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José Daniel López-Barrientos, Ekaterina Gromova and Ekaterina Miroshnichenko

Resource Exploitation in a Stochastic Horizon under Two Parametric Interpretations
Reprinted from: Mathematics 2020, 8, 1081, doi:10.3390/math8071081 . . . . . . . . . . . . . . . . 69

Denis Kuzyutin and Nadezhda Smirnova

Subgame Consistent Cooperative Behavior in an Extensive form Game with Chance Moves
Reprinted from: Mathematics 2020, 8, 1061, doi:10.3390/math8071061 . . . . . . . . . . . . . . . . 99

Artem Sedakov and Hao Sun

The Relationship between the Core and the Modified Cores of a Dynamic Game
Reprinted from: Mathematics 2020, 8, 1023, doi:10.3390/math8061023 . . . . . . . . . . . . . . . . 119

Ekaterina Marova, Ekaterina Gromova, Polina Barsuk, Anastasia Shagushina

On the Effect of the Absorption Coefficient in a Differential Game of Pollution Control
Reprinted from: Mathematics 2020, 8, 961, doi:10.3390/math8060961 . . . . . . . . . . . . . . . . . 133

Vladimir Mazalov and Elena Konovalchikova

Hotelling’s Duopoly in a Two-Sided Platform Market on the Plane
Reprinted from: Mathematics 2020, 8, 865, doi:10.3390/math8060865 . . . . . . . . . . . . . . . . . 157

Ovanes Petrosian and Victor Zakharov

IDP-Core: Novel Cooperative Solution for Differential Games
Reprinted from: Mathematics 2020, 8, 721, doi:10.3390/math8050721 . . . . . . . . . . . . . . . . . 173

Idris Ahmed, Poom Kumam, Gafurjan Ibragimov, Jewaidu Rilwan, and Wiyada Kumam

An Optimal Pursuit Differential Game Problem with One Evader and Many Pursuers
Reprinted from: Mathematics 2019, 7, 842, doi:10.3390/math7090842 . . . . . . . . . . . . . . . . . 193

Mahendra Piraveenan

Applications of Game Theory in Project Management: A Structured Review and Analysis
Reprinted from: Mathematics 2019, 7, 858, doi:10.3390/math7090858 . . . . . . . . . . . . . . . . . 205

v





About the Editor

Leon Petrosyan is a professor, chair of the department “Mathematical Game Theory and

Statistical Decisions”, dean of the faculty of “Applied Mathematics” of Saint Petersburg State

University in Saint Petersburg, Russia. He earned his Ph.D. in Mathematics (1995) from Vilnius

University (the title of his thesis was “On a Class of Pursuit Games”) and Dr.Sci. in Mathematics

(1972) from Saint-Petersburg State University (the title of his thesis was “Differential Games of

Pursuit”). His research interests include differential and dynamic games, mathematical control

theory, operations research, game theory. He was chair of the program and organizing committees

of numerous International Conferences in Game theory and Applications and is editor of periodicals

in game theory and operations research. He is author of more than 300 publications in mathematical

game theory periodicals and author of more than 30 books on this topic. In the years 2008–2012 he

was elected as president of the “International Society of Dynamic Games”; he is a fellow member of

“Game Theory Society” and a foreign member of “National Academy of Sciences of Armenia”.

vii





Preface to ”Game Theory”

The importance of strategic behavior in the human and social world is increasingly recognized

in theory and practice. As a result, game theory has emerged as a fundamental instrument in pure

and applied research. It has greatly enhanced our understanding in decision making. The discipline

of game theory studies decision making in an interactive environment. It draws on mathematics,

statistics, operations research, engineering, biology, economics, political science and other subjects. In

canonical form, the game takes place when an individual pursues an objective in a situation in which

other individuals concurrently pursue other (possibly conflicting, possibly overlapping) objectives

and at the same time the objectives cannot be reached by individual actions of one decision maker.

The formulation of optimal behaviors for individuals called players is a fundamental element in the

theory of games. The player behaviors satisfying some special principles, called optimality principles,

constitute a solution of the game. The problem then is to formulate these principles and, on this

basis, define the behavior of each individual (player), investigate the existence of such behavior and,

in the case that it exists create analytical or computational methods to find the optimal behavior.

Game theory has greatly enhanced our understanding of decision making. As socioeconomics

and political problems increase in complexity, further advances in the theory’s analytic content,

methodology, techniques and applications, as well as case studies and empirical investigations, are

urgently required. Theoretical results and applications in games are proceeding apace, in areas

ranging from aircraft and missile control to inventory management, market development, natural

recourse extraction, competition policy, negotiation techniques, macroeconomic and environmental

planning, capital accumulation and investment. In the social sciences, economics and finance are

the fields which most vividly display the characteristic of games. Not only would research be

directed towards more realistic and relevant analysis of economic and social decision-making, but

the game-theoretic approach is likely to reveal new interesting questions and problems specially in

pure and applied mathematics.

Leon Petrosyan

Editor
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Abstract: In this paper, we provide cooperative and non-cooperative interpretations of the
Shapley–Solidarity value for cooperative games with coalition structure. Firstly, we present two
new characterizations of this value based on intracoalitional quasi-balanced contributions property.
Secondly, we study a potential function of the Shapley–Solidarity value. Finally, we propose a new
bidding mechanism for the Solidarity value and then apply the result to the Shapley–Solidarity value.

Keywords: Shapley-Solidarity value; coalition structure; potential; bidding mechanism

1. Introduction

In economic situations, players usually form a coalition with the aim of obtaining more profits.
It is an important issue to distribute the surplus of cooperation among the players. Game theory
provides general mathematical techniques to analyze such distribution problems. The solution part
of cooperative game theory deals with the allocation problem of how to divide the overall earnings
among the players in the game. There are various solution concepts in the field of cooperative games.

Probably, the Shapley value [1] and the Solidarity value [2] are the two most well-known
solutions in cooperative game theory. They have similar formula, but a different way to value
players’ contributions to the coalitions. The Shapley value is a marginalist value because it considers
the pure marginal contribution of every player, while the Solidarity value behaves more equalitarian
than the Shapley value, since it considers the average marginal contribution of every player.

Various authors have proposed many characterizations of these two solutions. Shapley [1]
initially proposed an axiomatization of the Shapley value by means of efficiency, additivity, symmetry
and the null player property. Among the latter ones, Young’s axiomatization [3] stands out by
the elegance of its marginality axiom, which replaces additivity and the null player property in
the initial characterization of the Shapley value. Myerson [4] proposed an axiom of the balanced
contributions property in order to characterize the Shapley value. van den Brink [5] interpreted
the Shapley value as the unique solution satisfying fairness, efficiency, and the null player property.
Mcquillin and Sugden [6] characterized the Shapley value while using a condition of ‘undominated
merge-externalities’. Calleja and Llerena [7] provided an axiomatization of the Shapley value by weak
self consistency, weak fairness, and the dummy player property. Recently, Alonso-Meijide et al. [8]
introduced new properties by considering three special kinds of agents: null, nullifying, and necessary
agents, and then obtained new characterizations of the Shapley value. van den Brink et al. [9] discussed
two solutions for cooperative transferable utility games, the Shapley value and the proper Shapley
value and characterized them by the property of affine invariance.

Moreover, Yokote et al. [10] introduced the balanced contributions property for equal contributors
to the γ-egalitarian Shapley values which include many variants of the Shapley value, such as the

Mathematics 2020, 8, 1965; doi:10.3390/math8111965 www.mdpi.com/journal/mathematics1
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egalitarian Shapley values and the discounted Shapley values. Casajus [11] proposed the relaxations
of symmetry, weak sign symmetry, and characterized the class of the weighted Shapley values,
together with efficiency, additivity, and the null player property. Abe and Nakada [12] proposed a new
class of allocation rules for TU-games, named the weighted-egalitarian Shapley values, where each
rule in this class takes into account each player’s contributions and heterogeneity among players
in order to determine each player’s allocation. They provided an axiomatic foundation for the
rules. Choudhury et al. [13] defined the generalized egalitarian Shapley value that gives the planner
more flexibility in choosing the level of marginality based on the coalition size, and provided two
characterizations of the generalized egalitarian Shapley value. An overview of study that was
associated with the Shapley value can be found in literature [14].

Nowak and Radzik [2] characterized the Solidarity value by introducing the A-null player
property instead of the null player property in the axiomatization of the Shaplay value [1].
Casajus [15] proposed a differential version of Young’s marginality axiom. Differential marginality,
together with efficiency and the (A-)null player property, allows for a direct proof of additivity,
entailing characterizations of the Shapley value and the Solidarity value. Gutiérrez-López [16] defined
the class of all egalitarian solidarity values, which are convex combinations of the solidarity value
and the equal division solution, then provided two alternative characterizations of the corresponding
values. There are also more various axiomatizations of the Shapley value and the Solidarity value in
literature [17–19].

The coalition structure is used to model the situation where the players form groups for bargaining
payoffs in cooperative games. The Owen value [20] is a well-known value for games with coalition
structure. The Owen value adopts the Shapley value both inside the unions and among the unions.
It behaves as a pure marginalist solution even inside the union, where the player’s behaviour should
be united. Alonso-Meijide et al. [21] extended the equal division and the equal surplus division
values to the more general setup of cooperative games with a coalition structure, and provided
axiomatic characterizations of the values. Hu [22] studied the weighted Shapley-egalitarian value and
the collective value, and parallel axiomatizations of them were proposed by replacing the collective
balanced contributions axiom with two intuitive axioms. Zou et al. [23] defined an extended Shapley
value for generalized cooperative games under precedence constraints and provided two axiomatic
characterizations of this value.

Calvo and Gutiérrez [24] combined the Shapley value and the Solidarity value together and
defined a value named the Shapley–Solidarity value for games with coalition structure. They thought
that the players within a union were more willing to show their solidarity and each union was more
inclined to protect its revenue. Therefore, the Solidarity value is applied in order to obtain the payoffs
of the players inside each union while the Shapley value is applied in order to compute the total
payoffs of each union.

Calvo and Gutiérrez [24] characterized the Shapley-Solidarity value using efficiency, coalitional
balanced contributions and intracoalitional equal averaged gains. Intracoalitional equal averaged
gains is a coalitional version of the equal averaged gains property, which is used to characterize the
Solidarity value [24]. Recently, Hu and Li [25] gave another characterization of the Shapley-Solidarity
value by five axioms, including efficiency, additivity, intracoalitional symmetry, coalitional symmetry,
and the partial A-null player property. The partial A-null player property states that a partial A-null
player should receive zero in the game. The partial A-null player property is an extension of the A-null
player property [2].

The intracoalitional balanced contributions property was introduced by Lorenzo–Freire [26,27] to
characterize the Owen value and the Banzhaf-Owen value. In this paper, we propose a similar
axiom, the intracoalitional quasi-balanced contributions property, in order to characterize the
Shapley-Solidarity value.

Hart and Mas-Colell [28] introduced a way of potential function to characterize the Shapley value.
They defined a potential function assigning to every cooperative game a real number and proved that
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the marginal contribution vector of the function coincides with the Shapley value. Winter [29] extended
this way of characterization to games with coalition structure where the Owen value [20], the AD
value [30] were considered. Xu et al. [31] adjusted the original potential function for the Shapley value,
so that they got a potential function for the Solidarity value. For the Shapley–Solidarity value, we can
obtain the potential function from the potential functions of the Owen and Solidarity value.

Another approach to study a cooperative game solution is mechanism design which can be viewed
as a part of the Nash program [32] to implement cooperative game solutions through non-cooperative
game theory. Bidding mechanism, first introduced by Pérez-Castrillo and Wettstein [33], is used to
implement the Shapley value. Vidal-Puga and Bergantiños [34] implemented the Owen value by a
two-rounds coalitional bidding mechanism. Sikker [35] studied the non-cooperative foundations of
network allocation rules, including several classical solutions, such as the Myerson value and the
position value, which are implemented by bidding mechanism. Ju and Wettstein [36] introduced a
generalized bidding approach based on the original bidding approach in Pérez-Castrillo and Wettstein.
Addtitionally, the Shapley, consensus [37] and equal surplus values [38] are implemented. van den
Brink et al. [39] implemented the egalitarian Shapley value based on Pérez-Castrillo and Wettstein’s
bidding approach. For the discounted Shapley value, van den Brink and Funaki [40] implemented it in
a similar approach.

There is no present research for studying the non-cooperative implementation of the
Shapley–Solidarity value. If we want to implement the Shapley-Solidarity value we should replace the
first round in the coalitional bidding mechanism in Vidal-Puga and Bergantiños [34] with a mechanism
that can implement the Solidarity value.

In this paper, we will study the Shapley–Solidarity value from three aspects. First of all,
we give axiomatic characterizations of the Shapley–Solidarity value mainly using intracoalitional
quasi-balanced contributions, which is an extended version of quasi-balanced contributions [31].
Subsequently, we obtain an adjusted potential function with respect to the Shapley–Solidarity value.
At last, we give a new implementation of the Solidarity value using bidding mechanism. Additionally,
we apply this result to the games with coalition structure and implement the Shapley-Solidarity value.

The paper is organized, as follows. In Section 2, we introduce some basic definitions
and notations. Axiomatic characterizations of the Shapley-Solidarity value will be presented in
Section 3. Subsequently, we study the potential function for the Shapley–Solidarity value in Section 4.
Finally, in Section 5, we provide a non-cooperative implementation of the Shapley–Solidarity value.

2. Preliminaries

A cooperative game with transferable utility or simply a game is a pair (N, v) where
N = {1, 2, · · · , n} is a player set and v : 2n → R with v(∅) = 0 is a characteristic function which
assigns to each coalition S ∈ 2n the worth v(S). Denote the family of all cooperative games by G,
and then denote the family of all cooperative games with player set N by GN . A game (N, v) ∈ GN is
zero-monotonic if v(S) + v({i}) ≤ v(S ∪ {i}) for all S ⊆ N with i /∈ S, and is monotonic if v(S) ≤ v(T)
for all S ⊆ T ⊆ N.

A value on GN is a function ϕ that assigns a payoff vector ϕ(N, v) ∈ Rn to every games (N, v) ∈
GN . The Shapley value [1], which is denoted by Sh, assigns to every player the expectation of his
marginal contributions with respect to all coalitions. For any (N, v) ∈ GN and i ∈ N,

Shi(N, v) = ∑
i∈S,S⊆N

(|N| − |S|)!(|S| − 1)
|N|! [v(S)− v(S\{i})],

where |S| is the cardinality of player set S. The Solidarity value [2] is similar to the Shapley value,
but it behaves more equalitarian, which assigns to every player the expectation of his average marginal

3
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contributions with respect to all coalitions. The Solidarity value Sol(N, v) ∈ Rn is defined as, for any
(N, v) ∈ GN and i ∈ N,

Soli(N, v) = ∑
i∈S,S⊆N

(|N| − |S|)!(|S| − 1)
|N|!

1
|S| ∑

i∈S
[v(S)− v(S\{i})].

For a player set N, a coalition structure over N is a partition of N, i.e., C = {C1, C2, ..., Cm},
satisfying

⋃
h∈M Ch = N and Ch ∩ Cr = ∅ when h �= r, where M = {1, 2, ..., m}. The set Ch ∈ C are

called unions. Denote the set of all coalition structures over N by C(N). A game (N, v) with coalition
structure C ∈ C(N) is denoted by (N, v, C). Denote the family of all the games with coalition structure
with player set N by CGN .

For all games with coalition structure, the game defined between unions is called quotient game.
Formally, for all game (N, v, C) ∈ CGN , with C = {C1, C2, ..., Cm}, the quotient game is denoted by
(M, vC) ∈ GN , where M = {1, 2, ..., m} and vC(T) = v(

⋃
i∈T Ci) for all T ⊆ M. For all k ∈ M and

all S ⊆ Ck, denote, by C|S, the new coalition structure (
⋃

j �=k Cj)
⋃

S, which means that the union Ck
is replaced by coalition S in the original coalition structure. The internal game (Ck, vk) is defined in
Owen [20] where vk(S) = Shk(M, vC|S).

A coalitional value f on CGN is a function assigning a vector f (N, v, C) ∈ RN to each game with
coalition structure (N, v, C) ∈ CGN . The Owen value [20] of the game (N, v, C) is the coalitional value,
defined as

Owi(N, v, C) = Shi(Ch, vh), for all h ∈ M and all i ∈ Ch.

Another interesting coalitional value, called the Shapley–Solidarity value [24], was introduced and
characterized by Calvo and Gutiérrez. They stuck with the Shapley value among unions and applied
the Solidarity value between players within the same union. Formally, for a game (N, v, C) ∈ CGN the
Shapley–Solidarity value is defined as

SSi(N, v, C) = Soli(Ch, vh), for all h ∈ M and all i ∈ Ch. (1)

3. New Characterizations for the Shapley-Solidarity Value

Axiomatization is one of the main ways to characterize the reasonability of solutions with a set
of properties in cooperative games. In this section, we characterize the Shapley–Solidarity value by
introducing the intracoalitional quasi-balanced contributions property, inspired from the balanced
contributions property.

The balanced contributions property, as introduced by Myerson [4], indicates that, for any pair of
players, the influence of a player who leaves the grand coalition on the other player is the same as
the impact of the other player’s departure on it. Myerson [4] characterized the Shapley value by the
balanced contributions property and efficiency.

Balanced contributions (BC): a solution ϕ on GN satisfies the balanced contributions property if for
any (N, v) ∈ GN , i, j ∈ N with i �= j,

ϕi(N, v)− ϕi(N\{j}, v) = ϕj(N, v)− ϕj(N\{i}, v).

We first introduce two axioms, inspired by the balanced contributions property, and both of
them are used in order to characterize the Solidarity value. In Xu et al. [31], the Solidarity value is
characterized by the quasi-balanced contributions property with efficiency.

Quasi-balanced contributions (QBC): a solution ϕ on GN satisfies the quasi-balanced contributions
property if for any (N, v) ∈ GN , i, j ∈ N with i �= j,

ϕi(N, v)− ϕi(N\{j}, v) +
1
n

v(N\{j}) = ϕj(N, v)− ϕj(N\{i}, v) +
1
n

v(N\{i}).

4
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In Calvo and Gutiérrez [24], the Solidarity value is also characterized by the equal averaged gains
property together with efficiency.

Equal averaged gains (EAG): a solution ϕ on GN satisfies the equal average gains property if for
any (N, v) ∈ GN , i, j ∈ N with i �= j,

1
n ∑

k∈N
[ϕi(N, v)− ϕi(N\{k}, v)] =

1
n ∑

k∈N
[ϕj(N, v)− ϕj(N\{k}, v)].

The previous two properties have been both used for characterizing the Solidarity value separately.
However, one can easily check that these two properties are independent with each other.

Calvo et al. [41] introduced the property of intracoalitional balanced contributions to characterize
the level structure value. It states that, for any two players in one union, the influence of a player who
leaves the union on the other player is the same as the impact of the other player’s departure on it.

Intracoalitional balanced contributions (IBC): For all (N, v, C) ∈ CGN and all i, j ∈ Ch ∈ C, i �= j,

fi(N, v, C)− f (N\{j}, v, CN\{j}) = f j(N, v, C)− f (N\{i}, v, CN\{i}). (2)

In Lorenzo-Freire [27], it is proved that, if a coalitional value satisfies the intracoalitional balanced
contributions property, then it can be computed by means of the Shapley value. Next, we will define
the intracoalitional quasi-balanced contributions property, and we will prove that if a coalitional value
satisfies the intracoalitional quasi-balanced contributions property, it can be computed by means of the
Solidarity value.

Intracoalitional quasi-balanced contributions (IQBC): For all (N, v, C) ∈ CGN and all i, j ∈ Ch ∈ C,
i �= j,

fi(N, v, C)− fi(N\{j}, v, CN\{j}) +
v f ,C(Ch\{j})

|Ch|

= f j(N, v, C)− f j(N\{i}, v, CN\{i}) +
v f ,C(Ch\{i})

|Ch|
, (3)

where the game (Ch, v f ,C) [27] is defined as

v f ,C(T) = ∑
i∈T

fi((N\{Ch}) ∪ T, v, (C\{Ch}) ∪ T), (4)

for all T ⊆ Ch, T �= ∅. This game means that the payoff for each subset of players in the union is the
sum of the payoffs of these players given by the coalitional value when the union is replaced by the
subset. Obviously, this property is directly extended from the quasi-balanced contributions property.

Proposition 1. A coalitional value f satisfies IQBC if and only if for all (N, v, C) ∈ CGN and all i ∈ Ch with
Ch ∈ C,

fi(N, v, C) =
1

|Ch|
[v f ,C(Ch)−

1
|Ch| ∑

j∈Ch

v f ,C(Ch\{j})] + 1
|Ch| ∑

j∈Ch\{i}
fi(N\{j}, v, CN\{j}). (5)

Proof. Given i ∈ Ch, if a coalitional value f satisfies IQBC, then for all j ∈ Ch\{i},

fi(N, v, C)− fi(N\{j}, v, CN\{j}) +
v f ,C(Ch\{j})

|Ch|

= f j(N, v, C)− f j(N\{i}, v, CN\{i}) +
v f ,C(Ch\{i})

|Ch|
.

Summing over j ∈ Ch\{i}, we obtain that

5
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(|Ch| − 1) fi(N, v, C)− ∑
j∈Ch\{i}

fi(N\{j}, v, CN\{j}) +
1

|Ch| ∑
j∈Ch\{i}

v f ,C(Ch\{j})

= ∑
j∈Ch\{i}

f j(N, v, C)− ∑
j∈Ch\{i}

f j(N\{i}, v, CN\{i}) +
1

|Ch| ∑
j∈Ch\{i}

v f ,C(Ch\{i}).

Consider the definition of the game (Ch, v f ,C), then we have

(|Ch| − 1) fi(N, v, C)

= ∑
j∈Ch\{i}

fi(N\{j}, v, CN\{j})−
1

|Ch| ∑
j∈Ch\{i}

v f ,C(Ch\{j})

− v f ,C(Ch\{i}) + 1
|Ch| ∑

j∈Ch\{i}
v f ,C(Ch\{i}) + v f ,C(Ch)− fi(N, v, C)

= ∑
j∈Ch\{i}

fi(N\{j}, v, CN\{j})−
1

|Ch| ∑
j∈Ch\{i}

v f ,C(Ch\{j})

− 1
|Ch|

v f ,C(Ch\{i}) + v f ,C(Ch)− fi(N, v, C)

= ∑
j∈Ch\{i}

fi(N\{j}, v, CN\{j})−
1

|Ch| ∑
j∈Ch

v f ,C(Ch\{j}) + v f ,C(Ch)− fi(N, v, C).

Thus,

fi(N, v, C) =
1

|Ch|
[v f ,C(Ch)−

1
|Ch| ∑

j∈Ch

v f ,C(Ch\{j})] + 1
|Ch| ∑

j∈Ch\{i}
fi(N\{j}, v, CN\{j}).

Now, it remains to proven the reverse part. The proof will be done by induction on |Ch|.
Suppose that Ch = {i, j}, then we have

fi(N, v, C) =
1
2
[v f ,C(Ch)−

1
2

v f ,C(Ch\{j})− 1
2

v f ,C(Ch\{i})] + 1
2

fi(N\{j}, v, CN\{j})

=
1
2
[ fi(N, v, C) + f j(N, v, C)− 1

2
v f ,C(Ch\{j}) + 1

2
v f ,C(Ch\{i})]

− 1
2

f j(N\{i}, v, CN\{i}) +
1
2

fi(N\{j}, v, CN\{j}).

Accordingly, we have

fi(N, v, C)− fi(N\{j}, v, CN\{j})

= f j(N, v, C)− f j(N\{i}, v, CN\{i}) +
v f ,C(Ch\{i})

2
− v f ,C(Ch\{j})

2
.

Suppose that |Ch| > 2. For any i, j ∈ Ch, we have

|Ch|[ fi(N\{j}, v, CN\{j})− f j(N\{i}, v, CN\{i})]

=(|Ch| − 1)[ fi(N\{j}, v, CN\{j})− f j(N\{i}, v, CN\{i})]

+ [ fi(N\{j}, v, CN\{j})− f j(N\{i}, v, CN\{i})]

=v f ,CN\{j}(Ch\{j})− 1
|Ch| − 1 ∑

k∈Ch\{j}
v f ,CN\{j}(Ch\{j, k})

+ ∑
k∈Ch\{i,j}

fi(N\{j, k}, v, CN\{j,k})

6
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− [v f ,CN\{i}(Ch\{i})− 1
|Ch| − 1 ∑

k∈Ch\{i}
v f ,CN\{i}(Ch\{i, k})

+ ∑
k∈Ch\{i,j}

f j(N\{i, k}, v, CN\{i,k})]

+ [ fi(N\{j}, v, CN\{j})− f j(N\{i}, v, CN\{i})]

=v f ,CN\{j}(Ch\{j})− 1
|Ch| − 1 ∑

k∈Ch\{i,j}
[v f ,CN\{j}(Ch\{j, k})

− v f ,CN\{i}(Ch\{i, k})]− v f ,CN\{i}(Ch\{i})
+ ∑

k∈Ch\{i,j}
[ fi(N\{j, k}, v, CN\{j,k})− f j(N\{i, k}, v, CN\{i,k})]

+ [ fi(N\{j}, v, CN\{j})− f j(N\{i}, v, CN\{i})].

By the induction hypothesis, the following result is true for all k ∈ Ch\{i, j},

fi(N\{j, k}, v, CN\{j,k})− f j(N\{i, k}, v, CN\{i,k})

= fi(N\{k}, v, CN\{k})− f j(N\{k}, v, CN\{k}) +
1

|Ch| − 1
v f ,CN\{k}(Ch\{k, j})

− 1
|Ch| − 1

v f ,CN\{k}(Ch\{k, i}).

Thus,

|Ch|[ fi(N\{j}, v, CN\{j})− f j(N\{i}, v, CN\{i})]

=v f ,CN\{j}(Ch\{j})− v f ,CN\{i}(Ch\{i})

− 1
|Ch| − 1 ∑

k∈Ch\{i,j}
[v f ,CN\{j}(Ch\{j, k})− v f ,CN\{i}(Ch\{i, k})]

+ ∑
k∈Ch\{i}

fi(N\{k}, v, CN\{k})− ∑
k∈Ch\{j}

f j(N\{k}, v, CN\{k})

+
1

|Ch| − 1 ∑
k∈Ch\{i,j}

[v f ,CN\{k}(Ch\{k, j})− v f ,CN\{k}(Ch\{k, i})]

=v f ,CN\{j}(Ch\{j})− v f ,CN\{i}(Ch\{i})
+ ∑

k∈Ch\{i}
fi(N\{k}, v, CN\{k})− ∑

k∈Ch\{j}
f j(N\{k}, v, CN\{k})

=v f ,CN\{j}(Ch\{j})− v f ,CN\{i}(Ch\{i})

+ [v f ,C(Ch)−
1

|Ch| ∑
k∈Ch

v f ,C(Ch\{k}) + ∑
k∈Ch\{i}

fi(N\{k}, v, CN\{k})]

− [v f ,C(Ch)−
1

|Ch| ∑
k∈Ch

v f ,C(Ch\{k}) + ∑
k∈Ch\{j}

f j(N\{k}, v, CN\{k})]

=|Ch|[ fi(N, v, C)− f j(N, v, C) +
1

|Ch|
(v f ,CN\{j}(Ch\{j})− v f ,CN\{i}(Ch\{i}))].

Proposition 2. A coalitional value f satisfies IQBC if and only if for all (N, v, C) ∈ CGN and all i ∈ Ch with
Ch ∈ C, fi(N, v, C) = Soli(Ch, v f ,C).

Proof. Because the Solidarity value satisfies the quasi-balanced contributions, we have that for all i,
j ∈ Ch,

7
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fi(N, v, C)− fi(N\{j}, v, Ch\{j}) + v f ,C(Ch\{j})
|Ch|

=Soli(Ch, v f ,C)− Soli(Ch\{j}, v f ,CN\{j}) +
v f ,C(Ch\{j})

|Ch|

=Solj(Ch, v f ,C)− Solj(Ch\{i}, v f ,CN\{i}) +
v f ,C(Ch\{i})

|Ch|

= f j(N, v, C)− f j(N\{i}, v, Ch\{i}) + v f ,C(Ch\{i})
|Ch|

.

To prove the counterpart, we will use the induction on |Ch|.
For Ch = {i}, Soli(Ch, v f ,C) = Soli({i}, v f ,C) = v f ,C({i}) = fi(N, v, C). Suppose that the result is

true for |Ch| < m where m ∈ R. For |Ch| = m, by previous proposition, we have

|Ch| fi(N, v, C)

=v f ,C(Ch)−
1

|Ch| ∑
j∈Ch

v f ,C(Ch\{j}) + ∑
j∈Ch\{i}

fi(N\{j}, v, CN\{j})

=v f ,C(Ch)−
1

|Ch| ∑
j∈Ch

v f ,C(Ch\{j}) + ∑
j∈Ch\{i}

Soli(Ch\{j}, v f ,CN\{j})

=v f ,C(Ch)−
1

|Ch| ∑
j∈Ch

v f ,C(Ch\{j})

+ ∑
j∈Ch\{i}

∑
T⊆Ch\{i,j}

t!(m − t − 2)!
(m − 1)! ∑

k∈T∪{i}

1
t + 1

[v f ,CN\{j}(T ∪ {k})− v f ,CN\{j}(T)]

=v f ,C(Ch)−
1

|Ch| ∑
j∈Ch

v f ,C(Ch\{j})

+ ∑
j∈Ch\{i}

∑
T⊆Ch\{i,j}

t!(m − t − 2)!
(m − 1)! ∑

k∈T∪{i}

1
t + 1

[v f ,C(T ∪ {k})− v f ,C(T)]

=v f ,C(Ch)−
1

|Ch| ∑
j∈Ch

v f ,C(Ch\{j})

+ ∑
T�Ch\{i}

∑
j∈Ch\(T∪{i})

t!(m − t − 2)!
(m − 1)! ∑

k∈T∪{i}

1
t + 1

[v f ,C(T ∪ {k})− v f ,C(T)]

=v f ,C(Ch)−
1

|Ch| ∑
j∈Ch

v f ,C(Ch\{j})

+ ∑
T�Ch\{i}

t!(m − t − 1)!
(m − 1)! ∑

k∈T∪{i}

1
t + 1

[v f ,C(T ∪ {k})− v f ,C(T)],

where t denotes the cardinality of the coalition T. Thus, we have

fi(N, v, C) = ∑
T�Ch\{i}

t!(m − t − 1)!
ch! ∑

k∈T∪{i}

1
t + 1

[v f ,C(T ∪ {k})− v f ,C(T)] = Soli(Ch, v f ,C).

Calvo and Gutiérrez [24] extended the equal averaged gains property to games with coalition
structure and they introduced the following property.

Intracoalitional equal averaged gains (IEAG): For all (N, v, C) ∈ CGN , all h ∈ M and all i, j ∈ Ch,

1
|Ch| ∑

k∈Ch

[ fi(N, v, C)− fi(N\{k}, v, CN\{k})] =
1

|Ch| ∑
k∈Ch

[ f j(N, v, C)− f j(N\{k}, v, CN\{k})].

8
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Proposition 3. A coalitional value f satisfies IEAG if and only if for all (N, v, C) ∈ CGN and all i ∈ Ch with
Ch ∈ C,

fi(N, v, C) =
1

|Ch|
[v f ,C(Ch)−

1
|Ch| ∑

j∈Ch

v f ,C(Ch\{j})] + 1
|Ch| ∑

j∈Ch\{i}
fi(N\{j}, v, CN\{j}). (6)

Proof. If the coalitional value f satisfies IEAG then for all (N, v, C) ∈ CGN , all h ∈ M and all i, j ∈ Ch,

1
|Ch| ∑

k∈Ch

[ fi(N, v, C)− fi(N\{k}, v, CN\{k})] =
1

|Ch| ∑
k∈Ch

[ f j(N, v, C)− f j(N\{k}, v, CN\{k})].

Fixing i and summing over j ∈ Ch, we have

|Ch| fi(N, v, C)− 1
|Ch| ∑

j∈Ch

∑
k∈Ch

fi(N\{k}, v, CN\{k})

=v f ,C(Ch)−
1

|Ch| ∑
j∈Ch

∑
k∈Ch

fj(N\{k}, v, CN\{k}).

i.e.,

|Ch| fi(N, v, C)− ∑
k∈Ch\{i}

fi(N\{k}, v, CN\{k}) = v f ,C(Ch)−
1

|Ch| ∑
k∈Ch

v f ,C(Ch\{k}).

It remains to prove the counterpart,

1
|Ch| ∑

k∈Ch

[ fi(N, v, C)− fi(N\{k}, v, CN\{k})]

= fi(N, v, C)− 1
|Ch| ∑

k∈Ch\{i}
fi(N\{k}, v, CN\{k})

=
1

|Ch|
[v f ,C(Ch)−

1
|Ch| ∑

l∈Ch

v f ,C(Ch\{l})] + 1
|Ch| ∑

l∈Ch\{i}
fi(N\{l}, v, CN\{l})

− 1
|Ch| ∑

k∈Ch\{i}
fi(N\{k}, v, CN\{k})

=
1

|Ch|
[v f ,C(Ch)−

1
|Ch| ∑

l∈Ch

v f ,C(Ch\{l})]

=
1

|Ch|
[v f ,C(Ch)−

1
|Ch| ∑

l∈Ch

v f ,C(Ch\{l})] + 1
|Ch| ∑

l∈Ch\{j}
f j(N\{l}, v, CN\{l})

− 1
|Ch| ∑

k∈Ch\{j}
f j(N\{k}, v, CN\{k})

= f j(N, v, C)− 1
|Ch| ∑

k∈Ch\{j}
f j(N\{k}, v, CN\{k}).

Accordingly, we have following corollaries.

Corollary 1. A coalitional value f satisfies IQBC if and only if it satisfies IEAG.

Corollary 2. A coalitional value f satisfies IEAG if and only if for all (N, v, C) ∈ CGN and all i ∈ Ch with
Ch ∈ C, fi(N, v, C) = Soli(Ch, v f ,C).

Now, we introduce some properties that will be used in the characterizations of the
Shapley–Solidarity value.

9
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A coalitional value f on CGN satisfies:

• Efficiency (EFF): if for all (N, v, C) ∈ CGN , ∑i∈N fi(N, v, C) = v(N).
• Additivity (ADD): if for any (N, v1, C), (N, v2, C) ∈ CGN and i ∈ N, fi(N, v1 + v2, C) =

fi(N, v1, C) + fi(N, v2, C) where (v1 + v2)(S) = v1(S) + v2(S) for any S ⊆ N.
• Coalitional Symmetry (CSY): if for all (N, v, C) ∈ CGN and all symmetry coalitions Ch, Cr ∈ C,

∑i∈Ch
fi(N, v, C) = ∑i∈Cr fi(N, v, C), where Ch and Cr are symmetry if v(Ch ∪ (

⋃
k∈T Ck)) =

v(Cr ∪ (
⋃

k∈T Ck)) for all T ⊆ M\{h, r}.
• Coalitional Strong Marginality (CSM): if for all (N, v, C), (N, v′, C) ∈ CGN , v(S ∪ Ch)− v(S) ≥

v′(S ∪ Ch)− v′(S) for all S ∈ N\Ch, then ∑i∈Ch
fi(N, v, C) ≥ ∑i∈Ch

fi(N, v′, C).

• Null Union (NU): if for all (N, v, C) ∈ CGN and Ch ∈ C, Ch is a null union, then ∑i∈Ch
fi(N, v, C) =

0, where Ch is a null union if v(Ch ∪ (
⋃

k∈T Ck)) = v(
⋃

k∈T Ck) for all T ⊆ M\{h}.

Lorenzo-Freire [26] introduced the following proposition.

Proposition 4. For all Ch ∈ C, if a coalitional value f satisfies EFF, CSY and CSM, then ∑i∈Ch
fi(N, v, C) =

Shh(M, vC).

Therefore, we have the following characterizations of the Shapley-Solidarity value.

Theorem 1.

(a) The Shapley–Solidarity value is the only coalitional value that satisfies EFF, IQBC/IEAG, CSY, and CSM.
(b) The Shapley-Solidarity value is the only coalitional value that satisfies EFF, IQBC/IEAG, ADD, CSY,

and NU.

Proof. Because the property of IQBC and IEAG are equivalent, we only consider IEAG in the
following proof.

(a) We first check that the Shapley–Solidarity value satisfies these properties. Calvo and
Gutiérrez [24] have already proved the Shapley-Solidarity value satisfies EFF and IEAG. Because the
Shapley-Solidarity value satisfies quotient game property i.e., ∑i∈Ch

SSi(N, v, C) = Shh(M, vC), and the
Shapley value satisfies symmetry and strong marginality, the Shapley–Solidarity value satisfies CSY
and CSM.

Next, we will prove these properties can identify the Shapley-Solidarity value uniquely. Suppose
the coalitional value f satisfies EFF, IEAG, CSY, and CSM. From former propositions, we have proved
that if a coalitional value f satisfies IEAG, then for all i ∈ Ch and Ch ∈ C we have fi(N, v, C) =

Soli(Ch, v f ,C), where v f ,C(T) = ∑i∈T fi((N\{Ch}) ∪ T, v, (C\{Ch}) ∪ T), T ⊆ Ch.
By Proposition 4, if f satisfies EFF, CSY, and CSM, then for all Ch ∈ C

∑
i∈Ch

fi(N, v, C) = Shh(M, vC).

Thus,
v f ,C(T) = ∑

i∈T
fi((N\{Ch}) ∪ T, v, (C\{Ch}) ∪ T) = Shh(M, vC(N\Ch)∪T

).

From the definition of the Shapley–Solidarity value (1), we have f (N, v, C) = SSi(N, v, C).
(b) Because ADD and NU can imply CSM [26], the proof of this part is similar to the proof of (a),

and we omit it.

Lemma 1. Note that Calvo [24] characterized the Shapley–Solidarity value by EFF, IEAG and CBC, where CBC
is coalitional balanced contributions property which is shown as follows.

10
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Coalitional balanced contributions (CBC): for all (N, v, C) ∈ CG and all Ci, Cj ∈ C,

∑
α∈Ci

fα(N, v, C)− ∑
α∈Ci

fα(N\{Cj}, v, C\{Cj})

= ∑
α∈Cj

fα(N, v, C)− ∑
α∈Cj

fα(N\{Ci}, v, C\{Ci}). (7)

Obviously, the CBC property is extended from the balanced contributions in Myerson [4]. It states that, for
all Ci, Cj ∈ C, the influence of the members in Ci who leave the grand coalition on Cj is the same as the impact
of the members’s departure in Ci on Cj.

4. The Potential Function for the Shapley-Solidarity Value

Hart and Mas-Colell [28] characterized the Shapley value by means of consistency property and
standard for two-person games. An interesting concept, called potential function, is used for the
characterization.

A function P : G → R with P(∅, v) = 0 is called a potential function if it satisfies for any
(N, v) ∈ G,

∑
i∈N

DiP(N, v) = v(N), (8)

where DiP(N, v) represents the marginal contributions of a player i ∈ N with respect to the potential
function, which is defined by

DiP(N, v) = P(N, v)− P(N\{i}, v). (9)

In a similar way, Xu et al. [31] defined AiP∗(N, v) = DiP(N, v) + 1
n v(N\{i}) as the adjusted

marginal contribution for player i and they obtained an A-potential function. They also proved that
the vector of the adjusted marginal contributions coincides with the Solidarity value.

For games with coalition structure, Winter [29] first extended the concept of potential function.
Our potential function for the Shapley–Solidarity value is inspired by the potential function of the
Owen value introduced in Winter [29] and use the similar way of adjustment in Xu et al. [31].

Now, we define a potential function for games with coalition structure.

Definition 1. Let P be a function defined on CG s.t. P(N, v, C) ∈ Rm, where C = (C1, C2, · · · , Cm) and
Pj(N, v, C) = 0 when Cj ∩ N = ∅. The marginal contribution of player i ∈ Cj to (N, v, C) is

DiP(N, v, C) = Pj(N, v, C)− Pj(N\{i}, v, CN\{i}). (10)

The function P is said to be an adjusted potential function for games with coalition structure if for all
S ∈ C,

∑
i∈S

[DiP(N, v, C) +
1
|S|D[S\{i}]P([C|S\{i}], vC, [C|S\{i}])] = D[S]P([C], vC, [C]), (11)

and

∑
i∈N

[DiP(N, v, C) +
1
|S|D[S\{i}]P([C|S\{i}], vC, [C|S\{i}])] = v(N). (12)

Denote, by [S], the coalition S ∈ C when considered as a player, and the set of players in vC by [C]. C|S\{i}
is the coalition structure that player i is deleted from S.

11
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For simplicity, we denote DiP(N, v, C) + 1
|S| D

[S\{i}]P([C|S\{i}], vC, [C|S\{i}]) the AiP(N, v, C) and
call it the adjusted marginal contributions of player i in the rest of the paper.

Expression (11) says that the sum of the adjusted marginal contributions of players i ∈ S ∈ C is the
marginal contribution of the player [S] to the ([C], vC, [C]), where the player set is C = (C1, C2, · · · , Cm),
the game is vC. So, combining with (12), P(∅, v, C) = 0 and the definition of potential function for the
Shapley value in Hart and Mas-Colell [28], we have

D[S]P([C], vC, [C]) = Sh[S]([C], vC), for all S ∈ C. (13)

Theorem 2. There exists a unique adjusted potential function P for games with coalition structure. Moreover,
for all (N, v, C) ∈ CG and i ∈ N, AiP(N, v, C) = SSi(N, v, C).

Proof. First, we show uniqueness. for any (N, v, C) ∈ CG and S ∈ C, from (10) and (11), we have
following recursive form of the potential function P.

P(N, v, C) =
1
|S| [D

[S]P([C], vC, [C])− 1
|S| ∑

i∈S
D[S\{i}]P([C|S\{i}], vC, [C|S\{i}])

+ ∑
i∈S

P(N\{i}, v, CN\{i})].

Together with P(∅, v, ∅) = 0, P(N, v, C) can be obtained by recursion and can be
uniquely determined.

Now, we show that for all (N, v, C) ∈ CG and i ∈ N, AiP(N, v, C) = SSi(N, v, C). We know
that the Shapley–Solidarity value is characterized by EFF, IQBC, and CBC from the Corollary 1 and
Calvo [24]. If we can prove that AiP(N, v, C) satisfies these three properties, we can claim that
AiP(N, v, C) coincides with the Shapley–Solidarity value.

The EFF is obvious from the definition of the potential function. For any game with coalition
structure (N, v, C) ∈ CG, h ∈ M, and i, j ∈ Ch, if we want to prove that AiP(N, v, C) satisfies IQBC,
we should prove the following equation.

AiP(N, v, C)− AiP(N\{j}, v, CN\{j}) +
vAP,C(Ch\{j})

|Ch|

=AjP(N, v, C)− AjP(N\{i}, v, CN\{i}) +
vAP,C(Ch\{i})

|Ch|
,

where AP denotes AP(N, v, C). From the definition of the game (Ch, v f ,C) (4) and (11), we have
vAP,C(Ch\{j}) = D[Ch\{j}]P([C|Ch\{j}], vC, [C|Ch\{j}]). Thus,

AiP(N, v, C)− AiP(N\{j}, v, CN\{j}) +
vAP,C(Ch\{j})

|Ch|

=DiP(N, v, C) +
1

|Ch|
D[Ch\{i}]P([C|Ch\{i}], vC, [C|Ch\{i}])

− DiP(N\{j}, v, CN\{j})−
1

|Ch| − 1
D[Ch\{i,j}]P([C|Ch\{i,j}], vC, [C|Ch\{i,j}])

+
1

|Ch|
D[Ch\{j}]P([C|Ch\{j}], vC, [C|Ch\{j}])

=P(N, v, C)− P(N\{i}, v, CN\{i}) +
1

|Ch|
D[Ch\{i}]P([C|Ch\{i}], vC, [C|Ch\{i}])

− P(N\{j}, v, CN\{j}) + P(N\{i, j}, v, CN\{i,j})

− 1
|Ch| − 1

D[Ch\{i,j}]P([C|Ch\{i,j}], vC, [C|Ch\{i,j}])

12
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+
1

|Ch|
D[Ch\{j}]P([C|Ch\{j}], vC, [C|Ch\{j}])

=DjP(N, v, C) +
1

|Ch|
D[Ch\{i}]P([C|Ch\{i}], vC, [C|Ch\{i}])

− DjP(N\{i}, v, CN\{i})−
1

|Ch| − 1
D[Ch\{i,j}]P([C|Ch\{i,j}], vC, [C|Ch\{i,j}])

+
1

|Ch|
D[Ch\{j}]P([C|Ch\{j}], vC, [C|Ch\{j}])

=AjP(N, v, C)− AjP(N\{i}, v, CN\{i}) +
vAP,C(Ch\{i})

|Ch|
.

It verifies that AiP(N, v, C) satisfies IQBC.
It remains to prove that AiP(N, v, C) satisfies CBC. From (13), we know that ∑i∈S AiP(N, v, C) =

ShS([C], vC). Because the Shapley value satisfies balanced contributions [4]. For any Ci, Cj ∈ C,
we have

ShCk1 ([C], vC)− ShCk1 ([C]\{Ck2}, vC) = ShCk2 ([C], vC)− ShCk2 ([C]\{Ck1}, vC).

Subsequently, we have

DCk1 P([C], vC, [C])− DCk1 P([C]\{Ck2}, vC, [C])

=DCk2 P([C], vC, [C])− DCk2 P([C]\{Ck1}, vC, [C]).

i.e.,

∑
α∈Ck1

AαP(N, v, C)− ∑
α∈Ck1

AαP(N\{Ck2}, v, C\{Ck2})

= ∑
β∈Ck2

AβP(N, v, C)− ∑
β∈Ck2

AβP(N\{Ck1}, v, C\{Ck1}).

Thus, the Shapley-Solidarity value satisfies CBC. And we have that AiP(N, v, C) =

SSi(N, v, C).

5. The Coalitional Bidding Mechanism for the Shapley-Solidarity Value

Mechanism design can be seen as the part of Nash program to bridge the gap between cooperative
and non-cooperative game theory. It is a significant approach to characterize the rationality of solutions
for cooperative games, and it has been widely studied in the field of cooperative games. Pérez-Castrillo
and Wettstein [33] firstly proposed a bidding mechanism to give rise to the Shapley value as the
result of equilibrium behavior. Our coalitional bidding mechanism is similar to the coalition bidding
mechanism for the Owen value [34], which is extended from the bidding mechanism for the Shapley
value [33]. Both of the smechanisms have two round and the second round is the same while the
difference between our mechanism for the Shapley–Solidarity value and the one for the Owen value
lies in the first round. We first give a new bidding mechanism for the Solidarity value, and we will
restrict the underlying game to monotonic games.

5.1. A New Bidding Mechanism for the Solidarity Value

Our bidding mechanism is inspired from Pérez-Castrillo and Wettestein’s for the Shapley value.
The Solidarity value and Shapley value are the excepted values with respect to different considerations
of the marginal contributions. The Shapley value only takes care of every individual himself, and it uses
the pure marginal contributions, while the Solidarity value uses the average marginal contributions
which behaves as the property of solidarity. When a player joins or leaves a coalition, he will share their
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gains or losses with other players in the coalition rather than himself only. In our bidding mechanism,
we will consider the property of solidarity in the Solidarity value.

Now, we describe the bidding mechanism for the Solidarity value. When there is only one player
i in the game, the player i receives v({i}). Suppose that the rules of the bidding mechanism is known
when there are at most n − 1 players. The procedure of the bidding mechanism for a set of players
N = {1, 2, ..., n} is as follows.

• Stage 1: the players bid for each other for electing a proposer, i.e., each player i ∈ N makes bid

bi
j ∈ R for every j ∈ N\{i}. Let Bi = ∑j∈N\{i} bi

j − ∑j∈N\{i} bj
i denote the net bid of player i ∈ N.

Find a player α be the proposer whose net bid is max among all the players. If there is more than
one maximizer, then randomly choose a player from the maximizers.

• Stage 2: the proposer α makes an offer xα
j ∈ R to every player j ∈ N\{α}.

• Stage 3: all other players, except proposer sequentially accept or reject the offer. If all other
players agree the proposer, we say the offer is accepted otherwise the offer is rejected.
If the offer is accepted, player j ∈ N\{α} receives xα

j , and the proposer receives v(N) −
∑j∈N\{α} xα

j . Consider the bids in stage 1, the player j ∈ N\{α} totally receives xα
j + bα

j and
the proposer eventually receives v(N)− ∑j∈N\{α}(bα

j + xα
j ).

If the offer is rejected, a player β randomly chosen from N with probability 1
n leaves the game

and gets nothing. Note that the proposer and other players have same probability to be player β.
Other players proceed with the game in same rules with player set N\{β}. In this case, when we
consider the bids in stage 1, every player j other than proposer α gets bα

j and proposer α loses
∑j∈N\{α} bα

j . The randomly chosen player β will be excluded in the rest of the games and his bid
in stage 1 will not be changed.

Theorem 3. For any monotonic game (N, v) ∈ G, the above mechanism implements the Solidarity value in
any subgame perfect equilibrium (SPE).

Proof. We prove this result by induction on the number of players. Obviously, the theorem is true
if there is only one player in the game. We assume that it holds for all player set number m ≤ n − 1.
Now, we show that it is true for m = n.

Firstly, we construct a subgame perfect equilibrium whose outcome is the Solidarity value of
game (N, v). Consider the following strategy profiles.

At stage 1, each player i ∈ N makes bids bi
j = Solj(N, v)− 1

n ∑k∈N\{j} Solj(N\{k}, v) to every
player j ∈ N\{i}.

At stage 2, the proposer α offers xα
j = 1

n ∑k∈N\{j} Solj(N\{k}, v).

At stage 3, each player j ∈ N\{α} will accept the offer if xα
j ≥ 1

n ∑k∈N\{j} Solj(N\{k}, v),
otherwise the offer is rejected.

It is easy to check that every player other than the proposer obtains their Solidarity value. Because
the Solidarity value is an efficient solution, the proposer also gets his Solidarity value.

In these strategy profiles, the net bids Bi of every player i ∈ N is equal to zero by the equal
averaged gains property of the Solidarity value.

Bi = ∑
j∈N\{i}

(bi
j − bj

i)

= ∑
j∈N\{i}

[Solj(N, v)− 1
n ∑

k∈N\{j}
Solj(N\{k}, v)− (Soli(N, v)− 1

n ∑
k∈N\{i}

Soli(N\{k}, v))]

=0.

Now, we prove that the above strategies constitute a SPE. At stage 3, in the case of rejection,
one of the players, including the proposer, is randomly chosen and he/she will be excluded in
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the next round. The players who are left in the game will play the subgame according to the
same rules. Subsequently, we can obtain the Solidarity value as the outcome of those games by
the induction hypothesis. If any player rejects the proposal, then the expected payoff for any
player i ∈ N in the subgame is 1

n ∑k∈N\{i} Soli(N\{k}, v). Thus, each player i ∈ N\{α} accepts
any offer xα

i ≥ 1
n ∑k∈N\{i} Soli(N\{k}, v), and rejects any offer xα

i < 1
n ∑k∈N\{i} Soli(N\{k}, v).

Therefore, the strategies are best responses at stage 3.
At stage 2, the strategies are also best responses. According to these strategies, the payoff of α

starting from stage 2 is

v(N)− ∑
j∈N\{α}

xα
j =v(N)− ∑

j∈N\{α}

1
n ∑

k∈N\{j}
Solj(N\{k}, v)

=v(N)− 1
n ∑

k∈N
v(N\{k}) + 1

n ∑
k∈N\{α}

Solα(N\{k}, v)

≥ 1
n ∑

k∈N\{α}
Solα(N\{k}, v), (14)

where the last inequation holds from the fact that the game is a monotonic game. If he offers some
player j the payoff xα

j less than 1
n ∑k∈N\{j} Solj(N\{k}, v), the proposal is rejected and the expected

payoff he will obtain is 1
n ∑k∈N\{α} Solα(N\{k}, v). If he offers some player j the value xα

j higher than
1
n ∑k∈N\{j} Solj(N\{k}, v), the proposal is accepted, but his payoff is strictly worse off.

Now, consider the strategies at stage 1. Obviously, if a player increases his total bid, then he will
be chosen as the proposer, but his payoff will decrease. If a player decreases his total bid, then his
payoff is invariable, since other players will be chosen as the proposer. Thus, the strategy is the best
response at stage 1. Hence, the above strategies constitute a SPE.

The proof of any subgame perfect equilibrium yields the Solidarity value needs five claims.
Claim a. In any SPE, at stage 3, each player j ∈ N\{α} accepts any offer if xα

j > 1
n ∑k∈N\{j}

Solj(N\{k}, v). The offer is rejected if xα
j < 1

n ∑k∈N\{j} Solj(N\{k}, v) for at least some j ∈ N\{α}.
If the proposal of player α is rejected, the excepted payoff of a player j �= α is

1
n ∑k∈N\{j} Solj(N\{k}, v) by the induction. Subsequently, the optimal strategy of the player j is
that he accepts any offer higher than 1

n ∑k∈N\{j} Solj(N\{k}, v) and rejects any offer lower than
1
n ∑k∈N\{j} Solj(N\{k}, v).

Claim b. If there is a player i ∈ N, such that v(N) > v(N\{i}), then the SPE strategies starting
from stage 2 are as follows. At stage 2, the proposer α offers xα

j = 1
n ∑k∈N Solj(N\{k}, v) to all

j ∈ N\{α}, and at stage 3, j ∈ N\{α} accepts any offer xα
j ≥ 1

n ∑k∈N Solj(N\{k}, v) and rejects the
offer otherwise. If v(N) = v(N\{k}) for all k ∈ N, there exist the SPE strategies besides the previous
SPE strategies. At stage 2, the proposer α offers xα

j ≤ 1
n ∑k∈N Solj(N\{k}, v) to all j ∈ N\{α}, and at

stage 3, j ∈ N\{α} rejects any offer xα
j ≤ 1

n ∑k∈N Solj(N\{k}, v) and accepts the offer otherwise.
We prove that the previous strategies constitute a SPE. Suppose that there is a player

i ∈ N, such that v(N) > v(N\{i}). In the case of rejection, player α will expectantly
receive 1

n ∑k∈N\{α} Solα(N\{k}, v). Let 0 < ε < v(N) − ∑j∈N\{α}
1
n ∑k∈N\{j} Solj(N\{k}, v) −

1
n ∑k∈N\{α} Solα(N\{k}, v). The ε is definitely exists from Equation (14) and v(N) > v(N\{i}).
The player α can improve his payoff by offering any player j ∈ N\{α} with 1

n ∑k∈N\{j} Solj(N\{k}, v)+
ε

n−1 . The offer will be accepted by claim a. Thus, in any SPE the offer of player α must be accepted.
This implies that xα

j ≥ 1
n ∑k∈N\{j} Solj(N\{k}, v) for all j ∈ N\{α}. Player α still can improve his

payoff by offering 1
n ∑k∈N\{j} Solj(N\{k}, v) + ε

n−1 to player j ∈ N\{α} with a smaller ε. These offers
are accepted and α’s payoff increases. Hence, xα

j = 1
n ∑k∈N\{j} Solj(N\{k}, v) for all i �= α at any SPE

and, at stage 3, every agent i �= α accepts any offer if xα
j ≥ 1

n ∑k∈N\{j} Solj(N\{k}, v).
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If v(N) = v(N\{k}) for all k ∈ N, the proposer α offers at least 1
n ∑k∈N\{j} Solj(N\{k}, v) to every

player j �= α, so that the offer can be accepted by the same argument in the previous case. The proposer
expectantly receive 1

n ∑k∈N\{α} Solα(N\{k}, v) in the case of rejection, which is identical to the payoff
in the case of acceptation. Therefore, any offer that leads to a rejection is also a SPE.

Claim c. In any SPE, Bi = Bj = 0 for all i, j ∈ N.
Claim d. In any SPE, the payoff of every player is invariable whoever is chosen as the proposer.
The proofs of the above two claims are similar to the proof of Theorem 1 in Pérez-Castrillo and

Wettstein [33], and we omit them.
Claim e. In any SPE, the final payoff of every player coincides with the Solidarity value.
If a player i is the proposer, then the his payoff is xi

i = v(N)− ∑j �=i
1
n ∑k∈N\{j} Solj(N\{k}, v)−

∑j �=i bi
j. If a player j �= i is the proposer, the payoff of player i is xj

i =
1
n ∑k∈N\{i} Soli(N\{k}, v) + bj

i .
Thus, we have

∑
j∈N

xj
i =[v(N)− ∑

j �=i

1
n ∑

k∈N\{j}
Solj(N\{k}, v)− ∑

j �=i
bi

j] + ∑
j �=i

[
1
n ∑

k∈N\{i}
Soli(N\{k}, v) + bj

i ]

=[v(N)− ∑
j �=i

1
n ∑

k∈N\{j}
Solj(N\{k}, v)] + ∑

j �=i
[
1
n ∑

k∈N\{i}
Soli(N\{k}, v)]− Bi

=v(N)− ∑
j∈N

1
n ∑

k∈N\{j}
Solj(N\{k}, v) + ∑

j∈N
[
1
n ∑

k∈N\{i}
Soli(N\{k}, v)]

=v(N)− 1
n ∑

k∈N
v(N\{k}) + ∑

k∈N\{i}
Soli(N\{k}, v)

=nSoli(N, v) (15)

where the last equality holds by the recursive formula of the Solidarity value [42]. By claim (d), we have
xj

i = xk
i for all j, k. Thus xj

i = Soli(N, v) for all i ∈ N.

Remark 1. Note that Xu et al. [31] also gave a bidding mechanism for the Solidarity value. When comparing our
bidding mechanism with the work of Xu et al. [31], there is no difference between the two bidding mechanisms
at Stage 1 and Stage 2, but an exceptional stage (Stage 0) is considered at the beginning of the mechanism
in [31], where ai =

1
s v(S\{i}) is distributed for player i that is in the active player set S. They call ai as the

compensation for player i from an ethical point of view. The main difference is at Stage 3. When the offer by
proposer is rejected, a player β is randomly chosen from N with probability 1

n leaving the grand coalition in our
bidding mechanism, while the rejected proposer leaves the grand coalition in the mechanism of Xu et al. [31].

Remark 2. When comparing our bidding mechanism with Pérez-Castrillo and Wettstein’s mechanism [33] for
the Shapley value, there is only difference at Stage 3. In Pérez-Castrillo and Wettstein’s mechanism, if the offer is
rejected, then the proposer α will leave from the grand coalition N and take away his individual worth v({α}).
It means that the proposer himself takes the full responsibility when his proposal is rejected by others. In our
mechanism for the Solidarity value, if the offer is rejected, a player β is randomly chosen from all players with
probability 1

n leaving the grand coalition N and gets nothing. It indicates the preference of egalitarianism
from the property of solidarity, which is, all players (not only the proposer or any rejector) need to take the
responsibility for the breakdown of the coalition when the proposal is rejected in our mechanism.

5.2. The Coalitional Bidding Mechanism for the Shapley-Solidarity Value

Vidal-Puga and Begantiños [34] extended the bidding mechanism for the Shapley value introduced
in Pérez-Castrillo and Wettestein [33] to games with coalition structure. They used a two round
coalitional bidding mechanism, where, at round 1, players in the same union play the bidding
mechanism for obtaining the resources of the union and, at round 2, the players who have obtained
the resources in round 1 play the bidding mechanism with the obtained resources.
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In the former section, we have already proposed a new non-cooperative implementation of
the Solidarity value. Next, we will use the coalitional bidding mechanism that was introduced in
Vidal-Puga and Begantiños to implement the Shapley-Solidarity value. Considering the relationship
between the Owen value and the Shapley-Solidarity value, we just need to change the first round of
the coalitional bidding mechanism in the original implementation for the Owen value.

We will describe our bidding mechanism recursively. If there is only one player i, the player
obtains v(i). Suppose that the mechanism is played at most n − 1 players. Then, for N = {1, · · · , n}
and C = {C1, · · · , Cm}, the procedure of the bidding mechanism is as follows.

Round 1. At this round, the players in any union Ch ∈ C play the bidding mechanism for
obtaining the resources of Ch. If there is only one player i in Ch, this player has his resources. Assume
the mechanism played by at most |Ch| − 1 players. For |Ch| the process is as follows.

• Stage 1. Every player i ∈ Ch makes bids bi
j ∈ R for every j ∈ Ch\{i}. The net bid Bi =

∑j∈Ch\{i} bi
j − ∑j∈Ch\{i} bj

i . Let αh = argmaxi{Bi}. If the maximizer is not unique, randomly
choosing any player from them.

• Stage 2. The proposer αh makes an offer xαh
j to every player i ∈ Ch\{αh}.

• Stage 3. The players in Ch\{αh} sequentially decides whether or not to accept the offer. If all
players accept the offer, then the offer is accepted, otherwise the offer is rejected.

Every union in C plays the bidding mechanism sequentially in the order C1, · · · , Cm until we find
Cl0 and αl0 such that the offer of αl0 is rejected or for any Cl ∈ C the offer of αl is accepted.

If the offer of αl0 is rejected by some player in Cl0 , then randomly choose one player from coalition
Cl0 . Suppose that the player βl0 is chosen then he leaves the game with nothing. Consider the bid in

the first stage, all he acquires from the game is b
αl0
βl0

if he is not the proposer otherwise he will lose

∑j∈Cl0
\{αl0

} b
αl0
j . The left players play the subgame (N′, v′, C′) with same rules, where N′ = N\{βl0},

v′ = v−βl0
and C′ = C−βl0

.
If for any Cl ∈ C the offer of αl is accepted, then the player αl becomes the “representative” of

the coalition Cl . The final payoff of the players other than the proposer in the coalition Cl will get the
bid in stage 1 and the offer in stage 3 that is given from the proposer. Accordingly, the payoff of the
proposer in this round is p1

αl
= −∑i∈Cl\{αl}(b

αl
i + xαl

i ). He will go to round 2 with the resources of Cl
and the other players leave the game.

When the first round is finished, any coalition Cl ∈ C have one representative rl . We denote Cr
l

the set of players whose resources are obtained by representative rl . The set of the players C\Cr
l is the

players that have been removed in Cl .
Round 2. All of representatives Nr = {r1, · · · , rm} play the bidding mechanism introduced by

Pérez-Castrillo and Wettstein [33] according to the game (Nr, vr), which is defined by for any S ⊂ Nr,
vr(S) = v(∪rl∈SCr

l ). For any rl ∈ Nr, the payoff obtained by rl at round 2 is denoted by p2
rl

.
The bidding mechanism for the Shapley value in Pérez-Castrillo and Wettstein needs that the

underlying game is zero monotonic game i.e., the game (Nr, vr) should be a zero monotonic game.
Thus, the game v should be a superadditive game. In our bidding mechanism for the Solidarity value,
we restrict the underlying game to monotonic games. It is easy to check that, if a superadditive game
is non-negative game, then the game is a monotonic game. Therefore, we will restrict the underlying
game for implementing the Shapley–Solidarity value to the superadditive game where every coalition
has non-negative worth.

Theorem 4. Given any game (N, v, C), if (N, v, C) is superadditive and non-negative, then above coalitional
bidding mechanism implements the Shapley–Solidarity value.

Proof. The result holds when there is only one player. Suppose the result holds for at most n − 1
players. Let N = {1, 2, ..., n}, and we consider the following strategies.
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Round 1. For any coalition Ch ∈ C, we describe their strategies as follows.

• Stage 1. Every player i ∈ Ch makes bids bi
j = SSj(N, v, C)− 1

|Ch | ∑k∈Ch
SSj(N\{k}, v, CN\{k}) for

every j ∈ Ch\{i}.
• Stage 2. The proposer αh offers xαh

j = 1
|Ch | ∑k∈Ch

SSj(N\{k}, v, CN\{k}) to every player j ∈
Ch\{αh}.

• Stage 3. Any player j ∈ Ch\{αh} accepts the offer of αh if and only if xαh
j ≥

1
|Ch | ∑k∈Ch

SSj(N\{k}, v, CN\{k}).

Round 2. The representatives play the bidding mechanism in terms of the strategies described in
Pérez-Castrillo and Wettstein [33].

Following the similar proof procedure in Theorem 2 of Vidual-Puga and Bergantiños [34], we can
prove the theorem and we will omit it.

Remark 3. Our non-cooperative implementation for the Shapley–Solidarity value is quit similar to the
implementation for the Owen value. We just change the way to punish the players when the bargaining
is broken in the first round.

6. Conclusions

Coalition structure is adopted in order to describe the situation where the players form groups
for bargaining payoffs in cooperative games. The Shapley-Solidarity value provides a way of dividing
the total payoffs among the players in a game with coalition structure. It employs the Shapley value
among the unions and the Solidarity value among the members inside each union, by considering
that the players within a union were more willing to show their solidarity and each union was more
inclined to protect its revenue. In this paper, we study the characterizations of the Shapley–Solidarity
value from both cooperative and non-cooperative aspects.

Firstly, we present two axiomatic characterizations of the Shapley-Solidarity value. We characterized
the Shapley–Solidarity value is the only coalitional value that satisfies efficiency, coalitional symmetry,
coalitional strong marginality, intracoalitional equal averaged gains (intracoalitional quasi-balanced
contributions). Additioally, the Shapley–Solidarity value is the only coalitional value that satisfies
efficiency, additivity, coalitional symmetry, null union, intracoalitional equal averaged gains
(intracoalitional quasi-balanced contributions). In the axiom system, the axiom of intracoalitional equal
averaged gains can be replaced by the axiom of intracoalitional quasi-balanced contributions for these
two properties are equivalent for a coalitional value.

Secondly, we combine the A-potential function for the Solidarity value and the potential function
for the Owen value, in order to obtain the potential function for the Shapley–Solidarity value. We prove
that there exists a unique adjusted potential function for games with coalition structure. Moreover,
for each player of a game with with coalition structure, the player’s marginal contribution of the
unique adjusted potential function coincides with its Shapley–Solidarity value.

Finally, we propose a bidding mechanism in order to implement the Solidarity value. At beginning,
we introduce a new bidding mechanism for the Solidarity value, inspiring from Pérez-Castrillo and
Wettestein’s bidding mechanism for the Shapley value. In our bidding mechanism for the Solidarity
value, if the offer is rejected, then a player is randomly chosen from all players with probability 1

n
leaving the grand coalition and gets nothing. It means that all players (not only the proposer or
any rejector) need to take the responsibility for the breakdown of the coalition when the proposal
is rejected, from the property of solidarity. This is the main difference with the Pérez-Castrillo
and Wettstein’s implementation of the Shapley value. Subsequengly, by changing the first round
of the two round mechanism in the original implementation for the Owen value, we extend the
coalitional bidding mechanism that was introduced by Vidal-Puga and Begantiños to implement the
Shapley–Solidarity value.
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and have different criteria to optimize. To construct a multicriteria Nash equilibrium the bargaining
solution is adopted. To design a multicriteria cooperative equilibrium, a modified bargaining scheme
that guarantees the fulfillment of rationality conditions is applied. The concept of dynamic stability
is adopted for dynamic multicriteria games. To stabilize the multicriteria cooperative solution
a time-consistent payoff distribution procedure is constructed. The conditions for rational behavior,
namely irrational-behavior-proofness condition and each step rational behavior condition are defined
for dynamic multicriteria games. To illustrate the presented approaches, a dynamic bi-criteria
bioresource management problem with many players is investigated.
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1. Introduction

Mathematical models involving more than one objective [1] seem more adherent to real problems.
Players often seek to achieve several goals simultaneously, which can be incomparable. These situations
are typical for game-theoretic models in economics and ecology. For example, in bioresource
management problems the players wish to maximize their exploitation rates and to minimize the
harm to the environment. The multicriteria approach allows determining an optimal behavior in
such situations.

In this paper, we consider a dynamic, discrete-time, game model where the players use a common
resource and have different criteria to optimize. First, we construct a multicriteria Nash equilibrium
applying the bargaining concept (via Nash products [2,3]). Then, we find a multicriteria cooperative
equilibrium as a solution of modified bargaining scheme with the multicriteria Nash equilibrium
payoffs playing the role of status quo points [4,5]. The presented approach guarantees that the
cooperative payoffs of the players are greater than or equal to the multicriteria Nash payoffs.

As is well known, in ecological problems, cooperative behavior leads to a more sparing harvesting
rate. The special importance of cooperative behavior for “common resource” exploitation was stressed
by Nobel prize winer Ostrom E. [6]. The contract that satisfies the dynamic stability (time-consistency)
condition [7,8] is concluded to maintain cooperative behavior. Haurie A. [9] raised the problem of
instability of the Nash bargaining solution. The concept of time-consistency (dynamic stability) was
introduced by Petrosyan L.A. [7]. Time consistency involves the property that, as the cooperation
develops, participants are guided by the same optimality principle at each time moment and hence do
not have incentives to deviate from cooperation. Petrosyan L.A. and Danilov N.N. [10] have developed
the notion of time-consistent imputation distribution procedure.

Mathematics 2020, 8, 1485; doi:10.3390/math8091485 www.mdpi.com/journal/mathematics21



Mathematics 2020, 8, 1485

An important problem arising in applications is to maintain cooperative behavior.
Cooperative behavior and the dynamic stability of cooperative solutions were investigated in a
number of papers; see [8,11–15]. The related works that study the cooperation processes in biological,
economical and social sciences are [16,17]. An extensive form of multicriteria multistage game and
the realization of the IDP-related concepts had been studied in [18,19]. Here, we adopt the concept of
dynamic stability for dynamic multicriteria games and construct the payoff distribution procedure.

Still following the cooperative agreement there can be some irrational players who can break
out the cooperation. To indemnify players against the loss of profits in this case Yeung D.W.K. [20]
introduced the irrational-behavior-proofness condition. In the papers [21,22] the each step rational
behavior condition, which is stronger than the Yeung’s condition and is easier to verify, was presented.
We adopt both conditions for rational behavior for dynamic multicriteria games.

To illustrate the presented approaches, a dynamic bi-criteria bioresource management problem
with many players is investigated.

The remainder of the paper has the following structure. Section 2 describes the noncooperative
and cooperative solution concepts for a finite horizon multicriteria dynamic game with many players
in discrete time. The time-consistent imputation distribution procedure for dynamic multicriteria
game is presented in Section 2.3. The conditions for rational behavior are constructed in Section 2.4.
A bi-criteria discrete-time dynamic bioresource management model (harvesting problem) with a finite
planning horizon is treated in Section 3. Finally, Section 4 provides the basic results and their discussion.

