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This Editorial presents the accepted manuscripts for the special issue “Intelligent
Biosignal Analysis Methods” of the Sensors MDPI journal.

The special issue consists of 12 accepted manuscripts (11 regular papers and 1 review
paper) that present advances in research and development of intelligent biosignal analysis
methods. These methods are involved in a variety of significant biomedical applications,
ranging from clinical decision support systems and portable personal devices used for
screening and monitoring patients to modeling organism states and disorders. The focus
of this special issue is on different types of methods used for intelligent analysis, and
therefore, the accepted manuscripts mostly use different types of machine learning and
deep learning algorithms for classification tasks on different types of biosignals. Both the
regular contributions and the review paper reach valuable conclusions and discuss avenues
for future work in this exciting field. In continuation of this Editorial, the motivation,
methods, results, and conclusions of the accepted papers are presented.

The first paper [1], titled “Multi-Branch Convolutional Neural Network for Automatic
Sleep Stage Classification with Embedded Stage Refinement and Residual Attention Chan-
nel Fusion”, was authored by T. Zhu, W. Luo, and F. Yu, from Zhejiang University, China.

The paper addresses a machine learning method developed for automatic sleep stage
classification, which is an important and currently unsolved problem. An efficient and
accurate solution could allow clinicians to efficiently assess a person’s sleep quality and
help diagnose a possible sleep disorder. The sleep stage refinement process was integrated
into a neural network model to enable true end-to-end processing. Since detection can be
made more efficient by incorporating multichannel signals, the authors used Sleep-EDF
Expanded Database (Sleep-EDFx) and the University College Dublin Sleep Apnea Database
(UCDDB), both of which include electroencephalogram (EEG), electrooculogram (EOG),
and chin electromyogram (EMG). A multibranch convolutional neural network (CNN)
was combined with a proposed residual attention method, and achieved a classification
accuracy of 85.7% and 79.4% on the Sleep-EDFx and UCDDB databases, respectively, for
the awake state and four sleep stages (N1, N2, N3, and REM). The proposed residual
attention method had a more robust channel-information fusion ability than the respective
average and concatenation methods.

The second paper [2], titled “Robust T-End Detection via T-End Signal Quality Index
and Optimal Shrinkage”, was authored by P.-C. Su, E.Z. Soliman, and H.-T. Wu, from Duke
University and Wake Forest School of Medicine, USA, and from the National Center for
Theoretical Sciences, Taiwan.

The authors address the problem of accurately detecting the end of the T-wave for
providing automatic annotations in the electrocardiogram (ECG). This problem is difficult
to solve due to the presence of noise in ECG signals. The authors propose an algorithm
based on the signal quality index (SQI) for the T-wave end (tSQI) and the optimal shrinkage
(OS). For segments with low tSQI, the OS is applied to enhance the signal-to-noise ratio.
They evaluate their method on a set of 11 short-term ECG recordings from the freely
available QT database and on four long-term ECG recordings. They find that tSQI captures
signal quality well, and that the proposed OS denoising helps stabilize existing T-end
detection algorithms under noisy situations. The methods could be well-suited for clinical
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applications and large ECG databases; however, the current study is limited by the small
size of the annotated datasets available for consideration.

The paper [3], titled “EEG-Based Estimation on the Reduction of Negative Emotions
for Illustrated Surgical Images”, was authored by H. Yang, J. Han, and K. Min, from
Sangmyung University, Korea.

The paper describes an approach to emotion recognition from EEG biosignals that
aims to demonstrate that illustrated surgical images reduce negative emotional reactions
compared to that of photographic surgical images. Because surgical images are important
in communicating procedures to patients and nonspecialists, it is important to evaluate
whether illustrated images that are similarly informative produce the same emotional
response. To demonstrate the difference in emotional response, the authors recorded
the emotional responses of 40 subjects to 10 pairs of images (surgical images and their
illustrated counterparts). They combined their responses with a deep learning network to
obtain accurate predictions of emotions. The results show that the estimated valence of
illustrated surgical images is significantly higher than the valence of photographic surgical
images and vice-versa for arousal, suggesting that illustrated images are better suited for
communication with patients and nonspecialists.

The paper [4], titled “Wearable Sensors for Assessing the Role of Olfactory Training on
the Autonomic Response to Olfactory Stimulation”, was authored by A. Tonacci, L. Billeci,
I. Di Mambro, R. Marangoni, C. Sanmartin, and F. Venturi, from the following institutions
in Italy: National Research Council of Italy (IFC-CNR), University of Pisa, and NexFood Srl.

The authors focus on the key psychophysiological drivers of olfactory-related pleas-
antness, as the current literature demonstrated the relationship between odor familiarity
and odor valence but has not clarified the consequential relationship between the two
domains. They use analysis of ECG and galvanic skin response at the beginning and end of
the olfactory training for 25 subjects enrolled in the study. The authors observed different
autonomic system responses, with a higher parasympathetically-mediated response at the
end of the training period. They conclude that increased familiarity with the suggested
stimuli could lead to a higher tendency towards relaxation, which could be important for
applications in personalized treatments based on odors and foods.

The paper [5], titled “Detection of Myocardial Infarction Using ECG and Multi-Scale
Feature Concatenate”, was authored by J.-Z. Jian, T.-R. Ger, H.-H. Lai, C.-M. Ku, C.-A. Chen,
P.A.R. Abu, and S.-L. Chen, from Chung Yuan Christian University and Ming Chi Univer-
sity of Technology, Taiwan, and from Ateneo de Manila University, Philippines.

The authors investigate different convolutional neural networks (CNN) architectures
that can be used for automatic detection of myocardial infarction (MI). Based on data from
200 patients from open-access PTB ECG database, the authors determined that the best
network structure can be obtained via tuning both the number of filters in the convolutional
layers and the number of input signal scales in the CNN. A multi-lead features-concatenate
narrow network (N-Net) achieved 95.76% accuracy on the MI detection task, while multi-
scale features-concatenate network (MSN-Net) achieved 61.82% accuracy on the MI locating
task, which is a much more difficult task than MI detection. Both results outperfomed the
state-of-the-art. The authors note that the constructed models are small in size, making
them suitable for incorporation into wearable devices for offline monitoring.

The paper [6], titled “EEG-Based Sleep Staging Analysis with Functional Connectiv-
ity”, was authored by H. Huang, J. Zhang, L. Zhu, J. Tang, G. Lin, W. Kong, X. Lei, and
L. Zhu, from the following institutions in China: Hangzhou Dianzi University, Southwest
University, and the Ministry of Education.

Similar to [1], this paper also deals with automatic sleep staging. The authors propose
to use indices of functional connectivity from multiple EEG signal channels to classify sleep
stages. The main idea of the paper is that brain functional connectivity during a sleep stage
process is characterized by different frequency bands and that the interaction between brain
regions may be specific to a particular sleep stage. They applied phase-locked value (PLV)
to characterize phase synchronization between pairs of signals from different brain regions.
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The authors demonstrate the effectiveness of using PLV for sleep stage discrimination,
which is due to PLV increasing in the lower frequency band (delta and alpha bands) during
different stages of nonrapid eye movement (NREM) sleep. They achieved a classification
accuracy of feature-level fusion from six frequency bands for NREM, N2, and N3 stages of
96.91% and 96.14% for intrasubject and intersubject evaluations, respectively.

The paper [7], titled “Wearable Technologies for Mental Workload, Stress, and Emo-
tional State Assessment during Working-Like Tasks: A Comparison with Laboratory
Technologies”, was authored by A. Giorgi, V. Ronca, A. Vozzi, N. Sciaraffa, A. di Florio,
L. Tamborra, I. Simonetti, P. Aricò, G. Di Flumeri, D. Rossi, and G. Borghini, from several
institutions in Italy: BrainSigns, Sapienza University of Rome, Ernst & Young, IRCCS
Fondazione Santa Lucia, and LUISS University.

The authors contend that consumer wearables are characterized by their ease of
use and their comfortability, and therefore, may be an ideal substitute for laboratory
technologies in the real-time assessment of human performance in ecological settings.
The study evaluated the reliability and capability of two consumer wearable devices,
Empatica E4 and Muse 2, to assess stress, mental workload, and emotional state evaluation,
while 17 participants performed 3 work-like tasks. The results were compared to that of
laboratory devices. The study showed that the parameters computed by the consumer
wearable devices and the laboratory sensors were positively and significantly correlated.
In addition, wearable devices were shown to be able to discriminate stress levels, but not
mental workload or emotional state.

