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Optimization of Power Generation Grids: A Case of Study in Eastern Mexico
Reprinted from: Math. Comput. Appl. 2021, 26, 46, doi:10.3390/mca26020046 . . . . . . . . . . . . 335

vi



About the Editors

Marcela Quiroz-Castellanos is a full-time researcher with the Artificial Intelligence Research

Institute at the Universidad Veracruzana in Xalapa City, Mexico. Her research interests include:

Combinatorial Optimization, Metaheuristics, Experimental Algorithms, Characterization and Data

Mining. She received her Ph.D. in Computer Science from the Instituto Tecnológico de Tijuana,

Mexico. She studied engineering in computer systems and received the master’s degree in Computer

Science at the Instituto Tecnológico de Ciudad Madero, Mexico. She is a member of the Mexican

National Researchers System (SNI), and also a member of the directive committees of the Mexican

Computing Academy (AMexComp) and the Mexican Robotics Federation (FMR).

Juan Gabriel Ruiz Ruiz is a Research Professor at the University of the Sierra Juarez (UNSIJ),

Oaxaca, Mexico. His areas of interest are related to Evolutionary Computing, Human Factor,

People-Centered Design, Semiotics, and Usability in Interactive Systems. In 2020, he served as

General Chair of the 8th International Workshop on Numerical and Evolutionary Optimization

(NEO). In 2017, he was General Chair of the 2nd Congress of Informatics and Technological

Innovation (CIIT-2017) and Guest Editor for the special issue of the IPN Research in Computing

Science magazine: Advances in Social Informatics and its Applications.

Luis Gerardo de la Fraga received the BS degree in Electrical Engineering from the Veracruz

Institute of Technology (Veracruz, Mexico), in 1992, the MSc degree from the National Institute of

Astrophysics, Optics, and Electronics (INAOE), Puebla, Mexico, in 1994, and the PhD degree from

the Autonomous University of Madrid, Spain, in 1998. He has developed his predoctoral work in the

National Center of Biotechnology (CNB) in Madrid, Spain. Since 2000, he has been with the Computer

Science Department at the Center of Research and Advanced Studies (Cinvestav) in Mexico City,

Mexico. His research areas include Computer Vision, application of Evolutionary Algorithms,

Applied Mathematics, and Network Security. He is very enthusiastic about open software and

GNU/Linux systems. Dr. de la Fraga has published more than 35 articles in international journals, 6

book chapters, 2 books, and more than 55 articles in international conferences. He has graduated 28

MSc and 4 PhD students. He is member of the ACM and IEEE societies since 2005.

Oliver Schütze is Full Professor at the Cinvestav—IPN in Mexico City, Mexico. His main

research interests are in numerical and evolutionary optimization. He is co-author of more than

160 publications including two monographs, five school textbooks, and 12 edited books. Two of his

papers have received the IEEE Transactions on Evolutionary Computation Outstanding Paper Award

(in 2010 and 2012). He is founder of the Numerical and Evolutionary Optimization (NEO) workshop

series. He is Editor-in-Chief of the journal Mathematical and Computational Applications, and is a

member of the Editorial Board of the journals Engineering Optimization, Computational Optimization

and Applications, and Mathematical Problems in Engineering.

vii





Preface to ”Numerical and Evolutionary Optimization

2020”

This volume was inspired by the 8th International Workshop on Numerical and Evolutionary

Optimization (NEO), hosted by the Universidad de la Sierra Juárez, Oaxaca, Mexico, the Universidad

Veracruzana, Xalapa, Mexico, and the Cinvestav-IPN, Mexico City, Mexico. The workshop was held

on November 18 and 19, 2020, as an online-only event and was attended by a total of around 70

researchers, plus another 130 students from the Research Experience Day of NEO 2020.

Solving scientific and engineering problems from the real world is currently a very complicated

task; that is why the development of powerful search and optimization techniques is of great

importance. Two well-established fields focus on this duty; they are (i) traditional numerical

optimization techniques and (ii) bio-inspired metaheuristic methods. Both general approaches have

unique strengths and weaknesses, allowing researchers to solve some challenging problems but still

failing in others. The goal of NEO is to gather people from both fields to discuss, compare, and merge

these complementary perspectives. Collaborative work allows researchers to maximize strengths and

to minimize the weaknesses of both paradigms. NEO also intends to help researchers in these fields

to understand and tackle real-world problems such as pattern recognition, routing, energy, lines of

production, prediction, and modeling, among others.

This Special Issue consists of 16 research papers. In the first paper, https://doi.org/10.3390/mca

26010005, K. Deb et al. survey surrogate modeling approaches for the numerical treatment of

multi-objective optimization problems. Moreover, the authors propose an adaptive switching based

metamodeling approach yielding results that are highly competitive to state-of-the-art approaches.

The following ten papers are devoted to the design of new algorithms for particular optimization

problems. In the second paper, https://doi.org/10.3390/mca26020031, M. Berkemeier and S.

Peitz present a local trust region descent algorithm for unconstrained and convexly constrained

multi-objective optimization problems. The method targets at problems that have at least one

objective function that is computationally expensive. Convergence of the derivative-free method

to a Pareto critical point is proven. In the third paper, https://doi.org/10.3390/mca26020028, M.

Perez-Villafuerte proposes a new hybrid multi-objective optimization evolutionary algorithm, called

P-HMCSGA, that allows to incorporate decision makers preferences already in early stages of the

optimization process. The strength of the novel method is illustrated on real-size multi-objective

project portfolio problems. In the fourth paper, https://doi.org/10.3390/mca26020027, A.

Castellanos-Alvarez et al. propose a method, NSGA-III-P, for the integration of preferences to a

multi-objective evolutionary algorithm using ordinal multi-criteria classification. Numerical results

show that the new method is capable of identifying the proper region of interest as specified by the

decision maker. In the fifth paper, https://doi.org/10.3390/mca26020035, T. Macias-Escobar et al.

propose a new interactive recommendation system for the decision making process based on the

characterization of cognitive tasks. The system focuses on a user–system interaction that guides

the search towards the best solution considering a decision maker’s preferences. The developed

prototype has been assessed by several test users leading to a satisfying score and most overall

acceptance.

In the sixth paper, https://doi.org/10.3390/mca25040072, J.-Y. Guzmán-Gaspar et al. present

an empirical comparison of the standard differential evolution (DE) against three random sampling

methods to solve particular robust optimization problems in dynamic environments. The findings

ix



indicate that DE is a suitable algorithm to deal with this type of dynamic search space when a survival

time approach is considered. In the seventh paper, https://doi.org/10.3390/mca26020039, J. P.

Sánchez-Hernández et al. address the protein folding problem. To this end, they present the algorithm

GRSA-SSP, a hybrid of golden ratio simulated annealing with a secondary structure prediction.

Numerical results show that the new algorithm competes to the state-of-the-art in small peptides

except when predicting the largest peptides. In the eighth paper, https://doi.org/10.3390/mca26020

036, A. Estrada-Padilla et al. propose a new methodology to deal with uncertainties in multi-objective

portfolio optimization problems via using fuzzy numbers. The results show a significant difference

in performance favoring the proposed steady-state algorithm based on the fuzzy adaptive

multi-objective evolutionary (FAME) methodology. In the ninth paper, https://doi.org/10.3390/mca

26010008, J. Frausto-Solis et al. propose two multi-objective job shop scheduling metaheuristics

based on Simulated Annealing: Chaotic Multi-Objective Simulated Annealing (CMOSA) and Chaotic

Multi-Objective Threshold Accepting (CMOTA). Numerical results indicate that the two novel

methods are highly competitive to the state-of-the-art. In the tenth paper, https://doi.org/10.3390/m

ca26010013, L. G. de la Fraga analyzes the use of numbers with 16 bits in the conventional Differential

Evolution (DE) algorithm. It is shown that the additional use of fixed point arithmetic can speed up

the evaluation time of the objective function. In the eleventh paper, https://doi.org/10.3390/mca250

40080, F. Beltrán et al. deal with a continuation method for the numerical treatment of multi-objective

optimization problems. More precisely, the Pareto Tracer is extended to treat general inequalities

which greatly enhances its applicability.

The last five papers of this Special Issue deal with the numerical treatment of particular

applications that arise in the real world. In the twelfth paper, https://doi.org/10.3390/mca26020046,

are presented some preliminary results of a study of 17 interconnected power generation plants

situated in eastern Mexico. The study shows that fossil fuel plants, besides emitting greenhouse gases

that affect human health and the environment, incur maintenance expenses even without operation.

In the thirteenth paper, https://doi.org/10.3390/mca26020029, J. Frausto-Solis et al. propose a new

method designed to confirm cases of COVID-19 in the United States, Mexico, Brazil, and Colombia,

based on Component Transformation and Convolutional Neural Networks. Numerical results show

that it consistently achieves highly competitive results in terms of the MAPE metric. In the fourteenth

paper, https://doi.org/10.3390/mca25040073, X. Cai et al., propose and analyze a novel framework

for the multi-objective risk-informed decision support systems for the drainage rehabilitation

problem. This study shows that the conventional framework can be significantly improved in terms

of calculation speed and cost-effectiveness by removing the constraint function and adding more

objective functions. In the fifteenth paper, https://doi.org/10.3390/mca26010006, I. Bahreini Toussi

et al. investigate the impact forces caused by liquid storage tanks which can lead to structural

damage as well as economic and environmental losses. To this end, an OpenFOAM numerical

model is used to simulate various tank sizes with different liquid heights. The last contribution

of this Special Issue is given by the sixteenth paper, https://doi.org/10.3390/mca25040076. P. R.

Castañeda-Aviña et al. design an analog circuit, a voltage-controlled oscillator (VCO), optimized

using Differential Evolution. It is shown that the suggested approach yields highly robust solutions.

x



Finally, we thank all participants at NEO 2020 and hope that this book can be a contemporary

reference regarding the field of numerical evolutionary optimization and its exciting applications.

Marcela Quiroz-Castellanos, Juan Gabriel Ruiz Ruiz, Luis Gerardo de la Fraga, Oliver Schütze

Editors
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Abstract: Most practical optimization problems are comprised of multiple conflicting objectives and
constraints which involve time-consuming simulations. Construction of metamodels of objectives
and constraints from a few high-fidelity solutions and a subsequent optimization of metamodels to
find in-fill solutions in an iterative manner remain a common metamodeling based optimization strat-
egy. The authors have previously proposed a taxonomy of 10 different metamodeling frameworks
for multiobjective optimization problems, each of which constructs metamodels of objectives and
constraints independently or in an aggregated manner. Of the 10 frameworks, five follow a generative
approach in which a single Pareto-optimal solution is found at a time and other five frameworks
were proposed to find multiple Pareto-optimal solutions simultaneously. Of the 10 frameworks,
two frameworks (M3-2 and M4-2) are detailed here for the first time involving multimodal optimiza-
tion methods. In this paper, we also propose an adaptive switching based metamodeling (ASM)
approach by switching among all 10 frameworks in successive epochs using a statistical comparison
of metamodeling accuracy of all 10 frameworks. On 18 problems from three to five objectives, the
ASM approach performs better than the individual frameworks alone. Finally, the ASM approach is
compared with three other recently proposed multiobjective metamodeling methods and superior
performance of the ASM approach is observed. With growing interest in metamodeling approaches
for multiobjective optimization, this paper evaluates existing strategies and proposes a viable adap-
tive strategy by portraying importance of using an ensemble of metamodeling frameworks for a
more reliable multiobjective optimization for a limited budget of solution evaluations.

Keywords: surrogate modeling; multiobjective optimization; evolutionary algorithms; kriging method;
ensemble method; adaptive algorithm

1. Introduction

Practical problems often require expensive simulation of accurate high-fidelity models.
To get close to the optimum of these models, most multiobjective optimization algorithms
need to compute a large number of solution evaluations. However, in practice, only a
handful of solution evaluations are allowed due to the overall time constraint available to
solve such problems. Researchers usually resort to surrogate models or metamodels con-
structed from a few high-fidelity solution evaluations to replace computationally expensive
models to drive an optimization task [1–3]. For example, Gaussian process model, Kriging,
or response surface method is commonly used. The Kriging method is of particular interest,
since it is able to provide an approximated function as well as an estimate of uncertainty of
the prediction of the function [4].

In extending the metamodeling concept to multiobjective optimization problems,
an obvious issue is that multiple objective and constraint functions are required to be
metamodeled before proceeding with the optimization algorithm. Despite this challenge
of multiple metamodeling efforts, a good number of studies have been made to solve

Math. Comput. Appl. 2021, 26, 5. https://dx.doi.org/10.3390/mca26010005 https://www.mdpi.com/journal/mca
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computationally expensive multiobjective optimization problems using metamodeling
based evolutionary algorithms [5–10]. However, most of these studies ignored constraints
and extending an unconstrained optimization algorithm to constrained optimization is not
trivial [11]. In any case, the structure of most of these methods is as follows. Starting an ini-
tial archive of solutions obtained by an usual Latin-hypercube sampling, a metamodel for
each objective and constraint function is built independently [12,13]. Then, in an epoch–one
cycle of metamodel development and their use to obtain a set of in-fill solutions, an evolu-
tionary multiobjective optimization (EMO) algorithm is used to optimize the metamodeled
objectives and constraints to find one or more in-fill points. Thereafter, the in-fill points
are evaluated using high-fidelity models and saved into the archive. Next, new meta-
models are built using the augmented archive members and the procedure is repeated in
several epochs until the allocated number of solution evaluations is consumed [5,14–19].
Many computationally expensive optimization problems involve noisy high-fidelity simu-
lation models. Noise can come from inputs, stochastic processes of the simulation, or the
output measurements. In this paper, we do not explicitly discuss the effect of noise in
handling metamodeling problems, but we recognize that this is an important matter in
solving practical problems.

In a recent taxonomy study [20], authors have categorized different plausible multiob-
jective metamodeling approaches into 10 frameworks, of which the above-described popu-
lar method falls within the first two frameworks—M1-1 or M1-2, depending on whether
a single or multiple nondominated in-fill solutions are found in each epoch. The other
eight frameworks were not straightforward from a point of view extending single-objective
metamodeling approaches to multiobjective optimization and hence were not explored in
the past. Moreover, the final two frameworks (M5 and M6) attempt to metamodel an EMO
algorithm’s implicit overall fitness (or selection) function directly, instead of metamodeling
an aggregate or individual objective and constraint functions. There is an advantage of
formulating a taxonomy, so that any foreseeable future metamodeling method can also
be categorized to fall within one of the 10 frameworks. Moreover, the taxonomy also
provides new insights to other currently unexplored ways of handling metamodels within
a multiobjective optimization algorithm.

So far, each framework has been applied alone in one complete optimization run
to solve a problem, but in a recent study [21], a manual switching of one framework
to another after 50% of allocated solution evaluations has produced improved results.
An optimization process goes through different features of the multiobjective landscape
and it is natural that a different metamodeling framework may be efficient at different
phases of a run. These studies are the genesis of this current study, in which we propose an
adaptive switching based metamodeling (ASM) approach, which automatically finds one of
the 10 best-performing frameworks at the end of each epoch after a detailed statistical study,
thereby establishing self-adaptive and efficient overall metamodeling based optimization
approach.

In the remainder of the paper, Section 2 briefly describes a summary of recent related
works. Section 3 provides a brief description of each of 10 metamodeling frameworks
for multiobjective optimization. The proposed ASM approach is described in Section 4.
Our extensive results on unconstrained and constrained test problems for each framework
alone and the ASM approach are presented in Section 5. A comparative study of the ASM
approach with three recent existing algorithms is presented in Section 5.5. We summarize
our study of the switching framework based surrogate-assisted optimization with future
research directions in Section 6.
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2. Past Methods of Metamodeling for Multiobjective Optimization

We consider the following original multi- or many-objective optimization problem (P),
involving n real-valued variables (x), J inequality constraints (g) (equality constraints, if any,
are assumed to be converted to two inequality constraints), and M objective functions (f):

Minimize ( f1(x), f2(x), . . . , fM(x)),
Subject to gj(x) ≤ 0, j = 1, 2, . . . , J,

x(L)
i ≤ xi ≤ x(U)

i , i = 1, 2, . . . , n.
(1)

In this study, we assume that all objective and constraint functions are computationally
expensive to compute and that they need to be computed independent to each other for ev-
ery new solution x. To distinguish from the original functions, the respective metamodeled
function is represented with a “tilde” (such as, f̃i(x) or g̃j(x)). The resulting metamodeled
problem is denoted here as MP, which is formed with developed metamodels of individ-
ual objective and constraints or their aggregates. In-fill solutions are defined as optimal
solutions of problem MP. It is assumed here that constructing the metamodels and their
comparisons among each other consume comparatively much less time than evaluating
objective and constraints exactly, hence, if the metamodels are close to the original func-
tions, the process can end up with a huge savings in computational time without much
sacrifice in solution accuracy. Naturally, in-fill solutions (obtained from metamodels) need
to be evaluated using original objective and constraints (termed here as “high-fidelity”
evaluations) and can be used to refine the metamodels for their subsequent use within the
overall optimization approach.

A number of efficient metamodeling frameworks have been proposed recently for mul-
tiobjective optimization [10,22–28], including a parallel implementation concept [29]. These
frameworks use different metamodeling methods to approximate objective and constraint
functions, such as radial basis functions (RBFs), Kriging, Bayesian neural network, support
vector regression, and others [30]. Most of these methods proposed a separate metamodel
for each objective and constraint function, akin to our framework M1. Another study have
used multiple spatially distributed surrogate models for multiobjective optimization [31].
It is clear that this requires a lot of metamodeling efforts and metamodeling errors from
different models can accrue and make the overall optimization to be highly error-prone.
As will be clear later, these methods will fall under our M1-2 framework.

Zhang et al. [14] proposed the MOEA/D-EGO algorithm which metamodeled each
objective function independently. They constructed multiple expected global optimization
(EGO) functions for multiple reference lines of the MOEA/D approach to find a number
of trade-off solutions in each optimization task. No constraint handling procedure was
suggested. Thus, this method falls under our M1-2 framework.

Chugh et al. [23] proposed a surrogate-assisted adaptive reference vectors guided
evolutionary algorithm (K-RVEA) for computationally expensive optimization problems
with more than three objectives. Since all objectives and constraints are metamodeled
separately, this method also falls under our M1-2 framework. While no constraint handling
was proposed with the original study, a later version included constraint handling [32].

Zhao et al. [24] classified the sample data into clusters based on their similarities
in the variable space. Then, a local metamodel was built for each cluster of the sample
data. A global metamodel is then built using these local metamodels considering their
contributions in different regions of the variable space. Due to the construction and
optimization of multiple metamodels, one for each cluster, this method belongs to our
M-3 framework. The use of a global metamodel by combining all local cluster-wise
metamodels qualify this method under the M3-2 framework. No constraint handling
method is suggested.

Bhattacharjee et al. [25] used an independent metamodel for each objective and con-
straint using different metamodeling methods: RBF, Kriging, first and second-order re-
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sponse surface models, and multilayer perceptrons. NSGA-II method is used to optimized
metamodeled version of the problem. Clearly, this method falls under our M1-2 category.

Wang et al. [26] used independent metamodeling of objectives but combined them
using a weight-sum approach proposed an ensemble-based model management strategy
for surrogate-assisted evolutionary algorithm. Thus, due to modeling a combined objective
function, this method falls under our M3-1 framework. A global model management
strategy inspired from committee-based active learning (CAL) was developed, searching
for the best and most uncertain solutions according to a surrogate ensemble using a particle
swarm optimization (PSO) algorithm. In addition, a local surrogate model is built around
the best solution obtained so far. Then, a PSO algorithm searches on the local surrogate
to find its optimum and evaluates it. The evolutionary search using the global model
management strategy switches to the local search once no further improvement can be
observed and vice versa.

Pan et al. [33] proposed a classification based surrogate-assisted evolutionary algo-
rithm (CSEA) for solving unconstrained optimization problems by using an artificial neural
network (ANN) as a surrogate model. The surrogate model aims to learn the dominance re-
lationship between the candidate solutions and a set of selected reference solutions. Due to
a single metamodel to find the dominance structure involving all objective functions,
this algorithm falls under our M3-2 framework.

Deepti et al. [34] suggested a reduced and simplified model of each objective function
in order to reduce the computational efforts.

Recent studies on nonevolutionary optimization methods for multiobjective optimiza-
tion using trust-region method [35,36] and using decomposition methods [37] are proposed
as well.

A recent study [38] reviewed multiobjective metamodeling approaches and suggested
a taxonomy of the existing methods based on whether the surrogate assisted values match
well the original function values. Three broad categories were suggested: (i) algorithms
that do not use any feedback from the original function values, (ii) algorithms that use a
fixed number of feedback, and (iii) algorithms that adaptively decide which metamodeled
solutions must be checked with the original function values. This extensive review reported
that most existing metamodeling approaches used a specific EMO algorithm—NSGA-II [39].
While a check on the accuracy of a metamodel is important for its subsequent use, this
is true for both single and multiobjective optimization and no specific issues related to
multiobjective optmization were discussed in the review paper.

Besides the algorithmic developments, a number of studies have applied metamodel-
ing methods to practical problems with a limited budget of solution evaluations [40–47],
some restricting to a few hundreds [48].

Despite all the above all-around developments, the ideas that most distinguish sur-
rogate modeling in multiobjective optimization from their single-objective counterparts
were not addressed well. They are (i) how to fundamentally handle multiple objectives and
constraints either through a separate modeling of each or in an aggregated fashion? and (ii)
how to make use of the best of different multiple surrogate modeling approaches adaptively
within an algorithm? In 2016, Rayan et al. [5] have proposed a taxonomy in which 10 meta-
modeling frameworks were proposed to address the first question. This paper addresses
the second question in a comprehensive manner using the proposed 10 metamodeling
frameworks using an ensemble method.

Ensemble methods have been used in surrogate-assisted optimization for solving
expensive problems [49–53], but in most of these methods, an ensemble of different meta-
modeling methods, such as RBF, Kriging, response surfaces, are considered to choose
a single suitable method. While such studies are important, depending on the use of
objectives and constraints, each such method will fall in one of the first eight frameworks
presented in this paper. No effort is made to consider an ensemble of metamodeling
frameworks for combining multiple objectives and constraints differently and choosing the
most suitable one for optimization. In this paper, we use an ensemble of 10 metamodeling
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frameworks [5,20] described in the next section and propose an adaptive selection scheme
of choosing one in an iterative manner thereafter.

3. A Taxonomy for Multiobjective Metamodeling Frameworks

Having M objective and J constraints to be metamodeled, there exist many plausible
ways to develop a metamodeling based multiobjective optimization methods. Thus, there
is a need to classify different methods into a few finite clusters so that they can be compared
and contrasted with each other. Importantly, such a classification or taxonomy study can
provide information about methods which are still unexplored. A recently proposed taxon-
omy study [20] put forward 10 different frameworks based on the metamodeling objective
and constraint functions based on their individual or aggregate modeling, as illustrated in
Figure 1.

Figure 1. The proposed taxonomy of 10 different metamodeling frameworks for multi- and many-
objective optimization. (Taken from [20]).

We believe most ideas of collectively metamodeling all objectives and constraints can
be classified into one of these 10 frameworks. We describe each of the 10 frameworks below
in details for the first time.

We explain each framework using a two-variable, two-objective SRN problem [54,55]
as an example:

Minimize f1(x) = 2 + (x1 − 2)2 + (x2 − 1)2,
Minimize f2(x) = 9x1 − (x2 − 1)2,
Subject to g1(x) = x2

1 + x2
2 − 225 ≤ 0,

g2(x) = x1 − 3x2 + 10 ≤ 0,
−20 ≤ (x1, x2) ≤ 20.

(2)

The PO solutions are known to be as follows: x∗1 = −2.5 and x∗2 ∈ [2.5, 14.79]. To apply
a metamodeling approach, one simple idea is to metamodel all four functions. The functions
and the respective PO solutions are marked on f1 and f2 plots shown in Figure 2a,b,
respectively. The feasible regions for g1 anf g2 are shown in Figure 2c,d.
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Figure 2. Two objectives and two constraints are shown for SRN problem. The combined fea-
sible region is shown in the contour plot. PO solutions lie on the black line marked inside the
feasible region.

3.1. M1-1 and M1-2 Frameworks

Most existing multiobjective metamodeling approaches are found to fall in these two
frameworks [20]. In M1-1 and M1-2, a total of (M + J) metamodels (M objectives and J
constraints) are constructed. The metamodeling algorithm for M1-1 and M1-2 starts with
an archive of initial population (A0 of size N0) created using the Latin hypercube sampling
(LHS) method on the entire search space, or by using any other heuristics of the problem.
Each objective function ( fi(x), for i = 1, . . . , M) is first normalized to obtain a normalized
function f

i
(x) using the minimum ( f min

i ) and maximum ( f max
i ) values of all high-fidelity

evaluation of archive members, so that the minimum and maximum values of f
i
(x) is zero

and one, respectively:

f
i
(x) =

fi(x)− f min
i

f max
i − f min

i
. (3)

Then, metamodels are constructed for each of the M normalized objective functions in-
dependently: ( f̃

1
(x), . . . , f̃

M
(x)), ∀i ∈ {1, 2, . . . , M} using a chosen metamodeling method.

For all implementations here, we use the Kriging metamodeling method [56] for all frame-
works of this study.

Each constraint function (gj(x), for j = 1, . . . , J) is first normalized to obtain a nor-
malized constraint function (g

j
(x)) using standard methods [57], and then metamodeled
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separately to obtain an approximate function (g̃
j
(x)) using the same metamodeling method

(Kriging method is adopted here) used for metamodeling objective functions.
In M1-1, all metamodeled normalized objectives are combined into a single aggregated

function and optimized with all separately metamodeled constraints to find a single in-fill
point using a single-objective evolutionary optimization algorithm (real-coded genetic algo-
rithm (RGA) [54] is used here). In τ generations of RGA (defining an epoch), the following
achievement scalarization aggregation function (ASF12(x, z)) [58] is optimized for every
z vector:

Problem O1-1:
Solution: x∗(z),

⎧⎪⎪⎨⎪⎪⎩
Minimize ASF12(x, z) = maxM

j=1

(
f̃

j
(x)− zj

)
,

Subject to g̃
j
(x) ≤ 0, j = 1, 2, . . . , J,

x(L)
i ≤ xi ≤ x(U)

i , i = 1, 2, . . . , n,

(4)

where the vector z is one of the Das and Dennis’s [59] point on the unit simplex on the
M-dimensional hyperspace (making ∑M

j=1 zi = 1). Thus, for each of H different z vectors,
one optimization problem (O1-1) is formed with an equi-angled weight vector, and solved
one at time to find a total of H in-fill solutions using a real-parameter genetic algorithm
(RGA). Figure 3a shows the infill solution for z = (0.5, 0.5) for the SRN problem. Notice, the
ASF12 function constitutes a minimum point on the Pareto-optimal (PO) line (black line on
the contour plot) for the specific z-vector. If the exact ASF12 function can be constructed as
a metamodeled function from a few high-fidelity evaluations, one epoch would be enough
to find a representative PO set. However, since the metamodeled function is expected to
have a difference from the original function, several epochs will be necessary to get close to
the true PO set. For a different z-vector, the ASF12 function will have a different optimal
solution, but it will fall on the PO line. The ASF12 model, constructed from metamodeled
objective and constraint functions, will produce optimal solutions on the Pareto set for
different z-vectors. Multiple applications of a RGA will discover a well-distributed set of
multiple in-fill points one at a time.

The RGA procedure uses a trust-region concept, which we describe in detail in
Section 4.3. The best solution for each z is sent for a high-fidelity evaluation. The solution
is then included in the archive (A1) of all high-fidelity solutions. After all H solutions
are included in the archive, one epoch of the M1-1 framework optimization problem is
considered complete. In the next epoch, all high-fidelity solutions are used to normalize
and metamodel all (M + J) objective functions and constraints, and the above process is
repeated to obtain A2. The process is continued until all prespecified maximum solution
evaluations (SEmax) is completed. Nondominated solutions of final archive At is declared
as outcome of the whole multiobjective surrogate-assisted approach.

In M1-2, the following M-objective optimization problem,

Problem O1-2:
Solutions: xi,∗, i = 1, . . . , H

⎧⎪⎪⎨⎪⎪⎩
Minimize

(
f̃

1
(x), f̃

2
(x), . . . , f̃

M
(x)

)
,

Subject to g̃
j
(x) ≤ 0, j = 1, 2, . . . , J,

x(L)
i ≤ xi ≤ x(U)

i , i = 1, 2, . . . , n,

(5)

constructing (M + J) metamodels in each epoch, is solved to find H in-fill solutions in
a single run with an EMO/EMaO procedure. We use NSGA-II procedure [39] for two-
objective problems, and NSGA-III [60] for three or more objective problems here. All H
solutions are then evaluated using high-fidelity models and are included in the archive for
another round of metamodel construction and optimization for the next epoch. The process
is continued until SEmax evaluations are done. Figure 3b shows that when NSGA-II
optimizes a well-approximated metamodel to the original problem, the obtained solutions
will lie on the true PO front.
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Figure 3. In-fill solutions for different frameworks for SRN problem. True functions are plotted here,
however, different metamodeling frameworks use different approximations to find in-fill solutions
on the true PO set.

3.2. Frameworks M2-1 and M2-2

For M2-1 and M2-2, a single aggregated constraint violation function (ACV(x)) is first
constructed using the normalized constraint functions (g

j
(x), j = 1, . . . , J) at high-fidelity

solutions from the archive (x ∈ At), as follows:

ACV(x) =

⎧⎨⎩ ∑J
j=1 g

j
(x), if x is feasible,

∑J
j=1〈gj

(x)〉, otherwise,
(6)

where the bracket operator 〈α〉 is α, if α > 0; and zero, otherwise. It is clear from the
above equation that for high-fidelity solutions, ACV(x) takes a negative value for feasible
solutions and a positive value for an infeasible solution. In M2-1 and M2-2, the constraint
violation function (ACV(x)) is then metamodeled to obtain ÃCV(x), instead of every
constraint function (gj(x)) metamodeled in M1-1 and M1-2. This requires a total of (M + 1)
metamodel constructions (M objectives and one constraint violation function) at each
epoch. In M2-1, the following problem

Problem O2-1:
Solution: x∗(z)

⎧⎪⎪⎨⎪⎪⎩
Minimize ASF12(x, z) = maxM

j=1

(
f̃

j
(x)− zj

)
,

Subject to ÃCV(x) ≤ 0,
x(L)

i ≤ xi ≤ x(U)
i , i = 1, 2, . . . , n,

(7)
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is solved to find one in-fill point for each reference line originating from one of the chosen
Das-Dennis reference points z. Similarly, M2-2 solves the following problem:

Problem O2-2:
Solutions: xi,∗, i = 1, . . . , H

⎧⎪⎪⎨⎪⎪⎩
Minimize

(
f̃

1
(x), f̃

2
(x), . . . , f̃

M
(x)

)
,

Subject to ÃCV(x) ≤ 0,
x(L)

i ≤ xi ≤ x(U)
i , i = 1, 2, . . . , n,

(8)

to find H in-fill solutions simultaneously. The rest of the M2-1 and M2-2 procedures are
identical to that in M1-1 and M1-2, respectively. RGA is used to solve each optimization
problem in M2-1 to find one solution at a time, and NSGA-II or NSGA-III is used in M2-2
depending on number of objectives in the problem. Thus, M2-1 requires an archive to store
each solution, whereas M2-2 does not require an archive.

3.3. M3-1 and M3-2 Frameworks

In these two methods, instead of metamodeling each normalized objective function
f

i
(x) for i = 1, . . . , M independently, we first aggregate them to form the following ASF34

function for each high-fidelity solution x:

ASF34(x, z) =
M

max
j=1

(
f

j
(x)− zj

)
, (9)

where z is defined as before. Note this formulation is different from ASF12 in that the ASF
formulation is made with the original normalized objective functions f

j
here. Then, one

ASF34 function (for a specific z-vector) is metamodeled to obtain ÃSF34(x, z), along with J
separate metamodels for J constraints (g̃

j
) to solve the following problem for M3-1:

Problem O3-1:
Solutions: x∗(z)

⎧⎪⎨⎪⎩
Minimize ÃSF34(x, z),
Subject to g̃

j
(x) ≤ 0, j = 1, 2, . . . , J,

x(L)
i ≤ xi ≤ x(U)

i , i = 1, 2, . . . , n.

(10)

For every z, a new in-fill point is found by solving the above problem using the same
RGA, discussed for M1-1. Every in-fill point is stored in an archive to compare with M∗-2
methods, which creates multiple solutions in one run, thereby not requiring an explicit
archive. In M3-2, the following problem is solved:

Problem O3-2:
Solutions: xi,∗, i = 1, . . . , H

⎧⎪⎨⎪⎩
Minimize minASF34(x) = minz ÃSF34(x, z),
Subject to g̃

j
(x) ≤ 0, j = 1, 2, . . . , J,

x(L)
i ≤ xi ≤ x(U)

i , i = 1, 2, . . . , n,

(11)

in which the objective function of x is computed as the minimum ÃSF34 for all z-vectors at
x. Figure 3c shows the multimodal objective function minASF34(x) for the SRN problem,
clearly indicating multiple local optima on the PO front. Notice how the minASF34 function
has ridges and creates multiple optima on the PO set, one for each reference line. Due to
the complexity involved in this function, it is clear that a large number of high-fidelity
points will be necessary to make a suitable metamodel with a high accuracy. Besides the
need of more points, there is another issue that needs a discussion. Both M3-1 and M3-2
requires H, ÃSF34(x, z) and J constraint functions to be metamodeled, thereby making a
total of (H + J) metamodels in each epoch. Since each of multiple optima of the minASF34
function will finally lead us to a set of PO solutions, we would need an efficient multimodal
optimization algorithm, instead of a RGA, to solve the metamodeled minASF34 function.

We use a multimodal single-objective evolutionary algorithm to find H multimodal
in-fill points of minASF34 simultaneously. We propose a multimodal RGA (or MM-RGA)
which starts with a random population of size N for this purpose. In each generation, the
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population (Pt) is modified to a new population (Pt+1) by using selection, recombination,
and mutation operators. The selection operator emphasizes multiple diverse solutions as
follows. First, a fitness is assigned to each population member x by computing ÃSF34(x, z)
for all H, z-vectors and then assigning the smallest value as the fitness. Then, we apply the
binary tournament selection to choose a parent using the following selection function:

SF(x) =

{
minASF34(x), if x is feasible,
minASFmax

34 + ∑J
j=1〈g̃j

(x)〉, otherwise, (12)

where minASFmax
34 is the maximum minASF34(x) value of all feasible population members

of MM-RGA. The above selection function has the following effects. If two solutions
are feasible, minASF34(x) is used to select the winner. If one is feasible and the other is
infeasible, the former is chosen, and for two infeasible members, the one with smaller
constraint violation ∑J

j=1〈g̃j
(x)〉 is chosen. After N offspring population members are thus

created, we merge the population to form a combined population of 2N members. The best
solution to each z-vector is then copied to Pt+1. In the event of a duplicate, the second best
solution for the z-vector is chosen. If H is smaller than N, then the process is repeated to
select a second population member for as many z-vectors as possible. Thus, at the end of
the MM-RGA procedure, exactly H in-fill solutions are obtained.

3.4. Frameworks M4-1 and M4-2

In these two frameworks, constraints are first combined to a single constraint violation
function ACV(x) as in M2-1 (Equation (6)) and then ACV is metamodeled to obtain ÃCV(x).
The following problem is then solved:

Problem O4-1:
Solution: x∗(z)

⎧⎪⎨⎪⎩
Minimize ÃSF34(x, z),
Subject to ÃCV(x) ≤ 0,

x(L)
i ≤ xi ≤ x(U)

i , i = 1, 2, . . . , n,

(13)

to find a single in-fill solution for every z. An archive is built with in-fill solutions. In M4-2,
following problem is solved to find H in-fill solutions simultaneously:

Problem O4-2:
Solutions: xi,∗, i = 1, . . . , H

⎧⎪⎨⎪⎩
Minimize minASF34(x) = minz ÃSF34(x, z),
Subject to ÃCV(x) ≤ 0,

x(L)
i ≤ xi ≤ x(U)

i , i = 1, 2, . . . , n,

(14)

Both these frameworks require H, ÃSF34(x, z) and one ACV function to be metamodeled,
thereby making a total of (H + 1) metamodels in each epoch. The same MM-RGA is used
here, but the SF function is modified by replacing ∑J

j=1〈g̃j
(x)〉 term with 〈ÃCV(x)〉 in

Equation (12). A similar outcome as in Figure 3c occurs here, but the constraints are now
handled using one metamodeled ÃCV(x) function. M4-2 does not require an archive to be
maintained, as H solutions will be found in one MM-RGA application.

3.5. M5 Framework

The focus of M5 is to use a generative multiobjective optimization approach in which
a single PO solution is found at a time for a z-vector by using a combined selection function
involving all objective and constraint functions together. The following selection function is
first created:

S5(x, z) =

{
ASF34(x, z), if x is feasible,
ASFmax

34 (x, z) + 〈ACV(x)〉, otherwise.
(15)
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Here, the parameter ASFmax
34 (x, z) is the worst ASF34 function value (described in Equa-

tion (9)) of all feasible solutions from the archive. The selection function S5(x, z) is then
metamodeled to obtain S̃5(x, z), which is then optimized by RGA (described for M1-1) to
find one in-fill solution for each z-vector. The unconstrained optimization problem with
only variable bounds is given below:

Problem O5:
Solution: x∗(z)

{
Minimize S̃5(x, z),
Subject to x(L)

i ≤ xi ≤ x(U)
i , i = 1, 2, . . . , n.

(16)

Thus, H metamodels of S5(x, z) need to be constructed for M5 in each epoch. Figure 4a
shows the S5 function with z = (0.1, 0.9) for SRN problem. Although details are not
apparent in this figure, Figure 4b, plotted near the optimum, shows optimum more clearly.
The entire surface plot is not shown for clarity, but it is interesting to see how a single
function differentiates infeasible from feasible region and also makes the optimum of the
function as one of the PO solutions.
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Figure 4. In-fill solution for a specific z-vector to be obtained by framework M5 for SRN problem.

Clearly, the complexity of the resulting S5(x, z) function will demand a large number
of archive points for an accurate identification of the PO solution or a large number of
epochs to arrive at the PO solution. However, the concept of metamodeling a selection
function, which is not one of the original objective or constraint function, to find an in-fill
solution of the problem is intriguing and opens up a new avenue for surrogate-assisted
multiobjective optimization studies.

3.6. Framework M6

Finally, M6 framework takes the concept of M5 a bit further and constructs a single
metamodel in each epoch by combining all M objectives and J constraints together. A mul-
timodal selection function having each optimum corresponding to a distinct PO solution is
formed for this purpose:

ASF6(x) = min
z∈Z

M
max
i=1

(
f

i
(x)− zi

)
. (17)

Then, the following selection function is constructed:

S6(x) =

{
ASF6(x), if x is feasible,
ASF6,max + CV(x), otherwise,

(18)
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where ASF6,max is the maximum ASF6 value of all feasible archive members. For each
archive member x, S6(x) is first computed. CV(x) is same as ACV(x), except that for
a feasible x, CV is set to zero. Then, the following multimodal unconstrained problem
(with variable bounds) is constructed to find H in-fill solutions simultaneously:

Problem O6:
Solutions: xi,∗, i = 1, . . . , H

{
Minimize S̃6(x),
Subject to x(L)

i ≤ xi ≤ x(U)
i , i = 1, 2, . . . , n.

(19)

A single metamodel needs to be constructed in each epoch in M6 framework. Due to
the complexity involved in the S6-function, we employ a neural network S̃6(x) to meta-
model this selection function. A niched RGA [7] similar to that described in Section 3.4
is used here to find H in-fill solutions corresponding to each local optimum of the meta-
modeled S̃6(x) function. No explicit archive needs to be maintained to store H solutions.
Figure 5a shows S6 function for SRN function on the entire search space. The detail inside
the feasible region and near the optimal solutions shown in Figure 5b makes it clear that
this function creates six optima on the PO front, corresponding to six z-vectors. Although
the function is multimodal, the detail structure from Figure 5a to Figure 5b can be modeled
gradually with iterations of a carefully designed optimization algorithm.
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Figure 5. The function S6 surface is blown up near the optimal region showing six optima.

3.7. Summary of 10 Frameworks

A summary of metamodeled functions and the optimization algorithms used to
optimize them for all 10 frameworks is provided in Table 1. The relative computational cost
for each framework can be derived from this table. M3-1 and M3-2 require to construct the
maximum number of metamodels (assuming the number of desired PO solutions H > M)
among all the frameworks, and M6 requires the least, involving only one metamodel in
each epoch.

The evolutionary algorithm used to solve each optimization problem is also provided
in the table.
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Table 1. Summary of metamodeled functions and optimization algorithms needed in each epoch for
all 10 frameworks.

Frame- Metamodeling #Metamodels Optimization #Opt.
Work Functions Method Runs

M1-1 ( f
1
, . . . , f

M
) M + J RGA H

(g
1
, . . . , g

J
)

M1-2 Same as above M + J NSGA-II/III 1
M2-1 ( f

1
, . . . , f

M
) & ACV M + 1 RGA H

M2-2 Same as above M + 1 NSGA-II/III 1
M3-1 ASF34 & (g

1
, . . . , g

J
) H + J RGA H

M3-2 Same as above H + J MM-RGA 1
M4-1 ASF34 & ACV H + 1 RGA H
M4-2 Same as above H + 1 MM-RGA 1
M5 S5 H RGA H
M6 S6 1 N-RGA 1

4. Adaptive Switching Based Metamodeling (ASM) Frameworks

Each metamodeling framework in our proposed taxonomy requires building meta-
models for either each objective and constraint or their aggregations. Thus, it is expected
that each framework may be most suitable for certain function landscapes that produce
a smaller approximation error, but that framework may not be good in other landscapes.
During an optimization process, an algorithm usually faces different kinds of landscape
complexities from start to finish. Thus, no one framework is expected to perform best
during each step of the optimization process. While each framework was applied to dif-
ferent multiobjective optimization problems in another study [6,20] from start to finish,
different problems were found to be solved best by different frameworks. To determine the
best performing framework for a problem, a simple-minded approach would be to apply
each of the 10 frameworks to solve each problem independently using SEmax high-fidelity
evaluations, and then determine the specific framework which performs the best using
an EMO metric, such as hypervolume [61] or inverse generational distance (IGD) [62].
This will be computationally expensive, requiring 10 times more than the prescribed SEmax.
If each framework is allocated only 1/10-th of SEmax, they may be insufficient to find
comparatively good solutions. A better approach would be to use an adaptive switching
strategy that chooses the most suitable framework at each epoch.

As mentioned in the previous section, in each epoch, exactly H new in-fill solutions
are created irrespective of the metamodeling framework used, thereby consuming H high-
fidelity SEs. Clearly, the maximum number of epochs allowable is Emax = � SEmax−N0

H 	 with
a minor adjustment on the SEs used in the final epoch. At the beginning of each epoch
(say, t-th epoch), we have an archive (At) of Nt high-fidelity solutions. For the first epoch,
these are all N0 Latin hypercube sampled (LHS) solutions, and in each subsequent epoch,
H new in-fill solutions are added to the archive. At the start of t-th epoch, each of the 10
frameworks is used to construct its respective metamodels using all Nt archive members.
Then, a 10-fold cross-validation method (described in Section 4.2) is used with a suitable
performance metric (described in Section 4.1) to determine the most suitable framework for
the next epoch. Thereafter, the best-performing framework is used to find a new set of H
in-fill solutions. They are evaluated using high-fidelity evaluations and all 10 frameworks
are statistically compared to choose a new best-performing framework for the next epoch.
This process is continued until SEmax evaluations are made. A pseudocode of the proposed
ASM approach is provided in Algorithm 1.
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Algorithm 1: Adaptive Swithing Framework
Input : Objectives: [ f1, . . . , fm]T , Constraints: [g1, . . . , gJ ]

T , frameworksMi with parameter Γi for
i ∈ {1 . . . , S} where S is number of frameworks, Number of initial samples, allowed
high-fidelity solution evaluations, solutions per epoch and cross-validation partitions are N0,
SEmax , u and K respectively.

Output : PT
1 t, Pt, Ft, Gt, e ← 0, ∅, ∅, ∅, N0;
2 Pnew ← LHS(ρ)// Initial sampling
3 while True do
4 Fnew = { fi(Pnew), ∀i ∈ {1, . . . , M}}// high-fidelity objectives eval.
5 Gnew = {gj(Pnew), ∀j ∈ {1, . . . , J}}// high-fidelity constraints eval.
6 Pt+1, Ft+1, Gt+1 ← (Pt ∪ Pnew), (Ft ∪ Fnew), (Gt ∪Gnew)// merge pop
7 e ← e + |Pnew|// number of high-fidelity evaluations
8 break if e ≥ SEmax// termination
9 Calculate {ASF(.), ACV(.), S5, S6} etc. from Pt+1, Ft+1 & Gt+1 as per requirements ofMi , ∀i;

10 Create random K partition (training and test set) Qk
t+1 from Pt+1, ∀k ∈ {1, . . . , K};

11 for k=1 to K do
12 for i=1 to S do

13 mi ← Build corresponding metamodels for frameworkMi using training set of Qk
t+1;

14 SEP(k, i)← Calculate selection-error probability for mi with test set of Qk
t+1;

15 MB ← Identify best frameworks from SEP;
16 Mb ← Randomly choose a framework fromMB;
17 Pnew ← Optimize frameworkMb(mb, Γb);
18 if |Pt+1|+ |Pnew| > SEmax then
19 Pnew ← Randomly pick SEmax − |Pt+1| solutions from Pnew;

20 t ← t + 1;
// end of epoch

21 return PT ← filter best solutions from Pt+1

4.1. Performance Metric for Framework Selection

To compare the performances among multiple surrogate models, mean squared error
(MSE) has been widely used in literature [30]. For optimization algorithms, the regression
methods that use MSE are known to be susceptible to outliers. For multiple objectives,
different objectives and constraints may have different scaling. Our pilot study shows that
even with the normalization of the objectives and constraints, the MSE metric does not
always correctly evaluate the metamodels. Here, we introduce a selection error probability
(SEP) metric which is more appropriate for an optimization task than MSE metric or even
other measures, such as, the Kendal rank correlation coefficient [63] metric. The usual
metrics may be better for a regression task, but for an optimization task, the proposed SEP
makes a more direct evaluation of pair-wise comparisons of solutions.

SEP is defined as the probability of making an error in correctly predicting the better
of two solutions compared against each other using the constructed metamodels. Con-
sider Figure 6, which illustrates an minimization task and comparison of three different
population members pair-wise. The true function values are shown in solid blue, while
the predicted function values are shown in dashed blue. When points x1 and x2 are com-
pared based on predicted function, the prediction is correct, since f ((x1) < f (x2) and
also f̃ (x) < f̃ (x2). However, when points x1 and x3 are compared against each other, the
prediction is wrong. Out of the three pairwise comparisons, two predictions are correct
and one is wrong, thereby making a selection error probability of 1/3 for this case. We
argue that in an optimization procedure, it is the SEP which provides a better selection
error than the actual function values, as the relative function values are important than the
exact function values.
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Figure 6. Selection Error Probability (SEP) concept is illustrated.

Mathematically, the SEP metric can be defined for n points as follows. For each of
N = (n

2) pairs of points (p and q), we evaluate the selection error function (E(p, q)), which is
one, if there is a mismatch between predicted winner and actual winner of p and q; zero,
otherwise. Then, SEP is calculated as follows:

SEP =
1
N

n−1

∑
p=1

n

∑
q=p+1

E(p, q). (20)

The definition of a “winner” can be easily extended to multiobjective and con-
strained multiobjective optimization by considering the domination [64] and constraint-
domination [54] status of two points p and q.

4.2. Selecting a Framework for an Epoch

Frameworks having least SEP value are considered to be the best for performing
the next epoch. We have performed 10-fold cross-validation in order to identify the best
frameworks. After each epoch, H new in-fill points are evaluated using high-fidelity
evaluations and added to the archive. In each fold of cross-validation, 90% solutions are
used for constructing metamodels with respect to the competing frameworks. Then the
corresponding frameworks are used to compare every pair (p and q) of the remaining
10% of archive points using the SEP metric. We apply constrained domination checks to
identify the relationship between these two solutions. We then compare this relationship
with the true relationship given by their high-fidelity values with the same constrained
domination check. We calculate the selection error function (E(p, q)) for each pair of test
archive solutions. The above process is repeated 10 times by using different blocks of
90% points to obtain 10 different SEP values for each framework. This cross-validation
procedure does not require any new solution evaluations, as the whole computations are
performed based on the already-evaluated archive points and their predicted values from
each framework. Thereafter, the best framework is identified based on the median SEP
value of frameworks.

Finally, the Wilcoxon rank-sum test is performed between the best framework and
all other frameworks. All frameworks within a statistical insignificance (having p > 0.05)
are identified to obtain the best-performing setMB. Then a randomly chosen framework
(Mb) is selected from MB for the next epoch. Since each of these frameworks performs
similarly in a sense of median performance, the choice of a random framework makes the
ASM approach diverse with the probability of using different metamodeling landscapes
in successive epochs. This procedure, in practice, prohibits the overall approach from
getting stuck in similar metamodeling frameworks for long, even it is one of the best
performing frameworks.
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4.3. Trust-Region Based Real-Coded Genetic Algorithms

Before we present the results, we need to discuss one other algorithmic aspect, which is
important. Since the metamodels are not error-free, predictions of solutions close to high-
fidelity solutions are usually more accurate than predictions far from them. Therefore,
we use a trust-region method [65] in which predictions are restricted within a radius
Rtrust from each high-fidelity solution in the variable space. Trust region method is used in
nonevolutionary metamodeling studies [35,36]. Another parameter Rprox is also introduced
which defines the minimum distance with which any new solution should be located from
an archive member to provide a diverse set of in-fill solutions. We simulate a feasible
search region Rsearch around every high-fidelity solution: Rprox ≤ Rsearch ≤ Rtrust. Using
the concepts of trust-region method from the literature [66], we reduce the two radii at
every epoch by constant factors: Rnew

trust = 0.75Rold
trust and Rnew

prox = 0.1Rnew
trust. A reduction of

two radii helps in achieving more trust on closer to high-fidelity solutions with iterations.
These factors are found to perform well on a number of trial-and-error studies prior to
obtaining the results presented in the next section.

The optimization methods for metamodels are modified as follows. At generation t,
parent population Pt is applied by a standard binary constrained tournament selection
on two competing population members using the metamodeled objectives, constraints,
or selection criteria described before to choose the winner. Standard recombination and
mutation operators (without any care for trust region concept) are used to create an
offspring population, which is then combined with the parent population Pt and then
better half is chosen for the next generation as parent population Pt+1 using the trust region
concept. We first count the number of solutions in the combined population within the
two trust regions. If the number is smaller than or equal to N, then they are copied to Pt+1
and remaining slots are filled with solutions which are closest to the high-fidelity solutions
in the variable space. On the other hand, if the number is larger than N, the same binary
constrained tournament selection method is applied to pick N solutions from them and
copied to Pt+1.

5. Results and Discussion

We present the results of the ASM approach on 18 different test and engineering
problems. The problems include two to five-objective, constrained, and unconstrained
problems. In order to get robust performance, we have included all 10 frameworks as op-
tions for switching in our ASM approach. The performance of ASM approach is compared
with each framework alone. We then compare ASM’s performance with three recently
suggested multiobjective metamodeling methods: MOEA/D-EGO [14], K-RVEA [23], and
CSEA [33].

5.1. Parameter Settings

For two-objective problems, we use NSGA-II [39] for M1-2 and M2-2 frameworks.
For problems with higher number of objectives, we use NSGA-III [60] procedure. Note that,
other multiobjective evolutionary algorithms (e.g., MOEA/D [14] or RVEA [23]) can also
be used. A population of size (N = 100) is used when the number of reference lines (H)
is less than 100. Otherwise, the population size is set identical to H. Initial archive size is
set according to Table 2. Other parameter settings are as follows: number of generations
τ = 300, SBX crossover probability pc = 0.95, polynomial mutation probability pm = 1/n
(where n is the number of variables), distribution indices for SBX and mutation operators
are ηc = 20 and ηm = 20, respectively. Initial value of Rtrust is set to be

√
n for the

normalized problems having variable domain [0, 1]n. The number of reference points,
SEmax, resulting epochs for each problem are presented in Table 2.
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Table 2. Parameter values for 18 problems.

Problem n M J N0 SEmax H #Epochs

ZDT1 10 2 0 100 500 21 20
ZDT2 10 2 0 100 500 21 20
ZDT3 10 2 0 100 500 21 20
ZDT4 5 2 0 100 1000 21 43
ZDT6 10 2 0 100 500 21 20
OSY 6 2 6 200 800 21 29
TNK 2 2 2 200 800 21 29
SRN 2 2 2 200 800 21 29
BNH 2 2 2 200 800 21 29
WB 4 2 4 300 1000 21 39

DTLZ2 7 3 0 500 1000 91 6
C2DTLZ2 7 3 1 700 1500 91 9

CAR 7 3 10 700 2000 91 15
DTLZ5 7 3 0 500 1000 91 6
DTLZ4 7 3 0 700 2000 91 15
DTLZ7 7 3 0 500 1000 91 6

DTLZ2-5 7 5 0 700 2500 210 9
C2DTLZ2-5 7 5 1 700 2500 210 9

5.2. Two-Objective Unconstrained Problems

First, we apply our proposed methodologies to two-objective unconstrained problems:
ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6. Table 3 presents the median IGD values of 11 runs
for each framework applied standalone from start to end. In the absence of any constraint
or having a single constraint, M1-1 and M2-1 are identical frameworks; so are M1-2 and
M2-2, M3-1 and M4-1, M3-2, and M4-2. This is why we keep a blank under M2-1, M2-2,
M4-1, M4-2 entries for unconstrained and single-constraint problems in the table. The best
performing method is first identified based on the median IGD values and is marked in
bold. A p-value from an Wilcoxon rank sum test of each other method is then computed
for 11 runs with the 11 runs of the best-performing method. If any algorithm produces a
p-value greater than 0.05, it indicates that the algorithm has produced a statistically similar
performance to the best-performing method and its median IGD value is then marked in
italics. It is clear from the table that the ASM approach (right-most column), being mostly
in bold, performs better or equivalent to all frameworks for all five ZDT problems, whereas
M1-1 performs the best in the first four problems. M1-2 and M3-1 performs well in three
test problems, whereas M6 performs the best in ZDT6 problem. Obtained nondominated
solutions of two-objective constrained and unconstrained problems of the median run
are presented in Figure 7. We also show performance of other comparing algorithms:
MOEA/D-EGO [14], K-RVEA [23], and CSEA [33] in the figure.

It is apparent that ASM approach is able to find a better distributed and converged set
of points than other methods for an identical number of SEs.

The epoch-wise proportion of usage of each framework over 11 runs of the ASM
approach is shown in Figure 8 for all five ZDT problems. For ZDT1, standalone M1-
1, M2-1, M3-1, and M4-1 perform in a statistically similar manner as shown in Table 3,
but the ASM approach mostly restricts its epoch-wise choice on M1-1, M1-2, M2-1, and
M2-2 and produces a similar performance in most epochs. Since multiple frameworks
can appear with a similar performance in an epoch, the proportions (shown in Figure 8)
need not sum up to one at each epoch. For ZDT2, only M1-1 and M1-2 perform well
as a standalone framework (Table 3), and the ASM approach is able to pick these two
frameworks to produce the best performing result. Notice that since ZDT1 and ZDT2 do
not have any constraint, M1-1 and M2-1 are identical frameworks and M1-2 and M2-2 are
identical frameworks. Except in ZDT6, M1-1, M1-2, M1-2, and M2-2, for which objectives
are independently metamodeled, turn to be dominating frameworks. However, for ZDT6,
M3-2, M4-2, and M6 show their dominance. In ZDT4, almost all the frameworks are found
to be switching between them early on but settles with M1 and M2 frameworks at the latter
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part of the optimization runs. Switching among different frameworks performs well on all
five problems.

The switching patterns of frameworks for the median performing run for ZDT1, ZDT4,
and ZDT6 are shown in Figure 9. Although multiple frameworks may exist at the end of
each epoch, the figure shows the specific framework which was chosen for this specific run.
For ZDT2, the ASM approach juggles mostly between M1 and M2 variants and produce
the best performing result, even better than M1 and M2 alone. In ZDT4, the ASM approach
alternates between eight frameworks in the beginning and settles with four of them (M3
and M4 variants) in the middle and then uses M3 variants at the end to produce statistically
equivalent result to M1-1 alone. Interestingly, while as a standalone framework from start
to end, M1-1 performs the best performance, the ASM approach does not use M1-1 in any
of the epochs. The switching of different frameworks from epoch to epoch is clear from
these plots.

Figure 7. Non-dominated solutions of the final archive for the median run of ASM approach for two-objective ZDT and
constrained problems. In all cases, a well-diversified set of near PO solutions is obtained with a limited solution evaluations.

5.3. Two-Objective Constrained Problems

Next, we apply ASM approach and all the frameworks separately to standard two-
objective constrained problems: BNH, SRN, TNK, OSY, and the welded beam problem
(WB) [54]. The ASM approach performs the best on three of the five problems, followed
by M1-1 which performed best in two problems; however, both these methods perform
the best statistically on all five problems. Other individual frameworks do not perform so
well. Figure 8 shows the epoch-wise utilization of different frameworks for TNK and WB
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in 11 runs. The plots for TNK shows that ASM almost always chooses M1-1 or M1-2 as the
best-performing frameworks as supported by IGD values in Table 3.

However, on WB problem, ASM approach selects M1-1, M5, and M6 in most of the
epochs, despite poor performance of the latter two when applied in a stand-alone manner
from start to end.
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Figure 8. Epoch-wise proportion of appearance of 10 frameworks within MB in 11 runs of the ASM
approach for ZDT problems, TNK, and welded beam design problems indicates the use of multiple
frameworks during optimization. Some problems uses some specific frameworks more frequently.
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Figure 9. Switching among frameworks for the median IGD run of the ASM approach for ZDT2,
ZDT4, and ZDT6 indicates that many frameworks are used during the optimization process.
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5.4. Three and More Objective Constrained and Unconstrained Problems

Next, we apply all ten frameworks and ASM approach to three-objective optimization
problems (DTLZ2, DTLZ4, DTLZ5, and DTLZ7) and also to two three-objective constrained
problem (C2DTLZ2 and the car side impact problem CAR [60]). Table 3 shows that while
M2-2 works uniquely the best on CAR, M1-2 and M3-2 on C2-DTLZ2, and M1-1, M1-2, and
M6 on DTLZ4, the performance of ASM approach is better or equivalent compared to all
10 problems.

The epoch-wise proportion of utilization of 10 frameworks in 11 runs are shown in
Figure 10 for three and five-objective problems. It can be clearly seen that M3-1 to M6
frameworks are not usually chosen by the ASM approach on most of these problems, except
for complex problems, such as DTLZ4. Switching has been confined between M1-1 to
M2-2 for most problems, except in DTLZ4, in which all generative frameworks are found
to be useful in certain stages during the optimization process. DTLZ7 works better with
simultaneous frameworks M1-2 and M2-2.
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Figure 10. Epoch-wise proportion of usage of 10 frameworks in 11 runs of the ASM approach for
three and five-objective problems.

On two five-objective unconstrained DTLZ2 and constrained C2-DTLZ2 problems,
M1-2 alone and ASM approach perform the best with statistically significant difference
with other frameworks. Constrained C2DTLZ2 problems use similar a switching pattern
for three and five-objective version of the problem.

Table 4 calculates the rank of each of the 10 frameworks for solving 18 problems. The
table shows that the ASM approach performs the best overall, followed by M1-2, M2-2, and
M3-1 respectively. It indicates that overall, metamodeling of objectives independently is a
better approach for these problems. M6, although being the most efficient in the number of
metamodels, performs the worst.
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Table 4. Average rank of 10 frameworks and the ASM approach on 18 problems based on Wilcoxon
rank-sum test.

M1-1 M2-1 M1-2 M2-2 M3-1 M4-1 M3-2 M4-2 M5 M6 ASM

3.66 6.16 2.88 3.00 4.55 5.44 6.22 6.94 6.33 8.55 1.11

5.5. Comparison with Existing Methods

Next, we examine the performance of our adaptive switching metamodeling (ASM)
strategy by comparing them with a few recent algorithms, namely, MOEA/D-EGO [14],
K-RVEA [23], and CSEA [33]. Algorithms are implemented in PlatEMO [67]. Since these
three competing algorithms can only be applied to unconstrained problems, only ZDT
and DTLZ problems are considered here. We plan to compare our constrained approach
with existing constraint handling methods [32]. Identical parameters settings as those used
with the ASM approach are used for the three competing algorithms. Table 5 presents the
mean IGD value of each algorithm. The Wilcoxon rank-sum test results are also shown.
It is clearly evident that ASM approach outperforms three competing methods, of which
K-RVEA performs well only on two of the nine problems.

Table 5. Median IGD on unconstrained problems using ASM approach, and MOEA/D-EGO, K-
RVEA, and CSEA algorithms. DNC is denoted as “Did not converge” within given time.

Problem MOEA/D-EGO K-RVEA CSEA ASM

ZDT1 0.05611 0.07964 0.95330 0.00130
p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 0.0910

ZDT2 0.04922 0.03395 1.01060 0.00055
p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 -

ZDT3 0.30380 0.02481 0.94840 0.00391
p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 -

ZDT4 73.25920 4.33221 12.71600 0.39992
p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 -

ZDT6 0.51472 0.65462 5.42620 0.24440
p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 0.0612

DTLZ2 0.33170 0.0548 0.11420 0.03701
p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 0.157

DTLZ4 0.64533 0.0449 0.08110 0.07934
p = 8.1×10−5 - p = 0.0022 p = 0.0380

DTLZ5 0.26203 0.0164 0.03081 0.01252
p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 0.211

DTLZ7 5.33220 0.0531 0.70520 0.06529
p = 8.1×10−5 - p = 8.1×10−5 p = 0.1930

DTLZ2-5 0.31221 0.23031 DNC 0.04918
p = 8.1×10−5 p = 8.1×10−5 DNC -

6. Conclusions

In this paper, we have provided a brief review of existing metamodeling methods
for multiobjective optimization, since there has been a surge in such studies in the recent
past. Since this calls for modeling multiple objectives and constraints in a progressive
manner, a recently proposed taxonomy of 10 frameworks involving metamodeling of
independent or aggregate functions of objectives and constraints have been argued to cover
a wide variety such methods. Each framework has been presented in detail, comparing
and contrasting them in terms of the number of metamodeling functions to be constructed,
the number of internal optimization problems to be solved, and the type of optimization
methods to be employed, etc. We have argued that each metamodeling framework may
be ideal at different stages during an optimization run on an arbitrary problem, hence,
an ensemble use of all 10 frameworks becomes a natural choice. To propose an efficient
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multiobjective metamodeling algorithm, we have proposed an adaptive switching based
metamodeling (ASM) methodology which automatically chooses the most appropriate
framework epoch-wise during the course of an optimization run. In order to choose the
best framework in every epoch, we perform statistical tests based on a newly proposed
acceptance criterion—selection error probability (SEP), which counts the correct pairwise
relationships of objectives between two test solutions in a k-fold cross-validation test,
instead of calculating the usual mean-squared error of metamodeled objective values from
true values. We have observed that SEP is less sensitive to outliers and is much better
suited for multiobjective constrained optimization. In each epoch, the ASM approach
switches to an appropriate framework which then creates a prespecified number of in-fill
points by using either an evolutionary single or multiobjective algorithm or by using a
multimodal or a niche-based real-parameter genetic algorithm. On 18 test and engineering
problems having two to five objectives and multiple constraints, the ASM approach has
been found to perform much better compared to each framework alone and also to three
other existing metamodeling multiobjective algorithms.

It has been observed that in most problems a switching between different M1 and
M2 frameworks, in which objectives are independently metamodeled, has performed the
best. Metamodeling of constraints in an aggregate manner or independently is not an
important matter. However, for more complex problems, such as ZDT3, ZDT6, ZDT4,
DTLZ4, and engineering design problems, all 10 frameworks, including M5 and M6, have
been involved at different stages of optimization. Interestingly, certain problems have
preferred to pick generative frameworks (Mi-1 and M5) only, while some others have
preferred simultaneous frameworks (Mi-2 and M6). Clearly, further investigation is needed
to decipher a detail problem-wise pattern of selecting frameworks, but this first study on
statistics-based adaptive switching has clearly shown its advantage over each framework
applied alone.

While in this paper, Kriging metamodeling method has been used for all frameworks,
this study can be extended to choose the best metamodeling method from an ensemble
of RBF, SVR, or other response surface methods to make the overall approach more com-
putationally efficient. In many practical problems, some functions may be relatively less
time-consuming, thereby creating a heterogeneous metamodeling scenario [16,68,69]. A
simple extension of this study would be to formulate a heterogeneous MP (for example,
M1-1’s objective function for a two-objective problem involving a larger evaluation time
for f1 can be chosen as

(
f̃

1
(x), f

2
(x)

)
, in which the objective f2 has not been metamodeled

at all). However, more involved algorithms can be tried for to handle such pragmatic
scenarios. Another practical aspect comes from the fact that a cluster of objectives and
constraints can come at the end of a single expensive evaluation procedure (such as, com-
pliance objective and stress constraint comes after an expensive finite element analysis on a
mechanical component design problem), whereas other functions come from a different
time-scale evaluation procedure. The resulting definition of an epoch and the overall
metamodeling approach need to be reconsidered to make the overall approach efficient.
Other tricks, such as, the use of a low-fidelity evaluation scheme for expensive objective
and constraints early on during the optimization process using a multifidelity scheme
and the use of domain-informed heuristics to initialize population and repair offspring
solutions must also be considered while developing efficient metamodeling approaches.
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Abstract: This study presents an empirical comparison of the standard differential evolution (DE) against
three random sampling methods to solve robust optimization over time problems with a survival time
approach to analyze its viability and performance capacity of solving problems in dynamic environments.
A set of instances with four different dynamics, generated by two different configurations of two
well-known benchmarks, are solved. This work also introduces a comparison criterion that allows the
algorithm to discriminate among solutions with similar survival times to benefit the selection process.
The results show that the standard DE holds a good performance to find ROOT solutions, improving the
results reported by state-of-the-art approaches in the studied environments. Finally, it was found that the
chaotic dynamic, disregarding the type of peak movement in the search space, is a source of difficulty for
the proposed DE algorithm.

Keywords: robust optimization; differential evolution; ROOT

1. Introduction

Optimization is an inherent process in various areas of study and everyday life. The search to improve
processes, services, and performances has originated in different solution techniques. However, there are
problems in which uncertainty is present over time, given that the solution’s environment can change at a
specific time. These types of problems are named Dynamic Optimization Problems (DOPs) [1]. This study
deals with dynamic problems where the environment of the problem changes over time. Various studies
have been carried out to resolve DOPs through tracking moving optima (TMO), which is characterized by
the search for and implementation of the global optimal-solution every time the environment changes [2–4].

Evolutionary algorithms, such as Differential Evolution (DE), have shown good performance to
solve tracking problems [5–7]. However, the search and implementation of the optimum each time the
environment changes may not be feasible due to different circumstances, such as time or cost.

The approach introduced in [8] tries to solve DOPs through a procedure known as robust optimization
over time (ROOT). ROOT seeks to solve DOPs by looking for a good solution for multiple environments
and preserve it for as long as possible, while its quality does not decrease from a pre-established threshold.
The solution found is called Robust Solution Over Time (RSOT).

In this regard, Fu et al. [9] introduced different measures to characterize environmental changes.
After that, the authors developed two definitions for robustness [10]. The first one was based on “Survival
Time”—when a solution is considered acceptable (an aptitude threshold must be previously defined).
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The second definition was based on the “Average Fitness”—the solution’s average fitness is maintained
during a previously defined time window. The measurements incorporate information on the concepts
of robustness and consider the values of error estimators. An algorithm performance measure was
suggested to find ROOT solutions. The study was carried out using a modified version of the moving
peaks benchmark (mMPB) [10].

Jin et al. [11] proposed a ROOT framework that includes three variants of the Particle Swarm
Optimization algorithm (PSO). PSO with a simple restart strategy (sPSO), PSO with memory scheme
(memPSO), and a variant that implements the species technique SPSO. The authors applied a radial basis
function as an approximation and an autoregressive model as a predictor.

On the other hand, Wang introduced the concept of robustness in a multi-objective environment,
where a framework is created to find robust Pareto fronts [12]. The author adopted the dynamic
multi-objective evolutionary optimization algorithm in the experiments. At the same time, Huang et al.
considered the cost derived from implementing new solutions, thus addressing the ROOT problem by a
multi-objective PSO (MOPSO); The Fu metric was applied in that study [13].

Yazdani et al. introduced a new semi-ROOT algorithm that looks for a new solution when the current
one is not acceptable, or if the current one is acceptable but the algorithm finds a better solution, whose
implementation is preferable even with the cost of change [14].

Novoa-Hernández, Pelta, and Corona analyzed the ROOT behavior using some approximation
models [15]. The authors suggested that the radial basis network model with radial basis function works
better for problems with a low number of peaks. However, considering all the scenarios, the SVM model
with Laplace Kernel shows notably better performance to those compared in the tests carried out.

Novoa-Hernández and Amilkar in [16] reviewed different relevant contributions to ROOT. The
authors analyzed papers hosted in the SCOPUS database. Concerning new methods to solve ROOT
problems, Yazdani, Nguyen, and Branke proposed a new framework using a multi-population approach
where sub-populations track peaks and collect information from them [17]. Adam and Yao introduced
three methods to address ROOT (Mesh, Optimal in time, and Robust). The authors mentioned that they
significantly improves the results obtained for ROOT in the state-of-the-art [18]. Fox, Yang and Caraffini
studied different prediction methods in ROOT, including the Linear and Quadratic Regression methods,
an Autoregressive model, and Support Vector Regression [19]. Finally, Liu and Liang mapped a ROOT
approach to minimize the electric bus transit center’s total cost in the first stage [20].

In different studies, DE has been used to solve ROOT problems using the Average Fitness approach,
achieving competitive results [21,22]. However, to the best of the authors’ knowledge, there are no studies
that determine DE’s performance in solving ROOT problems with the Survival Time approach, and this
is where this work precisely focuses. This research aims to present an empirical comparison of the
standard DE against three random sampling methods to solve robust optimization over time problems
with a survival time approach to analyze its viability and performance capacity of solving problems in
dynamic environments.

The paper is organized as follows: Section 2 includes ROOT’s definition under a survival time
approach, while in Section 3 the implemented methods based on random sampling are detailed. Section 4
details the standard differential evolution and the objective function used by the algorithm in the present
study. Section 5 specifies the benchmark problems to be solved. After that, Section 6 specifies the
experimental settings and Section 7 shows the results obtained. Finally, Section 8 summarizes the
conclusions and future work.
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2. Survival Time Approach

Under this approach, a threshold is predefined to specify the quality that a solution must have to be
considered good or suitable to survive. Once the threshold is defined, the search begins for a solution
whose fitness can remain above the threshold in as many environments as possible. In this sense, the
solution is maintained until its quality does not meet the predefined expectations, and then new robust
solution over time must be sought.

In Equation (1), the function Fs(�x, t, V) to calculate the survival time fitness of a solution �x at time t is
detailed. It measures the number of environments that a solution remains in above the threshold V.

Fs(�x, t, V) =

{
0 if ft(�x) < V
1 + max{l|∀i ∈ {t, t + 1, ..., t + l} : fi(�x) ≥ V}, in other case

(1)

3. Random Sampling Methods

In the study presented in [18] the authors proposed three random sampling methods to solve
ROOT problems, with a better performance against the state-of-the-art algorithms. The methods are
described below.

In all three methods, the best solution should be searched in the current time’s solutions space,
modifying the solution space when the “Robust method” is used and then using that solution next time
according to the approach used (Survival Time or Average Fitness).

3.1. Mesh

This method performs random sampling in the current search space, then uses the sample with the
best fitness in the current environment as a robust solution over time, using the solution found in the
following times (Figure 1).

Figure 1. Mesh method. The yellow point is the robust solution found by the method and it is used in the
next times.

3.2. Time-Optimal

This method performs a search similar to the “Mesh” method, with the difference that the best
solution found being improved using a local search (Figure 2).
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Figure 2. Time-optimal method. The green point is the robust solution found by the method, which is used
in the next times.

3.3. Robust

This method performs a search similar to the “Mesh” method, differing in that a smoothing
preprocessing of the solution space is performed before the search process. As seen in Figure 3, the solution
obtained (green dot) can vary concerning the solution with better suitability in the raw environment
(yellow dot).

Figure 3. Robust method. The green point is the robust solution found by the method which is used in the
next times.

4. Differential Evolution

In 1995, Storm and Price proposed an evolutionary algorithm to solve optimization problems in
continuous spaces. DE is based on a population of solutions that, through simple recombination and
mutation, evolves, thus improving individuals’ fitness [23].

Considering the fact that this work, to the best of the authors’ knowledge, is the first attempt to study
DE in this type of ROOT problems (i.e., survival time), and also taking into account that the most popular
DE variant (DE/rand/1/bin) has provided competitive results in ROOT problems under an average
fitness approach [21,22], the algorithm used in this study is precisely the most popular variant known as
DE/rand/1/bin, where ’‘rand” (random) refers to the base vector used in the mutation, ‘’bin” (binomial)
refers to the crossover type used, and 1 means one vector difference computed.

The algorithm starts by randomly generating a uniformly distributed population �xi,G ∈ i = 1, ..., NP,
where NP is the number of individuals for each generation ‘’G”.

After that, the algorithm enters an evolution cycle until the stop condition is reached. We applied the
maximum number of evaluations allowed ‘’MAXEval” as the stop condition.

Subsequently, to adapt individuals, the algorithm performs recombination, mutation, and the
replacement of each one in the current generation. One of the most popular mutations is DE/rand/1 in
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Equation (2), where r0 �= r1 �= r2 �= i are the indices of individuals randomly chosen from the population,
1 is the number of differences used in the mutation and F > 0 is the scale factor.

�vi,G = �xr0,G + F(�xr1,G −�xr2,G) (2)

The vector obtained �vi,G is known as mutant vector, which is recombined with the target (parent)
vector by binomial crossover, as detailed in Equation (3).

ui,j,G =

{
vj,i,G, i f

(
randj ≤ CR

)
or (j = jrand)

xj,i,G, otherwise
(3)

In this study, the elements of the child vector (also called trial) ui,j,G are limited according to the
pre-established maximum and minimum limits, also known as boundary constraints. Based on the study
in [24], we use the boundary method (see Algorithm 1, line 14). In the selection process, the algorithm
determines the vector that will prevail for the next generation between parent (target) and child (trial), as
expressed in Equation (4).

�xi,G+1 =

{
�ui,G, i f ( f (�ui,G) ≤ f (�xi,G))

�xi,G, otherwise
(4)

Algorithm 1: “DE/rand/1/bin” Algorithm. NP, MAXEval , CR and F are parameters defined by
the user. D is the dimension of the problem.

1 G ← 0
2 Generate an uniform initial random population �xi,G ∈ i = 1, ..., NP
3 Compute f (�xi,G )∀i, i = 1, ..., NP
4 Eval ← NP
5 while Eval < MAXEval do

6 for j = 1 to NP do

7 Randomly select r0 �= r1 �= r2 �= i:
8 jrand ← randi([1, D])

9 for j = 1 to D do

10 if randj([0, 1]) < CR or j = jrand then

11 ui,j,G ← xr0,j,G + F(xr1,j,G − xr2,j,G)

12 else

13 ui,j,G ← xi,j,G

14 ui,G ← min(max(ui,G, xmin), xmax)
15 if f (�ui,G) ≥ f (�xi,G) then

16 �xi,G+1 ← �ui,G
17 else

18 �xi,G+1 ← �xi,G

19 Eval ← Eval + 1
20 if Eval >= MAXEval then

21 break

22 G ← G + 1
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In Equation (1), the function to obtain an individual’s fitness through the survival time approach is
shown. However, the fitness obtained is not enough to differentiate similar individuals, i.e., individuals
who have survived the same amount of environments. That is why, in the implemented algorithm, we
consider an additional calculation to help identify better solutions.

We propose to obtain the average of the solution’s quality in the environments that have survived.
This average value helps to differentiate solutions with similar survival times. Therefore, the objective
function now considers both, the number of surviving environments and the performance achieved by
this solution in those environments that it has survived.

Considering the fact that the maximum height of the peaks is defined at 70 (see Table 3), the objective
function for the implemented algorithm is given by the result obtained in Equation (1) multiplied by 100
plus the average fitness of the solution throughout the environments it has survived.

5. Benchmark Problems

The problems tackled in this study are based on Moving Peaks Benchmark (MPB) [25] and are
configured in a similar way to that used in various specialized literature publications on ROOT, and
specifically as used in [18].

Two modified MPBs can be highlighted, which are described in the following subsections. The
dynamics used are presented in Table 1, where Δφ is the increment from time t to time t + 1 of the
φ parameter.

Table 1. Dynamic Functions.

1. Small Step Δφ = γ · ‖φ‖ · r · φseverity
2. Large Step Δφ = ‖φ‖ · (γ ∗ sign(r) + (γmax − γ) · r) · φseverity
3. Random Δφ = N(0, 1) · φseverity
4. Chaotic φt+1 = φmin + A · (φt − φmin) · (1− (φt − φmin)/‖φ‖)

5.1. Moving Peaks Benchmark 1 (MPB1)

In this benchmark, environments with conical peaks of height h(t) ∈ [hmin, hmax], width w(t) ∈
[wmin, wmax] and center c(t) ∈ [xmin, xmax] are generated, where the design variable x is bounded in
[xmin, xmax]. The function to generate the environment is expressed in Equation (5), where the dynamic
function for height and width is given as in Table 1, while the center moves according to Equation (6).
ri follows an uniform distribution of a D-dimensional sphere of radius si, and λ ∈ [0, 1] is a fixed parameter.

f (�x,�a(t)) = maxi=m
i=1 {hi(t)− wi(t)‖�x−�ci(t)‖l2} (5)

�ci(t + 1) = �ci(t) +�vi(t + 1)

�vi(t + 1) = si (1− λ)ri(t + 1) + λvi(t)
‖(1− λ)ri(t + 1) + λvi(t)‖

(6)

In the present study, two problems generated by this benchmark are solved, with λ = 0 it implies
that the movement of the peaks is random, while with λ = 1 it implies that the movement is constant in
the direction �vi(t).

5.2. Moving Peaks Benchmark 2 (MPB2)

The set of test functions in this benchmark is described in Equation (7), where�a(t) is the environment
at time step t, hi(t), wi(t),�ci(t) is the height, width and center of the i-th peak function at time t, respectively;
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�x is the decision variable and m is the total number of peaks. hi(t + 1) and wi(t + 1) vary according to
Table 1. An additional technique that uses a rotation matrix is used to rotate the centers [25].

f (�x,�a(t)) =
1
d

d

∑
j=1

maxi=m
i=1 {hi(t)− wi(t)‖�x−�ci(t)‖} (7)

6. Experimental Settings

Based on the information in Section 5, different environments are generated as test problems and they
are summarized in Table 2.

Table 2. Summary of problems.

Benchmark Abbreviation Configuration Dynamic (δ)

MPB1 B1Dδ− 1 λ = 0 {1,2,3,4}
MPB1 B1Dδ− 2 λ = 1 {1,2,3,4}
MPB2 B2Dδ− a uniform start of peak distribution {1,2,3,4}
MPB2 B2Dδ− b random start of peak distribution {1,2,3,4}

The parameter settings of the problems are detailed in Table 3.

Table 3. Parameters settings.

Parameter MPB1 MBP2

Number of peaks m 5 25
Number of dimensions d 2 2
Search range [xmin, xmax] [0, 50] [−25, 25]
Height range [hmin, hmax] [30, 70] [30, 70]
Width range [wmin, wmax] [1, 12] [1, 13]
Angle range [θmin, θmax] - [−π, π]
heightseverity U(1, 10) 5.0
widthseverity U(0.1, 1) 0.5
angleseverity - 1.0
Initial h 50 U(hmin, hmax)
Initial w 6 U(wmin, wmax)
Initial Angle - 0
λ {0, 1} -
Number of dimensions for rotation lr - 2
Computational budget at each step Δe 2500 2500

The height and width of the peaks were randomly initialized in the predefined ranges. The centers
were randomly initialized within the solution space.

A survival threshold V = 50 is selected, representing the most difficult cases that have been resolved
in the literature under the survival approach. The higher the survival threshold, the more difficult it is to
find solutions that satisfy multiple scenarios.

The DE parameters were fine-tuned using the iRace tool [26] and they are summarized in Table 4,
where NP is the population size, CR is the crossover parameter, and F is the scale factor.
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Table 4. Parameter settings of DE.

NP CR F

54 0.53 0.73

For each problem, a solution is sought at each time t ∈ (2, ..., 100).
In order to evaluate an RSOT in a specific time, approximate and predictive methods have been used

in the literature so that the performance of an algorithm depends on their accuracy. However, in this
study, we want to know the DE behavior when solving the ROOT environments considering they had
ideal predictors to evaluate the solutions. In this regard, the process to study the algorithm’s ability to find
RSOT using DE at each instant of time is as follows:

• A solution is sought according to the algorithm described in Section 4, and the measured solution
value by Equation (1) is recorded.

• Subsequently, to obtain the algorithm’s performance in the following environment, the search process
is performed again using the real-environments; the best solution found is newly measured by
Equation (1) and is also recorded.

• The described procedure is carried out at each instant of time that is being recorded. Therefore, in the
present study, it is not necessary to detect environmental changes to know at what point in time a
solution is no longer considered good. Each time a solution is sought, the algorithm initializes its
population randomly, avoiding diversity problems.

7. Results and Discussion

The results for the problems generated with dynamics 1–4 are detailed in Table 7 and graphically
shown in Figures 6–9, for each one of the four dynamics. In all four figures, those labeled with (a) and (b)
present the results obtained in the MPB1 problems, while those labeled with (c) and (d) refer to the MPB2
problems. In all cases, the average survival values obtained by Mesh, time-optimal and robust approaches
are compared against DE.

Non-parametric statistical tests [27] were applied to the corresponding numerical results presented in
Table 7. The 95%-confidence Kruskal–Wallis and 95%-confidence Friedman tests were applied and their
obtained p-values are reported in Table 5.

Table 5. Results of the 95%-confidence Kruskal–Wallis (KW) and Friedman (F) tests. The symbol (*)
after letter ‘’D” in the Problem column refers to the type of dynamic used according to columns Dynamic.
A p-value less than 0.05 means that there are significant differences among the compared algorithms in
such problems.

Problem Instance
p-Value

Dynamic 1 Dynamic 2 Dynamic 3 Dynamic 4

KW F KW F KW F KW F

B1D*-1 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

B1D*-2 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0082 <0.0001

B2D*-a <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

B2D*-b <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

To further determine differences among the compared algorithms, the 95%-confidence Wilcoxon test
was applied to pair-wise comparisons for each problem instance. The obtained p-values are reported in

36



Math. Comput. Appl. 2020, 25, 72

Table 6, where the significant improvement with a significance level α = 0.5 is shown in boldface. We can
observe that the Wilcoxon test confirmed significant differences obtained in Kruskal–Wallis and Friedman
Tests, most of them comparing DE/rand/1/bin versus random sampling methods, with the exception of
four corresponding to problems generated with dynamic 4 (B1D4-1 and B1D4-2 both, in the comparison of
DE/rand/1/bin versus Mesh and DE/rand/1/bin versus Time-optimal).

Table 6. Results of the 95%-confidence Wilcoxon signed-rank test. A p-value less than 0.05 means that exists
significant differences.

Problem Algorithm
p-Value

Dynamic 1 Dynamic 2 Dynamic 3 Dynamic 4

B1D*-1

DE/rand/1/bin versus Mesh <0.0001 <0.0001 <0.0001 0.2545

DE/rand/1/bin versus Time-optimal <0.0001 <0.0001 <0.0001 0.2881

DE/rand/1/bin versus Robust <0.0001 <0.0001 <0.0001 <0.0001

Mesh versus Time-optimal 0.1167 0.0019 0.0483 0.8758

Mesh versus Robust <0.0001 0.0006 0.1019 <0.0001

Time-optimal versus Robust <0.0001 <0.0001 0.0007 <0.0001

B1D*-2

DE/rand/1/bin versus Mesh <0.0001 <0.0001 <0.0001 0.7724

DE/rand/1/bin versus Time-optimal <0.0001 <0.0001 <0.0001 0.7531

DE/rand/1/bin versus Robust <0.0001 <0.0001 <0.0001 0.0037

Mesh versus Time-optimal 0.9602 0.9358 0.8852 0.9984

Mesh versus Robust 0.0987 0.9078 0.0087 0.0067

Time-optimal versus Robust 0.104 0.8558 0.0126 0.0069

B2D*-a

DE/rand/1/bin versus Mesh <0.0001 <0.0001 <0.0001 <0.0001

DE/rand/1/bin versus Time-optimal <0.0001 <0.0001 <0.0001 <0.0001

DE/rand/1/bin versus Robust <0.0001 <0.0001 <0.0001 <0.0001

Mesh versus Time-optimal 0.8796 0.6044 0.8479 0.9221

Mesh versus Robust 0.5502 0.9639 <0.0001 0.761

Time-optimal versus Robust 0.4222 0.5658 <0.0001 0.7259

B2D*-b

DE/rand/1/bin versus Mesh <0.0001 <0.0001 <0.0001 <0.0001

DE/rand/1/bin versus Time-optimal <0.0001 <0.0001 <0.0001 <0.0001

DE/rand/1/bin versus Robust <0.0001 <0.0001 <0.0001 <0.0001

Mesh versus Time-optimal 0.7937 0.9805 0.6242 0.9028

Mesh versus Robust 0.7231 0.6922 0.0001 0.3679

Time-optimal versus Robust 0.8786 0.6761 0.0014 0.3369

Table 7 summarizes the mean and standard deviation statistical results obtained by the compared
algorithms. It can be seen that DE/rand/1/bin obtains the highest average values in all the problems
that were solved. Nevertheless, the higher standard deviation values obtained by DE/rand/1/bin in
problems B1D4-1 and B1D4-2 confirm those expressed by the non-parametric tests—the differences are not
significant with respect to the random sampling methods. Figures 4 and 5 have the box-plots for B1D4-1
and B1D4-2, where all the compared algorithms reach survival times between 1 and 3, with the exception
of the Robust approach in B1D4-1, but such a difference was not significant.
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Table 7. Statistical Results obtained by each Algorithm in each one of the problem instances. Best statistical
results are marked with boldface.

Problem Algorithm
Dynamic 1 Dynamic 2 Dynamic 3 Dynamic 4

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

B1D*-1

DE/rand/1/bin 10.1438 1.5056 6.1306 0.6816 10.6581 1.4973 1.5678 1.7595

Mesh 4.9337 0.7772 2.9772 0.3448 5.6844 0.8894 0.9429 0.8177

Time-optimal 5.0527 0.7756 3.0365 0.3503 5.7979 0.8857 0.9569 0.8728

Robust 4.4819 0.7853 2.8947 0.3577 5.5371 0.9837 0.3176 0.2515

B1D*-2

DE/rand/1/bin 13.5633 3.866 8.623 2.1388 13.8394 3.6942 1.8219 1.9531

Mesh 10.329 4.0575 5.6162 1.8619 10.5887 3.9488 1.7269 1.8693

Time-optimal 10.3309 4.0328 5.6104 1.8461 10.5731 3.923 1.7235 1.8584

Robust 10.1437 3.9241 5.6533 1.8166 10.2246 3.7413 1.2843 1.4648

B2D*-a

DE/rand/1/bin 19.1757 0.1236 19.8474 0.0399 19.381 0.0748 18.0117 0.3944

Mesh 6.596 0.7258 6.5154 0.26 6.3956 0.3199 2.7558 0.229

Time-optimal 6.5914 0.7413 6.5321 0.2713 6.4116 0.3177 2.7593 0.2315

Robust 6.6709 0.7904 6.5109 0.2611 6.1947 0.2593 2.7411 0.2276

B2D*-b

DE/rand/1/bin 16.9954 0.4005 18.1336 0.1144 17.7187 0.1345 13.1993 0.8169

Mesh 5.5729 0.8528 5.2304 0.3239 4.8788 0.2544 2.2192 0.3461

Time-optimal 5.5825 0.836 5.233 0.3227 4.868 0.2463 2.2238 0.3472

Robust 5.6479 0.981 5.215 0.3266 4.7578 0.2359 2.1818 0.334
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Figure 4. Boxplot of the results obtained in B1D4-1.
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Figure 5. Boxplot of the results obtained in B1D4-2.

With respect to the graphical results, when MPB1 (items (a) and (b)) is compared against MPB2 (items
(c) and (d)) in Figures 6–9, it is clear that MPB1 is more difficult to solve by all four approaches. However,
in all cases (MPB1 and MPB2 in the four dynamics) DE is able to provide better results against the three
other algorithms. Such a performance is more evident in all MPB2 instances.

Regarding MPB1 (items (a) and (b)), it is important to note that it is more difficult to find higher
survival times when the peak movement is random (items (a), where λ = 0).

Another interesting behavior found is that all four compared methods are affected mainly by
the random and chaotic dynamics in those MPB1 instances, the latter one being the most complex
(chaotic dynamic). However, even in such a case DE was able to match and in some cases improve the
survival values of the compared approaches. This source of difficulty now found motivates part of our
future research.
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(a) B1D1− 1.
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(b) B1D1− 2.
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(c) B2D1− a.
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(d) B2D1− b.
Figure 6. Results obtained using dynamic 1.
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(a) B1D2− 1.
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(b) B1D2− 2.
Figure 7. Cont.
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(c) B2D2− a.
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(d) B2D2− b.
Figure 7. Results obtained using dynamic 2.
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(a) B1D3− 1.
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(b) B1D3− 2.
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(c) B2D3− a.
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(d) B2D3− b.
Figure 8. Results obtained using dynamic 3.
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(a) B1D4− 1.
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(b) B1D4− 2.
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(c) B2D4− a.
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(d) B2D4− b.
Figure 9. Results obtained using dynamic 4.

8. Conclusions

A performance analysis of the differential evolution algorithm, with one of its original variants, called
DE/rand/1/bin, when solving robust optimization over time problems with a survival time approach, was
presented in this paper. Three state-of-the-art random sampling methods to solve ROOT problems were
used for comparison purposes. Sixteen generated problems by two benchmarks with two configurations
and four different dynamics were solved. The solutions generated by the DE were obtained using the real
environments without prediction mechanisms with the aim to analyze its behavior in ideal conditions. The
findings supported by the obtained results indicate that DE is a suitable algorithm to deal with this type of
dynamic search space when a survival time approach is considered. Moreover, the additional criterion
that was added to the DE objective function allowed the algorithm to better discriminate between similar
solutions in terms of survival time. Furthermore, it was found that the combination of a chaotic dynamic
with both, random and constant peak movements, is a source of difficulty that requires further analysis.

This last finding is the starting point of our future research, where more recent DE variants, such as
DE/current-to-p-best, will be tested in those complex ROOT instances. Moreover, the effect of predictors
in DE-based approaches will be studied.
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Abstract: Combining multiple modules into one framework is a key step in modelling a complex
system. In this study, rather than focusing on modifying a specific model, we studied the performance
of different calculation structures in a multi-objective optimization framework. The Hydraulic
and Risk Combined Model (HRCM) combines hydraulic performance and pipe breaking risk in
a drainage system to provide optimal rehabilitation strategies. We evaluated different framework
structures for the HRCM model. The results showed that the conventional framework structure
used in engineering optimization research, which includes (1) constraint functions; (2) objective
functions; and (3) multi-objective optimization, is inefficient for drainage rehabilitation problem.
It was shown that the conventional framework can be significantly improved in terms of calculation
speed and cost-effectiveness by removing the constraint function and adding more objective functions.
The results indicated that the model performance improved remarkably, while the calculation speed
was not changed substantially. In addition, we found that the mixed-integer optimization can decrease
the optimization performance compared to using continuous variables and adding a post-processing
module at the last stage to remove the unsatisfying results. This study (i) highlights the importance
of the framework structure inefficiently solving engineering problems, and (ii) provides a simplified
efficient framework for engineering optimization problems.

Keywords: optimization framework; drainage rehabilitation; overflooding; pipe breaking

1. Introduction

Urban flooding happens when the capacity of a municipal sewerage system cannot support the
amount of water that emerges in a short period of time [1]. Such a large amount of water could have
either resulted from an intensified storm due to climate change [2–4], or freshets that amplify the stress
on the sewerage system [5]. In order to release the stress of overflooding in cities, transforming the
sewerage system and increasing its resilience to extreme weather can be a priority to increase the
resilience of cities.

Computational simulations have been used for urban planning, including underground
infrastructure design and pipe rehabilitation in recent years [6,7]. The essential idea is to build
an optimization framework and apply it to modify a set of drainage system related variables such
as the diameter, slope, and depth of the pipe. The framework requires the users to select applicable
objective functions, which can be the system hydraulic performance or system pipe breaking risk [8,9],
to maximize the performance of the system. Previous studies have focused on various aspects such
as the cost of flooding damage [10], and integrated 1D/2D hydraulic modelling, where the SWMM5
was used as the 1D hydraulic model for sewer system simulations and a 2D model was employed to
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analyze the overflooding consequences in the drainage basin to obtain more accurate results on the
damage of urban flooding [11].

In addition to the surcharge, drainage systems face more challenges, such as ageing due to natural
and human impacts [12]. The threat of drainage pipes breaking cannot be ignored at locations across
the world [13–15]. Canada’s Infrastructure Card [12], reported that nearly one-third of potable water
and sewerage pipes underground are imposed to breaking risk. Due to the ageing of the pipe system,
the breakage of water supply pipes and sewerage pipes can introduce secondary pollutants into potable
water and threaten human health [16].

Accurate predictions of the current and future conditions of a sewerage system using available
assessment data are crucial for developing appropriate strategies for ageing pipe maintenance and
rehabilitation. Statistical models are used to predict the probability of pipe failure in a drainage
system [17]. The advantage of statistical models is that they are easy to apply in a large system to
calculate the systematical performance when the random impacts can be ignored. Some statistical
models such as the homogeneous Poisson processes model, non-homogeneous Poisson process model,
and zero-inflated non-homogeneous Poisson process model, which use the age (time) of a pipe to
predict its failure, have good performance in practice [18,19].

Altarabsheh et al. [20,21] conducted research based on whole lifecycle assessment, genetic
algorithm, and Monte Carlo simulation to maximize network condition and serviceability while
minimizing network risk of failure and total lifecycle cost for the entire planning period. State transition
in a Markov chain can simulate the life of a pipe and predict the whole life risk of a pipe [22].
Other methods such as evolutionary polynomial regression [23], ordinal regression model [24],
and flexible fuzzy model [25] are promising methods. Researchers have also concentrated on deciding
the consequences of failure, such as the analytical hierarchy process [26,27]. However, this line of
research has not been applied with drainage surcharge for drainage rehabilitation and design.

Cai et al. [28] combined hydraulic performance and breaking risk via a multi-objective genetic
algorithm optimization framework. By building a relationship between rehabilitation and hydraulic
performance as well as pipe breaking risk, they provided a novel decision support system for drainage
systems rehabilitation. In their methodology, they used the traditional three-element optimization
method: (1) set constraint functions to allow the system meet basic requirements; (2) set objective
functions to improve the performance of the system; and (3) use a linkage module to link different
modules in the system. They used one constraint function to control the overflooding in an urban
system, and used a hydraulic performance objective function to optimize the rehabilitation methods.
In their paper, they used a breadth-first searching algorithm to separate the problematic system and
then optimized the system by a hydraulic diagnostic model [29] from the high impact drainage chain
route to the low impact drainage chain route. This method provides good results for various drainage
systems. However, there are some limitations in their framework. The overflooding was solved by
constraint function, which means they added many logistic judgments in their algorithm, and that will
decrease the calculation speed. Second, this hydraulic diagnostic model is designed to search for a
narrow pipe in a chain route in a drainage system. Therefore, it can decrease the speed when they
apply this method chain by chain to search for all the narrow pipes in the drainage network. In their
research, they only discussed the genetic algorithm (GA), which neglected other optimization methods,
such as particle swarm optimization (PSO) that has been used in drainage rehabilitation problems [30].

In this research, we improved the three-element optimization framework, which included
constraint functions, objective functions, and multi-objective optimization, and created a faster and
more accurate framework for urban drainage system. We improved their first-generation rehabilitation
methodology from four aspects. (1) Enlighted by a multiple-stage decision support system [31],
we improved their framework to get accurate results by adding a new objective function to optimize
the budget distribution. (2) We tested whether the constraint function can be removed, and the final
results can be selected by a filter to increase the speed. (3) We examined whether it is accurate enough
to use the overflooding index in each node for optimization. In this way, the new algorithm does not
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need to search the network chain by chain. (4) We tested whether particle swarm optimization can
have better results than the genetic algorithm in this problem. This is because, in literatures, there is a
debate on which method has a better performance in drainage systems.

