract meaningful contact planes.
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Figure 11. Enlarged maps of the interpreted geology from the three surveyed trenches. Gray background
shows a hillshaded representation of UAS-based DSM to add topographic contrast. (a) Trench 1.
(b) Trench 2. (c) Trench 3.

 

Figure 12. Enlarged view on an orthographically projected point cloud of trench 3 (see also Figures 1a
and 2g), showing the test pit wall with 3D best-fit planes for digital structural measurements. The white
box highlights the field photograph of Figure 3g. A 3D version is found online at https://skfb.ly/6U6Xo.

5.2. Mineralogic Validation and Additional Observation

We deployed optical microscopy (Appendix C) and X-ray diffraction (XRD) methods for
mineralogical analysis. The microscopy of carbonatite–glimmerite shows calcite, a homogeneous
distribution of magnetite grains ranging in size from microns to millimeters, and larger pyrite
crystals. We observed idiomorph magnetite in rock thin sections of carbonatite–glimmerite, glimmerite,
and dolerite. Magnetite seems to be in co-occurrence with pyrite. Combining microscopy and XRD,
we detect some presence of magnetite in several mapped carbonatite–glimmerite and glimmerite
units of this study. XRD of a bulk handheld specimen collected from carbonatite–glimmerite shows
1.8 wt.% of magnetite. Further evidence of magnetic minerals was only observed in one dolerite
sample (2.4 wt.%). We did not identify magnetic minerals in the remaining lithologies from microscopy
(fenitized syenite, feldspar–pegmatite). Moreover, XRD patterns detect calcite, apatite, biotite, pyrite,
quartz, albite, ankerite, and actinolite (Appendix D).

378



Remote Sens. 2020, 12, 2998

5.3. Validation of Structural Observations

The results of the digitally extracted structural measurements are summarized (Figure 13) and
compared with the ground measurements. High image contrast and geometric expression were found
at the test pit of trench 3, and therefore used for extraction. Thirty-two contact points, 6 foliations,
and 2 dykes (carbonatite, dolerite) were measured in situ during the field campaign. Digital point
cloud measurements of apparent large units were extracted mainly on the test pit wall for dolerite,
carbonatite–glimmerite and fenite features. Twenty contacts between carbonatite–glimmerite and
feldspar–pegmatite, 10 dolerite dykes, and 6 glimmerite–syenite–fenite contacts were extracted digitally.
Our structural observations of the Jaakonlampi area show an N–S trend, which is consistent with the
formerly described N–S striking foliation trend of the host rock [25], and shearing along the contacts of
intrusions with host rocks [54]. Structural orientations of contacts, dykes and foliations are comparable
in their main trends (Figure 13a,b,d). Smaller feldspar–pegmatite units (Figure 13e,f) were measurable
along the carbonatite–glimmerite in trench 3. The rather flat surfaces, low topography and reduced
RGB image contrast of trenches 1 and 2 could not provide sufficient contrast for usable structural
measurements. NW–SE-oriented shearing affects structural expressions in our study area (Figure 13c).
Several shearing events were identified in the Jaakonlampi area (four deformation stages with D1 || D3
identified in [55]). At the shear zone of trench 3, we observed contacts of carbonatite–glimmerite with
granite–gneiss and an occasional absence of the fenite–syenite halo.

 
Figure 13. First row (a–c) shows a compilation of structural data from field work and point cloud
analysis. Second row (d–f) presents UAS-based RGB orthophoto zooms with exemplary structural
features. (a) Structural orientations obtained from field measurements. Triangle: foliation, circle:
contacts, box: dykes. (b) Structural orientations resulting from point cloud analysis using the Cloud
Compare Compass tool. Circle: contact FSP-GL, box: contact FSP-CGL; diamond: dolerite dykes.
Large circles in (b) are the mean planes derived from weighted contouring (Kamb contours [63]) for
the respective sub-groups. (c) Field photograph showing detail of the structures and relationship of
carbonatite and glimmerite from trench 2. Hammer for scale (length 33 cm). Notation is “Plunge→Trend”
for linear (L) and “Dip→Dip Direction” for planar (S) features. (d) Close-up of RGB UAS orthophoto
of trench 2, with a folded carbonatite–glimmerite section. (e–f) UAS-RGB close-ups of trench 3’s
southern shear zone, showing a larger block of dolerite, relocated. Feldspar–pegmatite (pinch and swell
and/or boudinage) dyke indicates horizontal displacement. Planar features measured with compass in
the field.

379



Remote Sens. 2020, 12, 2998

6. Discussion

6.1. Assessing the General UAS Survey Workflow with Focus on Image Data

We tested a survey approach that is only limited by the external conditions for UAS operations,
such as weather and legislation. Our multi-sensor UAS toolkit aids geologic ground mapping,
i.e., at around 1 km2 [64]. Our combination of different UAS-based sensors fills spatial gaps during the
survey, and provides a wealth of interpretable data. Extracted spectroscopic and magnetic observations
complement each other to capture surface and subsurface information, which allows an integrated
geologic interpretation. Furthermore, we expand the coverage of the survey area by complementing
missing areas with data from other sensors.

As expected from our lithologies at hand, a full class distinction based solely on HSI and RGB data
was not feasible at first. Here, sensor integration substantially improved the UAS-based supervised
image classifications. Some lithological boundaries seen in spectral data are expressed in the DSM
topography. For example, classification accuracy for the feldspar–pegmatite intrusion and dolerite
contacts was improved by including the DSM layer in the OTVCA feature extraction of trench 3, because
those lithologies are more extruded. Particularly for trench 3, the occasional clay–soil patches smear
larger surfaces and the cloudy weather during this data acquisition made it worthwhile to include
additional information. OTVCA takes spatial relationships of multi-dimensional data (i.e., dozens
of image channels) into consideration. By optical inspection, the selection of 13–20 bands of each
extracted OTVCA data set of the three trenches (equaling 20–30% of the provided number of input
bands) for the SVM classifier was feasible. Optical inspection means here that OTVCA bands with
obvious noise content (stripes, artifacts, contrast gradients) are discarded. With a careful selection of
training samples, we obtained a classification in good agreement with geologic ground mapping.