The paper [8], titled “Constructing an Emotion Estimation Model Based on EEG/HRV
Indexes Using Feature Extraction and Feature Selection Algorithms”, was authored by
K. Suzuki, T. Laohakangvalvit, R. Matsubara, and M. Sugaya, from Shibaura Institute of
Technology, Japan.

This study investigated the use of inexpensive and simple EEG and photoplethysmog-
raphy (PPG) sensors to classify emotions using EEG and heart rate variability (HRV) signal
features. The authors extracted the features and then used feature selection methods to
improve the accuracy of the model. Multiple feature combinations of EEG and/or HRV
indices selected using feature selection criteria were used to construct emotion estimation
models based on a deep neural network. The model was evaluated using the stratified
k-fold cross-validation method on a dataset consisting of 25 young and healthy subjects.
The results suggest that it is possible to construct an emotion classification model using only
a small number of features from physiological indices. Using the proposed methodology,
an accuracy of approximately 98% was achieved for classification into 4 emotion classes.

The paper [9], titled “The Effects of Individual Differences, Non-Stationarity, and
the Importance of Data Partitioning Decisions for Training and Testing of EEG Cross-
Participant Models”, was authored by A. Kamrud, B. Borghetti, and C. Schubert Kabban,
from the Air Force Institute of Technology, USA.

The study points out the problems associated with dataset construction and partition-
ing for EEG studies. Due to the nonstationarity of the EEG signal as well as individual
differences, EEG-based deep learning models may either not generalize well or, if im-
properly learned, achieve overly optimistic accuracy. Therefore, it is important that the
evaluation procedure strictly follows the evaluation guidelines, as explained in this paper.
The data must be partitioned into training, validation, and testing sets so that cross-
participant models avoid overestimating model accuracy. The authors build the models
for five publicly available datasets and demonstrate how model accuracy is significantly
reduced when proper guidelines for cross-participant EEG model are followed. They show
that if the guidelines are not followed, the error rates of the cross-participant models can be
underestimated by between 35% and 3900%. The authors believe that misrepresentations
of model performance in related EEG studies impede scientific progress toward truly more
accurate models.
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The review paper [10], titled “A Review of EEG Signal Features and Their Appli-
cation in Driver Drowsiness Detection Systems”, was authored by I. Stancin, M. Cifrek,
and A. Jovic, from the University of Zagreb, Croatia.

The work has several contributions. First, it provides a comprehensive overview,
systematization, and brief description of the existing features of the EEG signal, including:
time-domain, frequency-domain, time-frequency domain, nonlinear, entropies, undirected
and directed spatiotemporal, and complex network features. Second, it provides a compre-
hensive review of drowsiness detection systems reported in the relevant scientific literature.
Third, it provides a comprehensive overview of the existing similar reviews, as several
related yet different reviews were published in the literature on this topic. Finally, it
discusses various ways to improve the state-of-the-art of drowsiness detection systems.
Some of the important conclusions reached regarding drowsiness detection systems are:
(1) systems should consider raw data, features from all seven categories, and deep learning
models; (2) systems should base ground truth labels on the unified, standardized definition
and description of drowsiness or be confirmed by multiple independent sources to reduce
subjectivity bias; (3) systems should be evaluated on a large number of participants, such
as 100 or more, because electrophysiological signals have high interindividual differences.

The paper [11], titled, “An Improved Deep Residual Network Prediction Model for
the Early Diagnosis of Alzheimer’s Disease”, was authored by H. Sun, A. Wang, W. Wang,
and C. Liu, from the Northeastern University and the Shenyang University, China.

This paper deals with the early diagnosis of Alzheimer’s disease (AD) from magnetic
resonance imaging (MRI) of subjects. The authors use a deep residual network model
(ResNet) based on spatial transformer networks and the nonlocal attention mechanism
for diagnosing AD. The proposed approach can solve the problems of local information
loss and extract the long-distance correlation in MRI feature space, both of which are prob-
lematic for conventional convolutional neural networks. The method was evaluated with
the Alzheimer’s disease neuroimaging experimental dataset and proved superior to other
methods, including the original ResNet model. It achieved 97.1% accuracy, 95.5% macro
precision, 95.3% macro recall, and 95.4% macro F1 score. The authors conclude that the
proposed method is of great importance for early diagnosis of AD.

Finally, the paper [12], titled “Event-Centered Data Segmentation in Accelerometer-
Based Fall Detection Algorithms”, was authored by G. Šeketa, L. Pavlaković, D. Džaja,
I. Lacković, and R. Magjarević, from the University of Zagreb, Croatia.

This study addresses the problem of improving algorithms for automatic fall detection.
It investigates how different configurations of windows for data segmentation affect the
detection accuracy of a fall detection system. The study showed that the best configuration
consists of three sequential windows (preimpact: 3.5 or 3.75 s, impact: 0.5 or 1.0 s, and
postimpact: 3.5 or 3.75 s). The method was evaluated on three publicly available datasets
on falls and activities of daily living using a support vector machine classifier. The achieved
F-scores for the public datasets were: 99.7% for ErciyesUni, 96.1% for FallAllD, and 98.4%
for the SisFall dataset. The authors conclude that data segmentation is an important
component of automatic fall detection systems as it affects the overall detection accuracy.
The results of the study clearly suggest that using three windows for data segmentation
results in better fall detection performance than using one or two windows.

Acknowledgments: The guest editor would like to thank all the authors, reviewers, and members of
MDPI’s editorial team whose work led to the publication of this special issue.
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Abstract: Automatic sleep stage classification of multi-channel sleep signals can help clinicians
efficiently evaluate an individual’s sleep quality and assist in diagnosing a possible sleep disorder.
To obtain accurate sleep classification results, the processing flow of results from signal preprocessing
and machine-learning-based classification is typically employed. These classification results are
refined based on sleep transition rules. Neural networks—i.e., machine learning algorithms—are
powerful at solving classification problems. Some methods apply them to the first two processes above;
however, the refinement process continues to be based on traditional methods. In this study, the sleep
stage refinement process was incorporated into the neural network model to form real end-to-end
processing. In addition, for multi-channel signals, the multi-branch convolutional neural network
was combined with a proposed residual attention method. This approach further improved the model
classification accuracy. The proposed method was evaluated on the Sleep-EDF Expanded Database
(Sleep-EDFx) and University College Dublin Sleep Apnea Database (UCDDB). It achieved respective
accuracy rates of 85.7% and 79.4%. The results also showed that sleep stage refinement based on a
neural network is more effective than the traditional refinement method. Moreover, the proposed
residual attention method was determined to have a more robust channel–information fusion ability
than the respective average and concatenation methods.

Keywords: sleep stage scoring; neural network-based refinement; residual attention

1. Introduction

Sleep is an essential component of daily human activity. Obtaining adequate sleep is necessary
for individuals to perform tasks when they are awake. Long-term lack of sleep can cause mental
fatigue and impairment of decision-making and learning abilities. It can also cause migraines,
Parkinson’s syndrome, and other diseases [1,2]. To effectively evaluate the human sleep state,
researchers have established a scientific sleep evaluation and diagnosis system, such as the American
Academy of Sleep Medicine Manual (AASM) [3]. In this guide, the sleep-related physiological signals
collected by sensors are divided into wake, rapid eye movement, and nonrapid eye movement stages
according to the signal characteristics. The nonrapid eye movement stage is further divided into N1,
N2, and N3 stages according to the sleep depth. For example, the signal characteristics of the rapid
eye movement (REM) stage (Figure 1b) are broadly described as low-amplitude mixed-frequency
electroencephalography (EEG) activity, with minimal muscle activity and typical rapid eye movement.
These activities are reflected in the signals collected by the corresponding sensors. According to
the description of the characteristics of each stage in the AASM guide, an experienced medical
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technician must read each 30-s sleep epoch, one at a time, and determine the sleep stage to form
a hypnogram, as shown in Figure 1a (only one cycle). This process is time-intensive and relies heavily
on human resources. To alleviate this constraint, automated sleep staging based on modern signal
processing technology can be used. This approach can significantly improve the efficiency of sleep
disorder diagnosis.