2. Dynamic Multicriteria Game with Finite Horizon

Consider a multicriteria dynamic game with finite horizon in discrete time. Let N = {1, . . . , n}
players exploit a common resource for k different goals. The state dynamics is in the form

xt+1 = f (xt, u1t, . . . , unt) , x0 = x, (1)

where xt ≥ 0 denotes the quantity of resource at a time t ≥ 0, f (xt, u1t, . . . , unt) is the natural growth
function, and uit ∈ Ui = [0, ∞) specifies the strategy (resource exploitation rate) of player i at a time
t ≥ 0, i ∈ N.

Denote ut = (u1t, . . . , unt). Each player has k goals to optimize. The vector payoff functions of
players on a finite planning horizon [0, m] have the form

Ji =

⎛
⎜⎜⎜⎜⎝

J1
i =

m
∑

t=0
δtg1

i (ut)

. . .

Jk
i =

m
∑

t=0
δtgk

i (ut)

⎞
⎟⎟⎟⎟⎠ , i ∈ N, (2)

where gj
i(ut) ≥ 0 are the instantaneous payoff functions, j = 1, . . . , k, i ∈ N, δ ∈ (0, 1) denotes the

discount factor.

2.1. Multicriteria Nash Equilibrium

We design the noncooperative behavior in dynamic multicriteria game applying the Nash
bargaining products [2,3]. Therefore, we begin with the construction of guaranteed payoffs which play
the role of status quo points.

The possible concepts to determine the guaranteed payoffs for the game with two players were
presented in [2]. As it was demonstrated, the case in which the guaranteed payoffs are determined as
the Nash equilibrium solutions is the best for the ecological system and also profitable for the players.
Therefore, for the multicriteria game with n players we adopt this concept of guaranteed payoff points
construction. Namely

G1
1, . . . , G1

n — are the Nash equilibrium payoffs in the dynamic game 〈x, N, {Ui}n
i=1, {J1

i }n
i=1〉,

22



Mathematics 2020, 8, 1485

. . .
Gk

1, . . . , Gk
n — are the Nash equilibrium payoffs in the dynamic game 〈x, N, {Ui}n

i=1, {Jk
i }n

i=1〉,
where the state dynamics is described by (1). Please note that if the Nash equilibrium is not unique,
one of the solutions is taken as guaranteed payoff points.

To construct multicriteria payoff functions we adopt the Nash products. The role of the status
quo points belongs to the guaranteed payoffs of the players:

H1(u1t, . . . , unt) = (J1
1 (u1t, . . . , unt)− G1

1) · . . . · (Jk
1(u1t, . . . , unt)− Gk

1),

. . .

Hn(u1t, . . . , unt) = (J1
n(u1t, . . . , unt)− G1

n) · . . . · (Jk
n(u1t, . . . , unt)− Gk

n).

Definition 1. A strategy profile uN
t = (uN

1t, . . . , uN
nt) is a multicriteria Nash equilibrium [2] of problem (1),

(2) if
Hi(uN

t ) ≥ Hi(uN
1t, . . . , uN

i−1 t, uit, uN
i+1 t, . . . , uN

nt) ∀uit ∈ Ui , i ∈ N. (3)

As it is demonstrated in Appendix A, the presented approach guarantees that the noncooperative
payoffs of the players are greater than or equal to the guaranteed ones (for bi-criteria game for
simplicity). Hence, the scheme for noncooperative behavior construction is meaningful since
multicriteria payoff functions are nonnegative.

2.2. Multicriteria Cooperative Equilibrium

The cooperative equilibrium was obtained as a solution of the Nash bargaining scheme in [23,24].
For the multicriteria dynamic games, the Nash product with the sums of players’ payoffs for the
criteria in which the sums of their noncooperative payoffs act as the status quo points was applied
in [3,4]. In [5], a new approach to determine cooperative behavior in dynamic multicriteria game with
asymmetric players was presented. More specifically, the cooperative strategies and payoffs of players
are determined from the modified bargaining solution for the entire game horizon. The status quo
points are the noncooperative payoffs obtained by the players using the multicriteria Nash equilibrium
strategies uN

t :

JN
1 =

⎛
⎜⎜⎜⎜⎝

J1N
1 =

m
∑

t=0
δtg1

1(u
N
t )

. . .

JkN
1 =

m
∑

t=0
δtgk

1(u
N
t )

⎞
⎟⎟⎟⎟⎠ , . . . , JN

n =

⎛
⎜⎜⎜⎜⎝

J1N
n =

m
∑

t=0
δtg1

n(uN
t )

. . .

JkN
n =

m
∑

t=0
δtgk

n(uN
t )

⎞
⎟⎟⎟⎟⎠ . (4)

The cooperative strategies and payoffs are constructed by solving the following problem:

(V1c
1 − J1N

1 ) · . . . · (Vkc
1 − JkN

1 ) + . . . + (V1c
n − J1N

n ) · . . . · (Vkc
n − JkN

n ) =

= (
m

∑
t=0

δtg1
1(u

c
1t, . . . , uc

nt)− J1N
1 ) · . . . · (

m

∑
t=0

δtgk
1(u

c
1t, . . . , uc

nt)− JkN
1 ) + . . .

+(
m

∑
t=0

δtg1
n(u

c
1t, . . . , uc

nt)− J1N
n ) · . . . · (

m

∑
t=0

δtgk
n(u

c
1t, . . . , uc

nt)− JkN
n )→ max

uc
1t ,...,u

c
nt

, (5)

where J jN
i are the noncooperative payoffs given by (4), i ∈ N, j = 1, . . . , k.

Definition 2. A strategy profile uc
t = (uc

1t, . . . , uc
nt) is a rational multicriteria cooperative equilibrium [5] of

problem (1), (2) if it is the solution of problem (5).
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As was demonstrated in [5], with the presented approach, the cooperative payoffs of the players
are greater than or equal to the multicriteria Nash payoffs. Hence, the conditions of individual
rationality Vjc

i ≥ J jN
i , i = 1, . . . , n, j = 1, . . . , k are fulfilled.

2.3. Dynamic Stability of Cooperative Solution

Classically, the solution optimality principle for a cooperative game includes: (1) an agreement
on a set of cooperative controls, (2) a mechanism to distribute total payoff among the players.
In cooperative setting players seek a set of strategies that yields a Pareto optimal solution, hence they
maximize the sum of their individual payoffs. To determine the share of each player from the total
payoff, that is called the imputation, some solution concepts, such as NM-solution, the core and
the Shapley value are applied; see [25–27]. To construct the imputation of the cooperative game
the characteristic function reflecting the payoff of any coalition of the players should be determined.
There are some approaches how to define the characteristic function, for example α, β, γ—characteristic
functions and others (see [8,25,28–30] for details).

In contrast to the classical one the cooperative behavior determination approach presented above
needs no distribution of the total cooperative payoff among the players. As it is easily seen, the
players seek jointly a set of strategies that optimize their individual payoffs presented as the Nash
products. Hence, neither the characteristic function nor the imputation is required. Please note that
the problems of construction and stability of the coalitions for multicriteria dynamic games have been
also considered; see [31,32]. In the case of coalition games, naturally, the characteristic function and
the imputation should be determined. However, in this paper we are not concerned with coalitions’
formation processes and the players’ cooperative payoffs for the whole game can be calculated without
any imputations as

Jc
1(0) =

⎛
⎜⎜⎜⎜⎝

J1c
1 (0) =

m
∑

t=0
δtg1

1(u
c
t )

. . .

Jkc
1 (0) =

m
∑

t=0
δtgk

1(u
c
t )

⎞
⎟⎟⎟⎟⎠ , . . . , Jc

n(0) =

⎛
⎜⎜⎜⎜⎝

J1c
n (0) =

m
∑

t=0
δtg1

n(uc
t )

. . .

Jkc
n (0) =

m
∑

t=0
δtgk

n(uc
t )

⎞
⎟⎟⎟⎟⎠ ,

where uc
t = (uc

1t, . . . , uc
nt) are the cooperative strategies determined in (5).

Similarly we determine the cooperative payoffs Jc
i (t), i = 1, . . . , n, for every subgame started from

the state xc
t at a time t.

As is well known, the Nash bargaining scheme is not dynamically stable [9]. To stabilize the
cooperative solution in multicriteria dynamic games we adopt the idea of imputation distribution
procedure ([7,10,18,19]).

Definition 3. A vector
β(t) = (β1(t), . . . , βn(t)),

where

β1(t) =

⎛
⎜⎝ β1

1(t)
. . .

βk
1(t)

⎞
⎟⎠ , . . . , βn(t) =

⎛
⎜⎝ β1

n(t)
. . .

βk
n(t)

⎞
⎟⎠

is a payoff distribution procedure (PDP) for the dynamic multicriteria game (1), (2), if

Jc
1(0) =

m

∑
t=0

δtβ1(t) , . . . , Jc
n(0) =

m

∑
t=0

δtβn(t) , (6)
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or in extended form, ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

J1c
1 (0) =

m
∑

t=0
δtβ1

1(t),

. . .

Jkc
1 (0) =

m
∑

t=0
δtβk

1(t),

, . . . ,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

J1c
n (0) =

m
∑

t=0
δtβ1

n(t),

. . .

Jkc
n (0) =

m
∑

t=0
δtβk

n(t).

The main idea of this scheme is to distribute the cooperative gain along the game path. Then βi
can be interpreted as the payment to player i in all criteria at a time t, i = 1, . . . , n.

Definition 4. A vector β(t) = (β1(t), . . . , βn(t)) is a time-consistent [7,10] PDP for dynamic multicriteria
game (1), (2), if for every t ≥ 0

Jc
1(0) =

t

∑
τ=0

δτ β1(τ) + δt+1 Jc
1(t + 1),

. . .

Jc
n(0) =

t

∑
τ=0

δτ βn(τ) + δt+1 Jc
n(t + 1), (7)

or in extended form, ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

J1c
1 (0) =

t
∑

τ=0
δτ β1

1(τ) + δt+1 J1c
1 (t + 1),

. . .

Jkc
1 (0) =

t
∑

τ=0
δτ βk

1(τ) + δt+1 Jkc
1 (t + 1),

. . .⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

J1c
n (0) =

t
∑

τ=0
δτ β1

n(τ) + δt+1 J1c
n (t + 1),

. . .

Jkc
n (0) =

t
∑

τ=0
δτ βk

n(τ) + δt+1 Jkc
n (t + 1).

Here the players following the cooperative trajectory are guided by the same optimal behavior
determination approach (5) at each current time and hence do not have any reasonable motivation to
deviate from the cooperation agreement.

Theorem 1. A vector β(t) = (β1(t), . . . , βn(t)), where

β1(t) = Jc
1(t)− δJc

1(t + 1),

. . .

βn(t) = Jc
n(t)− δJc

n(t + 1) (8)

is a time-consistent payoff distribution procedure for dynamic multicriteria game (1), (2).

Proof. The proof is given for the first player, for others it is similar. Conditions (6) of Definition 3
are satisfied:
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m

∑
t=0

δtβ1(t) =
m

∑
t=0

δt Jc
1(t)−

m

∑
t=0

δt+1 Jc
1(t + 1) =

=

⎛
⎜⎜⎜⎜⎝

m
∑

t=0
δt J1c

1 (t)−
m
∑

t=0
δt+1 J1c

1 (t + 1)

. . .
m
∑

t=0
δt Jkc

1 (t)−
m
∑

t=0
δt+1 Jkc

1 (t + 1)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎝ J1c

1 (0)
. . .

Jkc
1 (0)

⎞
⎟⎠ = Jc

1(0)

as J jc
1 (m + 1) = 0, j = 1, . . . , k. Similar considerations are true for βi(t), i = 2, . . . , n. Hence, β(t) is

a PDP.
Let us prove that this vector is a time-consistent payoff distribution procedure (7). It follows from

the equalities

t

∑
τ=0

δτ β1(τ) + δt+1 Jc
1(t + 1) =

⎛
⎜⎜⎜⎜⎝

t
∑

τ=0
δτ β1

1(τ) + δt+1 J1c
1 (t + 1)

. . .
t

∑
τ=0

δτ βk
1(τ) + δt+1 Jkc

1 (t + 1)

⎞
⎟⎟⎟⎟⎠ =

=

⎛
⎜⎜⎜⎜⎝

t
∑

τ=0
δτ J1c

1 (τ)−
t

∑
τ=0

δτ+1 J1c
1 (τ+1)+δt+1 J1c

1 (t+1)

. . .
t

∑
τ=0

δτ Jkc
1 (τ)−

t
∑

τ=0
δτ+1 Jkc

1 (τ+1)+δt+1 Jkc
1 (t+1)

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎝ J1c

1 (0)
. . .

Jkc
1 (0)

⎞
⎟⎠= Jc

1(0),

and similarly for the other players.

2.4. Conditions for Rational Behavior

The conditions to maintain the cooperative (rational) behavior in dynamic games are considered.
Since there can be some irrational players who can break out the cooperation, Yeung D.W.K. [20]
introduced the condition that protects players against the loss of profits in this case.

Definition 5. The imputation ξ = (ξ1, . . . , ξn) satisfies irrational-behavior-proofness condition [20] if

t

∑
τ=0

δτ βi(τ) + δt+1V(i, t + 1) ≥ V(i, 0) (9)

for all t ≥ 0, where β(t) = (β1(t), . . . , βn(t)) – time-consistent imputation distribution procedure and V(i, t)
is the noncooperative payoff of player i, i ∈ N.

If this condition is satisfied, then each player is irrational-behavior-proof because irrational actions
that break the cooperative agreement will not bring his payoff below the initial noncooperative payoff.

In the papers [21,22] for discrete-time problems, a new condition which is stronger than the
Yeung’s condition and is easier to verify was introduced.

Definition 6. The imputation ξ = (ξ1, . . . , ξn) satisfies each step rational behavior condition if

βi(t) + δV(i, t + 1) ≥ V(i, t) (10)

for all t ≥ 0, where β(t) = (β1(t), . . . , βn(t))—time-consistent imputation distribution procedure and V(i, t)
is the noncooperative payoff of player i, i ∈ N.
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The proposed condition offers an incentive to each player to maintain cooperation because at
every step she gains more from cooperation than from noncooperative behavior.

Here, we adopt rationality conditions for dynamic multicriteria games. Since no imputation
procedure is required with the approach presented above, let us rewrite the definitions.

Definition 7. The multicriteria cooperative solution Jc(t) = (Jc
1(t), . . . , Jc

n(t)) satisfies the irrational behavior
proofness condition if

t

∑
τ=0

δτ βi(τ) + δt+1 JN
i (t + 1) ≥ JN

i (0) (11)

for all t ≥ 0, where β(t) = (β1(t), . . . , βn(t)) – time-consistent payoff distribution procedure (8) and JN
i (t) is

the noncooperative payoff (4) of player i, i ∈ N. Or in extended form,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t
∑

τ=0
δτ β1

1(τ) + δt+1 J1N
1 (t + 1) ≥ J1N

1 (0),

. . .
t

∑
τ=0

δτ βk
1(τ) + δt+1 JkN

1 (t + 1) ≥ JkN
1 (0),

. . .⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t
∑

τ=0
δτ β1

n(τ) + δt+1 J1N
n (t + 1) ≥ J1N

n (0),

. . .
t

∑
τ=0

δτ βk
n(τ) + δt+1 JkN

n (t + 1) ≥ JkN
n (0).

Definition 8. The multicriteria cooperative solution Jc(t) = (Jc
1(t), . . . , Jc

n(t)) satisfies each step rational
behavior condition if

βi(t) + δJN
i (t + 1) ≥ JN

i (t) (12)

for all t ≥ 0, where β(t) = (β1(t), . . . , βn(t)) – time-consistent payoff distribution procedure (8) and JN
i (t) is

the noncooperative payoff (4) of player i, i ∈ N. Or in extended form,
⎧⎪⎨
⎪⎩

β1
1(t) + δJ1N

1 (t + 1) ≥ J1N
1 (t),

. . .
βk

1(t) + δJkN
1 (t + 1) ≥ JkN

1 (t),

. . .⎧⎪⎨
⎪⎩

β1
n(t) + δJ1N

n (t + 1) ≥ J1N
n (t),

. . .
βk

n(t) + δJkN
n (t + 1) ≥ JkN

n (t).

For problem (1), (2) the conditions for rational behavior (11) and (12) can be rewritten as

(1 − δt+1)(Jc
i (0)− JN

i (0)) + δt+1
t

∑
τ=0

δτ(gi(uc
τ)− gi(uN

τ )) ≥ 0 ∀t , i ∈ N, (13)

(1 − δ)(Jc
i (t)− JN

i (t)) + δt+2(gi(uc
t )− gi(uN

t )) ≥ 0 ∀t , i ∈ N, (14)

where

gi(u) =

⎛
⎜⎝ g1

i (u)
. . .

gk
i (u)

⎞
⎟⎠ .
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Since with the presented cooperative behavior construction approach individual rationality
conditions are satisfied, then the first parts of both inequalities are nonnegative. Hence, the each
step rational behavior conditions is fulfilled if gi(uc

t )− gi(uN
t ) ∀t, i ∈ N, and the irrational behavior

proofness condition is true if
t

∑
τ=0

δτ(gi(uc
τ)− gi(uN

τ )) ∀t, i ∈ N. As it easily seen, the each step rational

behavior condition yields the Yeung’s condition.

Next, we consider a dynamic bi-criteria model related with the bioresource management problem
(harvesting) to illustrate the suggested concepts.

3. Dynamic Bi-Criteria Resource Management Problem

Consider a bi-criteria discrete-time dynamic bioresource management model with many players.
Let n players (countries or firms) be exploiting a bioresource on a finite time horizon [0, m].
The population evolves according to the equation

xt+1 = εxt − u1t − . . . − unt , x0 = x, (15)

where xt ≥ 0 is the population size at a time t ≥ 0, ε ≥ 1 denotes the natural birth rate, and uit ≥ 0
specifies the catch strategy of player i at a time t ≥ 0, i ∈ N = {1, . . . , n}.

Each player seeks to achieve two goals: to maximize the profit from resource sales and to minimize
the catching costs. It will be assumed that the players have different market prices but the same costs
that depend quadratically on the exploitation rate of each player. The vector payoffs of the players on
the finite planning horizon take the form

J1 =

⎛
⎜⎜⎝

J1
1 =

m
∑

t=0
δt p1u1t

J2
1 = −

m
∑

t=0
δtcu2

1t

⎞
⎟⎟⎠ , . . . , Jn =

⎛
⎜⎜⎝

J1
n =

m
∑

t=0
δt pnunt

J2
n = −

m
∑

t=0
δtcu2

nt

⎞
⎟⎟⎠ , (16)

where for i ∈ N, pi ≥ 0 is the market price of the resource for player i, c ≥ 0 indicates the catching
cost, and δ ∈ (0, 1) denotes the discount factor.

3.1. Multicriteria Nash Equilibrium

First, we construct the guaranteed payoffs using one of the modifications from [2]. The guaranteed
payoff points G1

1, . . . , G1
n will be defined as the Nash equilibrium in the game 〈N, {Ui}n

i=1, {J1
i }n

i=1〉.
Applying the Bellman principle and assuming the linear form of the strategies and value functions, we
obtain the Nash equilibrium strategies

u1t = . . . = unt =
ε − 1
n − 1

xt,

and the dynamics becomes

xt =
( n − ε

n − 1

)t
x0.

Then the guaranteed payoff points take the form

G1
1 = p1 Ax0 , . . . , G1

n = pn Ax0, (17)

where

A =
ε − 1
n − 1

(δ(n − ε))m+1 + (n − 1)m+1

(n − 1)m(δ(n − ε)− n + 1)
.

Similarly, determining the Nash equilibrium in the game with the second criteria of all players
〈N, {Ui}n

i=1, {J2
i }n

i=1〉, yields n more guaranteed payoffs points
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G2
1 = . . . = G2

n = −cGx2
0, (18)

where

G =
(2n − ε2 + ε

√
4n2 + ε2 − 4n

n(−ε +
√

4n2 + ε2 − 4n)

)2

× (2δn)m+1 − (ε −
√

4n2 + ε2 − 4n)m+1

(ε −
√

4n2 + ε2 − 4n)m(2δn − ε +
√

4n2 + ε2 − 4n)
.

In accordance with Definition 1, for designing the multicriteria Nash equilibrium of the game (15),
(16) the following problem has to be solved:

p1c(
m

∑
t=0

δtu1t − Ax)(−
m

∑
t=0

δtu2
1t + Gx2) → max

u1t
,

. . .

pnc(
m

∑
t=0

δtunt − Ax)(−
m

∑
t=0

δtu2
nt + Gx2) → max

unt
.

Considering the process starting from one-stage game to m-stage one and seeking the strategies
in linear form, we obtain the multicriteria Nash equilibrium.

Proposition 1. The multicriteria Nash equilibrium strategies in problem (15), (16) have the form
uN

it = γN
im−txt, i ∈ N,

γN
1t = . . . = γN

nt = γN
t =

εt−1γN
1

1 + nγN
1

t−2
∑

j=0
εj

, t = 2, . . . , m. (19)

The players’ strategy at the last stage γN
1 is determined from the following equation

[
3ε2(m−1)

m−1

∑
j=0

δj − 2εm−1n
m−2

∑
j=0

εj A − n2(
m−2

∑
j=0

εj)2G
]
(γN

1 )2 −

−2(εm−1 A +
m−2

∑
j=0

εjGn)γN
1 − G = 0.

3.2. Cooperative Equilibrium

To construct the cooperative payoffs and strategies the modified bargaining scheme will be
applied [5]. First, we have to determine the noncooperative payoffs as the ones gained by the players
using the multicriteria Nash strategies. Then, we construct the sum of the Nash products with the
noncooperative payoffs of players acting as the status quo points.

In view of Proposition 1, the noncooperative payoffs have the form

J1N
i (x) =

m−1

∑
t=0

δt piγ
N
m−tx , i ∈ N,

J2N
1 (x) = . . . = J2N

n (x) = −c
m−1

∑
t=0

δt(γN
m−t)

2x2.

In accordance with Definition 2, for designing the multicriteria cooperative equilibrium the
following problem has to be solved:
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p1(
m

∑
t=0

δtuc
1t − Px)(−

m

∑
t=0

δt(uc
1t)

2 + Kx2) + . . . + pn(
m

∑
t=0

δtuc
nt − Px)(−

m

∑
t=0

δt(uc
nt)

2 + Kx2)→ max
uc

1t ,...,u
c
nt

,

where P =
m−1
∑

t=0
δtγN

m−t, K =
m−1
∑

t=0
δt(γN

m−t)
2.

Considering the process starting from one-stage game to m-stage one and seeking the strategies
in linear form, we construct cooperative behavior.

Proposition 2. The multicriteria cooperative equilibrium strategies in problem (15), (16) take the form
uc

it = γc
im−txt, i ∈ N,

γc
1t = . . . = γc

nt = γc
t =

εt−1γc
1

1 + nγc
1

t−2
∑

j=0
εj

, t = 2, . . . , m. (20)

The players’ strategy at the last stage γc
1 is determined from the following equation

[
3ε2(m−1)

m−1

∑
j=0

δj − 2εm−1n
m−2

∑
j=0

εjP − n2(
m−2

∑
j=0

εj)2K
]
(γc

1)
2 −

−2(εm−1P +
m−2

∑
j=0

εjKn)γc
1 − K = 0.

3.3. Dynamic Stability and Conditions for Rational Behavior

Proposition 3. The time-consistent payoff distribution procedure in the problem (15), (16) takes the form

βi(t) =

(
β1

i (t)
β2

i (t)

)
, i = 1, . . . , n , t = 0, . . . , m − 1,

where

β1
i (t) = piδ

tγc
m−txt + pi(1 − δ)

m−1

∑
τ=t+1

δτγc
m−τxτ ,

β2
i (t) = −cδt(γc

m−t)
2x2

t − c(1 − δ)
m−1

∑
τ=t+1

δτ(γc
m−τ)

2x2
τ , i = 1, . . . , n.

Proof. follows from Theorem 1 and the form of cooperative strategies given in Proposition 2.

Proposition 4. The conditions for rational behavior in problem (15), (16) are fulfilled if γc
1 ≥ γN

1 .

Proof. The irrational-behavior-proofness condition (13) in problem (15), (16) takes the form

(1 − δt+1)(Jc
i (0)− JN

i (0)) + δt+1

⎛
⎜⎜⎝

pi
t

∑
τ=0

δτ(uc
iτ − uN

iτ)

−c
t

∑
τ=0

δτ((uc
iτ)

2 − (uN
iτ)

2)

⎞
⎟⎟⎠ ≥ 0, (21)

and each step rational behavior condition becomes

(1 − δ)(Jc
i (t)− JN

i (t)) + δt+2

(
pi(uc

it − uN
it )

−c((uc
it)

2 − (uN
it )

2)

)
≥ 0. (22)
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Let us consider each step rational behavior condition for the first criterium. Since the individual
rationality conditions are fulfilled the first part of the inequality is positive. Hence, the sigh of the
uc

it − uN
it need to be checked. In accordance with Propositions 1 and 2

uc
it − uN

it =
(ε − 1)2εm−t−1(γc

1 − γN
1 )xt

(ε − 1 + nγc
1(ε

m−t−1 − 1))(ε − 1 + nγN
1 (εm−t−1 − 1))

that is nonnegative if γc
1 ≥ γN

1 .
For the second criterium the sigh of −c(uc

it − uN
it )(u

c
it + uN

it ) needs to be checked.
Since, the cooperative solution satisfy the individual rationality conditions for each stage t the first
part of the Inequality (22) takes the form

−c
m−1

∑
τ=t

δτ(uc
iτ − uN

iτ)(u
c
iτ + uN

iτ) ≥ 0

that yields

− cδt(uc
it − uN

it )(u
c
it + uN

it ) ≥ c
m−1

∑
τ=t+1

δτ(uc
iτ − uN

iτ)(u
c
iτ + uN

iτ) . (23)

The right hand side of (23) is nonnegative if uc
iτ − uN

iτ ≥ 0 ∀τ = t + 1, . . . , m, that again is true if
γc

1 ≥ γN
1 .

As the each step rational behavior condition is stronger than the Yeung’s condition, this yields the
fulfillment of irrational-behavior-proofness condition.

3.4. Modelling

We have performed numerical simulation for symmetric case with the following parameters:

m = 15, n = 5, ε = 1.3, p1 = . . . = p5 = 100, c = 50, δ = 0.8.

These parameters are typical for the fish species in Karelian lake [33]. In the papers [22,34,35]
the natural growth function of the population was estimated and its linear approximation with the
appropriate parameter ε is applied in this paper. It should be stressed that the price and the cost
parameters do not influence the form of the players’ strategies, hence can be taken as any values.

The presented figures illustrate our theoretical results. Namely Figure 1 shows the dynamics of
the population size, while Figure 2 presents the players’ strategies for noncooperative and cooperative
cases. As one can notice cooperative behavior improves the ecological situation as it limits bioresource
exploitation. The population size increases in both settings but under cooperation much quicker
(from x0 = 50,000 to 110,000).

Figure 1. Population size: dark—cooperation, light—Nash equilibrium.
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Figure 2. Players’ strategies: dark—cooperation, light—Nash equilibrium.

Moreover, as Figure 2 shows the cooperative behavior is beneficial for the players. To emphasize
the last conclusion the instantaneous payoffs (δtg1

1(t)) for both noncooperative and cooperative settings
are presented in Figure 3. As it is easily seen the players’ cooperative strategies (the catch) are larger
than the noncooperative ones and some convergence can be noticed at the end of the planning horizon.
It is related to the fact that the asymptotic values of the players’ strategies in both cases (γN

t , γc
t ) are

(ε − 1)/n. The instantaneous payoffs decrease in both settings because of the discounting but under
cooperation much slower (from 60,000 to 4000 monetary units).

Figure 3. Instantaneous payoffs: dark—cooperation, light—Nash equilibrium.

Since the player’s strategy at the last stage under cooperation is larger that noncooperative one
the conditions for rational behavior are fulfilled. Figure 4 shows how to distribute the cooperative gain
among the game path (PDP β1

1(t)). It is quiet interesting that PDP differs from instantaneous payoffs
very slightly. Please note that changing the number of players, time horizon and other parameters
gives the similar pictures, hence are not presented.
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1

1

Figure 4. Instantaneous payoffs (light line) and PDP (β1
1(t)).

4. Conclusions

The problem of dynamic stability in multicriteria dynamic games with finite horizon has
been investigated. First, we have evaluated the multicriteria Nash equilibrium strategies.
Second, we constructed the multicriteria cooperative strategies and payoffs via the modified bargaining
scheme. We adopted the concept of dynamic stability for multicriteria dynamic games and have
constructed the payoff distribution procedure. The conditions for rational behavior have been modified
for dynamic multicriteria games.

The approaches presented in the paper give the possibility to find optimal solutions in
various multicriteria dynamic games. To show one of the possible applications, we studied
a bi-criteria discrete-time bioresource management problem, where the players differ in their aims.
Multicriteria Nash and cooperative equilibria strategies have been derived analytically in linear forms.
Hence, they can be directly applied to concrete populations with different values of parameters.
As cooperative behavior improves the ecological situation, the dynamic stability concept has been
applied to stabilize the cooperative agreement. The time-consistent payoff distribution procedure has
been also derived analytically. The fulfillment of conditions for rational behavior has been proved.

The presented theoretical constructions can be applied for different management problems,
where the decision maker often has several criteria to optimize. For example, to maximize the profit and
to minimize the production cost or the labor involved in the manufacture. Moreover, the constructed
payoff distribution procedure gives an incentive to maintain the cooperative agreement that is
extremely important for management problems with common resources. Hence, the results presented
in this paper can be applied in biological, economical and social game-theoretic models with
vector payoffs.

Funding: This research was supported by the Shandong province “Double-Hundred Talent Plan”
(No. WST2017009) and Russian Science Foundation (No. 17-11-01079) on studying the dynamic stability.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Nash Equilibrium Meaningful

Consider problem (3) with two criteria for simplicity with the constraints J j
i ≥ Gj

i , i ∈ N, j = 1, 2.
Let deal with a problem for the first player, to construct noncooperative behavior we should maximize
multicriteria payoff function or equally minimize

H1(u1t, uN
2t, . . . , uN

nt) = (−J1
1 (u1t, uN

2t, . . . , uN
nt) + G1

1)(J2
1 (u1t, uN

2t, . . . , uN
nt)− G2

1) → min
u1t

subject to (here and below (u1t, uN
2t, . . . , uN

nt) is omitted)
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G1
1 − J1

1 ≤ 0,

G2
1 − J2

1 ≤ 0,

u1t ≥ 0 .

The Kuhn–Tucker (KT) conditions are applicable, and the Lagrangian for each time instant
t = 1, . . . , m takes the form (t is omitted)

L = (−J1c
1 + G1

1)(J2
1 − G2

1) + λ1(G1
1 − J1

1 ) + λ2(G2
1 − J2

1 ).

The KT conditions take the forms

−(J1
1 )

′(J2
1 − G2

1 + λ1) + (J2
1 )

′(−J1
1 + G1

1 − λ2) ≥ 0,

u1

[
−(J1

1 )
′(J2

1 − G2
1 + λ1) + (J2

1 )
′(−J1

1 + G1
1 − λ2)

]
= 0, (A1)

J1
1 − G1

1 ≥ 0, (A2)

λ1(J1
1 − G1

1) = 0, (A3)

J2
1 − G2

1 ≥ 0, (A4)

λ2(J2
1 − G2

1) = 0, (A5)

u1 ≥ 0 , λi ≥ 0 , i = 1, 2.

1. Consider the case λ1 > 0, λ2 > 0. From (A3) and (A5) it follows that

J1
1 − G1

1 = 0 , J2
1 − G2

1 = 0.

If u1 is equal to zero, then conditions (A2), (A4) are not satisfied (under assumptions that
J j
1(0, uN

2t, . . . , uN
nt) = 0, j = 1, 2). Hence, u1 > 0. In this case, the noncooperative behavior

coincides with the guaranteed one, and the goal function H1 is equal to zero.
2. Consider the case λ1 = 0, λ2 > 0. From (A5) it follows that

J2
1 − G2

1 = 0.

By analogy, u1 > 0, and from (A1) it follows that

(J2
1 )

′(−J1
1 + G1

1 − λ2) = 0.

Consequently,
−J1

1 + G1
1 = λ2 > 0 ,

which obviously contradicts condition (A2).

Similarly, in the case where λ1 > 0, λ2 = 0, we will naturally arrive in contradiction.
3. Finally, consider the case λ1 = 0, λ2 = 0. Similarly, it is easy to check that u1 > 0, the minimum is

achieved at an interior point and can be found via the first-order optimality condition:

−(J1
1 )

′(J2
1 − G2

1) + (J2
1 )

′(−J1
1 + G1

1) = 0 .

Here, the goal function becomes

H1 = (−J1
1 + G1

1)(J2
1 − G2

1) ,

which is less than zero.
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Similarly, for other players. Thus, the presented above scheme guarantees that the solution
satisfies the conditions J j

i ≥ Gj
i , i ∈ N, j = 1, 2.
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Abstract: In the paper, we propose a new method of constructing cooperative stochastic game in the
form of characteristic function when initially non-cooperative stochastic game is given. The set of
states and the set of actions for any player is finite. The construction of the characteristic function
is based on a calculation of the maximin values of zero-sum games between a coalition and its
anti-coalition for each state of the game. The proposed characteristic function has some advantages
in comparison with previously defined characteristic functions for stochastic games. In particular,
the advantages include computation simplicity and strong subgame consistency of the core calculated
with the values of the new characteristic function.

Keywords: cooperative stochastic game; strong subgame consistency; characteristic function; core

1. Introduction

When a non-cooperative game is initially defined, the problem of construction of a cooperative
version of the game is actual if players start acting as a unique coalition to maximize their joint payoff
or minimize joint costs. The classical approach is to define cooperative game in a form of characteristic
function that assigns the value for any coalition of players. Subsequently, based on this function one
can calculate the imputation of the joint payoff allocating it among players. The component of the
imputations may vary if we calculate them based on different characteristic functions. Therefore,
the way of defining this function is important and it has influence on the players’ payoffs in cooperative
game. Moreover, some approaches to define characteristic function make it impossible to apply
in dynamic or differential games because of computational difficulties. Additionally, the way of
constructing characteristic function also influences on the consistency properties of cooperative
solutions that are realized in dynamics.

The choice of the approach on how to define characteristic function also depends on the
background of the considered problem if it arises from an applied area. The existence and uniqueness
issues are also actual when one chooses the way of constructing characteristic function. There exist
different approaches that can be applied to stochastic game. The so-called maxmin and minmax
approaches define the value of the function for coalition S as maxmin and minmax payoff of
coalition S in zero-sum game against coalition of all left-out players [1,2]. Another approach is
proposed in [3,4] when the value of coalition S is defined as its payoff in the Nash equilibrium in the
non-cooperative game between coalition S and left-out players acting individually. The calculation
of characteristic function in two-step procedure is proposed in [5], in which the authors first find an
n-player non-cooperative equilibrium and then allow coalition S to optimize its payoff, assuming
that left-out players use their Nash equilibrium actions found at the first step. The properties of
this function are examined in [6,7]. Another two-stage approach for defining characteristic function
is proposed in [8], in which the strategies maximizing total payoff of the players are first found.
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Subsequently, these strategies are used by the players from coalition S, while the out-coalition players
use the strategies minimizing the total payoff of players from S. The joint payoff of players from the
coalition equals the value of characteristic function for this coalition.

The new simplified method of constructing characteristic function in multistage games is
introduced in [9]. They examine the properties of this function and proved that the corresponding core
is strongly subgame-consistent in multistage game. This property cannot be proved in general case
when the characteristic function is constructed with the classical approaches, like maxmin or minmax.

In the paper, we adopt the method of constructing the characteristic function proposed in [9]
to stochastic games. Based on the values of the characteristic function, one can determine the core.
Moreover, the core satisfies the strong subgame consistency property, which is a refinement of subgame
consistency on the case of set-valued cooperative solutions. The problem of subgame consistency is
originally examined for differential games in [10,11]. The construction of a special payment scheme,
called imputation distribution procedure (see [11]), allows for coping with the problem of time
inconsistency of cooperative solutions. This problem is described for stochastic games in [12–14] in
the case of unique-valued cooperative solutions. The node-consistent core is constructed in dynamic
games played over event trees in [15]. The strong subgame consistency of the set-valued cooperative
solution, like the core, guarantees players to obtain, in total, the solution from initially defined core.
It means that, in any intermediate time period, the solution is the sum of obtained payments up to
the current period, and the core elements of subgame starting from the next time period. The strong
subgame consistency condition is proposed in [16]. The subcore satisfying strong subgame property is
constructed for multistage games in [17]. The problem of subgame consistency is actual for different
classes of dynamic and differential games and it is examined in [18] for stochastic games with finite
duration, in [19] for differential games with finite time horizon, in [20] for multistage games. In the
paper, we construct characteristic function for stochastic game in a special way and calculate the
core while using the values of this function. The core satisfies strong subgame consistency property.
To prove this result, we define the imputation distribution procedure, which determines the payments
to the players in any state realized in the game process.

The rest of the paper is organized, as follows. We describe the model of stochastic games in
Section 2.1. In Section 2.2, we define the new approximated characteristic function for stage games,
and then extend this approach to the case of stochastic game in Section 2.3. We formulate the definition
of the imputation distribution procedure for stochastic games and describe the idea of strongly
subgame consistency of the core in Section 3. We briefly conclude in Section 4.

2. Cooperative Stochastic Games

2.1. Model

Consider a non-cooperative stochastic game G given by

G =

⎛
⎝N, Ω, {Γ(ω)}ω∈Ω, π0,

{
p(ω′′|ω′, aω′

)
}

ω′ ,ω′′∈Ω
aω′ ∈∏i∈N Aω′

i

, δ

⎞
⎠ , (1)

where

• N = {1, . . . , n} is the set of players.
• Ω = {ω1, . . . , ωk} is the finite set of states.
• Γ(ω) is the game in normal form associated with state ω. The set of players N is common for any

state ω. Let Aω
i be a finite set of actions of player i ∈ N in state ω, aω

i ∈ Aω
i be an action of player

i ∈ N in this state; Kω
i : ∏j∈N Aω

j → R be a payoff function of player i in state ω.
• p(·|ω, aω) : Ω × Aω → Δ(Ω) is a transition function from state ω when action profile

aω ∈ ∏j∈N Aω
j is realized, where Δ(Ω) is a probability distribution over set Ω.

• π0 = (πω1
0 , . . . , π

ωk
0 ) is an initial state distribution.
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• δ ∈ (0, 1) is a common discount factor.

Denote by Gω the subgame of G starting from state ω defined by (1) with π0, such that πω
0 = 1

and πω′
0 = 0 for any state ω′ �= ω.

We assume that, in stochastic game G, the set of any player’s strategies Hi is stationary.
The stationary strategy of player i is ηi assigning action (maybe mixed) ai ∈ Δ(Aω

i ) to any state
ω. The vector (η1, . . . , ηn) ∈ ∏j∈N Hj is a stationary strategy profile in stochastic game G. It is obvious
that a stationary strategy ηi of player i ∈ N in game G is the stationary strategy of this player in any
subgame Gω.

By the payoff of player i, we assume the expected payoff in stochastic subgame Gω given by

Eω
i (η) = Kω

i (aω) + δ ∑
ω′∈Ω

p(ω′|ω, aω)Eω′
i (η). (2)

where η ∈ H = ∏j∈N Hj is a stationary strategy profile such that η(ω) = aω ∈ ∏j∈N Aω
j . We rewrite

Equation (2) in a vector form and obtain

Ei(η) = Ki(a) + δΠ(η)Ei(η), (3)

where Ei(η) = (Eω1
i (η), . . . , Eωk

i (η))′, Ki(a) = (Kω1
i (aω1), . . . , Kωk

i (aωk ))′. A matrix of transition
probabilities is formed in the following way

Π(η) =

⎛
⎜⎜⎜⎝

p(ω1|ω1, aω1) . . . p(ωk|ω1, aω1)

p(ω1|ω2, aω2) . . . p(ωk|ω2, aω2)

. . . . . . . . .
p(ω1|ωk, aωk ) . . . p(ωk|ωk, aωk )

⎞
⎟⎟⎟⎠ (4)

in which each row contains transition probabilities from a corresponding state.
Equation (3) implies the explicit formula to calculate the expected payoff of player i when the

stationary strategy profile η is realized:

Ei(η) = (Ik − δΠ(η))−1 Ki(a),

where Ik is an identity matrix of size k × k. Inverted matrix (Ik − δΠ(η))−1 always exists for discount
factor δ ∈ (0, 1).

Taking into account the probability distribution π0, we calculate the expected payoff in game G, as

Ēi(η) = π0Ei(η) = π0 (Ik − δΠ(η))−1 Ki(a). (5)

If players cooperate, they find the cooperative strategy profile η∗ maximizing the total expected
payoff, which is

η∗ = arg max
η∈H

∑
i∈N

Ēi(η).

We should notice that η∗ is a pure stationary strategy profile. The profile η∗ is
such that η∗

i (ω) = aω∗
i ∈ Aω

i , ω ∈ Ω. We also assume that the profile η∗ is such that
maxη∈H ∑i∈N Eω

i (η) = ∑i∈N Eω
i (η

∗) for any state ω ∈ Ω, which means that the cooperative strategy
profile maximizes the total payoff of the players independently of which state is initial. This assumption
is usually satisfied for most stochastic games.

To define cooperative game when the non-cooperative stochastic game is given, we use the
classical approach and define it in the form of characteristic function v : 2N → R1 whose values
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estimate the "power" of any coalition or the subset of players. In [21], the characteristic function value
for coalition S in subgame starting at any state ω is defined in as maxmin value, which is

vω(S) = val Gω
S , (6)

where Gω
S is a zero-sum stochastic subgame starting at state ω, in which coalition S is a maximizing

player, coalition N\S is a minimizing player. Existence of the value of game Gω
S for stochastic games is

proved in [22].

2.2. Approximated Characteristic Function for State Games

Before we define a characteristic function in a new form, we need to make additional calculations.
First, we consider state games and propose a scheme of calculation of the approximated characteristic
function values for any state. Define characteristic function for a state ω ∈ Ω or one-shot game Γ(ω)

given in normal form while using the maxmin approach:

v(ω, S) = max
aS∈ ∏

j∈S
Aω

j

min
aN\S∈ ∏

j∈N\S
Aω

j
∑
i∈S

Kω
i (aω

S , aω
N\S), (7)

where maxmin in (7) is found in pure strategies.
Let C(ω) be a non-empty core in the game defined in state ω using c.f. (7), which is

C(ω) =
{
(α1(ω), . . . , αn(ω)) : ∑

i∈S
αi(ω) � v(ω, S), ∀S ⊂ N, ∑

i∈N
αi(ω) = v(ω, N)

}
(8)

Remark 1. We assume that conditions under which the core C(ω) exists for any state ω are satisfied. The core
C(ω) is non-empty if and only if for any function ψ : 2N \∅ → [0, 1], where ∑S∈2N :S�i ψ(S) = 1 for any
i ∈ N, condition (see [23,24])

∑
S∈2N\∅

ψ(S)v(ω, S) ≤ v(ω, N) (9)

holds. Characteristic function v(ω, S) is defined by (7). We refer to the book [25] for further discussion of
non-emptiness of the core.

Second, for any coalition S ⊆ N define maximal value of characteristic function (7) over set Ω:

ŵ(S) = max
ω∈Ω

v(ω, S), (10)

which is the maximal value that coalition S can obtain in state games.
The next step is to define the approximated value of the characteristic function for any state in the

following way. Let for any state ω ∈ Ω the approximated characteristic function w(ω, S) be given as

w(ω, S) =

⎧⎨
⎩

∑
i∈S

Kω
i (aω∗), if S = N,

ŵ(S), if S �= N.
(11)

In Equation (11), the summarized payoff of the players adopting cooperative action profile aω∗ is
assigned to the grand coalition. The approximated (maximal possible value over all possible states)
values of characteristic function ŵ(S) given by (10) are assigned to any coalition S different from N.
Denote the core constructed with the values of characteristic function (11) as D(ω) and assume that it
is non-empty for any state ω,

D(ω) =
{
(α1(ω), . . . , αn(ω)) : ∑

i∈S
αi(ω) � w(ω, S), ∀S ⊂ N, ∑

i∈N
αi(ω) = w(ω, N)

}
. (12)
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Lemma 1. Let for any coalition S ⊂ N, S �= N, the inequality ŵ(S) < min
ω∈Ω

v(ω, N) hold. If condition

∑
i∈N

Kω
i (aω∗) = max

aω∈ ∏
j∈N

Aω
j

∑
i∈N

Kω
i (aω), (13)

is true, and the core D(ω) is non-empty for any ω, and then D(ω) ⊂ C(ω).

Proof. If there exists coalition S ⊂ N, S �= N, such that ŵ(S) � min
ω∈Ω

v(ω, N), then the core D(ω) is

empty. Assuming the non-emptiness of the core D(ω), we consider any imputation α(ω) ∈ D(ω).
If condition (13) is true, it means that ∑

i∈N
αi(ω) = v(ω, N) = w(ω, N).

Subsequently, for any coalition S ⊂ N, we have ∑
i∈S

αi(ω) � w(ω, S) = ŵ(S) = max
ω∈Ω

v(ω, S) �

v(ω, S), which proves that α(ω) ∈ C(ω).

Remark 2. Condition (13) states that the maximal total payoff of the players in state ω coincides with their
payoff if players adopt actions prescribed by the cooperative strategy profile. It may not be satisfied in general
case in dynamic games. If condition (13) is not true, the main result of the paper can be proved, but it requires a
modification in the method of characteristic function definition. We leave this case for future research.

Remark 3. We assume that the approximated core D(ω) is non-empty for any ω. The conditions under which
it is non-empty are similar to the ones given in Remark 1, but in Equation (9) characteristic function w(ω, S)
given by (11) is used. If the conditions of Lemma 1 are satisfied, then D(ω) ⊂ C(ω), and non-emptiness of
approximated core D(ω) implies non-emptiness of core C(ω).

Example 1. Consider three-player stochastic game with two states (ω1 and ω2). The sets of actions of player
1, 2, and 3 in state ω1 (ω2) are {a1, a2}, {b1, b2} and {c1, c2} ({α1, α2}, {ζ1, ζ2}, {γ1, γ2}), respectively.
The payoff functions are given by the following matrices:

• in state ω1:

c1 :

b1 b2( )
a1 (10, 10, 8) (0, 15, 0)
a2 (15, 0, 0) (5, 5, 5)

c2 :

b1 b2( )
a1 (0, 0, 15) (2, 4, 4)
a2 (4, 4, 2) (0, 0, 0)

• in state ω2:

γ1 :

ζ1 ζ2( )
α1 (2, 1, 1) (4, 0, 2)
α2 (0, 4, 2) (7, 5, 3)

γ2 :

ζ1 ζ2( )
α1 (2, 3, 0) (4, 2, 4)
α2 (3, 4, 3) (7, 5, 7)

Player 1 chooses a row, player 2 chooses a column and player 3 chooses a matrix.

The transition probabilities are written in the matrices:

• for state ω1:

c1 :

b1 b2( )
a1 (0.5, 0.5) (0, 1)
a2 (0, 1) (0, 1)

c2 :

b1 b2( )
a1 (0, 1) (0.5, 0.5)
a2 (0.5, 0.5) (1, 0)
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• for state ω2:

γ1 :

ζ1 ζ2( )
α1 (0, 1) (1, 0)
α2 (1, 0) (1, 0)

γ2 :

ζ1 ζ2( )
α1 (0.2, 0.8) (0, 1)
α2 (0, 1) (1, 0)

The first (second) element in any entry of the matrix is the probability of transition from the particular
state and action profile to state ω1 (state ω2). One can easily notice that the probabilistic transitions are
defined in state ω1 when players choose action profiles (a1, b1, c1), (a2, b1, c2) and (a1, b2, c2), and in state
ω2 when players choose action profiles (α1, ζ1, γ2). All other transitions are deterministic.

The discount factor equals 0.9.
Cooperative strategy profile η∗ = (η∗

1 , η∗
2 , η∗

3 ) is such that

η∗
1 = (a1, α2), η∗

2 = (b1, ζ2), η∗
2 = (c1, γ2), (14)

which prescribes any player to choose the first action in state ω1 and the second action in state ω2. The cooperative
strategy profile defines a Markov chain with the structure that is depicted in Figure 1.

Figure 1. The transition probabilities defined by cooperative strategy profile η∗.

The players’ payoffs are (10, 10, 8) in state ω1 and (7, 5, 7) in state ω2. We obtain that the maximal total
payoff of the players in state games coincide with the payoff that players get in states implementing cooperative
strategy profile η∗. However, Theorem 1 is also true for the case when this condition is not satisfied.

First, we calculate the characteristic function v(ω, S) by Equation (7) and its approximation w(ω, S)
by (11) for state games. The values of these functions are represented in Table 1.

Table 1. Values of characteristic function v and approximated characteristic function w for states ω1 and ω2.

S {1, 2, 3} {1, 2} {1, 3} {2, 3} {1} {2} {3}
v(ω1, S) 28 8 10 10 0 0 0
v(ω2, S) 19 12 6 8 2 1 1
w(ω1, S) 28 12 10 10 2 1 1
w(ω2, S) 19 12 10 10 2 1 1

The cores of state games C(ω) and D(ω) calculated with values of functions v(ω, S) and w(ω, S) by
Formulae (8) and (12) are non-empty for any ω and represented on Figures 2 and 3 for ω1 and ω2 respectively.

42



Mathematics 2020, 8, 1135

Figure 2. The core C(ω1) (gray region) and approximated core D(ω1) (blue region inside gray region)
for ω1 state game.

Figure 3. The core C(ω2) (gray region) and approximated core D(ω2) (blue region inside gray region)
for ω2 state game.

2.3. New Approximated Characteristic Function for Stochastic Games

We propose a new method of determining characteristic function for stochastic games based on
the values of approximated characteristic function defined in states and given by Formula (11).

We assume that coalition S at any state of the game may obtain ŵ(S) as maximum. Accordingly,
this value is the maximal value that the coalition can get, regardless of the state that currently
appears. If we summarize this value over infinite horizon with discount factor δ, we can calculate the
approximation or the upper bound of the payoff that coalition S can get in stochastic subgame starting
from state ω, which is

w̄(ω, S) =

⎧⎪⎨
⎪⎩

ŵ(S) + δŵ(S) + . . . =
1

1 − δ
ŵ(S), if S ⊂ N, S �= N,

∑
i∈N

Eω
i (η

∗), if S = N.
(15)
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One should notice that, according to Equation (15), we save the value of characteristic function
for grand coalition without approximation. The reason is that, when we define the allocation of a joint
payoff, the players should redistribute the value that they obtain using cooperative strategy profile,
but not the approximated one. The cooperative stochastic subgame is defined by the set of players
N and function (15). In the following, we omit the set of players and refer the cooperative stochastic
subgame as w̄(ω, S) given by (15).

Let D̄(ω) be the core calculated with the values of function (15), i.e.,

D̄(ω) =
{
(α1(ω), . . . , αn(ω)) : ∑

i∈S
αi(ω) � w̄(ω, S), ∀S ⊂ N, ∑

i∈N
αi(ω) = w̄(ω, N)

}
. (16)

Let D̄(ω) be non-empty for any ω ∈ Ω. We can compare the core D̄(ω) constructed with the
values of approximated function (15) and the core defined with the values of characteristic function
defined with the classical approach. For any subgame Gω , we define characteristic function using the
maxmin approach:

v̄(ω, S) = max
ηS∈ ∏

j∈S
Hj

min
ηN\S∈ ∏

j∈N\S
Hj

∑
i∈S

Eω
i (ηS, ηN\S). (17)

Let C̄(ω) be a non-empty core of subgame Gω constructed with the values of function (17).

Lemma 2. Let for any coalition S ⊂ N, S �= N the inequality

ŵ(S) < min
ω∈Ω

v(ω, N) (18)

hold, and D̄(ω) is non-empty for any ω, then D̄(ω) ⊂ C̄(ω).

Proof. If ŵ(S) < min
ω∈Ω

v(ω, N) is not satisfied, then the core D̄(ω) is empty by construction. Consider

any imputation ᾱ(ω) ∈ D̄(ω) and prove that it belongs to the set C̄(ω).
First, ∑

i∈N
ᾱi(ω) = w̄(ω, N) = ∑

i∈N
Eω

i (η
∗) = v̄(ω, N).

Second, we prove that ∑
i∈S

ᾱi(ω) � v̄(ω, S) taking into account that ∑
i∈S

ᾱi(ω) � w̄(ω, S) for any

S �= N. We prove that w̄(ω, S) � v̄(ω, S).
By definition, we have

v̄(ω, S) = max
ηS

min
ηN\S

∑
i∈S

Eω
i (ηS, ηN\S),

and we write the functional equation for the right-hand side of this equality and obtain the following

max
ηS

min
ηN\S

∑
i∈S

Eω
i (ηS, ηN\S) = max

ηS
min
ηN\S

{
∑
i∈S

Kω
i (aω

S , aω
N\S) + δp(ω, aω) ∑

i∈S
Ei(ηS, ηN\S)

}
,

where p(ω, aω) is a vector
(

p(ω′|ω, aω) : ω′ ∈ Ω
)
.

Let profile (ηS, ηN\S) be such that maxmin is reached at this profile, we can write the functional
equation, as follows:

∑
i∈S

Eω
i (ηS, ηN\S) = (Ik − δΠ(ηS, ηN\S))

−1 ∑
i∈S

Ki(aS, aN\S) �
1

1 − δ
max
ω∈Ω

max
aS

min
aN\S

∑
i∈S

Kω
i (aω

S , aω
N\S)

=
1

1 − δ
max
ω∈Ω

v(ω, S) = w̄(ω, S).

In the last inequality, we use the property of stochastic matrices, i.e., the sum of the elements in
any row of matrix (Ik − δΠ(ηS, ηN\S))

−1 equal 1/(1 − δ), because Π(ηS, ηN\S) is a stochastic matrix.
The lemma is proved.
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Remark 4. We assume non-emptiness of the approximated core D̄(ω) in stochastic game with any initial state
ω. If condition (18) in Lemma 2 is satisfied, the non-emptiness of the approximated cores D(ω) for any ω implies
the non-emptiness of approximated core D̄(ω). It follows from definition of characteristic function w̄(ω, S) and
formula (10). Moreover, the non-emptiness of approximated core D̄(ω) implies non-emptiness of core C̄(ω).

Example 2. (continuation of Example 1) We continue calculations for stochastic game described in Example 1.
Define characteristic function v̄ by (17) and approximated characteristic function w̄ by (15). The values of these
functions are given in Table 2.

Table 2. Values of characteristic function v̄ and approximated characteristic function w̄ for stochastic
game starting from states ω1 and ω2.

S {1, 2, 3} {1, 2} {1, 3} {2, 3} {1} {2} {3}
v̄(ω1, S) 252.07 92.41 62.01 64.00 9.47 9.00 9.00
v̄(ω2, S) 245.86 95.17 77.87 60.00 10.52 10.00 10.00
w̄(ω1, S) 252.07 120.00 100.00 100.00 20.00 10.00 10.00
w̄(ω2, S) 245.86 120.00 100.00 100.00 20.00 10.00 10.00

The cores C̄(ω) and D̄(ω) constructed with the values of functions v̄ and w̄, respectively, are non-empty
and depicted on Figures 4 and 5 for initial states ω1 and ω2, respectively. One can notice that D̄(ω) ⊂ C̄(ω)

for any ω.

Figure 4. The core C̄(ω) (gray region) and approximated core D̄(ω) (blue region inside gray region) in
stochastic game with ω1 initial state.

The approximated core D̄(ω1) is defined as the set

D̄(ω1) =
{
(ᾱ1, ᾱ2, ᾱ3) :ᾱ1 + ᾱ2 + ᾱ3 = 252.07, ᾱ1 + ᾱ2 � 120.00, ᾱ1 + ᾱ3 � 100.00,

ᾱ2 + ᾱ3 � 100.00, ᾱ1 � 20.00, ᾱ2 � 10.00, ᾱ3 � 10.00
}

.

The approximated core D̄(ω2) is defined as the set

D̄(ω2) =
{
(ᾱ1, ᾱ2, ᾱ3) :ᾱ1 + ᾱ2 + ᾱ3 = 245.86, ᾱ1 + ᾱ2 � 120.00, ᾱ1 + ᾱ3 � 100.00,

ᾱ2 + ᾱ3 � 100.00, ᾱ1 � 20.00, ᾱ2 � 10.00, ᾱ3 � 10.00
}

.
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Figure 5. The core C̄(ω2) (gray region) and approximated core D̄(ω2) (blue region inside gray region)
in stochastic game with ω2 initial state.

3. Strongly Subgame-Consistent Core in Stochastic Games

3.1. Imputation Distribution Procedure

In cooperation, players follow the cooperative strategy profile η∗ and then agree on the core as
a cooperative solution of the game or the set of possible imputations of the joint payoff in the game.
We assume that the core for any subgame Gω is calculated based on function (15), which is D̄(ω).
Consider an imputation ᾱ(ω) ∈ D̄(ω). Obviously, if the players are paid step by step according to
initially given payoff functions Kω

i , i ∈ N, we cannot guarantee that they will get the components
of imputation ᾱ(ω) as an expected payoff in subgame Gω. Therefore, we define the scheme of state
payments that, in total, will give the players to obtain the components of imputation ᾱ(ω).

Definition 1. [10,11] We call the collection of vectors (βi : i ∈ N), where βi = (βi(ω1), . . . , βi(ωk)), βi(ω)

is a payment to player i in state ω in cooperative stochastic game, an imputation distribution procedure (IDP) of
imputation ᾱ(ω) ∈ D̄(ω) if

1. ∑
i∈N

βi(ω) = ∑
i∈N

Kω
i (aω∗) for any ω ∈ Ω;

2. ᾱi(ω) = Bω
i , where Bω

i is the expected discounted sum of payments to player i in stochastic subgame
starting from state ω, according to procedure β.

The expected sum of payments to player i made according to IDP can be calculated by formula
(see [14]):

Bω
i = π0(I− δΠ(η∗))−1βi,

where π0 is such that πω
0 = 1 and πω′

0 = 0 for any ω′ �= ω.

Remark 5. The IDP determined in Definition 1 for an imputation ᾱ(ω) ∈ D̄(ω) may be non-unique.

In the following section, we describe a property of the imputations from the core and
corresponding IDP, which allows to narrow the set of IDP.

3.2. Strongly Subgame-Consistent Core

We formulate the property of strongly subgame consistency of the core and propose sufficient
conditions of strongly subgame consistency of the core in stochastic games with characteristic
function (15). We suppose that the cores of stochastic game G and any subgame Gω, ω ∈ Ω,
are non-empty.

46



Mathematics 2020, 8, 1135

In cooperation, players agree on the joint implementation of cooperative strategy profile η∗

and expect to obtain the components of the imputation belonging to the core D̄(ω) in the subgame
stating from ω. Reaching an intermediate state ω ∈ Ω, Player i chooses action aω∗

i prescribed by
cooperative strategy profile η∗ and gets payoff Kω

i (aω∗). If the players recalculate the solution in the
current subgame and find solution of cooperative subgame Gω , we would assume that the cooperative
solution is chosen from the core D̄(ω). It would be reasonable to require that the payoff received
by a player in state ω summarized with the expected sum of any imputations from the cores D̄(ω′),
ω′ ∈ Ω, following state ω, would be an imputation from the core D̄(ω). If this property holds for any
intermediate state ω ∈ Ω, then the core of cooperative stochastic game with characteristic function (15)
is strongly subgame-consistent.

To determine a strongly subgame-consistent core, we need to define the so-called expected core at
state ω, i.e., we define the set of expected imputations belonging to the cores, which are cooperative
solutions of the following subgames. We determine the expected core of state ω ∈ Ω, as follows:

ED̄(ω) =
{

δ ∑
ω∈Ω

p(ω′|ω, aω∗)ᾱ(ω′), ᾱ(ω′) ∈ D̄(ω′)
}

.

Definition 2. We call the core D̄(ω) strongly subgame consistent solution of cooperative stochastic game with
approximated characteristic function w̄(ω, S) starting from state ω if for any imputation ᾱ(ω) ∈ D̄(ω) there
exists an IDP β = (βi : i ∈ N), where βi = (βi(ω) : ω ∈ Ω), satisfying condition:

β ⊕ ED̄ ⊂ D̄, (19)

where ED̄ is the vector (ED̄(ω1), . . . , ED̄(ωk))
′ of expected cores for states ω1, . . . , ωk respectively, D̄ is a

vector with elements which are sets, i.e., D̄ = (D̄(ω1), . . . , D̄(ωk))
′.

Remark 6. The inclusion (19) is written in a vector form. To explain it, we write the first row of vector
inclusion (19):

β(ω1)⊕ ED̄(ω1) ⊂ D̄(ω1)

where β(ω1) ∈ Rn, ED̄(ω1) ⊂ Rn, D̄(ω1) ⊂ Rn. The operation a ⊕ C, where a ∈ Rn and C is a set in Rn,
is defined as the set {a + c, for all c ∈ C}.

Theorem 1. The core D̄(ω), if it exists, is strongly subgame-consistent.

Proof. Following Definition 2 we need to prove that there exists an IDP of the elements from the core
D̄(ω) defined in (16) satisfying two properties from Definition 1, such that inclusion (19) is true.

Let for any imputation ᾱi(ω) ∈ D̄(ω), the IDP is calculated as

βi = (Ik − δΠ(η∗))ᾱi, (20)

where βi = (βi(ω1), . . . , βi(ωk))
′ and ᾱi = (ᾱi(ω1), . . . , ᾱi(ωk))

′.
First, we prove that β, defined in (20), satisfies properties 1 and 2 in Definition 1.

1. Find the sum of βi over the set of players, we obtain

∑
i∈N

βi = (Ik − δΠ(η∗)) ∑
i∈N

ᾱi = (Ik − δΠ(η∗))(v̄(ω1, N), . . . , v̄(ωk, N))′

= (Ik − δΠ(η∗))(Ik − δΠ(η∗))−1 ∑
i∈N

Ki(a∗) = ∑
i∈N

Ki(a∗),

or for any ω ∈ Ω the equality ∑i∈N βi(ω) = ∑i∈N Kω
i (aω∗) is true.
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2. We prove that ᾱi(ω) = Bω
i or in vector form ᾱi = Bi, where Bi = (Bi(ω1), . . . , Bi(ωk))

′. We have

Bi = (Ik − δΠ(η∗))−1βi = (Ik − δΠ(η∗))−1(Ik − δΠ(η∗))ᾱi = ᾱi.

Therefore, the payment vector βi, i ∈ N, is the distribution procedure of imputation ᾱi.
Now, we prove that inclusion (19) holds. Let βi be given by Equation (20),

there ᾱi = (ᾱi(ω1), . . . , ᾱi(ωk))
′ and ᾱi(ωj) ∈ D̄(ωj) for any j = 1, . . . , k. Consider the sum

β(ω) + ε(ω), where ε(ω) is any vector from the expected core ED̄(ω). Substituting expressions
of βi from Equation (20) and element of the expected core into the sum, we get

β + ε = (Ik − δΠ(η∗))ᾱ + δΠ(η∗)ᾱ = ᾱ ∈ D̄,

which proves the theorem.

Theorem 1 gives the method of construction of payment scheme of any element from the core D̄
defined by (16) while using values of function (15).

Example 3. (continuation of Example 1 and 2) We demonstrate how to define IDP using a method from the
proof of Theorem 1. Let for ω1 and ω2 the core imputations ᾱ(ω1) = (100.00, 100.00, 52.07) ∈ D̄(ω1) and
ᾱ(ω2) = (50.00, 95.86, 100.00) ∈ D̄(ω2) be chosen. To calculate IDP by Formula (20), we need to define
matrix Π(η∗), which is

Π(η∗) =

(
0.5 0.5
0 1

)

for cooperative strategy profile η∗ determined by (14).
Using formula (20) with ᾱ1 = (100.00, 50.00), ᾱ2 = (100.00, 95.86), ᾱ3 = (52.07, 100.00), we obtain

β1 = (32.50,−40.00),

β2 = (11.86, 5.86),

β3 = (−16.36, 53.14),

where the first component of vector βi is the payment to player i in state ω1 and the second component is the
payment in state ω2. We can easily check that collection of vectors (βi : i ∈ N) satisfies conditions from
Definition 1 of IDP.

The approximated cores D̄(ω1) and D̄(ω2) are strongly subgame-consistent, which is proved in Theorem 1.

Remark 7. The new method of construction of the characteristic function or the so-called approximated
characteristic function proposed in the paper allows not only to find the strongly subgame-consistent subset of
the core, but also simplifies calculations. In the example, each player has two actions in any state. Therefore,
he has four pure stationary strategies in a stochastic game, and there are 64 strategy profiles in the game.
The calculations of maxmin payoff of a coalition in such games is a complicated computational problem. The new
approach allows for avoiding these calculations using the values of approximated characteristic function defined
in state games to determine the function for a stochastic game.

4. Conclusions

We have proposed a new method of constructing the characteristic function in stochastic
games. The method simplifies calculations in comparison with the previously introduced approaches.
An additional advantage of the method is that the core calculated with the values of this
characteristic function satisfies strongly subgame consistency. This property positively characterizes
the realization of the imputations from the core in a dynamic game process. The property of strongly
subgame consistency is applied for set-valued cooperative solutions, like the core. We can briefly
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characterize the possible directions for future research in this area. We can also consider additional
simplifications in characteristic function definitions, which allow not only to keep the strong subgame
consistency properties of the core, but also to reduce the number of calculations defining cooperative
stochastic game.
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Abstract: A class of solutions are introduced by lexicographically minimizing the complaint of
coalitions for cooperative games with transferable utility. Among them, the nucleolus is an important
representative. From the perspective of measuring the satisfaction of coalitions with respect to a
payoff vector, we define a family of optimal satisfaction values in this paper. The proportional
division value and the proportional allocation of non-separable contribution value are then obtained
by lexicographically maximizing two types of satisfaction criteria, respectively, which are defined by
the lower bound and the upper bound of the core from the viewpoint of optimism and pessimism
respectively. Correspondingly, we characterize these two proportional values by introducing the
equal minimal satisfaction property and the associated consistency property. Furthermore, we analyze
the duality of these axioms and propose more approaches to characterize these two values on basis of
the dual axioms.

Keywords: cooperative game; satisfaction criteria; proportional value; axiomatization

1. Introduction

In the process of economic globalization, multinational corporations usually reach a cooperative
agreement and form a cooperative coalition in order to gain more benefits. It is a central problem of
how to allocate the overall profits of cooperation among these multinational corporations. Cooperative
game theory provides general mathematical methods to solve the allocation problems. The solution
concepts, such as the Shapley value [1] and the nucleolus [2], offer concrete schemes of allocating the
overall profits among players.

The nucleolus, introduced by Schmeidler [2], is a classical solution concept of cooperative games.
The nucleolus is obtained by lexicographically minimizing the maximal excess of coalition over the
non-empty imputation set. Here, the excess is an important criterion to describe the dissatisfaction
with respect to the payoff vector. Thus, a positive excess of a coalition with respect to a payoff
vector represents the loss that the coalition suffers from the payoff vector. Several central solutions of
cooperative games are defined according to the idea of excess, for example, the nucleolus [2], the core,
the kernel [3], and the τ value [4]. In particular, the core is the set of all payoff vectors with non-positive
excesses for all coalitions. Besides the excess criterion, Hou et al. [5] proposed two other criteria to
measure the dissatisfaction of coalition with respect to a payoff vector.

On the contrary, the satisfaction is a significant criterion to measure the preference degree of
coalitions for a payoff vector. Thus, from the perspective of the satisfaction, we define a family of
optimal satisfaction values in this paper. Two special optimal satisfaction values are given in terms of
the optimistic satisfaction and the pessimistic satisfaction respectively. For a cooperative game with
transferable utility (for short, TU-game), the individual worth vector is the lower bound of the core
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while the marginal contribution vector is the upper bound of the core. Thus, the individual worth
vector and the marginal contribution vector can be viewed as the least potential payoff vector and
the ideal payoff vector respectively. There are two representative biases in social comparisons [6],
a comparative optimism bias (i.e., a tendency for people to evaluate themselves in a more positive
light) and a comparative pessimism bias (i.e., a tendency for people to evaluate themselves in a more
negative light). The optimistic satisfaction and the pessimistic satisfaction are defined by the individual
worth vector and the marginal contribution vector from the viewpoints of optimism and pessimism
respectively. On the optimistic side, players always take the individual worth of themselves into
consideration and think of the ratio between the real payoff and the individual worth as the measure
of satisfaction. The optimistic satisfaction of a coalition is defined by the ratio between the real payoff
of the coalition and the sum of their individual worths with respect to a payoff vector. Conversely,
pessimists always take the ideal payoff of themselves into consideration. The pessimistic satisfaction of
a coalition is the ratio between the real payoff of the coalition and the sum of the marginal contributions
of players in the coalition. Thus, the optimistic optimal satisfaction value and the pessimistic optimal
satisfaction value are determined by maximizing the minimal optimistic satisfaction and the minimal
pessimistic satisfaction in the lexicographic order over the non-empty pre-imputation set, respectively.
Interestingly, the two values are coincident with the proportional division value (PD value) and the
proportional allocation of non-separable contribution value (PANSC value), respectively.

The proportional principle is a relatively fair and reasonable allocation criterion in many economic
situations. It is a norm of distributed justice rooted in law and custom [7]. Moulin’s survey [8] of cost
and surplus sharing opens by emphasizing the importance of the proportional principle. The PD value
and the PANSC value are defined based on the idea of proportionality. The PD value, introduced by
Banker [9], distributes the overall worth of the grand coalition in proportion to player’s individual
worth among all players. As the dual value of the PD value, the PANSC value distributes the overall
worth in proportion to their marginal contributions with respect to the grand coalition. Moreover, some
other proportional values have been studied in the literature, such as the proper Shapley value [10,11],
the proportional value [12,13], and the proportional Shapley value [14,15]. In this paper, we mainly
study the PD value and the PANSC value and propose several new axiomatizations of the PD value
and the PANSC value.

Axiomatization is one of the main ways to characterize the reasonability of solutions in cooperative
games. For the PD value, Zou et al. [16] proposed several characterizations on the basis of the equal
treatment of equals, monotonicity and reduced game consistency. In this paper, we first propose the
equal minimal optimistic satisfaction property and equal minimal pessimistic satisfaction property,
which are inspired by the kernel concept [17]. The equal minimal optimistic satisfaction property states
that for a pair of players {i, j} and a payoff vector x, the minimal optimistic satisfaction of coalitions
containing i and not j with respect to x should equal that of coalitions containing j and not i under the
optimistic satisfaction criterion, while the equal minimal pessimistic satisfaction property describe this
situation under the pessimistic satisfaction criterion. Then, the PD value and the PANSC value are
characterized by these two properties with efficiency, respectively.