The multicopter-based hyperspectral data could identify spatially small (~5 cm), spectrally
pronounced anomalies, i.e., fine carbonatite lenses and is effective at the given outcrop dimension.
The same lenses are visible in RGB, but cannot be distinguished spectrally, e.g., from feldspar–pegmatite
rubble. Some lithologies (feldspar–pegmatite, fenite–syenite, granite–gneiss) are hardly discernable
due to their lack of characteristic spectral features in the VNIR range. For example, average reflectance
of fenite–syenite was similar or higher than for feldspar–pegmatite and granite–gneiss. However, we
could still discriminate those rocks by using the machine learning-based spatially constrained feature
extraction. OTVCA allowed us to pass not only spectral information, but also slight spatial, textural,
or overall reflectance changes to the classifier. With a set of representative, well-defined training
points, the classifier is able to assign meaningful labels even to classes lacking any indicative spectral
features. While delivering a good classification performance, this approach is highly dependent on
good-quality training data. UAS short-wave infrared (SWIR) sensors would add more confidence to the
classification and allow a direct, spectroscopic analysis of a much wider range of mineralogical features,
however, their pricing and weight is still an obstacle. Light-weight VNIR sensors in combination with
advanced, open-source machine learning techniques, have been shown to offer a cheaper, but still
reliable, alternative for the discrimination of known lithological domains.

Furthermore, we see a high feasibility when UAS spectroscopy is used for, e.g., iron oxides and rare
earth element identification. Neodymium and dysprosium are promising targets for remote sensing
studies [57]. We observed specific rare earth element-related absorptions in VNIR regions of handheld
spectra in local apatite (Figure 5b). For mapping, we are particularly interested in spectral absorption of
Fe2+ bands in the range of 800–1200 nm as a target for the HSI camera. Further CO3 related absorption
around 2330 nm, indicative for carbonate mineralogy (i.e., carbonatite), is only detectable in the SWIR
range of handheld spectroscopy [65,66]. To assist with UAS magnetic mapping, first-order results from
UAS-based RGB orthophotos are available directly after each flight (Figure 6a). Orthomosaics could
be further used to optimize and refine magnetic flight plans in the field, if important anomalies are
identified. While atmospheric conditions influenced the data quality acquired from optical sensors,
the magnetics could be flown with a low cloudy ceiling or over wet surfaces without any disturbance.
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Line spacing, altitude, and sampling frequency of UAS magnetics define the features we can resolve
physically, and therefore the size of targets we can model and interpret. We consider that the fixed-wing
UAS probably created more valuable data for mapping with high surface coverage. Fixed-wing flight
endurance was not exhausted with the current target area. In this case study, the following surface
coverages were achieved per sensor:

• Magnetics: 0.695 km2 (interpolated grid surface from 39-line km);
• MSIs: 0.649 km2;
• RGB: 0.623 km2;
• HSIs: 0.047 km2 (sum of HSI flights).

The used UAS-fitted workflows are matured to a high user friendliness and could be flexibly
adapted to all mining and exploration scenarios, where high resolution and spatial coverage is required.
Safety concerns for detailed mapping along pit walls are mitigated by UAS mapping, when used for
vertical outcrop scanning along unstable wall sections [67].

Our UAS mapping could improve the planning of material extraction processes in the mine.
The volume of less profitable rock material can be reduced, which limits resource use and costs for
additional drilling and curtails waste rock. Production schedules and mine layout planning could
be improved. As example from UAS magnetics, we infer that the ore body cuts or continues below
a mine road in the west on the outcrops, which could require a geotechnical repositioning of said
infrastructure (Figures 2b and 9a, west of trench 1). Once regular UAS surveys become best practice
for open-pit drilling, drill locations could be predefined in detailed orthophotos and subsurface drill
orientations could be optimized by model-based interpretation of 3D data. In active mines, optical
imagery is already implemented for explosive energy distribution optimization [68].

6.2. Further Implications of UAS Magnetic Surveys and Added Understanding of the Local Geology

UAS-based magnetics revealed the subsurface extension and trend of the glimmerite–carbonatite
body between the trenches, and was validated on the trench surface. A high potential for ground-
or UAS-based magnetic surveys to study lateral extension of those ore bodies was noted before [27],
together with the recognition of the high magnetic susceptibility of Siilinjärvi carbonatite. The shape
and direction of magnetic anomalies directly correlate with the extension of the lithologies at hand.
For example, we interpret the pronounced trend (Figure 9a, eastern trench border) in the TMI-1VD as
contact of the magnetic carbonatite with an intruded dolerite dyke. Furthermore, we interpret the
TMI-AS as the estimated maximum width of glimmerite–carbonatite for this survey site. The two large
anomalies crossing the eastern survey border (Figure 8) are likely part of much deeper granite–gneiss
country rocks, however, neither hyperspectral data nor rock samples of those zones were acquired.
We conclude that the abundant magnetite in the targeted lithologies is mostly responsible for the
detected magnetic anomalies in UAS data, while fenite can be disregarded (Matias Carlsson, personal
communication). The average magnetite content in the deposit is 1 wt.% [25], and is a highly
abundant accessory mineral of both glimmerite and carbonatite [69]. Minor contents of pyrite,
pyrrhotite, and some chalcopyrite occurrence form sulfide minerals in locally high abundance [54].
Sövite, a carbonatite variety, can carry 1–2% of magnetite, often together with apatite, biotite, and
pyrochlore [70]. Although another source for high susceptibilities could be the mafic dykes, those are
smaller in dimension as compared to the carbonatite–glimmerite and local fenite.