Figure 1. (a) Hypnogram of one sleep cycle. (b) Multi-channel physiological signal for the rapid eye
movement (REM) stage corresponding to the red cycle in (a).

The automatic sleep stage classification process (Figure 2) can be divided into three steps—feature
extraction, classification, and refinement—based on the transition rules of the stages. The first step
is feature extraction. Before automatic feature extraction methods based on neural networks were
developed, the features used for sleep staging were manually designed by researchers. Because brain
activity changes in each sleep stage, the spectral energy density of the EEG signal in different frequency
bands can effectively classify the signal. Other features used in sleep stage classification include spectral
entropy [4], signal kurtosis [5], Hurst and fractal exponents [6,7], and others. With the development of
deep learning methods in recent years [8–10], automatic feature extraction based on deep learning has
become widely used in the biomedical field [11–14]. For example, Acharya et al. [15] used convolutional
neural networks (CNNs) to classify Alzheimer’s disease lesions. Li et al. [16] used CNNs to classify
EEG signals for motor image classification and achieved good results. For sleep staging classification,
Supratak et al. [17] used a CNN to extract signal features and recurrent neural networks (RNNs) [18]
to extract temporal features. Their technique achieved good performance on the Sleep-EDF dataset.

Figure 2. Diagrams of different channel fusion methods, which from left to right are data fusion, feature
fusion, and decision fusion, respectively.
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After the feature extraction step is completed, a classifier is selected in the second step to classify
the features. Shi et al. [19] used the K-nearest neighbor (KNN) method, an unsupervised classifier
based on joint sparse representation features. Other supervised methods for sleep staging include the
support vector machine (SVM) [20], random forest [21], and neural network classifiers based on fully
connected networks. Feature extraction by a CNN or RNN combined with a fully connected network
classifier makes sleep staging classification an end-to-end process.

The last step is sleep stage refinement. As a cyclical process, the transition between adjacent
sleep stages is not random, as shown in Figure 1a. Therefore, applying transition rules for refining
the preliminary results can effectively improve the classification accuracy [22–24]. Because sleep
continuity is one of the most important sleep transition rules, Liang et al. applied the rule to
a smoothing method [22] to correct their preliminary results, such as by modifying (Wake, N1,
Wake) to (Wake, Wake, Wake). Jiang et al. [23] employed a strategy based on the hidden Markov
model (HMM) to refine the classification results and improve the classification performance.
However, because the training process of end-to-end deep neural networks relies on the gradient
backward propagation method, we cannot use these nondifferentiable traditional methods to build
end-to-end models.

To score sleep stages, a single-channel signal or multi-channel signals are used. The selected
type depends on the given application scenario. For example, owing to the limitation of collection
equipment in wearable devices and household devices, it is more feasible to use single-channel
signals in these scenarios. In clinical auxiliary diagnosis, methods based on multi-channel signals can
obtain more reliable classification results [24–28]. Channel fusion is a crucial part of these methods.
As shown in Figure 2, these methods can be divided into different fusion types—data-level, feature-level,
and decision-level—according to the channel fusion stage. The fusion step that precedes feature
extraction is called data fusion. As an example of data fusion, Phan et al. [28] proposed the conversion
of EEG, electrooculography (EOG), and electromyography (EMG) signals into the frequency domain
through a short-time Fourier transform. Then, a three-channel frequency image is applied as the input
of the neural network model.

Feature fusion methods often use a multi-branch feature extractor to separately extract features
from different channels and then join the features [26] or superimpose them. They are then input into
the classifier. Decision fusion involves the same feature extraction method as feature fusion; however,
the channel fusion is placed after the classifier. These methods use voting or maximum posterior
probability (MAP) [24] to determine the final category after each channel is independently classified.
The channel fusion method often requires different choices according to the given task.

To achieve complete end-to-end processing and more effective use of multi-channel signal data,
we propose a multi-branch convolutional neural network model with embedded stage refinement and
a residual attention channel fusion method. The main contributions of the proposed approach are
the following:

• Data from the previous sleep epoch stage are encoded through a neural network and embedded
in the final classification process to correct the current stage. The proposed model thereby realizes
end-to-end processing of feature extraction, classification, and transition refinement based on a
deep neural network.

• The model uses multiple neural network branches (Figure 3) to extract the features of
different channels. The model accounts for the importance of the channels in decision making.
It thus employs a channel fusion method based on a self-attention mechanism [29] to dynamically
adjust the decision weights of multiple channels.

• The model performance was evaluated on two public datasets. The model achieved better results
than other state-of-the-art methods. At the same time, through these two datasets, we explained
the performance differences of the model in stages.
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Figure 3. Schematic diagram of the proposed multi-branch convolution neural network combined with
embedded stage refinement and residual attention-based channel fusion.

2. Materials and Methods

2.1. Datasets

In this study, we employed two public datasets to evaluate the performance of the model:
the Sleep-EDF Database Expanded (Sleep-EDFx) [30] and the University College Dublin Sleep Apnea
Database (UCDDB) [31]. Both datasets are publicly available on PhysioNet [31] and contain multimodal
and multi-channel data, including EEG, EOG, and chin EMG. The latest version of the Sleep-EDFx
dataset contains two subsets—sleep cassette (SC) and sleep telemetry (ST)—which include a total of
104 individuals and 197 complete nights of polysomnographic sleep recordings. The data in the SC
subset were collected from healthy individuals; the data in the ST subset were obtained from subjects
who experience mild difficulty falling asleep.

To facilitate a comparison of the proposed approach with existing methods, we employed the
records of 39 nights of 20 individuals in the age range of 25 to 34 in the SC subset (the second night
of subject 13 was missing). We adopted the same method in [17], which retained only portions of
wake epochs. The Sleep-EDFx dataset contains two EEG channels, Fpz-Cz and Pz-Oz; one EOG channel;
and one chin EMG channel. The sampling rate of the first three channels was 100 Hz, and the sampling
rate of the EMG channel was 1 Hz. To maintain processing consistency, we upsampled the rate to
100 Hz. The UCDDB dataset contains complete night data of 25 individuals with sleep-disorder
breathing collected at St Vincent’s University Hospital. The dataset includes two EEG channels, C3-A2
and C4-A1; two left and right EOG channels; and one chin EMG channel. The sampling rate of both
EEG and EOG was 128 Hz, and the sampling rate of the EMG channel was 64 Hz. We upsampled the
EEG channel to 128 Hz for the same reason as in Sleep-EDFx.

Here, we define as the “transition epoch” the epoch that occurs between the preceding epoch and
the subsequent epoch. If the given epoch is not a transitional one, it is called a “nontransition epoch.”
Table 1 shows the stage distribution of the two datasets and the distributions of the transition and
nontransition epochs in each stage. It is observed in the table that the transition epoch ratio of stage N1
is significantly higher in both datasets than in the other stages. Furthermore, the UCDDB dataset has a
higher transition epoch proportion than the Sleep-EDFx dataset.
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Table 1. Details on the datasets used in this study.

Stage

Sleep-EDFx UCDDB

Transition
(%)

Nontransition Total
Transition

(%)
Nontransition Total

Wake 844 (10.2) 7402 8246 1239 (26.3) 3468 4707
N1 1554 (55.4) 1250 2804 1349 (39.6) 2054 3403
N2 2873 (16.1) 14,926 17,799 1154 (16.5) 5831 6985
N3 1237 (21.7) 4466 5703 293 (11.0) 2370 2663

REM 761 (9.9) 6956 7717 258 (8.6) 2758 3016
Total 7268 (17.2) 35,001 42,269 4293 (20.7) 16,481 20,774

Manual labeling of the two datasets was performed according to the R&K guideline [32],
which defines six stages of sleep: Wake, N1, N2, N3, N4, and REM. Before their application as input to
the model, the datasets were preprocessed in two simple steps. The first step was to merge N3 and N4
into a single stage, N3—also called the slow-wave stage—according to the AASM guidelines. The
second step was to perform z-score normalization for each respective channel of each subject. That is,
the mean and variance of each channel were respectively calculated and each channel was normalized.