Associated consistency is also an important characteristic of solutions for TU-games. A solution
satisfies associated consistency if it allocates the same payoff to players in the associated game as that
in the initial game. The concept of associated consistency was firstly introduced by Hamiache [18] to
characterize the Shapley value. Driessen [19] characterized the family of efficient, symmetric, and linear
values by associated consistency on the basis of Hamiache’s axiomatization system. Associated
consistency is quite popular in the literature on the axiomatization of solutions for TU-games,
for instance, the EANS value and the CIS value [20], linear and symmetric values [21] and the
core [22]. We propose two associated consistency properties, optimistic associated consistency and
pessimistic associated consistency, to characterize the PD value and the PANSC value in this paper.
Furthermore, we also study the dual axioms of the two associated consistency properties and propose
more approaches to characterize these two values.
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This paper is organized as follows—in Section 2, some basic definitions and notation are
introduced. We determine the PD value and the PANSC value by maximizing the minimal optimistic
satisfaction and the minimal pessimistic satisfaction in the lexicographic order in Section 3. In Section 4,
we propose two types of axioms, the equal minimal satisfaction property and the associated consistency
property, to characterize the PD value and the PANSC value, and analyze the dual axioms of associated
consistency. Finally, we give a brief conclusion in Section 5.

2. Preliminaries

Let U ⊆ N be the set of potential players, where N is the set of natural numbers. A cooperative
game with transferable utility or simply a TU-game is a pair 〈N, v〉, where N ⊆ U is a finite set of n
players and v : 2N → R is a characteristic function that assigns to each coalition S ∈ 2N , the worth v(S)
with v(∅) = 0. Denote the set of all TU-games on player set N by GN . Hereafter, a TU-game 〈N, v〉
is simply denoted by v, the cardinality of a finite set S is denoted by s, and the set of all non-empty
coalitions is denoted by Ω.

A TU-game v ∈ GN is individually positive (or negative) if v({i}) > 0 (or v({i}) < 0) for all
i ∈ N. Denote the set of all individually positive (or negative) TU-games on player set N by GN

+

(or GN
− ). Without ambiguity, let bv({i}) ≡ v(N)− v(N\{i}) be the marginal contribution of player i

with respect to the grand coalition N. For all v ∈ GN and S ∈ Ω, let bv(S) ≡ ∑i∈S bv({i}). A TU-game
v ∈ GN is marginally positive (or negative) if bv({i}) > 0 (or bv({i}) < 0) for all i ∈ N. Denote the set
of all marginally positive (or negative) TU-games on player set N by GN

⊕ (or GN
� ). For convenience,

we focus on the family of all individually positive TU-games GN
+ and the family of all marginally

positive TU-games GN
⊕ in the rest of this paper.

For any TU-game v ∈ GN , its dual game vd is given as follows, for all S ⊆ N,

vd(S) ≡ v(N)− v(N\S), (1)

where vd(S) represents the marginal worth of coalition S with respect to N. Obviously, the dual of
a individually positive (or negative) TU-game is marginally positive (or negative). Thus, the duality
operator is not closed on the class of individually positive (or negative) TU-games. Given any A ⊆ GN ,
let Ad be the set of dual of TU-games in A.

A payoff vector for a TU-game v ∈ GN is an n-dimensional vector x ∈ Rn assigning a payoff
xi ∈ R to every player i ∈ N. Let x(S) = ∑i∈S xi for all S ∈ Ω. A payoff vector x satisfies efficiency
if x(N) = v(N) for all v ∈ GN , satisfies individual rationality if xi ≥ v({i}) for all v ∈ GN and i ∈ N,
and satisfies group rationality if x(S) ≥ v(S) for all v ∈ GN and S ∈ Ω. According to these properties,
the pre-imputation set I∗(v) and the imputation set I(v) are given by I∗(v) = {x ∈ Rn|x(N) = v(N)}
and I(v) = {x ∈ I∗(v)|xi ≥ v({i}) for all i ∈ N}.

A value on GN is a function ϕ which assigns to every game v ∈ GN a payoff vector ϕ(v) ∈ Rn.
Given any A ⊆ GN and a value ϕ on A, its dual value ϕd is defined as, for all v ∈ Ad, ϕd(v) ≡ ϕ(vd).
The PD value, denoted by PD, assigns to every player the payoff in proportion to their singleton
worths. For any v ∈ GN

+ and i ∈ N,

PDi(v) =
v({i})

∑k∈N v({k})v(N).

The PANSC value, denoted by PANSC, assigns to every player the payoff in proportion to their
marginal contributions with respect to the grand coalition. For any v ∈ GN

⊕ and i ∈ N,

PANSCi(v) =
bv({i})
bv(N)

v(N).

Obviously, the PD value is the dual of the PANSC value.
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3. The Optimal Satisfaction Value

The core is one of the most important set solutions for TU-games, which is defined through
efficiency and group rationality. The core of a TU-game v is given by

C(v) = {x ∈ I∗(v)|x(S) ≥ v(S) for all S ∈ Ω}.

Let e(S, x, v) = v(S) − x(S) be the excess of a coalition S ∈ Ω with respect to x in a TU-game v.
The excess e(S, x, v) is usually used to measure the dissatisfaction degree of a coalition S with respect
to x. Obviously, a payoff vector in the core only generates non-positive excesses for all coalitions.
The larger the excess e(S, x, v) is, the more unsatisfied the coalition S feel with respect to x. Conversely,
the larger the minus excess −e(S, x, v) is, the more satisfied the coalition S feel with respect to x.

From the perspective of measuring the satisfaction of coalitions for a payoff vector, we aim to
introduce a family of optimal satisfaction values for TU-games. For a payoff vector x ∈ Rn and
a TU-game v ∈ GN , let θv(x) be the (2n − 1)-tuple vector whose components are the satisfactions
of all coalitions S ∈ Ω with respect to x in non-decreasing order, that is, θv

t (x) ≤ θv
t+1(x) for all

t ∈ {1, 2, · · · , 2n − 2}. For any v ∈ GN and x, y ∈ Rn, we call θv(x) ≥L θv(y) if and only if θv(x) =
θv(y), or there exists an t ∈ {1, 2, · · · , 2n − 2} such that θv

l (x) = θv
l (y) for all l ∈ {1, 2, · · · , t − 1} and

θv
t (x) > θv

t (y).

Definition 1. For any v ∈ GN, an optimal satisfaction value ϕos is a payoff vector y in the pre-imputation set
satisfying θv(y) ≥L θv(x) for all x ∈ I∗(v), that is,

ϕos(v) = {y ∈ I∗(v)|θv(y) ≥L θv(x) for all x ∈ I∗(v)}.

The optimal satisfaction value can be viewed as a solution for an optimization problem aiming
to maximize the minimal satisfaction with respect to the payoff vector over the pre-imputation set
in the lexicographic order. It is easy to obtain that the optimal satisfaction value is consistent with
the pre-nucleolus of a TU-game v under the satisfaction criterion of the minus excess −e(S, x, v).
Hou et al. [5] defined two linear complaint criteria which are given by eE(S, x, v) = bv(S)− x(S) and
eC(S, x, v) = x(N\S)− ∑k∈N\S v({k}) for any v ∈ GN , S ∈ Ω and x ∈ Rn. Conversely, −eE(S, x, v)
and −eC(S, x, v) can be regarded as two different satisfaction criteria. Thus, two optimal satisfaction
values are obtained by Definition 1, which coincide with the ENSC value and the CIS value according
to Theorem 3.8 and Theorem 3.14 in Reference [5], respectively.

In this section, we define two special satisfaction criteria, the optimistic satisfaction and the
pessimistic satisfaction, from the viewpoint of optimism and pessimism respectively. Given any
v ∈ GN and x ∈ C(v), then it holds that v({i}) ≤ xi ≤ bv({i}) for all i ∈ N. Thus, the vector
(v({k}))k∈N can be regarded as the least potential payoff vector while (bv({k}))k∈N can be regarded
as the ideal payoff vector of a TU-game v. On the optimistic side, the players prefer taking the least
potential payoff of themselves into consideration and think of the ratio between the real payoff of
coalition and their least potential payoff as the measure of satisfaction of the coalition. Conversely,
pessimists prefer taking the ideal payoff of themselves into consideration. Formally, the optimistic
satisfaction and the pessimistic satisfaction are defined as follows.

Definition 2. For any payoff vector x ∈ Rn and v ∈ GN
+ , w ∈ GN

⊕ , the optimistic satisfaction of a coalition
S ∈ Ω with respect to x is given by

eo(S, x, v) =
x(S)

∑k∈S v({k}) , (2)

and the pessimistic satisfaction of a coalition S ∈ Ω with respect to x is given by

ep(S, x, w) =
x(S)

bw(S)
. (3)
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With respect to the two satisfaction criteria, we have two corresponding optimal satisfaction
values, namely the optimistic optimal satisfaction value and the pessimistic optimal satisfaction value.
In the following, we show that they are in coincidence with the PD value and the PANSC value,
respectively.

3.1. The Optimistic Optimal Satisfaction Value and the PD Value

Formally, the optimistic optimal satisfaction value is given as follows.

Definition 3. For any v ∈ GN
+ , the optimistic optimal satisfaction value ϕo is the unique payoff vector y in the

pre-imputation set satisfying θv(y) ≥L θv(x) for all x ∈ I∗(v), that is,

ϕo(v) = {y ∈ I∗(v)|θv(y) ≥L θv(x) for all x ∈ I∗(v)},

where θv is the satisfaction vector with respect to the optimistic satisfaction.

Next we show that the PD value is also obtained by lexicographically maximizing the minimal
optimistic satisfaction, and coincides with the optimistic optimal satisfaction value.

Lemma 1. Given any v ∈ GN
⊕ and a payoff vector x ∈ Rn, let l = arg minl∈N{eo({l}, x, v)}. Then, we have

eo({l}, x, v) = minS∈Ω{eo(S, x, v)}.

Proof. Let p = mink∈N{eo({k}, x, v)}, then p = eo({l}, x, v) and xk ≥ p · v({k}) for all k ∈ N. Then,
we have

eo({l}, x, v) ≥min
S∈Ω

{eo(S, x, v)} = min
S∈Ω

{ x(S)
∑k∈S v({k})}

≥min
S∈Ω

{ p · ∑k∈S v({k})
∑k∈S v({k}) } = p = eo({l}, x, v).

Therefore, all inequalities are equalities and then eo({l}, x, v) = minS∈Ω{eo(S, x, v)}.

Lemma 2. Given any v ∈ GN
+ and a payoff vector x ∈ Rn, let l = arg minl∈N{eo({l}, x, v)}. If there exists a

player m ∈ N such that eo({m}, x, v) > eo({l}, x, v), define a new payoff vector x∗ given by

x∗k =

⎧⎪⎨
⎪⎩

xk, for k ∈ N\{l, m};
xl +�, for k = l;
xm −�, for k = m,

where � = xm ·v({l})−xl ·v({m})
v({l})+v({m}) . Then the following five statements hold.

1. eo(S, x∗, v) = eo(S, x, v) for any S ∈ Ω and S �� l, m.
2. eo(S, x∗, v) = eo(S, x, v) for any S ∈ Ω and S � l, m.
3. eo(S, x∗, v) > eo(S, x, v) for any S ∈ Ω, S � l and S �� m.
4. eo(S, x∗, v) > eo({l}, x, v) for any S ∈ Ω, S �� l and S � m.
5. θv(x∗) >L θv(x), where θv is the satisfaction vector with respect to the optimistic satisfaction.
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Proof.

1. It is obvious that eo(S, x∗, v) = eo(S, x, v) for any S ∈ Ω and S �� l, m because x∗(S) = x(S) for
any S ∈ Ω and S �� l, m.

2. It is trivial that eo(S, x∗, v) = eo(S, x, v) for any S ∈ Ω and S � l, m.
3. It is easy to obtain that � > 0 since eo({m}, x, v) > eo({l}, x, v). Then for any S ∈ Ω, S � l and

S �� m,

eo(S, x∗, v) =
x∗(S)

∑k∈S v({k}) =
x(S) +�

∑k∈S v({k}) >
x(S)

∑k∈S v({k}) = eo(S, x, v).

4. Since eo({m}, x, v) > eo({l}, x, v), we have

eo({m}, x∗, v) =
x∗m

v({m}) =
xm −�
v({m}) =

xm + xl
v({m}) + v({l})

>

xl
v({l})v({m}) + xl

v({m}) + v({l}) =
xl

v({l})) = eo({l}, x, v).

For any S ∈ Ω, S �� l and S � m, we have

eo(S, x∗, v) =
x(S\{m}) + x∗m

∑k∈S\{m} v({k}) + v({m})

>

xl
v({l}) ∑k∈S\{m} v({k}) + xl

v({l})v({m})
∑k∈S\{m} v({k}) + v({m})

=
xl

v({l})) = eo({l}, x, v),

where the second inequality holds because eo({m}, x∗, v) > eo({l}, x, v) and eo(S\{m}, x, v) ≥
eo({l}, x, v) by Lemma 1.

5. It holds that θv(x∗) >L θv(x) by 1–4.

Theorem 3. For any v ∈ GN
+ , the following two statements hold.

1. ϕo
i (v)

v({i}) =
ϕo

j (v)
v({j}) for all i, j ∈ N.

2. ϕo
i (v) = PDi(v) for all i ∈ N.

Proof.

1. We will prove that ϕo
i (v)

v({i}) =
ϕo

j (v)
v({j}) for all i, j ∈ N by reduction to absurdity. Given any v ∈ GN

+ ,

suppose there exists m, j ∈ N such that ϕo
m(v)

v({m}) �=
ϕo

j (v)
v({j}) . Without loss of generality, suppose that

ϕo
m(v)

v({m}) >
ϕo

j (v)
v({j}) . Let y = ϕo(v) and l = arg minl∈N{eo({l}, y, v)}, then we have eo({m}, y, v) >

eo({l}, y, v). By Lemma 2, there exists x ∈ I∗(v) such that θv(x) >L θv(y), where θv is the
satisfaction vector with respect to the optimistic satisfaction, which contradicts with θv(y) ≥L

θv(x) for all x ∈ I∗(v). Therefore, ϕo
i (v)

v({i}) =
ϕo

j (v)
v({j}) for all i, j ∈ N.

2. It is immediate to deduce that ϕo
i (v) = PDi(v) =

v({i})
∑k∈N v({k})v(N) by the statement 1 and efficiency.

Obviously, if ∑k∈N v({k}) ≤ v(N), then the optimistic optimal satisfaction value ϕo satisfies
individual rationality, that is, ϕo

k(v) ≥ v({k}) for all k ∈ N. The following corollary is immediate for
the reason that C(v) �= ∅ implies ∑k∈N v({k}) ≤ v(N).

Corollary 4. For any TU-game v ∈ GN
+ with C(v) �= ∅, the optimistic optimal satisfaction value ϕo satisfies

individual rationality, that is, ϕo
k(v) ≥ v({k}) for all k ∈ N.
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3.2. The Pessimistic Optimal Satisfaction Value and the PANSC Value

The pessimistic optimal satisfaction value is defined by lexicographically maximizing the minimal
pessimistic satisfaction. We show that the PANSC value is also in coincidence with the pessimistic
optimal satisfaction value in this subsection.

Definition 4. For any v ∈ GN
⊕ , the pessimistic optimal satisfaction value ϕp is the unique payoff vector z in

the pre-imputation set satisfying θv(z) ≥L θv(x) for all x ∈ I∗(v), that is,

ϕp(v) = {z ∈ I∗(v)|θv(z) ≥L θv(x) for all x ∈ I∗(v)},

where θv is the satisfaction vector with respect to the pessimistic satisfaction.

Next, we will verify that the PANSC value coincides with the pessimistic optimal satisfaction
value. The proofs of Lemma 5, Lemma 6 and Theorem 7 are similar to those of Lemma 1, Lemma 2
and Theorem 3, and are omitted here.

Lemma 5. Given any v ∈ GN
⊕ and a payoff vector x ∈ Rn, let l = arg minl∈N{ep({l}, x, v)}. Then we have

ep({l}, x, v) = minS∈Ω{ep(S, x, v)}.

Lemma 6. Given any v ∈ GN
⊕ and a payoff vector x ∈ Rn, let l = arg minl∈N{ep({l}, x, v)}. If there is one

player m ∈ N such that ep({m}, x, v) > ep({l}, x, v), define a new payoff vector x∗ given by

x∗k =

⎧⎪⎨
⎪⎩

xk, for k ∈ N\{l, m};
xl +�, for k = l;
xm −�, for k = m,

where � =
xm ·bv

l −xl ·bv
m

bv
l +bv

m
. Then the following five statements hold.

1. ep(S, x∗, v) = ep(S, x, v) for any S ∈ Ω and S �� l, m.
2. ep(S, x∗, v) = ep(S, x, v) for any S ∈ Ω and S � l, m.
3. ep(S, x∗, v) > ep(S, x, v) for any S ∈ Ω, S � l and S �� m.
4. ep(S, x∗, v) > ep({l}, x, v) for any S ∈ Ω, S �� l and S � m.
5. θv(x∗) >L θv(x), where θv is the satisfaction vector with respect to the pessimistic satisfaction.

Theorem 7. For any v ∈ GN
⊕ , the following two statements hold.

1. ϕ
p
i (v)

bv({i}) =
ϕ

p
j (v)

bv({j}) for all i, j ∈ N.

2. ϕ
p
i (v) = PANSCi(v) for all i ∈ N.

By Theorem 7, it holds that ϕ
p
k (v) ≤ bv({k}) for all k ∈ N if bv(N) ≥ v(N). Then the following

corollary is immediate for the reason that C(v) �= ∅ implies bv(N) ≥ v(N).

Corollary 8. For any v ∈ GN
⊕ with C(v) �= ∅, the pessimistic optimal satisfaction value ϕp is bounded by the

ideal payoff vector (bv({k}))k∈N, that is, ϕ
p
k (v) ≤ bv({k}) for all k ∈ N.

4. Axiomatizations of the PD Value and the PANSC Value

In this section, we propose two types of axioms, the equal minimal satisfaction property and the
associated consistency property, to characterize the PD value and the PANSC value.
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4.1. Equal Minimal Satisfaction Property

In this subsection, we introduce the equal minimal optimistic satisfaction property and the equal
minimal pessimistic satisfaction property, inspired by the kernel concept [17]. The PD value and
the PANSC value are characterized by these two properties with efficiency, respectively. Moreover,
we study the dual relationship between the equal minimal optimistic satisfaction property and the
equal minimal pessimistic satisfaction property.

Given any pair of axioms of TU-games, if whenever a value satisfies one of these axioms, the dual
of the value satisfies the other, then these two axioms are dual to each other. More accurately, for any
pair of axioms A and Ad, A and Ad are dual to each other, if for any value that satisfies A, its dual value
satisfies Ad, and on the contrary, for any value that satisfies Ad, its dual value satisfies A. An axiom is
called self-dual if the dual of the axiom is itself. Obviously, efficiency is a self-dual axiom.

For any payoff vector x ∈ Rn and any v ∈ GN
+ , w ∈ GN

⊕ , the optimistic minimal satisfaction
mo

ij(v, x) and the pessimistic minimal satisfaction mp
ij(w, x) of player i ∈ N over player j ∈ N\{i} with

respect to x are given as follows

mo
ij(v, x) = min{eo(S, x, v)|S ∈ Ω, i ∈ S, j �∈ S},

mp
ij(w, x) = min{ep(S, x, w)|S ∈ Ω, i ∈ S, j �∈ S}.

Definition 5. Given any v ∈ GN
+ , w ∈ GN

⊕ , a payoff vector x satisfies

1. equal minimal optimistic satisfaction property if for every i, j ∈ N, mo
ij(v, x) = mo

ji(v, x).

2. equal minimal pessimistic satisfaction property if for every i, j ∈ N, mp
ij(w, x) = mp

ji(w, x).

The equal minimal optimistic satisfaction property states that for any i, j ∈ N, the minimal
optimistic satisfaction of all coalitions containing i and not j should equal that of all coalitions
containing j and not i with respect to a payoff vector under the optimistic satisfaction criterion.
On the contrary, the equal minimal pessimistic satisfaction property describe this situation under the
pessimistic satisfaction criterion.

Proposition 9. The equal minimal optimistic satisfaction property and the equal minimal pessimistic
satisfaction property are dual to each other.

Proof. Given a value ϕ on GN
+ , let ϕd be the dual of ϕ. It is sufficient to prove that ϕ satisfies the

equal minimal optimistic satisfaction property if and only if ϕd satisfies the equal minimal pessimistic
satisfaction property.

Suppose that ϕ satisfies the equal minimal optimistic satisfaction property. Given any v ∈ GN
⊕ and

its dual game vd ∈ GN
+ , by the equal minimal optimistic satisfaction property, we have mo

ij(v
d, ϕ(vd)) =

mo
ji(v

d, ϕ(vd)) for all i, j ∈ N, and then it holds that

min{ ∑k∈S ϕk(vd)

∑k∈S vd({k}) |S ∈ Ω, i ∈ S, j �∈ S} = min{ ∑k∈S ϕk(vd)

∑k∈S vd({k}) |S ∈ Ω, j ∈ S, i �∈ S}.

By the duality theory, it holds that

min{∑k∈S ϕd
k(v)

bv(S)
|S ∈ Ω, i ∈ S, j �∈ S} = min{∑k∈S ϕd

k(v)
bv(S)

|S ∈ Ω, j ∈ S, i �∈ S}.

Then, we have mp
ij(v, ϕd(v)) = mp

ji(v, ϕd(v)) for all i, j ∈ N. Therefore, ϕd satisfies the equal minimal
pessimistic satisfaction property.

Similarly, we can prove that ϕ satisfies the equal minimal optimistic satisfaction property if
ϕd satisfies the equal minimal pessimistic satisfaction property, which is similar to the above proof.
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Therefore, we can conclude that the equal minimal optimistic satisfaction property and the equal
minimal pessimistic satisfaction property are dual to each other.

Theorem 10.

1. The PD value satisfies the equal minimal optimistic satisfaction property on GN
+ .

2. The PANSC value satisfies the equal minimal pessimistic satisfaction property on GN
⊕ .

Proof.

1. For any v ∈ GN
+ , let x = PD(v). Then for any S ∈ Ω, eo(S, x, v) = v(N)

∑k∈N v({k}) . Therefore, for every
i, j ∈ N, we have

mo
ij(v, x) =

v(N)

∑k∈N v({k}) = mo
ji(v, x).

2. For any v ∈ GN
⊕ , let x = PANSC(v). Then for any S ∈ Ω, ep(S, x, v) = v(N)

bv(N)
. Therefore, we have

mp
ij(v, x) =

v(N)

bv(N)
= mp

ji(v, x),

for every i, j ∈ N.

Theorem 11. The PD value is the unique value on GN
+ satisfying efficiency and the equal minimal optimistic

satisfaction property.

Proof. Firstly, it is easy to show that the PD value satisfies efficiency. Then the equal minimal optimistic
satisfaction property follows from Theorem 10. It is left to show the uniqueness.

Suppose that x is a payoff vector of a TU-game v ∈ GN
+ which satisfies efficiency and the equal

minimal optimistic satisfaction property. Now suppose that x �= PD(v), and then there must exist
i, j ∈ N such that xi > PDi(v) and xj < PDj(v) by the efficiency. Let l = arg minl∈N{eo({l}, x, v)},
it holds that eo({l}, x, v) = minS∈Ω{eo(S, x, v)} by Lemma 1. Then we have

eo({l}, x, v) ≤ eo({j}, x, v) <
v(N)

∑k∈N v({k}) < eo({i}, x, v).

Without loss of generality, let S0 ⊆ N\{l} be a coalition containing i such that mo
il(v, x) =

eo(S0, x, v). Thus, we have

mo
il(v, x) =

x(S0\{i}) + xi

∑k∈S0\{i} v({k}) + v({i}) > eo({l}, x, v) = mo
li(v, x),

where the first inequality holds because eo(S0\{i}, x, v) ≥ eo({l}, x, v) and eo({i}, x, v) > eo({l}, x, v),
and the last equality holds because eo({l}, x, v) = minS∈Ω{eo(S, x, v)}. But mo

il(v, x) > mo
li(v, x)

contradicts with the equal minimal optimistic satisfaction property. Therefore, the PD value is the
unique value on GN

+ that satisfies efficiency and the equal minimal optimistic satisfaction property.

In TU-games, the duality operator is a very useful tool to derive new axiomatizations of solutions.
If there is an axiomatization of solution ϕ, then we can get one of axiomatization of its dual solution
ϕd by determining the dual axioms of the axioms which are included in the axiomatization of ϕ.
Oishi et al. [23] derived new axiomatizations of several classical solutions for TU-games by the
duality theory. Since the equal minimal optimistic satisfaction property and the equal minimal
pessimistic satisfaction property are dual to each other and efficiency is self-dual, we can obtain the
following theorem.
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Theorem 12. The PANSC value is the unique value on GN
⊕ satisfying efficiency and the equal minimal

pessimistic satisfaction property.

4.2. Associated Consistency Property

In the framework of the axiomatic system for TU-games, associated consistency is a significant
characteristic of feasible and stable solutions. Associated consistency states that the solution should be
invariant when the game changes into its associated game.

Throughout this subsection we deal with two types of associated games, the optimistic associated
game and the pessimistic associated game. In these two associated games, every coalition reevaluates
its own worth. Every coalition S just considers the players in N\S as individual elements and ignores
the connection among players in N\S. On the optimistic side, every coalition S always thinks that
players in N\S should just receive their least potential payoff (v{k})k∈N\S. The amount v(N)− v(S)−
∑k∈N\S v({k}) can be regarded as the optimistic surplus arising from mutual cooperation between
S itself and all j ∈ N\S. On the pessimistic side, every coalition S takes into consideration the ideal
payoff vector and thinks that players in N\S can obtain their ideal payoff (bv({k}))k∈N\S. The amount
v(N)− v(S)− bv(N\S) is considered as the pessimistic surplus. Every coalition S believes that the
appropriation of at least a part of the surpluses is within reach. Thus, every coalition S reevaluates
its own worth vλ,O(S) in the optimistic associated game as the sum of its initial worth v(S) and
a percentage λ ∈ (0, 1) of a part ∑k∈S v({k})

∑k∈N v({k}) of the optimistic surplus v(N)− v(S)− ∑k∈N\S v({k}).
Similarly, the pessimistic surplus is taken into account in the pessimistic associated game.

Definition 6. Given any v ∈ GN
+ with v(N) > 0, and a real number λ, 0 < λ < 1, the optimistic associated

game, denoted by 〈N, vλ,O〉, is given by vλ,O(∅) = 0 and

vλ,O(S) = v(S) + λ
∑k∈S v({k})
∑k∈N v({k}) [v(N)− v(S)− ∑

k∈N\S
v({k})], for all S ∈ Ω. (4)

The purpose of making v(N) > 0 is in order to ensure vλ,O ∈ GN
+ . For convenience, let GN

++ =

{v ∈ GN
+ |v(N) > 0}. It is easy to obtain that vλ,O ∈ GN

++ if v ∈ GN
++. Moveover, let GN

⊕⊕ = {v ∈
GN
⊕ |v(N) > 0}. Obviously, GN

++ and GN
⊕⊕ are dual to each other.

Definition 7. Given any v ∈ GN
⊕ and a real number λ, 0 < λ < 1, the pessimistic associated game, denoted by

〈N, vλ,P〉, is given by vλ,P(∅) = 0 and

vλ,P(S) = v(S) + λ
bv(S)
bv(N)

[v(N)− v(S)− bv(N\S)], for all S ∈ Ω. (5)

Obviously, vλ,P ∈ GN
⊕ if v ∈ GN

⊕ .

Definition 8.

1. A value ϕ on GN
++ satisfies optimistic associated consistency if ϕ(v) = ϕ(vλ,O) for any v ∈ GN

++.
2. A value ϕ on GN

⊕ satisfies pessimistic associated consistency if ϕ(v) = ϕ(vλ,P) for any v ∈ GN
⊕ .

Next, let us consider the dual relation between these two associated consistency. Given any
v ∈ GN

++ and its dual game vd ∈ GN
⊕⊕, we only need to verify whether (vd)λ,O is equal to

(vλ,P)
d, to determine the dual relation between optimistic associated consistency and pessimistic

associated consistency.

Remark 1. Optimistic associated consistency and pessimistic associated consistency are not dual to each other.
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Theorem 13.

1. The PD value satisfies optimistic associated consistency on GN
++.

2. The PANSC value satisfies pessimistic associated consistency on GN
⊕ .

Proof.

1. By Definition 6, vλ,O(N) = v(N) and for all i ∈ N,

vλ,O({i}) =v({i}) + λv({i})
∑k∈N v({k}) [v(N)− ∑

k∈N
v({k})]

=(1 − λ)v({i}) + λv({i})
∑k∈N v({k})v(N) > 0.

Then we have, for all i ∈ N

PDi(vλ,O) =
vλ,O({i})

∑k∈N vλ,O({k})vλ,O(N) =
v({i})

∑k∈N v({k})v(N) = PDi(v).

Therefore, the PD value satisfies optimistic associated consistency.
2. By Definition 7, vλ,P(N) = v(N) and vλ,P(N\{i}) = v(N\{i}) for all i ∈ N. Then, for all i ∈ N,

we have

PANSCi(vλ,P) =
bvλ,P({i})
bvλ,P(N)

vλ,P(N) =
bv({i})
bv(N)

v(N) = PANSCi(v).

Therefore, the PANSC value satisfies pessimistic associated consistency.

Next we recall some classical properties of solutions for TU-games. A value ϕ satisfies

1. continuity, if for any convergent sequence of games {〈N, vk〉}∞
k=1 and its limit game 〈N, ṽ〉 (i.e., for

all S ∈ Ω, limk→∞ vk(S) = ṽ(S)), the corresponding sequence of the values {ϕ(vk)}∞
k=1 converges

to the payoff vector ϕ(ṽ).
2. inessential game property, if ϕi(v) = v({i}) for any inessential game v ∈ GN and i ∈ N. A game

v is inessential if v(S) = ∑k∈S v({k}) for all S ∈ Ω.

3. proportional constant additivity, if ϕi(v + w) = ϕ(v) + bv({i})
bv(N)

w(N) for any v ∈ GN
⊕ , any constant

game w ∈ GN and i ∈ N. A game w is a constant game if w(S) = α for all S ∈ Ω and some α ∈ R.

The following lemma states the convergence of the sequence of repeated optimistic associated
games, and its detailed proof is in Appendix A.

Lemma 14. For any v ∈ GN
++, the sequence of repeated optimistic associated games {〈N, vt

λ,O〉}∞
t=1 converges,

and its limit game 〈N, v̂〉 is inessential, where v1
λ,O = vλ,O and vt+1

λ,O = (vt
λ,O)λ,O, t = 1, 2, · · · .

Theorem 15. The PD value is the unique value on GN
++ satisfying optimistic associated consistency, continuity

and the inessential game property.

Proof. It is easy to verify that the PD value satisfies continuity and the inessential game property.
Optimistic associated consistency follows from Theorem 13. It is left to show the uniqueness.

Now suppose that a value ϕ on GN
++ satisfies these three axioms. For any v ∈ GN

++, by Lemma 14,
the sequence of repeated optimistic associated games {〈N, vt

λ,O〉}∞
t=1 converges to an inessential game

〈N, v̂〉. Then by optimistic associated consistency and continuity, it holds that

ϕ(v) = ϕ(v1
λ,O) = ϕ(v2

λ,O) = · · · = ϕ(v̂).
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By the inessential game property, we have ϕi(v̂) = v({i}) = v({i})
∑k∈N v({k})v(N) for all i ∈ N. Thus,

ϕ(v) = PD(v).

Next we prove the convergence of the sequence of repeated pessimistic associated games.
The detailed proof of the lemma is in Appendix A.

Lemma 16. For any v ∈ GN
⊕ , the sequence of repeated pessimistic associated games {〈N, vt

λ,P〉}∞
t=1 converges

and its limit game 〈N, v̌〉 is the sum of an inessential game 〈N, u〉 and a constant game 〈N, w〉. where
v1

λ,P = vλ,P and vt+1
λ,P = (vt

λ,P)λ,P, t = 1, 2, · · · .

Theorem 17. The PANSC value is the unique value on GN
⊕ satisfying pessimistic associated consistency,

continuity, the inessential game property and proportional constant additivity.

Proof. It is easy to verify that the PANSC value satisfies continuity, the inessential game property and
proportional constant additivity. Pessimistic associated consistency follows from Theorem 13. It is left
to show the uniqueness.

Suppose that a value ϕ on GN
⊕ satisfies pessimistic associated consistency, continuity,

the inessential game property and proportional constant additivity. For any v ∈ GN
⊕ , by Lemma 16,

the sequence of repeated pessimistic associated games {〈N, vt
λ,P〉}∞

t=1 converges to a game 〈N, v̌〉
which is expressed as the sum of a constant game 〈N, w〉 and an inessential game 〈N, u〉, where
w(S) = v(N) − bv(N) and u(S) = bv(S) for all S ∈ Ω. By continuity and pessimistic associated
consistency, we have

ϕ(v) = ϕ(v1
λ,P) = ϕ(v2

λ,P) = · · · = ϕ(v̌).

Let α = v(N)− bv(N). By the inessential game property and proportional constant additivity, for
any i ∈ N

ϕi(v̌) =ϕi(u + w) = ϕ(u) +
bu({i})
bu(N)

w(N)

=u({i}) + bv({i})
bv(N)

[v(N)− bv(N)] =
bv({i})
bv(N)

v(N).

Therefore, ϕ(v) = bv({i})
bv(N)

v(N) = PANSC(v).

4.3. Dual Axioms of Associated Consistency

In Remark 1, we mentioned that optimistic associated consistency and pessimistic associated
consistency are not dual to each other. Next let us consider the dual axioms of optimistic associated
consistency and pessimistic associated consistency.

Definition 9. Given any v ∈ GN
⊕⊕, and a real number λ, 0 < λ < 1, the dual optimistic associated game

〈N, v∗λ,O〉 is given by

v∗λ,O(S) =

{
v(S) + λ

bv(N\S)
bv(N)

[bv(S)− v(S)], if S ⊂ N,

v(N), if S = N.
(6)

Definition 10. Given any v ∈ GN
+ , and a real number λ, 0 < λ < 1, the dual pessimistic associated game

〈N, v∗λ,P〉 is given by

v∗λ,P(S) =

{
v(S) + λ

∑k∈N\S v({k})
∑k∈N v({k}) [∑k∈S v({k})− v(S)], if S ⊂ N,

v(N), if S = N.
(7)
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Obviously, v∗λ,O ∈ GN
⊕⊕ if v ∈ GN

⊕⊕, and v∗λ,P ∈ GN
+ if v ∈ GN

+ .

Definition 11.

1. A value ϕ on GN
⊕⊕ satisfies dual optimistic associated consistency if ϕ(v) = ϕ(v∗λ,O) for any v ∈ GN

⊕⊕.
2. A value ϕ on GN

+ satisfies dual pessimistic associated consistency if ϕ(v) = ϕ(v∗λ,P) for any v ∈ GN
+ .

Lemma 18. For any v ∈ GN
++ and w ∈ GN

⊕ , the following two statements hold.

1. (vλ,O)
d = (vd)∗λ,O.

2. (wλ,P)
d = (wd)∗λ,P.

Proof.

1. By Equations (4) and (6), for any v ∈ GN
++ and S ⊂ N, we have

(vλ,O)
d(S) =vλ,O(N)− vλ,O(N\S)

=v(N)− v(N\S)− λ
∑k∈N\S v({k})
∑k∈N v({k}) [v(N)− v(N\S)− ∑

k∈S
v({k})]

=vd(S) + λ
bvd

(N\S)
bvd(N)

[bvd
(S)− vd(S)]

=(vd)∗λ,O(S).

For S = N, we have (vλ,O)
d(N) = v(N) = (vd)∗λ,O(N). Thus, (vλ,O)

d = (vd)∗λ,O.
2. By Equations (5) and (7), for any w ∈ GN

⊕ and S ⊂ N, we have

(wλ,P)
d(S) =wλ,P(N)− wλ,P(N\S)

=w(N)− w(N\S)− λ
bw(N\S)

bw(N)
[w(N)− w(N\S)− bw(S)]

=wd(S) + λ
∑k∈N\S wd({k})
∑k∈N wd({k}) [∑

k∈S
wd({k})− wd(S)]

=(wd)∗λ,P(S).

For S = N, we have (wλ,P)
d(N) = w(N) = (wd)∗λ,P(N). Thus, (wλ,P)

d = (wd)∗λ,P.

Proposition 19. Optimistic associated consistency and dual optimistic associated consistency are dual to
each other.

Proof. Given a value ϕ on GN
++, let ϕd be the dual of ϕ. We just prove that ϕ satisfies optimistic

associated consistency if and only if ϕd satisfies dual optimistic associated consistency.
If ϕ satisfies optimistic associated consistency, for any v ∈ GN

⊕⊕ and its dual game vd ∈ GN
++,

we have
ϕd(v) = ϕ(vd) = ϕ((vd)λ,O) = ϕ((v∗λ,O)

d) = ϕd(v∗λ,O),

where the third equation holds by Lemma 18. Thus, ϕd satisfies dual optimistic associated consistency.
If ϕd satisfies dual optimistic associated consistency, for any v ∈ GN

++ and its dual game vd ∈ GN
⊕⊕,

we have
ϕ(v) = ϕd(vd) = ϕd((vd)∗λ,O) = ϕd((vλ,O)

d) = ϕ(vλ,O).

Then, ϕ satisfies optimistic associated consistency.

The proof of Proposition 20 is similar to that of Proposition 19 and is left to readers.
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Proposition 20. Pessimistic associated consistency and dual pessimistic associated consistency are dual to
each other.

Next, let us identify the dual axioms of other axioms which are included in the axiomatizations of
the PD value and the PANSC value appearing in Theorems 15 and 17. It is easy to verify that continuity
and the inessential game property are self-dual. A value ϕ on GN

+ satisfies dual proportional constant

additivity, if ϕi(v + w) = ϕ(v) + v({i})
∑k∈N v({k})w(N) for any v ∈ GN

+ , any constant game w ∈ GN and
i ∈ N. Obviously, proportional constant additivity and dual proportional constant additivity are dual
to each other. Thus, it is straightforward to obtain the following two theorems by the duality theory.

Theorem 21. The PANSC value is the unique value on GN
⊕⊕ satisfying dual optimistic associated consistency,

continuity and the inessential game property.

Theorem 22. The PD value is the unique value on GN
+ satisfying dual pessimistic associated consistency,

continuity, the inessential game property and dual proportional constant additivity.

5. Conclusions

In this paper, we introduce the family of optimal satisfaction values from the perspective of the
satisfaction criteria. According to the optimistic satisfaction criterion and the pessimistic satisfaction
criterion, the PD value and the PANSC value are determined by lexicographically maximizing
the corresponding minimal satisfaction. Then, we characterize these two proportional values by
introducing the equal minimal satisfaction property, associated consistency and the dual axioms of
associated consistency. As two representative values of the proportional principle, the PD value and
the PANSC value are relatively fair and reasonable allocations applied in many economic situations.
For instance, in China’s bankruptcy law, the bankruptcy property shall be distributed on a proportional
principle when it is insufficient to repay all the repayment needs within a single order of priority.
The proportional principle is deeply rooted in law and custom as a norm of distributed justice.

In the future, we will study other characterizations of the PD value and the PANSC value relying
on some existing characterizations of classical solutions for TU-games. Coordinating the optimistic
satisfaction and the pessimistic satisfaction, we may elicit the combination of the PD value and the
PANSC value by an underlying neutral satisfaction criterion, and apply to some real situations.
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Appendix A

Proof of Lemma 14. For any v ∈ GN
++, we have vt

λ,O(N) = v(N), t = 1, 2, · · · . Next, we show the
convergence of the sequence of repeated optimistic associated games in two cases.

Case 1 |S| = 1. We first show that vt
λ,O({i}) = (1 − λ)tv({i}) + [1 − (1 − λ)t] v({i})

∑k∈N v({k})v(N) for
all i ∈ N and t ∈ {1, 2, · · · } by induction on t. When t = 1, by Definition 6, we have
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v1
λ,O({i}) = (1 − λ)v({i}) + λv({i})

∑k∈N v({k})v(N) for any i ∈ N. Suppose that vt−1
λ,O({i}) = (1 −

λ)t−1v({i}) + [1 − (1 − λ)t−1] v({i})
∑k∈N v({k})v(N). Then we have

vt
λ,O({i}) =(1 − λ)vt−1

λ,O({i}) +
λvt−1

λ,O({i})
∑k∈N vt−1

λ,O({k})
v(N)

=(1 − λ)

{
(1 − λ)t−1v({i}) + [1 − (1 − λ)t−1]

v({i})
∑k∈N v({k})v(N)

}

+
λ
{
(1 − λ)t−1v({i}) + [1 − (1 − λ)t−1] v({i})

∑k∈N v({k})v(N)
}

∑j∈N

{
(1 − λ)t−1v({j}) + [1 − (1 − λ)t−1] v({j})

∑k∈N v({k})v(N)
}v(N)

=(1 − λ)tv({i}) + (1 − λ)[1 − (1 − λ)t−1]
v({i})

∑k∈N v({k})v(N)

+
λv({i})

∑k∈N v({k})v(N)

=(1 − λ)tv({i}) + [1 − (1 − λ)t]
v({i})

∑k∈N v({k})v(N).

Thus, it holds that

vt
λ,O({i}) = (1 − λ)tv({i}) + [1 − (1 − λ)t]

v({i})
∑k∈N v({k})v(N), t = 1, 2, · · · (A1)

Therefore, for any 0 < λ < 1, we have

v̂({i}) = lim
t→∞

vt
λ,O({i}) = v({i})

∑k∈N v({k})v(N).

Case 2 |S| ≥ 2. For convenience, let ρS = ∑k∈S v({k})
∑k∈N v({k}) and σ = v(N)− ∑k∈N v({k}). Next we will

show that

vt
λ,O(S) =(1 − λρS)

tv(S) + [1 − (1 − λρS)
t]ρSv(N)

+ λρSσ(1 − ρS)[
t

∑
m=1

(1 − λ)m−1(1 − λρS)
t−m], (A2)

for all S ∈ Ω and t ∈ {1, 2, · · · } by induction on t. When t = 1, by Definition 6, it holds that
v1

λ,O(S) = (1 − λρS)v(S) + λρSρSv(N) + λρSσ(1 − ρS), and Equation (A2) holds. Without
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loss of generality, suppose that Equation (A2) holds at t − 1. Then, by Definition 6 and
Equation (A1), we have

vt
λ,O(S) =vt−1

λ,O(S) + λ
∑k∈S vt−1

λ,O({k})
∑k∈N vt−1

λ,O({k})
[v(N)− vt−1

λ,O(S)− ∑
k∈N\S

vt−1
λ,O({k})]

=(1 − λρS)vt−1
λ,O(S) + λρS[v(N)− (1 − ρS) ∑

k∈N
vt−1

λ,O({k})]

=(1 − λρS)vt−1
λ,O(S) + λρSρSv(N) + λρSσ(1 − ρS)(1 − λ)t−1

=(1 − λρS)
tv(S) + (1 − λρS)[1 − (1 − λρS)

t−1]ρSv(N)

+ λρSσ(1 − ρS)(1 − λρS)[
t−1

∑
m=1

(1 − λ)m−1(1 − λρS)
t−1−m]

+ λρSρSv(N) + λρSσ(1 − ρS)(1 − λ)t−1

=(1 − λρS)
tv(S) + [1 − (1 − λρS)

t]ρSv(N)

+ λρSσ(1 − ρS)[
t

∑
m=1

(1 − λ)m−1(1 − λρS)
t−m].

Thus, Equation (A2) holds for all S ∈ Ω and t ∈ {1, 2, · · · }.

Let at = ∑t
m=1(1 − λ)m−1(1 − λρS)

t−m. Since 0 < λ < 1 and 0 < ρS < 1, we have t(1 −
λ)t−1 ≤ at ≤ t(1− λρS)

t−1. Since limt→∞ t(1− λ)t−1 = 0 and limt→∞ t(1− λρS)
t−1 = 0, then

limt→∞ at = 0. Thus, we have

v̂(S) = lim
t→∞

vt
λ,O(S) = ρSv(N) =

∑k∈S v({k})
∑k∈N v({k})v(N).

Therefore, the sequence of repeated optimistic associated games {〈N, vt
λ,O〉}∞

t=1 converges and its

limit game 〈N, v̂〉 is given by v̂(S) = ∑k∈S v({k})
∑k∈N v({k})v(N) for all S ∈ Ω.

Proof of Lemma 16. For any v ∈ GN
⊕ , it holds that vt

λ,P(N) = v(N) and vt
λ,P(N\{i}) = v(N\{i}) for

all i ∈ N and t = 1, 2, · · · . Then we can obtain that bvt
λ,P({i}) = bv({i}) for all i ∈ N and t = 1, 2, · · · .

For convenience, let τS = bv(S)
bv(N)

. Next we will prove that

vt
λ,P(S) = (1 − λτS)

tv(S) + [1 − (1 − λτS)
t][v(N)− bv(N\S)] (A3)

for all S ∈ Ω and t = 1, 2, · · · , by induction on t. When t = 1, by Definition 7, we have v1
λ,P(S) =

(1 − λτS)v(S) + λτS[v(N)− bv(N\S)], and Equation (A3) holds. Suppose that Equation (A3) holds at
t − 1. Then, by Definition 7, we have

vt
λ,P(S) =vt−1

λ,P (S) + λ
bvt−1

λ,P (S)

bvt−1
λ,P (N)

[v(N)− vt−1
λ,P (S)− bvt−1

λ,P (N\S)]

=(1 − λτS)vt−1
λ,P (S) + λτS[v(N)− bv(N\S)]

=(1 − λτS)
{
(1 − λτS)

t−1v(S) + [1 − (1 − λτS)
t−1][v(N)− bv(N\S)]

}
+ λτS[v(N)− bv(N\S)]

=(1 − λτS)
tv(S) + [1 − (1 − λτS)

t][v(N)− bv(N\S)]

Thus, Equation (A3) holds for all S ∈ Ω and t ∈ {1, 2, · · · }.
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Due to 0 < λ < 1 and 0 < τS < 1, for any S ∈ Ω, we have

v̌(S) = lim
t→∞

vt
λ,P(S) = v(N)− bv(N\S).

Let u(S) = bv(S) and w(S) = v(N)− bv(N) for all S ∈ Ω. Obviously, 〈N, u〉 is an inessential
game and 〈N, w〉 is a constant game. The limit game 〈N, v̌〉 is given by v̌(S) = u(S) + w(S).
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Abstract: This work presents a two-player extraction game where the random terminal times follow
(different) heavy-tailed distributions which are not necessarily compactly supported. Besides,
we delve into the implications of working with logarithmic utility/terminal payoff functions.
To this end, we use standard actuarial results and notation, and state a connection between the
so-called actuarial equivalence principle, and the feedback controllers found by means of the Dynamic
Programming technique. Our conclusions include a conjecture on the form of the optimal premia for
insuring the extraction tasks; and a comparison for the intensities of the extraction for each player
under different phases of the lifetimes of their respective machineries.

Keywords: differential games; random time horizon; time until failure; discounted equilibrium;
weibull distribution; chen distribution; equivalence principle
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1. Introduction

In this work we study an extension of the extraction game presented in Reference [1] to the case
where the random terminal times follow (different) heavy-tailed distributions which are not necessarily
compactly supported. We use the framework of the problem of common non-renewable resource
exploitation as was posed in Reference [2], from both—the game-theoretical (cf. Reference [3]) and the
actuarial points of view (see References [4,5]).

The first reported works on the dynamic development of exhaustible resources by the members of
an oligopoly are those by Hotelling (see References [6,7]). There, we can find the well-known principle
of marginal revenue, as well as the standard Hypothesis on the equality between the growth rate and
the market interest rate over time. The survey [8] constitutes an excellent introduction to the topic
from an Economic point of view, see also Reference [9] for empirical investigation of common-pool
resource users’ dynamic and strategic behavior at the micro level using real-world data.

The area owes its main developments to a discussion that took place during the late ‘70s and the
early ‘80s on the possibility of replacing the exploitation schemes with some cutting-edge technology
to be attained in the near future. The relevance of the debate was the search of a path to move from
extracting a non-renewable resource to extracting a renewable one. In this line, we can quote the works

Mathematics 2020, 8, 1081; doi:10.3390/math8071081 www.mdpi.com/journal/mathematics69
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of Dasgupta et al. (e.g., References [10,11]; see also Reference [12] Chapter 10.2), and that of Reinganum
and Stokey (see Reference [13]). In the former papers, two agents extract a resource that becomes
extinct at a time instant which is not known a priori, and then, some technological breakthrough
becomes a suitable replacement; while in the latter, the authors assume that the extraction costs equal
zero to find an optimal extraction policy over time. From the point of view of our own research, one of
the main features of these publications is a method for comparing aggregate extraction paths in terms
of the impact of the commitment period of the players on how fast the resource becomes exhausted.

Harris and Vickers [14] revisited Dasgupta’s model, enhanced his analyses on the state dynamics,
prove the existence and uniqueness of a Nash equilibrium, and characterize it in terms of the slope
of the extraction policies at equilibrium. Epstein [15] and Feliz [16] considered a degenerate game to
study the policy of extraction from either one or two wells as the resource dynamics is affected by
uncertainty. More recently, the empirical economic knowledge on the subject (along with Hartwick and
Solow’s developments—see References [17,18] respectively- on the transformation of an exhaustible
resource into productive capital to sustain a steady level of consumption), allowed Van der Ploeg to
model the relation between the risk of depletion of a resource with the government policy on debt and
precautionary saving (see Reference [19]). In Reference [20], an evolutionary analysis of the renewable
resources exploitation with differentiated technologies was undertaken. Comprehensive surveys of
models of dynamic games for the development of (renewable and non-renewable) resources can be
found in Reference [21] by Van Long, and Reference [12] (Chapter 10) by Dockner et al.

Almost all of the papers mentioned above include the notion of uncertainty. However,
only Reference [1] uses random variables to model the terminal times of extraction of the competing
firms. We propose a differential game for the extraction of exhaustible resources (see References [12,22]
(Chapter 10; Chapter 7)), where we consider uncertainty and asymmetry in a cake-eating model (as
shown in Reference [23]), and interpret it in actuarial terms to, for instance, insure the extraction tasks
of the players. The uncertainty here is reflected by the fact that the game ends at a random time instant,
while the asymmetry can be seen in the different distributions we use for each player involved in
the game.

In the insurance literature on non-renewable resource extraction, the work of Stroebel and van
Benthem (see Reference [4]) is relevant for our research because they prove that (should the economy
is likely to expropriate) the insurance premium on the extraction tasks is increasingly expensive,
and decreasingly expensive as the extractors become more expert. Our approach resembles the one
used by Delacote (see Reference [24]), because what he sees as households near the extraction points
can be, in our case, an agent subjected to a double risk: they will (surely) occupy the place of what we
dub Chen extractor (which we prove to be the riskiest of the two players), and they will not be “able to
get more than their subsistence requirement” from the wells (the press article [25] presents a narrative
of one such situation in Mexico, and the essays in the book [26] delve with the problem in African
and Asian countries). There are three more references, in the insurance literature on the extraction of
renewable resources, that are important for our developments [27–29]. Au lieu of the control methods
we adopt, these pieces use statistical methods to show that natural insurance is a normal economic
good, and we all agree on the willingness of the agents to pay premia in exchange for a continued
supply of the resource under consideration.

The main feature of our game model can be traced back to the works of Petrosyan and Murzov
(cf. Reference [30]), and Yaari (cf. Reference [31]). The former used Dynamic Programming to solve a
zero-sum pursuit differential game with random duration, while the latter studied the maximization
of a utility function by the design of an optimal consumption plan. This topic was further investigated
in Reference [32], where the process of technological innovation was supposed to have a random
duration. To the best of our knowledge, Petrosyan and Shevkoplyas (Gromova) were the first to
propose a general differential game model with random duration (see Reference [33]), including the
derivation and solution in closed form under a logarithmic payoff structure, of the corresponding
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Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations (see Reference [34], and the generalization brought
about by Reference [35]).

Game theoretical tools have been applied to model phenomena of the interest of actuarial scientists
since the time of the works of Borch and Lemaire, who modelled risk transfers between insurer and
reinsurer by means of cooperative games tools (see References [36–38]). Among the most relevant and
recent works in Actuarial literature related to our work, we can quote Schäl’s paper on the application
of stochastic Dynamic Programming for a specific form of the utility function (cf. Reference [5]),
because in that research, as well as in ours, we intend to minimize risks in the insurance industry,
we focus on a particular form of the reward functions, and we share the use of Dynamic Programming.
Such technique is the cornerstone of our approach (the textbook [39] by Hinderer, Rieder and Stieglitz
represents an excellent introduction to it, for it covers the deterministic and stochastic cases, and it
presents some actuarial applications in insurance). This method has been widely used since its dawn
in the decade of the 1960s for many applications, including warfare, resource extraction, and control of
pollution in the environment, among others. Schmidli’s textbook [40] presents a complete introduction
to the subject with traditional Actuarial Sciences in view. Indeed, he starts with the presentation
of stochastic control (by means of Bellman’s principle) in discrete- and continuous-time, then goes
to applications in life insurance, and finally presents the classic ruin theory and Merton’s model
(Sections 2.6 and 3.1 in the survey [41], and Reference [42] constitute two quick reference guides
towards the techniques we use). The works of Dutang et al. (cf. References [43,44]), and that of Polborn
(see Reference [45]) present a game theoretic model in discrete-time on a non-life insurance market;
and despite the fact that they focus on the competition for the marketshare of the agents, our research
can be thought of as a continuation of their model on the fair (optimal) premia to be charged to the
agents so as to maximize their profits from the competitive process. Pliska and Ye’s article on optimal
life insurance strategies (see Reference [46]), and Mango’s work (cf. Reference [47]) on catastrophe
modelling resemble our own contribution, but the characterization of the probability laws that these
two works use lies on another extreme of the spectrum of distributions. This is the reason for which the
model of perishable inventories with fat-tailed distributions studied by Giri (cf. Reference [48]) is so
appealing to us. As for our use of simple contingent functions in association with Markovian processes,
the works of Mao and Ostaszewski, and Perry and Stadje on annuity theory (see References [49,50])
represent significant antecedents to our own ideas.

The problem with asymmetry in different random time instants has been studied for some
differential games in References [1,51–53]. A similar cake-eating problem with different asymmetric
discounting functions has been considered in Reference [54]. In our paper we also assume that the
game stops at the moment when one of the players quits the extraction tasks. However, rather than a
Verhulst-type dynamic for the stock of the resource (see Reference [55]), we use a model that resembles
the analysis in Reference [12]. We have chosen to work with the classic two-parameter Weibull
distribution and the Chen’s law. Weibull’s model has been widely used in life and non-life Actuarial
Mathematics, while Chen’s law owes its importance to the fact that its hazard rate function is –in a
broad sense- remarkably stronger than that of the former model; this feature automatically turns it
into a very suitable option for modelling extreme events (see Reference [56]). We focus our attention
on three phases of the lifetime of the machineries of each player: early stage, normal operation stage,
and aging stage. We do this by changing the shape parameters of each one of these laws, for lower value
of these parameters (δ < 1) results in a lower hazard rate for the distributions; while the choice of
δ = 1 yields a stable hazard rate function, and a greater value (δ > 1) gives us strong failure rates.

Our main conclusions have to do with the implications of using stochastic Dynamic Programming
with a particular form of the utility functions, as in Reference [5], however, all of our developments
are presented in the continuous-time framework. To this end, we use standard actuarial results and
notation, and state a connection between the so-called actuarial equivalence principle (see Chapter
6 in Reference [57], Section on Premium Calculation, Nonlife in References [46,58]), and the
feedback controllers found by means of the Dynamic Programming technique. We will end-up
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showing that, as in References [4,27–29], the agents are willing to pay for the coverage of the
insurance, in both: the one player context (see References [15,16]), and the game theoretic case
with asymmetries (see References [1,51–53]); where the unbalance comes from the choice of different
fat-tailed distributions for the terminal times of extraction of the agents (see References [50,56,59]).

The rest of the paper is organized as follows. In Section 2 we state the main hypotheses of our
model and argue about the connection of the game theoretic framework and the actuarial perspective.
Section 3.1 is a reduced version of our study for a degenerate game where only one player performs
extraction tasks. This part of the work allows us to exemplify an actuarial interpretation of the
verification result given by Theorem 1; and define what we call ease of the extraction of the player in
terms of the intensity of the extraction rate. In Section 3.2 we state and explicitly solve the two-player
extraction game where the random terminal times are distributed according to Weibull and Chen
laws; compare the results in terms of the ease of extraction of each player for particular choices of the
parameters; and interpret the verification Theorem 3 in actuarial terms. We give our conclusions in
Section 4.

2. Problem Statement

In this section we present the problem we are interested in, introduce our hypotheses, and explain
its connection with some ideas from the Actuarial Sciences.

2.1. Game Theoretical Framework

Let us consider the conflict-control process of the extraction of a non-renewable resource in which
two participants are involved. We assume that this set of agents remains fixed for the whole duration
of the process.

We describe the dynamics of the consumption of the resource by means of the model presented
in Reference [12] (Chapter 10.3), according to which,

ẋ(t) = −u1(t)− u2(t), with x(t0) = x0, (1)

where x(t) is the amount of the resource available at time t ≥ 0, ui(t) is the extraction rate of the i-th
agent at time t, x0 is the initial amount of the stock, and i = 1, 2.

Let Γ(x0) be a differential game whose system satisfies the following conditions.

Hypothesis 1. (a) Both players act simultaneously and start the game at some initial time t0 = 0 from the
state x0.

(b) The control variables of the players are their respective extraction rates at every moment in time, namely
u1, u2 : [0, ∞) → U , where U is a compact subset of [0, ∞).

(c) The dynamics of the system is given by (1).

The system (1) mirrors the fact that the resource is non-renewable because, by Hypothesis 1(b),
x(·) is non-increasing.

We assume that the extraction performed by each agent stops at some random moment of time Ti,
for i = 1, 2. We impose the following hypothesis on the random terminal times Ti.

Hypothesis 2. The cumulative distribution function of Ti satisfies the following:

(a) The random terminal times of the firms are distributed according to some (known) functions Fi : [0, ∞) →
[0, 1], i = 1, 2, that satisfy the normalization condition

∫ ∞

0
dFi(t) = 1,

and that are absolutely continuous with respect to Lebesgue’s measure.
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(b) Given the different characteristics of the firms, the terminal times of extraction of the same resource are
mutually independent.

(c) As soon as one of the firms reaches its terminal time, it quits the game and the remaining one keeps extracting
the resource until its terminal time is reached (which might happen when the resource becomes extinct).

We define the failure rate function associated with the i-th firm (see References [57,60,61] (Chapter 3;
Chapters 4 and 5; Chapter 8.5)) as

λi(t) :=
fi(t)

1 − Fi(t)
, (2)

where fi := F′
i is a density function for the random terminal time of the i-th player. The existence of

such density function is ensured by Hypothesis 2(a).
By virtue of Hypothesis 2(c), Γ(x0) collapses to a one-player game at a random terminal time that

may be formed by means of the rule of correspondence

T := min{T1, T2}. (3)

Now, by Hypothesis 2(b), the results in Reference [61] (Chapter 16.3) and the well-known relation

1 − Fi(t) = exp
(
−

∫ t

0
λi(s)ds

)
(4)

(see Reference [57] (Chapter 3)), we define the distribution function of the random variable T as

F(t) := 1 − (1 − F1(t))(1 − F2(t))

= 1 − e−
∫ t

t0
λ(s)ds, (5)

where λ(t) := λ1(t) + λ2(t) stands for the hazard rate function of the random variable T (see,
for instance Reference [57] (Chapter 9.3)).

We now introduce the payoff function and the performance indices for each player in the game
Γ(x0). To do this, we assume the following conditions.

Hypothesis 3. For i = 1, 2, the utility functions hi and Φi are continuous in all of their arguments, and concave
with respect to ui. Additionally, the function hi satisfies either:

(a) It is a nonnegative function, that is: hi : R× Un → [0, ∞).
(a’) The product fi · hi is such that

∫ ∞

0

∫ ∞

0
| fi(t) · hi(x(τ), u1(τ), u2(τ))|dtdτ < ∞.

At time T given by (3), if the i-th player is the only one remaining in the extraction game, she receives a
terminal payoff Φi(x(T)).

With Hypothesis 3, we can introduce the performance index we are interested in.
Define u : [0, ∞) → U 2 as the vector of functions (u1, u2). For i = 1, 2, the performance index for

the i-th player is:

Ki(x0, u1, u2) = E
u1,u2
x0

[∫ Ti

0
hi(x(τ), u1(τ), u2(τ))dτχ{Ti≤Tj}

]
(6)

+E
u1,u2
x0

[∫ Tj

0
hi(x(τ), u1(τ), u2(τ))dτχ{Ti>Tj}

]
(7)

+E
u1,u2
x0

[
Φi(x(T))χ{Ti>Tj}

]
, (8)
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where E
u1,u2
x0 [·] is the conditional expectation of · given that the initial stock is x0, and the agents use

the strategies u1 and u2; χ{·} is an indicator function; T is as in (3); and Φi(·) is the terminal payoff
function referred to in the final part of Hypothesis 3.

Remark 1. Note that the payoff of the game has two components: the integral payoff (6) and (7); achieved while
playing, and (8), a final reward, which is assigned to the player that stayed longer in the system.

Now we use the compactness mentioned in Hypothesis 1(b) to introduce the sort of optimality
we are interested in.

Definition 1. Let Πi := {ui : [0, ∞)× [0, x0] → [0, x0]|ui is Lebesgue-measurable}, for i = 1, 2. We say
that a pair of feedback strategies (u∗

1, u∗
2) ∈ Π1 × Π2 is optimal if it is a so-called Nash equilibrium, that is, if

K1(x0, u∗
1, u∗

2) ≥ K1(x0, u1, u∗
2) for every u1 ∈ Π1,

K2(x0, u∗
1, u∗

2) ≥ K2(x0, u∗
1, u2) for every u2 ∈ Π2.

In this game, each firm intends to maximize its profit. Then, we designate the corresponding
strategies of the players as u∗

1, u∗
2, and call them “optimal”. We also write the trajectory under such

strategies as x∗, and also call it “optimal trajectory”. Let h∗i (t) := hi(x∗, u∗
1, u∗

2), and rewrite the optimal
expected payoff resulting from the maximization of (6)–(8) as

Ki(x0, u∗
1, u∗

2) = E
u∗

1 ,u∗
2

x0

[∫ Ti

0
h∗i (τ)dτχ{Ti≤Tj}

]

+E
u∗

1 ,u∗
2

x0

[∫ Tj

0
h∗i (τ)dτχ{Ti>Tj}

]

+E
u∗

1 ,u∗
2

x0

[
Φi(x∗(T))χ{Ti>Tj}

]
.

The following result is an extension of Reference [1] (Corollary 3.1). We include its proof here for
the sake of completeness.

Proposition 1. Let Hypotheses 1–3 hold. If

Hi(θ) :=
∫ θ

0
h∗i (t)dt < ∞ (9)

for all θ > 0, then the optimal expected payoff for the problem starting at t = 0 is given by

Ki(x0, u∗
1, u∗

2) =
∫ ∞

0
h∗i (θ)(1 − F(θ)) + Φi(x∗(θ)) f j(θ)(1 − Fi(θ))dθ.

Proof. It is easy to see that

Ki(x0, u∗
1, u∗

2) =
∫ ∞

0

∫ ∞

0

∫ θ

0
h∗i (t)dtχ{θ<τ} f j(τ)dτ fi(θ)dθ

+
∫ ∞

0

∫ ∞

0

∫ τ

0
h∗i (t)dtχ{θ>τ} fi(θ)dθ f j(τ)dτ

+
∫ ∞

0

∫ ∞

0
Φi(x∗(τ))χ{θ>τ} f j(τ)dτ fi(θ)dθ.

The use of (9) and Fubini’s rule yield
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Ki(x0, u∗
1, u∗

2) =
∫ ∞

0

∫ τ

0
Hi(θ) fi(θ)dθ f j(τ)dτ +

∫ ∞

0

∫ θ

0
Hi(τ) f j(τ)dτ fi(θ)dθ (10)

+
∫ ∞

0

∫ ∞

0
Φi (x∗(τ)) χ{θ>τ} f j(τ)dτ fi(θ)dθ. (11)

An integration by parts yields

∫ ∞

0

∫ τ

0
Hi(θ) fi(θ)dθ f j(τ)dτ +

∫ ∞

0

∫ θ

0
Hi(τ) f j(τ)dτ fi(θ)dθ (12)

=
∫ ∞

0
Hi(θ) fi(θ)dθ −

∫ ∞

0
Hi(θ) fi(θ)Fj(θ)dθ (13)

+
∫ ∞

0
Hi(θ) f j(θ)dθ −

∫ ∞

0
Hi(θ) f j(θ)Fi(θ)dθ. (14)

Working with
∫ ∞

0 Hi(θ) fi(θ)dθ and
∫ ∞

0 Hi(θ) fi(θ)Fj(θ)dθ separately yields:

∫ ∞

0
Hi(θ) fi(θ)dθ = lim

θ→∞
Hi(θ)−

∫ ∞

0
h∗i (θ)Fi(θ)dθ, (15)∫ ∞

0
Hi(θ) fi(θ)Fj(θ)dθ = lim

θ→∞
Hi(θ)−

∫ ∞

0
Hi(θ) f j(θ)Fi(θ)dθ −

∫ ∞

0
h∗i (θ)Fi(θ)Fj(θ)dθ.

The last relations imply

∫ ∞

0
Hi(θ) fi(θ)Fj(θ)dθ +

∫ ∞

0
Hi(θ) f j(θ)Fi(θ)dθ = lim

θ→∞
Hi(θ)−

∫ ∞

0
h∗i (θ)Fi(θ)Fj(θ)dθ. (16)

Substituting (15) and (16) in (12)–(14) and collecting similar terms yield:

∫ ∞

0

∫ τ

0
Hi(θ) fi(θ)dθ f j(τ)dτ +

∫ ∞

0

∫ θ

0
Hi(τ) f j(τ)dτ fi(θ)dθ

= lim
θ→∞

Hi(θ)−
∫ ∞

0
h∗i (θ)

(
Fi(θ) + Fj(θ)− Fi(θ)Fj(θ)

)
dθ

=
∫ ∞

0
h∗i (θ) (1 − F(θ))dθ. (17)

Note that the term
∫ ∞

0

∫ ∞
0 Φi (x∗(τ)) χ{θ>τ} f j(τ)dτ fi(θ)dθ in (11) equals

∫ ∞

0
Φi (x∗(τ)) f j(τ)dτ fi(θ)dθ =

∫ ∞

0
Φi (x∗(θ)) f j(θ)dθ −

∫ ∞

0
Fi(θ)Φi (x∗(θ)) f j(θ)dθ

=
∫ ∞

0
Φi (x∗(θ)) fj(θ) (1 − Fi(θ))dθ, (18)

where the first equality is due to an integration by parts. The substitution of (17) and (18) in (10) and
(11) gives the result.

2.2. Interconnection with the Actuarial Sciences

In the traditional Actuarial Sciences literature, there are two main principles under which it is
possible to compute the amount (of money, time or effort) to be invested/reserved –know as “premium”
(premia)- in exchange for a benefit (e.g., the coverage of an insurance or the earnings of the extraction
tasks). These principles are classified according to the following methodologies.

PI. Optimization of the probability that the trajectory x(·) attains certain set. This approach and its
refinements yield what is called “percentile premium”, “value-at-risk” (see References [60,62]
(Chapters 3.5.3 and 3.5.4)) or “risk premium” (see Reference [61] (Example 6.5 and Chapter 17)).

PII. Search of a premium such that the decision maker is indifferent between taking the risk or not. This is
typically done by setting the expectation of the utility function under uncertainty equal to
the utility function without risk. A remarkable simplification arises when the utility function
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is linear, for in that case, the expectation of the prospective loss turns out to be null, and the
computation of the corresponding surcharge is very straightforward (see Reference [57] (Example
6.1.1)). The result of this method is called “equivalence premium”, “indifferent price”, or
“utility/benefit premium”.

From the point of view of the actuarial scientist, we are using a third principle, which connects
the traditional approaches. Thus, we state such third principle:

PIII. Optimization of the conditional expectation (6)–(8) (see References [40] and [63] (Chapter 6)) to
find the premium which is to be exchanged for the benefits derived from the extraction tasks.
Such a mixture resembles the approach of the tail-value-at-risk –also dubbed conditional tail
expectation and expected shortfall- (cf. References [64–66] and [60] (Chapter 3.5.4)) from PI, in the
sense that the objective function of the optimization program we work with is a conditional
expectation. However, due to the logarithmic form of the reward functions we use; and the
particular form of the HJBI equations that this yields, the premia we obtain are very much alike
the indifferent prices one would get, should one have chosen to work with the equivalence
principle from PII in the first place (see the Remarks 2 and 3 below). In the present context,
we follow References [31,33] to present the development of the extraction tasks as a process with
uncertain duration, and interpret the maximizers u∗

1 and u∗
2 as measures of the value’s cost that

each of the agents earns from such development, that is, as the premia that they should invest in
order to ensure/insure their operation.

We consider games with a random terminal time T, to which the basic terminology of reliability
theory can be applied directly. In fact, the failure rate function (2) can be thought of as a conditional
density provided that the agent did not default (i.e., leave the game until the moment t). In our
terminology, we would talk about the density of the terminal time of the game, provided that the game
was not terminated before the moment t. The failure rate function λi(t) that describes the life cycle for
the player i has the form described by Figure 1. We follow Reference [67] (Chapter 1) to identify three
phases of the hazard rate with respect to time.

• The first phase is called the pre-run phase. According to the theory of reliability, the failures in
this phase arise due to undetectable latent defects. Specificity of this problem is understandable
not only from the point of view of the application of elements to technical systems, in actuarial
risk theory, for such a period the terms “newborn period”, “infant mortality” and “early failures”
can be used (see Reference [57] (Chapter 3)). From the point of view of game theory, early failures
can be caused by inexperience, that is, inconsistency of the players just who just entered the game.
The failure rate function λi(·) in this phase is a decreasing function of time.