In a rock thin section of a dolerite sample, pyrite and magnetite were observed and confirmed by
XRD measurements. For the glimmerite rocks, para- and ferrimagnetic effects can increase magnetic
susceptibility in phlogopite due to magnetite domains in significant fractions [71].

Two-dimensional structural interpretation of the shear zones suggests an increasing mixture of ore
and waste rocks in trench 3 (Figures 12 and 13e,f). Possibly, feldspar–pegmatites ascended near trench
3 and extruded laterally along the carbonatite–glimmerite contacts, following a path of least resistance.
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To magnetically detect and model smaller dolerite dykes, a denser flight line pattern is
recommended for higher spatial resolution. It was noted before [25] that aeromagnetic surveying cannot
resolve the carbonatite–glimmerite, however, this is now possible with UAS-based magnetic surveying.

7. Conclusions

This study introduced a cohesive multi-sensor survey approach using optical and geophysical
UAS sensors. We integrated UAS-based surface and sub-surface data to create a digital outcrop model
for precise geology mapping. Detailed surface information from high-resolution orthophotos and
structural trends from point clouds provided information to map geologic features at the centimeter
scale. We measured structural constraints of carbonatite–glimmerite, mafic dykes, and feldspar-rich
pegmatite on digital outcrop twins. Furthermore, we used a sensor fusion approach and machine
learning methods for a supervised classification of outcropping rocks, partially covered by soil and
captured during unfavorable atmospheric conditions. With hyperspectral data, we were able to identify
and distinguish apatite-bearing lithologies from waste rock, i.e., feldspar-rich pegmatite intrusions and
country rock. Based on UAS-borne magnetics, we created a surface-constrained forward model aided
by measured and adapted magnetic susceptibilities to extract subsurface information, which revealed
the extent of ore-bearing carbonatite-glimmerite. We observed this carbonatite structure at outcropping
trenches, visible along the test pit wall, plunging into the subsurface and traced further based on
magnetic data. The presumed high magnetic anomaly of carbonatite–glimmerite was measured in
detail by a UAS. The scale and resolution of the magnetics covered all trenches in one UAS flight.
Our survey lasted for two field work days, and included a spectral surface sampling campaign. All UAS
flights were conducted in parallel to the sampling with a combined flight time of <6 hours in total.

The principal conclusions and highlights of this study are:

1. Rapid, flexible and automatized UAS-based surveying of lithologic surface and subsurface
features, using light-weight multi-sensor technology, resulted in a 3D outcrop interpretation
and provided material and structural information as a valuable alternative to time-consuming
ground surveying.

2. Forward modeling of UAS-based magnetic data provided insight on orientation and depth of
lithologies concealed from surface observation, here, UASs provided a link between 2D and
3D mapping.

3. Challenges arose in the integration of high-resolution HSI data at smaller scales and missing
overlap between outcrops, together with spectrally inert rock types at the given spectral range.

4. Integration and fusion of topographic and spectral data using supervised surface classification of
spectrally non-distinct targets with a support vector machine on dimensionality-reduced feature
extraction data was successful in overcoming the challenges.

5. We recommend the use and combination of fixed-wing UASs for target-based surveying in the
RGB, multispectral, and magnetic domains for advanced geologic mapping and interpretation,
while using multicopter-borne HSI data for potential non-distinct lithology discrimination,
sub-decimeter feature mapping and to identify features of narrow spectral range.

From this study, we observe that photo-based geology is transformed by UAS imaging techniques
into automatic procedures, where magnetic and hyperspectral methods could become state of the
art. MSIs and HSIs would stand next to the already implemented photogrammetric methods, to add
potential for less invasive, data-driven mineral exploration and mining. UAS-based SWIR cameras will
extend the range of identification for target lithologies, and future geophysical UAS sensors such as
gravity, radiometric, and electromagnetic methods will extend the depth and resolution of observations.
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Appendix A

Table A1. Properties of test trenches, information for the UAS surveys, and further details of the
HSI mapping, as we only surveyed the exposed trench rocks by HSIs. Altitude in m above sea level.
The last column refers to the input layers used in the OTVCA for supervised image classification.
GSD = ground sampling distance.

Outcrop/
Method

Coordinates
Dimension

x-y
Survey

Condition

Used Bands/
Integration

Time

Flights/
Coverage

GSD Altitude
OTVCA
Layers

Method (Hyperspectral only)

Trench 1 63.147N,
27.738E 130 × 36 m sunny,

windless 50/10 ms 1/5500 m2 2.7 cm 40 m HSI

Trench 2 63.145N,
27.738E 200 × 40 m sunny,

windless 50/10 ms 1/3050 m2 2.3 cm 30 m HSI

Trench 3 63.141N,
27.738E 220 × 400 m low clouds,

breeze 50/30 ms 3/38,200 m2 3.4 cm 50 m HSI, MSI,
RGB

Multi-spectral 63.143N,
27.738E 450 × 1430 m sunny,

windless 4/automatic 1/0.649 km2 10.5 cm 100 m –

RGB 63.143N,
27.738E 540 × 1290 m low clouds,

breeze 3/automatic 2/0.623 km2 2.7 (1.5) cm 100 m/70 m –

Magnetic 63.143N,
27.738E 620 × 1100 m sunny,

windless – 1/0.695 km2 30 m * 40 m –

* 15 m after interpolation.

Technical details for the used multi- and hyperspectral cameras are provided in Table A2.

Table A2. Technical specifications of used cameras.

Sensor Senop Rikola Parrot Sequoia senseFly S.O.D.A.