2.2. Model Architecture

The overall architecture of the proposed model consists of four parts, as shown in Figure 3:
a feature extraction module based on the convolutional neural network; a channel fusion module
based on residual attention; an encoding module, which is used to embed the previous epoch stage
into the model; and a classification module based on the fully connected layer.

In the feature extraction part of the proposed model, different branches of the CNN are used to
extract the channel features of each channel signal. This means that the CNN does not share parameters
between channels. The feature extraction module is composed of five convolutional blocks and a
global average pooling layer. Each convolution block employs a convolution layer [10] to extract
shift-invariant intermediate features. Each block also uses a batch normalization layer [33] to normalize
the features to avoid model overfitting and to accelerate model convergence. Finally, the normalized
features are input to the rectified linear unit layer (ReLU) [34] for nonlinear activation. The specific
hyperparameters of the backbone are listed in Table 2.

Table 2. Hyperparameters of convolution neural network backbone.

Layer Name Kernel Size Stride Padding
Output Size

Sleep-EDFx UCDDB

Input [3000 × 1] [3840 × 1]
conv_block_1 [1 × 5] 3 VALID [999 × 64] [1279 × 64]
conv_block_2 [1 × 5] 3 VALID [332 × 64] [425 × 64]
conv_block_3 [1 × 3] 2 VALID [165 × 128] [212 × 128]
conv_block_4 [1 × 3] 1 VALID [163 × 128] [210 × 128]
conv_block_5 [1 × 3] 1 VALID [161 × 256] [208 × 256]
global average

pooling [1 × 256]

We input the channel features obtained through the convolution backbone into the average
module and the attention module. The outputs of these two modules are added to obtain the fused
channel features. The full composition of these two modules is called the residual attention module.
In this module, we mark the channel feature as vi. The feature vector obtained by concatenating all
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channels is V. The channel weight αi can be calculated by the following formula, where Ws
i , Wv

i , W,
and b are learnable parameters:

V = Concat([v1, v2, · · · , vC]) (1)

si = Ws
i ∗ReLU

(
Wv

i vi + WV + b
)

(2)

αi =
exp(si)

ΣC
i=1 exp(si)

(3)

The weight of the channel may be saturated, which means that the model only focuses on one
channel and completely ignores the other channels. To avoid the lack of information caused by
this situation, we incorporate a threshold to the weight of each channel by adding the mean value of
the multi-channel features to the output of the attention module. Therefore, the final fusion feature is

Vfusion = vavg + ΣC
i=1αivi (4)

Owing to the continuity of sleep and the hidden transition rules between adjacent sleep epochs,
the current epoch stage can be corrected by using the stage information of the previous epoch. We use
the truth value of the previous epoch during training. In addition, the probability vector of the
model’s output at the previous epoch during inference is employed. To maintain consistency of the
training and inference, we use one-hot encoding as input during training. Then, the model employs a
single-layer fully connected layer to re-encode the stage into a vector of length 256 and concatenates it
with the fused channel features. The connected vector passes through the classifier composed of the
dropout layer [10], the fully connected layer, and the softmax layer.

The fully connected layer is shown in equation (5). It is evident that the concatenation between the
re-encoded stage vector (vc) and the fused signal feature (vfusion) is equivalent to having an additive
refinement for the probability vector (Pfusion) corresponding to the fused feature vector. The dropout
layer zeroes the neurons according to a certain probability to achieve regularization and avoid model
overfitting. The softmax layer normalizes the stage probability vector for the loss calculation.

P = WhT = [Wc, Wf][vc, vfusion]
T = Wcvc + Wfvfusion = Pc + Pfusion (5)

2.3. Experiment Details

To evaluate the performance of the model on the entire dataset, we used the leave-one-subject-out
method for testing. The experiment used one subject as the test set; the remaining subjects composed
the training and validation sets. We repeated the experiment many times and then merged the results
of each experiment on the test set to obtain the final result. For the Sleep-EDFx dataset, we set up
20 experiments, with each training set consisting of 18 subjects, and one individual composed the
validation set. The remaining subjects composed the test set. The UCDDB dataset was used for a
25-fold experiment with 23 individuals as the training set and one subject as the validation set. We used
cross-entropy as the loss function (Equation (6)), which yi is the one-hot label and ŷi is predicted
probability vector, and the Adam [35] optimizer to update the model parameters during training. The
model and training parameters are summarized in Table 3.

L = −Σi∈Ωyi log(ŷi) (6)

Owing to the small size of the training set, and to improve the generalization performance of the
model on the test set during the inference process, we used an ensemble method. That method is
based on multiple training epochs and infers the test set. The first step in the ensemble method is to
use the model’s performance on the validation set as a reference to obtain the top 10% intermediate
models during the training process, which included seven models in our experiment. Then, we used
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each intermediate model as an independent model to separately infer the test set. Finally, we used
the maximum likelihood method to ensemble multiple results on the same test set and obtain the
final results.

Table 3. Hyperparameters of the proposed neural network.

Model Training

Encoding size in
embedded refinement 256 Batch size 64

Number of channels 4 Number of training epochs 70
Weights size in attention module 256 Loss function Cross-entropy
Batch normalization (momentum

and epsilon) 0.99, 0.001 Optimizer Adam

Dropout rate 0.5 Learning rate 0.0001
Clip value of the gradient 0.1

In this study, we employed accuracy, macro-average F1-score (MF1), and Cohen’s kappa coefficient
to evaluate the overall performance of the model. Because MF1 and kappa provide different categories
of the same importance, these two metrics could more reliably assess the actual performance of
the model on the dataset with an imbalanced category distribution. In addition, MF1 was used as
a verification indicator for selecting the training epoch during ensemble inference. Moreover, we
calculated the precision, recall, and F1-score of each stage to evaluate the performance of the model
in stages.

3. Results

3.1. Model Performance on Public Datasets

As evident in Table 4, the overall performance of the model on the two datasets has some gaps.
The overall accuracy, MF1, and kappa of the Sleep-EDFx dataset are 85.8, 81.2, and 0.80, respectively,
while the corresponding metrics of UCDDB are 79.4, 78.8, and 0.73, respectively. The performance of
the proposed model is lower on UCDDB than on Sleep-EDFx. Specifically, the performance of stage N3
is comparable on the two datasets, the result of stage N2 is better than that of Sleep-EDFx on UCDDB.
The performance in the other stages on UCDDB is significantly lower than on Sleep-EDFx.

Table 4. Overall performance of the proposed model.

W N1 N2 N3 REM

Sleep-EDFx Accuracy: 85.8 Macro-Average F1-Score: 81.2 Cohen’s Kappa: 0.80

Precision 93.4 54.0 87.8 86.6 84.5
Recall 91.2 55.0 87.9 84.3 87.4

F1-score 92.3 54.5 87.8 85.4 85.9

UCDDB Accuracy: 79.4 Macro-Average F1-Score: 78.8 Cohen’s Kappa: 0.73

Precision 81.3 64.8 79.5 87.0 83.7
Recall 82.5 56.1 83.9 84.4 85.9

F1-score 81.9 60.1 81.7 85.7 84.8

The common point of the model performance on the two datasets is that stage N1 has the lowest
accuracy, and the model performance has a clear gap in the other stages. The classification confusion
matrix of the two datasets is shown in Figure 4. Their misclassification rules are the same. That is,
the main misclassifications of Wake and REM are N1 and N2. N1 is more likely to be misclassified
into stages other than N3. N2 has an even distribution of misclassifications, while N3 is almost only
misclassified as N2.
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Figure 4. Classification confusion matrix of Sleep-EDFx and UCDDB.

Table 5 shows the performance comparison between the proposed model and existing models on
the two datasets. The inclusion of a large number of wake stages will significantly improve the model
performance. Moreover, subject-independent or nonindependent testing methods will also influence
the model performance [17,25]. Therefore, we chose methods that use the same dataset. Furthermore,
we employed a subject-independent testing method in the comparison of all models except that of [19],
which only tested the nontransition epoch in the UCDDB dataset. It is observed in the table that our
method is superior to the other methods in terms of accuracy, MF1, and kappa. Shi et al. [19] tested
their model only on the nontransition window. It achieved an accuracy of 81%, while the accuracy of
our model on the same data is 85.1%, and MF1 is 83.4%. The performance of our model is still better
than that of Shi et al.

Table 5. Performance of different methods on the Sleep-EDFx and UCDDB datasets.