• The next period of the life cycle of the system is the so-called period of normal system operation.
The failure rate function λi(·) in this period is constant (or approximately constant), and the
sudden failures themselves are caused by imperfection of the system itself, or are caused by some
external factor. This is called the “adult” period of the process (see Reference [67] (Chapters 1,
3 and 5)). The game in the period under consideration can stop under the influence of some
unforeseen circumstances of the external environment.

• In the last period, the system goes into the aging phase. The system failures in this period
are associated with how the system ages, and that’s why the failure rate function λ(t) is an
increasing function.

Moreover, we are interested in presenting a comparative analysis of the results when the
duration of the extraction is distributed according to the laws of Weibull and Chen. The former
has been widely used for modelling losses, time-until-failure of many non-renewable electronic
devices (electronic lamps, semiconductor devices, some microwave devices) and lifetimes in general
(see References [57,59–61,67]), while the latter is a fat-tailed distribution (see Reference [56]).

76



Mathematics 2020, 8, 1081

Figure 1. A U-shaped (bathtub) hazard rate function.

The cumulative distribution function of the Weibull distribution is:

F1(t) = 1 − exp
(
−λ1tδ1

)
, (19)

where λ1 > 0 is a scale parameter, and δ1 > 0 is a shape parameter that corresponds to one of the three
phases in which the lifetime of the player can be located. Namely, the value δ1 < 1 corresponds to the
pre-run period, here the failure rate function λ1(t) is a decreasing function of t. At δ1 = 1, the system
is in the normal operation mode, and λ1(·) equals a constant value of λ1 > 0. We note that for δ1 = 1,
the Weibull distribution corresponds to an exponential distribution. For δ1 > 1, the system is in an
aging state, therefore λ1(·) is an increasing function. A special case of the Weibull distribution for this
instance is the so-called Rayleigh distribution (see Reference [60] (Appendix A.3)). We are in this case
when δ1 = 2.

By (2), the corresponding failure rate function is

λ1(t) = λ1δ1tδ1−1. (20)

The cumulative distribution function of Chen distribution is

F2(t) = 1 − exp
(

λ2

(
1 − etδ2

))
, (21)

where λ2 > 0 is a scale parameter, and δ2 > 0 is a shape parameter. Now, for this case, it follows from
(2) that the failure rate function takes the form

λ2(t) = λ2δ2tδ2−1etδ2 . (22)

If δ2 < 1, we will be at the “newborn” phase. Here, the failure rate function λ2(·) is
bathtub-shaped. This corresponds to a realistic process of extracting natural resources. When δ2 = 1,
the system is in the normal operation mode and the hazard rate function λ2(·) is increasing. At δ2 > 1,
the system is in aging state, and λ2(·) is also an increasing function, but from

λ′
2(t) = λ2δ2tδ2−1etδ2 for t > 0,

it is straightforward that the growth rate of λ2(·) is noticeably larger than in the case of normal
operation. This implies that there is a greater probability of failure at this stage of the extraction.

Graphical representations of the failure rate function of Chen distribution for two values of the
scale parameter λ2 are shown in Figure 2. In Figure 2b, note that, as δ → 1, the slope of the graph
grows larger. This fact might be interpreted by arguing that Chen’s distribution plausibly describes
how the system goes from the pre-run state into the normal operation mode.

Graphical representations of the failure rate functions for the Weibull and Chen distributions for
fixed λ1 = 2 = λ2, and the same values of the parameter δ1 and δ2 are shown in Figure 3. Note that we
display these functions for each of the periods we have identified.
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(a) λ2 = 2, different modes of δ2. (b) λ2 = 1, “newborn” mode.
Figure 2. The failure rate function λ2(·).

(a)

(b)

(c)
Figure 3. Failure rate functions for Weibull and Chen distributions with different shape parameters.
(a) Comparison of the failure rate functions in the pre-run stage. (b) Comparison of the failure rate
functions at the stage of normal operation. (c) Comparison of the failure rate functions during the
system aging period.
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3. Resource Exploitation under Two Parametric Interpretations

It is easy to see that Weibull and Chen distributions (19) and (21) verify the Hypothesis 2(a).
We will consider the cases of these probability laws for the random terminal times of the players,
and take T = min{T1, T2} for different parameters of these families. This will allow us to model
failures of the equipments depending on their operation mode.

3.1. Dynamic Models for the Extraction of Natural Resources by One Agent

In this section, we follow Reference [32], and consider the situation where only one agent performs
extraction tasks, that is, the degenerate game where n = 1 (in this case, we do not consider a terminal
payoff function, because the game finishes as soon as the only player leaves the system). Let x(t) be the
stock of the non-renewable resource under consideration. Then, the dynamics (1) reduces to

ẋ(t) = −u(t), x(t0) = x0 > 0, (23)

where u(t) ≥ 0. An application of Proposition 1 yields that the expected payoff of the agent, provided
that the terminal random time follows Weibull’s law, that is

K(x0, u) =
∫ ∞

0
h(x(t), u(t))e−λtδ

dt. (24)

Note that adding a terminal cost does not make sense with a single agent, so we set Φ(x) ≡ 0.
If we use Chen’s law for the random terminal time, the winnings of the extractor are given by

K(x0, u) =
∫ ∞

0
h(x(t), u(t)) exp

[
−λ

(
1 − etδ

)]
dt. (25)

The problem of obtaining feedback maximizers for the expected gains in Formulae (24) and (25)
under the condition (23) can be solved using the following Bellman equation

λ(t)W(x, t) =
∂

∂t
W(x, t) + max

u

(
h(t, u)− u

∂

∂x
W(x, t)

)
, (26)

with transversality condition
lim
t→∞

W(x, t) = 0. (27)

In (26), λ(·) corresponds either to the failure rate of Weibull or Chen distributions. The details
on the necessary calculations for achieving (26) and (27) can be seen in, for instance Reference [68]
(Chapter I.5).

The following result assumes a specific form of the agent’s utility function. There are, of course,
many other forms, which need to be concave, continuous and non-decreasing. However, we have
chosen this particular form because of the interest that the result has from the point of view of the
Actuarial Scientist (see Remark 2 below).

Theorem 1. If the utility function is of the form

h(x, u) = ln u, (28)

then the optimal controller is given by the Lebesgue-measurable function

u∗(t, x) =
x
āt

, (29)

where

āt :=
∫ ∞

0

1 − F(t + s)
1 − F(t)

ds. (30)
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Proof. The substitution of the ansatz (see References [34,35]):

W(x, t) = A(t) ln x + B(t), (31)

into Bellman’s Equation (26) yields

∂

∂x
W(x, t) =

A(t)
x

, (32)

∂

∂t
W(x, t) = Ȧ(t) ln x + Ḃ(t). (33)

Plugging (32) and (33) into (26) gives us that the maximized control is:

u∗(t, x) =
x

A(t)
, (34)

and also the following system of differential equations:

Ȧ(t)− λ(t)A(t) + 1 = 0; (35)

Ḃ(t)− λ(t)B(t)− ln(A(t))− 1 = 0. (36)

The transversality condition (27) takes the form

lim
t→∞

A(t) = 0, (37)

lim
t→∞

B(t) = 0. (38)

Using (37) and (thus) the integrating factor (4) we can solve (35) and get

A(t) =
1

1 − F(t)

∫ ∞

t
e−

∫ s
0 λ(τ)dτds

=

∫ ∞
t 1 − F(s)ds

1 − F(t)
.

The last equality follows from (4). Here, of course, F(·) is given by (19) or (21).
From (30), it is straightforward that

A(t) = āt. (39)

The substitution of (39) in (34) gives (29).
The fact that the controller (29) is optimal for the degenerate game follows from Theorem I.7.1(a)

in Reference [68]. The fact that that such controller is Lebesgue-measurable follows from
Hypothesis 1(b), along with the so-named measurable selection theorems (see, for instance,
References [69–71] (Theorem 12.1; Proposition D5(a); Theorem 3.4)). This proves the result.

Remark 2. An actuarial interpretation of Theorem 1 is the fact that the function A(t) agrees with the expectation
of the so-called contingent life annuity with 0% interest rate for a life aged (t) displayed in (30) (see
Reference [57] (Chapter 5.2)) and write

x − u∗(t, x) · āt = 0. (40)

This expression is remarkably similar to the relations (6.2.3)–(6.2.4) in Reference [57] (see PII in Section 2.2,
References [57,58] (Chapters 6.2 and 7.2; sections on Premium Calculation for Nonlife Insurance), which are
used to establish the equivalence premium u∗(t, x) that is to be continuously paid to obtain a benefit of x.
In the Actuarial Mathematics literature, we use this expression to state the existence of a balance between an
expected income u∗(t, x) · āt (that will be paid over a contingent horizon), and an expected benefit x (that
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will be received at a given moment of time). From this point of view, we might distinguish two parts within the
Lebesgue-measurable optimal rate of extraction u∗(t, x) from (29):

(i) the benefit that the agent will eventually get, x; and
(ii) the intensity of the extraction that the agent needs to apply to acquire u∗(t, x), that is, A(t) = āt.

Keeping this in mind, we can state that the resulting instantaneous utility of obtaining x by continuously
extracting u∗(t, x) with an intensity of āt is given by h(x, u) in (28).

Since the intensity of the extraction appears in the denominator of (29), we will dub 1
āt

as ease of
extraction. Our goal is to emphasize the inverse proportionality of the optimal controller u∗(t, x) with respect
to the intensity of extraction āt.

We obtain the following result as a by-product of Theorem 1.

Theorem 2. If the utility function is of the form (28), then the value function for the optimal control problem of
maximizing (6) within U subject to (1) is given by

W(x, t) = āt ln x +
∫ ∞

0
(1 + ln ās)

1 − F(s + t)
1 − F(t)

ds. (41)

Proof. From (31), we readily know that

W(x, t) = āt ln x + B(t).

To find the function B(t), we note that the transversality condition (38) and again, the integrating
factor (4) give that

B(t) =

∫ ∞
t exp

(
−
∫ s

0 λ(τ)dτ
)
(1 + ln A(s))ds

exp
(
−
∫ t

0 λ(s)ds
)

=

∫ ∞
t (1 − F(s)) (1 + ln ās)ds

1 − F(t)
. (42)

The last equality follows from (4) and (39). Substituting (42) into (31) gives (41). The fact that this
function is actually the value of the optimal control problem of maximizing (6) subject to (1) follows
from the verification Theorem I.7.1(b) in Reference [68]. This proves the result.

3.1.1. Normal Mode (δ1 = 1 = δ2)

As we already stated, for the case of Weibull distribution, when δ1 = 1, the random terminal time
is exponentially distributed with mean λ−1

1 . Then, by Theorem 1, the optimal strategy of the agent is
u∗(t, x) = λ1x. We solve (23) and get that the optimal trajectory is

x∗(τ) = x0e−λ1τ .

For the case of Chen’s law, we let δ2 = 1 and substitute (22) into (29) to get

u∗(t, x) =
x exp

(
−λ2et)∫ ∞

t exp (−λ2es)ds
.

We substitute this controller into (23) and solve the differential equation to obtain the optimal
trajectory when the random terminal time is distributed according to Chen’s law and δ2 = 1. That is:

x∗(τ) = x0 exp

(
−

∫ τ

0

exp
(
e−λ2t)

exp
(
−
∫ ∞

τ e−λ2sds
)dt

)
.
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Figures 4–6 summarize these results when λ1 = 1 = λ2, which, since λ1 and λ2 are
scale parameters of the distributions under study, we can have a sufficiently general idea of our
developments. The reason is that, if we select other values for these parameters, we will end up
having constant multiples of the random variables X1 and X2 analyzed in this study (see Reference [60]
(Section 4.2.1)).

Figure 4. Optimal trajectories for the laws of Weibull (continuous-red) and Chen (dotted-blue) when
δ1 = 1 = δ2 and λ1 = 1 = λ2.

Figure 5. Optimal Weibull (red) and Chen (blue) controllers when δ1 = 1 = δ2 and λ1 = 1 = λ2 for
(t, x) ∈ [0, 1]× [0, 10].

Figure 6. Ease of the extraction for the laws of Weibull (straight-red) and Chen (decreasing-blue) when
δ1 = 1 = δ2 and λ1 = 1 = λ2.

We might give a plausible interpretation of Figures 5 and 6 in the direction of Remark 2.
The optimal extraction rates are linear in the state variable and, as we established in Remark 2(ii),
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the largest the value of A(t) = āt is, the easiest it is for the extractor to obtain u∗(t, x). In this sense, it is
straightforward that, for Chen’s law, as time goes by, it becomes harder to extract at a rate of u∗(t, x).
On the other hand, it is very easy to see that, under Weibull’s law, A(t) ≡ 1 (see References [12,57,61]
(Example 5.2.1; p. 323; Chapter 8.10.1)). This implies that, in the normal mode, the agent whose
random terminal time follows the Weibull distribution is indifferent to the moment of time when the
extraction task takes place, and should only look at the remaining amount of the resource.

As for the optimal trajectories in Figure 4, observe that the system exploited by an agent affected
by Chen’s law becomes exhausted a lot faster than a system exploited by a Weibull extractor. This is
consistent with the fact that, according to Figure 5, a Chen extractor would be more intense in his
exploitation tasks.

3.1.2. Aging Mode (δ1 = 2 = δ2)

We stated before that for δ1 = 2 = δ2, Weibull’s law coincides with Rayleigh distribution. In this
case, (20) gives that λ1(t) = 2λ1t; then from Theorem 1 we get

u∗(t, x) =
xe−λ1t2∫ ∞

t e−λ1s2 ds
.

For Chen’s distribution, when we have an aging system, by (22), the failure rate function is
λ2(t) = 2λ2tet2

, and the Theorem 1 gives that the optimal control is

u∗(t, x) =
x exp

(
−λ2et2

)
∫ ∞

t exp
(
−λ2es2

)
ds

.

We solve (23) and get that the optimal trajectories under each law are:

x∗(τ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x0 exp
(
−
∫ τ

0
e−λ1t2∫ ∞

t e−λ1s2
ds

dt
)

for Weibull’s law with δ1 = 2

x0 exp

(
−
∫ τ

0

exp
(
−λ2et2

)
∫ ∞

t exp
(
−λ2es2

)
ds

dt

)
for Chen’s law with δ2 = 2.

Figures 7–9 summarize these results when λ1 = 1 = λ2. There, we can see that, in the aging
mode, as time passes by, the extraction tasks need to be more intense for both assumptions.

Figure 7. Optimal trajectories for laws of Weibull (continous-red) and Chen (dotted-blue) when
δ1 = 2 = δ2 and λ1 = 1 = λ2.
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Figure 8. Optimal Weibull (red) and Chen (blue) controllers when δ1 = 2 = δ2 and λ1 = 1 = λ2 for
(t, x) ∈ [0, 1]× [0, 10].

However, for the Chen extractor, the situation deteriorates very rapidly, and hence, it needs to
speed up the pace of its tasks. It readily follows from (29) that both controllers are linear in the state.
Again, Figure 7 shows how the stock becomes exhausted for each case.

Figure 9. ease of the extraction for Weibull (red) and Chen (blue) laws when δ1 = 2 = δ2 and
λ1 = 1 = λ2.

3.1.3. Early Period (δ1 = 1
2 = δ2)

For the Weibull case, (20) yields that the hazard rate function is λ1(t) =
λ1

2
√

t
. A substitution in

(29) gives us

u∗(t, x) =
xe−λ1

√
t∫ ∞

t e−λ1
√

sds
.

For Chen’s law, the pre-run system has a hazard rate function of the form λ2(t) = λ2
2
√

t
e
√

t.
The corresponding optimal control has the form

u∗(t, x) =
x exp

(
−λ2e

√
t
)

∫ ∞
t exp

(
−λ2e

√
s
)

ds
.
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We solve (23) and get that the optimal trajectories under each law are:

x∗(τ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x0 exp
(
−
∫ τ

0
λ2

1
2(λ1

√
τ+1)dt

)
for Weibull’s law with δ1 = 1

2 ,

x0 exp

(
−
∫ τ

0

exp
(
−λ2e

√
t
)

∫ ∞
t exp(−λ2e

√
s)ds

dt

)
for Chen’s law with δ2 = 1

2 .

Figures 10–12 summarize these results when λ = 1. It is of particular interest that, according
to Figure 12, for a Chen extractor, we almost have the same situation displayed in Figure 6 with the
Weibull extractor. However, in this case, the intensity function A(t) = āt converges to a smaller value
than the one displayed in that part of the illustration. This means that, during the early mode of the
system, an agent whose random terminal time follows the Chen distribution should only mind about
the remaining stock of the resource.

Figure 10. Optimal trajectories for laws of Weibull (continuous-red) and Chen (dotted-blue) when
δ1 = 1

2 = δ2 and λ1 = 1 = λ2.

Figure 11. Optimal Weibull (red) and Chen (blue) controllers when δ1 = 1
2 = δ2 and λ1 = 1 = λ2 for

(t, x) ∈ [0, 1]× [0, 10].
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Figure 12. Ease of the extraction for Weibull (red) and Chen (blue) laws when δ1 = 1
2 = δ2 and

λ1 = 1 = λ2.

For a Weibull extractor at the pre-run phase, as time goes by, the exploitation becomes less intense,
and, in spite of the fact that the reserve will be consumed at an exponential rate, it will last for more
time than under Chen assumption (look at Figure 10). An economic interpretation of this fact is that
the optimal rules of behavior for the agents demand Chen’s law to be more intense in its labors even
from the early period, while they allow Weibull’s to be less intense (look at Figure 11).

3.2. Game Theoretic Model for the Extraction of Natural Resources

Now we consider the non degenerate game model from Section 2. For that purpose, we will make
an extensive use of the results presented in References [1,50] and [57] (Chapter 9.2). Note that the
utility function of the agent will explicitly depend only on its own control, and there are no payoff
transfers among the players, that is, on the extraction rate applied by the agent, and on the stock of the
resource at time t ≥ 0.

Theorem 3.1 in Reference [1] allows us to state the HJBI equations associated with the optimization
problem for the i-th player. Namely,

− ∂

∂t
Wi(x, t) + (λ1(t) + λ2(t))Wi(x, t)

= max
ui∈Πi

(
hi(t, u1, u2) + Φi(x)λj(t)−

∂

∂x
Wi(x, t)(u1 + u2)

)
, (43)

Wi(x, t) → 0 as t → ∞, (44)

for i = 1, 2.
We will find explicit solutions for (43) when the functions hi are analogous to (28) for i = 1, 2.

That is, when
hi(x, u1(t, x), u2(t, x)) = ln(ui(t, x)). (45)

We also suppose that

Φi(x(t ∧ τ)) = ci ln(x(t ∧ τ)) = ci ln(x)χτ≤t, (46)

for some positive constant values ci and i = 1, 2. In this case, the HJBI Equation (43) turns out to be

− ∂

∂t
Wi(x, t) + (λ1(t) + λ2(t))Wi(x, t)

= max
ui∈Π1

(
ln(ui) + ci ln(x)λ−i(t)−

∂

∂x
Wi(x, t)(u1 + u2)

)
,
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for i = 1, 2. Here,

λ−i(·) :=

{
λ2(·) if i = 1,
λ1(·) if i = 2.

In what follows, we find the optimal strategies and the value function for this problem by
proceeding in the same way that led us to (29) and (41). The next result is similar to Reference [1]
(Proposition 4.1).

Theorem 3. If the utility functions are of the form (28), and the terminal payoff functions are given by (46),
then the optimal strategies for the game Γ(x0) are Lebesgue-measurable, and are given by:

u∗
i (t, x) =

x
ā[t]1:[t]2 + ci Ā[t]i :

1
[t]−i

, (47)

for i = 1, 2, where

ā[t]1:[t]2 :=
∫ ∞

0

1 − F(t + s)
1 − F(t)

ds, (48)

and

Ā[t]i :
1
[t]−i

:=
∫ ∞

0

1 − F(t + s)
1 − F(t)

λ−i(s + t)ds. (49)

Here, F(t) is as in (5).

Proof. The substitution of the informed guesses

Wi(x, t) = Ai(t) ln x + Bi(t),

for i = 1, 2; into (43) and (44) yields:

• that the maximizers of (43) are of the form

u∗
i (t, x) =

x
Ai(t)

. (50)

The fact that these controllers are Lebesgue-measurable follows from Hypothesis 1(b), along with
the so-named measurable selection theorems (see, for instance, References [69–71] (Theorem 12.1;
Proposition D5(a); Theorem 3.4)).

• the following Cauchy problem (which is analogous to (35)–(38)):

−Ȧi(t) + Ai(t)(λi(t) + λ−i(t)) = 1 + ciλ−i(t), (51)

Ḃi(t)− Bi(t)(λi(t) + λ−i(t)) = ln Ai(t) + 1 +
Ai(t)

A−i(t)
(52)

lim
t→∞

Ai(t) = 0, (53)

lim
t→∞

Bi(t) = 0. (54)

We apply the technique of the integrating factor in (51); use the transversality condition (53),
and get

Ai(t) =

∫ ∞
t (1 + ciλ−i(τ)) exp

(
−
∫ τ

0 λi(s) + λ−i(s)ds
)

dτ

exp
(
−
∫ t

0 λi(τ) + λ−i(τ)dτ
)

=

∫ ∞
t (1 + ciλ−i(τ))(1 − F(τ))dτ

1 − F(t)
.

The last equality holds by virtue of (5).
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We now use (48) and (49) and observe that

Ai(t) = ā[t]1:[t]2 + ci Ā[t]i :
1

[t]−i
. (55)

The substitution of this expression in (50) yields (47).
By Theorem I.7.1(a) in Reference [68] (see also Reference [52] (Theorem 2(i))), we know that (47) is

optimal for the game with no explicit payoff transfer among the players. This proves the result.

Remark 3. Just as we interpreted (39) in Remark 2 as a continuous life annuity, we can do the same with (55).

• In the Actuarial Mathematics literature, the continuous annuity of the joint-life status of the
times-until-failure T1 and T2 is designed by the symbol ā[t]1: [t]2 , and represents a natural extension of
(30) to the case where the payments stop when either player leaves the system (the use of the braces around t
emphasizes the fact that each player has lived-up to the moment t > 0, and states that the age-at-selection
of each player is t—see Reference [57] (Chapter 3.8)). Thus we define such annuity as in (48) (with null
interest rate);

• we also design the mathematical expectation of the present value of one monetary unit payable
(to the i-th player) at the moment of failure of the (−i)-th player (with null interest rate) by the
symbol Ā[t]i :

1
[t]−i

, as in (49) (the superscript 1 means that the (−i)-th player is the first who fails—see
Reference [57] (Chapter 9.7)). The reason is that the expression

1 − F(t + s)
1 − F(t)

λ−i(s + t)

can be thought of as the probability that both agents survive up to moment t, and the (−i)-th agent fails
at moment t + s. (See References [46,57] (Chapter 9.9)).

Keeping this in mind we can propose an extension of (40) and write (47) as:

x − u∗
i (t, x) ·

(
ā[t]1:[t]2 + ci Ā[t]i :

1
[t]−i

)
= 0. (56)

From an actuarial perspective, this expression means that, for the i-th extractor, there is a balance between
the eventual benefit x, and the continuous rate of extraction u∗

i (t, x), which includes a final payment (of size
ciu∗

i (t, x)) that covers the possibility that the other player fails and leaves the game.
This means that the optimal rate of extraction of the i-th player in (47) can be viewed as the composition of

two parts:

(i) the benefit that the agent will eventually get, x; and
(ii) the intensity of the effort that the agent needs to apply to attain such benefit, that is, (55). Observe that this

function explicitly takes into account the fact that the i-th agent will receive a payment if the other one
leaves the system before he/she does.

The resulting utility of this exercise for the i-th player is given by (45).

As a by-product of Theorem 3, we can state and prove the following result.

Theorem 4. If the utility functions are of the form (28), and the terminal payoff functions are given by (46),
then the value functions for game Γ(x0) are given by

Wi(x, t) =
(

ā[t]1:[t]2 + ci Ā[t]i :
1

[t]−i

)
ln x

+
∫ ∞

0

(
1 + ln

(
ā[t]1+s:[t]2+s + ci Ā[t]i+s:

1
[t]−i+s

)
+

ā[t]1+s:[t]2+s + ci Ā[t]i+s:
1

[t]−i+s

ā[t]1+s:[t]2+s + c−i Ā 1
[t]i+s: [t]−i+s

)
1 − F(s + t)

1 − F(t)
ds,

for i = 1, 2.
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Proof. From Theorem 3, we readily know that

Wi(x, t) =
(

ā[t]1:[t]2 + ci Ā[t]i :
1

[t]−i

)
ln x + Bi(t),

for i = 1, 2. To find the functions Bi(t), we apply the technique of the integrating factor to (52), and use
the transversality condition (54). This gives:

Bi(t) =

∫ ∞
t

(
ln Ai(s) + 1 + Ai(s)

A−i(s)

)
exp

(
−
∫ s

0 λi(τ) + λ−i(τ)dτ
)

ds

exp
(
−
∫ t

0 λi(s) + λ−i(s)ds
) ,

=

∫ ∞
t

(
ln Ai(s) + 1 + Ai(s)

A−i(s)

)
(1 − F(s))ds

1 − F(t)
,

where Ai(·) is as in (55).
The optimality of the functions W1 and W2 follows from Reference [52] (Theorem 2(ii)).

This completes the proof.

The optimal trajectory can be found by plugging (47) into (1) and solving. That is,

x∗(τ) = x0 exp

⎛
⎝−

2

∑
i=1

∫ τ

0

exp
(
−
∫ t

0 (λ1(s) + λ2(s))ds
)

∫ ∞
t (1 + ciλ−i(s)) exp

(
−
∫ s

0 (λ1(r) + λ2(r))dr
)

ds
dt

⎞
⎠ . (57)

The relation (57) can also be compactly written as

x∗(τ) = x0exp

(
−

∫ τ

0

1
ā[t]1:[t]2 + c1 Ā[t]1:

1
[t]2

+
1

ā[t]1:[t]2 + c2 Ā1
[t]1: [t]2

dt

)
,

thus showing the interaction between the players and their effect on the system.

3.3. An Illustration

We devote this Section to the analysis of the particular cases of our interest.
If the random terminal time of player 1 has a Weibull distribution, and that of player 2 follows

Chen’s law, the optimal extraction rates are:

u∗
1(t, x) =

x exp
(
−
∫ t

0 (λ1δ1sδ1−1 + λ2δ2sδ2−1esδ2 )ds
)

∫ ∞
t (1 + c1λ2δ2sδ2−1esδ2 ) exp

(
−
∫ s

0 (λ1δ1rδ1−1 + λ2δ2rδ2−1erδ2 )dr
)

ds
,

and

u∗
2(t, x) =

x exp
(
−
∫ t

0 (λ1δ1sδ1−1 + λ2δ2sδ2−1esδ2 )ds
)

∫ ∞
t (1 + c2λ1δ1sδ1−1) exp

(
−
∫ s

0 (λ1δ1rδ1−1 + λ2δ2rδ2−1erδ2 )dr
)

ds
.

If we fix the initial stock at x0 = 5, Figures 13–18 will show us a graphical depiction of the involved
intensities in the process. From these images, we can notice that almost all the time the extraction rates
of the player whose random terminal time follows the Chen distribution are higher than those of the
other player. This fact is also consistent with the plots of Figures 4–6 and 10–12, which were exhibited
in the illustration of Section 3.
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(a) (b)
Figure 13. Ease of the extraction when the shape parameter of Weibull distribution is δ1 = 1

2 . (a) Ease
of the extraction for Weibull’s player when δ1 = 1

2 . (b) Ease of the extraction for Chen’s player when
δ2 = 1

2 .

To have a proper interpretation of the results presented in Figure 13, recall Figures 10–12. Observe
that the shapes of the plots in Figure 13a,b resemble those in Figure 12. It should be noted that the scales
are much larger in the degenerate case. The reason is that, in this scenario, there are two actors making
decisions and consuming the resource. Moreover, each of the agents needs to take into consideration
the action of its counterpart (recall Theorem 3). As in the one-player case, it should be noticed that,
in spite of the fact that the plots in Figure 13a,b have opposite trends, the optimal behavior of the Chen
extractor is to obtain the resource at a much rapid pace than that of the Weibull extractor.

(a) (b)
Figure 14. Ease of the extraction when the shape parameters are δ1 = 1

2 and δ2 = 1 for Weibull and
Chen distributions, respectively. (a) Ease of the extraction for Weibull’s player when δ1 = 1

2 . (b) Ease
of the extraction for Chen’s player when δ2 = 1.

In view of Figure 14, we must recall Figures 4–6 and 10– 12. Again, for the intensity function of
the Chen extractor, A2(·), we see the same general trend as that in Figure 6. However, for the Weibull
case, the trend observed in Figure 12 becomes perturbed by the presence of the other agent in a more
advanced mode of the extraction.

(a) (b)
Figure 15. Ease of the extraction when the shape parameters are δ1 = 1

2 and δ2 = 2 for Weibull and
Chen distributions, respectively. (a) Ease of the extraction for Weibull’s player when δ1 = 1

2 . (b) Ease
of the extraction for Chen’s player when δ2 = 2.
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Figure 15 can be interpreted by means of Figures 7–12. Note that from the comparison of Figure 15a
with Figure 12 it is very clear how the presence of the Chen extractor affects the ease of the extraction
of Weibull’s player.

For the case δ1 = 1, we present the following result.

Proposition 2. If δ1 = 1, then

A1(t) = c1 + (1 − c1λ1)
et

1 − F2(t)

(
1

λ1
−L(F2)

)
,

where L(F2) :=
∫ ∞

0 e−λ1τ F2(τ)dτ stands for the Laplace transform of the distribution function F2.

Proof. By (55), we readily know that

A1(t) = ā[t]1:[t]2 + c1 Ā[t]1
1
[t]2

. (58)

Now, by (5) and (48) (with v ≡ 1) we can write

ā[t]1:[t]2 =
∫ ∞

0

1 − F1(t + τ)

1 − F1(t)
1 − F2(t + τ)

1 − F2(t)
dτ

=
∫ ∞

0
e−λ1τ 1 − F2(t + τ)

1 − F2(t)
dτ.

The last equality follows from plugging δ1 = 1 into Weibull’s distribution. Define s2(τ) :=
1−F2(t+τ)

1−F2(t)
as the conditional survival of the random variable [T − t|T > t] and write

ā[t]1:[t]2 =
∫ ∞

0
e−λ1τs2(τ)dτ. (59)

We now use (5) and (49) (with v ≡ 1) to write

Ā[t]1:
1
[t]2

=
∫ ∞

0

1 − F1(t + τ)

1 − F1(t)
1 − F2(t + τ)

1 − F2(t)
λ2(t + τ)dτ

=
∫ ∞

0
e−λ1τ 1 − F2(t + τ)

1 − F2(t)
λ2(t + τ)dτ.

The last equality follows from the substitution of δ1 = 1. Now, by the results in Reference [57]
(Chapter 3.2.4) we can argue that

Ā[t]1:
1
[t]2

= −
∫ ∞

0
e−λτs′2(τ)dτ, (60)

where s′2 stands for the derivative of s2. Plugging (59) and (60) into (58) yields

A1(t) =
∫ ∞

0
e−λ1τ(s2(τ)− c1s′2(τ))dτ

= L(s2 − c1s′2)
= L(s2)− c1L(s′2)
= L(s2)− c1(λ1L(s2)− s2(0)). (61)

The last equality follows from the rule of Laplace Transform of Derivatives (see Reference [72]
(Theorem 6.2.1)). Noting that s2(0) = 1 and rearranging the terms in (61) gives us

A1(t) = c1 + (1 − c1λ1)L(s2)

= c1 + (1 − c1λ1)
∫ ∞

0
e−λ1τ 1 − F2(t + τ)

1 − F2(t)
dτ
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= c1 + (1 − c1λ1)
∫ ∞

0
e−λ1τ 1 − F2(t + τ)

1 − F2(t)
dτ

= c1 + (1 − c1λ1)
et

1 − F2(t)

∫ ∞

0
e−λ1τ(1 − F2(τ))dτ

= c1 + (1 − c1λ1)
et

1 − F2(t)

(
1

λ1
−L(F2)

)
.

This proves the result.

Proposition 2 gives us that, regardless of the distribution of T2 (or of its shape parameter for the
case of Chen’s law), when T1 follows the exponential distribution and c1λ1 = 1, the optimal rate of
extraction will be invariant.

To interpret Figure 16, we recall Figures 7–12. This case corresponds to the situation where the
Weibull extractor is already at the aging mode of the process, and Chen extractor is only starting its
tasks. Here, the intensity of Weibull’s extractor has to be higher as time passes, and the other player
can take advantage of it because the intensity of its rate of extraction is decreasing. However, it is only
at the beginning of the process when it is optimal for Chen extractor to have a stronger rate than that of
Weibull (this is the only case in which this situation is observed). This is consistent with the behaviors
shown by the intensity functions for the Weibull extractor in Figure 9, and for the Chen extractor in
Figure 12.

(a) (b)

Figure 16. Ease of the extraction when the shape parameters of Weibull and Chen distributions are
δ1 = 2 and δ2 = 1

2 , respectively. (a) Ease of the extraction for Weibull’s player when δ1 = 2. (b) Ease of
the extraction for Chen’s player when δ2 = 1

2 .

(a) (b)
Figure 17. Ease of the efforts when the shape parameters of Weibull and Chen distributions are δ1 = 2
and δ2 = 1, respectively. (a) Ease of the effort required Weibull extractor when δ1 = 2. (b) Ease of the
effort required Chen extractor when δ2 = 1.

Figure 17a shows how the effort required by the Weibull extractor is a convex function that tends
to stabilize in the long run. This feature is consistent with Figure 9. However, in the controlled case,
we cannot observe an increasing trend. The behavior of the ease of Chen extractor mirrors that of the
corresponding ease function in Figure 6.
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Figure 18 shows a dramatized effect of the one shown in Figure 17. The reason is that both agents
are in the aging mode of their respective processes.

(a) (b)
Figure 18. Ease of the efforts when the shape parameters of Weibull and Chen distributions are δ1 = 2
and δ2 = 2, respectively. (a) Ease of the effort required by Weibull extractor when δ1 = 2. (b) Ease of
the effort required by Chen extractor when δ2 = 2.

If we fix the initial stock at x0 = 5, and use Theorem 4, we can calculate the following table,
where we have assumed, as in Section 3 that the scale parameters λ1 and λ2 equal the unity. Each of
the entries represent the pair (W1(5, 0), W2(5, 0)).

Weibull/Chen δ2 = 1
2 δ2 = 1 δ2 = 2

δ1 = 1
2 (2.3257, 1.4487) (2.4326, 1.6731) (2.5882, 1.9514)

δ1 = 1 (2.5265, 1.4734) (2.6221, 1.8187) (2.7908, 2.2097)
δ1 = 2 (2.6941, 1.5161) (2.9190, 1.9226) (3.0567, 2.4373)

It should be noted that the player whose random terminal time is distributed according to
the Chen’s law end’s up earning less than the other player in all cases. This is consistent with the
comparisons we made in Section 2, and in particular, in Figure 3c.

The optimal trajectory is given by the following exponential function:

x∗(τ) = x0 exp

(
−

∫ τ

0

exp
(
−
∫ t

0 (λ1δ1sδ1−1 + λ2δ2sδ2−1esδ2 )ds
)

∫ ∞
t (1 + c1λ2δ2sδ2−1esδ2 ) exp

(
−
∫ s

0 (λ1δ1rδ1−1 + λ2δ2rδ2−1erδ2 )dr
)

ds

+
exp

(
−
∫ t

0 (λ1δ1sδ1−1 + λ2δ2sδ2−1esδ2 )ds
)

∫ ∞
t (1 + c2λ1δ1sδ1−1) exp

(
−
∫ s

0 (λ1δ1rδ1−1 + λ2δ2rδ2−1erδ2 )dr
)

ds
dt

)
.

4. Conclusions

In this paper we used standard Dynamic Programming techniques and classic Actuarial
Mathematics tools for the analysis of a differential game with linear system and logarithmic reward
function under the total payoff criteria with a random horizon. In Section 2.1 we presented the game
model of our interest, and in Section 2.2 we presented a third actuarial principle to calculate premia
under the total payoff criterion, which has been used to introduce the game with random terminal
times. The distributions that we studied for these random variables are of great importance for risk
analysts, and we devoted Section 3 to describe them and to present our main results and analyses.
The first distribution that we considered is the classic two-parameter Weibull random variable, and the
second is the heavy-tailed law of Chen. We compared the results of a resource extraction differential
game model with each of these random variables and we identified the phases of the extraction with
different values of the shape parameter of the distributions we used. In Section 3.1 we solved the
degenerate case of the game (i.e., for only one player) and, in Section 3.2 we used some actuarial
tools to study a two-player version of the game with two independent random terminal times for the
extraction tasks.
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For the purpose of illustrating our developments, we stated a degenerate game, and a two-person
game with independent random terminal times for each player. It is important to emphasize the
importance of the logarithmic utility of wealth function that we used, for it allowed us to find a
connection between principles PI and PII from Section 2.2. This connection is clearly expressed by
expressions (40) and (56) in Remarks 2 and 3, respectively. We believe that, regardless of the very
particular form of the utility functions involved in our study, these expressions mean that the bond
between the extraction game at hand (with random terminal times whose distributions are known),
and the actuarial equivalence principle should be further studied, for it implies that, should there be an
interest in insuring the operation of any of the agents, the optimal premium to be continuously charged
to each player is given by u∗(t, x). We think of such an extension as a plausible future line of work.

Additionally, we found short, explicit, numerical and graphical expressions in terms of actuarial
nomenclature for the optimal rates of extraction of the agents in each case analyzed. We used this
notation to characterize the optimal extraction rates in two parts, namely:

(i) the benefit that the agent will eventually get, x; and
(ii) the intensity of the effort that the agent needs to invest to acquire u∗(t, x), that is, A(t) = āt for

the degenerate game in Section 3.1, and Ai(t) = ā[t]1:[t]2 + ci Ā[t]i :
1
[t]−i

for i = 1, 2, for the game in
Section 3.2. As this amount becomes larger, the extractor needs to become more intense in its
extraction.

The resulting instantaneous utility of this exercise is given by (28) for the degenerate game,
and (45) for the two-person differential game.

Moreover, with such representations of the premia available, it is possible to think of analyses of
other kind; for instance, building confidence intervals and adding a loading factor to the premium to
compute probabilities of ruin of the (hypothetical) insurance company, and thus extend our results to
the realm of the actuarial risk theory. One of such extensions, that we look forward to work on, would
be to consider the possibility of having an agent whose entry in the system happens at a random
moment after the start of the extraction tasks (as is the case in Reference [52]) and (any of) the agents
require(s) insurance to continue to develop the resource.

Another plausible extension is the one suggested by the fact that, in References [1,52], the authors
found expressions for the optimal rates of extraction that can also be put in terms of simple contingent
functions; which, on the one hand, is consistent with our findings in this paper, and on the other,
can be used to model the presence of both, legal and illegal extracting agents. This means that in spite
of the particular form of the utility functions we used for the agents, the optimal premia are given by
expressions that follow the actuarial equivalence principle. With this in mind, we could try to perform
an analysis of the optimality of equivalence premia with a broader class of reward functions, under
the total payoff criterion, by using Dynamic Programming.

The speed of the extraction tasks differs for two different moments of the end of the game. And,
as it was to be expected, Chen’s distribution allows the most realistic description of the life cycle of
the system. Our illustrations confirm that in normal operation, it is necessary to “dig” at a rate which
needs to be gradually increased with time, but in the case where the end of the process is subject to
Chen’s law, the pace of resource extraction still needs a faster intensification. In the equipment aging
mode, when the failure rate function increases, it does not matter what distribution law determines the
completion of the development process, it is necessary to increase the rate of development of the fields.

Among our findings, we can also quote that the optimal behaviors of the agents differ for
different game scenarios and moments of its completion. For example, during the pre-run phase (i.e.,
when the equipment is not yet established and the overall picture of the process is not fully clear),
the development speed should be the smallest, which corresponds to the agent’s caution. This is
reflected in the entries of the row δ1 = 1

2 , and the column δ2 = 1
2 of the table of Section 3.2. We can

notice about this by observing that, for both players, the entries in the other rows and columns are
greater than these ones. This feature is consistent with the conclusions drawn in Reference [4], in the
sense that both our works prove that the price of insuring the extraction tasks is decreasing in the
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level of expertise of the extractor (which we might interpret as the stages where the agents are located
at). This conclusion is coherent as well with the developments shown in References [27–29], on the
willingness of the agents to pay for the coverage of an insurance strategy to guarantee the continued
supply of the revenues from the extraction tasks.

To conclude, we mention that the results of this paper can be applied to a wide range of critical
thecnologies related domains, including Internet of Things, energy management, and security to
mention just a few. An extension of our results to the mentioned applications will be addressed in our
subsequent work.
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Abstract: We design a mechanism of the players’ sustainable cooperation in multistage n-person
game in the extensive form with chance moves. When the players agreed to cooperate in a dynamic
game they have to ensure time consistency of the long-term cooperative agreement. We provide the
players’ rank based (PRB) algorithm for choosing a unique cooperative strategy profile and prove
that corresponding optimal bundle of cooperative strategies satisfies time consistency, that is, at every
subgame along the optimal game evolution a part of each original cooperative trajectory belongs
to the subgame optimal bundle. We propose a refinement of the backwards induction procedure
based on the players’ attitude vectors to find a unique subgame perfect equilibrium and use this
algorithm to calculate a characteristic function. Finally, to ensure the sustainability of the cooperative
agreement in a multistage game we employ the imputation distribution procedure (IDP) based
approach, that is, we design an appropriate payment schedule to redistribute each player’s optimal
payoff along the optimal bundle of cooperative trajectories. We extend the subgame consistency
notion to extensive-form games with chance moves and prove that incremental IDP satisfies subgame
consistency, subgame efficiency and balance condition. An example of a 3-person multistage game is
provided to illustrate the proposed cooperation mechanism.

Keywords: time consistency; multistage game; chance moves; subgame perfect equilibria;
cooperative trajectory; imputation distribution procedure

1. Introduction

In a dynamic n-person game the players first choose their “optimal” strategies at the initial
position x0 (which form the optimal strategy profile for the whole game), and then have an option to
change their strategies at any intermediate position xt and switch to other strategies if these strategies
constitute the locally optimal strategy profile for the subgame starting at xt. The time consistency
property (first introduced in References [1–3] for differential games) ensures that the players will not
have an incentive to change their strategies at any subgame along the optimal game evolution, and
hence plays an important role in the designing of the optimal players’ behavior in non-cooperative
and cooperative dynamic games (see, e.g., References [2–21], for details).

We consider an n-person finite multistage games in the extensive form (see, e.g.,
References [5,17,22,23]) with perfect information and with chance moves. Note that much research has
been already done on time consistent solutions (or close concepts) in extensive-form games (see, e.g.,
References [4,6,13,17,21]). Time consistency concept was extended to dynamic games played over event
trees in References [14,16,20] as well as to multicriteria extensive-form cooperative games (without
chance moves) in References [7,8,10,11,15]. The property of "time consistency in the whole game" was
extended to multicriteria extensive-form cooperative games with chance moves in Reference [9] (note
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that in these games an optimal pure strategy profile does not generate the unique optimal trajectory in
the game tree but rather the whole optimal bundle of the trajectories).

In the paper, we mainly focus on the dynamic aspects of cooperation in a dynamic extensive-form
game with chance moves, and propose to design a mechanism of the players’ sustainable cooperation
which satisfies three properties. First, a fragment of each cooperative trajectory from the optimal
bundle for the original game Γx0 should “remain optimal” at each subgame Γxt along the cooperative
game evolution, that is, it should belong to the subgame optimal bundle of cooperative trajectories.
Secondarily, a cooperative payoff-to-go at the subgame Γxt is no less than the non-cooperative
payoff-to-go for all players. Finally, when the players re-evaluate their expected cooperative payoff
after each passed chance move, they have no incentive to change original cooperative agreement.

To this aim, we first need to provide a rule for choosing a unique cooperative strategy profile as
well as the unique optimal bundle of cooperative trajectories. We introduce the Players’ Rank Based
(PRB) algorithm and prove that this algorithm generates the unique optimal bundle of cooperative
trajectories which satisfies time consistency. Note that a rather close approach—the so-called Refined
Leximin (RL) algorithm—was introduced recently in Reference [8]. Let us notice the main differences
of these two algorithms. The RL algorithm is applicable for multicriteria game without chance moves
and is based on the ranking of the criteria, while the PRB algorithm is designed for single-criterion
extensive-form game with chance moves and employed the players’ ranks. Further, the RL algorithm
allows to choose a unique cooperative trajectory while the PRB algorithm generates the unique optimal
bundle of the cooperative trajectories in the game tree. To the best of the authors’ knowledge, other
approaches to choosing an optimal bundle of the cooperative trajectories in extensive-form game with
chance moves have not been considered yet.

Then, to construct a characteristic function (which describes the worth of each coalition in
cooperative game) we use an equilibrium-based approach, namely the γ-characteristic function
introduced in Reference [24]. Hence, the players have to accept a specific method for choosing
a unique Subgame Perfect Equilibria (SPE) [25] in an extensive-form game with chance moves.
To solve this problem we provide the novel refinement of the backwards induction procedure (see,
e.g., References [5,17,23])—the so-called Attitude SPE algorithm. A similar approach to construct a
unique SPE in extensive-form game with perfect information was explored in References [17,26,27] and
was called the Type Equilibrium (TE) algorithm. Both algorithms are the refinements of the general
backwards induction procedure that take into account the attitudes of each player towards other
players. Let us point out the main differences of these algorithms. The TE algorithm is applicable for
the game without chance moves and for the case when the payoffs are only determined in terminal
nodes. In addition, the TE algorithm allows to construct SPE that is “unique” in the sense of payoffs
(i.e., there may exist several optimal trajectories which generate the same equilibrium payoffs) while
the Attitude SPE algorithm allows to choose unique SPE strategy profile as well as unique bundle of
trajectories. Another rather close approach to find a unique SPE—the so-called Indifferent Equilibrium
(IE) algorithm—was introduced in Reference [28]. Again, the IE algorithm is applicable only for the
game without chance moves and for the partial case when the payoffs are determined in terminal
nodes. Moreover, IE algorithm in general allows to construct a SPE in behavior strategies while the
proposed Attitude SPE algorithm always generates a SPE in pure strategies.

It is worth noting, that other approaches to analyze an extensive-form game, except for the
backwards induction procedure and its refinements mentioned above, imply that the researcher
first needs to obtain a strategic representation of the original extensive game and then analyzes this
strategic (or normal-form) game (see, e.g., References [29–31] ). For instance, the software tool “Game
Theory Explorer” [29] is based on the strategic-form representation and then applying the modified
Lemke-Howson algorithm [32] to find all Nash equilibria. The majority of existing algorithms are
developed to find Nash equilibria in mixed strategies for 2-person games and do not allow to construct
SPE in pure strategies. Moreover, as it was noted in Reference [31], in general the strategic-form
representation is exponential in the size of the original game tree. In contrast, the proposed Attitude
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SPE algorithm is a rather simple recursive algorithm which deals with n-person extensive-form game
(with perfect information) itself and allows to compute a unique SPE in pure strategies.

After computing the γ-characteristic function we suppose that the players adopt some
single-valued cooperative solution ϕ (for instance, the Shapley value [33], the nucleolus [34], etc.)
which satisfies the individual and collective rationality property. Finally, to guarantee the sustainability
of the achieved long-term cooperative agreement we employ the Imputation Distribution Procedure
(IDP) based approach (see, e.g., References [3,12,14,16–18,20,35]), that is, a payment schedule to
redistribute the ith player’s expected cooperative payoff along the optimal bundle of cooperative
trajectories. In this paper, we mainly focus on the following good properties an IDP may satisfy:
subgame efficiency, strict balance condition [10,15,17] and an appropriate refinement of the time
consistency property, called subgame consistency. The point is that the “time consistency in the whole
game” property [9,14,16,20] is based on an a priori assessment of the ith player’s expected optimal
payoff (before the game Γx0 starts). However, when the players make a decision in the subgame Γxt

after the chance move occurs, they need to re-estimate their expected optimal payoffs-to-go since the
original optimal bundle of cooperative trajectories shrinks after each chance node. To deal with this
interesting feature of the game with chance moves we adopt the notion of subgame consistency that
was firstly proposed in Reference [36] for cooperative stochastic differential games and then extend it
to stochastic dynamic games in References [37,38].

Since we derive a suitable definition of subgame consistency for other class of games, the proposed
Definition 6 differs from ones provided in References [37,38] but captures the same idea. Let us point
out the main differences with References [37,38]. While D. Yeung and L. Petrosyan do not consider
the issue of multiple equilibria and study the stochastic games in which there exists a unique Nash
equilibrium in each subgame, we focus on the problem of how to select a unique (subgame perfect)
Nash equilibrium in extensive-form game with chance moves and derive the corresponding algorithm.
Secondarily, the characteristic function has not been constructed in References [37,38] and, hence, the
players are restricted to using the simplest cooperative solutions (for instance, they may share equally
the excess of the total expected cooperative payoff over the expected sum of individual non-cooperative
payoffs), whereas we provide a method for calculating the γ-characteristic function. Hence, the players
may use different solution concepts based on the characteristic function approach. Finally, it turns
out that the incremental IDP specified for extensive-form games with chance moves in Reference [9]
satisfies not only the subgame consistency but also subgame efficiency and strict balance condition.

Therefore, the suggested PRB algorithm, the Attitude SPE algorithm combined with the
γ-characteristic function, and the incremental payment schedule for any single-valued cooperative
solution (meeting individual and collective rationality) together constitute a required mechanism of
the players’ sustainable cooperation that satisfies exactly three properties mentioned above for any
extensive-form game with chance moves.

It is worth noting that the extensive-form games, as well as dynamic games played over
event trees, differential games and multistage games with discrete dynamics are used to model
various real-world situations where several decision makers (or players) with different objectives may
cooperate (see, e.g., References [5,12,14,16,17,20,39–44]. Hence, a proposed approach to implement a
long-term cooperative agreement may have a number of possible applications.

The rest of the paper is organized as follows: Section 2 recalls the main ingredients of the class
of games of interest. In Section 3, we specify the attitude SPE algorithm that allows constructing a
unique SPE in a extensive-form game with chance moves. In Section 4, we provide the PRB algorithm
and prove that the optimal bundle of cooperative trajectories generated by this algorithm satisfy time
consistency. Section 5 reveals a drawback of the IDP “time consistency in the whole game” property
and presents a subgame consistency definition that is applicable for extensive-form games with chance
moves. We prove that incremental IDP satisfies a number of good properties and consider an example
of a 3-person multistage game with chance moves to illustrate the incremental IDP implementation.
Section 6 provides a brief review of the results and discussion.
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2. Extensive-Form Game with Chance Moves

We consider a finite multistage game in extensive form following References [6,13,17,22,23]. First
we need to define the basic notations and briefly remind some properties of extensive-form game that
will be used in the sequel:

• N = {1, . . . , n} is the set of all players.
• K is the game tree with the root x0 and the set of all nodes P.
• S(x) is the set of all direct successors (descendants) of the node x, and S−1(y) is the unique

predecessor (parent) of the node y �= x0 such that y ∈ S(S−1(y)).
• Pi is the set of all decision nodes of the ith player (at these nodes the player i chooses the following

node), Pi ∩ Pj = ∅, for all i, j ∈ N, i �= j.
• Pn+1 = {zj}m

j=1 denotes the set of all terminal nodes (final positions), S(zj) = ∅ ∀zj ∈ Pn+1.
• P0 is the set of all nodes at which a chance moves, where π(y|x) > 0 denotes the probability

of transition from node x ∈ P0 to node y ∈ S(x). We suppose that for each x ∈ P0 it holds that

S(x) ∩ P0 = ∅. Lastly,
n+1⋃
i=0

Pi = P.

• ω = (x0, . . . , xt−1, xt, . . . , xT) is the trajectory (or the path) in the game tree, xt−1 = S−1(xt), 1 ≤
t ≤ T, xT = zj ∈ Pn+1; where index t in xt denotes the ordinal number of this node within the
trajectory ω and can be interpreted as the "time index".

• hi(x) = (hi/1(x), . . . , hi/r(x)) is the payoff of the ith player at the node x ∈ P. We assume that for
all i ∈ N, k = 1, . . . , r, and x ∈ P the payoffs are non-negative, that is, hi/k(x) � 0.

In the following, we will use Gcm(n) to denote the class of all finite multistage n-person games
with chance moves in extensive form defined above, where Γx0 ∈ Gcm(n) denotes a game with root
x0. Note that Γx0 is an extensive-form game with perfect information (see, e.g., References [17,22,23]
for details).

Since all the solutions we are interested in throughout the paper are attainable when the players
restrict themselves to the class of pure strategies we will focus on this class of strategies. The pure
strategy ui(·) of the ith player is a function with domain Pi that specifies for each node x ∈ Pi the next
node ui(x) ∈ S(x) which the player i has to choose at x. Let Ui denote the (finite) set of all ith player’s
pure strategies, U = ∏i∈N Ui.

Denote by p(y|x, u) the conditional probability that node y ∈ S(x) is reached if node x has been
already reached (the probability of transition from x to y) while the players use the strategies ui, i ∈ N.
Note that for all x ∈ Pi, i = 1, . . . , n, and for all y ∈ S(x) p(y|x, u) = 1 if ui(x) = y and p(y|x, u) = 0 if
ui(x) �= y. For chance moves, that is, if x ∈ P0 p(y|x, u) = π(y|x) for all y ∈ S(x) for each u ∈ U.

Then one can calculate the probability p(ω, u) of realization of the trajectory ω =

(x0, . . . , xτ , xτ+1, . . . , xT), xT ∈ Pn+1, xτ+1 ∈ S(xτ), τ = 0, . . . , T − 1, when the players use the
strategies ui from the strategy profile u = (u1, . . . , un).

p(ω, u) = p(x1|x0, u) · p(x2|x1, u) · . . . · p(xT |xT−1, u) =
T−1

∏
τ=0

p(xτ+1|xτ , u). (1)

Denote by Ω(u) = {ωk(u)|p(ωk, u) > 0} the finite set (or the bundle) of the trajectories ωk
which are generated by strategy profile u ∈ U. Note that for all ωk(u) ∈ Ω(u), uj(xτ) = xτ+1 for all
xτ ∈ ωk(u) ∩ Pj, j ∈ N, 0 ≤ τ ≤ T − 1.

Let h̃i(ω) =
T
∑

τ=0
hi(xτ) denote the ith player’s vector payoff corresponding to the trajectory

ω = (x0, . . . , xt, xt+1, . . . , xT).
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Denote by

Hi(u) = ∑
ωk∈Ω(u)

p(ωk, u) · h̃i(ωk) = ∑
ωk∈Ω(u)

p(ωk, u) ·
T(k)

∑
τ=0

hi(xτ) (2)

the (expected) value of the ith player’s payoff function which corresponds to the strategy profile
u = (u1, . . . , un). Let Ωn+1(u) = {Ω(u) ∩ Pn+1} denote the set of all terminal nodes of the trajectories
ωk(u) ∈ Ω(u).

Remark 1 ([9]). If the pure strategy profiles u and v generate different bundles Ω(u) and Ω(v) of the
trajectories, that is, Ω(u) �= Ω(v), then Ωn+1(u) ∩ Ωn+1(v) = ∅.

According to References [17,22,23] each intermediate node xt ∈ P \ Pn+1 generates a subgame Γxt

with the subgame tree Kxt and the subgame root xt as well as a factor-game ΓD with the factor-game
tree KD = (K \ Kxt) ∪ {xt}. Decomposition of the original extensive game Γxt at node xt onto the
subgame Γxt and the factor-game ΓD generates the corresponding decomposition of the pure (and
mixed) strategies (see References [17,22] for details).

Let Pxt
i (PD

i ), i ∈ N, denote the restriction of Pi on the subgame tree Kxt(KD), and uxt
i (uD

i ), i ∈ N,
denote the restriction of the ith player’s pure strategy ui(·) in Γx0 on Pxt

i (PD
i ). The pure strategy profile

uxt = (uxt
1 , . . . , uxt

n ) generates the bundle of the subgame trajectories Ωxt(uxt) = {ωxt
k (uxt)|p(ωxt

k , uxt)

> 0}. Similarly to (2), let us denote by

Hxt
i (uxt) = ∑

ω
xt
k ∈Ωxt (uxt )

p(ωxt
k , uxt) ·

T(k)

∑
τ=t

hi(xτ) = ∑
ω

xt
k ∈Ωxt (uxt )

p(ωxt
k , uxt) · h̃i(ω

xt
k ) (3)

the expected value of the ith player’s payoff in Γxt , and by Uxt
i the set of all possible ith player’s pure

strategies in the subgame Γxt , Uxt = ∏
i∈N

Uxt
i . Note that for each trajectory ω = (x0, . . . , xt, xt+1, . . . , xT),

1 � t � T − 1, xT ∈ Pn+1,

p(ω, u) =
t−1

∏
τ=0

p(xτ+1|xτ , u) ·
T−1

∏
τ=t

p(xτ+1|xτ , u) =

= p(ωxt , u) · p(ωxt , u) = p(ωxt , uD) · p(ωxt , uxt),

(4)

where ωxt = (x0, x1, . . . , xt−1, xt) denotes a fragment of trajectory ω implemented before the subgame
Γxt starts, and p(ωxt , u) = p(xt, u) denotes the probability that node xt is reached when the players
employ the strategies ui, i ∈ N. It is worth noting that factor-game ΓD = ΓD(uxt) is usually defined
for given strategy profile uxt in the subgame Γxt since we assume that

hD
i (x0, x1, . . . , xt−1, xt) =

t−1

∑
τ=0

hi(xτ) + Hxt
i (uxt) = h̃i(ω

xt \ {xt}) + Hxt
i (uxt) (5)

(see, e.g., References [17,22] for details). Moreover, given intermediate node xt, the bundle Ω(u) =
{ωk(u)|p(ωk, u) > 0} can be divided in two subsets, that is, Ω(u) = {Ψm} ∪ {χl}, where xt ∈ Ψm,
and xt /∈ χl , {Ψm} ∩ {χl} = ∅. Then, taking (1), (3), (4) and (5) into account, we get
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Hi(u) = ∑
m

p(Ψm, u) · h̃i(Ψm) + ∑
l

p(χl , u) · h̃i(χl) =

= ∑
m

p(xt, u) · p(Ψxt
m , uxt) ·

[
h̃i(Ψxt

m \ {xt}) + h̃i(Ψxt
m )

]
+

+ ∑
l

p(χl , u) · h̃i(χl) = p(xt, uD) · h̃i(x0, . . . , xt−1) · ∑
m

p(Ψxt
m , uxt)+

+ p(xt, uD) · ∑
m

p(Ψxt
m , uxt) · h̃i(Ψxt

m ) + ∑
l

p(χl , u) · h̃i(χl) =

= p(xt, uD) · h̃i(x0, . . . , xt−1) + p(xt, uD) · Hxt
i (uxt)+

+ ∑
l

p(χl , u) · h̃i(χl) = p(xt, uD) · hD
i (x0, . . . , xt) + ∑

l
p(χl , u) · h̃i(χl).

(6)

Note that, since Pi = Pxt
i ∪ PD

i , one can compose the ith player’s pure strategy Wi = (uD
i , vxt

i ) ∈ Ui
in the original game Γx0 from her strategies vxt

i ∈ Uxt
i in the subgame Γxt and uD

i ∈ UD
i in the

factor-game ΓD [17,22].

3. Refined Backwards Induction Procedure to Construct a Unique SPE

Definition 1 ([45]). A strategy profile u = (u1, u2, . . . , un) is a Nash Equilibrium (NE) in Γx0 ∈ Gcm(n), if

Hi(vi, u−i) � Hi(ui, u−i), ∀vi ∈ Ui, ∀i ∈ N.

Let NE(Γx0) denote the set of all pure strategy Nash equilibria in Γx0 .

Definition 2 ([25]). A strategy profile u is a subgame perfect (Nash) equilibrium (SPE) in Γx0 ∈ Gcm(n),
if ∀x ∈ P \ Pn+1 it holds that ux ∈ NE(Γx), i. e. the restriction of u on each subgame Γx forms a NE in
this subgame.

To construct SPE in an extensive-form game with perfect information one may employ a so-called
backwards induction procedure (see, e.g., References [12,17,22,23,46,47]).

However, the backwards induction procedure may generate multiple subgame perfect
equilibriums in an extensive form game with different payoffs to the players (see, e.g.,
References [5,12,17,23]). To choose a unique SPE and unique corresponding bundle of trajectories we
use an approach based on the players’ attitude vectors. Namely, let the ith player’s attitude vector
Fi = { fi(1), . . . , fi(n)} be a permutation of numbers {1, . . . , n} meeting the condition fi(i) = 1. If
fi(j) = k one may interpret the player j as an "ith player’s associate of level k".

In the paper we will use these attitude vectors when constructing SPE via backwards induction
procedure in the following way. Let x ∈ Pi, Hy

i (u
y) denote the ith player’s expected payoff in the

subgame Γy, y ∈ S(x) while uy be a SPE in this subgame. Assume that there exist multiple nodes
y1, . . . , yq such that hi(y1) + Hy1

i (uy1) = . . . = hi(yq) + H
yq
i (uyq), that is, player i is indifferent to the

choice of particular node y from {y1, . . . , yq} while the ith player’s choice may affect the other players’
payoffs. If fi(j) = 2, suppose that the ith player aims to maximize firstly the jth player’s expected
payoff Hy

j (u
y) when choosing a unique node y from y1, . . . , yq. If again there are several nodes y

with the same value Hy
j (u

y) the ith player purposes to maximize secondarily the expected payoff

Hy
l (u

y) of such player l that fi(l) = 3, and so on. Note that similar approach to construct a unique
SPE in extensive-form game with perfect information but without chance moves was explored in
References [17,26,27] for the case when the payoffs are only determined in terminal nodes.

Now let us provide a rigorous specification of this backwards induction procedure refinement
which we will refer to as the Attitude SPE or A-SPE algorithm.

Attitude SPE algorithm. Suppose that the players attitude vectors F1, F2, . . . , Fn are of common
knowledge, i. e. each player knows these vectors, and all the players are aware of it. Let the length
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of the trajectory ω = (x0, . . . , xt, xt+1, . . . , xT) equals to T − 1, and the multistage game Γx0 length
equals to the maximal length of the trajectory ω in Γx0 . We’ll construct the unique subgame perfect
equilibrium u = (u1, . . . , un) in Γx0 by induction in the length L of the subgame Γx.

Step L = 1: Consider a subgame Γx of the length L = 1. If x ∈ Pi, i = 1, . . . , n, we have two cases.

Case 1: there exists a unique zk ∈ S(x) = Px
n+1 such that hi(zk) = max

z∈S(x)
hi(z). Then suppose that

ui(x) = zk, p(zk|x, u) = 1, p(z|x, u) = 0 ∀z ∈ S(x) \ {zk}.
Case 2: there exist q > 1 nodes zkq ∈ S(x) = Px

n+1 such that hi(zk1) = hi(zk2) = . . . =

hi(zkq) = max
z∈S(x)

hi(z). Then suppose that the ith player chooses the terminal position

zk ∈ {zk1 , . . . , zkq} = Si,1(x) such that

hj(zk) = max
z∈Si,1(x)

hj(z), where fi(j) = 2. (7)

Let Si,2(x) denote the set of all nodes zk ∈ Si,1(x) meeting (7). If Si,2(x) consists of unique
node zk then ui(x) = zk, p(zk|x, u) = 1, p(z|x, u) = 0 ∀z ∈ S(x) \ {zk}. Otherwise, suppose
that the ith player chooses terminal node zk ∈ Si,2(x) such that

hl(zk) = max
z∈Si,2(x)

hl(z), where fi(l) = 3. (8)

Let Si,3(x) denote the set of all final nodes zk ∈ Si,2(x) satisfying (8), and so on.
...
Finally, if Si,n(x) contains unique node zk, then ui(x) = zk, p(zk|x, u) = 1, p(z|x, u) = 0
∀z ∈ S(x) \ {zk}. Otherwise, suppose that player i chooses the final node zk from Si,n(x)
with minimal ordinal number k.

Note that for all cases Hj(u) = hj(zk), j ∈ N.

If x ∈ P0 then S(x) = Px
n+1 and we do not need to define a strategy of any player at x, while

Hj(u) = ∑
zk∈S(x)

π(zk|x) · hj(zk). Hence, the players’ behavior ux = (ux
1, . . . , ux

n) ∈ NE(Γx) and

the expected payoffs Hx
j (u

x), j ∈ N are defined for all subgames Γx of the length 1. In addition,

for games Γy, y ∈ Pn+1 of length L = 0 we assume that Hy
i (u

y) = hi(y), i ∈ N.
Step 2, . . . , L − 1: Suppose that at each subgame Γy of the length (L − 1) or less the unique SPE

uy = (uy
1, . . . , uy

n) has been already constructed (“inductive assumption”), and Hy
i (u

y), i ∈ N, is
the corresponding vector of all the players’ payoffs.

Step L: Consider the game Γx0 of the length L � 1. Note that for all y ∈ S(x0) the length of the
subgame Γy is less than L. If x0 ∈ P0 then

Hj(u) = ∑
y∈S(x0)

π(y|x0) · (hj(y) + Hy
j (u

y)) � ∑
y∈S(x0)

π(y|x0) · (hj(y) + Hy
j (u

y
j , uy

−j)) = Hj(u
y
j , uy

−j) (9)

for all uj = uy
j ∈ Uy

j = Uj since uy ∈ NE(Γy) due to induction assumption, and each player
j ∈ N can deviate from uj only in the subgames Γy, y ∈ S(x0).

If x0 ∈ Pi for some i ∈ N, we have two cases.

Case 1: there exists a unique y ∈ S(x0) such that

hi(y) + Hy
i (u

y) = max
y∈S(x0)

(
hi(y) + Hy

i (u
y)
)

. (10)

Then we suppose that ui(x0) = y; uj(x) = uy
j (x) if x ∈ Pj ∩ Ky, y ∈ S(x0), j = 1, . . . , n.
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Case 2: there exist q > 1 nodes y1, . . . , yq ∈ S(x0) such that

hi(y1) + Hy1
i (uy1) = . . . = hi(yq) + H

yq
i (uyq) = max

y∈S(x0)

(
hi(y) + Hy

i (u
y)
)

. (11)

Then we suppose that the ith player chooses y ∈ {y1, . . . , yq} = Si,1(x0) such that

hj(y) + Hy
j (u

y) = max
y∈Si,1(x0)

(
hj(y) + Hy

j (u
y)
)

, where fi(j) = 2. (12)

Let Si,2(x0) denote the set of all nodes y ∈ Si,1(x0) satisfying (12). If Si,2(x0) consists of unique
node y then we suppose that ui(x0) = y; uj(x) = uy

j (x) if x ∈ Pj ∩ Ky, y ∈ S(x0), j = 1, . . . , n.

Otherwise, suppose that the ith player chooses node y ∈ Si,2(x0) such that

hl(y) + Hy
l (u

y) = max
y∈Si,2(x0)

(
hl(y) + Hy

l (u
y)
)

, where fi(l) = 3. (13)

Let Si,3(x0) denote the set of all nodes y ∈ Si,2(x0) meeting (13), and so on.
...
Finally, if Si,n(x0) contains several nodes ym, denote by l = min

ym∈Si,n(x0)
{l | zl ∈ Pym

n+1 ∩ Ω(uym)} the

minimal number of terminal nodes of the trajectories generated by subgame perfect equilibriums
uym in the subgames Γym , ym ∈ Si,n(x0) (see Remark 1). Note that there exists unique trajectory
ω = (x0, . . . , zl) from x0 to zl in the game Γx0 , and let y = ω ∩ Si,n(x0). Again, we suppose that
ui(x0) = y; uj(x) = uy

j (x) if x ∈ Pj ∩ Ky, y ∈ S(x0), j = 1, . . . , n.

Now we prove that for both cases no player has profitable deviation in Γx0 from the strategy
profile u = (u1, . . . , un) constructed above.

Hi(u) = hi(y) + Hy
i (u

y) � hi(y) + Hy
i (u

y) � hi(y) + Hy
i (u

y
i , uy

−i) (14)

for all y ∈ S(x0), uy
i ∈ Uy

i due to (10), (11) and the induction assumption that uy ∈ NE(Γy), y ∈ S(x0).
For other players j ∈ N, j �= i, we have

Hj(u) = hj(y) + Hy
j (u

y) � hj(y) + Hy
j (u

y
j , uy

−j) = Hj(uj, u −j) (15)

for all uj ∈ Uj since uy ∈ NE(Γy), and the only deviation of player j ∈ N, j �= i from uj in the subgame
Γy may affect the players’ payoffs.

Hence, taking (9), (14) and (15) into account we obtain by induction that the strategy profile
u = (u1, . . . , un) constructed above forms unique subgame perfect equilibria in Γx0 .

Proposition 1. If the players attitude vectors F1, F2, ..., Fn are of common knowledge, the Attitude SPE
algorithm allows to construct a unique subgame perfect equilibrium u = (u1, . . . , un) in pure strategies
for any extensive-form game Γx0 ∈ Gcm(n) with chance moves as well as a unique bundle of trajectories Ω(u).

It is worth noting than the existence of (subgame perfect) pure strategy equilibrium in extensive
form game with perfect information and chance moves was first proved in References [46,47] for
the partial case when the payoffs are only defined in terminal nodes. Hence, Proposition 1 could be
considered as a corollary of these results. However, we provide a rigorous algorithm how to construct
a unique SPE in extensive-form game with chance moves as well as a (unique) corresponding bundle
of trajectories. We will use this algorithm, in particular, to calculate the characteristic function of the
cooperative extensive-form game in Section 4.

Let us use the following example to demonstrate how the Attitude SPE algorithm works.
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Example 1. (A 3-player multistage game with chance moves).
Let P0 = {x1, x3}, P1 = {x0, x2

4}, P2 = {x1
2, x5}, P3 = {x2

2, x3
4}, Pn+1 = {z1, . . . , z10}. The players’

payoffs and probabilities π(y|x), x ∈ P0 are written in the game tree.
Suppose that the players’ attitude vectors are F1 = ( f1(1), f1(2), f1(3)) = (1, 3, 2), F2 = (2, 3, 1) and

F3 = (3, 1, 2).
When using the Attitude SPE algorithm, at each node x ∈ Pi, i = 1, 2, 3, the ith player has to choose the

alternative marked in bold violet in Figure 1. Note that

Hx3(ux3) =

⎛
⎜⎝ 12

0
0

⎞
⎟⎠+

1
6

⎛
⎜⎝ 0

24
0

⎞
⎟⎠+

1
2

⎛
⎜⎝ 24

0
24

⎞
⎟⎠+

1
3

⎛
⎜⎝ 0

18
12

⎞
⎟⎠ =

⎛
⎜⎝ 24

10
16

⎞
⎟⎠ and Hz2 = h(z2) =

⎛
⎜⎝ 0

10
20

⎞
⎟⎠ .