Dynamic range 12 bits 10 bits –
Horizontal field of view 36.5◦ 70.6◦ 90◦

Vertical field of view 23.5◦ 52.6◦ 60◦
Focal length 9 mm 4 mm 2.8–11

Mass 720 g 135 g (with sunshine sensor) 111 g
Frame rate 30 Hz 1 Hz 0.3 Hz

Spectral resolution 8 nm 40 nm (10 nm) –

Training and validation samples used for the supervised image classification used a
cross-referencing support vector machine algorithm. The final classification maps are used to
approximate the geologic contacts which were indifferentiable in RGB orthophotos. Additionally,
the carbonatite classification is possible, mainly for trenches 1 and 2, represented by the higher amount
of training and validation pixels. The labels for the test and training points were determined with
the handheld spectrometer. Each spectral signal was measured with a Spectral Evolution PSR-3500.
A spectral resolution of 3.5 nm (1.5 nm sampling interval) in the visible and near-infrared (VNIR)
range and 7 nm (2.5 nm sampling interval) in the SWIR range is provided, using a contact probe.
Each spectral record consists of 10 individual measurements taken consecutively and averaged.
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To convert radiance to reflectance, we use a PTFE panel (Zenith Polymer with >99% reflectance VNIR;
>95% reflectance SWIR).

Figure A1. Training and validation for support vector machine classification in column-wise order.
(a) Training samples trench 1. (b) Training samples trench 2. (c) Training samples trench 3. (d) Validation
samples trench 1. (e) Validation samples trench 2. (f) Validation samples trench 3. CRB = Carbonatite;
GL = Glimmerite; CGL = Carbonatite–glimmerite; FSP-PEG = Feldspar–pegmatite; NaN = Not a
number; DL = Dolerite; FEN-SYN = Fenite–syenite.

Table A3. Confusion matrix trench 1. Indef./NaN = black pixel.

Predicted
Truth Carbonatite Glimmerite Feldspar–Pegmatite Water Indef. Soil

Carbonatite 123 0 17 0 0 7
Glimmerite 0 120 0 0 0 0

Feldspar–Pegmatite 4 0 172 0 0 0
Water 0 0 0 63 0 0

Indef./Nan 0 0 0 0 42 0
Soil 0 0 2 0 0 87
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Table A4. Confusion matrix trench 2. We observe that the differentiation between the water and soil
pixels is ambiguous, however, both classes were rejected from the geological interpretation.

Predicted
Truth Dolerite Carbonatite Glimmerite Feldspar–Pegmatite Soil Indef./Nan Water

Dolerite 83 0 0 0 0 0 0
Carbonatite 0 147 0 6 0 0 0
Glimmerite 0 4 80 0 0 0 0

Feldspar–Pegmatite 0 8 0 124 0 0 0
Soil 0 0 1 0 50 0 0

Indef./Nan 0 0 0 0 0 32 0
Water 0 0 0 0 48 0 90

Table A5. Confusion matrix trench 2.

Predicted

Truth
Dolerite

Glimmerite–
Carbonatite

Feldspar–
Pegmatite

Glimmerite
Fenite–
Syenite

Water Soil Indef./Nan

Dolerite 649 0 0 15 0 0 0 0
Glimmerite–Carbonatite 0 34 11 0 0 0 0 0
Feldspar–Pegmatite 31 0 1141 0 80 0 0 0

Glimmerite 8 0 13 650 0 0 2 0
Fenite–Syenite 17 6 39 0 1296 0 0 0

Water 0 0 0 0 0 532 0 0
Soil 2 0 0 0 2 0 353 0

Indef./Nan 0 0 0 0 0 0 0 4

Appendix B

Profile plots across the DSM and the underlying modeled carbonatite–glimmerite bodies are
shown. Note the increasing length scale. Corresponding magnetic profiles are shown in Figure 8 in
the manuscript. Here, the calculated magnetic response per profile is plotted on the UAS-measured
TMI signal. Due to the ambiguous nature of geophysical forward models, all available constraints
were employed to create the model bodies. Starting parameters for each profile are given by the
user. We iterated 20 sessions with various starting parameters for magnetic susceptibility, as well
as position and depth of initial body geometry. We assumed tabular body shapes. Strike direction,
dip, and length of each body were estimated based on UAS-RGB, hyperspectral and structural data.
For example, the depth of the body for profile 4 (S4) seems to be overestimated, and constrained
possible susceptibility. This corresponds with the magnetic low of profile 4, directly above a shear
zone. Even with an apparent good model fit, an interpretation is complicated. As stated above, shear
stress could have decreased the amount of magnetic minerals. For profile S1, a gap between two
carbonatite bodies exists, caused by the absence of magnetic rock material, caused by an observed
feldspar–pegmatite intrusion. Data of a comprehensive exploration drill campaign would solidify
further interpretations.
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Figure A2. Cross-section profile plots across the DSM and the underlying, modeled tabular
carbonatite–glimmerite bodies.

Appendix C

 
Figure A3. Optical microscopy (with the Zeiss Axio Imager M2m with Axiocam MRc 5 imaging
module) conducted for thin sections of representative samples; Cal = calcite; Phl = phlogopite;
Apt = apatite; Mag = magnetite; Py = pyrite. (a) Carbonatite–glimmerite, reflected light.
(b) Carbonatite–glimmerite, transmitted light, crossed nicols. (c) Magnetite (subhedral–euhedral),
reflected light. (d) Carbonatite–glimmerite, reflected light. (e) Carbonatite–glimmerite, transmitted
light, parallel nicols. (f) Feldspar–pegmatite, transmitted light, crossed nicols.

Appendix D

Magnetic susceptibility, detecting magnetite signature, among others, is measured with a
Bartington MS2 magnetic susceptibility system (Bartington Instruments, Witney, Oxon, United
Kingdom). A mass fraction of material per sample was crushed to a fine powder (<0.1 mm grain size),
weighed to 10.00 g and its susceptibility was measured with the sample tray holder of the MS2 system.
The values are augmented with additional susceptibility values taken from the literature for those
lithologies without available rock specimens.