This paper is organized as follows: first, the structure of our new algorithms is introduced;
subsequently, we specify the new algorithms in a computational model, Hydraulics and Risk Combined
Model (HRCM). Then, two scenarios are studied to verify those new methods. Finally, we provide a
combined methodology to replace/rehabilitate pipes in the drainage system for urban flooding control
and pipe breaking precaution.

2. Materials and Methods

2.1. Introduction to the Hydraulics and Risk Combined Model Model

In this research, we used the Hydraulics and Risk Combined Model (HRCM) [28] to calculate the
hydraulic performance, risk, and maintenance cost of a drainage system. There are five modules in the
HRCM model:

(1) Hydraulic simulation module: In this module, the SWMM5 model calculates hydraulic grade
line in the drainage system. Then, the hydraulic diagnostic model is applied to this system to calculate
the hydraulic performance index (flooding index) for the drainage.

The GA-HRMC method has a hydraulic diagnostic model [29], which calculates the overflooding
impact of a pipe to the system; Equations (1)–(3). According to this model, the hydraulic impacts
of a pipe are represented by the sum of the pipe to the system (other pipes). The diagnostic model
can have better performance than using the ratio of the hydraulic grade line over the depth of the
manhole [32]. The system overflooding objective function Ns is calculated by the weight average value
of the overflooding ratio of each pipe weighted by its length; Equation (4).

Ni = 100%× HUS
i

Gi
(1)
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i = Nmin + (Nmax − Nmin)
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i −HDS
i

)
Gi
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HDS

i
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∑
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Nj
i li

/∑
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where HUS
i = upstream hydraulic grade line of pipe i; HDS

i = downstream hydraulic grade line of pipe
i; Gi = height of the node i; Ni

i = net effect of the surcharge causes by pipe i; Ni = overflooding ratio of
node i; Nmin =minimum overflooding ratio of node i; Nmax =maximum overflooding ratio of node i;
Ns = system overflooding index.

(2) Risk assessment module: In the risk assessment module, the probability of failure for each
pipe is calculated according to the age of each pipe. Then, a statistical exponential equation gives the
probability of breaking for each pipe. The breaking probability of each pipe multiplies the consequence
of failure of that pipe to get the breaking risk of that pipe. We assumed that the probability of failure
for each pipe is given in Equation (5):

P(t) = a× eb × (t−c) (5)

where: P(t) = the possibility of failure with time t (year). The a, b, and c are fitting parameters.
In the risk-informed model, Cai et al. [28] assumed a statistical exponential model [33] to calculate

the probability of failure; and they used the consequence of failure criteria by Baah et al. [34] to
calculate the weighted system pipe breaking risk index. In this study, we kept the same setting in our
risk-informed model. The objective function of the system pipe breaking risk RS is given in Equation (6):
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RS =

∑
liCiPi∑

li
(6)

where RS = the risk of the system; Ci = the consequence of a failure of pipe i; Pi = the possibility of
failure of pipe i; li = the length of pipe i.

(3) Rehabilitation module: In this module, different rehabilitation methods are connected to the
age and diameter of a pipe. This can change the values of breaking risk index and overflooding index
in a drainage system.

Six rehabilitation methods were linked to hydraulic performance (pipe diameter) and breaking risk
(pipe age) (Table 1) [20]. In order to make the HRCM model recognize the cost difference among different
pipe diameters, Cai et al. [28] added a pipe cost item for pipe replacement. The pipe cost Cp is a function that
is related to pipe diameter and pipe length. The cost to rehabilitate one pipe is the sum of the rehabilitation
cost, disruption cost, and pipe cost. The cost objective function is the total cost of all the pipes.

Table 1. The rehabilitation matrix [20,28]
.

Rehabilitation
Number

Action
Rehabilitation

Cost ($/m)
Disruption
Cost ($/m)

Pipe Cost
($/m)

Benefit
(Year)

1 Do nothing 0 0 0 -
2 Routine cleaning 16 0 0 10
3 Shotcrete 656 0 0 20
4 Cured-in-place pipe 1558 0 0 50
5 Reinforced fiberglass sliplining 2231 0 0 100
6 Dig and replace with concrete pipe 1148 656 Cp

1 50
1 Cp = f (di, li) pipe cost function. In this research, we assumed Cp = d× l.

(4) Multi-objective optimization module: There are two objective functions in this multi-objective
optimization. First, a set of constraint functions on hydraulics performance, breaking risk, and budget
limits the minimum requirements for rehabilitation methods. Second, they use a non-dominated sorting
genetic algorithm (NSGA-II) to optimize hydraulic performance and decrease breaking risk in this system.

(5) Postprocessing filter (expert system): This module can select results from the Pareto Front
according to the cost.

The structure of the HRCM model can be seen in Figure 1.

Figure 1. Structure of the HRCM model.
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2.2. Algorithm Frameworks

HRCM Model Simulation Frameworks

We considered six alternative methodologies for HRCM calculation to compare with the method by
Cai et al. [28], which we named the GA-HRCM method. We used their original framework (GA-HRCM)
as our control group to compare with other methods. Explanations of other alternative algorithms,
GA-Continuous, GA-Cost, GA-Unconstraint, PSO-Cost, PSO-HRCM, and GA-Network, are given in
Figure 2.

 
Figure 2. Flowchart of different optimization algorithms.

The GA-HRCM method uses a discrete pipe diameter, which increases the time in each iteration
to transform the continuous value to discrete value, which is a process in the GA algorithm itself.
The GA-Continuous method uses a continuous diameter for pipes during optimization. In the
post-processing section, the continuous pipe diameters were transformed to the nearest discrete pipe
diameters, which are used in engineering, and then the overflooding index and the pipe breaking
index were calculated (Table 2).

The GA-HRCM method did not use cost as an objective function, because in an engineering project,
budget is seen as a constraint. GA-Cost uses rehabilitation cost as another objective function. We use
this comparison to evaluate whether this can improve rehabilitation strategy results by increasing
cost-effectiveness (Table 2).

The GA-HRCM method has a constraint function for both hydraulic and budget. It did not limit
the breaking risk because it uses a stochastic model, so the breaking risk is an objective function
rather than a constraint function. The GA-Unconstraint method removes the hydraulic constraint in
rehabilitation as well as the budget constraint. The results were filtered and we only kept the results
that satisfied our expectations after the optimization process (Table 2).

The particle swarm optimization (PSO) and genetic algorithm (GA) methods have been widely
used in sewerage pipe design and rehabilitation [35,36] and have shown good results in predicting
hydraulic performance. However, it is still unclear as to which method is suitable for drainage
optimization [7,36–38]. We revised the code given by Yarpiz [39] in order to solve the mixed integers
problem. We employed two PSO methods, PSO-HRCM and PSO-Cost, to compare their performance
with the employed genetic algorithm. The PSO-HRCM method replaces the NSGA-II to non-dominant
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sorting PSO method. Upon this replacement, the PSO-Cost method adds cost as another objective
function to the PSO-HRCM method.

A drainage system has a complex structure [40]. In their research work, Bennis et al. [29] provided
a hydraulic diagnostic model. To distinguish it from other indexes, we call it the chain route index in
this study. In the model, they recognized narrow pipes by calculating an index to evaluate backwater
effects downstream to upstream. Their method can separate the surcharge effect into two categories:
(1) surcharge caused by the pipe itself; (2) surcharge caused by the downstream narrow pipes. Therefore,
a computational model can detect which pipe affects the system easily. The GA-HRCM method used
this hydraulic diagnostic model to optimize the overall overflooding index. The GA-Network method
tests whether this strong searching model is unnecessary to find the narrow pipe. Dion and Bennis [32]
introduced a global modeling approach to evaluate hydraulic performances in a drainage system.
Instead of calculating the chain route index, they directly used the hydraulic grade line in each junction
to evaluate the hydraulic performance of the drainage system; Equation (7).

Ns =
∑

i

Nili/
∑

i

li (7)

To distinguish this index from the chain route one, it will be called the network index in the present
study. The GA-HRCM model uses the chain route index. It has high efficiency when the drainage
system is simple, but it is not efficient when the drainage system becomes complex, because this
chain route index needs to calculate the index from one branch of the system to another [28]. In this
research, we evaluated this speed-accuracy compromise by comparing the GA-HRCM method and the
GA-Network method, using the global hydraulic index (Table 2).

Table 2. Parameter setting of different HRCM methods.

Name
Discrete

Pipe
Constraint
Functions 1

Diagnostic
Model 2

Network
Index 3

Objective
Cost

GA

GA-HRCM
√ √ √ √

GA-Continuous
√ √ √

GA-Cost
√ √ √ √ √

GA-Unconstrainted
√ √ √

GA-Network
√ √ √ √

PSO-HRCM
√ √

PSO-Cost
√ √ √

RHRCM
√ √ √

1 Constraint functions of cost and hydraulic overflooding. 2 The system overflooding index in Equation (4).
3 The system overflooding index in Equation (7).

2.3. Revised HRCM Method (RHRCM)

In previous sections, seven calculation methods were applied to the HRCM model to verify how
they affect the framework. On comparing the performance of the seven methods, we revised the
HRCM model to improve its efficiency to solve overflooding and pipe breaking combined problems.

The revised framework is presented in Figure 3. In this new framework, we simplified the
three-element framework to: (1) optimization; (2) linkage; (3) post-processing. This framework can be
applied to other pipe systems and solve similar problems. The method with the fastest convergence
speed—GA-Continuous—was selected to improve convergence speed. The GA-Network method was
selected to enhance the performance of the HRCM model on the network drainage system and improve
efficiency. Besides, the GA-Continuous method and the GA-Network method can offer fewer strategies
than the original HRCM method. In order to compensate for the weakness of the original HRCM
inefficient budget distribution to rehabilitate each pipe, we selected the GA-Cost method to increase the
accuracy of the framework. The new framework removes constraint functions and adds cost as another
objective function. It also removes the hydraulic diagnostic and discrete models. Distinguished from
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other studies that study optimization methods directly without improving the structure of optimization,
we propose to study optimization structure in each step for drainage optimization.

 
Figure 3. Diagram of the revised framework (RHRCM).

2.4. Case Study

Because the validation of the HRCM model was evaluated by Cai et al. [28] and the objective
of this study is to compare the performance of different frameworks, we assumed two idealized
scenarios in which it is easy to recognize narrow and aged pipes. Therefore, we can easily evaluate
the performance of different frameworks. The configuration of the drainage system used the system
proposed by Bennies et al. [29] (Figure 4).

Figure 4. Drainage system configuration: (a) structure of the drainage system; (b) schematic view of
the pipe diameter, length, and depth (Data from Bennis et al. and Cat et al. [28,29]).

In this paper, we considered two scenarios (Table 3) to evaluate the seven methods mentioned
in Figure 2. The first scenario represented a narrow pipe scenario, and the second scenario an aged
pipe scenario.
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Table 3. The simulation scenarios.

Classification Scenario Description Function

Hydraulic 1

A system with one narrow pipe (poor
hydraulic performance) at the chain route.
The diameter of pipe (C8) is replaced to
0.1 m. The age of all the pipes is zero.

In this simulation, it was
tested whether the method can

detect the narrow pipe.

Ageing risk 2

A system with a pipe at high risk but there
is no hydraulic risk. The diameters of pipes
are presented in Figure 4b. The age of pipe
C9 was 60, and other pipes ages are zero.

In this simulation, it was
tested whether the method can

detect an aged pipe.

The first scenario is used to test whether these methods can choose the correct pipe and replace it
with a larger one. In the first scenario, three narrow pipes were placed in the system, and all the pipes
were of the same age. Among the three narrow pipes, one pipe was extremely narrow, which means
that the model must find and replace it; the overflooding constraint can then be satisfied. The other
pipes will affect the overflooding index but are not necessary to satisfy requirements. The second
scenario includes an aged pipe and two narrow pipes. The aged pipe was severely deteriorated as
compared to the other pipes, and the narrow pipes were not severely narrow. The second scenario was
used to test whether these methods can find the aged pipe and use a reasonable rehabilitation method
to solve the ageing problem. The drainage system was set as in Figure 4a. This is the same as that in
the Cai et al. [28] study, for comparison purposes. Chicago designed rainfall is a common case for the
simulation of sewerage systems [29,41,42].

2.5. Model Performance Evaluation

Sensitivity Analysis

Result accuracy can increase with an increased population size of the optimization algorithm, but
the computational time will also increase. As per the functionality limitation of our computer—Intel®

Core™ i7-8750H CPU @2.20GHz, 16.0 GB (RAM), we set the population size to 100, 500, 1000, 1500,
2000, and 2500 for both GA and PSO methods. We evaluated population convergence (i.e., whether the
results will converge at our population setting) and time convergence (i.e., the computational time at
the convergent population if the convergence exists). The evaluation criteria are: (1) computational
time at the population equals to 2500; (2) how many rehabilitation solutions are given by the HRCM
model at population size equal to 2500; (3) and the average cost of the total solutions at the 2500
population size (Tables 4 and 5). It should be noted that the word ‘convergence’ in this research means
the number of strategies, the overflooding index, and the pipe breaking index in strategies set for one
population size, which does not change at a larger population size.

After postprocessing, the selected output results can solve the overflooding problem. Then,
we compared their rehabilitative effectiveness. The cost-effectiveness analysis can quantify the
rehabilitation performance of a rehabilitation strategy at per unit cost [43,44]. This method can evaluate
the effectiveness of our rehabilitation method, as it provides information on which method can best
improve the performance of a system under the unit cost. It is defined as the index in Equation (8) to
evaluate the efficiency of each method. The original overflooding index and the risk index of scenario
1 were 29.72 and 16.24, respectively. The overflooding index and risk index of scenario 2 were 5.07 and
22.68, respectively:

Ce =
1
k

∑
j

(
Ip

j − Ia
j

)
/Cr

j (8)

where Ce= cost-effectiveness index; Ip
j = average of the difference between the original overflooding/risk

index; Ia
j = overflooding/risk index after the rehabilitation; Cr

j = cost for rehabilitation; k = the total
number of j.
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3. Results

3.1. Computational Time Competition

Figure 5 shows the time competition of the seven methods. The computational time increases
with an increased population. However, the trend was not monotonic.

Figure 5. The time competition for seven methods: (a) scenario 1; (b) scenario 2.

Different methods exhibited discrepancies in calculation speed under the various scenarios. The
GA-Unconstraint method had the minimum calculation time in the first scenario. There is a bump
up when the population equals 2500 of GA-Unconstraint in the second scenario. We calculated two
simulations for the GA-Unconstraint method with the population size being equal to 2200 and 3000,
respectively. The computational times were 77,286 s and 89,393 s, respectively. Therefore, we inferred
that the high computational time for the GA-Unconstraint method at the population size (equal to 2500)
is because of the fluctuations of the program. The GA-Continuous method had a fast convergence
speed for both scenarios. It was found that the GA-HRCM method was the slowest method (Figure 5).
The computational time comparison between the RHRCM method and the other seven modified
methods is presented in Figure 5. The RHRCM method exhibited the fastest speed compared to the
other seven methods, and it was stable with respect to the population increase in scenario 1. This
property can be also seen from the computational time comparison of scenario 2. The RHRCM method
was relatively stable, compared to the GA-Unconstraint method. It showed a significant advantage
over other methods in terms of computational speed.

3.2. Methods Evaluation

3.2.1. Scenario 1—Narrow Pipe

We assessed the results by evaluating the converged population, convergence time, number
of solutions, and cost-effectiveness at a population of 2500 (Table 4). The cost-effectiveness value
was calculated by dividing the difference between the original hydraulic/risk index and the new
hydraulic/risk index by cost (million $) (Table 4).

After adding cost as another objective function, the expense of rehabilitation decreased from
0.67 million dollars to 0.3 million dollars. Compared to the GA-HRCM method, we found that it is
less likely that the GA-Cost method selects fiberglass reinforcement, which is the most expensive
rehabilitation method in our case (Table 1). This can reduce costs on unnecessary rehabilitation.
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Table 4. The summarized results of the seven methods with scenario 1.

Method
Convergent
Population

Convergent
Time (s)

2500
Time (s)

2500 Number
of Solutions

2500 Average
Cost (million $)

2500 Cost Effectiveness

Hydro 1 Risk 2

GA-HRCM 2000 182,334 372,035 6 0.67 54.81 31.36
GA-Continuous 1500 116,374 232,122 5 0.44 62.65 33.60

GA-Cost N/A N/A 298,599 34 0.30 138.26 73.92
GA-Network 500 36,696 229,006 4 0.70 43.97 23.82

GA-Unconstraint N/A N/A 84,157 8 0.78 47.81 24.64
PSO-HRCM N/A N/A 223,591 5 1.03 28.16 13.99

PSO-Cost N/A N/A 268,340 13 0.61 45.24 22.18
RHRCM N/A N/A 89,182 10 0.30 177.29 87.82

1 Hydro is the cost-effectiveness of the overflooding index. 2 Risk is the cost-effectiveness of the breaking index.

The GA-Network method converged at population size equals to 500, which is faster than the
GA-HRCM method converged at a population of 2000 (Table 4). The GA-Network method offered
four strategies, which is smaller than the six strategies obtained from the chain route index— the
GA-HRCM method (Table 4). The GA-Unconstraint method has the fastest calculation speed for the
same population size as the other methods (Figure 5). It was found that GA-Continuous converged at
the 1500 population size, and it is faster than GA-HRCM.

PSO-based methods did not offer a significant advantage in cost-effectiveness and computational
speed (Table 4), when compared to the GA-based method. Zarbaf et al. [45] compared the PSO method
and the GA method for the calculation of cable tension estimate. They found that both methods can
evaluate the tensioned cable, but the PSO method was more accurate. Surendar et al. [37] compared
the GA and PSO methods in predicting Brazilian tensile strength. They found that even though the
two methods can predict the value, PSO had better performance in fitting the result. Vasudevan and
Sinha [36] showed that the PSO method had better performance in the distribution system. However,
in the sewerage system, one study showed that GA methods can offer similar results as the PSO
method [46]. In our research, we find that the PSO method was not as good. The PSO method uses the
best values in one generation to guide the algorithm to produce the next generation. This will be efficient
when searching for an optimum value in a continuous function. However, to rehabilitate drainage
systems, there are many parallel solutions. For example, even though the hydraulic performance
is improved when we enlarge the diameter of a pipe, after enlarging the diameter and exceeding a
threshold, the results are improved. This means that in one generation, there will be many optimum
values, thus impacting the performance of the PSO method in searching for the optimum value.

The RHRCM method can combine the strengths of previous frameworks. We found that the
RHRCM method has one advantage offered by the GA-Unconstraint method—it took 89,182 s for
the 2500 population; it is also more stable (Figure 5). Besides, the RHRCM achieved maximum
cost-effectiveness as compared to the other methods. The cost-effectiveness of overflooding
rehabilitation was found to be 177.29, and the pipe breaking rehabilitation cost-effectiveness was
87.82 (Table 4). Besides, the RHRCM offered 10 rehabilitation strategies, which is acceptable (Table 4).
These strategies simplified those provided by the GA-Cost method.

3.2.2. Scenario 2—Ageing Pipe

Previous studies, such as Kleiner et al. [47] considered age of the pipe as a Fuzzy variable.
Scenario 2 includes an aged pipe; its results are presented in Table 5. Among the seven methods,
GA-Cost showed high cost-effectiveness of system overflooding and pipe breaking risk—13.92 and
129.5, respectively. The hydraulic cost-effectiveness value (11.7) is higher than that of the RHRCM
method. The RHRCM method gave the highest risk cost-effective of 137.31, which shows that it is
compatible with the risk scenario.
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Table 5. The summarized results of seven methods with scenario 2.

Method
Convergent
Population

Convergent
Time (s)

2500
Time (s)

2500 Number
of Solutions

2500 Average
Cost (million $)

2500 Cost Effectiveness

Hydro 1 Risk 2

GA-HRCM N/A N/A 163,519 6 0.65 4.46 40.77
GA-Continuous 1500 232,415 222,536 6 0.67 3.64 39.66

GA-Cost N/A N/A 277,206 40 0.24 13.92 129.50
GA-Network N/A N/A 196,281 6 0.66 3.69 41.07

GA-Unconstraint 2000 86,322 406,361 6 0.73 4.40 36.62
PSO-HRCM N/A N/A 219,888 5 1.00 3.30 19.87

PSO-Cost N/A N/A 309,305 33 0.63 4.29 27.17
RHRCM N/A N/A 89,863 30 0.26 11.70 137.31

1 Hydro is the cost-effectiveness of the overflooding index. 2 Risk is the cost-effectiveness of the breaking index.

4. Discussion

4.1. Advantage and Limitation of RHRCM Method

The refined HRCM model is faster because unnecessary parts in the original HRCM model are
removed. We also acquired a higher cost-effectiveness by adding cost as another objective function,
as it can remove the parallel solutions.

We believe that there is a convergence of optimum value in an optimum question because the
Pareto Front is the set of optimum values. However, are there optimum strategies in a rehabilitation
problem? The answer is no. The reason for this is because the two types of situations can result
in the same value on the Pareto Front with different strategies. First, if there are two pipes which
have the same breaking risk and hydraulic performance in this network, one will have the same
result when replacing the first pipe or the second pipe. That means that one will have two solutions
offering the same result on the Pareto Front; furthermore, both are optimum solutions. The second
type is that if one can replace a pipe to a diameter of 0.305 m to 1 m, it may solve the surcharge
problem; however when one changes the dimeter to 2 m, it can get the same surcharge index at that
junction. This means that every pipe has a threshold; when the diameter of the pipe goes beyond that
threshold, all of the rehabilitation strategies are the same in the optimization program. In the HRCM
model, we used a post-processing strategy to select solutions from the set of rehabilitation plans. In the
RHRCM model, the new dimension (cost) can help to partly solve the parallel results problem because
different diameters have different costs. This can improve the performance of an optimization method.
However, this method does not increase the search speed for hydraulic performance and breaking
risk. How to solve the parallel solution problem and increase the searching speed can be a topic for
future study.

4.2. Discrete Versus Continuous Data

In engineering, certain parameters are not continuous. For example, the diameter of the pipe in
a real case should be a discrete value, based on manufacturing standards. Therefore, although the
mixed-integer optimization method is widely used in many engineering problems, there should
be a discussion on whether mixed-integer is better than continuous optimization. In our research,
we found the GA-Continuous has a faster convergence speed in scenario 1 than GA-HRCM. However,
GA-Continuous is slower than GA-HRCM in scenario 2. We found that both continuous and discrete
methods can solve the problem well. Therefore, mixed-integer optimization is not always better than
continuous optimization. In the context of optimization algorithms, the continuous optimization
method can have a higher sensitivity to variables that are changed continuously, and they do not have
a process to transform a continuous number to an integer. However, it may be easy to obtain the
local optimum value. Thus, it is a competition between these two situations, and we should adjust it
according to different situations.
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4.3. Parallel Results Problem

The slow convergence speed can be attributed to the parallel results problem; in network
optimization, it is defined as having multiple solutions with the same performance. For example,
consider a case in which there is a pipe in a drainage system leading to a surcharge, such as C8
in Figure 4b, and the critical diameter is δ (which is enough to solve the surcharge). When the
model assigns diameter values larger than δ, they can get the same results for the overflooding
index. This means that even though there are limited points on the Pareto Front, there are many
strategies that can have the exact same values on the Pareto Front. Therefore, this seriously affects the
convergence speed of optimization. The parallel results problem may explain this non-convergence
in the framework. This motivated us to study how to evaluate the performance of optimization for
rehabilitation problems in the future.

In this study, we use the GA and PSO methods because they are the most widely used in
engineering. Many kinds of optimization algorithms, such as ant colony optimization algorithm [45],
random forest [25], cellular automata [48], hanging gardens algorithm [49], and whale optimization [50]
should be tested in the future to see whether they are more suitable for this framework.

We found that when we add the cost into our framework our program can have better results.
That provided the initial idea to solve the parallel solution problem. We can add more parameters
to this system. The GA-Unconstraint and RHRCM show that there is no significant difference in the
calculation speed when we have two or three objective functions. The GA-Cost and GA-HRCM showed
that the case of three objective functions needs more time for calculation. This means that when we
remove the constraint function, the calculation time will not increase significantly even though we add
more objective functions. Therefore, we can add more parameters to this framework to make it more
resistant to the parallel solutions. Besides, we believe, this framework can have a higher calculation
speed when we use parallel computing.

4.4. Framework

Distinguishing our research from other studies, and improving the performance of an optimization
model by using different optimization methods, we studied whether the simplified calculation
framework can improve performance. In our research, we found that with our new framework,
the calculation speed and cost-effectiveness of the HRCM model were significantly improved.
The computational speed of RHRCM was increased four times, and cost-effectiveness increased
three times as compared to the GA-HRCM method, by changing the computational framework.
This emphasizes the importance of studying how to improve the calculation methodology of an
optimization question. A multi-objective optimization model is a complex system, because it has
a multifaceted calculation structure and involves many modules to solve one question. Therefore,
current optimization methods should be simplified to achieve a higher performance. Research on
framework structure thus needs to be paid more attention.

5. Conclusions

Developing rehabilitation strategies in order to obtain maximum benefit for solving urban flooding
and reducing pipe breaking risk at the same time is an important issue in urban drainage systems.
In this paper, seven potential frameworks were compared. The results showed that calculation
speed and accuracy were improved when continuous variables are used and constraint functions
are removed. A post-processing filter was added at the end to transform pipe diameter to a discrete
value and remove the unsatisfying strategies that result in a high overflooding index or breaking risk
index. Multi-objective optimization was found to be adequate in finding a solution. Furthermore,
calculation accuracy can increase when cost is selected as an objective function. We also found that
the GA algorithm had a better performance than the PSO method in drainage optimization problems.
Simulation results showed that these methods can significantly improve the decision support system
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for drainage rehabilitation. A new method was proposed (RHRCM), which exhibited a remarkably
higher computational speed (four times faster than the original HRCM model) and was able to obtain
results with a higher cost-effectiveness (three times higher than the original HRCM model). We found
that a simplified framework can significantly improve the calculation performance of the original
model; therefore, further research should focus on study of the framework structure.
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Abstract: The optimization of analog integrated circuits requires to take into account a number
of considerations and trade-offs that are specific to each circuit, meaning that each case of design
may be subject to different constraints to accomplish target specifications. This paper shows the
single-objective optimization of a complementary metal-oxide-semiconductor (CMOS) four-stage
voltage-controlled oscillator (VCO) to maximize the oscillation frequency. The stages are designed
by using CMOS current-mode logic or differential pairs and are connected in a ring structure.
The optimization is performed by applying differential evolution (DE) algorithm, in which the design
variables are the control voltage and the transistors’ widths and lengths. The objective is maximizing
the oscillation frequency under the constraints so that the CMOS VCO be robust to Monte Carlo
simulations and to process-voltage-temperature (PVT) variations. The optimization results show that
DE provides feasible solutions oscillating at 5 GHz with a wide control voltage range and robust to
both Monte Carlo and PVT analyses.

Keywords: VCO; differential evolution; CMOS differential pair; PVT variations; Monte Carlo analysis

1. Introduction

The voltage-controlled oscillator (VCO) is quite useful in applications such as: analog-to-digital
converters [1–3], phase-locked loops [4], and so on. The VCO can be implemented by using
complementary metal-oxide-semiconductor (CMOS) technology of integrated circuits, as already
shown in [5], and also by using LC-tank structures. Several CMOS VCO designs can be classified by
using single-ended stages [6,7], differential stages [8,9] and pseudo-differential stages [10]. Among the
currently available VCO topologies, the one consisting of a ring structure [11], and using CMOS
differential stages has the advantage of providing great immunity to supply disturbances [12].
Other desired features in designing a VCO are associated to accomplish low-power consumption,
minimum layout area, high-frequency and wide control voltage range. These target specifications
become difficult to achieve due to the continuous down scaling of silicon CMOS technologies.
Besides, designing a VCO in a ring topology is frequently a more attractive alternative because
it allows accomplishing a wide tuning (control voltage) range, small layout area, high gain, low cost,
robustness to variations, simplicity and scalability in nanoscale CMOS processes [13,14]. The three
principal causes of alteration on the performace for a circuit are the variations in the fabrication process,
power supply and operation temperature, these constitute PVT variations and their impact is increased
with the devices’ downscaling [15]. Process variations include wafer defects or may be produced by
certain chemical procedures causing some circuit’s paremeters to change, voltage fluctuations in the
circuit take place for a variety of reasons such as supply noise and can be compensated with a voltage
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regulator to prevent the transistor’s operating point from being affected, last but not least temperature
variations can be caused by external sources or by the circuit’s own power dissipation. These PVT
variations can be minimized by a proper design and layout placement and routing. Among the
currently available designs, the authors in [5] introduced a wide-band VCO implemented by CMOS
differential stages connected in a ring topology. Other design guidelines to improve the VCO’s
performance can be found in [16–19].

The oscillation frequency fosc of a VCO can be evaluated by (1), where N indicates the number of
stages and τ is a time constant that depends on the associated resistance of the active load and the value
of the capacitor load. fosc varies in a range determined by a control voltage Vctrl [14], and depends on
the number of CMOS differential stages N, but decreasing N yields a reduction in gain, which may
result in the oscillation mitigation. This trade-off can be improved by applying metaheuristics to
maximize fosc under a wide range of Vctrl , and low silicon area or number of CMOS differential stages
N. Different metaheuristics have been applied to the optimization of CMOS integrated circuits in
previous works due to the complexity involved in the design processes [7,20–22]. In this manner,
the differential evolution (DE) algorithm is applied herein to vary the sizes of the transistors in the
CMOS differential stages to maximize the oscillation frequency of a CMOS VCO fosc. The electrical
characteristics of the VCO are evaluated by linking the simulation program with integrated circuit
emphasis (SPICE).

fosc =
1

2N · τ (1)

The rest of the paper is organized as follows: Section 2 describes the considerations taken for the
design of both the CMOS differential pair stage and the VCO in a ring topology. The DE algorithm is
detailed in Section 4. The single-objective optimization is described in Section 5. Section 6 describes a
brief disscussion about this work. Finally, Section 7 summarizes the conclusions.

2. Ring VCO-Based on CMOS Differential Stages

In this paper, the main objective in designing a CMOS differential stage as the one shown in
Figure 1, which will be used to implement a ring VCO, is oriented to achieve the highest oscillation
frequency fosc given in (1), which is inversely proportional to both the number of CMOS stages N and
the propagation delay τ. Supposing N constant, then the delay generated by the differential pair must
be minimized [14,23]. Some authors recommend that the delay can be reduced by augmenting the
output transconductance gds of the active MOS transistor and by reducing the equivalent capacitance,
where the load capacitance CL could be the dominant one [13,23,24]. The trade-off here is that
augmenting gds leads to increase the sizes of the MOS transistors and this generates larger parasitic
capacitance values. Therefore, this problem is quite suitable for applying metaheuristics, like the
DE algorithm.

Figure 1. CMOS differential stage with active load and control voltage Vctrl .
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If the MOS transistors MN1 and MN2 operate in their saturation region, then they must accomplish
|VDS| > (|VGS| − |VTH |) and |VGS| > |VTH |, where the voltages are associated to the drain (D), gate (G)
and source (S) terminals of the MOS transistors, and its associated threshold voltage VTH . The width
(W) and length (L) sizes of the MOS transistors can be evaluated by (2), where ID is the drain current,
and μnCox are parameters provided by the CMOS technology foundry. In this work the sizing is
performed by using 180 nanometers (nm) from United Microelectronics Corporation (UMC).

W
L

=
2ID

μnCox(|VGS| − |VTH |)2 (2)

As already shown in [5], the active loads are implemented by P-type MOS transistors (MP3

and MP4) operating in the triode region, and their sizing accomplish |VDS| < (|VGS| − |VTH |) and
(3) [25]. The equivalent resistance is tuned by the control voltage Vctrl at the gates of the PMOS
transistors [14,26], and the output conductance of the PMOS transistor can be approached as 1/go =

1/gds = 1/μCox(|Vctrl −Vs| − |Vth|).

ID = μCox
W
L

[
|VGS −VTH | |VDS| −

1
2
|VDS|2

]
(3)

The propagation delay τ is directly related to the dominant pole, and it has been approximated as
in (4), which depends on CL, the transconductance gm of the CMOS differential pair, and gds of the
active load [27], so that the reduction of the transistors’ sizes leads to an increase of the dominant
pole ωp.

ωp =
3.29·1054(CD+Cdb2+Cdb4+CL )+2.43·1044(gds2+gds4)+1.46·1056 gm2(CD+CL )+3.86·1045(gds4 gm2)+2.51·1058(CL gds4 gm2)

3.29·1054(gds2+gds4)+1.46·1056(gds4 gm2+gds2 gds4+gds4 gmb2)
(4)

The delay cell shown in Figure 1 can therefore be characterized by measuring the open-loop gain
AOL and the dominant pole ωp. For instance, the gain-bandwidth product (GBW) of the delay cell,
is the frequency at which AOL becomes 0 dB [28]. Its design including process, voltage and temperature
(PVT) variations is given in [5], and in this paper the delay cell is optimized to provide the smallest
propagation delay τ to increase fosc. The CMOS differential stage with active load is used to design
the four-stages (N = 4) VCO shown in Figure 2.

Figure 2. VCO consisting of four CMOS differential stages with active loads, in a ring topology.

3. VCO Optimization Methods

The VCO optimization has been carried out through different approaches, such as
metaheuristics [7,22]. In [7], a ring VCO’s operation improvement is performed through particle
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swam optimization (PSO) and non-dominated sorting genetic algorithm (NSGA-II), to minimize both
the phase noise and the power consumption. This is carried out through the use of symbolic modeling
techniques to obtain the total output noise density and VCO’s phase noise expressions by doing this
the run time is reduced and the noise expression is simplified. Achieving also an improvement in
tuning range without being an objective and also performing both Monte Carlo and process corners
analyses to the final design. Similarly, in [22] the optimal sizing of a differential ring VCO is carried out
through multi-objective particle swam optimization (MOPSO) and infeasibility-driven evolutionary
algorithm (IDEA) to improve its performances by minimizing both the phase noise and the power
consumption while maintaining a given oscillation frequency. Noise modeling is also carried out,
to obtain the simplified noise expressions and solve the equations’ system the determinate decision
diagram (DDD) symbolic technique is used. Furthermore, Monte Carlo and PVT variations analyses
were performed to guarantee the design robustness.

In [29], an algorithm that performs RF circuits sizing by using evolutionary strategies and
simulating annealing in the search and selection parts, respectively, is implemented in Matlab.
The optimization is carried out taking into account the parasitics caused by the passive elements’ layout
through physical based equivalent parasitic models, by doing this the number of iterations between
circuit sizing and layout generation is reduced (reducing the synthesis time) since the difference
between synthesis and post-layout results is decreased. The use of simplified models through RF
circuit synthesis to approximate layout-induced parasitics lead to unrealistic outcomes. An LC
cross-coupled oscillator was optimized using this approach, where the restrictions are: oscillation
frequency, phase noise, power consumption, and oscillation amplitude.

In [30], the circuit optimization tool AIDA-C is used to carry out a multi-objective optimization
and perform the sizing of an LC-tank VCO with the aim to minimize two compromised objectives,
which are phase noise and power consumption. This optimization process achieves a good balance
between the two objectives, since there is a trade-off between them, the optimization execution takes
several hours to run. In [31], two design tools AIDA and SIDe-O to design a robust LC-tank VCO are
introduced. SIDe-O is employed to face the problems relative to the passive elements and through
AIDA a robust design is assured due to its corner-aware approach and NSGA-II is employed for the
phase noise, power consumption and area minimization, as in the previous case the algorithm takes
several hours to run, in both algorithms none of the objectives are focused on achieving a higher
oscillation frequency.

4. Problem Formulation for the Optimization of the VCO by Applying DE

The single-objective function g(x) is formulated by (5), where μ is a constant established to one
and r(x) stands for the constraints. One can see that when all the constraints are fulfilled then the
second term of the function is equal to 0 and the objective function is the oscillating-period of the ring
VCO g(x) = f (x). Therefore, the sizing optimization problem can be defined by (6).

g(x) = f (x) + μ ∑ r2(x) (5)

Search : x = [W1, W3, L1, L3, Vctrl ]

Minimize : g(x)
Subject to : 5 > AOL > 1,
VDS ≤ VGS −VTH for MP3 and MP4,
VDS ≥ VGS −VTH otherwise,
Wmin < W < Wmax,
Lmin < L < Lmax,
VSS < Vctrl < VDD

(6)

By applying the DE algorithm, which is described below, the sizing optimization process requires
a population of In individuals, a maximum number of generations maxGen, and the objective function
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g(x). Two of the main factors guaranteeing that global optimality is achievable by a metaheuristic
like DE are the selection of the best solutions and randomization, where the former ensures that the
solution converges to an optimum value while the later keeps the solution from getting halted at local
optima [32]. To maximize fosc, this paper minimizes the oscillating period of the ring VCO, which is
subject to the constraints of maintaining the load MOS transistors MP3 and MP4 operating in the triode
region and the rest N-type MOS transistors operating in the saturation region. The SPICE simulator is
linked within the optimization loop to evaluate the delay cell’s gain AOL to be maintained within 1
and 5 dB.

The DE algorithm is a metaheuristic that performs an iterative optimization based on the
evolution of a population of individuals under the concept of competition. The initial population
is randomly generated where each individual represents a tentative solution that is associated to a
fitness value through an objective function to point out the individual’s suitability to a particular
problem. The individuals with better fitness are more likely to be selected as parents, the chosen ones
are reproduced using genetic operators (crossover, mutation) to produce new offsprings, which will
also be evaluated to determine its survival. This represents a generation and this process is repeated
until a stop criteria is met [33–36]. The DE algorithm is suitable for continuous optimization problems,
like sizing analog CMOS integrated circuits as the VCO. In the DE algorithm, a vector population
is altered through a vector of differences, which translates to a two operators: the first one being
a recombination operator of two or more solutions and the second one coming as a self-referential
mutation operator that conducts the algorithm unto finding acceptable solutions. Each individual
is encoded as a vector of real numbers that are within the limits defined for each design variable
(as the widths (W) and lengths (L) of the MOS transistors). The crossover operator defines the
offspring-associated variable to be a a linear combination of three randomly selected individuals or
an inheritance of its parents value while guaranteeing that at least one of the offspring’s variable
will be different from its parent. A scaling factor is employed to prevent stagnation of the search
process [33,37].

In the DE algorithm, if a variable’s magnitude is out of range, the recombination and mutation
operators can be employed to reset the value. For instance the value can be established to the
limit it exceeds, however this diminish the population’s diversity. Other approaches reset it to a
random value or initializing this value to a mid point between its previous value and the violated
bound. In the latter the limits are approached asymptotically leading to diminish the amount of
disruption [33]. In our current DE implementation, the individual is reset randomly within the search
bounds. Other guidelines to design a DE algorithm may include to set the population number to ten
times the amount of decision variables and initialize the weighting factor, Pf to 0.8 and the crossover
constant, Pc to 0.9. If no convergence is achieved an increase in population may be necessary, however
frequently the weighting factor is the one that has to be modified to be a little lower or higher than
0.8. The relation between convergence speed and robustness features is a trade-off, if the amount
of population increments and the weighting factor decrements then convergence is more likely to
occur but within a longer period of time. The performance of DE is more sensitive to the value of the
weighting factor than the value of the crossover constant, and the range of both is generally in [0.5, 1].
A faster convergence may occur with higher values of the crossover constant [33].

The usefulness of the DE algorithm in sizing CMOS integrated circuits has been proved in [38–40].
Algorithm 1 describes its adaptation to maximize the oscillation frequency of the ring VCO shown in
Figure 2. As mentioned above, herein the objective function is associated to minimize the propagation
delay τ that is accomplished by measuring the oscillating period by using SPICE.
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Algorithm 1 DE pseudocode.

1: procedure DE(In, maxGen, g(x))
2: Generate the SPICE netlist of the ring VCO
3: for i = 1 : In do
4: Initialize the population randomly and replace the initial individuals (Ws, Ls, Vctrl) into the

netlist
5: Evaluate the VCO’s delay cell and check the constraints
6: if constraints = 0 then
7: Simulate the VCO and evaluate the objective function
8: end if
9: end for

10: while j < maxGen do
11: for i = 1 : In do
12: Create a trial solution from three randomly selected parents using (7)
13: Apply crossover using (8)
14: Replace the new individual into the netlist
15: Simulate the VCO’s delay cell and count the constraints
16: if constraints = 0 then
17: Simulate the VCO and evaluate the objective function
18: end if
19: if the individual’s objective function is lower than that of the parent then
20: The new individual replaces the parent using (9)
21: end if
22: end for
23: end while
24: end procedure

In the optimization process the individuals In of the population generated by the DE algorithm
are replaced into the netlist file of the VCO’s delay cell and each individual is simulated in SPICE.
The electrical characteristics are obtained from the (.lis) output SPICE-file to verify that all the MOS
transistors are working in the appropriate region of operation and that the gain is within the range of
5 > AOL > 1. A flag assigns 0 to a fulfilled constraint and 1 to a not fulfilled one. The period of the
sinusoidal wave is associated to the function f (x). If the VCO is not oscillating then a high value is
assigned to f (x). In the DE algorithm each individual is mutated to generate an adaptive solution vij
from three randomly selected parents, as given in (7). Afterwards, the crossover takes place creating a
trial solution, through the recombination of a mutated solution vij with an individual xij, given by (8).
Finally, the replacement is carried out employing an elitist selection, where the new individual will
replace its parent if its objective function value is better than the parent, as given in (9) [33].

vij = xr3j + Pf (xr1j − xr2j) (7)

uij =

{
vij if randj[0, 1] < Pc or j = jrand

xij otherwise
(8)

xi(t + 1) =

{
ui(t + 1) if f (ui(t + 1)) < f (xi(t))

xi(t) otherwise
(9)

5. Optimizing the CMOS VCO by Applying DE Algorithm

The sizing optimization problem defined by (6), requires the sizes of the design variables
(widths W and lengths L) of the MOS transistors, but one must determine the search space ranges.
For instance, the limits of the sizes are set to: 2λ ≤ W ≤ 1000λ and 2λ ≤ L ≤ 10λ, respectively,
where λ = 90 nm for the UMC CMOS technology of 180 nm. Another design variable is the control
voltage, which bounds are set to VSS ≤ Vctrl ≤ VDD, and where VSS = −0.9 V is the lower supply
voltage and VDD = 0.9 V the higher supply voltage.
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The DE algorithm was calibrated by adjusting Pc, Pf and In to 0.7, 0.6 and 50, respectively.
The maximum number of generations is set to 50. In total, 30 runs of DE were performed. The best
feasible solution provided an oscillation frequency of 5 GHz, as shown in Figure 3. In such a case
the obtained parameter values are: Ibias = IMN3 = 4 mA, WMN1 = WMN2 = 40 μm, WMN3 = 500 μm,
WMP3 = WMP4 = 17 μm, LMN1 = LMN2 = LMN3 = LMP3 = LMP4 = 0.18 μm, Vctrl = −0.8 V and
CL = 31.39 fF. The VBIAS is created from Figure 1, in which the CMOS differential stage with active
load is biased with Ibias = 2 mA, and the sizes of Mbn are W = 200 μm and L = 180 μm.

The SPICE simulation result of the best solution of the DE algorithm is shown in Figure 3.

 

Figure 3. VCO’s oscillation frequency provided by the best solution of the DE algorithm.

Monte Carlo is an integrated circuits’ statistical analysis in which a circuit devices’ parameters
and mismatch are varied randomly. Monte Carlo simulation allows the designer to consider the
possible effects of a random variation of certain circuit’s parameter over its performance. Monte Carlo
analysis is carried out through the variation of W and L for each one of the 30 feasible solutions over
1000 runs, and considering a Gaussian distribution with 10% deviation. The outcome of the Monte
Carlo simulations is employed to compute the mean and the standard deviation of the objetive function
value, those results are sketched in Figure 4.
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Figure 4. Mean and standard deviation of the Monte Carlo analysis for 30 feasible sized solutions
of the DE algorithm. The best solution is the one with the lowest period (corresponding to a greater
oscillation frequency).

The feasible sized solutions that accomplished the lower time delay τ of the CMOS differential
stages are analyzed and their statistics related to the mean and standard deviation of the period of the
sinusoidal wave are summarized in Table 1. From this table, the Monte Carlo simulation of the best
solution of the DE algorithm is shown in Figure 5.
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Figure 5. Monte Carlo simulation of the best feasible sized solution of the DE algorithm.

Table 1. Statistics of the Monte Carlo analysis of the best 5 feasible sized solutions provided by the
DE algorithm.

Solution Minimum (ns) Maximum (ns) Mean (ns) Variance Standard Deviation

1 0.187 0.213 0.199 1.55× 10−23 3.94× 10−12

2 0.214 0.248 0.231 2.86× 10−23 5.35× 10−12

3 0.214 0.249 0.231 2.93× 10−23 5.41× 10−12

4 0.219 0.251 0.235 2.39× 10−23 4.89× 10−12

5 0.226 0.265 0.246 3.59× 10−23 5.99× 10−12

The parameters of each one of the five best feasible sized solutions and the simulated period,
frequency and gain of the VCO and the CMOS delay cell, respectively, are summarized in Table 2.

Table 2. Best 5 feasible sized solution design parameters provided by the DE algorithm.

Solution WMN1 (μm) WMP3 (μm) LMN1 (μm) LMP3 (μm) Vctrl (V) CL (fF) Period (ns) Frequency (GHz) AOL(dB)

1 40 17 0.18 0.18 −0.80 31.39 0.199 5.02 1.89
2 45 20 0.18 0.18 −0.56 35.22 0.232 4.32 3.39
3 61 26 0.18 0.18 −0.56 54.69 0.232 4.30 1.78
4 69 22 0.18 0.18 −0.79 96.17 0.235 4.25 2.26
5 46 20 0.18 0.18 −0.51 36.19 0.246 4.07 4.41

A PVT simulation of the ten best feasible sized solutions was also performed to assure that the
CMOS VCO is robust to variations. The PVT variations are simulated by setting Vctrl = −0.8 V.
Considering five process corners (typical-typical (TT), slow-slow (SS), slow N-type MOS transistor
and fast P-type MOS transistor (SNFP), fast N-type MOS transistor and slow P-type MOS transistor
(FNSP), and fast-fast (FF)), three voltage variations (±10% of ±Vsupply = 0.9 V), and three temperature
variations (T− = −20 ◦C, T = 60 ◦C and T+ = 120 ◦C) [41], Figure 6 shows the higher and lower gain
and oscillation frequency values provided by the DE algorithm. Table 3 summarizes PVT simulation
results, where the five corners (TT, SS, SNFP, FNSP and FF) correspond to the MOS transistor models
provided by the UMC foundry.
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Figure 6. (a) Higher and (b) lower gains and dominant pole frequencies, for the solution 1 CMOS delay
cell designed with United Microelectronics Corporation (UMC) technology of 180 nm by applying
DE algorithm.

Table 3. Open-loop gain and dominant pole frequency over PVT variations with Vctrl = −0.8 V.

Solution Corners
Temperature T− T T+

Voltage V− V V+ V− V V+ V− V V+

1

TT AOL (dB) 0.82 1.88 2.06 0.55 1.74 1.89 0.24 1.61 1.78
ωp (GHz) 4.54 4.24 4.21 3.90 3.58 3.56 3.58 3.22 3.19

SS AOL (dB) −1.23 2.17 2.81 −1.61 1.76 2.64 −1.93 1.29 2.48
ωp (GHz) 4.79 3.92 3.77 4.10 3.37 3.17 3.71 3.09 2.83

SNFP AOL (dB) −1.42 0.51 0.88 −1.92 0.20 0.60 −2.33 −0.085 0.41
ωp (GHz) 4.86 4.25 4.16 4.23 3.61 3.52 3.89 3.28 3.15

FNSP AOL (dB) 2.66 3.26 3.31 2.64 3.27 3.28 2.49 3.24 3.24
ωp (GHz) 4.35 4.21 4.22 3.68 3.54 3.55 3.34 3.17 3.18

FF AOL (dB) 0.89 1.31 1.40 0.77 1.15 1.20 0.64 1.05 1.08
ωp (GHz) 4.71 4.60 4.60 4.00 3.91 3.91 3.63 3.52 3.53

2

TT AOL (dB) 2.75 3.22 3.02 2.77 3.31 3.06 2.61 3.3 3.07
ωp (GHz) 4.21 4.1 4.17 3.51 3.43 3.49 3.23 3.06 3.12

SS AOL (dB) 1.62 4.23 4.25 1.49 4.24 4.38 1.21 4.01 4.4
ωp (GHz) 4.16 3.62 3.63 3.53 3.04 3.01 3.21 2.75 2.67

SNFP AOL (dB) 0.42 1.67 1.68 0.16 1.57 1.57 −0.16 1.43 1.49
ωp (GHz) 4.51 4.16 4.17 3.86 3.5 3.5 3.53 3.15 3.13

FNSP AOL (dB) 4.93 4.91 4.51 5.27 5.21 4.74 5.29 5.34 4.86
ωp (GHz) 3.97 3.99 4.11 3.3 3.31 3.42 2.96 2.94 3.04

FF AOL (dB) 2.23 2.27 2.08 2.29 2.28 2.05 2.26 2.28 2.03
ωp (GHz) 4.55 4.56 4.64 3.84 3.85 3.92 3.45 3.45 3.52

69



Math. Comput. Appl. 2020, 25, 76

Table 3. Cont.

Solution Corners
Temperature T− T T+

Voltage V− V V+ V− V V+ V− V V+

3

TT AOL (dB) 1.57 1.7 1.52 1.63 1.69 1.45 1.64 1.7 1.43
ωp (GHz) 4.6 4.66 4.8 3.85 3.91 4.04 3.47 3.51 3.62

SS AOL (dB) 1.52 2.65 2.5 1.5 2.65 2.47 1.36 2.62 2.45
ωp (GHz) 4.22 4.06 4.17 3.54 3.38 3.47 3.2 3.02 3.09

SNFP AOL (dB) −0.1 0.42 0.35 −0.18 0.3 0.18 −0.28 0.24 0.1
ωp (GHz) 4.73 4.68 4.78 3.99 3.93 4.02 3.61 3.52 3.61

FNSP AOL (dB) 3.19 3.07 2.77 3.39 3.18 2.82 3.49 3.26 2.87
ωp (GHz) 4.45 4.58 4.76 3.72 3.84 3.99 3.33 3.44 3.58

FF AOL (dB) 0.89 0.87 0.72 0.91 0.81 0.61 0.93 0.82 0.59
ωp (GHz) 5.11 5.22 5.37 4.32 4.43 4.55 3.9 3.99 4.11

4

TT AOL (dB) 1.9 2.25 2.3 1.91 2.16 2.13 1.94 2.15 2.08
ωp (GHz) 4.77 4.81 4.93 4 4.05 4.16 3.6 3.64 3.74

SS AOL (dB) 1.82 2.94 3.06 1.79 2.87 2.92 1.72 2.85 2.87
ωp (GHz) 4.37 4.23 4.31 3.66 3.52 3.6 3.29 3.15 3.21

SNFP AOL (dB) 5.2 1.15 1.27 0.43 0.97 1.02 0.39 0.91 0.91
ωp (GHz) 4.83 4.79 4.88 4.07 4.04 4.12 3.67 3.62 3.7

FNSP AOL (dB) 3.21 3.4 3.4 3.32 3.41 3.32 3.41 3.46 3.33
ωp (GHz) 4.69 4.78 4.91 3.93 4.02 4.14 3.53 3.61 3.73

FF AOL (dB) 1.42 1.62 1.68 1.37 1.48 1.47 1.4 1.47 1.41
ωp (GHz) 5.28 5.36 5.49 4.47 4.56 4.67 4.04 4.12 4.23

5

TT AOL (dB) 3.89 4.17 3.82 4 4.34 3.94 3.86 4.38 3.98
ωp (GHz) 4.02 3.96 4.07 3.38 3.3 3.39 3.06 2.94 3.02

SS AOL (dB) 3.05 5.53 5.3 3.04 5.71 5.57 2.77 5.55 5.67
ωp (GHz) 3.89 3.44 3.49 3.29 2.85 2.87 3 2.57 2.53

SNFP AOL (dB) 1.39 2.5 2.38 1.19 2.45 2.33 0.88 2.34 2.28
ωp (GHz) 4.34 4.05 4.09 3.7 3.4 3.43 3.38 3.05 3.06

FNSP AOL (dB) 6.37 6.07 5.45 6.9 6.53 5.8 6.94 6.72 5.98
ωp (GHz) 3.73 3.81 3.97 3.06 3.13 3.28 2.73 2.76 2.9

FF AOL (dB) 3.14 3.04 2.74 3.25 3.11 2.76 3.24 3.12 2.77
ωp (GHz) 4.41 4.45 4.56 3.7 3.74 3.84 3.33 3.35 3.44

As one can see from Table 3 solution number 4 is the most robust to PVT. This solution has
the greater frequency with all the gains been positive. Figure 6 depicts the higher and lower gains
and dominant pole frequencies for solution number 1 since this is the one that provides the higher
oscillation frequency, as one can see the greater gains occur at the FNSP process-corner (in Figure 6a)
while the lower gains for the most part occur at SNFP process-corner (see Figure 6b. Furthermore,
the greater ωp takes place mostly at FF process-corner, while the lower ωp mostly takes place at
SS process-corner.

Figure 7 depicts the higher and lower gains and dominant pole frequencies for solution number 4
since is the most robust one. As one can see in Figure 7a the greater gains occur mostly at the FNSP
process-corner, while the lower gains, in Figure 7b, for the most part occur at SNFP process-corner.
The greater ωp takes place mostly at the FF process-corner (in Figure 7b), while the lower ωp mostly
takes place at the SS process-corner (in Figure 7a).

Table 4 shows the oscillation frequency and power dissipation corresponding to each control
voltage Vctrl value for the best 5 feasible sized solutions.
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Figure 7. (a) Higher and (b) lower gains and dominant pole frequencies, for the solution 4 CMOS delay
cell designed with UMC technology of 180 nm by applying DE algorithm.

Table 4. Oscillation frequency and power dissipation to the corresponding Vctrl .

Solution Parameter Measured Oscillation Frequency and Power Dissipation

1
Vctrl (V) −0.53 −0.55 −0.6 −0.65 −0.7 −0.75 −0.8 −0.85 −0.9

fosc (GHz) 4.03 4.08 4.27 4.48 4.69 4.83 5 5.15 5.32
Pcons (mW) 30.6 31 32.1 33.1 33.9 34.6 35.3 35.8 36.3

2
Vctrl (V) −0.41 −0.5 −0.6 −0.65 −0.7 −0.75 −0.8 −0.85 −0.9

fosc (GHz) 3.56 4.02 4.46 4.65 4.83 5 5.18 5.29 5.35
Pcons (mW) 30.8 33.1 35.1 35.9 36.6 37.2 37.7 38.1 38.4

3
Vctrl (V) −0.27 −0.3 −0.4 −0.5 −0.56 −0.6 −0.7 −0.8 −0.9

fosc (GHz) 2.91 3.07 3.61 4.05 4.3 4.37 4.78 5.1 5.38
Pcons (mW) 31.9 33 35.9 38 38.9 39.4 40.3 40.9 41.2

4
Vctrl (V) −0.36 −0.4 −0.5 −0.6 −0.7 −0.75 −0.8 −0.85 −0.9

fosc (GHz) 2.72 2.88 3.25 3.6 3.98 4.08 4.26 4.33 4.44
Pcons (mW) 32 33.2 35.7 37.5 38.9 39.4 39.8 40.2 40.5

5
Vctrl (V) −0.41 −0.5 −0.6 −0.65 −0.7 −0.75 −0.8 −0.85 −0.9

fosc (GHz) 3.56 3.97 4.39 4.57 4.74 4.93 5.1 5.21 5.38
Pcons (mW) 30.8 33.1 35.2 36 36.7 37.2 37.7 38.1 38.5
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6. Discussion

The proposed methodology to circuit design here is: (1) apply DE at least 30 times. This give
us 30 solutions to our design problem, considering only the best solutions according to the objective
function. (2) From the best 10 solutions, apply the Monte Carlo (MT) analysis. (3) From the best 10
solutions of the MC analysis apply the PVT analysis. Finally, (4) select the best solution according to
the showed variations in the PVT analysis.

We apply the MC analysis to vary the dimension for all the circuit’s transistors up to 10% of their
value. As shown in Figure 5, these variations are not too high to move the operating point of the MOS
transistors, and still the order of the obtained solution according to the objective function is kept after
the MC analysis.

Then we apply the PVT analysis: The five process corners employed for this simulation are
the ones provided by the foundry which are typical-typical (TT), slow NMOS transistor and fast
PMOS transistor (SNFP), fast NMOS transistor and slow PMOS transistor (FNSP), slow-slow (SS)
and fast-fast (FF), these account for the variation of fabrication parameters. A circuit can also be
subject to temperature (considering three temperatures −20◦, 60◦ and 120◦) and voltage variations
(considering a variation of ±10%) in its operation environment therefore each corner is simulated with
each temperature and voltage variation.

The chosen solution is the one with lower time period (or higher operation frequency) while all
the gains are positive, within the gain constraint of 1 < AOL < 5.

In Table 3 are shown only the first five solutions, although 10 analyses were performed.
We use a DE version programmed in C language. One single run (50 individuals, and 50

generations) took around 32 min.
The MC and PVT analyses could be incorporated within the optimization loop, as another set of

constraints. This idea also will increase the simulation time to several hours. We are going to analyse
this idea as a future work.

7. Conclusions

The application of the DE algorithm has proven to be effective in the minimization of the time
period of a CMOS VCO designed with CMOS differential delay cells in a ring topology. We use the
Monte Carlo analysis over the sized transistor dimensions to rank the obtained DE solutions. Then we
apply the PVT analyses to the 10 best solutions according to the Monte Carlo analysis. The most robust
solution to PVT, provides an oscillation frequency up to 4.25 GHz (corresponding to a time period of
0.235 ns), and it has a wider tunning range, of 2.72–4.44 GHz, corresponding to Vctrl of −0.36 to −0.9V.
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Abstract: Problems where several incommensurable objectives have to be optimized concurrently
arise in many engineering and financial applications. Continuation methods for the treatment of such
multi-objective optimization methods (MOPs) are very efficient if all objectives are continuous since
in that case one can expect that the solution set forms at least locally a manifold. Recently, the Pareto
Tracer (PT) has been proposed, which is such a multi-objective continuation method. While the
method works reliably for MOPs with box and equality constraints, no strategy has been proposed yet
to adequately treat general inequalities, which we address in this work. We formulate the extension
of the PT and present numerical results on some selected benchmark problems. The results indicate
that the new method can indeed handle general MOPs, which greatly enhances its applicability.

Keywords: multi-objective optimization; Pareto Tracer; continuation; constraint handling

1. Introduction

In many real-world applications, the problem occurs that several conflicting and incommensurable
objectives have to be optimized concurrently. As general example, in the design of basically any product,
both cost (to be minimized) and quality (to be maximized) are relevant objectives, among others. Problems
of that kind are termed multi-objective optimization problems (MOPs). In the case all of the objectives are
continuous and in conflict with each other, it is known that there is not one single solution to be expected
(as it is the case for scalar optimization problems, i.e., problems where one objective is considered) but an
entire set of solutions. More precisely, one can expect that the solution set—the Pareto set, and, respectively
its image, the Pareto front—forms at least locally an object of dimension k− 1, where k is the number
of objectives involved in the problem. Due to this, “curse of dimensionality” problems with more than,
e.g., four objectives are also called many objective optimization problems (MaOPs).

In the literature, many different methods for the numerical treatment of MOPs and MaOPs can be
found (see also the discussion in the next section). One class of such methods is given by specialized
continuation methods that take advantage of the fact that the solution set forms—at least locally
and under certain mild assumption on the model as discussed in [1]—a manifold. Continuation
methods start with one (approximate) solution of the problem and perform a movement along the
Pareto set/front of the given M(a)OP via considering the underdetermined system of equations that
is developed out of the Karush–Kuhn–Tucker (KKT) equations of the problem. By construction,
continuation methods are of local nature. That is, if the Pareto set consists of different connected
components, such methods will have to be fed with several starting points in order to obtain
approximations of the entire solution set. On the other hand, continuation methods are probably most
effective locally (i.e., within each connected component). Thus far, several multi-objective continuation
methods have been proposed. Most of these continuation methods, however, are designed for or
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restricted to the treatment of bi-objective problems (i.e., MOPs with two objectives). The method of
Hillermeier [1] and the Pareto Tracer (PT [2]) have been proposed for general number k of objectives.
The method of Hillermeier is applicable to unconstrained and equality constrained MOPs, and the
PT in addition to box constrained problems. Thus far, no extensions for these two methods are
known for the treatment of general inequalities, which represents a significant shortcoming since such
constraints naturally arise in many applications (e.g., [3,4]). In this paper, we extend the PT for the
treatment of general inequality constraints. To this end, we utilize and adapt elements from active set
methods to decide which of the inequalities have to be treated as equalities at each candidate solution.
We demonstrate the strength of the novel algorithm on several benchmark test functions and present
comparisons to some other numerical multi-objective solvers. The results indicate that the new method
can indeed reliably handle MOPs with general constraints.

The remainder of this paper is organized as follows. In Section 2, we shortly present the required
background for the understanding of this work. In Section 3, we adapt the Pareto Tracer for the
treatment of general (equality and inequality) constraints. In Section 4, we present some results of the
PT as well as some other multi-objective numerical methods on selected benchmark problems. Finally,
we draw our conclusions in Section 5 and give possible paths for future research.

2. Background and Related Work

In this section, we briefly state the main concepts and notations that are used for the understanding
of this work (for details, we refer to, e.g., [5,6]).

We consider here continuous multi-objective optimization problem (MOPs) that can be defined
mathematically as

min
x

F(x),

s.t. hi(x) = 0, i = 1, . . . , p,
gi(x) ≤ 0, i = 1, . . . , m,

(1)

where F : Q ⊂ Rn → Rk, F(x) = ( f1(x), . . . , fk(x))T is the map of the k individual objectives
fi : Q ⊂ Rn → R. We assume that all objectives and constraint functions are twice continuously
differentiable. The domain Q of the functions is defined by the equality and inequality constraints
of (1):

Q := {x ∈ Rn : hi(x) = 0, i = 1, . . . , p and gi(x) ≤ 0, i = 1, . . . , m}. (2)

If a point x ∈ Rn satisfies all constraints of (1), i.e., if x ∈ Q, we call this point feasible. Points
x �∈ Q are called infeasible. If k = 2 objectives are considered, the problem is also termed a bi-objective
optimization problem (BOP).

We say that a point x ∈ Q dominates a point y ∈ Q (in short: x ≺ y) if fi(x) ≤ fi(y) for all
i = 1, . . . , k, and there exists an index j such that f j(x) < f j(y). A point x∗ is called Pareto optimal
or simply optimal if there does not exist a vector y ∈ Q that dominates x∗. A point x∗ ∈ Q is called
locally optimal if there does not exist a vector y ∈ Q ∩ N(x∗) that dominates x∗, where N(x∗) is a
neighborhood of x∗. The set PQ of all Pareto optimal solutions is called the Pareto set, and its image
F(PQ) the Pareto front. In [1], it has been shown that one can expect that both Pareto set and front
typically form (k− 1)-dimensional objects under certain (mild) conditions on the problem.

If all objectives and constraint functions are differentiable, local optimal solutions can be
characterized by the Karush–Kuhn–Tucker (KKT) equations [7,8]:
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Theorem 1. Suppose that x∗ is locally optimal with respect to (1). Then, there exist Lagrange multipliers
α ∈ Rk, λ ∈ Rp and γ ∈ Rm such that the following conditions are satisfied

k

∑
i=1

αi∇ fi(x∗) +
p

∑
i=1

λi∇hi(x∗) +
m

∑
i=1

γigi(x∗) = 0 (3a)

hi(x∗) = 0, i = 1 . . . p, (3b)

gi(x∗) ≤ 0, i = 1 . . . m, (3c)

αi ≥ 0, i = 1 . . . k, (3d)
k

∑
i=1

αi = 1, (3e)

γi ≥ 0, i = 1 . . . m, (3f)

γigi(x∗) = 0, i = 1 . . . m. (3g)

Multi-objective optimization is an active field of research, and thus far many numerical methods
have been proposed for the treatment of such problems. There exist for instance many methods
that are designed to compute single solutions such as the weighted sum method [9], the ε-constraint
method [5,10], the weighted metric and weighted Tchebycheff method [5,11,12], as well as reference
point problems [13–15]. All of these methods transform the given MOP into a scalar optimization
problem (SOP) that can to a certain extent to include users’ preferences. These methods can either be
used as standalone algorithm (i.e., for the computation of single solutions) or be used to obtain a finite
size approximation of the entire Pareto set/front of the given MOP via utilizing a clever sequence of
these SOPs [5,16–19].

Further, there exist set oriented methods such as cell mapping techniques [20–23]), subdivision
techniques [24–27], and multi-objective evolutionary algorithms (MOEAs, e.g., [3,28–34]). All of these
methods manipulate an entire set of candidate solutions in each iteration and hence yield a finite size
approximation of the solution set in one run of the algorithm. Hybridizations of such techniques with
mathematical programming techniques can be found in [31,35–41].

Finally, a third class of numerical solvers for MOPs is given by specialized continuation methods
that take advantage of the fact that the Pareto set/front of a given problem forms at least locally a
manifold of a certain dimension. Methods of this kind start with a given (approximate) solution and
perform a movement along the Pareto set/front of the problem. The first such method is proposed
in [1], which can be applied to unconstrained and equality constrained MOPs of any number k
of objectives, while no strategies are reported on how to treat inequalities. ParCont [42,43] is a
rigorous predictor–corrector method that is based on interval analysis and parallelotope domains.
The method can deal with equality and inequality constraints, but it is restricted to bi-objective
problems. This restriction also holds for the method presented in [44], which has been designed to
provide an equispaced approximation of the Pareto front. The Zigzag method [45–47] obtains Pareto
front approximations via alternating optimizing one of the objectives. This approach is also limited to
the treatment of bi-objective problems.

In [48], a continuation method is presented that is applicable to box-constrained BOPs. In [49],
a variant of the method of Hillermeier is presented that is designed for the treatment of high-
dimensional problems.

Recently, the Pareto Tracer (PT) was proposed by Martin and Schütze [2]. Similar to the method
of Hillermeier, PT addresses the underdetermined nonlinear system of equations that is induced by
the KKT equations. However, unlike the method of Hillermeier, the PT aims to separate the decision
variables from the associated weight (or Lagrange) vectors whenever possible, leading to significant
changes. The latter is due to the fact that the nonlinearity of the equation system can be significantly
higher in the compound space compared to the corresponding system that is only defined in decision
variable space. As a by-product, the chosen approach allows to compute the tangent space of both
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Pareto set and front at every given regular point x. In [50], elements of the PT are used to treat many
objective optimization problems (i.e., MOPs with more than, e.g., five objectives). Thus far, PT is only
applicable to box and equality constrained problems which limits its application. In the following,
we propose and discuss an extension of this method to adequately treat general MOPs, i.e., MOPs that
in particular contain general inequalities.

3. Adapting the Pareto Tracer for General Inequality Constrained MOPs

In this section, we adapt the PT so that is can handle general inequality constraints. The core is
the predictor–corrector step that generates from a given candidate solution xi the following candidate
xi+1 that satisfies the KKT conditions, and so that F(xi+1)− F(xi) defines a pre-described movement
in objective space along the set of KKT points.

Assume we are given a MOP of form (1) and a feasible point x0 that satisfies the KKT conditions (3),
where αi > 0, i = 1, . . . , k. Let ε > 0 and define by

Ip(ε) := {j ∈ {1, . . . , m} : gj(x0) ≥ −ε} (4)

the set of indices corresponding to the nearly active inequalities at x0. If Ip(ε) = {j1, . . . , js}, s ≤
m, define

Gε :=

⎛⎜⎝ ∇gj1 (x0)
T

...
∇gjs (x0)

T

⎞⎟⎠ ∈ Rs×n. (5)

Further, let

J :=

⎛⎜⎝ ∇ f1(x)T

...
∇ fk(x)T

⎞⎟⎠ ∈ Rk×n

H :=

⎛⎜⎝ ∇h1(x0)
T

...
∇hp(x0)

T

⎞⎟⎠ ∈ Rp×n,

(6)

and α ∈ Rn, λ ∈ Rp, and γ ∈ Rs be the solution of

min
ᾱ,λ̄,γ̄

{∥∥∥JT ᾱ + HTλ̄ + GT
ε γ̄

∥∥∥2

2
: ᾱi ≥ 0, i = 1, . . . , k,

k

∑
i=1

ᾱi = 1

}
. (7)

Note that (7) yields the Lagrange multipliers at x0 for ε = 0 if x0 is a KKT point and if all active
inequalities are regarded as equalities. Using α, λ and γ, define the matrix

Wα,β,γ :=
k

∑
i=1

αi∇2 fi(x) +
p

∑
i=1

λi∇2hi(x) +
s

∑
i=1

γi∇2gji (x) ∈ Rn×n. (8)

To compute a predictor direction νμ ∈ Rn, we solve the the system⎛⎜⎝Wα,λ,γ HT GT
ε

H 0 0
Gε 0 0

⎞⎟⎠
⎛⎜⎝νμ

ζ

σ

⎞⎟⎠ =

⎛⎜⎝−JTμ

0
0

⎞⎟⎠ . (9)
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Note that system (9) depends on μ ∈ Rk. Before we specify this vector, we first simplify (9).
Denote by

A :=

(
H
Gε

)
∈ R(p+s)×n, ξ :=

(
ζ

σ

)
∈ Rp+s, (10)

then (9) is equivalent to (
Wα,λ,γ AT

A 0

)(
νμ

ξ

)
=

(
−JTμ

0

)
. (11)

Let d ∈ Rk. It is straightforward to show that for a vector νμd that solves (11), where μd ∈ Rk is
chosen such that (

−JW−1
α,λ,γ JT

1 . . . 1

)
μd =

(
d
0

)
, (12)

it holds
Jνμd = d. (13)

That is, (infinitesimal) small steps from x0 into direction νμd (in decision variable space) will lead
to a movement from F(x0) into direction d (in objective space). It remains to select a suitable choice for
d. Since α is orthogonal to the linearized Pareto front at F(x0) [1], a suggesting choice is hence by (13)
to take d orthogonal to α. For this, let

α = QR = (q1, q2, ...., qk)R, (14)

where Q ∈ Rk×k is orthogonal and R ∈ Rk×1, be a QR-factorization of α. Then, any vector

d ∈ span{q2, . . . , qk} (15)

can be chosen so that a movement in direction νμd (in decision variable space) leads to a movement from
F(x0) along the Pareto front. Note that the second equation in (12) reads as ∑k

i=1 μi = 0. Hence, for the
special case of a bi-objective optimization problem (i.e., k = 2), there are—after normalization—only
two choices for μ:

μ(1) =

(
−1
1

)
, and μ(2) =

(
1
−1

)
. (16)

Analog to Martin and Schütze [2], one can show that μ(1) corresponds to a “right down” movement
along the Pareto front while μ(2) corresponds to a "left up" movement along the Pareto front.

After selecting the predictor direction νμ, the question is how far to step in this direction. Here,
we follow the suggestion made by Hillermeier [1] and use the step size

t =
τ

‖Jνμ‖2
(17)

for a (small) value τ > 0 so that
‖F(x0 + tνμ)− F(x0)‖2 ≈ τ. (18)

For the computations presented below, we make the following modifications: instead of Wα,β,γ,
we use the matrix

Wα :=
k

∑
i=1

αi∇2 fi(x) ∈ Rn×n. (19)

More precisely, for the computation of νμ, we use the system(
Wα AT

A 0

)(
νμ

ξ

)
=

(
−JTμ

0

)
(20)
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and to obtain μd we solve (
−JW−1

α JT

1 . . . 1

)
μd =

(
d
0

)
. (21)

We have observed similar performance for both approaches, while the usage of Wα compared
to Wα,β,γ comes with the advantage that no Hessians for any of the constraint functions have to
be computed.

Given a predictor point
x̃1 := x0 + tνμ (22)

the task of the upcoming corrector step is to find a KKT point x1 that is ideally near to x̃1. For this,
we suggest to apply the multi-objective Newton method proposed in [51]. In particular, we first
compute the solution (ν̃1, δ̃) of the following problem

min
(ν,δ)∈Rn×R

δ

s.t. ∇ fi(x̃1)
Tν +

1
2

νT∇2 fi(x̃1)ν ≤ δ, i = 1, ..., k,

hi(x̃1) +∇hi(x̃1)
Tν = 0, i = 1, ..., p.

(23)

ν̃1 is indeed the Newton direction for equality constrained MOPs as suggested in [2]. To adequately
treat the involved inequalities, however, we propose to use the solution of the following problem:

min
(ν,δ)∈Rn×R

δ

s.t. ∇ fi(x̃1)
Tν +

1
2

νT∇2 fi(x̃1)ν ≤ δ, i = 1, ..., k,

hi(x̃1) +∇hi(x̃1)
Tν = 0, i = 1, ..., p.

gi(x̃1) +∇gi(x̃1)
Tν = 0, i ∈ Ic(ε).

(24)

Note that problem (24) is identical to problem (23) except that |Ic(ε)| inequalities are treated as
equalities at x̃1. In particular, we propose to add an index i to Ic(ε) if

(a) gi(x̃1) > ε, i.e., if x̃1 significantly violates the constraint gi; or
(b) gi(x̃1) ∈ (−ε, ε) and ∇g(x̃1)

T ν̃1 > 0, i.e., if xi is either active but gi nearly active at xi or if xi
already slightly violates gi and a step into direction ν̃1 would lead to (further) violation of this
constraint, indicated by ∇g(x̃1)

T ν̃1 > 0.

Algorithm 1 shows the pseudo code to build the index set Ic(ε) at a predictor point x̃i. Given the
Newton direction, the Newton step can then be performed via using the Armijo rule described in [51],
as done in our computations. The set Ic(ε) is only computed once, it and remains fixed during the
Newton iteration in the corrector step.

Algorithm 2 shows the pseudo code of one predictor–corrector step of the PT for general (equality
and inequality constrained) MOPs. For bi-objective problems, μ can be chosen as in (16) leading either
to a “left up” or “right down” movement, as discussed above. The algorithm has to be stopped if α is
either close enough to (1, 0)T or (0, 1)T , depending of course on the chosen search direction. For k > 2,
one can use the box partition in objective space as described in [2] in order to mark the regions of the
Pareto front that have already been “covered” during the run of the algorithm.

For the realization of the predictor–corrector step several linear systems of equations have to be
solved, the largest one being (20). The cost is hence O((n+ p+ s)3) in terms of flops and O((n+ p+ s)2)

in terms of storage. Further, for the corrector step the SOP (7) has to be solved that contains k + p + s
decision variables. For the computation of the Newton direction, the SOPs (23) and (24) have to be
solved for the first Newton iteration that contains both n + 1 decision variables. For further Newton
iterations, only SOP (24) has to be solved since the index set Ic(ε) remains fixed within a corrector step.
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Finally, note that, if the method is realized as described above, the Hessians of all individual objectives
have to be computed at each candidate solution (including at each Newton iteration). Using ideas
from quasi-Newton methods, one can approximate the Hessians so that only gradient information is
needed at each candidate solution, as described in [2].

Algorithm 1 Build Ic(ε)

Require: x̃i: predictor, ν̃i: corrector direction for (23), ε > 0: tolerance
Ensure: Ic(ε): index set

1: I := ∅
2: for i = 1, ..., m do

3: if gi(x̃i) > ε then

4: I := I ∪ i
5: else if gi(x̃i) ∈ (−ε, ε) ∧∇g(x̃i)

T ν̃i > 0 then

6: I := I ∪ i
7: end if

8: end for

9: Return Ic(ε)

Algorithm 2 Predictor–corrector step of the Pareto Tracer for general MOPs
Require: xi: current candidate solution, τ > 0: desired distance in objective space, ε > 0: tolerance
Ensure: xi+1: new candidate solution

1: Compute α(i) ∈ Rk via solving (7)
2: Compute W(i)

α as in (19)
3: Compute A as in (10)
4: Select μ(i) as in (16) or via (15) and (21)
5: Compute ν

(i)
μ via solving (20)

6: t(i) := τ

‖Jν
(i)
μ ‖2

7: x̃i+1 := xi + t(i)ν(i)μ

8: Compute xi+1 via a Newton method starting at x̃i+1. For the Newton direction use the solution

of (24).
9: Return xi+1

As a demonstration example, we consider the problem

min

{
f1(x) = (x1 + 3)2 + (x2 − 2)2,

f2(x) = x2
1 + (x2 + 3)2,

s.t. g1(x) = (x1 + 1)2 + x2
2 ≤ 22,

g2(x) = (x1 + 2)2 + (x2 + 2)2 ≤ 22.

(25)

Figure 1a shows the Pareto set of the above problem where the two inequalities have been left
out (i.e., the line segment connecting (−3, 2)T and (0,−3)T), the sets gi(x) = 0, i = 1, 2, as well as the
Pareto set of this problem which is indeed the result of the PT. As starting point, we chose a point
which significantly violates both constraints (and, hence, |Ic(ε)| = 2 for ε = 1e− 4). An application of
the above-described Newton method leads to the point on the Pareto set with the smallest x1-value,
which is in fact the initial point for the PT. During the run of PT, first only g2 is “active” in the corrector
step (i.e., Ic(ε) = {2}), later none of the constraints (in the intersection of the Pareto fronts of the
constrained and the unconstrained MOP), and finally only g1.
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(a) (b)

Figure 1. Numerical result of the PT for MOP (25).

4. Numerical Results

In this section, we further demonstrate the behavior of the PT on five benchmark problems
that contain inequality constraints. For all problems, we used the quasi-Newton variant of PT that
only required function and Jacobian information (and no Hessians). To compare the results, we also
show the respective results obtained by the normal boundary intersection (NBI, [16]), the ε-constraint
method [5], and the multi-objective evolutionary algorithm NSGA-II. For NBI and the ε-constraint
method, we used the code that is available at [52], and for NSGA-II the implementation of PlatEMO [53].
Regrettably, no comparison to a multi-objective continuation method can be presented since none of
the respective codes are publicly available. For a comparison of the PT and the method of Hillermeier
on box and equality constrained MOPs, we refer to [2]. We chose also to include a comparison to the
famous NSGA-II since it is widely used and state-of-the-art for two- and three-objective problems
as we consider here. We stress that the comparisons only show (on the first four test problems) that
PT outperforms NSGA-II on these particular cases where the Pareto front consists of one connected
component. For highly multi-modal functions where the Pareto set/front falls into several connected
components, NSGA-II will certainly outperform the (standalone) PT. A fair comparison can only
be obtained when integrating PT into a global heuristic (as, e.g., done in [41]). This is certainly an
interesting task, however, beyond the scope of this work.

To compare the results, we compare the total number of function evaluations used for each
algorithm on each problem. For this, each Jacobian call is counted as four function calls assuming that the
derivative is obtained via automatic differentiation [54]. To measure the quality of the approximations,
we used the averaged Hausdorff distance Δ2 [55–57]. Since NSGA-II has stochastic components,
we applied this algorithm for each problem 10 times and present the median result (measured by Δ2).

4.1. Binh and Korn

Our first test example is a modification of the box-constrained BOP from Binh and Korn [58],
where we add two inequality constraints as follows:

min

{
f1(x) = 4x2

1 + 4x2
2,

f2(x) = (x1 − 5)2 + (x2 − 5)2,

s.t. (x1 − 2)2 + (x2 − 1)2 ≤ 2.32,

(x1 − 3)2 + (x2 − 3)2 ≥ 1.52,

0 ≤ x1 ≤ 5,

0 ≤ x2 ≤ 3.

(26)
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Table 1 shows the design parameters that have been used by NSGA-II for this problem,
Table 2 shows the computational efforts and the obtained approximation quality for each algorithm,
and Figures 2 and 3 show the obtained Pareto set and front approximations, respectively. For PT,
we chose τ = 0.6 leading to 52 solutions along the Pareto set/front in 4.48 s (the computations have
been done on a Ubuntu 20.04.1 LTS system with an Intel Core i7-855OU 1.80 GHz x 8 CPU and
12 GB of RAM). We then applied NBI and the ε-constraint model using this number of sub-problems.
For NSGA-II, we took the population size 100, which is a standard value for this algorithm. The results
show nearly perfect Pareto front approximations (at least from the practical point of view) for all
algorithms, which is also reflected by the low Δ2 values that are very close to the optimal value of
0.6 (at least for PT, defined by τ). In terms of function evaluations, PT clearly wins over NBI and the
ε-constraint method. A comparison to NSGA-II is not possible due to the choice of the population size.

(a) PT (b) NBI

(c) ε-constr. (d) NSGA-II

Figure 2. Results in decision space for MOP (26).

Table 1. Parameters used by NSGA-II for MOP (26).

Population Size 100
Number of generations 20
Probability of crossover 0.9
Probability of mutation 0.5
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Table 2. Computational efforts and approximation quality of the algorithms for MOP (26).

PT NBI ε-Constr. NSGA-II

Solutions 52 52 52 100
Function Evaluations 151 427 336 2000
Jacobian Evaluations 133 425 336 -
Hessian Evaluations - 373 284 -
Total of Evaluations 683 8095 6224 2000

Δ2 0.6050 0.6025 0.9272 0.5626

(a) PT (b) NBI

(c) ε-constr. (d) NSGA-II

Figure 3. Results in objective space for MOP (26).

4.2. Chakong and Haimes

Next, we consider the bi-objective problem of Chankong and Haimes [59], which contains next to
the box constraints one linear and one nonlinear inequality.
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min

{
f1(x) = 2 + (x1 − 2)2 + (x2 − 1)2,

f2(x) = 9x1 − (x2 − 1)2,

s.t. x2
1 + x2

2 ≤ 225,

x1 − 3x2 + 10 ≤ 0,

with − 20 ≤ x1, x2 ≤ 20.

(27)

Table 3 shows the parameter values used for the application of NSGA-II, Table 4 the computational
efforts and the approximation qualities, and Figures 4 and 5 the obtained approximations. We used
τ = 1 for PT, and proceeded as for the previous example for the other methods. The results are also
similar to the previous example: all methods are capable of detecting a nearly perfect Pareto front
approximation, and the overall cost is significantly less for PT, in 5.96 s.

(a) PT (b) NBI

(c) ε-constr. (d) NSGA-II

Figure 4. Results in decision space for MOP (27).

85



Math. Comput. Appl. 2020, 25, 80

Table 3. Parameters used by NSGA-II for problem (27).

Population Size 100
Number of generations 30
Probability of crossover 0.9
probability of mutation 0.5

Table 4. Computational efforts and approximation qualities for problem (27).

PT NBI ε-Constr. NSGA-II

Solutions 80 80 80 100
Function Evaluations 540 678 578 3000
Jacobian Evaluations 499 678 578 -
Hessian Evaluations - 598 498 -
Total of Evaluations 2536 12,958 10,858 3000

Δ2 1.1459 1.1457 1.2141 1.1871

(a) PT (b) NBI

(c) ε-constr. (d) NSGA-II

Figure 5. Results in objective space for MOP (27).
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4.3. Tamaki

Next, we considered a MOP with three objectives (28):

min

⎧⎪⎪⎨⎪⎪⎩
f1(x) = x1,

f2(x) = x2,

f3(x) = x3,

s.t. x2
1 + x2

2 + x2
3 ≥ 1,

0 ≤ x1, x2, x3 ≤ 4.

(28)

Both the Pareto set and front for this problem are a part of the unit sphere. Table 5 shows the design
parameters for NSGA-II, Table 6 shows the computational effort and the approximation quality for each
algorithm, and Figure 6 shows the Pareto front approximations (the respective Pareto set approximations
will look identically, albeit in x-space). For this problem, τ = 0.05 was used. The implementation of the
ε-constrained method did not yield a result. On the Tamaki problem, PT performs better than the other
algorithms both in approximation quality and in the overall computational cost.

(a) PT (b) NBI

(c) NSGA-II

Figure 6. Results in objective space for MOP (28).

Table 5. Parameters used by NSGA-II for MOP (28).

Population Size 300
Number of generations 150
Probability of crossover 0.9
Probability of mutations 0.5
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Table 6. Computational efforts and approximation qualities for problem (28).

PT NBI ε-Constr. NSGA-II

Solutions 305 112 N/A 300
Function Evaluations 2498 3758 N/A 450,000
Jacobian Evaluations 1101 3758 N/A -
Hessian Evaluations - 3293 N/A -
Total of Evaluations 6902 91,236 N/A 450,000

Δ2 0.0380 0.6353 N/A 0.0390

4.4. BCS

We next considered a second three-objective problem that contains next to one inequality also a
linear equality constraint:

min

⎧⎪⎪⎨⎪⎪⎩
f1(x) = (x1 + 3)2 + (x2 + 3)2 + (x3 + 3)2,

f2(x) = (x1 − 9)2 + (x2 + 5)2 + (x3 + 5)2,

f3(x) = (x1 − 5)2 + (x2 − 8)2 + x2
3,

s.t. x1 − 2x2 − 3x3 = 0,

sin(2x1)− x2 ≤ 0.

(29)

Table 7 presents the design parameters used by NSGA-II, Table 8 shows the computational
effort and the approximation quality for each algorithm, and Figures 7 and 8 present the Pareto front
approximation of PT (using τ = 2), which took 16.79 s. For this example, none of the other methods
were able to yield feasible solutions, where we counted a solution x to be feasible if |x1 − 2x2 − 3x3| <
1e− 4 and sin(2x1)− x2 ≤ 1e− 4.

Figure 7. Numerical result of PT in the decision space for MOP (29).

Table 7. Parameters used by NSGA-II for MOP (29).

Population Size 100
Number of generations 500
Probability of crossover 0.9
Probability of mutations 0.5
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Table 8. Computation efforts for the proposed test problem (29).

PT NBI ε-Constr. NSGA-II

Solutions 378 0 N/A 4
Function Evaluations 1923 2290 N/A 50,000
Jacobian Evaluations 756 1641 N/A -
Hessian Evaluations - 1431 N/A -
Total of Evaluations 4947 40,336 N/A 50,000

Δ2 2.0658 - N/A 61.7685

Figure 8. Numerical result of PT in the objective space for MOP (29).

4.5. Osykzka and Kundu

As last example, we considered the bi-objective problem of Osykzka and Kundu [60], which has
six decision variables and contains six inequality constraints in addition to the box constraints:

min

⎧⎪⎨⎪⎩
f1(x) = −25(x1 − 2)2 − (x2 − 2)2 − (x3 − 1)2 − (x4 − 4)2 − (x5 − 1)2

f2(x) =
6

∑
i=1

x2
i

s.t. x1 + x2 − 2 ≥ 0

6− x1 − x2 ≥ 0

2− x2 + x1 ≥ 0

2− x1 + 3x2 ≥ 0

4− (x3 − 3)2 − x4 ≥ 0

(x5 − 3)2 + x6 − 4 ≥ 0

0 ≤ x1, x2, x6 ≤ 10

1 ≤ x3, x5 ≤ 5

0 ≤ x4 ≤ 6

(30)
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While the Pareto front of this problem is connected, its Pareto set consists of three different
connected components. Hence, PT is not able to compute an approximation of the entire Pareto front
with only one starting point. Figure 9a shows the result of PE for τ = 2 using the three starting points

x0,1 = (0.60, 1.50, 1.0, 0.00, 1.00, 0.04)T ,

x0,2 = (0.00, 2.00, 2.20, 0.00, 1.00, 0.00)T ,

x0,3 = (5.00, 1.00, 5.00, 0.00, 1.00, 0.01)T .

(31)

The computational time to obtain this result was 12.98 s. Figure 9b shows a numerical result
of NSGA-II using the design parameters shown in Table 9. The obtained solutions “under” the
Pareto front can be explained by the tolerance of 1× 10−4 that was used to measure feasibility (while
1× 10−8 was used for PT). Table 10 shows the computational effort for both methods. Needless to say,
this represents by no means a comparison of the two methods. Instead, this should be rather seen
as a motivation to hybridize PT with a global search strategy in order to obtain a fast and reliable
multi-objective solver, which we leave for future studies.

Table 9. Parameters used by NSGA-II for MOP (30).

Population Size 435
Number of generations 50
Probability of crossover 0.9
Probability of mutations 0.5

Table 10. Computational efforts and approximation qualities for problem (30).

PT NSGA-II

Solutions 435 428
Function Evaluations 2051 20,000
Jacobian Evaluations 850 -
Hessian Evaluations - -
Total of Evaluations 5451 20,000

Δ2 1.801 2.4819

(a) PT (b) NSGA-II

Figure 9. Results in objective space for MOP (30).

5. Conclusions and Future Work

In this paper, we extend the multi-objective continuation method Pareto Tracer (PT) for the
treatment of general inequality constraints. To this end, the predictor–corrector step is modified

90



Math. Comput. Appl. 2020, 25, 80

as follows: in the predictor, all nearly active inequalities are treated as equalities. In the following
corrector step, the main challenge is to identify the inequalities for which the predictor solution is
either nearly active or slightly violates the constraint that has to be considered, namely the equality
constraint in the Newton method, and this is done in a bootstrap manner. We formulate the resulting
algorithm and show some numerical results on several benchmark problems, indicating that it can
reliably handle inequality (and equality) constrained MOPs. We further present comparisons to some
other numerical methods. The results show that the extended PT can indeed reliably handle general
MOPs (and in particular general inequalities). However, the method is—by construction—of local
nature and restricted to the connected component of the solution set for which one initial solution is
available. One interesting task is certainly to hybridize PT with a global solver such as a multi-objective
evolutionary algorithm and to compare the resulting hybrid against other methods with respect to
their ability to compute the entire global Pareto set/front of a given MOP. This is beyond the scope of
this work and has been left for future work.
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Abstract: Liquid storage tanks subjected to base excitation can cause large impact forces on the tank
roof, which can lead to structural damage as well as economic and environmental losses. The use
of artificial intelligence in solving engineering problems is becoming popular in various research
fields, and the Genetic Programming (GP) method is receiving more attention in recent years as
a regression tool and also as an approach for finding empirical expressions between the data. In
this study, an OpenFOAM numerical model that was validated by the authors in a previous study
is used to simulate various tank sizes with different liquid heights. The tanks are excited in three
different orientations with harmonic sinusoidal loadings. The excitation frequencies are chosen as
equal to the tanks’ natural frequencies so that they would be subject to a resonance condition. The
maximum pressure in each case is recorded and made dimensionless; then, using Multi-Gene Genetic
Programming (MGGP) methods, a relationship between the dimensionless maximum pressure and
dimensionless liquid height is acquired. Finally, some error measurements are calculated, and the
sensitivity and uncertainty of the proposed equation are analyzed.

Keywords: liquid storage tanks; base excitation; artificial intelligence; Multi-Gene Genetic Program-
ming; computational fluid dynamics; finite volume method

1. Introduction

Earthquakes cause damage to various types of structures, and buildings, dams, reser-
voirs, and liquid storage tanks may be victims of an earthquake excitation. Sloshing in
a liquid storage tank can cause irreversible structural failure and spillage of the liquid
material into the environment, and this liquid, if toxic or flammable, may affect the area for
a long time, even permanently. Thus, protecting liquid storage tanks from damage during
an earthquake is crucial. One of the causes is related to the pressure exerted on the roof of
the tank due to the sloshing of the liquid. Therefore, it is necessary for a designer to know
the maximum pressure caused by such effects on a tank’s roof.

Analytical, numerical, and experimental solutions have been introduced by various
scholars. Housner [1] provided an analytical solution that is adopted in some design
codes and standards such as the ACI 350.3 from the American Concrete Institute [2].
Housner’s method divides the liquid into two parts, i.e., impulsive and convective. The
former is the lower part of the liquid that moves in unison with the tank walls, while the
latter is the upper part of liquid that creates sloshing in a tank. The impulsive mass is
assumed to be rigidly connected to the tank’s walls, while the convective mass is modeled
by a mass–spring system. Figure 1 illustrates Housner’s model for ground-supported
tanks. Despite attempts at developing analytical solutions other than Housner’s method
(e.g., Isaacson [3]), most previous studies have concentrated on numerical analyses. The
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goal of such studies is to provide a solution to the Navier–Stokes equations given in
Equations (5)–(8), which are the governing equations in fluid flow. Cho and Cho [4]
developed a combined finite element–boundary element (FE–BE) method to predict liquid
behavior and its interaction with a structure, and Liu and Lin [5] studied a numerical
model to solve 3D non-linear sloshing in a liquid storage tank. Their model adopted the
volume of fluid (VOF) method for tracking a free surface in conjunction with the finite
difference method (FDM). Chen et al. [6] formulated a numerical model that is based on
Reynolds-averaged Navier–Stokes (RANS) fluid motion, which proved to be in good
agreement with the experimental data from Daewoo Shipbuilding & Marine Engineering
Co., Ltd. (DSME) [7]. The data were obtained from tests on a rectangular tank with plan
dimensions of 800 mm × 400 mm and a height of 500 mm that was horizontally excited
with different frequencies.

Figure 1. Schematic view of Housner’s simplified model.

In recent years, artificial intelligence (AI) has been evolving in all aspects of human
life, including engineering problems (Afan et al. [8]). There are several methods for the
estimation of a relationship between scattered data based on AI. Among them, the group
method of data handling (GMDH; Ivakhnenko and Ivakhnenko [9]) and evolutionary poly-
nomial regression (EPR) can be mentioned. AI techniques such as support vector machine
(SVM), artificial neural networks (ANNs), adaptive neuro-fuzzy inference system (ANFIS),
Genetic Programming (GP) have recently been used for engineering problems such as
water quality index and groundwater level modeling (e.g., Mohammadpour et al. [10];
Ghani and Azamathulla [11]; He et al. [12]; Lallahem et al. [13]; Daliakopoulos et al. [14];
Mirzavand et al. [15]; and Mohammadpour et al. [16]).

Model tree (MT)—a sub-class of the regression tree method—is another regression
method in which an equation is generated at each node [17]. In a regression tree, a constant
or a relatively simple regression model is used to demonstrate the data [18]. A genetic
based method known as GP is also used for the regression of data. In this method, a set
of sub-trees is randomly generated based on user-defined specifications using arithmetic
operators (i.e., +, −, ×, /), non-linear functions (e.g., sin, cos, log), etc. [19]. The goal is to
minimize the errors (e.g., root mean square error (RMSE)) in newer generations until an
acceptable error is reached.

Another method for formulating scattered data based on AI is gene expression pro-
gramming (GEP), which was introduced by Ferreira in 1999 (Sattar and Gharabaghi [20]).
This method can be employed to develop relationships between data with minimal er-
ror [21]. Azamathulla [22] adopted this method to estimate the scour depth downstream
of sills. To do so, he used the following procedure: (1) choose a fitness function; (2)
choose a set of terminals (T) and functions (F) to shape chromosomes; (3) choose the chro-
mosome architecture (i.e., head length and the number of genes); (4) choose the linking
function (e.g., addition and multiplication operators); and (5) choose the set of genetic
operators (e.g., mutation, transportation, etc.). He compared his results with the equa-
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tion obtained by Chinnarasri and Kositgittiwong [23], which at the time had the lowest
error value, and found that the proposed equation using the GEP model had a higher
accuracy. Najafzadeh et al. [24] used three methods, i.e., GEP, MT, and EPR, to predict the
maximum scour depth near piers with debris accumulation. Gholami et al. [25] used the
GEP method to predict the characteristics of stable bank channels. They obtained their own
experimental data as well as data from previous experimental studies to complete their
GEP modelling. The results were compared with available theoretical and experimental
methods. Despite a good agreement and accuracy, the model’s complexity was found to be
higher in comparison with older analytical methods, and therefore the GEP method was not
suggested by the authors. Sheikh et al. [26] applied GEP to analyze shear stress distribution
in circular channels with flat beds subject to sediment deposition. They proposed equations
for predicting the base shear applied to the bed and the walls of such channels. It was
found that the GEP model could lower errors and uncertainties, and hence the model was
recommended for the base shear analysis of circular channels with flat beds.

A sub-class of the GP method known as Multi-Gene Genetic Programming (MGGP)
can be used in problems with higher complexity. A gene is a weighted linear combination of
outputs from a GP tree. In this method, the user has control over the maximum number of
genes and the depth of the model tree [27]. In this method, multiple genes are combined to
produce an MGGP model. AI techniques have shown to be capable of accurate prediction,
and with the development of computing systems, they have become easier to use. However,
to the best of the authors’ knowledge, they have not been employed in the prediction
of pressures and forces in water tanks. Previous studies in engineering applications
have shown promising results for MGGP in comparison with other AI techniques such
as ANN, ANFIS, traditional GP, etc. (Kaydani et al. [28]; Safari and Mehr [29]; Mehr
and Nourani [30]).