Hence, S2,1(x1
2) = {z2, x3}, and u2(x1

2) = z2 due to the player’s 2 attitude vector F2.
The A-SPE algorithm generates unique SPE u = (u1, u2, u3), where u1(x0) = x1, u1(x2

4) = z8;
u2(x1

2) = z2, u2(x5) = z9; u3(x2
2) = z4, u3(x3

4) = z6, while H(u) = (11, 22, 18). We will use this SPE later
in Section 4 when calculating the γ-characteristic function.
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1
6
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Figure 1. 3-person extensive-form game: A-Subgame Perfect Equilibria (SPE) algorithm implementation.

4. Cooperative Strategies and Trajectories

If the players agree to cooperate in multicriteria game Γx0 , first they are expected to maximize the

total payoff
n
∑

i=1
Hi(u) of the grand coalition. Let U(Γx0) denote the set of all pure strategy profiles u,

such that

∑
i∈N

Hi(u) = max
v∈U

∑
i∈N

Hi(v) = H. (16)

The set U(Γx0) is known to be nonempty and it may contain multiple strategy profiles (see,
e.g., Reference [17]). Hence, the players need to agree on a specific approach they are going to use to
choose a unique optimal cooperative strategy profile u ∈ U(Γx0) as well as the corresponding optimal
bundle of cooperative trajectories in the game tree. To this aim we introduce the so-calle Players’ Rank
Based (PRB) algorithm. Note that rather close approach—using the ranking of the criteria to choose a
unique cooperative trajectory—was proposed recently in Reference [8] for multicriteria extensive-form
games without chance moves. Namely, suppose that the players have agreed on the so-called "rank"
of each player within the grand coalition N, and r(k) = i means that the rank of player i equals k,
k = 1, ..., n.

Players’ rank based (PRB) algorithm.
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Step 0. Consider the set U(Γx0). If all strategy profiles u ∈ U(Γx0) generate the same bundle of
trajectories Ω(u) (see, e.g., References [17,22,23] for discussion on a certain redundancy of the
pure strategy definition in extensive game), let the players choose any strategy profile u ∈ U(Γx0)

as the cooperative strategy profile and Ω(u) denote the corresponding bundle of cooperative
trajectories.

Step k = 1. Otherwise, that is, if the strategy profiles from U(Γx0) generate different (and hence,
disjoint—see Remark 1) bundles of the trajectories, calculate

max
v∈U(Γx0 )

Hr(1)(v) = Hr(1).

Let Ur(1)(Γx0) denote the set of all strategy profiles u such that Hr(1)(u) = Hr(1). If all strategy
profiles u ∈ Ur(1)(Γx0) generate the same bundle of trajectories Ω(u), the players may choose
any strategy profile u ∈ Ur(1)(Γx0) as the cooperative strategy profile. Otherwise proceed to the
next step.

Step k = 2. Consider the set Ur(1)(Γx0). If all strategy profiles u ∈ Ur(1)(Γx0) generate the same
bundle of trajectories Ω(u), the players may choose any strategy profile u ∈ Ur(1)(Γx0) as the
cooperative strategy profile. Otherwise, proceed to the next step.

Step k (k = 2, . . . , n).
...

Step k + 1. Finally, if the strategy profiles from u ∈ Ur(n)(Γx0 ) generate different bundles of the
trajectories, we suppose that the players choose such u ∈ Ur(n)(Γx0 ) that Ω(u) = {ωm(u) =

(x0, . . . , xT(m) = zl) | p(ωm, u) > 0} contains the trajectory ω(u) with minimal number l of the
terminal node zl (see Remark 1).

Henceforth, we will refer to the strategy profile u ∈ U(Γx0) and the bundle of the trajectories Ω(u)
as the optimal cooperative strategy profile and the optimal bundle of cooperative trajectories respectively.

In the dynamic setting it is significant that a specific method which the players agreed to accept in
order to choose a unique optimal cooperative strategy profile u ∈ U(Γx0) as well as the corresponding
optimal bundle of cooperative trajectories satisfies time consistency (see, e.g., References [1,2,6,13,17]),
that is, a fragment of the optimal bundle of the cooperative trajectories in the subgame should remain
optimal in this subgame. Suppose that at each subgame Γxt along the cooperative trajectories, that is
xt ∈ ω(u), ω(u) ∈ Ω(u), the players choose the strategy profile uxt ∈ Uxt such that

uxt ∈ arg max
vxt∈Uxt

∑
i∈N

Hxt
i (vxt). (17)

Let U(Γxt) denote the set of all pure strategy profiles uxt ∈ Uxt which satisfy (17) and the players
use the same approach to choose a unique optimal cooperative strategy profile uxt ∈ U(Γxt) in the
subgame as for the original game Γx0 (namely, the PRB algorithm).

Proposition 2. A cooperative strategy profile for Γx0 ∈ Gcm(n) based on the PRB algorithm satisfies time
consistency. Namely, let u ∈ U satisfies (16), and Ω(u) be the optimal bundle of cooperative trajectories. Then
for each subgame Γxt , xt ∈ ω(u) = (x0, . . . , xt, xt+1, . . . , xT), 1 � t < T, with x0 = x0, ω(u) ∈ Ω(u), it
holds that

∑
i∈N

Hxt
i (uxt) = max

vxt∈Uxt
∑
i∈N

Hxt
i (vxt), (18)

while ωxt = (x̄t, x̄t+1, . . . , x̄T) ∈ Ω(uxt), that is, ωxt belongs to the optimal bundle of cooperative trajectories
in the subgame Γxt .
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Proof. The optimal bundle of cooperative trajectories Ω(u) generated by u ∈ PO(Γx0) can be divided
onto two subsets {Ψm} = {ω ∈ Ω(u) | xt ∈ ω} and {χl} = {ω ∈ Ω(u) | xt /∈ ω} while {Ψm}∩{χl} =

∅, {Ψm} ∪ {χl} = Ω(u). Then, taking (5) and (6) into account we get

Hi(u) = ∑
m

p(Ψm, u) · h̃i(Ψm) + ∑
l

p(χl , u) · h̃i(χl) =

= p(xt, u) ·
[

h̃i(x0, x1, . . . , xt−1) + Hxt
i (uxt)

]
+ ∑

l
p(χl , uD) · h̃i(χl),

(19)

and (16) for u takes the form

∑
i∈N

p(xt, u) ·
(

h̃i(x0, x1, . . . , xt−1) + Hxt
i (uxt)

)
+

+ ∑
i∈N

∑
l

p(χl , uD) · h̃i(χl) = max
v∈U

Hi(v).
(20)

Suppose that uxt does not satisfy (18), that is, there exists vxt ∈ Uxt such that

∑
i∈N

Hxt
i (uxt) < ∑

i∈N
Hxt

i (vxt). (21)

Denote by Ω(vxt) = {λxt
m = (xt, . . . , xT(m)) | p(λxt

m , vxt) > 0} the bundle of all trajectories in the
subgame Γxt generated by vxt . Then (21) takes the form

∑
i∈N

∑
m

p(Ψxt
m , uxt) · h̃xt

i (Ψxt
m ) < ∑

i∈N
∑
m

p(λxt
m , vxt) · h̃xt

i (λxt
m ). (22)

Denote by Wi = (ūD
i , vxt

i ), i ∈ N, the ith player’s compound pure strategy in Γx0 . The strategy
profile W = (W1, . . . , Wn) generates the strategy bundle Ω(W) that can be divided onto two disjoint
subsets {λm} = {ω ∈ Ω(W) | xt ∈ ω} and {χl} = {ω ∈ Ω(W) | xt /∈ ω}, where the second
subset for Ω(W) coincides with the second subset for Ω(u) since WD = uD, and λm = (x0, . . . , xt) ∪
(xt, . . . , xT(m)) = (x0, . . . , xt) ∪ λxt

m .
Adding ∑

i∈N
h̃i(x0, x1 . . . , xt−1) to both sides of (22) we get

∑
i∈N

(
h̃i(x0, . . . , xt−1) + Hxt

i (uxt)
)
< ∑

i∈N

(
h̃i(x0, . . . , xt−1) + Hxt

i (vxt)
)

. (23)

Then we can multiply both sides of (23) on p(xt, u) = p(xt, uD) = p(xt, WD) = p(xt, W) > 0 and
then add ∑

i∈N
∑
l

p(χl , uD) · h̃i(χl) to both sides of the last inequality. Taking into account (4)–(6) and (20)

we obtain

∑
i∈N

Hi(u) < ∑
i∈N

Hi(W)

for the constructed strategy profile W ∈ U. The last inequality contradicts the fact that u ∈ U(Γx0),
hence (18) is valid.

Arguing in a similar way (for the case when different strategy profiles from U(Γxt) generate
different bundles of the trajectories) we can verify that ωxt = (xt, . . . , xT) — a fragment of the
cooperative trajectory ω ∈ Ω(u), starting at xt — belongs to the optimal bundle of cooperative
trajectories in the subgame Γxt , that is, ωxt ∈ Ω(uxt).

We will assume in this paper that all the players have agreed to apply the PRB algorithm in order
to choose the cooperative strategy profile u = (ū1, . . . , ūn) that generates the optimal bundle Ω(u)
of cooperative trajectories in Γx0 ∈ Gcm(n). The next step of cooperation is to define a characteristic
function Vx0(S). There are different notions of characteristic functions (see, e.g., References [23,24,48]),
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in this paper we adopt the so-called γ-characteristic function introduced in Reference [24]. Namely,
we assume that Vx0(S) is given by the SPE (based on the Attitude SPE algorithm) outcome of S in the
noncooperative game between members of S maximizing their joint payoff, and non members playing
individually.

The γ-characteristic function Vxt for the subgame Γxt , xt ∈ ωm(u) = (x0, . . . , xt, . . . , xT(m)),
ωm(u) ∈ Ω(u) along the optimal bundle of cooperative trajectories can be constructed using the same
approach. Note that

Vxt(N) = ∑
ω

xt
m ∈Ω(uxt )

p(ωxt
m , uxt) ·

T(m)

∑
τ=t

∑
i∈N

hi(xτ), t = 0, 1, . . . , T(m). (24)

Let Γx0 (N, Vx0) denote extensive-form cooperative game Γx0 ∈ Gcm(n) with γ-characteristic
function, and Γxt

(
N, Vxt

)
denote the corresponding subgame.

We assume that the players adopt a single-valued cooperative solution ϕx0 (for instance,
the Shapley value [33], the nucleolus [34], etc.) for the cooperative game Γx0(N, Vx0) which satisfies
the collective rationality property

n

∑
i=1

ϕx0
i = Vx0(N) = ∑

ωm∈Ω(u)
p(ωm, u) ·

T(m)

∑
τ=0

∑
i∈N

hi(xτ) (25)

and the individual rationality property

ϕx0
i � Vx0({i}), i = 1, . . . , n. (26)

In addition, we assume that the same properties (25) and (26) are valid for the cooperative
solutions ϕx̄t at each subgame Γx̄t(N, Vx̄t), t = 0, . . . , T − 1.

It is worth noting that the last assumption as well as the choice of γ-characteristic function ensure
that every player has an incentive to cooperate at each subgame along the optimal game evolution
since the ith player’s cooperative payoff-to-go at Γx̄t(N, Vx̄t), t = 0, . . . , T − 1, is at least equal to her
non-cooperative counterpart: ϕx̄t

i � Hx̄t
i (ux̄t).

5. Subgame Consistency and Incremental IDP

Let β = {βi(xτ)}, i = 1, . . . , n; τ = 1, . . . , T(l), x(τ) ∈ ωl(u), ωl(u) ∈ Ω(u) denote the
Imputation Distribution Procedure (IDP) for the cooperative solution

(
ϕx0

i

)
i∈N

or the payment

schedule (see, e.g., References [3,8–12,14–18,20] for details). The IDP approach means that all the
players have agreed to allocate the total cooperative payoff Vx0(N) between the players along the
optimal bundle Ω(u) of cooperative trajectories ωl(u) according to some specific rule which is called
IDP. Namely, βi(xτ) denotes the actual current payment which the player i receives at position xτ

(instead of hi(xτ)) if the players employ the IDP β. Moreover, one can design such an IDP β that all the
players will be interested in cooperation in any subgame Γxτ , x(τ) ∈ ωl(u), ωl(u) ∈ Ω(u), that is, at
any intermediate time instant.

Definition 3. The IDP β = {βi(xτ)} satisfies subgame efficiency, if at any intermediate node xt ∈ ω(u),
ω(u) ∈ Ω(u), 0 � t < T, it holds that:

∑
ω

xt
m ∈Ω(uxt )

p(ωxt
m , uxt) ·

T(m)

∑
τ=t

βi(xτ) = ϕxt
i , i ∈ N. (27)

Equation (27) means that the expected sum of the payments to player i along the optimal subgame
Γxt evolution equals to what she is entitled to in this subgame. Then the IDP for each player can
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be reasonably implemented as a rule for step-by-step allocation of the ith player’s current expected
optimal payoff. Note that for t = 0 the subgame efficiency definition coincides with the efficiency at
initial node x0 or the efficiency in the whole game Γx0 condition (see References [9,14,16,20]).

Definition 4 ([10]). The IDP β = {βi(xτ)} satisfies the strict balance condition if for each node x̄τ ∈ ωm(u),
ωm(u) ∈ Ω(u) ∀t = 0, . . . , T(m)

∑
i∈N

βi(x̄τ) = ∑
i∈N

hi(x̄τ). (28)

Equation (28) ensures the “admissibility” of the IDP, that is, the sum of payments to the players in
any node x̄τ is equal to the sum of payoffs that they can collect in this node.

The next advantageous dynamic property of an IDP—the time consistency, introduced in
Reference [3]—was extended to dynamic games played over event trees in References [14,16,20]
as well as to multicriteria extensive-form cooperative games (with chance moves) in Reference [9].

To write down properly the time consistency condition for some intermediate node xt ∈ ω(u) =
(x̄0, x̄1, . . . , x̄t−1, x̄t, x̄t+1, . . . , x̄T), ω(u) ∈ Ω(u), 1 � t < T, in multistage game Γx0 with chance moves
we need to pay attention to all chance nodes on the path (x̄0, . . . , x̄t−1) = ωxt \ {xt}.
Namely, let us numerate the chance nodes from P0 ∩ (ωxt \ {xt}) in order of their occurrence on the
path (x̄0, . . . , x̄t−1), that is, y1 = xt(1), y2 = xt(2), . . . , yθ = xt(θ), 0 � t(1) < t(2) < . . . < t(θ) < t.

Definition 5 ([9]). The IDP β = {βi/k(xτ)} for the cooperative solution ϕx0 is called time consistent in the
whole game Γx0 (N, Vx0) ∈ Gcm(n) if at any intermediate node xt ∈ ω(u), ω(u) ∈ Ω(u), 1 � t < T, for all
i ∈ N, it holds that

case θ = 0 (no chance nodes on the path (x̄0, . . . , x̄t−1)):

t−1

∑
τ=0

βi(xτ) + ϕxt
i = ϕx0

i , (29)

case θ = 1 (only one chance node y1 = xt(1) before x̄t):

t(1)

∑
τ=0

βi(xτ) + p(xt(1)+1, u) ·

⎧⎨
⎩

t−1

∑
τ=t(1)+1

βi(xτ) + ϕxt
i

⎫⎬
⎭+

+ ∑
xk∈S(xt(1))\{xt(1)+1}

p(xk, u) · ϕxk

i = ϕx0
i ,

(30)

case θ = 2 (two chance nodes y1 = xt(1), y2 = xt(2) before x̄t):

t(1)

∑
τ=0

βi(xτ) + p(xt(1)+1, u) ·
{

t(2)

∑
τ=t(1)+1

βi(xτ) + p(xt(2)+1 | xt(2), u)×

×

⎡
⎣ t−1

∑
τ=t(2)+1

βi(xτ) + ϕxt
i

⎤
⎦+ ∑

xm∈S(xt(2))\{xt(2)+1}
p(xm | xt(2), u) · ϕxm

i

}
+

+ ∑
xk∈S(xt(1))\{xt(1)+1}

p(xk, u) · ϕxk

i = ϕx0
i ,

(31)

. . .
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Note that for partial case when xt ∈ S(xt(1)), that is, if xt follows the chance node xt(1)
Equation (30) takes the simpler form

t(1)

∑
τ=0

βi(xτ) + ∑
xk∈S(xt(1))

p(xk, u) · ϕxk

i = ϕx0
i .

A similar note is valid for equation (31), and so forth.
Roughly speaking, Definition 5 implies that the payments collected by the ith player (according

to the payment schedule β) before reaching some intermediate node xt plus the expected ith player’s
component of the Shapley value in the subgame Γxt starting at xt plus this player’s expected Shapley
value components in other subgames along the cooperative trajectories which do not contain xt

corresponds to what the player i is entitled to in the original game Γx0 (N, Vx0).
It is worth noting that Definition 5 indeed provides a reasonable consistency requirements which

a good payment schedule β should satisfy when the player evaluates IDP β at the initial node x0, that
is, before the game Γx0 (N, Vx0) starts (and the words “in the whole game” in Definition 5 properly
reflect this feature). However, when the player purposes to evaluate IDP β in the subgame Γxt , that
is, after reaching some intermediate node xt (in case when θ � 1) this player will unlikely take into
account the expected future payoffs in all the subgames which are unattainable if the node xt has
been already reached, that is, the last addends in the LHS of (30) and (31). To overcome this problem
we suggest the players to use a notion of subgame consistency—a refinement of time consistency
that was firstly proposed in Reference [36] for cooperative stochastic differential games and then
extend it to stochastic dynamic games in References [37,38]. Let us provide a rigorous definition of the
IDP subgame consistency for extensive-form games with chance moves that is applicable in all the
subgames along the optimal bundle of cooperative trajectories.

Definition 6. The IDP β = {βi(xτ)} is called subgame consistent if at any intermediate node xt ∈ ω(u),
ω(u) ∈ Ω(u), 1 � t � T, for all i ∈ N, it holds that

case 1 � t � t(1) (no chance nodes before the subgame Γxt root xt):

t−1

∑
τ=0

βi(xτ) + ϕxt
i = ϕx0

i , (32)

case t(1) + 1 < t � t(2) (only one chance node y1 = xt(1) before xt):

t−1

∑
τ=t(1)+1

βi(xτ) + ϕxt
i = ϕ

xt(1)+1
i , (33)

case t(2) + 1 < t � t(3) (two chance nodes before xt):

t−1

∑
τ=t(2)+1

βi(xτ) + ϕxt
i = ϕ

xt(2)+1
i , (34)

...
case t(θ) + 1 < t � T (no chance nodes after xt):

t−1

∑
τ=t(θ)+1

βi(xτ) + ϕxt
i = ϕ

xt(θ)+1
i . (35)

The subgame consistency definition differs from the “time consistency in the whole game”
property (see References [9,14,16,20]) which is based on an a priori assessment of the ith player’s
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expected optimal payoff (before the game starts). However, when the players make a decision in the
subgame after the chance move occurs they need to recalculate the expected optimal payoff since the
original optimal bundle of cooperative trajectories shrinks after each chance node. Note that we can
not write out the subgame consistency condition for t = t(1) + 1, t(2) + 1, ..., t(θ) + 1, that is, for the
nodes xt that immediately follow the chance nodes.

One can suggest different imputation distribution procedures that may or may not satisfy the
useful properties listed above. The review of different IDP for multistage games (without chance
moves) as well as the analysis of their properties can be found in References [10,12,15,17]. Below we
consider the refinement of the so-called incremental IDP (see, e.g., References [10,14,16,17,20,21]) that
was recently introduced for multistage games with chance moves [9].

Definition 7 ([9]). The incremental IDP for the cooperative solution ϕx0 in multistage game with chance moves
Γx0 is defined as follows:

βi(xt) = ϕxt
i − ∑

xk
t+1∈S(xt)

p(xk
t+1|xt, u) · ϕ

xk
t+1

i (36)

for xt ∈ ωl(u) = (x0, . . . , xt, . . . , xT(l)), ωl(u) ∈ Ω(u), t = 0, . . . , T(l)− 1;

βi(xT(l)) = ϕ
xT(l)
i (37)

for xT(l) ∈ Ω(u) ∩ Pn+1.

Remark 2. Formulas (36), (37) are similar to the imputation distribution procedures suggested in
References [14,16,20] for (single-criterion) stochastic discrete-time dynamic games played over event trees.
If xt ∈ Pi, i = 1, . . . , n Equation (36) takes the simpler form βi(xt) = ϕxt

i − ϕ
xt+1
i , where ui(xt) = xt+1, that

coincides with the “classical” incremental IDP.

Let us use again 3-person extensive-form game from Example 1 to demonstrate a proposed
scheme of cooperation.

Example 2. (Cooperative behavior in 3-player game from Ex. 1).
Suppose that the players have agreed on the following ranks: r(1) = 1, r(2) = 2 and r(3) = 3.

When implementing the PRB algorithm we get the optimal bundle Ω(u) which contains four cooperative
trajectories (marked in bold, deep blue in Figure 2): ω1 = (x0, x1, x1

2, x3, x2
4, x5, x6), ω2 = (x0, x1, x2

2, z3),
ω3 = (x0, x1, x1

2, x3, x1
4) and ω4 = (x0, x1, x1

2, x3, x3
4, z7). Note that players use the ranks when making

decision at node x5.

x0 x1 x1
2

x3 x2
4

x5 x6 = z10

6
0
0

z1 x2
2

z3

12
0
0 z4

z2 x1
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4
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z6

z8 z9

0
0

12 0
0
4

12
12
0
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6
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0
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0
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20
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0
12
12

0
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12

12
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0

18
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12
0
0

1
2

1
2

1
6

1
2

1
3

Figure 2. 3-player extensive-form game: cooperative behavior.
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To demonstrate the implementation of the incremental IDP and its properties we will adopt the Shapley
value as a single valued cooperative solution. The values of the γ-characteristic function Vx0 for the original
game Γx0(N, Vx0) and the Shapley value ϕx0 are

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

Vx0 (S) 12 11 18 38 48 33 68
, ϕx0 =

⎛
⎜⎝ 25 1

6
17 1

6
25 2

3

⎞
⎟⎠ .

Consider, for instance, the incremental IDP along the longest cooperative trajectory ω2 = (x0, . . . , x6)

from Ω(u). If we calculate γ-characteristic functions using Attitude SPE algorithm for the subgames, we get
the following results.
Subgame Γx1(N, Vx1):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

Vx1 (S) 6 11 18 32 42 33 62
, ϕx1 =

⎛
⎜⎝ 19 1

6
17 1

6
25 2

3

⎞
⎟⎠ .

Subgame Γx1
2(N, Vx1

2):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

Vx1
2 (S) 0 10 32 40 60 42 76

, ϕx1
2 =

⎛
⎜⎝ 21

17
38

⎞
⎟⎠ .

Subgame Γx2
2(N, Vx2

2):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

Vx2
2 (S) 12 0 4 12 24 12 36

, ϕx2
2 =

⎛
⎜⎝ 17 1

3
5 1

3
13 1

3

⎞
⎟⎠ .

Subgame Γx3(N, Vx3):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

Vx3 (S) 24 10 16 40 48 26 64
, ϕx3 =

⎛
⎜⎝ 31

13
20

⎞
⎟⎠ .

Subgame Γx2
4(N, Vx2

4):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

Vx2
4 (S) 24 0 24 36 60 24 72

, ϕx2
4 =

⎛
⎜⎝ 36

6
30

⎞
⎟⎠ .

Subgame Γx3
4(N, Vx3

4):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

Vx3
4 (S) 0 18 12 18 18 30 36

, ϕx3
4 =

⎛
⎜⎝ 3

18
15

⎞
⎟⎠ .

Subgame Γx5(N, Vx5):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

Vx5 (S) 0 12 24 12 24 36 36
, ϕx5 =

⎛
⎜⎝ 0

12
24

⎞
⎟⎠ .

Finally, ϕx6 = hx6 = (12, 0, 0).
One can calculate the incremental IDP {βi(xτ), xτ ∈ ω2} using (36) and (37):

x0 x1 x1
2 x3 x2

4 x5 x6

β1(xτ) 6 0 −10 12 36 −12 12
β2(xτ) 0 6 4 0 −6 12 0
β3(xτ) 0 0 18 0 6 24 0

,

Note that the subgame consistency conditions at nodes x1, x3 and x5 according to (32)–(34) respectively
take the form:

βi(x0) + ϕx1
i = ϕx0

i , i ∈ N, or

⎛
⎜⎝ 6

0
0

⎞
⎟⎠+

⎛
⎜⎝ 19 1

6
17 1

6
25 2

3

⎞
⎟⎠ =

⎛
⎜⎝ 25 1

6
17 1

6
25 2

3

⎞
⎟⎠ ,
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βi(x1
2) + ϕx3

i = ϕ
x1

2
i , i ∈ N, or

⎛
⎜⎝ −10

4
18

⎞
⎟⎠+

⎛
⎜⎝ 31

13
20

⎞
⎟⎠ =

⎛
⎜⎝ 21

17
38

⎞
⎟⎠ ,

βi(x2
4) + ϕx5

i = ϕ
x2

4
i , i ∈ N, or

⎛
⎜⎝ 36

−6
6

⎞
⎟⎠+

⎛
⎜⎝ 0

12
24

⎞
⎟⎠ =

⎛
⎜⎝ 36

6
30

⎞
⎟⎠ .

It is known that the classical incremental IDP for multistage (and differential) games may imply
negative current payments to some players at some positions (see References [4,10,17,38] for details).
As one can observe in Ex. 2, this drawback of the incremental IDP may appear in the extensive-form
game with chance moves as well. Two approaches how to overcome this possible disadvantage
were suggested in References [4,10]. Unfortunately, as it was firstly proved in Reference [10], in
general it is impossible to design a time consistent IDP which satisfies both the balance condition and
non-negativity constraint.

Proposition 3. The incremental IDP (36), (37) satisfies strict balance condition (28), the subgame efficiency
condition (27), and the subgame consistency conditions (32)–(35).

Proof. Incremental IDP β was proved to satisfiy strict balance condition (28) in Reference [9]. The
proof of subgame consistency can be carried out by direct verification. For instance, consider the case
when t(1) + 1 < t � t(2). Then, using Remark 2 we get

t−1

∑
τ=t(1)+1

βi(xτ) =
(

ϕ
xt(1)+1

i − ϕ
xt(1)+2

i

)
+ . . . +

(
ϕ

xt−1
i − ϕxt

i

)
= ϕ

xt(1)+1

i − ϕxt
i .

Obviously, (33) is satisfied.
The proof that IDP (36), (37) satisfies subgame efficiency (27) is based on direct calculations but

rather cumbersome in general case (i.e., for arbitrary game Γx0 ). Let us demonstrate how it works for
the game in Example 2. For instance we verify that the incremental IDP meets the subgame efficiency
condition at node x3.

Note that Ω(ux3) =
{

ωx3
1 = (x3, x1

4); ωx3
2 = (x3, x2

4, x5, x6); ωx3
3 = (x3, x3

4, z7)
}

while

p(ωx3
1 , ux3) = π(x1

4|x3), p(ωx3
2 , ux3) = π(x2

4|x3) and p(ωx3
3 , ux3) = π(x3

4|x3). Then, using (32),
(33), Remark 2, equality ∑

xk
4∈S(x3)

π(xk
4|x3) = 1 and the notation

Φ4
i =

3

∑
k=1

π(xk
4|x3) · ϕ

xk
4

i ,

we obtain

∑
ω

x3
k ∈Ω(ux3 )

p(ωx3
k , ux3 ) ·

T(k)

∑
τ=3

βi(xτ) = π(x1
4|x3) ·

[(
ϕx3

i − Φ4
i

)
+ ϕ

x1
4

i

]
+

+π(x2
4|x3) ·

[(
ϕx3

i − Φ4
i

)
+
(

ϕ
x2

4
i − ϕx5

i

)
+
(

ϕx5
i − ϕx6

i

)
+ ϕx6

i

]
+

+π(x3
4|x3) ·

[(
ϕx3

i − Φ4
i

)
+
(

ϕ
x3

4
i − ϕz7

i

)
+ ϕz7

i

]
= ϕx3

i ·
3

∑
k=1

π(xk
4|x3)+

+π(x1
4|x3) ·

[
−Φ4

i + ϕ
x1

4
i

]
+ π(x2

4|x3) ·
[
−Φ4

i + ϕ
x2

4
i

]
+ π(x3

4|x3) ·
[
−Φ4

i + ϕ
x3

4
i

]
=

= ϕx3
i − Φ4

i ·
3

∑
k=1

π(xk
4|x3) +

3

∑
k=1

π(xk
4|x3) · ϕ

xk
4

i = ϕx3
i .
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According to Proposition 3, the incremental payment schedule (36), (37) can be used to implement
a long-term cooperative agreement in an extensive-form game with chance moves.

6. Conclusions

In the paper we purposes to design a mechanism of the players’ sustainable long-term cooperation
that satisfies a number of good properties. To this aim we formalised the players’ rank based algorithm
for selecting a unique optimal bundle of cooperative trajectories, and proved that corresponding
cooperative strategy profile satisfies time consistency. To calculate γ-characteristic function one need to
have a specific method for constructing a unique (subgame perfect) equilibrium at any extensive-form
game with chance moves. Hence, we formalised a backwards induction procedure refinement based
on the players’ attitude vectors—the so-called attitude SPE algorithm.

As a result of reexamination of the “IDP time consistency in the whole game” concept, we suggest
to adopt the concept of subgame consistency, introduced in Reference [36] for differential stochastic
games and then extend it to dynamic stochastic games in References [37,38]. The definition of subgame
consistency for extensive-form game with chance moves is provided. This property takes into account
such an interesting feature of the games under consideration that when the players make a decision
in the subgame Γxt after the chance move occurs, they need to recalculate their expected optimal
payoffs-to-go since the original optimal bundle of cooperative trajectories shrinks after each chance
node. It is worth noting that a similar approach, based on the IDP subgame consistency notion could
be applied to dynamic games played over event trees ([14,16,20]). We proved that the incremental IDP
specified for multistage games with chance moves in Reference [9] satisfy subgame consistency and
subgame efficiency as well as the strict balance condition.

It follows from Propositions 1–3 that two specified algorithms combined with the γ-characteristic
function, and the incremental payment schedule together constitute a mechanism of the players’
sustainable cooperation that satisfies a number of good properties and could be used in extensive-form
games with chance moves. Note that the main result of the paper—Proposition 3—does not depend
on the specific method which the players employ to calculate the characteristic function as well as on
the specific single-valued cooperative solution meeting (25) and (26).

Since this is the first time that subgame consistent solutions are examined for extensive-form
games with chance moves, further research along this line is expected. It is surely of interest to develop
appropriate software application to implement proposed algorithms in arbitrary extensive-form game
with chance moves. Possibly, one can use the so-called Game Theory Explorer [30] when developing
such software tools for 2-person extensive games. Further, it might be interesting to run experiments
with large-scale datasets, after the software application that allows to construct unique SPE, the optimal
bundle of cooperative trajectories, γ-characteristic function, and so forth, will be developed.

Let us notice some preliminary suggestions on how one can use such software application to run
simulations. First, one can vary the main parameter—the length of the game tree, and the additional
parameters such as the game structure, the players’ payoffs, probabilities of transitions, and so forth,
to obtain practical estimations of the proposed algorithms complexity and scalability. Secondarily,
one can generate external disturbances of the stage payoffs and probabilities and vary the players’
attitude vectors to carry out the sensitivity analysis of the proposed non-cooperative and cooperative
solutions. Further, it is of interest to get experimental estimations of the price of anarchy and the price
of stability for the class of games under consideration. Finally, one can use such software application
to check whether the additional properties (non-negativity, irrational-behavior-proof conditions, etc.)
of the proposed incremental IDP and other payment schedules (see, e.g., Reference [15]) are satisfied
for given extensive-form game with chance moves.
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Abstract: The core as a solution to a cooperative game has the advantage that any imputation from
it is undominated. In cooperative dynamic games, there is a known transformation that demonstrates
another advantage of the core—time consistency—keeping players adhering to it during the course
of the game. Such a transformation may change the solution, so it is essential that the new core share
common imputations with the original one. In this paper, we will establish the relationship between
the original core of a dynamic game and the core after the transformation, and demonstrate that
the latter can be a subset of the former.
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1. Introduction

The theory of cooperative dynamic games is useful for modeling and analyzing real world
problems. Examples include advertising, public goods provision, resource extraction, environmental
management, and others which are extensively discussed in [1,2]. The core as a solution to
a cooperative game has the advantage that any imputation from it is undominated. This solution
is quite popular in the literature on the application of dynamic game theory, not only because of
the aforementioned property, but also because of its flexibility, allowing allocating the cooperative
outcome in several ways, for instance, in lot sizing [3–5], pollution control [6–8], or non-renewable
resource extraction [9]. In cooperative dynamic games, there is a known transformation of
a characteristic function, which is a key component of any cooperative game measuring the claims of
any group of players [10,11]. The core determined by the modified characteristic function possesses
another advantage—time consistency—keeping players adhering to it and being non-negotiable
during the course of the game [1,12]. Such a transformation, however, may change the core, so it is
essential that the modified core share common imputations with the original one. This allows players
to expect if not all of the imputations from the original one, but a part of them. For this reason,
we will establish the relationship between the original core of a dynamic game and the core after the
transformation, and demonstrate that in some instances the latter can be a subset of the former. It was
proven in [11] that the proposed transformation rule applied an infinite number of times converges
when the total players’ payoffs along the agreed upon behavior are positive. Here we will relax this
assumption and refine the conditions that ensure the convergence of the transformation rule.

The structure of the paper is as follows. Section 2 introduces necessary definitions and concepts.
The main results of the paper are formulated in Section 3. We then study the relationship between
the original core of a dynamic game and the modified ones and establish conditions for the limiting
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core to be a subset of the original core also when considering classes of linear symmetric games,
linear-state games, and two-stage network games. Section 4 concludes.

2. Background

We consider a standard formulation of a dynamic game with complete information.
Let N = {1, . . . , n}, |N| = n � 2, be a finite set of players. The set of game stages (periods) is
described by a finite set T = {1, . . . , T}. We denote a state variable at stage t ∈ T by x(t) which
belongs to a state space X. Let x(1) = x1. Next, we denote an action of player i ∈ N at stage t ∈ T by
ui(t) which belongs to her action space Ui(t). (Since the sets of actions U1(t), . . . , Un(t), t ∈ T , and the
state space X have not been precisely defined, we suppose that they are not empty, and the values of
all optimization problems below exist and are finite). We suppose that the state dynamics is governed
by the difference equation

x(t + 1) = ft(x(t), u(t)) ∈ X (1)

for any t ∈ T from the initial state x1. It is supposed that x(t + 1) is uniquely defined. At each of T
game stages, players simultaneously choose actions and thus form an action profile u = (u1, . . . , un)

with ui = (ui(1), . . . , ui(T)) for i ∈ N. The payoff to player i ∈ N in the game is defined by
the real-valued function

Ji(x1, u) =
T

∑
t=1

hit(x(t), u(t)), i ∈ N,

and amounts to the sum of her stage payoffs. (As with [11], players are not rewarded at a terminal
state x(T + 1), yet the setting can easily be generalized to this case as well).

A player chooses an action according to her strategy which accounts for the current information
about the game available to her at the time of decision: this can be the information about the game
stage, the value of the state variable, the actions that players have taken at previous stages, etc.
We denote the information available to player i ∈ N at stage t ∈ T by ηi(t). A strategy ui of player
i is a rule that maps the player’s information space to her action space, i.e., at stage t player i with
information ηi(t) chooses the action ui(t) = ui(ηi(t)) ∈ Ui(t). (See [13] for more details). A collection
u = (u1, . . . , un) is a strategy profile. Each strategy profile generates a trajectory which is a profile
x = (x(1), . . . , x(T)) whose entries are determined by (1). One can introduce the payoff function Ji
of player i ∈ N defined on the set of players’ strategy profiles as follows: Ji(u) = Ji(x1, u) where u
is an action profile corresponding to u.

In the cooperative formulation of the game, players choose their strategies jointly to maximize
the payoff they generate, that is to maximize the sum ∑i∈N Ji(u). Let a strategy profile u∗ = (u∗

1, . . . , u∗
n)

maximize the latter sum. This profile is called a cooperative strategy profile and the associated trajectory
x∗ = (x∗(1), . . . , x∗(T)) with x∗(1) = x1 is called a cooperative trajectory.

We now define a cooperative transferable utility game, or a TU game, (N, v) which is determined
by the same player set N and a characteristic function v. This function is defined on 2N , that is the set
of all subsets of set N, and for a subset S ⊆ N, called a coalition, its value (a real number) v(S) measures
the worth, or claims, of this coalition in the game. Additionally, v(∅) = 0. We will not specify how
this function is determined as it is not relevant to the analysis we will perform; we only note that
v(N) = ∑i∈N Ji(u∗), i.e., the grand coalition claims the maximum payoff it generates. (See different
concepts for determining the characteristic function in dynamic games in [12]). Once the value of v(N)

is obtained, players allocate it among them as an imputation which is a profile ξ(v) = (ξ1(v), . . . , ξn(v))
satisfying efficiency, i.e., ∑i∈N ξi(v) = v(N), and individual rationality, i.e., ξi(v) � v({i}), i ∈ N.
The set of all imputations, or the imputation set, will be denoted by I(v). A cooperative solution,
or simply a solution, to the cooperative dynamic game (N, v) is a rule that assigns a subset M(v) ⊆ I(v)
to this game. In this paper, we suppose that the solution is the core, that is the subset of the imputation
set given by C(v) = {ξ(v) ∈ I(v) : ∑i∈S ξi(v) � v(S), S ⊂ N}. Having chosen the agreed upon
cooperative solution C(v), players jointly implement cooperative strategy profile u∗ moving along
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cooperative trajectory x∗, and after obtaining the value v(N) as their payoff, the players allocate it
among them as an imputation from the chosen solution C(v).

In cooperative dynamic games, it is important that players adhere to the same solution
chosen at the initial stage as the game develops along the agreed upon cooperative trajectory x∗.
A time-consistent solution is stable to its revision during the course of the game, and implementing
certain mechanisms one can make cooperation sustainable. When the solution is time inconsistent,
there are effective mechanisms of game regularization, that is a change in players’ stage payoffs
along the cooperative trajectory, so that the solution becomes time consistent in the regularized
game. (See [1,12] for a comprehensive analysis of sustainable cooperation and the associated time
consistency property of a cooperative solution). In the vast majority of cases, such mechanisms
are designed on a special redistribution of players’ stage payoffs determined by an imputation
distribution procedure and they require consideration of proper subgames of the original game
along the cooperative trajectory. Each subgame is a dynamic game of T − t + 1 stages starting from
the initial state x∗(t), t ∈ T \ {1}. In a similar way, one can define a cooperative subgame (N, vt), the
imputation set I(vt), and the cooperative solution (the core C(vt)) to each subgame, t ∈ T \ {1}. (From
now on, the original cooperative game (N, v) will be denoted by (N, v1) for consistency in notation).
We suppose that the solution is not empty along the cooperative trajectory x∗. In other words, for each
state x∗(t), t ∈ T , the core C(vt) is not empty. If it is not the case, then from the first game stage when
this assumption is violated, the players are unable to follow the agreed upon solution.

Petrosyan et al. [11] examine the time consistency of the core based on a transformation of the
characteristic functions and reveal that the core of the transformed game becomes strong time consistent.
(Strong time consistency is a stricter property of a cooperative solution to a dynamic game; it is
applicable to set solutions and it coincides with the property of time consistency for point solutions
(see [10,14–16] for details)). The strong time consistency of the core was established with the use of
a modified characteristic function v̂t, t ∈ T , which for each coalition S ⊆ N accounts for values vτ(S)
and vτ(N), τ � t, along the cooperative trajectory x∗ and is given by:

v̂t(S) =
T

∑
τ=t

vτ(S)∑i∈N hiτ(x∗(τ), u∗(τ))
vτ(N)

, S ⊆ N. (2)

We call the sets I(v̂t) and C(v̂t) the modified imputation set and the modified core: these sets
are the imputation set and the core in the modified game (N, v̂t), t ∈ T .

Since the transformation rule changes the solution, a player or a group of players may want
to apply the rule again (or several times subsequently) to change the characteristic function of
the game and therefore their payoffs prescribed by the solution which is based on the characteristic
function. For a given cooperative trajectory x∗ and a coalition S ⊆ N, let v(S) = (v1(S), . . . , vT(S))′

and v̂(S) = (v̂1(S), . . . , v̂T(S))′. Using this notation, transformation rule (2) can be written in
matrix form:

v̂(S) = Θ v(S), (3)

where Θ is the upper-triangular matrix

Θ =

⎛
⎜⎜⎜⎜⎜⎜⎝

θ1 θ2 · · · θT−1 θT
0 θ2 · · · θT−1 θT
...

...
. . .

...
...

0 0 · · · θT−1 θT
0 0 · · · 0 θT

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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whose entries are given by

θt =
∑i∈N hit(x∗(t), u∗(t))

∑T
τ=t ∑i∈N hiτ(x∗(τ), u∗(τ))

, t ∈ T .

Since θT = 1, the last column of Θ consists of ones. Using relation (3), for each coalition S ⊆ N
we construct an iterative process v(m)(S) = Θ v(m−1)(S), m = 1, 2, . . . with the initial condition
v(0)(S) = v(S) where v(m)(S) = (v(m)

1 (S), . . . , v(m)
T (S))′ and v(1)(S) = v̂(S). The iterative process can

be rewritten as:
v(m)(S) = Θm v(S), m = 1, 2, . . . (4)

It was established in [11] that under the assumption of the non-negativity of players’ stage payoffs
along the cooperative trajectory, the sequence of modified characteristic functions defined by (4)
converges. A limiting characteristic function v̄t, t ∈ T , is given by:

v̄t(S) =
vt(N)

vT(N)
· vT(S), S ⊆ N. (5)

We call the sets I(v̄t) and C(v̄t) the limiting imputation set and the limiting core: these sets are
the imputation set and the core in the limiting game (N, v̄t), t ∈ T . In [11], it was shown that when
the iterative process (4) converges and (i) when the core C(vt) �= ∅ for any t ∈ T , then the modified
core C(v̂t) �= ∅ for any t ∈ T , (ii) when the core at the terminal stage C(vT) �= ∅, the limiting core
C(v̄t) �= ∅ for any t ∈ T . Since we suppose that the original cores are non-empty along the cooperative
trajectory, all modified and limiting cores C(v(m)

t ) and C(v̄t) will be non-empty as well for all t ∈ T ,
m = 1, 2, . . ., provided that (4) converges.

3. The Results

3.1. General Results

The convergence of transformation rule (4) was only established for non-negative payoffs along
the cooperative trajectory. We now relax the non-negativity condition, yet still assume that the total
payoff ∑i∈N hit(x∗(t), u∗(t)) is non-zero at each game stage, i.e., at least one player contributes into
the grand coalition’s payoff.

Proposition 1. The limiting characteristic function v̄1 exists if and only if vt(N)vt+1(N) > 0 and
|vt+1(N)| � 2|vt(N)| for t ∈ T \ {T}.

Proof. We suppose that matrix Θ can be decomposed as Θ = PΛP−1 where Λ is a diagonal matrix
whose diagonal entries are the eigenvalues of Θ, and P is a matrix whose columns are the corresponding
eigenvectors. When the limiting characteristic function exists, it holds that

v̄(S) = lim
m→∞

v(m)(S) = lim
m→∞

Θm v(S) = lim
m→∞

PΛmP−1 v(S). (6)

Since the transformation matrix Θ is upper triangular, we have that Λ = diag{θ1, . . . , θT}
and Λm = diag{θm

1 , . . . , θm
T } for m = 1, 2, . . . According to (6), the limiting characteristic function exists

if and only if the limit limm→∞ Λm exists. This is the case when the absolute values of the eigenvalues
of matrix Θ do not exceed 1: |θt| ∈ [0, 1] for t ∈ T . Recall that θT = 1.

If θt = (vt(N)− vt+1(N)) /vt(N) = 1 for some t ∈ T \ {T}, then vt+1(N) = 0. However,
the linear transformation requires that vt(N) �= 0 for all t ∈ T . Therefore, it must hold that θt ∈ [−1, 1)
for t ∈ T \ {T} which is equivalent to

− 1 � vt(N)− vt+1(N)

vt(N)
< 1, t ∈ T \ {T}. (7)
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For t ∈ T \ {T} if vt(N) > 0, then (7) is equivalent to 0 < vt+1(N) � 2vt(N), whereas if vt(N) < 0,
(7) is equivalent to 2vt(N) � vt+1(N) < 0. Summarizing the above, (7) is equivalent to the conditions
mentioned in the statement of the proposition for every t ∈ T \ {T}.

Remark 1. When the limiting characteristic function v̄1 exists, then the limiting characteristic functions v̄t,
t ∈ T \ {1}, exist as well for any subgame along the cooperative trajectory.

The conditions that ensure the convergence of the iterative process (4) and, therefore, the existence
of the limiting characteristic function, have the following meaning. First, the grand coalition’s payoff
in the original game and its proper subgames along the cooperative trajectory are of same sign. Second,
the grand coalition’s payoff in any subgame must be at most twice its payoff in the preceding subgame
in absolute values.

Now we study the relationship between the core of the cooperative dynamic game and
the modified (limiting) core. As we noted, the transformation rule (4) changes the solution. Therefore,
players having agreed on the core C(v1) as a solution to game (N, v1) have to be sure that they will
be able to realize an imputation from it even after game transformation. Since for the grand coalition
N it holds that vt(N) = v(1)t (N) = · · · = v(m)

t (N) = · · · = v̄t(N) for every t ∈ T , the value to be
allocated is invariant to the transformation rule. Our main goal is to establish the relationship between
the original core C(v1), modified cores C(v(m)

1 ), m = 1, 2, . . ., and the limiting one C(v̄1). When the
latter cores intersect with C(v1), players are able to realize an imputation from the original core after
one-time or even multifaceted transformation of the characteristic function. We will need the following
definitions. A set-function v : 2N �→ R is monotone if for every R ⊂ S ⊆ N we have that either
v(R) � v(S) or v(R) � v(S). A set-function v is called supermodular if for any subsets (coalitions)
S, R ⊆ N the following holds: v(S ∪ R) + v(S ∩ R) � v(S) + v(R). When the opposite inequality
holds for every pair of coalitions, the function v is called submodular. It is well known that the core
of a convex cooperative game, i.e., the game whose characteristic function is supermodular, is not
empty [17]. Therefore, when the characteristic functions max{v1, v(m)

1 }, m = 1, 2 . . ., and max{v1, v̄1}
are supermodular, we will have non-empty intersections C(v1) ∩ C(v(m)

1 ) �= ∅ and C(v1) ∩ C(v̄1) �= ∅

respectively. As it is pointed out in [18], neither the minimum nor the maximum of two submodular
set-functions is in general submodular. However, the following result is useful:

Proposition 2 ([18]). Let v and w be real-valued submodular set-functions on 2N such that v − w is either
monotone increasing or decreasing. Then min{v, w} is also submodular.

The case when the modified cores C(v(m)
1 ), m = 1, 2, . . ., and the limiting core C(v̄1) are the subsets

of C(v1) is even more desirable. It ensures that players can realize an imputation from the original
core after the transformation(s) of the characteristic function. We would like to establish the conditions
providing a nested structure for the cores. Obviously, the inclusions C(vt) ⊆ C(v(m)

t ), m = 1, 2, . . .,

and C(vt) ⊆ C(v̄t) with t ∈ T hold if and only if vt(S) � v(m)
t (S) and vt(S) � v̄t(S) for every coalition

S ⊂ N. Recall that in the subgame which starts at the terminal stage, the original, the modified, and
the limiting cores coincide. Similarly, C(vt) ⊇ C(v(m)

t ) and C(vt) ⊇ C(v̄t) if and only if vt(S) � v(m)
t (S)

and vt(S) � v̄t(S) for every S ⊂ N. As the above inequalities require the comparison of the original
and the modified characteristic functions, we would prefer to establish relationship that require only
the definition of the original characteristic function. The following proposition addresses this issue.

Proposition 3. Let vt(N) be non-increasing in t and positive. It holds that

1. If v1(S)
v1(N)

� · · · � vT(S)
vT(N)

for any coalition S ⊆ N, then C(vt) ⊇ C(v(1)t ) ⊇ C(v(2)t ) ⊇ · · · ⊇ C(v̄t)

for every game stage t ∈ T .
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2. If v1(S)
v1(N)

� · · · � vT(S)
vT(N)

for any coalition S ⊆ N, then C(vt) ⊆ C(v(1)t ) ⊆ C(v(2)t ) ⊆ · · · ⊆ C(v̄t)

for every game stage t ∈ T .

3. If v1(S)
v1(N)

= · · · = vT(S)
vT(N)

for any coalition S ⊆ N, then C(vt) = C(v(1)t ) = C(v(2)t ) = · · · = C(v̄t)

for every game stage t ∈ T .

Proof. Prove the first claim. We suppose that v1(S)
v1(N)

� v2(S)
v2(N)

� · · · � vT(S)
vT(N)

for any coalition S ⊆ N.
Then for any t ∈ T and S it holds that the modified characteristic function

v(1)t (S) =
T−1

∑
τ=t

vτ(S)
vτ(N)

[vτ(N)− vτ+1(N)] + vT(S)

� vt(S)
vt(N)

(
T−1

∑
τ=t

[vτ(N)− vτ+1(N)] + vT(N)

)
= vt(S).

(8)

For the modified characteristic function, we next prove that v(1)1 (S)

v(1)1 (N)
� v(1)2 (S)

v(1)2 (N)
� · · · � v(1)T (S)

v(1)T (N)

for every coalition S ⊆ N. Given a coalition S and a game stage t ∈ T \ {T}, we obtain

v(1)t+1(S)

v(1)t+1(N)
− v(1)t (S)

v(1)t (N)
=

v(1)t+1(S)
vt+1(N)

−
v(1)t+1(S) +

vt(S)
vt(N)

(vt(N)− vt+1(N))

vt(N)

=
vt(N)v(1)t+1(S)− vt+1(N)

(
v(1)t+1(S) +

vt(S)
vt(N)

(vt(N)− vt+1(N))
)

vt(N)vt+1(N)

=
(vt(N)− vt+1(N))

(
v(1)t+1(S)− vt+1(N) vt(S)

vt(N)

)
vt(N)vt+1(N)

� (vt(N)− vt+1(N))

vt(N)vt+1(N)

(
vt+1(S)− vt+1(N)

vt(S)
vt(N)

)

=
(vt(N)− vt+1(N))

vt(N)

(
vt+1(S)
vt+1(N)

− vt(S)
vt(N)

)
� 0.

The latter inequality holds true because vt(S)
vt(N)

� vt+1(S)
vt+1(N)

for any stage t ∈ T \ {T} and vt(N)

is non-increasing in t and positive. Therefore, v(1)1 (S)

v(1)1 (N)
� v(1)2 (S)

v(1)2 (N)
� · · · � v(1)T (S)

v(1)T (N)
for every coalition

S ⊆ N. Similar to (8), we conclude with v(2)t (S) � v(1)t (S) for every S and t ∈ T .

By induction, we get the following relation vt(S) � v(1)t (S) � · · · � v(m)
t (S) � v(m+1)

t (S) � . . .

for all S ⊆ N and t ∈ T . It immediately implies that C(v(m)
t ) ⊇ C(v(m+1)

t ) for m = 0, 1, . . .

with understanding v(0)t (S) = vt(S). Since vt(N) is positive and non-increasing in t, then by

Proposition 1, the limiting characteristic function exists. Thus, C(vt) ⊇ C(v(1)t ) ⊇ C(v(2)t ) ⊇ · · · ⊇ C(v̄t)

for t ∈ T .
The second claim is proved in a similar way with the third one being a special case.

We note that the conditions in the above proposition require the monotonicity of the relative worth
of all coalitions along the cooperative trajectory. This proposition can be extended for the case when
vt(N) is non-decreasing in t and negative. We formulate additional instances in the next corollary.
As we already showed in Proposition 1, the case when vt(N) changes its sign in t does not lead to the
convergence of the iterative process and, as a result, to the existence of the limiting core.

Corollary 1. Let vt(N) be non-decreasing in t and negative. It holds that
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1. If v1(S)
v1(N)

� · · · � vT(S)
vT(N)

for any coalition S ⊆ N, then C(vt) ⊆ C(v(1)t ) ⊆ C(v(2)t ) ⊆ · · · ⊆ C(v̄t)

for every game stage t ∈ T .

2. If v1(S)
v1(N)

� · · · � vT(S)
vT(N)

for any coalition S ⊆ N, then C(vt) ⊇ C(v(1)t ) ⊇ C(v(2)t ) ⊇ · · · ⊇ C(v̄t)

for every game stage t ∈ T .

3. If v1(S)
v1(N)

= · · · = vT(S)
vT(N)

for any coalition S ⊆ N, then C(vt) = C(v(1)t ) = C(v(2)t ) = · · · = C(v̄t)

for every game stage t ∈ T .

3.2. Linear Symmetric Games

As a special class of cooperative dynamic games, we consider a class of linear symmetric
games with the characteristic function depending only upon the number of players in a coalition,
that is, vt(S) = At|S|+ Bt for all coalitions S ⊆ N and game stages t ∈ T . Following [19], cooperative
game (N, vt) has a non-empty core C(vt) if and only if vt(S)

|S| � vt(N)
|N| for any non-empty coalition S ⊆ N.

For the characteristic function under consideration, the latter inequality transforms into Bt
|S| �

Bt
|N| ,

S ⊆ N, t ∈ T , which holds true for non-positive Bt. Since players consider the core to be the solution
to the cooperative dynamic game, the solution must prescribe a non-empty subset of the imputation
set. For this reason, we introduce the assumption Bt � 0 for each t ∈ T . In practical situations, it is
reasonable to assume that the worth of grand coalition v1(N) is positive, i.e., players generate a positive
gain in the game under cooperation. At the same time in view of Proposition 1, the iterative process (4)
converges when the grand coalition’s payoff does not change its sign along the cooperative trajectory.
This implies that vt(N) � 0 and, therefore, At � 0 as well for all t ∈ T . The next results summarize
the relationship between the cores for the class of games under consideration. We let s = |S|.

Corollary 2. Let vt(S) = Ats + Bt, At � 0, Bt � 0, t ∈ T . If the limiting characteristic function v̄t exists,
then C(vt)

⋂ C(v̄t) �= ∅ for every game stage t ∈ T .

Proof. By the definition of the limiting characteristic function (5), we note that vt and v̄t are monotone.
Taking into account their difference, it holds that vt − v̄t is monotone as well. Using Proposition 2,
we prove the result.

Corollary 3. Let vt(N) = Atn + Bt be non-increasing in t and positive with At � 0, Bt < 0 for all t ∈ T .
It holds that

1. If A1
B1

� · · · � AT
BT

, then C(vt) ⊇ C(v(1)t ) ⊇ C(v(2)t ) ⊇ · · · ⊇ C(v̄t) for every game stage t ∈ T .

2. If A1
B1

� · · · � AT
BT

, then C(vt) ⊆ C(v(1)t ) ⊆ C(v(2)t ) ⊆ · · · ⊆ C(v̄t) for every game stage t ∈ T .

3. If A1
B1

= · · · = AT
BT

, then C(vt) = C(v(1)t ) = C(v(2)t ) = · · · = C(v̄t) for every game stage t ∈ T .

Proof. Prove the first claim. We suppose that At
Bt

� At+1
Bt+1

for any t ∈ T \ {T}. Then the following
sequence of equivalent relations holds:

At

Bt
� At+1

Bt+1
⇔ AtBt+1 � At+1Bt

⇔ AtBt+1(s − n) � At+1Bt(s − n)

⇔ AtBt+1s + At+1Btn � AtBt+1n + At+1Bts

⇔ At At+1sn + AtBt+1s + At+1Btn + BtBt+1 � At At+1sn + AtBt+1n + At+1Bts + BtBt+1

⇔ (Ats + Bt)(At+1n + Bt+1) � (At+1s + Bt+1)(Atn + Bt)

⇔ vt(S)vt+1(N) � vt+1(S)vt(N).
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Since vt(N) is positive for all t ∈ T \ {T}, the latter inequality is equivalent to vt(S)
vt(N)

� vt+1(S)
vt+1(N)

,

t ∈ T \ {T}. By Proposition 3, we get the inclusions C(vt) ⊇ C(v(1)t ) ⊇ C(v(2)t ) ⊇ · · · ⊇ C(v̄t), t ∈ T .
The second claim is proved in a similar way with the third one being a special case.

To establish the relationship between the core C(vt) and the limiting core C(v̄t), we can relax
the monotonicity of the ratio At/Bt.

Corollary 4. Let vt(N) = Atn+ Bt be positive with At � 0, Bt < 0 for all t ∈ T . If the limiting characteristic
function v̄t exists, then for any game stage it holds that

1. If At
Bt

� AT
BT

, then C(vt) ⊇ C(v̄t).

2. If At
Bt

� AT
BT

, then C(vt) ⊆ C(v̄t).

3. If At
Bt

= AT
BT

, then C(vt) = C(v̄t).

Proof. We prove the first statement. As with the proof of Corollary 3, it is easy to verify that vt(S)
vt(N)

�
vT(S)
vT(N)

, t ∈ T , S ⊆ N, and provided that the limiting characteristic function v̄t exists, we obtain the
inclusion C(vt) ⊇ C(v̄t).

The second and the third statements are proved similarly.

Remark 2. It is worth noting that Corollaries 3 and 4 can be extended to the non-decreasing in game stage
and negative values of the grand coalition’s payoffs along the cooperative trajectory (recall that by Proposition 1
for convergence, these values must be of same sign). If it is the case, then relaxing the assumption At � 0 for all
t ∈ T , one can easily show that the core inclusions become opposite.

3.3. Two-Stage Network Games

In this section, we establish the relationship between the cores for a class of cooperative two-stage
network games studied in [20,21] for a general model and in [22] for their applications in public
goods provision and market competition. We will define the characteristic functions in the two-stage
cooperative network game according to transformation rule (2) when implementing the cooperative
agreement. Taking into account that players receive their payoffs only at the second stage of the
game, that is v1(N) = v2(N), then it holds that v̂1(S) = v̂2(S) = v2(S) for any coalition S ⊆ N. Next,
the transformation matrix Θ takes the form

Θ =

(
0 1
0 1

)
.

Although the players’ payoffs at the first game stage are zero, the iterative process (4) converges.
From (5), we conclude that v̄1(S) = v̄2(S) = v2(S) for any coalition S ⊆ N as well. Since characteristic
functions v̂1, v̄1 in the cooperative two-stage network game and characteristic functions v̂2, v̄2 in its
cooperative one-stage subgame coincide, we get the equality C(v̂1) = C(v̂2) = C(v̄1) = C(v̄2) = C(v2)

for the cores.

3.4. A Class of Linear-State Games

Now we examine a class of linear-state games. For the model under consideration, we take one
studied in [23] with the purpose to establish the relationship between the cores in this class of games.
For convenience, we change the set of game stages T = {0, 1, . . . , T} and start indexing stages from
zero. In the model, the state dynamics is governed by the state equation

x(t + 1) = b0x(t) + b1 ∑
i∈N

ui(t) ∈ X, t ∈ T \ {T},
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with the initial condition x(0) = x0 ∈ X. Here ui(t) ∈ comp Ui ⊂ R+ for each player i ∈ N
and X = R+. The player i’s stage payoffs are defined by the functions

hit(x(t), u(t)) = ai0ui(t) +
ai1
2

u2
i (t) + ai2x(t), t ∈ T \ {T},

hiT(x(T)) = ai2x(T).

Additionally, we assume that ai1 < 0, and ai2 �= 0 are of same sign for each i ∈ N, and b0, b1 �= 0.
When the game is played cooperatively, players jointly maximize the sum

∑i∈N Ji(x0, u) = ∑i∈N(∑
T−1
t=0 hit(x(t), u(t)) + hiT(x(T))).

First, we introduce the following functions of stage number t ∈ T :

χ1(t) =
T−t

∑
τ=1

bτ
0 , χ2(t) =

T−t

∑
τ=1

τ−1

∑
m=0

bτ−m
0 , χ3(t) =

T−t−1

∑
τ=0

(
T−t−τ

∑
m=1

bm
0

)2

, t ∈ T \ {T},

with χ1(T) = χ2(T) = χ3(T) = 0. In [23], it was established that the cooperative trajectory is given by

x∗(t) =

⎧⎪⎨
⎪⎩

x0, t = 0,

bt
0x0 −

b1

b0
∑
i∈N

1
ai1

t−1

∑
τ=0

bt−τ
0

(
ai0 +

b1

b0
χ1(τ) ∑

j∈N
aj2

)
, t ∈ T \ {0},

and the characteristic functions in the game and its cooperative proper subgames along
this trajectory equal

vt(N) = ∑
i∈N

(
− a2

i0
2ai1

(T − t) + ai2x∗(t)(1 + χ1(t))−
ai2b1

b0
χ2(t) ∑

j∈N

aj0

aj1

)

−
(

b1

b0
∑
j∈N

aj2

)2

χ3(t) ∑
j∈N

1
2aj1

,

vt(S) = ∑
i∈S

(
− a2

i0
2ai1

(T − t) + ai2x∗(t)(1 + χ1(t))−
ai2b1

b0
χ2(t) ∑

j∈N

aj0

aj1

)

− b2
1

b2
0

⎛
⎝(

∑
j∈S

aj2

)2

∑
j∈S

1
2aj1

+ ∑
j∈S

aj2 ∑
j∈N\S

aj2

aj1

⎞
⎠ χ3(t), S ⊂ N,

while for t = T and any S ⊆ N, we have vT(S) = ∑i∈S ai2x∗(T). Please note that characteristic
function vT is additive, therefore, the core C(vT) is non-empty and consists of a single imputation
ξ(vT) = (a12x∗(T), . . . , an2x∗(T)). Moreover, if there exists the core C(v̄T), it consists of the same
imputation as C(vT) = C(v̄T).

Before studying the relationship between the cores, we consider the following example.
It demonstrates that for the class of games under consideration (i) the modified core and the limiting
core can be subsets of the original one, (ii) they can share no common imputation with the original
core, and (iii) the original core can intersect with the modified core, but does not intersect with
the limiting one.

Example 1. We consider a 3-person game with T = 3 and perform simulation with the following parameters:
x0 = 15, b0 = 1, b1 = −1, a11 = a21 = a31 = −2, a12 = a22 = a32 = 0.05 whereas parameters a10, a20, a30

vary. Figure 1 demonstrates the situation when the original core C(v0) intersects with the modified core C(v(1)0 ),
but does not intersect with the limiting core C(v̄0). Next, the instance when the modified core and the limiting
core are subsets of the core C(v0) is depicted in Figure 2. Finally, in Figure 3, the original core intersects neither
with the modified core nor with the limiting one.
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I(v0) I(v(1)0 ) I(v(2)0 ) I(v(3)0 )

C(v0) C(v(1)0 ) C(v(2)0 ) C(v(3)0 )

Figure 1. A non-empty intersection of the original core and the modified core (a10 = 1, a20 = 1.1,
a30 = 1).
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Figure 2. A nested cores pattern (a10 = 1, a20 = 1.01, a30 = 1).
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Figure 3. All cores are pairwise disjoint (a10 = 1, a20 = 1.3, a30 = 1).
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The next proposition provides conditions under which the limiting core is a subset of
the original core.

Proposition 4. Let the limiting characteristic function v̄0 exist. If the inequality (∑j∈S
a2

j0
aj1
)/(∑j∈N

a2
j0

aj1
) �

(∑j∈S aj2)/(∑j∈N aj2) holds for every coalition S ⊆ N and ai2
aj2

+
aj1
ai1

� 1 for any i, j ∈ N, then C(vt) ⊇ C(v̄t)

for every t ∈ T . Moreover, when players are symmetric, C(vt) ⊇ C(v̄t) for every t ∈ T .

Proof. First, we prove the statement assuming that players are asymmetric. Having the required
conditions satisfied, for any ai2, i ∈ N, of same sign we have:

v̄t(S)− vt(S) =
vt(N)

vT(N)
vT(S)− vt(S)

� − b2
1

b2
0

χ3(t) ∑
i∈S

ai2

⎛
⎝∑

i∈N
ai2 ∑

j∈N

1
2aj1

− ∑
i∈S

ai2 ∑
j∈S

1
2aj1

− ∑
j∈N\S

aj2

aj1

⎞
⎠

= − b2
1

2b2
0

χ3(t) ∑
i∈S

ai2

⎛
⎝∑

i∈S
ai2 ∑

j∈N\S

1
aj1

+ ∑
i∈N\S

ai2 ∑
j∈S

1
aj1

+ ∑
i∈N\S

ai2 ∑
j∈N\S

1
aj1

− 2 ∑
j∈N\S

aj2

aj1

⎞
⎠

� − b2
1

2b2
0

χ3(t) ∑
i∈S

ai2

⎛
⎝∑

i∈S
ai2 ∑

j∈N\S

1
aj1

+ ∑
i∈N\S

ai2 ∑
j∈S

1
aj1

− ∑
j∈N\S

aj2

aj1

⎞
⎠ .

When ai2 is positive for all i ∈ N, the following sequence of relations holds true:

ai2
aj2

+
aj1

ai1
≥ 1, ∀i, j ∈ N ⇒ ∑

i∈S

(
ai2
aj2

+
aj1

ai1

)
� 1, ∀S ⊆ N, ∀j ∈ N

⇔ 1
aj2

∑
i∈S

ai2 + aj1 ∑
i∈S

1
ai1

� 1, ∀S ⊆ N, ∀j ∈ N

⇔ 1
aj1

∑
i∈S

ai2 + aj2 ∑
i∈S

1
ai1

�
aj2

aj1
, ∀S ⊆ N, ∀j ∈ N

⇒ ∑
j∈N\S

(
1

aj1
∑
i∈S

ai2 + aj2 ∑
i∈S

1
ai1

−
aj2

aj1

)
� 0, ∀S ⊆ N

⇔

⎛
⎝∑

i∈S
ai2 ∑

j∈N\S

1
aj1

+ ∑
i∈N\S

ai2 ∑
j∈S

1
aj1

− ∑
j∈N\S

aj2

aj1

⎞
⎠ � 0, ∀S ⊆ N.

Thus, v̄t(S)− vt(S) � 0 and C(vt) ⊇ C(v̄t) for t ∈ T .
When ai2 is negative for all i ∈ N, we obtain:

⎛
⎝∑

i∈S
ai2 ∑

j∈N\S

1
aj1

+ ∑
i∈N\S

ai2 ∑
j∈S

1
aj1

− ∑
j∈N\S

aj2

aj1

⎞
⎠ � 0, ∀S ⊆ N.

Then v̄t(S)− vt(S) � 0 and C(vt) ⊇ C(v̄t) for t ∈ T . Therefore, when ai2 �= 0, i ∈ N, are of same sign,
C(vt) ⊇ C(v̄t) for t ∈ T .

Now suppose that players are symmetric. We note that in this case, the required conditions from
the first part are always met. Therefore, the inclusion C(vt) ⊇ C(v̄t) holds as well for t ∈ T .
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4. Conclusions

In this paper, we studied the relationship between the core of the original game and the cores
of modified games determined by a transformation rule because these cores may not intersect for
a dynamic game of a general structure. First, we extended the conditions known in the literature which
lead to the convergence of an iterative process based on this transformation rule. Second, we found
conditions under which one core is a subset of the other: these conditions require the monotonicity
of the relative worth of coalitions along the cooperative trajectory. Finally, for several classes of
dynamic games, we characterized the relationship between the cores.
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Abstract: We consider various approaches for a characteristic function construction on the example of
an n players differential game of pollution control with a prescribed duration. We explore the effect
of the presence of an absorption coefficient in the game on characteristic functions. As an illustration,
we consider a game in which the parameters are calculated based on the real ecological situation of
the Irkutsk region. For this game, we compute a number of characteristic functions and compare
their properties.

Keywords: differential games; prescribed duration; characteristic function; environmental resource
management; pollution control

1. Introduction

Differential games are used for describing continuous processes of decision making in conflict
situations that happen in industry, ecology, biology, political science, and so on. Models of differential
games are often utilized for solving problems in the field of environmental protection policy and the
optimal exploitation of natural resources [1–7].

To solve the problems of environmental management, it is effective to use games with negative
externalities [4–7]. In that class of games, the increasing of the controls of some players, which are the
volumes of environmental pollution over time, leads to the decreasing value of the payoff functions
for others.

In this paper, we consider a cooperative differential game of pollution control with negative
externalities modeling the behavior of several enterprises. They have an agreement to limit environmental
pollution. This limitation has a negative effect on the total profit of each enterprise. Moreover, the high
level of environmental pollution leads to profit loss associated with the higher environmental costs and
taxes. We focus our attention on two cases when there is an absorption coefficient and when there is not.

In the theory of cooperative differential games, the concept of a characteristic function is one of
the basic ones. The characteristic function shows the worth of a coalition and affects the formation of
coalitions [8,9]. Therefore, players or coalitions have the motivation to cooperate with each other if the
characteristic function of the joint coalition is greater than the sum of the original characteristic functions.
Additionally, the significance of each player in the coalition can be determined by its marginal contribution
to the characteristic function. For example, this approach is used in constructing the Shapley value and
Banzhaf power index [10–12].

Mathematics 2020, 8, 961; doi:10.3390/math8060961 www.mdpi.com/journal/mathematics
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We present different techniques for characteristic function construction [13–15]. For the
above-mentioned cooperative differential game, we compute a number of characteristic functions and
compare their properties. Further, we analyze the effect of the absorption coefficient representing the
natural environment purification on player’s payoffs.

As an illustration, we explore a game of pollution control based on the acute ecological situation of the
Irkutsk region. We use a cooperative differential game of three players, which are the largest enterprises
of Bratsk [16]. Furthermore, we add the absorption coefficient to this model and focus on the effect this
coefficient has on the payoffs.

2. Cooperative Differential Game in the form of the Characteristic Function

2.1. Differential Game in Normal Form

Let N = {1, 2, ..., n} be a set of players participating in a classical cooperative differential game
Γ(x0, t0, T) with a prescribed duration [17]. The game starts from the initial state x0 at time t0 and evolves
over the interval t ∈ [t0, T].