XRD is conducted with the PANalytical Empyrean diffractometer with cobalt as the X-ray source
and equipped with a PIXcel 3D Medipix detector. The main targets are mineral content, including
detection and quantification of magnetic minerals. X-ray diffraction patterns for two selected samples
are shown in Figures A4 and A5.
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Figure A4. X-ray diffraction pattern for the carbonatite sample.

Figure A5. X-ray diffraction pattern for the dolerite sample.

Table A6. Mineral abundance from a carbonatite–glimmerite zone (GU02) and a dolerite dyke (GU08a)
sample is listed below, with the mineral content in weight % (wt.%).

Mineral (wt.%) Carbonatite (and Glimmerite) Dolerite

Coordinates: UTM zone 35N 537156E, 7002020N 537124E, 7001475E
Calcite 59.6 16.6

Magnetite 1.8 2.4
Pyrite – 2.0

Actinolite 3.7 –
Ankerite 4.1 –

Albite – 37.4
Annite 9.8 –
Apatite 21.0 –
Biotite – 29.7

K-Feldspar – 4.8
Quartz – 7.2
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Abstract: Dust pollution is severe in some mining areas in China due to rapid industrial development.
Dust deposited on the vegetation canopy may change its spectra. However, a relationship between
canopy spectra and dust amount has not been quantitatively studied, and a pixel-scale condition
for remote sensing application has not been considered yet. In this study, the dust dispersion
characteristics in an iron mining area were investigated using the American Meteorological Society
(AMS) and the U.S. Environmental Protection Agency (EPA) regulatory model (AERMOD). Further,
based on the three-dimensional discrete anisotropic radiative transfer (DART) model, the spectral
characteristics of vegetation canopy under the dusty condition were simulated, and the influence of
dustfall on vegetation canopy spectra was studied. Finally, the dust effect on vegetation spectra at the
canopy scale was extended to a pixel scale, and the response of dust effect on vegetation spectra at
the pixel scale was determined under different fractional vegetation covers (FVCs). The experimental
results show that the dust pollution along a haul road was more severe and extensive than that in
a stope. Taking dust dispersion along the road as an example, the variation of vegetation canopy
spectra increased with the height of dust deposited on the vegetation canopy. At the pixel scale,
a lower vegetation FVC would weaken the influence of dust on the spectra. The results derived
from simulation spectral data were tested using satellite remote sensing images. The tested result
indicates that the influence of dust retention on the pixel spectra with different FVCs was consistent
with that created with the simulated data. The finding could be beneficial for those making decisions
on monitoring vegetation under dusty conditions and reducing dust pollution in mining areas using
remote sensing technology.

Keywords: dust dispersion; spectra; canopy scale; pixel scale; mining area

1. Introduction

Dust is a dominant feature of the global aerosol system [1]. Dust can affect air quality, climate,
biosphere and atmospheric chemistry [2]. There are two main dust sources: natural sources and
human activity [3]. Natural sources include wind erosion, rock weathering, dust storms, etc. [4,5],
while human activity-induced dust is mainly caused by construction [6], road transportation [7],
fuel combustion [8], open-pit mining [9], etc. In China, mining industry has developed rapidly in
recent years [10]. A large-scale and high-intensity mining in open-pit mines may lead to serious dust
pollution by drilling, overburden loading and unloading, mineral processing, vehicular movement on
the haul roads [11].
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There may be different dispersion characteristics of dust between excavation, transportation
and mineral processing in mining areas. These dispersion differences could be simulated using
models. Several models have been developed for air dispersion simulation, such as the American
Meteorological Society (AMS) and the U.S. Environmental Protection Agency (EPA) regulatory
model (AERMOD) [12], industrial source complex-short term (ISCST) [13], California puff model
(CALPUFF) [14], etc. These models are suitable for different spatial scales, processes and particle
sources [15]. AERMOD is one of the most commonly used models worldwide based on Gaussian
dispersion [16]. It is a near-field, steady-state Gaussian plume model based on planetary boundary
layer turbulence structure and scaling concepts, which can model multiple sources of different types
including point, area and volume sources. The distribution is assumed to be Gaussian in both the
horizontal and vertical directions in the stable boundary layer [15]. In other words, the model has a
clear physical concept, can use the measured data to determine the required parameters, and is easy to
modify for different situations. This model can be used in short-range (up to 50 km) dispersion from
various polluting sources. Thus, in this study, the AERMOD model would be used to predict dust
diffusion characteristics of different pollution sources and to obtain the spatial distribution of the dust
in the mining area.

After dispersion, a large amount of dust falls on the land surface around the mining area.
For vegetation, dust can deposit on the leaf [17]. From the perspective of remote sensing, the dust
retention on vegetation canopy will change vegetation’s spectral characteristics because vegetation
spectra are mixed with dust spectra. If the measured spectra of dusty leaves were used to retrieve
physiological parameters of vegetation directly, it would reduce the retrieval accuracy due to the mixed
spectral information [18]. Therefore, it is necessary to study the dust effect on the vegetation spectra.
For example, the effect of foliar dust (atmospheric pollution and limestone dust) on spectra of pear and
Fagus sylvatica leaves has been studied, respectively [19,20]. However, most studies have studied the
influence of dust retention on leaf spectra, and the related result at a leaf scale cannot be applied to the
canopy scale directly due to variable canopy structure [21]. Moreover, due to the limitation of spatial
resolution, pixels in a remote sensing image are usually mixed with other features [22]. Therefore,
the dust effect on the spectra of pixels with different fractional vegetation covers (FVCs) should be
considered for the remote sensing application.