The use of GP methods in civil engineering is becoming increasingly popular. Gan-
domi et al. [31] proposed an empirical model for predicting the ultimate shear strength
of reinforced concrete (RC) deep beams using GEP. The results were compared with
design codes such as ACI and CSA, and the model was found to give better results
than the design codes when compared to the available experimental and numerical data.
Gandomi et al. [32] developed a model to find the shear capacity of RC beams without
stirrups using the GEP method. To avoid overfitting, they divided the data into three
groups of learning, validation, and testing on a random basis. The developed model was
tested against the available data and several design codes (e.g., ACI, CSA, NZS, etc.) for
various sizes and models of RC beams and was found to give compatible results. GEP can
be used in various fields of civil engineering as an optimization method. Zahiri et al. [33]
investigated the applications of GEP in hydraulic engineering and found it applicable
in different areas, such as estimation of scour depth, discharge rate, and land transport
in rivers.

In the present study, data generated by a validated OpenFOAM (Open-Source Field
Operation and Manipulation) [34] model are used. The maximum pressure on the roof of a
tank is the parameter of interest. Several tank sizes with various liquid heights are excited
by a resonance frequency, and the maximum hydrodynamic pressure at the roof of the
tank in each case is obtained. Using the GP method in both Single-Gene and Multi-Gene
modes, an equation is proposed for predicting the maximum pressure at the roof of the
tank. Finally, the proposed equation’s reliability is investigated and discussed through
error measurements as well as uncertainty and sensibility analyses.

To the best of the authors’ knowledge, a study such as this one that predicts the
maximum pressure at the roof of a liquid storage tank subjected to base excitation has not
been addressed previously. The design codes generally provide a minimum free-board,
and if the provided free-board is not sufficient, it is left to the designers to decide how
to design the roof. No further data are provided in that manner in the design codes.
Furthermore, previous studies have not investigated the pressures at the roof of the tank
with the intention of finding a relationship between the tank size and the maximum
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pressure on the roof. The available codes and standards do not provide details for designing
the roof of tanks with insufficient freeboard, and they only recommend designing the roof to
resist uplift pressures. Therefore, this study can provide a good estimate of those pressures
and help with the design process.

The results from this study can help provide empirical formulations to appropriately
estimate the hydrodynamic pressures at the roof of a liquid tank subjected to base exci-
tations. This can be adopted in design codes and standards to better address the uplift
forces and hydrodynamic pressures at the roof level. In addition, the artificial intelligence
component of this research can significantly reduce computational cost and time.

Although earthquake and harmonic excitations have different characteristics, it was
found in a previous study [35] that harmonic resonance excitations can produce higher
hydrodynamic pressures on the roof of a tank compared to earthquake excitations, which is
the reason this kind of loading was applied in this study instead of earthquake excitations

This paper is organized as follows. Section 2 deals with the details and equations
of numerical modeling and MGGP. Section 3 presents the results, discussions, and error
measurements, and some concluding remarks complete the study.

2. Materials and Methods

2.1. Numerical Modelling

An OpenFOAM model was previously developed and validated by the authors [35].
The same model was used to generate data for the current study. The maximum hydrody-
namic pressure at the roof of rectangular tanks is the parameter of interest in this study.
Hence, pressure sensors were distributed on one quarter of the roof for each simulation.

Four different tank sizes were used in the study, the dimensions of which are presented
in Table 1. For each tank, a minimum of six different liquid heights were simulated,
as discussed later. Since the direction of an earthquake cannot be predicted, four different
tank orientations were tested, and among them, the highest roof pressure for each liquid
height in each tank was found.

Table 1. Dimensions of tanks used in the study.

Length (mm) Width (mm) Height (mm)

Size 1 755 300 300
Size 2 1978 779 1200
Size 3 1283 327 1200
Size 4 683 342 1200

Many previous studies (e.g., [4,36,37]) have shown that Housner’s simplified
method [1] predicts resonance frequency accurately, and hence in this study the same
method was applied.

Based on Housner’s method, the resonance frequency in a rectangular tank can be
calculated as follows:

Mc = M
tanh1.7 L/h

1.7 L/h
(1)

kc = 3
M2

1
M

gh
L2 (2)

ωc =

√
kc

Mc
(3)

Tc =
2π

ωc
(4)

where Mc is the mass of the convective part of the liquid (c = convective), M is the total
liquid mass, L is half of the tank length, h is the total liquid height, kc is the stiffness of the
assumed spring that connects the convective mass to the tank’s walls in the direction of
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movement, g is ground acceleration equal to 9.81 m/s2, and ωc and Tc are the resonance
frequency and resonance period of the first (fundamental) mode of the oscillating liquid,
respectively. In lieu of Housner’s method to determine the natural frequency of the tank,
Lamb’s formula can be used for simplicity [38]. In Table 2, the resonance frequencies
that were applied to each tank based on the size and liquid height are presented. Each
tank size–liquid height combination was simulated at four different orientations of 0◦,
30◦, 60◦, and 90◦. Since the direction of an earthquake is not predictable, the maximum
pressure among all orientations was used as the input for the GP section. In other words,
the maximum of maximums was found and applied to the GP. The excitation orientations
of 0◦, 30◦, and 60◦ are presented in Figure 2.

Table 2. Frequency applied to each tank based on the tank size and liquid height.

Length Width Tank Height Liquid Height Dimensionless Liquid Height ωi Ti

(mm) (mm) (mm) (mm) (hl/L) (rad/s) (s)

Size 1 755 300 300

100 0.265 4.023 1.562

120 0.318 4.354 1.443

145 0.384 4.705 1.335

200 0.53 5.282 1.190

230 0.609 5.510 1.140

250 0.662 5.636 1.115

280 0.742 5.792 1.085

Size 2 1978 779 1200

1100 1.112 3.819 1.645

1000 1.011 3.777 1.663

900 0.910 3.721 1.689

800 0.809 3.644 1.724

700 0.708 3.540 1.775

600 0.607 3.400 1.848

Size 3 1283 327 1200

1100 1.714 4.858 1.293

1000 1.559 4.845 1.297

900 1.403 4.824 1.303

800 1.247 4.789 1.312

700 1.091 4.732 1.328

600 0.935 4.640 1.354

Size 4 683 327 1200

1100 3.221 6.686 0.940

1000 2.928 6.686 0.940

900 2.635 6.685 0.940

800 2.343 6.682 0.940

700 2.05 6.677 0.941

600 1.757 6.662 0.943
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Figure 2. Tank orientations for simulations.

After finding the resonance frequency for each tank size and liquid height, numerical
modelling was performed using OpenFOAM software. The OpenFOAM model can provide
numerical solutions for various types of engineering problems, such as heat transfer, mass
transport, liquid flow, etc. It can also solve fluid–structure interaction problems based
on computational fluid dynamics (CFD) modelling [39]. Navier–Stokes equations in
Equations (5)–(8) are solved for these types of problems.

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (5)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= −1
ρ

∂p
∂x

+ ν∇2u (6)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

= −1
ρ

∂p
∂y

+ ν∇2v (7)

∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

= −1
ρ

∂p
∂z

+ ν∇2w− g (8)

in which

∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 (9)

and ρ and p are the liquid density (kg/m3) and total pressure (Pa) respectively; u, v, and w
are the particle speeds in the x, y, and z directions (m/s); t is time (s); and g = 9.81 m/s2 is
the gravity acceleration and

ρ = αρ1 + (1− α)ρ2 (10)

where ρ1 and ρ2 are the densities of air and water, respectively, and α indicates the volume
of each particle that is filled with each of the fluids. The value of α varies between 0.0 and
1.0, with 1.0 meaning the cell is filled with water and 0.0 indicating air. A value of 0.5
is allocated to the free surface. Any value between 0.0 and 0.5 indicates air, and a value
between 0.5 and 1.0 indicates water.

Given the very high momentum of the flow, turbulent stresses have a negligible effect
on the flow in comparison with the liquid sloshing forces, and hence, turbulence was not
modeled in this study.

2.1.1. Computational Setup

• Mesh

In this study, a structured cubic mesh was used. By running a mesh sensitivity analysis,
the optimum mesh size was found. To do so, the pressure at the top corner of the tank was
measured with various mesh sizes.

• Initial conditions

For the initial conditions, the velocity, acceleration, and displacement fields were set
to zero.
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• Wall boundary conditions

The “no flow, frictionless” wall boundary condition is applied to the base and the side
walls of the tank. This implicit boundary condition is used when no flow crosses the wall,
and the shear stress at the wall and normal gradient of tangent velocity were set to zero. In
other words, no fluid enters or exits the boundary where this condition is applied. This
boundary condition is applied as follows:

Un = 0 (11)

∂

∂n
Uτ = 0 (12)

where Un and Uτ are the normal and the tangential velocities of the flow, respectively, and
n is the normal vector of the boundary.

• Free surface boundary conditions

The pressure at the free surface is set to zero, and the free surface is modelled using
the volume of fluid (VoF) method according to the following equation:

∂α

∂t
+

∂(αu)
x

+
∂(αv)

y
+

∂(αw)

z
= 0 (13)

2.1.2. CFD Details

In the mesh sensitivity analysis, a mesh size of 6 mm × 6 mm × 6 mm was found
to be reasonably accurate. An adjustable scheme was chosen for the time-step, with a
maximum step size of 0.05 s. This means each time-step is chosen based on the previ-
ous step. This helps with the accuracy of the simulation results; however, it has higher
computational costs.

In the validated OpenFOAM model, an eddy viscosity of 2 × 10−4 m2/s was found to
provide the best results compared to the experimental data.

A total of eighteen pressure sensors (probes) are distributed on one quarter of the roof
for each of the simulated tanks. The long duration of the simulations is expected that the
pressure distribution on a quarter of the domain can be representative of the entire roof.
In addition, in this study, the quarter of the roof with the highest pressure was selected
for the GP analysis. The placement of sensors on the roof of the tank are presented in
Figure 3. Using these sensors, the pressure distribution on the roofs of the tanks can be
found. Figure 4 shows a sample of the CFD output; more details on the OpenFOAM model
are given by Bahreini et al. [35].

 

Figure 3. Sensor arrangement at the roof of the tank.
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(a) (b) 

Figure 4. Computational fluid dynamics (CFD) outputs for tank size 2, with 800 mm water depth at 0◦ orientation and time
t = 9.50 s; (a) liquid surface and (b) pressure.

2.2. Genetic Programming

Genetic programming (GP) is a method based on artificial intelligence that can be
used in optimization problems. This method can be applied in Single-Gene and Multi-Gene
models. In this method, the structure of the solution is not specified at the beginning and is
shaped throughout the evolution [40]. Initial chromosomes are created, and during genera-
tions of evolutions and mutations, newer chromosomes with optimized characteristics are
created. These cycles continue until the maximum number of iterations is reached or until
the optimization reaches a point that is close to the solution (i.e., the error is negligible).
In the Single-Gene model, mutations occur to one gene, while in the Multi-Gene method,
there are mutations and crossovers across several genes.

In this method, the goal is to find the best-fit expression using the fit function
(Equation (14)). This function has a value between 0 to 1000, with 1000 being the fittest, i.e.,
with the minimum error.

fi = 1000
1

1 + RRSEi
(14)

where

RRSEi =

√√√√√∑n
j=1

(
P(ij) − Tj

)2

∑n
j=1 (Tj − T)2 (15)

and i is the number of the fit function, j is the number of data, P(ij) is the calculated value
for jth data based on ith function, Tj is the actual value for the jth data, and T is the average
of the Tj values.

In GP-based methods, an initial gene or tree is randomly created, and the process starts.
Several reproductions, including mutation (i.e., random changes in a gene and replacing a
material with another material) and crossover (i.e., interchange of materials between the
parent genes) operations, take place until the termination conditions are fulfilled.

Each gene is in a shape of a tree and consists of two types of nodes: (1) operator nodes,
being mathematical operators (e.g., +, −, ×, /, power, sin, cos, log, etc.); and (2) operand
nodes, which are the input variables, e.g., x1, x2, etc. (Pandey et al. [41]).

Here, an example is presented for further explanation and a better understanding. In
a regression problem with two operands of x1 and x2 (i.e., y = f (x1, x2), y is dependent on
two variables of x1 and x2), A1 and B1 are randomly created parent genes as follows:

A1 = (2.3× x1)− (sinx2) (16)
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B1 =
(

1.1× x2
1

)
+ (logx2) (17)

In a crossover process, a sub-tree of the parent gene A1 is switched with a sub-tree of
the parent gene B1, resulting in second generation genes, A2 and B2:

A2 = (2.3× x1)−
(

1.1× x2
1

)
(18)

B2 = (logx2) + (sinx2) (19)

And in a mutation process, a sub-tree of each of the genes A2 and B2 is replaced by a
new randomly chosen sub-tree, creating the third-generation genes, A3 and B3:

A3 = (1.3× x3
2)−

(
1.1× x2

1

)
(20)

B3 = (logx2) +

(
x1

x2

)
(21)

This sequence continues until the termination conditions are fulfilled. At the end, the
two genes are combined to form the equation:

Yi = α(Ai) + β(Bi) + C (22)

which, in this three-generation example, is as follows:

y = α
[
(1.3× x3

2

)
−

(
1.1× x2

1

)
]+β[(logx2) +

(
x1

x2

)
] + C (23)

where α and β are called gene weights, and C is a constant bias term. The gene weights
and bias term are calculated by an ordinary least-squared method. Figure 5 shows the
procedure of this example in the form of MGGP trees.

 

Figure 5. Cont.

103



Math. Comput. Appl. 2021, 26, 6

 
 

 
Figure 5. An example of a Multi-Gene Genetic Programming (MGGP) procedure.

In the current study, using MATLAB, an open-source MGGP algorithm (Genetic
Programming Toolbox for the Identification of Physical Systems; GPTIPS) [42] is run to
provide the general shape of the prediction function. In this algorithm, there is a random
initial assumption for the function; then, the function is developed through generations
until the error is minimized. Finally, using non-linear least squared optimization, an
optimized equation is obtained that can be used for further analysis, as described in the
following. This algorithm uses Pareto theory to find a balance between the fitness and
complexity of the model in order to select the optimum model.

Figure 6 shows an example output tree of the MGGP algorithm. In this tree, the
operators plus (+), minus (−), division (/), and multiplication (×) are used. The tree depth
in this example is 12, and it has a total of 35 nodes.

In this method, chromosomes are introduced as computer programs of different
shapes and sizes, with each consisting of sub-programs called genes, i.e., each chromosome
is composed of genes. A typical GP method procedure is as follows:

1. A set of variables is initiated.
2. The chromosomes’ architecture is defined.
3. The chromosomes are randomly formulated.

This cycle continues until the function that best fits the data is found. For this
study, from a total of 25 samples, 80% (20 samples) were used to train the model while
20% (5 samples) were used for testing (i.e., for validating the model). The trained data are
expected to show higher accuracy and smaller errors since the model is directly obtained
from this set of data. The tested and trained data are chosen on a random basis.
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Figure 6. MGGP example output.

3. Results and Discussion

3.1. Numerical Modelling

Following the completion of the simulations, the results were analyzed for each case.
At this stage, contours illustrating the maximum pressure distribution (not at a specific time-
step but over the simulation time) on the roof are plotted for each simulation. Contours
associated with the 755 mm × 300 mm tank are presented in Figures 7–9. In the figures, the
bottom left represents the center of the roof with dimension of (0, 0), while the top right
shows the corner (375.5, 150). The results from the numerical models show that in 46 out of
67 simulations (67%), the maximum pressure on the roof of the tank occurs at the corner.

Figure 7. Pressure distribution at the roof of the 755 mm × 300 mm tank, 0◦ orientation.
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Figure 8. Pressure distribution at the roof of the 755 mm × 300 mm tank, 30◦ orientation.

Figure 9. Pressure distribution at the roof of the 755 mm × 300 mm tank, 60◦ orientation.

To find a relationship to predict the maximum pressure for any tank size with any
liquid height, the pressure and liquid height need to be dimensionless. It should be noted
that the dimensionless maximum pressure needs to consider all factors that might affect
the value of the pressure, and hence, the dimensionless pressure and dimensionless liquid
height can be calculated by Equations (24) and (25):

Pd =
Pmax

(a.ρ.h.L.H)

(Fb)2

(24)

hd =
h
L

(25)

where Pd is the dimensionless pressure, Pmax is the maximum pressure on the roof, a is the
maximum acceleration of the harmonic excitation, ρ is the density of water, h is the liquid
height in the tank, H is the height of the tank, L is half of the length of the tank (i.e., the
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tank’s length is 2L), and Fb is the available freeboard. The parameters a and Fb can be
calculated by Equations (26) and (27):

a = A.ω2
i (26)

Fb = H − h (27)

In Equation (26), A is the displacement amplitude of the harmonic motion. In Figure 10,
the dimensionless maximum pressure plotted against the dimensionless liquid height are
presented in a scatter graph. It should be noted that the results presented in this study are
valid for cases when the sloshing height exceeds the wall height, which then generates
pressure on the roof of a tank.

 

Figure 10. Dimensionless maximum pressure versus dimensionless liquid height for the observed (CFD) data.

3.2. Genetic Programming

The GPTIPS algorithm allows the user to choose between Single-Gene and Multi-Gene
solutions. Single-Gene is the more traditional way of GP and results in simpler equations.
Although the Multi-Gene process is more complex, it may lead to solutions with higher
accuracy. In this study, the default crossover and mutation coefficients were used as follows:
probability of Multi-Gene GP tree cross over = 0.85, probability of Multi-Gene GP tree
mutation = 0.1, and probability of Multi-Gene GP tree direct copy = 0.05.

In this section, both Single-Gene and Multi-Gene solutions are examined and ex-
plained, and the results are presented.

3.2.1. Single-Gene Solution

In the single-Gene solution, the procedure is simple. There is only one gene and a bias
term; hence, there is no crossover of sub-trees. Mutations, however, occur in this solution.
The equation obtained from the GPTIPS algorithm in the Single-Gene mode is presented
in Equation (28):

Pd, S = 4.6489− 12.498× ln(hd)

h3
d + 0.0534

(28)

Here, Pd,S is the dimensionless maximum pressure obtained by the Single-Gene solution.
To obtain this equation, the algorithm was set to have 200 generations, with a popula-

tion size of 300. The maximum tree depth was set to 4, and operators plus, minus, multiply,
divide, and log (which in MATLAB means the Napierian logarithm, i.e., ln) were used.
This equation is obtained in generation 184. It should be noted that for the simulated tanks,
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hd (i.e., dimensionless liquid height) has a value between 0.3179 and 3.2211, and hence
the results are valid for tanks with dimensionless liquid height in that range. Since this
relationship is obtained based on the maximum pressure in all tank orientations, it is not
affected by the angle of tank orientation. Figure 11 presents the complexity of the model
plotted against its accuracy level (1 − R2) for the population on the training set of data. In
this figure, green dots represent Pareto models, and blue dots represent non-Pareto models.
The green dot with a red circle shows the best model in terms of R2 on the training data.

Figure 11. Expressional complexity of the proposed Single-Gene model.

3.2.2. Multi-Gene Solution (MGGP)

In this step, the algorithm is modified to use multiple genes. This mode has both
crossover and mutation processes. The following equation (Equation (29)) is obtained from
the Multi-Gene procedure.

Pd,M = 5.1961 +

(
2.383h3

d − 16.846h2
d + 17.484hd − 3.402

)
h5

d
(29)

In this equation, Pd,M is the dimensionless maximum roof pressure obtained by the
Multi-Gene program. The number of generations was set to 500 with a population of
300. Equation (29) was obtained in generation 473. This equation is composed of the
following genes:

Gene 1 : −0.920hd + 3.402
h5

d
(30)

Gene 2 :
2.383h2

d − 16.85hd + 18.4
h4

d
(31)

A bias term equal to 5.196 was obtained. Figure 12 presents the complexity of
the model plotted against its accuracy level (1 − R2) for the population on the training
set of data.
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Figure 12. Expressional complexity of the proposed Multi-Gene model.

The reason for having a different number of maximum generations for the GP and
MGGP models is that for the GP model, the optimum equation was found in the 184th
generation, and for the MGGP model it was in the 473rd generation. Therefore, while the
200 maximum generations sufficed for the GP model, the MGGP model required a higher
number of maximum generations. These numbers were chosen on a trial and error basis,
starting from 100 generations until the optimum equation was obtained at a generation
smaller than the maximum number of generations. This could ensure that the obtained
equation was the optimal one.

3.2.3. Error Estimations

In this section, some error measures of the Single-Gene and Multi-Gene models are
presented and compared. These measurements can help determine the accuracy of the
presented models and the choice of each option. Errors were measured for both Single-
Gene and Multi-Gene programs on the trained and tested data and were finally compared
against each other.

a. R-Squared (R2)

In this section, the calculated dimensionless maximum pressure (based on Equa-
tions (28) and (29) for Single-Gene and Multi-Gene solutions, respectively) are plotted
against the observed dimensionless maximum pressure in Figure 13a,b. The R2, is
calculated as

R2 = 1− ∑(Pd − Pd,GP)
2

∑
(

Pd − Pd
)2 (32)

where Pd,GP is the dimensionless maximum pressure obtained by the MGGP, and Pd is the
average of the observed dimensionless maximum pressures. Table 3 presents the R2 values
for the Single-Gene and Multi-Gene solutions.
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Figure 13. Observed dimensionless maximum pressure plotted against the dimensionless maximum
pressure obtained by (a) Single-Gene procedure and (b) Multi-Gene procedure, for the overall
data sets.

Table 3. MAD measurements.

Data Set
MAD

Observed Data Single-Gene Results Multi-Gene Results

Trained 30.63 30.27 30.44
Test 6.32 17.30 5.90

Overall 26.08 25.90 25.56
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b. Root Mean Squared Error (RMSE)

The standard deviation of the residuals, known as root mean squared error (RMSE)
is another way of error reporting. It shows the concentration of data near the regression
graph. RMSE is calculated based on the following equation:

RMSE =

√
∑(Pd − Pd,GP)

2

N
(33)

where N is the number of observed data, which in this study is 20 for the trained data
set, 5 for the test data set, and 25 for the overall data. RMSE has the same dimensions as
the original data. In this case, since the input data set is dimensionless, the RMSE is also
dimensionless. RMSE values for each of the data sets are presented in Table 4.

Table 4. Error estimates.

Data Set R-Squared

RMSE MAE MAPE (%)

Value

% of
Maximum

Dimensionless
Pressure

% of Mean
Dimensionless

Pressure
AIC PI

Single-
Gene

Trained 0.989 4.54 2.69 17.09 3.64 68% 21.15 0.086
Test 0.844 3.23 14.17 46.30 3.03 260% 10.55 0.241

Overall 0.989 4.31 2.55 19.03 3.52 107% 23.87 0.114

Multi-
Gene

Trained 0.992 3.89 2.30 14.63 3.28 76% 21.8 0.073
Test 0.889 2.73 11.99 39.18 2.19 302% 12.18 0.202

Overall 0.992 3.69 2.18 16.26 3.06 121% 24.17 0.082

c. Mean Absolute Deviation (MAD)

Mean absolute deviation or MAD is a tool for showing the scatteredness of data
around the mean. It can be measured by the following equation:

MAD =
∑
∣∣Pd − Pd

∣∣
N

or MAD = ∑
∣∣Pd − Pd

∣∣ (34)

The MAD measurements for each data set are presented in Table 3.

d. Mean Absolute Error (MAE)

Mean absolute error (MAE) is the average of the absolute values of the difference
between the observed and measured data. In other words,

MAE =
∑
∣∣Pd − Pd,GP

∣∣
N

= ∑
∣∣Pd − Pd,GP

∣∣ (35)

The MAE values are presented in Table 4.

e. Mean Absolute Percentage Error (MAPE)

This error measures the accuracy of the model as a percentage and is calculated
as follows:

MAPE =
1
N ∑

Pd − Pd, GP

Pd
× 100% (36)

The MAPE values found in this study for different data sets of Single-Gene and
Multi-Gene modes are presented in Table 4.
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f. Akaike Information Criterion (AIC):

The results were also compared using the Akaike information criterion (AIC) using
the following equation [43]:

AIC = N× log(
√

RMSE) + 2k (37)

where k is the number of optimized coefficients. The results are presented in Table 4. The
value of the AIC can help compare the complexity and the accuracy of the models at the
same time [44]. The results show that when combined, the simplicity and accuracy of
the two models (i.e., Single-Gene and Multi-Gene methods) are very close, and there is a
difference of 3.1%, 13%, and 1.2% between the Single-Gene and Multi-Gene models for the
trained, test, and overall data sets.

g. Performance Index (PI):

In addition to error estimates, evaluating the model performance is helpful in the
comparison of different models. The performance index (PI) can be used for this purpose
as follows [45]:

PI =
RRMSE

R + 1
(38)

RRMSE =
RMSE∣∣Pd

∣∣ (39)

R =
∑
(
Pd − Pd

)(
Pd,GP − Pd,GP

)√
∑
(
Pd − Pd

)2
∑
(
Pd,GP − Pd,GP

)2
(40)

where RRMSE is relative root mean square error and R is the correlation coefficient. The
lower the PI, the more precise the model. The results of the PI are presented in Table 4. The
results show that in all data sets—i.e., test, trained, and overall—the Multi-Gene model has
a lower PI, and therefore it is a more precise model than the Single-Gene model.

The error measurements demonstrate that the Multi-Gene method provides a relatively
more accurate results compared to the Single-Gene method; however, a rather more
complicated formula is required. It is suggested that in the situations where a rough
estimate is needed, the Single-Gene method can lead to a reasonable answer in a relatively
shorter time with less computational cost, but when a more accurate answer is required,
the Multi-Gene formula is recommended.

The error estimates show that the test data sets in both Single-Gene and Multi-Gene
models have a lower R2 and higher MAPE, which can be indicators of higher errors and
overfitting of the model. However, the RMSE and MAE values provide comparable results
for the test and trained data sets with fewer errors. In other words, two of the four error
indicators show better results in test data sets, while the other two may indicate overfitting.
Given the circumstances, the results for both Single-Gene and Multi-Gene models are
reasonably acceptable.

3.3. Uncertainty Analysis and Confidence Bands

After finding the equation, its credibility needs to be investigated and verified by
uncertainty and sensitivity analyses.

A Monte Carlo analysis was also performed for the uncertainty analysis of the resulting
equation. The objective of this analysis is to calculate the uncertainty of the final function.
To do so, 1,000,000 random inputs of hd were generated in the range of 0.3179 to 3.2211.
Then, the equation was run for each random number. To generate random data with
normal-shaped distribution in a specific range, a truncated Gaussian function was used.
The histogram of the generated data using the truncated Gaussian function is shown
in Figure 14.
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Figure 14. Histogram of generated random inputs created with truncated Gaussian function.

These random numbers were then put into the GP model, and 1,000,000 values for Pd,
namely Pmc, were calculated. The mean absolute deviation (MAD) was calculated around
the average using Equation (27)

MAD =
1
n

n

∑
i=1

∣∣Pmci − Pavg
∣∣ (41)

where n is the number of samples (i.e., n = 1,000,000 in this case) and Pavg is the average of
the pressures calculated by the Monte Carlo simulation [20], thus leading to

MADSG = 11.718 and MADMG = 11.4728

This can be used to calculate the uncertainty percentage of the function by using the
following equation [20]:

U = 100× MAD
Pavg

(42)

The above leads to

USG = 100× 11.718
10.7485

= 109.02 and UMG = 100× 11.4728
11.430

= 100.3738

where USG and UMG are the uncertainty percentages for the Single-Gene and Multi-Gene
equations, respectively. Due to the high slope of the graph of the equation in the beginning,
these amounts of uncertainty are reasonable.

Confidence bands of the graph are then obtained using a 2nd-order approach in
the calculation of the Jacobian Matrix with the central difference scheme. The MATLAB
internal function “nlpredci” (non-linear regression prediction confidence intervals) is used.
This function can provide the user with 95% confidence band widths of the given equation.
According to Dolan et al. [46], this function gives a symmetric confidence interval at each
point; hence, the two confidence bands have the same distance from the main equation. The
95% confidence bands for Equations (28) and (29) are plotted in Figure 15a,b, respectively.
The average confidence band width for Equation (28) (i.e., Single-Gene mode) is 20.54, and
for Equation (29) (i.e., Multi-Gene mode) is 15.27.
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(a) (b) 

Figure 15. Graph of the proposed equation for dimensionless pressure plotted against dimensionless liquid height with 95%
confidence bounds for (a) Single-Gene and (b) Multi-Gene modes.

3.4. Sensitivity Analysis

For the sensitivity analysis, a 10% perturbation is applied to an input value of the equa-
tion (here, the mean), and the perturbation in the outcome is calculated. The calculations
are presented in Equations (43)–(45):

hdp = 1.1× hdm (43)

ΔPd =

∣∣∣Pdp − Pdm

∣∣∣
Pdm

(44)

Sn =
ΔPd
0.1

(45)

where hdp is the 10% perturbed mean dimensionless liquid height, hdm is the actual mean
dimensionless liquid height, ΔPd is the perturbation that appears in the dimensionless
pressure due to the 10% perturbation in the dimensionless liquid height, Pdp is the change
in the value of the dimensionless pressure when the dimensionless liquid height changes,
Pdm is the value of the dimensionless pressure at mean dimensionless liquid height (hdm)
calculated based on Equations (28) and (29) for Single-Gene and Multi-Gene modes, and
Sn is the normal sensitivity of those equations.

This leads to a sensitivity of Sn,SG = 0.258, or a 25.8% sensitivity for the Single-Gene
solution and Sn,MG = 0.116 or a 11.6% sensitivity for the Multi-Gene solution.

4. Conclusions

The purpose of this study was to develop an empirical equation for the maximum
pressure at the roofs of liquid storage tanks. To do so, a previously validated OpenFOAM
model was used to generate the data. The data included the maximum pressure at the roof.
Various tank sizes with different liquid heights were modeled, and harmonic sinusoidal
base excitations with resonance frequencies were applied to the tanks. To consider the
effect of bi-directional excitation, the tanks were shaken in three different orientations.
Pressure sensors were distributed on one quarter of the roof, and the maximum pressure at
each sensor was recorded.

Using the GP method, a relationship between the dimensionless liquid height and
the dimensionless maximum pressure was obtained in both Single-Gene and Multi-Gene
modes (Equations (28) and (29)). Using multiple error measures, the two equations were
tested, and the results were compared. These results show that the outputs of the equations
are in good agreement with the ones obtained by CFD modelling. Uncertainty analyses of
the equations were conducted using the Monte Carlo method, leading to reasonable values
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given that both functions have an ascending shape with a high slope in the beginning of
their domains. In addition, the 95% confidence bands for the equation were drawn.

It can be concluded that the use of AI techniques combined with CFD is helpful in
predicting the maximum pressure at the roof of a base-excited tank. Further investigation
on this aspect is currently in progress by the authors.
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Abstract: The Job Shop Scheduling Problem (JSSP) has enormous industrial applicability. This
problem refers to a set of jobs that should be processed in a specific order using a set of machines. For
the single-objective optimization JSSP problem, Simulated Annealing is among the best algorithms.
However, in Multi-Objective JSSP (MOJSSP), these algorithms have barely been analyzed, and the
Threshold Accepting Algorithm has not been published for this problem. It is worth mentioning that
the researchers in this area have not reported studies with more than three objectives, and the number
of metrics they used to measure their performance is less than two or three. In this paper, we present
two MOJSSP metaheuristics based on Simulated Annealing: Chaotic Multi-Objective Simulated
Annealing (CMOSA) and Chaotic Multi-Objective Threshold Accepting (CMOTA). We developed
these algorithms to minimize three objective functions and compared them using the HV metric with
the recently published algorithms, MOMARLA, MOPSO, CMOEA, and SPEA. The best algorithm
is CMOSA (HV of 0.76), followed by MOMARLA and CMOTA (with HV of 0.68), and MOPSO
(with HV of 0.54). In addition, we show a complexity comparison of these algorithms, showing that
CMOSA, CMOTA, and MOMARLA have a similar complexity class, followed by MOPSO.

Keywords: JSSP; CMOSA; CMOTA; chaotic perturbation

1. Introduction

The Job Shop Scheduling Problem (JSSP) has enormous industrial applicability. This
problem consists of a set of jobs, formed by operations, which must be processed in a
set of machines subject to constraints of precedence and resource capacity. Finding the
optimal solution for this problem is too complex, and so it is classified in the NP-hard
class [1,2]. On the other hand, the JSSP foundations provide a theoretical background for
developing efficient algorithms for other significant sequencing problems, which have
many production systems applications [3]. Furthermore, designing and evaluating new
algorithms for JSSP is relevant not only because it represents a big challenge but also for its
high industrial applicability [4].

There are several JSSP taxonomies; one of which is single-objective and multi-objective
optimization. The single-objective optimization version has been widely studied for many
years, and the Simulated Annealing (SA) [5] is among the best algorithms. The Threshold
Accepting (TA) algorithm from the same family is also very efficient in this area [6]. In con-
trast, in the case of Multi-Objective Optimization Problems (MOOPs), both algorithms for
JSSP and their comparison are scarce.

Published JSSP algorithms for MOOP include only a few objectives, and only a few
performance metrics are reported. However, it is common for the industrial scheduling
requirements to have several objectives, and then the Multi-Objective JSSP (MOJSSP)
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becomes an even more significant challenge. Thus, many industrial production areas
require the multi-objective approach [7,8].

In single-objective optimization, the goal is to find the optimal feasible solution of
an objective function. In other words, to find the best value of the variables which fulfill
all the constraints of the problem. On the other hand, for MOJSSP, the problem is to
find the optimum of a set of objective functions f1(x), f2(x) . . . fn(x) depending on a set
of variables x and subject to a set of constraints defined by these variables. To find the
optimal solution is usually impossible because fulfilling some objective functions may not
optimize the other objectives of the problem. In MOOP, a preference relation or Pareto
dominance relation produces a set of solutions commonly called the Pareto optimal set [9].
The Decision Makers (DMs) should select from the Pareto set the solution that satisfies
their preferences, which can be subjective, based on experience, or will most likely be
influenced by the industrial environment’s needs [10]. Therefore, the DM needs to have
a Pareto front that contains multiple representative compromise solutions, which exhibit
both good convergence and diversity [11].

In the study of single-objective JSSP, many algorithms have been applied. Some of
the most common are SA, Genetic Algorithms (GAs), Tabu Search (TS), and Ant Systems
(ASs) [12]. In addition, as we mention below, few works in the literature solve JSSP
instances with more than two objectives and applying more than two metrics to evaluate
their performance. Nevertheless, for MOJSSP, the number of objectives and performance
metrics remains too small [8,13–15]. The works of Zhao [14] and Mendez [8] are exceptions
because the authors have presented implementations with two or three significant objective
functions and two performance metrics. Moreover, SA and TA have shown to be very
efficient for solving NP-hard problems. Thus, this paper’s motivation is to develop new
efficient SA algorithms for MOJSSP with two or more objective functions and a larger
number of performance metrics.

The first adaptation of SA to MOOP was an algorithm proposed in 1992, also known
as MOSA [16]. An essential part of this algorithm is that it applies the Boltzmann criterion
for accepting bad solutions, commonly used in single-objective JSSP. MOSA combines
several objective functions. The single-objective JSSP optimization with SA algorithm and
MOSA algorithm for multi-objective optimization is different in several aspect related to
determining the energy functions, using and generating new solutions, and measuring
their quality as is well known, these energy functions are required in the acceptance
criterion. Multiple versions of MOSA have been proposed in the last few years. One
of them, published in 2008, is AMOSA, that surpassed other MOOP algorithms at this
time [17]. In this work, we adapt this algorithm for MOJSSP. TA [6] is an algorithm for
single-objective JSSP, which is very similar to Simulated Annealing. These two algorithms
have the same structure, and both use a temperature parameter, and they accept some bad
solutions for escaping from local optima. In addition, these algorithms are among the best
JSSP algorithms, and their performance is very similar. Nevertheless, for MOJSSP, a TA
algorithm has not been published, and so for obvious reason, it was not compared with the
SA multi-objective version.

MOJSSP has been commonly solved using IMOEA/D [14], NSGA-II [18], SPEA [19],
MOPSO [20], and CMOEA [21]; the latter was renamed CMEA in [8]. Nevertheless,
the number of objectives and performance metrics of these algorithms remains too small.
The Evolutionary Algorithm based on decomposition proposed in 2016 by Zhao in [14] was
considered the best algorithm [22]. The Multi-Objective Q-Learning algorithm (MOQL) for
JSSP was published in 2017 [23]; this approach uses several agents to solve JSSP. An exten-
sion of MOQL is MOMARLA, which was proposed in 2019 by Mendez [8]. This MOJSSP
algorithm uses two objective functions: makespan and total tardiness. MOMARLA over-
comes the classical multi-objective algorithms SPEA [19], CMOEA [21], and MOPSO [20].

The two new algorithms presented in this paper for JSSP are Chaotic Multi-Objective
Simulated Annealing (CMOSA) and Chaotic Multi-Objective Threshold Accepting (CMOTA).
The first algorithm is inspired by the classic MOSA algorithm [17]. However, CMOSA is
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different in three aspects: (1) for the first time it is designed specifically for MOJSSP, (2) it
uses an analytical tuning of the cooling scheme parameters, and (3) it uses chaotic pertur-
bations for finding new solutions and for escaping from local optima. This process allows
the search to continue from a different point in the solution space and it contributes to a
better diversity of the generated solutions. Furthermore, CMOTA is based on CMOSA and
Threshold Accepting, and it does not require the Boltzmann distribution. Instead, it uses
a threshold strategy for accepting bad solutions to escape from local optima. In addition,
a chaotic perturbation function is applied.

In this paper, we present two new alternatives for MOJSSP, and we consider three
objective functions: makespan, total tardiness, and total flow time. The first objective is very
relevant for production management applications [7], while the other two are critical for
enhancing client attention service [23]. In addition, we use six metrics for the evaluation of
these algorithms, and they are Mean Ideal Distance (MID), Spacing (S), Hypervolume (HV),
Spread (Δ), Inverted Generational Distance (IGD), and Coverage (C). We also apply an
analytical tuning parameter method to these algorithms. Finally, we compare the achieved
results with those obtained with the JSSP algorithm cited below in [8,14].

The rest of the paper is organized as follows. In Section 2, we make a qualitative
comparison of related MOJSSP works. In Section 3, we present MOJSSP concepts and the
performance metrics that were applied. Section 4 presents the formulation of MOJSSP
with three objectives. The proposed algorithms, their tuning method, and the chaotic
perturbation are also shown in Section 5. Section 6 shows the application of the proposed
algorithms to a set of 70, 58, and 15 instances. Finally, the results are shown and compared
with previous works. In Section 7, we present our conclusions.

2. Related Works

As mentioned above, in single-objective optimization, the JSSP community has broadly
investigated the performance of the different solution methods. However, the situation is
entirely different for MOJSSP, and there is a small number of published works. In 1994,
an analysis of SA family algorithms for JSSP was presented [24]; two of them were SA
and TA, which we briefly explain in the next paragraph. These algorithms suppose that
the solutions define a set of macrostates of a set of particles, while the objective functions’
values represent their energy, and both algorithms have a Metropolis cycle where the
neighborhood of solutions is explored. In single-objective optimization, for the set of
instances used to evaluate JSSP algorithms, SA obtained better results than TA. Furthermore,
a better solution than the previous one is always accepted, while a worse solution may be
accepted depending on the Boltzmann distribution criterion. This distribution is related
to the current temperature value and the increment or decrement of energy (associated
with the objective functions) in the current temperature value. In the TA case, a worse
solution than the previous one may be accepted using a criterion that tries to emulate
the Boltzmann distribution. This criterion establishes a possible acceptance of a worse
solution when the decrement of energy is smaller than a threshold value depending on
the temperature and a parameter γ that is very close to one. Then at the beginning of
the process, the threshold values are enormous because they depend on the temperatures.
Subsequently, the temperature parameter is gradually decreased until a value close to zero
is achieved, and then this threshold is very small.

In 2001, a Multi-Objective Genetic Algorithm was proposed to minimize the makespan,
total tardiness, and the total idle time [25]. The proposed methodology for JSSP was
assessed with 28 benchmark problems. In this publication, the authors randomly weighted
the different fitness functions to determine their results.

In 2006, SA was used for two objectives: the makespan and the mean flow time [26].
This algorithm was called Pareto Archived Simulated Annealing (PASA), which used
the Simulated Annealing algorithm with an overheating strategy to escape from local
optima and to improve the quality of the results. The performance of this algorithm was
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evaluated with 82 instances taken from the literature. Unfortunately, this method has not
been updated for three or more objective functions.

In 2011, a two-stage genetic algorithm (2S-GA) was proposed for JSSP with three objec-
tives to minimize the makespan, total weighted earliness, and total weighted tardiness [13].
In the first stage, a parallel GA found the best solution for each objective function. Then,
in the second stage, the GA combined the populations, which evolved using the weighted
aggregating objective function.

Researchers from the Contemporary Design and Integrated Manufacturing Technology
(CDIMT) laboratory proposed an algorithm named Improved Multi-Objective Evolutionary
Algorithm based on Decomposition (IMOEA/D) to minimize the makespan, tardiness,
and total flow time [14]. The authors experiment with 58 benchmark instances, and they
use the performance metrics Coverage [27] and Mean Ideal Distance (MID) [28] to evaluate
their algorithm. We notice in Table 1, studies with two or three objectives, but they do not
report any metric. On the other hand, IMOEA/D stands out from the rest of the literature,
not only because the authors reported good results but also because they considered a
more significant number of objectives, and they applied two metrics.

In 2008, the AMOSA algorithm based on SA for several objectives was proposed [17].
In this paper, the authors reported that the AMOSA algorithm performed better than some
MOEA algorithms, one of them NSGA-II [29]. They presented the main Boltzmann rules
for accepting bad solutions. Unfortunately, a MOJSSP with AMOSA and with more than
two objectives has not been published.

In 2017, a hybrid algorithm between an NSGA-II and a linear programming approach
was proposed [15]; it was used to solve the FT10 instance of Taillard [30]. This algo-
rithm minimized the weighted tardiness and energy costs. To evaluate the performance,
the authors only used the HV metric.

In 2019, MOMARLA was proposed, a new algorithm based on Q-Learning to solve
MOJSSP [8]. This work provided flexibility to use decision-maker preferences; each agent
represented a specific objective and used two action selection strategies to find a diverse
and accurate Pareto front. In Table 1, we present the last related studies for MOJSSP and
the proposed algorithms.

This paper analyzes our algorithms CMOSA and CMOTA, as follows: (a) comparing
CMOSA and CMOTA versus IMOEA/D [14], (b) comparing our algorithms with the results
published for MOMARLA, MOPSO, CMOEA, and SPEA, and (c) comparing CMOSA
versus CMOTA.

Table 1. Related Works.

Algorithm Objectives Metrics

SA [16] Makespan *
SA and TA [24] Makespan *
Hybrid GA [25] Makespan, total tardiness, and total idle time *

PASA [26] Makespan, mean flow time *

2S-GA [13] Makespan, total weighted earliness, and total
weighted tardiness *

IMOEA/D [14] Makespan, total flow time, and tardiness time C, MID
Hybrid GA/LS/LP [15] Weighted tardiness, and energy costs HV

MOMARLA [8] Makespan, total tardiness HV
CMOSA and CMOTA (This paper) Makespan, total tardiness, and total flow time MID, S, HV, Δ, IGD and C

* Not reported.

3. Multi-Objective Optimization

In a single-objective problem, the algorithm finishes its execution when it finds the
solution that optimizes the objective function or a very close optimal solution. However,
for Multi-Objective Optimization, the situation is more complicated since several objectives
must be optimized simultaneously. Then, it is necessary to find a set of solutions optimizing
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each of the objectives individually. These solutions can be contrasting because we can obtain
the best solution for an objective function that is not the best for other objective functions.

3.1. Concepts

Definitions of some concepts of Multi-Objective Optimization are shown below.
Pareto Dominance: In general, for any optimization problem, solution A dominates

another solution B if the following conditions are met [31]: A is strictly better than B on at
least one objective, and A is not worse than B for any objective function.

Non-dominated set: In a set of P solutions, the non-dominated solutions P1 is inte-
grated by solutions that accomplish the following conditions [31]: any pair of P1 solutions
must be non-dominated (one regarding the other), and any solution that does not belong
to P1 is dominated by at least one member of P1.

Pareto optimal set: The set of non-dominated solutions of the total search space.
Pareto front: The graphic representation of the non-dominated solutions of the multi-

objective optimization problem.

3.2. Performance Metrics

In an experimental comparison of different optimization techniques or algorithms,
it is always necessary to have the notion of performance. In the case of Multi-Objective
Optimization, the definition of quality is much more complicated than for single-objective
optimization problems because the multi-objective optimization criteria itself consists of
multiple objectives, of which, the most important are:

1. To minimize the distance of the resulting non-dominated set to the true Pareto front.
2. To achieve an adequate distribution (for instance, uniform) of the solutions is desirable.
3. To maximize the extension of the non-dominated front for each of the objectives.

In other words, a wide range of values must be covered by non-dominated solutions.

In general, it is difficult to find a single performance metric that encompasses all of
the above criteria. In the literature, a large number of performance metrics can be found.
The most popular performance metrics were used in this research and are described below:

Mean Ideal Distance: Evaluates the closeness of the calculated Pareto front (PFcalc)
solutions with an ideal point, which is usually (0, 0) [28].

MID =
∑Q

i=1 ci

Q
(1)

where ci =
√

f 2
1,i + f 2

2,i + f 2
3,i and f1,i, f2,i, f3,i are the values of the i-th non-dominated

solution for their first, second, and third objective function, and Q is the number of
solutions in the PFcalc.

Spacing: Evaluates the distribution of non-dominated solutions in the PFcalc. When
several algorithms are evaluated with this metric, the best is that with the smallest S
value [32].

S =

√
∑Q

i=1(di − d̄)2

Q
(2)

where di measures the distance in the space of the objective functions between the i-th
solution and its nearest neighbor; that is the j-th solution in the PFcalc of the algorithm, Q
is the number of the solutions in the PFcalc, d̄ is the average of the di, that is d̄ = ∑Q

i=1
di
Q

and di = minj(| f i
1(x)− f j

1(x)|+ | f i
2(x)− f j

2(x)|+ · · ·+ | f i
M(x)− f j

M(x)|), where f i
1, f i

2 are
the values of the i-th non-dominated solution for their first and second objective function,
f j
1, f j

2 are the values of the j-th non-dominated solution for their first and second objective
function respectively, M is the number of objective functions and i, j = 1, . . . Q.

Hypervolume: Calculates the volume in the objective space that is covered by all
members of the non-dominated set [33]. The HV metric is measured based on a reference
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point (W), and this can be found simply by constructing a vector with the worst values of
the objective function.

HV = volume
(
∪|Q|i=1vi

)
(3)

where vi is a hypercube and is constructed with a reference point W and the solution i as
the diagonal corners of the hypercube [31]. An algorithm that obtains the largest HV value
is better. The data should be normalized by transforming the value in the range [0, 1] for
each objective separately to perform the calculation.

Spread: This metric was proposed to have a more precise coverage value and considers
the distance to the (extreme points) of the true Pareto front (PFtrue) [29].

Δ =
∑M

k=1 de
k + ∑Q

i=1 |di − d̄|
∑M

k=1 de
k + Q× d̄

(4)

where de
k measures the distance between the “extreme” point of the PFtrue for the k-th

objective function, and the nearest point of PFcalc, di corresponds to the distance between
the solution i-th of the PFcalc, while its nearest neighbor, d̄ corresponds to the average of
the di and M is the number of objectives.

Inverted Generational Distance: It is an inverted indicator version of the Generational
Distance (GD) metric, where all the distances are measured from the PFtrue to the PFcalc [1].

IGD(Q) =

(
∑
|T|
j=1 d̂p

j

)1/p

|T| (5)

where T = {t1, t2, . . . , t|T|} that is, the solutions in the PFtrue and |T| is the cardinality of T,
p is an integer parameter, in this paper p = 2 and d̂j is the Euclidean distance from tj to its
nearest objective vector q in Q, according to (6).

dj =
|Q|

min
q=1

√√√√ M

∑
m=1

( f m(tj)− f m(q))2 (6)

where f m(t) is the m-th objective function value of the t-th member of T and M is the
number of objectives.

Coverage: Represents the dominance between set A and set B [27]. It is the ratio of
the number of solutions in set B that were dominated by solutions in set A and the total
number of solutions in set B. The C metric is defined by (7).

C(A, B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B| (7)

When C(A, B) = 1, all B solution are dominated or equal to solutions in A. Otherwise,
C(A, B) = 0, represents situations in which none of the solutions in B is dominated by
any solution in A. The higher the value of C(A, B), the more solutions in B are dominated
by solutions in A. Both C(A, B) and C(B, A) should be considered, since C(B, A) is not
necessarily equal to 1− C(A, B).

4. Multi-Objective Job Shop Scheduling Problem

In JSSP, there are a set of n different jobs consisting of operations that must be processed
in m different machines. There are a set of precedence constraints for these operations,
and there are also resource capacity constraints for ensuring that each machine should
process only one operation at the same time. The processing time of each operation is
known in advance. The objective of JSSP is to determine the sequence of the operations in
each machine (the start and finish time of each operation) to minimize certain objective
functions subject to the constraints mentioned above. The most common objective is the

122



Math. Comput. Appl. 2021, 26, 8

makespan, which is the total time in which all the problem operations are processed.
Nevertheless, real scheduling problems are multi-objective, and several objectives should
be considered simultaneously.

The three objectives that are addressed in the present paper are:
Makespan: the maximum time of completion of all jobs.
Total tardiness: it is calculated as the total positive differences between the makespan

and the due date of each job.
Total flow time: it is the summation of the completion times of all jobs.
The formal MOJSSP model can be formulated as follows [34,35]:

Optimize F(x) = [ f1(x), f2(x), . . . , fq(x)] Subject to : x ∈ S (8)

where q is the number of objectives, x is the vector of decision variables, and S represents
the feasible region. Defined by the next precedence and capacity constraints, respectively:

tj ≥ ti + pi For all i, j ∈ O when i precedes j
tj ≥ ti + pi or ti ≥ tj + pj For all i, j ∈ O when Mi = Mj

where:

ti, tj are the starting times for the jobs i, j ∈ J.
pi and pj are the processing times for the jobs i, j ∈ J.
J : {J1, J2, J3, . . . , Jn} it is the set of jobs.
M : {M1, M2, M3, . . . Mm} it is the set of machines.
O is the set of operations Oj,i (operation i of the job j).

The objective functions of makespan, total tardiness, and total flow time, are defined
by Equations (9)–(11), respectively.

f1 = min
(

n
max
j=1

Cj

)
(9)

where Cj is the makespan of job j.

f2 = min

(
n

∑
j=1

Tj

)
= min

(
n

∑
j=1

max(0, Cj − Dj)

)
(10)

where Tj = max(0, Cj − Dj) is the tardiness of job j, and Dj is the due date of job j and is
calculated with Dj = τ ∑m

i=1 pj,i [36], where pj,i is the time required to process the job j in
the machine i. In this case, the due date of the j job is the sum of the processing time of all
its operations on all machines, multiplied by a narrowing factor (τ), which is in the range
1.5 ≤ τ ≤ 2.0 [14,36].

f3 = min
n

∑
j=1

Cj (11)

5. Multi-Objective Proposed Algorithms

The two multi-objective algorithms presented in this section for solving JSSP are
Chaotic Multi-Objective Simulated Annealing and Chaotic Multi-Objective Threshold
Accepting. We describe these algorithms in this section after analyzing the single-objective
optimization algorithms for JSSP.

5.1. Simulated Annealing

The algorithm SA proposed by Kirkpatrick et al. comes from a close analogy with
the metal annealing process [5]. This process consists of heating and progressively cooling
metal. As the temperature decreases, the molecules’ movement slows down and tends
to adopt a lower energy configuration. Kirkpatrick et al. proposed this algorithm for
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combinatorial optimization problems and to escape from local minima. It starts with an
initial solution and generates a new solution in its neighborhood. If the new solution is
better than the old solution, then it is accepted. Otherwise, SA applies the Boltzmann
distribution, which determines if a bad solution can be taken as a strategy for escaping
from local optima. This process is repeated many times until an equilibrium condition
is accomplished.

The SA algorithm is shown in Algorithm 1. Line 1 receives the parameters: the initial
(Tinitial) and final (Tf inal) temperatures, the alpha value (α) for decreasing the temperature,
and beta (β) for increasing the length of the Metropolis cycle. The current temperature
(Tk) is set in line 2. An initial solution (scurrent) is generated randomly in line 3. The stop
criterion is evaluated (line 4); this main cycle is repeated while the current temperature (Tk)
is higher than the final temperature (Tf inal). The Metropolis cycle starts in line 5, where a
neighboring solution (snew) is generated (line 6). In line 7 the increment ΔE of the objective
function is determined for the current solution (scurrent) and the new one (snew). When this
increment is negative (line 8) the new solution is the best. In this case, the new solution
replaces the current solution (line 9). Otherwise, the Boltzmann criterion is applied (lines
11 and 12). This criterion allows the algorithm to escape from local optima depending
on the current temperature and delta values. Finally, line 16 increases the number of
iterations of the Metropolis cycle, and in line 17, the cooling function is applied to reduce
the current temperature.

Algorithm 1 Classic Simulated Annealing algorithm

1: procedure SA(Tinitial , Tf inal , α, β, Lk)

2: Tk ← Tinitial

3: scurrent ← RandomInitialSolution()

4: while Tk ≥ Tf inal do

5: for 1 to Lk do

6: snew ← perturbation(scurrent)

7: ΔE ← E(snew)− E(scurrent)

8: if ΔE < 0 then

9: scurrent ← snew

10: else

11: if (e−ΔE/Tk > random(0, 1) then

12: scurrent ← snew

13: end if

14: end if

15: end for

16: Lk ← β× Lk

17: Tk ← α× Tk

18: end while

19: return scurrent

20: end procedure

5.2. Analytical Tuning for Simulated Annealing

The parameters tuning process for the SA algorithm used in this paper is based
on a method proposed in [37]. This method establishes that both the initial and final
temperatures are functions of the maximum and minimum energy values Emax and Emin,
respectively. These energies appeared in the Boltzmann distribution criterion that states that
a bad solution is accepted in a temperature T when random(0, 1) ≤ e−ΔE/T . For JSSP, ΔE
is obtained with the makespan. For this tuning method, these two functions are obtained
from the neighborhood of different solutions randomly generated. A set of previous SA
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executions must be carried out for obtaining ΔEmax and ΔEmin. These value are used
in the Boltzmann distribution for determining the initial and final temperatures. Then,
the other parameters of Metropolis cycle are determined. The process used is detailed in
the next paragraph.

Initial temperature (Tinitial): It is the temperature value from which the search process
begins. The probability of accepting a new solution is almost 1 at high temperatures so, its
cost of deterioration is maximum. The initial temperature is associated with the maximum
allowed deterioration and its defined acceptance probability. Let us define si as the current
solution, sj a new proposed solution, E(si)

and E(sj)
are its associated costs, the maximum

and minimum deterioration are ΔEmax and ΔEmin. Then P(ΔEmax), is the probability of
accepting a solution with the maximum deterioration and it is calculated with (12). Thus
the value of the initial temperature (Tinitial) is calculated with (13).

P(ΔEmax) = e(ΔEmax/Tinitial) (12)

Tinitial =
−ΔEmax

ln(P(ΔEmax))
(13)

Final temperature (Tf inal): It is the temperature value at which the search stops. In the
same way, the final temperature is determined with (14) according to the probability
P(ΔEmin), which is the probability of accepting a solution with minimum deterioration.

Tf inal =
−ΔEmin

ln(P(ΔEmin))
(14)

Alpha value (α): It is the temperature decrease factor. This parameter determines the
speed at which the decrease in temperature will occur, for fast decrements 0.7 it is usually
used and for slow decrements 0.99.

Cooling scheme: This function specifies how the temperature is decreased. In this
case, the value of the current temperature (Tk) follows the geometric scheme (15).

Tk+1 = αTk (15)

Length of the Markov chain or iterations in Metropolis cycle (Lk): This refers to the
number of iterations of the Metropolis cycle that is performed at each temperature k, this
number of iterations can be constant or variable. It is well known that at high temperatures,
only a few iterations are required since the stochastic equilibrium is rapidly reached [37].
However, at low temperatures, a much more exhaustive level of exploration is required.
Thus, a larger Lk value must be used. If Lmin is the value of Lk at the initial temperature,
and Lmax is the Lk at the final temperature, then the Formula (16) is used.

Lk+1 = βLk (16)

where β is the increment coefficient of Lk. Since the Functions (15) and (16) are applied
successively in SA from the initial to the final temperature, Tf inal and Lmax are calculated
with (17) and (18).

Tf inal = αnTinitial (17)

Lmax = βnLmin (18)

In (17) and (18) n is the number of steps from Tinitial to Tf inal , then (19) and (20)
are obtained.

n =
ln(Tf inal)− ln(Tinitial)

ln(α)
(19)

β = e(
ln(Lmax)−ln(Lmin)

n ) (20)
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The probability of selecting the solution sj from N random samples in the neighbor-
hood Vsi is given by (21); and from this equation, the N value is obtained in (22), where the
exploration level C is defined in Equation (23).

P(Sj) = 1− e
−N
|Vsi | (21)

N = − | Vsi | ln(1− P(Sj)) = C | Vsi | (22)

C = ln(P(Sj)) (23)

The length of the Markov chain or iterations of the Metropolis cycle are defined
by (24).

Lmax = N = C | Vsi | (24)

To guarantee a good exploration level, the C value determined by (23) must be
established between 1 ≤ C ≤ 4.6 [38].

5.3. Chaotic Multi-Objective Simulated Annealing (CMOSA)

As we previously mentioned, the AMOSA algorithm was proposed in [17]. However,
this algorithm is designed for general purposes. In this work, we adapt the AMOSA for
JSSP to include the following features: (1) the mathematical constraints of MOJSSP, and (2)
the objective functions makespan, total tardiness, and total flow time.

CMOSA has the same features previously described and has the next three elements:
(1) a new structure, (2) chaotic perturbation, and (3) apply dominance to select solutions.
These elements are described in the next subsections.

5.3.1. CMOSA Structure

The CMOSA algorithm uses a chaotic phase to improve the quality of the solutions
considering the three objectives. Algorithm 2 receives its parameters in line 1: initial
temperature (Tinitial), final temperature (Tf inal), alpha (α), beta (β), Metropolis iterations
in every cycle (Lk), and the initial solution (scurrent) to be improved. In lines 2 and 3,
the variables of the algorithm are initialized. In line 4, the scurrent is processed to obtain
the values for each of the three objectives as output. In line 5, the initial temperature is
established as the current temperature (Tk). Then the main cycle begins in line 6. This
cycle is repeated as long as the current temperature is greater than, or equal to, the final
temperature. In line 7, the Metropolis cycle begins. Subsequently, the algorithm verifies if
it is stagnant in line 8. If that is the case, lines 9 to 20 are executed. The number of iterations
to perform a local search is established in line 10; this value is based on the number of
tasks of the instance multiplied by an experimentally tuned parameter (in this case, this
parameter is timesLS = 10).

In line 11, a local search begins. In the first iteration of this search, a chaotic perturba-
tion (explained in Algorithm 4) is applied to the scurrent (line 12) to restart the search process
from another point in the solution space. In further iterations, a regular perturbation is
applied (line 14) that consists only of exchanging the position of two operations in the solu-
tion, always verifying that the solution generated is feasible. In line 16, the snew is processed
to obtain the values for each of the three objectives. Subsequently, and only if the new
solution dominates the current solution of the three objectives, the new solution is used to
continue the search process (lines 17 and 18). When the algorithm is not stagnant, a regular
perturbation is applied, and the flow continues (line 22). If the current and the new solution
are different, we proceed with the dominance verification process to determine which
solution is used to continue the search (line 26); this process is explained in Algorithm 5.
Finally, from lines 29 to 36, a process is applied to set a limit to the number of times the
algorithm is stagnant (See Algorithm 3). The algorithm is determined to be stagnant if,
after some iterations, it fails to generate a new, non-dominated solution. In this algorithm,
the stagnation is limited to 10 iterations. At the end of the algorithm, in line 37, the number
of repetitions of the Metropolis cycle (Lk) is increased by multiplying its previous value by
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the β parameter value. Additionally, in line 38, the current temperature (Tk) is decreased by
multiplying it by the α value. At the end of line 40, the stored solution (scurrent) is generated
as the output of the algorithm.

Algorithm 2 Chaotic Multi-Objective Simulated Annealing (CMOSA)

1: procedure CMOSA(Tinitial , Tf inal , α, β, Lk, scurrent)

2: MAXSTAGNANT ← 10, counterTrapped ← 0, isCaught ← FALSE

3: iterationsLocalSearch ← tasks× timesLS, veri f yCaught ← TRUE, countCaught ← 0

4: mkscurrent, tdscurrent, f ltcurrent ← calculateValues(scurrent) � mks : makespan, tds : tardiness, f lt : f lowtime

5: Tk ← Tinitial

6: while Tk ≥ Tf inal do

7: for i ← 0 to Lk do

8: if isCaught = TRUE then

9: isCaught ← FALSE

10: for k ← 0 to iterationsLocalSearch do

11: if k = 0 then

12: snew ← chaoticPerturbation(scurrent) � See Algorithm 4

13: else

14: snew ← regularPerturbation(scurrent) � Exchange of two operations

15: end if

16: mksnew, tdsnew, f ltnew ← calculateValues(snew)

17: if (mksnew < mkscurrent) AND (tdsnew < tdscurrent) AND ( f ltnew < f ltcurrent) then

18: scurrent ← snew

19: end if

20: end for

21: else

22: snew ← regularPerturbation(scurrent)

23: mksnew, tdsnew, f ltnew ← calculateValues(snew)

24: end if

25: if (mksnew �= mkscurrent) AND (tdsnew �= tdscurrent) AND ( f ltnew �= f ltcurrent) then

26: veri f yDominanceCMOSA(Tk, snew, scurrent) � See Algorithm 5

27: end if

28: end for

29: if veri f yCaught = TRUE then

30: if caught(scurrent, counterTrapped) = TRUE then � See Algorithm 3

31: countCaught = countCaught + 1

32: if countCaught = MAXSTAGNANT then

33: veri f yCaught ← FALSE

34: end if

35: end if

36: end if

37: Lk ← β× Lk

38: Tk ← α× Tk

39: end while

40: return scurrent

41: end procedure
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Algorithm 3 shows the process that is carried out to verify the stagnation mentioned
in line 30 of Algorithm 2.

Algorithm 3 Caught

1: procedure CAUGHT(scurrent, counterTrapped)

2: isCaught ← FALSE, timesDominated ← 0, maxTrapped ← 10

3: timesDominated ← countTimesDominated(scurrent)

4: if timesDominated = 0 then

5: F ← scurrent

6: end if

7: if timesDominated ≥ 1 then

8: counterTrapped ← counterTrapped + 1

9: end if

10: if counterTrapped = maxTrapped then

11: isCaught ← TRUE

12: counterTrapped ← 0

13: end if

14: return isCaught

15: end procedure

In this Algorithm 3 the current solution (scurrent) and the counter of times it has trapped
(counterTrapped) are received as input. In line 2 the variables used are initialized. Then
the times that the current solution is dominated by at least one solution from the non-
dominated front are counted (line 3). If the current solution is non-dominated (line 4) it is
stored in the front of non-dominated solutions (line 5). If the current solution is dominated
by at least one solution (line 7) then the counterTrapped is incremented (line 8). When
counterTrapped equals the maximum number of trapped allowed (line 10), the value of
isCaught is set to TRUE (line 11) and the trap counter is reset to zero in line 12.

5.3.2. Chaotic Perturbation

The logistic equation or logistic map is a well-known mathematical application of the
biologist Robert May for a simple demographic model [39]. This application tells us the
population in the n-th generation based on the size of the previous generation. This value
may be found by a popular logistic model mathematically expressed as:

xn+1 = rxn(1− xn) (25)

In Equation (25), the variable xn takes values ranged between zero and one. This
variable represents the fraction of individuals in a specific situation (for instance, into a
territory or with a particular feature) in a given instant n. The parameter r is a positive
number representing the combined ratio between reproduction and mortality. Even though
we are not interested in this paper in demographic or similar problems, we notice the very
fast last variable changes. Then it can be taken as a chaotic variable. Thus, we use this
variable for performing a chaotic perturbation function, which may help to escape from
local optima for our CMOTA and CMOSA algorithms.

The chaotic function used is very sensitive to changes in the initial conditions, and this
characteristic is used to generate a perturbation to the solution for escaping from local
optima. Then chaos or chaotic perturbation is a process carried out to restart the search
from another point in the space of solutions.
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Algorithm 4 can be explained in three steps. Firstly, the feasible operations (operations
that can be performed without violating any restrictions) are searched (line 4). Secondly,
whether there is only one feasible operation (line 5) means that it is the last operation and
selected (line 6). When there is more than one feasible operation, a chaotic function is
applied to select the operations. In this case, the logistic function is used (lines 8–19), which
applies a threshold in the range [0.5 to 1]. Finally, the selected operation is added to the
new solution (line 21). This process is applied until all the operations are selected.

Algorithm 4 Chaotic perturbation

1: procedure CHAOTICPERTURBATION(scurrent)
2: f easibleTasksNumber ← 0, r ← 4, repeat ← TRUE, Xn ← 0, Xn1 ← 0
3: while counter < tasks do

4: f easibleTasksNumber ← searchFeasibleTasks()
5: if f easibleTasksNumber = 1 then

6: index ← 0
7: else

8: while repeat = TRUE do

9: Xn ← random(0, 1)
10: for i ← 0 to f easibleTasksNumber do

11: Xn1 ← (r× Xn)× (1.0− Xn)

12: if Xn1 > 0.5 then

13: index ← i
14: repeat ← FALSE
15: break
16: end if

17: Xn ← Xn1
18: end for

19: end while

20: end if

21: snew ← addTask(index)
22: counter ← counter + 1
23: end while

24: return snew
25: end procedure

5.3.3. Applying Dominance to Select Solutions

In Algorithm 5, the current solution (scurrent) is compared with the new solution (snew)
to determine which solution is used to continue the search. In this comparison, there are
three cases:

1. If snew dominates scurrent, then snew is used to continue the search (lines 3 to 6).
2. If snew is dominated by scurrent then the differences of each objective are calculated

separately from the two solutions compared to obtain the decreased parameter (Δ) and
use it to determine if the snew continues with the search according to the condition in
line 12. In this case, scurrent is added to the non-dominated front (F) and snew replaces
scurrent (lines 13 and 14).

3. If the two solutions are non-dominated by each other, then the current solution scurrent
is added to the non-dominated front (F), and the search continues with snew (lines 18
to 21).
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Algorithm 5 Verify dominance CMOSA

1: procedure VERIFYDOMINANCECMOSA(Tk, snew, scurrent, mksnew, tdsnew, f ltnew, mkscurrent, tdscurrent, f ltcurrent)
2: newDominateCurrent ← FALSE, currentDominateNew ← FALSE
3: if snew ≺ scurrent then
4: scurrent ← snew
5: newDominateCurrent ← TRUE
6: end if
7: if scurrent ≺ snew then
8: ΔMKS ← mksnew −mkscurrent
9: ΔTDS ← tdsnew − tdscurrent

10: ΔFLT ← f ltnew − f ltcurrent
11: Δ ← ΔMKS + ΔTDS + ΔFLT
12: if random(0, 1) < e−Δ/Tk then
13: F ← scurrent
14: scurrent ← snew
15: end if
16: currentDominateNew ← TRUE
17: end if
18: if (newDominateCurrent = FALSE) AND (currentDominateNew = FALSE) then
19: F ← scurrent
20: scurrent ← snew
21: end if
22: return scurrent
23: end procedure

5.4. Chaotic Multi-Objective Threshold Accepting (CMOTA)

In 1990, Dueck et al. proposed the TA algorithm as a general-purpose algorithm
for the solution of combinatorial optimization problems [6]. This TA algorithm has a
simpler structure than SA, and is very efficient for solving many problems but has never
been applied for MOJSSP. The difference between SA and TA is basically in the criteria for
accepting bad solutions. TA accepts every new configuration, which is not much worse than
the old one. In contrast, SA would accept worse solutions only with small probabilities.
An apparent advantage of TA is that it is higher simply because it is not necessary to
compute probabilities or to make decisions based on a Boltzmann probability distribution.

Algorithm 6 shows CMOTA algorithm, where we observe that it has the same structure
as CMOSA algorithm. These two algorithms have a temperature cycle and, within it,
a Metropolis cycle. In these algorithms, a perturbation is applied to the current solution.
Then, the dominance of the two solutions is verified to determine which of them is used to
continue the searching process (Algorithm 7). Finally, the increment of the variable that
controls the iterations of the Metropolis cycle, the reduction of the temperature, and the
increment of the counter (line 39) for the number of temperatures are performed.

In Algorithm 7, the dominance of the two solutions is verified to determine which
continues with the search. It has the same three cases used in CMOSA (Algorithm 5).
The main differences are the following:

• In the beginning, while the temperature counter (counter) is less than the value of
bound (line 4) T has a value equal to Tk (line 5), which is too large, which implies that
at high temperature, the new solution (snew) will often be accepted to continue the
search. That is, during the processing of 95% temperatures (parameter limit = 0.95,
whose value is obtained with Equation (19) in the tuning process), the parameter γ is
used to obtain the value T (threshold), and since γ is equal to 1, then it means that T
has the value of Tk. For the five percent of the remaining temperatures, γ takes the
value of γreduced (0.978). This parameter is tuned experimentally (line 12), and it is
established to control the acceptance criterion and make it more restrictive as part of
the process.

• CMOTA includes a verification process for accepting bad solution lighting different
from CMOSA. To determine if the searching process continues using a dominated
solution, CMOTA does not use the Boltzmann criterion to accept it as the current
solution. Instead, CMOTA uses a threshold defined as the T parameter value (line 19),
which is updated in line 29. In other words, it is no longer necessary to calculate the
decrement of the objective functions. This modification makes CMOTA much more
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straightforward than CMOSA or any other AMOSA algorithm. Moreover, because the
parameter γ is usually very close to one, it is unnecessary to calculate probabilities for
the Boltzmann distribution or make a random decision process for bad solutions.

Algorithm 6 Chaotic Multi-Objective Threshold Accepting (CMOTA)

1: procedure CMOTA(Tinitial , Tf inal , α, β, Lk, scurrent)
2: counter ← 1, MAXSTAGNANT ← 10, counterTrapped ← 0, isCaught ← FALSE
3: iterationsLocalSearch ← tasks× timesLS, veri f yCaught ← TRUE, countCaught ← 0
4: mkscurrent, tdscurrent, f ltcurrent ← calculateValues(scurrent) � mks : makespan, tds : tardiness, f lt : f lowtime
5: Tk ← Tinitial
6: while Tk ≥ Tf inal do

7: for i ← 0 to Lk do

8: if isCaught = TRUE then

9: isCaught = FALSE
10: for k ← 0 to iterationsLocalSearch do

11: if k = 0 then

12: snew ← chaoticPerturbation(scurrent) � See Algorithm 4
13: else

14: snew ← regularPerturbation(scurrent) � Exchange of two operations
15: end if

16: mksnew, tdsnew, f ltnew ← calculateValues(snew)

17: if (mksnew < mkscurrent) AND (tdsnew < tdscurrent) AND ( f ltnew < f ltcurrent) then

18: scurrent ← snew
19: end if

20: end for

21: else

22: snew ← regularPerturbation(scurrent)

23: mksnew, tdsnew, f ltnew ← calculateValues(snew)

24: end if

25: if (mksnew �= mkscurrent) AND (tdsnew �= tdscurrent) AND ( f ltnew �= f ltcurrent) then

26: veri f yDominanceCMOTA(counter, Tk, snew, scurrent) � See Algorithm 7
27: end if

28: end for

29: if veri f yCaught = TRUE then

30: if caught(scurrent, counterTrapped) = TRUE then � See Algorithm 3
31: countCaught = countCaught + 1
32: if countCaught = MAXSTAGNANT then

33: veri f yCaught ← FALSE
34: end if

35: end if

36: end if

37: Lk ← β× Lk
38: Tk ← α× Tk
39: counter ← counter + 1
40: end while

41: return scurrent
42: end procedure
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Algorithm 7 Verify dominance CMOTA

1: procedure VERIFYDOMINANCECMOTA(counter, Tk, snew, scurrent)
2: γ ← 1, γreduced ← 0.978, setT ← 1, bound ← NumberO f Temperatures× limit
3: newDominateCurrent ← FALSE, currentDominateNew ← FALSE
4: if counter < bound then

5: T ← Tk

6: end if

7: if (counter = bound) AND (setT = 1) then

8: setT ← 0
9: T ← Tk

10: end if

11: if setT = 0 then

12: γ ← γreduced

13: end if

14: if snew ≺ scurrent then

15: scurrent ← snew

16: newDominateCurrent ← TRUE
17: end if

18: if scurrent ≺ snew then

19: if random(0, 1) < T then

20: F ← scurrent

21: scurrent ← snew

22: end if

23: currentDominateNew ← TRUE
24: end if

25: if (newDominateCurrent = FALSE) AND (currentDominateNew = FALSE) then

26: F ← scurrent

27: scurrent ← snew

28: end if

29: T ← T × γ

30: end procedure

6. Main Methodology for CMOSA and CMOTA

Figure 1 shows the main module for each of the two proposed algorithms CMOSA
and CMOTA, which may be considered the main processes in any high-level language.

In this main module, the instance to be solved is read, then the tuning process is
performed. The due date is calculated, which is an essential element for calculating the
tardiness. The set of initial solutions (S) is generated randomly, as follows. First, a collection
of feasible operations are determined, then one of them is randomly selected and added to
the solution until all the job operations are added.

Once the set of initial solutions has been generated, an algorithm (CMOSA or CMOTA)
is applied to improve each initial solution, and the generated solution is stored in a set of
final solutions (F). To obtain the set of non-dominated solutions, also called the zero front
( f0) from the set of final solutions, we applied the fast non-dominated Sorting algorithm [29].
To know the quality of the non-dominated set obtained, the MID, Spacing, HV, Spread,
IGD, and Coverage metrics are calculated. To perform the calculation of the spread and
IGD, the true Pareto front (PFtrue) is needed. However, for the instances used in this paper,
the PFtrue has not been published for all the instances. For this reason, the calculation was
made using an approximate Pareto front (PFapprox), which we obtained from the union
of the fronts calculated with previous executions of the two algorithms presented here
(CMOSA and CMOTA).
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Figure 1. Main module for CMOSA and CMOTA.

6.1. Computational Experimentation

A set of 70 instances of different authors was used to evaluate the performance of the
algorithms, including: (1) FT06, FT10, and FT20 proposed by [40]; (2) ORB01 to ORB10
proposed by [41]; (3) LA01 to LA40 proposed by [42]; (4) ABZ5, ABZ6, ABZ7, ABZ8,
and ABZ9 proposed by [43]; (5) YN1, YN2, YN3, and YN4 proposed by [44], and (6) TA01,
TA11, TA21, TA31, TA41, TA51, TA61, and TA71 proposed by [30].

As already explained, to perform the analytical tuning, some previous executions
of the algorithm are necessary. The parameters used for those previous executions are
shown in Table 2, and the parameters used in the final experimentation for each instance
are shown in Table 3.

Table 2. Tuning parameters for CMOSA/CMOTA.

Number of Executions Initial Temperature Final Temperature Alpha Lk

50 100 0.1 0.98 100

Table 3. General parameters for CMOSA/CMOTA.

Number of Executions Initial Solutions Alpha Stagnant Number

30 30 0.98 10

The execution of the algorithm was carried out on one of the terminals of the Eh-
ecatl cluster at the TecNM/IT Ciudad Madero, which has the following characteristics:
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Intel® Xeon® processor at 2.30 GHz, Memory: 64 GB (4 × 16 GB) ddr4-2133, Linux op-
erating system CentOS, and C language was used for the implementation. We devel-
oped CMOSA (https://github.com/DrJuanFraustoSolis/CMOSA-JSSP.git) and CMOTA
(https://github.com/DrJuanFraustoSolis/CMOTA-JSSP.git) and we tested the software
and using three data sets reported in the paper and taken from the literature.

In the first experiment, the algorithms CMOSA and CMOTA were compared with
AMOSA algorithm using the 70 described instances and six performance metrics. In a
second experiment, we compared CMOSA and CMOTA with the IMOEA/D algorithm,
with the 58 instances used by Zhao [14]. In the second experiment, we used the same MID
metric of this publication. The third experiment was based on the 15 instances reported
in [8], where the results of the next MOJSSP algorithms are published: SPEA, CMOEA,
MOPSO, and MOMARLA. In this publication the authors used two objective functions and
two metrics (HV and Coverage); they determined that the best algorithm is MOMARLA
followed by MOPSO. We executed CMOSA and CMOTA for the instances of this dataset
and we compared our results using the HV metric with those published in [8]. However,
a comparison using the coverage metric was impossible because the Pareto fronts of these
methods have not been reported [8]. In our case, we show in Appendix A the fronts of
non-dominated solutions obtained with 70 instances.

6.2. Results

The average values of 30 runs, for the six metrics obtained by CMOSA and CMOTA
for the complete data set of 70 instances are shown in Tables 4 and 5. We observed that
CMOSA obtained the best values for MID and IGD metrics. For Spacing and Spread,
CMOTA obtained the best results. For the HV metric, both algorithms achieved the same
result (0.42). We observed in Table 5 that CMOSA obtained the best coverage result.

A two-tailed Wilcoxon test was performed with a significance level of 5% (last column
in Table 4) and this shows that there are no significant differences between the CMOSA
and CMOTA except in MID and IGD metrics.

Table 4. Results obtained by the metrics for 70 instances.

Significant
Metric CMOSA CMOTA Difference

CMOSA-CMOTA

MID 30,680.19 * 31,233.15 Yes
SPACING 28,445.62 28,183.17 * No
SPREAD 24,969.31 23,401.88 * No

HV 0.42 * 0.42 * No
IGD 1666.25 * 1870.94 Yes

* Best result.

Table 5. Results obtained by the coverage metric.

Coverage (CMOSA, CMOTA) Coverage (CMOTA, CMOSA)

0.854 * 0.063
* Best result.

Table 6 shows the comparison of CMOSA and AMOSA. We observed that CMOSA
obtains the best performance in all the metrics evaluated. In addition, the Wilcoxon test
indicates that there are significant differences in most of them; thus, CMOSA overtakes
AMOSA. We compared CMOTA and AMOSA in Table 7. In this case, CMOTA also obtains
the best average results in all the metrics; however, according to the Wilcoxon test, there
are significant differences in only two metrics.
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Table 6. Comparison among CMOSA with AMOSA.

Significant
Metric CMOSA AMOSA [17] Difference

CMOSA-AMOSA

MID 30,680.19 * 32,138.19 Yes
SPACING 28,445.62 * 30,129.36 Yes
SPREAD 24,969.31 * 26,625.04 No

HV 0.42 * 0.37 No
IGD 1666.25 * 2209.96 Yes

* Best result.

Table 7. Comparison among CMOTA with AMOSA.

Significant
Metric CMOTA AMOSA [17] Difference

CMOTA-AMOSA

MID 31,233.15 * 32,138.19 No
SPACING 28,183.17 * 30,129.36 Yes
SPREAD 23,401.88 * 26,625.04 No

HV 0.42 * 0.37 No
IGD 1870.94 * 2209.96 Yes

* Best result.

We compare in Table 8 the CMOSA and CMOTA with the IMOEA/D algorithm using
the 58 common instances published in [14] where the MID metric was measured. This
table shows the MID average value of this metric for the non-dominated set of solutions
of CMOSA and CMOTA. The results showed that CMOSA and CMOTA obtain better
performances than IMOEA/D. We notice that both algorithms, CMOSA and CMOTA,
achieved smaller MID values than IMOEA/D, which indicates that the Pareto fronts of
our algorithms are closer to the reference point (0,0,0). The Wilcoxon test confirms that
CMOSA and CMOTA surpassed the IMOEA/D.

Table 8. CMOSA, CMOTA, and IMOEA/D results obtained using MID metric.

Significant Significant
CMOSA CMOTA IMOEA/D [14] Difference Difference

CMOSA-IMOEA/D CMOTA-IMOEA/D

15,729.65 * 16,567.07 18,727.04 Yes Yes
* Best result.

The results of CMOSA and CMOTA were compared with the SPEA, CMOEA, MOPSO,
and MOMARLA algorithms [8]. In the last reference, only two objective functions were
reported, the makespan and total tardiness. The experimentation was carried out with
15 instances and the average HV values were calculated to perform the analysis of the
results, which are shown in Table 9. We notice that MOMARLA surpassed SPEA, CMOEA,
and MOPSO. We can observe that CMOSA obtained a better performance than MOMARLA
and the other algorithms. Comparing CMOTA and MOMARLA, we notice that both
algorithms obtained the same HV average results.

135



Math. Comput. Appl. 2021, 26, 8

Table 9. Comparison among SPEA, CMOEA, MOPSO, CMOSA, CMOTA, and MOMARLA using HV.

Instance SPEA [8] CMOEA [8] MOPSO [8] MOMARLA [8] CMOSA CMOTA

1 FT06 0.07 0.07 0.50 0.65 0.64 0.75 *
2 FT10 0.17 0.26 0.87 0.96 0.71 0.69
3 FT20 0.20 0.20 0.21 0.25 0.57 * 0.77 *
4 ABZ5 0.34 0.33 0.36 0.40 0.85 * 0.56 *
5 ABZ6 0.22 0.36 0.31 0.42 0.60 * 0.81 *
6 ABZ7 0.51 0.45 1.00 1.00 0.79 0.51
7 ABZ8 0.88 0.36 0.99 0.99 0.69 0.66
8 LA26 0.33 0.39 0.47 0.47 0.91 * 0.70 *
9 LA27 0.58 0.56 0.41 0.60 0.71 * 0.93 *
10 LA28 0.48 0.42 0.48 0.54 0.92 * 0.44
11 ORB01 0.62 0.74 0.59 0.80 0.87 * 0.63
12 ORB02 0.20 0.04 0.30 0.53 0.88 * 0.77 *
13 ORB03 0.69 0.31 0.85 0.86 0.76 0.80
14 ORB04 0.63 0.28 0.52 0.79 0.76 0.81 *
15 ORB05 0.00 0.023 0.22 0.90 0.74 0.32

Mean HV 0.39 0.32 0.54 0.68 0.76 * 0.68

* Best result.

6.3. CMOSA-CMOTA Complexity and Run Time Results

In this section, we present the complexity of the algorithms analyzed in this paper.
The algorithms’ complexity is presented in Table 10, and it was obtained directly when it
was explicitly published or determined from the algorithms’ pseudocodes. In this table,
M is the number of objectives, Γ is the population size, T is the neighborhood size, n is
the number of iterations (temperatures for AMOSA, CMOSA, and CMOTA), and p is the
problem size. The latter is equal to jm where j and m are the number of jobs and machines,
respectively. Because the algorithms with the best quality metrics are CMOSA, CMOTA
MOMARLA, and MOPSO, their complexity is compared in this section.

It is well known that the complexity of classical SA is O(p2 log p) [45]. However, we
notice from Table 10 that CMOSA, and CMOTA have a different complexity even though
they are based on SA. This is because these new algorithms applied a different chaotic
perturbation and another local search (see Algorithms 2 and 6 in lines 10–20).

The temporal function of MOMARLA, CMOSA, and CMOTA belong to O(Mnp).
For MOMARLA, n is the number of iterations, a variable used at the beginning of this algo-
rithm. On the other hand, for CMOSA and CMOTA, n is the number of temperatures used
in the algorithm, also at its beginning; in any case, the difference will be only a constant.

We note that AMOSA and MOPSO have a similar complexity class expression, that
is O(nΓ2) and O(MΓ2) respectively. However, MOPSO overtakes AMOSA because M
is in general lower than n. We observe that CMOSA, CMOTA and MOMARLA belong
to O(Mnp) class complexity, while MOPSO belongs to O(MΓ2) [46]. Thus, the relation
between them is np/Γ2 which in general is lower than one. Thus CMOSA, CMOTA
and MOMARLA have a lower complexity than MOPSO. Moreover, CMOSA, CMOTA,
and MOMARLA have better HV metric quality as is shown in Table 9.

In the next paragraph, we present a comparative analysis of the execution time of the
algorithms implemented in this paper.

Table 10. Complexity of the algorithms.

AMOSA IMOEA/D SPEA MOPSO MOMARLA CMOSA CMOTA

O(nΓ2) O(MΓT) O(MΓ) O(MΓ2) O(Mnp) O(Mnp) O(Mnp)

In Table 11 we show the execution time, expressed in seconds, for the three algorithms
(CMOSA, CMOTA, and AMOSA) implemented in this paper for three data sets (70, 58,
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and 15 instances). In all these cases, we emphasize that the AMOSA algorithm was the
base to design the other two algorithms. In fact, all of them have the same structure
except that CMOSA and CMOTA apply chaotic perturbations when they detect a possible
stagnation. Thus, all of them have similar complexity measures for the worst-case. Table 11
shows the percentage of time saved by these two algorithms concerning AMOSA. For these
datasets, we measured that AMOSA saved 2.1, 19.87, and 42.48 percent of the AMOSA run
time; on the other hand, these figures of CMOTA versus AMOSA are 55, 68.89, and 46.73
percent. Thus, both of our proposed algorithms CMOSA and CMOTA are significantly
more efficient than AMOSA. Unfortunately, we do not have the tools to compare these
algorithms versus the other algorithms’ execution time in Table 1. Nevertheless, we made
the quality comparisons by using the metrics previously published.

Table 11. Runtimes for CMOSA, CMOTA and AMOSA.

Algorithm CMOSA CMOTA AMOSA [17]

Data set of 70 instances

Average execution time 495.22 229.42 * 505.84
% time saved vs AMOSA 2.1 55 * 0

Data set of 58 instances

Average execution time 111.68 41.97 * 139.39
% time saved vs AMOSA 19.87 69.89 * 0

Data set of 15 instances

Average execution time 81.24 75.24 * 141.25
% time saved vs AMOSA 42.48 46.73 * 0

* Best result.

7. Conclusions

This paper presents two multi-objective algorithms for JSSP, named CMOSA and
CMOTA, with three objectives and six metrics. The objective functions for these algorithms
are makespan, total tardiness, and total flow time. Regarding the results from the compari-
son of CMOSA and CMOTA with AMOSA, we observe that both algorithms obtained a
well-distributed Pareto front, closest to the origin, and closest to the approximate Pareto
front as was indicated by Spacing, MID, and IGD metrics, respectively. Thus, using these
five metrics, we found that CMOSA and CMOTA surpassed the AMOSA algorithm. Re-
garding the volume covered by the front calculated by the HV metric, it was observed that
both algorithms, CMOSA and CMOTA, have the same performance; however, CMOSA
has a higher convergence than CMOTA. In addition, the proposed algorithms surpass
IMOEA/D when MID metric was used. Moreover, we use the HV to compare the pro-
posed algorithms with SPEA, CMOEA, MOPSO, and MOMARLA. We found that CMOSA
outperforms these algorithms, followed by CMOTA, MOMARLA, and MOPSO.

We observe that CMOSA and CMOTA have similar complexity as the best algorithms
in the literature. In addition, we show that CMOSA and CMOTA surpass AMOSA when we
compare them using execution time for three data sets. We found CMOTA is, on average, 50
percent faster than AMOSA and CMOSA. Finally, we conclude that CMOSA and CMOTA
have similar temporal complexity than the best literature algorithms, and the quality
metrics show that the proposed algorithms outperform them.
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Appendix A. Non-Dominated Front Obtained

The non-dominated solutions obtained by CMOSA algorithm for the 70 instances
used are shown in Tables A1–A6, and the non-dominated solutions obtained by CMOTA
algorithm for the same instances are shown in Tables A7–A12. In these tables, MKS is
the makespan, TDS is the total tardiness and FLT is the total flow time. For each instance,
the best value for each objective function is highlighted with an asterisk (*) and in bold type.

Table A1. Non-dominated front obtained by CMOSA for the JSSP instances proposed by [40].

FT06 FT10 FT20

MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 55 * 30.0 305 993 * 1768.5 9234 1224 * 8960.0 16614
2 55 38.0 301 994 1609.0 9121 1227 8809.0 16375
3 56 37.0 304 1004 1495.0 9062 1229 8793.0 16359
4 56 29.0 308 1006 1083.0 8584 1235 8774.0 16340
5 57 23.5 305 1036 1053.0 8406 * 1243 8455.5 * 16119 *
6 57 27.0 297 1037 1009.0 * 8437
7 57 26.0 298
8 58 9.5 280
9 60 11.0 279 *
10 62 8.5 285
11 69 8.0 * 291

Table A2. Non-dominated front obtained by CMOSA for the JSSP instances proposed by [41].

ORB1 ORB2 ORB3 ORB4 ORB5

MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1142 * 1539.0 9245 925 * 767.5 8339 1104 * 1874.0 9448 1063 * 1186.0 9175 966 * 1192.5 8279
2 1143 1517.0 9223 927 781.5 8285 1111 1548.0 9392 1073 1108.5 9270 971 1180.5 8296
3 1144 1522.0 9135 931 722.5 8160 1112 1816.0 9318 1078 1059.5 9128 975 859.5 7648
4 1150 1381.5 9219 951 542.5 8056 1123 1462.0 9306 1107 917.5 9234 978 752.5 8016
5 1161 1355.5 * 9469 958 331.0 * 7742 1127 1806.0 9288 1111 978.0 9199 980 758.5 8011
6 1172 1508.0 9214 958 339.0 7730 * 1162 1579.0 9200 1134 944.5 9221 984 708.5 7961
7 1174 1521.0 9134 * 1164 1562.0 9183 1140 795.5 9111 984 706.5 7970
8 1180 1492.5 8984 1156 843.5 9083 998 822.0 7784
9 1187 1475.5 * 8967 * 1200 733.5 * 9049 1001 746.5 7869
10 1230 919.0 8969 1001 834.0 7620 *
11 1232 983.5 8813 1013 689.0 * 7765
12 1277 995.5 8735 * 1017 795.0 7713
13 1032 798.0 7659
14 1049 771.0 7678
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Table A2. Cont.

ORB6 ORB7 ORB8 ORB9 ORB10

MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1097 * 1318.0 9573 423 * 207.5 3663 963 * 1804.0 8439 987 * 1193.5 8912 991 * 835.0 8482
2 1100 1199.5 9505 424 167.0 3731 968 1412.5 8204 988 1362.5 8860 993 843.0 8465
3 1100 1267.5 9434 431 161.0 * 3643 970 1387.0 8215 993 1220.0 8898 1020 798.5 8785
4 1105 1225.0 9434 439 295.0 3620 988 1514.5 8099 996 1072.5 8844 1029 742.5 8691
5 1105 1227.0 9412 449 207.5 3625 997 1587.0 8078 1006 1002.0 8538 1043 608.5 8659
6 1110 1255.0 9409 453 230.5 3616 1001 1239.0 7912 1019 1017.5 8523 1044 493.5 * 8522
7 1113 1220.5 9452 455 204.5 3636 1044 1120.0 * 7617 * 1035 1100.5 8493 1072 774.5 8455 *
8 1114 1078.5 9287 459 213.0 3577 1039 1043.5 8430
9 1141 1153.0 9109 * 461 216.0 3509 1048 887.0 * 8348 *
10 1171 1097.0 9194 461 203.0 3545
11 1191 1018.5 9145 461 186.5 3572
12 1233 988.0 * 9225 466 202.5 3547
13 466 171.0 3561
14 470 184.5 3504 *

Table A3. Non-dominated front obtained by CMOSA for the JSSP instances proposed by [42].

LA01 LA02 LA03 LA04 LA05
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 666 * 1194.0 5436 655 * 1207.0 5123 615 * 1492.5 5000 590 * 1252.0 4900 593 * 1159.5 4451
2 666 1237.5 5362 656 1161.0 5077 622 1400.5 4896 595 1235.0 4948 593 1088.0 4455
3 667 1382.5 5357 665 1222.0 4994 626 1484.5 4881 598 1250.0 4857 594 1053.0 4399
4 668 1068.5 5328 665 1203.0 5050 627 1467.0 4889 598 1226.5 4910 610 1099.5 4386
5 668 1074.0 5309 671 1042.0 4904 628 1343.5 4866 599 1167.0 4915 615 1129.5 4351 *
6 670 1269.5 5300 673 1094.5 4879 630 1357.5 4803 603 1154.5 4895 631 999.5 * 4371
7 672 1152.5 5260 681 938.5 4799 630 1339.5 4850 605 1089.0 4737 648 1036.0 4359
8 688 1145.5 5247 695 927.5 4864 633 1226.5 4750 614 1034.0 4782 659 1032.0 4355
9 700 1120.5 5297 695 930.5 4796 638 1183.0 4649 615 1047.5 4756
10 706 1081.5 5241 696 910.5 4837 641 1178.5 4713 618 1042.5 4705
11 706 1179.0 5225 714 997.5 4776 646 1173.0 4718 622 1038.5 4705
12 713 1065.5 5203 715 936.5 4720 655 1088.5 4482 629 1006.0 4710
13 718 1025.5 5235 736 925.0 4812 662 1062.0 4595 629 1020.5 4695
14 727 1056.5 5138 741 993.0 4716 * 662 1081.5 4591 631 982.5 4697
15 734 1046.0 5184 771 909.5 * 4786 668 1015.0 4522 637 981.0 4576
16 743 1089.0 5101 669 981.5 4523 638 961.5 4667
17 751 951.0 * 5115 683 979.5 4516 640 962.0 4566
18 825 1098.0 5099 * 688 1087.5 4481 643 930.0 4525 *
19 698 1055.0 4504 648 927.0 4531
20 741 955.5 4382 650 895.5 4558
21 744 891.0 4375 655 908.0 4537
22 744 914.0 4372 663 888.5 * 4551
23 750 896.5 4323 * 663 906.0 4543
24 757 867.0 * 4325
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Table A3. Cont.