The dynamics of the game are described by the system of differential equations:

ẋ(t) = f (x, u1, ..., un), x(t0) = x0, (1)

where x ∈ Rn, ui ∈ Ui ⊂ compRk.
We assume that all standard restrictions [18] on the parameters, controls, and trajectory function

are satisfied.
The payoff function of the ith player is:

Ki(t0, x0, u) =
T∫

t0

hi(x(τ), u(τ))dτ, i = 1, n,

where hi(x, u) are continuous functions and x(t) is a solution of the Cauchy problem for System (1) under
controls u(t) = (u1(t), . . . , un(t)).

2.2. Different Methods of Characteristic Function Construction

To define the cooperative game, we have to construct a characteristic function V(S) for every coalition
S ∈ N in the game.

A characteristic function is a mapping from the set of all possible coalitions:

V(S) : 2N → R, V(∅) = 0.

The value V(S) is typically interpreted as the worth or the power of the coalition S. One of the most
important properties of the characteristic function is superadditivity:

V(S1 ∪ S2) ≥ V(S1) + V(S2), ∀S1, S2 ⊆ N, S1 ∩ S2 = ∅. (2)

Superadditive characteristic functions provide some useful advantages in solving various problems
in the field of cooperative game theory in static and dynamic settings. More information about this can be
found in [19].
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Currently, there are different approaches to the calculation of the characteristic function (see [7,19–22]).
A systematic overview of different characteristic functions and their properties was presented in [23]. This
paper provides an analysis of α-, δ-, ζ-, and η-characteristic functions.

2.2.1. α-Characteristic Function

A classical approach to the construction the characteristic function is called the α-characteristic
function. It was introduced in [20] and was the only way to construct a cooperative game for a long time.
The main idea of this method is using the lower value of the zero-sum game ΓS,N\S between the coalition
S as the first player and coalition N \ S as the second player.

Vα(S) =

⎧⎨
⎩

0, S = {∅},
max

ui ,
i∈S

min
uj ,

j∈N\S

∑
i∈S

Ki(t0, x0, u), S ⊆ N. (3)

We assume that the maximum and minimum is achieved on (3). The value Vα(S) is interpreted as the
maximum value that coalition S can get when N \ S acts against S.

It was proved in [24] that the α-characteristic function is superadditive.
This approach of defining the characteristic function has some issues. It is necessary to solve 2n − 1

complicated optimization problems. It is hard to find (3) in analytical form in differential games due to
computational problems. Finally, from an economic standpoint, it is unlikely that players of N \ S form an
anti-coalition [7].

2.2.2. δ-Characteristic Function

The technique of the construction the δ-characteristic function was proposed in [7]. The process of
the calculation of this function consists of two steps. Firstly, one has to calculate the Nash equilibrium
strategies for all players. Secondly, players from S maximize their total payoff ∑

i∈S
Ki while players from

N \ S use strategies from the Nash equilibrium.

Vδ(S) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, S = {∅},

max
ui , i∈S

uj=uNE
j , j∈N\S

∑
i∈S

Ki(t0, x0, uS, uNE
N\S), S ⊆ N. (4)

This form of the characteristic function requires fewer computational operations compared the
with α-characteristic function. Additionally, the previously constructed Nash equilibrium simplifies the
computation of Vδ(S). Moreover, (4) has a practical economic interpretation. Players not from the coalition
S do not tend to form anti-coalition N \ S in real models (see [25–27]).

Nevertheless there are some problems of this approach. In general, the δ-characteristic function is
a non-superadditive function (see examples in [28]). Besides, one has to consider the problem of the
existence and uniqueness of the Nash equilibrium solution.

2.2.3. ζ-Characteristic Function

The ζ-characteristic function was introduced in [19]. The first step of calculation of this characteristic
function for coalition S is finding optimal controls maximizing the total payoff of the players. In the second
step, players from coalition S use the cooperative optimal strategies, while the left-out players from N \ S
use the strategies minimizing the total payoff of the players from S.
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Vζ(S) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, S = {∅},

min
uj∈Uj , j∈N\S,

ui=u∗
i , i∈S

∑
i∈S

Ki(t0, x0, u∗
S, uN\S), S ⊆ N. (5)

We assume that the maximum and minimum are attained in (5).
The constructed Vζ(S) is superadditive in general [19]. Additionally, already computed optimal

controls are used for the ζ-characteristic function, which simplifies the computation process compared
with the α-characteristic function. Besides, these controls exist and could be found for a wide class of
games under rather weak constraints. Lastly, the ζ-characteristic function is applicable to games with fixed
coalition structures [29].

2.2.4. η-Characteristic Function

The idea of the η-characteristic function was presented in [22]. This characteristic function is based on
strategies from the optimal profile u∗ and strategies from the Nash equilibrium uNE. We use u∗

S for players
from S (as in the ζ-characteristic function) and uNE

N\S for players from N \ S (as in the δ-characteristic
function).

Vη(S) =

⎧⎨
⎩

0, S = {∅},

∑
i∈S

Ki(t0, x0, u∗
S, uNE

N\S), S ⊆ N.
(6)

This function models the case when players from N \ S decide instead of optimal strategies to use
strategies from Nash equilibrium uNE.

The construction of the η-characteristic function has some technical advantages. It is much simpler in
terms of calculation compared with the α-characteristic function. As mentioned above, optimal controls
exist and could be found for a wide class of games. The drawback of this function is the problem of the
existence and uniqueness of the Nash equilibrium solution. Furthermore, Vη(S) is not superadditive in
the general case [23].

3. Problem of Optimal Pollution Control

3.1. Problem Statement

We assume there is an enterprise having a production site in its territory. The volume of production is
directly proportional to harmful emissions to the atmosphere u(t) ∈ [0, b], which the enterprise controls.

The dynamics of the total amount of pollution x(t) is described by the following differential equation:

ẋ(t) = u(t)− δx(t), x(t0) = x0,

where δ ≥ 0 is the absorption coefficient, [δ] = 1/[t] (we use square brackets to denote the dimension
of the respective variable). Note that δ does not need to belong to the interval [0, 1] as the value of δ is
determined by the dimension of the time unit. For instance, 1 [1/day]=30 [1/month] .

The instantaneous profit of the enterprise is defined as:

R(u(t)) =
(

b − 1
2

u(t)
)

u(t), t ∈ [t0, T].

There is also an ecotax that is proportional to the amount of pollution. Hence, the net instantaneous payoff
is obtained as the difference between the profit and the tax:
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R(u(t))− dx(t),

where d > 0 is the tax coefficient. Thus, the total payoff is:

K(t0, x0, u) =
∫ T

t0

((
b − 1

2
u(t)

)
u(t)− dx(t)

)
dt.

It is straightforward to show that the optimal control maximizing the payoff K(t0, x0, u) is:

u∗(t) = b + d
e−δ(T−t) − 1

δ
. (7)

We start by analyzing what values the optimal control can achieve. Before proceeding to the main
result, we define:

δ̄ =
d
b
+

1
T − t0

W0

(
−d(T − t0)

b
e−

d(T−t0)
b

)
,

where W0(z) is the principal branch of the Lambert function, defined as the solution to the equation
wew = z [30].

Proposition 1. The optimal control Function (7) is bounded by b. The optimal control u∗(t) ≥ 0 for all t ∈ [t0, T]
if (T − t0) ≤ b

d or (T − t0) >
b
d and δ ≥ δ̄. If (T − t0) >

b
d and δ < δ̄, then the optimal control function changes

sign from minus to plus at the point:

t̄ = T +
1
δ

ln
(

1 − b
d

δ

)
∈ (t0, T).

The proof is given in Appendix A.
Proposition 1 gives the conditions guaranteeing that the optimal control is defined by (7). Then,

the corresponding trajectory is given by:

x∗(t) =
e−δt

2δ2

(
e−δ(T−t)

(
deδt + 2(bδ − d)eδT

)
− e−δ(T−t0)

(
deδt0 + 2(bδ − d − δ2x0)eδT

) )

and the payoff is:

K(t0, x0, u∗) = x0
d(e−δΔ − 1)

δ
− d2

4δ3 e−2δΔ +

(
d2

δ3 − bd
δ2

)
e−δΔ +

(
d2

2δ2 − bd
δ

+
b2

2

)
Δ − 3d2

4δ3 +
bd
δ2 , (8)

where Δ = T − t0.
If (T − t0) >

b
d and δ < δ̄, the function u∗(t) is defined as:

u∗(t) =

{
0, t ∈ [t0, t̄],

b + d e−δ(T−t)−1
δ , t ∈ (t̄, T].

and the corresponding trajectory is:

x∗(t) =

⎧⎨
⎩

e−δ(t−t0)x0, t ∈ [t0, t̄],
e−δt

2δ2

(
e−δ(T−t) (deδt + 2(bδ − d)eδT)+ 2δ2x0eδt0 + (bδ−d)2

d eδT
)

, t ∈ (t̄, T].
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The corresponding value of the payoff is:

K(t0, x0, u∗) = x0
d(e−δΔ − 1)

δ
− d2

4δ3 e−2δΔ̄ +

(
d2

δ3 − bd
δ2

)
e−δΔ̄ +

(
d2

2δ2 − bd
δ

+
b2

2

)
Δ̄ − 3d2

4δ3 +
bd
δ2 ,

where Δ̄ = T − t̄. Note that the latter case differs from the former one in that the optimal control is equal
to zero on the interval [t0, t̄].

3.2. Influence of the Absorption Coefficient on the Payoff

Proposition 2.

lim
δ→+∞

K(t0, x0, u∗) =
b2

2
Δ.

Proposition 2 is proven by applying L’Hospital’s rule to (8) three times.
Figures 1–5 demonstrate the dependence of the payoff from the absorption coefficient in special cases

when the control has a switch point. Here and later on, we follow the convention that the overall plot is
shown on the left, while the right plot shows a zoomed-in part of the graph.

a b
Figure 1. d = 10, b = 25, t0 = 0, T = 200, x0 = 0.25. (a) δ ∈ [0, 8] and (b) δ ∈ [0, 0.6].

a b
Figure 2. d = 10, b = 25, t0 = 0, T = 200, x0 = 10. (a) δ ∈ [0, 20] and (b) δ ∈ [0, 1].
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a b
Figure 3. d = 100, b = 25, t0 = 0, T = 3, x0 = 0.1. (a) δ ∈ [0, 60] and (b) δ ∈ [0, 5].

a b
Figure 4. d = 100, b = 25, t0 = 0, T = 3, x0 = 10. (a) δ ∈ [0, 20] and (b) δ ∈ [2, 6].

a b
Figure 5. d = 1000, b = 1, t0 = 8, T = 100, x0 = 10. (a) δ ∈ [0, 2000] and (b) δ ∈ [0, 90].
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4. Game-Theoretical Model of Pollution Control

4.1. No Absorption Coefficient Model

In this section, we consider a differential game of pollution control with a prescribed duration based
on the game-theoretical models issued in [4]. The game involves n players (companies or countries), and
each of them has an industrial production site in its territory. A three player game was considered in [31].

Let N = {1, 2, ..., n} with n ≥ 2 be a set of players. The strategy of player i is the amount of pollution
emitted to the atmosphere over time ui ∈ [0; bi]. We will look for the solution in the class of open-loop
strategies ui(t).

The dynamics of the total amount of pollution x(t) is described by the following differential equation:

ẋ(t) =
n

∑
i=1

ui(t), x(t0) = x0 ≥ 0. (9)

The total payoff of the ith player is defined along the same lines as in Section 3.1. Thus, we write the payoff
of the ith player as:

Ki(t0, x0, u) =
∫ T

t0

((
bi −

1
2

ui

)
ui − dix

)
dt, (10)

where bi and di are the respective parameters that can be different for each player.
To simplify notation, we introduce the following parameters:

DN =
n

∑
i=1

di, DS = ∑
i∈S

di, DN\S = ∑
i∈N\S

di, BN =
n

∑
i=1

bi, B̃S = ∑
i∈S

b2
i , and s = |S|.

We also assume that the regularity constraints (T − t0) ≤ bi
DN

hold for all i ∈ N. These constraints
guarantee that ui(t) ≥ 0, ∀t ∈ [t0, T].

We assume the players have made a cooperative agreement on maximizing the total payoff of the
players. To compute the cooperative solution (Shapley value, core, Harsanyi dividend, Banzhaf power
index, etc.), one has to compute a characteristic function that plays a key role in cooperative game theory.
In [23], we constructed the following characteristic functions for every coalition S ⊂ N.

Vα(S, Δ, x0) = −DSx0Δ +
1
2

B̃SΔ − 1
2

BN DSΔ2 +
1
6

sD2
SΔ3. (11)

Vδ(S, Δ, x0) = −DSx0Δ +
1
2

B̃SΔ − 1
2

BN DSΔ2 +
1
6
(2DN\SDS + sD2

S)Δ
3. (12)

Vζ(S, Δ, x0) = −DSx0Δ +
1
2

B̃SΔ − 1
2

BN DSΔ2 − 1
6

sDN(DN − 2DS)Δ3. (13)

Vη(S, Δ, x0) = −DSx0Δ +
1
2

B̃SΔ − 1
2

BN DSΔ2 +
1
6
(−sD2

N + 2sDN DS + 2DN\SDS)Δ3. (14)

Functions (11)–(14) can be shown to be superadditive (see [23]). Moreover, the relations between
characteristic functions were found in [23].
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Vδ(S, Δ, x0) ≥ Vα(S, Δ, x0),

Vη(S, Δ, x0) ≥ Vζ(S, Δ, x0),

Vα(S, Δ, x0) ≥ Vζ(S, Δ, x0),

Vδ(S, Δ, x0) ≥ Vη(S, Δ, x0)

(15)

4.2. Absorption Coefficient Model

We consider a modification of the differential game of pollution control. A special case of this game
where n = 3 was considered in detail in [32]. In the paper [33], the construction of the η-characteristic
function was presented for the example based on real data.

The dynamics of the total amount of pollution x(t) is described by an extended equation:

ẋ(t) =
n

∑
i=1

ui(t)− δx(t), x(t0) = x0 ≥ 0, (16)

where δ > 0 is an absorption coefficient introduced earlier. The payoff function is defined by (10).
In the following, we assume that all additional regularity constraints defined above are satisfied.
Using the definitions (3)–(6), we get the following characteristic functions:

Vα(S, Δ, x0) = x0
DS

(
e−δΔ − 1

)
δ

− sD2
S

4δ3 e−2δΔ +

(
sD2

S
δ3 − BN DS

δ2

)
e−δΔ

+

(
sD2

S
2δ2 − BN DS

δ
+

B̃S
2

)
Δ − 3sD2

S
4δ3 +

BN DS
δ2 . (17)

Vδ(S, Δ, x0) = x0
DS

(
e−δΔ − 1

)
δ

−
sD2

S + 2DSDN\S

4δ3 e−2δΔ +

(
sD2

S + 2DSDN\S

δ3 − BN DS
δ2

)
e−δΔ

+

(
sD2

S + 2DSDN\S

2δ2 − BN DS
δ

+
B̃S
2

)
Δ −

3(sD2
S + 2DSDN\S)

4δ3 +
BN DS

δ2 . (18)

Vζ(S, Δ, x0) = x0
DS

(
e−δΔ − 1

)
δ

− −sD2
N + 2sDSDN

4δ3 e−2δΔ +

(
−sD2

N + 2sDSDN

δ3 − BN DS
δ2

)
e−δΔ

+

(
−sD2

N + 2sDSDN

2δ2 − BN DS
δ

+
B̃S
2

)
Δ − 3(−sD2

N + 2sDSDN)

4δ3 +
BN DS

δ2 . (19)
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Vη(S, Δ, x0) = x0
DS

(
e−δΔ − 1

)
δ

−
s(2DS − DN)DN + 2DSDN\S

4δ3 e−2δΔ

+

(
s(2DS − DN)DN + 2DSDN\S

δ3 − BN DS
δ2

)
e−δΔ +

(
s(2DS − DN)DN + 2DSDN\S

2δ2 − BN DS
δ

+
B̃S
2

)
Δ

−
3
(

s(2DS − DN)DN + 2DSDN\S

)
4δ3 +

BN DS
δ2 . (20)

Functions (17)–(20) are superadditive. The construction of characteristic functions and the proof of
their superadditivity are given in Appendix B and Appendix C. It can also be checked that the relations
between characteristic Functions (15) are satisfied. In addition, we obtain the result:

Vδ(S, Δ, x0) + Vζ(S, Δ, x0) = Vη(S, Δ, x0) + Vα(S, Δ, x0).

Theorem 1. The limits of the α-, δ-, ζ-, and η-characteristic functions exist and are equal as δ tends to infinity.

lim
δ→+∞

Vα(S, Δ, x0) = lim
δ→+∞

Vδ(S, Δ, x0) = lim
δ→+∞

Vζ(S, Δ, x0) = lim
δ→+∞

Vη(S, Δ, x0) =
B̃S
2

Δ.

Theorem 1 is proven by computing limits with the use of the L’Hospital rule.

5. Optimal Control of Pollution Emissions for the Irkutsk Region

As an illustration, we considered a differential game of pollution control based on real data for
enterprises of the Irkutsk region [16,33]. The ecological situation in Bratsk is one of the most acute in the
region. We observed that the three largest enterprises of Bratsk pollute the environment: OJSC «RUSAL
Bratsk», OJSC «ILIM Group», and units of OJSC «Irkutskenergo».

We used the coefficients of the differential game that were found in the paper [16].
We considered two cases. In the first case, the dynamics of the total amount of pollution x(t) is

described by (9). This means that there is no absorption coefficient in the model.
Using the provided numerical values of the parameters, we used (11)–(14) to compute α-, δ-, ζ-, and

η-characteristic functions as functions of x0 and Δ.
Figure 6 shows the influence of the initial time t0 on the characteristic functions of the individual

players. Similar results can be shown for the case of coalitions. In the following figures, we present
the respective dependence on the left side and the zoomed-in fragments of the respective plots on the
right side.

We now proceed to the case with non-zero pollution absorption. The dynamics of x(t) is
described by (16). Using the numerical values from Table 1 and the expressions for the characteristic
Functions (17)–(20), we calculated the α-, δ-, ζ-, and η-characteristic functions.
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a b

c d

e f
Figure 6. (a) V({1}), t0 ∈ [0, 3.5], (b) V({1}), t0 ∈ [0, 2 × 10−5], (c) V({2}), t0 ∈ [0, 3.5], (d) V({2}), t0 ∈
[0, 2 × 10−5], (e) V({3}), t0 ∈ [0, 3.5], and (f) V({3}), t0 ∈ [0, 2 × 10−5].

Table 1. Coefficient values.

Enterprise bi di

OJSC «RUSAL Bratsk» 28,838.01 1254.97
OJSC «ILIM Group» 1,530,463 102.27

Units of OJSC «Irkutskenergo» 5228.4 36.65

Below, we present the plots showing the effect of the initial time t0 and the absorption coefficient
δ on the values of the respective characteristic functions. In particular, Figure 7 shows the influence of
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the initial time t0 on the characteristic functions of the individual players, while Figure 8 illustrates the
dependence of characteristic functions on the parameter δ. All presented results can be demonstrated for
the coalitions as well.

Finally, in Figure 9, we illustrate the difference between the characteristic functions for the cases when
the absorption coefficient is equal to zero (blue line) and when the absorption coefficient is taken from
Table 1. For the illustration, we chose the η-characteristic function.

a b

c d

e f
Figure 7. (a) V({1}), t0 ∈ [0, 3.5], (b) V({1}), t0 ∈ [0, 2 × 10−8], (c) V({2}), t0 ∈ [0, 3.5], (d) V({2}), t0 ∈
[0, 2 × 10−8], (e) V({3}), t0 ∈ [0, 3.5], and (f) V({3}), t0 ∈ [0, 2 × 10−8].
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a b

c d

e f
Figure 8. (a) V({1}), δ ∈ [0.1, 20], (b) V({1}), δ ∈ [0.0001, 0.00018], (c) V({2}), δ ∈ [0.1, 20], (d) V({2}), δ ∈
[0.0001, 0.00018], (e) V({3}), δ ∈ [0.1, 20], and (f) V({3}), δ ∈ [0.0001, 0.00018].

145



Mathematics 2020, 8, 961

a b

c d
Figure 9. δ = 20 (a) Vη({1}), (b) Vη({3}), (c) Vη({2}), t0 ∈ [0, 3.5], and (d) Vη({2}), t0 ∈ [0, 0.01].

Conclusions

In this paper, we considered a cooperative differential game of pollution control with a prescribed
duration. We analyzed two cases when there was an absorption coefficient δ and when there was not.
For these games, α-, δ-, ζ-, and η-characteristic functions were constructed for the general case of n players.

It was shown that the parameter δ had a significant impact on the characteristic functions. We
also obtained analytical formulas for the limiting values of the characteristic functions with increasing
absorption coefficient.

All results were illustrated with the differential game of pollution control based on real data for
enterprises of the Irkutsk region.
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Appendix A. Construction of Optimal Pollution Control

Proof of Proposition 1

Proof. The proof of u∗(t) ≤ b is trivial because the second term is not positive.
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We differentiate u∗(t) with respect to t:

du∗(t)
dt

= de−δ(T−t) > 0, ∀t ∈ [t0, T].

Therefore, u∗(t) is an increasing function of t. This means that the function takes a minimum value at
a point t = t0:

u∗(t0) = b + d
e−δ(T−t0) − 1

δ
.

We differentiate u∗(t) with respect to δ:

du∗(t)
dδ

=
de−δ(T−t)(−δ(T − t) + eδ(T−t) − 1)

δ2 .

Obviously, de−δ(T−t) > 0 and δ2 > 0. To define the sign of (−δ(T − t) + eδ(T−t) − 1):

d(−δ(T − t) + eδ(T−t) − 1)
dδ

= (T − t)(eδ(T−t) − 1) > 0.

Hence, (−δ(T − t) + eδ(T−t) − 1) is an increasing function of δ. It follows that the function is positive for
δ > 0. This completes the proof that du∗(t)

dδ > 0.
Thus, u∗(t) is an increasing function of δ, then:

u∗(t0) ≥ lim
δ→0

(
b + d

e−δ(T−t0) − 1
δ

)
= b − d(T − t0).

If b− d(T − t0) ≥ 0, which is the same as (T − t0) ≤ b
d , then u∗(t) ≥ 0, ∀δ and t ∈ [t0, T]. Next, we consider

the case (T − t0) >
b
d . We find δ that provides u∗(t) ≥ 0.

Note that u∗(t0) ≥ 0 for sufficiently large δ. If δ tends to zero, then u∗(t) < 0 at t = t0 at least. Define
the delta at which u∗(t0) = 0 under the condition u∗(t) is an increasing function of t and δ.

b + d
e−δ(T−t0) − 1

δ
= 0,

whence, upon some algebraic manipulation, we get:

δ(T − t0)−
d(T − t0)

b
+

d(T − t0)

b
e−δ(T−t0) = 0.

We define:

ρ =
d(T − t0)

b
, ε = δ(T − t0).

Since (T − t0) >
b
d , then ρ > 1. Hence, we obtain the equation ε − ρ + ρe−ε = 0. Solving this equation

with respect to ε, we get:
ε = ρ + W(−ρe−ρ).
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Finally, we arrive at the following expression for the threshold value of δ:

δ =
1

T − t0

(
d(T − t0)

b
+ W

(
−d(T − t0)

b
exp

(
−d(T − t0)

b

)))

=
d
b
+

1
T − t0

W
(
−d(T − t0)

b
exp

(
−d(T − t0)

b

))
= δ̄.

If δ ≥ δ̄, then u∗(t0) ≥ 0 and u∗(t) ≥ 0, ∀t ∈ [t0, T]. Otherwise, if δ < δ̄, then u∗(t0) < 0. We
determine the moment t̄ > t0 at which the optimal control turns to zero: u∗(t̄) = 0. Solving:

b + d
e−δ(T−t) − 1

δ
= 0,

we get:

t̄ = T +
1
δ

ln
(

1 − bδ

d

)
.

Thus, t̄ is the point where the control changes sign.

Appendix B. Computation of the Characteristic Functions

Appendix B.1. Nash Equilibrium

The computation of the Nash equilibrium strategies (NE) is fairly obvious, so we skip most details.
Using the Pontryagin maximum principle, we find the Nash equilibrium strategies:

uNE(t) =

⎛
⎜⎝ b1 + d1

e−δ(T−t)−1
δ

...

bn + dn
e−δ(T−t)−1

δ

⎞
⎟⎠ (A1)

and the corresponding trajectory:

xNE(t) =
e−δt

2δ2

(
e−δ(T−t)

(
DNeδt + 2(BNδ − DN)eδT

)
− e−δ(T−t0)

(
DNeδt0 + 2(BNδ − DN − δ2x0)eδT

) )
.

Following the same scheme as that shown in Appendix A, we obtain that if (T − t0) ≤ bi
di

, then uNE
i (t) ≥

0, ∀δ > 0 and ∀t ∈ [t0, T].

Appendix B.2. Cooperative Agreement

The optimal cooperative strategies are:

u∗(t) =

⎛
⎜⎝ b1 + DN

e−δ(T−t)−1
δ

...

bn + DN
e−δ(T−t)−1

δ

⎞
⎟⎠ (A2)

and the optimal trajectory is:

x∗(t) =
e−δt

2δ2

(
e−δ(T−t)

(
nDNeδt + 2(BNδ − nDN)eδT

)
− e−δ(T−t0)

(
nDNeδt0 + 2(BNδ − nDN − δ2x0)eδT

) )
.
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For the optimal control, we have that if bi − DN(T − t0) ≥ 0, which is the same as (T − t0) ≤ bi
DN

, then
u∗(t) ≥ 0, ∀δ and t ∈ [t0, T].

Appendix B.3. Construction of the α-Characteristic Function

We consider a minimization problem:

min
uj

j∈N\S

∑
i∈S

∫ T

t0

((
bi −

1
2

ui

)
ui − dix

)
dt, S ∈ N.

For this problem, the optimal strategies are:

uj = bj. (A3)

Next, we consider a maximization problem:

max
ui , i∈S,

uj=bj ,j∈N\S

∑
i∈S

∫ T

t0

((
bi −

1
2

ui

)
ui − dix

)
dt, S ∈ N.

For this problem, we obtain the controls:

uS
i (t) = bi + DS

e−δ(T−t) − 1
δ

, i ∈ S. (A4)

The corresponding trajectory is:

xS(t) =
e−δt

2δ2

(
e−δ(T−t)

(
sDSeδt + 2(BNδ − sDS)eδT

)
− e−δ(T−t0)

(
sDSeδt0 + 2(BNδ − sDS − δ2x0)eδT

) )
.

For the controls (A4), we have that if (T − t0) ≤ bi
DS

, then uS
i (t) ≥ 0, ∀δ > 0 and t ∈ [t0, T].

Combining (3), (A3), and (A4), we construct the α-characteristic function:

Vα(S, t0, x0) = x0

DS

(
e−δ(T−t0) − 1

)
δ

− sD2
S

4δ3 e−2δ(T−t0) +

(
sD2

S
δ3 − BN DS

δ2

)
e−δ(T−t0)

+

(
sD2

S
2δ2 − BN DS

δ
+

B̃S
2

)
(T − t0)−

3sD2
S

4δ3 +
BN DS

δ2 .

Appendix B.4. Construction of the δ-Characteristic Function

We consider a maximization problem:

max
ui , i∈S,

uj=uNE
j ,j∈N\S

∑
i∈S

∫ T

t0

((
bi −

1
2

ui

)
ui − dix

)
dt, S ∈ N.
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For this problem, the optimal controls are:

uS
i (t) = bi + DS

e−δ(T−t) − 1
δ

(A5)

and the corresponding trajectory is:

xS(t) =
e−δt

2δ2

(
e−δ(T−t)

(
(sDS + DN\S)e

δt + 2(BNδ − sDS − DN\S)e
δT
)

− e−δ(T−t0)
(
(sDS + DN\S)e

δt0 + 2(BNδ − sDS − DN\S − δ2x0)eδT
))

.

Similar to the previous cases, we have that if (T − t0) ≤ bi
DS

, then uS
i (t) ≥ 0, ∀δ > 0 and t ∈ [t0, T].

Combining (4), (A1), and (A5), we construct the δ-characteristic function:

Vδ(S, t0, x0) = x0

DS

(
e−δ(T−t0) − 1

)
δ

−
sD2

S + 2DSDN\S

4δ3 e−2δ(T−t0)

+

(
sD2

S + 2DSDN\S

δ3 − BN DS
δ2

)
e−δ(T−t0)

+

(
sD2

S + 2DSDN\S

2δ2 − BN DS
δ

+
B̃S
2

)
(T − t0)−

3(sD2
S + 2DSDN\S)

4δ3 +
BN DS

δ2 .

Appendix B.5. Construction of the ζ-Characteristic Function

According to (5), players from coalition S ∈ N use optimal controls (A2).
We consider the minimization problem:

min
uj ,j∈N\S

∑
i∈S

∫ T

t0

((
bi −

1
2

u∗
i

)
u∗

i − dix
)

dt, S ∈ N.

In this case, the optimal strategies are:
uj = bj. (A6)

Combining (5), (A2), and (A6), we construct the ζ-characteristic function:

Vζ(S, t0, x0) = x0

DS

(
e−δ(T−t0) − 1

)
δ

− −sD2
N + 2sDSDN

4δ3 e−2δ(T−t0)

+

(
−sD2

N + 2sDSDN

δ3 − BN DS
δ2

)
e−δ(T−t0)

+

(
−sD2

N + 2sDSDN

2δ2 − BN DS
δ

+
B̃S
2

)
(T − t0)−

3(−sD2
N + 2sDSDN)

4δ3 +
BN DS

δ2 .

Appendix B.6. Construction of the η-Characteristic Function

According to (6), players from S ∈ N use (A2) when players from N \ S use (A1). We construct the
η-characteristic function:
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Vη(S, t0, x0) = x0

DS

(
e−δ(T−t0) − 1

)
δ

−
s(2DS − DN)DN + 2DSDN\S

4δ3 e−2δ(T−t0)

+

(
s(2DS − DN)DN + 2DSDN\S

δ3 − BN DS
δ2

)
e−δ(T−t0)

+

(
s(2DS − DN)DN + 2DSDN\S

2δ2 − BN DS
δ

+
B̃S
2

)
(T − t0)

−
3
(

s(2DS − DN)DN + 2DSDN\S

)
4δ3 +

BN DS
δ2 .

Appendix C. Proofs of Superadditivity Characteristic Functions

Appendix C.1. Additional Statement

Proposition A1.

−e−2δ(T−t0) + 4e−δ(T−t0) + 2δ(T − t0)− 3 > 0.

Proof. Let x = e−δ(T−t0), then we need to prove:

−x2 + 4x + 2δ(T − t0)− 3 > 0.

We solve the quadratic equation:

−x2 + 4x + 2δ(T − t0)− 3 = 0.

The roots of the equation are:

x1 = 2 −
√

1 + 2δ(T − t0), x2 = 2 +
√

1 + 2δ(T − t0).

The branches of the parabola y = −x2 + 4x + 2δ(T − t0)− 3 are directed downwards. This means
that:

−x2 + 4x + 2δ(T − t0)− 3 > 0

when:

x ∈
(

2 −
√

1 + 2δ(T − t0), 2 +
√

1 + 2δ(T − t0)

)
.

We change x to e−δ(T−t0). Let us prove that:

e−δ(T−t0) ∈
(

2 −
√

1 + 2δ(T − t0), 2 +
√

1 + 2δ(T − t0)

)
. (A7)

We make a replacement m = δ(T − t0) > 0. Therefore, we prove:

e−m ∈
(

2 −
√

1 + 2m, 2 +
√

1 + 2m
)

. (A8)

First, let us show that:
2 +

√
1 + 2m − e−m > 0. (A9)
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We have: √
1 + 2m ≥ 1,

e−m ≤ 1.

Hence:
2 +

√
1 + 2m − e−m ≥ 2.

This completes the proof (A9).
Secondly, let us show that:

e−m − 2 +
√

1 + 2m > 0. (A10)

We transform the expression:

e−m − 2 +
√

1 + 2m = e−m(em√1 + 2m − 2em + 1).

We clearly have e−m > 0. To prove em√1 + 2m − 2em + 1 > 0, we need to differentiate (em√1 + 2m −
2em + 1) with respect to m:

d(em√1 + 2m − 2em + 1)
dm

=
2em(m −

√
1 + 2m + 1)√

1 + 2m
(A11)

Obviously, em > 0,
√

1 + 2m > 0 for m > 0. Let us show:

m −
√

1 + 2m + 1 > 0. (A12)

Assume the converse. Then:
m −

√
1 + 2m + 1 ≤ 0.

Hence:
m + 1 ≤

√
1 + 2m

(m + 1)2 ≤ 1 + 2m

because m > 0. Therefore:
m2 ≤ 0,

m = 0.

This contradiction proves (A12). This means that in (A11):

d(em√1 + 2m − 2em + 1)
dm

> 0

That is, the function y = em√1 + 2m − 2em + 1 is increasing for m > 0 and:

em√1 + 2m − 2em + 1 > 0.

This implies the inequality (A10). Finally, using (A9) and (A10), we get (A8). This yields

e−δ(T−t0) ∈
(

2 −
√

1 + 2δ(T − t0), 2 +
√

1 + 2δ(T − t0)

)
.

and hence, −e−2δ(T−t0) + 4e−δ(T−t0) + 2δ(T − t0)− 3 > 0.
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Appendix C.2. Superadditivity of the α-Characteristic Function

We prove that the α-characteristic function is superadditive using (2).

Vα(S1 ∪ S2, t0, x0)− Vα(S1, t0, x0)− Vα(S2, t0, x0)

= −
s2D2

S1
+ s1D2

S2
+ 2DS1 DS2 (s1 + s2)

4δ3 e−2δ(T−t0)

+

(
s2D2

S1
+ s1D2

S2
+ 2DS1 DS2 (s1 + s2)

δ3

)
e−δ(T−t0)

+

(
s2D2

S1
+ s1D2

S2
+ 2DS1 DS2 (s1 + s2)

2δ2

)
(T − t0)

−
3
(

s2D2
S1
+ s1D2

S2
+ 2DS1 DS2 (s1 + s2)

)
4δ3

=
s2D2

S1
+ s1D2

S2
+ 2DS1 DS2 (s1 + s2)

4δ3

(
−e−2δ(T−t0) + 4e−δ(T−t0) + 2δ(T − t0)− 3

)
.

Clearly,
s2D2

S1
+ s1D2

S2
+ 2DS1 DS2 (s1 + s2)

4δ3 > 0.

According to Proposition A1:

−e−2δ(T−t0) + 4e−δ(T−t0) + 2δ(T − t0)− 3 > 0.

Hence, Vα(S1 ∪ S2, t0, x0)− Vα(S1, t0, x0)− Vα(S2, t0, x0) > 0.

Appendix C.3. Superadditivity of the δ-Characteristic Function

We verify the superadditivity of the δ-characteristic function using the definition (2).

Vδ(S1 ∪ S2, t0, x0)− Vδ(S1, t0, x0)− Vδ(S2, t0, x0)

= −
s2D2

S1
+ s1D2

S2
+ 2DS1 DS2 (s1 + s2 − 2)

4δ3 e−2δ(T−t0)

+

(
s2D2

S1
+ s1D2

S2
+ 2DS1 DS2 (s1 + s2 − 2)

δ3

)
e−δ(T−t0)

+

(
s2D2

S1
+ s1D2

S2
+ 2DS1 DS2 (s1 + s2 − 2)

2δ2

)
(T − t0)

−
3
(

s2D2
S1
+ s1D2

S2
+ 2DS1 DS2 (s1 + s2 − 2)

)
4δ3

=
s2D2

S1
+ s1D2

S2
+ 2DS1 DS2 (s1 + s2 − 2)

4δ3

(
−e−2δ(T−t0) + 4e−δ(T−t0) + 2δ(T − t0)− 3

)
.
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Using s1 = |S1| ≥ 1, s2 = |S2| ≥ 1, we get s1 + s2 − 2 ≥ 0. It is obvious that:

s2D2
S1
+ s1D2

S2
+ 2DS1 DS2 (s1 + s2 − 2)

4δ3 > 0.

According to Proposition A1:

−e−2δ(T−t0) + 4e−δ(T−t0) + 2δ(T − t0)− 3 > 0.

Therefore, Vδ(S1 ∪ S2, t0, x0)− Vδ(S1, t0, x0)− Vδ(S2, t0, x0) > 0.

Appendix C.4. Superadditivity of the ζ-Characteristic Function

Let us show that the ζ-characteristic function is superadditive using (2).

Vζ(S1 ∪ S2, t0, x0)− Vζ(S1, t0, x0)− Vζ(S2, t0, x0)

= −DN(s2DS1 + s1DS2)

2δ3 e−2δ(T−t0) +
2DN(s2DS1 + s1DS2)

δ3 e−δ(T−t0)

+
DN(s2DS1 + s1DS2)

δ2 − 3DN(s2DS1 + s1DS2)

2δ3 (T − t0)

=
DN(s2DS1 + s1DS2)

2δ3

(
−e−2δ(T−t0) + 4e−δ(T−t0) + 2δ(T − t0)− 3

)
.

Trivially,
DN(s2DS1 + s1DS2)

2δ3 > 0.

According to Proposition A1:

−e−2δ(T−t0) + 4e−δ(T−t0) + 2δ(T − t0)− 3 > 0.

It follows that Vζ(S1 ∪ S2, t0, x0)− Vζ(S1, t0, x0)− Vζ(S2, t0, x0) > 0.

Appendix C.5. Superadditivity of the η-Characteristic Function

Let us check that the η-characteristic function is superadditive using (2).

Vη(S1 ∪ S2, t0, x0)− Vη(S1, t0, x0)− Vη(S2, t0, x0)

= −DS1(s2DN − DS2) + DS2(s1DN − DS1)

2δ3 e−2δ(T−t0)

+
2DS1(s2DN − DS2) + 2DS2(s1DN − DS1)

δ3 e−δ(T−t0)

+
DS1(s2DN − DS2) + DS2(s1DN − DS1)

δ2 (T − t0)

− 3
(

DS1(s2DN − DS2) + DS2(s1DN − DS1)
)

2δ3

=
DS1(s2DN − DS2) + DS2(s1DN − DS1)

2δ3

(
−e−2δ(T−t0) + 4e−δ(T−t0) + 2δ(T − t0)− 3

)
.
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We obtain:

DS1(s2DN − DS2) + DS2(s1DN − DS1)

2δ3 ≥ DS1(DN − DS2) + DS2(DN − DS1)

2δ3

=
DS1 DN\S2

+ DS2 DN\S1

2δ3 > 0.

According to Proposition A1:

−e−2δ(T−t0) + 4e−δ(T−t0) + 2δ(T − t0)− 3 > 0.

Therefore, Vη(S1 ∪ S2, t0, x0)− Vη(S1, t0, x0)− Vη(S2, t0, x0) > 0.
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Abstract: Equilibrium in a two-sided market represented by network platforms on the plane and
heterogeneous agents is investigated. The advocated approach is based on the duopoly model
which implies a continuum of agents of limited size on each side of the market and examines the
agents’ heterogeneous utility with the Hotelling specification. The exact values were found for
the equilibrium in the case of duopoly in a two-sided market with two platforms on the plane.
The dependence of the platforms’ benefits on network externalities was investigated. The problem of
the optimal location of platforms in the market was considered.

Keywords: two-sided platform market; pricing; Hotelling’s duopoly on the plane; Nash equilibrium;
optimal location of platforms

1. Introduction

Digital economy has formed a paradigm of accelerated economic development. A central position
in it is occupied by network technologies, which have led to the establishment of network markets.
Network markets are set up on network platforms, which are a novel business element in the modern
economy, providing benefits for both the platform’s operator and the community.

The two-sided market involving a platform is a network type of market, where users belonging to
two different groups interact. Consumption by any one of the groups generates external effects
on the other group. Assuming a network effect exists between the two sides of the market
(network externalities), the problem of optimizing the platform’s profit can be formulated. Reference [1]
suggested a model of a monopoly platform in a two-sided market with the total number of agents on
each side equaling one. The agents have different transport costs to access the platform via Hotelling
specification. As an illustration, imagine that agents in the model are sellers and customers in an
online store, job-seekers and employers in a job centre, men and women in a dance floor, and so forth.
Following the Hotelling specification [2], agents compare their costs before taking the decision about
visiting the platform. Our study assumes agents to be heterogeneous and demand to be endogenous,
and investigates the platform’s behavior and revenues under these assumptions.

A duopoly in a two-sided in-plane platform market is considered, equilibrium in such a market
and the dependence of platform revenues on network externalities are determined. For the case
of identical agents and identical platforms, the conditions were detected enabling services in such
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platforms to exist under competition, and the exact expressions for the platforms’ optimal strategies
were found.

Also, the social optimum problem was solved and the dependence of the optimal value on the
structure of the two-sided market’s costs and network externalities was determined.

A number of papers have been published on network platforms with externalities. Since the
analysis of monopolistic markets [3–7], studies in this sphere have been focused on the pricing
platforms for markets with different structures, including the problem of the social optimum for
private platforms and associations. The aspects addressed were the models of private platforms’
competition in different scenarios for homogeneous and differentiated products, bottlenecks, exclusive
contracts, as well as the effects of various important factors such as tariffs, market price elasticity,
transaction size, and buyers and sellers net surplus.

Rochet and Tirole study the pricing strategy of payment-card type of platforms in two-sided
markets, considering both the monopoly case and the duopoly case, with different objective functions
of the platforms: either to maximize the profit or to maximize the social welfare [8]. Later on, Rochet
and Tirole consider this type of platform model that integrates both usage and membership externalities
and study obtain new results on the mix of usage and membership charges [8]. Later on, Rochet and
Tirole placed the model of a platform of this type into the context of externalities with membership
fees [6].

In Reference [1], which is the closest to our study, Armstrong looked into the pricing strategy in
a two-sided market for platforms of the shopping-mall type for the monopoly scenario and a duopoly.
In the monopoly case, there were no constraints on the size of the market and the demand function
depended on exogenous reasons.

Later on, Armstrong and Wright explored the duopoly competition between two platforms
in a linear market, included the Hotelling specification in the model, and considered three cases:
(1) product differentiation on both sides; (2) products differentiation on one side only; (3) no product
differentiation on either side [9]. For models (1) and (2), the agents’ utilities were large enough for
using the services of at least one of the platforms. For model (3), the agents were assumed to be
homogeneous, and only the network effect was taken into account.

Where in References [1,9,10] each agent is supposed to choose one of the platforms for the service,
agents in the model from Reference [11] are not allowed to join any platform if they do not benefit
from it. It was demonstrated in the latter paper that assuming a limited market size, heterogeneous
agents and endogenous demand, the optimal strategy always results in a corner solution, whether
the goal is to maximize the platform’s profit or social welfare. Also, the conditions under which the
monopoly is socially optimal were found.

Another important issue associated with platform economy is the optimal platform location.
This problem was investigated for a one-sided market by Hotelling in Reference [2], and then in some
models for a linear market [12–14], and in Reference [15] for a market on the plane. Research on the
optimal location of platforms is now in an early stage.

Some papers on two-sided platforms investigated pricing in a market depending on the seller’s
behavior for special platforms [16–21]. Reference [16] dealt with sequential competition between
sellers in a two-sided software market, while Reference [20] focused on competition between virtual
operators (sellers) in a two-sided telecommunication market.

Research on these issues is a new area in platform economy. In this study we analyze
the performance of platforms under the new assumption that the market is in the plane space.
This approach results in new intriguing effects, the market boundary is a second-order curve, which
breaks the linearity of solutions and, hence, alters the form of the conditions for the feasibility of
competitive service and the form of the solutions as such. Furthermore, the problem of platform
location in the market is also meaningful. This is demonstrated below for the case of two platforms.

The article is structured as follows—Section 2 describes the model and its distinctions from
previous models; Section 3 finds the equilibrium in the model with identical platforms and identical
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agents, while Section 4 finds the solution for the model with identical groups of agents and platforms
occupying different positions in the market; Section 5 investigates the optimal location of platforms;
Section 6 finds the equilibrium in the general case of the pricing problem; the article is completed with
the conclusions and visions for further research in the area.

2. Description of the Model

Suppose there are two non-intersecting groups of agents in the market: group 1 (also known as
group of buyers), and group 2 (also known as group of sellers). Agents in both groups, whose size
equals a unit, are distributed uniformly over a plane in the square S = [−1, 1]× [−1, 1]. The location of
the members of groups 1 and 2 in the square S is defined by the points (x1, y1) and (x2, y2) respectively,
where −1 ≤ xi ≤ 1 and −1 ≤ yi ≤ 1, i = 1, 2. Agents from both groups meet in platforms I and
I I, located at the boundary of the square S in diametrically opposite points, for example, I(−1, 0)
and I I(1, 0).

The following notations are introduced: n(j)
i is the size of the group i in the platform j (i = 1, 2; j =

I, I I); p(j)
i is the price of visiting the platform j by an agent of the group i (i = 1, 2; j = I, I I); α, β are the

degrees of the effect that the number of second (first) group agents in the platform has on the payoff
of the first (second) group; ti is the effect of the transport costs for visiting the ith platform where
ti > 0 (i = 1, 2).

In a two-sided market with two platforms, agents in both groups choose between them based
on the utility they can derive from visiting the respective platform. For group 1 agents, the utility of
visiting the platform I, situated in the point (−1, 0) has the form

u(I)
1 = α · n(I)

2 − p(I)
1 −

√
(x1 + 1)2 + y2

1 · t1,

and the utility of visiting the platform I I, in the point (1, 0) is

u(I I)
1 = α · n(I I)

2 − p(I I)
1 −

√
(x1 − 1)2 + y2

1 · t1.

In the above expressions, the first term captures the utility from network externality of the other
side of the market, the second term is the cost of price the agent has to pay to access the platform,
and the third term is essentially the agent’s heterogeneous transport cost of accessing the platform,
via Hotelling specification.

The boundary between regions of the market for group 1 is found from the equation u(I)
1 = u(I I)

1 ,
which is solved to get

x2
1

s2
1
− y2

1
1 − s2

1
= 1,

where s1 =
α − 2αn(I)

2 + p(I)
1 − p(I I)

1
2t1

, given that n(I)
2 + n(I I)

2 = 1 (see Figure 1). Parameter s1 is the

coordinate value at which the hyperbola crosses the abscissa axis. In the symmetric case, when the
market is divided equally, s1 = 0. If s1 > 0 (s1 < 0), then platform I (II) is more attractive for agents.

The market being divided into two regions, the respective numbers of group 1 agents visiting
platforms I and I I are

n(I)
1 =

1
2
− 1

2

1∫
0

s1

√
1 +

y2

1 − s2
1

dy, (1)
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n(I I)
1 =

1
2
+

1
2

1∫
0

s1

√
1 +

y2

1 − s2
1

dy. (2)

The utilities of group 2 agents from visiting platforms I and I I are determined similarly, and are
equal, respectively

u(I)
2 = β · n(I)

1 − p(I)
2 −

√
(x2 + 1)2 + y2

2 · t2,

u(I I)
2 = β · n(I I)

1 − p(I I)
2 −

√
(x2 − 1)2 + y2

2 · t2,

and the boundary between market regions for group 2 is

x2
2

s2
2
− y2

2
1 − s2

2
= 1,

where s2 =
β − 2βn(I)

1 + p(I)
2 − p(I I)

2
2t2

, given that n(I)
1 + n(I I)

1 = 1. The number of group 2 agents visiting

the respective platforms is

n(I)
2 =

1
2
− 1

2

1∫
0

s2

√
1 +

y2

1 − s2
2

dy, (3)

n(I I)
2 =

1
2
+

1
2

1∫
0

s2

√
1 +

y2

1 − s2
2

dy. (4)

We thus arrive at the pricing game for the two platforms I and I I, which respectively serve
n(I)

1 + n(I)
2 and n(I I)

1 + n(I I)
2 agents of both groups. The payoffs of platforms I and I I in the pricing

game are determined as follows:

H(I)
(

p(I)
1 , p(I)

2

)
= n(I)

1

(
p(I)

1 − g1

)
+ n(I)

2

(
p(I)

2 − g2

)
,

H(I I)
(

p(I I)
1 , p(I I)

2

)
= n(I I)

1

(
p(I I)

1 − g1

)
+ n(I I)

2

(
p(I I)

2 − g2

)
,

where g1 and g2 are the platforms’ costs of serving users from the respective groups. Note that service
to any group i = 1, 2 in a platform can be provided only if p(I,I I)

i ≥ gi.
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Figure 1. Two-sided platform market on a plane.
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3. Identical Platforms and Identical Groups of Agents

Consider the case of identical platforms and identical agents, where the effect of the other group’s
size on the payoff and the transport costs of agents of the two groups are equal, that is, α = β and
t1 = t2 = t, and the service costs of the platforms are equal, g1 = g2 = g. In this case, it suffices to find
the optimal solution for one of the platforms, for example, for the platform I. The price equilibrium is

found from the first-order optimality condition
∂H(I)

∂p(I)
1

= 0, which has the following form:

∂H(I)

∂p(I)
1

=
∂n(I)

1

∂p(I)
1

(
p(I)

1 − g
)
+ n(I)

1 +
∂n(I)

2

∂p(I)
1

(
p(I)

2 − g
)

. (5)

From Equations (1) and (2) we get that

∂n(I)
1

∂p(I)
1

=
∂n(I)

1
∂s1

∂s1

∂p(I)
1

=
∂n(I)

1
∂s1

1
2t

(
1 − 2α

∂n(I)
2

∂p(I)
1

)

∂n(I)
2

∂p(I)
1

=
∂n(I)

2
∂s2

∂s2

∂p(I)
1

=
∂n(I)

2
∂s2

1
2t

(
−2α

∂n(I)
1

∂p(I)
1

)
,

from where we find that

∂n(I)
1

∂p(I)
1

=
1
2t

∂n(I)
1

∂s1

(
1 − α2

t2
∂n(I)

1
∂s1

∂n(I)
2

∂s2

)−1

, (6)

∂n(I)
2

∂p(I)
1

= − α

2t2
∂n(I)

1
∂s1

∂n(I)
2

∂s2

(
1 − α2

t2
∂n(I)

1
∂s1

∂n(I)
2

∂s2

)−1

. (7)

It follows from the symmetry of the problems that in the equilibrium the prices set by both
platforms for agents of groups 1 and 2 have to be equal, that is, p(I)

1 = p(I I)
1 = p(I)

2 = p(I I)
2 = p.

Furthermore, the size of both groups in the platforms should be equal, that is, n(I)
1 = n(I I)

1 = 1
2 and

n(I)
2 = n(I I)

2 = 1
2 . It follows from the equality of the prices and numbers of agents in the platforms that

s1 = s2 = 0 and that

∂n(I)
1

∂s1
=

∂n(I)
2

∂s2
= −1

2

1∫
0

√
1 + y2 dy.

Denote for brevity I =
1∫

0

√
1 + y2 dy ≈ 1.147.

Thus, Equations (6) and (7) in the form

∂n(I)
1

∂p(I)
1

= − 1
4t

I
(

1 − α2

4t2 I2
)−1

,

∂n(I)
2

∂p(I)
1

= − α

8t2 I2
(

1 − α2

4t2 I2
)−1

,
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are substituted into (5) to find

∂H(I)

∂p(I)
1

=

(
∂n(I)

1

∂p(I)
1

+
∂n(I)

2

∂p(I)
1

)
(p − g) +

1
2
= − 1

4t
I
(

1 − α2

4t2 I2
)−1 (

1 +
αI
2t

)
(p − g) +

1
2
= 0.

Derive from here the price in the equilibrium, which is equal to

p = g +

4t2
(

1 − α2

4t2 I2
)

I(2t + αI)
= g +

2t
I
− α = g +

2t
1∫

0

√
1 + y2 dy

− α. (8)

Observe that competition exists only if p ≥ g, or if

α

t
≤ 2

I
≈ 1.742.

Test the sufficient conditions for the maximum of the function HI (pI
1, pII

2
)
. To this end, find the

following expressions A =
∂2H(I)

∂2 p(I)
1

, B =
∂2H(I)

∂p(I)
1 ∂p(I)

2

and C =
∂2H(I)

∂2 p(I)
2

. Considering the symmetry of the

problem we have

A =
∂2H(I)

∂2 p(I)
1

=
∂2n(I)

1

∂2 p(I)
1

(p(I)
1 − g1) +

∂2n(I)
2

∂2 p(I)
1

(p(I)
2 − g2) + 2

∂n(I)
1

∂p(I)
1

=

(
∂2n(I)

1

∂2 p(I)
1

+
∂2n(I)

2

∂2 p(I)
1

)
(p − g) + 2

∂n(I)
1

∂p(I)
1

,

B =
∂2H(I)

∂p(I)
1 ∂p(I)

2

=
∂2n(I)

1

∂p(I)
1 ∂p(I)

2

(p(I)
1 − g1) +

∂2n(I)
2

∂p(I)
1 ∂p(I)

2

(p(I)
2 − g2) +

∂n(I)
1

∂p(I)
2

+
∂n(I)

2

∂p(I)
1

=

=

(
∂2n(I)

1

∂p(I)
1 ∂p(I)

2

+
∂2n(I)

2

∂p(I)
1 ∂p(I)

2

)
(p − g) +

∂n(I)
1

∂p(I)
2

+
∂n(I)

2

∂p(I)
1

,

C =
∂2H(I)

∂2 p(I)
2

=
∂2n(I)

1

∂2 p(I)
2

(p(I)
1 − g1) +

∂2n(I)
2

∂2 p(I)
2

(p(I)
2 − g2) + 2

∂n(I)
2

∂p(I)
2

=

(
∂2n(I)

1

∂2 p(I)
2

+
∂2n(I)

2

∂2 p(I)
2

)
(p − g) + 2

∂n(I)
2

∂p(I)
2

.

It follows from the symmetry of the problem that
∂n(I)

1

∂p(I)
2

=
∂n(I)

2

∂p(I)
1

and
∂n(I)

1

∂p(I)
1

=
∂n(I)

2

∂p(I)
2

, and also that

∂2n(I)
1

∂p(I)
1 ∂p(I)

2

=
∂2n(I)

2

∂p(I)
1 ∂p(I)

2

= 0 and
∂2n(I)

1

∂2 p(I)
1

=
∂2n(I)

1

∂2 p(I)
2

=
∂2n(I)

2

∂2 p(I)
2

= 0. Therefore

A = C = 2
∂n(I)

1

∂p(I)
1

= − 1
2t

I
(

1 − α2

4t2 I2
)−1

, B = 2
∂n(I)

1

∂p(I)
2

= − α

4t2 I2
(

1 − α2

4t2 I2
)−1

.

Since the expression AC − B2 =
I2

4t2

(
1 − α2 I2

4t2

)−2 [
1 +

α2 I2

4t2

]
> 0 when

α

t
<

2
I

and since A < 0,

the function H(I)
(

p(I)
1 , p(I I)

2

)
has a maximum at (p, p), where p is found from Formula (8).

Hence, the following theorem is valid for the case of identical platforms and identical groups
of agents.

162



Mathematics 2020, 8, 865

Theorem 1. In the Hotelling model for a two-sided platform market on a plane with identical groups of agents,
competitive service will take place given that

α

t
<

2
1∫

0

√
1 + y2 dy

,

and the price in the equilibrium in this case will have the form (8).

4. Identical Platforms and Different Groups of Agents

Suppose agents in the two groups differ in their parameters. Remark that owing to their symmetric
location in the market the platforms are identical. In this case, the price equilibrium is derived from the
first-order optimality condition for each group of agents in one of the platforms, for example, platform

I, which has the form
∂H(I)

∂p(I)
i

= 0, i = 1, 2.

The equation
∂H(I)

∂p(I)
1

= 0 has the form

∂H(I)

∂p(I)
1

=
∂n(I)

1

∂p(I)
1

(
p(I)

1 − g1

)
+ n(I)

1 +
∂n(I)

2

∂p(I)
1

(
p(I)

2 − g2

)
. (9)

From the Equations (1)–(4), we find that

∂n(I)
1

∂p(I)
1

=
∂n(I)

1
∂s1

∂s1

∂p(I)
1

=
∂n(I)

1
∂s1

1
2t1

(
1 − 2α

∂n(I)
2

∂p(I)
1

)
,

∂n(I)
2

∂p(I)
1

=
∂n(I)

2
∂s2

∂s2

∂p(I)
1

=
∂n(I)

2
∂s2

1
2t2

(
−2β

∂n(I)
1

∂p(I)
1

)
,

from where it follows that

∂n(I)
1

∂p(I)
1

=
1

2t1

∂n(I)
1

∂s1

(
1 − αβ

t1t2

∂n(I)
1

∂s1

∂n(I)
2

∂s2

)−1

,

∂n(I)
2

∂p(I)
1

= − β

2t1t2

∂n(I)
1

∂s1

∂n(I)
2

∂s2

(
1 − αβ

t1t2

∂n(I)
1

∂s1

∂n(I)
2

∂s2

)−1

.

It follows from the symmetry of the problem that in the equilibrium the prices set by the platforms
for each group of customers should be equal, although they may differ for different groups, that is,
p(I)

1 = p(I I)
1 = p1, p(I)

2 = p(I I)
2 = p2. Furthermore, the size of both groups on both platforms should be

equal, that is, n(I)
1 = n(I I)

1 =
1
2

and n(I)
2 = n(I I)

2 =
1
2

. Hence s1 = s2 = 0 and

∂n(I)
1

∂s1
=

∂n(I)
2

∂s2
= −1

2
I.

It follows that the expression (9) has the form

∂H(I)

∂p(I)
1

=
∂n(I)

1

∂p(I)
1

(p1 − g1) +
∂n(I)

2

∂p(I)
1

(p2 − g2) +
1
2
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= − 1
8t1t2

I
(

1 − αβ

4t1t2
I2
)−1

(2t2(p1 − g1) + βI(p2 − g2)) +
1
2
= 0. (10)

Similar reasoning for equation
∂H(I)

∂p(I)
2

= 0, which has the form

∂H(I)

∂p(I)
2

=
∂n(I)

1

∂p(I)
2

(
p(I)

1 − g1

)
+

∂n(I)
2

∂p(I)
2

(
p(I)

2 − g2

)
+ n(I)

2 ,

leads to the equation

∂H(I)

∂p(I)
2

=
∂n(I)

1

∂p(I)
2

(
p(I)

1 − g1

)
+

∂n(I)
2

∂p(I)
2

(
p(I)

2 − g2

)
+

1
2

= − 1
8t1t2

I
(

1 − αβ

4t1t2
I2
)−1

(αI(p1 − g1) + 2t1(p2 − g2)) +
1
2
= 0. (11)

From (10) and (11), we find the prices for the groups in the equilibrium

p1 = g1 +

(
2
I

t1 − β

)
, p2 = g2 +

(
2
I

t2 − α

)
. (12)

Hence, the following theorem is valid for the case with identical platforms and different groups
of agents.

Theorem 2. In the Hotelling model for a two-sided platform market on the plane with identical platforms,
competitive service will take place given that

max
{

α

t2
,

β

t1

}
≤ 2

I
≈ 1.742,

and the service prices in the equilibrium in this case will have the form (12).

5. Different Platforms and Identical Groups of Agents

Consider the model of a two-sided market with different platforms located in points (a, 0) and
(b, 0) of the square S, and with identical groups of agents, which have the same parameters of the
power of the group size effect and the transport costs. Assume for definiteness that a ≤ b. In this case,
the utility for group 1 agents from visiting the platform I in the point (a, 0) has the form

u(I)
1 = α · n(I)

2 − p(I)
1 −

√
(x1 − a)2 + y2

1 · t,

while from visiting the platform I I in the point (b, 0) it is

u(I I)
1 = α · n(I I)

2 − p(I I)
1 −

√
(x1 − b)2 + y2

1 · t.
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The boundary between regions of the market for group 1 is determined from the equation
u(I)

1 = u(I I)
1 , which is solved to get that

(
x1 −

a + b
2

)2

s2
1

− y2
1(

b − a
2

)2
− s2

1

= 1,

where s1 =
α(n(I I)

2 − n(I)
2 ) + p(I)

1 − p(I I)
1

2t
and n(I)

1 + n(I I)
1 = 1. The number of group 1 agents visiting

the platforms I and I I, respectively, is found from the formulas

n(I)
1 =

1
2
+

a + b
4

− 1
2

1∫
0

s1

√√√√√√1 +
y2(

b − a
2

)2
− s2

1

dy,

n(I I)
1 =

1
2
− a + b

4
+

1
2

1∫
0

s1

√√√√√√1 +
y2(

b − a
2

)2
− s2

1

dy.

The utilities of group 2 agents from visiting platforms I and I I are determined similarly, and
equal, respectively

u(I)
2 = α · n(I)

1 − p(I)
2 −

√
(x2 − a)2 + y2

2 · t,

u(I I)
2 = α · n(I I)

1 − p(I I)
2 −

√
(x2 − b)2 + y2

2 · t,

and the boundary between market regions for group 2 is found from the equation of the form

(
x2 −

a + b
2

)2

s2
2

− y2
2(

b − a
2

)2
− s2

2

= 1,

where s2 =
α(n(I I)

1 − n(I)
1 ) + p(I)

2 − p(I I)
2

2t
and n(I)

2 + n(I I)
2 = 1. The number of group 2 agents visiting

the respective platforms is

n(I)
2 =

1
2
+

a + b
4

− 1
2

1∫
0

s2

√√√√√√1 +
y2(

b − a
2

)2
− s2

2

dy,

n(I I)
2 =

1
2
− a + b

4
+

1
2

1∫
0

s2

√√√√√√1 +
y2(

b − a
2

)2
− s2

2

dy.

Since the groups of agents in this model are identical, the price equilibrium can be found from the
first-order optimality condition for any one of the groups of agents (e.g., the first one) in both platforms:

∂H(I)

∂p(I)
1

= 0,
∂H(I I)

∂p(I I)
1

= 0.
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Therefore, ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂H(I)

∂p(I)
1

=
∂n(I)

1

∂p(I)
1

(
p(I)

1 − g
)
+ n(I)

1 +
∂n(I)

2

∂p(I)
1

(
p(I)

2 − g
)
= 0,

∂H(I I)

∂p(I I)
1

=
∂n(I I)

1

∂p(I I)
1

(
p(I I)

1 − g
)
+ n(I I)

1 +
∂n(I I)

2

∂p(I I)
1

(
p(I I)

2 − g
)
= 0.

(13)

The derivatives
∂n(I)

1

∂p(I)
1

and
∂n(I)

2

∂p(I)
1

are taken from the Formulas (6) and (7). The expressions for the

derivatives
∂n(I I)

1

∂p(I I)
1

and
∂n(I I)

2

∂p(I I)
1

are found in a similar way

∂n(I I)
1

∂p(I I)
1

= − 1
2t

∂n(I I)
1

∂s1

(
1 − α2

t2
∂n(I I)

1
∂s1

∂n(I I)
2

∂s2

)−1

, (14)

∂n(I I)
2

∂p(I I)
1

= − α

2t2
∂n(I I)

1
∂s1

∂n(I I)
2

∂s2

(
1 − α2

t2
∂n(I I)

1
∂s1

∂n(I I)
2

∂s2

)−1

. (15)

It follows from the symmetry of the problem that in the equilibrium the prices in the platforms
should be equal for each group of customers, although they may differ for different groups, that is,
p(I)

1 = p(I)
2 = p(I), p(I I)

1 = p(I I)
2 = p(I I), and the size of the groups in each platform is equal, that is,

n(I)
1 = n(I)

2 = n(I) and n(I I)
1 = n(I I)

2 = 1 − n(I), wherefore

s = s1 = s2 =
α − 2αn(I) + p(I) − p(I I)

2t
, (16)

and

∂n(I)
1

∂s1
=

∂n(I)
2

∂s2
= − ∂n(I I)

1
∂s1

= − ∂n(I I)
2

∂s2
= − 1

2

1∫
0

⎛
⎜⎜⎝
√

1 +
y2

( b−a
2 )2 − s2

+
s2y2

(( b−a
2 )2 − s2)2

√
1 + y2

( b−a
2 )2−s2

⎞
⎟⎟⎠ dy. (17)

Denote the expression (17) as the function D(s). Then, it follows from (6)–(7) and (14)–(15) that

∂n(I)
1

∂p(I)
1

=
∂n(I I)

1

∂p(I I)
1

=
1
2t

D(s)
(

1 − α2

t2 D2(s)
)−1

,

∂n(I)
2

∂p(I)
1

=
∂n(I I)

2

∂p(I I)
1

= − α

2t2 D2(s)
(

1 − α2

t2 D2(s)
)−1

.

The resultant expressions are substituted into system (13):⎧⎪⎨
⎪⎩

1
2t D(s)

(
1 − α2

t2 D2(s)
)−1

(p(I) − g)− α
2t2 D2(s)

(
1 − α2

t2 D2(s)
)−1

(p(I) − g) + n(I) = 0,

1
2t D(s)

(
1 − α2

t2 D2(s)
)−1

(p(I I) − g)− α
2t2 D2(s)

(
1 − α2

t2 D2(s)
)−1

(p(I I) − g) + 1 − n(I) = 0,
(18)
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where

n(I) =
1
2
+

a + b
4

− 1
2

1∫
0

s

√√√√√1 +
y2(

b−a
2

)2
− s2

dy. (19)

From system (18) we find that
⎧⎨
⎩

tD(s)
(

p(I) − g
)
− αD2(s)

(
p(I) − g

)
+ 2n(I)(t2 − α2D2(s)) = 0,

tD(s)
(

p(I I) − g
)
− αD2(s)

(
p(I I) − g

)
+ 2(1 − n(I))(t2 − α2D2(s)) = 0,

and subsequently the optimal prices are found using the formulas
⎧⎪⎪⎨
⎪⎪⎩

p(I) = g − 2n(I) · t + αD(s)
D(s)

,

p(I I) = g − 2(1 − n(I)) · t + αD(s)
D(s)

.
(20)

Theorem 3. In the Hotelling model for a two-sided platform market on the plane with identical agents and
different platforms, service prices in the equilibrium satisfy Equations (16), (19) and (20).

From Equations (16) and (20), we find that

p(I) − p(I I) = 2(1 − 2n(I)) · t + αD(s)
D(s)

= 2ts − α + 2αn(I),

wherefore

n(I) =
1
2
− tsD(s)

3αD(s) + 2t
. (21)

Together with (19), this leads to the equation for finding the parameter s in the equilibrium:

tsD(s)
3αD(s) + 2t

=
1
2

1∫
0

s

√√√√√1 +
y2(

b−a
2

)2
− s2

dy − a + b
4

. (22)

Thus, optimal prices in the pricing game can be found by finding the parameter s from
Equation (22), then finding the size of the group of agents in the first platform using Formula (21), and
substituting the resultant parameters into Formula (20). The results of the numerical calculations are
shown in Table 1.

Table 1. Numerical results for g = 0, α = 1, t = 1.

a b s n1 n2 pI pII H I H II

−1 1 0 0.5 0.5 0.742 0.742 0.742 0.742
−1 0.9 −0.009 0.480 0.520 0.692 0.749 0.692 0.749
−1 0.8 −0.016 0.459 0.541 0.640 0.754 0.640 0.754
−1 0.75 −0.019 0.449 0.551 0.614 0.754 0.614 0.754
−1 0.7 −0.021 0.438 0.562 0.586 0.753 0.586 0.753
−1 0.6 −0.021 0.424 0.576 0.542 0.736 0.542 0.736

The table shows that when the second platform is shifted to the center, s shifts to the left, which
reduces the market for platform I. This means that customers in the center are getting closer to
platform I I.
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6. Optimal Location of Platforms

Observe the results of numerical calculations in Table 1. When the location of the first platform
I is fixed in the position a = −1 and the position of the second platform b changes from 1 to 0.6 the
second player’s payoff H(I I) first grows and then declines. The maximum is reached in the position
b = 0.8. This means that if the position of the first platform is fixed, the second player should put
his/her platform in the position b = 0.8.

If, however, the second player puts his/her platform in that position, the first player may also
relocate. Table 2 shows the calculations simulating this situation. Let the players switch roles. The first
player is now in the fixed position a = −0.8, while the second player’s position is variable. It follows
from the numerical calculations shown in Table 2 that his/her optimal position in this situation is
b = 0.9. Continuing this sequence of the best responses, we arrive at the equilibrium location of
platforms in the market a = −0.85, b = 0.85.

Table 2. Numerical results for g = 0, α = 1, t = 1.

a b s n1 n2 pI pII H I H II

−0.8 1 0.016 0.541 0.459 0.754 0.640 0.754 0.640
−0.8 0.9 0.007 0.521 0.479 0.698 0.642 0.698 0.642
−0.8 0.8 0 0.5 0.5 0.640 0.640 0.640 0.640
−0.8 0.7 −0.005 0.478 0.522 0.579 0.632 0.579 0.632
−0.8 0.6 −0.006 0.454 0.546 0.515 0.620 0.615 0.620

7. Different Platforms and Different Groups of Agents

Consider the case where different platforms serve different groups of agents, which are described
by the parameters α �= β and t1 �= t2. In this case, the payoffs of both platforms have the form

⎧⎨
⎩

H(I)
(

p(I)
1 , p(I)

2

)
= n(I)

1

(
p(I)

1 − g1

)
+ n(I)

2

(
p(I)

2 − g2

)
,
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1 , p(I I)

2
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(
1 − n(I)

1

) (
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)
+
(

1 − n(I)
2

) (
p(I)

2 − g2

)
.

The price equilibrium for the platforms is found from the first-order optimality condition

∂H(I)

∂p(I)
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= 0, i = 1, 2.

Therefore,
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(23)

where the respective derivatives satisfy the following equations:
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1
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1
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1
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, (24)
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The following notations are introduced:
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It follows from Formulas (24)–(29) that
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and the system of Equation (23) is transformed into the following:
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where

s1 =
α − 2αn(I)

2 + p(I)
1 − p(I I)

1
2t1

, (31)

s2 =
β − 2βn(I)

1 + p(I)
2 − p(I I)

2
2t2

, (32)
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The system of Equation (30) yields formulas for finding the optimal prices in the equilibrium:
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Thus, the following theorem is valid for the case of different platforms and different agents.

Theorem 4. In the Hotelling model for a two-sided platform market on the plane with different agents and
different platforms, service prices in the equilibrium satisfy Equations (30)–(35).