Spectral data acquisition is time-consuming and laborious by field or laboratory measurement
due to the complexity of the field environment. Moreover, collected spectral data are often difficult
to meet the needs of research due to the various measuring conditions [23]. Therefore, simulation
methods can frequently be used to obtain spectra. Various radiative transfer models (RTMs) are
valuable tools for spectra simulation. In the case of heterogeneous canopies with complex architectures,
three-dimensional (3D) RTMs are more appropriate by describing canopy structures explicitly [24].
The discrete anisotropic radiative transfer (DART) model is one of the most used 3D RTMs to simulate
the spectra of crops [25,26] and forests [27,28]. DART could be used to simulate and compute radiation
propagation through the entire earth-atmosphere system in the electromagnetic spectrum from visible
to thermal infrared parts [24]. Thus, the DART was selected as the basic model to simulate spectra of
dust at canopy and pixel scales in this study.

Therefore, in this study, we propose to study the dust effect on vegetation spectra at both
canopy and pixel scales in a mining area through spectral modeling and remote sensing technology.
More specific research objectives are to (1) quantify the dust dispersion in a mining area, and (2) assess
the dust effect on vegetation spectra at canopy and pixel scales. To achieve the two research objectives,
AERMOD would be used to study the characteristics of dust dispersion and the DART model to study
the dust effect on vegetation spectra.
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2. Models and Methods

2.1. Study Area

The study area was Kuancheng Mining Area, which is located in Hebei Province, North China
(Figure 1). This area is covered with dense natural vegetation, such as Populus cathayana, Pinus
tabuliformis, Armeniaca sibirica, and Castanea mollissima, and maize is the main crop. The annual output
of ore is about 100 million tons. It has a continental monsoon climate with a mean annual precipitation
of 662.5 mm and a mean annual temperature of 8.7 ◦C [29]. There are many open-pit iron mines in
the mining area. Mining development is the main economic activity in this area, which includes
mining, ore transportation and beneficiation. Dust pollution is an environmental problem that cannot
be ignored in this area due to the high-intensity mining development.

 

Figure 1. Location of Kuancheng Mining Area in a false-color composite image of Landsat 8
image (RGB432).

2.2. A General Work Flowchart

In the mining area, there are different dust sources that show dispersion characteristics. To quantify
and assess the dust characteristics and effects on vegetation spectra, three major research components
were included in this study. (1) The dust source was classified into point and line types. The spatial
distribution of dust was studied by using AERMOD. (2) The dust effect on vegetation spectral
reflectance at a canopy scale was studied using the DART model, and the dust effect on vegetation
reflectance at a pixel scale was investigated by considering FVC in pixels with simulated spectra.
(3) The analysis result with the simulated spectra was finally verified with a satellite remote sensing
image. The detailed flowchart is presented in Figure 2.
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Figure 2. A general flowchart of this study.

2.3. AERMOD Modeling Dust Dispersion

The dust emission intensity in a mining area needs to be determined first because it is the input
data of AERMOD. Then the dust dispersion can be described by using AERMOD.

2.3.1. Determining Dust Emission Intensity in the Mining Area

There are two dust sources in the mining area: stope and haul road.

(1) In the stope

A stope is a place for mining ore. The dust in the stope is mainly generated by the forklift when it
works, and the dust emission intensity can be calculated with the following formula [30]:

Q = 0.0523×U1.30 ×H2.01 ×W−1.40 ×M (1)

where Q is the dust emission intensity (kg/h), U is the wind speed (m/s), H is the unloading height of
forklift (m), W is the water content of material (%), and M is the loading capacity per unit time (m3/h).
According to field monitoring data in the study area, U was 1.6 m/s, H was 4 m, W was 10%, and M
was 50 m3/h. The final dust emission intensity was 3.1 kg/h.

(2) Along the haul road

The haul road, linking a stope to a concentrator, is used for transporting iron ore and bulk and
material. The formula of dust source intensity on the haul road is as follows [31]:

Qroad = 0.123×V/5× (M/6.8)0.85 × P/0.5× 0.72L
Q = Qroad ∗ 1.2

(2)
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where Qroad is the dust generated by vehicle (kg/vehicle), V is the driving speed of the vehicle (km/h),
M is the vehicle load (t), p is the road surface material quantity (kg/m2), and L is the road length
(km). According to the actual conditions, the road was set with length 200 m and width 12 m.
The height affected by dust was 1.5 m, the tail gas mixing height was 2 m, V = 50 km/h, M = 45 t,
p = 0.3 kg /m2, and the average transportation was 20 times per hour. The final emission intensity was
7.92 kg/km/vehicle or 44 g/km/s.

2.3.2. Dust Dispersion by Using AERMOD and Dustfall Amount Transformation

The two dust sources, stope and haul road, were classified into continuous point and line sources.
The dust emission intensity of each source was set as the initial value of AERMOD (ver 18081)
with a grain size of 75 μm, which was the mean grain size of the dust samples in the study area.
Furthermore, the meteorological data in the mining area were also set as the initial values for running
AERMOD. The average wind speed was 1.6 m/s, measured from 1 June to 12 June 2013, in the growing
season. Based on the above data, the spatial dispersion of dust in the two sources was simulated by
using AERMOD.

Daily average dust concentration is a direct result derived from AERMOD. For this study, it should
be converted into dustfall amount according to the following relationship [32]:

CTSP = K ·CDF (3)

where CTSP is the dust concentration (μg/m3), CDF is the dustfall amount (t/(km2·30d)) and K is the
correlation coefficient with the value of 11.630 (30d·(103 km)−1). The transformed amount of dustfall is
the cumulative value in 30 days, which would hardly deposit on the canopy totally. Considering the
influence of wind and the canopy structure on the dust deposition. the dustfall amount was set as a
cumulative value of 2 d.