LA06 LA07 LA08 LA09 LA10
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 926 * 4185.5 10,142 890 * 4006.5 9554 863 * 3717.5 9455 951 * 3925.0 10,297 958 * 4439.5 10,441
2 927 4183.0 10,171 890 4044.0 9496 863 3792.5 9424 951 3916.5 10,311 969 4476.5 10,437
3 929 4062.0 10,050 894 3974.5 9522 865 3723.5 9387 954 3908.0 * 10,280 971 4313.0 10,343
4 931 4122.0 10,041 896 3646.5 9264 870 3685.5 9349 974 3944.5 10,195 * 976 4298.0 10,328
5 938 3911.0 9870 904 3684.0 9248 871 3649.5 9284 982 4121.0 10,151
6 940 3827.0 * 9786 * 906 3615.0 9219 876 3602.5 9340 1052 4083.0 * 10,113 *
7 910 3652.0 9216 885 3598.5 9309
8 967 3595.0 * 9199 * 895 3596.0 9266
9 896 3410.5 * 9045 *

LA11 LA12 LA13 LA14 LA15
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1222 * 9157.5 17,184 1039 * 7218.0 14,229 1150 * 8436.5 16,208 1292 * 10,017.0 18,036 1207 * 9447.5 17,581
2 1225 8947.5 16,853 1041 7203.0 14167 1153 8333.5 16,105 1299 9986.0 18,005 1208 9249.5 17,383
3 1241 8879.5 16,785 1043 7198.0 14196 1154 8310.5 16,079 1328 9992.5 17,990 1213 9175.0 17,314
4 1242 8862.5 16,768 1049 7164.0 14162 1155 8247.5 15,953 1352 9810.5 * 17,808 1220 9149.0 17,284
5 1243 8860.5 16,766 1050 7126.0 14124 1161 8175.0 15,954 1352 9867.0 17,797 * 1229 9014.0 17,149
6 1256 8811.5 16,798 1134 7114.0 * 14,112 * 1162 8210.5 15,916 1232 9013.0 17,148
7 1257 8725.5 16,712 1182 8057.0 15,836 1234 8991.0 17,126
8 1258 8765.5 16,671 1183 8013.0 15,792 1251 8915.5 17,062
9 1265 8650.5 * 16,637 * 1184 7994.0 15,773 1271 8947.5 17,040

10 1185 7989.0 15,768 1273 8703.5 16871
11 1189 7978.0 * 15,757 * 1281 8651.5 16,819
12 1283 8638.5 16,802
13 1289 8603.5 16,767
14 1297 8601.5 * 16,765 *

LA16 LA17 LA18 LA19 LA20
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 968 * 983.5 8777 796 * 799.0 7502 865 * 488.0 7765 884 * 538.0 7950 934 * 665.5 8354
2 982 904.0 8754 796 784.0 7509 866 468.5 7743 889 288.0 7945 939 599.5 8409
3 988 898.5 8608 810 855.0 7492 868 439.5 7853 891 495.0 7821 948 631.5 8393
4 992 882.0 8752 811 783.0 7555 873 419.5 7687 900 406.0 7916 957 542.0 8423
5 994 816.5 8669 813 702.0 7458 878 396.5 7755 905 279.0 7846 957 556.0 8302
6 1000 873.0 8570 813 745.0 7450 882 404.5 7732 935 327.0 7730 964 658.0 8232
7 1003 900.0 8565 816 693.0 7458 883 429.5 7648 953 335.5 7726 966 403.0 8032
8 1003 908.0 8545 820 630.0 7395 893 411.0 7671 953 259.5 * 7806 967 408.0 8028
9 1003 942.0 8474 823 670.5 7334 923 394.5 7802 979 304.5 7673 * 971 408.0 8001

10 1008 493.0 8205 824 633.5 7240 927 368.5 7885 972 419.0 7975
11 1016 553.5 8063 831 623.5 7321 928 351.5 7882 1009 390.5 8094
12 1040 459.5 8232 833 625.5 7320 939 353.0 7691 1067 422.0 7927
13 1050 352.0 7997 835 717.5 7203 939 300.5 7860 1084 424.0 7908 *
14 1066 345.5 8285 836 596.5 7291 940 345.0 7827 1100 383.5 8292
15 1071 341.5 8068 836 611.5 7284 945 332.5 7845 1115 382.5 8065
16 1073 401.0 7980 840 597.0 7267 946 305.0 7629 1142 335.5 7915
17 1095 326.5 * 7908 * 840 612.0 7260 952 267.0 * 7778 1142 334.0 7998
18 842 612.0 7194 978 476.0 7614 1148 262.5 * 8205
19 849 522.0 7208 982 455.0 7519 * 1168 302.5 8204
20 849 521.5 7232 984 439.0 7626
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21 864 531.0 7135 998 361.5 7603
22 864 530.5 7159
23 864 521.5 7169
24 899 535.0 7114
25 914 509.0 7034
26 927 470.0 * 7098
27 931 475.0 7000 *

LA21 LA22 LA23 LA24 LA25
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1124 * 3229.5 15,030 1013 * 2968.5 13,774 1077 * 2292.0 14,222 1000 * 2145.5 13230 * 1071 * 3161.0 14,387
2 1124 3233.5 15,002 1018 2916.5 13,722 1078 2253.5 14,198 1008 2137.5 13,474 1072 3060.0 14,275
3 1127 3180.5 14,883 1020 2906.5 13,712 1078 2249.5 14,238 1008 2120.5 13,606 1089 3002.0 14,096
4 1128 3137.5 14,868 1034 2738.5 13,552 1080 2173.5 14,152 1077 2010.5 13,458 1100 2756.5 13,951
5 1129 3015.5 14,718 1037 2660.0 13,638 1091 2231.5 14,149 1079 1981.5 13,390 1104 2764.5 13,940
6 1137 2998.5 14,400 1038 2774.5 13,548 1095 2243.5 14,147 1088 19,76.5 * 13,385 1118 2721.0 13,962
7 1141 2892.5 14,636 1039 2648.0 13,611 1097 2071.0 14,011 1118 2768.0 13,938
8 1144 2821.5 14,565 1045 2811.0 13,528 1102 1939.0 * 13,867 * 1121 2802.5 13,829
9 1146 2939.0 14,346 1047 2696.5 13,510 1123 2618.5 13,658
10 1150 2543.0 14,344 1050 2614.5 13,445 1131 2584.5 13,845
11 1150 2639.5 14,316 1068 2565.5 13,396 1134 2536.5 13,577
12 1157 2557.5 14,247 1076 2544.5 13,375 1134 2529.0 13,770
13 1158 2545.5 14,222 1082 2462.5 13,253 1154 2517.5 13,535
14 1164 2511.5 14,188 1087 2392.5 13,169 1159 2457.0 13,654
15 1179 2393.5 14,204 1099 2332.5 * 13,109 * 1160 2451.5 13,666
16 1182 2331.5 14,165 1173 2530.0 13,470
17 1182 2355.5 14,153 1175 2445.0 13,385
18 1183 2454.5 14,131 1187 2435.0 13,481
19 1227 2328.0 14,238 1189 2315.0 * 13,255 *
20 1247 2225.0 * 14,161
21 1258 2561.5 13,967
22 1272 2527.5 13,963
23 1285 2465.5 13,871 *
24 1290 2305.0 14,103

LA26 LA27 LA28 LA29 LA30
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1281 * 6921.0 22,576 1332 * 6555.0 22,803 1318 * 7579.0 23,547 1293 * 7971.5 22,802 1434 * 9177.0 25,172
2 1282 6811.0 22,466 1334 6495.0 22,743 1321 7403.0 23,426 1294 7963.5 22,786 1437 8132.0 24,056
3 1304 6708.5 22,434 1340 6399.0 22,647 1329 6603.0 22,626 1317 7799.5 22,693 1445 8064.0 23,991
4 1323 6643.5 22,416 1346 6280.0 22,528 1362 6683.5 22,578 1319 7796.5 22,690 1448 7996.0 23,923 *
5 1325 6629.5 22,402 1358 6228.0 * 22,476 * 1367 6552.0 22,575 1327 7770.5 22,664 1540 7980.0 * 24,000
6 1328 6741.5 22,254 1378 6469.0 22,454 1333 7738.5 22,632
7 1329 6560.5 22,333 1385 6465.0 22,389 1334 7711.5 22,605
8 1338 6616.5 22,129 1393 6480.5 22,360 1339 7507.5 22,314
9 1340 6510.5 22,276 1413 6443.0 22,320 1340 7446.5 22,253
10 1377 6307.0 * 21,940 * 1416 6439.0 22,316 1368 7411.5 22,218
11 1454 6429.0 22,298 1375 7398.5 22,289
12 1476 6239.0 22,013 1376 7464.5 22182
13 1477 6141.0 * 21,915 * 1376 7374.5 22,268
14 1379 7018.5 21,912
15 1389 7011.5 * 21,905 *
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LA31 LA32 LA33 LA34 LA35
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1784 * 20,830.5 43,617 1850 * 20,861.5 45715 1719 * 20,933.5 43,387 1743 * 22,605.5 45,617 1898 * 24,225.5 47,233
2 1794 20,718.5 43,505 1867 20,860.5 45,714 1721 18,798.5 41,252 1747 21,475.5 44,487 1899 23,434.5 46,652
3 1796 20,390.5 43,177 1871 20,686.5 45,540 1723 18,528.5 40,982 1755 21,271.5 44,283 1900 22,784.5 46,012
4 1797 20,066.5 42,842 1881 20,563.5 45,417 1725 18,137.5 40,591 1756 21,211.5 44,223 1901 22,724.5 45,952
5 1798 20,009.5 42785 1889 20,059.5 44,913 1738 18,109.5 *40,563 * 1759 21041.5 44,037 1903 22,684.5 45,912
6 1800 19,919.5 *42,695 * 1900 20,049.5 *44,903 * 1771 20,916.0 43,916 1920 22,481.5 45,709
7 1774 20,787.0 43,787 1947 22,677.0 45,695
8 1781 20,736.0 43,736 1950 22,442.5 45,670
9 1791 20,693.5 43,705 1953 22,454.0 45,665
10 1801 20,505.5 43,517 1958 22,327.5 45,555
11 1837 20,476.5 43,488 2018 22,311.5 *45,539 *
12 1839 20,356.5 43,368
13 1840 20,305.5 43,317
14 1843 20,298.5 43,310
15 1850 20,072.5 43,084
16 1906 19,880.5 *42,892 *

LA36 LA37 LA38 LA39 LA40
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1453 * 3131.0 20,575 1569 * 3065.0 21,444 1400 * 1586.0 18,171 1444 * 2371.0 19,447 1436 * 2617.5 19,260
2 1471 3030.5 20,309 1571 3077.0 21,436 1419 1578.5 * 18,200 1452 2056.0 19,215 1443 2017.0 18,689
3 1474 2834.5 20,125 1574 3043.0 21,402 1421 2057.5 18,119 1498 1770.5 18,662 1450 1806.0 18,391
4 1475 2936.5 20,085 1574 3025.0 21,404 1439 2092.5 18,067 1499 1731.5 18,607 1458 1719.0 18,303
5 1476 2847.5 20,094 1580 3009.0 21,301 1468 1753.5 18,103 1504 1473.5 18,404 1471 1433.5 * 18,431
6 1476 2949.5 20,054 1584 3002.0 21,294 1473 1736.5 18,086 1621 1422.5 18,579 1495 1549.5 18,287 *
7 1487 2633.5 19,889 1590 2331.5 20,755 1496 1744.5 18,044 * 1817 1902.0 * 18,191 *
8 1498 2474.5 19,694 1593 2289.5 20,748
9 1505 2492.5 19,675 1608 2247.5 20,585
10 1521 2604.0 19,671 1614 2384.0 20,153
11 1521 2379.0 19,840 1614 2414.0 20,101
12 1529 2459.5 19,679 1618 2374.0 20,143
13 1530 2420.0 19,668 1621 2418.0 20,077 *
14 1534 2335.5 19,812 1649 2234.5 20,600
15 1534 2472.5 19,650 1650 2237.5 20,587
16 1548 2278.5 19,755 1650 2241.5 20,557
17 1563 2015.5 * 19,237 1700 2222.5 20,453
18 1573 2532.5 19,231 * 1700 2205.0 20,517
19 1707 2187.5 20,418
20 1781 2012.0 20,554
21 1781 1964.5 20,634
22 1790 1835.5 * 20,309
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Table A4. Non-dominated front obtained by CMOSA for the JSSP instances proposed by [43].

ABZ5 ABZ6 ABZ7 ABZ8 ABZ9
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1250 * 145.0 11,006 967 * 324.0 8453 746 * 2420.0 13,274 763 * 23,17.0 13,696 805 * 3296.5 14,426
2 1250 134.0 * 11,025 974 256.5 8524 753 2403.0 13,257 763 2332.0 13,688 807 3127.0 14,287
3 1252 139.0 10,998 974 251.5 8550 793 2305.0 * 13,137 * 773 2336.0 13,675 808 2941.0 14,094
4 1289 141.0 10,984 979 204.0 8464 773 2326.0 13,688 822 2846.0 13,820
5 1289 142.0 10,946 * 997 258.5 8357 775 2294.0 13,633 833 2770.0 13,840
6 999 202.0 8553 779 2236.5 * 13,591 * 842 2733.5 13,888
7 1001 172.0 8484 843 2740.5 13,845
8 1009 164.0 8589 845 2727.5 13,832
9 1016 164.5 8532 846 2706.5 13,811
10 1018 134.0 8692 847 2696.5 13,801
11 1019 126.0 8275 * 885 2806.0 13,800
12 1074 35.5 8583 886 2737.0 13,762
13 1077 36.5 8525 889 2726.0 13,720
14 1077 49.5 8459 896 2708.5 13,703
15 1080 25.5 8550 897 2684.5 * 13,679 *
16 1082 29.5 8488
17 1082 40.5 8472
18 1085 1.5 * 8423

Table A5. Non-dominated front obtained by CMOSA for the JSSP instances proposed by [44].

YN01 YN02 YN03 YN04
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1103 * 2485.0 19,819 1133 * 2178.0 19,429 1083 * 2025.5 19,346 1210 * 2864.5 20,633
2 1105 2442.0 19,776 1137 2205.0 19,424 1084 2015.5 19,336 1221 2814.0 * 20,552
3 1105 2465.5 19,753 1140 2050.0 19,299 1084 2012.5 19,337 1297 2915.5 20,525
4 1106 2418.5 19,706 1140 2067.0 19,286 1089 2003.5 19,328 1300 2910.5 20,520 *
5 1106 2395.0 19,729 1148 2059.0 19,278 1090 1987.5 * 19,308
6 1108 1901.0 19,129 1150 2023.0 * 19,276 * 1138 2179.5 19,219
7 1111 1859.0 19,068 1203 2157.5 18,751 *
8 1117 1867.5 19,013 *
9 1126 1756.5 * 19,265

10 1131 1772.5 19,247

Table A6. Non-dominated front obtained by CMOSA for the JSSP instances proposed by [30].

TA01 TA11 TA21 TA31
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1412 * 1821.5 18,716 1603 * 6409.5 27,903 2048 * 7261.5 37,039 2083 * 20,557.0 54,457
2 1412 16,41.5 18,749 1607 6365.5 27,859 2050 6184.5 36,322 2091 20,504.0 54,404
3 1414 1809.5 18,704 1619 6051.5 27,722 2051 6184.5 36,290 2096 20,448.0 54,348
4 1433 1753.5 18,648 * 1750 6387.0 27,635 2074 6023.5 36,129 2097 20,112.0 54,012
5 1443 1733.5 18,739 1753 6307.0 27,555 * 2078 6017.5 36,123 2099 20,099.0 53,999
6 1448 1625.0 * 18,765 1766 6293.0 27,572 2091 6031.0 36,050 2106 19,879.0 53,779
7 1859 6088.0 * 27,679 2274 5393.0 * 35,462 * 2109 19,860.0 53,760
8 2119 19,857.0 53,757
9 2121 19,802.0 53,702

10 2125 19,782.0 53,682
11 2132 18,670.5 52,157
12 2139 18,657.5 * 52,144 *
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TA41 TA51 TA61 TA71
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 2530 * 18,610.5 65,529 3121 * 77,760.0 134,637 3437 * 71,924.0 148,370 6050 * 368,519.5 519,856
2 2553 18,589.5 65,508 3124 74,125.0 131,002 3445 71,162.0 147,608 6063 368,491.5 519,828
3 2731 18,298.0 65,157 3125 74,113.0 130,990 3561 70,685.0 147,131 6097 367,933.5 519,270
4 2733 18,257.0 65,116 3127 74,028.0 130,905 3567 70,550.0 * 146,996 * 6098 367,927.5 51,9264
5 2736 18,228.0 65,087 3134 72,636.0 129,513 6129 366,149.5 51,7486
6 2743 18,197.0 65,056 3186 72,624.0 129,501 6165 365,118.5 516,455
7 2832 181,28.5 65,047 3188 71,884.0 128,761 6166 365,116.5 516,453
8 2949 17,853.5 * 64,772 * 3189 71,849.0 128,726 6168 365,090.5 516,427
9 3202 70,643.0 127,520 6215 361,891.5 * 513,228 *
10 3204 70,623.0 * 127,500 *

Table A7. Non-dominated front obtained by CMOTA for the JSSP instances proposed by [40].

FT06 FT10 FT20
MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 55 * 30.0 305 1021 * 1759.5 9407 1234 * 9571.0 17,132
2 55 38.0 301 1029 1721.0 9122 1240 8914.5 16,578
3 56 29.0 308 1063 1711.0 9358 1243 8934.0 16,526
4 57 23.5 305 1065 1697.0 9280 1249 8898.5 16,562
5 57 26.0 298 1067 1562.5 9226 1258 8959.5 16,480
6 57 27.0 297 1088 1650.5 8859 * 1259 8930.5 16451
7 58 9.5 280 1089 1614.5 9031 1270 8831.5 16,352
8 60 8.5 * 276 * 1091 1619.5 9018 1277 8782.5 16,303
9 1109 1468.0 9046 1327 8768.0 16,365
10 1125 1459.0 8890 1351 8768.5 16,289 *
11 1146 1361.0 * 9003 1359 8738.0 * 16,335

Table A8. Non-dominated front obtained by CMOTA for the JSSP instances proposed by [41].

ORB1 ORB2 ORB3 ORB4 ORB5
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1180 * 1853.0 9764 964 * 985.5 8421 1124 * 2307.5 10,157 1094 * 1727.5 9897 945 * 1006.0 8032
2 1190 1714.5 9619 983 971.5 8672 1134 1901.0 9579 1104 1720.5 10,062 980 975.0 7992
3 1192 1721.5 9585 985 913.5 8601 1208 1842.5 9770 1109 1695.5 10,117 994 747.0 * 7966
4 1237 1787.5 9440 986 975.5 8593 1212 1795.5 9721 1111 1600.5 9865 999 751.0 7950
5 1238 1714.5 9616 987 1009.0 8347 1217 1829.5 9698 1118 1507.0 9818 1053 979.5 7944 *
6 1249 1799.5 9423 988 980.0 8303 1218 1791.5 9717 1130 1626.0 9704
7 1253 1771.5 9428 991 857.5 8545 1219 1875.0 9531 1132 1588.5 9768
8 1255 1582.0 9459 996 918.0 8427 1240 1516.5 * 9349 * 1133 1595.5 9760
9 1261 1581.0 9387 1011 842.0 8630 1138 1548.5 9713
10 1336 1415.5 9303 1015 854.5 8526 1143 1487.0 9798
11 1339 1372.5 * 9260 * 1020 625.5 8251 1153 1626.0 9674
12 1047 625.0 * 8288 1155 1472.5 9645
13 1081 753.0 8059 * 1165 1452.5 9625
14 1209 721.5 8224 1165 1440.0 9645
15 1166 1428.0 9633
16 1173 1424.0 9621
17 1182 1454.0 9404 *
18 1183 1310.0 9506
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19 1189 1279.0 9481
20 1202 1303.0 9252
21 1266 1249.5 9639
22 1284 1198.5 * 9588

ORB6 ORB7 ORB8 ORB9 ORB10
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1090 * 1382.5 9489 433 * 226.0 3813 1016 * 1919.5 8465 1009 * 1646.5 9402 1055 * 1366.5 9211
2 1091 1284.5 9341 437 225.0 3770 1025 1635.5 8181 * 1013 1595.0 9331 1065 790.5 8899
3 1134 1078.0 9177 439 271.5 3707 1047 1617.0 8457 1016 1534.0 9251 1108 843.0 8834
4 1153 1059.0 9182 453 220.0 3742 1148 1575.0 8319 1027 1644.0 9187 1114 686.5 * 8810
5 1168 969.0 9030 * 465 236.0 3697 1150 1564.0 8312 1036 1669.0 9130 1115 687.5 8795
6 1204 945.0 9072 471 173.5 * 3620 * 1176 1565.0 8294 1043 1479.0 9206 1246 1080.0 8747 *
7 1221 907.0 * 9034 1184 1502.0 * 8301 1063 1360.0 8975
8 1064 1355.0 * 8966
9 1066 1378.0 8942
10 1073 1358.5 8956
11 1083 1426.0 8885 *
12 1092 1417.0 8914

Table A9. Non-dominated front obtained by CMOTA for the JSSP instances proposed by [42].

LA01 LA02 LA03 LA04 LA05
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 666 * 1416.0 5550 663 * 1327.5 5145 617 * 1807.5 5353 598 * 1396.0 5096 593 * 1241.5 4601
2 666 1367.0 5561 677 1284.0 5053 624 1516.0 4890 598 1414.0 5094 593 1240.5 4604
3 666 1444.0 5500 685 925.0 * 4805 * 630 1444.0 4982 602 1181.0 4842 593 1290.0 4516
4 666 1325.5 5577 630 1511.5 4977 610 1049.0 4730 596 1277.0 4583
5 667 1465.5 5488 633 1383.5 4816 644 1083.5 4726 * 597 1242.0 4537
6 668 1269.0 5403 637 1345.5 4820 660 1014.0 * 4743 600 1233.5 4546
7 672 1245.5 5468 650 1147.5 * 4673 660 1027.5 4737 600 1273.0 4499
8 674 1246.0 5396 673 1164.0 4632 * 600 1190.5 4553
9 676 1313.0 5348 603 1162.0 4571
10 702 1229.5 5438 607 1154.5 4518
11 706 1099.5 5177 607 1185.0 4497
12 726 1072.5 5210 608 1176.5 4502
13 764 1001.0 * 5176 * 610 1133.5 4502
14 613 1093.0 * 4502
15 614 1130.5 4494
16 622 1164.0 4459
17 648 1209.0 4424
18 650 1198.0 4413 *

LA06 LA07 LA08 LA09 LA10
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 926 * 4193.5 10151 890 * 4398.0 10014 863 * 3719.5 9421 951 * 4212.5 10607 958 * 4562.0 10536
2 927 4150.5 10108 893 4494.0 9908 870 3644.5 9346 954 4387.0 10601 958 4558.5 10587
3 943 4104.0 10028 894 4092.5 9651 896 3401.5 * 9139 * 960 4284.5 10586 960 4507.0 10481
4 964 4061.5 9978 904 3890.5 * 9452 * 966 4077.0 * 10411 * 965 4277.0 10251
5 992 4034.5 * 9951 * 988 4271.0 * 10,245 *
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LA11 LA12 LA13 LA14 LA15
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1222 * 9579.5 17,606 1039 * 7550.0 14,564 1150 * 8618.0 16,397 1292 * 9927.5 17,940 1207 * 9792.5 17,960
2 1234 9317.5 17,344 1045 7514.0 14,528 1150 8641.5 16,377 1292 9966.0 17,847 1209 9679.5 17,847
3 1238 9222.5 * 17,249 * 1050 7498.0 14,512 1152 8608.0 16,387 1298 9919.5 17,857 1217 9644.5 17,812
4 1081 7318.0 * 14,332 * 1153 8459.5 16,160 1321 9697.0 * 17,716 * 1217 9692.5 17,769
5 1182 7884.0 15,577 1218 9628.5 17,705
6 1189 7811.0 * 15,504 * 1219 9312.5 * 17,336 *

LA16 LA17 LA18 LA19 LA20
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 982 * 909.5 8738 825 * 1045.0 7819 872 * 609.5 7920 901 * 569.0 8258 938 * 749.0 8616
2 1008 771.0 8567 830 1016.0 7782 874 560.5 7836 904 398.0 8071 967 697.0 8549
3 1065 613.5 8503 848 1001.0 7698 905 555.0 8017 916 375.0 8146 967 695.0 8561
4 1082 603.0 8227 850 969.0 7569 908 555.5 7880 916 422.0 7972 969 674.0 8498
5 1091 490.5 * 8311 854 983.0 7557 922 549.0 8056 921 342.0 7903 972 645.5 8578
6 1107 524.0 8130 * 856 883.5 7656 930 549.0 7866 929 276.0 * 7766 972 647.5 8470
7 865 845.5 7612 933 472.0 7797 * 931 325.0 7765 978 558.0 8318
8 873 758.0 7517 933 468.5 * 7824 953 488.0 7759 * 1010 531.0 * 8291
9 883 764.5 7500 1025 662.5 8277
10 894 752.0 7539 1041 612.0 8069 *
11 911 758.0 7448
12 918 723.0 7415
13 927 775.0 7336 *
14 981 760.0 7384
15 995 770.0 7373
16 1009 730.0 7368
17 1176 720.0 * 7605

LA21 LA22 LA23 LA24 LA25
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1154 * 3406.5 15,329 1041 * 3315.0 14,265 1115 * 2616.5 14,458 1047 * 2511.0 14,081 1073 * 3252.0 14,388
2 1172 3329.5 15,084 1050 3118.0 14,068 1118 2599.5 14,441 1052 2477.0 14,047 1087 3217.0 14,315
3 1174 3035.5 14,835 1053 3035.0 14,000 1158 2459.0 14,476 1054 2870.5 14,001 1088 3143.0 14,241
4 1177 3059.5 14,607 1070 2994.0 13,975 1160 2457.0 14,436 1060 2613.5 13,860 1110 2638.0 13,761
5 1202 3044.5 14,763 1079 2754.0 13,625 1160 2722.5 14,389 1070 2593.5 13,918 1147 2633.0 13,793
6 1204 3024.5 14,743 1081 2699.0 * 13,562 * 1163 2437.0 14,416 1073 2598.5 13,874 1148 2682.5 13,742 *
7 1220 3032.5 14,609 1172 2761.5 14,370 1079 2547.5 13,859 1148 2623.5 * 13,764
8 1238 2881.5 14,783 1178 2408.0 * 14,384 1080 2473.0 14,063
9 1239 2877.5 14,666 1210 2595.5 14,373 1080 2546.5 13,858 *

10 1253 2832.5 14,696 1216 2562.5 14,340 * 1087 2368.0 * 13,911
11 1347 2973.5 14,634
12 1349 2883.0 14,507
13 1356 2943.0 14,494
14 1393 2936.0 14,419
15 1393 2929.5 14,489
16 1403 2766.5 * 14,412 *

LA26 LA27 LA28 LA29 LA30
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1300 * 7356.5 23,129 1374 * 8083.0 24,331 1325 * 7440.0 23,463 1328 * 8518.0 23,291 1455 * 9085.0 25,105
2 1336 7171.5 22,944 1377 7946.0 24,194 1326 7315.0 23,338 1337 8513.0 23,286 1457 9071.0 25,091
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3 1337 7077.5 22,850 1378 7660.0 23,875 1340 7233.0 23,256 1345 8501.0 23,274 1465 9211.5 25,064
4 1343 7047.5 22,820 1380 7641.0 23,856 1354 7185.0 23,176 1353 8534.0 23,273 1477 9196.5 25,049
5 1344 6971.5 22,744 1394 7645.5 23,854 1357 7096.0 23,087 1358 8464.0 23,203 1479 8374.5 24,204
6 1353 6947.5 * 22,720 1398 7494.0 23742 1360 7056.0 23,047 1360 8091.5 22,985 1481 8348.5 24,178
7 1396 7083.0 22,666 1401 7438.0 23,686 1375 6997.0 22,885 1363 8064.5 22,958 1519 8280.5 242,20
8 1454 7072.5 22,660 * 1402 7374.0 23,622 1384 6906.0 22,794 1368 8062.5 22,956 1543 8227.5 24167
9 1405 7408.5 23,586 1396 6674.5 22,672 1389 8208.0 22,939 1584 8391.5 24,097
10 1412 7327.0 23,575 1412 6568.5 22,566 1403 7990.5 22,836 1598 8090.5 23,796
11 1446 7265.0 23,513 1417 6518.5 22,509 1432 7971.5 22,865 1657 7980.5 * 23,686 *
12 1454 7367.0 23,500 1436 6491.5 * 22,482 * 1448 7972.0 22,776
13 1469 7264.5 23,511 1453 7805.0 22,609
14 1476 7228.0 23,476 1475 7733.5 22,627
15 1483 7185.0 23,433 1525 7664.5 * 22,558 *
16 1502 7226.5 23,352
17 1602 7109.5 * 23,312 *

LA31 LA32 LA33 LA34 LA35
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1784 * 219,44.5 44,731 1850 * 22,413.0 47,111 1719 * 22,284.5 44,738 1768 * 23,263.5 46,275 1899 * 24,702.5 47,930
2 1800 21,424.5 44,211 1850 22,411.5 47,265 1720 21,944.5 44,398 1774 22,903.5 45,915 1908 24,515.5 47,743
3 1807 21,363.5 44,150 1857 22,085.5 46,939 1722 21,802.5 44,256 1775 22,881.5 45,893 1909 23,489.5 46,717
4 1842 20,988.5 43,775 1859 22,074.5 46,928 1723 21,777.5 44,190 1776 22,657.5 45,669 1917 23,481.5 46,709
5 1843 20,814.5 *43,601 * 1881 21,988.5 46,842 1734 21,723.5 44,177 1792 22,656.5 45,668 1919 23,379.5 46,607
6 1884 21,985.5 46,839 1743 21,447.5 43,901 1796 22,150.5 45,162 1923 23,368.5 * 46,596
7 1896 21,958.5 46,812 1746 21,446.5 43,900 1803 22,109.5 45,121 2029 23,393.5 46,568 *
8 1897 21,509.5 46,363 1750 21,134.5 43,508 1813 21,889.5 44,901
9 1916 21,481.5 46,335 1755 21,040.5 43,414 1817 21,797.5 44,809
10 2051 21,401.5 46,255 1771 21,024.5 43,478 1820 21,749.5 44,761
11 2068 21,362.5 46,216 1776 20,995.5 43,449 1823 21,740.5 *44,752 *
12 2084 21,294.5 * 46,148 1777 20,945.5 43,399
13 2148 21,372.5 46,059 * 1783 20,842.5 43,296
14 1785 20,778.5 43,232
15 1787 20,722.5 43,176
16 1789 20,358.0 42,706
17 1796 20,310.0 42,658
18 1800 20,044.0 42,360
19 1801 19,567.0 41,883
20 1805 19,558.0 *41,874 *

LA36 LA37 LA38 LA39 LA40
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1467 * 3203.0 20,649 1652 * 2988.5 21,540 1446 * 2646.0 19,043 1474 * 2876.0 20,077 1438 * 2444.0 19,398
2 1503 3180.0 20,626 1653 2988.5 21,536 1472 2601.0 19,159 1494 2872.0 20,073 1531 2369.0 19,333
3 1515 3076.0 20,420 1656 2912.5 21,460 1473 2060.5 18,322 1513 2385.5 19,216 1561 2336.0 * 19,300 *
4 1519 3024.0 20,254 1691 3256.0 21,323 1491 2000.5 * 18,262 * 1597 2396.0 19,175
5 1596 2988.5 20,597 1692 2894.0 21,493 1603 2362.0 19,101
6 1616 2948.5 20,557 1696 3233.0 21,300 1605 2254.0 * 18,993 *
7 1622 2868.5 20,477 1705 2757.0 21,254
8 1632 2884.5 20,163 1751 2798.5 21,208
9 1678 2903.5 20,106 1756 2888.5 21,064
10 1704 2958.0 20,037 1757 2850.0 21,005 *
11 1709 2869.0 19,948 1839 2670.5 21,086
12 1735 2654.0 19,510 1883 2578.5 * 21,291
13 1738 2650.0 * 19,506 *

147



Math. Comput. Appl. 2021, 26, 8

Table A10. Non-dominated front obtained by CMOTA for the JSSP instances proposed by [43].

ABZ5 ABZ6 ABZ7 ABZ8 ABZ9
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1296 * 565.0 11,621 991 * 587.5 8826 796 * 3124.0 14,127 821 * 3504.0 14,883 837 * 3263.0 14,378
2 1306 692.5 11,581 999 460.5 8658 797 2923.5 13,906 823 3447.0 14,826 845 2996.5 14,126
3 1321 683.5 11,572 1013 300.0 8753 803 2805.5 13,826 824 3428.0 14,807 848 2967.5 14,097
4 1322 523.0 11,801 1021 469.5 8543 * 876 2684.5 13,608 825 3423.0 14,802 853 2936.5 14,066
5 1333 507.0 12,016 1037 407.5 8719 890 2636.5 * 13,556 * 835 2786.0 * 14,111 856 2900.5 * 14,030 *
6 1334 407.5 11,786 1037 439.0 8674 847 2817.0 14,086 *
7 1334 403.0 11,861 1045 235.5 8614
8 1337 574.0 11,604 1089 197.5 * 8812
9 1338 566.0 11,534 1115 203.5 8768
10 1351 533.5 11,768
11 1356 557.5 11,750
12 1383 745.0 11,520
13 1385 759.5 11,401
14 1386 679.5 11,336
15 1387 475.0 11,545
16 1397 468.0 11,538
17 1409 407.0 * 11,374 *

Table A11. Non-dominated front obtained by CMOTA for the JSSP instances proposed by [44].

YN01 YN02 YN03 YN04
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1160 * 3154.5 20,470 1155 * 3592.0 21,112 1138 * 2732.5 19,941 1225 * 4078.0 22,098
2 1166 2654.0 19,808 1159 3545.0 21,105 1154 2543.0 19,839 1228 3780.0 21,449
3 1188 2618.0 19,929 1165 3569.0 21,089 1158 2457.0 19,753 1231 3475.0 21,490
4 1193 2617.0 19,771 1166 3537.0 21,057 1204 2394.5 19,438 1232 3460.0 21,465
5 1197 2399.5 19,912 1169 3491.0 21,011 1223 2370.5 19,414 * 1233 3745.0 21,414
6 1200 2220.5 19,745 1188 3171.5 20,606 1277 2194.0 * 19,462 1245 3530.0 21,431
7 1201 2114.0 * 19,570 * 1211 3068.0 20,216 1247 3254.5 21,188
8 1212 3055.0 20,203 * 1273 3236.5 21,170
9 1280 3024.0 * 20,592 1286 3233.5 21,167
10 1325 3169.0 * 20,977 *

Table A12. Non-dominated front obtained by CMOTA for the JSSP instances proposed by [30].

TA01 TA11 TA21 TA31
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1469 * 2284.0 19,027 1649 * 7293.0 28,872 2098 * 8414.5 38,534 2126 * 21,558.0 55,423
2 1502 2201.0 19,461 1655 7264.0 28,843 2103 7979.0 38,146 2127 21,553.0 55,453
3 1515 1792.5 18,791 1672 7049.0 28,696 2113 7971.0 38,138 2135 21,552.0 55,417
4 1519 1783.5 18,801 1673 7045.0 28,692 2125 7247.5 37,366 2156 21,540.0 55405
5 1530 1713.0 * 18,750 1677 6903.5 28,431 2128 7153.0 37,398 2161 21,416.0 55,316
6 1532 1725.0 18,714 * 1696 6383.5 28,054 2137 6999.0 37,244 2173 21,109.0 55,009
7 1809 6347.5 * 28,018 * 2139 6974.0 37,209 2177 21052.0 54,952
8 2148 6820.5 37,028 2187 19,966.0 53,866
9 2150 6802.5 37,021 2205 19,963.0 * 53,863 *
10 2214 6550.0 36,679
11 2238 6539.0 36,668
12 2372 6316.0 36,317
13 2373 6190.0 * 36,191 *
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Table A12. Cont.

TA41 TA51 TA61 TA71
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 2632 * 21,027.5 67,904 3128 * 73,001.0 129,878 3420 * 74,932.0 151,378 6094 * 366,221.5 517,558
2 2650 20,910.5 67,829 3132 72,689.0 129,566 3421 73956.0 150,402 6095 365,726.5 517,063
3 2666 20,826.5 67,745 3137 72,651.0 129,528 3423 73884.0 150,330 6098 365,546.5 516,883
4 2672 20,766.5 67,685 3192 70,022.5 126,809 3461 69,778.0 146,224 6174 365,320.5 * 516,657 *
5 2771 20,304.5 67,222 3249 69,935.5 * 126,722 * 3462 69,767.0 146,213
6 2776 20,265.5 * 67,183 * 3478 69,754.0 * 146,200 *
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Abstract: In this work, the differential evolution algorithm behavior under a fixed point arithmetic is
analyzed also using half-precision floating point (FP) numbers of 16 bits, and these last numbers are
known as FP16. In this paper, it is considered that it is important to analyze differential evolution
(DE) in these circumstances with the goal of reducing its consumption power, storage size of the
variables, and improve its speed behavior. All these aspects become important if one needs to design
a dedicated hardware, as an embedded DE within a circuit chip, that performs optimization. With
these conditions DE is tested using three common multimodal benchmark functions: Rosenbrock,
Rastrigin, and Ackley, in 10 dimensions. Results are obtained in software by simulating all numbers
using C programming language.

Keywords: differential evolution; fixed point arithmetic; FP16; pseudo random number generator

1. Introduction

The use of different number types in machine learning applications has been analyzed
extensively in previous years, more specifically in deep learning neural networks [1,2].
These kinds of neural networks use the convolution as the basic function and have thou-
sands of parameters and must be trained first; that is, the network must be optimized
by modifying all the parameters to obtain a local minimum of the goal function. The
optimization step is called training and it could take hours in modern hardware of general
purpose graphics processor units (GPGPUs). A special type of number, Brain Floating
Point (bfloat16), which is a half-precision FP format of 16 bits with the same range of the
usual single precision FP numbers (float in C programming language, of 32 bits length), has
been proposed for training deep learning neural networks [2]. Other FP numbers of 16 bit
length are the so-called FP16 numbers, these are an IEEE standard [1,2] for half-precision
FP numbers and can be used on ARM processors.

The goal of using different, shorter numbers in machine learning applications is to
improve the speed, and as a consequence reduce the power consumption as it would take
less time to train a deep learning network, and also reduce the storage memory or disk size
for the variables. In [1] it is mentioned that half precision is also attractive for accelerating
general purpose scientific computing, such as weather forecasting, climate modeling, and
solution of linear systems of equations. The supercomputer Summit (it was in the Top
500 list https://www.top500.org (accessed on 3 February 2021)), has a peak performance
of 148.6 petaflops in the LINPACK benchmark, a benchmark that employs only double
precision. For a genetics application that uses half precision, the same machine has a peak
performance of 2.36 exaflops [1].

In this work it is proposed to analyze the well known heuristic for single objective
optimization, the differential evolution (DE) algorithm, under FP16 numbers, and also
under fixed point arithmetic that uses integer numbers of different lengths. This analysis
is important if we think of embedded optimization algorithms within a chip [3], which
performs a dedicated task. One constraint in these kinds of applications must be that the
power consumption is as low as possible. Also it is important if one designs a dedicated
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algorithm in hardware, just as in FPGAs (Field Programmable Gate Arrays), to accelerate
its behavior. Also, another possible application is to execute a fast and small DE inside
each core in a GPGPU. These three application scenarios justify the analysis of the DE
performed in this work.

The rest of this article is organized as: in Section 2 a very brief description of fixed
point arithmetic and FP numbers is made. In Section 3 the DE algorithm is analyzed for
which parts could be improved by using other different number types. In Section 4 some
experiments and their results are described. Finally, in Section 6 some conclusions are presented.

2. Fixed Point Arithmetic and Floating Point Numbers

The notation a.b will be used here to represent a set of integer numbers that uses a bits
in the integer part, and b bits in the fractional part. Each number is of size a + b + 1 bits
(plus the sign bit).

For a number x ∈ a.b, the range of numbers that can be represented is:

− 2a ≤ x ≤ 2a − 2−b (1)

Summing up two numbers a.b results in a number (a + 1).b [4]. The multiplication of
two numbers a.b results in a number (2a + 1).2b [4]. It is possible to verify these results by
applying the respective operation to two extreme numbers in (1).

The microprocessors offer the sum and multiplication of two integer numbers and the
result is stored in a number of the same size as the operands. In a hardware design for a
given application, one must use a big enough number to store the sum of two a.b numbers,
and the result to multiply two a.b numbers must be returned to a a.b number. The easiest
way to perform this is by truncating the result: the resulted 2a.2b is shifted b bits to the
right, again the number must be big enough to store the resulted a.b number. In a PC, if
one uses 32 bit integer numbers, the first bit is the sign bit, and then one could multiply
up two

√
231 = 231/2 values to keep the result within the used 31 bits. In any application,

normally one does not take care if the used numbers can keep the result of the operations
applied to them, and one trusts that the numbers are big enough to store the results.

The operations sum and multiplication of two integer numbers are the fastest because
each operation is built in the hardware and both take a single clock step.

The sum and multiplication of two FP numbers is totally different. An FP number
is composed as s · 2e, where s is the significant and e the exponent. If p bits are used for
the significant, it is an integer that could take values from 0 to 2p − 1. The exponent e is
an integer number too. The sum of two FP numbers is carried on first by expressing both
numbers with the same exponent, then summing up both significants. The greater exponent
of both numbers is used to express them with the same exponent. The result must be
rounded to express the same number of bits used in the significants. Also, the result could
be normalized, which means that the exponent will have a single binary precision number.

The multiplication takes more steps because two numbers s1 · 2e1 , and s2 · 2e2 are
multiplied as s = s1 · s2 and the exponents are summed (e = e1 + e2), and also both results
are rounded and the final result is normalized.

In the IEEE 754 standard [5], an FP number has a sign bit, i, and the represented
number is equal to (−1)i · s · 2e, where emin ≤ p + e − 1 ≤ emax. The values used in
common FP numbers are shown in Table 1.

Table 1. Characteristics of floating point (FP) numbers in the IEEE 754 standard.

Precision Exponent Significant emin emax Smallest Biggest

Half 5 10 −14 +15 6.10 × 10−5 6.55 × 104

Single 8 23 −126 +127 1.17549 × 10−38 3.40282 × 1038

Double 11 52 −1022 +1023 2.22507 × 10−308 1.79769 × 10308

Floating point operations take more than a clock cycle within a microprocessor.
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The IEEE 754 standard [5] gives much more aspects that are necessary to work with FP
numbers, such as rounding methods, Not a Number (NaN), infinities, and how to handle
exceptions. In [6] all these details about FPs are explained.

3. DE Analysis

DE is a heuristic used for global optimization under continuous spaces. DE solves
problems as:

minimize: f (x),

subject to: g(x) ≥ 0, and

h(x) = 0,

x ∈ S ⊂ Rn.

(2)

where f : Rn → R is the function to optimize; x ∈ Rn, that is, the problem has n variables;
and also we could have g : Rn → Rm1 , m1 inequality constraints; and h : Rn → Rm2 , m2
equality constraints. The solution to the problem x is in a subset S of the whole search
space Rn and where the constraints are satisfied, this space S is called the feasible space.

Also, the search space contains the feasible space and is defined by the box constraints:

xi ∈ [li, ui], for i = {1, 2, . . . , n}. (3)

This is, each variable xi is searched in the interval defined by the lower bound value li,
and the upper bound value ui, for i = {1, 2, . . . , n}.

Constraints can be incorporated into the problem (2) by modifying the objective
function as:

f1(x) = f (x) + α
m1

∑
i=1

min[0, gi(x)]
2 + β

m2

∑
i=1

h2
i (x) (4)

Now the f1 will be optimized instead of f in (2). α and β in (4) represent the penalty
coefficients that weigh the relative importance of each kind of constraint.

One important point about DE is that the heuristic needs to only evaluate the problem
to solve. Classical mathematical optimization methods use the first and perhaps also the
second derivative of the given problem. These derivatives are easy to obtain if one has in
hand the mathematical expression to the given problem. It is possible to approximate the
derivatives numerically but with a very high computational cost [7].

According to the test in the CEC 2005 conference [8], DE is the second best heuristic to
solve real parameter optimization problems, when the number of parameters is around 10.

The DE pseudocode is shown in Algorithm 1.
DE works with a population that is composed of a set of individuals, or vectors, of

real numbers. All vectors are initialized with random numbers with a uniform distribution
within the search bounds of each parameter (line 1 in Algorithm 1). For a certain number
of iterations (line 4) the population is modified and this modified population could replace
the original individuals. The core of DE is in the loop on lines 8–13: a new individual
is generated from three different individuals chosen randomly; each value of the new
vector (it represents a new individual) is calculated from the first father, plus the difference
of the other two fathers multiplied by F, the difference constant; the new vector value
is calculated if a random real number (between zero and one) is less than R, the DE’s
recombination constant. To prevent the case when the new individual could be equal to the
current father i, at least one vector’s component (a variable value) is forced to be calculated
from their random fathers values: it is in line 9 of the pseudocode, when j = jrand, and jrand
is an integer random number between 1 and n. In lines 10–12 it is checked if each combined
variable value is within the search space. Then the new individual is evaluated, and if it is
better than the father (in lines 11–12), then the child replaces its father. The stop condition
used here is: if the number of iterations is greater than a maximum number of iterations
or when the difference in the objective function values of the worst and best individuals

153



Math. Comput. Appl. 2021, 26, 13

is less than v. This stop condition is called diff criterion in [9], and is recommended for a
global optimization task.

Algorithm 1 Differential evolution algorithm (rand/1/bin version)
Require: The search space and the value v for the stop condition. The values for population

size, μ; maximum number of generations, g; difference and recombination constants, F

and R, respectively.

Ensure: A solution of the minimization problem

1: initialize (P = {x1, x2, . . . , xμ})
2: evaluate (P)

3: k = 0

4: repeat

5: for i = 1 to μ do

6: Let r1, r2 and r3 be three random integers in [1, μ], such that r1 �= r2 �= r3

7: Let jrand be a random integer in [1, n]

8: for j = 1 to n do

9: x′j =

⎧⎪⎨⎪⎩xr3,j + F(xr1,j − xr2,j) if U(0, 1) < R or j = jrand

xi,j otherwise

10: if x′j < li or x′j > ui then � Check bounds

11: x′j = U(0, 1)(ui − li) + li

12: end if

13: end for

14: if f (x′) < f (xi) then

15: xi = x′

16: end if

17: end for

18: min = f (x1), max = f (x1)

19: for i = 2 to μ do

20: if f (xi) < min then

21: min = f (xi)

22: end if

23: if f (xi) > max then

24: max = f (xi)

25: end if

26: end for

27: k ← k + 1

28: until (max−min) < v or k > g

A general form to set the parameter values for DE is: if d is the number of variables,
the population size is set to 10d, F ∈ [0.5, 1.0], and R ∈ [0.8, 1.0] [9].
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The DE in Algorithm 1 can be improved by using a random integer number generator
as the one described in [10], which does not use divisions or FP numbers. This idea could
improve the algorithm in line 6 (to generate three numbers in the interval [1, μ], and in
line 7 where another random integer number is generated in the interval [1, n]. Also, the
values for F and R are within the interval [0.5, 1.0], and usually no more than one or two
decimal values are used for these constants, thus these values are not affected by using half
precision numbers (see Table 1). Even more, a totally integer arithmetic could be used in
the comparison U(0, 1) < R) (in line 9 in Algorithm 1), if it is used instead rand(1, 231) < I,
with I = �231 · R�.

Two implementations of DE were used in this work: one with fixed point arithmetic,
and another one using FP16 numbers. The implementation with fixed point arithmetic uses
integer (of 32 bits) numbers for all the variables. The implementation using FP16 numbers
uses half precision floats (FP16, 16 bits) for all the variables. In this paper a computer of
64 bits architecture was used, then the multiplication of two integers was stored in a long
type variable of 64 bits, shifted and truncated to a integer of 32 bits. The core part of DE
(lines 8–13 in Algorithm 1) calculates the selected and mutated vector x′ as:

x′j =

{
xr3,j + F(xr1,j − xr2,j) if U(0, 1) < R or j = jrand,
xi,j otherwise,

(5)

for j = {1, 2, . . . , n}, this is for each variable of the given problem. Thus, one subtraction
(xr1,j − xr2,j) followed of one multiplication (by constant F) and one summation (with xr3,j)
are needed to calculated the new vector x′. The greatest value for F could be 1, if all the
search space is equal for all variables, the result in (5) could be the double of the current x′j value.

Then, the maximum possible values in the search space could be the double of the
bound values of the search space. Another problem is to find the maximum possible value
in the function space. Also, it is not clear how many bits are necessary in the fractional part
for the fixed point arithmetic. These items are solved in the following section.

4. Experiments with Three Multimodal Functions in 10 Dimensions

Three very well known benchmark functions were used: shifted version of Rosenbrock,
Rastrigin, and Ackley functions in 10 dimensions. All these functions are multimodal,
which justify solving them using the DE heuristic. The used Rosenbrock function is
defined as:

f1(x) = 0.39 +
1

10

n−1

∑
i=1

{[
(xi + 1)2 − (xi+1 + 1)

]2
+

x2
i

100

}
, (6)

its minimum value is 0.39 with x = [0, 0, . . . , 0].
The Rastrigin function is defined as:

f2(x) = −33 +
n

∑
i=1

[
x2

i
10
− cos(2π xi) + 1

]
, (7)

its minimum value is −33 for x = [0, 0, . . . , 0].
The Ackley function is defined as:

f3(x) =
1
20

{
e− exp

[
1
n

n

∑
i=1

cos(2π xi)

]}
− 6− exp

[
−1

5

√
1
n

n

∑
i=1

x2
i

]
, (8)

its minimum value is −7 with x also equal to x = [0, 0, . . . , 0]. These three functions are
scaled with respect to the three ones defined in [11] in order to keep their amplitudes within
the range of half precision FP numbers (see Table 1). A summary of these three functions is
described in Table 2.

All functions were programmed in single precision FP (float in C) arithmetic.
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Table 2. The three test functions used in this work. The search space was set to [−10, 10], thus the
shown values are the extreme possible values that the functions could take, also the minimum value
is shown at the optimum solution x = [0, . . . , 0], and the evaluation at x = [1, . . . , 1] is shown in the
last column.

Function x = [10, . . . , 10] x = [−10, . . . ,−10] x = [0, . . . , 0] x = [1, . . . , 1]

Rosenbrock 10891.29 7291.29 0.39 4.00
Rastrigin 67.00 67.00 −33.00 −32.00

Ackley −6.14 −6.14 −7.00 −6.82

The number of bits used for the integer and fractional parts for the simulations in
fixed point arithmetic is shown in Table 3. The number of bits in the integer part is set
according to Table 2 because the maximum number in the third column in Table 3 must be
greater than the maximum extreme value shown in Table 2.

Table 3. Calculation of the number of bits in the integer part for the simulations using fixed point
arithmetic. Numbers shown here must be greater than the corresponding ones in Table 2 to permit
the optimization operations for differential evolution (DE).

Functions Bits Integer Part Max. Value Bits Fractional Part

Rosenbrock 14 214 = 16384 1–17
Rastrigin 7 27 = 128 1–24
Ackley 5 25 = 32 1–26

The resulted statistics for the simulations using 100 runs per bit in the fractional part
and FP16 arithmetic are shown in Tables 4–6, for the Rosenbrock, Rastrigin, and Ackley
functions, respectively. In those tables the statistics for the number of generations and the
obtained function values are shown. The used number of bits in the integer part are shown
in Table 3. These number of bits in the integer part were calculated from data in Table 2,
for example, for the Rosenbrock function in Table 2 the maximum obtained value function
is 10891.29, thus the number of bits for the integer part must be greater than this number,
therefore 14 bits were selected because 214 = 16, 384 > 10, 891.29. The corresponding
variable values for the minimum for each function for the FP16 simulations are shown in
Table 7. The obtained mean value for the FP16 simulation for the Rosenbrock function is
0.391538 (see at the end of sixth column in Table 4). The equivalent mean for the fixed point
arithmetic is 0.391079 at 11 bits in the fractional part; the associated variable values at this
simulation with 11 bits is also shown in Table 7. The same procedure was repeated for the
results for the Rastrigin and Ackley functions and are also shown in Table 7.
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Table 4. Statistics of the 100 runs per bits used in the fractional part for the fixed point arithmetic and
for the Rosenbrock function (14 bits were used for the integer part). Results for 100 runs for the FP16
are also shown. g represents the number of generations.

Bits ḡ σ(g) min(g) max(g) f̄1 σ( f1) min( f1) max( f1)

1 400.0 0.0 400 400 0.005 0.05 0.000 0.500
2 400.0 0.0 400 400 0.250 0.00 0.250 0.250
3 400.0 0.0 400 400 0.375 0.00 0.375 0.375
4 400.0 0.0 400 400 0.375 0.00 0.375 0.375
5 400.0 0.0 400 400 0.375 0.00 0.375 0.375
6 400.0 0.0 400 400 0.390625 0.00000 0.390625 0.390625
7 400.0 0.0 400 400 0.393360 0.00375 0.390625 0.398438
8 400.0 0.0 400 400 0.394765 0.00145 0.390625 0.398438
9 400.0 0.0 400 400 0.394472 0.00137 0.390625 0.396484

10 400.0 0.0 400 400 0.393555 0.00153 0.390625 0.396484
11 400.0 0.0 400 400 0.391079 0.00098 0.390137 0.395020
12 400.0 0.0 400 400 0.390174 0.00025 0.389893 0.391602
13 400.0 0.0 400 400 0.390064 0.00040 0.390015 0.394043
14 370.02 25.73 298 400 0.390012 2.19×10−5 0.389954 0.390076
15 337.72 25.02 280 400 0.390029 2.17×10−5 0.389984 0.390106
16 333.27 25.73 278 400 0.390040 3.07×10−5 0.389999 0.390167
17 330.18 23.06 259 396 0.390046 2.79×10−5 0.390007 0.390152

FP16 400.0 0.0 400 400 0.391538 0.00040 0.390869 0.392578

Table 5. Simulation results for Rastrigin function. Statistics of the 100 runs per bits used in the
fractional part for the fixed point arithmetic (7 bits were used for the integer part). Results for 100
runs for the FP16 are also shown. g is the number of generations.

Bits ḡ σ(g) min(g) max(g) f̄2 σ( f2) min( f2) max( f2)

1 200.0 0.0 200 200 −33.0 0.0 −33.0 −33.0
2 200.0 0.0 200 200 −33.0 0.0 −33.0 −33.0
3 200.0 0.0 200 200 −33.0 0.0 −33.0 −33.0
4 200.0 0.0 200 200 −33.0 0.0 −33.0 −33.0
5 200.0 0.0 200 200 −33.0 0.0 −33.0 −33.0
6 200.0 0.0 200 200 −32.9917 0.00784 −33.0000 −32.9844
7 200.0 0.0 200 200 −32.9923 0.00136 −33.0000 −32.9844
8 200.0 0.0 200 200 −32.9960 0.00055 −32.9961 −32.9922
9 200.0 0.0 200 200 −32.9979 0.00101 −32.9980 −32.9883

10 200.0 0.0 200 200 −32.9988 0.00113 −32.9990 −32.9883
11 200.0 0.0 200 200 −32.9993 0.00077 −32.9995 −32.9936
12 200.0 0.0 200 200 −32.9996 0.00033 −32.9998 −32.9976
13 200.0 0.0 200 200 −32.9997 0.00031 −32.9999 −32.9971
14 200.0 0.0 200 200 −32.9997 0.00042 −32.9999 −32.9964
15 200.0 0.0 200 200 −32.9998 0.00029 −33.0000 −32.9981
16 200.0 0.0 200 200 −32.9997 0.00090 −33.0000 −32.9915
17 200.0 0.0 200 200 −32.9997 0.00080 −33.0000 −32.9938
18 200.0 0.0 200 200 −32.9997 0.00066 −33.0000 −32.9938
19 200.0 0.0 200 200 −32.9998 0.00066 −33.0000 −32.9938
20 200.0 0.0 200 200 −32.9997 0.00070 −33.0000 −32.9938
21 200.0 0.0 200 200 −32.9997 0.00070 −33.0000 −32.9938
22 200.0 0.0 200 200 −32.9997 0.00071 −33.0000 −32.9938
23 200.0 0.0 200 200 −32.9997 0.00071 −33.0000 −32.9938
24 200.0 0.0 200 200 −32.9997 0.00079 −33.0000 −32.9928

FP16 200.0 0.0 200 200 −32.9997 0.00313 −33.0000 −32.9688
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Table 6. Simulation results for Ackley function. Statistics of the 100 runs per bits used in the fractional
part for the fixed point arithmetic (5 bits were used for the integer part). Results for 100 runs for the
FP16 are also shown. g is the number of generations.

Bits ḡ σ(g) min(g) max(g) f̄3 σ( f3) min( f3) max( f3)

1 200.0 0.0 200 200 −7.00000 0.00000 −7.00000 −7.0000
2 200.0 0.0 200 200 −6.95500 0.14381 −7.00000 −6.5000
3 200.0 0.0 200 200 −6.82625 0.06128 −6.87500 −6.75000
4 200.0 0.0 200 200 −6.93750 0.00000 −6.93750 −6.93750
5 200.0 0.0 200 200 −6.96875 0.00000 −6.96875 −6.96875
6 200.0 0.0 200 200 −6.98406 0.00312 −6.98438 −6.95313
7 200.0 0.0 200 200 −6.99219 5.08× 10−7 −6.99219 −6.99219
8 200.0 0.0 200 200 −6.99609 8.47× 10−8 −6.99609 −6.99609
9 200.0 0.0 200 200 −6.99748 0.00566 −6.99805 −6.94141

10 200.0 0.0 200 200 −6.99900 9.76× 10−5 −6.99902 −6.99805
11 200.0 0.0 200 200 −6.99950 9.63× 10−5 −6.99951 −6.99902
12 200.0 0.0 200 200 −6.99850 0.00811 −6.99976 −6.94214
13 200.0 0.0 200 200 −6.99990 5.93× 10−5 −6.99988 −6.99939
14 108.05 12.28 82 161 −6.99990 3.79× 10−5 −6.99994 −6.99963
15 85.25 3.85 76 94 −6.99990 1.99× 10−4 −6.99997 −6.99796
16 83.58 3.37 76 91 −6.99993 2.91× 10−5 −6.99997 −6.99973
17 82.23 3.26 75 93 −6.99992 4.84× 10−5 −6.99996 −6.99961
18 82.06 3.62 75 93 −6.99992 9.82× 10−5 −6.99997 −6.99899
19 81.78 3.16 75 88 −6.99990 1.61× 10−4 −6.99997 −6.99878
20 81.53 3.14 72 88 −6.99991 1.16× 10−4 −6.99996 −6.99887
21 81.31 3.31 75 91 −6.99991 1.00× 10−4 −6.99998 −6.99907
22 81.68 3.58 73 90 −6.99991 8.37× 10−5 −6.99997 −6.99929
23 81.59 3.41 74 90 −6.99991 8.64× 10−5 −6.99996 −6.99927
24 81.49 3.20 73 89 −6.99991 1.10× 10−4 −6.99996 −6.99904
25 81.80 3.23 73 93 −6.99991 1.10× 10−4 −6.99997 −6.99904
26 81.69 3.26 73 93 −6.99991 1.10× 10−4 −6.99997 −6.99904

FP16 66.5 15.54 49 106 −6.99711 0.00172 −7.00000 −6.99609

Table 7. Variables values for the minimum function value for FP16 simulation, and the integer
arithmetic simulation. The shown numbers 11, 12, and 11 correspond to the used bits in the fractional
part for integer arithmetic, which also correspond to the same mean of FP16 results for each function
in Tables 4–6.

Rosenbrock Rastrigin Ackley

Bits FP16 11 FP16 12 FP16 11

min( f ) 0.39087 0.39111 −33.0000 −32.9998 −7.0000 −6.9995
x1 −0.003113 −0.000488 −0.000257 −0.000244 0.011742 −0.000488
x2 −0.014801 −0.006836 −0.004440 −0.000244 −0.008049 −0.000488
x3 −0.020218 −0.027832 0.017883 −0.001709 −0.009605 0.003418
x4 −0.048187 −0.071289 0.003246 −0.000244 −0.002329 0.000000
x5 −0.077759 −0.101562 0.001313 0.001221 −0.001261 0.000977
x6 −0.147705 −0.153809 −0.002254 0.000000 0.000976 −0.001953
x7 −0.288574 −0.318359 0.000988 0.000977 0.006023 −0.000977
x8 −0.471924 −0.544922 −0.014542 −0.001709 0.005493 0.000000
x9 −0.720215 −0.806641 −0.008965 0.000488 0.004948 0.001953
x10 −0.934082 −0.953613 0.000543 0.000488 −0.001174 −0.001465

5. Discussion

With the simulation results shown in Tables 4–7 it is confirmed that the heuristic DE
can be executed in fixed point arithmetic or half precision FP numbers.

As one can see in Tables 4–6 not all the fractional numbers of bits are necessary with
a given application. From Table 7 same results for FP16 numbers can be obtained with
numbers 14.11, 7.12, and 5.11 for the scaled Rosenbrok, Rastrigin, and Acklen functions.

About the precision obtained in the solution using FP16 or integer arithmetic. The
defined machine epsilon value is that such when ε �= 1 + ε. In most of the modern
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microprocessors (that use two’s complement arithmetic) this machine epsilon value for
each data type is shown in Table 8.

Table 8. Machine epsilon values for the different floating point numbers, for a general integer number
of n bits in the fractional part, and also for the integer arithmetic of results shown in Table 7.

Data Type Machine Epsilon Value Precision Bits

double 2.220446 · 10−16 ≈ 2−52 53
float 1.192093 · 10−7 ≈ 2−23 24
FP16 9.765625 · 10−4 ≈ 2−10 11
n bits 2−n n

fractional part
11 bits 4.882813 · 10−4 = 2−11 11
12 bits 2.441406 · 10−4 = 2−12 12

The precision bits is one bit more than the positive exponent of epsilon in floating point
types and equal to the number of bits used in the fractional part in integer arithmetic.

Roughly, one cannot expect a result in an optimization problem beyond the precision
of the machine epsilon. Thus, using FP16 numbers will give precision in the result at most
9.765625× 10−4. Or using an integer number a.b, the result will have at most a precision of
2−b. This means also that using FP16 numbers the heuristic, DE in this case, will finish early
compared to using single or double precision floating point numbers. In the experiment in
this work the DE’s stop condition was set equal to 10−4. It is expected that using a smaller
stop condition the heuristic will finish in more generations but then is necessary to change
to other number types.

One possible application of using FP16 numbers of integer arithmetic could be to
obtain first a low precision result within the precision given by the used type numbers (see
Table 8). If a bigger precision is required, then a traditional mathematical algorithm, such
as the Newton method, could be used. The starting solution for the Newton method will
be the previous obtained low resolution solution.

Of course if FP16 numbers of integer arithmetic are used, the application should
work at the precision results given by those type numbers. Finally, this behavior must be
analyzed in advance for a given application.

For all the simulations the DE’s stop condition was set equal to 0.0001. This number in
3.28 notation is equal to 0x000068db (it is a hexadecimal number of 32 bits), and this number
can be written by convenience with the binary point as 0x0.00068db. The 13 bits after the
binary point are all zeros, thus the stop condition is equal to zero for less than 13 bits used
in the fractional part, as one can confirm in Tables 4 and 6 where the simulations show the
maximum number of iterations and the stop condition is not taken into account for lesser
than and equal to 13 bits.

For the use of fixed point arithmetic in DE, it is critical to know in advance the range
of values for the function to optimize. Here the extremes values of the search space were
used to know those quantities. In a practical task, it could be tried with the extremes and
perhaps other points, on a very coarse grid, to evaluate the function to optimize. The same
procedure should be applied to use FP16 numbers.

DE core (in Algorithm 1) uses one difference and one multiplication, thus there is not
a numerical problem to be used with fixed point arithmetic or FP16 numbers.

A naive implementation of fixed point arithmetic with a word length of 32 bits is not
required, in general. As one can see in Table 4, the same results using 14–17 bits in the
fractional part for the Rosenbrock function are obtained. The same applies from results in
Table 5 for the Rastringin function for 11–24 bits, and in Table 6 for the Ackley function
from 13 to 26 bits in the fractional part.

A future work will be the design in the hardware of DE, which should include the
random number generator that can be optimized to use directly the generated bits without
FP divisions, as is suggested in [10]. This idea of this design also could be used in software
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within each core of a GPGPU. Also an interesting idea is to incorporate a random number
generator based in chaos [12], which is easy to implement.

6. Conclusions

The DE optimization heuristic was analyzed under its implementation with fixed
point arithmetic and half precision floating point arithmetic. Results were shown in
software simulation with three multimodal functions: Rosenbrock, Rastrigin, and Ackley
in 10 dimensions. To apply these arithmetic representations, it is necessary first to know
how to scale the function values to be inside the ranges of FP16 numbers. It is suggested to
use the extreme search values to have an idea of those range function values. If this point
is solved, DE can be perfectly used in these arithmetics.

Still is possible to optimize the DE algorithm in the pseudo random number generator,
without using FP arithmetic. This analysis is required if DE will be embedded in hardware
inside a circuit chip or in massive parallel versions in GPGPUs.
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Abstract: Most real-world problems require the optimization of multiple objective functions simulta-
neously, which can conflict with each other. The environment of these problems usually involves
imprecise information derived from inaccurate measurements or the variability in decision-makers’
(DMs’) judgments and beliefs, which can lead to unsatisfactory solutions. The imperfect knowledge
can be present either in objective functions, restrictions, or decision-maker’s preferences. These
optimization problems have been solved using various techniques such as multi-objective evolution-
ary algorithms (MOEAs). This paper proposes a new MOEA called NSGA-III-P (non-nominated
sorting genetic algorithm III with preferences). The main characteristic of NSGA-III-P is an ordinal
multi-criteria classification method for preference integration to guide the algorithm to the region
of interest given by the decision-maker’s preferences. Besides, the use of interval analysis allows
the expression of preferences with imprecision. The experiments contrasted several versions of the
proposed method with the original NSGA-III to analyze different selective pressure induced by the
DM’s preferences. In these experiments, the algorithms solved three-objectives instances of the DTLZ
problem. The obtained results showed a better approximation to the region of interest for a DM when
its preferences are considered.

Keywords: incorporation of preferences; multi-criteria classification; decision-making process; multi-
objective evolutionary optimization; outranking relationships

1. Introduction

Many industrial domains are concerned with multi-objective optimization problems
(MOPs), which in general have conflicting objectives to handle [1]. To solve optimally, a
MOPs is to find a set of solutions defined as Pareto optimal solutions. They represent the
best compromise between the conflicting objectives. A promising alternative is solving
MOPs with metaheuristics, like multi-objective evolutionary algorithms (MOEAs); they
obtain an approximation of the Pareto optimal set. This approach solves the problem
partially. The decision-maker (DM) has to choose the best compromise solution, which
satisfies his preferences, from the set of solutions obtained (non-dominated by each other).
For practical reasons, the DM needs to choose one solution to implement it.

MOEAs face various problems when dealing with many objectives—exponential
growth in the number of non-dominated solutions and high computational cost to maintain
population diversity [2–4], among others. In addition to the previous problems, decision-
making becomes difficult when the number of objectives increases.
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One way to reduce the DM’s cognitive effort is to consider the preferences to guide the
MOEA to the region of interest (ROI). Incorporating DM’s preferences requires considering
non-trivial aspects—defining the DM’s preferences, determining the ROI and determining
the relevance of a solution [5]. The preferences incorporation methods have used the fol-
lowing representation structures [6,7]—weights, ranking of solutions, ranking of objective
functions, reference point, trade-offs between objective functions, desirability thresholds,
outranking relations. This paper incorporates preferences using outranking relations.

In many real-world situations, the MOPs environment implicates imprecise infor-
mation derived from inaccurate measurements or the variability in DMs’ judgments and
beliefs. Not considering these imprecisions can lead to unsatisfactory solutions and, in
consequence, to a poor choice between the existing alternatives due to imperfect knowledge
of the problem [8]. Imprecise information may be present in different MOP components;
for example, it can be either in objective functions, restrictions, or a decision-maker’s
preferences. Obtaining the preferential model parameters is a difficult task that increases
with the objective number, only possible when the handle of imprecision is allowed [9]. The
simplest approach to handling imprecise information is to estimate this information’s mean
value to solve the problem as a deterministic one [10]. The interval numbers are a natural,
simple, and effective approach to express imperfect knowledge. This paper incorporates
interval analytics to express the parameters of a preferential model.

On the other hand, when we apply MOEAs to solve problems with many objectives,
they face challenges such [2–4]:

1. The exponential growth of the number of non-dominated solutions, making it harder
to obtain representative samples of the Pareto front.

2. The increase in the number of poor solutions that are difficult to dominate (at least
one of your objectives has a value, and the rest are close to optimal).

3. The solutions in the variable space become more distant as more objectives are added
to the problem [11]. In such a case, when two distant parent solutions are recombined,
the generated offspring solutions likely are also distant [12]; therefore, the efficiency
of the genetics operators is questionable.

4. The high computational cost to determine the degree of diversity of the population.

Even though incorporating preferences in MOEAs is a challenging problem, the
outranking approach handles it appropriately and aids in reducing the DM’s cognitive
effort required to choose a final solution [13]. Considering the lack of research devoted to
studying the convenience of using the outranking approach in the optimization process,
this work proposes a further analysis to observe the performance of a novel strategy of
incorporating outranking in a MOEA. Unlike Cruz et al. [6], which requires representative
solutions of two classes from the DM, this work proposes to incorporate two classes for
internal use to guide the search process and establish greater differentiation between
solutions, exerting selective pressure to find the ROI, but with the same cognitive load for
the DM.

According to the reviewed literature [2–4,11], and as was mentioned before, MOEAs
present difficulties when the number of objectives grows. For example, the classical
Non-dominated Sorting Genetic Algorithm II (NSGA-II) [14] presents issues with the
diversity-controlling operators [12]; authors extended this algorithm in NSGA-III to replace
the crowding distance operator with the generation of well-spread reference point. In this
paper, we propose a new method to integrate the DM’s preferences to NSGA-III, which can
deal with many objectives and is based on non-dominated fronts’ ordering.

To the best of our knowledge, few of the previous studies has incorporated the pres-
ence of imperfect knowledge, nor have used the INTERCLASS-nC [15] as a classifier in
the non-dominated-sorting process or employed more of two of inner classes to guide
the search process towards the region of interest, and this work focuses on these issues.
This research seeks to evaluate the proposed method’s performance when incorporating
preferences in the presence of imperfect knowledge with various versions of the pro-
posed algorithm.
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The remain of this paper is organized as follows—Section 2 includes reviewing the
literature and some definitions of INTERCLASS-nC. Section 3 details the proposed method
present. Section 4 specifies the benchmark to be solved, which includes seven problem
instances. Section 5 shows and discusses the experimental results. Finally, Section 6
presents the conclusions of this paper and future work.

2. Literature Review

Two main approaches are distinguished in the area of Multi-Criteria Decision-Making
(MCDM) [16]:

a The French approach, based on outranking relationships built through comparisons
between pairs of solutions to determine, for each pair of solutions, if there is relevant
information (preference, indifference, or incompatibility) among them.

b The American Multi-Attribute Utility Theory (MAUT) works based on the formula-
tion of an overall utility function, and an interactive process can obtain this.

In the case of outranking relationship, indicators of dominance or preference are
defined given some thresholds. This approach’s main criticism is the difficulty to obtain
the model parameters [6]; however, there are methods to solve it [17]. On the other hand,
MAUT does not work when intransitivity exists between the preferential model [16]. The
intransitivity phenomenon occurs in many real cases when exist a looping between the
alternatives to select. It is important to consider this property to avoid possible incoherent
solutions [18].

The incorporation of interactive and a priori preferences can reduce the search space
because the information is used to guide MOEAs to reach the ROI, which is the region of
the Pareto frontier preferred by the DM’s. Expressing a DM’s preference could be a more
difficult cognitive process. According to Cruz et al. [6], the following characteristics are
desirable for a preference incorporation method:

1. Easy interaction between the DM and the solution algorithm involves minimizing the
cognitive effort of a DM when making a judgment about the solutions.

2. There should be no requirement for comparability and transitivity of preferences.
3. The preference aggregation model must be compatible with the relevant characteristics

of the real DMs.
4. There should be techniques to infer the decision model parameters from examples

provided by the DM.

In Cruz et al. [6], the multicriteria ordinal classification requires the DM to separate
solutions into two categories. In a preference incorporation method with this classifier, the
human categorization is the stage with the lowest cognitive demand of the entire process.
Assigning solutions to the class “good” or “not good” does not require the DM to worry
about the transitivity between them in the same way; the DM only compares the solutions
between “good” and “not good”.

Using outranking relationships allows handling the characteristics of many DMs
facing real-world problems [6]. Being good that used preference incorporation methods
meet the desirable characteristics described above, related to interaction with the DM,
compatibility between the preferential model and the DM, properties of the preferences,
and parameters’ inference.

The ordinal multi-criteria classification can be useful to the DM to determine the best
solution of a discrete set of alternatives, this is due to the existence of ordinally ordered
sets starting with the most preferred alternatives to the least preferred ones [19]. There
is a variety of multi-criteria ordinal classification methods, these can be grouped into the
following classes [15]:

a Methods based on the objective function value.
b Symbolic methods, mainly those belonging to the theory of rough sets.
c Methods based on outranking relationships.

163



Math. Comput. Appl. 2021, 26, 27

To our knowledge, the first article that uses multi-criteria ordinal classification based
on outranking was Oliveira et al. [20], which uses the popular ELECTRE-TRI method for
ordinal classification in a three-objective problem, in which preferences are incorporated
a priori, directly setting the parameters of the outranking model. Those methods belong
to the family ELECTRE (Elimination Et Choix Traduisant la Realite) which uses a relation of
outranking to identify if a solution x is at least as good as a y.

The hybrid algorithm proposed by Cruz et al. [13] uses a multi-criteria ordinal
classification based on outranking. During the first phase, a meta-heuristic algorithm
obtains a first approximation to the Pareto frontier. In the second phase, the DM assigns
the solutions to two ordered classes and obtains the parameters of the outranking model.
In the third phase, the THESEUS classification method applies selective pressure towards
“satisfactory” solutions. They test the proposal on project portfolio problems with 4, 9, and
16 objectives; its results surpass the popular NSGA-II and Non-Outranked Ant Colony
Optimization (NOACO) proposed in [21].

Cruz et al. [6] proposed the Hybrid Evolutionary Algorithm guided by Preferences
(HEAP) algorithm, an extension of their previous work [13]. Where, instead of NSGA-II
and NOACO, they use MOEA/D and MOEA/D-DE as metaheuristics for the first phase
of the hybrid algorithm. For evaluating the proposed algorithm, they used instances of
the portfolio optimization problem and the scalable test DTLZ problem, with three and
eight objectives. The DTLZ benchmark are box-constrained continuous n-dimensional
multi-objective problems, scalable in fitness dimension. This experimentation aims to
analyze different in the activation of classification and the restart of solutions. The use of
the DTLZ test suite makes possible assess the closeness to the ROI of a DM and compare
the performance with three and eight objectives. The DM’s preferences are simulated
through an outranking model. In addition to the THESEUS classification method, the
popular ELECTRE-TRI is incorporated, and the results of both methods are compared. In
most cases, the best results were obtained with ELECTRE-TRI.

Additionally, few of the researches in the state of the art consider the imperfect
knowledge in the DM’s preferences and its effect in the function’s objectives to be optimized.
Besides, none has used the classifier INTERCLASS-nC in the non-dominated-sorting
process or employed more inner classes to guide the search process towards the ROI. The
proposed NSGA-III-P incorporates these characteristics.

2.1. Interval Arithmetic

In [22], Moore et al. formally proposed the interval analysis. An interval number can
be viewed as an entity that reflects a quantitative property whose precise value is unknown.
Still, the range within the value lies is known [15]. In this work, the imperfect knowledge
is represented with interval numbers, Moore et al. [23] describes a number in interval as a
range, E = [E, E], where E represents the lower limit while E the upper limit of an interval.
Items in bold are numbers in intervals.

Considering two numbers of intervals D = [D, D] and E = [E, E], the Basic arithmetic
operations can be defined for numbers of intervals as follows:

• addition:
D + E = [D + E, D + E] (1)

• subtraction:
D− E = [D− E, D− E] (2)

• multiplication:

D ∗ E = [ min{DE , DE, DE, DE}, max{DE, DE, DE, DE} ] (3)

• division:

D/E = [D, D] ∗ [ 1
E

,
1
E
]. (4)
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According to Fliedner et al. [24] a realization of an interval number is any real number
e ∈ [E, E]. An order relation is defined in the number of intervals as: let e and d be two
realizations of E and D respectively, we say that E > D if the preposition “e is greater than d”
has greater credibility than “d is greater the an e”.

Fernandez et al. [25] proposes the possibility function:

P(E ≤ D) =

⎧⎪⎨⎪⎩
1 if pED > 1,
PED if 0 ≤ PED ≤ 1,
0 if PED < 0,

(5)

where E = [e, e] and D = [d, d] are numbers of intervals and PED = e−d
(e−e)+(d−d)

. The order

relationship between D and E is given by:

a If D = E and D = E, then D = E. Therefore P(E ≥ D) = 0.5.
b If E > D, then E > D. Therefore P(E ≥ D) = 1.
c If E < D, then E < D. Therefore P(E ≥ D) = 0.
d If D ≤ E ≤ D ≤ E or D ≤ E ≤ E ≤ D, when:

(a) P(E ≥ D) > 0.5. Therefore, E is greater than D, (E > D).
(b) P(E ≥ D) < 0.5. Therefore, E is less than D, (E < D).

2.2. INTERCLASS-nC

Fernandez et al. [15] proposed an ordinal classification method, useful when the DM
has a vague idea about the boundaries between adjacent classes but can identify several
(even one) representative solutions in each class.

The DM must provide a model of outranking in terms of:

• Weight, w = [w−, w+]
• Veto threshold, v = [v−, v+]
• Majority threshold λ = [λ−, λ+]
• Credibility threshold β = [β−, β+].

A set of classes C = {C1, ..., Ck, ..., Cm}, (m ≥ 2) is defined, ordered by increasing
preference. Considering a δ > 0.5 and λ > [0.5, 0.5]. Where, δ corresponds to the maximum
probability degree for which the strength of the coalition of agreement exceeds λ.

Rk = {rkj, j = 1, ..., card(Rk)} is a subset of reference solutions that characterize
Ck, k = 1, ..., m and {r0, R1, ..., Rm, rm+1} is the set of all reference solutions, in which r0
and rm+1 are the worst and the ideal reference solution respectively. The elements in
Rk, k = 1, ..., m− 1 must satisfy the conditions defined in Fernandez et al. [15].

Classification is performed using top-down and bottom-up methods jointly. Each
method proposes a class for the assignment of x; in case of not coinciding, these rules
propose a possible range for the assignment of x.

3. Proposed Method

The Nondominated Sorting Genetic Algorithm III proposed in [12] is a genetic algo-
rithm similar to the original NSGA-II. They search the Pareto optimal set performing a
non-dominated sorting. The difference is the maintenance of diversity in the selection stage.
The first uses crowding distances, and the second uses reference points. NSGA-III discrim-
inates between the non-dominated solutions using a utility function, which calculates a
solution’s relevance to approximate a reference point.

To incorporate a DM’s preferences, we propose integrating the ordinal classification
method INTERCLASS-nC into the NSGA-III, we will call this variant NSGA-III-P. The
original work [6] only defines the classes “satisfactory” (Sat) and “unsatisfactory” (Dis);
the DM gives a reference set to generate these classes (with one or more representative
solutions for each class). This classification complements the non-dominated sorting to
increase the capacity to discriminate solutions; this strategy induces a greater selective
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pressure, focusing the search toward the ROI. In this work, two classes are added internally
for giving more precision in the comparison of the solutions:

• The DM is highly satisfied (HSat) with an x solution, if for each action w ∈ R2 it is
true that xPr(β, λ)w.

• The DM is highly dissatisfied (HDis) with an x, if for each action w ∈ R1 it is true that
wPr(β, λ)x.

The steps to follow to generate the Pt+1 of the NSGA-III-P that integrates the
INTERCLASS-nC ordinal classification method are shown in the Algorithm 1. Let Qt
the children population of the current generation with equal number of individual N of Pt.
The first step is to combine the children and parents tending Rt = Pt ∪Qt (of size 2N), the
N individuals that will become Pt+1 will be selected. To do this, Rt will be divided into
multiple fronts not dominated by non-dominated sorting (F1, F2, ..., Fn).

The proposed method of integration of preferences works with the set of previously cre-
ated non-dominated fronts, by classifying all the solutions in F1 and group the solutions in
classes, creating the fronts F′1, F′2, F′3, F′4 corresponding to classes HSat, Sat, Dis, HDis. In the
created fronts are joined with the remaining ones in such a way that F′ = {F′1, F′2, F′3, F′4}∪n

j=2
Fj. This process is illustrated in Figure 1 and corresponds to step 7–18 in Algorithm 1.

Figure 1. The proposed methodology for classifying the F1, grouping, and fronts reordering.

After F′1 the new population is built until the size is N. The last front is called the l-th
front. Therefore, the front l + 1 are rejected; in most situations, l is partially accepted. Only
the solutions that maximize the diversity of l-th are selected in such a case (steps 21–26).
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Algorithm 1 Generation Pt of NSGA-III-P
Input: H structured reference points Zs or supplied aspiration points Za, parent population
Pt, Cx iteration where the algorithm applies the classification, Ry solution replacement rate
Output: Pt+1

1: St ← ∅, i ← 1
2: Qt ← Recombination + Mutation(Pt)
3: Rt ← Pt ∪Qt
4: (F1, F2, ..., Fn)← Non− dominated− sort(Rt)
5: // If the rest of the current iteration between Cx equals 0, the classification applies
6: if (iteration mod Cx) == 0 then
7: (F′1, F′2, F′3, F′4)← ∅
8: for s ∈ F1 do // Classify each member of F1 and group by class
9: c ← classi f y(s)

10: if c == ”hsat” then
11: F′1 ← F′1 ∪ s
12: if c == ”sat” then
13: F′2 ← F′2 ∪ s
14: if c == ”dis” then
15: F′3 ← F′3 ∪ s
16: if c == ”hdis” then
17: F′4 ← F′4 ∪ s
18: F′ ← {F′1, F′2, F′3, F′4} ∪n

j=2 Fj // Fronts reordering
19: else
20: F′ = (F1, F2, ..., Fn)

21: while |St| ≤ N do // Last front to be included F′l ← F′i
22: St ← St ∪ F′i
23: i ← i + 1
24: if |St| == N then
25: if (iteration mod Cx) == 0 then
26: replacement(St, Ry) // Replace the last Ry random individuals
27: Return: St
28: else
29: Pt+1 ← ∪l−1

j=1Fj

30: Points to be chosen from Fl : K ← N − |Pt+1|
31: Normalize objectives & create reference set Zr ← normalize( f n, St, Zr, Zs, Za)
32: Associate each member s ∈ St with a reference point:
33: [π(s), d(s)] = associate(St, Zr)%π(s)
34: Compute niche count of reference point j ∈ Zr : pj = ∑s∈St/Fl

((π(s) = j)?1 : 0)
35: Choose K member one at a time from Fl to construct
36: Pt+1 : niching(K, pj, π, d, Zr, Fk, Pt+1)
37: if (iteration mod Cx) == 0 then
38: replacement(St, Ry) // Replace the last Ry random individuals
39: Return: Pt

The proposed algorithm has two approaches for controlling the selective pressure
generated by the incorporation of preference:

• Apply classification every certain number of iterations (step 6).
• Incorporating a replacement mechanism of Ry individuals from the population (steps

25 and 36), this criterion only applies when classification occurs.

Preference incorporation is, in a certain way, an Intensification approach. The Intensifi-
cation would be reduced by adding new random solutions and generating a diversification,
therefore balancing the search. We analyzed different activation configurations in the
experimental section to observe their impact on the algorithm’s performance.
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4. Experimental Settings

The proposed NSGA-III-P (non-nominated sorting genetic algorithm III with pref-
erences) algorithm’s experimentation was carried out to solve the DTLZ1 - DTLZ7 prob-
lem’s. The algorithm’s performance is observed to evaluate the effect of the intensification-
diversification mechanism.

All the algorithms used in this experimentation were executed 50 times for each
instance on an Intel Core i7-10510U CPU @ 1.80GHz × 8 with 16 GB of RAM. We developed
the algorithms in Java using the OpenJDK 11.0.10 64-Bit.

The DTLZ problem’s instances configuration is summarized in the Table 1. For his
solution, the algorithm has a population size n = 92 individuals, the algorithm uses the
SBX crossover operator and the polynomial mutation operator. The Table 2 shows the
configurations of these operators.

Table 1. Parameters Used for Three-Objective DTLZ Problem’s instances.

Problem Number of Variables Iterations

DTLZ1 7 400
DTLZ2 12 250
DTLZ3 12 1000
DTLZ4 12 600
DTLZ5 12 500
DTLZ6 12 500
DTLZ7 12 500

Table 2. Crossover and mutation parameters used for NSGA-III-P.

Parameter Value

Polynomial mutation probability pm
1
n

Polynomial mutation index nm 20
SBX crossover probability pc 1

SBX crossover index nc 30

We analyzed the NSGA-III-P algorithm’s versions named CxRy, where x is the percent-
age of iterations to activate the classification. In contrast, y is the percentage of replacement
of solutions. Considering the classification increase intensification, less classification re-
duces the intensification, and restart of solutions increases the diversification; these variants
are higher to lower intensification: C100R0, C1R0, C1R2, C10R0, and C0R0 (see Table 3).

Table 3. Experimental configurations carried out.

Name Description

C0R0 NSGA-III reported in the literature.
C100R0 NSGA-III-P with classification in each iteration with 0% replacement.
C10R0 NSGA-III-P with classification every 10% iterations with 0% replacement.
C1R0 NSGA-III-P with classification every 1% iterations with 0% replacement.
C1R2 NSGA-III-P with classification every 1% iterations with 2% replacement.

4.1. Creation of the ROI

Let T′ be a sample of non-dominated solutions taken from a large set T of solutions
(≥100 thousand) generated analytically at the Pareto frontier of a standard problem. The
solutions that integrate the ROI identified with the following sets and measures in T′.
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• Outranking weakness of a solution x. A low value of this measure provides positive
arguments for selecting x.

Do(x) = {y|σ(y, x) > β, σ(x, y) < 0.5, y ∈ T′{x}} (6)

• Net score measure used to identify DM preferred solutions.

Fn(x) = ∑
y∈T′

σ(x, y)− σ(y, x) (7)

where Fn(x) > Fn(y) indicates a certain preference of x over y.
• Best compromise solution set more preferred by the DM.

x∗ = {x|D(x) = 0, Fn(x) = maxy∈T′(Fn(y)), x ∈ T′} (8)

• Region of interest made up of the best compromise solutions x∗

ROI(T′) = x∗ ∪ {maxx∈T′(Fn(x) ≥ 0, K)}, (9)

where K are the largest Fn values of x.

4.2. Indicators of Performance

Each algorithm is executed 50 times to the result of a complete run of the NSGA-III-P
algorithm configurations, and applying the following indicators:

a Minimum, mean, and maximum Euclidean distance among the obtained non domi-
nated solutions and the ROI (also called Min Euclid, Mean Euclid, Max Euclid)

b Conservation of Dominance: creates a set of non-dominated solutions from the solu-
tions obtained from all configurations. Counting the solutions of each configuration.

c Conservation of Satisfaction: the non-nominated solutions belonging to the HSat and
Sat classes (classified by the INTERCLASS-nC) are counted.

4.3. Description of the Instance

The DTLZ problems instance used contains the characterization of the DM preferences
(elements 3–6). It has the following elements:

1. objectives number: integer
2. variable number: integer
3. weight vector: Interval
4. veto vector: Interval
5. lambda: Interval
6. references solutions: a vector of solutions is expected.

5. Results

Table 4 shows the reached performance for each algorithm when solving each DTLZ
problem. For space reasons, these results are only presented for two performance mea-
sures. The first two columns show the result for the original NSGA-III algorithm. The next
columns present eight variants of NSGA-III with preferences. The first six columns corre-
spond to variants without activating the solutions restarting strategy. The last two columns
correspond to variants that use restarting to reduce the effect of incorporate preferences.
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Table 4. Average algorithm performance evaluated with two measures for DTZL problems.

Problem
NSGA-III

NSGA-III-P (with Preferences)

without Restart with Restart

C0R0 C100R0 C10R0 C1R0 C1R2
%C

CHSat
Min Euc

%C
CHSat

Min Euc
%C

CHSat
Min Euc

%C
CHSat

Min Euc
%C

CHSat
Min Euc

DTLZ 1 1.9463.5 0.0074563.0 92.7691.0 0.0019123.0 1.5893.5 0.0052153.0 1.5653.5 0.0104373.0 2.1313.5 0.0118743.0

DTLZ 2 0.8433.5 0.0074593.0 97.2601.0 0.0038023.0 0.6253.5 0.0089523.0 0.6043.5 0.0141823.0 0.6683.5 0.0137543.0

DTLZ 3 8.4343.5 0.0299055.0 76.4771.0 0.0292693.0 5.5243.5 0.0670643.0 4.4813.5 0.0496075.0 5.0833.5 0.0643645.0

DTLZ 4 2.6613.5 0.0001313.0 78.9741.0 0.0000013.0 2.5673.5 0.0000013.0 11.0923.5 0.0007963.0 4.7063.5 0.0000023.0

DTLZ 5 0.3653.5 0.0018883.0 56.0651.0 0.0016353.0 0.8523.5 0.0054143.0 25.5493.5 0.0008643.0 17.1693.5 0.0008193.0

DTLZ 6 1.2593.5 0.0048933.0 52.8871.0 0.0009375.0 1.6143.5 0.0045855.0 23.7933.5 0.0015545.0 20.4463.5 0.0012133.0

DTLZ 7 12.1483.5 0.0391963.5 42.9881.0 0.0061551.0 11.0443.5 0.0391663.5 17.7443.5 0.0271633.5 16.0753.5 0.0284753.5

Average 3.95086 0.01299 71.06 0.00624 3.40214 0.01863 12.11829 0.03318 9.46829 0.01827

%C-CHSat: conservation percentage of highly satisfactory solutions; MinEuc: min Euclidean distance.

Table 5 shows the first summary of a statistical comparison of five variants of NSGA-III
using the configurations reported in Table 4. We applied the Friedman Test, followed by the
Hollman Post-hoc Test. The best and the worst algorithm are identified with the algorithms’
ranking considering two measures: the percentage of conservation of highly satisfactory
solutions (CHSat) and the minimum Euclidean distance (MinEuc).

Table 5. Best and worst algorithms resulting from their statistical comparison evaluated with
two measures.

PROBLEM
Best Variants for Worst Variants for

CHSat Min CHSat Min

DTLZ1 C100R0 C0R0 C1R0 C1R2
DTLZ2 C100R0 C100R0 C1R0 C1R2
DTLZ3 C100R0 C100R0 C1R0 C10R0
DTLZ4 C100R0 C100R0 C10R0 C1R2
DTLZ5 C100R0 C1R2 C0R0 C10R0
DTLZ6 C100R0 C1R2 C0R0 C0R0
DTLZ7 C100R0 C100R0 C10R0 C0R0

In this paper, the main measure to evaluate algorithms is related to the counting of
highly satisfactory solutions because preferences elicitation is aligned with this measure.
But considering other DM could be interested in the closeness to the ROI, the Euclidean
distance is an alternative because it is frequently used in decision-making. For a DM
interested in highly satisfactory solutions, the best variant for all DTLZ problems is C100R0.
In contrast, if the DM is interested in solutions closer to the ROI, we cannot find a unique
variant as the best; They are dependent on the problem. The C100R0 variant offers solutions
close to the ROI in four of the seven problems evaluated (DTLZ2–DTLZ4, DTLZ7); For
the DTLZ5 and DTLZ6 problems, C1R2 has a better performance. The original NSGA-III
algorithm offers solutions closer to the ROI for the DTLZ1 problem. It is noteworthy. that
C100R0 is never the worst option; the other variants are the worst at least once.

Table 6 shows the algorithms’ average performance for all DTLZ problems. After
applying statistical tests to compare algorithms (Friedman aligned and Hollman posthoc).
We identify pairwise comparisons with significant differences. Using these pairs, for each
algorithm, a set of statistically no better algorithms was obtained. Finally, the algorithms
are ranked instead of Hierarchical using the well-known Borda count to accumulate
their positioning overall instances for a given measure. The superscript corresponds
to ranking Borda.

There are significant statistical differences in 3 of the 5 metrics evaluated (CHSAT,
Mean Euclidean, Max Euclidean). For the percentage of conservation of solutions for which

170



Math. Comput. Appl. 2021, 26, 27

the DM is highly satisfied (CHSat), the best algorithm is C100R0. In contrast, the rest of
the algorithms have a similar behavior according to Borda’s ranking. The indicator of the
percentage of solutions for which the DM is satisfied (CSat) does not significantly differ.
That is expected because CHSAT gets better well-solutions.

Table 6. The average and standard deviation of the algorithms over 50 independent runs in terms of percentage of
conservation and Euclidean distance for the DTLZ family of problems.

% of Conservation Euclidean Distance

Configuration CHSat CSat Min Mean Max
C0R0 4.6592.0

0.124 4.8773.0
0.053 0.0022892.0

0.003 0.7795364.0
0.396 2.6434081.0

2.801 ↑

C100R0 62.1691.0
0.259 ↑ 6.7363.0

0.105 0.0007231.0
0.001 ↑ 0.1793971.0

0.095 ↑ 0.7246941.0
0.448 ↑

C10R0 4.2392.0
0.109 7.3552.0

0.061 0.0011572.0
0.001 0.7905134.0

0.403 1.5266002.0
0.881

C1R0 15.9512.0
0.279 38.0981.0

0.356 ↑ 0.0013373.0
0.002 0.6762942.0

0.410 1.4471902.0
0.935

C1R2 12.9812.0
0.230 42.9341.0

0.424 ↑ 0.0021352.0
0.005 0.6970333.0

0.422 1.4970782.0
0.899

Statistical test: Friedman of aligned ranks with a significance level of 0.05. The superscript indicates the position in which it was ranked by
the Borda method. The subscript indicates the standard deviation of the results. The upper arrow indicates the top-ranked algorithm.

The C100R0 configuration is the one with the greatest contribution of solutions closer
to the ROI according to the minimum Euclidean distance indicator. This indicator does
not have significant differences. For the average, significant differences were found, and
the algorithm C100R0 is the one that provides the closest solutions. The algorithms that
provide the least distant solutions are C100R0 and C0R0 based on the maximum of the
Euclidean distance.

This global analysis gives the best rank for the C100R0, meaning that it is a good
alternative for all analyzed problems. However, C1R2 produces solutions closer to the ROI
in some problems. They are extreme variants concerning intensification and diversification,
meaning that the balance between them depends on the problem; we need to conduct
extensive experimentation to confirm.

To illustrate the superiority of the proposed NSGA-III-P concerning NSGA-III,
Figures 2 and 3 shows the non-dominated solutions obtaining when solving the DTLZ3
problem. Figure 2 is for NSGA-III (C0R0) and Figure 3 is for NSGA-III-P with preferences
all time and without a restart (C100R0). The variant C100R0 performs a better exploration
of the region of interest with highly satisfactory solutions. At the same time, C0R0 scans the
entire solution space, but most solutions are highly unsatisfactory. The solutions belonging
to the ROI are illustrated in black, the solutions classified as highly satisfactory (HSat) in
green, satisfactory solutions (Sat) in blue, unsatisfactory solutions orange (Dis), and highly
unsatisfactory solutions (HDis) in red.
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Figure 2. Non-dominated NSGA-III(C0R0) solutions of the DTLZ3 problem.

Figure 3. Non-dominated NSGA-III-P(C100R0) solutions of the DTLZ3 problem.

6. Conclusions

This article presents a novel method for incorporating DM’s preferences into the
NSGA-III algorithm, named NSGA-III-P. INTERCLASS-NC is a multi-criteria and outrank-
ing ordinal classifier that allows incorporating preference, giving the algorithm the capacity
to improve the discrimination of solutions and intensify the search toward the region of
interest. Excessive intensification can diminish the algorithm’s effectiveness. To regulate
this selective pressure, we add two complementary strategies to the search in NSGA-III-P:
control the activations of the classification and control the restarts of solutions.

Experiments with different configurations of NSGA-III-P were proposed to study
different levels of intensification and diversification. NSGA-III-P solve the DTLZ test suite,
including the preferences of DM with imperfect knowledge.

Based on computational experimentation, the best alternative to the DTLZ problems is
the C100R0 (always classify without restarts) when the DM is looking for highly satisfactory
solutions. When the DM prefers solutions closer to the ROI, the variants C1R2 (classify and
sometimes restart) and C100R0 have the best performance with two and four problems,
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respectively. In general, the proposed method NSGA-III-P outperforms NSGA-III because
it allows obtaining better approximations to the ROI using the principal performance
measures; only in one case, the NSGA-III is the best option for the DTLZ1 problem using
the Max Euclidean distance.

These preliminary results open a research line to determine the extent to which the
selective pressure induced by preferences improves the algorithm performance concerning
the closeness to the ROI and the factors that affect it.

As future work, we will evaluate the proposal with a greater number of objectives for
the DTLZ problems. Also, the proposal will be integrated into at least one other algorithm
representative of the state of the art. We aim to develop a method that dynamically adjusts
the diversification and intensification levels required for each problem.
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Abstract: Many real-world optimization problems involving several conflicting objective functions
frequently appear in current scenarios and it is expected they will remain present in the future.
However, approaches combining multi-objective optimization with the incorporation of the decision
maker’s (DM’s) preferences through multi-criteria ordinal classification are still scarce. In addition,
preferences are rarely associated with a DM’s characteristics; the preference selection is arbitrary. This
paper proposes a new hybrid multi-objective optimization algorithm called P-HMCSGA (preference
hybrid multi-criteria sorting genetic algorithm) that allows the DM’s preferences to be incorporated in
the optimization process’ early phases and updated into the search process. P-HMCSGA incorporates
preferences using a multi-criteria ordinal classification to distinguish solutions as good and bad;
its parameters are determined with a preference disaggregation method. The main feature of P-
HMCSGA is the new method proposed to associate preferences with the characterization profile of a
DM and its integration with ordinal classification. This increases the selective pressure towards the
desired region of interest more in agreement with the DM’s preferences specified in realistic profiles.
The method is illustrated by solving real-size multi-objective PPPs (project portfolio problem). The
experimentation aims to answer three questions: (i) To what extent does allowing the DM to express
their preferences through a characterization profile impact the quality of the solution obtained in
the optimization? (ii) How sensible is the proposal to different profiles? (iii) How much does the
level of robustness of a profile impact the quality of final solutions (this question is related with the
knowledge level that a DM has about his/her preferences)? Concluding, the proposal fulfills several
desirable characteristics of a preferences incorporation method concerning these questions.

Keywords: decision maker profile; profile assessment; region of interest approximation; optimization
using preferences; hybrid evolutionary approach

1. Introduction

A variety of real-world problems, known as multi-objective optimization problems
(MOPs), involve optimizing many objective functions simultaneously [1]. Multi-objective
evolutionary algorithms (MOEAs) have been widely used for solving MOPs because of
their effectiveness in solving problems in many fields. Nowadays, MOPs solved with
metaheuristics like evolutionary algorithms are an important active research field [1,2].

Although the aim in Evolutionary Multi-objective Optimization (EMO) is to find a set
of solutions that evenly spread around the Pareto front of a given MOP, it is also equally
important to identify the solution to be implemented which best satisfies the preferences
of the decision-maker (DM) [3]. Selecting the most preferred Pareto solution requires
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evaluates many solutions simultaneously, demanding a high cognitive effort, especially in
problems with many objectives.

One alternative to reduce the DM’s cognitive effort is to incorporate preferences infor-
mation of the DM into a multi-objective metaheuristic to identify progressively the region
of interest (RoI), defined as the set of non-dominated solutions that the DM prefers over the
other solutions [4,5]. There is a growing interest in the solution of MOPs with preferences.