Methods
Channels

Overall Performances

Reference Feature Classifier Refinement Acc MF1 Kappa

Sleep-EDFx

Supratak et al. [17] CNN &
RNN FC - 1 82.0 76.9 0.76

Tsinalis et al. [36] Handcraft AE - 1 78.9 73.7 -
Yu et al. [37] ACNN FC - 1 82.8 77.8 -

Phan et al. [20] ARNN SVM - 1 82.5 72.0 0.76

Mousavi et al. [38] CNN &
ARNN FC - 1 84.3 79.7 0.79

Zhang et al. [24] MB-CNN FC Expert
Rules 4 83.6 78.1 0.77

Proposed MB-CNN FC FC 4 85.8 81.2 0.80

UCDDB

Shi et al. [19] Handcraft RF - 2 81.1 - -
Martin et al. [39] Handcraft DBN HMM 3 72.2 70.5 0.64
Yuan et al. [40] MB-CNN FC - 4 74.2 68.2 -
Cen et al. [41] CNN FC HMM 4 69.7 - -

Proposed MB-CNN FC FC 4 79.4 78.8 0.73

ACNN: attentional CNN, ARNN: attentional RNN, AE: auto encoder, DBN: deep brief nets.

14



Sensors 2020, 20, 6592

In addition, Zhang et al. [24] and Yuan et al. [40] used a multi-branch (MB) CNN-based
multi-channel feature extraction method and a fully connected network-based classification method on
the Sleep-EDFx and UCDDB datasets, respectively. Zhang et al.’s method uses decision-level channel
fusion and expert rule-based refinement. Yuan’s method employs a multi-channel fusion method
based on global information. Our method uses neural-network-based stage correction. Our channel
fusion method based on residual attention is better than those methods.

3.2. Model Component Analysis

3.2.1. Influence of Neural Network-Based Embedded Stage Refinement

To explore the effect of neural-network-based stage refinement on the model performance,
we constructed a set of comparative experiments. The neural-network-based refinement module in
the model was removed as the baseline model. The smoothing method based on expert rules [22]
and the method based on the hidden Markov model (HMM) [23] were used to correct the stages.
The rule-based refinement method set the matching rules and refinement rules. All sequences that met
the matching rules were corrected according to the corresponding refinement rules. The specific rules
are listed in Table 6.

Table 6. Refinement rules [22] (X represents any stage).

Rule No. Matching Rules Refinement Rules

1 Any REM epoch before
the first appearance of N2 N1

2 Wake, REM, N2 Wake, N1, N2
3 N1, REM, N2 N1. N1, N2
4 N2, X, N2 N2, N2, N2
5 REM, X, REM REM, REM, REM

Refinement based on the hidden Markov model is divided into two steps. The first step was to
use the ground truth stages of the validation set as the hidden state. The inference value of our model
on the validation set was used as the observation value. Then, the state transition probability and
emission probability of the HMM were obtained through a frequency-counting method. The second
step was to maintain the HMM parameters as unchanged, and take the model’s inference result on the
test set as the observation value, and obtain the hidden states of the HMM through the Viterbi [42]
algorithm as the corrected results of the test set.

The comparison results are shown in Figure 5. The smoothing refinement and the HMM-based
refinement improve the overall MF1 performance of the Sleep-EDFx, while the MF1 of the
UCDDB dataset is slightly increased by 1.3% and 1.2%, respectively. It is apparent that these
two methods improve the nontransition epoch performance by sacrificing the transition epoch
performance. Moreover, the HMM-based correction method causes more degradation of the transition
epochs performance, while engendering greater nontransition epoch improvement. In comparison,
the refinement process based on the neural network improves the performance without causing the
performance degradation of the transition epochs.

Figure 6 shows a hypnogram of subject 3 on the first night in the Sleep-EDFx dataset. From top to
bottom is manual labeling by experts, the classification results based on the baseline model, and the
results of the baseline neural network combined with embedded refinement. As shown in the figure,
compared with the baseline model, the revised hypnogram is smoother and retains many critical
transition processes that occur during sleep.
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Figure 5. Performance comparison of different refinement methods on overall, transitional, and
nontransitional epochs.

Figure 6. Hypnogram of subject 4 on the first night in the Sleep-EDFx. The graphs from top to bottom
are derived from a human expert, baseline model, and baseline model with embedded stage refinement.

3.2.2. Efficacy of Multi-Channel and Residual Attention

In Figure 7, we show the performance gain obtained by multiple channels compared to
a single channel. In the Sleep-EDFx dataset, the signals increase from one channel to four
channels—Fpz-Cz, EOG, EMG, and Pz- Oz. The corresponding channels in the UCDDB dataset
are C4-A1, EOG, EMG, and C3-A2. In the UCDDB dataset, each additional channel improves the
overall performance, whereas on the Sleep-EDFx dataset, the performance decreases slightly after
adding the EMG signal. This may have been due to the low sampling rate of the original EMG signal.
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Meanwhile, stage N1 and stage REM achieve greater performance improvement on the two datasets,
which shows that the recognition process of N1 and REM staging is more dependent on multi-channel
signal characteristics.

Figure 7. Performance gain for each stage by adding channels on Sleep-EDFx and UCDDB. The gain is
computed by using the F1-score of each channel setting to subtract the F1-score of one channel.

Figure 8 shows the performance comparison of different channel fusion methods. In data fusion,
the residual attention module is removed, and we use the same CNN backbone in which the four
channels are concatenated with shape (3000, 4) as the model input. The decision fusion method trains
an independent model for each channel. Then, the inference results of each model are fused by voting
or the method of maximum posterior probability, as shown in Figure 2.

Figure 8. Performance comparison of different channel fusion methods.

In addition, we experimented with feature fusion methods based on the average, concatenation,
and attention. It is observed from the results in Figure 8 that the performance of the method
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based on data fusion and decision fusion is lower than that of the method based on feature fusion.
The performance of the model obtained by directly fusing the multi-channel features through average
and concatenation is similar. After removing the average part of the proposed residual attention module,
the model performance is slightly improved on the Sleep-EDFx dataset and it shows an accuracy
increase of approximately 0.6% on the UCDDB dataset. The further application of the complete residual
attention increases the classification accuracy of the model on the Sleep-EDFx dataset and UCDDB
dataset by approximately 1% and 1.5%, respectively, and on MF1 by 1% and 1.5%, respectively.

In Figure 9, we show the attention module’s weight response to different stages when the model
uses the residual attention method. This stage sequence was obtained from the Sleep-EDFx dataset
after subject 1 fell asleep on the first night at approximately 3.7 h to 4.5 h. It is observed on the heat map
that the model mainly focuses on the Cz-Oz channel and the Fpz-Cz channel for the wake stage. For N1
and N3, the model confers greater weight to the Fpz-Cz channels. When identifying N2 and REM,
the model mainly relies on EOG and EMG channels.

Figure 9. Attention weights for each channel in stage sequence, which W, 1, 2, 3, R refer to Wake, N1,
N2, N3, and REM.

4. Discussion

On the basis of previous studies [17,24,36], we embedded the refinement stage into the neural
network model and used the residual attention-based multi-channel signal fusion method to make
the performance of our proposed model achieve the human expert level [43]. However, it should
be noted that, similar to those of other methods, the performance of the proposed model for the
different stages was inconsistent, and the accuracy of stage N1 was much lower than those of the
other stages. In most previous studies, this was attributed to the underfitting caused by using
fewer samples. However, in the UCDDB dataset, N1 had more samples than N3 and REM; however,
its performance was far worse than in the other two stages. This shows that underfitting was only part
of the cause rather than the main reason. From Table 1 and Figure 5, it is apparent that the actual cause
of the poor performance of stage N1 was that the proportion of transition epochs in N1 was much
higher than those in other stages. At the same time, the performance of the model on the transition
epoch was much lower than that of the nontransition epoch.