2.4. Spectra Simulation of Dusty Vegetation by Using DART

DART is one of the most accurate and complete models that operate on different 3D scenes
simulating radiative transfer from the visible to thermal infrared in the Earth landscapes and the
atmosphere. It has been developed since 1992. It models optical signals at the entrance of imaging
radiometers and laser scanners onboard satellites and airplanes, as well as the 3D radiative budget of
urban and natural landscapes for any experimental configuration and instrumental specification [24].
The input parameters of the DART model mainly include two parts, one is the related parameters of
objects in the simulation scene, and the other is the environment parameters of the simulated scene.
The object parameters in the simulation scene are physical and biochemical parameters, structural
parameters and scattering properties of the object. The scene environment parameters include solar
zenith angle, azimuth angle, observation zenith angle and azimuth angle, scene size and resolution, etc.

In this study, maize was selected as an example of vegetation for its wide distribution in the
mining area. Firstly, the reflectance at leaf scale was obtained for the DART input. For clean leaves,
the reflectance was derived using the PROSPECT model with four input variables: N (leaf structure
parameter), EWT (equivalent water thickness or water content), Cab (chlorophyll a + b content) and
Cm (dry matter content) [33]. The four input variables of maize leaf were adapted from the LOPEX93
dataset [33], where N = 1.34, EWT = 0.0137 cm, Cab = 45.27 μg/cm2, Cm = 0.0047 g/cm2. For dusty
leaves, the reflectance was derived using the PROSPECT-based mixture model [34,35] based on the
dust dispersion along the haul road. To simulate the vertical distribution difference of deposited dust
on maize canopy, the canopy model of maize was established with upper, middle and lower layers.
Then the dusty leaf spectra under different dust amounts at different layers were imported into the
DART model. In this case, the zenith angle and azimuth of the sun were set as 70◦ and 141◦ by referring
to the Landsat 8 OLI imaging scene parameters (August 9, 2013) passing the study area for validation.
Finally, the reflectance of maize canopy with different dust amounts was simulated.
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Based on the canopy-scale result achieved, pixel-scale spectral data could be obtained for further
analysis. At the pixel scale, it was supposed that the target pixel had only two endmembers, vegetation
and soil. To explore the dust influence on the reflectance of mixed pixels with different vegetation
covers, FVC was set as 89% (very high), 75% (high), 51% (medium) and 23% (low). The spectral
differences of pixels with different FVCs could be compared with different dust amount. Taking pixel
reflectance at 626 nm (red band) and 840 nm (NIR band) as examples, a quantitative analysis was
made to reflect the dust effect on pixel spectra under different vegetation covers using the change rate.
Its formula is as follows:

CR =
Rd −R0

R0
(4)

where CR is the change rate of vegetation reflectance, Rd is the reflectance of dusty vegetation and R0 is
the reflectance of dust-free vegetation.

2.5. Validation for Simulation with Satellite Images

Two scenes of Landsat OLI images (path 122 and row 32), with 30 m spatial resolution, were used
to validate the simulated results. One was acquired before a rainy day (24 July 2013) and set as the
dusty scene, and the other was acquired after a rainy day (9 August 2013) and set as the dust-free scene.
The two images were atmospherically corrected to surface reflectance by using the Fast Line-of-Slight
Atmospheric Analysis of Spectral Hypercubes (FLAASH) module of ENVI software. Then, FVC was
derived by using a dimidiate pixel model based on the dust-free reflectance image [36]. The calculation
formula of FVC can be expressed as:

FVC =
NDVI −NDVIsoil

NDVIveg −NDVIsoil
(5)

where NDVI is the normalized difference vegetation index, NDVIveg is the NDVI value for “pure”
vegetation pixel and NDVIsoil is the NDVI value for “pure” bare soil pixel in the image. In this study,
NDVIveg is 0.944, and NDVIsoil is 0.173. Finally, the reflectance difference image (between the dusty
scene and the dust-free scene) and FVC image were used to understand the simulated result with the
DART model.

3. Results and Discussion

3.1. Spatial Characteristics of Dust Dispersion Based on the AERMOD Simulation

3.1.1. Dust Dispersion in the Stope (Point Source)

In the horizontal direction, the dust diffusion was consistent with the wind direction (Figure 3a).
The dust concentration gradually increased first, reached a maximum of 94.50 mg/m3, and then began
to decline. The dust pollution range was about 20 m horizontally from the point source. In the vertical
direction, the dust concentration increased firstly and then decreased within 1.5 m to the pollution
source (Figure 3b).
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(a) (b) 

Figure 3. Spatial distribution of dust concentration in the stope shovel loading (a) is in horizontal
direction, and (b) is in vertical direction.

3.1.2. Dust Dispersion along the Road Transport (Line Source)

Under the condition of 1.6 m/s wind, the dust was almost distributed symmetrically along the road,
which meant that the wind had a slight influence on the dust dispersion. In the horizontal direction,
the dust concentration was consistent on the line parallel to the road, and the dust concentration
reached the maximum at 47.60 mg/m3 on the road and then gradually decreased with the distance
off the road (Figure 4a). In the vertical direction, the dust raised by the trucks formed continuous
dust layers in a “saddle” shape with different concentrations (Figure 4b). According to the simulation
results by AERMOD, the dust concentration decreased with the increasing height.

  
(a) (b) 

Figure 4. Spatial distribution of dust concentration in road transportation (a) is in horizontal direction,
and (b) is in vertical direction).

Taken together, dust pollution along the haul road was more severe and more extensive than that
in the stope. After conversion, the amount of dust deposited on the vegetation canopy at different
heights (0.5 m, 1.0 m, and 1.5 m) and distances (from 10 m to 100 m) is shown in Figure 5. Generally,
the amount of dust decreased with increasing height. For 1.0 m and 1.5 m height, amounts of dust
increased firstly when the distance to the road was not greater than 30 m and then decrease with
increasing distance. When the horizontal distance was greater than 60 m, the amounts of dust at
different heights were close.
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Figure 5. Changes of dustfall at different heights from the ground.