The promising variants in the decision-making process are incorporating preferences
using the a priori and interactive approaches, which have the advantage of delimiting
the search space for searching an optimal solution, avoiding unnecessary exploration of
the entire search space. Preferences integration narrows the search space in optimization
problems so that the selective pressure directs evolutionary algorithms close to a region of
interest [6]. However, the specialized literature starts from arbitrary reference sets, which
are examples of random solutions introduced as preference information into the search
process of a metaheuristic. In this work, it is proposed that these sets of references are
generated from profiles that characterize DMs preferences simpler and realistically.

So far, there is no general definition that associates the mechanisms of incorporation of
preferences with the region of interest. Each author captures preferences in different ways,
for example, using fuzzy numbers [7], reference points [4,8], weights based [9–11], solution
ranking-based [12] and outranking based models [13]. In addition, each captures prefer-
ences at different times in the search process, for example, a priori [14,15], a posteriori [16]
or interactively [8]. Those differences difficult to make a fair comparison among them. A
detailed review on types of approaches for preference incorporation can be seen in [17–19].

In our opinion, a multi-objective optimization metaheuristic proposed for solving
MOPs with preferences should satisfy these features: (1) to allow the DM to introduce a
priori preferences information with minimum cognitive effort; (2) interactivity, to allow
the DM to specify new preference information to adjust his/her preferences. This paper
proposes P-HMCSGA (preference hybrid multi-criteria sorting genetic algorithm), a new
MOEA that satisfies these requirements; preferences are specified in a preferential profile.
The proposed method holds for both multi-objective and many objective problems.

The experimentation was designed to respond to some questions related to the impact
of the proposed algorithm in the solution of a real-world problem with nine and sixteen
objectives. The results were satisfactory, particularly in the solution quality, sensibility to a
profile and robustness.

This paper is organized as follows: Section 2 formalizes the theoretical background
of the algorithm proposed. Section 3 contains the description of P-HMCSGA and its
phases. Section 4 presents the experimental results that demonstrate the performance
of our approach. Finally, Section 5 presents the conclusions and the possible areas of
opportunity in the future.

2. Theoretical Background

2.1. Public Portfolio Problem (PPP)

A project is a unique, unrepeatable and temporary process that seeks to achieve a
specific set of objectives. A set of projects that can be done in the same period of time is
called a portfolio [19]. However, organizations generally do not have sufficient resources
to support all proposed projects. In such circumstances, the difficulty is choosing the set of
projects that offer the greatest benefit.

The public project portfolio (PPP) problem is defined below [20]:
Consider a set of N projects, where the i-th project is represented by a p-dimensional

vector f (i) = 〈f 1(i), f 2(i), . . . , fp(i)〉, where each fj(i) indicates the contribution of project i
to the j-th objective. Each project has an associated cost expressed by ci. Each objective
indicates the number of people benefited who belong to a social category, who will receive
a level of benefit from the i-th project.
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A portfolio x is a subset of projects generally modeled as a binary vector x = 〈x1, x2,
. . . , xN〉, where N indicates the number of projects. In this vector, xi is a binary variable
where xi = 1 if the i-th project is supported and xi = 0 otherwise.

There is a total budget that the organization is willing to invest, which is denoted as B.
Portfolios are subject to the following budget restriction:(

N

∑
i=1

xici

)
≤ B (1)

The i-th project corresponds to an area (health, education, etc.) indicated by ai. Each
area has a budget limit defined by the DM. For each area k, a lower and upper budget limit,
Lk and Uk, respectively, is considered. Based on this, the constraint of each area k is

Lk ≤
N

∑
i=1

xigi(k)ci ≤ Uk (2)

where gi(k) is defined as

gi(k) =
{

1 i f ai = k,
0 otherwise

(3)

Each i-th project corresponds to a geographic region indicated by ri. For each region m,
a lower and upper budget limit, Lm and Um, respectively, is also considered. The restriction
by region is defined as follows

Lm ≤
N

∑
i=1

xihi(m)ci ≤ Um (4)

where hi(m) is defined as

hi(m) =

{
1 i f ri = m.
0 otherwise

(5)

The quality of the portfolio x is determined by the union of the benefits of each one of
the projects that compose it. This can be expressed as

z(x) = z1(x), z2(x), . . . , zp(x) (6)

where zj(x) is defined as

zj(x) =
N

∑
i=1

xi fj(i) (7)

If we denote by RF the region of feasible portfolios, the project portfolio problem is to
identify one or more portfolios that solve

maxx∈RF{z(x)}. (8)

To select a portfolio many conflicting attributes are considered. Due to the nature of
the problem, it has been approached by multi-criteria algorithms that generate a set of
solutions that presumably are on the Pareto frontier, which would be the set of optimal
non-dominated portfolios in PPP. The DM should choose only one portfolio from the set of
good solutions, such a decision depends on the DM’s preferences.

2.2. Multi-Objective Optimization

In Multi-objective Optimization Problems (MOP), when the objectives are in conflict
with each other, the compromise solutions are usually sought rather than a single solution.
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A MOP can be defined as a vector of decision variables
→
x = [x1, x2, . . . , xn]

T , which
optimizes (maximizes or minimizes) a vector function F(x) whose elements represent the
objective functions of problem [2], where:

F(x) = [ f1(x), f2(x), . . . , fk(x)], fi : Rn → R (9)

subject to:
gi(x) ≤ 0; i = 1, 2, . . . , m

hj(x) = 0; j = 1, 2, . . . , p

where:

n is the number of decision variables,
k is the number of objective functions,
m is the number of inequality constraints,
p is the number of equality constraints.

Therefore, the notion of optimum is different in these cases. The notion of optimum
was generalized by Pareto [21]. This notion is commonly known under the term pareto
optimality.

In multi-objective algorithms, the concept of Pareto dominance is frequently used
when comparing two solutions and determining whether one dominates the other.

One solution
→
xa is said to dominate another

→
xb if the following conditions are met (for

the minimization case):

1. The solution
→
xa is no worse than

→
xb in all objectives:

fi

(→
xa

)
≤ f j

(→
xb

)
, ∀i ∈ [1, 2, . . . ., k] (10)

2. The solution
→
xa is strictly better than

→
xb in at least one objective:

fi

(→
xa

)
< f j

(→
xb

)
, ∃i ∈ [1, 2, . . . ., k] (11)

If any of the conditions (1) or (2) are violated, the solution
→
xa does not dominate the

→
xb

solution. That is, for one solution to dominate another, it needs to be strictly better in at
least one objective and not worse in any of the rest. Within a set, a non-dominated solution
has no other solution that dominates it. When comparing two solutions

→
xa and

→
xb, there

can only be three possible solutions:

• →
xa dominates

→
xb

• →
xa is dominated by

→
xb

• →
xa and

→
xb are mutually non-dominated.

Pareto optimal set. For a given MOP, the Pareto optimal set is defined as P∗ =
{x ∈ S/�x′ ∈ S, F(x′) ≺ F(x)}.

Pareto front. For a given MOP and its Pareto optimal set P∗,the Pareto front is defined
as PF∗ = {F(x), x ∈ P∗}.

2.3. Elitist Non-Dominated Sorting Genetic Algorithm-II (NSGA-II)

Elitist Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [22] is one of the
most popular algorithms for solving multi-objective problems due to its simplicity and
effectiveness. The algorithm first generates a competitive population of individuals that is
then ordered according to the level of dominance that the individual has in the population.
This level of dominance generates different fronts, in the first front are the non-dominated
solutions. Solutions from this first front, the elite solutions, are passed on to the next
generation along with other solutions in such a way that there is diversity.
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Like any genetic algorithm, evolutionary operators (cross and mutation, among oth-
ers) are applied to it. The non-dominated solutions of the last generation will be an
approximation to the Pareto front.

2.4. Fernandez’s Preference Model

Fernandez et al. [3] assumed that there are methods for assigning a degree of truth
σ(x,y) in [0, 1] to the predicate xSy “x is at least as good as y”. Outranking methods such
as ELECTRE-III [23,24] and PROMETHEE [25] can be used for this purpose. This work
computes σ(x,y) based on ELECTRE-III and it uses the thresholds λ, β and ε to transform
the fuzzy preference relations into the crisp preference relations.

The resulting relational system of preference defines five crisp relations. This system
considers that: (1) ε < β < λ < 1; (2) the value λ > 0.5 is the outranking credibility threshold;
(3) the value β is the asymmetry parameter; and (4) the value ε is the symmetry parameter.
The formal definition of the relations are the following ones:

Strict Preference: This corresponds to the existence of clear and positive reasons that
justify significant preference in favor of one (identified) of the two actions. The statement
x is strictly preferred to y is denoted by xPy and exists if at least one of the following
conditions holds.

(1) x dominates y
(2) σ(x,y) ≥ λ ∧ σ(y,x) < 0.5
(3) σ(x,y) ≥ λ ∧ [0.5 ≤ σ (y,x) < λ] ∧ [σ(x,y) − σ(y,x)] ≥ β

Indifference: This corresponds to the existence of clear and positive reasons that justify
equivalence between the two actions. The statement x is indifferent to y is denoted by xIy
and it occurs if all the following conditions are met:

(1) σ(x,y) ≥ λ ∧ σ(y,x) ≥ λ
(2) |σ(x,y) − σ(y,x)| < ε

Weak Preference: This arises when indifference and strict preference cannot be distin-
guished appropriately. The statement x is weakly preferred to y is denoted by xQy and it
occurs if all the following conditions are satisfied.

(1) σ(x,y) ≥ λ ∧ σ(x,y) > σ(y,x)
(2) ¬ xPy
(3) ¬ xIy

Incomparability: This corresponds to a high heterogeneity among alternatives causing
that none of the preceding situations predominates. The statement x is incomparable to y is
denoted by xRy and it must satisfy the following condition:

(1) σ(x,y) < 0.5 ∧ σ(y,x) < 0.5.

K-preference: This arises when strict preference and incomparability cannot be distin-
guished appropriately. The statement x is k-preferred to y is denoted by xKy and it exists if
the following conditions are satisfied:

1. 0.5 ≤ σ (x,y) < λ
2. σ (y,x) < 0.5
3. (σ(x,y) − σ(y,x)) > β/2

Fernandez et al. [3] used the above relations over a feasible set of solutions O of an
optimization problem to define the best compromise according to the DM’s preferences.
The elements to determine the model include the following ones:

• The non-strictly outranked frontier NS = {x ∈ O|card (SO)x = 0}, where x ∈ O is a
feasible solution and (SO)x = {y ∈ O|yPx} is the set of solutions y that are strictly
preferred to x, i.e., the non-strictly outranked solutions;

• The non-weakly outranked frontier NW = {x ∈ O|card (WO)x = 0}, where x ∈ O is a
feasible solution and (WO)x= {y ∈ NS|yQx ∨ yKx} is the set of non-strict outranked
solutions y that have a weak preference or k-preference with x; and,
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• The net-flow-score outranked frontier NF = {x ∈ O|card (FO)x = 0}, where x ∈ O is
a feasible solution and (FO)x = card {y ∈ NS|Fn(y) > Fn(x)} is the set of non-strict
outranked solution with larger net flow score than x. The net flow score Fn(x) = ∑ y

∈ NS−{x} [σ(x,y) − σ(y,x)] is a popular measure in the literature and in this work offers
a further ranking on the solution inside the non-strictly outranked frontier.

Hence, based on the previous sets, the best compromise for the DM is any solution to
the optimization problem defined in Equation (12), with a preemptive priority favoring
card(SO).

minx∈O{〈|S(O, x)|, |W(O, x)|, |F(O, x)|〉} (12)

In summary, the preferences model is the relational system of preferences previously
presented. Based on it, the best compromise is any solution in the Pareto frontier of the
optimization problem shown in Equation (12).

2.5. Preference-Disaggregation Analysis (PDA)

The parameters of an outranking model (weights and thresholds, etc.) must be
elicited, such as the preference model used in the present work. Direct procedures that ask
a DM for proper values to be assign are commonly used; however, in such approaches,
the DMs reveal difficulties when they are asked to assign values to parameters whose
meanings are not understood for them [26]. On the other hand, indirect procedures,
which compose the so-called preference-disaggregation analysis (PDA), use regression-like
methods for inferring a set of parameters from a battery of decision examples [27]. In [28],
a new optimization model for PDA is solved with the NSGA-II algorithm. According to
Greco et al. in [29], MCDA approaches based on disaggregation paradigms are of interest
because their simplicity and the reduced cognitive effort required from the DM. The use
of an ordinal classification on the examples is an easy way for a DM to provides his/her
preferences.

2.6. THESEUS

Fernandez proposed in [30] the THESEUS approach that is based on transforming
the sorting problem into a particular case of the selection problem. THESEUS assigns
new objects to the categories already defined in the set of references, comparing the
object with the inconsistencies of the possible assignment and the information of various
preference relations that can be strict, weak or indifferent; these are derived from a fuzzy
outranking relation, described in Section 2.4. The category assignment is the consequence
of comparisons with other objects whose categories are known.

The THESEUS method is based on the following premises:

1. there is a set of ordered categories Ct = {C1, . . . , CM}, (M ≥ 2), where CM is the
preferred category;

2. there is a universe U of objects x which are characterized by a set of N criteria denoted
by G = {g1, g2, . . . , gj, . . . , gN}, where N ≥ 3;

3. there is a set of reference objects T (also called reference set or training set), which is
formed by objects bkh ∈U which are assigned to a category Ck, (k = 1, . . . , M);

4. there is an outranking relation σ(x,y) defined in U × U which models the degree of
credibility of the statement “x is at least as good as y” from the DM’s perspective.

The Hybrid Multi-Criteria Sorting Genetic Algorithm (H-MCSGA) algorithm pre-
sented in [14] uses the THESEUS method to assign solutions to two ordered categories
(satisfactory and unsatisfactory). THESEUS is combined with the non-dominated sorting
of an evolutionary algorithm to increase the selective pressure towards the RoI.

3. Description of P-HMCSGA

P-HMCSGA is an algorithm designed to solve MOPs, which allows the DM to specify
his/her preferences by a realistic profile. Fernandez and Navarro [30] propose an outranking
preference model that supports incorporating these preferences, which are regularly obtained
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by assignment examples. In outranking models, approaches like preference-disaggregation
analysis [31,32] reflect preferences into these models’ parameters. In this paper, the terms direct
and indirect concern the way to determine the outranking model parameters.

P-HMCSGA consists of three phases to perform the multi-objective optimization
process. In the first phase, the DM specifies preferences in a profile that characterized
her/his, which permits categorize the solutions as good and bad. The second phase
transforms the categorized solutions into preference model parameters. Both phases
correspond, respectively, with the indirect and direct elicitation of preferences mentioned
in [33,34]. Finally, the third phase incorporates preferences in the solution process as
the parameters of the preference model, supporting a multi-criteria classifier. Figure 1
illustrates these steps and the next sections explain each one.

Figure 1. Phases of incorporating preferences in the optimization process.

The profiles are proposed to characterize a DM’s preferences expressed in understand-
able terms, avoiding the cognitive effort involved in selecting, from a solutions sample, the
ones as close as possible to his/her preferences. This difficulty increases with the number
of objectives.

An example of this characterization would be the profile of a DM who wishes to favor
portfolios in which the number of supported projects is maximized. Another DM could be
more interested in reducing the consumption of the available budget.

Depending on the selected profile, through profile generators, reference sets are
formed to use in different parts of the optimization process. In this algorithm, the following
generators are proposed.

• Profile-generator-α: Here, a reference set is formed with solutions selected according
to the specified preference profile. It appears in phase 1 (indirect preference obtaining).

• Profile-generator-β: Here, a reference set is formed from solutions with implicit
preferences that are inferred using the PDA strategy [35]. It appears in phase 3 (direct
obtaining of preferences).

3.1. Phase 1: Indirect Preference Elicitation

In this phase, we start from the idea of presenting solutions to a decision-maker; these
solutions can be obtained through a solution generator, a repository, etc. Commonly, it is
intended that from these solutions, the DM selects those that are representative for him to
be part of the good category and others to consider them in the category of bad solutions.
Instead, to reduce the DM’s cognitive load, the generator-α method in Figure 2 allows
the DM to provide a simple preference profile to emulates him/her in the reference set’s
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construction through this profile. This is a set of classified solutions that serve as training,
reflecting the DM’s preferences in a categorized way. Similarly, only two categories are
considered at this time: good and bad solutions.

Figure 2. Profile-generator-α: the profiling method to imitate a decision maker in categorizing solutions.

Step 1. In this first part of the optimization process, the optimization instance is intro-
duced to a solution generator without preferential support to generate feasible solutions.

Step 2. The DM selects a profile and, together with the generated solutions, is the
input of a categorizer, which separates the good and bad solutions according to the
preference profile.

Step 3. For the categorizer, the input is a set of solutions and the selected profile-α.
Depending on the profile, the selection of solutions could require additional information.
In this step, a coincidence count is made for each solution according to the α profile and,
once the coincidence count has been complete, descending ordering is made according to
this count’s value.

Step 4. The n solutions with the greatest coincidence are selected to form the category
of good solutions. In the same way, the n solutions with the lowest coincidences form the
category of bad solutions.

Step 5. These two sets form the reference set or categorized examples to use in the
next phase.

3.2. Phase 2: Direct Preference Elicitation

For the DM, it is easier to indicate their preferences in profiles (converted a posteriori
in categorized solutions) than to perform it directly by assigning weights to objectives,
establishing acceptance ranges for each criterion, or giving preferential model parameters.
For the Phase 2, the use of a PDA method [31] is proposed to transform the categorized
preference information into parameters of a preferential model [30] that is part of the search
process; this phase is shown in Figure 3.

Figure 3. Instance generation process for PDA.
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Step 1. For this Phase 2, an instance generator method was developed so that PDA
transforms the DM’s preferences into parameters of a preferential model. This generator
receives as the first input the categorized examples obtained in Phase 1.

Step 2. The second input for the instance generator is the parameter ranges. The
estimator of the feasibility region method obtains these approximate reference parameters
from the initial optimization instance’s objectives. These values are adjusted according to
the set of references (categorized examples) also introduced to PDA.

Step 3. Once the approximate reference parameters have been calculated, they are
joined with the set of references obtained in Phase 1 to generate an input instance for
the PDA.

Step 4. In the PDA procedure, the preferences, expressed in categorized examples, are
transformed into preferential model parameters. At the end of Phase 2, a set of preferential
model parameters are obtained for its incorporation into the search process of Phase 3.

3.3. Phase 3: Incorporation of Preferences in the Solution Process

Initially, in Phase 1, the preferences are introduced as a profile and converted to
a reference set. After, in Phase 2, they are reflected in preference model parameters.
Figure 4 shows the process of Phase 3, in which the preferences are incorporated in the
optimization process.

Figure 4. Phase 3: Incorporation of preferences in the solution process.

Step 1. Once the parameters for the preferential model have been generated using
PDA, the optimization instance incorporating these parameters is generated so that the
preferences are included in the search process.

Step 2. With the instance with preferences, an initial search is conducted with a
strategy that approximates the region of interest. For this, an alternatives generator with
preferences method, like Non-Outranked Ant Colony Optimization (NO-ACO) proposed
in [36] and modified in [14], finds a sample of satisfactory and unsatisfactory solutions,
considering net flow, strict-preference and Pareto dominance (see Section 2). In [37], the
NO-ACO algorithm uses the three objective Equation (11) as a subrogate model to solve
PPP instances.

Step 3. The obtained solutions sample is introduced to the profile-generator-β to form
a reference set, considering that the solutions satisfy the DM requested profile and his/her
tolerance. The reference set includes good solutions from the satisfactory set and bad
solutions from the unsatisfactory ones.

Step 4. After this, the parameterized optimization instance and the reference set
obtained with the profile-generator-β are introduced to the H-MCSGA optimizer [14],
which uses outranking classification to adds more solutions discrimination capability to

183



Math. Comput. Appl. 2021, 26, 28

the sorting process of NSGA-II. Based on the preference model, this strategy makes a better
approximation towards the DM’s region of interest.

Step 5. The architecture of the proposed algorithm facilitates the interactive incorpora-
tion of preferences to allow the DM to refine them. Every certain number of iterations, the
DM can give feedback with a sample of the best solutions obtained for the profile specified,
with the possibility of choosing the ones most preferred. This set of solutions can enrich
the initial reference set to direct the search more intensively toward the refined region of
interest. The evaluation of interactive preference incorporation remains as future work.

Figure 5 shows the proposed P-HMCSGA, in which the intervention of the three
phases that have been previously exposed can be observed.

Figure 5. The Preference Hybrid Multi-Criteria Sorting Genetic Algorithm (P-HMCSGA) for incorpo-
rating preferences in optimizers.

4. Experimental Design and Results

This section describes the experimental process that evaluates P-HMCSGA. The pro-
cess analyzes the algorithm in two experiments. The first experiment analyzes the effect of
the profile of a decision maker in the search process. The second experiment studies the
error variability of initial reference solutions and their impact on final solutions.

The experimental design tested the approach, in each experiment, on three different
profiles, one configuration for the involved algorithms and six instances of the project
portfolio problem (PPP). The performance of P-HMCSGA was measured using five dif-
ferent indicators that reflect how well it approximates the Pareto front with and without
preferences and how well it adjusts the portfolios to the specified profiles.

A summary of the steps followed during the experiment are depicted in Figure 6. The
remainder of the section details the elements utilized and the results obtained.

Figure 6. General experimental design with P-HMCSGA.

184



Math. Comput. Appl. 2021, 26, 28

4.1. DM Profiles

A profile refers to the method used by a DM to make a decision. The evaluation of
P-HMCSGA uses the following three preferential profiles:

Established projects: A predefined projects set in the portfolio is considered to be
formed and they are defined according to the DM’s preferences; one possible reason for
this profile is that these projects have been beneficial in the past.

Preference in the area and/or region: For the DMs, a portfolio has more preference
with a higher number of supported projects on a pre-specified area or region.

Cardinality: The DM favors portfolios that maximize the number of supported projects.

4.2. Algorithm Configuration

Table 1 shows the algorithms and their parameters’ values used for each process
involved in the P-HMCSGA. The process is shown in Column 1. Column 2 indicates
which strategy was used in each process. Columns 3 to show the configuration of the
parameters’ values used in each strategy. The used genetic operators were the same as
reported in [8,10,17] for each approach.

Table 1. Algorithms used in the proposed P-HMCSGA.

Process Algorithm Iterations Crossover Mutation Executions

Generation of alternatives without preferences A2-NSGA-III [38] 100 1 0.01 30
PDA NSGA-II [22,28] 1000 0.9 1/(5 ∗ N) 2

Generation of alternatives based on preferences NO-ACO [37] 10 30
Optimizer H-MCSGA [17] 500 1 0.05 30

4.3. Instances of the Project Portfolio Problem

The instances of the PPP proposed in [39] served as a benchmark for the evaluation
of P-HMCSGA. Table 2 summarizes the details about the instances. The medium-scale
instances have nine objectives and the large-scale instances has 16 objectives.

Table 2. Description of the instances used in the experimentation.

Instance
Description

Objectives Projects

1 9 100
2 9 100
3 9 100
4 9 150
5 9 150
6 16 500

4.4. Quality Indicators to Evaluate Solutions

This work uses five different indicators to evaluate the performance of the proposed
P-HMCSGA algorithm. These metrics are detailed in the remainder of this section.

Indicator NDA measures the non-dominance proportion achieved over an approxi-
mated Pareto front (PF) A. Equation (13) computes this indicator as to the quotient of the
size of the set of non-dominated solutions F0 produced by P-HMCSGA and the size of
set A.

NDA =
|F0|
|A| × 100 (13)

Indicator PSOA measures the proportion between non-strictly outranked solutions
(i.e., solutions that are hard to distinguish by preference according to a specific DM (see
Section 2) and an approximated PF A. Equation (14) computes this indicator as the quo-
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tient of the size of the approximated non-strict-outranked frontier FNSO produced by
P-HMCSGA and the size of the set A.

PSOA =
|FNSO|
|A| × 100 (14)

Indicator PC measures the percentage of maximum cardinality achieved by the so-
lutions reported by P-HMCSGA. Equation (15) computes it as the quotient between the
number of supported projects in a portfolio, sp, and the estimated maximum projects that
could ever be supported, ems.

PC =
sp

ems
× 100 (15)

Indicator PES (previously established projects) measures the proportion of the DM’s
previously established projects that are found in a portfolio generated by P-HMCSGA.
Equation (16) computed as the quotient between ep, i.e., the number of projects in a
portfolio that are wanted by the DM, and EP (established projects), the maximum number
of wanted projects.

PES =
ep
EP
× 100 (16)

Finally, indicator PAR (project in area/region) is the proportion of supported projects
that goes in agreement with the area/region desired in the portfolio and established by
the DM. Equation (17) measures this proportion as the quotient between EAR, the number
of projects in the portfolio constructed by P-HMCSGA that satisfied the area and region
conditions of the DM and q, the number of projects in the instance that satisfy the area and
region conditions established by the DM.

PAR =
EAR

q
× 100 (17)

The NDA and PSOA are referred to as general quality indicators because they measure
the quality of a strategy based on their closeness to the PF or the RoI, the general metric
evaluations for multi-criteria algorithms. The indicators PC, PES and PAR are indicators of
specific quality because they measure how well the portfolios constructed have respected
the preferences established by a particular preference profile.

4.5. Experiment 1: Effect of the Profile of a Decision Maker in the Search Process

This experiment was carried out based on the idea that if the solutions are presented to
two decision makers with different profiles, these may be good for one decision maker and
they may not be good for another, or perhaps only some. An example is shown in Figure 7,
where, for a DM that seeks to maximize the number of projects included in the portfolio,
both solutions satisfy that requirement, but if these same solutions are presented to a DM
whose profile establishes that project number 3 must be supported, the first solution is
definitely not acceptable because it does not include this.

Figure 7. Solutions evaluated in different profiles.

186



Math. Comput. Appl. 2021, 26, 28

From the above, an experiment was designed, the process of which is shown in Figure 8.
There, it illustrates that P-HMCSGA solves each instance using each of the n profiles (the
configurations of the approaches are according to those defined in Section 4.2). With the
results, a matrix of size n × n is formed. The set of solutions produced using each profile i
is compared against the other profiles j in order to estimate how well the satisfaction of a
profile i by P-HMCSGA behaves in comparison with other profiles j not considered at the
moment. Hence, a cell (i,j) contains the number of portfolios that satisfies profiles i and j.
Appendices A and B show the complete set of results derived from experimenting with the
considered set of instances; the remainder of the sections presents a summary based on
selected cases.

Figure 8. Evaluation of the profile according to the profile criteria.

Table 3 shows the different DM profiles considered in the experiment for all the
instances. Each profile defines two values: the expected value, which is the desired
amount of elements required to satisfy a DM completely, and the minimum accepted,
which is the minimum number of elements necessary to consider a solution as satisfactory.
The maximum found shows the best match obtained from a portfolio constructed by
P-HMCSGA.

Table 3. DM’s profile characterization and maximum found values.

Profile Expected Minimum Accepted Maximum Found

Cardinality 41 38 40
Established projects 15 11 11

Area-Region 22 16 21

Table 4 shows the matrix obtained for the concentration of the results of the evaluations
in the profiles. The row leads the profile used by P-HMCSGA to approximate the RoI. The
column shows how the best value obtained by fixing the profile behaves in other profiles.
The value in parenthesis indicates the best value in the compared profile; the value outside
is the number of solutions that obtained that value.

Table 4. Matrix of results of satisfactory solutions evaluated in other preferential profiles using
instance o9p100_1.

Parameter Setting
Evaluation in the Profile

Cardinality Established Projects Area-Region

Cardinality 91 (40) 8 (10) 4 (17)
Established projects 8 (38) 2 (11), 12 (10) 2 (15)

Area-Region 3 (40) 16 (10) 1 (21)

The results from Table 4 show that the highest number of solutions coincide with the
main diagonal; this demonstrates that the use of profiles in the search process of P-HMCSGA
indeed pursues the construction of portfolios that satisfy such preference conditions.
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Table 5 shows the results from the measurements established by the indicators defined
in Section 4.4. Again, the highest scores are in the main diagonal and are achieved when
the indicator matches the profile used during the search process. These results corrob-
orate the fact that the use of profiles favors the construction of solutions that satisfy a
DM’s preferences.

Table 5. Specific quality indicators for each profile as established by the DM using instance o9p100_1.

Indicator
Evaluation in the Profile

Cardinality Established Projects Area-Region

PC 97.56% 66.66% 77.27%
PES 92.68% 73.33% 68.18%
PAR 97.56% 66.66% 95.45%

Figure 9 illustrates the process used to identify the approximate Pareto front and non-
strict outranked sets from P-HMCSGA on each profile. There, all the solutions considered
satisfactory for each profile were concentrated in bags of satisfactory solutions, sets of
non-repeated solutions that satisfy non-dominance or non-strictly outrank conditions.

Figure 9. Obtaining bags of satisfactory solutions for each profile evaluated.

Table 6 summarizes the measurements on the ND and NSO indicators obtained from
the cardinality profile. Using P-HMCSGA to approximate the PF and the RoI on instance
o9p100_1, under the cardinality profile, the set A of reported portfolios was of size 99.
The numbers of portfolios that satisfy the cardinality, established projects and area-region
profiles are shown in row one and columns 3, 5 and 7, respectively.

Table 6. Dominance and strictly-outranked in cardinality profile using instance o9p100_1.

Bag
Cardinality Established Projects Area-Region

#Solutions Percentage #Solutions Percentage #Solutions Percentage
#Solutions 99 91 8 3

ND 90 82 90.11 8 100 3 100
NSO 90 90 98.90 0 0 0 0

The proportion of non-dominated solutions on each profile is shown in row 2 and
columns 4, 6 and 8. The proportion of non-strictly outranked solution on each profile is
shown in row 3 and columns 4, 6 and 8. The results show that if we use cardinality in
the profile, the best measures for indicators ND and NSO are obtained when comparing
against the same cardinality.
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Table 7 summarizes the measurements on the ND and NSO indicators obtained from
the established projects profile. Using P-HMCSGA to approximate the PF and the RoI on
instance o9p100_1, under the established projects profile, the set A of reported portfolios
was of size 38. The numbers of portfolios that satisfy the cardinality, established projects
and area-region profiles are shown in row one and columns 3, 5 and 7, respectively. The
proportion of non-dominated solutions on each profile is shown in row 2 and columns 4, 6
and 8. The proportion of non-strictly outranked solution on each profile is shown in row 3
and columns 4, 6 and 8. The results show that if we use established projects in the profile,
the best measures for indicators ND and NSO are obtained when comparing against the
same established projects.

Table 7. Dominance and strictly-outranked in established profile.

Bag
Cardinality Established Projects Area-Region

#Solutions Percentage #Solutions Percentage #Solutions Percentage
#Solutions 38 8 14 16

ND 37 8 100 14 100 15 93.75
NSO 37 8 100 14 100 15 93.75

Table 8 summarizes the measurements on the ND and NSO indicators obtained from
the area-region profile. Using P-HMCSGA to approximate the PF and the RoI on instance
o9p100_1, under the area-region profile, the set A of reported portfolios was of size 56.
The numbers of portfolios that satisfy the cardinality, established projects and area-region
profiles are shown in row one and columns 3, 5 and 7, respectively. The proportion
of non-dominated solutions on each profile is shown in row 2 and columns 4, 6 and 8.
The proportion of non-strictly outranked solution on each profile is shown in row 3 and
columns 4, 6 and 8. The results show that if we use established projects in the profile, the
best measures for indicators ND and NSO are obtained when comparing against the same
area-region.

Table 8. Dominance and strictly-outranked in area-region profile.

Bag
Cardinality Established Projects Area-Region

#Solutions Percentage #Solutions Percentage #Solutions Percentage
#Solutions 56 4 2 50

ND 50 4 100 2 100 44 88
NSO 50 4 100 2 100 44 88

Tables 6–8 show that the percentage of solutions remaining satisfactory (non-dominated
and non-strictly outranked) is very high in the solutions obtained from the parameter con-
figuration corresponding to the specified profile. When the search was not configurated
according to the interesting profile, it obtains few solutions (which were not repeated).
Both complementary results show that the search direction depends on the preference
profile established by the DM. The solutions obtained from the configuration of specific
parameters for the profile are good in dominance and outranking. Besides, using these
parameters, it is possible to find a greater number of satisfactory solutions for the profile.

4.6. Experiment 2: Error Variability of Initial Reference Solutions and Its Impact on
Final Solutions

The objective of this experiment is to analyze how the quality of an initial reference
set affects the performance of P-HMCSGA. For this purpose, the implementation of the
algorithm considers the use of two types of reference sets. The low-quality reference set
(denoted “Low”) has solutions around the minimum value in a profile that is considered
satisfactory for a DM. The high-quality reference set (denoted “Good”) has solutions close
to the maximum value possible of satisfaction for the chosen profile. The experiment
compares the final set of solutions produced by P-HMCSGA using each of the reference
sets in terms of the level of satisfaction of the profile and the number of solutions produced.
The results show that using a robust reference set formed by solutions of high quality
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improves the performance of P-HMCSGA and allows it to find solutions that better satisfy
the preferential profile.

For this experiment, the configuration of P-HMCSGA was in accordance with the
values in Table 1, except for the number of executions of the generation of alternatives
without preferences that were set to 1 for simplicity. The instance considered for the
experiment was o9p100_1. The profile used was established projects and it fixes 15 projects
as the desire by the DM (expected column in Table 9); Also, in addition, it considers as
satisfactory any solution having a subset of at least 11 of such projects (minimum accepted
column in Table 9). The low-quality reference has 20 portfolios or solutions; from them, two
contain 12 of the desired 15 projects and the remaining ones contain only 11 projects. The
high-quality reference set (or robust reference set) also has 20 portfolios; however, three of
them have all the desired projects and 17 of them have 14. Table 9 also shows the maximum
number of desired projects that could be found in a solution constructed by P-HMCSGA in
the experiment; those solutions could only be found using a reference set of high quality.

Table 9. Values that satisfy the DM with the established projects profile on instance o9p100_1.

Expected Minimum Accepted Maximum Found

Established projects 15 11 14

Table 10 shows the results of this experiment. In row 1, the column “Maximum in RS”
shows the composition of the reference sets Low and Good; the column “Finals” shows
the composition of the satisfactory solutions found by P-HMCSGA. In both columns, the
notation X(Y) indicates that there are X solutions having Y desire projects from the 15
considered in the profile. In row 2, the best value achieved according to the PES indicator
is shown, considering the composition of the portfolios reported and 15 as the maximum
number of desired projects, EP. It is important to note the contrast of the solutions obtained
using reference sets with different qualities. The significant variations in the quality of
solutions obtained are evident, favoring the results of the robust reference set; this situation
is due to the fact that there are far more solutions with a greater number of desired projects
involved in the portfolios and also because those solutions present the highest value in
PES, indicating that they are closer to the DM’s profile than the others.

Table 10. Error variability of initial reference solutions and its impact on final solutions.

Quality of Reference Set

Profile
Low Good

Maximum in RS Finals Maximum in RS Finals

Established projects 2 (12), 18 (11) 6 (13), 1 (12), 3 (11) 3 (15), 17 (14) 14 (14), 206 (13), 686 (12)
PES 80% 86.6% 100% 93%

Finally, Table 11 shows the summary of the dominance comparison of the solutions
found using the different referent sets. In the case of the final solutions obtained using the
low-quality reference set, of the six of the acceptable solutions according to the preference
profile, five remained non-dominated. On the other hand, the use of the high-quality
reference set presents a larger number of non-dominated solutions (97.73% of all those
reported) all also being satisfactory to the DM.
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Table 11. Dominance comparison of solutions with good quality RS and low quality RS.

Low Quality RS Good Quality RS

#Solutions Percentage #Solutions Percentage

#Solutions 226 6 220
ND 220 5 83.33% 215 97.73%

5. Conclusions

We present P-HMCSGA, a hybrid evolutionary algorithm for solving multi-objective
optimization problems. The algorithm incorporates the DM’s preferences to guide the
search towards the region of interest that the DM desires the algorithm to approach. The
DM gives a preferential profile containing their preferences expressed in understandable
terms, which demand less cognitive effort than when he/she selects solutions from a
generated sample, which is a common way to elicit preferences. P-HMCSGA reflects
this preference profile in the outranking relational parameters of an ordinal multi-criteria
ordinal classification method. These strategies add more solutions discriminationcapability
to the well-known non-dominated sorting process incorporated in P-HMCSGA, achieving
a better approximation towards the DM’s region of interest.

The proposed algorithm satisfies some desirable features of a preferences incorpo-
ration method: (a) the DM interacts easily with the solutions sample generator method,
decreasing the cognitive effort from the DM when the DM gives a simple preferential
profile to automatically separate solutions as “good” and “bad” and to the forms reference
set for a classifier method; (b) the multi-criteria preferences outranking model is compatible
with relevant characteristics of real DMs expressed in preference profiles and preferences
are rarely associated with realistic DM’s characteristics; (c) it is possible to estimate the
preference model parameters from the profile provided by the DM during the interactive
process; (d) to a certain extent, the profile generator and the ordinal classification replace
the DM during the optimization process, bringing valuable aid to the DM, especially in the
presence of a high number of objectives.

Our algorithm obtains, as output, a set of non-dominated solutions which belong to the
DM best class. The experiments were carried out to solve a project portfolio optimization
problem with instances of nine and sixteen objectives. From these experiments, we can
observe that P-HMCSGA has performed as expected and make the following conclusions:

(i) Allowing the DM to express their preferences through a DM characterization profile
positively impacts the quality of the solution obtained in the optimization; a rea-
sonable number of the solutions found correspond with the specified profile, being
non-dominated and satisfactory for the DM.

(ii) The proposed algorithm is sensible is to different profiles. Our algorithm obtains
the greatest number of satisfactory solutions when the preference model parameters
correspond to the desired profile. This result confirms that the search direction
depends on the preferences profile established by the DM.

(iii) The level of robustness of a profile impacts the quality of final solutions. The result
shows that using a robust reference set allows one to find better solutions, satisfying
the preferential profile. Therefore, the interactive intervention of the DM is necessary
to enrich the reference set, learn from their preferences and learn about the problem
itself. Our results were obtained with a single run of the preference elicitation step;
we hope that even better results can be obtained through several preference elicitation
executions.

The P-HMCSGA running time only doubles the time spent by the slower inner strategy.
The latter can be observed from the results when analyzing instances with nine and 16
objectives, separately. In nine objective instances, A2-NSGA-III was the most time-consuming
strategy, requiring at least four times the amount of time of any other. In sixteen objective
strategies, NO-ACO was the slowest and needed at least five times longer than any other.
Hence, the accumulated consumed time would be, at most, twice the slower strategy.
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We have not included a comparison with other algorithms because our preference
representation requires conversion methods to make a fair and comparable evaluation.
Another possible analysis is to implement our preference incorporation method into several
state-of-the-art multi-objective optimization metaheuristics to determine the advantages
and limits of our proposal. However, this is beyond the scope of this paper.

Future work is proposed to verify the algorithm’s interactive capacity, which can
enrich the initial reference set with new solutions to intensity the search toward the region
of interest. In addition to interactivity, a DM might be interested in specifying their profile
with more than one preference. For example, in the project portfolio problem, a DM has
particular ideal preferences on portfolios with a small number of projects and their cost
is at a most certain quantity. Some voting strategies could be useful to deal with profiles
that include several preferences. Pareto Explorer is a recent tool that incorporates user’s
preferences, articulated either in decision variables, objectives, weight space, or toward
knee solutions, in the computation of the “ideal” solution of a given MaOP is the Pareto
Explorer [40].
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The following abbreviations are used in this manuscript:
DM Decision Maker
H-MCSGA Hybrid Multi-Criteria Sorting Genetic Algorithm
ND Non dominated
NO-ACO Non-Outranked Ant Colony Optimization
NSO Non-strictly-outranked
PDA Preference Disaggregation Analysis
P-HMCSGA Preference Hybrid Multi-Criteria Sorting Genetic Algorithm
PPP Project Portfolio Problem
RoI Region of Interest
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Appendix A

Tables A1–A7 show matrix of results of satisfactory solutions evaluated in other
preferential profiles for instances o9p100_1, o9p100_2, o9p100_3, o9p150_1, o9p150_2 and
o16p500_1.
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Table A1. Matrix of results of satisfactory solutions evaluated in other preferential profiles. Instance
o9p100_1.

Parameter Setting
Evaluation in the Profile

Cardinality Established Projects Area-Region

Cardinality 91 (40) 8 (10) 4 (17)
Established projects 8 (38) 2 (11), 12 (10) 2 (15)

Area-Region 3 (40) 16 (10) 1 (20)

Table A2. Matrix of results of satisfactory solutions evaluated in other preferential profiles. Instance
o9p100_2.

Parameter Setting
Evaluation in the Profile

Cardinality Established Projects Area-Region

Cardinality 92 (40) 4 (10) 2 (18)
Established projects 1 (40) 1 (13), 21 (12) 1 (20), 5(19)

Area-Region 1 (39) 1 (10) 1(21),1(20)

Table A3. Matrix of results of satisfactory solutions evaluated in other preferential profiles. Instance
o9p100_3.

Parameter Setting
Evaluation in the Profile

Cardinality Established Projects Area-Region

Cardinality 516 (40) 33(15) 5 (20)
Established projects 2(41), 67 (40) 77(15) 6(19)

Area-Region 6 (40) 6(15) 8(20)

Table A4. Matrix of results of satisfactory solutions evaluated in other preferential profiles. Instance
o9p150_1.

Parameter Setting
Evaluation in the Profile

Cardinality Established Projects Area-Region

Cardinality 55 (77) 10(13) 7 (28)
Established projects 1 (76) 5(14), 10 (13) 3 (25)

Area-Region 44 (75) 4 (13) 3(34), 1(33),2(32),
12(31), 24 (30)

Table A5. Matrix of results of satisfactory solutions evaluated in other preferential profiles. Instance
o9p150_2.

Parameter Setting
Evaluation in the Profile

Cardinality Established Projects Area-Region

Cardinality 314 (77) 32 (15) 5 (32)
Established projects 22 (77) 136 (15) 2 (32), 13(31)

Area-Region 179 (77) 0 (15), 32 (11) 1(34), 5(33),35(32)

Table A6. Matrix of results of satisfactory solutions evaluated in other preferential profiles. Instance
o16p500_1.

Parameter Setting
Evaluation in the Profile

Cardinality Established Projects Area-Region

Cardinality 197 (161) 4(15) 2 (61)
Established projects 11 (161) 3 (16), 10 (15) 1 (58), 4 (57)

Area-Region 3 (149) 2 (13) 2 (67), 5(66)
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Appendix B

Table A7 shows the average running time for each instance that was part of the
experimentation, expressed in seconds; the time in each algorithm that participates in
P-HMCSGA is detailed. The average times shown occurred during the execution of P-
HMCSGA with the settings indicated in Table 1. The strongest part is in PDA, used to
discover the preferential parameters that will guide the search going forward.

Table A7. Average running time in all the process.

Average Running Time

Instance A2-NSGAIII PDA NO-ACO H-MCSGA

9o100p_1 29.665 30.982 0.489 13.551
9o100p_2 29.995 37.185 0.617 17.01
9o100p_3 37.42 61.285 0.491 27.919
9o150p_1 34.003 40.645 0.82 19.447
9o150p_2 36.046 40.518 0.761 32.966

16o500p_1 49.268 52.924 27.802 32.299
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Abstract: The COVID-19 disease constitutes a global health contingency. This disease has left millions
people infected, and its spread has dramatically increased. This study proposes a new method based
on a Convolutional Neural Network (CNN) and temporal Component Transformation (CT) called
CNN–CT. This method is applied to confirmed cases of COVID-19 in the United States, Mexico,
Brazil, and Colombia. The CT changes daily predictions and observations to weekly components
and vice versa. In addition, CNN–CT adjusts the predictions made by CNN using AutoRegressive
Integrated Moving Average (ARIMA) and Exponential Smoothing (ES) methods. This combination
of strategies provides better predictions than most of the individual methods by themselves. In this
paper, we present the mathematical formulation for this strategy. Our experiments encompass the
fine-tuning of the parameters of the algorithms. We compared the best hybrid methods obtained with
CNN–CT versus the individual CNN, Long Short-Term Memory (LSTM), ARIMA, and ES methods.
Our results show that our hybrid method surpasses the performance of LSTM, and that it consistently
achieves competitive results in terms of the MAPE metric, as opposed to the individual CNN and
ARIMA methods, whose performance varies largely for different scenarios.

Keywords: forecasting; Convolutional Neural Network; LSTM; COVID-19; deep learning

1. Introduction

Coronaviruses are a large family of viruses characterized by having crown-shaped
spikes on their surface. Nowadays, there are seven identified types of coronaviruses that
can be transmitted among humans. The most dangerous coronaviruses known until recent
years are MERS-CoV and SARS-CoV, and they have caused severe diseases, such as MERS
and SARS, in 2003 and 2012, respectively, [1]. However, at the end of 2019, in Wuhan,
China, the new epidemiological outbreak of COVID-19 emerged; it was caused by the new
coronavirus called SARS-CoV2.

The importance of mathematical models and algorithms to analyze this disease has
grown because they allow one to find patterns, make predictions, and understand fluctua-
tions. Epidemiological models can be classified into two groups [2]:

• Dynamic Models. These are old models that usually divide the population into several
subsets known as compartments, for instance, the Susceptible, Infectious, Recovered
or SIR model. The SIR model was proposed in 1902 by Sir Roland Ross and then
expanded by Kermack and McKendrick in 1927 [3].
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• Forecasting models using time series. Here, we find classical methods such as
ARIMA and Exponential Smoothing (ES) [4]. Furthermore, Machine Learning meth-
ods like Support Vector Machines [5] and Deep Learning [6] are also in this group.

This work presents a new method of the second group, based on Convolutional
Neural Network (CNN) [7] and a proposed Component Transformation (CT), which we
named CNN–CT, whose mathematical formulation is presented. The CNN–CT method is
applied to forecast the number of COVID-19 confirmed cases for the United States (US),
Mexico, Brazil, and Colombia [8]. The CT changes daily observations into weekly data and
back. The forecast made by our hybrid CNN–CT method is further adjusted either with
ARIMA or ES methods. We compared the proposed hybrid method versus the individual
methods. Our results show that the combined method consistently achieves competitive
results in terms of the MAPE metric, as opposed to any of its elements—CNN, ARIMA,
or ES—whose performance as individual methods varies largely for different countries.
Moreover, the proposed CNN–CT method also outperforms the Long Short-Term Memory
(LSTM) [9], which is among the most used methods for dealing with time-series.

Both CNN and LSTM are Deep Learning methods, the first of which is equipped
with convolutional filters while the second with recurrent operations, but in both cases
with parameters that are learned though gradient-descent-like methods in a scenarios
where data are used for training as they become available. In contrast, ARIMA and ES are
traditional regression methods that consider a full set of training data at once, thus having
the potential of better approximating such a training set, but losing the ability to adjust
to newly available data as CNN and LSTM can. The proposed CNN–CT method exploits
both the potential of incorporating newly available data as well as the strength of looking
at a complete set at once, which results in an enriched forecast method.

We chose to use CNNs, given that the signal processing literature states that con-
volutional filters are more stable than recurrent operations like LSTM [10]. Moreover,
the superior performance of CNNs over traditional methods, like ARIMA, has been con-
firmed by previous work focused on text classification [11] and sequence modeling [12],
where convolutions obtained higher performance with respect to other methods.

The rest of this paper is organized as follows. In Section 2, we discuss works related
to the forecast of confirmed cases of COVID-19. In Section 3, we show the proposed
forecasting method for daily confirmed cases of COVID-19, highlighting the application
of Deep Learning, ARIMA, and ES methods. In Section 4, we present details about the
data and tools used to validate our method. Finally, Sections 5 and 6 present results and
conclusions of this work.

2. Related Works

COVID-19 is a disease with a high rate of spread, which has led to an interest in
estimation and forecasting the number of cases of infected people. Recently, several
works have been presented with traditional epidemiological models or Dynamic Models.
The Susceptible, Exposed, Infectious, Recovered (SEIR) model [13] was used to forecast
confirmed cases in the United Kingdom, and the SIR and SEIR models were applied to
forecast cumulative infected and recovered cases in Santiago de Cuba [14]. The Susceptible,
Exposed, Infectious, Recovered, Dead (SEIRD) model [15] was used to forecast confirmed
and death cases in Mexico. At Chen [16], comparative work was conducted to predict 11
days of confirmed cases in some regions of Canada and the United States. They use SIR,
Neural Network, and ARIMA models.

The ARIMA and ES were used as adjusting methods to improve the results obtained
for other models such as those obtained for SIR models, Neural Networks, and Support
Vector Regression algorithms [2,17]. However, in most cases, the number of days forecast
is too short. For instance, the authors of [18] used ARMA to forecast confirmed cases for
three days in Chinese provinces, Asian countries, and a few occidental countries (Germany,
US, Italy, and Spain). Parvez et al. compared an Adaptive Neuro-fuzzy Inference System
versus ARIMA to predict ten days of COVID-19 confirmed cases in Bangladesh [19].
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Furthermore, Petropoulus et al. [20], used the ES method known as Holt-Winter to forecast
ten days of globally accumulated COVID-19 confirmed cases. Hussain et al. [21], used an
ES to estimate twelve days of confirmed cases, and the R0 parameter known as the basic
reproduction number.

ARIMA and Deep Learning methods have been used alone to forecast COVID-19
cases. Chimmula [22] used LSTM to predict daily cases, obtaining with this method an
error of eight percent using MAPE. In Chandraa [23], LSTM, BiLSTM, and EDLSTM were
used to forecast the spread of COVID-19 infections among selected states in India. The
work presented by Zeroul et al. [24] used deep learning to predict 10 days of number of
infected people, obtaining a MAPE error between 1.28% and 59%. Saba et al. [25] compared
polynomial regression, Holt-Winter, ARIMA, and SARIMA models, to predict the con-
firmed and deaths cases. Parbat et al. [26] proposed using an SVR-Radial model to forecast
total deaths and recovered, daily confirmed cumulative, and confirmed daily deaths in
India; this method obtained around thirteen percent MAPE error for the entire country.

Moreover, classical forecast methods have been combined with Machine Learning
techniques [2,17,27]. Katris [27] used ARIMA, ES, Neural Network, and MARS models,
where the combined methods performed better than the individual methods.

In general, ARIMA and ES methods are used to forecast cases with short-term periods,
while Machine Learning and Deep Learning models are able to predict cases over more
extended periods. However, the latter do not always obtain good results when used as
individual methods.

3. CNN–CT Method

We show the proposed CNN–CT method in Figure 1, where a Convolutional Neural
Network is used as primary forecasting method for daily confirmed cases of COVID-19,
and it is complemented by ARIMA or ES, which are used as adjusting methods against
daily errors.

Figure 1. Proposed Convolutional Neural Network (CNN) and temporal Component Transformation
(CT) (CNN–CT ) method. Training with two phases: the first phase corresponds to forecast method
using component values, and the second phase used residual values with a residual forecast method.

Firstly, our method’s training stage is composed of two phases, each of which is
formed by three internal sub-processes plus one global integration sub-process, as is shown
in Figure 1.
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In the first sub-process of phase 1, we start by transforming daily values yt into weekly
components wτ , where t is a day index and τ is a component index. These wτ components
represent average weekly forecast estimations. In the second sub-process, a CNN is used
to forecast the component ŵτ . Finally, in the third sub-process, we convert the component
estimation wτ back into daily estimations ŷt,τ .

In phase 2, the adjusting methods are trained. First, we obtain the residual εt from
the difference between the daily prediction and its corresponding ground truth value,
i.e., ŷτ,t − yt. We scale these residual values to be in the range [1, 10], as required by the
Holt-Winter methods.

In the second sub-process of phase 2, we use the residuals εt to train an autoregressive
model using either ARIMA or ES, which is used to forecast residual values ε̂t (concretely,
ε̂t,es and ε̂t,arima for ES and ARIMA, respectively).

Later, in the third sub-process of phase 2, residual forecasts et,es or et,arima are obtained
from the previously computed residual forecast values. Finally, this residual forecast et,X is
added to the daily estimation ˆyτ,t obtained from the CNN, resulting in the final prediction
value F′t .

3.1. Data Transformation

Prediction models reflect an increased error as the number of forecasting periods
increases. We chose to forecast more cases by transforming daily records into weekly
components with the CT module, which maps the daily cases yt into components wτ that
represent a weighted average of the daily cases obtained within a week. The values wτ are
calculated with Equation (1).

wτ =
∑7τ

t=7τ−6 yt

7
, (1)

where wτ is the weekly average of week τ and w1, w2, . . . , wτ is a set of transformed
observation into components. For instance, w2 = y8+y9+...+y14

7 .

3.2. CNN Forecast Component

We used a CNN as a component forecasting method. The training and validation
stages are composed of wτ values. The CNN architecture contains an input layer with
50 convolutional neurons, a maxpooling layer of size equals 2. A complete MLP layer
of 50 neurons, and one output layer with a single neuron. The convolutional layers use
the ReLU activation function. The training configuration parameters is as follows: Adam
optimizer [28], mean absolute error as loss function, 100 epochs, and batch size equal to 10.
The above configuration is used to forecast weekly components ŵτ .

3.3. Daily Estimations

The reverse transformation or daily estimations involves converting the weekly com-
ponents wτ back into daily values. For this, it is necessary to calculate the subcomponents
of a component, which we define as shown in Table 1.

Table 1. Component segmentation into subcomponents.

Week wτ

subcomponent δτ,1 subcomponent δτ,2

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

The segmentation of the week into two subcomponents provides insights about the
social behavior of countries separately into beginning and end of a week. The distribution
of the daily cases with respect to their subcomponents can be obtained by Equations (2)
and (3).

δτ,1 =
∑4,τ

t=1,τ yt,τ

4
, (2)
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δτ,2 =
∑7,τ

t=5,τ yt,τ

3
, (3)

where δτ,1, δτ,2 are subcomponents ADS-1 (Monday to Thursday) and ADS-2 (Friday
to Sunday) for the component τ. We determine that the daily ratio μτ,t represents the
proportion of the original daily values for subcomponent 1 and 2 for the component τ
(Equation (4)). The daily ratio μτ,t lets us to determine weekday normalized cases xt
(Equation (5)) of the training phase. In other words, x1 = mondeysavg, . . . , x7 = sundaysavg
are average confirmed cases of each day of the week throughout the time series.

μτ,t =

{ yτ,t
δτ,1

, if 1 ≤ t ≤ 4,
yτ,t
δτ,2

if 5 ≤ t ≤ 7,
(4)

xt =
∑τ

i=1 μi

τ
. (5)

The weighting of the daily cases obtained with the ratio μτ,t allows obtaining a statis-
tical estimation on the relevance of persons infected in the first and second subcomponent
τ, j of each component τ throughout the training period. The inverse transformation
determines the daily cases predicted from the components using Equations (6) and (7).

δ̂τ,i = ŵτ
wτ

δτ,i
, (6)

ŷτ,t =

{
xt δ̂τ,1, if 1 ≤ t ≤ 4,
xt δ̂τ,2 if 5 ≤ t ≤ 7,

(7)

where ŷτ,t represents the forecasting case values of the component τ at time t, and δ̂τ,i is the
forecast of the average number of infected sub-component i in the τ component. The data
for the learning of the adjustment methods are obtained from the daily prediction values
of the validation phase of components yτ,t.

3.4. Residual Transformation

A residual value is given by the difference in the ground truth and the predicted value,
as shown in Equation (8).

et = yt − ŷt = yt − yt−1, (8)

where yt is the ground truth in time t, ŷt is the forecast value in time t. Using Equation (8),
the residuals et are obtained by subtraction of yt and yτ,t, as shown in Equation (9).

et = yτ,t − yt, (9)

where yτ,t is the forecasting value in time t of component τ. ARIMA and ES methods used
positive numbers; because of this, the residuals were normalized as shown in Equation (10).

εt = |yτ,t − yt|, (10)

where |.| represents normalization of et in the range of values [1, 10].

3.5. Residual Forecast

We used ARIMA and ES forecasting methods as forecasting adjustments methods.
The training and validation sets are composed by εt values.

The configuration of the ARIMA method is as follows: start_p = 0, d = 0, start_q = 0,
max_p = 5, max_q = 5, max_d = 5, start_Q = 0, max_P = 5, max_D = 5, max_Q = 5, m = 4, sea-
sonal = True, error_action = ‘warn’, trace = True, suppress_warnings = True, stepwise = True,
random_state = 20, n_fits = 50, information_criterion = ‘aic’, and alpha = 0.05.
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Furthermore, ES obtained a configuration that used the Holt–Winter (HW) method.
The variants of HW used are: additive, multiplicative, additive damped, multiplicative
damped. These variants were trained with a norm residuals εt.

3.6. Residual Estimations

We use residual transformations εt to train ARIMA and ES, from which we obtained
four hybrid methods, CNN-ARIMA, CNN-ES, LSTM-ARIMA, and LSTM-ES. The forecasts
εt,es and εt,arima from these hybrid methods are transformed into residuals et,es, et,arima,
which are in the non-normalized domain.

3.7. Forecasting

Finally, we evaluated the forecast values of the validation phase F′t , which is com-
posed of the daily forecasts yτ,t of CNN and adjustment forecasts et,best, as is shown in
Equation (11).

F′t = yτ,t + et,best. (11)

4. Experimental Setup

The source of the data, the pre-processing applied, the data separation criterion
in training, validation, and testing are described below. Finally, the evaluation metrics
are described.

4.1. Data

The COVID-19 database used in this work is the Novel Coronavirus 2019 dataset [8],
whose records report the number of infected, recovered, and deceased people in each coun-
try of the world. From this database, we used a time series starting from 22 January 2020,
and that is called Time_Series_Covid_19_confirmed. We selected the records corresponding
to the US, Mexico, Brazil, and Colombia.

We used data records from 2 March 2020 until 28 June 2020 for training (17 weeks);
from 29 June 2020 to 19 July 2020 for validation (3 weeks); and from 20 July 2020 to 9
August 2020 for test (3 weeks). Figure 2 shows a scheme for this split of data.

With this split, the training of the CNN–CT method for the US was carried out with
17 weekly components wτ , as explained in Section 3.1. In the case of Mexico, Brazil,
and Colombia, we used only 15 weekly components since the data corresponding to the
first week were discarded due to the lack of significant information; that is, the values of
the first week were considerably low with respect to the rest of the series. We noticed that
processing this first week results in underestimation of the forecast values.

Figure 2. Split of the observations in training and validation set by CNN method.

Although training is conducted using weekly components wτ , the forecast for the
validation and test stages happens in daily values yτ,t, as explained in Section 3.3.

Residual forecasts allow adjusting daily forecast with ARIMA and ES. In addition, it
trained with the residuals of forecast daily validation means, and wτ forecasts obtained in
the validation phase were transformed into daily estimations yτ,t to be used in the training
and validation phase of the adjustment methods. Figure 3 shows a scheme for this split of
data for the adjusting methods.
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Figure 3. Split of the observations in training and validation set by adjusting methods.

Given that the problem we address corresponds to a scenario of auto-regression,
the actual structure of the data is such that each output variable yt depends on a vector
of past values x = [yt−1, yt−2, . . . , yt−T ]. For this work, we used lags of up to three past
values, t− 3, t− 2, and t− 1.

4.2. Metrics

The proposed hybridized CNN–CT method and its individual composing methods
are evaluated by the MAPE [29], as it has been widely used in the works discussed in
Section 2. The MAPE computes the percentage of accuracy in the predicted value with
respect to the ground truth. The closer to zero, the more accurate it is. Another common
metric is RMSPE [4] which is also used in part of this paper.

MAPE =
100
n

n

∑
t=1

|yt − ŷt|
yt

, (12)

RMSPE =

√
∑n

t=1(yt − ŷt)2

n
∗ 100, (13)

where, yt is the ground truth, ŷt is the predicted value, and n indicates the total number
of samples.

4.3. Tools

This work was developed with a computer with an iOS operating system, 8 GB, and a
2.3 GHz Dual-Core Intel Core i5 processor. We used Python 3.7.1, and the CNN model was
built using Tensorflow and Keras libraries [30].

5. Results

This section shows the results of the CNN–CT method proposed for daily forecast-
ing cases of COVID-19 in the US, Mexico, Brazil, and Colombia. First, we compare the
performance of using CNN and LSTM as the main forecasting methods with ARIMA and
ES (Holt-Winter, HW) as adjusting methods. Then, we present the comparison of the
CNN–CT model versus the individual CNN, LSTM, ARIMA, and Holt-Winters models for
each country.

We can see in Figure 4 the comparison of best-performing forecast models for the
countries of The United States, Mexico, Brazil, and Colombia. In the US, Figure 4a, the fore-
casts of LSTM-ARIMA manage to maintain the trend and seasonality patterns with respect
to the ground truth. However, the CNN-HW prognosis is well below the actual data. We
can see in Table 2 that LSTM-ARIMA achieves the lowest MAPE for the US.
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Figure 4. Daily forecast with CNN–CT method using CNN and Long Short-Term Memory (LSTM)
as main forecast methods.

Likewise, Figure 4b shows the behavior of the forecasts for daily cases of COVID-19
in Mexico. We can see that all four models are able to maintain trend and seasonality
patterns with respect to ground truth. However, LSTM–ARIMA shows a high error rate
because of the difference with respect to the actual data. On the other hand, the forecast of
CNN-HW is very close to the real data, which allows us to obtain a better performance with
respect to the other methods. The average MAPE and its standard deviation are shown in
Table 2, where we can see that CNN-HW achieves the best average performance among
the four models.

Similarly, Figure 4c shows the comparative Brazil forecast for all the models. We can
see that LSTM-ARIMA manages to maintain seasonality patterns concerning the ground
truth. In the case of CNN-HW, it follows the trend and seasonality patterns with respect
to the ground truth. The average MAPE and its standard deviation are shown in Table 2.
However, as we noticed before with the average MAPE and its standard deviation, CNN–
HW has the best performance.

We can see in Figure 4d that LSTM–ARIMA manages to maintain seasonality patterns
concerning the ground truth for Colombia. In the case of CNN–HW, it follows the trend
and seasonality patterns concerning the ground truth. According to Table 2 CNN-ARIMA
shows the best MAPE performance, as its curve is the closest to the ground truth.

In general, our experiments show that smoothing with ARIMA or ES helps obtain
lower MAPE in the case of CNN. This is not the case with LSTM. Table 2 shows a summary
of the MAPE and RMSPE daily forecasting values of the CNN–CT and LSTM–CT for US,
Mexico, Brazil, and Colombia. In the case of US, the method with the best performance
is LSTM-ARIMA, having a MAPE ≈ 14%. In the case of Mexico and Brazil, CNN–HW is
better with MAPE 14.18% and 29.3%. It is possible to see that LSTM–ARIMA and CNN–
HW obtain better results in different countries. In Colombia, CNN-ARIMA obtains the
best MAPE and RMSPE.

We averaged the MAPE of all the countries for each method in Table 2. We observed
that CNN–CT methods have better performance than that of LSTM–CT. Furthermore,
for each country, we determined the standard deviation of the error metrics. We noticed that
CNN–CT has the lower deviation, which indicates that its best performance is consistent
across countries.
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Table 2. CNN–CT methods performance. Best MAPE results are marked in bold.

Country
CNN-HW CNN-ARIMA LSTM-HW LSTM-ARIMA

MAPE RMSPE MAPE RMSPE MAPE RMSPE MAPE RMSPE

United States 15.53 19.35 22.64 26.57 38.57 43.64 13.35 16.70
Mexico 14.19 18.78 36.82 47.37 71.66 73.32 25.73 31.53
Brazil 29.30 31.27 39.69 62.58 62.63 70.75 44.26 54.59

Colombia 21.76 28.46 13.39 16.84 24.56 32.48 20.00 26.07

Average 20.19 24.47 28.14 38.34 49.36 55.05 25.84 32.22
Standar Desv 5.98 5.50 10.68 17.82 18.74 17.46 11.51 13.96

Finally, in Figure 5, we show a comparison of the MAPE for the CNN-HW model
versus the individual CNN, LSTM, ARIMA, and Holt–Winters models for each country.

Although ARIMA obtained good performance for the US (11.18) and Mexico (16.31),
first and third place, respectively, it provides high MAPE for Brazil (50.99) and Colombia
(29.75), with the last and second-last places, respectively. Similarly, pure CNN is a good
method for Mexico (14.04) and Colombia (14.96) but not so good for US (42.75) and Brazil
(38.19).

In contrast, CNN–CT (CNN-HW) is consistently competitive for all cases, obtaining
second place for US (15.53), Mexico (14.18, as good as the best-performing CNN alone),
and Colombia (21.75), and first for Brazil (29.30).

Figure 5. Daily forecast with CNN–CT (using Holt–Winters (HW)) versus the individual methods
CNN, LSTM, ARIMA, and HW.

We show the comparison of CNN–HW versus the four individual methods in Table 3.
We can see that CNN–HW surpasses all of these individual methods for Brazil and Colom-
bia. For the case of Mexico, CNN–HW is below the best performing method (CNN) only
by 0.14 MAPE points. Furthermore, CNN–HW achieves competitive results for the US.

Table 3. The performance of the CNN–CT vs. individual methods. Best MAPE results are marked
in bold.

MAPE Metric
Country CNN-HW CNN LSTM ARIMA HW

United States 15.53 42.75 23.96 11.18 23.65
Mexico 14.18 14.04 39.07 16.31 17.71
Brazil 29.30 38.19 42.34 50.99 33.76

Colombia 21.75 14.96 38.59 29.75 29.29

MAPE Average 20.19 27.49 35.99 27.06 26.10
Standard Desv 5.98 13.09 7.09 15.39 6.03
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6. Conclusions

This paper investigates the problem of forecasting confirmed daily cases of COVID-19
in Mexico, Brazil, Colombia, and the US. Given the limited number of data available at the
time of conducting our experiments, several limitations of the prediction methods became
evident. These limitations were even more obvious due to the presence of noise in the
daily data, which might very well be a consequence of the restrictions on the flow of data
imposed by the sanitary crisis related to COVID-19 worldwide.

In particular, most prediction methods decrease their accuracy as the periods for
forecast become larger. To mitigate this issue, we proposed a component transformation
that converts daily values into weekly components for correct prediction in those cases.

We present a hybrid forecasting method termed Convolutional Neural Network–
Component Transformation (CNN–CT), which uses CNN and LSTM as the main prediction
method and ES and ARIMA as adjusting methods for daily error correction. As a result,
there are two variants of the proposed method: CNN–CT with Holt–Winters, and LSTM–CT
with ARIMA.

We compared the prediction performance of the individual methods that compose
the proposed CNN–CT using the MAPE metric. We noticed that CNN and LSTM are
very good with learning trend and seasonality of the time series; however, LSTM forecasts
tends to generate increasing and decreasing trend, which causes the error to increase. Our
experiments show that smoothing with ARIMA or ES helps obtain lower MAPE in the case
of CNN. This is not the case with LSTM.

As future works, we propose applying this methodology to other popular forecasting
methods such as SVR, Recurrent Neural Network, and so on; measuring the performance
quality in more countries; and applying powerful data cleaning as a preprocessing stage.
Furthermore, it could be interesting to use different adjusting methods. Finally, we propose
testing if the proposed methodology is completely general or determines which strategy
applies in different forecast scenarios.
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Abstract: We present a local trust region descent algorithm for unconstrained and convexly con-
strained multiobjective optimization problems. It is targeted at heterogeneous and expensive prob-
lems, i.e., problems that have at least one objective function that is computationally expensive.
Convergence to a Pareto critical point is proven. The method is derivative-free in the sense that
derivative information need not be available for the expensive objectives. Instead, a multiobjective
trust region approach is used that works similarly to its well-known scalar counterparts and comple-
ments multiobjective line-search algorithms. Local surrogate models constructed from evaluation
data of the true objective functions are employed to compute possible descent directions. In contrast
to existing multiobjective trust region algorithms, these surrogates are not polynomial but carefully
constructed radial basis function networks. This has the important advantage that the number of
data points needed per iteration scales linearly with the decision space dimension. The local models
qualify as fully linear and the corresponding general scalar framework is adapted for problems with
multiple objectives.

Keywords: multiobjective optimization; trust region methods; multiobjective descent; derivative-
free optimization; radial basis functions; fully linear models

1. Introduction

Optimization problems arise in a multitude of applications in mathematics, computer
science, engineering and the natural sciences. In many real-life scenarios, there are multiple,
equally important objectives that need to be optimized. Such problems are then called
Multiobjective Optimization Problems (MOP). In contrast to the single objective case, an MOP
often does not have a single solution but an entire set of optimal trade-offs between
the different objectives, which we call Pareto optimal. They constitute the Pareto Set and
their image is the Pareto Frontier. The goal in the numerical treatment of an MOP is to
either approximate these sets or to find single points within these sets. In applications,
the problem can become more difficult when some of the objectives require computationally
expensive or time consuming evaluations. For instance, the objectives could depend on
a computer simulation or some other black-box. It is then of primary interest to reduce
the overall number of function evaluations. Consequently, it can become infeasible to
approximate derivative information of the true objectives using, e.g., finite differences.
This holds true especially if higher order derivatives are required. In this work, optimization
methods that do not use the true objective gradients (which nonetheless are assumed to
exist) are referred to as derivative-free.

There is a variety of methods to deal with MOPs, some of which are also derivative-
free or try to constrain the number of expensive function evaluations. A broad overview of
different problems and techniques concerning multiobjective optimization can be found,
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e.g., in [1–4]. One popular approach for calculating Pareto optimal solutions is scalar-
ization, i.e., the transformation of an MOP into a single objective problem, cf. [5] for an
overview. Alternatively, classical (single objective) descent algorithms can be adapted for
the multiobjective case [6–11]. What is more, the structure of the Pareto Set can be exploited
to find multiple solutions [12,13]. There are also methods for non-smooth problems [14,15]
and multiobjective direct-search variants [16,17]. Both scalarization and descent techniques
may be included in Evolutionary Algorithms (EA) [18–22]. To address computationally
expensive objectives or missing derivative information, there are algorithms that use sur-
rogate models (see the surveys [23–25]) or borrow from ideas from scalar trust region
methods, e.g., [26].

In single objective optimization, trust region methods are well suited for derivative-
free optimization [27,28]. Our work is based on the recent development of multiobjective
trust region methods:

• In [29], a trust region method using Newton steps for functions with positive definite
Hessians on an open domain is proposed.

• In [30], quadratic Taylor polynomials are used to compute the steepest descent di-
rection which is used in a backtracking manner to find solutions for unconstrained
problems.

• In [31], polynomial regression models are used to solve an augmented MOP based
on the scalarization in [17]. The algorithm is designed unconstrained bi-objective
problems, but the general idea has been formulated for more objectives in [32].

• In [33], quadratic Lagrange polynomials are used and the Pascoletti–Serafini scalariza-
tion is employed for the descent step calculation.

Our contribution is the extension of the above-mentioned methods to general fully
linear models (and in particular Radial Basis Function (RBF) surrogates as in [34]), which
is related to the scalar framework in [35]. Most importantly, this reduces surrogate con-
struction complexity, in terms of objective evaluations per iteration, to linear with respect
to the number of decision variables, in contrast to the quadratically increasing number
of function evaluations for methods using second degree polynomials. We further prove
convergence to critical points when the problem is constrained to a convex and compact
set by using an analogous argumentation as in [36]. To this end, we extend the theory in [6]
to provide new results concerning the continuity of the solutions of the projected steepest
descent direction problem, which is based on the alternative formulation by Fliege and
Svaiter [7]. We also show how to keep the convergence properties for constrained problems
when the Pascoletti–Serafini scalarization is employed (like in [33]).

The remainder of the paper is structured as follows: Section 2 provides a brief intro-
duction to multiobjective optimality and criticality concepts. In Section 3 the fundamentals
of the algorithm are explained. In Section 4 we introduce fully linear surrogate models
and describe the construction of suitable polynomial models and RBF models for uncon-
strained and box-constrained problems. We also formalize the main algorithm in this
section. Section 5 deals with the descent step calculation so that a sufficient decrease
is achieved in each iteration. Convergence is proven in Section 6 and a few numerical
examples for unconstrained and finitely box-constrained problems are shown in Section 7.
In Section 7 we also compare the RBF models against linear polynomial models that have
the same linear construction complexity. We conclude with a brief discussion in Section 8.

2. Optimality and Criticality in Multiobjective Optimization

We consider the following (real-valued) multiobjective optimization problem:

min
x∈X

f(x) := min
x∈X

⎡⎢⎣ f1(x)
...

fk(x)

⎤⎥⎦ ∈ Rk, (MOP)
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with a feasible set X ⊆ Rn and k objective functions f� : Rn → R, � = 1, . . . , k. We further
assume (MOP) to be heterogeneous. That is, there is a non-empty subset Iex ⊆ {1, . . . , k}
of indices so that the gradients of f�, � ∈ Iex, are unknown and cannot be approximated,
e.g., via finite differences. The (possibly empty) index set Icheap = {1, . . . , k} \ Iex indicates
functions whose gradients are available.

Solutions for (MOP) consist of optimal trade-offs x∗ ∈ X between the different ob-
jectives and are called non-dominated or Pareto optimal. That is, there is no x ∈ X
with f(x) ≺ f(x∗) (i.e., f(x) ≤ f(x∗) and f�(x) < f�(x∗) for some index � ∈ {1, . . . , k}).
The subset PS ⊆ X of non-dominated points is then called the Pareto Set and its image
PF := f(PS) ⊆ Rk is called the Pareto Frontier. All concepts can be defined in a local fashion
in an analogous way.

Similar to scalar optimization, there is a necessary condition for local optima using the
gradients of the objective function. We therefore implicitly assume all objective functions
f�, � = 1, . . . , k, to be continuously differentiable on X . Moreover, the following assumption
allows for an easier treatment of tangent cones in the constrained case:

Assumption 1. Either the problem is unconstrained, i.e., X = Rn or the feasible set X ⊆ Rn is
compact and convex. All functions are defined on X .

The second case is a standard assumption in the MO literature for constrained prob-
lems [6,7]. Now let ∇ f�(x) denote the gradient of f� and Df(x) ∈ Rk×n the Jacobian of f at
x ∈ X .

Definition 1. We call a vector d ∈ X − x a multi-descent direction for f in x if 〈∇ f�(x), d〉 < 0
for all � ∈ {1, . . . , k}, or equivalently if

max
�=1,...,k

〈∇ f�(x∗), d〉 < 0 (1)

where 〈•, •〉 is the standard inner product on Rn and we consider X − x = X in the unconstrained
case X = Rn.

A point x∗ ∈ X is called critical for (MOP) iff there is no descent direction d ∈ X − x∗

with (1). As all Pareto optimal points are also critical (cf. [6,37] or [2] [Ch. 17]), it is viable
to search for optimal points by calculating points from the superset Pcrit ⊇ PS of critical
points for (MOP). Similar to single objective optimization, using such a first order condition
makes sense especially in combination with some global method or when exploring the
structure of the critical set. We discuss promising approaches in Section 8. Note, that
due the above restrictions, our method is not a general replacement for other methods,
e.g., scalarization approaches, but rather an additional tool for situations where those are
not applicable.

One intuitive way to approach the critical set is by iteratively performing descent steps.
Fliege and Svaiter [7] propose several ways to compute suitable descent directions. The
minimizer d∗ of the following problem is known as the multiobjective steepest-descent di-
rection.

min
d∈X−x

max
�=1,...,k

〈∇ f�(x), d〉 s.t. ‖d‖ ≤ 1. (P1)

Problem (P1) has an equivalent reformulation as

min
d∈X−x

β s.t. ‖d‖ ≤ 1 and 〈∇ f�(x), d〉 ≤ β ∀ � = 1, . . . , k, (P2)

which is a linear program, if X is defined by linear constraints and the maximum-norm
‖•‖ = ‖•‖∞ is used [7]. We thus stick with this choice because it facilitates implementation,
but note that other choices are possible (see for example [33]).

Motivated by the next theorem we can use the optimal value of either problem as a
measure of criticality, i.e., as a multiobjective pendant for the gradient norm. As is standard
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in most multiobjective trust region works (cf. [29,30,33]), we flip the sign so that the values
are non-negative.

Theorem 1. For x ∈ X let d∗(x) be the minimizer of (P1) and ω(x) be the negative optimal value,
that is

ω(x) := − max
�=1,...,k

〈∇ f�(x), d∗(x)〉.

Then the following statements hold:

1. ω(x) ≥ 0 for all x ∈ X .
2. The function ω : Rn → R is continuous.
3. The following statements are equivalent:

(a) The point x ∈ X is not critical.
(b) ω(x) > 0.
(c) d∗(x) �= 0.

Consequently, the point x is critical iff ω(x) = 0.

Proof. For the unconstrained case all statements are proven in [7] (Lemma 3).
The first and the third statement hold true for X convex and compact by definition.

The continuity of ω can be shown similarly as in [6], see Appendix A.1.

With further conditions on f and X the criticality measure ω(x) is even Lipschitz
continuous and subsequently uniformly and Cauchy continuous:

Theorem 2. If ∇ f�, � = 1, . . . , k, are Lipschitz continuous and Assumption 1 holds, then the map
ω(•) as defined in Theorem 1 is uniformly continuous.

Proof. The proof for X = Rn is given by Thomann [38]. A proof for the constrained case
can be found in Appendix A.1 as to not clutter this introductory section.

Together with Theorem 1 this hints at ω(•) being a criticality measure as defined for
scalar trust region methods in [36] ([Ch. 8]):

Definition 2. We call π : N0 ×Rn → R, a criticality measure for (MOP) if π is Cauchy continu-
ous with respect to its second argument and if

lim
t→∞

π(t, x(t)) = 0

implies that the sequence
{

x(t)
}

asymptotically approaches a Pareto critical point.

3. Trust Region Ideas

Multiobjective trust region algorithms closely follow the design of scalar approaches
(see [36] for an extensive treatment) and provide an alternative to (approximate) line-
search algorithms (e.g., [7]). Consequently, the requirements and convergence proofs
in [29,30,33] for the unconstrained multiobjective case are fairly similar to those in [36].
We will reexamine the core concepts to provide a clear understanding and point out the
similarities to the single objective case.

The main idea is to iteratively compute multi-descent steps s(t) in every iteration
t ∈ N0. We could, for example, use the steepest descent direction given by (P1). This would
require knowledge of the true objective gradients, which need not be available for objective
functions with indices in Iex. Hence, benevolent surrogate model functions

m(t) : Rn → Rk, x !→ m(t)(x) =
[
m(t)

1 (x), . . . , m(t)
k (x)

]T
,

are employed (at least for the expensive objectives).
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The surrogate models are constructed to be sufficiently accurate within a trust region

B(t) := B
(

x(t); Δ(t)
)
=

{
x ∈ X :

∥∥∥x− x(t)
∥∥∥ ≤ Δ(t)

}
, with ‖•‖ = ‖•‖∞, (2)

around the current iterate x(t). To be precise, the models are made fully linear as described
in Section 4.1. This ensures that the model error and the model gradient error are uniformly
bounded within the trust region.

The model steepest descent direction d
(t)
m can then computed as the optimizer of the

surrogate problem

ω
(t)
m

(
x(t)

)
:=− min

d∈X−x
β

s.t. ‖d‖ ≤ 1, and 〈∇m(t)
� (x), d〉 ≤ β ∀� = 1, . . . , k.

(Pm)

Now let σ(t) > 0 be a step size. The direction d
(t)
m need not be a descent direction for

the true objectives f and the trial point x
(t)
+ = x(t) + σ(t)d

(t)
m is only accepted if a measure

ρ(t) of improvement and model quality surpasses a positive threshold ν+. As in [30,33], we
scalarize the multiobjective problems by defining

Φ(x) := max
�=1,...,k

f�(x), Φ(t)
m (x) := max

�=1,...,k
m(t)

� (x).

Whenever Φ(x(t))−Φ(x
(t)
+ ) > 0, there is a reduction in at least one objective function

of f because of

0 < Φ(x(t))−Φ(x
(t)
+ ) = f�(x(t))− fq(x

(t)
+ )

df.
≤ f�(x(t))− f�(x

(t)
+ ),

where we denoted by � the (not necessarily unique) maximizing index in Φ(x(t)) and by q
the (neither necessarily unique) maximizing index in Φ(x

(t)
+ ). (The abbreviation “df.” above

the inequality symbol stands for “(by) definition” and is used throughout this document
when appropriate.) Of course, the same property holds for Φ(t)

m (•) and m(t).
Thus, the step size σ(t) > 0 is chosen so that the step s(t) = σ(t)d

(t)
m satisfies both

x(t) + s(t) ∈ B(t) and a “sufficient decrease condition” of the form

Φ(t)
m (x(t))−Φ(t)

m (x(t) + s(t)) ≥ κsdω
(

x(t)
)

min
{

C ·ω
(

x(t)
)

, 1, Δ(t)
}
≥ 0,

with constants κsd ∈ (0, 1) and C > 0, see Section 5. Such a condition is also required in
the scalar case [35,36] and essential for the convergence proof in Section 6, where we show
limt→∞ ω

(
x(t)

)
= 0.

Due to the decrease condition, the denominator in the ratio of actual versus pre-
dicted reduction

ρ(t) =

⎧⎪⎪⎨⎪⎪⎩
Φ(x(t))−Φ(x

(t)
+ )

Φ(t)
m (x(t))−Φ(t)

m (x
(t)
+ )

if x(t) �= x
(t)
+ ,

0 if x(t) = x
(t)
+ ⇔ s(t) = 0,

(3)

is non-negative. A positive ρ(t) implies a decrease in at least one objective f�, so we accept
x
(t)
+ as the next iterate if ρ(t) > ν+ > 0. If ρ(t) is sufficiently large, say ρ(t) ≥ ν++ > ν+ > 0,

the next trust region might have a larger radius Δ(t+1) ≥ Δ(t). If in contrast ρ < ν++,
the next trust region radius should be smaller and the surrogates improved.
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This encompasses the case s(t) = 0, when the iterate x(t) is critical for

min
x∈B(t)

m(t)(x) ∈ Rk. (MOPm)

Roughly speaking, we suppose that x(t) is near a critical point for the original problem
(MOP) if m(t) is sufficiently accurate. If we truly are near a critical point, then the trust
region radius will approach 0. For further details concerning the acceptance ratio ρ(t),
see [33] (Section 2.2).

Remark 1. We can modify ρ(t) in (3) to obtain a descent in all objectives, i.e., if x(t) �= x
(t)
+ we test

ρ(t) =
f�(x(t))− f�(x

(t)
+ )

m(t)
� (x(t))−m(t)

� (x
(t)
+ )

> ν+ for all � = 1, . . . , k. This is the strict acceptance test.

4. Surrogate Models and the Final Algorithm

Until now, we have not discussed the actual choice of surrogate models used for
m(t). As is shown in Section 5, the models should be twice continuously differentiable
with uniformly bounded hessians. To prove convergence of our algorithm, we have to
impose further requirements on the (uniform) approximation qualities of the surrogates
m(t). We can meet these requirements using so-called fully linear models. Moreover, fully
linear models intrinsically allow for modifications of the basic trust region method that
are aimed at reducing the total number of expensive objective evaluations. Finally, we
briefly recapitulate how radial basis functions and multivariate Lagrange polynomials can
be made fully linear.

Remark 2. Although the trust region framework is suitable for general convexly constrained
compact sets, we will discuss the construction of fully linear polynomial and RBF models for
unconstrained and box-constrained problems only.

In the constrained case, we treat the constraints as unrelaxable, that is, we do not allow for
evaluations of the true objectives outside X , see the definition of B(t) ⊆ X in (2). We also ensure to
only select training data in X during the construction of surrogate models.

To the best of our knowledge there are no construction procedures for the above model types
for general (unrelaxable) constraints. A discussion of how some model based algorithms deal with
constraints can be found in [28] (Section 7). The issue is also addressed in [27] (Ch. 13) . If the
constraints are treated as relaxable, then techniques from [39] (Ch. 15) might be applicable such as
merit functions or filter methods, but this is left for future research.

4.1. Fully Linear Models

We start by reciting the abstract definition of full linearity as given in [27,35]:

Definition 3. Let Δub > 0 be given and let f : R → R be a function that is continuously
differentiable in an open domain containing X and has a Lipschitz continuous gradient on X . A
set of model functionsM = {m : Rn → R} ⊆ C1(Rn,R) is called a fully linear class of models
w.r.t. f if the following hold:

1. There are positive constants ε, ε̇ and Lm such that for any given Δ ∈ (0, Δub) and for
any x ∈ X there is a model function m ∈ M with Lipschitz continuous gradient and
corresponding Lipschitz constant bounded by Lm and such that

• the error between the gradient of the model and the gradient of the function satisfies

‖∇ f (ξ)−∇m(ξ)‖ ≤ ε̇Δ, ∀ξ ∈ B(x; Δ),

• the error between the model and the function satisfies

| f (ξ)−m(ξ)| ≤ εΔ2, ∀ξ ∈ B(x; Δ).
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2. For this class M there exists “model-improvement” algorithm that, in a finite, uniformly
bounded (w.r.t. x and Δ) number of steps, can:

• either establish that a given model m ∈ M is fully linear on B(x; Δ), i.e., it satisfies the
error bounds in 1,

• or find a model m̃ that is fully linear on B(x; Δ).

Remark 3. In the unconstrained case, the requirements in Definition 3 can be relaxed a bit, at least
when using the strict acceptance test with f(x(T)) ≤ f(x(t)) for all T ≥ t ≥ 0. We can then restrict
ourselves to the set

X ′ :=
⋃

x∈L(x(0))

B
(

x; Δub
)

, where L(x(0)) :=
{

x ∈ Rn : f(x) ≤ f(x(0))
}

.

For the convergence analysis in Section 6, we further cite [27] ([Lemma 10.25]).
The lemma states that a fully linear model is also fully linear in enlarged regions if the error
constants are chosen appropriately:

Lemma 1. For x ∈ X and Δ ≤ Δub consider a function f and a fully-linear model m as in
Definition 3 with constants ε, ε̇, Lm > 0. Let L f > 0 be a Lipschitz constant of ∇ f .
Assume w.l.o.g. that

Lm + L f ≤ ε and
ε̇

2
≤ ε.

Then m is fully linear on B
(
x; Δ̃

)
for any Δ̃ ∈ [Δ, Δub] with respect to the same constants

ε, ε̇, Lm.

Finally, we generalize the definition to a vector of real valued functions.

Definition 4. Let Δub > 0 be given and let f = [ f1, . . . , fk]
T be a vector of functions satisfying

the requirements of Definition 3. Then m = [m1, . . . , mk]
T, with m� : Rn → R, � ∈ {1, . . . , k},

belongs to a collection of fully linear classes w.r.t. f if for each � the function m� belongs to a fully
linear class w.r.t. f�, with error constants ε� and ε̇�.

The model-improvement algorithm of m consists in applying the individual improvement
algorithms for all indices � ∈ {1, . . . , k} and m is deemed fully linear iff all m� are fully linear with
constants ε� and ε̇�.

Definition 4 is stated in a way that allows for different model types for the different
objectives. Most importantly, we can use m� = f� and ∇m� = ∇ f� if the objective is
cheap, i.e., � ∈ Icheap, and if f� not only has Lipschitz gradients but also has a Hessian
that is uniformly bounded in terms of its norm. The latter requirement is formalized in
Assumption 3 and needed for the convergence analysis.

Algorithm Modifications

With Definitions 3 and 4 we have formalized our assumption that the surrogates
become more accurate when we decrease the trust region radius. This motivates the
following modifications to the basic procedure:

• “Relaxing” the (finite) surrogate construction process to try for a possible descent even
if the surrogates are not fully linear.

• A criticality test depending on �
(t)
m

(
x(t)

)
. If this value is very small at the current

iterate, then x(t) could lie near a Pareto critical point. With the criticality test and
Algorithm 1 we ensure that the next model is fully linear and the trust region is not too
large. This allows for a more accurate criticality measure and descent step calculation.
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• A trust region update that also takes into consideration �
(t)
m

(
x(t)

)
. The radius should

be enlarged if we have a large acceptance ratio ρ(t) and the Δ(t) is small as measured
against βω

(t)
m

(
x(t)

)
for a constant β > 0.

These changes are implemented in Algorithm 2. For more detailed explanations we
refer to [27] (Ch. 10).

Algorithm 1: Criticality Routine.

Configuration: A backtracking constant α ∈ (0, 1), μ > 0 from Algorithm 2;
Input: Current trust region radius Δ(t), current models m(t);
Output: Fully linear models m(t) and the (possibly shrunken) radius Δ(t);
Set Δ0 ← Δ(t);
for j = 1, 2, . . . do

Set radius: Δ(t) ← αj−1Δ0;

Make models m(t) fully linear on B(t) ; /* can change �
(t)
m

(
x(t)

)
*/

if Δ(t) ≤ μ�
(t)
m

(
x(t)

)
then

Break;
end

end

From Algorithm 2 we see that we can classify the iterations based on ρ(t) as in Definition 5.

Definition 5. For given constants 0 ≤ ν+ ≤ ν++ < 1, ν++ �= 0, we call the iteration with index
t ∈ N0 of Algorithm 2.

• . . . successful if ρ(t) ≥ ν++. The set of successful indices is S = {t ∈ N0 : ρ(t) ≥ ν++} ⊆ N0.
The trial point is accepted and the trust region radius can be increased.

• . . . model-improving if ρ(t) < ν++ and the models m(t) = [m(t)
1 , . . . , m(t)

k ]T are not fully
linear. In these iterations the trial point is rejected and the trust region radius is not changed.

• . . . acceptable if ν++ > ρ(t) ≥ ν+ and the models m(t) are fully linear. If ν++ = ν+ ∈ (0, 1),
then there are no acceptable indices. The trial point is accepted but the trust region radius is
decreased.

• . . . inacceptable otherwise, i.e., if ρ(t) < ν++ and m(t) are fully linear. The trial point is
rejected and the radius decreased.
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Algorithm 2: General Trust Region Method (TRM) for (MOP).
Configuration: Criticality parameters εcrit > 0 and μ > β > 0, acceptance

parameters 1 > ν++ ≥ ν+ ≥ 0, ν++ �= 0, update factors
γ↑ ≥ 1 > γ↓ ≥ γ� > 0 and Δub > 0;

Input: The initial site x(0) ∈ Rn;
for t = 0, 1, . . . do

if t > 0 and iteration (t− 1) was model-improving (cf. Definition 5) then

Perform at least one improvement step on m(t−1) and then let
m(t) ← m(t−1);

else

Construct surrogate models m(t) on B(t);
end
/* Criticality Step: */

if �
(t)
m

(
x(t)

)
< εcrit and

(
m(t) not fully linear or Δ(t) > μ�

(t)
m

(
x(t)

) )
then

Set Δ(t)
∗ ← Δ(t);

Call Algorithm 1 so that m(t) is fully linear on B(t) with
Δ(t) ∈

(
0, μ�

(t)
m

(
x(t)

)]
;

Then set Δ(t) ← min
{

max
{

Δ(t), β�
(t)
m

(
x(t)

)}
, Δ(t)
∗

}
;

end

Compute a suitable descent step s(t);

Set x
(t)
+ ← x(t) + s(t), evaluate f(x

(t)
+ ) and compute ρ(t) with (3);

Perform the following updates:

x(t+1) ←
{

x(t) if ρ(t) < ν+ or ν+ ≤ ρ(t) < ν++ & m(t) is not fully linear,

x
(t)
+ if ρ(t) ≥ ν++ or ν+ ≤ ρ(t) < ν++ & m(t) is fully linear,

Δ(t+1) ← Δ+, where

Δ+

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
= Δ(t) if ρ(t) < ν++ & m(t) is not fully linear,
∈ [γ�Δ(t), γ↓Δ(t)] if ρ(t) < ν++ & m(t) is fully linear,

∈
[
Δ(t), min{γ↑Δ(t), Δub}

]
if ν++ ≤ ρ(t) and Δ(t) ≥ βω

(t)
m

(
x(t)

)
,

= min{γ↑Δ(t), Δub} if ν++ ≤ ρ(t) and Δ(t) < βω
(t)
m

(
x(t)

)
.

end

4.2. Fully Linear Lagrange Polynomials

Quadratic Taylor polynomial models are used very frequently. As explained in [27]
we can alternatively use multivariate interpolating Lagrange polynomial models when
derivative information is not available. We will consider first and second degree Lagrange
models. Even though the latter require O(n2) function evaluations they are still cheaper
than second degree finite difference models. For this reason, these models are also used
in [33,38].

To construct an interpolating polynomial model we have to provide p data sites,
where p is the dimension of the space Πd

n of real-valued n-variate polynomials with degree

d. For d = 1 we have p = n + 1 and for d = 2 it is p =
(n + 1)(n + 2)

2
. If n ≥ 2,

the Mairhuber–Curtis theorem [40] applies and the data sites must form a so-called poised
set in X . The set Ξ = {ξ1, . . . ,ξp} ⊂ Rn is poised if for any basis {ψi}i of Πd

n the matrix
Mψ :=

[
ψi(ξj)

]
1≤i,j≤p is non-singular. Then for any function f : Rn → R there is a unique

interpolating polynomial m(x) = ∑
p
i=1 λiψi(x) with m(ξj) = f (ξj) for all j = 1, . . . , p.
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Given a poised set Ξ the associated Lagrange basis {li}i of Πd
n is defined by li(ξj) = δi,j.

The model coefficients then simply are the data values, i.e., λi = f (ξi).
Same as in [38], we implement Algorithm 6.2 from [27] to ensure poisedness. It selects

training sites Ξ from the current (slightly enlarged) trust region of radius θ1Δ(t), θ1 ≥ 1, and
calculates the associated lagrange basis. We can then separately evaluate the true objectives
f� on Ξ to easily build the surrogates m(t)

� , � ∈ {1, . . . , k}. Our implementation always
includes ξ1 = x(t) and tries to select points from a database of prior evaluations first.

We employ an additional algorithm (Algorithm 6.3 in [27]) to ensure that the set Ξ is
even Λ-poised, see [27] ([Definition 3.6]). The procedure is still finite and ensures the models
are actually fully linear. The quality of the surrogate models can be improved by choosing a
small algorithm parameter Λ > 1. Our implementation tries again to recycle points from
a database. Different to before, interpolation at x(t) can no longer be guaranteed. This
second step can also be omitted first and then used as a model-improvement step in a
subsequent iteration.

4.3. Fully Linear Radial Basis Function Models

The main drawback of quadratic Lagrange models is that we still needO(n2) function
evaluations in each iteration of Algorithm 2. A possible fix is to use under-determined
regression polynomials instead [27,31,41]. Motivated by the findings in [34] we chose
so-called Radial Basis Function (RBF) models as an alternative. RBF are well-known for
their approximation capabilities on irregular data [40]. In our implementation they have
the form

m(x) =
N

∑
i=1

ci ϕ(‖x− ξi‖2) + π(x), with π =
n+1

∑
j=1

λjψj ∈ Π1
n and N ≥ n + 1, (4)

which conforms to the construction by Wild et al. [34]. Here, ϕ is a function from a domain
containing R≥0 to R. For a fixed ϕ the mapping ϕ(‖•‖) from Rn → R is radially symmetric
with respect to its argument and the mapping (x,ξ) !→ ϕ(‖x− ξ‖2) is called a kernel.

We will describe the procedure only briefly and refer to [34,42] and the dissertation [41]
for more details. To conform to the algorithmic framework the models must have Hessians
of uniformly bounded norm. Additionally, we want them to be twice differentiable due to
the following, very general result:

Theorem 3 (Th 4.1 in [41]). Suppose that f and m are continuously differentiable in an open
domain containing B(t) and that ∇ f and ∇m are Lipschitz in B(t). Further suppose that m
interpolates f on a Λ-poised set Ξ = {ξ1, . . . ,ξn+1} (for a fixed Λ < ∞). Then m is fully linear
for f as in Definition 3.

The Λ-poised set is determined using pivotal algorithms from [34,41] in an enlarged
trust region of radius θ1Δ(t), θ1 ≥ 1. If we restrict ourselves to functions ϕ that are condi-
tionally positive definite (c.p.d.—see [34] for the definition) of order D ≤ 2, then for any
f : Rn → R an interpolating model m of form (4) is uniquely determined by solving a linear
equation system. If further ϕ is either twice continuously differentiable on an open domain
containing [0, ∞) with ϕ′(0) = 0 , then m from (4) is twice continuously differentiable
and has Lipschitz gradients exactly if its Hessian stays bounded. This is the case for all
ϕ we consider (see Table 1). The hessian norm is determined by the magnitudes of the
coefficients ci and by |ϕ′(r)/r| and |ϕ′′(r)|.
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Table 1. Some radial functions ϕ : R≥0 → R that are c.p.d. of order D ≤ 2, cf. [34].

Name ϕ(r) c.p.d. order D

Cubic r3 2
Multiquadric −

√
1 + (αr)2, α > 0 1

Gaussian exp(−(αr)2), α > 0 0

If there are exactly N = n + 1 points from a poised set Ξ, then the coefficients ci vanish
and the model (4) is a linear polynomial. The values |ϕ′(r)/r| and |ϕ′′(r)| are bounded
because of r ∈ [0, Δub] and ϕ′(0) = 0. To exploit the nonlinear modeling capabilities of
RBF and perform exploration, there is a procedure in [34] to select additional (database)
points from within a region of maximum radius θ2Δub, θ2 ≥ θ1 ≥ 1, so that the values |ci|
stay bounded. Modifications for box constraints can be found in [41] ([Sec. 6.3.1]) and [43].