For example, on the Sleep-EDFx dataset, the proportion of the transition epoch in stage N1
is 55.4%, and the highest proportion in the other stages is 21.7% of stage N3. The MF1 of the model
in the transition and nontransition epochs is 58.7% and 85.7%, respectively. Such a vast distribution
and performance difference ultimately leads to the stage N1 performance being far lower than in
the other stages. In addition, the UCDDB dataset is composed of individuals who have difficulty
falling asleep. The proportion of the transition epoch is greater than that of the Sleep-EDFx dataset.
Therefore, the performance of the model on UCDDB is lower than that on Sleep-EDFx.
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Multi-channel data provides richer information than single-channel data. Nevertheless, owing
to unreasonable channel fusion methods on occasion, more signal channels will not significantly
improve the model [27]. It is also evident in Figure 8 that only using the self-attention module can
only slightly improve the model. Figure 9 shows that the model can correctly learn the attention
mode corresponding to the AASM guidelines. However, it is easier to have attention saturation on a
specific channel. In other words, it completely ignores the information of other channels, which may
affect the model performance. To solve this problem, we added the average module, which sets a
threshold for the weight of each channel. The performance of the model was further improved by
this method.

Based on the above experimental results and discussion, we found that the proposed approach
still has some shortcomings. In future work, we will strive to address these limitations and improve
our method. First, the refinement process of the model can significantly improve the performance
of the nontransition epoch, but it cannot improve the performance of the transfer epoch, which also
leads to a lower accuracy of stage N1. Therefore, we intend to develop models for the transition epoch,
such as by enabling the model to identify the transition and nontransition epochs and by using
different refinement modules to implement different correction strategies. Second, inter-individual
differences also limit the generalization ability of the model across individuals. We will strive to use
adversarial-learning-based methods to eliminate the differences between individuals and improve the
model robustness.

5. Conclusions

In this paper, we proposed a multi-branch neural network model for automatic sleep stage
classification. The model integrates feature extraction, feature classification, and stage refinement
into a neural network model to form an end-to-end processing method. The model thereby
significantly improves the performance of the nontransition epoch without lowering the accuracy of
the transition epoch. In addition, the channel fusion method based on residual attention can further
improve the performance of the model based on a naive fusion method (average, concatenation). On
the Sleep-EDFx dataset composed of healthy individuals and the UCDDB dataset composed of patients
with sleep-disorder breathing, the proposed model achieved better performance than existing models.
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Abstract: An automatic accurate T-wave end (T-end) annotation for the electrocardiogram (ECG)
has several important clinical applications. While there have been several algorithms proposed,
their performance is usually deteriorated when the signal is noisy. Therefore, we need new techniques
to support the noise robustness in T-end detection. We propose a new algorithm based on the signal
quality index (SQI) for T-end, coined as tSQI, and the optimal shrinkage (OS). For segments with low
tSQI, the OS is applied to enhance the signal-to-noise ratio (SNR). We validated the proposed method
using eleven short-term ECG recordings from QT database available at Physionet, as well as four
14-day ECG recordings which were visually annotated at a central ECG core laboratory. We evaluated
the correlation between the real-world signal quality for T-end and tSQI, and the robustness of
proposed algorithm to various additive noises of different types and SNR’s. The performance of
proposed algorithm on arrhythmic signals was also illustrated on MITDB arrhythmic database.
The labeled signal quality is well captured by tSQI, and the proposed OS denoising help stabilize
existing T-end detection algorithms under noisy situations by making the mean of detection errors
decrease. Even when applied to ECGs with arrhythmia, the proposed algorithm still performed
well if proper metric is applied. We proposed a new T-end annotation algorithm. The efficiency
and accuracy of our algorithm makes it a good fit for clinical applications and large ECG databases.
This study is limited by the small size of annotated datasets.

Keywords: T-end annotation; signal quality index; tSQI; optimal shrinkage

1. Introduction

The electrocardiogram (ECG) is a ubiquitous diagnostic tool for cardiovascular diseases.
One important clinical application is information about the QT interval, a measure of ventricular
repolarization. A prolonged heart rate corrected QT is associated with ventricular arrhythmia and
sudden death [1], and also used to study adverse drug reactions [2].

The accuracy of QT measurement directly depends on the ability to accurately determine the Q
onset and T offset. Compared with the Q onset, determination of the T-end is challenging. Nevertheless,
various techniques have been proposed for automatic T-end detection. This includes threshold
on the first derivative [3,4], threshold on an area connected by points around the T-wave [5–7],
wavelet transform [8,9], mathematical model [10], support vector machine [11], artificial neural
network (ANN) [12–14], hidden Markov model (HMM) [15,16], partially collapsed Gibbs sample
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and Bayesian [17], “wings” function [18], derivative curve [19], adaptive technique [20], TU complex
analyses [21], correlation analysis [22], and k-nearest neighbor [23]. While those algorithms are
widely applied, they are only validated on databases without severe noise contamination. It is thus
unclear how robust they are to the inevitable noise and artifacts. The emerging wide use of long-term
ECG recording that extends for days calls for robust automatic T-end annotation algorithms that
handle marked prolonged noise such as myogenic noise, electrode contact noise, motion artifacts,
and powerline interference [24,25].

In this report we propose a novel denoising tool to stabilize existing T-end annotation algorithms.
The niche of the algorithm is twofold. First, we defined a signal quality index (SQI) that is suitable for
the T-end annotation. This SQI describes the signal quality from a different perspective compared with
other SQI aiming for R peak detection. Second, we applied a recently developed denoise technique
called optimal shrinkage (OS) [26]. In our previous publication [27], we have demonstrated that
a better and more adaptive template for each cardiac cycle is obtained through OS, which helps
recover ECG morphology from noisy signals. However, we observed a morphology distortion after
the application of OS on clean signals, where “clean” means the noise is dominated by the beat to beat
variation. The noise level is thus overestimated and results in the distorted templates of cardiac cycle.
Therefore, in this work, we incorporated the SQI thresholding step, such that the OS is only applied to
signals with low signal quality. This part will be further addressed in the discussion section. Moreover,
for those arrhythmic beats, we demonstrated that our algorithm still recovers their morphology when
the proper metric between different cardiac cycles is selected.

2. Materials and Methods

2.1. Three Existing T-End Detection Algorithms

To keep things self-contained, we summarize three commonly applied T-end detection algorithms
here. The algorithms are referred to by the last name of the first author, including Zhang [5], Carlos [6],
and Martinez [8]. All these three algorithms require the locations of the QRS complex and T-wave
before estimating T-end points. Both Zhang’s and Carlos’s algorithms are based on the idea that
inside the designed searching window related to the detected R peaks, the maximum value of an
area function is reached over the T-end point. Martinez’s algorithm uses dyadic wavelet transform
to find the peaks and limit points of QRS cycles, P waves, and T waves. The T-end points are
defined as the local maximum or minimum in the wavelet transform with dilation factor 24 or 25.
These algorithms have been evaluated on the PhysioNet QT database [28] with low T-end detection
errors. The performance of Martinez’s algorithm has also been validated on the dataset 3 of the
CSE multilead measurement database (CSEDB) [29]. The MATLAB package of Zhang’s algorithm
can be downloaded at http://www.irisa.fr/sosso/zhang/biomedical/ and Martinez’s algorithm can be
downloaded at https://github.com/marianux/ecg-kit. We coded Carlos’s algorithm according to the
original paper’s description. For T-wave locations, Zhang’s and Martinez’s algorithms have their
built-in algorithms, so we simply adopted them. The T-wave locations estimated by Martinez were
applied in Carlos. The other parameters of each algorithm were tuned in the same settings described
in the original papers.

2.2. Signal Quality Index (SQI) for T-End Detection

Signal quality index (SQI) has been a critical quantity in the analysis of biomedical time series.
It could be considered as an index summarizing the relationship between noise, artifact, and the signal
of interest. In the ideal situation, if both the clean signal and the noise are clearly defined, the concept
of signal-to-noise ratio (SNR) is a common approach to define SQI. However, usually it is challenging
to get the clean signal and the noise or artifact from the given noisy signal, particularly when there is
only one channel. Therefore, we need a different approach to determine the SQI.
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There have been various ideas in the past decades to define SQI for different biomedical
signals [30–33]. The bSQI proposed by Li et al. [32] is a typical example. They applied two different R
peak detection algorithms to the given ECG signal and obtained two sets of estimated R peak locations.
If an ECG signal has a high signal quality, the estimated R-peak locations should be the same, or at
least similar. This similarity is quantified as the SQI. This idea is simple but brilliant, and it can help
us understand the quality of a given ECG signal. However, it only tells us the quality of the given
ECG signal in the sense of R peak detection but not from all aspects. Specifically, it may not tell us
how good the P wave is, or how clean the T wave is. See Figure 1 for an example. In this example we
have a noisy ECG recording. Although R-peak locations estimated by two different R-peak detection
algorithms, the Elgendi’s [34] and jqrs [30] algorithms, are similar, visually the T waves are not of high
quality. Quantitatively, the T-end’s estimated by Zhang’s and Martinez’s algorithms are quite different.
In summary, the bSQI only describes the signal quality from the aspect of R peak locations, and it
cannot well manifest the signal quality for T-wave, and hence the T-end location.