From Equations (31), (32) and (35), we have that
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from where the number of agents in the first platform is determined using the formulas
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The Equations (36) and (37) together with (33) and (34) lead to the system of equations for finding
the parameters s1 and s2 in the equilibrium:
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Thus, the values of the parameters s1 and s2 are found from the system of Equation (38), then the
sizes of the first and second groups on the first platform are found using the Formulas (36) and (37),
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and the optimal prices the platforms charge different groups are determined by the Formula (35).
The results of numerical calculations are shown in Table 3 for different values of the parameters α

and β.

Table 3. Numerical results for α = 1 and β = 0.7 when t1 = t2 = 1 and g1 = g2 = 0.

a b s1 s2 nI
1 nII

1 nI
2 nII

2 pI
1 pII

1 pI
2 pII

2 H I H II

−1 1 0 0 0.5 0.5 0.5 0.5 1.04 1.04 0.742 0.742 0.892 0.892
−1 0.9 0.057 −0.064 0.508 0.492 0.488 0.512 1.064 0.973 0.660 0.776 0.863 0.875
−1 0.8 0.113 −0.126 0.518 0.482 0.476 0.524 1.076 0.897 0.571 0.797 0.828 0.851
−1 0.7 0.167 −0.182 0.525 0.475 0.465 0.535 1.073 0.809 0.471 0.800 0.782 0.812
−1 0.6 0.217 −0.235 0.534 0.466 0.454 0.546 1.051 0.707 0.356 0.779 0.723 0.754
−1 0.5 0.265 −0.289 0.544 0.456 0.444 0.556 1.000 0.583 0.220 0.725 0.642 0.669

8. Conclusions

This paper investigated the structure of prices in the equilibrium in a two-sided market on the
plane. Service is provided in two platforms for heterogeneous agents and endogenous demand.
Agents are uniformly distributed in a square. The target functions are the platform’s maximum profit.
The exact expressions were found for the prices which depend on the cost structure and network
externalities. Analytical expressions were derived for equilibrium prices. The numerical experiments
for finding the equilibrium prices in the market for different parameters of the problem and different
locations of platforms in the market were described. The study was concerned with the case where
agents of both groups were uniformly distributed over the market. We plan to study this problem in
application to different distributions of agents in space.

The paper demonstrated the validity of the problem of the optimal platform location in the market.
In the future, the optimal platform location problem will be considered in more detail for various
distributions of agents over the market and for a greater number of competing platforms.
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Abstract: IDP-core is a new cooperative solution for dynamic and differential games. A novel
approach of constructing solutions for dynamic and differential games was employed in which
the time consistency property was used as the main axiom property for the cooperative solution.
Another new and important approach used for constructing IDP-core is the IDP dominance,
which allows to select undominated imputation distribution procedures and construct the cooperative
solution or imputation set. This approach shows the potential of using the time consistency property
as the main axiom for solutions in various fields such as Social Choice and Mechanism Design.
The overall procedure for defining the cooperative solution is also new since IDP-core was constructed
using imputation distribution procedures but not by using imputations directly.

Keywords: differential games; cooperative differential games; time consistency; IDP-core;
IDP dominance

1. Introduction

The theory of cooperative games examines how optimal parameters of cooperative and strategic
agreements are to be determined. The main problem in the theory of cooperative games with
transferable utilities is to determine the allocation procedure for total payoff in cases when all players
cooperate. The rule of how to allocate cooperative payoff among the players is called the imputation.
In the theory of cooperative games with non-transferable utilities, the main problem is to define
agreement on strategies or a game outcome favorable to all players.

Within the framework of classical cooperative game theory with transferable utilities, numerous
cooperative solutions or allocation rules were studied. One of them is the Core. The concept of
Core was proposed by D. Gillis [1], which is a generalization of the contractual Edgeworth curve [2].
Edgeworth described a market with two products and two participantsp; here, the Core is defined as a
part of the Pareto front. The Core is the set of undominated imputations, each of which can be used as
a solution in the game.

It is important to study the non-emptiness property of a cooperative solution, which is to
determine the conditions under which the cooperative solution is not empty since its applicability
depends on the wideness of the class of games to which this solution can be applied. G. Scarf [3] showed
that the Core is not empty for the class of convex games in characteristic function form. Characteristic
function is a function of coalition or subset of players in the game, which shows the profit of coalition.
Generalization of Scharf results can be found in the paper of L. Biller [4] and Shapley [5]. Necessary and
sufficient conditions for the non-emptiness of Core were formulated by Bondareva [6] and Shapley [7],
where the main role of proof is the concept of a balanced game. Unfortunately, based on this concept it
is impossible to apply a constructive method for choosing the specific imputations from the Core.

Mathematics 2020, 8, 721; doi:10.3390/math8050721 www.mdpi.com/journal/mathematics173



Mathematics 2020, 8, 721

V. Zakharov in [8] proposed the necessary and sufficient conditions for the non-emptiness of
Core, which simplify the test for a single-point solution (imputation), such as the Shapley value,
Banzhaf power index and others, whenever they belong to the Core. In [9,10] based on of this
approach, geometric properties for several cooperative solutions were investigated. This approach
implies that the non-emptiness property of Core can be formulated by a linear programming problem
constructed using the values of the characteristic function.

It is also important to construct cooperative solutions for a class of dynamic and differential
games. Solutions for such models can be used for modeling cooperative and strategic agreements
where conditions are defined over a long time interval [11,12]. The theory of differential games was
developed as a separate class of applied mathematics in the 1950s. One of the first works in the field of
differential games is the work of R. Isaacs [13] in which the notions of state, controls, and the problem
of aircraft interception by a guided missile were formulated, and a fundamental equation for defining
the solution derived. A comprehensive description of dynamic cooperative games is presented in [14].

A natural approach for researching cooperative differential games is an attempt at transferring
the results of classical static cooperative theory [15] to the theory of differential games. However,
in order to use the results of classical theory, it is additionally necessary to study the time consistency
and strong time consistency properties of cooperative solutions. Time consistency of cooperative
solution is the property that shows that for the players it is not beneficial to deviate from the chosen
cooperative solution during the game. The use of time-inconsistent cooperative solutions in the field
of economics, ecology, and management makes these solutions unfeasible because players might
find it profitable to reconsider the cooperative solution. The notion of the cooperative solution’s
time consistency was first formulated mathematically by L.A. Petrosyan in 1977 [16]. In [17] a
method was proposed to construct time-consistent cooperative solutions using a special payment
scheme, called the imputation distribution procedure (IDP). The notion of strong time consistency was
formulated in [18]. Recent papers [19–22] are devoted to the study of the time consistency property of
cooperative solutions.

In order to solve the time inconsistency problem in a classical cooperative solution, an imputation
distribution procedure should be used. However, there exists another, rather new approach that
allows for constructing time-consistent cooperative solutions. This approach uses the time consistency
property as a basic axiomatic property for defining the cooperative solution. This approach is the
subject of this paper and carries an innovative character. It is important to notice that the further use of
time consistency property for dynamic cooperative games, Social Choice, and Mechanisms Design,
as an axiom, is promising. Another important property considered in this paper is the IDP dominance
property. According to this property, the corresponding cooperative solution is constructed using the
imputation distribution procedures, which are undominated. We say that the IDP is undominated
by coalition S if there does not exist another IDP, coalition S, and time instant such that the instant
payments corresponding to IDP are higher for players from coalition S at a given time instant than in
the current IDP.

In the paper [23] the notion of a strong time-consistent subset of the Core was introduced.
Their authors constructed a new cooperative solution using the geometric approach and proved that
it was a subset of Core and possesses a strong time consistency property. Later on, this solution
was called the IDP-core and it can be constructed using a system of linear constraints for imputation
distribution procedures. These conditions are defined for each time instant of a differential game.
From the non-emptiness of a set described by these constraints, the non-emptiness of the corresponding
set of IDPs at each time instant, it follows that the IDP-core is not empty. In the paper [24] we apply
the technique proposed in [8] to study the non-emptiness of IDP-core for each time instant, and if it is
non-empty, we conclude that IDP-core is non-empty. Obtained results can be used for the construction
of IDP-core and verification of its non-emptiness as a numerical example. Moreover, a special case
of this approach is presented for 3-player differential games. It is possible to analytically construct
conditions for non-emptiness of IDP-core depending on the characteristic function. Furthermore, it is
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possible to define an analytical formula for selectors of IDP-core, in particular, the formula for
imputation distribution procedures of IDP-core selectors.

The paper is structured as follows. Section 2 contains preliminary information, including the
definition of a cooperative solution and time consistency property. Section 3 is devoted to the
description of IDP-dominance, to the definition of IDP-core and corresponding necessary and sufficient
conditions. Section 4 is devoted to studying the non-emptiness of IDP-core using linear programming
methods. Section 5 presents the differential game model of resource extraction, IDP-core for this model
is constructed using the corresponding necessary and sufficient conditions, non-emptiness conditions
are studied and conclusions are drawn.

2. Problem Statement and Preliminary Information

2.1. Differential Game Model

In this section, the general description of the differential game model is given. The main concepts
of this model are the type of model, payoff functions of players, motion equations, and solution concept.
Type of the game model reflects what we intend to do with the model, in this paper we consider the
cooperative game model. Here we need to define how to allocate joint cooperative payoff among
the players. Payoff functions of players define the objectives of players depending on the state of the
game, strategies and are calculated on some specific time interval (in our case closed time interval).
Motion equations define of how the state of the game changes according to the strategies of players.
In the case of the cooperative game model solution concept defines the exact type of imputation set
that will be used to allocate joint payoff among the players.

Consider an n-player differential game Γ(x0, T − t0) with prescribed duration T − t0 and initial
condition x0. Game dynamics are defined by the system of differential equations:

ẋ = f (x, u1, . . . , un), x ∈ Rn, ui ∈ Ui ⊂ compRk, t ∈ [t0, T], i = 1, n,
x(t0) = x0,

(1)

for which the conditions of existence, uniqueness and continuity of solution x(t) for any admissible
measurable controls u1(·), . . . , un(·) are satisfied. Open-loop control ui(t) satisfying the system (1) is a
strategy of player i and compRk is the compact set in k-dimension real number space (k is integer).

Let N = {1, . . . , n} be the set of players. Payoff of player i is defined in the following way:

Ki(x0, T − t0; u1, . . . , un) =

T∫
t0

hi(x(τ), u1(τ), . . . , un(τ))dτ, i = 1, n, (2)

where hi(x, u1, . . . , un) ≥ 0, i = 1, n and f (x, u1, . . . , un) are integrable functions, x(t) is the solution of
system (1) with controls u(t) = (u1(t), . . . , un(t)) involved.

2.2. Cooperative Differential Game Model

In the cooperative differential game model with transferable utility there are two problems:

1. Determination of a strategy set for players which maximizes the sum of their payoffs
or determination of strategies corresponding to cooperative behavior. These strategies
u∗ = (u∗

1, . . . , u∗
n) are called optimal, the corresponding trajectory is called the cooperative

trajectory and denoted by x∗(t).
2. Determination of the allocation rule for the maximum joint payoff of players corresponding to the

optimal strategies u∗(t) and determination of optimal trajectory x∗(t). Namely, the determination
of a cooperative solution as a subset of the imputation set.
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Let u∗ = (u∗
1, . . . , u∗

n) be the vector of optimal strategies (open-loop controls) for players; i.e., a set
of controls that maximizes the joint payoff of players:

u∗ = (u∗
1, . . . , u∗

n) = arg max
u1,...,un

n

∑
i=1

Ki(x0, T − t0; u1, . . . , un). (3)

Suppose that the maximum in (3) is achieved on the set of admissible strategies.
In order to determine how to allocate the maximum total payoff among players, it is necessary to

define the notion of the characteristic function of coalition S ⊆ N. The characteristic function shows
the strength of a coalition and thus allows the contribution of players to each coalition to be taken
into account.

Suppose that in the game Γ(x0, T − t0) characteristic function V(S; x0, T − t0), S ⊆ N is
constructed in any relevant way (for example, as in [25]). We assume that the superadditivity conditions
are satisfied:

V(S1∪S2; x0, T − t0)≥V(S1; x0, T − t0) + V(S2; x0, T − t0),

∀ S1, S2⊆ N, S1 ∩ S2=∅.

Denote by L(x0, T − t0) the set of imputations [26] in the game Γ(x0, T − t0):

L(x0, T − t0) =
{

ξ(x0, T − t0) = (ξ1(x0, T − t0), . . . , ξn(x0, T − t0)) :

n

∑
i=1

ξi(x0, T − t0) = V(N; x0, T − t0),

ξi(x0, T − t0) ≥ V({i}; x0, T − t0), i ∈ N
}

,

where V({i}; x0, T − t0) is a value of characteristic function V(S; x0, T − t0) for coalition S = {i}.
By M(x0, T − t0) denote an arbitrary cooperative solution or subset of imputation set L(x0, T − t0):

M(x0, T − t0) ⊆ L(x0, T − t0).

Suppose that at the beginning of game Γ(x0, T − t0) at the instant t0, players agreed to select a
subset of L(x0, T − t0) or some cooperative solution. However, suppose that at some instant t players
decided to reconsider the chosen cooperative solution, or decided to reconsider the allocation rule for
a cooperative payoff. In order to model their behavior, it is necessary to define the notion of subgame
Γ(x∗(t), T − t) along the cooperative trajectory x∗(t) starting at the instant t ∈ [t0, T].

For each subgame Γ(x∗(t), T − t), t ∈ [t0, T] along the trajectory x∗(t), we define the superadditive
characteristic function V(S; x∗(t), T − t), S ⊆ N in the same way as it was done for the initial game
Γ(x0, T − t0):

∀ S, A ⊆ N, S ∩ A = ∅ :

V(S ∪ A; x∗(t), T − t) ≥ V(S; x∗(t), T − t) + V(A; x∗(t), T − t). (4)
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It is also possible to define the notion of imputation ξ(x∗(t), T − t) for a subgame Γ(x∗(t), T − t)
along the cooperative trajectory x∗(t), t ∈ [t0, T]. The set of all possible imputations in the subgame
Γ(x∗(t), T − t) is denoted by L(x∗(t), T − t), t ∈ [t0, T]:

L(x∗(t), T − t) =
{

ξ(x∗(t), T − t) = (ξ1(x∗(t), T − t), . . . , ξn(x∗(t), T − t)) :

n

∑
i=1

ξi(x∗(t), T − t) = V(N; x∗(t), T − t),

ξi(x∗(t), T − t) ≥ V({i}; x∗(t), T − t), i ∈ N
}

. (5)

The superaditivity property (4) for characteristic function V(S; x∗(t), T − t) guarantees the
non-emptiness of imputation set L(x∗(t), T − t), t ∈ [t0, T]. The cooperative solution of subgame
Γ(x∗(t), T − t) is denoted correspondingly by M(x∗(t), T − t).

2.3. Core

In cooperative game theory, the main problem is “fair” allocation of the maximum joint payoff
V(N; x0, T − t0) among the players from grand coalition N = {1, . . . , n}.

Suppose that players in the cooperative differential game Γ(x0, T − t0) (subgame Γ(x∗(t), T − t),
t ∈ [t0, T] along the cooperative trajectory x∗(t)) made an agreement on the allocation rule ξ(x0, T − t0)

(imputation ξ(x∗(t), T − t)), where none of imputations dominates ξ(x0, T − t0) (ξ(x∗(t), T − t)) [26].
Such an allocation rule is stable in the sense that there not exists imputation that would be better for
each coalition at every time instant t ∈ [t0, T].

Definition 1. We call the set of undominated imputations of cooperative differential game Γ(x∗(t), T − t) by
the Core and denote it by C(x∗(t), T − t), t ∈ [t0, T].

The following theorem holds:

Theorem 1. Imputation ξ(x∗(t), T − t) belongs to the Core C(x∗(t), T − t), if and only if for all S ⊆ N the
following inequalities are satisfied:

V(S; x∗(t), T − t) ≤ ∑
i∈S

ξi(x∗(t), T − t), t ∈ [t0, T].

2.4. Non-Emptiness of Core in Static Games

These are the main results concerning the nonemptiness conditions of Core in static games.
Necessary and sufficient conditions for non-emptiness of Core were formulated by O. Bondareva [6]
and by L. Shapley [7]. These conditions are based on the concept of a balanced game, but the application
of this approach for a specific game model is difficult.

In the paper [27] G. Owen showed that in the game (N, v) exists a non-empty Core, if and only if
the optimal value of the linear programming problem

∑
i∈N

ξi −→ min

∑
i∈S

ξi ≥ v(S), ∀S ⊆ N, S �= ∅

is equal to v(N).
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The papers [8–10] also make use of linear programming problem for Core’s non-emptiness.
Consider the following linear programming problem:

∑
i∈N

ξi −→ min

∑
i∈S

ξi ≥ v(S), ∀S ⊆ N, S �= N, ∅. (6)

Suppose that ξ0 = (ξ0
1, . . . , ξ0

n) is some arbitrary optimal solution of the linear programming
problem (6). The set of all optimal solutions of the optimization problem (6) is denoted by X0(v). In [8]
it is shown that the necessary and sufficient conditions of non-emptiness of Core can be formalized in
the following way:

Theorem 2. The Core in cooperative game with transferable utility (N, v) is nonempty, if and only if the
following inequality is satisfied:

∑
i∈N

ξ0
i ≤ v(N), (7)

where ξ0 ∈ X0(v) is a solution of the linear programming problem (6).

2.5. Time-Consistency of Cooperative Solution and Imputation Distribution Procedure

Transferring the results of static cooperative game theory to the field of cooperative differential
games brings about the problem of defining the time-consistent cooperative solution. The problem of
defining the solution of the differential game with prescribed duration was studied in the papers of
L.A. Petrosyan [16,17]. Time consistency of cooperative solution is the property that shows that for the
players it is not beneficial to deviate from the chosen cooperative solution during the game.

The main approach for solving the problem of time inconsistency of cooperative solution in
the differential game is the imputation distribution procedure, proposed in [17]. In this paper,
imputation distribution procedure was defined as a vector function for a fixed imputation. In this
paper, we consider another approach that generalizes the notion of IDP.

Assume IDP’s in cooperative differential game Γ(x0, T − t0) are integrable vector functions that
constitute some imputation from the imputation set:

β(t) :
∫ T

t0

β(τ)dτ ∈ L(x0, T − t0) (8)

or
∫ T

t0

βi(τ)dτ ≥ V({i}; x0, T − t0), i ∈ N,

∑
i∈N

∫ T

t0

βi(τ)dτ = V(N; x0, T − t0).

Therefore, in the above definition, IDP is not based on the imputation itself but generates it.
We define also the so-called corresponding IDP, the concept of which is close to the initial definition of
IDP in the paper [17].

Definition 2. The integrable function β(t) = (β1(t), . . . , βn(t)), t ∈ [t0, T] is called a corresponding
imputation distribution procedure (IDP) for ξ(x0, T − t0) ∈ L(x0, T − t0), if the following equalities hold:

ξi(x0, T − t0) =
∫ T

t0

βi(τ)dτ, i ∈ N. (9)
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Actually, the corresponding IDP β(t) depends on ξ(x0, T − t0) and is not unique for this
imputation. We can represent it in the form

β(t) = β(t, ξ(x0, T − t0))

or
βi(t) = βi(t, ξi(x0, T − t0)), i ∈ N.

From (9) we have for t ∈ [t0, T], i ∈ N:

ξi(x0, T − t0) =
∫ t

t0

βi(τ)dτ +
∫ T

t
βi(τ)dτ

or ∫ T

t
βi(τ)dτ = ξi(x0, T − t0)−

∫ t

t0

βi(τ)dτ.

That is IDP shares at instant t imputations in two parts: payoffs to player i, which are received in
interval [t0, t] and in interval (t, T].

Definition 3. The cooperative solution M(x0, T − t0) in the game Γ(x0, T − t0) is called time-consistent, if for
each imputation ξ(x0, T − t0) ∈ M(x0, T − t0) there exists a corresponding IDP β(t) = β(t, ξ(x0, T − t0))

such that: ∫ T

t
β(τ)dτ ∈ M(x∗(t), T − t), t ∈ [t0, T] (10)

or equivalently

ξ(x0, T − t0)−
∫ t

t0

β(τ)dτ ∈ M(x∗(t), T − t), t ∈ [t0, T]. (11)

Notice that from condition (10) we have the following equality

∑
i∈N

∫ T

t
βi(τ)dτ = V(N; x∗(t), T − t), t ∈ [t0, T]. (12)

It is obvious that if M(x∗(t), T − t) �= ∅ for ∀t ∈ [t0, T], then for any differentiable by t function
ξ(x∗(t), T − t) ∈ M(x∗(t), T − t) (ξ(x∗(t0), T − t0) = ξ(x0, T − t0)) IDP β(t) can be defined using
the formula:

β(t) = − d
dt

ξ(x∗(t), T − t), t ∈ [t0, T], i ∈ N, (13)

ξ(x∗(t0), T − t0) = ξ(x0, T − t0).

Then imputation ξ(x0, T − t0) is defined by the formula:

ξ(x0, T − t0) =
∫ t

t0

β(τ)dτ + ξ(x∗(t), T − t), t ∈ [t0, T].

Define an imputation in the current cooperative game Γ(x∗(t), T − t) with characteristic function
V(S; x∗(t), T − t) which corresponds to a given IDP β(t) = β(t, ξ(x0, T − t0)) as

ξ(x∗(t), T − t) =
∫ T

t
β(τ)dτ. (14)

From Definition 3 we have

ξ(x∗(t), T − t) ∈ M(x∗(t), T − t). (15)
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We will call the imputation (14) the dynamic imputation generated by the corresponding IDP
β(t) = β(t, ξ(x0, T − t0)).

3. IDP-Core and Dominance of Imputation Distribution Procedures

Consider the development of game at instant t ∈ (t0, T). Suppose that at instant t0 players
agreed to realize imputation ξ(x0, T − t0) = (ξ1(x0, T − t0), . . . , ξn(x0, T − t0)). Then, according to the
corresponding IDP β(t), until the instant t, player i ∈ N receives the payoff:

∫ t

t0

βi(τ)dτ.

However, for some players IDP β(t, ξ(x0, T − t0)) would not be beneficial if there exists another
imputation distrubution procedure β(t, ξ(x0, T − t0)), according to which player i at interval [t0, t]
receives more payoff: ∫ t

t0

βi(τ)dτ >
∫ t

t0

βi(τ)dτ. (16)

In such a case IDP β(t) may be considered as less beneficial for the player i at least in interval [t0, t].
It is important to notice that the notion of IDP-dominance can be applied to imputation distribution
procedures, which are not necessarily defined for a unique imputation. As IDP defines how dynamic
imputation is to be constructed then it also makes sense to consider the notion of IDP-dominance not
only for a fixed imputation.

3.1. Dominance of Imputation Distribution Procedures

In this section we consider the IDP β(t) defined by the formula (8). Suppose that the function
V(S; x∗(t), T − t), S ⊆ N is continuously differentiable by t ∈ [t0, T]. Define the function
U(S; x∗(t), T − t) in the following way:

U(S; x∗(t), T − t) = − d
dt

V(S; x∗(t), T − t), t ∈ [t0, T], S ⊆ N. (17)

Definition 4. IDP β(t) dominates IDP β(t) by coalition S ⊆ N and at the instant t ∈ [t0, T] (denote by

β(t)
S, t
� β(t)), if the following inequalities hold:

βi(t) > βi(t), i ∈ S,

∑
i∈S

βi(t) ≤ U(S; x∗(t), T − t). (18)

Definition 5. IDP β(t) is undominated if at any t ∈ [t0, T] there does not exist β(t), which dominates β(t) by
coalition S ⊆ N:

β(t)
S, t
�� β(t), ∀β(t), S. (19)

3.2. IDP-Core

In the paper [23] the authors first introduced and treated a subset of the imputation set in
a cooperative differential game which was named subcore. This subset was designed using a set of
imputation distribution procedures satisfying the system of inequalities and equalities. This approach
is not classical for the theory of differential games since it uses IDP’s for imputations, not vice versa.
Based on this subcore notion, we in the paper [24] redefined this notion for the dynamic case, named it
IDP-core, and formulated necessary and sufficient conditions of the existence of IDP-core along the
cooperative trajectory of the game. In the current paper, we define a solution concept for IDP-core by
introducing the notion of IDP dominance and using the time consistency properties or axioms defined
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above. It is proved that IDP-core has the necessary and sufficient conditions for a dynamic imputation
when defined by the system of inequalities introduced in the paper [23,28].

Suppose that players in the game Γ(x0, T − t0) agreed on the allocation rule for total payoff of
grand coalition N (imputation ξ(x0, T − t0)) using the cooperative solution of IDP-core:

Definition 6. By the dynamic IDP − core(x∗(t), T − t) along the cooperative trajectory x∗(t), t ∈ [t0, T]
(IDP − core(x0, T − t0)), we call the solution in cooperative differential game Γ(x∗(t), T − t) (Γ(x0, T − t0)),
which includes all time-consistent imputations generated by undominated IDPs β(τ), τ ∈ [t, T] (8), t ∈ [t0, T]
(β(t), t ∈ [t0, T]):

IDP − core(x∗(t), T − t) =
{

ξ(x∗(t), T − t) =
∫ T

t
β(τ)dτ :

ξ(x∗(t), T − t) and corresponding β(τ) satisfies (10),

� ∃β(t), S, t : β(t)
S, t
� β(t)

}
. (20)

We note that IDP − core(x∗(t), T − t) includes such imputations from the Core C(x∗(t), T − t) of
cooperative game Γ(x0, T − t0) for which there exists corresponding undominated IDP and this IDP
generates a dynamic imputation belonging C(x∗(t), T − t) for each t ∈ [t0, T].

Theorem 3. Let C(x∗(t), T − t) be not empty for any t ∈ [t0, T). Dynamic imputation ξ(x∗(t), T − t) in
cooperative differential game Γ(x0, T − t0) belongs to the dynamic IDP − core(x∗(t), T − t), if and only if for
corresponding β(t) = β(t, ξ(x0, T − t0)) the following conditions are satisfied ∀t ∈ [t0, T]:

∑
i∈S

βi(t) ≥ U(S; x∗(t), T − t), ∀S ⊂ N, (21)

∑
i∈N

βi(t) = U(N; x∗(t), T − t). (22)

Proof. Sufficiency. Let for corresponding IDP β(t) = β(t, ξ(x0, T − t0)) conditions (21) and (22) hold
at any t ∈ [t0, T]. By integrating (21) and (22) in interval we obtain

∑
i∈S

ξ(x∗(t), T − t) ≥ V(S; x∗(t), T − t), ∀S ⊂ N,

∑
i∈N

ξ(x∗(t), T − t) = V(N; x∗(t), T − t). (23)

This means the imputation

ξ(x0, T − t0) =
∫ T

t0

β(t)dt ∈ C(x∗(t0), T − t0) = C(x0, T − t0).

Let us show that β(t) = β(t, ξ(x0, T − t0)) is undominated. It is proven by contradiction. Suppose
for some S ⊂ N there exists t ∈ [t0, T] and β(t) such that

ξ(x0, T − t0) =
∫ T

t0

β(t)dt ∈ L(x0, T − t0),

βi(t) > βi(t), i ∈ S,

∑
i∈S

βi(t) ≤ U(S; x∗(t), T − t). (24)
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Therefore

∑
i∈S

βi(t) < U(S; x∗(t), T − t).

This inequality contradicts to (21). Thus β(t) = β(t, ξ(x0, T − t0)) is undominated on the
interval [t0, T]. Notice that β(t) is undominated on any subinterval [τ, T], τ ∈ [t0, T], in subgame
Γ(x∗(τ), T − τ).

For S = {i} condition (21) is represented in the form

βi(t) ≥ U({i}; x∗(t), T − t), i ∈ N.

Integrating these inequalities and equality (22) and taking into account (9) and (17) we obtain

ξi(x∗(t), T − t) =
∫ T

t
βi(τ)dτ ≥ V({i}; x∗(t), T − t), i ∈ N,

∑
i∈N

ξi(x∗(t), T − t) = ∑
i∈N

∫ T

t
βi(τ)dτ = V(N; x∗(t), T − t). (25)

Thus dynamic payoff

ξ(x∗(t), T − t) =
∫ T

t
β(τ)dτ

is the imputation in current game Γ(x∗(t), T − t) generated by corresponding IDP β(t) = β(t, ξ(x0, T −
t0)).

Due to the non-emptiness of C(x∗(t), T − t) for any t ∈ [t0, T] the IDP β(t) = β(t, ξ(x0, T − t0))

which satisfies (21) and (22) generates the payoff vector

ξ(x∗(t), T − t) =
∫ T

t
β(τ)dτ,

which belongs to C(x∗(t), T − t). Thus ξ(x∗(t), T − t) satisfies (10) and therefore imputation
ξ(x0, T − t0) is time-consistent and lies in IDP − core(x0, T − t0).

Necessity. Let imputation ξ(x0, T − t0) in the cooperative differential game Γ(x0, T − t0) belong
to IDP − core(x0, T − t0). Therefore by Definition 6 the imputation ξ(x0, T − t0) generated by
undominated IDP β(t) = β(t, ξ(x0, T − t0)) belongs to C(x0, T − t0) and is time-consistent. Due to
Definition 6 the time-consistency of imputation ξ(x0, T − t0) means that there exists IDP β(t) such that

ξ(x∗(t), T − t) =
∫ T

t
β(τ)dτ ∈ C(x∗(t), T − t), t ∈ [t0, T].

Let us show that this inclusion takes place for the undominated β(t) = β(t, ξ(x0, T − t0))

corresponding to imputation ξ(x0, T − t0). Suppose this is not the fact. Then there exists coalition
S ⊂ N and some instant t ∈ [t0, T] such that the following inequality holds

∑
i∈S

∫ T

t
β(t)dt < V(S; x∗(t), T − t). (26)

Notice that β(t) = β(t, ξ(x0, T − t0)) belongs to the set of undominated imputations in a
cooperative game with the characteristic function U(S; x∗(t), T − t), S ⊆ N. Therefore as follows
from Theorem 1 for S ⊂ N the following has to be fulfilled

∑
i∈S

βi(t)dt ≥ U(S; x∗(t), T − t). (27)
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Integrating this inequality in interval [t, T] we receive

∑
i∈S

∫ T

t
βi(t)dt ≥ V(S; x∗(t), T − t), (28)

which contradicts (27). Thus the Theorem is proved.

Proposition 1. If C(x∗(t), T − t) is empty for some t = t ∈ [t0, T], then IDP− core(x∗(t0), T − t0) is empty.

Proof. Suppose we can find the time-consistent imputation ξ(x0, T − t0) ∈ IDP − core(x∗(t0), T − t0)

and corresponding undominated IDP β(t), which satisfies (21) and (22). Integrating inequalities (21)
and (22) we obtain

∑
i∈S

∫ T

t
βi(τ)dτ ≥ V(S; x∗(t), T − t), S ⊂ N,

∑
i∈N

∫ T

t
βi(τ)dτ = V(N; x∗(t), T − t). (29)

Thus we receive

ξ(x∗(t), T − t) =
∫ T

t
β(τ)dτ ∈ C(x∗(t), T − t). (30)

It contradicts with emptiness of C(x∗(t), T − t). Therefore, IDP − core(x∗(t0), T − t0) is empty.
The Proposition is proved.

Proposition 2. If C(x∗(t), T − t) is not empty for any t ∈ [t0, T] then IDP − core(x∗(t0), T − t0) =

C(x∗(t0), T − t0).

Proof. Consider an imputation ξ(x0, T − t0) ∈ C(x∗(t0), T − t0) that does not belong to
IDP − core(x∗(t0), T − t0). That is ξ(x0, T − t0) belongs to C(x∗(t0), T − t0), but is time inconsistent.
According to the time consistency imputation definition ξ(x0, T − t0) is time inconsistent if there does
not exist IDP β(t) = β(t, ξ(x0, T − t0)) such that at any t ∈ [t0, T] dynamic imputation ξ(x∗(t), T − t)
generated by this IDP belongs to core C(x∗(t), T − t).

But as follows from Theorem 3, if the corresponding IDP β(t) = β(t, ξ(x0, T − t0)) satisfies
conditions (21) and (22), then ξ(x0, T − t0) belongs to IDP − core(x0, T − t0). That is ξ(x0, T − t0) is
time-consistent by Definition 6, that is the following inclusion holds for any t ∈ [t0, T]

ξ(x∗(t), T − t) =
∫ T

t
β(τ)dτ ∈ C(x∗(t), T − t).

The Proposition is proved.

Remark 1. Proposition 2 states that if the Core is not empty, then IDP-core and Core coincide in the current
game or equivalently imputations from the Core coincide with the imputations from the IDP-core. The system
of inequalities (21) and (22) allows extracting the subset from the set of imputation distribution procedures
which provides time-consistency and IDP-nondominance of imputations from the Core. For other subsets of
the IDP set, this kind of result generally speaking is not true. Note also that the set of imputation distribution
procedures (21) and (22) can be empty. In the next section consider the approach to check nonemptiness and
construction of IDP’s from the IDP-core.

Suppose that the characteristic function V(S; x∗(t), T − t), t ∈ [t0, T] is defined in some relevant way
(for example, as in [25]). Suppose that it is a strictly monotonically decreasing function for any t ∈ [t0, T],
decreasing faster than the linear law. Construct the Core C(x0, T − t0) for the initial instant t = t0. Afterwards
choose imputation from the Core ξ(x0, T − t0) ∈ C(x0, T − t0). According to the Definition 2 we choose the
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corresponding imputation distribution procedure β(t) = β(t, ξ(x0, T − t0)) (IDP) for ξ(x0, T − t0) in some
relevant way. As it follows from Proposition 2 for the imputations ξ(x0, T − t0) ∈ IDP − core(x∗(t0), T −
t0) = C(x∗(t0), T − t0) we can always find IDP β′(t) satisfying the conditions (21) and (22) such that:

∫ T

t0

β′(t)dt = ξ(x0, T − t0).

On the other hand β(t) = β(t, ξ(x0, T − t0)) could not satisfy conditions (21) and (22). It could be the
case if β(t) = β(t, ξ(x0, T − t0)) is chosen in the following way

β(t) = c = const, t ∈ [t0, t′),
(
t′ ∈ (t0, T)

)
,

β(t) =
ξ(x0, T − t0)− c(t′ − t0)

T − t′
, t ∈ [t′, T]

and the derivative of V(S; x∗(t), T − t)

U(S; x∗(t), T − t) > 0, t ∈ [t0, T].

This case will be demonstrated on the model example in Section 5.

Proposition 3. If C(x∗(t), T − t) is not empty for any t ∈ [t0, T], then all imputations of C(x∗(t0), T − t0)

are time-consistent.

Proof. Consider am imputation ξ(x0, T − t0) from Core C(x∗(t0), T − t0). According to the Proposition
2 IDP − core(x∗(t0), T − t0) = C(x∗(t0), T − t0) and therefore ξ(x0, T − t0) ∈ IDP − core(x∗(t0), T −
t0). From the definition of the IDP-core it follows that ξ(x0, T − t0) is time-consistent. The Proposition
is proved.

4. Application of Linear Programming Methods for Nonemptiness Properties

In this section, we consider the linear programming problem described in Section 2.4, for the
non-emptiness properties of Core. IDP-core can be constructed using a system of linear constraints
for the imputation distribution procedures. These constraints are defined for each instant in the
game. From the nonemptiness of the set described by these constraints, it follows that the IDP-core is
not empty.

Consider the following linear programming problem for a fixed t:

∑
i∈N

βi −→ min

∑
i∈S

βi ≥ U(S; x∗(t), T − t), ∀S ⊆ N, S �= N, S �= ∅. (31)

Suppose that β0
i = (β0

1, . . . , β0
n) is an optimal solution of linear programming problem (31) with

fixed t. The set of optimal solutions of problem (31) we denote by Y0.
Then the following theorem is true:

Theorem 4. The set of IDPs satisfying the conditions (25), t ∈ [t0, T) is not empty, if and only if ∀t ∈ [t0, T)
the following condition is satisfied:

∑
i∈N

β0
i ≤ U(N; x∗(t), T − t), (32)

where β0 ∈ Y0 is any solution of the linear programming problem (31).
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Proof. Start the proof with the sufficient condition. Suppose that the condition (32) is satisfied,
then according to (31) for any t ∈ [t0, T] there exists β̂0 such that for

βi = β0
i +

U(N; x∗(t), T − t)
n

− ∑i∈N β0
i

n
, i ∈ N (33)

conditions (21) and (22) are satisfied for any fixed t ∈ [t0, T]. If it is true, then we can compose the
integrable function β̂0(t) as a function of time, for which the conditions (21) and (22) will be satisfied.

Proof of the necessity condition. If the IDP-core is not empty, then there exists at least one
integrable function β(t) satisfying the conditions (21) and (22). As a result for the solution of (31)
condition (32) should be satisfied.

5. Differential Game Model of Resource Extraction

Consider a game-theoretical model of non-renewable resource extraction with asymmetric
players [29,30]. The amount of resource depends on the rates of extraction which are chosen by
the players. The game involves n asymmetric players, with utility functions depending on the current
amount of resource and rates of extraction.

Denote by x(t) ∈ R1 the amount of resource at instant t and by ui(t, x) resource extraction rate
chosen by player i at instant t. As a class of strategies we will consider a class of feedback strategies,
where the strategies are the functions of time t and state x. We assume that ∀t, ui(t, x) ≥ 0, and x(t) = 0
implies ui(t, x) = 0. The amount of the resource x(t) as a function of t depends in the following way
on ui(t, x):

ẋ = −
n
∑

i=1
aiui(t, x), ai > 0, i = 1, . . . , n.

x(t0) = x0. (34)

Payoff function representing the income of player i:

Ki(x0, T − t0) =

T∫
t0

log(ui(τ, x))dτ, i = 1, . . . , n. (35)

5.1. Cooperative Strategies and Cooperative Trajectory

Consider the cooperative version of a non-renewable resource extraction game [30]. Here, players unite
in a grand coalition and maximize total utility, acting as one player. The corresponding optimal control
problem is formalized in the following way:

n

∑
i=1

Ki(x0, T − t0) =
n

∑
i=1

T∫
t0

log(ui(τ, x))dτ → max
ui ,i=1,n

(36)

subject to

ẋ = −
n

∑
i=1

aiui(t, x),

x(t0) = x0 > 0,

u(t, x) ≥ 0.

(37)
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To solve the optimization problem (36) and (37), we use the dynamic programming principle
proposed by Bellman. To do this we define the Bellman function as the maximum value of the total
payoff of players (35) in the subgame Γ(x, T − t) starting at the instant t in the position x:

W(t, x) = max
ui ,i=1,n

{
n

∑
i=1

Ki(x, T − t)

}
= max

ui ,i=1,n

⎧⎨
⎩

n

∑
i=1

T∫
t

log u(τ, x)dτ

⎫⎬
⎭ (38)

subject to Equation (37), when x0 = x and t0 = t.
It is proved that if there exists a continuously differentiable function W(t, x) that satisfies the

Hamilton-Jacobi-Bellman equation

−Wt(t, x) = max
ui ,i=1,n

{
n
∑

i=1
log ui(t, x)− Wx(t, x)

(
n
∑

i=1
aiui(t, x)

)}
,

lim
t→T−0

W(t, x) = 0, (39)

then strategies u∗
i (t, x) defined by maximizing the right hand side (39) deliver the maximum to the

functional in the optimization problem (36) and (37).
From the first order extremum condition of (39), we obtain:

u∗
i =

1
aiWx(t, x)

,

then substituting to (39):

Wt(t, x) = n log Wx(t, x) + log A[N] + n, A[N] =
n
∏
i=1

ai

lim
t→T−0

W(t, x) = 0. (40)

We will consider a Bellman function as a function of the form:

W(t, x) = A(t) log x + B(t),

then, by substituting in (40), we obtain:

Ȧ log x + Ḃ = n log A − n log x + log A[N] + n, (41)

lim
t→T−0

A(t) = lim
t→T−0

B(t) = 0.

The solution of (41) are the functions:

A(t) = n(T − t),

B(t) = −(T − t)
(

log A[N] + n log n(T − t)
)

.
(42)

By substituting A(t) and B(t) into the Bellman function we obtain:

W(t, x) = n(T − t) log
x

n(T − t)
− (T − t) log A[N], t ∈ [t0, T). (43)

The corresponding form of optimal control or cooperative strategy:

u∗
i (t, x) =

1
aiWx(t, x)

=
x

ain(T − t)
, t ∈ [t0, T). (44)
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Substituting the optimal control into the motion Equation (37), we obtain the differential equation
for the trajectory corresponding to the optimal control:

ẋ = − x
T − t

,

x(t0) = x0.
(45)

The solution has the form:
x∗(t) = x0

T − t
T − t0

, t ∈ [t0, T). (46)

Trajectory x∗(t) and strategy (control) u∗(t, x) we will call cooperative.
In order to determine the value of players’ maximum total payoff that corresponds to the

optimization problem (36) and (37) in the subgame along the cooperative trajectory x∗(t) (46), it is
necessary to substitute the expression for the cooperative trajectory by the expression for the Bellman
function (43):

W(t, x∗(t)) = n(T − t) log
x0

n(T − t0)
− (T − t) log A[N], t ∈ [t0, T). (47)

5.2. Characteristic Function

To construct the rule for allocating the maximum joint payoff among players, it is necessary to
define the characteristic function for each coalition S ⊆ N:

V(S; x, T − t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n
∑

i=1
Ki(x, T − t), S = N

WS(t, x), S ⊂ N,

0, S = ∅,

(48)

where WS(t, x) is defined as the maximum joint payoff of coalition S given that the players from
coalition N\S use strategies from a fixed Nash equilibrium uNE =

(
uNE

1 , . . . , uNE
n

)
in the initial game.

It can be shown that in the case of a non-cooperative game, Nash equilibrium strategies are

uNE
i (t, x) =

x
ai(T − t)

, i ∈ N. (49)

Consider a case of coalition S ⊂ N. We introduce the Bellman function WS(t, x), as the maximum
total payoff of players from coalition S in the subgame Γ(x, T − t) starting at the instant t in the
position x:

WS(t, x) = max
ui ,i∈S

∑
i∈S

{∫ T

t
log uidτ

}
(50)

subject to ẋ(τ) = − ∑
i∈N

aiui (51)

ui = uNE
i , i ∈ N\S. (52)

The Hamilton-Jacobi-Bellman equation for this problem has the form:

− ∂WS(t,x)
∂t = max

ui ,i∈S

{
∑

i∈S
log ui(t, x)− ∂WS(t,x)

∂x

(
n
∑

j=1
ajuj(t, x)

)}
,

lim
t→T−0

WS(t, x) = 0. (53)
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From the first order extremum condition for (53) we obtain

u∗
i =

1

ai
∂WS(t,x)

∂x

, (54)

substitute in (53):

∂WS
∂t = k log ∂WS

∂x + log A[S] + k + ∂WS
∂x ∑

j∈N\S

x
T−t , A[S] =

n
∏
i=1

ai

lim
t→T−0

WS(t, x) = 0, (55)

where k = |S|, n = |N|. Consider the following form of the Bellman function:

WS(t, x) = A(t) log x + B(t),

then by substituting in (55) we obtain:

Ȧ log x + Ḃ = k log A − k log x + log A[S] + k + (n − k) A
T−t , (56)

lim
t→T−0

A(t) = lim
t→T−0

B(t) = 0.

The solution of (56) are the functions:

A(t) = k(T − t),

B(t) = −k(T − t)

(
log A[S]

k
+ log k(T − t) + n − k

)
.

(57)

Solution of the optimization problem (50):

WS(t, x) = k(T − t)

[
log

x
T − t

− log k − log A[S]

k
− n + k

]
. (58)

According to the definition, we obtain the characteristic function for the coalition S �= N:

V(S, x, T − t) = WS(t, x).

In order to determine the way to allocate the maximum joint payoff of players (47) among them
along the cooperative trajectory x∗(t) (46), namely, for the subgame starting at the instant t on the
cooperative trajectory x∗(t) (46) it is necessary to define the characteristic function along the cooperative
trajectory. Let us substitute the expression for x∗(t) (46) into the expression for characteristic function
V(S, T − t, x), S ⊂ N (58).

WS(t, x∗(t)) = k(T − t)

[
log

x0

T − t0
− log k − log A[S]

k
− n + k

]
. (59)

For the case when S = N, the characteristic function is calculated in accordance with (47).

5.3. IDP-Core

Suppose that all players unite in grand coalition N, then they can guarantee themselves joint
payoff equal to V(N; x∗(t), T − t). In order to determine how to allocate the maximum joint payoff
among players, we use the notion of imputations ξ(x, T − t). In particular, we will use IDP-core as
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a cooperative solution in the game. According to Theorem 3, IDP-core can be constructed using the
conditions for IDP’s βi(t), i ∈ N:

∑
i∈S

βi(t) ≥ −kt

[
log

x0

T − t0
− log k − log A[S]

k
− n + k

]
, ∀S ⊂ N,

∑
i∈N

βi(t) = −nt log
x0

n(T − t0)
− (T − t) log A[N], ∀t ∈ [t0, T]. (60)

5.4. Non-Emptiness of IDP-Core

In order to study non-emptiness conditions we solve the linear programming problem,
as presented in the paper [24], for t ∈ [t0, T] with a fixed step Δt. As a result, the vector function
β0 = (β0

1, . . . , β0
n) is obtained using the numerical methods and corresponding conditions are to be

verified in order for the IDP-core to be non-empty:

∑
i∈N

β0
i ≤ U(N; x∗(t), T − t). (61)

We construct IDP β̂0(t) using β0(t) and show that it satisfies the conditions (25):

β̂0
i (t) = β0

i (t) +
U(N; x∗(t), T − t)− ∑i∈N β0

i (t)
n

. (62)

5.5. Core and IDP-Core

According to the Theorem 3, the imputation that corresponds to the IDP β̂0(t)

ξ(x0, T − t0) =

T∫
t0

β̂0(t)dt (63)

belongs to the Core C(x0, T − t0) because, for given parameters IDP β̂0(t), t ∈ [t0, T] satisfies
conditions (21) and (22) or ξ(x0, T − t0) belongs to IDP − core(x0, T − t0). But if we use the Core
C(x0, T − t0) instead of IDP − core(x0, T − t0) as a cooperative solution in the game, then we can use
any IDP for the imputation (63), such as

β(t) = c = const, t ∈ [t0, t′),
(
t′ ∈ (t0, T)

)
,

β(t) =
ξ(x0, T − t0)− c(t′ − t0)

T − t′
, t ∈ [t′, T], (64)

but this does not necessarily satisfy conditions (21) and (22) at some instant and therefore it appears
not to be undominated and corresponding to this IDP imputation ξ(x0, T − t0) is time-inconsistent.

On Figure 1 the set defined by the system of constrains (25) shown, the solid line is the solution
β0(t) of corresponding linear programming problem (31) as a function of time, the dashed line is IDP
β̂0(t) and IDP β(t) (64) corresponding to the imputation (63).

Function β̂0
i (t) satisfies the constrains (25). It can be seen that the IDP-core in this game model is

not empty and conditions (32) of Theorem 4 are satisfied.

189



Mathematics 2020, 8, 721

Figure 1. Axes: β1, β3, t. β2 can be found using the equality in (25).

Using Figure 2 it is possible to verify the non-emptiness conditions (32) of Theorem 6, the solid
line shows the sum of values β0

i (t), i = 1, 3:

Sβ0(t) = β0
1(t) + β0

2(t) + β0
3(t), (65)

the dashed line in the Figure 2 shows the value of characteristic function for a grand coalition

U(N; x∗(t), T − t) = U({1, 2, 3}; x∗(t), T − t),

where U({1, 2, 3}; x∗(t), T − t) is defined in (17). In the Figure 2 it can be seen that

Sβ0(t) ≤ U({1, 2, 3}; x∗(t), T − t) ∀t ∈ [t0, T].

0 1 2 3 4 5 6 7 8 9 10
Time
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0.4
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1

1.1

Figure 2. U({1, 2, 3}; x∗(t), T − t) (17) is a dashed line, Sβ0 (t) (65) is a solid line.
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6. Conclusions

This paper examines a new approach for defining a cooperative solution for differential games.
Our approach uses the time consistency property as a basic axiom for constructing the cooperative
solution. It is important to notice that the further use of the time consistency property as the axiom
for the theory of dynamic cooperative games, the theory of social choice, and mechanism design
is promising. The approach also defines the notion of IDP-dominance, which allows for selecting
undominated imputation distribution procedures. Properties of time consistency and IDP-dominance
are the key properties for constructing a new cooperative solution, namely IDP-core. The necessary
and sufficient conditions for the IDP-core defining geometric properties of this solution are presented.
It is also proved that the set of imputations that corresponds to the Core and to IDP-core coincides,
but, as the simulation demonstrates, the IDPs that would be naturally proposed for use sometimes
might not appear to be undominated and therefore lead to the time inconsistency of the corresponding
imputations they generate.
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Abstract: The objective of this paper is to study a pursuit differential game with finite or countably
number of pursuers and one evader. The game is described by differential equations in l2-space,
and integral constraints are imposed on the control function of the players. The duration of the game
is fixed and the payoff functional is the greatest lower bound of distances between the pursuers and
evader when the game is terminated. However, we discuss the condition for finding the value of
the game and construct the optimal strategies of the players which ensure the completion of the
game. An important fact to note is that we relaxed the usual conditions on the energy resources of
the players. Finally, some examples are provided to illustrate our result.

Keywords: pursuit; control functions; integral constraints; strategies; value of the game

1. Introduction

The differential game has been an area of great interest to many applied mathematicians due to
its application in solving real life problems in knowledge areas such as economics, engineering, missile
guidance, behavioral biology. The first to study differential game was Rufus Isaacs [1], and one of the
games analyzed was “the homicidal chauffeur game”. For the fundamental concepts of differential
games, see [1–8].

There are many different types of differential game problems, and one type is called
pursuit-evasion differential game. Pursuit-evasion differential game is a game involving two players,
called pursuer and evader, with conflicting goals. The aim of the pursuer is to complete the game
in a finite time, whereas that of the evader is contrary. Strategies of pursuit and evasion play a role
in many areas of life, such as missile launched at enemy aircraft, coastguard saving shipwrecked
sailors, etc. The problem of constructing optimal strategies and finding the value of the game in a
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pursuit-evasion differential game motivated a lot of researchers to study this class of differential game
problems, and fundamental results have been obtained, see [9–13].

Differential games of many pursuers with the integral and geometry constrained were studied
by [9,14–19]. The case where the state variables are constraints was studied in [20], they considered
a nonempty closed convex set in a plane, with the pursuers and evader movement restricted within
the set during the game. Conditions under which pursuit could be completed were obtained and the
strategies for the pursuers were constructed.

The evasion differential game of two dimensions, which involves one evader and several pursuers,
was studied in [11]. The control functions of the players were subject with integral constraints.
The game is solved by presenting explicit strategy for the evader, which guarantees evasion under the
condition that there is no relation between the energy resource of the players.

In [21] Levchenko and Pashkov considered differential games described by simple differential
equations, where the controls obeyed integral constraints. However, they showed that irrespective of
the resources for controls of an individual, the completion of the game remains doable.

Ibragimov and Satimov [22] obtained sufficient condition for the completion of pursuit in a
differential game problem of several pursuers and evaders in the space Rn, with integral constraints
on the control functions of the players. The results were obtained under the condition that the energy
resource of the pursuers is greater than that of the evaders.

Ibragimov [9] studied a differential game of a countable number of pursuers pursuing one evader
in Hilbert space l2, with geometric constraints on the control functions of the pursuers and evader.
Optimal strategies of the players were constructed and optimal pursuit time was found, under the
assumption that the energy resource of the pursuers is greater than that of the evader.

Ibragimov and Kuchkarov [10] considered the same problem in [9], with integral constraints
imposed on the control functions of the players. In this case, optimal strategies were constructed and
value of the game was found under the assumption that energy resource of the evader is greater than
that of any pursuers.

Salimi and Ferrara [12] studied a simple motion differential game with finite number of pursuers
and one evader with integral constraints imposed on control of the players in Hilbert space l2.
The equations of motion are described by

Pi : ẋi(t) = ui(t), xi(0) = xi0,

E : ẏ(t) = v(t), y(0) = y0,
(1)

where ui is the control function of the ith pursuers and v is that of the evader. The authors solved
the problem and found the value of the game under the assumption that the energy resource of each
pursuer is not necessarily greater than that of the evader, and optimal strategies of the pursuers were
also constructed.

Inspired by the results in [9–12,22] and some known results on optimal pursuit problem in a
Hilbert space l2, the objective of this paper is to construct the optimal strategies and finding value of
the game such that there is no relation between the energy resource of the players.

This paper is sectioned as follows. The second section present statement of the problems and
some useful definitions which will be required for the later sections. In the third section, attainability
domain of the players, optimal strategies and value of the game and some examples are given to show
the application of the obtained results. In the last section, we give the concluding part of the paper.

2. Statement of the Problem

In this section, we present the statement of the problem and some useful definitions that will be
used to prove our main theorem.
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Here, we will consider an optimal pursuit problem with finite or countably many pursuers and
one evader in a Hilbert space l2, in such away that there is no relation between the their energy
resources. In the space l2, with elements

α = (α1, ..., αk, ...),
∞

∑
k=1

α2
k < ∞,

the inner product and norm are defined as

(α, β) =
∞

∑
k=1

αkβk, ‖α‖ =

(
∞

∑
k=1

α2
k

)1/2

.

Let Pi and E denote the motions of the pursuers and the evader, whose equations are described by

Pi : ẋi(t) = η(t)ui(t), xi(0) = xi0,

E : ẏ(t) = η(t)v(t), y(0) = y0,
(2)

where xi(t), xi0, ui(t), y(t), y0, v(t) ∈ l2, ui = (ui1, . . . , uik, . . . ) and v = (v1, . . . , vk, . . . ) are the control
parameters of pursuer Pi and evader E, respectively. Throughout this paper, i ∈ I = {1, 2, 3, ...m}.

Let θ be a fixed time, and the function η(t) be nonzero on any open interval—scalar
measurable and square integrable over the interval [0, τ], τ > 0. It is also assumed to satisfy the
following conditions:

a(τ) =
(∫ τ

0
η2(t)dt

)1/2
< ∞. (3)

H(x0, r) = {x ∈ l2 : ‖x − x0‖ ≤ r}, S(x0, r) = {x ∈ l2 : ‖x − x0‖ = r},

denote the ball and sphere, respectively, in the space l2 with center x0 and radius r. We now give some
useful definitions.

Definition 1. The admissible control of the ith pursuer is a function u(·), ui : [0, θ] → l2 defined as

‖ui(·)‖2 =

(∫ θ

0
‖ui(s)‖2ds

)1/2

≤ ρi, ‖ui‖ =

(
∞

∑
k=1

u2
ik

)1/2

,

provided that uik : [0, θ] → R1, k = 1, 2, . . . , are Borel measurable functions and ρi is a fixed positive number
∀i. Let B(ρi) denote the set of all admissible controls of the pursuer xi.

Definition 2. The admissible control of the evader is a function v(·), v : [0, θ] → l2 defined as

‖v(·)‖2 =

(∫ θ

0
‖v(s)‖2ds

)1/2

≤ σ,

where vk : [0, θ] → R1, k = 1, 2, . . . , are Borel measurable functions and σ is a fixed positive number. Let B(σ).
denote the set of all admissible controls of the evader y.

Once the players admissible controls ui(·) ∈ B(ρi) and v(·) ∈ B(σ) are chosen, the corresponding
motion xi(·) and y(·) of the players are defined as

xi(t) = (xi1(t), xi2(t), . . . , xik(t), . . . ) , y(t) = (y1(t), y2(t), . . . , yk(t), . . . ) ,

xik(t) = xik0 +
∫ θ

0
η(s)uik(s)ds, yk(t) = yk0 +

∫ θ

0
η(s)vk(s)ds, i ∈ I, k ∈ N.
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It is not difficult to see that xi(·), y(·) ∈ C(0, θ; l2), where C(0, θ; l2) is the space of functions

f (t) = ( f1(t), f2(t), . . . , ) ∈ l2, t ≥ 0,

such that

(i) fk(t), 0 ≤ t ≤ θ, k ∈ N, are absolutely continuous functions;
(ii) f (t), 0 ≤ t ≤ θ, is continuous with respect to the norm on l2 space.

Definition 3. The strategy of the pursuer Pi is a function Ui(t, xi, y, v).Ui : [0, ∞)× l2 × l2 × l2 → l2, such
that the system of equations

ẋi(t) = η(t)Ui(t, xi, y, v(t)), xi(0) = xi0,

ẏ(t) = η(t)v(t), y(0) = y0,

has a unique solution (xi(·), y(·)) for any xi(·), y(·) ∈ C(0, θ; l2) and admissible control v = v(t), 0 ≤ t ≤ θ,
of the evader E. We said that the strategy Ui is admissible if each control formed by strategy Ui is admissible.

Definition 4. The optimal strategies Ui0 of the pursuers Pi are defined as

inf
U1,...,Um ,...

Γ1(U1, . . . , Um, . . . ) = Γ1(U10, . . . , Um0, . . . ),

such that

Γ1(U1, . . . , Um, . . . ) = sup
v(·)

inf
i∈I

||xi0 − y(θ)||,

where Ui and v(·) are admissible strategies of the pursuers Pi and evader E, respectively.

Definition 5. The strategy of evader E is a function V(t, x1, . . . , xm, . . . , y), V : [0, ∞) × l2 × · · · × l2 ×
· · · × l2 → l2, such that the system of equations

ẋi(t) = η(t)ui(t, xi, y, v(t)), xi(0) = xi0,

ẏ(t) = η(t)V(t, x1, . . . , xm, . . . , y, ), y(0) = y0,

has a unique solution (xi(·), . . . , xm(·), . . . y(·)) for any xi(·), y(·) ∈ C(0, θ; l2), and admissible controls
ui = ui(t), 0 ≤ t ≤ θ of the pursuers Pi. We said that strategy V is admissible if each control formed by
strategy V is admissible.

Definition 6. The optimal strategy V0 of the evader E is defined as

sup
V

Γ2(V) = Γ2(V0),

provided that

Γ2(V) = inf
u1(·),...,um(·),...

inf
i∈I

||xi0 − y(θ)||,

ui are admissible control of the pursuers Pi and V is that of the evader E.

If Γ1(U10, . . . , Um0, . . . ) = Γ2(V0) = λ, then, problem (2) has a value λ.
Our aim is to find the optimal strategies Ui0, V0 of the players and value of the game, respectively.
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3. Auxiliary Game

It is easily to see that the attainability domain of the pursuer Pi from the initial position xi0 at time
θ is the closed ball H(xi0, a(θ)ρi). Indeed

‖x(θ)− xi0‖ =

∥∥∥∥
∫ θ

0
η(s)ui(s)ds

∥∥∥∥ ≤
∫ θ

0
η(s)‖ui(s)‖ds

≤
(∫ θ

0
η2(s)ds

∫ θ

0
||ui(s)||2ds

)1/2

≤ a(θ)ρi.

Moreover, if x̄ ∈ H(xi0, a(θ)ρi), that is, ||x̄ − xi0|| ≤ a(θ)ρi, then, for the control

ui(s) =
η(s)
a2(θ)

(x̄ − xi0), 0 ≤ s ≤ θ

of the pursuer, we get

xi(θ) = xi0 +
∫ θ

0
η(s)ui(s)ds

= xi0 +
∫ θ

0
η(s)

(
η(s)
a2(θ)

(x̄ − xi0))ds

= xi0 +
x̄ − xi0
a2(θ)

∫ θ

0
η2(s)ds

= x̄.

Therefore, the admissibility of this control follows from the relation

∫ θ

0
‖ui(s)‖2ds =

∫ θ

0

∥∥∥∥ η(s)
a2(θ)

(x̄ − xi0)

∥∥∥∥
2

ds ≤ ‖x̄ − xi0‖2

a4(θ)
a2(θ) ≤ ρ2

i .

Moreover, applying the same procedure one can see that the attainability domain of the evader E
at time θ from the initial state y0 is the ball H(y0, a(θ)σ).

In this section, we study a differential game of one pursuer x and one evader y. For simplicity, we
use the notation ρi = ρ, xi0 = x0, and xi = x. Then, dynamics of x and y are described by

P : ẋ = η(t)u, x(0) = x0,

E : ẏ = η(t)v, y(0) = y0.
(4)

The target of the pursuer P is to perceive the equality x(τ) = y(τ) at some τ, 0 ≤ τ ≤ θ; and that
of the evader E is contrary.

Let
X = {z : 2(y0 − x0, z) ≤ a2(θ)(ρ2 − σ2) + ‖y0‖2 − ‖x0‖2}.

Lemma 1. If y(θ) ∈ X, then, there exists an admissible strategy of the pursuer P which ensures x(θ) = y(θ)
in the game (4).

Proof. Suppose the assumption of Lemma 1 holds, construct the strategy of the pursuer as follows:

u(t) =
η(t)
a2(θ)

(y0 − x0) + v(t), 0 ≤ t ≤ θ. (5)

Then, admissibility of this strategy can be proved as follows. Since

y(θ) = y0 +
∫ θ

0
η(s)v(s)ds ∈ X,
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then,
2(y0 − x0, y(θ)) ≤ a2(θ)(ρ2 − σ2) + ‖y0‖2 − ‖x0‖2,

2
(

y0 − x0, y0 +
∫ θ

0
η(t)v(t)dt

)
≤ a2(θ)(ρ2 − σ2θ) + ‖y0‖2 − ‖x0‖2,

2(y0 − x0,
∫ θ

0
η(t)v(t)) ≤ a2(θ)(ρ2 − σ2)− (‖y0‖2 − 2(x0, y0) + ‖x0‖2).

(6)

Hence from the strategy (5) and inequality (6), we have

∫ θ

0
‖u(t)‖2dt =

∫ θ

0

∥∥∥∥
(

η(t)
a2(θ)

(y0 − x0) + v(t)
)∥∥∥∥

2

dt

=
∫ θ

0

η2(t)
a4(θ)

‖y0 − x0‖2dt +
2

a2(θ)

∫ θ

0
η(t)(y0 − x0, v(t))dt +

∫ θ

0
‖v(t)‖2dt

≤ ‖y0 − x0‖2

a4(θ)
a2(θ) +

1
a2(θ)

(
a2(θ)(ρ2 − σ2)− ‖y0 − x0‖2

)
+ σ2

= ρ2.

(7)

This shows that the strategy (5) is admissible. Therefore,

x(θ) = x0 +
∫ θ

0
η(t)

(
η(t)
a2(θ)

(y0 − x0) + v(t)
)

dt

= x0 +
(y0 − x0)

a2(θ)

∫ θ

0
η2(t)dt +

∫ θ

0
η(t)v(t)dt

= x0 + y0 − x0 +
∫ θ

0
η(t)v(t)dt

= y(θ).

This proves the lemma.

Remark 1. It should be noted that in the construction of the pursuer’s strategy we do not require the
inequality ρ ≥ σ.

4. Main Result

We recall the following lemmas in order to prove our main theorem.

Lemma 2. (see Ibragimov et al. 2005. Lemma 9). Suppose r and Ri, i ∈ I, are fixed positive real numbers and
H(xi0, Ri), i ∈ I, and H(y0, r) are collections of finitely or a countable number of closed balls. Let

I0 = {i ∈ I : S(y0, r) ∩ H(xi0, Ri) �= ∅},

Xi = {z ∈ l2 : 2(y0 − xi0, z) ≤ R2
i − r2 + ‖y0‖2 − ‖xi0‖2}, i ∈ I0.

If (y0 − xi0, p0) ≥ 0, i ∈ I, for a nonzero vector p0, and

H(y0, r) ⊂
⋃
i∈I

H(xi0, Ri),

then,
H(y0, r) ⊂

⋃
i∈I0

Xi.
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Lemma 3. (See Ibragimov 2005. Assertion 5). Let infi∈I Ri = R0 > 0 and (y0 − xi0, p0) ≥ 0, i ∈ I, for a
nonzero vector p0, if for any 0 < δ < R0 the set

⋃
i∈I H(xi0, Ri − δ) does not contain the ball H(y0, r), then,

there exists a point ȳ ∈ H(y0, r) such that ‖ȳ − xi0‖ ≥ Ri, for all i ∈ I.

Theorem 1. Let (y0 − xi0, p0) ≥ 0 for all i ∈ I, for a nonzero vector p0 ∈ l2, then, the number

λ = inf{l ≥ 0 : H(y0, a(θ)σ) ⊂
∞⋃

i∈I
H(xi0, a(θ)ρi + l)} (8)

is the value of the game (2).

Proof. The proof of the theorem in divided into three parts:

1. Constructing the strategies of the pursuers:

We introduce the fictitious pursuers (FPs) zi, whose equations of motions are described by

żi = η(t)wi(t), zi(0) = xi0,
(∫ θ

0
||wi(s)||2ds

)1/2

≤ ρ̄i = ρi +
λ

a(θ)
. (9)

It can be shown easily that the attainability domain of the fictitious pursuers zi at time θ from the
initial position xi0 is the ball

H(xi0, ρ̄ia(θ)) = H(xi0, a(θ)ρi + λ).

Next, we define the strategy of the fictitious pursuers zi, i ∈ I, as follows:

wi(t, v) =

⎧⎨
⎩

η(t)
a2(θ)

(y0 − xi0) + v(t), i f 0 ≤ t ≤ θi0,

0, i f θi0 < t ≤ θ,
(10)

where θi0 ∈ [0, θ] is the time for which

∫ θi0

0

∥∥∥∥ η(t)
a2(θ)

(y0 − xi0) + v(t)
∥∥∥∥

2

dt = ρ̄2
i . (11)

Note that such time θi0 may not exist.
We now define the strategies of the real pursuers xi, i ∈ I, by

ui(t, v) =
ρ

ρ̄i
wi(t, v), 0 ≤ t ≤ θ. (12)

where ρ̄i = ρ̄i(0) = ρi +
λ

a(θ) .

2. The value λ is guaranteed for the pursuers.

We now show that the strategies (12) satisfy the inequality

sup
v(·)

inf
i∈I

‖y(θ)− xi(θ)‖ ≤ λ. (13)

Thus, it follows from definition of λ that

H(y0, a(θ)σ) ⊂
⋃
i∈I

H(xi0, a(θ)ρi + λ).

Then, it follows from Lemma 2 where Ri = a(θ)ρi + λ and r = a(θ)σ, that

H(y0, a(θ)σ) ⊂
⋃
i∈I

Xi,
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where

I0 = {i ∈ I : S(y0, a(θ)σ) ∩ H(xi0, a(θ)ρi + λ) �= ∅}
and

Xi ={z ∈ l2 : 2(y0 − xi0, z) ≤ (a(θ)ρi + λ)2 − a2(θ)σ2 + ‖y0‖2 − ‖x0‖2}.

(14)

Accordingly, the point y(θ) ∈ H(y0, a(θ)σ) belongs to some half-space Xs, with s ∈ I0 and hence,

2(y0 − xis, y(θ)) ≤ (a(θ)ρs + λ)2 − a(θ)σ2 + ‖y0‖2 − ‖xs0‖2. (15)

By Lemma 1, for the strategies of the pursuers zi, i ∈ I, we obtain zs(θ) = y(θ) and

∫ θ

0

∥∥∥∥ η(t)
a2(θ)

(y0 − xs0) + v(t)
∥∥∥∥

2

dt ≤ ρ̄2. (16)

By strategy (12), we have

‖xs(θ)− y(θ)‖ = ‖xs(θ)− z(θ)‖

=

∥∥∥∥
∫ θ

0
η(t)us(t)dt −

∫ θ

0
η(t)ws(t)dt

∥∥∥∥
=

∥∥∥∥
∫ θ

0
η(t)(

ρs

ρ̄s
− 1)ws(t)dt

∥∥∥∥
≤ λ

a(θ)ρ̄s

∫ θ

0
η(t)‖ws(t)‖dt.

(17)

Using Cauchy–Schwatz inequality, we obtain

∫ θ

0
η(t)‖ws(t)‖dt ≤

(∫ θ

0
η2(t)dt

)1/2 (∫ θ

0
‖ws(t)‖2dt

)1/2

≤ a(θ)ρ̄s. (18)

Therefore, from inequalities (17) and (18) we obtain

‖xs(θ)− y(θ)‖ ≤ λ. (19)

Hence, the value λ is guaranteed by the actual pursuers.

3. The value λ is guaranteed for the evader.

Define the evader’s strategy that satisfies

inf
u1(·),...,um(·),...

inf
i∈I

‖y(θ)− xi(θ)‖ ≥ λ, (20)

where u1(·), . . . , um(·), . . . are the admissible control of the pursuers. If λ = 0, then, the result follows
from (20). Suppose that λ > 0, then, by definition of λ, for any 0 < δ < λ, the set

⋃
i∈I

H(xi0, a(θ)ρi + λ − δ)

does not include the ball H(y0, a(θ)σ). According to Lemma 3, there exists a point ȳ ∈ S(y, a(θ)σ)
such that ‖ȳ − xi0‖ ≥ a(θ)ρi + λ, i ∈ I. Therefore, by the inequality

‖xi(θ)− xi0‖ ≤ a(θ)ρi, i ∈ I,
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We obtain

‖ȳ − xi(θ)‖ ≥ ‖ȳ − xi0‖ − ‖xi(θ)− xi0‖ ≥ a(θ)ρi + λ − a(θ)ρi = λ.

Hence, if the evader comes to the point ȳ at the time θ, the inequality (20) is guaranteed. This is
achievable using the control function

v(t) =
σ

a(θ)
η(t)e, 0 ≤ t ≤ θ, e =

ȳ − y0

||ȳ − y0||
, (21)

that is,

y(θ) = y0 +
∫ θ

0
η(t)v(s)ds = ȳ. (22)

Hence, the value of the game is not less than λ and the inequality is satisfied. This complete the
proof of Theorem 1.

We now present some examples to demonstrate our result.

Example 1. Consider the differential game problem (2) with ρi = 1, θ = 9, σ = 5, and denoting η(t) = 1.
Consider the following initial positions of the players:

xi0 = (0, · · · , 0, 8, 0, · · · ), y0 = (0, 0, · · · ).

We can easily see that by simple computation we obtain that a(θ) = 3, a(θ)ρi = 3, and a(θ)σ = 15.
Next, we show that λ = 14. is value of the game. Firstly, it is enough to show that

i) Given any ε > 0, the insertion

H(O, 15) ⊂
∞⋃

i=1

H(xi0, 17 + ε)

holds, where O is the origin.

ii) Since the ball H(O, 15) is not contained in the set
∞⋃

i=1

H(xi0, 13), that is, let z = (z1, z2, . . . ) be an

arbitrary point of the ball H(O, 10). This implies that ∑∞
i=1 z2

i ≤ 225. The following two cases are possible,
either z has a non negative coordinate or all coordinates of z are negative. Suppose that there exists a
non-negative coordinate zk of the vector z, then,

‖z − xk0‖ =
(

z2
i + · · ·+ z2

k−1 + (8 − zk)
2 + z2

k+1 + . . .
)1/2

=

(
∞

∑
i=1

z2
i + 64 − 16zk

)1/2

≤ (289 − 16zk)
1/2 ≤ 17 ≤ 17 + ε,

(23)

hence, z ∈ H(xi0, 17 + ε).