Table 1 shows the RBF we are using and of which order they are. Both the Gaussian
and the Multiquadric allow for fine-tuning with a shape parameter α > 0. This can
potentially improve the conditioning of the interpolation system.

Figure 1b illustrates the effect of the shape parameter. As can be seen, the radial
functions become narrower for larger shape parameters. Hence, we do not only use a
constant shape parameter α = 1 like [34] do, but we also use an α that is (within lower and
upper bounds) inversely proportional to Δ(t).

Figure 1a shows interpolation of a nonlinear function by a surrogate based on the
Multiquadric with a linear tail.

Figure 1. (a) Interpolation of a nonlinear function (black) by a Multiquadric surrogate (blue) based on 5 discrete training
points (orange). Dashed lines show the kernels and the polynomial tail. (b) Different kernels in 1D with varying shape
parameter (1 or 10), see also Table 1.

5. Descent Steps

In this section we introduce some possible steps s(t) to use in Algorithm 2. We begin by
defining the best step along the steepest descent direction as given by (Pm). Subsequently,
backtracking variants are defined that use a multiobjective variant of Armijo’s rule.

5.1. Pareto–Cauchy Step

Both the Pareto–Cauchy point as well as a backtracking variant, the modified Pareto–
Cauchy point, are points along the descent direction d

(t)
m within B(t) so that a sufficient

decrease measured by Φ(t)
m (•) and ω

(t)
m (•) is achieved. Under mild assumptions we can

then derive a decrease in terms of ω(•).
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Definition 6. For t ∈ N0 let d
(t)
m be a minimizer for (Pm). The best attainable trial point x

(t)
PC

along d
(t)
m is called the Pareto–Cauchy point and given by

x
(t)
PC := x(t) + σ(t) · d(t)

m ,

σ(t) = arg min
0≤σ

Φ(t)
m

(
x(t) + σ · d(t)

m

)
s.t. x

(t)
PC ∈ B(t).

(5)

Let σ(t) be the minimizer in (5). We call s
(t)
PC := σ(t)d

(t)
m the Pareto–Cauchy step.

If we make the following standard assumption, then the Pareto–Cauchy point allows
for a lower bound on the improvement in terms of Φ(t)

m .

Assumption 2. For all t ∈ N0 the surrogates m(t)(x) = [m(t)
1 (x), . . . , m(t)

k (x)]T are twice

continuously differentiable on an open set containing X . Denote by Hm(t)
� (x) the Hessian of m(t)

�
for � = 1, . . . , k.

Theorem 4. If Assumptions 1 and 2 are satisfied, then for any iterate x(t) the Pareto–Cauchy point
x
(t)
PC satisfies

Φ(t)
m (x(t))−Φ(t)

m (x
(t)
PC) ≥

1
2

ω
(t)
m

(
x(t)

)
·min

⎧⎨⎩ω
(t)
m

(
x(t)

)
cH(t)

m

, Δ(t), 1

⎫⎬⎭, (6)

where
H(t)

m = max
�=1,...,k

max
x∈B(t)

∥∥∥Hm(t)
� (x)

∥∥∥
F

(7)

and the constant c > 0 relates the trust region norm ‖•‖ to the Euclidean norm ‖•‖2 via

‖x‖2 ≤
√

c‖x‖ ∀x ∈ Rn. (8)

If ‖•‖ = ‖•‖∞ is used, then c can be chosen as c = k. The proof for Theorem 4 is
provided after the next auxiliary lemma.

Lemma 2. Under Assumptions 1 and 2, let d be a non-increasing direction at x(t) ∈ Rn for
m(t), i.e., 〈

∇m(t)
� (x(t)), d

〉
≤ 0 ∀� = 1, . . . , k.

Let q ∈ {1, . . . , k} be any objective index and σ̄ ≥ min
{

Δ(t), ‖d‖
}

. Then it holds that

m(t)
q (x(t))− min

0<σ<σ̄
m(t)

q

(
x(t) + σ

d

‖d‖

)
≥ w

2
min

{
w

‖d‖2cH(t)
m

,
Δ(t)

‖d‖ , 1

}
,

where we have used the shorthand notation

w = − max
�=1,...,k

〈
∇m(t)

� (x(t)), d
〉
≥ 0.

Lemma 2 states that a minimizer along any non-increasing direction d achieves a
minimum reduction w.r.t. Φ(t)

m . Similar results can be found in in [30] or [33]. But since
we do not use polynomial surrogates m(t), we have to employ the multivariate version
of Taylor’s theorem to make the proof work. We can do this because according to Assump-
tion 2, the functions m(t)

q , q ∈ {1, . . . , k} are twice continuously differentiable in an open
domain containing X . Moreover, Assumption 1 ensures that the function is defined on the
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line from χ to x. As shown in [44] (Ch. 3) a first degree expansion at x ∈ B(χ, Δ) around
χ ∈ X then leads to

m(t)
q (x) = mq(χ) +∇m(t)

q (χ)Th +
1
2

hT Hm(t)
q (ξq)h, with h = (x− χ),

for some ξq ∈ {x + θ(χ− x) : θ ∈ [0, 1]}, for all q = 1, . . . , k.
(9)

Proof of Lemma 2. Let the requirements of Lemma 2 hold and let d be a non-increasing
direction for m(t). Then:

m(t)
q (x(t))− min

0<σ<σ̄
m(t)

q

(
x(t) + σ

d

‖d‖

)
= max

0≤σ≤σ̄

{
m(t)

q (x(t))−m(t)
q

(
x(t) + σ

d

‖d‖

)}
(9)
= max

0≤σ≤σ̄

{
m(t)

q (x(t))−
(

m(t)
q (x(t)) +

σ

‖d‖ 〈∇m(t)
q (x(t)), d〉+ σ2

2‖d‖2 〈d, Hm(t)
q (ξq)d〉

)}

≥ max
0≤σ≤σ̄

{
− σ

‖d‖ max
j=1,...,k

〈∇m(t)
j (x(t)), d〉 − σ2

2‖d‖2 〈d, Hm(t)
q (ξq)d〉

}
.

We use the shorthand w = −maxj〈∇m(t)
j (x(t)), d〉 and the Cauchy–Schwartz inequality to

get

. . . ≥ max
0≤σ≤σ̄

{
σ

‖d‖w− σ2

2‖d‖2 ‖d‖2
2

∥∥∥Hm(t)
q (ξ)

∥∥∥
F

}
(8),(7)
≥ max

0≤σ≤σ̄

{
σ

‖d‖w− σ2

2
cH(t)

m

}
.

The RHS is concave and we can thus easily determine the global maximizer σ∗.
Similar to [30] (Lemma 4.1) we find

m(t)
q (x(t))− min

0<σ<σ̄
m(t)

q

(
x(t) + σ

d

‖d‖

)
≥ w

2
min

{
w

‖d‖2cH(t)
m

,
Δ(t)

‖d‖ , 1

}
,

where we have additionally used σ̄ ≥ min{Δ(t), 1}.

Proof of Theorem 4. If x(t) is Pareto critical for (MOPm), then d
(t)
m = 0 and ω

(t)
m

(
x(t)

)
= 0

and the inequality holds trivially.
Else, let the indices �, q ∈ {1, . . . , k} be such that

Φ(t)
m (x(t))−Φ(t)

m (x
(t)
PC) = m(t)

� (x(t))−m(t)
q (x

(t)
PC) ≥ mq(x

(t))−mq(x
(t)
PC)

and define

σ̄ :=

{
min

{
Δ(t),

∥∥∥d
(t)
m

∥∥∥} if
∥∥∥d

(t)
m

∥∥∥ < 1 or Δ(t) ≤ 1,

Δ(t) else.
(10)

Then clearly σ̄ ≥ min
{

Δ(t),
∥∥∥d

(t)
m

∥∥∥} and for the Pareto–Cauchy point we have

m(t)
q

(
x
(t)
PC

)
= min

0≤σ≤σ̄
mq

⎛⎝x(t) +
σ∥∥∥d
(t)
m

∥∥∥d
(t)
m

⎞⎠.

From Lemma 2 and
∥∥∥d

(t)
m

∥∥∥ the bound (6) immediately follows.
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Remark 4. Some authors define the Pareto–Cauchy point as the actual minimizer x
(t)
min of Φ(t)

m
within the current trust region (instead of the minimizer along the steepest descent direction). For
this true minimizer the same bound (6) holds. This is due to

Φ(t)
m (x(t))−Φ(t)

m (x
(t)
min) = m�(x

(t))− min
x∈B(t)

mq(x) ≥ mq(x
(t))−mq(x

(t)
PC).

5.2. Modified Pareto–Cauchy Point via Backtracking

A common approach in trust region methods is to find an approximate solution
to (5) within the current trust region. Usually a backtracking procedure similar to Armijo’s
inexact line-search is used for the Pareto–Cauchy subproblem, see [36] (Section 6.3) and [30].
Doing so, we can still guarantee a sufficient decrease.

Before we actually define the backtracking step along d
(t)
m , we derive a more general

lemma. It illustrates that backtracking along any suitable direction is well-defined.

Lemma 3. Suppose Assumptions 1 and 2 hold. For x(t) ∈ Rn, let d be a descent direction for m(t)

and let q ∈ {1, . . . , k} be any objective index and σ̄ > 0. Then, for any fixed constants a, b ∈ (0, 1)
there is an integer j ∈ N0 such that

Ψ
(

x(t) +
bjσ̄

‖d‖d

)
≤ Ψ(x(t))− abjσ̄

‖d‖ w (11)

where, again, we have used the shorthand notation w = −max�=1,...,k

〈
∇m(t)

� (x(t)), d
〉
> 0 and

Ψ is either some specific model, Ψ = m�, or the maximum value, Ψ = Φ(t)
m .

Moreover, if we define the step s(t) = bj σ̄
‖d‖d for the smallest j ∈ N0 satisfying (11), then there is a

constant κsd
m ∈ (0, 1) such that

Ψ(x(t))−Ψ
(

x(t) + s(t)
)
≥ κsd

m w min

{
w

‖d‖2cH(t)
m

,
σ̄

‖d‖

}
. (12)

Proof. The first part can be derived from the fact that d is a descent direction, see e.g., [6].
However, we will use the approach from [30] to also derive the bound (12). With Taylor’s
Theorem we obtain

Ψ
(

x(t) +
bjσ̄

‖d‖d

)
= m�

(
x(t) +

bjσ̄

‖d‖d

)
(for some � ∈ {1, . . . , k})

= m(t)
� (x(t)) +

bjσ̄

‖d‖ 〈∇m(t)
� (x(t)), d〉+ (bjσ̄)2

2‖d‖2 〈d, Hm(t)
� (ξ�)d〉

≤ Ψ(x(t)) + max
q=1,...,k

bjσ̄

‖d‖ 〈∇m(t)
q (x(t)), d〉+ max

q=1,...,k

(bjσ̄)2

2‖d‖2 〈d, Hm(t)
q (ξq)d〉

(Pm),(7)
≤ Ψ(x(t))− bjσ̄

‖d‖w +
(bjσ̄)2

2
cH(t)

m . (13)

In the last line, we have additionally used the Cauchy–Schwartz inequality.
For a constructive proof, suppose now that (11) is violated for some j ∈ N0, i.e.,

Ψ
(

x(t) +
bjσ̄

‖d‖d

)
> Ψ(x(t))− abjσ̄

‖d‖ w.

Plugging in (13) for the LHS and substracting Ψ(x(t)) then leads to

bj >
2(1− a)w

‖d‖σ̄cH(t)
m

,
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where the right hand side is positive and completely independent of j. Since b ∈ (0, 1),

there must be a j∗ ∈ N0, j∗ > j, for which bj∗ ≤ 2(1− a)w

‖d‖σ̄cH(t)
m

so that (11) must also be fulfilled

for this bj∗ .
Analogous to the proof of [30] ([Lemma 4.2]) we can now derive the constant κsd

m
from (12) as κsd

m = min{2b(1− a), a}.

Lemma 3 applies naturally to the step along d
(t)
m :

Definition 7. For x(t) ∈ B(t) let d
(t)
m be a solution to (Pm) and define the modified Pareto–

Cauchy step as

s̃
(t)
PC := bjσ̄

d
(t)
m∥∥∥d
(t)
m

∥∥∥ ,

where again σ̄ as in (10) and j ∈ N0 is the smallest integer that satisfies

Φ(t)
m (x(t) + s̃

(t)
PC) ≤ Φ(t)

m (x(t))− abjσ̄∥∥∥d
(t)
m

∥∥∥ω
(t)
m

(
x(t)

)
(14)

for predefined constants a, b ∈ (0, 1).

The definition of σ̄ ensures, that x(t) + s̃
(t)
PC is contained in the current trust region B(t).

Furthermore, these steps provide a sufficient decrease very similar to (6):

Corollary 1. Suppose Assumptions 1 and 2 hold. For the step s̃
(t)
PC the following statements

are true:

1. A j ∈ N0 as in (14) exists.

2. There is a constant κsd
m ∈ (0, 1) such that the modified Pareto–Cauchy step s̃

(t)
PC satisfies

Φ(t)
m (x(t))−Φ(t)

m (x(t) + s̃
(t)
PC) ≥ κsd

m ω
(t)
m

(
x(t)

)
min

⎧⎨⎩ω
(t)
m

(
x(t)

)
cH(t)

m

, Δ(t), 1

⎫⎬⎭.

Proof. If x(t) is critical, then the bound is trivial. Otherwise, the existence of a j satisfying
(14) follows from Lemma 3 for Ψ = Φ(t)

m . The lower bound on the decrease follows
immediately from σ̄ ≥ min

{∥∥∥d
(t)
m

∥∥∥, Δ(t)
}

.

From Lemma 3 it follows that the backtracking condition (14) can be modified to
explicitly require a decrease in every objective:

Definition 8. Let j ∈ N0 the smallest integer satisfying

min
�=1,...,k

⎧⎨⎩m(t)
� (x(t))−m(t)

�

⎛⎝x(t) + bjσ̄
d
(t)
m∥∥∥d
(t)
m

∥∥∥
⎞⎠⎫⎬⎭ ≥ abjσ̄∥∥∥d

(t)
m

∥∥∥ω
(t)
m

(
x(t)

)
.

We define the strict modified Pareto–Cauchy point as x̂
(t)
PC = x(t) + ŝ

(t)
PC and the corresponding

step as ŝ
(t)
PC = bjσ̄

d
(t)
m∥∥∥d
(t)
m

∥∥∥ .

Corollary 2. Suppose Assumptions 1 and 2 hold.
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1. The strict modified Pareto–Cauchy point exists, the backtracking is finite.
2. There is a constant κsd

m ∈ (0, 1) such that

min
�=1,...,k

{
m(t)

� (x(t))−m(t)
�

(
x̂
(t)
PC

)}
≥ κsd

m ω
(t)
m

(
x(t)

)
min

⎧⎨⎩ω
(t)
m

(
x(t)

)
cH(t)

m

, Δ(t), 1

⎫⎬⎭. (15)

Remark 5. In the preceding subsections, we have shown descent steps along the model steepest
descent direction. Similar to the single objective case we do not necessarily have to use the steep-
est descent direction and different step calculation methods are viable. For instance, Thomann
and Eichfelder [33] use the well-known Pascoletti–Serafini scalarization to treat the subproblem
(MOPm). We refer to their work and Appendix B to see how this method can be related to the
steepest descent direction.

5.3. Sufficient Decrease for the Original Problem

In the previous subsections, we have shown how to compute steps s(t) to achieve
a sufficient decrease in terms of Φ(t)

m and ω
(t)
m (•). For a descent step s(t) the bound is of

the form

Φ(t)
m (x(t))−Φ(t)

m (x(t) + s(t)) ≥ κsd
m ω

(t)
m

(
x(t)

)
min

⎧⎨⎩ω
(t)
m

(
x(t)

)
cH(t)

m

, Δ(t), 1

⎫⎬⎭, κsd
m ∈ (0, 1), (16)

and thereby very similar to the bounds for the scalar projected gradient trust region
method [36]. By introducing a slightly modified version of ω

(t)
m (•), we can transform (16)

into the bound used in [30,33].

Lemma 4. If π(t, x(t)) is a criticality measure for some multiobjective problem, then π̃(t, x(t)) =

min
{

1, π(t, x(t))
}

is also a criticality measure for the same problem.

Proof. We have 0 ≤ π̃(t, x(t)) ≤ π(t, x(t)). Thus, π̃ → 0 whenever π → 0. The minimum
of uniformly continuous functions is again uniformly continuous.

We next make another standard assumption on the class of surrogate models.

Assumption 3. The norm of all model hessians is uniformly bounded above on X , i.e., there is a
positive constant Hm such that∥∥∥Hm(t)

� (x)
∥∥∥

F
≤ Hm ∀� = 1, . . . , k, ∀x ∈ B(t), ∀t ∈ N0.

W.l.o.g., we assume
Hm · c > 1, with c as in (8). (17)

Remark 6. From this assumption it follows that the model gradients are then Lipschitz as well.
Together with Theorem 2, we then know that ω

(t)
m (•) is a criticality measure for (MOPm).

Motivated by the previous remark, we will from now on refer to the following functions

�(x) := min{ω(x), 1} and �
(t)
m (x) := min

{
ω
(t)
m (x), 1

}
∀t = 0, 1, . . . (18)

We can thereby derive the sufficient decrease condition in “standard form”:
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Corollary 3. Under Assumption 3, suppose that for x(t) and some descent step s(t) the bound (16)
holds. For the criticality measure �

(t)
m (•) it follows that

Φ(t)
m (x(t))−Φ(t)

m (x(t) + s(t)) ≥ κsd
m �

(t)
m

(
x(t)

)
min

⎧⎨⎩�
(t)
m

(
x(t)

)
cHm

, Δ(t)

⎫⎬⎭. (19)

Proof. �
(t)
m (•) is a criticality measure due to Assumption 3 and Lemma 4. Further, from (18)

and (17) it follows that
�
(t)
m

(
x(t)

)
cHm

≤ 1
cHm

≤ 1

and if we plug this into (16) we obtain (19).

To relate the RHS of (19) to the criticality ω(•) of the original problem, we require
another assumption.

Assumption 4. There is a constant κω > 0 such that∣∣∣ω(t)
m

(
x(t)

)
−ω

(
x(t)

)∣∣∣ ≤ κωω
(t)
m

(
x(t)

)
.

This assumption is also made by Thomann and Eichfelder [33] and can easily be
justified by using fully linear surrogate models and a bounded trust region radius in
combination with a criticality test, see Lemma 7.

Assumption 4 can be used to formulate the next two lemmata relating the model
criticality and the true criticality. They are proven in Appendix A.2. From these lemmata
and Corollary 3 the final result, Corollary 4, easily follows.

Lemma 5. If Assumption 4 holds, then it holds for �
(t)
m (•) and �(•) from (18) that∣∣∣�(t)

m

(
x(t)

)
−�

(
x(t)

)∣∣∣ ≤ κω�
(t)
m

(
x(t)

)
.

Lemma 6. From Assumption 4 it follows that

�
(t)
m

(
x(t)

)
≥ 1

κω + 1
�
(

x(t)
)

with (κω + 1)−1 ∈ (0, 1).

Corollary 4. Suppose that Assumptions 3 and 4 hold and that x(t) and s(t) satisfy (19). Then

Φ(t)
m (x(t))−Φ(t)

m (x(t) + s(t)) ≥ κsd�
(

x(t)
)

min

⎧⎨⎩�
(

x(t)
)

cHm
, Δ(t)

⎫⎬⎭, (20)

where κsd = κsd
m

1+κω
∈ (0, 1).

6. Convergence

6.1. Preliminary Assumptions and Definitions

To prove convergence of Algorithm 2 we first have to make sure that at least one of
the objectives is bounded from below. This is a weaker requirement than the standard
assumption that all objectives are bounded from below:

Assumption 5. The maximum max�=1,...,k f�(x) of all objective functions is bounded from below
on X .
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To be able to use �(•) as a criticality measure and to refer to fully linear models, we
further require:

Assumption 6. The objective f : Rn → Rk is continuously differentiable in an open domain
containing X and has a Lipschitz continuous gradient on X .

We summarize the assumptions on the surrogates as follows:

Assumption 7. The vector of surrogate model functions m(t)
1 , . . . , m(t)

k belongs to a collection of
fully linear classes as in Definition 4: For each objective objective index � = 1, . . . , k there are error
constants ε� so that ε̇� and m(t)

� can be made to satisfy the bounds in Definition 3.

For the subsequent analysis we define component-wise maximum constants as

ε := max
�=1,...,k

ε�, ε̇ := max
�=1,...,k

ε̇�. (21)

We also wish for the descent steps to fulfill a sufficient decrease condition for the
surrogate criticality measure as discussed in Section 5.

Assumption 8. For all t ∈ N0 the descent steps s(t) are assumed to fulfill both x(t) + s(t) ∈ B(t)

and (19).

Finally, to avoid a cluttered notation when dealing with subsequences we define the
following shorthand notations:

�
(t)
m := �

(t)
m

(
x(t)

)
, �(t) := �

(
x(t)

)
∀t ∈ N0.

6.2. Convergence Proof

In the following we prove convergence of Algorithm 2 to Pareto critical points. We
account for the case that no criticality test is used, i.e., εcrit = 0. We then require all
surrogates to be fully linear in each iteration and need Assumption 4. The proof is an
adapted version of the scalar case in [35].

It is also similar to the proofs for the multiobjective algorithms in [30,33]. However,
in both cases, no criticality test is employed, there is no distinction between successful and
acceptable iterations (ν+ = ν++) and interpolation at x(t) by the surrogates is required. We
indicate notable differences when appropriate.

We start with two results concerning the criticality test in Algorithm 2.

Lemma 7. For each iteration t ∈ N0 Assumption 4 is fulfilled if the model m(t) is fully-linear and
the criticality test was performed and—if applicable—Algorithm 1 has finished.

Proof. Let �, q ∈ {1, . . . , k} and d�, dq ∈ X − x(t) be solutions of (P1) and (Pm), respectively,
such that

ω
(t)
m

(
x(t)

)
= −〈∇m(t)

� (x(t)), d�〉, ω
(

x(t)
)
= −〈∇ fq(x

(t)), dq〉.

If ω
(t)
m

(
x(t)

)
≥ ω

(
x(t)

)
, then, using Cauchy–Schwartz and ‖d�‖ ≤ 1,∣∣∣ω(t)

m

(
x(t)

)
−ω

(
x(t)

)∣∣∣ = 〈∇ fq(x
(t)), dq〉 − 〈∇m(t)

� (x(t)), d�〉
df.
≤ 〈∇ fq(x

(t)), d�〉 − 〈∇m(t)
q (x(t)), d�〉

≤
∥∥∥∇ fq(x

(t))−∇m(t)
q (x(t))

∥∥∥
2
,
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and if ω
(t)
m

(
x(t)

)
< ω

(
x(t)

)
, we obtain∣∣∣ω(t)

m

(
x(t)

)
−ω

(
x(t)

)∣∣∣ ≤ ∥∥∥∇m(t)
� (x(t))−∇ f�(x(t))

∥∥∥
2
.

Because m(t) is fully linear, it follows that∣∣∣ω(t)
m

(
x(t)

)
−ω

(
x(t)

)∣∣∣ ≤ √cε̇Δ(t), with ε̇ from (21).

If we just left Algorithm 1, then the model is fully linear for Δ(t) due to Lemma 1 and
we have Δ(t) ≤ μ�

(t)
m

(
x(t)

)
≤ μω

(t)
m

(
x(t)

)
. If we otherwise did not enter Algorithm 1 in

the first place, it must hold that ω
(t)
m

(
x(t)

)
≥ εcrit and

Δ(t) ≤ Δub =
Δub

εcrit
εcrit ≤

Δub

εcrit
ω
(t)
m

(
x(t)

)
and thus∣∣∣ω(t)

m

(
x(t)

)
−ω

(
x(t)

)∣∣∣ ≤ κωω
(t)
m

(
x(t)

)
, κω =

√
cε̇ max

{
μ, ε−1

critΔ
ub
}
> 0.

In the subsequent analysis, we require mainly steps with fully linear models to achieve
sufficient decrease for the true problem. Due to Lemma 7, we can dispose of Assumption 4
by using the criticality routine:

Assumption 9. Either εcrit > 0 or Assumption 4 holds.

We have also implicitly shown the following property of the criticality measures.

Corollary 5. If m(t) is fully linear for f with ε̇ > 0 as in (21) then∣∣∣�(t)
m

(
x(t)

)
−�

(
x(t)

)∣∣∣ ≤ ∣∣∣ω(t)
m

(
x(t)

)
−ω

(
x(t)

)∣∣∣ ≤ √cε̇Δ(t).

Lemma 8. If x(t) is not critical for the true problem (MOP), i.e., �
(

x(t)
)
�= 0, then Algorithm 1

will terminate after a finite number of iterations.

Proof. At the start of Algorithm 1, we know that m(t) is not fully linear or Δ(t) >

μ�
(t)
m

(
x(t)

)
. For clarity, we denote the first model by m

(t)
0 and define Δ0 = Δ(t). We

then ensure that the model is made fully linear on Δ(t)
1 = Δ0 and denote this fully linear

model by m
(t)
1 . If afterwards Δ(t)

1 ≤ μ�
(t)
m1

(
x(t)

)
, then Algorithm 1 terminates.

Otherwise, the process is repeated: the radius is multiplied by α ∈ (0, 1) so that in the
j-th iteration we have Δ(t)

j = αj−1Δ0 and m
(t)
j is made fully linear on Δ(t)

j until

Δ(t)
j = αj−1Δ0 ≤ μ�

(t)
mj

(
x(t)

)
.

The only way for Algorithm 1 to loop infinitely is

�
(t)
mj

(
x(t)

)
<

αj−1Δ0

μ
∀j ∈ N. (22)
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Because m
(t)
j is fully linear on αj−1Δ0, we know from Corollary 5 that∣∣∣�(t)

mj

(
x(t)

)
−�

(
x(t)

)∣∣∣ ≤ √cε̇αj−1Δ0 ∀j ∈ N.

Using the triangle inequality together with (22) gives us∣∣∣�(
x(t)

)∣∣∣ ≤ ∣∣∣�(t)
mj

(
x(t)

)
−�

(
x(t)

)∣∣∣+ ∣∣∣�(t)
mj

(
x(t)

)∣∣∣ ≤ (
μ−1 +

√
cε

)
αj−1Δ0 ∀j ∈ N.

As α ∈ (0, 1), this implies �
(

x(t)
)
= 0 and x(t) is hence critical.

We next state another auxiliary lemma that we need for the convergence proof.

Lemma 9. Suppose Assumptions 6 and 7 hold. For the iterate x(t) let s(t) ∈ Rn be a any step with
x
(t)
+ = x(t) + s(t) ∈ B(t). If m(t) is fully linear on B(t) then it holds that∣∣∣Φ(x

(t)
+ )−Φ(t)

m (x
(t)
+ )

∣∣∣ ≤ ε
(

Δ(t)
)2

.

Proof. The proof follows from the definition of Φ and Φ(t)
m and the full linearity of m(t). It

can be found in [33] (Lemma 4.16).

Convergence of Algorithm 2 is proven by showing that in certain situations, the
iteration must be acceptable or successful as defined in Definition 5. This is done indirectly
and relies on the next two lemmata. They use the preceding result to show that in a
(hypothetical) situation where no Pareto critical point is approached, the trust region radius
must be bounded from below.

Lemma 10. Suppose Assumptions 1, 3 and 6 to 8 hold. If x(t) is not Pareto critical for (MOPm)
and m(t) is fully linear on B(t) and

Δ(t) ≤
κsd

m (1− ν++)�
(t)
m

(
x(t)

)
2λ

, where λ = max{ε, cHm} and κsd
m as in (19),

then the iteration is successful, that is, t ∈ S and Δt+1 ≥ Δ(t).

Proof. The proof is very similar to [35] (Lemma 5.3) and [33] (Lemma 4.17). In contrast to
the latter, we use the surrogate problem and do not require interpolation at x(t):

By definition we have κsd
m (1− ν++) < 1 and hence it follows from Assumptions 4 and

8 and Corollary 3 that

Δ(t) ≤
κsd

m (1− ν++)�
(t)
m

(
x(t)

)
2λ

(23)

≤ �
(t)
m

2λ
≤ �

(t)
m

2cHm
≤ �

(t)
m

cHm
.

With Assumption 8 we can plug this into (19) and obtain

Φ(t)
m (x(t))−Φ(t)

m (x
(t)
+ ) ≥ κsd

m �
(t)
m min

{
�
(t)
m

cHm
, Δ(t)

}
≥ κsd

m �
(t)
m Δ(t). (24)

228



Math. Comput. Appl. 2021, 26, 31

Due to Assumption 7 we can take Definition (3) and estimate

∣∣∣ρ(t) − 1
∣∣∣ = ∣∣∣∣∣Φ(x(t))−Φ(x

(t)
+ )− (Φ(t)

m (x(t))−Φ(t)
m (x

(t)
+ )

Φ(t)
m (x(t))−Φ(t)

m (x
(t)
+ )

∣∣∣∣∣
≤

∣∣∣Φ(x(t))−Φ(t)
m (x(t))

∣∣∣+ ∣∣∣Φ(t)
m (x

(t)
+ )−Φ(x

(t)
+ )

∣∣∣∣∣∣Φ(t)
m (x(t))−Φ(t)

m (x
(t)
+ )

∣∣∣
Lemma 9, (24)

≤
2ε

(
Δ(t)

)2

κsd
m �

(t)
m Δ(t)

≤ 2λΔ(t)

κsd
m �

(t)
m

(23)
≤ 1− ν++.

Therefore ρ(t) ≥ ν++ and the iteration t using step s(t) is successful.

The same statement can be made for the true problem and �(•):

Corollary 6. Suppose Assumptions 1, 3 and 6 to 9 hold. If x(t) is not Pareto critical for (MOP)
and m(t) is fully linear on B(t) and

Δ(t) ≤
κsd(1− ν++)�

(
x(t)

)
2λ

, where λ = max{ε, cHm}, κsd
m as in (20),

then the iteration is successful, that is t ∈ S and Δt+1 ≥ Δ(t).

Proof. The proof works exactly the same as for Lemma 10. But due to Assumption 9 we
can use Lemma 7 and employ the sufficient decrease condition (20) for �(•) instead.

As in [35] (Lemma 5.4) and [33] (Lemma 4.18), it is now easy to show that when no
Pareto critical point of (MOPm) is approached the trust region radius must be bounded:

Lemma 11. Suppose Assumptions 1, 3 and 6 to 8 hold and that there exists a constant �lb
m > 0

such that �
(t)
m

(
x(t)

)
≥ �lb

m for all t. Then there is a constant Δlb > 0 with

Δ(t) ≥ Δlb for all t ∈ N0.

Proof. We first investigate the criticality step and assume εcrit > �
(t)
m ≥ �lb

m. After we
finish the criticality loop, we get radius Δ(t) so that Δ(t) ≥ min{Δ(t)

∗ , β�
(t)
m } and therefore

Δ(t) ≥ min{β�lb
m, Δ(t)

∗ } for all t.
Outside the criticality step, we know from Lemma 10 that whenever Δ(t) falls below

Δ̃ :=
κsd

m (1− ν++)�lb
m

2λ
,

iteration t must be either model-improving or successful and hence Δ(t+1) ≥ Δ(t) and the
radius cannot decrease until Δ(k) > Δ̃ for some k > t. Because γ� ∈ (0, 1) is the severest
possible shrinking factor in Algorithm 2, we therefore know that Δ(t) can never be actively
shrunken to a value below γ�Δ̃.

Combining both bounds on Δ(t) results in

Δ(t) ≥ Δlb := min{β�lb
m, γ�Δ̃, Δ(0)

∗ } ∀t ∈ N0,

where we have again used the fact that Δ(t)
∗ cannot be reduced further if it is less than or

equal to Δ̃ due to the update mechanism in Algorithm 2.

We can now state the first convergence result:

229



Math. Comput. Appl. 2021, 26, 31

Theorem 5. Suppose that Assumptions 1, 3 and 6 to 8 hold. If Algorithm 2 has only a finite
number 0 ≤ |S| < ∞ of successful iterations S = {t ∈ N0 : ρ(t) ≥ ν++} then

lim
t→∞

�
(

x(t)
)
= 0.

Proof. If the criticality loop runs infinitely, then the result follows from Lemma 8.
Otherwise, let t0 any index larger than the last successful index (or t0 ≥ 0 if S = ∅).

All t ≥ t0 then must be model-improving, acceptable or inacceptable. In all cases, the trust
region radius Δ(t) is never increased. Due to Assumption 7, the number of successive
model-improvement steps is bounded above by M ∈ N. Hence, Δ(t) is decreased by a
factor of γ ∈ [γ�, γ↓] ⊆ (0, 1) at least once every M iterations. Thus,

∞

∑
t>t0

Δ(t) ≤ N
∞

∑
i=1

γi
↓Δ

(t0) =
Nγ↓

1− γ↓
Δ(t0),

and Δ(t) must go to zero for t → ∞.
Clearly, for any τ ≥ t0, the iterates (and trust region centers) x(τ) and x(t0) cannot be

further apart than the sum of all subsequent trust region radii, i.e.,∥∥∥x(τ) − x(t0)
∥∥∥ ≤ ∞

∑
t≥t0

Δ(t) ≤ Nγ↓
1− γ↓

Δ(t0).

The RHS goes to zero as we let t0 go to infinity and so must the norm on the LHS, i.e.,

lim
t0→∞

∥∥∥x(τ) − x(t0)
∥∥∥ = 0. (25)

Now let τ = τ(t0) ≥ t0 be the first iteration index so that m(τ) is fully linear. Then∣∣∣�(t0)
m

∣∣∣ ≤ ∣∣∣�(t0) −�(τ)
∣∣∣+ ∣∣∣�(τ) −�

(τ)
m

∣∣∣+ ∣∣∣�(τ)
m

∣∣∣
and for the terms on the right and for t0 → ∞, we find:

• Because of Assumptions 1 and 6 and Theorem 2 �(•) is Cauchy-continuous and with
(25) the first term goes to zero.

• Due to Corollary 5 the second term is in O(Δ(τ)) and goes to zero.

• Suppose the third term does not go to zero as well, i.e., {�
(t)
m

(
x(τ)

)
} is bounded

below by a positive constant. Due to Assumptions 1 and 7 the iterates x(τ) are not
Pareto critical for (MOPm) and because of Δ(τ) → 0 and Lemma 10 there would be a
successful iteration, a contradiction. Thus the third term must go to zero as well.

We conclude that the left side, �
(

x(t0)
)

, goes to zero as well for t0 → ∞.

We now address the case of infinitely many successful iterations, first for the surrogate
measure �

(t)
m (•) and then for �(•). We show that the criticality measures are not bounded

away from zero.
We start with the observation that in any case the trust region radius converges to zero:

Lemma 12. If Assumptions 1, 3 and 6 to 8 hold, then the subsequence of trust region radii generated
by Algorithm 2 goes to zero, i.e., limt→∞ Δ(t) = 0.

Proof. We have shown in the proof of Theorem 5 that this is the case for finitely many
successful iterations.
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Suppose there are infinitely many successful iterations. Take any successful index
t ∈ S . Then ρ(t) ≥ ν++ and from Assumption 8 it follows for x(t+1) = x

(t)
+ = x(t) + s(t) that

Φ(x(t))−Φ(x
(t)
+ ) ≥ ν++

(
Φ(t)

m (x(t))−Φ(t)
m (x

(t)
+ )

)(19)
≥ ν++κsd

m �
(t)
m min

{
�
(t)
m

cHm
, Δ(t)

}
.

The criticality step ensures that �
(t)
m ≥ min

{
εcrit,

Δ(t)

μ

}
so that

Φ(x(t))−Φ(x
(t)
+ ) ≥ ν++κsd

m min

{
εcrit,

Δ(t)

μ

}
min

{
Δ(t)

μcHm
, Δ(t)

}
≥ 0. (26)

Now the right hand side has to go to zero: Suppose it was bounded below by a
positive constant ε > 0. We could then compute a lower bound on the improvement from
the first iteration with index 0 up to t + 1 by summation

Φ(x(0))−Φ(x(t+1)) ≥ ∑
τ∈St

Φ(x(τ))−Φ(x(τ+1)) ≥ |St|ε

where St = S ∩ {0, . . . , t} are all successful indices with a maximum index of t. Because S
is unbounded, the right side diverges for t → ∞ and so must the left side in contradiction
to Φ being bounded below by Assumption 5. From (26) we see that this implies Δ(t) → 0
for t ∈ S , t → ∞.

Now consider any sequence T ⊆ N of indices that are not necessarily successful, i.e.,
|T \ S| ≥ 0. The radius is only ever increased in successful iterations and at most by a
factor of γ↑. Since S is unbounded, there is for any τ ∈ T a largest tτ ∈ S with tτ ≤ τ.
Then Δ(τ) ≤ γ↑Δ(tτ) and because of Δ(tτ) → 0 it follows that

lim
τ∈T ,
τ→∞

Δ(τ) = 0,

which concludes the proof.

Lemma 13. Suppose Assumptions 1, 3 and 5 to 8 hold. For the iterates produced by Algorithm 2
it holds that

lim inf
t→∞

�
(t)
m

(
x(t)

)
= 0.

Proof. For a contradiction, suppose that lim inft→∞ �
(t)
m

(
x(t)

)
�= 0. Then there is a constant

�lb
m > 0 with �

(t)
m ≥ �lb

m for all t ∈ N0. According to Lemma 11, there exists a constant
Δlb > 0 with Δ(t) ≥ Δlb for all t. This contradicts Lemma 12.

The next result allows us to transfer the result to �(•).

Lemma 14. Suppose Assumptions 1, 6 and 7 hold. For any subsequence {ti}i∈N ⊆ N0 of iteration
indices of Algorithm 2 with

lim
i→∞

�
(ti)
m

(
x(ti)

)
= 0, (27)

it also holds that
lim
i→∞

�
(

x(ti)
)
= 0. (28)

Proof. By (27), �
(ti)
m < εcrit for sufficiently large i. If x(ti) is critical for (MOP), then the

result follows from Lemma 8. Otherwise, m(ti) is fully linear on B
(

x(ti); Δ(ti)
)

for some

Δ(ti) ≤ μ�
(ti)
m . From Corollary 5 it follows that∣∣∣�(ti)

m −�(ti)
∣∣∣ ≤ √cε̇Δ(ti) ≤

√
cε̇μ�

(ti)
m .
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The triangle inequality yields

�(ti) ≤
∣∣∣�(ti) −�

(ti)
m

∣∣∣+ �
(ti)
m ≤ (

√
cε̇μ + 1)�(ti)

m

for sufficiently large i and (27) then implies (28).

The next global convergence result immediately follows from Theorem 5 and Lemmas
13 and 14:

Theorem 6. Suppose Assumptions 1, 3 and 5 to 8 hold. Then lim inft→∞ �
(

x(t)
)
= 0.

This shows that if the iterates are bounded, then there is a subsequence of iterates in
Rn approximating a Pareto critical point. We next show that all limit points of a sequence
generated by Algorithm 2 are Pareto critical.

Theorem 7. Suppose Assumptions 1 and 3 to 8 hold. Then limt→∞ �
(

x(t)
)
= 0.

Proof. We have already proven the result for finitely many successful iterations, see
Theorem 5. We thus suppose that S is unbounded.

For the purpose of establishing a contradiction, suppose that there exists a sequence{
tj
}

j∈N of indices that are successful or acceptable with

�(tj) ≥ 2ε > 0 for some ε > 0 and all j. (29)

We can ignore model-improving and inacceptable iterations: During those the iter-
ate does not change, and we find a larger acceptable or successful index with the same
criticality value.

From Theorem 6 we obtain that for every such tj, there exists a first index τj > tj such

that �
(

x(τj)
)
< ε. We thus find another subsequence indexed by {τj} such that

�(t) ≥ ε for tj ≤ t < τj and �(τj) < ε. (30)

Using (29) and (30), it also follows from a triangle inequality that∣∣∣�(tj) −�(τj)
∣∣∣ ≥ �(tj) −�(τj) > 2ε− ε = ε ∀j ∈ N. (31)

With {tj} and {τj} as in (30), define the following subset set of indices

T =
{

t ∈ N0 : ∃j ∈ N such that tj ≤ t < τj
}

.

By (30) we have �(t) ≥ ε for t ∈ T , and due to Lemma 14, we also know that then
�
(t)
m cannot go to zero neither, i.e., there is some εm > 0 such that

�
(t)
m ≥ εm > 0 ∀t ∈ T .

From Lemma 12 we know that Δ(t) t→∞−−→ 0 so that by Corollary 6, any sufficiently
large t ∈ T must be either successful or model-improving (if m(t) is not fully linear). For
t ∈ T ∩ S , it follows from Assumption 8 that

Φ(x(t))−Φ(x(t+1)) ≥ ν++

(
Φm(x(t))−Φm(x(t+1))

)
≥ ν++κsd

m εm min
{

εm

cHm
, Δ(t)

}
≥ 0.
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If t ∈ T ∩ S is sufficiently large, we have Δ(t) ≤ εm

cHm
and

Δ(t) ≤ 1
ν++κsd

m εm

(
Φ(x(t))−Φ(x(t+1))

)
.

Since the iteration is either successful or model-improving for sufficiently large t ∈ T ,
and since x(t) = x(t+1) for a model-improving iteration, we deduce from the previous
inequality that

∥∥∥x(tj) − x(τj)
∥∥∥ ≤ τj−1

∑
t=tj ,

t∈T ∩S

∥∥∥x(t) − x(t+1)
∥∥∥ ≤ τj−1

∑
t=tj ,

t∈T ∩S

Δ(t) ≤ 1
ν++κsd

m εm

(
Φ(x(tj))−Φ(x(τj))

)

for j ∈ N sufficiently large. The sequence
{

Φ(x(t))
}

t∈N0
is bounded below (Assumption 5)

and monotonically decreasing by construction. Hence, the RHS above must converge to
zero for j → ∞. This implies limj→∞

∥∥∥x(tj) − x(τj)
∥∥∥ = 0.

Because of Assumptions 1 and 6, �(•) is uniformly continuous so that then

lim
j→∞

�
(

x(tj)
)
−�

(
x(τj)

)
= 0,

which is a contradiction to (31). Thus, no subsequence of acceptable or successful indices
as in (29) can exist.

7. Numerical Examples

In this section we provide some more details on the actual implementation of Algo-
rithm 2 and present the results of various experiments. We compare different surrogate
model types with regard to their efficacy (in terms of expensive objective evaluations) and
their ability to find Pareto critical points.

7.1. Implementation Details

We implemented the framework in the Julia language (the code is available under
https://github.com/manuelbb-upb/Morbit.jl, accessed on 15 April 2021) and used the
surrogate construction algorithms from Sections 4.2 and 4.3. Concerning the RBF models,
the algorithms are thus the same as in [41]. The OSQP solver [45] is used to solve (Pm). For
non-linear problems we use the NLopt.jl [46] package. More specifically we use the MMA
algorithm [47] in conjunction with DynamicPolynomials.jl [48] to construct the Lagrange
polynomials. The Pascoletti–Serafini subproblems is solved using the population based
ISRES method [49] with MMA for polishing. The derivatives of cheap objective functions are
obtained by means of automatic differentiation [50] and Taylor models use FiniteDiff.jl.

In accordance with Algorithm 2, we perform the shrinking trust region update via

Δ(t+1) ←
{

γ�Δ(t) if ρ(t) < ν+,
γ↓Δ(t) if ρ(t) < ν++.

Note that for box-constrained problems we internally scale the feasible set to the unit
hypercube [0, 1]n and all radii are measured with regard to this scaled domain.

For stopping, we use a disjunction of different criteria:

• We have an upper bound Nit. ∈ N on the maximum number of iterations and an upper
bound Nexp. ∈ N on the number of expensive objective evaluations.
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• The surrogate criticality naturally allows for a stopping test and due to Lemma 11 the
trust region radius can also be used (see also [33] [Sec. 5]). We combine this with a
relative tolerance test and stop if

Δ(t) ≤ Δmin OR
(

Δ(t) ≤ Δcrit AND ω
(

x(t)
)
≤ ωmin

)
.

• At a truly critical point the criticality loop Algorithm 1 runs infinitely. We stop after a
maximum number Nloops ∈ N0 of iterations.

• We also employ the common relative stopping criteria∥∥∥x(t) − x(t+1)
∥∥∥

∞
≤ δx

∥∥∥x(t)
∥∥∥

∞
and∥∥∥f(x(t))− f(x(t+1))

∥∥∥
∞
≤ δ f

∥∥∥f(x(t))
∥∥∥

∞

to provoke early stopping.

7.2. A First Example

We ran our method on a multitude of academic test problems with a varying number
of decision variables n and objective functions k. We were able to approximate Pareto
critical points in both cases, if we treat the problems as heterogeneous and if we declare
them as expensive. We benchmarked RBF against polynomial models, because in [33] it was
shown that a trust region method using second degree Lagrange polynomials outperforms
commercial solvers on scalarized problems. Most often, RBF surrogates outperform other
model types with regard to the number of expensive function evaluations.

This is illustrated in Figure 2. It shows two runs of Algorithm 2 on the non-convex
problem (T6), taken from [38]:

min
x∈X

[
x1 + ln(x1) + x2

2,
x2

1 + x4
2

]
, X = [ε, 30]× [0, 30] ⊆ R2, ε = 10−12. (T6)

Figure 2. Two runs with maximum number of expensive evaluations set to 20 (soft limit). Test points are light-gray,
the iterates are black, final iterate is red, white markers show other points where the objectives are evaluated. The successive
trust regions are also shown. (a) Using Radial Basis Function (RBF) surrogate models we converge to the optimum using
only 12 expensive evaluations. (b) Quadratic Lagrange models do not reach the optimum using 19 evaluations. (c) Iterations
and test points in the objective space.
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The first objective function is treated as expensive while the second is cheap. In con-
trast to most other MOPs, there is only one solution and this Pareto optimal point is [ε, 0]T .
When we set a very restrictive limit of Nexp. = 20 then we run out of budget with second
degree Lagrange surrogates before we reach the optimum, see Figure 2b. As evident
in Figure 2a, surrogates based on (cubic) RBF do require significantly less training data.
For the RBF models the algorithm stopped after two critical loops and the model refinement
during these loops is made clear by the samples on the problem boundary converging to
zero. The complete set of relevant parameters for the test runs is given in Table 2. We used
a strict acceptance test and the strict Pareto–Cauchy step.

Table 2. Parameters for Figure 2, radii relative to [0, 1]n.

Param. εcrit Nexp. Nloops μ β Δub Δmin Δ(0) ν+ ν++ γ� γ↓ γ↑

Value 10−3 20 2 2× 103 103 0.5 10−3 0.1 0.1 0.4 0.51 0.75 2

7.3. Benchmarks on Scalable Test-Problems

To assess the performance with a growing number of decision variables n, we per-
formed tests on scalable problems of the ZDT and DTLZ family [51,52]. Figure 3 shows
results for the bi-objective problems ZDT1-ZDT3 and for the k-objective problems DTLZ1
and DTLZ6 (we used k = max{2, n− 4} objectives). All problems are box constrained.
Twelve feasible starting points (from the Halton sequence) were generated for each problem
setting, i.e., for each combination of n, a test problem and a descent method. The acceptance
test and the backtracking were strict.

Figure 3. Average number of expensive objective evaluations by number of decision variables n,
surrogate type and descent method. “SD” refers to steepest descent and “PS” to Pascoletti–Serafini.
“LP1” (orange) are linear Lagrange models, “LP2” (yellow) quadratic Lagrange models, “TP1” (blue)
are linear Taylor polynomials based on finite differences and “cubic” (black) refers to cubic RBF
models. Additionally the results for weighted sum runs are shown in green, using the COBYLA solver
and a single objective variant of the trust region framework, ORBIT.

In all cases the first objective was considered cheap and all other objectives expensive.
First and second degree Lagrange models were compared against linear Taylor models and
(cubic) RBF surrogates. The Lagrange models were built using a Λ-poised set, with Λ = 1.5.
In the case of quadratic models we used a precomputed set of points for n ≥ 6. The Taylor
models used finite differences and points outside of box constraints were simply projected
back onto the boundary. The RBF models were allowed to include up to (n + 1)(n + 2)/2
training points from the database if n ≤ 10 and else the maximum number of points was
2n + 1. Points were first selected from a box of radius θ1Δ(t) with θ1 = 2 and then from
a box of radius θ2Δub with θ2 = 2. All other parameters differing from the parameters in
Table 2 are listed in Table 3. The stopping parameters were chosen so as to exit early and
save evaluations.
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Table 3. Parameters for Figure 3, radii relative to [0, 1]n.

Parameter εcrit Nit. Nexp. Nloops Δcrit ωmin Δmin δx δ f ν+ ν++

Value 10−2 100 n× 103 3 10−2 10−3 10−6 10−3 10−3 0 0.1

As expected, the second degree Lagrange polynomials require the most objective
evaluations and the quadratic dependence on n is clearly visible in Figure 3, and the
quadratic growth of the dark-blue line continues for n ≥ 8. On average, the linear Lagrange
models perform better than the linear Taylor polynomials when using the steepest descent
steps—also in accordance with our expectations, because only n + 1 points are needed
for each model (versus 2n points). Most models—even the linear ones—profit from using
the Pascoletti–Serafini subproblems (see Appendix B) over the steepest descent steps.
By far the least evaluations (on average) are needed for the RBF models: The black line
consistently stays below all other data points. Note, that the RBF models likely appear
to perform slightly better with the steepest descent steps because of the early stopping.
In other experiments we noticed that RBF models with Pascoletti–Serafini steps can save
evaluations when more precise solutions are required.

For comparison, we also used the weighted sum approach with the single objective
∑� f� on each problem instance. We tested both the derivative-free COBYLA solver (de-
scribed in [53] and implemented by NLopt.jl) and the trust region method using steepest
descent and cubic RBF models, i.e., our own implementation of ORBIT [34]. Both solvers
were restricted to the same number of maximum function evaluations. In fact, ORBIT
was configured with the exact same parameters as in Table 3 and the relative stopping
tolerances for COBYLA were δx = δ f = 10−2. Although, COBYLA also uses linear models
it requires significantly more evaluations than most other algorithms. The results of the
ORBIT scalarization are more comparable to that of the multiobjective runs.

7.3.1. Solution Quality

Figure 4 illustrates that not only do RBF perform better on average, but also overall.
With regard to the final solution criticality, there are a few outliers mostly due to DTLZ1
(see also Figure 5). However, in most cases the solution criticality is acceptable, except for
the linear Lagrange models. Moreover, Figure 5 shows that a good percentage of problem
instances is solved with RBF, especially when compared to the other linear models. Note,
that in cases where the true objectives are not differentiable at the final iterate, ω was set
to 0 because the selected problems are non-differentiable only in Pareto optimal points.
In Figure 5 it also becomes apparent that the bi-objective DTLZ1 instances were the most
challenging for all algorithms. DTLZ1 has many local minima and it is likely to exit early
near such a local minimum due to repeated unsuccessful iterations. Likewise, ZDT3 is
“flat” towards the true Pareto Front so that it becomes hard to make progress there.

Figure 4. Box-plots of the number of evaluations and the solution criticality for n = 5 and n = 15 for
the runs from Figure 3. Outliers are not shown. “WS_C” and “WS_O” refer to the weighted sum
approach using COBYLA and ORBIT, respectively.
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Figure 5. Each group of bars shows the percentage of solved problem instances, i.e., test runs were
the final solution criticality has a value below 0.1. From left to right, the bars correspond to the
Trust Region Method (TRM) using linear Lagrange polynomials, the TRM with quadratic Lagrange
polynomials, TRM with linear Taylor polynomials, weighted sum with COBYLA, weighted sum with
ORBIT and TRM with cubic RBF. Per model and n-value there were 60 runs.

Besides criticality, another metric of interest is the spread of solutions for different start-
ing points. Figure 6 shows the final iterates when the algorithm is applied to the bi-objective
problems ZDT1 and ZDT2 for 10 different starting points. Additionally, the problems are
solved using the weighted sum approach with the derivative-free COBYLA solver. For each
starting point the optimizers were allowed 30 objective evaluations and no data were
re-used between runs.

Figure 6. Final iterates in objective space for the bi-objective problems ZDT1 and ZDT2 in 10 variables.
The weighted sum method (WS) is compared against the trust region method using steepest descent
(DS) and the Pascoletti–Serafini (PS) method.

As can bee seen, for these problems, the trust region method readily reaches the
critical set using only 30 evaluations. Here, the steepest descent direction tends to generate
solutions on the problem boundary when applied in such a global manner—with relatively
large trust region radii (Δ(0) = 0.1 and Δub = 0.5). Nonetheless, the method remains
applicable for local refinement of approximate solutions, e.g., after a coarse search for
good starting points using global methods or as a corrector in continuation frameworks.
The Pascoletti–Serafini step can be employed with different reference points/directions
to provide a better covering than both the steepest descent steps and the weighted sum
approach. For Figure 6, the points {[0,−10i], i = 1, . . . , 10} were used. The weighted sum
approach (with fixed weights) tends to produce clustered solutions. Especially for the
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non-convex problem ZDT2 only the boundary points of the true Pareto Front are reached,
as expected [1].

7.3.2. RBF Comparison

Furthermore, we compared the RBF kernels from Table 1. In [34], the cubic kernel
performs best on single-objective problems while the Gaussian does worst. As can be seen
in Figure 7 this holds for multiple objective functions, too: The Gaussian and the Multi-
quadric require more function evaluations than the Cubic, especially in higher dimensions.
If, however, we use a very simple adaptive strategy to fine-tune the shape parameter, then
both kernels can finish significantly faster. In both cases, the shape parameter was set to
α = 20/Δ(t) in each iteration. Nevertheless, the cubic function appears to be a good choice
in general.

Figure 7. Each group of bars shows the influence of a adaptive shape radius on the performance of
different RBF models (tested on ZDT3) for different decision space dimensions. From left to right
the bars correspond to the cubic RBF, the Gaussian—with constant shape factor 1 and with adaptive
shape factor 20/Δ(t)—and the Multiquadric—with shape factors 1 and 20/Δ(t).

8. Conclusions

We have developed a trust region framework for heterogeneous and expensive mul-
tiobjective optimization problems. It is based on similar work [29–31,33] and our main
contributions are the integration of constraints and of radial basis function surrogates.
Subsequently, our method is is provably convergent to first order critical points for un-
constrained problems and when the feasible set is convex and compact, while requiring
significantly less expensive function evaluations due to a linear scaling of model construc-
tion complexity with respect to the number of decision variables.

For future work, several modifications and extensions can likely be transferred from
the single-objective to the multiobjective case. For examples, the trust region update can be
made step-size-dependent (rather than to depend ρ(t) alone) to allow for a more precise
model refinement, see [36] ([Ch. 10]). We have also experimented with the nonlinear
CG method [9] for a multiobjective Steihaug–Toint step [36] ([Ch. 7]) and early results
look promising.

Going forward, we would like to apply our algorithm to a real world application, simi-
lar to what has been done in [54]. Moreover, it would be desirable to obtain not just one but
multiple Pareto critical solutions. Because the Pascoletti–Serafini scalarization is still com-
patible with constraints, the iterations can be guided in image space by providing different
global reference points. Furthermore, it is straightforward to use RBF with the heuristic
methods from [55] for heterogeneous problems. We believe that it should also be possible to
propagate multiple solutions and combine the TRM method with non-dominance testing as
has been done [31] and in [56]. One can think of other globalization strategies as well: RBF
models have been used in multiobjective Stochastic Search algorithms [57] and trust region
ideas have been included into population based strategies [26]. It will thus be interesting to
see whether the theoretical convergence properties can be maintained within these contexts
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by employing a careful trust-region management. Finally, re-using the data sampled near
the final iterate within a continuation framework like in [58] is a promising next step.

Supplementary Materials: Our Julia implementation of the solver is available online at https://
github.com/manuelbb-upb/Morbit.jl accessed on 15 April 2021.
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Appendix A. Miscellaneous Proofs

Appendix A.1. Continuity of the Constrained Optimal Value

In this subsection we show the continuity of ω(x) in the constrained case, where ω(x)
is the negative optimal value of (P1), i.e.,

ω(x) :=− min
d∈X−x

max
�=1,...,k

〈∇ f�(x), d〉,

s.t. ‖d‖ ≤ 1.

The proof of the continuity of ω(x), as stated in Theorem 1, follows the reasoning
from [6], where continuity is shown for a related constrained descent direction program.

Proof of Item 2 in Theorem 1. Let the requirements of Item 1 be fulfilled, i.e., let f be
continuously differentiable and let X ⊂ Rn be convex and compact. Further, let x be a
point in X and denote the minimizing direction in (P1) by d(x) and the optimal value by
θ(x). We show that θ(x) is continuous, by which ω(x) = −θ(x) is continuous as well.

First, note the following properties of the maximum function:

1. u !→ max� u� is positively homogenous and hence

max
�

(〈∇ f�(x), d1〉+ 〈∇ f�(x), d2〉) ≤ max
�
〈∇ f�(x), d1〉+ max

�
〈∇ f�(x), d2〉.

2. u !→ max� u� is Lipschitz with constant 1 so that∣∣∣∣max
�
〈∇ f�(x1), d1〉 −max

�
〈∇ f�(x2), d2〉

∣∣∣∣ ≤ ‖Df(x1)d1 −Df(x2)d2‖,

for both the maximum and the Euclidean norm.

Now let {x(t)} ⊆ X be a sequence with x(t) → x. Due to the constraints, we have that
d(x) ∈ X − x and thereby d(x) + x− x(t) ∈ X − x(t). Let

(0, 1] $ σ(t) :=

⎧⎪⎨⎪⎩min

{
1,

1∥∥d(x) + x− x(t)
∥∥
}

if d(x) �= x(t) − x,

1 else.

Then σ(t)
(

d(x) + x− x(t)
)

is feasible for (P1) at x(t):
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• σ(t)
(

d(x) + x− x(t)
)
∈ X − x(t) because X − x(t) is convex and 0,

(
d(x) + x− x(t)

)
∈

X − x(t) as well as σ(t) ∈ (0, 1].
•

∥∥∥σ(t)
(

d(x) + x− x(t)
)∥∥∥ ≤ 1 by the definition of σ(t).

By the definition of (P1) it follows that

max�〈∇ f�(x(t)), d(x(t))〉 ≤ σ(t) max�〈∇ f�(x(t)), d(x) + x− x(t)〉
and by the maximum property 1
max�〈∇ f�(x(t)), d(x(t))〉 ≤ σ(t) max�〈∇ f�(x(t)), d(x)〉+ σ(t) max�〈∇ f�(x(t)), x− x(t)〉.

(A1)
We make the following observations:

• Because of
∥∥∥d(x) + x− x(t)

∥∥∥ t→∞−−→ ‖d(x)‖ ≤ 1, it follows that σ(t) t→∞−−→ 1.

• Because all objective gradients are continuous, it holds for all � ∈ {1, . . . , k} that
∇ f�(x(t))→ ∇ f�(x) and because u !→ max� u� is continuous as well, it then follows
that

max
�
〈∇ f�(x(t)), d(x)〉 → max

�
〈∇ f�(x), d(x)〉 for t → ∞.

• The last term on the RHS of (A1) vanishes for t → ∞.

By taking the limit superior on (A1), we then find that

lim sup
t→∞

θ(x(t)) = lim sup
t→∞

max
�
〈∇ f�(x(t)), d(x(t))〉 ≤ max

�
〈∇ f�(x), d(x)〉 = θ(x) (A2)

Vice versa, we know that because of d(x(t)) ∈ X − x(t), it holds that d(x(t))+ x(t)− x ∈
X − x and as above we find that

max
�
〈∇ f�(x), d(x)〉 ≤ λ(t) max

�
〈∇ f�(x), d(x(t))〉+ λ(t) max

�
〈∇ f�(x), x(t) − x〉 (A3)

with

λ(t) :=

⎧⎪⎨⎪⎩min

{
1,

1∥∥d(x) + x(t) − x
∥∥
}

if d(x) �= x(t) − x,

1 else.

Again, the last term of (A3) vanishes in the limit so that by using the properties of the

maximum function and the continuity of ∇ f�, as well as λ(t) t→∞−−→ 1, in taking the limit
inferior on (A3) we find that

θ(x) = max�〈∇ f�(x), d(x)〉 ≤ lim inft→∞ max�〈∇ f�(x), d(x(t))〉
≤ lim inft→∞

[(
max�〈∇ f�(x), d(x(t))〉 −max�〈∇ f�(x(t)), d(x(t))〉

)
+ max�〈∇ f�(x(t)), d(x(t))〉

]
≤ lim inft→∞

[∥∥∥Df(x)−Df(x(t))
∥∥∥∥∥∥d(x(t))

∥∥∥+ max�〈∇ f�(x(t)), d(x(t))〉
]

≤ lim inft→∞ max�〈∇ f�(x(t)), d(x(t))〉 = lim inft→∞ θ(x(t)).
(A4)

Combining (A2) and (A4) shows that θ(x(t))
t→∞−−→ θ(x).

Theorem 2 claims that ω(x) is uniformly continuous, provided the objective gradients
are Lipschitz. The implied Cauchy continuity is an important property in the convergence
proof of the algorithm.

Proof of Theorem 2. We will consider the constrained case only, when X is convex and
compact and show uniform continuity a fortiori by proving that ω(•) is Lipschitz. Let the
objective gradients be Lipschitz continuous. Then Df is Lipschitz as well with constant
L > 0. Let x, y ∈ X with x �= y (the other case is trivial) and let again d(x), d(y) be the
respective optimizers.
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Suppose w.l.o.g. that∣∣∣∣max
�
〈∇ f�(x), d(x)〉 −max

�
〈∇ f�(y), d(y)〉

∣∣∣∣ = max
�
〈∇ f�(x), d(x)〉 −max

�
〈∇ f�(y), d(y)〉

If we define

(0, 1] $ σ :=

{
min

{
1, 1
‖d(y)+y−x‖

}
if d(y) �= x− y,

1 else,

then again σ(d(y) + y− x) is feasible for (P1) at y. Thus,

max�〈∇ f�(x), d(x)〉 −max�〈∇ f�(y), d(y)〉
df.
≤ max�〈∇ f�(x), σ(d(y) + y− x)〉 −max�〈∇ f�(y), d(y)〉
≤ ‖σDf(x)(d(y) + y− x)−Df(y)d(y)‖
σ≤1
≤ ‖σDf(x)−Df(y)‖‖d(y)‖+ ‖Df(x)‖‖x− y‖,

(A5)

where we have again used the maximum property 2 for the second inequality. We now
investigate the first term on the RHS. Using ‖d(y)‖ ≤ 1 and adding a zero, we find

‖σDf(x)−Df(y)‖‖d(y)‖ ≤ ‖Df(x)−Df(y)− (1− σ)Df(x)‖
≤ L‖x− y‖+ (1− σ)‖Df(x)‖.

(A6)

Furthermore, ‖d(y) + y− x‖ ≤ 1 + ‖y− x‖ implies 1/(1 + ‖y− x‖) ≤ σ and

1− σ ≤ 1− 1
1 + ‖y− x‖ =

‖y− x‖
1 + ‖y− x‖ ≤ ‖y− x‖.

We use this inequality and plug (A6) into (A5) to obtain

max
�
〈∇ f�(x), d(x)〉 −max

�
〈∇ f�(y), d(y)〉 ≤ L‖x− y‖+ 2‖Df(x)‖‖x− y‖

≤ (L + 2D)‖x− y‖,

with D = maxx∈X ‖Df(x)‖ which is well-defined because X is compact and ‖Df(•)‖ is
continuous.

Appendix A.2. Modified Criticality Measures

Proof of Lemma 5. There are two cases to consider:

• If ω
(t)
m

(
x(t)

)
≥ ω

(
x(t)

)
then∣∣∣ω(t)

m

(
x(t)

)
−ω

(
x(t)

)∣∣∣ = ω
(t)
m

(
x(t)

)
−ω

(
x(t)

)
≤ κωω

(t)
m

(
x(t)

)
.

Now

∣∣∣�(t)
m

(
x(t)

)
−�

(
x(t)

)∣∣∣ ∈
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ω
(t)
m

(
x(t)

)
−ω

(
x(t)

)
1−ω

(
x(t)

)
≤ ω

(t)
m

(
x(t)

)
−ω

(
x(t)

)
1− 1 = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ≤ κωω
(t)
m

(
x(t)

)
.

• The case ω
(

x(t)
)
< ω

(t)
m

(
x(t)

)
can be shown similarly.

Proof of Lemma 6. Use Lemma 5 and then investigate the two possible cases:
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• If �
(t)
m

(
x(t)

)
≥ �

(
x(t)

)
, then the first inequality follows because of 1 ≥ 1/(1 + κω).

• If �
(t)
m

(
x(t)

)
< �

(
x(t)

)
, then �

(
x(t)

)
−�

(t)
m

(
x(t)

)
≤ κω�

(t)
m

(
x(t)

)
, and again the first

inequality follows.

Appendix B. Pascoletti–Serafini Step

One example of an alternative descent step s(t) ∈ Rn is given in [33]. Thomann and
Eichfelder [33] leverage the Pascoletti–Serafini scalarization to define local subproblems
that guide the iterates towards the (local) model ideal point. To be precise, it is shown that
the trial point x

(t)
+ can be computed as the solution to

min
τ∈R,x∈B(t)

τ s.t. m(t)(x(t)) + τr(t) −m(t)(x) ≥ 0, (A7)

where r(t) = m(t)(x(t))− i
(t)
m ∈ Rk

≥0 is the direction vector pointing from the local model
ideal point

i
(t)
m =

[
i(t)1 , . . . , i(t)k

]T
, with i(t)� = min

x∈X
m(t)

� (x) for � = 1, . . . , k, (A8)

to the current iterate value. If the surrogates are linear or quadratic polynomials and the
trust region use a p-norm with p ∈ {1, 2, ∞} these sub-problems are linear or quadratic pro-
grams.

A convergence proof for the unconstrained case is given in [33]. It relies on a sufficient
decrease bound similar to (20). However, it is not shown that κsd ∈ (0, 1) exists independent
of the iteration index t but stated as an assumption.

Furthermore, constraints (in particular box constraints) are integrated into the defini-
tion of ω(•) and ω

(t)
m (•) using an active set strategy (see [38]). Consequently, both values

are no longer Cauchy continuous. We can remedy both drawbacks by relating the (possibly
constrained) Pascoletti–Serafini trial point to the strict modified Pareto–Cauchy point in
our projection framework. To this end, we allow in (A7) and (A8) any feasible set fulfilling
Assumption 1. Moreover, we recite the following assumption:

Assumption A1 (Assumption 4.10 in [33]). There is a constant r ∈ (0, 1] so that if x(t) is not

Pareto critical, the components r(t)1 , . . . , r(t)k , of r(t) satisfy
min� r(t)�

max� r(t)�

≥ r.

The assumption can be justified because r(t)� > 0 if x(t) is not critical and r(t)� can

be bounded above and below by expressions involving ω
(t)
m (•), see Remark 4 and [33]

(Lemma 4.9). We can then derive the following lemma:

Lemma A1. Suppose Assumptions 1 and 2 and Appendix B hold. Let (τ+, x
(t)
+ ) be the solution to

(A7). Then there exists a constant κ̃sd
m ∈ (0, 1) such that it holds

Φ(t)
m (x(t))−Φ(t)

m (x
(t)
+ ) ≥ κ̃sd

m ω
(t)
m

(
x(t)

)
min

⎧⎨⎩ω
(t)
m

(
x(t)

)
cH(t)

m

, Δ(t), 1

⎫⎬⎭.
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Proof. If x(t) is critical for (MOPm), then τ+ = 0 and x
(t)
+ = x(t) and the bound is trivial [5].

Otherwise, we can use the same argumentation as in [33] ([Lemma 4.13]) to show that for
the strict modified Pareto–Cauchy point x̂

(t)
PC it holds that

Φ(t)
m (x(t))−Φ(t)

m (x
(t)
+ ) ≥ r min

�

{
m(t)

� (x(t))−m(t)
� (x̂

(t)
PC)

}
and the final bound follows from Corollary 2 with the new constant κ̃sd

m = rκsd
m .
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Abstract: The decision-making process can be complex and underestimated, where mismanagement
could lead to poor results and excessive spending. This situation appears in highly complex multi-
criteria problems such as the project portfolio selection (PPS) problem. Therefore, a recommender
system becomes crucial to guide the solution search process. To our knowledge, most recommender
systems that use argumentation theory are not proposed for multi-criteria optimization problems.
Besides, most of the current recommender systems focused on PPS problems do not attempt to justify
their recommendations. This work studies the characterization of cognitive tasks involved in the
decision-aiding process to propose a framework for the Decision Aid Interactive Recommender
System (DAIRS). The proposed system focuses on a user-system interaction that guides the search
towards the best solution considering a decision-maker’s preferences. The developed framework
uses argumentation theory supported by argumentation schemes, dialogue games, proof standards,
and two state transition diagrams (STD) to generate and explain its recommendations to the user.
This work presents a prototype of DAIRS to evaluate the user experience on multiple real-life case
simulations through a usability measurement. The prototype and both STDs received a satisfying
score and mostly overall acceptance by the test users.

Keywords: decision making process; cognitive tasks; recommender system; project portfolio selection
problem; usability evaluation

1. Introduction

The decision-making process consists of selecting the best solution among a set of
possible alternatives, considering difficult and complicated decisions [1]. Finding effi-
cient strategies or techniques to aid this process is challenging due to the complexity of
the problems.

In decision-making processes, such as the solution of optimization problems, the
decision-maker (DM) is the person or group whose preferences are decisive for choos-
ing an adequate solution to problems with multiple objectives (which are sometimes
in conflict) and multiple efficient solutions [2]. The DM is the one who makes the fi-
nal decision and chooses the solution that seems more appropriate from the preferences
previously established.

There is a recent growing interest in using various techniques to incorporate the DM’s
preferences within a methodology, heuristic, or meta-heuristic to solve an optimization
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problem [3]. Among the different preference incorporation techniques available, using a
weight vector that defines the importance of each objective is one of the most commonly
used and accepted approaches.

The project portfolio selection (PPS) problem is a challenging optimization problem
that presents several conditions to consider. First, these problems are usually multi-
objective, searching for the best possible outcome for each objective. However, these
objectives usually face conflicts between them based on the constraints that the problem
sets. Second, the number of constraints that a PPS problem presents can make the decision-
making process difficult since many possible solutions within the solution search space
may not be feasible.

Usually, PPS problems define a limited number of resources to be distributed to
improve each of the objectives while considering a maximum and minimum threshold of
said resources for each of the elements defined in the constraints, limiting each objective’s
gain. Under these circumstances, it is most likely that it will not be possible to determine
an optimal single solution, but instead, a set of optimal solutions that define a balance
between the objectives of the problem and the DM’s preferences, identified by using
different strategies [4]. Therefore, it is crucial to select the most suitable solution that
reflects the preferences of the DM. Multi-criteria decision analysis (MCDA) methods are
among the most widely used tools for solving PPS problems because of their capacity to
handle complex problems with multiple objectives (usually in conflict) to satisfy [5].

A practical methodology to solve PPS problems is the decision support system (DSS),
which allows the DM to analyze a PPS problem under the current set of preferences and
facilitate the decision-making process. However, choosing the best solution is a complex
task because of the problem’s subjective nature and the DM’s preferences, which could be
specific to a person or group and might change during the solution process. An interactive
DSS allows the DM to show the best solutions based on the current preferences and receive
new information from the DM and update its search to adapt to changes. As the name
infers, this system can establish a user-system interaction during the solution process.

This paper proposes the Decision Aid Interactive Recommender System (DAIRS),
a multi-criteria DSS (MCDSS) framework that considers integrating cognitive tasks to the
user-system interaction. DAIRS is able to perform several tasks aiming to aid the DM
during the decision-making process, such as evaluating alternatives, interacting with the
DM, and recommending a solution while presenting arguments to justify this selection.
The most relevant and novel feature DAIRS provides is that it not only is able to obtain
information from the DM and adapt it to present an appropriate recommendation. This
proposal can also present new information to DM or defend its current recommendation.
In other words, DAIRS establishes a dialogue game with the user instead of only being a
system that receives information.

This paper addresses the characterization of cognitive tasks involved in the decision
support process and its integration in recommender systems to develop more robust DSS.
These systems should allow the precise analysis of possible solutions, provide solutions
that optimize the results, and at the same time, satisfy the preferences established by a
DM. DAIRS includes on its MCDSS framework different MCDA methods supported by
argumentation theory in the form of argumentation schemes and proof standards.

This proposal intends to present a recommender system that is able to provide a
bidirectional interaction. Both the user and system provide and obtain new information
based on the knowledge obtained during a dialogue. For this purpose, this work uses
concepts related to argumentation theory, which allow both participants (user and system)
to establish a well-structured dialogue.

DAIRS uses a bidirectional interaction under the assumption that the user will sat-
isfactorily carry out a decision-making process even without extensive knowledge of the
problem. DAIRS provides information to the DM through the dialogue game, seeking to
enhance and accelerate learning about the problem to aid in selecting a suitable solution.
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This work seeks to meet three main objectives. First, develop a recommender system,
called DAIRS, which suggests a solution to a multi-objective optimization problem (MOP),
precisely a PPS problem, with a deep interaction between the decision-maker (DM) and
the system. Second, this work seeks to simplify the DM interaction with the proposed
recommender system. Lastly, DAIRS endeavors to achieve high-level satisfaction of a
DM. For the last objective, this proposal seeks to validate the developed recommender
system, evaluating the effects of using argumentation theory and a bidirectional dialogue
concerning several properties related to the usability of an MCDSS.

The main contributions of this work, proposed to meet the above objectives, can be
summarized in three elements, whose originality is shown in Section 2 :

1. The development of an interactive MCDSS framework prototype, called DAIRS,
supported by argumentation theory to perform a study of the effects of the proposed
state transition diagrams (STDs), which regulates the flow of interaction with real
users when solving a real-life optimization problem. For this paper, this work focuses
on PPS problems.

2. The incorporation of argumentation schemes (reasoning patterns) and proof standards
(MCDA methods to compare solutions) in an interactive MCDSS to evaluate and
analyze their effects on the decision-making process.

3. The proposal, design, and implementation of two STDs, which determine the evolu-
tion of a dialogue game established between the DM and DAIRS.

The remaining part of this paper is structured as follows: Section 2 shows a brief
review of works related to the proposal in this paper. Section 3 presents the necessary
concepts on recommender systems employed in this work. Section 4 describes the proposed
methodology and the developed prototype. Section 5 presents the experimental design
and the results and analysis regarding the proposed prototype’s performance when used
to solve a test case study, which simulates a real-life scenario of a PPS problem. Finally,
Section 6 addresses conclusions regarding the usability and effectiveness of the proposal
and possible future work.

2. Related Work

This section reviews some of the most relevant works related to three topics in par-
ticular: (i) DSS frameworks used to solve PPS problems, (ii) interactive systems used for
optimization problems, and (iii) proposals that use the characterization of cognitive tools
to improve the interaction between the user and the recommender system.

2.1. DSS Frameworks Used to Solve PPS Problems

There are multiple DSS proposed focused on solving PPS problems. These works
consider different strategies to incorporate the preferences established by the DM and
select the most appropriate solution based on the current preference set or a preference
weight vector.

While the proposal presented on this paper focuses on the development of a system
that performs a project portfolio selection reflecting the DM’s preferences in the best
possible form and is able to interact with the user by entering in a dialogue, this bidirectional
interaction feature, to the best of the authors’ knowledge, has not been considered for
solving PPS problems. It is important to understand some of the most relevant approaches
to solve this problem.

Chu et al. [6] presents one of the first DSS proposed to solve PPS problems. Their
DSS presents an approach based on a cost/benefit model for research and development
(R&D) project management. Their work considers monetary and time cost, as well as the
probability of success of each project to determine the optimal sequence of R&D projects to
execute. The impact of each element when performing a selection of a solution is defined by
a pair of weight variables that allowed to define how relevant is for the user to save money
or time. More recently, Hummel et al. proposed a DSS framework based on the Measuring
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Attractiveness by a Categorical Based Evaluation Technique (MACBETH) approach [7] to
solve R&D project portfolio management problems interactively [8].

Archer and Ghasemzadeh [9] propose a framework to design decision support sys-
tems to solve PPS problems. In their work, they attempt to simplify the PPS process in
three main phases: strategic consideration, individual project evaluation, and portfolio
selection. At each phase the users are free to select the techniques that they find the most
suitable. This framework is used to develop a DSS named Project Analysis and Selection
System (PASS) [10] which is able to perform tasks such as data entry, pre-screening, project
evaluation, screening and optimization models without the involvement of the DM. PASS
is used to solve successfully solve a single-objective PSS problem.

DSS frameworks have proven to be suitable alternatives for solving multi-objective
PPS problems. Hu et al. [11] proposes a multi-criteria DSS (MCDSS) framework to solve
PPS problems implementing the Lean and Six Sigma concepts [12] and considering the
cost and benefit of each project. Their framework considers flexible weight vectors that can
be modified during the solution process and the output is a Pareto optimal portfolio set
which allows the DM to select the most adequate to their preferences.

Khalili-Damghani’s work [13] shows how flexible frameworks developed to solve
PPS problems can be. In this case, an evolutionary algorithm (EA) is combined with a data
envelope analysis model (DEA) to create the structure of a fuzzy rule-based (FRB) system
that measures the suitability of all available candidate project portfolios.

Mira et al. [14] evaluates the performance of a DSS framework by solving a real-life
simulation of a PPS problem and comparing the cumulative controlled risk value obtained
by the DSS with respect to the controlled risk value obtained by a manual-based portfolio
selection method. The results show a 10% improvement of the DSS framework over
manual-based selection.

Mohammed [15] proposes the use of various strategies to find appropriate solutions to
PPS problems within fuzzy environments. For this purpose, his work relies on the Analytic
Hierarchy Process (AHP) [16] and TOPSIS [17] adapted to work using fuzzy strategies,
which use a set of vectors of relative criteria weights. In this case, the used strategies
incorporate preferences in the decision-making process before the system proceeds to
generate a recommendation.

Recently, DSS frameworks have proven to be an adequate alternative to solve PPS
problems focused on sustainability. Dobrovolskiene and Tamosiuniene [18] propose inte-
grating the analysis of a sustainability index of each project within a Markowitz risk-return
scheme [19]. This incorporation aims to find better portfolios based on a risk-return as-
sessment that at the same time considers the DM’s responsibility towards the surrounding
environment with a long-term focus on the well-being of society.

Debnath et al. [20] propose a DSS framework supported by a hybrid multi-criteria
decision support method. This hybrid system combines strategies such as sensitivity
analysis with grey-based Decision-Making Trial and Evaluation Laboratory [21] and Multi-
Attributive Border Approximation area Comparison [22] to solve PPS problems focused on
the development, quality, and distribution of genetically modified agricultural products
considering sustainability under social, beneficial, and differential criteria.

Verdecho et al. [23] present another proposal focused on sustainability. In this case,
an AHP is used to solve a PPS problem related to supply chains, whose objectives are
focused on financial, environmental, and social sustainability. Their framework also seeks
to optimize supply-related processes and customer satisfaction.

2.2. Interactive Systems for Optimization Problems

A common scenario when using DSS frameworks to solve any optimization problem,
such as the PPS problem, is that while they present a solution based on preferences defined
by a DM, the next step in the decision-making process is not considered. This step consists
on determining the acceptance (or rejection) of the recommended solution by the DM,
as well as updating the DM’s preferences. The preferences of the DM may change during
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solution process. It must be considered that the DM may be a single agent or group whose
preferences are susceptible to social, political or economical-related changes surrounding
the problem to be solved. Therefore, it is desirable that the framework is able to adapt to a
new preferences.

For this situation, it is advisable to use an interactive process between the DM and
the recommender system for decision-making support. The proposal of this work focuses
on a bidirectional interaction. This feature is not present in the PPS problem nor in the
optimization problems mentioned in this subsection.

Miettinen et al. [24] present a study that focuses on solving multi-objective optimiza-
tion problems (MOPs) while using an interactive system that allows the system and the
user to exchange information. Their study mentions that there are three main stopping
criteria for these systems: the DM accepts the solution, the DM stops the process manually
or an algorithmic stopping criterion is reached. Also, according to their work and [25] the
interactive process can be divided in two phases. First, a learning phase where the DM
obtains knowledge regarding the problem. The second phase is the decision phase, where
the system identifies the most suitable solution according to the current information and
DM must accept or reject it.

The Flexible and Interactive Tradeoff method [26] is a proposed approach implemented
into a DSS to solve MOPs. This proposal considers that it is easier for the DM to compare
results from multiple alternatives based on a definition of strict preferences between
criteria rather than on indifference. This approach considers that the DM needs to establish
a preferential lexicographic order for all criteria.

The InDM2 algorithm [27] is a recent work that allows interaction between the DM
and the recommender system. The DM initially establishes a reference point which reflects
to reflect his/her preferences. During the solution process, InDM2 shows the user the best
candidate solutions it has found that match the current preferences. The DM is able to
accept the solutions obtained, wait for the system to provide new solutions or stop the
process at any time. InDM2 also allows the DM to update the current reference point or
propose a new one, allowing the system to obtain new information based on the DM’s
new preferences.

Azabi et al. [28] propose an interactive optimization framework supported by a low
fidelity flow resolver and an interactive Multi-objective Particle Swarm Optimization
(MOPSO) for the optimization of the aerodynamic shape design of aerial vehicle platforms.
As InDM2, the DM can incorporate preferences before and during the solution process. This
interaction allows their framework to define and update a region of interest, accelerating
the process. The results of their experiments show that the interactive MOPSO outperforms
a non-interactive MOPSO, proving that a constant user-system interaction can provide
better results.

There are also interactive framework proposals focused on solving PPS problems.
Strummer et al. [29] proposes an interactive framework using a strategy based on identify-
ing Pareto optimal solutions to determine a set of optimal portfolios to present to the DM.
The system first solves a PPS problem and presents the best solutions under the current
preferences and constraints defined by to the DM. The DM can then interact with the
system to determine its preference for a particular criterion or set new constraints.

A study in Nowak et al. [30] states that several frameworks presented in the literature
assume that the DM has a high-level knowledge of the problem, the methods used to
solve, and has a well-defined set of preferences. These assumptions are obviously not
always true. Therefore, the recommender system has to be as user-friendly as possible and
understand that the user might have little knowledge of the problem prior using the system.
Their study also notes a lack of consideration of dynamic elements, such as changes in
preferences or the problem environment. The authors propose a general structure for the
development of frameworks to solve PPS problems. This structure considers the criteria to
be evaluated, the data needed to evaluate the projects, an analysis and evaluation of the
projects, as well as the construction of project portfolios. The proposed structure also is
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capable of obtaining new information from the DM during each iteration, allowing the DSS
to adapt to every change and focusing their search towards the new preferences.

Interactive systems can use graphical visualization to support the decision-making
process of optimization problems. The work of Haara et al. [31] performs a study to
evaluate several interactive data visualization techniques to support the solution of multi-
objective forest planning problems. The DM uses visual elements to ease the process of
correctly identifying and defining his/her preferences. The authors mention that these
interactive systems can be used for proposal management problems. PPS problems are
management problems. Therefore, it possible to think that these proposals could work
successfully for PPS problems.

The Your Own Decision Aid (YODA) framework is an interactive recommender
system proposed in Kurttila et al. [32] to solve PPS problems. YODA focuses on working
with DMs composed of multiple people, where each user defines his/her preferences and
acceptable candidate projects. All available projects are separated in subsets based on
the level of group acceptance that each project has. The projects with the highest level of
acceptance will have priority when the system defines a candidate project portfolio. Each
user is able to update their preferences or define a project acceptance threshold to allow
rejected projects that are close enough to their acceptance standards to be considered to be
acceptable alternatives.

2.3. Characterization of Cognitive Tools to Improve User-System Interaction

The interactive process between the user and the DSS should not be limited to a
series of commands simulating a master-slave structure. The interaction requires the
characterization of cognitive tasks to become an entity that not only receives information
but also provides new knowledge of the problem to the user.

The problem of characterizing cognitive tasks in the decision support process has
been addressed using different approaches. Some representative works on providing
explanations to accompany a recommended solution in each interaction are shown in
this section. Some works, described below, are based on argumentation to model human
argumentation and dialogue processes. Their description includes limitations.

The proposals using artificial intelligence provide a recommendation by learning the
user preferences for particular products. They do not seek to recommend a solution for
an optimization problem. Instead, they use the AI methods to optimize the recommender
systems (e.g., identify similar users). Other related works use queries to obtain information
from the DM related to the currently presented solution, but they do not explain the
result [33].

Labreuche [34] describes how to use the argumentation theory to perform a pairwise
comparison between alternatives, using an MCDA method based on a weight vector. It
establishes four different situations, which involve two candidate solutions x and y and a
weight vector w for six different criteria representing the DM preferences. These situations
use pairwise evaluations based on criteria weights to present an argument in favor or
against the statement “x is preferred over y”.

Ouerdane [35] extends Labreuche’s work, presenting an approach to provide underly-
ing reasons for supporting an alternative selected by a recommendation system. For the
process of justification, the argumentation theory and decision support are combined with
an established language to enable communication. It also proposed a hierarchical structure
of argument schemes to decompose the decision process into steps whose underlying
premises are made explicit, allowing identifying when the dialogue should incorporate
the information into the dialogue with the DM. This structure has only been tested for a
low-dimensional choice problem (CHP), where the decision options are known from the
beginning. Said proposal analyzed the required elements to perform a dialogue game with
the user, not only to defend an established recommendation by the system but also to obtain
new preferences and statements provided by the DM. The new information obtained could
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change dialogue-related elements, leading the system to provide a new recommendation
if necessary.

The work presented in Cruz-Reyes et al. [36] proposes a framework design for gen-
erating DSSs focused on a PPS problem by characterizing arguments and dialogue using
argumentation theory and rough sets theory. The framework has a justification module for
the recommended solution shown to the user; the justification is supported by argument
schemes and decision rules generated with rough sets. The process starts by obtaining
available preferential information provided by the DM and selecting the appropriate multi-
criteria method to evaluate the available portfolios. After, it generates a recommendation
and its justification interactively. This work focuses more on the decision rules gener-
ated through rough sets. The argumentation theory is a complementing element of the
architectural design, and it is presented only in a conceptual form.

Sassoon et al. [37] use argumentation theory by using argumentation schemes within
a chatbot. Their chatbot establishes a dialogue between the user and a DSS focused on
medical consultation. It considers the user’s symptoms, medical history, and a list of
available treatments to recommend the most appropriate medication. This DSS can attempt
to justify its response through arguments. This system only considers current feasible
information and does not use the user’s preferences.

The studies conducted by Morveli-Espinoza et al. [38–40] focus on the solution of goal
selection problems. Their research uses artificial intelligence and argumentation semantics
to select goals that are not in conflict and produce the best results considering a set of
premises added before carrying out the solution process. The interface developed in their
study is able to answer the “Why?” and “Why not?” questions for each goal, generating
arguments based on the semantics used.

Recommender systems for e-commerce often rely on artificial intelligence (AI). The use
of advanced AI related methods allow the system to ease the user-system interaction and
recommend higher quality e-services and online products more closely related to the DM’s
preferences [33].

Recently, interactive DSS frameworks that accept arguments from the DM have been
proposed to solve PPS problems . Vayanos et al. [41] presents a framework that focuses
on obtaining the preferences of the DM before and during the solution of the problem.
The system generates a set of preferences based on a moderate number of queries presented
to the DM. Each query provides a pairwise comparisons between two solutions. The system
is based on weak-preference concept. This means that even if the user shows a preference
on a certain criterion, this is not considered to be an absolute factor to determine dominance
between solutions and is instead taken as a support by the framework when performing a
portfolio project selection.

The previous query-based interactive system research extends in another study [42].
This investigation considers two and multi-stage robust optimization problems, including
R&D PPS problems. The DSS framework interacts with the user before making a rec-
ommendation by performing a series of queries where the DM must define a value that
reflects the level of attractiveness towards a particular item. The system uses these values
to elicit preferences considering one of two possible models: maximize worst-case utility
or minimize the worst-case regret of the item recommended.

Another DSS interactive framework has been recently proposed in Nowak & Trza-
skalik [43]. Their work presents a MCDSS which interacts with the DM during each
interaction and allows the user to redefine his/her preferences and constraints to solve
dynamic PPS problems. Their DSS considers two possible sources that lead to a change in
the problem environment: a time-dependent variable and a change in the DM’s preferences
and constraints.

These last three proposals allow the user to provide new preferences by using queries.
The proposal presented in this paper aims to provide an interactive recommender system
that receives new preferential information from the DM and adapts its recommendation.
The proposed system is also able to provide the DM with new information based on the
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knowledge obtained. In addition, the system can argue and defend its proposed project
portfolio selection through arguments, with the objective that the DM understands, through
dialogue, that the recommendation presented by the system is the most appropriate based
on the current information.

The intention of allowing the proposed DSS framework to defend its recommendation
through arguments is to allow the user to learn in detail the characteristics and properties
of the problem to solve. This also allows the DM to see thoroughly the reasons for the
portfolio selection made by the DSS. This paper focuses on the use of argumentation theory
to not only support the solution process for a PPS problem, but also to allow the system
to defend the recommended solution. Additionally, this paper incorporates two newly
proposed STDs, argumentation schemes and a proof standard (TOPSIS [17]) different from
those proposed by Ouerdane [35].

3. Background

This section reviews the most relevant concepts related to the proposed work, neces-
sary to understand the said proposal and how it operates. For this, the revised concepts
focus on the decision-making problem, several of the most relevant approaches, and rec-
ommendation systems, and the argumentation theory.

3.1. Multi-Objective Optimization Problem

As mentioned in Section 1, many cases in which decision problems arise involve
multiple objectives to be satisfied and usually in conflict with each other. Equation (1)
presents the definition of a multi-objective optimization problem (MOP). This particular
example presents a maximization MOP, looking to obtain the variable decision vector �x that
obtains the highest possible value for the M objectives within the function set F. However,
it is also necessary to mention that it is possible to define minimization MOPs or combine
both maximization and minimization for a subset of objectives.

max F(�x) = f1(�x), f2(�x), ..., fM(�x) s.t. g(�x) > 0, h(�x) = 0 . (1)

Each MOP has a set of inequality (g) and equality (h) constraints that define the
solutions’ feasibility. Based on the above scenario, it is understandable to believe that there
are cases in which defining a single solution as optimal over all the other candidates is
impossible. At this point, it falls to the decision-maker to carry out the selection of the most
appropriate solution (or set of solutions) based on his preferences.

3.1.1. The Decision Making Problem

In real-life situations, the DM may be represented by a person or group which seeks
to improve their profits. However, the DM might not have enough resources to support
all available alternatives simultaneously. This leads to what can be defined as a decision-
making problem. It is necessary to search for actions that meet the current goals in the best
way possible, using the available resources and maximizing profit.

Decision-making problems present four basic elements [44]: A set of one or several
objectives to solve; a set of candidate solutions to achieve all objectives within the set; a
set of factors that define the environment that surrounds the problem; and a set of utility
values associated with each solution when they interact with the current environment.

In these cases, DMs might use multi-criteria decision support systems (MCDSS) to
support their decisions. MCDSS uses computational techniques used to analyze highly
complex decision problems in a reasonable computational time [45]. The multi-criteria
decision analysis (MCDA) is a collection of concepts, methods, and techniques that seek
to help individuals or groups make decisions involving conflicting points of view and
multiple stakeholders [46]. MCDA methods are relevant components of MCDSS. Five
elements are involved in these methods: Goal, decision-maker, alternatives or actions,
preferences, and a solution set based on preferences.
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3.1.2. Project Portfolio Selection Problem

An example of a decision-making problem can be seen in the project portfolio selection
(PPS) problem. A project is defined as a temporary, unique, and unrepeatable process that
pursues a specific set of objectives [47]. A project portfolio is a set of projects selected for
future implementation.

In this case, a person or organization has a set of projects to carry out. These projects
share the resources currently available, and there is the possibility that several of those
projects complement each other, as they are effective in the same area. Therefore, it is
necessary to know which project portfolio meets an organization’s demands, maximizing
its profit.

Equations (2)–(4) present a formal definition of the PPS problem. Let N be the number
of available projects. A project portfolio �x is an N sized binary vector. The projects that
have been selected are given a value of 1, while the non-selected projects are given a value
of 0. The value of a project portfolio for an objective i is defined by the sum of each selected
portfolio’s profit towards the said objective. The profit matrix p contains the respective
profit obtained by the jth project for the ith objective.

Two main constraints restrict the PPS problem. First, the budget threshold, which is
presented in Equation (3). The cost vector c defines how much each project costs, while B
defines the maximum available current budget. The sum of all the selected projects’ costs
must be equal to or lower than B.

The second constraint refers to all the areas involved in the problem. Thus, it is
necessary to consider several A areas and a binary project-area matrix a, which defines
which projects are assigned on each area. Each area has lower and upper investment
thresholds Lk and Uk, respectively. The sum of all selected projects’ costs involved in each
area must be between those two thresholds to be considered a feasible portfolio.

max fi(�x) =
N

∑
j=1

xj pi,j. (2)

Such as
N

∑
i=1

xici ≤ B, (3)

Lk ≤
N

∑
i=1

xiciak,i ≤ Uk k = 1, 2, ..., A. (4)

3.2. Recommender System

By solving a PPS problem using a method such as genetic or exact algorithms, it is
possible to generate a set of good quality candidate solutions. However, a prevalent issue
at this step lies in presenting the DM too many potential solutions, which may be too many
to carry out an analysis using only the human capability. It is also necessary to consider
that the DM’s preferences might have changed during the problem’s solution, making the
decision-making process even more difficult.

A recommender system is a potential alternative for this situation. This system relies
on the DM’s preferences and a set of various heuristics to direct its search and define
which solutions from the set may be more attractive to the DM [48]. Specifically, in the PPS
problem, a set of solutions, global and area budget constraints, and DM preferences can be
used to determine the most appropriate project portfolios.

However, there is a possibility that DM is not entirely convinced and needs to know the
reasons behind the decision made by the recommender system. Other possible situations
that the system might face when presenting a solution to the DM are related to the human
factor. For example, the DM may not know how to express his preferences correctly,
may not fully know the details of the problem, and may even directly reject the system’s
recommendation without waiting for a justification. For these reasons, it is desirable
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to establish a quick relationship with the DM. The theory of argumentation offers an
alternative to carry out this relationship.

3.3. Argumentation Theory in Decision Making

The argumentation theory is within the field of artificial intelligence. It can be defined
as the process of constructing and evaluating arguments to justify conclusions. This allows
decision-making to be carried out in a justified manner. This theory is based on non-
monotonic reasoning. This means that the conclusions obtained may be modified and even
rejected when new information is presented [35].

The most relevant elements to consider within the argumentation theory are cognitive
artifacts, proof standards, and argumentation schemes.

3.3.1. Cognitive Artifact

Cognitive artifacts human-made objects that seek to help or enhance cognition. Its use
is not only focused on supporting memory but also to set reasoning towards classifications
and comparisons among several alternatives [49]. The support to the decision-making
process presented by the argumentation theory can be seen as a set of cognitive artifacts
used sequentially. This sequence occurs through an interaction between an expert and a
client. According to [50], this process uses four cognitive artifacts: a representation of the
problem, a formulation of the problem, a model of evaluation, and a final recommendation.
This work addresses these last two artifacts.

3.3.2. Proof Standard

In argumentation theory, all statements must be analyzed to determine their truth-
fulness and their effect on a possible conclusion the DM desires to reach [35]. Proof
standards are methods and techniques that allow the unification of a set of arguments
for and against a certain conclusion. These proof standards analyze and determine each
argument’s strength and value to solve the conflict between them by accepting or rejecting
the established conclusion.

A basic example of a proof standard is the simple majority. This standard takes a
statement such as “project x is better than project y”. For this case, the M objectives are
considered, and the values obtained by each one for both projects are analyzed. If x has
more objectives with better value than y, then the conclusion is true. This expression can
be formally defined as presented in the following Equation (5), where Si represent the
dominance factor for objective i

x % y ↔ |{i ∈ M : xSiy}| ≥ |{i ∈ M : ySix}|. (5)

3.3.3. Argumentation Scheme

Argumentation schemes can be defined as argumentative structures capable of de-
tecting common and stereotypical patterns of human reasoning [51]. They are based on a
set of inference rules in which the existence of certain premises can lead to a conclusion.
The structure of the schemes is based on non-monotonic reasoning, allowing the entry of
new information, altering the state of the conclusion.

An argumentation scheme is composed of three main elements:

1. Premises: arguments for or against the conclusion. The status of each premise can be
considered to be true or false until proven otherwise or to require further evidence
for consideration;

2. Conclusion: statement to be confirmed or rejected based on the premises and a
proof standard;

3. Critical questions: questions related to the structure of the argumentation scheme
that, if not answered adequately, can falsify the veracity of an argument within it.