Figure 1. The comparison of bSQI and tSQI. The black line is the ECG signal from the Ultra-Long-Term
ECG recordings Database with intermediate quality. The intersection of x-axis and blue (magenta)
vertical lines are the time stamps of R peak locations estimated by Elgendi’s algorithm [34] (jqrs [30]).
The intersection of x-axis and red (green) vertical lines are the time stamps of T-end locations estimated by
Zhang’s algorithm (Martinez’s algorithm). The magenta vertical lines are shifted right by 10 milliseconds
to avoid the overlap with blue lines. The value of bSQI is 0.99, and the value of tSQI is 0.66, which are
calculated by matching points from two different algorithms as the same point if the time difference
between them is smaller than 50 ms.

Motivated by this observation, we propose a new SQI for the automatic T-end detection here.
Similar to the idea behind the bSQI, we take two sequences of T-end locations detected by two T-end
detection algorithms, and then determine the SQI in the following way. For each ECG segment,
we assume that the R peak detection algorithm performs well and use the detected R peaks to estimate
T-end points by two chosen algorithms. Denote A ∈ N to be the number of detected R peaks and hence
estimated T-end points. Given a grace period γ > 0, we consider that two chosen algorithms match if
the time difference between the two estimated T-ends is smaller than γ. Assuming we have B ∈ N of
T-end points that match, we denote a value tSQI ∈ [0, 1] as

tSQI : =
B

2A− B
,

which is the desired SQI for the T-end detection. When tSQI = 1, it means that the two sequences of
estimated T-end locations are perfectly matched, and hence the T-end quality is high; a lower tSQI
stands for less matched estimations, and hence a lower T-end quality. In this work, we chose Zhang’s
and Martinez’s algorithms to determine the tSQI in the following sections.

2.3. Proposed Algorithm

We detail the propose automatic T-end annotation algorithm, step by step, here.
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2.3.1. Step 0: Preprocessing

Given an ECG recording, we resample it at the sampling rate 250 Hz. To remove the baseline
wandering, a Butterworth lowpass filter of order 4 with the cut-off frequency lo f f Hz is applied.
Since the source of data is unknown, we apply two notch filters with the notches centered at 50 and 60
Hz to reduce the powerline interference. The recording after the preprocessing is denoted as z ∈ RN,
where N ∈ N is the number of samples.

2.3.2. Step 1: Estimate QRS Complex

There have been several works [30,34,35] discussing how to detect the location of QRS complexes.
Since the T-end detection is our focus, here we simply use QRS locations estimated by Elgendi’s
algorithm before applying any T-end detection algorithm. We denote the collected timestamps of
estimated R-peak locations as

R =
{
R(i)
}n
i=1 (1)

where R(i) is the timestamp of the i-th detected R peak and n ∈ N is the total number of estimated
R peaks.

2.3.3. Step 2: Evaluate tSQI

For the i-th cardiac cycle, we evaluate its tSQI on a signal segment
[z(R(i) − 1250), . . . , z(R(i) + 1250)]� with a grace period γ. Given a threshold number q ∈ [0, 1], if the
tSQI ≥ q, the final estimated T-end of each cardiac cycle is determined by applying the desired T-end
detection algorithm. Otherwise, the following steps are applied, and the final estimation would be
made in Step 4.

2.3.4. Step 3: Denoise Low Quality Cardiac Cycles by Optimal Shrinkage

• Construct ECG templates. On the i-th cardiac cycle determined by the i-th R peak, we find a window
large enough, so that the whole P-QRS-T waveform is covered. For instance, denote w ∈ N to be
the rounding number of the 95% quantile of R to R intervals in R, and denote the corresponding
ECG segment over the cardiac cycle as

si := [z(R(i) − Lw), . . . , z(R(i) + Rw)]
� ∈Rp (2)

where Lw ∈ N, Rw ∈ N, and p := Lw + Rw + 1. A library for the ECG template is built and
denoted as

L := {si}ni=1 (3)

• Remove nuisance variables by optimal shrinkage. Define a metric d(sa, sb) between the a-th and b-th
template. For instance, we can use R-R interval difference in respect to the cycles or l2 norm
||sa − sb||l2 as the metric. For the i-th cardiac cycle si, from the libraryLwe selecte ξ ∈ N neighbors
that have the smallest difference. We then construct a data matrix S of size p × ( ξ+ 1) consisting
of the i-th cardiac cycle in the first column and all other neighbors in the remaining ξ columns.
We assume that the S can be decomposed into two parts, S = X + N, where X is the clean data
matrix containing QRS cycles and N is the matrix modeling noise. We also assume each entry of N

has independent and identical noisy component with zero mean and the same variance and finite
fourth moment, and X has a low rank. Under these assumptions, there is an elegant solution based
on the random matrix theory proposed by Gavish and Donoho [26] to recover X from S, which is
named as optimal shrinkage (OS). We apply OS on the data matrix S in the following manner:

26



Sensors 2020, 20, 7052

Suppose p
ξ
≤ 1 (if not, we simply take the transpose of S and apply the same approaches on S� as

the following). Denote the SVD of the data matrix S as

S =
r∑

i=1

λiuiv
′
i , (4)

where r is the matrix rank, ui and v′
i

are the i-th left and right singular vector corresponding to the
singular value λi, and λ1 ≥ λ2 ≥ . . . ≥ λp. We normalize S with the noise level estimated by

σ :=

√√√
1

n · p
n∑

i=1

p∑
k=1

(si(k) − s(k))2, (5)

and
s(k) = median

{
s1(k), . . . , sn(k)

}
, (6)

where k = 1, . . . , p. Then, the denoised data matrix is estimated from S by OS and denoted as

S̃
η∗
= σ

r∑
i=1

η∗
(
λi

σ

)
uiv
′
i , (7)

where η∗ : [0,∞)→ [0,∞) is the optimal shrinker. In this work, we let η∗ be the optimal shrinker that
minimize the asymptotic loss with respect to the operator norm, such that

η∗(λ) =
1√
2

√
λ2 −β− 1 +

√(
λ2 −β− 1

)2 − 4β , (8)

when λ ≥ 1 +
√
β and η∗(λ) = 0 otherwise. The first column of S̃

η∗
is the estimated QRS complex of si,

denoted as s̃i. Applying OS on every cardiac cycle in L, we acquire a denoised library and denote it as

L :=
{̃
si
}n
i=1. (9)

2.3.5. Step 4: Evaluate T-End Locations

As mentioned earlier, T-end detection algorithms of Zhang, Carlos, and Martinez are chosen for
T offset delineation. Chosen T-end detection algorithm is applied in the library L̃, and locations of
T-end are estimated for each denoised cardiac cycles. Based on the R-peak locations R estimated in
Equation (2), estimated T-end locations on the signal z are the final output of the proposed algorithm.

2.4. QT Database

The first database we considered is a common benchmark database, the PhysioNet QT database [28].
It includes ECG signals chosen from the MIT-BIH database [36] and the European ST-T database [37].
The database contains 105 subjects. Each subject has fifteen-minutes recordings of 2-channel ECG
signals sampled at the 250 Hz, which include a broad variety of QRS and ST morphology. A subset of
cardiac cycles in the database have been manually annotated with waveform boundaries, and only
a small portion of signals was annotated for T-end. The manual annotations were made by two
cardiologists using an interactive graphic display to view both signals simultaneously. The first
cardiologist (Cardio 1) made annotations on all 105 subjects, and the second cardiologist (Cardio 2)
made annotations on only 11 subjects. Following the same approach in Zhang’s work [5], we separated
the QT database into three sets for analysis according to which cardiologists made the annotations.
The first set (Set 1) contains all 105 subjects, in which we considered the 3542 annotations made by
Cardio 1 as the true T-end points. The second set (Set 2) is from the 11 subjects annotated by both
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Cardio 1 and Cardio 2, in which we considered the 487 T-end points annotated by Cardio 1 as the
ground truth. The third set (Set 3) also includes the same 11 subjects as Set 2, but the ground truth is
the 402 annotations made by Cardio 2.