Now, suppose that all the coordinates of z are negative. This implies that the inequality

‖z − xk0‖ =

(
∞

∑
i=1

z2
i + 64 − 16zk

)1/2

≤ (289 − 16zk)
1/2 ≤ 17 + ε
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is satisfied for sufficiently large k, since the series ∑∞
i=1 z2

k, zk → 0 as k → ∞ is convergent. Additionally,

any point z ∈ S(O, 15) with negative coordinates does not belong to the set
∞⋃

i=1

H(xi0, 13), since for any

number i, ‖z − xi0‖ = (289 − 16zi)
1/2 > 13.

Therefore, the number

λ = inf

{
l ≥ 0 : H(y0, a(θ)σ) ⊂

∞⋃
i=1

H(xi0, a(θ)ρi) + l

}

= inf

{
l ≥ 0 : H(O, 15) ⊂

∞⋃
i=1

H(xi0, 3) + l

}
= 14

(24)

is the value of the game by the theorem.

5. Conclusions

We have studied a fixed duration pursuit–evasion differential game of a countable number of
pursuers pursuing one evader with integral constraints on control functions of the players. We obtained
a sufficient condition for completion of pursuit and obtained the value of the game. It worth noting
the following points:

• There is no relationship between the players energy resources;
• The case η(t) = 1 was studied in [12].
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Abstract: This paper provides a structured literature review and analysis of using game theory to
model project management scenarios. We select and review thirty-two papers from Scopus, present a
complex three-dimensional classification of the selected papers, and analyse the resultant citation
network. According to the industry-based classification, the surveyed literature can be classified in
terms of construction industry, ICT industry or unspecified industry. Based on the types of players, the
literature can be classified into papers that use government-contractor games, contractor–contractor
games, contractor-subcontractor games, subcontractor–subcontractor games or games involving
other types of players. Based on the type of games used, papers using normal-form non-cooperative
games, normal-form cooperative games, extensive-form non-cooperative games or extensive-form
cooperative games are present. Also, we show that each of the above classifications plays a role in
influencing which papers are likely to cite a particular paper, though the strongest influence is exerted
by the type-of-game classification. Overall, the citation network in this field is sparse, implying that
the awareness of authors in this field about studies by other academics is suboptimal. Our review
suggests that game theory is a very useful tool for modelling project management scenarios, and that
more work needs to be done focusing on project management in ICT domain, as well as by using
extensive-form cooperative games where relevant.

Keywords: decision-making; game theory; project management

1. Introduction

A project is a time-bound exercise undertaken by on organisation to obtain a product, service or
result. “Project management” is defined by the PMBoK (Project Management Body of Knowledge) as
“a temporary endeavour to create a unique product, service or result” [1–3]. The concept of project
management has evolved through several schools of thought, and uses a range of theories originating
from mathematics, computer science, economics, and other related fields in its modelling and analysis.

Sensible decision-making is critical for the success of projects [1–3]. Every project begins with a
decision: the decision to invest. Often, an investor has several investment options, and each option
will result in a different project, and thus one of the investment options has to be chosen before the
project charter can be produced. Similarly, any large project involving subcontractors, for instance,
a construction project, has a complex interplay between the main contractor (the project manager)
and subcontractors, or among the subcontractors themselves, which typically has several decision
points. For example, if there is an ambiguity in the contract between the contractor and subcontractor,
each must decide how hard to push their case without jeopardising the whole project, and thus their
own stake in it. Similarly, when projects from competing organisations are launched, the marketing
personnel have to decide what is the best timing and strategy to market the project, or its resultant
product or service, so that it can gain maximum traction in the face of competition. In each of these
scenarios described above, the required decisions depend on the decisions of others who, in some way,
have competing interests to the interests of the decision-maker.
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Project management uses a range of concepts and tools in decision-making. These include
investment analysis methods such as force field analysis, the life cycle cost method, internal rate
of return etc., and other tools such as utility theory, prospect theory, Net Present Value (NPV)
method, Monte Carlo analysis, linear programming, queueing theory and so on [4,5]. Recently, game
theory [6–11] has been gaining prominence as a tool useful in decision-making in project management
scenarios [12,13]. Compared to the other tools mentioned above, game theory is particularly useful in
scenarios where a number of entities are trying to achieve the same outcome (either in competition with
each other, or in cooperation with each other), but have independent and rational decision-making
abilities. Thus, it is especially useful in decision-making in the face of competition, particularly in
scenarios such as those described above. Game theory also offers a rigorous mathematical framework,
and has been successfully used in fields such as economics, social science, biology and computer
science, presenting many precedents and examples for project management researchers to follow.
Thus, papers analysing project management scenarios have arisen in the past decade, to use game
theory in their modelling. It is, however, a nascent field, and the purpose of this review is to advocate
for the widespread use of game theory as a modelling and analysis tool in project management,
by summarising the state-of-the-art in this niche, classifying the existing works and highlighting gaps
in the literature and opportunities for future research.

There is a considerable (but not overwhelming) body of work which has attempted to use game
theory in modelling project management scenarios. There is even a hypothesis (the “Bilton and
Cummings” hypothesis) that states, “the use of game theory makes it possible to understand the needs
and interests of the involved persons in a better way and to finalize the project successfully” [14,15].
Papers which use game theory in project management relate to construction projects, information and
communications technology (ICT) projects and projects from other domains. They use various types
of games, and model a diverse range of players such as governments, project managers/contractors,
subcontractors and clients. Therefore, a well-structured review of the field becomes necessary to
comprehend the state-of-the-art, classify existing studies and identify gaps in the literature. To
our knowledge, such a review spanning several application domains yet focusing exclusively on
project management and games does not exist. Indeed, there are works such as Kaplinski and
Tamosaitiene [16], which focus on reviewing the work of individual authors or research groups or
reviewing aspects of the use of game theory in operations research, which has some relevance to project
management; still, a structured review focusing on the use of game theory in project management in
all its domains and applications is lacking. Therefore, we present such a review here.

We select papers that use game theory in project management scenarios from the Scopus database
using a rigorous selection process, and review and analyse these papers in great detail. We also analyse
the relative impact of each paper to the particular niche of “game theory in project management”, and
to project management research is general. We introduce and use a complex multidimensional, yet
principled, classification scheme that helps to highlight the areas where most effort has been exerted to
date and areas where there are gaps in the literature. We also consider citation networks of the papers
in the niche, and show how these networks can be related to and explained by the classification scheme
that we present. Our review and analysis highlight why game theory is a very useful tool to model
project management scenarios, and in what further ways it could be applied in project management
contexts in the future.

In summary, the significance of this review is attested by the following aspects.

• We follow a comprehensive and principled method for searching and filtering relevant papers.
• We review papers across several disciplines, such as construction, ICT and education,

and highlight the similarities and differences between them in their application of game theory
in project management.

• We present a detailed multidimensional classification of the papers that we have reviewed.
• We present and analyse the citation network of the papers we have reviewed, highlighting their

interdependency and relative impact.
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• We identify gaps in the literature that point to potentially fruitful future research directions.

Overall, our review not only presents descriptions of the papers that we have considered, but also
an in-depth analysis of the field.

The rest of this paper is organised as follows. In Section 2, we review relevant concepts in project
management and game theory, which are alluded to throughout this paper. In Section 3, we describe
the process by which papers were selected from Scopus to be included in this review. In Section 4
we describe how the reviewed papers can be classified and the justification for our classifications.
In Section 5, we describe the papers that we review, summarise their findings, and compare their
findings. In Section 6, we analyse the relative importance of the papers that we have reviewed
by constructing citation networks among the papers reviewed, and comment on how the citation
networks are influenced by the classification(s) of the papers. Finally, in Section 7, we summarise our
findings, identify gaps in literature and directions of high potential for future research and provide our
conclusions. In the rest of the paper, we use the terms “the niche” or “the field” to refer to the particular
area of research that we are reviewing: the application of game theory in project management.

2. Background

2.1. Project Management

The concept of project management is well known, but for the sake of completeness, we give a
brief overview here. Projects are the results of organisations responding to threats, such as market
forces, regulatory requirements, financial constraints or opportunities such as competitive advantage,
compliance or operational efficiency [1–3]. Essentially, when an organisation undertakes a project, it
deviates from its “business as usual” mode and, through a time-bound transition, moves to a state
which becomes the new “business as usual” at project completion. Projects are usually classified
as mandatory, business critical, discretionary or stewardship projects [1,2,17]. The theory of project
management has undergone an evolutionary process in the last several decades, with several schools
of thought gaining prominence from time to time, such as the optimisation school of thought, the
governance school of thought, the modelling school of thought, the decision school of thought,
etc. [1,18,19].

2.2. Game Theory

Game theory, which is the study of strategic decision making, was first developed as a
branch of microeconomics [6,7,9,20]. However, later, it has been adopted in diverse fields of study,
such as evolutionary biology, sociology, psychology, political science and computer science [21–24].
Game theory is used to study many phenomena and behavioural patterns in human societies and
socio-economical systems, such as the emergence and sustaining of cooperation in communities and
organisations [22,25–28], modelling of unethical or criminal behaviour [29,30] or the decision-making
processes involved in vaccination against epidemics [31–33]. Game theory has gained such wide
applicability due to the prevalence of strategic decision-making scenarios across different disciplines.
A typical game defined in game theory has two or more players, a set of strategies available to these
players, and a corresponding set of pay-off values (sometimes called utility values) for each player
(which are, in the case of two-player games, often presented as a pay-off-matrix). Game theory can be
classified into two broad domains: non-cooperative game theory and cooperative game theory.

2.2.1. Non-Cooperative Games and Cooperative Games

Typically, games are played for the self-interest of the players, even when the players cooperate;
cooperation is the best strategy under the circumstances to maximise the individual pay-offs of the
players. In such games, the cooperative behaviour, if it emerges, is driven by selfish goals and is
transient. These games can be termed “non-cooperative games”. Non-cooperative game theory is
the branch of game theory that analyses such games. On the other hand, in a cooperative game, or
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coalitional game, players form coalitions, or groups, often due to external enforcement of cooperative
behaviour, and competition is between these coalitions [10,34,35]. Cooperative games are analysed
using cooperative game theory, which predicts the coalitions that will form and the pay-offs of these
coalitions. Cooperative game theory focuses on surplus or profit sharing among the coalition members,
where the coalition is guaranteed a certain amount of pay-off by virtue of the coalition being formed.
Often, the outcome of a cooperative game played in a system is equivalent to the result of a constrained
optimisation process [36], and therefore many of the papers we review use a linear programming
framework to solve the cooperative games they model.

2.2.2. Nash Equilibrium

Nash equilibrium is one of the core concepts in (non-cooperative) game theory. It is a state (a set
of strategies) in a strategic game from which no player has an incentive to deviate unilaterally, in terms
of pay-offs. Both pure strategy and mixed strategy Nash equilibria can be defined. A strategic game
can have more than one Nash equilibrium [10,37]. It is proven that every game with a finite number
of players in which each player can choose from finitely many pure strategies has at least one Nash
equilibrium [37].

The formal definition of Nash equilibrium is as follows. Let (S, f ) be a game with n players,
where Si is the strategy set of a given player i. Thus, the strategy profile S consisting of the strategy
sets of all players would be S = S1 × S2 × S3.... × Sn. Let f (x) = ( f1(x), ....., fn(x)) be the pay-off
function for strategy set x ∈ S. Suppose xi is the strategy of player i and x−i is the strategy set of all
players except player i; thus, when each player i ∈ 1, ....., n chooses strategy xi that would result in the
strategy set x = (x1, ...., xn), giving a pay-off of fi(x) to that particular player, which depends on both
the strategy chosen by that player (xi) and the strategies chosen by other players (x−i). A strategy set
x∗ ∈ S is in Nash equilibrium if no unilateral deviation in strategy by any single player would return a
higher utility for that particular player [38]. Formally put, x∗ is in Nash equilibrium if and only if

∀i, xi ∈ Si : fi(x∗i , x∗−i) ≥ fi(xi, x∗−i) (1)

2.2.3. Zero-Sum Games

Zero-sum games are a class of non-cooperative games where the total of the pay-offs of all players
is zero. In two player games, this implies that one player’s loss in pay-off is equal to another player’s
gain in pay-off. A two-player zero-sum game can therefore be represented by a pay-off matrix, which
shows only the pay-offs of one player. Zero-sum games can be solved with the mini–max theorem [39],
which states that in a zero-sum game there is a set of strategies which minimises the maximum losses
(or maximises the minimum pay-off) of each player. This solution is sometimes referred to as a “pure
saddle point”. It can be argued that the stock market is a zero-sum game. In contrast, most valid
economic transactions are non-zero-sum, since each party considers that what it receives is more
valuable (to itself) than what it parts with.

2.2.4. Common Interest Games

Common interest games are another class of non-cooperative games in which there is an action
profile that all players strictly prefer over all other profiles [40]. In other words, in common interest
games, the interests of players are perfectly aligned. It can be argued that common interest games are
the antithesis of zero-sum games in which the interests of the players are perfectly opposed, so that
any increase in fortune for one player must necessarily result in the collective decrease in fortune for
others. Common interest games were first studied in the context of cold war politics, to understand
and prescribe strategies for handling international relations [41–43].

It makes sense to classify non-cooperative games into common interest games and non-common
interest games, just as much as it makes sense to classify them into zero-sum games and non-zero sum
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games, since these two concepts (zero-sum games and common interest games) represent extreme
cases of non-cooperative games. However, the papers we reviewed do not use common interest games
to model project management scenarios, and it would be rare to find scenarios in project management
where the interests of players are perfectly aligned. Therefore, we do not use the common interest
games-based classification in our classification process, as it would add another dimension and increase
the complexity of classification needlessly.

2.2.5. Normal-Form Games and Extensive-Form Games

In a normal-form game, only a single round of decision-making takes place, where all players
make decisions simultaneously. An extensive-form game is, on the other hand, an iterative game where
there are several rounds of decision-making [44,45]. On each round, players could make decisions
simultaneously or in some predefined order. An extensive-form game is often represented by a
game tree, where each node (except terminal nodes) is a decision point, and each link corresponds
to a decision or a set of decisions that could be made by the relevant player/players at that point.
The terminal nodes represent an end to the extensive-form game, corresponding to pay-offs for each
player involved.

2.2.6. Simultaneous Games and Sequential Games

A simultaneous game is either a normal-form game or an extensive-form game where on each
iteration, all players make decisions simultaneously. Therefore, each player is forced to make the
decision without knowing about the decisions made by other players (on that iteration). On the
contrary, a sequential game is a type of extensive-form game where players make their decisions (or
choose their strategies) in some predefined order [44,45]. For example, a negotiation process can be
modelled as a sequential game if one party always has the privilege of making the first offer; the other
parties make their offers or counteroffers after that. In a sequential game, at least some players can
observe at least some of the actions of other players before making their own decisions (otherwise,
the game becomes a simultaneous game, even if the moves of players do not happen simultaneously
in time). However, it is not required that every move of each previous player should be observable
to a given player. If a player can observe every move of every previous player, such a sequential
game is known to have “perfect information”; otherwise, the game is known to have “imperfect
information”. Sequential games are often used by papers that we are reviewing here, to model
bargaining or negotiation processes.

2.2.7. Subgames

A subgame is a subset of a sequential game, such that at its beginning, every player knows all
the actions of the players that preceded it [6]. That is, a subgame is a section of the game tree of a
sequential game where the first decision node that belongs to this section has perfect information.

2.2.8. Subgame Perfect Nash Equilibrium

In a sequential game, a subgame perfect Nash equilibrium is a set of strategies representing each
player such that they constitute a Nash equilibrium for every subgame of that sequential game [6].
Thus, when a game tree of the sequential game is considered, if a set of strategies could be identified
so that they represent a Nash equilibrium for every branch of game tree originating from a node
representing a point where every player knows all preceding actions of all players, such a set of
strategies represent a subgame perfect Nash equilibrium for that sequential game. For example, when
two players are bargaining, they are in a subgame perfect Nash equilibrium if they are presently
employing a set of strategies, which will represent a Nash equilibrium between them at any future
stage of the bargaining process given that they are aware of the full history of the bargaining process
up to that point.
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2.2.9. Stackelberg Games

A Stackelberg game is a particular type of two player sequential game commonly used in
economics [46]. In a Stackelberg game, there is a leader and a follower, which are typically companies
operating in a market. The leader’s firm has some sort of market advantage that enables it to move
first and make the first decision, and the follower’s optimal decision depends on the leader’s decision.
If a follower chose a non-optimal action given the action of the leader, it will adversely affect not only
the pay-off of the follower, but the pay-off of the leader as well. Therefore, the optimal decision of the
leader is made on the assumption that the follower is able to see the leader’s action and that it will
act to maximise its own pay-off given the leader’s action. Several papers we review here have used
Stackelberg games to model project management scenarios.

2.2.10. Nash Bargaining

In a Nash bargaining game [47], sometimes referred to as a bargaining problem or bargaining
game, two players could choose from an identical set of alternatives, however each alternative has
varying pay-offs for the players. Typically, some alternatives have better pay-off for one player,
whereas other alternatives have better pay-off for the other player. If both players choose the same
alternative, then each get the pay-off corresponding to that alternative. If they choose differing
alternatives, then there is no agreement, and they each get a fixed pay-off which corresponds to the cost
of non-agreement, and therefore typically negative. Thus, there is incentive to choose an alternative
which may not necessarily be the best for a player. If there is perfect information, that is, the full set of
alternatives and pay-offs is known to both players, then there is an equilibrium solution to the Nash
bargaining game [48].

2.2.11. Evolutionary Game Theory

Evolutionary game theory is an outcome of the adoptation of game theory into the field of
evolutionary biology [49,50]. Some of the critical questions asked in evolutionary game theory
follow. Which populations/strategies are stable? which strategies can ‘invade’ (become popular) in
populations where other strategies are prevalent? How do players respond to other players receiving
or perceived to be receiving better pay-offs in an iterated game setting? Evolutionary games are
often modelled as iterative games where a population of players play the same game iteratively in a
well-mixed or a spatially distributed environment [38,51].

A strategy can be identified as an evolutionary stable strategy (ESS) if, when prevalent, it has the
potential to prevent any mutant strategy from percolating its environment [38]. Alternatively, an ESS
is the strategy which, if adopted by a population in a given environment, cannot be invaded by any
alternative strategy. Hence, there is no benefit for a player to switch from an ESS to another strategy.
Therefore, essentially, an ESS ensures an extended Nash equilibrium. For strategy, S1, to be ESS against
another “invading” strategy, S2, one of the two conditions mentioned below needs to be met, in terms
of expected pay-off, E.

1. E(S1, S1) > E(S2, S1) : By unilaterally changing strategy to S2, the player will lose out against
another player who sticks with the ESS S1.

2. E(S1, S1) = E(S2, S1) & E(S1, S2) > E(S2, S2) : a player, by converting to S2, neither gains nor
loses against another player who sticks with the ESS S1, but playing against a player who has
already “converted” to S2, a player is better off playing the ESS S1.

If either of these conditions are met, the new strategy S2 is incapable of invading the existing
strategy S1, and thus S1 is an ESS against S2. Evolutionary games are typically modelled as iterative
games, whereby players in a population play the same game iteratively.
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3. Selection Methodology

In this section, we describe how we have selected the papers to review and classify. The papers
were selected from the Scopus database [52], with any paper which was cited by one of the papers
selected from Scopus but not in Scopus itself, and which satisfied all the selection criteria as described
below, also being “manually” included. The selection of papers from the Scopus database included a
four-step process.

1. Scopus database was searched for a number of key phrases, as elaborated below, and all papers
deemed relevant in this search were downloaded. A total of 776 papers were downloaded and
considered in this manner.

2. A brief manual screening was conducted considering the title and abstract of the papers, selecting
some papers for detailed inspection. A total of 72 papers remained at the end of this stage.

3. After detailed reading of each paper, some papers were excluded from our review and
classification, as described below. A total of 25 papers remained at the end of this stage.

4. The reference list of each remaining paper was considered, and checked against the list of papers
already excluded. If a paper was not already excluded or not in Scopus, then it went through
steps 2 and 3 of the screening process, and included in our review and classification if selected.
At the end of this step, 32 papers were selected for inclusion in this review.

Clearly, it must be acknowledged that such a selection process has some limitations: it only
considers papers from Scopus or papers having some citation relationship with the papers in Scopus,
and it is also, implicitly, focused on papers which are published in international journals and
internationally recognised conferences, which are more likely to be included in Scopus, as opposed
to regionally focused papers or papers which are published in regional outlets. Therefore, the search
is not exhaustive, and there may be other papers of merit. Nevertheless, the selection process is
principled and represents at least a very significant section of the field, including almost all papers
which have had international research impact.

Now we describe each step of this selection process in more detail.

3.1. Step 1

In step one, the following combinations of key phrases were used in Scopus to search the database
and select the relevant papers. Only the titles of the papers were searched.

1. ( “game theo*”) and (“project management” or “construction management” or “*contract”)
2. (“decision”) and (“project management” or “construction management” or “*contract”)
3. (“games”) and (“project management” or “construction management” or “*contract”)

These key phrases were selected so that papers having “construction management” or ‘1contract
management” instead of “project management” in the title could also be considered. After deleting
the duplicates, a total of 776 papers were found and downloaded.

3.2. Step 2

In step two, the title and abstract of each of the 776 papers are selected in the previous step were
manually considered, and papers were selected according to the following criteria.

1. Title: those papers having titles where the keywords have been used in a different context were
omitted. For example, if the word “game” was used in the sense of video game, computer game
or other simulated game, those papers were omitted. Similarly, papers with titles where the word
“contract” was used in a context not related to project management were omitted.

2. Abstract: Those papers which had abstracts that made it clear that the paper deals with ongoing
operational issues, and not project management issues, were omitted.

211



Mathematics 2019, 7, 858

3. English language: only records written in English were further considered. Records nominally
written in English where the quality of the narrative was so poor as to not make sense to a
reasonable native English speaker, were also excluded. Papers which had their title and/or
abstract in English, but the body of the paper in another language, were also excluded.

4. Availability: Papers which were not publicly available (either freely, or for a fee) were excluded.
Note, papers that were publicly available for a fee were not excluded. Only those papers which
did not have the full content publicly available freely or for a fee were excluded.

5. In cases where two very similar papers by the same authors were found, where one paper is an
extension of the other but included all content of the previous paper, only the later (and thus
the more ‘matured’) paper was considered. For example, if a conference publication was later
developed into a journal paper by the inclusion of additional material, the conference paper was
excluded and only the journal paper was considered.

At the end of step 2, 72 papers were selected for complete and careful scrutiny.

3.3. Step 3

In this step, each of the remaining 72 papers was carefully and completely read and considered;
papers were excluded if they use game theory in operational management scenarios, but not necessarily
in project management particularly. To this end, the definition of project management as a time-bound
activity was considered important [1–3], and thus papers describing the use of game theory to model
day-to-day operational issues, or the ‘business-as-usual’ operation of the company, were excluded.
For example, a paper describing the negotiation process between an airline and a freight forwarder
using game theory was excluded [53]; this negotiation reflects the routine business operations of both
parties, which they do not necessarily need to implement a project to undertake. Papers were also
excluded if it was possible that a project management application may exist for their modelling, but
they did not explicitly describe such an application. In Section 5.3, we describe some of the papers
which passed stage 2 and were excluded at stage 3, so that the interested reader may appreciate why
such papers were excluded, and how they may still be of some relevance. However, we do not classify
these papers, as per the reasons described for each individual paper later, we consider them out of
scope for this review.

It should also be pointed out that a considerable body of management-related literature exists
in fields such as physics and sociology, which uses game theory. For example, the incentives for
cooperation in society as well as organisations have been studied from a rigorous statistical mechanics
point of view, in papers such as the works by the authors of [28,54], or from a systemic point of view, in
papers such as the work by the authors of [55–58]. However, such papers also would be out of the scope
of this review due to the definition of project management as a time-bound exercise, which we strictly
adhere to in selecting papers to review. In other words, these papers do not clearly distinguish project
management from organisational management, which is concerned with the day-to-day “business as
usual” of the organisation, and as such, these papers are not within scope of this review. Nevertheless,
the interested reader is referred to the above-mentioned papers which highlight some interesting
overlaps between game theory and the concept of management as perceived in other fields.

3.4. Step 4

In this step, we compiled a combined list of references from the 25 papers in step 3, using a simple
computer script. From this list, any paper selected in step 1 (selected from Scopus based on the key
phrases) was excluded. The remaining papers were either not in Scopus or were in Scopus but not
selected in step 1. Then, these papers were put through steps 2 and 3 (above), respectively (that is, title
and abstract scan, and selected papers to detailed reading), and seven papers were selected after step
3. These seven papers were added to the pool of twenty-five papers already selected at stage 4. This
step is used to ensure that any relevant paper cited by other papers in the niche, but is not present in
Scopus or selected in keyword search, is considered.
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Therefore, after step 4, a total of 25 + 7 = 32 papers remained, which are reviewed and classified
in this study, as described below.

4. Classification of the Selected Papers

We propose that the selected papers shall be classified as follows.

• Classification based on the application domain
• Classification based on the players of the game
• Classification based on the type of game played

4.1. Classification Based on the Application Domain

Here, we propose that, based on the domain of the industry in which it is applied, papers
undertaking game-theoretic analysis of project management can be classified into three classes.

• Papers focusing on project management in construction projects
• Papers focusing on project management in ICT (Information and Communications Technology)

projects
• Papers focusing on project management in other fields or generic project management

4.2. Classification Based on Players of the Games

In any game-theoretic modelling of real world, the “players” of the game usually represent some
real world being or entity. When game theory is used in project management, the players of the
game usually represent investors, project managers, contractors, subcontractors, the government
or other individuals or organisations involved in running the project. Since a game needs multiple
players, several combinations of above-mentioned individuals can be represented in a game, and a
complex classification of games is possible based on these combinations. Fortunately, most of the
papers we reviewed use two-player games, and even when the number of players is more than two,
the types of players present in a game is usually restricted to two. Therefore, the games present in the
literature can be classified based on the following combinations of players. In our terminology, and
for classification purposes, a “contractor” is the governing entity of a project which makes decisions on
behalf of the project, variously called project manager, main contractor, private company or contractor
in the literature. We distinguish a contractor from a “subcontractor” in the sense that the contractor is
responsible for the overall delivery of the project, represents the project and makes decisions for the
overall benefit of the project, whereas a subcontractor is responsible for one particular task or aspect of
the project. Thus we propose the following classification.

• Papers focusing on contractor—contractor games (including investment decision games)
• Papers focusing on contractor—subcontractor games
• Papers focusing on contractor—government games (sometimes called Public–Private

Partnerships, where the phrase ‘public’ represents the government and ‘private’ represents
the private company which is the contractor)

• Papers focusing on subcontractor—subcontractor games
• Papers focusing on games with other player combinations

4.3. Classification Based on the type of Game Played

Here, we propose a complex matrix classification. On one-hand, games employed in game
theory can be classified into non-cooperative games and cooperative games. One subclassification
of non-cooperative games is zero-sum games and non zero-sum games. Zero-sum games cannot
by definition exist in a cooperative game, as if the total pay-off for the community is by definition
zero, it cannot be a fixed (non-zero) value and it cannot be shared. Another possible subclassification
of non-cooperative games is common interest games and non-common interest games, but since
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the papers we review do not use common interest games, this subclassification is not necessary
here. Both non-cooperative games and cooperative games are used by papers reviewed here.
On the other hand, games can also be classified into normal-form games and extended-form games.
Both normal-form games and extended-form games are used in the papers we review here.

Therefore, a matrix classification with four categories is possible: normal-form non-cooperative
games, normal-form cooperative games, extensive-form non-cooperative games and extensive-form
cooperative games. Normal-form non-cooperative games have two subclasses: normal-form
non-cooperative zero-sum games and normal-form non-cooperative non-zero-sum games. Similarly,
extensive-form non-cooperative games have two subclasses: extensive-form non-cooperative zero-sum
games, and extensive-form non-cooperative non-zero-sum games. The resultant complex matrix can
be used to classify the papers according to the type of game used.

These classifications, containing the relevant papers, are shown (Note that, in order to conserve
space, a naming convention is used in the figures, which is different from the standard nomenclature
and that used in the text of the paper. In the text of the paper, a paper by a single author is denoted by
their surname, a paper by two authors is denoted by both their surnames, whereas a paper by three or
more authors is denoted as “surname-of-first author et al.”, as is the normal convention. To add further
clarification, the publication year is also mentioned—for example, Peldschus et al., 2010. In figures
however, to conserve space, the papers are denoted simply by the surname of first author and the
publication year, regardless of the number of authors. For example, Peldschus et al., 2010 is simply
denoted as Peldschus 2010. In either case, an alphabet is added if the same set of authors published
more than one paper in the same year. For example, ‘Bergantinos and Sanchez, 2002 a’ is one of two
papers published by these two authors in 2002, which is simply denoted as ‘Bergantinos 2002 a’ in the
figures. ) in Figures 1–3. Since these classifications are overlapping, each paper that we reviewed is
present in some class of each classification. Therefore, overall, it could be argued that the reviewed
literature is best captured in a multidimensional complex classification.

Figure 1. The classification of papers reviewed based on the application domain.
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Figure 2. The classification of papers reviewed based on the players of the games.

Figure 3. The classification of papers reviewed based on the type of game played.
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Overall, the rest of the paper is structured based on the game-based classification. Nevertheless,
some papers use more than one type of game. In this case, the paper is described in the subsection
which is most relevant, as it is pointless to describe the same paper in multiple sections. Similarly,
some papers also use more than one type of player combination or may belong to more than one
application domain, though these classifications are not used to structure this review. It should be
noted that the Figures 1–3 highlight each paper according to its most relevant classification.

5. Description of the Papers Reviewed

In this section, we review the 32 papers selected and classified above, following the game-based
classification to structure the review.

5.1. Papers Using Normal-Form Games

As shown in Figure 3, there are in total 22 papers using normal-form games.

5.1.1. Papers Using Normal-Form Non-Cooperative Games

As shown in Figure 3, there are eight papers using normal-form non-cooperative games.
Papers using normal-form non-cooperative zero-sum games: In this section, we describe papers

which exclusively use zero-sum games, or their primary modelling uses zero-sum games, within the
normal-form non-cooperative game category. As shown in Figure 3, there are three such papers.

Peldschus et al. (2010) [59] apply game theory in construction management, for the specific task
of selecting a suitable construction site. It can be argued that construction management is a branch
of project management, as most construction works are time-bound, and thus can be considered
as projects. Peldschus et al. (2010) define a number of selection criteria, and construct a zero-sum
game where the choices for potential construction sites are modelled as ‘strategies’ of one player,
while the choices for selection criteria (such as price per square metre, total area, reputation/appeal
of area, soak density, etc.) are modelled as the ‘strategies’ of another player. Then they present the
mini–max solution for this game. The mini–max solution could be justified by the following argument
(though such an argument is not explicitly presented in the paper). In the face of uncertainty about
what sites the other player will choose, each player will take a minimal risk approach and accept the
mini–max solution; that is, each player will take the solution that maximises the minimal value of the
site (where the minimal value is obtained by comparing values according to a number of criteria),
given uncertainty about other players’ (builders’) choices. The mini–max solution is modelled within
the context of a zero-sum game, based on the assumption that summation of the intrinsic value of all
construction sites available is constant, therefore all criteria must result in the same total value across
all sites (therefore, if compared to criteria C1, criteria C2 increases the value of alternative (site) A1 by u
dollars, then all other alternatives (sites) assessed according to criteria C2 must in total face a value
reduction of u compared to criteria C1. In this sense, this game could be called a constant-sum game
rather than a zero-sum game). However, the above line of justification holds only when the competing
investors are represented as players, whereas Peldschus et al. (2010) models a two player zero-sum
game where the players have no corresponding real world roles.

Peldschus (2008) [12] presents a mix of theoretical frameworks and practical examples to
demonstrate the use of game theory in construction project management. Partially a review of
his previous works, his study focuses in particular on zero-sum games applied on investment decision
scenarios, where the strategies of one “player” represent the available investment options (alternatives),
whereas the strategies of the other player represents different investment evaluation methods (criteria).
This representation of players is similar to his representation [59], described above. In this sense, the
two players do not represent two human actors but rather two dimensions of the problem analysed,
and thus the approach differs from most other studies in this field, or indeed in most other fields where
game theory is applied. He also demonstrates the use of fuzzy games, and provides several real world
examples where he demonstrates the application of the methods introduced.
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Kaplinski and Tamosaitiene (2010) [16] reviewed the research of one particular academic (Professor
Peldschus mentioned above) in the area of the application of game theory in construction engineering
and management. Nevertheless, even though the particular academic has apparently done seminal
work in the field, this article, which reviews one academic’s work, obviously cannot be considered a
comprehensive review of the field. The individual contributions of the particular academic mentioned
in this review are reviewed individually in our own review, whenever such contributions are in English
and satisfy our selection criteria for inclusion in this review as mentioned in Section 3. This paper
discusses both zero-sum and non-zero-sum games in the construction management context, but
mainly focuses on zero-sum games, as it discusses papers such as the work by the authors of [12,59]
described above.

Papers using normal-form non-cooperative non-zero-sum games: There are five papers in our
review, which exclusively or primarily use normal-form non-cooperative non-zero-sum games to
model scenarios in project management, as shown in Figure 3.

Medda (2007) [60] uses game theory to model the allocation of risks between governments
and private companies in public-private partnership projects as a bargaining process. Specifically,
this process is modelled as a final offer arbitration game. Their particular focus is on Public–Private
Partnership (PPP) projects in transport infrastructure. The “final offer arbitration” is an arbitration
process designed to avoid court litigation, wherein the parties or arbitrator have no authority to
further negotiate, but make a decision based on the final offers made by all parties concerned, making
it ideal for game-theoretic modelling. Unlike many similar papers [61–64] that model bargaining
processes using extensive-form games; Medda (2007) is able to use a normal-form non-cooperative
game specifically because they focus on final offer arbitration. Medda (2007) presents a detailed
analytical model and pay-off model, and calculates the equilibrium solution of the game-based
on these.

Kemblowski et al. (2017) [65] use game theory, specifically normal-form non-cooperative
non-zero-sum games, to model the bidding process for a highway construction project. The bidding
process is further complicated by the fact that there are hidden costs in the project (such as the cost
of purchasing a gravel pit). They show that the solution of this game depends on the probability of
the hidden costs being non-zero, and for a certain range of this probability there are pure strategy
equilibria, and beyond which there are mixed strategy equilibria. This brief paper is very specific
in addressing only a well-defined and hypothetically formulated problem, which might be more
extensive and complex in real world settings.

Bockova et al. (2015) [15] analyses the utility of game theory as a tool to manage educational
projects in the Czech republic, during a specific period in time which they term “the post-conflict
period”. The paper is not a methodical literature review, but a combination of examples, results from
other papers and results of interviews and surveys conducted by the authors. It essentially attempts
to present and justify the case for game theory to be used as a tool in project management, using
diverse methods. The paper claims to validate the hypothesis presented in another work by Bilton
and Cummings [14]: “The use of game theory makes it possible to understand the needs and interests
of the involved persons in a better way and to finalize the project successfully.” This paper can be
included in the category of papers using normal-form non-cooperative non-zero-sum games, on the
basis that many examples the paper describes seem to lend themselves to modelling by such games.
The study by Bilton and Cummings [14] itself does not figure in our review, due to it being included
in a book, which, overall, does not satisfy our criteria for inclusion, and is concerned rather with
operations research.

Bockova et al. (2016) [66] also claim to verify the so-called Bilton and Cumming’s hypothesis. They
claim to do so by a mixture of reviewing a select set of papers as well as conducting interviews with and
running surveys among industry experts. Unlike [15], however, this paper focuses on public–private
partnerships in post-conflict Czech republic. This paper has aspects of a review, however it does not
provide justification for how the papers it comments on were selected from the literature. The paper
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also details several scenarios where game theory might be applicable based on media stories and the
authors’ knowledge of the country in question: the Czech republic. Thus, this study is qualitative and
illustrative in nature. It is also included in the category of papers using normal-form non-cooperative
non-zero-sum games, on the basis that many examples the paper describes seem to use such games.

5.1.2. Papers Using Normal-form Cooperative Games

There are 14 papers using normal-form cooperative games in our review, as shown in Figure 3.
In some of these papers, cooperative games are used to model a scenario where optimisation of some
quantity (such as the project cost) under certain constraints is required. Such papers are most often not
domain-specific, but nevertheless have several examples inspired from the construction industry.

In a construction project, each subcontractor working on it have periods where they can work more
efficiently and thus be more cost effective, and sometimes it is possible to ‘trade’ time-periods between
subcontractors so that overall cost effectiveness or time efficiency of projects increases. Asgari and
Afshar (2008) [67] present a cooperative game, where a group of subcontractors working on a number
of simultaneous projects can trade their time commitment to each project for the benefit of all players.
The cooperative game they present can also be thought of as a constrained optimisation problem,
where the project cost or time for completion is minimised by trading time between subcontractors.
They conclude the study with an illustrative example.

Similarly, Asgari et al. (2013) [68] present a game-theoretic framework for resource management
in construction projects. This paper analyses how subcontractors could cooperate among themselves
and share resources for maximum resource utility and profit. Thus they use a normal-form cooperative
game to model the scenario.

Lagesse (2006) [69] employs game theory for task assignment within a project. Specifically, they
show how game theory can be used to develop an algorithm for task assignments to each employee
within a project based on employee skills, time available to each employee, as well as employee and
management preference. The algorithm they present also includes in-built feedback mechanisms.
Interestingly, though the authors state this is a game-theoretic model, the algorithm they present
is essentially a matching algorithm that produces a stable matching solution between the set of
employees and the set of tasks at any point in time, and is game-theoretic only in the sense that the
“stable matching solution” is essentially an equilibrium solution.

Cristoba (2014) [70] (It appears that the author of this paper has spelt their surname as Cristoba in
some papers and Cristobal in others.) proposes a game-theoretic framework to identify the particular
activities that were responsible for delays in a project, and accordingly split the cost of the project delay
among the respective subcontractors of these activities. They present a multiplayer game and use a
linear programming approach to solve it. In this sense, this paper presents an optimisation solution
rather than an equilibrium solution. This is a feature of several papers which use cooperative games to
model project management scenarios, both in normal-form and extended-form, as we will see below.

Cristobal (2015) [71] also proposes a game-theoretic model to identify activities that are responsible
for delays in (primarily construction) projects, and apportion the costs associated with delays among
these activities accordingly. Again, the game they propose is a cooperative game, which they solve by
modelling it as a constrained linear optimisation problem: an approach very similar to [72–74]. The
overall benefit to the project is considered as the optimisation criteria, and individual activities (or
the subcontractors responsible for them) are assumed to give priority to the cooperative over their
self-interest.

Cristobal (2015) [13] is a very broad review of management science methods and methodologies
used in project management, and one of the techniques it discusses is the use of game theory. However,
its discussion of the use of game theory in project management is very brief and without any examples,
since the paper overall is fairly abstract. This paper however is part of the body of work contributed
by Cristobal and thus mentioned and classified here along with his other works.
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Branzei et al. (2002) [75] focuses on cost sharing in delayed projects: specifically, how the costs
associated with a delay can be “fairly” shared between the players who are individually and collectively
responsible for a delay. Therefore, it could be argued that, rather than modelling the decision-making
processes of the players involved, this study presents a cooperative game: an algorithm to share costs
fairly, so that a ready justification for the cost allocation can be provided against the potential “protest”
of selfish players. Thus their approach is broadly equivalent to solving a linear optimisation problem.
Their approach, they say, is inspired by literature in bankruptcy and taxation, but their work itself
is explicitly focused on project management. They present two cooperative games (which they term
“coalitional” games), namely, the pessimistic delay game and the optimistic delay game. Both games
are based on the activity graph of the project, and the cost sharing process is modelled as a game
between activities of the project in the first game, and a game between paths in the activity graph in
the second game. However, with their stated assumption that different agents (players) are responsible
for different activities, and given that a player who is responsible for a specific activity in a project is
typically a subcontractor, ultimately it could be argued that they model subcontractor–subcontractor
games. This also holds true for several other papers which we review here, which adopt a similar
approach, such as the works by the authors of [72–74]. Therefore, in Figure 2, these are all classified as
papers that model subcontractor–subcontractor games.

Bergantinos and Sanchez (2002) [72] also consider how to share the additional cost of a project
delay among the firms (subcontractors) responsible for it, using game theory. Again, following
an approach similar to [70,71,75], they formulate a “cost game” and use constrained optimisation
techniques, utilising the “Shapley value” of the cost game. Therefore, this is an algorithm for fair
allocation of costs that each subcontractor then needs to be convinced about, rather than an equilibrium
solution reached by selfish behaviour of each subcontractor whereby the subcontractor will have no
incentive to deviate from it. Therefore, the practical value of such an approach is as a fair algorithm
rather than a model of the behaviour of (typically selfish) subcontractors who accept their part of the
cost in delaying the project.

Bergantinos and Sanchez (2002) [76] use non-transferable utility (NTU) games to divide slack
time into different activities of the project, within the context of Project Evaluation and Review
Technique (PERT). In this sense, this work has similarities to works by the authors of [71–75], which
use game-theoretic modelling to assign costs related to project delay among participating activities (or
subcontractors responsible for those activities) in the project.

The work of Estevez-Fernandez et al. (2007) [73] is essentially a generalisation on work done in
papers such as the works by the authors of [71,72,75,76]. It presents a cost sharing model in situations
where some activities in a project do not run according to schedule. It presents three categories:
(a) situations where some activities are delayed, (b) situations where some activities are expedited
and (c) situations where some activities are delayed and others are expedited. It models each of these
scenarios using “project games”. They show that delayed project games have a nonempty core. The
expedited project games are shown to be convex. In the third scenario where some activities may be
delayed and some activities may be expedited, related project games are shown to have a nonempty
core. Again, it could be argued that this study presents an algorithm for cost allocation rather than a
behavioural game mimicking the behaviour of subcontractors and an equilibrium solution.

Estevez-Fernandez (2012) [74] is a further generalisation of Estevez-Fernandez et al. (2007) [73],
which models not only models the costs associated with delays, but also the rewards associated with
expediting some activities. Again, a set of project games are defined and “coreness” of these games
is analysed. The cost and reward assignment is again undertaken by treating the project game as a
constrained linear optimisation problem.

It should be noted here, therefore, that the above-mentioned six papers [71–76] have similar
approaches, and, as we will show later, they cite each other. This group of papers form an important
“core” in the literature of applications of game theory in project management, which shares the cost
of delays and all use cooperative games, while presenting slight variations and extensions from each
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other. As the citation networks we present later show, these papers form the most densely connected
subnetwork of the citation network in this field.

Zou and Kumarasawamy (2010) [77] use game theory to model aspects of Public–Private
Partnerships (PPPs), including risk sharing, financial negotiation and operation. The first two are
concerned with project management, while the third aspect is not directly a project management
aspect, since it takes place after the project has been completed. Yet, due to the presence of the first
two aspects, this paper falls within the ambit of our review. They assume that the behaviour of the
public sector in their interactions with private sector is predictable, whereas the private sector can
be unpredictable in its interactions with public sector, and that the utility for public sector is derived
from socio-economic benefits, whereas the utility for private sector is derived solely from economic
benefits. Because pay-offs are not modelled mathematically, this paper does not present a rigorous
mathematical equilibrium solution for the games it proposes, and is thus can be more appropriately
considered as a conceptual paper. It also claims to have used interviews with industry experts to guide
its modelling.

Bakshi et al. (2012) [78] focuses on software engineering project management. They primarily
focus on investment decisions; that is, which software project among a number of viable choices is the
best to invest in. They convert the game-theoretic framework into a constrained linear optimisation
problem which is equivalent to a cooperative game, and they solve it using linear programming.
They use four well-known investment decision techniques in project management as “strategies” of
the players in the game: Net Present Value (NPV) method, Rate Of Return (ROR) method, Payback
Period (which they denote as PB) method, and Project Risk (which they denote as PR) method.
They demonstrate an equilibrium solution, by obtaining pay-off values from what they call ‘expert
decision’ and from literature which is outside the scope of this review, being in the domain of operations
research rather than project management.

Peldschus (2006) [79] is an invited editorial to the proceedings of a conference, among the
many topics which were discussed therein is the use of game theory in project management.
This contribution gives a general overview of the use of game theory in project-management related
scenarios, without making a specific research contribution or providing a structured analysis. However,
it seems to refer primarily to scenarios similar to those studied in the above-mentioned papers, utilising
cooperative games, and therefore this paper could be categorised with the above-mentioned papers in
terms of the type of game discussed.

5.2. Papers Using Extensive-Form Games

Ten papers among the papers covered by this review use extensive-form games to analyse project
management related scenarios, as shown in Figure 3. Many of these papers focus on multiround
bargaining within the project management context.

5.2.1. Papers Using eXtensive-Form Non-Cooperative Games

Nine out of the ten papers which use extensive-form games use non-cooperative extensive-form
games to model the project management scenarios they study.

Papers using extensive-form non-cooperative zero-sum games: We did not find any papers
eligible for our review, as specified in Section 3, which use extensive-form non-cooperative
zero-sum games.

Papers using extensive-form non-cooperative non-zero-sum games: Nine papers covered in
this review use extensive-form non-cooperative non-zero sum games to model project management
scenarios. Several of these papers model bargaining between competing entities (such as contractor
and subcontractor, or private contractor and government), even though, assuming some solutions are
better for all players on average compared to others, these games are not zero-sum.

Sacks and Harel (2006) [80] model the behaviour of subcontractors in terms of resource allocation
by using game theory. This paper models the main contractor (or the project manager representing
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the main contractor) and the subcontractors undertaking various components of a construction
project, as the protagonists playing a game with each other. The subcontractor often works in several
projects at the same time, and the project manager engages several subcontractors to complete the
construction work. The project manager tries to get the subcontractor to give priority to their project
in resource allocation, so that they can meet the schedule of the project, while the subcontractor
tries to allocate their resources in a way that brings them maximum utility and profit. The paper
describes several equilibrium solutions, based on the level of information either party (main contractor
or subcontractor) possesses.

Angelou and Economides (2009) [81] present a game-theoretic model for irreversible investment
decisions in the ICT field, where each potential investor is a player. They show that either a
leader–follower equilibrium or a simultaneous investment equilibrium may result in investments
being made. They apply their method to a real-life case study where a particular Greek company
(Egnatia Odos) considers its investment options in the ICT industry under intense competition from
other companies.

Shen et al. (2002) and Shen et al. (2007) [61,62] apply game theory to a Build-Operate-Transfer
(BOT) Construction model, which is typically governed by an agreement between a government and a
private company. In the BOT model, the private company which builds the infrastructure recovers
its costs and makes a profit by running whatever it just built for a certain period of time (known as
the concession period), before handing the facility over to the government. Therefore, the length of
concession period is always a subject of negotiation between the private firm and the host government,
and Shen et al. [61,62] use game theory to determine this period. They model the bargaining process as
an iterative game whereby the pay-off of the government decreases with the concession time, while the
pay-off of the private company increases: however, there is another factor—the time taken to strike the
deal itself—which both parties want to make shorter, because it is in both parties’ interest to strike a
deal as quickly as possible. This time pressure increases with each iteration, so that both parties know
that it is better to strike a deal early and make some concession rather than adopt a hard line and risk
many iterations. Using this model, Shen et al. [61,62] find the solution of the game, which calculates
the concession period agreed upon as the “equilibrium” solution.

Butterfield and Pendegraft (2001) [82] use game theory and an extension of it, the theory of moves,
to identify best investment decisions in the IT sector, in the face of competition from other investors.
In particular, they model the fact that investors may take actions sequentially after observing others’
actions by using the theory of moves, which differs from simultaneous games in that players are
able to decide on their strategy after observing the other’s strategy; thus, they play sequential games
(Note well here that an extensive-form game can be either simultaneous game or sequential game. We
have not considered this difference in our classification of the literature reviewed in this study, since
that will add a further dimension and make the game-based classification too complex.). Butterfield
and Pendegraft particularly model the scenario where a number of IT companies are considering
investing in a new technology (so that the strategies available are to invest or not to invest), one of
these strategies (to invest) is irreversible, and the pay-off for each strategy depends on what the other
players decide to do, thus lending itself to a classical scenario for the theory of moves. The paper offers
a number of valuable examples involving real-world IT companies or IT-related services where their
modelling can be applied.

Javed et al. [63] use game theory to model change negotiations in Public-Private partnerships
(PPP) during the concession period—the period during which the private partner raises revenue
from the project, before handing it over to the government involved. They use a software called
“Z-Tree” to simulate the changes that would trigger the change negotiations. They used actual people
to make decisions in a game-theoretic scenario, where each game is an iterated ultimatum game
played by two human subjects using a computer interface, one representing the government and
the other representing the private firm, under multiple output specifications. The multiple output
specifications for each change scenario described the same change in varying levels of detail. For each

221



Mathematics 2019, 7, 858

output specification, each party made multiple offers to foot a certain proportion of the cost of the
change, and the equilibrium solution was reached when the parties agreed on the proportions of cost
each party would accept, or when the change was abandoned. Data was collected and aggregated
from these experiments. They concluded that the level of detail described in the output influences the
strategies adopted by players in the iterative bargaining games.

Li et al. (2016) [64] illustrated the use of bargaining game theory for risk allocation in
Public–Private Partnerships, by using iterative bargaining games. They use Harsanyi transformation
theory to model incomplete information games, whereby each player cannot entirely predict the
other’s strategy but can estimate it using a subjective probability distribution. They highlight that the
cost of bargaining increases with each iteration, at some point subsuming costs associated with the
risks being negotiated about, so that an equilibrium solution will always be reached. They analyse the
difference in outcome when the first round offer was made by the public sector and when the first
round offer was made by the private sector. They show that being the first mover, and having better
information about the likely strategy of the other player, are advantages that result in a smaller share
of risk being allocated to that party.

Lippman et al. (2013) [83] present the cost sharing equilibrium solution between a risk-neutral
project manager (main contractor) and a risk-averse sub contractor, when their negotiation process
can be modelled by Nash bargaining. They consider a ‘1fixed fee plus fraction of cost” model, of
which both fixed price contracts and “cost + fixed fee” contracts are subclasses, and show that the
fixed fee and fraction of cost borne by the main contractor can both be derived as the solution of
a Nash bargaining model. They assume that the pay-off for each party is zero if the project is not
launched, so that a Nash bargaining equilibrium where the pay-offs are not zero will always be reached.
They further assume that the solution of Nash bargaining maximizes the product (not summation) of
the pay-offs for each party, which they term the “Nash product”. They conclude that the (full) cost
plus fixed fee type of contract dominates all other types of (fixed fee plus fraction of cost) contracts,
in arriving at highest Nash product at equilibrium solution.

5.2.2. Papers Using Extensive-Form Cooperative Games

A single paper within the scope of our review, Sacks and Harel (2006) [84], uses an extensive-form
cooperative game in modelling a project management scenario. Given that in construction projects,
subcontractors will be reluctant to allocate their labour resources to a particular project if they
perceive that the project plan or schedule is unreliable, Sacks and Harel explore the relationship
between project plan reliability and subcontractor resource allocation behaviour using a game-theoretic
framework. In particular, they use extended-form games to explore the trust between project
managers (main contractors) and subcontractors, and demonstrate what level of trust in project
plan is needed before this relationship changes from competitive to collaborative. In their model,
the project manager estimates the work that the subcontractor needs to do during a particular phase,
and then, without divulging this information, can demand a certain quantum of work from the
subcontractor, which could in fact be lower, equal, or higher than the estimate of the project manager.
The subcontractor could, in turn, allocate resources which are less than, equal to, or more than what is
demanded (the last action will be in the hope that the project manager has either underestimated work
or under-demanded resources, and more resources will be needed than what the project manager
has demanded). The pay-offs for both parties will depend on the strategy adopted by both parties,
even though they do not divulge to each other what strategy they have adopted. For example, if the
project manager has over-demanded resources and the subcontractor oversupplied resources, the utility
for the project manager will be high, since the work will be finished quickly and smoothly, but the
utility for the subcontractor is low, because s/he will over-allocate and waste resources. The win-win
scenario arises when the project manager demands just enough resources, and the contractor allocates
what is demanded, but for this to happen, the level of trust between the parties should be high. Sacks
and Harel quantify this relationship between trust and pay-off, and further show that through the
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transparent ‘last planner’ system they introduce, where the subcontractors are given active roles in
project planning, the overall pay-off for all parties could be increased, and the game turns from a
competitive (non-cooperative) one into a cooperative game. In this sense, the paper deals with an
extensive-form cooperative game.

5.3. Papers Relevant to Project Management but not Explicitly Set in Project Management Context

In our paper selection process, several papers were excluded after stage 3, because they did not
provide specific project management-related examples or they were applied in scenarios which were
not time-bound, and thus related more to operations research than project management. Nevertheless,
several of these papers could be of interest to project management professionals, or describe modelling
techniques which could be reused in project management related scenarios. We briefly describe here,
some of the papers which were excluded at stage 3, so that the reader may appreciate why such papers
were excluded, and how they may still be of some relevance. Note well though that this is merely a set
of examples and not an exhaustive list of such papers which were excluded at stage 3. The examples
we consider are listed in Figure 4.

Figure 4. Some examples of papers which were not classified, as they were not project
management-specific.

Amaruchkul (2008) [53] uses game theory to model contract negotiations between air cargo
carriers and freight forwarders, which determine the size of allotments made by the carrier to each
freight forwarder. The pay-off of the freight forwarded is decided by the rate it receives from the carrier
for their cargo, and they hope to receive a discount rate compared to the spot rate by securing an
allotment beforehand. The pay-off for the carrier is decided by maximum utility of space, and by giving
allotments beforehand, the carrier seeks to ensure efficient utility of space. The equilibrium solution
(for each game where a particular carrier and particular freighter is involved) indicates the size of the
allotment made to that particular freight forwarder by the carrier. Amaruchkul demonstrates that this
solution offers higher pay-offs to both parties compared to spot purchasing of space. The Stackleberg
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game they formulate can also be formulated as a constrained optimisation problem. The authors
provide examples of analytical as well as numerical solutions.

Magalhaes et al. (2015) [85] produced a game-theoretic framework to assess the competency and
integrity of academics in universities. They explain that given the academics are often expected to
perform multiple activities, such as teaching, research, and administration, within a certain period of
time, their competency in each of these areas of work must necessarily be assessed against the time
they spend in each of these. They point out that given individual academics have preferences about
each of these branches of work, if they were to be required to provide a timesheet about the time
spent in each of these activities, it is necessary to verify the claims made in these time sheets against
the incentive to do each of these activities, and they use game theory as a tool to achieve this aim.
Given that academia is competitive, they postulate that the decision by an academic to spend a certain
percentage of their time in each of these activities is a function of how they perceive their colleagues
are allocating their time, more than what their contracts actually demand of them. They ran a survey
among academics, to model their average response to time-allocation patterns among their colleagues,
and based on this, they model pay-off functions for academics to devote certain percentage of their
time in each of the above-mentioned activities. However, they do not derive equilibrium solutions
which would be optimal for academics given the work allocating patterns of their colleagues; instead,
they derive results about the level of integrity prevalent among the academics that they surveyed,
based on their input in time management systems. Even though academics may at whiles work in
particular projects, and the title of this paper explicitly mentions project management, the relevance of
this work to the field of project management would have to be considered limited, since ultimately it
models the working patterns of academics which are not necessarily time-bound.

Wei et al. (2018) [86] discuss a psychological contract that exists in people’s minds, rather than
a physical contract that exists on paper, in settings where collaboration occurs between individuals
who have specialist knowledge (such as academic researchers). They use game theory to model such
contracts. They use an extensive set of parameters which are attributes of the individuals concerned
(such as their age, seniority, professional status etc.), as well as attributes of the collaboration itself
(such as collaboration risk, length of collaboration etc.) to model pay-off functions for the individuals,
and based on this, provide a game-theoretic solution which determines the ‘terms’ of the contract (such
as how much time and effort each individual will commit into the collaboration etc.). The concept
of “psychological contract” is novel in our context, and clearly of relevance to project management.
However, the paper does not explicitly mention project management and neither does it highlight the
relevance to project management.

There are several other papers which address ongoing contractual and/or managerial issues,
and thus do not qualify to be considered papers that directly address project management problems
and thus be included in our classification. For example, Barth et al. (2012) [87] discusses a (continuous)
resource management problem, and its solution using game theory, in an interdomain routing network.
Since the management seems to be an ongoing issue and not time bound, this is outside the ambit of
project management. Mobarakeh et al. (2013) [88] presented a game-theoretic framework to determine
the price of energy based on distributed generation. Again, this paper develops an activity which is
ongoing, and cannot be defined as a project: as such, this paper is outside the scope of our review.
Similarly, Pinto et al. (2015) [89] introduced a game-theoretic framework to model the decision-making
behaviour of electricity market players in bilateral negotiations. Contracts made by such players
among themselves have varying timespans, but do not reflect the time bound nature of projects,
and may last for any length of time. Thus, this paper is not necessarily about project management and
does not fall under the scope of this review. Elfakir and Tkiouat (2015) [90] discuss a profit sharing
contract based on religious scriptures (called the Musharakah contract). They use game-theoretical
modelling to compare the pay-offs for players under effort-based and output-based Musharakah
contracts. The context explained by them makes clear that the Musharakah contract is intended as
a model for long term profit sharing among business partners, and not intended to be applied in a
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project management context. Thus, this paper is outside the scope of our review. Kim and Kwak
(2007) [91] deal with using game theory to model the bargaining process of long-term replenishment
contracts between supplier and buyer; the contracts are explicitly stated to be negotiated on a long
term basis and not for particular projects, and thus this paper is not within scope of the present
review (We have reviewed other papers which deal with very similar problems specifically within a
project management perspective, such as Lippman et al. [83] and Li et al. [64]). Li (2014) [92] offers
a game-theoretic perspective on information technology outsourcing, by focusing on particular the
information that must necessarily be shared as part of an outsourcing deal, and thus can be exploited
by firms. They show that exploitation of sensitive information depends on the believe held by the
firms about the future potential of the contracts, and service providers have higher incentive to exploit
sensitive information about the client when they believe that future potential of the outsourcing
contract is not great. Even though outsourcing can happen in the context of a project as well as in the
business-as-usual (day to day operation) context of a firm, this paper does not specifically show any
project management related examples, and thus is outside the scope of our review. Liu et al. (2017) [93]
deals with contract negotiation within the context of electricity generation: therefore, game theory
is used in an ongoing issue and not a project management issue here. Thus, this paper also is out of
scope for our review.

There are also several papers which appear to have relevance to project management, but do
not directly provide examples in the project management context (being under no constraint to do
so), and thus could not be included in our classification process. For example, Watson (2013) [94]
proposes a (rather general and abstract) modelling framework for contracts involving multi-period
settings, with both self enforcement and external enforcement. A notion of contractual equilibrium,
which combines a bargaining solution and individual incentive constraints, is proposed and analysed.
The paper may have relevance to project management scenarios, but this is not very clear at the outset,
and the paper does not delve into practical examples which are necessarily time bound, since the author
is under no constraint to specify whether the scenarios are relevant to project management or not.
Burato and Christani (2007) [95] present a zero-sum bargaining game to model the meaning negotiation
problem in formal contract negotiation. Again, this could have applications to project management
but a project management example per se is not presented, and the authors, under being no constraint
to do so, do not clarify whether their modelling is relevant to project management scenarios.

Finally, Peldschus (2005) [96] also could be mentioned as an example here. This paper does
not directly address game theory, but discusses decision-making in engineering, particularly civil
engineering. Their method addresses multicriteria decision-making in construction projects using
fuzzy sets and matrix game theory in the context of incomplete information. Therefore, strictly
speaking, this study is outside the scope of our review.

5.4. Gaps in Literature

Our classifications illustrate potential areas of research where sufficient effort has not yet been
extended. For example, considering Figure 1, it can be observed that game-theoretic concepts have
not been applied sufficiently in ICT project management. This is somewhat surprising because game
theory has been applied in wider ICT or computer scientific contexts quite often. For instance, several
studies in the field of networked computing systems have modelled the dynamics of these systems as
games between self-interested players. Examples include TCP congestion control, computer security
level allocation, peer-to-peer routing, peer-to-peer overlay network formation and peer-to-peer file
sharing patterns [97–101]. Nevertheless, there has not been sufficient research in using game theory for
modelling ICT project management specifically. Similarly, considering Figure 3, note that certain types
of games are not frequently used to model project management scenarios. These include extensive-form
zero-sum non-cooperative games, as well as extensive-form cooperative games. Although a researcher
typically chooses the problem they are interested in studying and then chooses a form of game
appropriate to model that problem, and not vice versa, it is illuminating that project management
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scenarios do not seem to lend themselves often to be modelled as either extensive-form zero-sum
non-cooperative games or extensive-form cooperative games. Nevertheless, it should be noted that
the relative complexity of extensive-form games might be a reason why some types of extensive-form
games are not often used. We have not found any paper in the niche that we reviewed that uses
extensive-form zero-sum games. There was a single paper which used extensive-form cooperative
games (Sacks and Harel, 2006 [84]), however even this paper was modelling a scenario where in an
extended interaction, competition turns into cooperation through trust. Here lies an important hint:
extensive-form cooperative games could be particularly useful in scenarios where players are initially
competitive, but develop trust and are induced to cooperate after several rounds of interactions.
Such scenarios are certainly not uncommon in project management, so researchers that model such
scenarios could perhaps consider using extensive-form cooperative games more often.

6. Citation Network of Reviewed Papers

In this section, we present a “citation network” of the 32 papers which were described and
classified in this review. The purpose of this exercise is two-fold: (a) Understanding the relative
importance of each paper in the field, and how it has inspired or guided other studies in the field.
(b) Understanding how papers are grouped together in terms of citation patterns, with the view of
highlighting which classifications are the most significant in terms of authors being aware of other
papers falling under the same classification. The citation network is presented in Figure 5. While
Figure 5 shows the un-annotated network, Figure 6, Figure 7, and Figure 8 respectively show the
network annotated according to the three classifications—domain-based, player-based and game-based
classifications, respectively. These in turn correspond to Figure 1, Figure 2 and Figure 3, respectively.

Figure 5. The citation network of papers reviewed—no classification shown.

In a citation network, the nodes are papers, and the links are citations from one paper to another,
which are directed. We constructed the citation network of the 32 papers we have analysed, by manually
checking which other papers within our review each of these papers have cited. This was possible,
because the number of citations within the field was relatively sparse, there being only 34 instances
where one paper from our review is cited by another. Therefore, the average out-degree of the citation
network (the average number of times when a paper within the field, as we defined it, cited another
within the field), was only 1.0625, indicating that, in general, studies about the use of game theory
in project management were conducted without much awareness, or the explicit expression of such
awareness, of other studies in the field. Quite often, we found that the authors cited only their own
work in the field, or the work of close collaborators. Of course, each paper made a number of citations
to papers outside the field, due to their relevance to project management or game theory but not both,
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which is justifiable. In fact, the average number of papers cited by papers we reviewed (the average
length of the reference list of the papers we reviewed) is 35.0, which means that most of the citations
were made to papers which were outside the niche that we review.

The citation network we constructed is shown in Figure 5. It could be immediately observed
that there are two large clusters, two small clusters, and nine singleton papers. Medda (2007) is at the
centre of one large cluster (henceforth called the “Medda cluster”), and the other large cluster seems
to be composed of papers written by Cristobal each citing several others not written by Cristobal
(henceforth called the “Cristobal cluster”). The smaller clusters consist of citations among papers of
the same author or his collaborators (Peldschus in the first case, Lippman in the second, henceforth
called “Peldschus cluster” and “Lippman cluster”, respectively).

In order to understand how the large clusters were formed, we now proceed to highlight the
“type” of papers, according to our classification scheme, in Figures 6–8 below. Accordingly, Figure 6
highlights the domain-based classification, Figure 7 highlights the classification based on the type of
players, and Figure 8 highlights the classification based on the type of game used. Since the third
classification is a complex matrix classification, we consider only the four basic types of games in
this figure: normal-form non-cooperative games, normal-form cooperative games, extensive-form
non-cooperative games and extensive-form cooperative games. The node colour indicates the class
each node belongs to in each figure, as indicated in the caption of each figure.

From Figure 6, we can see that the large clusters are composed of construction industry papers or
generic papers (many of which are nevertheless inspired by the construction industry). The Medda
cluster and Peldschus cluster are predominantly composed of construction industry papers, while the
Cristobal cluster is composed of author Cristobal, focusing on construction industry, citing a number
of generic project management papers in each of their works. The few ICT domain papers present
are singletons, apparently not being aware of each other. It should be noted particularly that the one
Feldschus paper that we have classified as ‘generic’ lies outside of the Peldschus cluster, not citing or
being cited by any of his other works.

However, the clustering patterns become clearer when we consider the player-based,
and game-based classifications, as shown in Figures 7 and 8. It could be observed that the
“Cristobal cluster” is composed of papers employing normal-form cooperative games, and modelling
subcontractor—subcontractor interactions. Hence they are tightly clustered in terms of citations.
The Medda cluster is more diverse, though it seems to focus primarily on public-private partnerships
(government-contractor games). The Peldschus cluster focuses on normal-form non-cooperative games.
The Lippman cluster focuses on extensive-form non-cooperative games which are between a contractor
and a subcontractor. Therefore, we may see that all three classifications we presented above influence
the citation patterns in the field.

In terms of relative importance within the field (niche) that we considered, it is obvious from
Figure 5 that Medda (2007), Branzei et al. (2002), Bergantinos and Sanchez (2002), Estevez-Fernandez
(2012) and Shen et al. (2007), in that order, are cited the most times from within the field. Thus,
these papers occupy the most prominent positions within the citation network of the field, and have
presumably had the most influence on other papers within the field. For comparison, we present in
Figure 9 the Google Scholar citation counts of each paper that we have reviewed and classified (as they
stood on the 4 April 2019). Here, obviously the citations are from papers in any field, not just in the
particular niche that we are reviewing. The number of references in the reference list of each paper is
also presented for completeness. Comparing this with Figure 5, we may note unsurprisingly that the
Medda, 2007 paper, which is at the centre of the Medda cluster, is also the most cited paper overall.
The papers by Shen et al. are the next most cited, one of which is also in the Medda cluster, and cited
by many other papers in the field. A paper by Peldschus which belongs to the Peldschus cluster is also
among the most cited. Therefore, there is close correlation between the reception and impact of a paper
within the niche, and its overall reception and impact in the wider scientific community. However,
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since the citation network within the niche is sparse, the number of times papers are cited within the
niche is a lot smaller than the number of times they are cited overall.

Figure 6. The citation network of papers reviewed—domain-based classification shown. Bright pink:
construction domain; blue: ICT domain; brownish-pink: other domains or generic project management.

Figure 7. The citation network of papers reviewed—player-based classification shown. Blue:
government sector—private sector game; pink: contractor—contractor game; red: contractor—
subcontractor game; yellow: subcontractor—subcontractor game; green: other types of players.

Figure 8. The citation network of papers reviewed—game-based classification shown. Blue:
normal-form non-cooperative game; yellow: normal-form cooperative game; red: extensive-form
non-cooperative game; green: extensive-form cooperative game.
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Figure 9. Citation counts of the papers classified according to Google scholar, as accessed on the
4 April 2019. The number of references in each paper is also shown; that is, the incoming citations
and outgoing citations of each paper we reviewed are shown. The publication year of the paper is
mentioned as part of the paper name.
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7. Conclusions

Several project management scenarios where decision-making takes place lend themselves to be
modelled using game theory. A considerable number of studies have applied game-theoretic analysis
in project management, however a concise review of such efforts was lacking. In this review paper,
we undertook the exercise of systematically searching, selecting and reviewing papers which have
used game-theoretic analysis in project management. We also proposed a set of classifications which
structure and define this niche, and demonstrated the importance of such classifications. We analysed
the relative importance and impact of the papers reviewed, and identified gaps in the literature which
represent future research opportunities.

Our analysis showed that papers in this field can be classified based on the domain of application,
the way the players are modelled, or the type of game utilised. In terms of the domain, papers focusing
on construction domain are the most prominent, though there are also papers that focus on the ICT
domain, as well as generic project management focused papers. In terms of modelling the players, we
showed that five classes of papers exist: papers that model government-private sector games, papers
that model contractor–contractor games, papers that model contractor-subcontractor games, papers
that model subcontractor–subcontractor games and papers that model games involving other players.
In terms of the type of games used, we showed that a complex matrix-based classification exists, though
the four basic classes present are papers which use normal-form non-cooperative games, papers which
use normal-form cooperative games, papers which use extensive-form non-cooperative games and
papers which use extensive-form cooperative games. Based on these classifications, we showed that
papers which focus on ICT domain, as well as papers which use extensive-form cooperative games,
are relatively few in number, representing gaps in literature.

We also showed that within the niche, a paper is more likely to cite another paper if they are both
focusing on the same application domain, or use the same types of games. In particular, we showed that
two large “citation clusters” exist: papers which use non-cooperative games mainly in the construction
domain, and papers that use normal-form cooperative games which are generic project management
focused and not specific to any application domain. Overall, we made a very strong case for the
widespread use of game theory to model and analyse project management-related scenarios, by
highlighting a range of scenarios where it could be used, and the types of games which could be used
in each such scenario.

Even though there have been some efforts in the past to summarise efforts made in applying game
theory to project management, they have been focused on specific authors, countries or application
domains. This review, on the other hand, employed a principled and methodical selection process
which was not centred on any author, country or application domain. This review also put emphasis
on structuring, classification and citation-analysis of the literature that it covered. It also focused
explicitly and methodically on citation relationships between the papers that it reviewed, highlighting
how the works are interrelated and which papers acted as catalysts for further research in the field.

This review highlighted that game theory is a very useful tool to analyse project management
scenarios, and efforts to apply game-theoretic analysis in project management have great potential,
but at present this is a nascent field. Studies in this niche are often not aware of each other
and the citation density within the niche is relatively low. Therefore, it is important that more
collaboration efforts take place among researchers which apply game theory in project management,
spanning domains and choice of games. It is expected that this review will be a catalyst for
increased interest in applying game theory in project management, and will encourage cross-domain
collaboration and sharing of expertise to realise the full potential of game theory in analysing project
management problems.
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