Argumentation schemes are not necessarily complex. For example, the cause to effect
scheme [52] is based on two premises: If event A occurs, event B occurs as a consequence,
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and A has occurred. Therefore, the conclusion defines that B will occur. Critical questions
focus on the strength of the relationship between A and B, whether if it is strong enough
evidence to warrant this event, and if there exist other relevant factors that also provoke B
to occur.

3.4. Dialogue Game

One possible form to represent argumentation theory within decision-making prob-
lems is through the use of dialogue games. These games model verbally or in-writing the
interaction between two or more individuals, called players. The dialogue game intends
to exchange arguments both for and against a statement between the players to reach a
satisfactory conclusion [53].

Multiple elements must be considered for the dialogue game, such as the players and
their respective roles, objectives, limitations, etc. Like any game, a set of rules must be
established that defines which actions are acceptable or not during the dialogue. Also, it is
necessary to define a system to determine the movements that each participant is allowed
to perform at the different stages of the dialogue game.

3.4.1. Dialogue Game Rules

The dialogue game rules establish how the game is performed, defining criteria such as
the starting and ending points of the game, the movements allowed for each player. These
rules also define the criteria necessary to allow a coherent dialogue between the players.
Each one can provide statements, arguments, and premises considered acceptable by the
other participants, avoiding fallacies and dialogue loops that would stall the dialogue at a
certain point [53].

There are four different types of dialogue game rules.

1. Locution rules: define the set of movements allowed for the entire dialogue game;
2. Compromise rules: define the set of statements and arguments each player is compro-

mised to defend until proven right or wrong;
3. Dialogue rules: define the set of available movements a player has during the current

state of the dialogue;
4. Termination rules: define the scenario or state that needs to be reached for the dialogue

game to end.

3.4.2. State Transition Diagram

Based on the defined dialogue game rules, it is possible to identify which movements
are allowed for each player and when he/she can use them. A state transition diagram
(STD) can represent the evolution of the dialogue game graphically. An STD allows the
players to visualize each of the different states where the dialogue can be located and
the player currently in turn and what their available movements are. Similarly, an STD
represents the starting and ending points of the game. With this, the four different types of
rules of the dialogue game are effectively represented.

4. Proposed Work

This section describes the methodology and the different cognitive components de-
fined for DAIRS. Afterward, a prototype proposed in this paper implements this methodol-
ogy, which allows a user-system interaction through a dialogue game. This work focuses on
two cognitive tasks: the evaluation model of the alternatives based on proof standards and
the construction of arguments for the proposed recommender system’s recommendation
using argumentation schemes and a dialogue game.

4.1. Dairs Methodology

The evaluation of alternatives is the process of evaluating a set of alternatives based
on their attributes, indicators, or dimensions of those alternatives [50]. In this case, the alter-
natives are the feasible project portfolios for the PPS problem. Each portfolio is evaluated
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considering its performance on each objective and set of constraints. A criteria weight
vector or a criteria hierarchy order is commonly used to solve evaluate alternatives. There-
fore, DAIRS also considers these two elements when evaluating portfolios to create a
recommendation

Using the previous information regarding the properties of the problem provided
by the DM, a proof standard is selected considering said properties and used to evaluate
all the feasible portfolios. Then, the recommender system defines an initial recommen-
dation supported by the information provided by the DM and an abductive inference
argumentation scheme based on the information obtained by the proof standard used.
Therefore, before the dialogue game has begun, the system already has an initial portfolio
recommendation to present to the user according to his/her preferences and arguments to
defend said recommendation.

The recommendation system presented in this work requires defining a set of crucial
elements for its operation: A set of proof standards, argumentation schemes, and a dialogue
structure that defines how both user and system will perform a bidirectional interaction
using a dialogue game.

4.1.1. Proof Standards

To carry out a proper dialogue game between the user and the system, it is necessary
to define methods that allow correctly collecting and analyzing the arguments for and
against the current statement to reach a reasonable conclusion. Proof standards allow
performing such collection and analysis.

The recommender system is capable of using a large number of proof standards.
For this work, the orientation of the set of proof standards selected aims towards defining
a solution for the PPS problem and is based on Ouerdane’s work [35].

DAIRS considers proof standards that use a criteria preference hierarchy. These
standards allow the user to define strict preferences between objectives. The recommender
system focuses its search on the criteria defined as most relevant by the DM.

Simple majority: As explained in Section 3.3.2 and presented in Equation (5), this
standard evaluates the truth of the statement “x is better than y” based on the number of
objectives this statement holds.

Lexicographic order: This proof standard uses a hierarchical order established in the
criteria. A project x is better than a project y if, and only if, x has a better value on a criterion
of higher priority than y. The criteria hierarchy establishes that a higher-order criterion is
infinitely more important than those in a lower position. Therefore, this method disregards
the value of any other criterion of lower priority.

There are cases where even when the DM has a higher preference over specific criteria,
this preference might not be strict. Instead, there is a certain threshold of acceptance for
criteria with lower priority if their improvement is significant in these cases. Therefore,
DAIRS considers proof standards that analyze each project portfolio supported by a criteria
weight vector, determining each objective’s relevance. These standards allow the system to
identify possible significant improvements in criteria with different levels of importance
for the DM.

Weighted majority: This method follows a similar strategy than simple majority. How-
ever, it relies on the weights of each criterion to evaluate. In this case, a criteria weight
vector w assigns a weight to each criterion i (wi). Portfolio x has a preference over portfolio
y if the sum of the weights of the criteria where x is better than y is greater than the sum of
the weights of the criteria where y is better than x.

x % y ↔ Wxy = ∑
xSiy

wi ≥ Wyx = ∑
ySix

wi. (6)

Weighted sum: This method defines a single fitness value Sx for each portfolio based
on w and the fitness value f obtained on each objective i ( fi(x)). Let N be the number of
criteria for the current problem. Equation (7) presents a formal definition of the previous
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statement. Portfolio x is preferred over portfolio y if, and only if, the sum of x is greater
than the sum of y (Sx > Sy).

Sx =
N

∑
i=1

wi fi(x). (7)

TOPSIS: This proof standard is based on a method proposed in [17], which considers
both the distance to the ideal solution, also known as utopia point, and the distance towards
the negative ideal solution or nadir point. The solution that is closer to the former and
furthest from the latter is the one that takes precedence.

The selection of the proper proof standard is essential to obtain a successful recom-
mendation that follows both the DM’s preferences and the quality of the solution itself.
This process has a very relevant impact on the dialogue game. Each proof standard can
have a set of properties defined, making them unique compared to the other set standards.
During the dialogue game, both the user and system can define which properties are
suitable to be considered or not in the discussion to obtain better recommendations or
enhance the dialogue game’s quality, based on the information provided by both players.
The properties considered for the proof standard selection are:

1. Ordinality: Only the ordinal information about the performance is relevant.
2. Anonymity: There is no specific preference order for the criteria.
3. Additivity with respect to coalitions: It is possible to formulate additive values

regarding the importance of a criteria subset.
4. Additivity with respect to values: The value of a solution is obtained by the sum of

each criterion’s values.
5. Veto: A solution must improve another over a certain veto threshold to be accepted.
6. Distance to the worst solution. The best solution is determined not only by its

closeness towards the best possible solution but also by how far it is from the worst
possible solution

This set of properties is based on the recommendations provided multiple works in
the literature [35,52]. Table 1 shows the properties belonging to each proof standard. It
should be noted that both simple majority and weighted majority methods can be used
with or without a veto threshold.

Table 1. Proof Standards used for DAIRS and their properties.

Proof Standard Ordinality Anonymity
Add.
w.r.t

Coalitions

Add.
w.r.t

Values
Veto Distance

Simple majority � � � �*
Lexicographic � �

Weighted majority � � �*
Weighted sum �

TOPSIS � �
* These proof standards can be used with or without using a veto threshold.

4.1.2. Argumentation Schemes

In addition to determining the proof standards to be used, it is necessary to define
which human behavior patterns to consider for a dialogue within the system. The inten-
tion of defining the patterns to be identified is to regulate the system responses based
on these patterns and establish boundaries in the dialogue to avoid situations such as
infinite dialogue loops or loss of focus. For this reason, it is necessary to establish a set of
argumentation schemes, which allow the process of identifying behavioral patterns to be
carried out.

This work seeks to incorporate the proof standards selected in the previous subsection
to strengthen and facilitate premise analysis and to define a conclusion for the current
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statement in the dialogue through argumentation schemes. These schemes are chosen
considering proposals provided in previous related works [35,52]:

Abductive reasoning argument: This argumentation scheme allows the system to select
the most suitable proof standard according to the current properties identified based on
the information provided by user and the system.

Argument from position to know: The system performs an initial recommendation using
this argumentation scheme after the system chooses a proof standard. This scheme also
provides recommendations for the dialogue game’s first cycles. With this, the system does
not consider itself an expert yet as it has only obtained the initial information given by the
list of available projects, DM’s preferences, and budget threshold.

Argument from an expert opinion: After several cycles have passed in the dialogue game,
surpassing a certain number of cycles, defined as cycle threshold, the system considers that
it has obtained enough information from the user to position itself as an expert for the
problem analyzed. Under this scheme, the system is more assertive in its arguments, as it
has more information to defend them instead of just expecting to obtain new data from
the user.

Multi-criteria pairwise comparison: The system compares the current recommendation
against other alternatives, as well as solutions picked by the user that might attract his/her
interest. The proof standard currently being used supports this scheme to form arguments
to either defend the recommendation or select the user-picked solution if the new informa-
tion provided proves that the DM’s selection outperforms the system’s recommendation
under the current proof standard.

Practical argument from analogy: Sometimes, two solutions might be similar to a high
degree. Therefore, it is necessary to consider if the previous solutions considered by
either the system or the user can be considered recommendations for the dialogue game’s
current stage.

Ad ignorantiam: The current state of the system is unable to make inferences. All
the information known by the system is considered valid by it. Meanwhile, all unknown
information is considered false. The user can provide the system with new information
regarding the problem in discussion at any point during the dialogue game.

Cause to effect: A change in the state of a proof standard property or the value of a
criterion affects the current state of the system’s recommendation. Whenever a change is
detected, the system performs a reevaluation of the current solutions based on the new
information. Then, it provides the user with a new recommendation, and the dialogue
game continues.

From bias: The system considers this fallacy as the user might be biased towards a
particular solution. While one of the recommender system’s objectives is to provide the
most suitable solution, user satisfaction is also a very relevant factor that a system must
consider. Therefore, the system allows the user to set the recommended solution as the
alternative the user picks. However, the system constantly reminds the DM that his/her
choice might be biased and not the best available.

During the dialogue game, the system uses an argumentation scheme selected de-
pending on the activities carried out in its current state by either the system or the user.
Therefore, it is necessary to properly establish the dialogue game structure to use the correct
argumentation scheme to characterize the arguments and premises used in the dialogue’s
current state.

The system relies on argumentation schemes to accept or reject a statement and obtain
information, leading to changes in the problem’s criteria values or the state of the proof
standard properties. As previously mentioned, argumentation schemes can define the most
suitable proof standard according to the current information provided.
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4.1.3. Dialogue Game Rules

DAIRS aims to use a dialogue game to establish a two-dimensional interaction between
the user and the system. This interaction allows both participants to provide statements to
strengthen the information to ease the decision-making process.

Before carrying out a dialogue game between the user and the system, it is necessary
to define the set of rules that the players will follow in the game. As previously mentioned
in Section 3.4, there are four types of dialogue game rules: locution, compromise, dialogue,
and termination.

The compromise, dialogue, and termination rules followed in this work are established
in [35]. However, the locution rules provide two main additions. First, the system can
reject an argument presented by the user if it does not satisfy the current evaluation
criteria. Second, the user is allowed to reject the system’s recommendation at multiple
points during the dialogue. These additions focus on the system’s capability to defend its
recommendation and user’s satisfaction. Table 2 presents the locution rules used in this
work. Let φ be the current statement, C a critical question, and “type” refers to C being an
assumption or exception.

Table 2. Locution rules for the dialogue game used in this work.

Movement Replies Surrenders Status

assert(φ)
challenge(φ)

which proof standard?
pose(C, type, φ, scheme)

accept(φ)
reject(φ) stated

challenge(φ) argue(φ, premises,
scheme) retract(φ) questioned

argue(φ, premises,
scheme)

challenge(premise)
pose(C, type, φ, scheme)

assert(φ)
which proof standard?

accept(φ)
accept(premise)

reject(φ)

accepted
rejected

pose(C, type, φ,
scheme)

challenge(not C)
assert(C)

assert(not C)
retract(φ) rejected

accept(φ) accepted
retract(φ) rejected

which proof
standard?

current proof
standard

4.1.4. State Transition Diagrams

Once the dialogue game rules are defined, it is possible to design state transition
diagrams (STDs). An STD can graphically represent how the dialogue flow will carry out.
A noticeable advantage in using STDs is that they offer an easy method to identify and
regulate how the dialogue transpires. Also, STDs show the movements available to both
players at each stage of the interaction.

The recommender system proposed uses two STDs. Before a dialogue game begins,
the system will select one of these diagrams to establish a user-system interaction for the
current instance. The factor considered to define which STD to use is whether the DM
establishes criteria preference hierarchy before the dialogue game begins. Depending on
which scenario occurs, the system will use a particular STD and a different proof standard
according to which properties are considered active.

The reasoning for using different STDs based on the DM’s preferences is to take
advantage of the amount of information and knowledge the user has regarding the problem.
DAIRS provides a learning-focused dialogue if the DM has little knowledge of the problem.
Meanwhile, the system provides a more assertive and portfolio selection-driven dialogue
if the DM has an acceptable level of knowledge and it is possible to skip or shorten the
learning phase.
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State Transition Diagram 1 (STD1): This diagram is chosen whenever the initial in-
formation available about the problem does not provide an explicit preference hierarchy
regarding the problem criteria. This STD follows the structure defined in [35] while adding
the additional locution rules mentioned previously. In particular, it adds a move that allows
the system to reject the user’s suggestion if there are no additional reasons for supporting
his or her statement after a certain number of dialogue cycles have passed. A dialogue
cycle can be defined as the point in the dialogue game when it reaches the initial state (1)
once again. This system explains to the user that the reason for this rejection is to avoid
a dialogue loop and continue the recommendation process. Figure 1 shows the structure
of STD1.

State Transition Diagram 2 (STD2): The second STD is used when there is an explicit
user-defined preference hierarchy for the criteria before the dialogue game begins. The sys-
tem seeks to exploit this situation to use and obtain as much information as possible from
the early state of the dialogue game. Also, it allows the user to present critical questions
from the beginning, which is not allowed when using STD1. STD2 provides more flexibility
for the user by allowing him/her to reject the recommendation since the initial states of the
dialogue. Figure 2 shows the structure of STD2.

Figure 1. State Transition Diagram 1, used when there is not an explicit criteria preference hierarchy
defined on the initial information.

Figure 2. State Transition Diagram 2, used when there is an explicit criteria preference hierarchy
defined on the initial information.
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4.1.5. System Modules

The next step is to incorporate the dialogue game and all its necessary procedures
to be carried out properly within DAIRS. Previously, four main processes were identified
as necessary to be implemented in the system to execute a recommendation process
properly [36]. Figure 3 presents the structure of these models.

Load instance module: Reads the information concerning an instance to be solved by the
recommender system. The DM uploads a file containing initial instance data to the system.
This file contains information such as the number of candidate solutions and criteria,
a criteria weight vector, a solution/objective matrix, budget threshold, veto threshold
(if required), and criteria hierarchy. For the PPS problem, it is also necessary to insert
additional data, such as the project portfolio matrix, representing the projects selected by
each portfolio.

Configuration module: The system analyzes the information from the instance obtained
in the load instance module to determine the initial configuration of all the elements
required to start a dialogue game, such as the dialogue game rules, the state transition
diagram, and the initial proof standard. This setup will allow the system to provide an
initial recommendation to start the dialogue with the user.

Dialogue module: The user and the system start the dialogue game. The system’s main
objective is to convince the user to accept the recommendation provided by it. However,
the user can reject the current recommendation or add new information and modify the
initial configuration. This process will provide new information to the system, which the
system will use to generate a new recommendation.

Recommendation acceptance/rejection module: The user can accept or reject the system’s
recommendation. This module determines a final step in the dialogue. The proposed
recommender system attempts to consider the human factor by allowing the user to reject
the solution at several stages of the dialogue, even if the solution recommended is the
most suitable according to the current information provided by both the instance and the
user. This option aims towards the user’s satisfaction. As previously mentioned, while the
recommender system’s objective is to provide a high-quality recommendation, it is also
desirable that the user feels satisfied with his/her final decision. User satisfaction is also an
objective that any recommender system must pursue.

These modules adequately represent a recommender system’s structure supported by
concepts related to argumentation theory, such as argumentation schemes. For this reason,
the development of the recommender system presented in this paper uses the previously
mentioned structure.

Figure 3. Diagram module of the proposed recommender system, argumentation scheme are used
within the dialogue module.
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4.2. Interactive Prototype

The next step in developing the proposed recommender system is the implementation
of a prototype, which incorporates all the previously mentioned elements (argumentation
schemes, proof standards, dialogue games, and STDs). The proposed methodology intends
to properly carry out a dialogue game, following the dialogue structures defined and
represented in the STDs. The development of this prototype allows a user to directly
contact the recommender system and to evaluate the usability of the framework designed
in the previous subsection.

Figure 4 shows a dialogue game carried out between two users following the proposed
structure. This dialogue shows an interaction between a recommender system (which plays
the role of an expert) and the DM (who plays the role of the user). While the system presents
recommendations, the user can question them, challenge them, or argue. The end of the
dialogue relies on the user’s final decision to accept or reject the system’s recommendations.
Note that the system can evolve its recommendation into a new one when the information
provided presents valid arguments to justify the change.

Figure 4. Example of a dialogue game between user and system following the defined STDs.

4.2.1. Bidirectional Interaction Algorithm

Algorithm 1 corresponds to the proposed method for bidirectional interaction between
the user and DAIRS. The objective is to present the user with recommended solutions and
an explanation of the recommendation while receiving the DM’s preferences. The system
must define several argumentation elements before the user-system interaction within
the prototype may begin: A set of proof standards PS and its properties PSProperties,
the initial set of premises Premises, the argumentation scheme set used for the dialogue
game Schemes, the dialogue game rules D, and the set of available state transition diagrams
STD. The output of this algorithm is a portfolio recommendation rp

This algorithm also requires a file of the instance (file). This file must contain a set
of elements as part of the initial input: An alternative/criteria value matrix (C), a criteria
preference hierarchy (Pre f C), a criteria weight vector (W), a veto threshold vector for all
criteria (V), a set of available project portfolios (P), its respective cost (Pcost), and the
maximum allowed budget (B). Appendix A shows in more detail the information that this
file should contain.

The algorithm begins using the Load instance module to load an instance in step 1,
obtaining all the data necessary to proceed to the Configuration module. From steps 2 to 7,
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this module defines each element’s values for the cognitive decision tasks and dialogue
game, according to the information provided by the instance.

Then, the Dialogue module is used from step 8 to step 18, establishing an interaction
with the user in step 9, which could result in a possible modification of the values of the
alternative/criterion value matrix, the active set of the proof standard properties, or the
selected proof standard, as well as an update on the set of premises according to with the
new information given by the user during that step.

Algorithm 1 Bidirectional interaction of DAIRS
1: {C, Pre f C, W, V, P, Pcost, B} ← load_instance( f ile)
2: Schemes′ ← select_schemes(Pre f C, Premises, Schemes)
3: D′ ← select_locution_rule_subset(D, Pre f C)
4: std ← select_std(STD, D′)
5: PSProperties′ ← set_properties(PSProperties, Pre f C, W, V, Premises)
6: ps ← proof_standard_selection(PSProperties′, PS)
7: rp ← recommend_portfolio(ps, P, C, Pre f C, W, V)
8: do
9: {Premises, C, PSProperties′, ps} ← interaction(std, D, Schemes′, Premises)

10: if modified(C) then
11: update_criteria(C)
12: rp ← recommend_portfolio(ps, P, C, Pre f C, W, V)
13: else if modified(PSProperties′) then
14: PSProperties′ ← set_properties(PSProperties′, Pre f C, W, V, Premises)
15: ps ← proof_standard_selection(PSProperties′, PS)
16: rp ← recommend_portfolio(ps, P, C, Pre f C, W, V)
17: else if modified(ps) then
18: rp ← recommend_portfolio(ps, P, C, Pre f C, W, V)
19: end if
20: while !accept_reject(rp)

Then, the system checks whether there was a change that could affect the current rec-
ommendation. Steps 11 and 12 are executed if there is a change in the alternative/criterion
matrix values. These steps update the matrix and use the current proof standard to evaluate
all the available portfolios again. Steps 14 to 16 are performed if either the user or the
system has modified the proof standard’s properties. These steps update the set of active
proof standard properties, select the most appropriate proof standard and reevaluate the
set of portfolios. The system can directly change the proof standard to offer the user a more
flexible system if the user desires. If so, then step 18 is executed, using the chosen proof
standard to generate a new recommendation.

The algorithm repeats this process until the user reaches a final state of acceptance
or rejection of the system’s recommendation. When that happens, DAIRS reaches the
Recommendation acceptance/rejection module, considering the dialogue game finished and
ending the interaction.

4.2.2. Graphical User Interface

The graphical user interface of the proposed prototype seeks to allow the user to
interact with the system in multiple ways. From the definition of the instance to work
with, establish a dialogue with the system, edit values of the profit obtained by each
available project, and manipulate the status of the proof standard properties considered by
the system to match the user’s preferences better. This interface is composed of a set of
windows that allow the user to perform the activities previously mentioned.

Figure 5 presents the graphical user interface (GUI) of DAIRS; the primary areas in
this interface are:

1. The menu bar. A set of menus that allow the user to perform actions related to
the instance and its properties. It contains two sub-menus. The first sub-menu,
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named Instance, allows the user to read, start and restart instances. The second sub-
menu, named Recommendation Options, lets the user update criteria values, visualize
information regarding all available portfolios, the current state of the dialogue game,
and even provides the user a Help window with any necessary additional information
regarding the GUI.

2. The dialogue area. Displays the recommendations and arguments presented by
DAIRS, questions posed, or changes in the user’s information. This section of the
windows presents the arguments provided by both players during the current and
previous steps in the dialogue game.

3. The interaction area. This area allows the user to perform a dialogue with the system.
The user can determine his next move within the dialogue game, the statement
or question that follows that movement, and, if necessary, the chance to select an
alternative portfolio that accompanies the presented statement.

4. The portfolio composition area. Shows information about the portfolios and their
selected projects by presenting a portfolio/alternative binary matrix.

5. The evaluation criteria area. Shows the information regarding each criterion’s values
for every portfolio by presenting a portfolio/criteria matrix.

Figure 5. Main window of the DAIRS GUI. The GUI allows the user to read the dialogue, perform
actions and see the available portfolios.

As previously mentioned, the recommender system prototype proposed in this work
focuses on the PPS problem. As previously mentioned, the GUI intends to allow the user
to interact with a recommender system using the proposed structure. The Load instance
module reads the information about a PPS problem instance from a file. This file includes
all the required information necessary to initiate a dialogue game between the user and
system in DAIRS, as explained in Algorithm 1.

The Configuration module allows the user to select proper parameters to start the
dialogue game seeking to aid the DM in his/her decision for the uploaded PPS problem.
The initial premises and arguments that both the user and system are available to select
from are determined based on the information. The dialogue game rules are defined. Then,
DAIRS generates an STD following the structure of said rules. In this case, if there is not
a criteria hierarchy defined on the instance file, then STD1 is used. However, if there is a
preference order defined in the file, then STD2 is used. Finally, a proof standard is selected
based on the information provided by said instance.

After this, the Dialogue module is reached. In the first step, the system provides an
initial recommendation to the user based on the selected proof standard and all available
information regarding the candidate portfolios. Figure 6 shows this process. From this
point, the dialogue game begins, the user can accept or reject the said recommendation,
provide his arguments to counter the system’s proposal, or even introduce additional
information which affects weights or veto thresholds of the criteria, the impact of an
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alternative in a criterion, or the proof standard. Figure 7 presents a screenshot reflecting
these movements.

During the dialogue game, it is expected that the prototype’s interface allows changes
within the instance. The user can change the value of any criterion for each available
project. The user can do so until the process reaches the Recommendation acceptance/rejection
module when the DM accepts or rejects the current recommendation and considers it a
final decision. By doing so, the dialogue game reaches its end.

Figure 6. Initial recommendation from the system. DAIRS analyzes all the information provided by
the instance file and provides a recommendation.

Figure 7. Advanced stage of the dialogue game. The user is questioning reasoning behind the
system’s recommendation and the system is able to respond.

4.2.3. Definition of the Dialogue Game Rules

Within the prototype, once the instance to read containing the PPS problem’s informa-
tion has been defined, it is necessary to determine how DAIRS will carry out the dialogue
game between the user and the system. For this purpose, the system must define the
dialogue game rules.

For this prototype, the compromise, dialogue, and termination rules are identical in
all possible scenarios where an interaction between the players occurs to aid the decision-
making process of a PPS problem, as shown in Section 4.1.3. However, it is necessary to
define the locution rules that each dialogue game will use, based on whether or not there is
a hierarchy order established for the criteria.

As mentioned in Section 4.1.4, DAIRS uses two STDs. The first one, STD1, does not
require an initial preference hierarchy and focuses on obtaining information regarding
the PPS problem on the dialogue game’s initial cycles. The second diagram, STD2, is
used when the DM defines preferences before the dialogue game begins. In this case,
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the system is more flexible to the user since DAIRS considers that both players have a better
understanding of the problem as there is enough information to determine a hierarchy.

Once the dialogue game rules and STD are defined, the user can communicate with
the system through the main window’s interaction area after the system has presented an
initial recommendation. Considering the structure presented by Figure 5, the user has at
his disposal a set of available actions that allow him to interact with the system before and
during the dialogue game. These actions are the ones that allow the creation of bidirectional
interactions between the user and the system:

a. DM’s Decision. Dialogue move performed by the DM.
b. Question. Statement related to the decision taken by the DM.
c. Alternative. This option will active to allow the user to select a portfolio from the

available candidates if the statement selected requires selecting an alternative (for
example, comparing the recommendation and another portfolio).

d. Accept button. Executes the DM’s decision.
e. Erase button. Deletes the text from the dialogue text box.
f. Update button. Allows the user to update the values of the project/criteria matrix.

The options available for DM’s decision depend on the current state of the dialogue
within the STD and the locution rules defined. The user can accept the current recom-
mendation (Accept) or reject it (Retract), ending the dialogue game. He/She can also
present an argument to challenge the system’s actions (Challenge), create an argument
for or against the recommendation (Argue), suggest a recommendation for the system to
analyze (Assert), or present a critical question that can modify the current proof standard
used and its properties (Pose Critical Question).

4.2.4. Use of Argumentation Schemes

DAIRS uses an argumentation scheme based on the current state of the STD and the
DM’s action in the interaction area. The argumentation schemes used in this prototype are
those reviewed in Section 4.1.2. This subsection briefly explains the conditions and events
that trigger the use of each scheme.

The abductive reasoning argument scheme is used in the prototype when the system
reads an instance before generating an initial recommendation, the user uses the GUI to
start a dialogue game, after posing a critical question, and when the user argues to have a
preference towards a particular criterion.

DAIRS uses the argument from position to know scheme after setting the initial proof
standard, when the dialogue game starts using the GUI, when the system provides a
new recommendation and the dialogues cycles have not surpassed the cycle threshold.
The system also uses this scheme if the user challenges a system’s argument and when the
user poses a critical question.

Meanwhile, the recommender system uses the argument from an expert opinion scheme
under the same scenarios as argument from position to know. However, it is only used when
the number of dialogue cycles has surpassed the cycle threshold, which implies that the
system has a more profound knowledge about the instance.

Whenever the user wishes to compare the profit or budget of two portfolios, DAIRS
uses the multi-criteria pairwise comparison scheme. When the difference between two com-
pared portfolios has no significant difference, DAIRS uses the practical argument from analogy
argumentation scheme to support its decision.

For the fallacy-based argumentation schemes, the system uses the ad ignorantiam
scheme at all times, as all information not introduced into the system is considered false by
it. Meanwhile, DAIRS uses the from bias scheme when there is a criteria hierarchy defined
or if the user decides to define a hierarchy.

Lastly, the prototype uses the cause to effect argumentation scheme when the user
poses a critical question, asserts a preference towards a specific portfolio, or defines a
preference towards a particular criterion as an argument to justify his/her preference for a
specific portfolio.
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4.2.5. Proof Standard Selection

The last step in the configuration module before presenting an initial recommendation
is to select the initial proof standard. To do the system performs a two-stage method.
The first stage corresponds to the definition of the proof standard properties before starting
the dialogue game.

In DAIRS, different considerations determine if a property is set as active or inactive.
Ordinality is always active unless the value of one of the weight vector values is equal to
or exceeds 0.6 under a normalized value. Anonymity is active when there is not an explicit
criteria preference hierarchy order defined. Additivity with respect to coalitions and with
respect to values are only active if ordinality is active as well. Veto and distance to the
worst solution are inactive by default.

The veto property is defined as inactive by default for the definition of the initial proof
standard since the simple majority and weighted majority proof standards can have both
veto and non-veto versions. Therefore, the user has the choice to activate this property
during the dialogue game. Distance to the worst solution is set as inactive as the system
seeks to use basic comparisons between all portfolios during the initial recommendation.
The user is allowed to activate this property and access more complex proof standards
during the dialogue.

After the proof standard properties setup, the system selects the most suitable stan-
dard based on the active properties. The DAIRS prototype analyses each proof standard,
choosing the one with the most significant number of related properties active at that time
in the system.

Following the proof standard selection, the process moves towards the dialogue module
and performs an interaction between the user and the system using the DAIRS prototype.
In this module, the user can modify the current state of all properties during the argument
exchange between him/her and the system. Providing new information can also cause
said properties to become active or inactive. There are three conditions in which the system
can modify the status of each proof standard property:

1. If the user explicitly indicates he/she wishes to modify the state of a property (see
steps 9 to 11 in Figure 4).

2. If the user indicates that he/she has a preference for a particular criterion.
3. If the user directly selects the proof standard by posing a critical question asking if

the current proof standard is the best available option, in which the system responds
by allowing the user to edit the status of a property or choose a new standard directly.

If any previous scenarios occur, the recommender system selects the new proof stan-
dard to use by considering the active properties or using the standard that the user directly
chose. After doing so, the system analyses the available portfolios under the selected proof
standard and presents a new recommendation. This process is what the system considers a
dialogue loop.

5. Experimentation and Analysis

This section defines an experimental design to evaluate the effect of the developed
prototype on various users. Generally, the measurement of recommender systems comes
through quantitative measures. However, human factors affect the acceptance of the
recommendation that must be evaluated in interactive systems [54], such as user satisfaction
and confidence in the results.

This experiment seeks to analyze the usability of the recommender system under a
real-life simulation of a PPS problem in a controlled environment, where users interact
with the system. Under these considerations, this work performs a usability test to evaluate
the proposed prototype.

The analysis presented in this section will allow a study of the effects on user overall
satisfaction by using argumentation theory concepts, such as argumentation schemes, proof
standards, and dialogue games on an MCDSS. This study will also compare the effects on
user satisfaction under the two STDs presented in this proposal.
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5.1. Experimental Design

A study is conducted on two groups of seven individuals to evaluate the performance
of the DAIRS prototype built; each group includes people with different degrees of com-
putational and mathematical knowledge, from people that have a basic level of computer
knowledge to master degree and Ph.D. students.

Each member plays the role of a user and interacts with the system. in a dialogue
game. The interaction period given to the users to work with the prototype has a maximum
limit set to 50 min. The experimentation process performed by each group consists of the
following steps:

(1) Introduction to the system: Users are shown the recommender system prototype
and explained how it works. The users receive a detailed explanation about the different
components DAIRS has, the possible actions they can perform on the system at any given
time, and how the system reacts to each of the user’s movements (maximum time length:
5 min).

(2) Initial use of the system to solve a sample PPS problem: In this step, the user
directly interacts with the DAIRS prototype for the first time. Users face a real-life sim-
ulation of a small-sized PPS problem in terms of the number of available projects. Then,
the evaluator asks each user to carry out a set of steps: Create a project/profit matrix of
the PPS problem presented, analyze a set of previously made project portfolios to solve
this problem, manually select the portfolio he/she believes is the best choice. After that,
the users create a file of this PPS problem using the structure mentioned in Section 4.2 and
upload it to the recommender system in its GUI. Finally, each user analyzes and compares
their decision against the system’s recommendation and engages in a brief dialogue game
(maximum time length: 10 min).

The introductory PPS problem for this step is a simple example that presents the
following scenario: “You have got $20,000 in savings, and there are some necessities of life and
work that you want to cover which have the following costs:”

• Laptop—$9000.
• Desktop computer—$7000.
• Air conditioner for your room—$3000.
• Car repairs—$10,000.
• New smartphone—$2000.

“However, your savings do not allow you to buy everything, so you must select a subset. You
must select which of them to choose taking into account four equally important criteria:”

• Study support
• Personal satisfaction
• Recreation outside of study
• Comfort

(3) Simulation of a complex real-life PPS problem: To fully evaluate the prototype’s
capabilities, both groups perform a simulation of a real-life PPS under a different environ-
ment. The first group works with an instance without a criteria preference hierarchy order
defined. Meanwhile, the second group uses an instance with a criteria hierarchy. The PPS
problem to solve presents the following scenario:

Four neighboring cities are planning to apply 25 social projects to improve the citizens’ quality
of life. However, before these projects were budgeted, a natural disaster severely depleted these towns’
funds. Because of this, the cities can implement only a subset of the projects. Each city provided a
list defining a level of satisfaction provided to the city by each project. Meanwhile, an analyst was
hired, who generated a set of possible combinations of the projects that the cities could execute.

The first group users, which manage an instance without a criteria hierarchy, are given
the objective: Determine which project portfolio is the most adequate to best satisfy the four cities.

The second group users, which manages an instance with criteria preference hierarchy,
are given the objective: Determine which project portfolio is the most adequate. The user must
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consider that a council composed of members from all four cities has decided to satisfy mainly one of
the four cities as it is the one that generates the most income for all of them.

At the beginning of this problem’s study, each user expresses preferences through a cri-
teria weight vector. The group supervisor makes a consensus using Borda counting [55,56],
obtaining a weight vector that characterizes the group. Appendix A presents the informa-
tion of the PPS problem file.

Each user receives a file containing the initial information of the PPS problem. The file
follows their respective group’s structure. The user must upload the file into the recom-
mender system’s GUI and engage in a dialogue game to obtain the most suitable solution
to satisfy their respective objectives. Since the first group’s problem setup does not include
a criteria hierarchy, their dialogue game will follow the structure defined in STD1. Mean-
while, the second group will follow the structure of STD2 as there is a predefined criteria
ranking (maximum time length: 30 min).

(4) Application of an evaluation to measure the usability of the prototype and to obtain
user feedback for potential future work (maximum time length: 5 min).

5.2. Usability Evaluation

This work uses a usability test to evaluate the performance of DAIRS based on the
user’s opinion and satisfaction. The usability test analyses six critical elements related
to a recommender system’s quality: Design, functionality, ease of use, learning capacity,
user satisfaction, and result and potential future use. The designed usability evaluation
questions and structure are based on the models presented by Lewis and Zins et al.’s
works [57,58]. This test uses a score between 0 and 10 as a measure, where 0 means
complete disagreement and 10 means complete agreement. Each of the analyzed elements
features a subset of questions to evaluate it:

Design:

1. I am pleased with the system’s GUI.
2. The organization of the information provided by the system was clear.
3. The interface was simple to use.

Functionality:

4. The system has all the functions and capabilities I expect.
5. The information collected by the system helped me complete my activities.
6. The projects recommended by the system are suitable for my investment.
7. Being able to select my solution, disregarding the recommendation presented by the

system, was helpful.

Ease of use:

8. The system was simple to use.
9. It was easy to find the information I needed.
10. The Help window provided clear information.
11. Overall, the system is easy to use.

Learning:

12. It was easy learning to use this system.
13. The information provided by the system was easy to understand.
14. The reasoning provided by the system in the dialogue eases my decision-making.
15. I consider that previous system information is required to use it.

Satisfaction:

16. I felt comfortable using this system.
17. I enjoy building my investment plan using this system.
18. Overall, I am satisfied with this system.

Result and future use:

19. I was able to complete the tasks using this system.
20. I was able to complete the tasks quickly using this system.
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21. I was able to complete the tasks efficiently using this system.
22. I think that I could become more productive quickly using this system.
23. The system was able to convince me that the recommendations had value.
24. With my experience using the system, I think I would use it regularly.

5.3. Results and Analysis

The results obtained in the usability evaluation for each user were added to a total
value per group. Then, the average values were obtained per question and for each of the
question subsets representing the elements considered relevant for a recommender system
as mentioned in the previous subsection.

Table 3 presents the results obtained on average for each element of the recommenda-
tion system considered. A Wilcoxon statistical test [59] was performed to determine
whether there is a significant difference between the values obtained by the groups.
The greatest difference is found within the satisfaction criterion, while the learning section
shows the smallest difference between the two groups.

Figure 8 shows graphically the average values obtained in each section by each of the
groups. As mentioned above, the satisfaction section shows the most remarkable difference
between the two groups, while the least remarkable difference is in the learning section.
Another observation that this figure presents is that the average value for all sections is
higher than 8.

Table 4 presents the average value obtained by question for each group and the
difference between them. The results presented in this table allow a specific visualization of
the main strengths of each STD based on the users’ evaluation. Figures 9 and 10 graphically
show the results for each question in STD1 and STD2, respectively. These resources allow
seeing which elements had a more relevant impact on user satisfaction in each of the
analyzed sections of the prototype for each STD and compare them.

Table 3. Difference between the average value obtained per section for both groups. A statistical test
is used to find if there is a significant difference between both groups.

Section Group 1 Group 2 Difference

Design 9.09524 8.80952 0.28571
Functionality 9.28571 8.96429 0.32143
Ease of use 8.46429 8.89286 0.42857
Learning 8.92857 8.85714 0.07143

Satisfaction 9.52381 8.71429 0.80952 *
Result and future use 9.52381 8.73810 0.78571 *
* indicates there is a significant difference between values using Wilcoxon Test.

Based on this, it is possible to assume that STD1, which is selected if the instance does
not have a defined criteria hierarchy before establishing a user-system interaction, used in a
dialogue game provides better functionality and satisfaction for the users. Also, according
to the values obtained for the questions related to the results and future use, it could be
implied that test users would prefer to conduct a dialogue game using the structure in
STD1 over the structure in STD2.
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Figure 8. Bar graph comparison of the average value obtained per section by both groups.

Table 4. Difference between the average per question for both groups. This comparison allows
analyzing and understanding the specific elements in which users were most satisfied.

Question Group 1 Group 2 Difference

1 9.00000 8.42857 0.57143
2 9.28571 9.00000 0.28571
3 9.00000 9.00000 0.00000
4 9.42857 8.85714 0.57143
5 9.14286 9.00000 0.14286
6 9.14286 9.28571 0.14286
7 9.42857 8.71429 0.71429
8 7.85714 9.00000 1.14286
9 8.42857 8.71429 0.28571

10 9.00000 8.71429 0.28571
11 8.57143 9.14286 0.57143
12 8.57143 9.42857 0.85714
13 9.28571 9.00000 0.28571
14 9.42857 9.00000 0.42857
15 8.42857 8.00000 0.42857
16 9.28571 8.71429 0.57143
17 9.57143 8.57143 1.00000
18 9.71429 8.85714 0.85714
19 9.85714 8.71429 1.14286
20 9.57143 9.14286 0.42857
21 9.42857 8.85714 0.57143
22 9.71429 8.42857 1.28571
23 9.28571 9.00000 0.28571
24 9.28571 8.28571 1.00000

However, the overall user satisfaction while using STD2, which is used if there is a
defined criterion preference hierarchy defined from the initial step of the dialogue game, is
also acceptable. STD2 presents advantages over STD1 over certain aspects based on the
results obtained, specifically regarding the ease of use, which is one of the main objectives
of the STD2 design. Therefore, neither can be discarded as both have potential utility within
the prototype and can provide new relevant information to the user during the dialogue.

273



Math. Comput. Appl. 2021, 26, 35

Figure 9. Bar graph showing the average obtained per question by the first group (STD1).

Figure 10. Bar graph showing the average obtained per question by the second group (STD2).

Analyzing the values obtained concerning design, users generally felt comfortable
using the GUI presented. According to the answers obtained by the questions made
regarding this section, this comfort is because each of the main window parts and the
available options and windows given by the menus provide the necessary content without
saturating the user with too much unnecessary information. The most common observation
regarding the prototype’s design is the need to add more colored details to make the
relevant elements of the dialogue more noticeable. With this, it is possible to consider that
the DAIRS GUI design is easy and straightforward to use. These graphical advantages are
intended to favor the flow of the dialogue and thus obtain a better recommendation.

Both groups were also satisfied with the prototype’s functionality, as shown from the
values in Table 3. Most users think that the system can adequately support the decision-
making process for PPS problems and that it has the necessary tools to execute this task.
For this analyzed section, the most significant difference between the groups focuses on
the users’ ability to select their solution. This result suggests that users prefer an assertive
but learning-focused interface. Another observation from the users is again focused on
graphical aspects since both groups proposed the use of graphs to represent the criteria
profit and budgets.

The results regarding ease of use imply that some users in the first group had difficulty
adapting to the prototype’s operation at the beginning of the test. In fact, concerning the
questions related to this section, the most notable difference is presented for the users’
opinion regarding the system’s simplicity. Although the interface is considered to be
simple and accessible for most users, some users from the first group believe that starting a
dialogue game can be complicated. The obtained results can conclude that the prototype,
though easy to use, requires a certain degree of prior knowledge for proper usage. Users
with more previous knowledge of the problem (STD2) quickly adapted to the use of DAIRS.
However, the overall results are satisfactory for both groups. As a relevant observation,
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the users would desire to have access to a user manual that explains each of the prototype
components’ operations in detail.

An interesting fact that should be mentioned is that, although some users reported
issues adapting at the beginning of the test, the results concerning learning, in general,
show that the conveniences and information offered by the system allow them to learn
how to use it properly quickly.

Most users in both groups conclude that the prototype offers easy and simple ways
to learn how to use the system, although the initial impact can present a steep learning
curve at the beginning. Similarly, users generally feel that DAIRS adequately supports
them in obtaining information and learning quickly and effectively about the PPS problem.
Based on the learning section results, it is possible to believe that DAIRS offers the user
an advantage to solve a problem, as it offers an effective problem-learning methodology
supported by argumentation theory.

The two sections of questions in which there was a statistically significant difference
between the two groups were “satisfaction” and “results and future use”. Although men-
tioning the difficulty of adapting at the beginning of using the prototype in general, the first
group felt largely satisfied and comfortable using the system by the end of the test. On the
other hand, although the users from the second group of users were satisfied with the
prototype, they consider it advisable to reduce the system’s dialogue game duration. Al-
though users are satisfied with the system’s functionality and interface, they feel that the
time needed for the user and the system to reach an agreement on a portfolio recommenda-
tion could be improved.

Based on the information previously presented, it is possible to say that the definition
of bidirectional interaction between the user and DAIRS is effective since users feel gener-
ally satisfied with the recommendation obtained to solve a problem by using an interactive
recommender system supported by MCDA methods and argumentation theory, using
argumentation schemes, proof standards, and dialogue games.

Also, the results obtained in the “satisfaction” and “results and future use” sections can
assume that the learning-oriented approach, given by STD1, offers higher user satisfaction
in the results obtained compared to a recommendation-oriented approach, as presented by
STD2. This assumption agrees with the conclusions obtained by the results in the other
analyzed sections, where users using STD2 feel more comfortable using DAIRS when
carrying out a dialogue following this diagram but preferred that the system would focus
more on continuing the learning process of the problem.

In general, there is a better overall evaluation by the first group, being only the ease of
use question subset the only exception. However, there is only a significant difference in
the satisfaction and results and future use sections.

All analyzed sections obtained an average value higher than 8, and, except for the
analysis for the ease of use on the first group, these values were never lower than 8.5. Based
on this, it is possible to consider that the prototype had a satisfactory degree of acceptance
by both groups and that the future implementation of all the presented observations could
further improve its quality.

The system received an average score of 89.91%. Therefore, it is possible to conclude
that this evaluation is satisfactory enough to consider DAIRS as a promising alternative.
However, the results and observations from the users evidence the necessity to introduce
visual resources; although the plain text could be enough for some people, others prefer a
representation using images and graphs.

Most state-of-the-art works presented in Section 2 propose MCDSS frameworks to
solve optimization problems and establish an interaction between the user and the system.
However, this interaction only allows users to incorporate new information, and the
system does not establish a deep interaction with the DM that goes beyond receiving such
information and generating new recommendations. Experimentation with DAIRS shows
that it is possible to generate an MCDSS to solve PPS problems capable of establishing a
bidirectional interaction. In this interaction, both participants generate and obtain new
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information. The system’s defense of the recommendation and the user’s statements
use argumentation theory in a dialogue game supported by argumentation schemes and
proof standards.

6. Conclusions and Future Work

This work studied the characterization of cognitive tasks involved in the decision-
aiding process. The cognitive tasks involved in the process were defined, identifying
those that could generate an interaction between the user and the system. This paper
addressed two cognitive tasks to create a final recommendation: the evaluation model for
the alternatives and the argument construction. For the first cognitive task, the proposed
recommender system used proof standards to define a method to evaluate and select the
best fitting alternative. For the second cognitive task, the system used argumentation
schemes and a dialogue game to support the preferred alternative and establish a possible
user-system interaction.

One of this work’s main contributions is the development of the Decision Aid In-
teractive Recommender System (DAIRS), an MCDSS framework focused on solving PPS
multi-objective problems. The framework is based on the characterization of cognitive
tasks through argumentation schemes, dialogue game rules, state transition diagrams,
and proof standards. These elements are incorporated into DAIRS to allow the recom-
mender system to perform a bidirectional interaction between it and a user. This work
proposed and developed a DAIRS experimental prototype that provides an environment
to aid the decision-making to validate the proposed system.

Another contribution is the proposal and design of two state transition diagrams
(STDs) to determine the flow of a dialogue game between the DM and DAIRS. These
STDs allow two-way interaction between both participants, meaning that both can obtain
and provide information. Also, the proposed STDs have two relevant components. First,
the user can reject the proposal; this defines a new dialogue stopping criterion aiming
towards the user’s satisfaction. Second, the system is able to defend its arguments and
reject the user’s statements if there is not enough information to support them. The first
STD, STD1, focuses on a more learning-oriented dialogue. Meanwhile, the second STD,
named STD2, assumes that the user has an acceptable degree of knowledge about the
problem to solve and focuses on providing recommendations to the user and engaging in a
dialogue game focused on said recommendations.

Some of the most relevant features in the DAIRS prototype are designing and imple-
menting several concepts related to argumentation theory within an MCDSS. The first of
these concepts is a set of proof standards based on several known MCDA methods. Also,
DAIRS incorporates multiple argumentation schemes from the literature on its process,
supported by proof standards. Another relevant feature in DAIRS is the use of these ele-
ments by employing a dialogue game that uses one of the STDs proposed in this paper to
direct the flow of the user-system interaction. DAIRS consider the three standard stopping
criteria for a DSS interaction: user acceptance, manual stop, and algorithmic stop. The user
can accept or reject the final decision; this considers user acceptance and manual stop.
For the last stopping criterion, DAIRS implements a method to avoid loops in a dialogue
game using multiple argumentation schemes.

Considering the strategies used by several state-of-the-art works, DAIRS uses proof
standards based on a criteria hierarchy and a criteria weight vector. These considera-
tions positively impacted users’ overall satisfaction when using the proposed prototype
since it considers their preferences using methods focused on qualitative (hierarchy) and
quantitative (vector of weights) strategies, which allowed for a more flexible dialogue.

A usability evaluation analyzed the proposed system in this work to measure the
quality of the developed DAIRS based on the experience of multiple test users after using
it to solve a PPS problem that simulated a real-life situation. This evaluation studied the
user experience regarding DAIRS by considering human factors that affect the acceptance
or rejection of a recommendation. The results obtained were satisfactory enough as the
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system received an average approval of 89.91% and an overall acceptance in several
critical elements such as design, functionality, ease of use, learning capability, satisfaction,
and future use. Users were satisfied using the proposed GUI due to its simple design, ease
to learn, use, interaction, and capability to obtain problem information.

On the other hand, the results for users using STD1 were often better than STD2.
However, in both cases, the conclusions were primarily positive. These observations allow
understanding that users are looking for an interactive system that assertively establishes
recommendations, but with a focus directed towards learning about the problem with the
objective that both the user and the system gain new knowledge to find a better solution.

The results show that the design of a bidirectional interactive recommender system
allows users to successfully and effectively select a suitable recommendation for PPS
problems. DAIRS presents a novel approach to the generation of recommendations for this
type of problem not previously explored in the literature, to the authors’ knowledge.

Considering the research area related to this work and all the observations and com-
ments provided by the test users, multiple areas offer potential future work. First, the use
of the proposed system on real-life problems different than the PPS problem. Second,
adding new elements that make the recommender system capable of receiving new user-
made portfolios during the dialogue game. Currently, the system uses only one STD per
dialogue. Therefore, future work could focus on using more than one STD per dialogue
game, looking to improve the dialogue game’s quality. Also, there exists a wide variety of
MCDA methods in the state-of-the-art, opening the possibility of using different methods
as proof standards. Finally, the following versions of the prototype could provide the user
with a more friendly looking GUI, featuring graphs and a more colorful environment.
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Abbreviations

The following abbreviations are used in this manuscript:

MCDA Multi-criteria Decision Analysis
DAIRS Decision Aid Interactive Recommender System
DM Decision Maker
PPS Project Portfolio Selection
DSS Decision Support Systems
CHP Choice Problem
MOP Multi-objective Optimization Problem
MCDSS Multi-Criteria Decision Support Systems
STD State Transition Diagram
GUI Graphical User Interface

Appendix A. PPS Problem Test Case

This appendix presents the information in the PPS problem file required for the load
instance module. This information is also used to perform step 3 of the experimental design.

• Problem type: Maximization
• Number of available projects: 25
• Number of available project portfolios: 10
• Criteria size: 4
• Criteria hierarchy (for the second group): {2,3,1,4}
• Criteria weight vector (for the second group): {0.20 0.39 0.36 0.05}
• Budget threshold: 80,000
• Veto threshold per criterion {1500,1200,75,75}

Table A1. Criteria-profit matrix.

Project Criterion 1 Criterion 2 Criterion 3 Criterion 4

Project 1 3200 2000 165 300
Project 2 6255 1640 385 390
Project 3 5680 6940 270 445
Project 4 8965 4195 355 415
Project 5 6550 6560 315 440
Project 6 6740 6290 150 350
Project 7 9055 7165 375 485
Project 8 4170 3015 410 285
Project 9 9735 2860 480 330

Project 10 3350 4210 400 315
Project 11 8595 7270 150 265
Project 12 9070 2430 455 360
Project 13 9930 5825 420 385
Project 14 4675 4505 425 490
Project 15 8065 4030 165 425
Project 16 7910 7665 240 320
Project 17 9860 6265 415 350
Project 18 3175 6240 225 445
Project 19 9660 655 320 475
Project 20 1150 4500 415 400
Project 21 3245 5950 105 275
Project 22 5350 6750 480 460
Project 23 6050 2505 285 305
Project 24 9190 2395 160 290
Project 25 9615 4340 100 480
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List of available project portfolios and required budget (0 indicates that a project has
not been included by the portfolio, 1 indicates that a project has been included):

• Portfolio 1 {0,0,1,1,0,0,1,0,0,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0,1} Total cost: 79,290
• Portfolio 2 {0,0,1,1,0,0,1,0,1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0} Total cost: 79,575
• Portfolio 3 {0,1,1,1,0,0,1,0,0,0,1,1,1,0,0,1,1,1,0,0,0,1,0,0,0} Total cost: 79,875
• Portfolio 4 {0,1,0,1,0,0,0,0,1,1,1,1,1,1,0,0,1,1,0,0,0,1,0,0,0} Total cost: 79,525
• Portfolio 5 {0,1,0,1,0,0,0,1,1,0,1,1,1,1,0,0,1,1,0,0,0,1,0,0,0} Total cost: 79,905
• Portfolio 6 {0,0,1,1,0,0,1,0,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,0} Total cost: 79,885
• Portfolio 7 {0,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0,1,0,0,1} Total cost: 79,410
• Portfolio 8 {0,0,1,1,0,1,1,0,0,0,1,1,1,0,0,1,1,1,0,0,0,0,0,0,1} Total cost: 79,585
• Portfolio 9 {0,1,1,1,0,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0,1,0,0,0} Total cost: 79,230
• Portfolio 10 {0,0,1,1,0,1,1,0,0,0,1,0,1,1,0,1,1,1,0,0,0,1,0,0,0} Total cost: 79,825
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Abstract: A common issue in the Multi-Objective Portfolio Optimization Problem (MOPOP) is the
presence of uncertainty that affects individual decisions, e.g., variations on resources or benefits
of projects. Fuzzy numbers are successful in dealing with imprecise numerical quantities, and
they found numerous applications in optimization. However, so far, they have not been used to
tackle uncertainty in MOPOP. Hence, this work proposes to tackle MOPOP’s uncertainty with a new
optimization model based on fuzzy trapezoidal parameters. Additionally, it proposes three novel
steady-state algorithms as the model’s solution process. One approach integrates the Fuzzy Adaptive
Multi-objective Evolutionary (FAME) methodology; the other two apply the Non-Dominated Genetic
Algorithm (NSGA-II) methodology. One steady-state algorithm uses the Spatial Spread Deviation as
a density estimator to improve the Pareto fronts’ distribution. This research work’s final contribution
is developing a new defuzzification mapping that allows measuring algorithms’ performance using
widely known metrics. The results show a significant difference in performance favoring the proposed
steady-state algorithm based on the FAME methodology.

Keywords: multi-objective optimization; multi-objective portfolio optimization problem; trapezoidal
fuzzy numbers; density estimators; steady state algorithms

1. Introduction

The Portfolio Optimization Problem (POP) is always present in organizations. One key
issue in POP’s decision process is the uncertainty caused by the variability in the project
benefits and resources. The latter situation arises the necessity of a tool for describing
and representing uncertainty associated with real-life decision-making situations. The
POP searches a subset of projects under a predefined set of resources that maximizes the
produced benefits; its formal definition is as follows.

Let A be a finite set of N projects, each characterized by estimates of its impacts and
resource consumption. A portfolio is a subset of A that can be represented by a binary
vector x = x1, x2, . . . , xn that assigns xi = 1 for every financed project i, and xi = 0
otherwise. Let

→
z (x) = z1 (x), z2(x), . . . , zp(x) be the vector of impacts resulting from

the linear sum of the attribute values of each financed project in x, i.e., the vector of
size p representing multiple attributes related to organizational goals that describe the
consequences of a portfolio x. Assume w.l.o.g. that the higher an attribute’s value is, the
better. Then, Problem (1) formally defines POP.

Maximize
{

z1(x), z2(x), . . . , zp(x)
}

, x ∈ RF (1)

In Problem (1), RF is the space of feasible portfolios, usually determined by the
available budget and other constraints that the Decision Maker (DM) wants to impose (e.g.,
budget limits on types, geographic areas, social roles of projects, etc.).
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Different scientific research works address POP’s variant in Problem (1), considering
precise values on the available resources and the projects’ impacts [1–6]. Moreover, there
is an area called Portfolio Decision Analysis (PDA) dedicated to studying mathematical
models to solve POP. There are theories, methods, and practices developed within this area
to help decision-makers select projects from a very large set of them, taking into account
relevant constraints, preferences, uncertainty, or imprecision [7]. PDA-related problems’
difficulty comes from a combination of factors such as (1) large entry space; (2) conse-
quences of multidimensionality in portfolio construction and selection; or (3) qualitative,
imprecise or uncertain information.

A large entry space requires a solution process with exponential complexity for decision-
making problems, even with simple decisions on allocating resources for candidate projects.

The consequences of multidimensionality in portfolio construction and selection relate
conflicting attributes with difficulty in the decision process. Usually, the larger the number
of dimensions, the more complex the solution space is. The latter causes a situation with so
many solutions that it easily exceeds the human cognitive capabilities for evaluating and
selecting the best candidate solutions [8].

The qualitative, imprecise, or uncertain information exists because of the varying
nature of the distinct attributes and resources considered in the construction of portfolios.
Such information can sometimes occur from different circumstances as a DM needs to use
non-numerical data to describe the effects of a project instead of a quantitative measure.
Other cases might indicate that there is lack of knowledge about future states of specific
criteria, vagueness in the provided information, the values used to describe attributes
or resources are not accurately known beforehand, or vague approximations and areas
of ignorance. All the previous situations, denoted hereafter as uncertainty, limit the sci-
entific approach in Operational Research-Decision Aiding [9], and modeling them using
probability distributions can be a challenge [9].

Several optimization problems use fuzzy numbers to model the uncertainty in pa-
rameters’ values from arbitrariness, imprecision, and poor determination [10]. Among
the most recent and works related to the Multi-objective Portfolio Optimization Problem
are the following: García [11] solved the Multi-objective and Static Portfolio Optimization
Problem (MOSPOP) with real parameters using the generational algorithms HHGA-SPPv1
and HHGA-SPPv2 and considering the preferences of a DM. Rivera-Zarate [12] uses the
Non-Outranked Ant Colony Optimization (NO-ACO) to address a variant of MOSPOP
that includes interdependency among objectives and that has partial support with real
parameters. Bastiani [13] solves the MOSPOP variant that includes synergy using ACO-
SPRI, ACO-SOP, and ACO-SOP, three strategies based on the ACO that incorporate in
their search process priority ranking, preferences, and synergy, respectively. Sánchez [14]
proposes using classification methods on the generational algorithms H-MCSGA and I-
MCSGA to approximate the Region of Interest (ROI) in MOSPOP. The first algorithm adds
the preferences at the beginning of the process, while the second algorithm adds them
during the process (while interacting with the DM). Balderas addresses the MOSPOP with
uncertainty using intervals; it proposes the generational algorithm I-NOSGA based on
NSGAII but incorporates interval numbers. I-NOSGA includes preferences “a priori” and
uses Crowding Distance as its density estimator. Martínez [15] addresses the Dynamic
Multi-objective Portfolio Optimization Problem (DMOPOP) with real parameters; the
proposed approach introduces dynamism by changing the problem definition at the end of
each period. Martínez presents three new multi-objective algorithms that also incorporate
“a priori” preferences: the generational D-NSGA-II-FF, a new version of a classic genetic
algorithm of no-dominance; the D-AbYSS-FF, a modified version of scatter search; and the
D-MOEA\D-FF, a new variant of a state-of-the-art algorithm based on decomposition.

Table 1 summarizes the main features of the previously described works. Column 1
cites the research work and the studied POP variant. Columns 2 to 7 show the considered
features in the research works: the solution algorithms it proposed, the type of instances it
solved, the performance metrics it used, if it integrated preferences in the search process, if
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it considered a static or dynamic POP’s version, the type of parameters it used, and if it
used a steady-state selection scheme or not.

Table 1. Related works.

Work Algorithm Instances Metrics Preferences E/D Parameters Steady State

[11]
Social projects

HHGA-SPPv1
HHGA-SPPv2

(3,4,20)
(3,9,100)

No-dominated
Solutions Yes E Real NA

[12]
Interdependent
social projects,

several objectives

NO-ACO (10,4,25)
(10,9,100)

No-dominated
Solutions,

ROI solutions
Yes E Real NA

[13]
Social projects
with priorities

and sinergy

ACO-SPRI
ACO-SOP
ACO-SOP

sinergy

(1,ND,25)
(1,ND,40)

(1,ND,100)

No-dominated
Solutions Yes E Real NA

[14]
Social projects,

several objectives

H-MCSGA
I-MCSGA

(3,9,100)
(2,9,150)

(1,16,500)

No-dominated
solutions, higher

net flow
Yes E Real No

[10]
Portfolio

selection with
interval

parameters

I-NSGA-II-CD (1,2,100)
(1,9,100) Cardinality Yes E Intervals No

[15]
Dynamic
portfolio

selection and
several objectives

D-NSGA-II-FF
AbYSS-FF

D-MOEA\D–
FF

(30,2,100)
(30,3,100)
(30,9,100)

Hypervolume
modified, Spread

modified,
inverted

generational
distance
modified

Yes D Real No

This work
Portfolio

selection with
trapezoidal

fuzzy numbers

T-NSGA-II-CD
T-NSGA-II-

SSD
T-FAME

(12,2,25)
(9,2,100)

Hypervolume,
Generalized

Spread
No E Trapezoidal

fuzzy numbers Yes

It is worth nothing that, from the information in Table 1, only approaches based on
intervals address POP’s variant with uncertainty, and none of them utilized a steady-state
selection scheme. The Fuzzy Adaptive Multi-objective Evolutionary solution methodology
(FAME) has had great success in many optimization problems; however, there is a lack
of studies about its performance on the POP. The previous situations open an area of
opportunity, addressed in this work, consisting of studying optimization approaches’
performance derived from fuzzy numbers and steady-state selection schemes on their
search process to solve the Multi-objective POP with uncertainty (MOPOP).

Evolutionary algorithms commonly use a generational selection scheme to update each
generation’s population; the process creates several offspring through genetic operators
and combines them with the parents to form the next generation of individuals [10,14,15].
On the other hand, an algorithm using a steaty-state selection scheme produces a single
offspring during the reproduction process to combine with the parents. The efficiency
of the population’s update process achieved by the latter method is advantageous for
any research [16]. Hence, this work proposes a new method based on FAME and fuzzy
numbers to handling uncertainty and obtaining more robust solutions in MOPOP; the
approach mainly uses fuzzy trapezoidal sets to reflect a magnitude’s imprecision.

This work’s main contributions are: (1) a new mathematical model for MOPOP that
considers fuzzy trapezoidal parameters; (2) a new algorithm based on FAME to solve the
proposed model; (3) two novel steady-state NSGA-II to solve this MOPOP’s variant; and
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(4) a novel strategy to measure the performance of the fuzzy multi-objective algorithms
with the commonly used real metrics.

The remaining structure of this paper is as follows. Section 2 includes some elements
of the fuzzy theory used in this work. Section 3 describes a new mathematical model
of the Portfolio Optimization Problem with Trapezoidal Fuzzy Parameters. Sections 4
and 5 contain the proposed steady-state algorithms: T-NSGA-II and T-FAME, respectively.
Section 6 describes the computational experiments done to assess the performance of the
algorithms. Finally, Section 7 presents the conclusions.

2. Elements of Fuzzy Theory

This section contains the main concepts of fuzzy theory used in this work.

2.1. Fuzzy Sets

Let X be a collection of objects x, then a fuzzy set A defined over X is a set of ordered
pairs A = {(x, μA(x))/x єX} where μA(x) is called the membership function or grade of
membership of x in A which maps X to the real membership subspace M [17]. The range of
the membership function is a subset of the nonnegative real numbers whose supremum is
finite. Elements with a zero degree of membership usually are not listed.

2.2. Generalized Fuzzy Numbers

A generalized fuzzy number A is any fuzzy subset of the real line R, whose member-
ship function μA(x) satisfies the following conditions [18]:

1. μA(x) is a continuous function from R to the closed interval [0, 1]
2. μA(x) = 0,−∞ < x < a
3. μA(x) = L(x), is strictly increasing on [a, b]
4. μA(x) = w, for b < x < α

5. μA(x) = R(x) is strictly decreasing on [α, β]
6. μA(x) = 0, for β < x < ∞

where 0 < w < 1, a, b, α, β are real numbers.
We denote this type of generalized fuzzy number as A = (a, b,α,β, w)LR. When

w = 1, the generalized fuzzy number is denoted as A = (a, b,α,β)LR. When L(x) and R(x)
are straight lines, then A is a trapezoidal fuzzy number, and denoted as A = (a, b,α,β).
When b = α, then A is a triangular fuzzy number, and denoted as A = (a, b,β).

A triangular membership function definition is as:

μA(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0x < a
x− a
b− a

x ε (a, b)

β− x
β− b

x ε (b, β)

0x > β

(2)

A trapezoidal membership function definition is as:

μA(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0x < a
x− a
b− a

x ε (a, b)

1x ε (b, α)

β− x
β− α

x ε (α, β)

0x > β

(3)
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2.3. Trapezoidal Addition Operator

Given two trapezoidal numbers A1 = (a1, b1,α1,β1) and A2 = (a2, b2,α2,β2), then [19]:

A1 + A2 = (a1 + a2, b1 + b2,α1 + α2,β1 + β2) (4)

2.4. Graded Mean Integration (GMI)

Graded mean integration [19] is a defuzzification method to compare two generalized
fuzzy numbers. We compare the numbers based on their defuzzified values. The number
with a higher defuzzified value is larger. The formula to calculate the graded mean
integration of a trapezoidal number A is given by:

P(A) = (
∫ w

0
h
(

L−1(h) + R−1(h)
2

)
dh)/

∫ w

0
hdh (5)

For a trapezoidal fuzzy number A = (a, b, α, β), there is a more straightforward
expression which is P(A) = (3a + 3b + β− α)/6.

2.5. Order Relation in the Set of the Trapezoidal Fuzzy Numbers

Given the trapezoidal fuzzy numbers A1 and A2, then:

• A1 < A2 if only if P(A1) < P(A2)
• A1 > A2 if only if P(A1) > P(A2)
• A1 = A2 if only if P(A1) = P(A2)

2.6. Pareto Dominance

Given the following fuzzy vectors: x̂ = (x1, x2, . . . . . . ., xn) and ŷ = (y1, y2, . . . . . . ., yn)
where xi and yi are trapezoidal fuzzy numbers, then we say that x̂ dominates ŷ, if only if
xi ≥ yi for all i = 1, 2, . . . , n and xi > yi for some i = 1, 2, . . . , n [20].

3. Multi-Objective Portfolio Optimization Problem with Trapezoidal Fuzzy Parameters

This section presents the proposed mathematical model for MOPOP with Fuzzy
Trapezoidal Parameters. It offers a detailed description of the construction of the fuzzy
trapezoidal instances used in this work to assess the proposed solution algorithms’ per-
formance. It also includes a description of how the fuzzy trapezoidal parameter’ values
participate in evaluating objective functions and the candidate solutions’ feasibility when
the solution algorithms search across the solution space.

3.1. Mathematical Model

Let n be the number of projects to consider, C the total available budget, O the number
of objectives, ci the cost of the project i, bij the produced benefit with the execution of
the project i in objective j, K the number of areas to consider, M the number of regions,
Amin

k and Amax
k the lower and upper limits in the available budget for the area k, and Rmin

m
and Rmax

m the lower and upper limits in the available budget for the region m. The arrays
ai and bi contain the area and region assigned to the project i. x̂ = (x1, x2, . . . . . . ., xn) is a
binary vector that specifies the selected projects included in the portfolio. If xi = 1 then the
project i is selected, otherwise it is not. Now we define the MOPOP with Fuzzy Trapezoidal
parameters as follows:

Maximize ẑ = (z1, z2, . . . . . . ., zO) (6)

where
zj = ∑n

i=1 bijxi j = 1, 2, . . . O (7)

Subject to the following constraints:

n

∑
i=1

cixi ≤ C (8)
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Amin
k ≤ ∑n

i=1,ai=k cixi ≤ Amax
k k = 1, 2, . . . ., K (9)

Rmin
k ≤ ∑n

i=1,bi=k cixi ≤ Rmax
k k = 1, 2, . . . . . . M (10)

xiε{0, 1} for all. i = 1, 2, . . . . . . , n (11)

In this model, all the parameters and variables in bold and italic are trapezoidal
fuzzy numbers.

The objective function tries to maximize the contributions of each objective (6). We
calculate each objective by adding all the selected projects’ contributions in the binary
vector (7). The constraint (8) makes sure that the sum of the costs required for all the
selected projects does not exceed the available budget. The set of constraints (9) makes sure
that the sum of the projects’ costs is in the range of the involved areas’ available budget.
The set of constraints (10) makes sure that the sum of the projects’ costs is in the range of
the available budgets for the corresponding regions. The final set of constraints (11) makes
sure that the binary variables xi can only have values of 0 or 1.

We should note that the problem definition is over the space defined by the binary
vectors whose size is 2n. Then the solution algorithms must search across this space to
find the Pareto optimal solutions. On the other hand, given that the well-known NP-hard
Knapsack problem can be easily reduced to MOPOP, the latter is also NP-hard [21].

3.2. Strategy to Generate the Fuzzy Trapezoidal Instances

This work uses instances initially designed for the POP with interval parameters,
where the fuzzy representation of the parameters of the problem uses fuzzy interval
type numbers (for example, the interval [76,800, 83,200]) [10]. Fixing the values of α,
β to 0.5, and adding them to any interval in the original POP’s instances allowed the
creation of MOPOP’s instances with Trapezoidal Fuzzy Parameters. Following this way, an
interval value such as [76800, 83200] would be seen as [76800, 83200, 0.5, 0.5] in the new
set of instances.

To create a random fuzzy interval type instance the following real parameters are
considered: budget (B), number of objectives (m), projects (p), areas (a) and regions (r), and
ranges of costs (c1, c2), and objectives (m1, m2). Then to generate a fuzzy interval instance
the following interval type values must be determined:

[B, B′]← Budget as interval
[ai, a′i]← Limits of each area I = 1, 2, . . . , a
[ri, r′i]← Limits of each region r = 1, 2, . . . , r
[bij, b′ij]← Benefit from the objective I = 1, 2, ..., m and for each project j = 1, 2, . . . , p
{Ci, Ai, Ri} ← Real values of the cost, area and region for each project i = 1, 2, . . . , p.

Implementing MOPOP’s instances generator combines the previous parameters along
with Equations (12)–(24) to create random instances [10].

B = 0.58B B′ = 1.3B (12)

al = (0.7 * B)/(1.7ª + 0.1a2), a′l = (1.27 * B)/(1.7ª + 0.1a2)] (13)

au = ((1.02 + 0.06r) * B)/r), a′u = ((2.635 + 0.155a) * B)/a (14)

ai = al + Random (a′l− al) for i = 1,2, . . . ,a (15)

a′i = au + Random (a′u − al) for i = 1,2, . . . ,a (16)

rl = (0.7 * B)/(1.7a + 0.1a2), r′l = (1.27 * B)/(1.7a + 0.1a2)] (17)

ru = ((1.02 + 0.06r) *B)/r), r′u = ((2.635 + 0.155a) * B)/a (18)

ri = rl + Random (r′l − rl) for i = 1,2, . . . ,r (19)

r′I = ru + Random (r′u − rl) for i = 1,2, . . . ,r (20)
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Ai = Random(a) i = 1,2, . . . ,p (21)

Ri = Random(r) i = 1,2, . . . ,p (22)

o = m1 + Random (m2 − m1), bij = 0.8*o, (23)

b′ij = 1.1*o for i = 1, 2, . . . , p and i = 1, 2, . . . , m (24)

The interval instances, built with the instances generator, have names under the
following format ompn_idI, where m is the number of objectives the instance has, n is the
number of projects, id is a consecutive number, and I indicate that the instance is of interval
type. An example of this would be the instance o2p100_1I, meaning that it is the instance
number 1 with 2 and 100 projects.

The Algorithm 1 details the structure of a fuzzy interval type instance.

Algorithm 1. o2p25_0I fuzzy interval type instance

// Fuzzy interval type value of the total available budget
[76800, 83200]
// Number of objectives
2
// Number of areas
3
// Fuzzy interval type values of the upper and lower bounds of the available budget
// in each area, a row for each area.
[13060, 16560] [46245, 49745]
[13810, 15810] [47895, 48095]
[13210, 16410] [46545, 49445]
// Number of regions.
2
// Fuzzy interval type values of the upper and lower bounds of the available budget // in each
region, a row for each region.
[22775, 24275] [67950, 68050]
[23325, 23725] [67900, 68100]
// Number of projects
25
// For each project, there is a row that includes the following: fuzzy interval type
// value of the project cost, project area, project region, and the fuzzy interval type
// value of the benefits obtained with each objective. (only 5 of the 25 projects are
// showed)
[9308, 10082] [1] [1] [7642, 8278] [231, 249]
[8290, 8980] [2] [1] [8506, 9214] [404, 436]
[5895, 6385] [3] [1] [3831, 4149] [111, 119]
[9053, 9807] [1] [2] [3908, 4232] [399, 431]
[6058, 6562] [1] [2] [5760, 6240] [418, 452]

In order to transform a given fuzzy interval type instance into a fuzzy trapezoidal
instance, all the interval values [a, b] are changed to fuzzy trapezoidal values [a, b, a, b]
with a = 0.5 and b = 0.5. The Algorithm 2 shows the result of converting the fuzzy interval
type instance o2p25_0I to the fuzzy trapezoidal instance o2p25_0T.
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Algorithm 2. o2p25_0T fuzzy trapezoidal instance

// Fuzzy trapezoidal value of the total available budget
[76800, 83200, 0.5, 0.5]
// Number of objectives
2
// Number of areas
3
// Fuzzy trapezoidal values of the upper and lower bounds for the available budget
// in each area, a row for each area.
[13060, 16560, 0.5, 0.5] [46245, 49745, 0.5, 0.5]
[13810, 15810, 0.5, 0.5] [47895, 48095, 0.5, 0.5]
[13210, 16410, 0.5, 0.5] [46545, 49445, 0.5, 0.5]
// Number of regions.
2
// Fuzzy trapezoidal values of the upper and lower bounds for the available budget
// in each region, a row for each region.
[22775, 24275, 0.5, 0.5] [67950, 68050, 0.5, 0.5]
[23325, 23725, 0.5, 0.5] [67900, 68100, 0.5, 0.5]
// Number of projects
25
// For each project, there is a row that includes the following: fuzzy trapezoidal value // of the
project cost, project area, project region, and the fuzzy trapezoidal values of
// the benefits obtained with each objective. (only 5 of the 25 projects are showed)
[9308, 10082, 0.5, 0.5] [1] [1] [7642, 8278, 0.5, 0.5] [231, 249, 0.5, 0.5]
[8290, 8980, 0.5, 0.5] [2] [1] [8506, 9214, 0.5, 0.5] [404, 436, 0.5, 0.5]
[5895, 6385, 0.5, 0.5] [3] [1] [3831, 4149, 0.5, 0.5] [111, 119, 0.5, 0.5]
[9053, 9807, 0.5, 0.5] [1] [2] [3908, 4232, 0.5, 0.5] [399, 431, 0.5, 0.5]
[6058, 6562, 0.5, 0.5] [1] [2] [5760, 6240, 0.5, 0.5] [418, 452, 0.5, 0.5]

3.3. Evaluating the Solutions and Verifying the Feasibility

This section describes how to calculate the objective values of a solution and how
to determine its feasibility. To explain this process, let F the trapezoidal fuzzy numbers
set, and R the set of real numbers. Now it is described how to apply the map δ : F → R
such that δ(A) = P(A). The map associates the GMI value to each trapezoidal fuzzy
number. A remarkable property of this map is that if X ⊂ Fn, then δ(X) ⊂ Rn,
hence, the computation of a vector solution for a MOPOP’s instance with two objectives is
transformed into a vector of two trapezoidal fuzzy numbers, which in turn is transformed
into a vector of two real numbers. As this process is consistently applied to all the solutions,
the algorithms will be performed considering that the binary vector objectives space is the
real vector space. The transformation must also be applied to all the trapezoidal fuzzy
numbers in the constraints to validate the solutions’ feasibility in the search space process.
Equations (25)–(30) shows how evaluate the solution and verify the feasibility.

Maximize ẑ = (z1, z2, . . . . . . ., zO) (25)

where
zj = P

(
∑n

i=1 bijxi

)
j = 1, 2, . . . O (26)

Subject to the following constraints:

P(∑n
i=1 cixi) ≤ P(C) (27)

P(Amin
k ) ≤ P

(
∑n

i=1,ai=k cixi

)
≤ P(Amax

k ) k = 1, 2, . . . ., K (28)

P(Rmin
k ) ≤ P

(
∑n

i=1,bi=k cixi

)
≤ P(Rmax

k ) k = 1, 2, . . . . . . M (29)

xiε{0, 1} for all. i = 1, 2, . . . . . . , n (30)
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An additional benefit is that this mapping transforms the approximated Pareto front
in a set of real vectors. In such a case, standard commonly used metrics can be applied to
evaluate the performance of the algorithms.

Example: Consider the following simplified instance:

n = 3, C = [3, 20, 1, 5], o = 2
ci bij ⎡⎣ [2, 8, 0.5, 0.8]

[10, 13, 0.2, 0.5]
[4, 12, 0.5, 0.5]

⎤⎦|
⎡⎣ [3, 6, 1, 1] [2, 10, 0.2, 0.4]

[1, 5, 0.8, 0.8] [5, 13, 0.7, 0.5]
[10, 15, 1, 0.5] [4, 9, 0.5, 0.8]

⎤⎦
Then using the model, the problem to solve is:
Maximize:

z1 = [3, 6, 1, 1]x1 + [1, 5, 0.8, 0.8]x2 + [10, 15, 1, 0.5]x3 (31)

z2 = [2, 10, 0.2, 0.4]x1 + [5, 13, 0.7, 0.5]x2 + [4, 9, 0.5, 0.8]x3 (32)

Subject to:

[2, 8, 0.5, 0.8]x1 + [10, 13, 0.2, 0.5]x2 + [4, 12, 0.5, 0.5]x3 ≤ [3, 20, 1, 5] (33)

The objectives z1 and z2 are the benefits generated by the projects selected in the
binary vector x. The constraint verifies that the cost of that project is not higher than the
available budget (C).

Given the solution x = [0, 1,0], then the fuzzy trapezoidal values of the two objectives
are the following:

z1 = [1, 5, 0.8, 0.8] (34)

z2 = [5, 13, 0.7, 0.5] (35)

Evaluating the constraint to verify the feasibility of the solution x, we have:

[10, 13, 0.2, 0.5] ≤ [3, 20, 1, 5] (36)

Now the GMI is used to compare the fuzzy trapezoidal numbers. For a trapezoidal
fuzzy number A = (a, b, α, β), the GMI is:

P(A) = (3a + 3b + β− α)/6 (37)

As P([10, 13, 0.2, 0.5]) = 11.55 ≤ P([3,20,1,5]) = 12.166, solution x is feasible.
Notice that this process was done in the fuzzy trapezoidal numbers space; only at

the end the GMI is used to verify the constraint. To perform the process in the real space,
the two fuzzy objectives and the fuzzy costs in the constraint are transformed into real
numbers using the GMI. The evaluation of the solution is as follows:

z1 = P([3, 6, 1, 1]x1 + [1, 5, 0.8, 0.8]x2 + [10, 15, 1, 0.5]x3) = P([1, 5, 0.8, 0.8]) (38)

z2 = P([5, 13, 0.7, 0.5]) (39)

Then z1 = 3 and z2 = 8.966.
Transforming the constraint we have:

P([2, 8, 0.5, 0.8]x1 + [10, 13, 0.2, 0.5]x2 + [4, 12, 0.5, 0.5]x3) ≤ P([3, 20, 1, 5]) (40)

P([10, 13, 0.2, 0.5]) ≤ P([3, 20, 1, 5]) (41)

Hence, the solution x is feasible given that 11.55 ≤ 12.166.
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The algorithms proposed in this work use the evaluation and feasibility verification
procedures described in this section. The algorithms must call such methods on every new
solution generated by them.

4. Steady-State T-NSGA-II Algorithm

This section presents the design of all the components included in the definition of
the proposed algorithm. This is an adaptation of the classic Deb algorithm NSGA-II [22]
modified to work with the trapezoidal fuzzy numbers. As all the algorithms proposed
in this work, T-NSGA-II updates the population, applying in each generation the steady-
state approach to include in the population only one of the generated individuals. In
generational algorithms, the new set of offsprings are combined with the parents to create
individuals’ next generation; the input to the algorithm is a MOPOP’s instance. The output
is an approximate Pareto front for the instance.

4.1. Representation of the Solutions

A MOPOP’s solution is represented by binary vector S = {0, 1}n, where n is the
number of projects. This vector is a portfolio, and each value si = 1 represents the inclusion
of project i in the portfolio. The first element in the vector is s0, and the last is sn–1. Figure 1
shows an example of this representation.

Figure 1. Representation of a solution.

4.2. One-Point Crossover Operator

The one-point crossover operator generates two offsprings from two parents [23]. The
process first defines a random cutting point cp in the range [0, n – 1]. After this, it split
each parent vector into left and right sections, where for parent i, the lefti contains its values
{s0, . . . , scp}, and the righti contains its values {scp+1, . . . , sn–1}. Finally, it mixes the split
sections to generate two new offsprings h1, h2, where h1 uses left1 and right2, and h2 uses
left2 and right1. The parents are chosen at random. The steady-state approach only utilizes
the first offspring h1. The number of crossovers that are done is a defined parameter.
Figure 2 shows an example of this operator.

Figure 2. Example of one-point crossover operator at index cp = 3.

4.3. Uniform Mutation Operator

The uniform mutation operator generates a new solution for the mutation population
from given a solution vector S = {s0, s1, . . . , sn–1 } [24]. The process generates for each index
i, for 0 ≤ i ≤ n − 1, a random number u in the range [0, 1], and if u < mut then the value of
si changes from 1 to 0 or vice versa, otherwise the value si remains intact. The parameter
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mut is the mutation probability used by the operator. Figure 3 shows an example of the use
of this mutation.

Figure 3. Example of when an element changes its value.

Another parameter of the operator is the number of new mutated solutions that must
be generated. Usually, the solutions that undergo this process come from the crossover
operator’s results; otherwise are randomly chosen.

4.4. Initial Population

A predefined number of randomly generated solutions are created to have an initial
population. When a new random solution is generated, the objectives vector for the solution
is determined and its feasibility is verified.

4.5. Population Sorting

This process consists of sorting the solutions of the population, and it is composed of
two phases: (1) the elitist phase, which keeps the best solutions; and (2) the diversification
phase, which ensures that there are solutions different enough to avoid local optima in
the search process of the algorithm. The elitist phase is also known as non-dominated
sorting. It consists of separating the population in fronts or sets of non-dominated solutions,
making sure that the best solutions are always on the first front. The diversification phase
sorts the solutions of a front according to the Crowding Distance indicator. The solutions
in the best fronts are included in the population, and when a front cannot be completely
inserted, the solutions with the worst crowding distances are discarded. Figure 4 shows
both phases.

4.6. Non-Dominated Sorting

This process has two parts, and works on a given population. The first part constructs
the first front with the set of non-dominated solutions identified from the comparison
of vectors of objective values among all the population’ solutions. A solution is non-
dominated if its vector of objective values is not dominated by any other. Note that the
Pareto dominance uses real value vectors in its definition.

The second part builds the remaining fronts one by one. Each new front integrates
those solutions that are only dominated by solutions in previously built fronts. The process
repeats until no more fronts can be made.
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Figure 4. Elitism sorting and diversification phases.

4.7. Calculating the Crowding Distance

According to [22], this process orders the solutions in a front by their Crowding
Distance (CD). The distance is a measure of the separation of the solutions, and it is relative
to the normalized value of the objectives. The CD identify the solutions with extreme values
on the objectives and put it first on the front. After that, the solutions order are according to
their accumulated degree of separation per objective, the greatest the separation the better.
For each objective, the CD computes the degree of separation using the ordered array
of objective values resulting from the front; the solutions with the highest and smallest
objective values will have a specific Crowding Distance value d equal to infinite (∞), while
the remaining solutions will be calculated by the following formula:

dIj
m = dIj

m +
f Im

mj+1 − f Im

mj−1

f max
m − f min

m
(42)

where d is the Crowding Distance, I is the solution position in the whole population in
general, j is the solution position after the ordering by objective m within the front, f is the
objective value and m is the current objective. The accumulation of Crowding Distance
value d of all the objectives results in the final value of CD for each solution I.

4.8. Calculating the Spatial Spread Deviation (SSD)

The Spatial Spread Deviation (SSD) is a density estimator used to rearrange the
solutions in a front, so the spread is not by a wide margin [25]. The method calculates for
each solution the SSD value using a matrix of normalized distances between the solutions
in the approximated front. The solutions are sorted from the lowest to highest SSD value
in order to punish solutions according to their standard deviation and their proximity to
their closest k-neighbors. The next three equations show how to calculate the SSD values,
in the process i is the solution in the front for which the SSD is calculated, and j take values
over all the solutions in the front except i.

temp1(i) =
1

n− 1

√
∑n

j=1(D(i, j)− (Dmax − Dmin))
2∀ i �= j (43)

temp2(i) = ∑jEK
(Dmax − Dmin)

D(i, j)
(44)

SSD(i) = SSD0(i) + temp1(i) + temp2(i) (45)

where D(i, j) is the distance from solution i to solution j. Dmax is the biggest distance
between all the solutions and Dmin is the closest distance between all the solutions. K is the

294



Math. Comput. Appl. 2021, 26, 36

number of k neighbors closest to solution i. SSD0 is the initial value of SSD, which is -INF
if the solution is at one of the ends of the front when the normalized values of the graded
mean integration of the objective values are calculated.

4.9. Pseudocode of the T-NSGA-II Algorithm

The T-NSGA-II is based in the structure of the classic multi-objective algorithm NSGA-
II proposed by Deb [22]. As previously described, the algorithm had several modifications
to work with trapezoidal fuzzy numbers and the proposed MOPOP model. Algorithm 3
shows the detailed pseudocode of the algorithm T-NSGA-II.

Algorithm 3. T-NSGA-II pseudocode

INPUT: Instance with the trapezoidal parameters of the portfolio problem.
OUTPUT: Approximated Pareto Front
NOTE: The algorithm is called T-NSGA-II-CD when the Crowding Distance is used, and
T-NSGA-II-SSD when is used the Spatial Spread Deviation.
***************************************
1. Create the initial population pop
2. Evaluate all the solutions in pop
3. Order pop using no-dominated Sorting
4. For all solutions in pop calculate Spatial Spread Deviation/Crowding distance
5. pop sorting due to fronts and Spatial Spread Deviation/CD
6. Main loop, until stopping condition is met

*** Steady state approach: only one generated individual is considered to include in popc
7. Create popc using crossover operator
***********************************************************************
8. Create popm using mutation operator
9. Join popc and popm to create popj
10. Evaluate solutions in popj and put feasibles in popf
11. Add popf to pop, and calculate objective functions
12. Order pop using no-dominated sorting
13. Calculate Spatial Spread Deviation/Crowding distance
14. pop sorting due to the front ranking and Spatial Spread Deviation/CD
15. Truncate pop to keep a population of original size
16. No-dominated sorting
17. Calculate Spatial Spread Deviation/Crowding distance of the individuals in pop
18. pop sorting due to front ranking and Spatial Spread Deviation/CD
19. End Main loop

20. Return (Front 0). ***Approximated Pareto Front

5. T-FAME Algorithm

This section presents the design of all the components of the T-FAME algorithm. The
algorithm adapts the FAME algorithm to work with the trapezoidal fuzzy numbers [25].
The input to the algorithm is an instance of MOPOP. The output is the approximate
Pareto front for that instance. T-FAME updates the population, applying the steady-state
approach to include in the population only one of the generated individuals. The following
algorithm components are the same described in Section 4: the structure used to represent
the solutions, the evaluation of a solution, the construction of the initial population, the
sorting of the population, the non-dominated sorting process, and the density SSD estimator.
The components described in this section are those not included in the previous description
or with significant differences, such as the fuzzy controller, the additional genetic operators,
and the structure used to store the approximated Pareto front.

5.1. Fuzzy Controller

This section introduces an intelligent mechanism that allows an MOEA to apply
different recombination operators at different search process stages. The use of different
operators is dynamically adjusted according to their contribution to the search in the past.
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Intuitively, the idea is to favor operators generating higher quality solutions over others.
For this purpose, the fuzzy controller dynamically tunes the probability selection of the
available recombination operators [25].

The fuzzy controller uses a Mamdani-Type Fuzzy Inference System (FIS) [26] to com-
pute the probability of applying the different operators. Fuzzy sets defined by membership
functions represent the linguistic values of the model’s input and output variables. Re-
garding the inference, we use the approach originally proposed by Mamdani based on
the “max min” composition: using the minimum operator for implication and maximum
operator for aggregation. The aggregation of the consequents from the rules are combined
into a single fuzzy set (output), to be defuzzified (mapped to a real value). A widely used
defuzzification method is the centroid calculation, which returns the area’s center under
the curve. We use triangular-shaped membership functions in all inputs and outputs,

μA(x) =

⎧⎪⎪⎨⎪⎪⎩
0 x < a

x−a
b−a x ε (a, b)
c−x
c−b x ε (b, c)

0 x > c

(46)

the parameters a and c determine the “corners” of the triangle, and b determines the
peak. A membership function μA(x) maps real values of x with a degree of membership
0 ≤ μA(x)≤ 1. The used granularity levels were: Low (a = −0.4, b = 0.0, c = 0.4), Mid
(a = 0.1, b = 0.5, c = 0.9) and High (a = 0.6, b = 1.0, c = 1.4).

The interaction of the fuzzy controller with the algorithm works as follows: Let
Operators the set of genetic operators available. The evolutionary algorithm monitors
the search process in a series of time windows, each of size Window. At the end of each
time window, the algorithm sends to the fuzzy controller the real values of the input
variables Stagnation and UseOp, and receives from the controller the real value of the output
variable ProbOp.

Each of the fuzzy variables has associated the fuzzy linguistic values: High, Mid and
Low. Then the membership functions of the fuzzy variable Stagnation are: μStagnation=High(x),
μStagnation=Mid(x) and μStagnation=Low(x). In a similar way, the membership functions are
defined for the variables UseOp and ProbOp.

To show how works the fuzzification process consider that the received real values of
the input variables are Stagnation = 0.7 and UseOp = 0.8.

The fuzzified values for the Stagnation variable are the membership degrees:
μStagnation=High(0.7), μStagnation=Mid(0.7) y μStagnation=Low(0.7).

For the UseOp variable the fuzzified values are the membership degrees: μUseOp=High(0.8),
μUseOp=Mid(0.8) y μUseOp=Low(0.8). All the membership degrees are values in the
interval (0,1).

Now the FIS includes a set of fuzzy rules which are specified in terms of the fuzzy
variables, the linguistic values, and a set of logic operators. To continue with the previous
example, consider that the fuzzy rules in the FIS are:

R1 : I f Stagnation = High and UseOp = High then ProbOp = High (47)

R2 : I f Stagnation = High and UseOp = Low then ProbOp = Mid (48)

Once the fuzzification of the inputs is done, the next process is to evaluate the an-
tecedents of the rules R1 and R2, determining the following values:

k1 = min
(

μStagnation=High(0.7), μUseOp=High(0.8)) (49)

k2 = min
(

μStagnation=High(0.7), μUseOp=Low(0.8)) (50)

In the rule evaluation, the min operator is associated with the logic operator and, and
the max operator is associated to the logic operator or.
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Now the membership functions of the consequents of the rules must be determined.
For each rule an operator of implication is applied to the antecedent value obtained in the
previous process and to the consequent of the rule, to determine the membership function
of the conclusion of the rule. The min operator is used to implement the implication logic
operator, which truncates the membership function of the rule’s consequent. For example,
the truncated membership functions of the consequents are the following:

μ∗ProbOp=High(z) = min
(

μProbOp=High(z), k1

)
z ∈ (0, 1) (51)

μ∗ProbOp=Mid(z) = min
(

μProbOp=Mid(z), k2

)
z ∈ (0, 1) (52)

Now the truncated membership functions are integrated using an aggregation op-
erator to create a new membership function, which is the controller’s fuzzy output. The
aggregation operators that are frequently used are max and sum.

For the example, the max operator is used to determine the aggregated membership
function, which is the following:

μ∗∗(z) = max(μ∗Z=A(z), μ∗Z=M(z)) z ∈ (0, 1) (53)

Finally, the defuzzification of the fuzzy output obtained is done. In this step a real
number is associated to the aggregated membership function, which is the output of the
inference process. In the previous example, the center of the area under the curve of
the aggregated membership function is used to defuzzify the output of the controller
as following:

z =

∫
μ∗∗(z)zdz∫
μ∗∗(z)dz

(54)

Figure 5 graphically shows the fuzzy inference process for the example described.

Figure 5. Mamdani Fuzzy Inference System used in the fuzzy controller.

All of the controller rules are of the type: Antecedent AND Antecedent then Conse-
quent. The fuzzy rules were designed to have soft changes in the input variables (Stagnation
and UseOp), to avoid abrupt changes in the output variable (ProbOp). The configuration
was manually done by observing the surface that these three variables generated [25].
Table 2 shows the rules of the fuzzy controller.
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Table 2. Fuzzy controller rules.

AND Antecedents Consequent

Stagnation Utilization ProbOp

High High Mid
High Mid Low
High Low Mid
Mid High Mid
Mid Mid Low
Mid Low Mid
Low High High
Low Mid Mid
Low Low Low

The Algorithm 4 shows the structure of the fuzzy controller used in the fuzzy controller
implementation with the Java Library Fuzzy Lite 6.0.

Algorithm 4. Fuzzy controller structure.

[System]
Name=‘FuzzyController ‘
Type=‘mamdani’
Version=2.0
NumInputs=2
NumOutputs=1
NumRules=9
AndMethod=‘min’
OrMethod=‘max’
ImpMethod=‘min’
AggMethod=‘max’
DefuzzMethod=‘centroid’
[Input1]
Name=‘Stagnation’
Range=[0 1]
NumMFs=3
MF1=‘Low’:’trimf’,[−0.4 0 0.4]
MF2=‘Mid’:’trimf’,[0.1 0.5 0.9]
MF3=‘High’:’trimf’,[0.6 1 1.4]
[Input2]
Name=‘UseOp’
Range=[0 1]
NumMFs=3
MF1=‘Low’:’trimf’,[−0.4 0 0.4]
MF2=‘Mid’:’trimf’,[0.1 0.5 0.9]
MF3=‘High’:’trimf’,[0.6 1 1.4]
[Output1]
Name=‘ProbOp’
Range=[0 1]
NumMFs=3
MF1=‘Low’:’trimf’,[−0.4 0 0.4]
MF2=‘Mid’:’trimf’,[0.1 0.5 0.9]
MF3=‘High’:’trimf’,[0.6 1 1.4]
[Rules]
3 3, 2 (1) : 1
3 2, 1 (1) : 1
3 1, 2 (1) : 1
2 3, 2 (1) : 1
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2 2, 1 (1) : 1
2 1, 2 (1) : 1
1 3, 3 (1) : 1
1 2, 2 (1) : 1
1 1, 1 (1) : 1

In the [Rules] section, the first and second columns contain the linguistic values of
the two input variables (1-Low, 2-Mid, 3-High), the third column is the weight of the rules,
and the last one indicates the logic operator used in the rule (1-and, 2-or).

The interaction of the fuzzy controller with the algorithm works as follows: Let
Operators the set of genetic operators available. The T-FAME algorithm searches in the
solutions space in time windows of size Window, each time window the algorithm performs
Window iterations. At the end of each time window, the algorithm sends to the fuzzy
controller the values of the input variables Stagnation and UseOp[i] for all i ∈ Operator. For
each pair of input values, a Fuzzy Inference generates ProbOp[i] for all i ∈ Operator. This
process is done for the T-FAME algorithm with the following pseudocode where v is the
windows counter:

If (v == Window) then
∀ iε {1, 2, . . . .SizeOP}

38. ProbOp(i) = FuzzyController(Stagnation, UseOp(i));

39. v =0; Stagnation = 0;
40. Endif
The line numbers are those that appear in the T-FAME algorithm pseudocode included

in Section 6.4. Notice that in lines 37 and 38, the algorithm uses the fuzzy controller to
update all the available recombination genetic operators’ selection probability.

The Stagnation value is shared for all the operators, and it is an indicator of the
evolution of the search in the current time window. This is a normalized value that is
increased by 1.0/Window each time the generated solution cannot enter the set where the
non-dominated solutions are kept and reset when the time window is over. UseOp[i] is a
normalized value that is increased by 1.0/Window every time the operator i is used.

5.2. Additional Genetic Operators

Four operators are used in T-FAME to create new solutions: One-point crossover,
Uniform Mutation, Fixed Mutation, and Differential Evolution. Two of these operators
(One-point crossover and Uniform Mutation) are the same ones that are used on T-NSGA-II,
and they are already described in the previous section.

Differential Evolution: This method was proposed by Rainer [27], and its implementa-
tion was based on [28]. It uses the four parents obtained with the tournament method. The
first part of the process consists of creating a new solution called Candidate using Parent 1,
Parent 2, and Parent 3, this solution is obtained by doing a binary addition of the parents.
Figure 6 shows an example of how this operator works.

Once the Candidate is calculated, a binary crossover operator is done between the
candidate and Parent 4 to create a new solution called Son, this binary crossover operator
is different from the one-point crossover operator described previously, and it uses a
parameter called crossover percentage (CP). The binary crossover operator consists of the
following: For each array index, a random number between 0 and 1 is generated, if that
number has a lesser value than CP, then that index receives the value of the Candidate, if
this is not the case, then that index receives the value of Parent 4.
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Figure 6. Differential evolution operator example.