AERMOD is suitable for the near-field range (<50 km), so it could be applied in this study.
According to AERMOD, the maximum dust concentration was 94.50 mg/m3 in the stope and 47.60 mg/m3

along the haul road, and the maximum dustfall amount was 45.0 g/m2 at the 0.5 m height. The result
was close to some reported results. For example, the maximum dust concentration was 10.78 mg/m3 in
Sistan, Iran during the summer dusty period [37], and the maximum dustfall amount was 14.98 g/m2

in a limestone quarry in north Israel [38].

3.2. Canopy Spectra under Different Dust Retention Conditions Based on DART Simulation

According to the dust concentration along the road, the dust amount set on the vegetation canopy
was 0–80 g/m2, with a gradient level of 8 g/m2. Dust falling on vegetation canopy has different effects
on the reflectance of different bands (Figure 6). Generally, the reflectance decreased with the increasing
amount of dust in the range of 0.7–1.4 μm and increased with increasing amount of dust outside the
range. Under the same amount of dust, the spectral response of the canopy was different when the
canopy was covered by dust on the upper, middle and lower layers. The spectral change rate increased
gradually when the dust only deposited from lower to upper layers. In other words, the dust on the
upper layer had a greater impact on the canopy spectra. Furthermore, the dust deposited on all the
layers has had the greatest impact on the canopy.

  
(a) (b) 

Figure 6. Cont.
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(c) (d) 

Figure 6. The simulated spectral results of maize canopy under different dust retention conditions (a) is
dust retention on all the layers of canopy, (b) is dust retention only on the top layer of canopy, (c) is
dust retention only on the middle layer of canopy, and (d) is dust retention only on the bottom layer
of canopy).

3.3. Pixel Spectra Change under Different Dust Amount and FVCs

Figure 7 shows the spectra of dust-free mixed pixels when the FVC was set as 89%, 75%, 51%, 23%,
13% and 8% initially. The results show that when the vegetation cover decreased, the pixel reflectance
gradually changed to the characteristics of soil reflectance. When vegetation cover was less than 23%,
the pixel spectra were similar to the soil spectrum.

Figure 7. Mixed pixel spectra under different fractional vegetation covers (FVCs) (FVC of canopy
is 100%).

Scenes with FVCs of 89%, 75%, 51% and 23% were selected to simulate the spectra of mixed pixels
with different dust amount. The change trend of pixel spectra was the same as that at the canopy scale
when the amount of dust increased. However, the lower the vegetation cover was, the less the impact
of deposited dust on the pixel spectra (Figure 8). The result shows that the change rate decreased with
the decrease of FVC at both 626 nm and 840 nm (Figure 9). When the vegetation cover was low, the soil
mainly contributed to the pixel spectra. According to the measured soil spectra with different dust
deposition levels, the dust effect on it could be ignored. Thus, the pixel spectrum influenced by the
dust deposition was mainly determined by the vegetation FVC in the pixel.
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(a) (b) 

  
(c) (d) 

Figure 8. Effects of dust retention on vegetation spectra under different FVC conditions: (a) 89%,
(b) 75%, (c) 51%, and (d) 23%.

  
(a) (b) 

Figure 9. Spectral change rates corresponding to different FVCs under dust retention conditions (a) is
red band (626 nm), and (b) is NIR band (840 nm)).
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3.4. Test by Using Satellite Images

With two scenes of remote sensing images, the pixel spectra on both sides of the haul road in
the mining area were extracted and compared to test the above result created with simulation data.
To comprehensively consider the pixel spectra influenced by dust absorption on vegetation under
different FVCs, the difference in reflectance at the NIR band (845–885 nm) of total 302 pixels between
dusty and dust-free remote sensing images was obtained to compare with FVC (Figure 10). The results
showed that the difference in reflectance at the NIR band increased while FVC increased, which meant
that the influence of dust retention on the spectrum of pixels became stronger. However, some errors
may be caused because of the difference between the simulation and the validation. Vegetation type
is one of the factors. Maize was selected as the experimental plant in the DART simulation, but the
selected pixels on the Landsat image for validation may not only be occupied by maize because there
were various types of vegetation in the study area. On the other hand, other parameters in the DART
model, such as soil background, could also cause errors due to differences from the actual situation.
These factors should be considered in future studies to obtain more accurate results.

 

Figure 10. Reflectance difference in NIR band of Landsat 8 image corresponding to different FVCs
(the pixels are spot in the map in Figure 1).

The tested result with the satellite images indicates that the influence of dust retention on the
pixel spectra with different FVCs was consistent with that created with the simulated spectral data.
From the perspective of application, this might be very significant for inversion using remote sensing
images under dusty conditions. To remove dust influence accurately on inversion, vegetation cover
factor must be considered for its effect on the reflectance. The accurate inversed vegetation parameters
are important for sustainable management in mining areas [39].

4. Conclusions

Dust pollution is severe in some mining areas in China. In this study, the dust dispersion
was studied by taking an iron mining area as an example. The effect of dust on vegetation spectra
was investigated at both the canopy scale and the pixel scale using a spectral simulation method.
The AERMOD simulation was conducted in a stope and along a haul road in a mining area. Along
the haul road, dust pollution was more severe due to extensive and high-concentration distribution.
According to DART simulation, the vertical distribution of dust deposition had an important influence
on the canopy spectra. At the canopy scale, the higher the dust deposition on the vegetation canopy
layer, the stronger the dust deposition on the vegetation influences. At the pixel scale, the spectra
of pixel under dusty conditions varied with the vegetation cover. As the FVC decreased, the dust
impact on the pixel spectra would be decreased. This simulated result was compared by the test result
estimated using the satellite remote sensing images. The comparative result indicates that the influence
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of dust retention on the pixel spectra with different FVCs was consistent with that created with the
simulated spectral data. These findings would be beneficial to decision-makers or researchers for the
remote sensing application to mapping and assessing the dust effect in mining areas.
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