Once the new solution Son is completed, a dominance test is done between Son and
Parent 4, if the objective values of Parent 4 dominate the objective values of Son, then
Parent 4 proceeds to be the new solution, but if this is not the case, then Son proceeds to be
the new solution.

Fixed Mutation: This method is very similar to the uniform mutation operator that
was described previously. The main difference lies in the fact that the whole process is
done in a loop until n mutations are made, where n is a parameter previously defined. This
operator also makes sure that no element in the solution is changed twice or more times,
this is done by using a fixed array to keep track of the changed elements in the solution.
Figure 7 shows an example of the Fixed Mutation operator.

 
Figure 7. Fixed Mutation operator example.

5.3. Used Structures to Store the Population and the Approximated Pareto Front

The algorithm uses the structure pop to maintain a solutions population, which
contains the following information for each solution i:

• V(i): vector binary associated to the solution i.
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• O1(i) and O2(i): values of the two objectives of the solution i, converted to GMI values.
• r(i): ranking of the solution i is the number of the front in which is located.
• Dominated(i): solutions dominated by the solution i.
• Domines(i): solutions that dominates to solution i.
• CD (i): Crowding Distance value of the solution i.
• SSD(i): Spatial Spread Deviation value of solution i.

The structure Front is used to store the approximated Pareto front, which contains the
following information for each stored solution i:

• V(i): vector binary associated to the solution i.
• O(i): real vector of the graded mean values of the fuzzy triangular objectives of the

solution V(i).
• r(i): ranking of the solution i is the number of the front in which is located.
• Dominated(i): solutions dominated by the solution i.
• Domines(i): solutions that dominates to solution i.
• SSD (i): Spatial Spread Deviation value of the solution i.

5.4. T-FAME Algorithm Pseudocode

This section presents the pseudocode for the algorithm T-FAME in Algorithm 5.

Algorithm 5. T-FAME pseudocode

INPUT: Instance with the trapezoidal parameters of the portfolio problem.
OUTPUT: Approximated Pareto front

Variables
pop: Population of solutions (binary vectors)
Front: Limited sized set were no-dominated solutions are kept
Operator: Vector of size SizeOP that contains the index of the available operators
Parents: Vector of size NParents that contains the chosen parents
ProbOp(i): Probability that operator i has of being chosen, it has values between 0 and 1
UseOp(i): Normalized Indicator of how much operator i has been used, it has values between 0 and 1
Stagnation: Normalized indicator of the number of generated solutions that couldn’t be inserted into Front, because they were either
dominated solutions or there was not space available for them, it can have values between 0 and 1.
MAXEVAL: Maximum number of evaluations of the objective function (stopping criterion)
Window: Size of the time window.
eval: Accumulator of the evaluations of the objective function
v: Counter of the time windows that have elapsed

Functions
CreateaSon(Operator(i), Parents): Generates one solution using the previous chosen operator i with the chosen parents (Steady state)
Evaluate(Son): Calculates the objective values of Son and verify feasibility
FuzzyController(Stagnation, UseOp(i)): Function that invokes the fuzzy controller with Stagnation and UseOp(i) as input values and
returns the probability of selection of all the operators
no-dominated_sortingSSD(NewPop): Sorts the fronts of NewPop by dominance and uses as ranking the SSD values of the solutions.
EliminateWorstSolutionSSD(NewPop): Eliminates from the last front of NewPop the solution with the worst SSD, and assign NewPop
to pop.
****************************************************************
1. Create(pop) **Create random population
2. Front=NoDominated(pop) **Insert in Front the no-dominated solutions of pop
3. ∀ iε {1, 2, . . . ., SizeOP} ProbOp(i) =1, UseOp(i)=0
4. v =0; Stagnation = 0; eval=0;
5. while (eval<MAXEVAL) do. **** Stop condition
** Chose |NParents|
** With a probability β each parent is taken from Front to intensify) and with 1- β from pop to diversify.
6. ∀ iε {1, 2, ..|NParents|} do
7. if (RandomDouble(0,1) ≤ β) then
**The parent is chosen from Front
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8. Parents[i]← TournamentSSD(Front)
9. Else
**The parent is chosen from pop
10. Parents[i]← TournamentSSD(pop)

*** Roulette to choose an operator with the selection probabilities of the operators
11. sum=0
12. i = Random(1, 2, . . . , NParents)
13. sum=sum+ProbOp(i)
14. while (sum>0) do
15. i = Random(1, 2, . . . , NParents)
16. sum=sum+ProbOp(i)
**********
***** The chosen operator is associated with the last value of i
** ***Steady state approach
17. Son← CreateaSon(Operator(i), Parents)

**** Get the objective vector values corresponding to Son and verify feasibility.
18. Evaluate(Son)
19. eval=eval+1
20. UseOp(Operator(i)) = UseOp(Operator(i))+ 1 . 0/ Window
21. v=v+1
*******************************
22. If (Son dominates a set S of solutions in Front)
23. then { Front=Front\S; Front=Front ∪ Son}
24. else If (∃ s Front such that s dominates Son)
25. then (Stagnation= Stagnation+1.0/ Window)
26. else if (Sizeof(Front)<100)
27. then (Front=Front ∪ Son)
28. else {
29. Front=Front ∪ Son ** Front[1 00]=Son
30. Calculate SSD for all the solutions in Front
31. Sort the solutions in Front in ascending order by SSD
32. Eliminate the solution in Front with worst SSD:Front[100]
33. If (Son Front)
34. then Stagnation= Stagnation+1.0/ Window
35. }
36. If (v == Window) then
**** The Fuzzy Controller is used to update the selection probability
****of all the operators

37. ∀ iε {1, 2, . . . SizeOP}
38. ProbOp(i) = FuzzyController(Stagnation, UseOp(i))
39. v =0; Stagnation = 0;
40. End if
41. pop=pop ∪ Son
42. NewPop=pop
43. no-dominated_sortingSSD(NewPop)
44. pop← EliminateWorstSolutionSSD(NewPop)
45. End while
46. Return(Front) *** Approximated Pareto front generated

6. Experimental Results

Two experiments were done in order to evaluate the performance of the proposed
algorithms. The tested steady-state algorithms were T-NSGA-II-CD, T-NSGA-II-SSD, and
T-FAME. The first experiment was done to make sure the algorithms were implemented
correctly, while the second experiment was done to compare the performance between
them using performance metrics.
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The software and hardware platforms that were used for these experiments include
Intel Core i5 1.6GHz processor, RAM 4GB, and IntelliJ IDEA CE IDE.

6.1. Performance Metrics Used

In order to measure the performance of each algorithm, two metrics were used:
hypervolume [28] and generalized spread [29].

Hypervolume is the n-dimensional solution space volume that is dominated by the
solutions in the reference set. If this space is big, then that means that the set is close to
the Pareto Front. It is desirable for the indicator to have large values. Generalized Spread
calculates the average of the distances of the points in the reference set to their closest
neighbor. If this indicator has small values, then that means the solutions in the reference
set are well distributed.

6.2. Experimental Setup

In order to configure the algorithms used in this work, the parameter values reported
in the state-of-the-art were considered. The parameter value for the maximum number of
evaluations was determined after a preliminary experimental phase. The comparison of all
the algorithms, under the same operation conditions, utilizes a steady-state approach, using
the dominant son. Tables 3 and 4 show the values of the parameters used in the algorithms.
The configuration of algorithm T-NSGA-II-SSD is the same one as T-NSGA-II-CD, however,
it uses Spatial Spread Deviation instead of Crowding Distance as its density estimator.

Table 3. T-NSGA-II-SSD parameters.

Parameter Value

Evaluation of the objective function 5000
Population Size 50

Crossover population % 70
Mutation population % 40

Mutation % 5

Table 4. T-FAME parameters.

Parameter Value

Evaluation of the objective function 5000
Population Size 25

Front Size 100
Tournament Size 5

Number of parents 4
Window Size 13

Differential Evolution Crossover % 10
Number of mutations in FM 2
Front choice probability (β) 0.9

6.3. Experiment 1. Validating the Implemented Algorithms

For this experiment, an instance named o2p25_rand was used, this instance was
originally created for POP with intervals, which was converted in a trapezoidal fuzzy
instance by adding two parameters to the intervals. The optimum Pareto Front was
obtained using an exhaustive algorithm, and approximate fronts were obtained with T-
NSGA-II-CD, T-NSGA-II-SSD, and T-FAME algorithms. All algorithms solve the MOPOP
with Fuzzy Parameters and use a steady-state election mechanism, creating one solution
from the genetic operators’ application. This adaptation from FAME has an advantage over
algorithms using the classic generational approach in genetic algorithms.

The purpose of this experiment is to validate the correct operation of the implemented
algorithms in the project. In the experiment, the fronts are generated, and they are com-
pared to the optimum front, in order to determine if the algorithms are generating similar
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fronts. All the fronts that were generated are shown in Table 5. Each front is shown in
two columns that contain the values of the two objectives that were originally Trapezoidal
Fuzzy numbers, but they were converted into real numbers with the transformation based
on GMI. The graph the fronts uses the GMI values obtained from the objectives.

Table 5. Generated fronts of the algorithms with instance o2p25_rand.

Pareto Optimal Front T-NSGA-II-CD T-NSGA-II-SSD T-FAME

O2 O1 O2 O1 O2 O1 O2

3530 78,510 3465 81,155 3425 81,285 3530
3805 62,350 4245 66,240 4400 77,480 3715
3825 76,360 3840 75,650 3860 74,485 3750
3840 70,035 3870 68,610 4240 73,425 3775
3865 77,020 3490 70,350 4005
3965 66,605 4070 66,850 4375
3980 62,755 4090 59,865 4385
4000 77,900 3490
4025 77,920 3485
4035
4060
4065
4120
4150
4215
4235
4240
4260
4310
4375
4400
4435
4460

It is worth nothing that, in Figure 8, the approximated fronts are relatively close and
below the optimum front. Also, observe that the T-NSGA-II-SSD and T-FAME algorithms
managed to reach some optimum solutions. Finally, note that the T-FAME algorithm has a
good distribution between its solutions.

 

Figure 8. Generated fronts of the algorithms with instance o2p25_rand.
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6.4. Experiment 2. Evaluating the Performance of the Algorithms with Instances of 25 Projects

This experiment evaluates the performances of algorithms T-NSGA-II-CD, T-NSGA-
II-SSD, and T-FAME, and utilizes 13 instances with 2 objectives and 25 projects. In order
to compare the performance between the three algorithms, each algorithm was executed
30 times per instance. The performance metrics used were hypervolume and generalized
spread. For each instance, the reference set contains the non-dominated solutions obtained
from the combination of the 30 generated fronts. The computation of the metrics uses
the reference set as an approximation to the optimum Pareto Front. The computation
of the median value and interquartile ranges uses the metric values of the 30 instances
sorted in ascending order. With the sorted array, the median value was the average of
the metric values from positions 15 and 16. At the same time, the interquartile ranges
correspond to those in positions 23 and 8, corresponding to the 75% and 25% of the metrics
values, respectively. The median value and the interquartile ranges are used instead of the
average and the standard deviation because they are less sensitive to extreme values. The
experiment performs a hypothesis test to validate the obtained results. The hypothesis was
proven using the parametric t student test on those data sets that passed the normality and
homoscedasticity tests and using the non-parametric Wilcoxon signed-rank test on those
that do not. Both tests apply a confidence level of 95%, pairing T-FAME with each of the
other two algorithms. Tables 6–9 show the results of the normality and homoscedasticity
tests done for all the instances used in this work (25 and 100 projects) and the metrics of
hypervolume and generalized spread. Tables 6 and 8 show in the last column pairs (i,j),
which indicate that the comparison of T-NSGA-II-CD and T-FAME uses test i, and the
comparison T-NSGA-II-SSD and T-FAME uses test j. The values t and W in (i, j) stand for t
student test and Wilcoxon test. This work tests each instance separately.

Table 6. Hypervolume normality test, the null hypothesis is that the samples follow a normal distribution which is accepted
(a) when p-value < 0.05 and rejected (r) otherwise.

T-NSGA-II-CD T-NSGA-II-SSD T-FAME

Instance Statistic p-Value R Statistic p-Value R Statistic p-Value R Tests

o2p25_0T 0.9429 0.1089 a 0.83756 0.00034 r 0.96919 0.51737 a t,W
o2p25_1T 0.93655 0.07348 a 0.92817 0.04391 r 0.97408 0.65561 a t,W
o2p25_2T 0.92141 0.02918 r 0.95491 0.22837 a 0.96987 0.53551 a W,t
o2p25_3T 0.94311 0.11035 a 0.90566 0.01159 r 0.94528 0.12625 a t,W
o2p25_4T 0.95413 0.21782 a 0.93505 0.06696 a 0.89022 0.00488 r W,W
o2p25_5T 0.86113 0.00107 r 0.89584 0.00665 r 0.94768 0.14643 a W,W
o2p25_6T 0.9023 0.00956 r 0.89233 0.00548 r 0.96519 0.41715 a W,W
o2p25_7T 0.94961 0.16508 a 0.86559 0.00134 r 0.92644 0.03953 r W,W
o2p25_8T 0.92385 0.0338 r 0.91474 0.01963 r 0.85737 0.00089 r W,W
o2p25_9T 0.94965 0.16541 a 0.89673 0.00699 r 0.97209 0.59792 a t,W

o2p25_10T 0.92989 0.04877 r 0.78913 0.00004 r 0.97575 0.70469 a W,W
o2p25_11T 0.93191 0.05518 a 0.95357 0.21047 a 0.96642 0.44633 a t,t
o2p25_12T 0.94626 0.13411 a 0.95055 0.17491 a 0.98323 0.9033 a t,t
o2p100_1T 0.96346 0.37847 a 0.96637 0.44525 a 0.98333 0.90552 a t,t
o2p100_2T 0.95885 0.28944 a 0.98951 0.98844 a 0.9737 0.64441 a t,t
o2p100_3T 0.93272 0.05801 a 0.9821 0.87827 a 0.94779 0.14745 a t,t
o2p100_4T 0.78768 0.00004 r 0.78085 0.00003 r 0.89022 0.00488 r W,W
o2p100_5T 0.95289 0.20189 a 0.94588 0.13101 a 0.93478 0.06586 a t,t
o2p100_6T 0.94043 0.09341 a 0.93788 0.07976 a 0.95224 0.194 a t,t
o2p100_7T 0.97249 0.60937 a 0.99025 0.99229 a 0.94017 0.0919 a t,t
o2p100_8T 0.96892 0.51019 a 0.98362 0.9115 a 0.96805 0.48728 a t,t
o2p100_9T 0.57553 0 r 0.52513 0 r 0.71502 0 r W,W

305



Math. Comput. Appl. 2021, 26, 36

Table 7. Hypervolume homoscedasticity test, the null hypothesis is that all the input populations
come from populations with equal variances, which is accepted (a) when p-value < 0.05 and rejected
(r) otherwise. We can observe that the null hypothesis is accepted (a) for all the instances. The
parametric t student test can be applied for all the instances that accept the null hypothesis in the
normality tests.

Instance Statistic p-Value R

o2p25_0T 8.46563 0.00044 a
o2p25_1T 17.23159 0 a
o2p25_2T 8.53517 0.00041 a
o2p25_3T 11.87763 0.00003 a
o2p25_4T 7.1698 0.00131 a
o2p25_5T 7.60431 0.0009 a
o2p25_6T 7.19194 0.00129 a
o2p25_7T 2.20562 0.11631 a
o2p25_8T 8.18222 0.00055 a
o2p25_9T 4.45024 0.01445 a

o2p25_10T 3.63843 0.03037 a
o2p25_11T 3.98587 0.02207 a
o2p25_12T 9.90574 0.00013 a
o2p100_1T 0.27401 0.76098 a
o2p100_2T 2.14347 0.1234 a
o2p100_3T 0.29369 0.74624 a
o2p100_4T 1.79147 0.17281 a
o2p100_5T 5.98972 0.00365 a
o2p100_6T 1.09354 0.33959 a
o2p100_7T 2.30064 0.10626 a
o2p100_8T 4.20117 0.01812 a
o2p100_9T 1.39539 0.25322 A

Table 8. Generalized Spread normality test, the null hypothesis is that the samples follow a normal distribution which is
accepted (a) when p-value < 0.05 and rejected (r) otherwise.

T-NSGA-II-CD T-NSGA-II-SSD T-FAME

Instance Statistic p-Value R Statistic p-Value R Statistic p-Value R Tests

o2p25_0T 0.92895 0.04606 r 0.97607 0.71429 a 0.9784 0.78164 a W,t
o2p25_1T 0.98376 0.91432 a 0.95618 0.24658 a 0.97193 0.59314 a t,t
o2p25_2T 0.98074 0.84479 a 0.97925 0.8053 a 0.96813 0.48946 a t,t
o2p25_3T 0.9215 0.02934 r 0.9225 0.03116 r 0.96419 0.39452 a W,W
o2p25_4T 0.95187 0.18969 a 0.96214 0.35091 a 0.68255 0 r W,W
o2p25_5T 0.96913 0.51555 a 0.95677 0.25552 a 0.92403 0.03416 r W,W
o2p25_6T 0.87495 0.00216 r 0.97296 0.62306 a 0.958 0.27513 a W,t
o2p25_7T 0.94053 0.094 a 0.95631 0.24864 a 0.94784 0.14792 a t,t
o2p25_8T 0.9648 0.40819 a 0.95561 0.23827 a 0.94282 0.10833 a t,t
o2p25_9T 0.97001 0.53934 a 0.97168 0.58607 a 0.9686 0.50171 a t,t

o2p25_10T 0.92765 0.04254 r 0.96999 0.53902 a 0.97623 0.71907 a W,t
o2p25_11T 0.91446 0.01932 r 0.96986 0.53537 a 0.95816 0.27785 a W,t
o2p25_12T 0.95492 0.22856 a 0.98402 0.91939 a 0.95432 0.22029 a t,t
o2p100_1T 0.92495 0.03611 r 0.92054 0.02771 r 0.94295 0.10926 a W,W
o2p100_2T 0.9812 0.85642 a 0.95454 0.22326 a 0.95353 0.21003 a t,t
o2p100_3T 0.92278 0.03169 r 0.86033 0.00103 r 0.96482 0.40857 a W,W
o2p100_4T 0.65395 0 r 0.79925 0.00006 r 0.68255 0 r W,W
o2p100_5T 0.91266 0.01738 r 0.86347 0.0012 r 0.96541 0.4223 a W,W
o2p100_6T 0.90797 0.01323 r 0.91912 0.02544 r 0.90857 0.01369 r W,W
o2p100_7T 0.89328 0.00578 r 0.89889 0.00789 r 0.96516 0.41655 a W,W
o2p100_8T 0.94824 0.15169 a 0.96578 0.43096 a 0.96071 0.32297 a t,t
o2p100_9T 0.49141 0 r 0.68971 0 r 0.68313 0 r W,W
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Table 9. Generalized Spread homoscedasticy test, the null hypothesis is that all the input populations
come from populations with equal variances, which is accepted (a) when p-value < 0.05 and rejected
(r) otherwise. Observe that the null hypothesis is accepted (a) for all the instances. The parametric t
student test can be applied for all the instances that accept the null hypothesis in the normality tests.

Instance Statistic p-Value R

o2p25_0T 0.33509 0.71619 a
o2p25_1T 3.11548 0.04934 a
o2p25_2T 5.44373 0.00592 a
o2p25_3T 7.81001 0.00076 a
o2p25_4T 0.38001 0.68498 a
o2p25_5T 3.01271 0.05431 a
o2p25_6T 1.58378 0.21106 a
o2p25_7T 10.87966 0.00006 a
o2p25_8T 1.51668 0.22518 a
o2p25_9T 19.54345 0 a

o2p25_10T 5.78604 0.00437 a
o2p25_11T 7.0285 0.00148 a
o2p25_12T 15.29209 0 a
o2p100_1T 8.48884 0.00043 a
o2p100_2T 9.53401 0.00018 a
o2p100_3T 3.46674 0.0356 a
o2p100_4T 1.42075 0.24708 a
o2p100_5T 3.96176 0.02256 a
o2p100_6T 4.19408 0.01824 a
o2p100_7T 4.62372 0.01235 a
o2p100_8T 5.30008 0.00673 a
o2p100_9T 0.90643 0.40774 a

Table 10 shows the performance results with the hypervolume metric, and Table 11
shows the results with the generalized spread metric. For the hypervolume metric, the
algorithm with the largest value is considered to be the one with the best performance.
For the generalized spread metric, the best algorithm is considered to be the one with
the smallest value. The table’s cells show the median value of the metric (M) and the
interquartile range (IRQ) in the following format: MIRQ. In the result tables, for each
instance the best and second-best values are marked with solid or light black, respectively.
In order to indicate if the observed differences in the performance of the algorithms are
significant or not, for each algorithm the symbol

∧
indicates that the performance of T-

FAME is significantly better that the algorithm which it is being compared. The symbol∨
indicates the opposite, and the symbol = indicates that the difference is not significant.

These symbols are marked with an asterisk when the t student test was applied. To
confirm the results obtained with the paired tests, a global evaluation is done with the three
algorithms. This evaluation was done by applying a Friedman test with 95% confidence.

307



Math. Comput. Appl. 2021, 26, 36

Table 10. Results with the hypervolume metric.

Hypervolume

Instance T-NSGA-II-CD T-NSGA-II-SSD T-FAME

o2p25_0T 0.47470.0858
∨

* 0.31830.3853
∨ 0.20240.2491

o2p25_1T 0.38070.0510
∨

* 0.24600.2325
∨ 0.20030.2876

o2p25_2T 0.35910.0614
∨ 0.24670.2042

∨
* 0.16130.1526

o2p25_3T 0.28320.0549
∨

* 0.27700.2311
∨ 0.13450.1646

o2p25_4T 0.35100.0812
∨ 0.28360.1489

∨ 0.18750.1673

o2p25_5T 0.26350.0383
∨ 0.15290.1495

∨ 0.10700.1048

o2p25_6T 0.37970.0609
∨ 0.24650.1870

∨ 0.13800.2060

o2p25_7T 0.23480.2446
∨ 0.28160.3644

∨ 0.14270.1694

o2p25_8T 0.25740.0664
∨ 0.18380.2259

∨ 0.16300.1747

o2p25_9T 0.40260.1184
∨

* 0.24490.2455
∨ 0.15390.1615

o2p25_10T 0.25800.0710
∨ 0.14510.1566

∨ 0.11260.1070

o2p25_11T 0.39180.0946
∨

* 0.23270.1687=* 0.18760.1657

o2p25_12T 0.29340.0708
∨

* 0.26210.2174=* 0.23520.1969

Table 11. Results with the generalized spread metric.

Generalized Spread

Instance T-NSGA-II-CD T-NSGA-II-SSD T-FAME

o2p25_0T 0.61780.1985
∧ 0.41900.1534 = * 0.41540.2064

o2p25_1T 0.73440.1685
∧

* 0.44770.1289 = * 0.46610.1128

o2p25_2T 0.60650.2078
∧

* 0.39290.1025 = * 0.39830.1047

o2p25_3T 0.72760.2387
∧ 0.51810.1370 = 0.52250.0790

o2p25_4T 0.64750.3031
∧ 0.46460.1432

∨ 0.55110.1078

o2p25_5T 0.72280.1715
∧ 0.42040.0925

∧ 0.41680.1293

o2p25_6T 0.62580.1539
∧ 0.40260.0982

∨
* 0.46290.1703

o2p25_7T 0.83140.5343
∧

* 0.49950.2457
∨

* 0.58330.2388

o2p25_8T 0.75460.1739
∧

* 0.46930.1447 = * 0.46460.1059

o2p25_9T 0.65340.3432
∧

* 0.48250.1435 = * 0.47260.0690

o2p25_10T 0.65420.2697
∧ 0.47930.1031 = * 0.47790.0891

o2p25_11T 0.65400.3103
∧ 0.43690.1073 = * 0.47840.1629

o2p25_12T 070790.2465
∧

* 0.46840.0953 = * 0.46540.0793

The information presented in Table 10 shows that T-NSGA-II-CD stands out as the
algorithm with the best performance in 12 of 13 cases. The results on Table 11 shows that
T-NSGA-II-SSD positions itself as the best algorithm in 10 of 13 cases and T-FAME in 8 of
13 cases. It can also be observed that these differences are significant in all cases, this is due
to the fact that when the differences are not significant between the best and second-best
algorithms, then that means the algorithms are considered tied. Table 12 confirms the
results observed with the t student and Wilcoxon tests. As a result of applying the Friedman
test with the three algorithms, the ones with the lowest rank for the hypervolume and
generalized spread metrics are T-NSGA-II-CD and T-NSGA-II-SSD, respectively.
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Table 12. Friedman ranks of all algorithms with hypervolume and generalized spread.

Hypervolume (p-Value = 5.68 × 10−6) Generalized Spread (p-Value = 5.71 × 10−5)

Algorithm Ranking Algorithm Ranking

T-NSGA-II-CD 14 T-NSGA-II-SSD 19
T-NSGA-II-SSD 25 T-FAME 20

T-FAME 39 T-NSGA-II-CD 39

6.5. Experiment 3. Evaluation of the Algorithm’ Perfomances Using Instances with 100 Projects

As indicated previously, the previous experiment was done with instances with
25 projects, for which the algorithms had to navigate in a space of binary vectors of length
25. In that case the size of the solution space was of 225. For this experiment, 9 instances of
2 objectives and 100 projects were used, these instances represented a greater complexity
for the algorithms because the solution space increased to 2100. The experiment conditions
were just as in the previous one, using the same metrics but in a scenario of greater
complexity scenario. For each instance, the reference set contains the non-dominated
solutions obtained from the combination of the 30 generated fronts. The computation of
the metrics uses the reference set as an approximation to the optimum Pareto Front. The
computation of the median value and interquartile ranges uses the metric values of the
30 instances sorted in ascending order. With the sorted array, the median value was the
average of the metric values from positions 15 and 16. At the same time, the interquartile
ranges correspond to those in positions 23 and 8, corresponding to the 75% and 25% of
the metrics values, respectively. The experiment performs a hypothesis test to validate
the obtained results. The hypothesis was proven using the parametric t student test on
those data sets that passed the normality and homoscedasticity tests and using the non-
parametric Wilcoxon signed-rank test on those that do not. Both tests apply a confidence
level of 95%, pairing T-FAME with each of the other two algorithms. Tables 6–9 shows the
results of the normality homoscedasticity tests done for all the instances used in this work
(25 and 100 projects) and the metrics of hypervolume and generalized spread.

Table 13 shows the results with the hypervolume metric and Table 14 shows the results
with the generalized spread metric. For the hypervolume metric, the algorithm with the
largest value is considered to be the one with the best performance. For the generalized
spread metric, the best algorithm is considered to be the one with the smallest value. The
table cells show the median value of the metric (M) and the interquartile range (IRQ) in
the following format: MIRq. In the result tables, for each instance the best and second
best values are marked with solid or light black, respectively. In order to indicate if the
observed differences in the performance of the algorithms are significant or not, for each
algorithm the symbol

∧
indicates that the performance of T-FAME is significantly better

that the algorithm which it is being compared. The symbol
∨

indicates the opposite, and
the symbol = indicates that the difference is not significant. These symbols are marked
with an asterisk where the t student test was applied. To confirm the results obtained with
the paired tests, a global evaluation is done with the three algorithms. This evaluation was
done by applying a Friedman test with 95% confidence.
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Table 13. Results with the hypervolume metric.

Hypervolume

Instance T-NSGA-II-CD T-NSGA-II-SSD T-FAME

o2p100_1T 0.46810.1948
∧

* 0.50640.1804
∧

* 0.62140.2130

o2p100_2T 0.40940.1613
∧

* 0.54750.2357=* 0.51070.2107

o2p100_3T 0.55240.2781=* 0.63660.3261=* 0.59470.2887

o2p100_4T 0.77380.3543
∧ 0.92610.5476

∧ 0.93950.4006

o2p100_5T 0.28930.1453
∧

* 0.35190.2193
∧

* 0.46110.2668

o2p100_6T 0.53590.3131=* 0.54220.4082=* 0.61630.5234

o2p100_7T 0.27130.1066
∧

* 0.34770.1816
∧

* 0.48960.2093

o2p100_8T 0.35500.1282=* 0.51730.2759
∨

* 0.38940.2611

o2p100_9T 0.91420.3142
∧ 10.1428

∨ 10.0285

Table 14. Results with the generalized spread metric.

Generalized Spread

Instance T-NSGA-II-CD T-NSGA-II-SSD T-FAME

o2p100_1T 0.52090.3128
∧ 0.32100.1922

∧ 0.30390.1152

o2p100_2T 0.53600.2984
∧

* 0.31050.1349
∨

* 0.39950.2272

o2p100_3T 0.48490.1753
∧ 0.37910.1171

∧ 0.37770.2171

o2p100_4T 0.28280.0915
∧ 0.25550.0661

∨ 0.26510.0746

o2p100_5T 0.60080.2320
∧ 0.37960.2193

∧ 0.29770.1051

o2p100_6T 0.37290.2967
∧ 0.34570.1845

∧ 0.28760.1838

o2p100_7T 0.50560.2843
∧ 0.32210.1803

∧ 0.31850.1463

o2p100_8T 0.54240.2142
∧

* 0.31540.1280
∨

* 0.33380.1274

o2p100_9T 0.40840.0670
∧ 0.36810.0604= 0.37180.0489

The information presented in Table 13 shows T-FAME stands out as the algorithm
with the best performance in 7 of 9 cases and T-NSGA-II-SSD in 5 of 9 cases. The results on
Table 14 show that T-FAME stands out as the best algorithm in 6 of 9 cases and T-NSGA-II-
SSD in 4 of 9 cases. These differences are significant in all cases, this is due to the fact that
when the differences are not significant between the best and second-best algorithms, then
that means the algorithms are considered tied. Table 15 confirms the results observed with
the t student and Wilcoxon tests. As a result of applying the Friedman test with the three
algorithms, the one that has the lowest rank for both metrics is T-FAME.

Table 15. Friedman ranks of all algorithms with hypervolume and generalized spread.

Hypervolume (p-Value = 0.00104) Generalized Spread (p-Value = 0.00113)

Algorithm Ranking Algorithm Ranking

T-FAME 12.5 T-FAME 13
T-NSGA-II-SSD 14.5 T-NSGA-II-SSD 14
T-NSGA-II-CD 27 T-NSGA-II-CD 27

7. Conclusions and Future Work

This work approaches the Multi-Objective Portfolio Optimization Problem with Trape-
zoidal Fuzzy Parameters. To the best of our knowledge, there are no reports of this variant
of the problem. This work, for the first time, presents a mathematical model of the problem,
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and, additionally, contributes with a solution algorithm using the Fuzzy Adaptive Multi-
objective Evolutionary (FAME) methodology and two novel steady state algorithms that
apply the Non-Dominated Genetic Algorithm (NSGA-II) methodology to solve this variant
of the problem. Traditionally, these kinds of algorithms use the Crowding Distance density
estimator, so this work proposes substituting this estimator for the Spatial Spread Deviation
to improve the distribution of the solutions in the approximated Pareto fronts. This work
contributes with a defuzzification process that permits measurements on the algorithms’
performances using commonly used real metrics. The computational experiments use a set
of problem instances with 25 and 100 projects and hypervolume and generalized spread
metrics. The results with the challenging instances of 100 projects show that the algorithm
T-FAME has the evaluated algorithms’ best performance. Three hypothesis tests supported
these results, and this is encouraging because they confirm the feasibility of the proposed
solution approach.

The main open works identified in this research are to develop algorithms for solving
the problem with many objectives, preferences, and dynamic variants. Currently, we are
working to change the fuzzy controller selector for a selector based on a reinforcement
learning agent.
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Abstract: The Protein Folding Problem (PFP) is a big challenge that has remained unsolved for more
than fifty years. This problem consists of obtaining the tertiary structure or Native Structure (NS) of a
protein knowing its amino acid sequence. The computational methodologies applied to this problem
are classified into two groups, known as Template-Based Modeling (TBM) and ab initio models. In
the latter methodology, only information from the primary structure of the target protein is used. In
the literature, Hybrid Simulated Annealing (HSA) algorithms are among the best ab initio algorithms
for PFP; Golden Ratio Simulated Annealing (GRSA) is a PFP family of these algorithms designed
for peptides. Moreover, for the algorithms designed with TBM, they use information from a target
protein’s primary structure and information from similar or analog proteins. This paper presents
GRSA-SSP methodology that implements a secondary structure prediction to build an initial model
and refine it with HSA algorithms. Additionally, we compare the performance of the GRSAX-SSP
algorithms versus its corresponding GRSAX. Finally, our best algorithm GRSAX-SSP is compared
with PEP-FOLD3, I-TASSER, QUARK, and Rosetta, showing that it competes in small peptides except
when predicting the largest peptides.

Keywords: protein structure prediction; Hybrid Simulated Annealing; Template-Based Modeling;
structural biology; Metropolis

1. Introduction

Proteins or polypeptides are macromolecules built from amino acids (aa) and are
mainly responsible for living beings’ functionality. Proteins are essentials elements be-
cause every protein has a specific function related to its unique three-dimensional structure
named Native Structure (NS). All the proteins consist of a polymer chain of aa; the junctions
with a small number of them are named peptides. The peptides have significant importance
in the science community because of their multiple applications, for instance, in pharma-
ceutical research [1–4], drug design [5–7], diagnosis [8–10], and therapy [11,12]. To obtain
the NS of proteins from an amino acid sequence could bring benefits to human beings.

The PFP has been identified as an important problem since Kendrew and Perutz’s
research teams obtained the myoglobin and hemoglobin molecules’ tertiary structure,
respectively [13,14]. These studies established the relation between function and structure.
PFP consists of obtaining the three-dimensional structure of a protein with the lowest Gibbs
free energy, thermodynamically stable three-dimensional conformation [15].

The PFP is considered an NP-hard problem [16]. Thus, presumably, none of the known
exact algorithms can solve it in polynomial time. In other words, the execution time grows

Math. Comput. Appl. 2021, 26, 39. https://doi.org/10.3390/mca26020039 https://www.mdpi.com/journal/mca
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exponentially when using them. In contrast, any protein passes from the aa sequence to
its NS three-dimensional structure very rapidly in nature. The latter issue is known as the
Levinthal Paradox [17].

Several algorithms have been applied to solve the PFP successfully, and one of the
most effective algorithms has been the Simulated Annealing algorithm (SA). The SA is
commonly hybridized with other methods; the combination algorithms are called Hybrid
Simulated Annealing algorithms (HSA). These algorithms successfully applied to peptides
are the following:

(a) The classical Monte Carlo Method, or SA, was applied to the PFP [18,19]. Additionally,
an analytical tuning method to SA was proposed [20].

(b) Golden Ratio Simulated Annealing (GRSA) family: Original GRSA proposing a
cooling strategy [21], Evolutionary Golden Ratio SA (EGRSA) using genetic opera-
tors [22], and GRSA2, which is hybridization with the GRSA and Chemical Reaction
Optimization algorithm (CRO) [23].

(c) Metropolis and multiobjective optimization methods were applied in the previous
CASP competitions. The approaches that traditionally have obtained the best results
were Rossetta [24], QUARK [25], and I-TASSER [26]. However, deep learning applied
by the Alphafold algorithm [27] achieved the best score in the CASP13 and CASP14.

(d) PEP-FOLD3 algorithm, which uses secondary structure information and a Monte
Carlo method, and is very successful for small peptides (5 to 50 aa) [28].

The HSA algorithms previously mentioned obtained excellent results for small pro-
teins or peptides. However, when the number of aa increases, the variables (torsional
angle of aa) are also increased, the computational time for exploring the solution space is
considerable. As a result, the PFP area needs new approaches to obtaining better solutions
for large peptides or proteins.

This paper proposes the methodology GRSA-SSP that combines GRSA algorithms
with the Secondary Structure Prediction (SSP). For a given chain of aa representing a
peptide or a protein, the GRSA-SSP performs two processes:

(a) To obtain the first protein prediction from the secondary structure of the amino-
acids sequence.

(b) To refine the previous protein prediction by using GRSA family algorithms.

These two processes are performed in several steps described in this paper. The algo-
rithms used in the second phase of GRSA-SSP can be one of the GRSA family algorithms.
This paper named these hybrid algorithms GRSAX-SSP, where X is used to distinguish the
GRSA algorithm. We evaluate our methodology using RMSD and TM-score metrics [29].
Additionally, experimentation is performed with a set of forty-five instances of peptides
and a set of six mini proteins, which are compared with the most popular algorithms in the
literature, such as PEP-FOLD3 [28], I-TASSER [30,31], Rosetta [24,32], and QUARK [25,33].

The paper’s organization is as follows: first, we present the introduction to PFP
and HSA algorithms. Then, in the Background section, we review the Protein Folding
Problem definition and some relevant research in the literature, and we explain the GRSA
family of algorithms. In the next section, we describe the GRSA-SSP methodology. In the
Results section, we present experimentation comparing the GRSA algorithms with those
of the literature; also, we analyze the presented methodology’s performance. Finally, the
conclusions of this research are presented.

2. Background

The PFP is a significant multidisciplinary problem that has been investigated for over
half a century [34]. Different scientific areas have been studied, for example, computer sci-
ence, bioinformatics, and molecular biology, concerning this problem, and three questions
in particular need to be answered [34].

• Which is the physical code in which an amino-acids sequence dictates an NS?
• Why in nature do proteins fold very quickly while in silicon they fold relatively slower?
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• Is there an algorithm that predicts the protein structure from the amino-acids se-
quence?

This paper is related to the last question. We propose different strategies to obtain the
NS tertiary structure using GRSA family algorithms and secondary structure prediction.
As we mentioned before, finding new algorithms for PFP is significant not only because
of its potential applications but also because it is an NP-hard problem [16], and the num-
ber of combinations that determine which algorithms must be explored in a very large
solution space.

2.1. Definition of Ab-Initio and Force Fields

The ab initio modeling can be defined as an optimization problem where the Gibbs
free energy is the objective function f(n), and this has to be minimized. Thus, this problem
is defined as follows: let there be a sequence of amino acids: n = a1, a2, . . . , an; every
amino acid has associated with it a set of angles σ1, σ2, . . . , σm where m represents
a particular dihedral angle; then, minimizing the energy function f(σ|1, σ2, . . . , σm)
provides the best tertiary structure or NS. The energy functions (force fields) are used
for determining the energy of a protein structure [35], and some examples of these are
AMBER [36], CHARMM [37], ECEPP/2, and ECEPP/3 [38]. The potential energy of
ECEPP/2 is given by Equation (1), which is calculated in vacuo for only intramolecular
energies, and this is the energy function to be minimized [39].

Etotal = ∑
j>i

(
Aij

r12
ij
−

Bij

rij
6

)
+ 332 ∑

j>i

qiqj

εrij
+ ∑

j>i

(
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r12
ij
−

Dij

rij
10

)
+ ∑

n
Un(1± cos(kn ϕn)) (1)

where: rij is the distance in Å (angstroms) between the atoms i and j; Aij, Bij, Cij, and Dij are
the parameters of the empirical potentials; qi and qj are the partial charges in the atoms i
and j, respectively; ε is the dielectric constant; Un is the energetic torsion barrier of rotation
about the bond n; kn is the multiplicity of the torsion angle ϕn.

In this paper, we use the potential energy of ECEPP/2 as an objective function because
we explore the conformational space, and when the energy of the protein structure is
minimized, then the protein structure is accepted.

2.2. Computational Approaches for PFP

The CASP organization has classified PFP models into two main groups:
Group 1: Template-based modeling (TBM). In this group, we find algorithms that use

biological information obtained from the secondary structure of the target protein, homol-
ogy, and fragments of other proteins. These algorithms have achieved good results for
predicting protein structures in the CASP [32,40,41]. TBM involves several strategies; some
of the most common are homology [42,43], threading [44], and fragment assembly [30,45].

Group 2: Ab initio. This prediction approach classically refers to the determination
of the NS using only the aa sequence information. Unfortunately, ab initio algorithms
have achieved good PFP results but only for small proteins with less than 120 residues [46].
The Ab initio modeling is the most challenging approach because it uses the amino acids’
sequence as unique information. Finding an optimal solution with ab initio is very difficult
for big proteins because the solution space is enormous.

These two groups can be applied to small proteins or peptides (between 5 to 50 aa) [28,47].
There are successful studies applied to protein prediction using SA [48–50] or Monte Carlo
algorithms with Metropolis-Hasting [26,27]. The Monte Carlo algorithms are also applied
to the inverse protein folding problem, which objective function is to find a sequence given
a structure [51,52]. This paper focuses on the classical PFP that consists of finding the
functional structure given a sequence aa.

The Rosetta is a protein structure prediction or de novo approach that performs
models for the tertiary structure using the primary and secondary structure predictions.
The algorithm generates a local sequence to produce local structures (fragments) that form
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a target protein template. Additionally, the fragments are then assembled by randomly
using a Monte Carlo simulated annealing algorithm. Finally, the fitness of individual
conformation interactions is evaluated based on a scoring function derived from known
protein structures. However, only peptides longer than 27 aa can be provided as input [32].

Another PFP approach is I-TASSER (Iterative Threading ASSEmbly Refinement). It
has four principal parts: generating a template using a multi-threading method, fragments’
assembly method, refinement process, final model selection, and annotation tools. The
I-TASSER applies an alignment of the target sequence and divides it into aligned using
LOMETS [53,54] and nonaligned regions using the Monte Carlo algorithm. In the last step,
annotation of functions is performed based on the structural models obtained using the
BioLIP [55] database of ligand-protein interactions. Finally, the I-TASSER predicts protein
structures from 10 to 1500 amino acids [31].

PEP-FOLD3 has a framework to predict the tertiary structure of peptides using de
novo structure modeling. The process of predicting structure consists of three stages.
Firstly, for a peptide amino acid sequence, a support vector machine is applied to predict
the structural alphabet of fragments. Secondly, several models are generated using series
of states and refined by a Monte Carlo algorithm. Finally, the five best conformations are
selected [28].

Another approach is QUARK [33], in which an ab initio strategy is used to predict
protein structures in ranges of 20 to 200 aa. Additionally, an assembly process of fragments
with small structures is carefully selected and applied in the target sequence using a Monte
Carlo algorithm.

SAINT2 is a fragment-based de novo structure prediction approach that has been
successfully compared with the CASP12 approaches [56], which consists of a sequence-
to-structure pipeline divided into four principal sections: (a) the secondary structure
prediction where PSI-PRED [57] is applied, (b) the torsion angles prediction using SPINE-
X [58], (c) a fragment library with the Flib package, and (d) the residue-residue contact
prediction applying metaPSICOV [59]. Finally, the highest-scoring model is selected. In
our methodology, sections (a) and (b) are applied, and they are shown in Figure 1.

The GRSA Family Algorithms

The SA algorithm is inspired by the physical annealing process of metals [60,61]. The
algorithm has been applied with success in many NP-hard problems [20], including the PFP.
SA employs the Metropolis algorithm to efficiently explore the solution space and obtain a
good solution to optimization problems. We show the pseudocode of SA in Algorithm 1. Ti
and Tf parameters define the initial and final temperatures, respectively; the α parameter
represents the cooling factor. In the Metropolis cycle, new solutions are generated by a
perturbation function. Finally, to accept or reject a new solution, an acceptance criterion
based on Boltzmann distribution is applied (lines 11–14). The SA algorithm is executed
until the final temperature, Tf, is reached. The SA algorithm source code is available at https:
//github.com/DrJuanFraustoSolis/SimulatedAnnealing.git (accessed on 28 April 2021).
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Algorithm 1. SA algorithm Procedure.

Figure 1. Methodology GRSA-SSP for peptide prediction.

However, when the solution space is very large, the algorithm’s exploration takes a
long time to obtain optimal solutions. Thus, new algorithms are necessary. The GRSA algo-
rithm was proposed, which has been successfully applied in different NP problems [62,63],
including the PFP [18]. The main characteristics of GRSA are the cooling scheme that
decreases according to Tfp temperature cuts calculated by the golden number (F) and then
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a stop criterion that reduces the cost of exploration (Algorithm 2). GRSA has a similar
structure to the SA algorithm (lines 4 to 16). The difference with SA is that the GRSA calcu-
lates Tfp temperature cuts (five cuts are recommended), and in each cut, an α parameter
in the range [0.7, 1] is associated (the common higher value is 0.95); the intermediate α

values in this range are determined with an increment δ which represent the α increment
since the lowest until the highest α value (in this case, δ = 0.05). These alpha values are
associated with each temperature cut (line 17). The algorithm reduces the temperature
cooling speed; thus, the execution time, corresponding to lines 18 to 23, decreases. Finally,
to reduce wasting time in low temperatures, where the quality of the result is not improved,
a stop criterion was implemented using the least-squares method (lines 24 to 29). This stop
criterion detects the stochastic equilibrium for some i Metropolis cycles. We measure the
slope (m is a global variable) of the linear regression of the energy of these cycles. In this
regression, we used the coordinates (Ei, i); where i is in the range [2, κmax]. In our case, we
used κmax = 5. The equilibrium is found when m is close to zero, calculated by (2).

m =
κ ∑κ

i=2 iEi − (∑κ
i=2 i)(∑κ

i=2 Ei)

κ ∑κ
i=2 i2 − (∑κ

i=2 i)2 (2)

The Equation (2) can be written as follows (3):

m =
12 ∑κ

i=2 iEi − 6(κ − 1)(∑κ
i=1 Ei)

κ3 − κ
(3)

where: κ is the number of metropolis cycles for measuring the slope, i is the iteration of
every metropolis cycle, and Ei the energy in each iteration.

The evaluation of m in Equation (2) does not imply a significative execution time;
the summations on Equation (3) are only cumulative operations in Algorithm 3. This
algorithm determines the equilibrium with this Equation (3). The GRSA algorithm source
code is available at https://github.com/DrJuanFraustoSolis/GRSA.git (accessed on 28
April 2021).

Algorithm 2. GRSA algorithm Procedure.
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Algorithm 3. Equilibrium Function.

The EGRSA (Algorithm 4) is an algorithm integrated by the hybridization of GRSA
with evolutionary techniques. This algorithm has an evolutionary perturbation (EGR-
SApert) in the GRSA phase (line 7), where a genetic algorithm is used. The EGRSA algo-
rithm starts with a set of individuals generated for determining the initial solution designed
as Si. Then in the Metropolis Cycle, the Si is perturbated by EGRSApert to generate new so-
lutions. Next, the best individual generated Sj solution is selected of the population (lines 9
and 10). EGRSA is similar to GRSA, and both applied a stop criterion (see Algorithm 2.1) by
the least-squares method [64,65] (lines 24–29). Algorithm 5 presents EGRSApert function,
where one individual is a set of dihedral angles [F1, Ψ1, X1, ω1, F2, Ψ2, X2, ω2, . . . , Fn, Ψn,
Xn, ωn] and a population is a set of individuals. Then crossover and mutation operators are
applied to generate new solutions by the perturbation function. Finally, when the number
of generations is reached, the best individual of the population is selected. The EGRSA
algorithm source code is available at https://github.com/DrJuanFraustoSolis/EGRSA.git
(accessed on 28 April 2021).

Algorithm 4. EGRSA algorithm Procedure.
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Algorithm 5. EGRSApert Function.

The GRSA2 algorithm [23] is a hybridization of GRSA with the CRO algorithm [66].
GRSA2 (Algorithm 6) is an enhancement of GRSA. It has the same structure as the pre-
vious algorithms revised in this paper. Specifically, GRSA2 has two principal differences
in the perturbation phase, applying decomposition and soft collision (line 8) and the
acceptance criterion (lines 10 to 14). In Algorithm 7, we show the perturbation process
implemented in the GRSA2pert function. In GRSA2, two soft collisions are used (uni-
molecular, Intermolecular). This algorithm has been applied only in the PFP with a set of
19 peptides and compared with I-TASSER and PEP-FOLD3 approaches obtaining outstand-
ing results in the case of peptides [23]. The GRSA2 algorithm source code is available at
https://github.com/DrJuanFraustoSolis/GRSA2.git (accessed on 28 April 2021).

Algorithm 6. GRSA2 algorithm Procedure.
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Algorithm 7. GRSA2pert Function.

3. GRSA-SSP Methodology

In this section, we present the GRSA-SSP methodology (Figure 1). This methodology
has two main processes:

(a) The prediction of the torsion angles (initial solution) from the secondary structure;
that corresponds to stages 1 to 4 in Figure 1.

(b) The refinement of the solution obtained from the secondary structure. This is per-
formed with GRSA algorithms showed in stage four (Figure 1).

The GRSA-SSP methodology has an input (amino acid sequence), an output (tertiary
structure prediction), and four stages: (1) secondary structure prediction, (2) torsion angles
prediction, (3) template construction, and (4) refinement by GRSAX algorithms. Next, we
explain each of these stages:

Input (Amino acid sequence). The amino acid sequences are taken as input.

(1) Secondary structure prediction. This secondary structure, which corresponds to the
amino acid sequence and is predicted using PSI-PRED [57]. This algorithm generates
a sequence profile with PSI-BLAST [67] and performs the prediction of the stage, such
as the helix (H), strand (E), and coil (C). PSI-PRED calculates the probability of each
possible state and defines the most likely structure.

(2) Torsion angles prediction. The secondary structure’s prediction is essential for this
stage, where SPINE-X is used to obtain the torsion angles (F, Ψ, and ω) of each
amino acid. This process is realized through the Position-Specific Score Matrix and
Physical Parameters [58]. SPINE-X applies artificial neural networks to obtain the
best predictions of the target’s proteins.

(3) Model construction. In this stage, the torsion angles or variables are used to construct
a template as initial solution Si = [F1, Ψ1, X1, ω1, F2, Ψ2, X2, ω2, . . . , Fn, Ψn, Xn, ωn]
that is represented by amino acids subscript 1 to n and the same form by the following
amino acids up to n; n is dependent on the size of an amino acid sequence of the
target protein. The torsion angles represent the base column of the peptide on which
the refinement will be performed.

(4) Refinement by GRSAX. When the previous stages construct the peptide template, we
can apply a GRSAX algorithm such as GRSA (renamed GRSA1), EGRSA (renamed
GRSAE), and GRSA2, as well as the classical SA (GRSA0). The GRSAX algorithms
are tested individually for comparison, which obtains a better tertiary structure of
the target peptide. Moreover, once the energy and three-dimensional structure is
obtained, the structure is evaluated with the RMSD and TM-score [29] metrics.

Output. The GRSAX-SSP algorithm obtains the tertiary structure prediction.

4. Results

We performed the next GRSAX-SSP algorithms with the proposed methodology:
(a) GRSA0-SSP using classical SA [19], (b) GRSA1-SSP using original GRSA [21], (c) GRSAE-
SSP using EGRSA [22], and (d) GRSA2-SSP using GRSA2 [23]. For all of them, we used
the methodology presented in Figure 1. The peptides in this experimentation have 9 to
49 amino acids. The number of variables (torsion angles) for each peptide in this data set is

321



Math. Comput. Appl. 2021, 26, 39

in the range [49, 304]. We chose this set because these instances (peptides) were used before
in the literature. This set was also useful for comparing the GRSA2-SSP algorithm with
the top-performing approaches of the CASP, which can be used for small peptides. We
compared the last algorithm with I-TASSER, PEP-FOLD3, QUARK, and Rosetta, which are
among the best algorithms in the CASP competition. We noted a difference between the
GRSAX-SSP algorithms and the one that only applies ab initio by naming it GRSAX. Table 1
presents the set of 45 instances sorted by the number of variables taken from [23,28,68,69]
and a PDB code represents each peptide.

Table 1. Set of instances (peptides).

N◦ PDB-Code aa
Number of Variables

(Torsion Angles)
N◦ PDB-Code aa

Number of Variables
(Torsion Angles)

1 1uao 10 47 24 1wz4 23 123

2 1egs 9 49 25 1rpv 17 124

3 1eg4 13 61 26 1pef 18 124

4 1l3q 12 62 27 1du1 20 134

5 2evq 12 66 28 1pei 22 143

6 1le1 12 69 29 1yyb 27 160

7 1in3 12 74 30 1t0c 31 163

8 3bu3 14 74 31 1by0 27 193

9 1gjf 14 79 32 2bn6 33 200

10 1rnu 13 81 33 1wr4 36 206

11 1lcx 13 81 34 1yiu 37 206

12 1k43 14 84 35 2ysh 40 213

13 1a13 14 85 36 1bhi 38 216

14 1nkf 16 86 37 1i6c 39 218

15 1le3 16 91 38 1wr7 41 222

16 1pgbF 16 93 39 2dmv 43 229

17 1dep 15 94 40 1bwx 39 242

18 1niz 16 97 41 1f4i 45 276

19 2bta 15 100 42 1dv0 47 279

20 1l2y 20 100 43 1ify 49 290

21 1e0q 17 109 44 2p81 44 295

22 1b03 18 109 45 1pgy 47 304

23 1wbr 17 120 - - - -

In the experimentation, the GRSAX-SSP algorithms were executed 30 times to validate
the results. The energy function ECEPP/2 is determined with SMMP framework [38]; it
is the objective function of our optimization algorithms. An analytical tuning [20] was
performed to obtain the initial and final temperature for each instance. In GRSA0-SSP
the α value is 0.95, and the temperature range has zero golden sections. For GRSA1-SSP,
GRSAE-SSP, and GRSA2-SSP algorithms, the same cooling scheme was used, using the
α parameter with values from 0.75 to 0.95 with five golden ratio sections, which was
determined by experimentation [21–23]. The GRSAX-SSP algorithms were executed in
one of the terminals of the Ehecatl cluster in TecNM/IT Ciudad Madero, and it has the
following characteristics: Intel® Xeon® processor at 2.30 GHz, Memory: 64 GB (4 × 16 GB)
ddr4-2133, Linux CentOS operating system, and Fortran language.
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We used the minimum energy quality values, the RMSD, and TM-score to evaluate
the results, which are two metrics of the structural quality used for PFP algorithms. The
RMSD is a structural measure between the native structure and the one predicted by the
GRSAX-SSP and classical SA named here as GRSA0:

(a) If the RMSD has a value close to zero, the quality of the structure is considered
excellent. On the contrary, the quality is worse.

(b) The TM-score is also used to measure the similarity between two structures. When
the TM-score is greater than 0.5, it indicates that there is a good similarity between
the two structures, and the tested one has the same fold. Otherwise, as the TM-score
is lower than 0.5, the target peptide has a different fold [29].

The TM-score metrics can be calculated using the TM-align [70] (an algorithm to
obtain the best structural alignment between two proteins) or in a classical formulation [29].
In this paper, we use the classical formulation of TM-score.

GRSAX-SSP algorithms use a model determined by the secondary structure, and then
it is refined for obtaining a better prediction. The results are compared with the GRSAX
based on ab initio that only uses the amino acid sequence as information. Figures 2–5 show
average results related to energy (kcal/mol), RMSD, and TM-score for each peptide. The
numbers in the x-axis, represent the instances or peptides of Table 1, and each instance is a
set of torsional angles X = [F1, Ψ1, X1, ω1, F2, Ψ2, X2, ω2, . . . , Fn, Ψn, Xn, ωn] associated to
each amino acid. We averaged the results of 30 executions for comparison.

Figure 2. Comparison of GRSA0 versus GRSA0-SSP.

Figure 2 shows that GRSA0-SSP has better behavior than GRSA0 or classical SA. Note
that in all the peptides, GRSA0-SSP obtained the lowest energy. In other cases, the RMSD
is more stable with small instances (1–16), and in the next instances, the behavior is equal.
Additionally, when we compared with TM-score, the behavior, in general, is similar. In
conclusion, by implementing this methodology in GRSA0-SSP with these instances, we
obtained slightly improved results.

Figure 3 presents the comparison of the GRSA1-SSP versus GRSA1 with the same
metrics; we observed the behavior with the 45 instances evaluated. In terms of energy,
RMSD, and TM-score, the performance of GRSA1-SSP is equivalent to GRSA1.
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Figure 3. Comparison of GRSA1 versus GRSA1-SSP.

Figure 4 shows the behavior of GRSAE-SSP, and we compared it with the original
GRSAE algorithm. In this figure, we can appreciate that the results are equivalent in all
cases when energy, RMSD, and TM-score are used for comparison.

Figure 4. Comparison of GRSAE versus GRSAE-SSP.

In Figure 5, we present the comparison of GRSA2 versus GRSA2-SSP. Note that the
results obtained in every instance are very remarkable, and the superiority of GRSA2-SSP
uses the metrics of energy, RMSD, and TM-Score. In this case, we applied the methodology
GRSA-SSP to improve the behavior of the classical GRSA2 algorithm.

Finally, in Figure 6, we present the comparison of the GRSAX-SSP family algorithms.
We observe that GRSA2-SSP has the best values in several instances against the other
algorithms, being higher than the others. Therefore, the best behavior of the algorithms
with secondary structure prediction is GRSA2-SSP.

Furthermore, Figure 7 presents the computational time of the GRSAX-SSP family
algorithms. The GRSA2-SSP has the best behavior in time with low values in most of the
instances compared to the other algorithms.
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Figure 5. Comparison of GRSA2 versus GRSA2-SSP.

Figure 6. Comparison of GRSAX-SSP algorithms.

Figure 7. Comparison of the average time of the 30 execution of GRSAX-SSP algorithms.

Table 2 presents the results obtained by GRSA2-SSP. For each instance, we show the
best TM-score and their RMSD. Additionally, we calculated the average of the RMSD
and TM-score for the five best predictions. Complementing the results, we determined
the standard deviation (std) of the RMSD and TM-score for the five best predictions and
included the best type of secondary structure: A (mainly alpha), B (mainly beta), and
N (mainly none). This classification as A, B, and N is based on the secondary structure

325



Math. Comput. Appl. 2021, 26, 39

predominating in each peptide [27,68,69,71,72]. We sort Table 2 by the number of amino
acids for comparing the best results obtained by GRSA2-SSP with the best algorithms of
the literature. This comparison is presented in Figures 9–11.

Table 2. Results obtained by GRSA2-SSP.

N◦ PDB
Code

aa SS RMSD
RMSD

Ave
RMSD

std
TM1

Best
TM1

Ave
TM1

std
N◦ PDB

Code
aa SS RMSD

RMSD
Ave

RMSD
std

TM1

Best
TM1

Ave
TM1

std

1 1egs 9 N 1.47 0.728 0.737 0.411 0.3630 0.043 24 1pef 18 A 1.5 0.706 0.468 0.686 0.661 0.014

2 1uao 10 B 0.71 1.214 0.828 0.401 0.375 0.022 25 1l2y 20 A 0.77 2.268 0.914 0.258 0.243 0.008

3 1l3q 12 N 1.55 1.486 0.727 0.271 0.252 0.025 26 1du1 20 A 1.13 1.62 0.463 0.266 0.266 0.001

4 2evq 12 B 2.43 1.274 1.020 0.382 0.318 0.031 27 1pei 22 A 2.02 1.43 0.366 0.379 0.364 0.010

5 1le1 12 B 0.38 1.356 1.208 0.316 0.301 0.011 28 1wz4 23 A 2.66 2.66 0.424 0.272 0.265 0.015

6 1in3 12 A 1.07 1.054 0.341 0.395 0.387 0.007 29 1yyb 27 A 1.47 1.75 0.306 0.397 0.395 0.002

7 1eg4 13 N 1.59 1.632 0.397 0.339 0.330 0.006 30 1by0 27 A 1.16 1.44 0.217 0.413 0.408 0.003

8 1rnu 13 A 0.26 0.288 0.033 0.628 0.616 0.010 31 1t0c 31 N 2.73 3.04 0.344 0.216 0.2 0.009

9 1lcx 13 N 1.08 1.412 0.422 0.334 0.323 0.009 32 2bn6 33 A 2.17 2.33 0.22 0.329 0.319 0.010

10 3bu3 14 N 1.02 1.122 0.47 0.294 0.263 0.019 33 1wr4 36 B 3.18 3.09 0.55 0.243 0.21 0.018

11 1gjf 14 A 1.37 0.874 0.461 0.561 0.547 0.040 34 1yiu 37 B 3.01 3.17 0.455 0.221 0.202 0.011

12 1k43 14 B 2.92 1.488 0.916 0.303 0.261 0.027 35 1bhi 38 N 2.76 2.736 0.794 0.306 0.296 0.007

13 1a13 14 N 1.38 1.29 0.126 0.313 0.302 0.007 36 1i6c 39 B 4.29 3.51 0.505 0.205 0.191 0.010

14 1dep 15 A 0.98 0.762 0.352 0.641 0.603 0.023 37 1bwx 39 A 2.98 2.58 0.282 0.451 0.443 0.005

15 2bta 15 N 2.47 1.716 0.455 0.227 0.196 0.018 38 2ysh 40 B 3.21 3.46 0.493 0.243 0.222 0.016

16 1nkf 16 A 3.03 1.838 0.842 0.287 0.278 0.009 39 1wr7 41 B 3.71 3.55 0.146 0.223 0.208 0.011

17 1le3 16 B 1.02 1.25 0.77 0.224 0.215 0.007 40 2dmv 43 B 3.27 3.402 0.6 0.217 0.201 0.013

18 1pgbF 16 B 1.54 2.03 0.409 0.229 0.209 0.018 41 2p81 44 A 3.52 3.21 0.476 0.185 0.178 0.007

19 1niz 16 B 2.4 1.77 0.572 0.235 0.214 0.016 42 1f4i 45 A 3.13 3.46 0.221 0.31 0.302 0.006

20 1e0q 17 B 0.79 1.494 0.536 0.226 0.221 0.008 43 1dv0 47 A 2.65 2.94 0.437 0.303 0.283 0.011

21 1wbr 17 N 1.68 1.31 0.363 0.295 0.2716 0.016 44 1pgy 47 A 3.22 2.62 0.46 0.345 0.336 0.006

22 1rpv 17 A 0.81 0.71 0.096 0.469 0.463 0.005 45 1ify 49 A 2.56 2.77 0.4 0.311 0.297 0.008

23 1b03 18 B 3.04 2.356 0.629 0.2143 0.208 0.004 - - - - - - - - - -

Note: PDB code (Instance), number of amino acids (aa), SS is the predominant secondary structure type: beta strand (B), alpha-helix (A)
and none (N), TM1 = TM-score.

Figure 8 shows the GRSA2-SSP algorithm performance with instances classified by
secondary structure. We show that the GRSA2-SSP algorithm has the best behavior in alpha
structure instances evaluated with TM-score in Figure 8a and RMSD metrics in Figure 8b.
The values in Figure 8 are the best obtained using TM-score and their RMSD. In Figure 8c,d,
we present the TM-score average for the five best predictions and their RMSD average.

Figure 8. GRSA2-SSP according to the type of secondary structure.

In Figures 9–11, we present the behavior of the GRSA2-SSP algorithm, and we compare
it with the results obtained from the approaches PEP-FOLD3, I-TASSER, QUARK, and
Rosetta. We divided the dataset of Table 1 into three groups of 15 instances; groups 1, 2,
and 3 have instances 1–15, 16–30, and 31–45. We compared these groups using the metrics
RMSD, TM-score, GDT-TS [73], and TM-score (classical), and we present the best TM-score,
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the average of the five best predictions of the TM-score, and their RMSD. Additionally, we
present the GDT-TS average and TM-score average.

In Figure 9, we introduced the comparison of the first group, and we observed that
GRSA2-SSP behaves similarly to I-TASSER and PEP-FOLD3, but in this group of small
peptides, PEP-FOLD3 is slightly better than our algorithm and I-TASSER when GDT-TS
is compared (Figure 9e). Furthermore, we observed that our algorithm is competitive in
this group. In this comparison, Rossetta and QUARK were not added because the minimal
number of amino acids predicted are 27 and 20, respectively.

Figure 9. Comparison of GRSA2-SSP, PEP-FOLD3, and I-TASSER by RMSD (up to 15 amino acids).
Figure 9 (a) best TM-score and (b) their RMSD, (c) TM-score average of the five best predictions,
(d) RMSD average of the five best predictions, (e) GDT-TS average.

Figure 10 compares the second group of 16 to 30 amino acids with the best and the
five best obtained using the TM-score metric and their RMSD, and the GDT-TS average. In
this comparison, we added the second group of instances’ results of QUARK; Rosetta was
omitted because it is unable to predict most of the instances of this group.

In Figure 10a we observe very similar behavior among GRSA2-SSP, PEP-FOLD3, I-
TASSER, and Rosetta. Note in this figure, GRSA2-SSP and PEP-FOLD3 obtain the best
prediction. In Figure 10c, when the best five predictions are compared, I-TASSER obtains
the best results, followed by PEPFOLD3 and GRSA2-SSP. Additionally, when the RMSD
average is compared (Figure 10d), I-TASSER is the best, followed by PEP-FOLD3 and
GRSA2-SSP. Finally, in Figure 10e, when GDT-TS is compared, GRSA2-SSP has a similar
performance to PEP-FOLD3, I-TASSER, and QUARK. According to this figure, GRSA2-SSP
and I-TASSER obtained a similar average.

Figure 11 compares the third group of 31 to 49 amino acids with the five best results
obtained using the TM-score metric and their RMSD y GDT-TS. This comparison added
the Rosetta approach because it can process the number of aa in this group. As we observe,
the best algorithm is I-TASSER, followed by Rosetta, QUARK, PEP-FOLD3, and finally
GRSA2-SSP.
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Figure 10. Comparison of GRSA2-TBM, PEP-FOLD3, and I-TASSER by TM-score (16 to 30 amino
acids). Figure 10 (a) best TM-score, and (b) their RMSD, (c) TM-score average of the five best
predictions, (d) RMSD of the five best predictions, and (e) GDT-TS average of the five best predictions.

Figure 11. Comparison of GRSA2-SSP, PEP-FOLD3, I-TASSER, QUARK, and Rosetta by TM-Score
(31 to 49 amino acids). Figure 11 (a) best TM-score, and (b) their RMSD, (c) TM-score average of the
five best predictions, (d) RMSD average of the five best predictions, and (e) GDT-TS average of the
five best predictions.

The 45 instances evaluated in the below experimentation show the application of the
secondary structure results and refine them with the GRSAX algorithms, enhancing the
performance in energy, RMSD, and TM-score. Specifically, when GRSA2-SSP is compared
with PEP-FOLD3, I-TASSER, QUARK, and Rosetta, we observed that our algorithm per-
forms well in small instances (Group 1 and 2). Nevertheless, in the largest instances, our
algorithm is not the best, but it is competitive.

We carried out a second experimentation with six mini-proteins (5wll, 5lo2, 5up5,
5uoi, 2ki0, and 2kik) presented in Table 3. The mini-proteins come from the de novo
protein design field [74–78]. This data set was proposed to observe the behavior of our best
algorithm in these kinds of instances.

328



Math. Comput. Appl. 2021, 26, 39

Table 3. Mini-proteins.

Instances

N◦ PDB Code aa
Number of Variables

(Torsion Angles)
SS

1 5wll 26 174 A

2 5lo2 34 192 A

3 2ki0 36 214 N

4 5up5 40 266 N

5 5uoi 43 282 A

6 2kik 48 306 A
Note: alpha-helix (A) and none (N) for secondary structure.

We applied the same evaluation of all the algorithms, as in the first experimentation,
using RMSD, TM-score, and GDT-TS metrics. Table 4 shows the results of all the algorithms
in this data set. Evaluating them with TM-score and GDT-TS, we observe that the best
algorithms were Rosetta, I-TASSER, and GRSA2-SSP, where the number of times the best
results were achieved 3, 2, and 1, respectively. Additionally, evaluating with the RMSD,
the best algorithms were again Rosseta, I-TASSER, and GRSA2-SSP, but this time they
obtained the best results in two instances, which were (5uoi, 2kik), (2ki0, 5up5), and (5wll,
5lo2), respectively. As a result, we can say that Rosetta is the best algorithm, followed by
I-TASSER, and GRSA2-SSP.

Table 4. Average metrics results of Mini-proteins.

Approaches

Instances

5wll 5lo2 2ki0

RMSD TM-Score GDT-TS RMSD TM-Score GDT-TS RMSD TM-Score GDT-TS

GRSA2-SSP 0.656 * 0.642 * 0.944 * 1.504 * 0.501 0.649 2.172 0.354 0.504

PEP-FOLD3 1.074 0.526 0.892 1.922 0.532 0.769 2.422 0.466 0.697

I-TASSER 0.823 0.530 0.737 1.734 0.608 0.776 0.620 * 0.899 * 0.986 *

QUARK 0.897 0.565 0.788 1.848 0.527 0.713 2.228 0.450 0.688

Rosetta N/A N/A N/A 1.552 0.694 * 0.849 * 2.146 0.460 0.710

Approaches

Instances

5up5 5uoi 2kik

RMSD TM-Score GDT-TS RMSD TM-Score GDT-TS RMSD TM-Score GDT-TS

GRSA2-SSP 2.234 0.277 0.403 3.194 0.192 0.340 2.756 0.339 0.508

PEP-FOLD3 2.512 0.372 0.541 2.516 0.481 0.629 2.282 0.395 0.597

I-TASSER 1.390 * 0.782 * 0.900 * 2.565 0.512 0.664 2.187 0.448 0.557

QUARK 1.880 0.614 0.778 2.022 0.633 0.777 2.028 0.462 0.627

Rosetta 1.716 0.692 0.838 1.642 * 0.753 * 0.871 * 1.968 * 0.665 * 0.785 *

Note: The asterisk (*) represents the best result in each column.

5. Conclusions

In this paper, we present the methodology GRSA-SSP for Protein Folding Problem
applied to peptides. The objective of this problem is to predict the functional tridimen-
sional protein structure. The algorithms developed with this methodology are GRSA0-SSP,
GRSA1-SSP, GRSAE-SSP, and GRSA2-SSP. The main relevance of the algorithm GRSA2-
SSP, developed with this methodology, is that it produces very good results in the case
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of peptides; specifically, it is similar or better than the algorithms Rosetta, PEP-FOLD3,
QUARK, and I-TASSER for the small and medium peptides, according to the experi-
mentation presented. The last algorithms have traditionally been among the best of the
CASP competition; besides, they use modern machine learning techniques like artificial
neural networks.

We compared the algorithms developed with the original algorithms GRSA0, GRSA1,
GRSAE, and GRSA2; we used a data set of 45 instances for this comparison. We showed
that the hybrid algorithms produced with the GRSA-SSP methodology outperform the
original ones. For this comparison, we used the metrics Energy, RMSD, TM-score, and
execution time. We observed that the best of all these algorithms is GRSA2-SSP formulated
with the proposed methodology.

We made a second evaluation comparing the GRSA2-SSP algorithm with the best
state-of-the-art algorithms (we used the same data set of 45 instances). We selected for this
comparison PEP-FOLD3, I-TASSER, QUARK, and Rosetta. We used a data set of forty-five
instances divided into three groups, from small to large peptides. The experimentation
shows that for groups 1 and 2, GRSA2-SSP performs as well as these algorithms. We
observe that for the first group PEP-FOLD3 was the best, followed by GRSA2-SSP, while
in the second group, the best algorithm was I-TASSER followed by GRSA2-SSP and PEP-
FOLD3. Finally, in the third group, the best algorithm was Rosseta, followed by I-TASSER.
Additionally, we present an analysis of GRSA2-SSP results for each type of secondary
structure, obtaining a better behavior with alpha structures.

Furthermore, we assessed GRSA2-SSP with a second data set of six instances named
mini proteins. The GRSA2-SSP results were compared with PEP-FOLD3, I-TASSER,
QUARK, and Rosetta. The best algorithms in this data set were Rosetta, I-TASSER, and
GRSA2-SSP because the number of times the best TM-score and GDT-TS were 3, 2, and 1,
respectively. However, each of the three achieved two times the first place when RMSD
was evaluated. As a result, the best of these algorithms for this data set is Rosetta, followed
by I-TASSER and GRSA2-SSP.

We conclude that GRSAX-SSP algorithms enhance the original GRSA algorithms.
The best of them is GRSA2-SSP which achieves very good results, surpassing the best
state-of-art for peptides up to thirty amino acids. Finally, we note that the main advantage
of our methodology is that it is simpler than the most powerful approaches of the literature.
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Abstract: Optimization of energy resources is a priority issue for our society. An improper imbalance
between demand and power generation can lead to inefficient use of installed capacity, waste of
fuels, worse effects on the environment, and higher costs. This paper presents the preliminary results
of a study of seventeen interconnected power generation plants situated in eastern Mexico. The
aim of the research is to apply a linear programming model to find the system-optimal solution by
minimizing operating costs for this grid of power plants. The calculations were made taking into
account the actual parameters of each plant; the demand and production of energy were analyzed in
four time periods of 6 h during a day. The results show the cost-optimal configuration of the current
power infrastructure obtained from a simple implementation model in MATLAB® software. The
contribution of this paper is to adapt a lineal progamming model for an electrical distribution network
formed with different types of power generation technology. The study shows that fossil fuel plants,
besides emitting greenhouse gases that affect human health and the environment, incur maintenance
expenses even without operation. The results are a helpful instrument for decision-making regarding
the rational use of available installed capacity.

Keywords: optimization; linear programming; energy central

1. Introduction

Due to the increase in energy demand, the requirement to reduce its costs, and
the need for a transition from a centralized to a distributed power generation system,
global integration of energy supply must be planned and managed. Proper management
guarantees a more efficient and sustainable delivery. Thus, within the electricity generation
sector, different variables and parameters must be considered to enhance its preformance.
Some of these considerations are the energy demand, the installed capacity, a plant’s
ability to ramp up or shut down quickly, and generation costs, among other things [1,2].
Studies based in stochastic techniques have been implemented to forecast the generation
or demand for short, medium, and long term analysis [3]. These techniques consider time
interval series that allows historical data to be examined to establish the statistical behavior
of these variables and predict the values that may occur in the future. [4–6]. These variables
delineate the cost-optimal configuration of the power generation grid.

The optimization technique is a mathematical tool that finds the best solution for a
modeled system. The solutions are formulated considering system restrictions [7,8], which
permits efficient decision-making conditions. Using these optimization models in the
energy industry brings benefits such as minimizing costs, increasing utilities, preventing
harmful environmental effects, and defining optimal power flow. Thus, this type of tool
allows energy generation processes to be more reliable, productive, and cost effective.

Math. Comput. Appl. 2021, 26, 46. https://doi.org/10.3390/mca26020046 https://www.mdpi.com/journal/mca
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Otherwise, neglecting prediction models could impact energy production costs, profit
reduction, electrical power losses, and the overuse of non-renewable resources [9].

By means of a mathematical model considering all the system variables and parame-
ters, it is possible to obtain conditions that have an efficient energy system. Each plant’s
conditions and the optimal distribution of its resources allow the reduction of expenses and
losses generated in the power generation process [10,11]. Some of these methods and algo-
rithms are linear programming (LP) [12], quadratic programming (QP) [13], multi-criteria
optimization [14], genetic algorithms (GA) [15], particle swarm optimization (PSO) [16],
simulated annealing (SA) [17], the ant colony (ACO) [18], Taboo search (TS) [19], bee colony
(ABC) [20], and optimal control techniques [21]. These mathematical methods apply to any
production system, no matter the nature or application.

Recently, genetic algorithms have been proposed to optimize power plants [22], where
the objective is to minimize power losses in the transmission process. Additionally, the
particle swarm algorithm [23] minimizes generation costs where it converges to a solution;
its advantage is the reduced use of computational resources. However, the drawback of
these metaheuristic algorithms is that they are optimal approximation algorithms and
search for feasible solutions. Such solutions are close to the optimal and are not the most
efficient, generating only local and not absolute optimal results [24].

The economic dispatch technique for optimizing electric power plants has been sug-
gested as an attractive method [25,26]. This linear programming model finds the optimal
solution for the generation system according to the parameters concerning minimization
or maximization: For example, the minimization of operating costs in the generation of
electrical energy [27,28]; the minimization of greenhouse gas emissions [29] from the dif-
ferent fossil fuel plants; and the economic dispatch (ED) problem in fossil fuel power
systems including discontinuous prohibited zones, ramp rate limits, and cost functions [30].
Some other studies have addressed solving the economic dispatch problem concerning
minimization of losses and costs in a microgrid incorporating renewable energy sources,
but not on a large scale [30–34].

This paper presents an optimization study of an electric power generation plant
network through the economic dispatch model, which is a linear programming scheme.
The proposed model applies to one of the most significant energy production regions
in Mexico, called the eastern zone. This region has different types of power generation
technologies. Within the analysis presented, actual parameters such as the maximum
and minimum powers of each plant, the ramp up and down according to the type of
technology, variable costs, fixed costs, and shut-down costs are considered. Fluctuations
in energy production by renewable energy plants are estimated based on a probability
function according to the historical measured data of each renewable resource in the zone.
The study allows a reduction of generation costs during four time perios, without risking
the secure supply of energy. The applied model shows a day with 100 percent renewable
energy output, 94.90% from hydroelectric plants, 4.32% from wind plants, and 0.78% from
geothermal. These three renewable resources show to be profitable options due to their
low generation costs and big environmental benefit. Furthermore, the study indicates that
plants based on fossil fuels do not significantly contribute to satisfying the demand during
the monitored period. This behavior is noticed because the variable costs are directly
related to the cost of fuels, which means the operating cost of fossil fuels plants increases.

Power Energy Generation in Mexico

The supply of electrical energy in Mexico is provided through various interconnected
transmission networks. Public and private electric utilities compose the national electrifica-
tion system, and the Federal Electricity Commission, a state-owned electric company, is the
institution that supplies electricity to consumers [35]. According to the National Ministry of
Energy [36], Mexico has an installed capacity of 75,685.00 MW, of which fossil fuels generate
79.88%; the other 17.08% is generated by renewable energy, and 3.04% by other methods
such as nuclear energy. In terms of daily peak demand, it is 48,750 Megawatts, which an
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increase of around 15% annually due to population growth, economic development, and
industrialization.

The energy distribution system in Mexico consists of nine zones, as shown in Figure 1.
Each zone has its characteristics of supplying energy according to the requested de-
mand [37].

Figure 1. Mexican Electric System denoted by zones. The zone of interest is shaded (zone 8). [34].

The eastern part of Mexico has 110 generation plants, of which the primary source is
hydroelectric and wind energy, as shown in Figure 2. This feature is due to its geographical
location and high wind potential.

Figure 2. Classification of generation plants in the Eastern Zone of Mexico according to technology
used [37].
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As shown in Figure 2, the range of generation technologies permits a higher installed
capacity in the zone according to the regional demand. This feature allows 22% of energy
generation to contribute to the Mexico national requirements [37] and supply other areas
such as the Central and Peninsular zones. In the Central Zone, the population density is
around 899 inhabitants per km2. Big corporations established in this zone contribute to
27% of the country’s gross domestic product (GDP) [38]. Therefore, the energy demand
is much higher compared to the supply capacity in the central zone. On the other hand,
there is a high energy demand in the Peninsular Zone because it is a substantial touristic
infrastructure [38]. Therefore, it is necessary to promote energy end-use efficiency and
optimize energy resources in these zones. The following section describes the implemented
model in our case study.

2. Materials and Methods

As we mentioned, economic dispatch is a mathematical model that aims to manage
system resources. For our purposes, this model permits efficiently handling all power plant
supplies in an interconnected network. The objective is to obtain the optimal combination
in each generator’s contribution to satisfy the energy demand and minimize its generation
costs. The modeling considerations incorporate real characteristic parameters of each of
the plants to obtain useful results for decision-making. In the following, the proposed
mathematical model is described.

2.1. Modeling for a Certain Time

In an electrical generation system, there are several plants with particular characteris-
tics. These, concerning the central, are denoted by j, that is j = 1, 2, . . . , J. Where J is the
total number of generation plants in the system and each one j works under certain limits.
No plant can operate below the minimum operating power, which is described as:

Pminjvj ≤ Pj (1)

where Pminj is the minimum power of the central and vj is a binary operating variable. If
vj = 1, it means that the central is working. When vj is multiplied by the minimum power,
it will not be below its nominal value and Pj is the optimal power to be generated by each
plant. To exemplify these conditions, suppose we have a system of three plants and plant
1 has a minimum power of 45 MW, plant number two is 35 MW and plant 3 is 40 MW.
Implementing these parameters in Equation (1), it remains:

45v1 ≤ P1
35v2 ≤ P2
40v3 ≤ P3

On the other hand, no control unit can operate above the maximum operational
power Pmaxj:

Pj ≤ Pmaxj · vj (2)

Similarly, if the plant j is working, the power to be generated must not be exceeded.
The power generated by each plant must satisfy the demand D requested by the electrical
distribution grid; therefore:

D =
J

∑
j=1

Pj (3)

On the other hand, demand fulfillment generates individual costs which determine
the total cost of generation, called R. For this reason, resources must be correctly assigned
to minimize them. Thus, the whole cost function R is given as:
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R =
J

∑
j=1

(
Aj · vj + Bj · pj + Mj· zj

)
(4)

The first term Aj indicates the fixed cost of plant j and vj is the binary variable
described above (vj = 1 is working and vj = 0 is off). The term Bj pj corresponds to the
contribution of the cost assumed to be proportional to the production of the plant, where
Bj is the variable cost and pj the production for the plant j. Besides, a plant also generates
costs just for being stopped. This contribution is represented by the third term Mj zj, where
Mj is the cost of having each plant stopped and zj is also a binary stop variable that takes
the value 1 if plant j stops and 0 indicates the opposite case.

This model describes the conditions to satisfy energy demand in a given time, limiting
the power plants’ administration because it does not allow long-term planning. The follow-
ing section describes the mathematical considerations in the modeling for time intervals to
have a more significant representation in the resources assigned.

2.2. Model for Various Periods

The problem of scheduling power plants by periods consists of determining for the
planning horizon both the start-up and shut-down of each power plant and the allocation
of energy to be generated. These three parameters must satisfy the demand in each cycle of
time, reduce costs, and comply with specific technical and operational safety restrictions in
each plant j. These planning horizons are divided into a day by time cycles. These time
cycles are denoted by k, so the planning horizon consists of the periods: k = 1, 2, . . . , K,
where K is determined by the number of cycles defined in total for the study. Each of the j
power plants cannot operate below their minimum energy generation, being established
for various periods such as:

Eminj · vjk ≤ Ejk (5)

where Eminj is the minimum energy to generate plant j in period k; Ejk is the energy that
plant j will generate in period k; and vjk is the binary variable described above. Suppose,
for example, we have a system of three plants and three established periods, if we talk
about the minimum energy to be generated in plant 2 in period 3 it is established as:

Emin2 · v2,3 ≤ E2,3

Similarly, the power plants cannot produce more than the established maximum
energy Emaxj; then:

Ejk ≤ Emaxj · vjk (6)

The energy to be produced in each plant in one period cannot increase abruptly in the
immediately following period above a maximum quantity. This energy is known as the
maximum load rise ramp Uj, expressed as:

Ejk+1 − Ejk ≤ Uj (7)

The difference between energy produced in the immediately following period and the
current period’s energy must be less than or equal to the maximum rising ramp of U of the
plant j. Similarly, no power plant can reduce its energy production under a limit called the
maximum load descent ramp Fj. So:

Ejk − Ejk+1 ≤ Fj (8)

Additionally, it is convenient to define two conditions that allow setting the starting
and braking for each plant, in order to have greater control of the costs that may be
generated. For the first case, let us consider that a plant that is operating in a period k is
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established to be in operation and a previous period k− 1 is also in operation. In this case,
it cannot start in period k expressed as:

vjk − vjk−1 ≤ yjk (9)

where yjk is also a binary start-up variable, and if yjk = 1 indicates the central j is working
in a period k and yjk = 0 for the opposite case. In the same way, if a plant is in operation, it
cannot be stopped and vice versa, therefore:

vjk + zjk = 1 (10)

where zjk is the stop binary variable that indicates zjk = 1 plant j is stopped in period k
and zjk = 0 when not; thus, it is possible to establish an equation that determines the state
and allows these conditions to be fulfilled, given by:

vjk − vjk−1 + yjk − zjk ≤ 0 (11)

To verify that the general conditions and any exchange are valid, consider the fol-
lowing particular example. Suppose that control unit 1 is stopped in period 1, but in the
following period, it is in operation, which means that in period 2, it is going to start. There-
fore it cannot be stopped in the same period 2. The equation for this situation is expressed:

v1,1 − v1,2 + y1,2 − z1,2 ≤ 0 (12)

To verify that this last situation is consistent under the proposed model, consider
the case that the power plant was off in period 1 and remained off in period 2, which is
obtained from Equation (12):

0− 0 + 0 − 1 ≤ 0
−1 ≤ 0

Thus, employing the example proposed in Equation (12), it is verified that all the
variables describe the logic of possible states in the system. On the other hand, the proposed
model must supply the demand in each period. In consequence:

Dk =
J

∑
j=1

Ejk (13)

where Dk is the total demand to cover in period k, the proposed Equations (5)–(12) are
the restrictions inherent to each power plant in the system, where it is sought to reduce
generation scabs by satisfying the demand established in Equation (13).

The cost minimization R now considered in all time intervals must include all the
regular electric power production plants’ programming. Therefore, it must be expressed in
terms of all possible contributions:

R =
K

∑
k=1

J

∑
j=1

(
Aj · vjk + Bj · Ejk + Cj · yjk + Mj · zjk

)
(14)

where it is the sum of all the costs of the plants in each of the periods. The first term of
Equation (14) incorporates the fixed cost Aj of each generation plant. The second term
associates the variable cost Bj, considering that it is proportional to the plant’s production
and directly related to the cost of fossil fuels. The next cost in this model is considered the
start-up Cj of a plant, where it is assumed to be constant throughout the periods. Finally,
the fourth term of Equation (14) incorporates the cost Mj, generated when a plant is off. As
can be seen, each of the costs described is established according to the state parameters
defined by the activation or shut-down binary vjk, pjk, yjk, and zjk, respectively.
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The conditions established to satisfy the different energy demands in the time in-
tervals allow long-term planning, maintaining the optimal distribution of resources and
minimizing the total cost of generation from the model as shown in Table 1.

Table 1. Model equations.

Minimum Energy

Eminj · vjk ≤ Ejk

Maximum Energy

Ejk ≤ Emaxj· vjk

Maximum Load Rise Ramp

Ejk+1 − Ejk ≤ Uj

Maximum Load Descent Ramp

Ejk − Ejk+1 ≤ Fj

Start

vjk − vjk−1 ≤ yjk

On/Stop

vjk + zjk = 1

State

vjk − vjk−1 + yjk − zjk ≤ 0

Demand

vjk − vjk−1 + yjk − zjk ≤ 0

3. Implementation and Discussion of Results

The control area selected to carry out the study consists of 110 power plants that
provide 16,992 MW of installed capacity with different technologies. The demand D in the
area has a value from 6750 MW to 8500 MW on average per hour, according to the National
Center for Energy Control (known by its spanish accronim, CENACE) in Mexico.

From 110 power plants, we select 17 representative power plants which correspond
to 57% of the area’s installed capacity. This selection maintains the proportionality of
the installed capacity of the area by type of technology. These plants have characteristic
parameters such as maximum energy (Emaxj) and minimum energy (Eminj), variable costs(

Bj
)
, fixed cost

(
Aj

)
, start-up costs

(
Cj

)
, and shut-down costs (Mj) as is shown in Table 2.
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Table 2. Parameters of the Electric Power Plants [39].

Central
Eminj
(MWh)

Emaxj
(MWh)

Bj
($/MWh)

Aj
($/h)

Cj
($)

Mj
($/h)

1. Bioenergy 295.14 78.75 3.94 265.524 0 330

2. Combined cycle 2883.9 742.5 2.72 92.28 0 210

3. Combined cycle 5721.06 1474.5 2.69 90.174 0 216

4. Efficient Cogeneration 2138.28 551.1 2.73 93.318 108.3 210

5. Internal Combustion 86.22 23.55 3.16 168.264 108.3 258

6. Wind power 294.9048 246 0 149.778 0 240

7. Wind power 450.4491 375.75 0 149.778 0 240

8. Wind power 420.7788 351 0 149.778 0 240

9. Geothermal 301.98 80.4 0.06 522.708 0 270

10. Hydroelectric 4728.24 1350 0 151.464 0 246

11. Hydroelectric 3152.16 900 0 151.464 0 246

12. Hydroelectric 12,608.64 3600 0 151.464 0 246

13. Hydroelectric 5673.888 1620 0 151.464 0 246

14. Nuclear power plant 8742.9 2265 2.25 588 0 660

15. Thermal 2001.3 525 2.2 170.862 472.86 258

16. Thermal 647.64 172.8 3.94 265.524 468.6 330

17. Turbogas 715.5 181.05 4.19 51.102 216.6 120

For wind power plants, the maximum and minimum energy to be generated are
obtained based on the statistics of the historical wind speed data of the place where they
are located as reported by the Mexican ministry of energy [36]. The wind statistics are
obtained through the Weibull probability density model, and in the same way with respect
to hydroelectric plants, but it is a probability function of the flow and level they present.

For the model’s implementation, it is necessary to indicate the requested demand in
each period of the area, establishing 52% of the total demand for representing the study
plants as shown in Figure 3a, and we are assuming 5% additional to compensate for
generation losses that could be generated at the time of transmission, which means a total
of 57% being established. Therefore, four periods were established in which each period
consists of 6 h in duration, as reflected in Figure 3b. It is worth mentioning that these data
are real and were provided by CENACE based on monitoring carried out every hour over
a three-week interval.

The model established by Equations (5)–(14) and applied to the geographical area
described above was implemented using the MATLAB® programming tool, by means of
the intlinprog function, which allows solving mixed-integer linear programming problems,
and which has the structure as shown in Figure 4.
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Figure 3. The behavior of demand in the Eastern Zone. (a) The corresponding demand in the Eastern Zone per hour.
(b) Consumption accross periods of 6 h.

Figure 4. Intlinpro function syntax from MATLAB® [40].

Where f is a vector of the objective function, x is a vector of the binary variables of
the problem, A is a matrix, with the values of the left side of the inequalities, and b is the
vector of the right side of the inequalities. Aeq is a matrix with the values on the left side
of the model equations, beq is the right side of the equations, lb and ub are a vector with
the maximum and minimum values of the variables. For the generation of these matrices
and vectors, the proper values of each plant established in Table 1 are taken, obtaining
the matrices with the following dimensions F272 X 1, XIntcon240 X 1, A190 X 272, b190 X 1,
Aeq72 X 272, beq72 X 1, lb272 X 1, and ub272 X 1

Once the matrices of the system were defined, the results presented in Tables 3–6 and
Figures 5–8 were obtained. In them, the values for each variable defined in each of the
defined periods are indicated.

In the first period, identified from 00:00 to 06:00 h, an energy demand of 21,832.52 MWh
was managed. This demand is the lowest of the four periods considered because they are
the first hours of the day and, consequently, cover less human activity. The power plants
contributing to related demand are from technologies such as internal combustion, wind,
geothermal, and hydroelectric, the contributions of which make it optimal, as shown in
Table 3 and Figure 5a.
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Table 3. Results of Period 1.

Central Power to Be Generated in 6 h
On
Vj

Start
Yj

Stop
Zj

1. Bioenergy 0 0 0 1

2. Combined cycle 0 0 0 1

3. Combined cycle 0 0 0 1

4. Efficient Cogeneration 0 0 0 1

5. Internal Combustion 23.55 1 0 0

6. Wind power 294.9048 1 0 0

7. Wind power 450.4491 1 0 0

8. Wind power 420.7788 1 0 0

9. Geothermal 80.4 1 0 0

10. Hydroelectric 4728.24 1 0 0

11. Hydroelectric 3152.16 1 0 0

12. Hydroelectric 11062.0373 1 0 0

13. Hydroelectric 1620 1 0 0

14. Nuclear power plant 0 0 0 1

15. Thermal 0 0 0 1

16. Thermal 0 0 0 1

17. Turbogas 0 0 0 1

Table 4. Results of Period 2.

Central Power to Be Generated in 6 h
On
Vj

Start
Yj

Stop
Zj

1. Bioenergy 0 0 0 1

2. Combined cycle 0 0 0 1

3. Combined cycle 0 0 0 1

4. Efficient Cogeneration 0 0 0 1

5. Internal Combustion 23.55 1 0 0

6. Wind power 294.91 1 0 0

7. Wind power 450.45 1 0 0

8. Wind power 420.78 1 0 0

9. Geothermal 80.4 1 0 0

10. Hydroelectric 4728.24 1 0 0

11. Hydroelectric 3152.16 1 0 0

12. Hydroelectric 12,608.64 1 0 0

13. Hydroelectric 2708.79 1 0 0

14. Nuclear power plant 0 0 0 1

15. Thermal 0 0 0 1

16. Thermal 0 0 0 1

17. Turbogas 0 0 0 1
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Table 5. Results of period 3.

Central Power to Be Generated in 6 h
On
Vj

Start
Yj

Stop
Zj

1. Bioenergy 0 0 0 1

2. Combined cycle 0 0 0 1

3. Combined cycle 0 0 0 1

4. Efficient Cogeneration 0 0 0 1

5. Internal Combustion 23.55 1 0 0

6. Wind power 294.91 1 0 0

7. Wind power 450.45 1 0 0

8. Wind power 420.78 1 0 0

9. Geothermal 80.4 1 0 0

10. Hydroelectric 4728.24 1 0 0

11. Hydroelectric 3152.16 1 0 0

12. Hydroelectric 12,608.64 1 0 0

13. Hydroelectric 4901.96 1 0 0

14. Nuclear power plant 0 0 0 1

15. Thermal 0 0 0 1

16. Thermal 0 0 0 1

17. Turbogas 0 0 0 1

Table 6. Results of period 4.

Central Power to Be Generated in 6 h
On
Vj

Start
Yj

Stop
Zj

1. Bioenergy 0 0 0 1

2. Combined cycle 0 0 0 1

3. Combined cycle 0 0 0 1

4. Efficient Cogeneration 0 0 0 1

5. Internal Combustion 23.55 1 0 0

6. Wind power 294.91 1 0 0

7. Wind power 450.45 1 0 0

8. Wind power 420.78 1 0 0

9. Geothermal 80.4 1 0 0

10. Hydroelectric 4728.24 1 0 0

11. Hydroelectric 3152.16 1 0 0

12. Hydroelectric 12,608.64 1 0 0

13. Hydroelectric 3675.32 1 0 0

14. Nuclear power plant 0 0 0 1

15. Thermal 0 0 0 1

16. Thermal 0 0 0 1

17. Turbogas 0 0 0 1
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Figure 5. Generation and Energy in periods 1 and 2. (a) Period 1. (b) Period 2.

Figure 6. Generation and Energy in periods 3 and 4. (a) Period 3. (b) Period 4.
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Figure 7. Contribution of energy generation by each plant of the study in the periods.

Figure 8. Electricity generation and Energy Costs for period 1.

Table 4 shows the model variables’ results in period 2, where the demand to be
satisfied is 24,467.92 MWh, as shown in Figure 5b.

Additionally, in Period 3 (see Table 5 and Figure 6a), the demand to be satisfied is the
highest of the four periods, corresponding to 26,661.1 MWh. Here, the power plants that
contribute to cover most of the demand are wind and hydroelectric. This aspect can be an
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opportunity to incorporate clean technologies for the generation of energy that satisfies the
requested demand.

Finally, in period 4, the demand to satisfy is 25,434.44 MWh; the results of which are
produced by the model and are described in Table 6 and Figure 6b. It is in this period where
the most significant contribution is observed from renewable energies. In this way, we can
observe that the model complies with what is proposed because it satisfies the demand for
the established periods.

Figure 7 shows the different plants that comprise the study carried out and the
contributions of each one of them in the different periods established to satisfy the demand
in each one.

The costs obtained in period 1 are illustrated in Figure 8, which shows the behavior,
and this trend continues in the following periods. The highest costs come from fossil fuel
technology plants. This is mainly due to the various fossil fuels’ high variable costs and the
various costs attributed to these technologies. The lowest costs are from clean generation
sources because maintenance costs are lower and provide benefits for the ecosystem.

4. Conclusions

In this work, the optimization of an Economic Dispatch model for a power supply net-
work located in Mexico’s eastern zone is presented. The established model incorporates real
parameters and intrinsic restriction to each plant. The energy production of the renewable
energy plants was estimated by means of probability functions according to the historical
data of the location. The considerations incorporate the various types of generation costs
and seek their minimization. This allows the state logic to be fulfilled at all times, as can be
seen in Tables 3–6; this is due to Equations (10)–(12), which do not allow a power plant to
be off and on at the same time, as well as also that a plant does not start in a period when it
was on in the previous period. In addition, all costs can be better accounted for by relating
them to binary variables, such as the shutdown, operation, and start-up of a plant.

The results show a majority participation of clean energy plants during the study
time period. The model shows the costs that each of the power plants has in period 1, and
it reflects the lower costs of the power generation mix that contribute to satisfying the
demand, being in this case a combination of clean energy plants. In contrast, the study
shows that some non-operating fossil fuel plants generate even higher costs than renewable
plants in operation.

The mathematical model could be an important tool in decision-making in plant
planning and a diagnostic mode that allows visualizing those plants with very high costs
when incorporating new electricity generation sources. In future works, longer periods
of time should be addressed (one year) to obtain more significant results from the most
suatible energy generation mix for the zone. Energy distribution will be incorporated
due to the importance of power plants, location, and the loads due to the loss of lines at
transmission and their capacities. In this way, there is a broader panorama to analyze the
system as a decision-making tool.
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