To evaluate our proposed algorithm under various noisy environment, we considered two additive
noise models, the random Gaussian noise and the ARMA(1,1) noise [38], and contaminated the QT
database by these noises. Assume the original signal is z ∈ RN, where N ∈ N is the number of samples.
The Gaussian noise was generated by N random points following the Gaussian distribution with mean
0 and variance 1. The ARMA (1,1) noise was generated by the ARMA (1,1) process:

Xt −φXt−1 = c + Zt + θZt−1,

where t = 1, . . . , N is the sampling point, Xt is the ARMA (1,1) process sampled at point t, Zt is a
random variable following Student t-4 distribution sampled at point t, and c, φ and θ are selected
constant. We set c = 0.5, φ = 0.5 and θ = −0.5 for following evaluation. The desired ARMA (1,1) noise
at point t with variance 1 was then acquired by

Xt/SD
({

Xt}Nt=1

)
,

where SD({Xt}Nt=1) is the standard deviation of the sequence {Xt}Nt=1. Define a constant S

S :=
√

Pz/10SNR/20,

where SNR is the desired signal to noise ratio and Pz is the power of original signal. We then multiplied
both Gaussian and ARMA (1,1) noise by S and added them to z to create the noisy signal with desired
SNR. We evaluated SNR of 10 dB and 5 dB in the following evaluation.

2.5. 14-Day ECG Recordings Database

Our database of single-lead, ultra-long-term ECG recordings comprised of four recordings; each
recording is approximately two weeks (14 days) in length. The data was recorded using the ZIO® Patch
cardiac monitor (iRhythm Technologies, Inc., San Francisco, CA, USA) at a sampling rate of 200 Hz.
The underlying information of the subjects was unknown to us. Across the four 14-day recordings,
we randomly selected 51, 11, 24, 80, and 32 segments of 10 s for manual review and annotation at
the Epidemiological Cardiology Research Center (EPICARE Center, Wake Forest School of Medicine,
Winston Salem, NC, USA). The ECG core laboratory was provided with the automated T annotation
generated by our algorithm, and the results were reviewed by the ECG core readers for accuracy and
editing. The quality of each ECG segment was also documented as part of the annotation process.
In total, 173 segments were labeled good, 16 segments were labeled intermediate, and 9 segments were
labeled bad.

2.6. Evaluation

We evaluated our proposed T-end annotation algorithm, which is an enhancement of Zhang,
Carlos, or Martinez, on the above-mentioned databases. For each ECG recording, we cropped a
segment for analysis, which started from 1 min before the first T-end annotations and ended at 1 min
after the last T-end annotation. The R-R interval difference between cardiac cycles was applied as
the metric d(sa, sb). Since our focus was automatically annotating T-end, the R peaks were assumed
to be known. The T-end detection error is the time difference between the automatically detected
T-end points and the provided annotations. In the QT database, since each subject has two recordings,
the estimated T-end points were chosen from the best result that minimized the detection error among
the two computed T-end positions. This approach is the same as that used by Zhang and Carlos.
The justification of this approach is that the cardiologists made their annotations by evaluating both
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ECG records. For the Ultra-Long-Term ECG recordings database, since there is only one channel for
each recording, we simply calculated the estimated T-end locations and provided annotations.

In our previous work, the effects of noise robustness and morphology recovery by optimal
shrinkage and other template estimation algorithms had been compared for the purpose of extracting
fetal ECG from the trans-abdominal maternal ECG [27] over the Physionet CinC Challenge 2013
database [39]. These methods included independent component analysis (ICA), principal component
analysis (PCA), least mean square (LMS), recursive least square (RLS), echo state neural network
(ESN), and extended Kalman filter (EKF). To further demonstrate the strength of optimal shrinkage,
in this work we compared with another ECG denoising method named wavelet shrinkage [40,41].
The idea is similar to the optimal shrinkage, where the empirical wavelet coefficients are shrunk,
and the signals are recovered by the inverse wavelet transform. The main difference is that in OS, the
basis is adaptive to the data, while in the wavelet shrinkage, the basis is predetermined. We compared
these two algorithms on the QT database with the additive Gaussian or ARMA (1,1) noise. The wavelet
shrinkage is applied after Step 0: preprocessing, where wavelet shrinkage is applied on the denoised
signal z ∈ RN following the setup detailed [42]. Then, Step 1 and Step 4 are applied for R peaks and T
offset delineation.

To evaluate the performance of each algorithm, the mean (ME) for the absolute values of detection
errors of each recording were calculated. Then, the median and MAD and 2.5–97.5% quantile interval of
ME over all recordings were computed and reported. To evaluate if the proposed OS approach improved
the existing algorithm, we applied the Wilcoxon signed rank test with the statistical significance level
set to 0.05.

3. Results

The parameters of proposed algorithm were set as follows. We set the grace period γ = 50 ms
for the tSQI evaluation. Moreover, we set the cutoff frequency for low pass filter as lo f f = 0.5 Hz,

window length Lw = Rw =
⌈

1
2

⌉
, where �x� is the smallest integer larger than x, and number of

neighbors ξ = 19. The evaluation was performed on MATLAB 2019b, Microsoft 10 system,
Intel i7-6700HQ CPU@2.60GHz 4 cores, and 16GB RAM. The code can be downloaded at: https:
//github.com/MagineZ/Tend-Project.

3.1. tSQI and Quality in the 14-Day ECG Database

The comparison of the signal quality provided in the 14-day ECG database and the proposed tSQI
in the ultra-long ECG recording database is reported in Table 1. We observe that the ECG signals labeled
as good (or bad) quality have higher (or lower) tSQI’s. If we view label good as 1, label intermediate as
3, and label bad as 5, the correlation coefficient between the tSQI and labeled quality is −0.71.

Table 1. The relationship between the tSQI and quality.

Labeled Quality Good Average Bad

tSQT 0.98 ± 0.06 0.84 ± 0.12 0.68 ± 0.08

Note: If we view label good as 1, label intermediate as 3, and label bad as 5, the correlation coefficient between the
tSQ and labeled quality is −0.71.

3.2. Noise Suppression

We examined if the proposed OS denoising could help stabilize existing T-end detection algorithms
under various noise types and noise levels. The results for different SNR levels are reported in Table 2
for the Gaussian noise and ARMA (1,1) noise respectively. It is clear that the proposed OS algorithm
helps improve the traditional algorithms and outperforms wavelet shrinkage. Wilcoxon signed rank
test over the 20 rounds’ rejects the null hypothesis with statistical significance. To appreciate how the
OS recovers the ECG signal, some examples are shown in Figures 2 and 3. We see that the deviations
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of estimated T-end from the annotation is obvious on the signals without OS applied, and the OS helps
recover the ECG morphology and thus reduces the automatic annotation errors. This suggests the
potential of the proposed denoise algorithm to help stabilize existing algorithms.

Figure 2. Comparison of different T-end detection algorithms with or without optimal shrinkage when
the signal is contaminated by the additive Gaussian noise. In each subplot, the black line is the ECG
signal from the first channel of a subject in the QT database with additive noise, the light blue line is
the denoised ECG signal by the optimal shrinkage, and the magenta line is the original ECG signal
without adding any noise. The red (green) vertical lines indicate the estimated T-end by the chosen
detection algorithm on noisy signals without (with) OS applied. The deep blue vertical line indicates
the annotated T-end by Cardio 1. The plots in the first (second) row are the results when the SNR is
10 dB (5 dB). The chosen T-end algorithm in the first, second and third column is Zhang’s, Carlos’s,
and Martinez’s algorithms respectively. The case index of each plot is in the title.

Figure 3. Comparison of different T-end detection algorithms with or without optimal shrinkage when
the signal is contaminated by the additive ARMA (1,1) noise. In each subplot, the black line is the ECG
signal from the first channel of a subject in the QT database with additive noise, the light blue line is
the denoised ECG signal by the optimal shrinkage, and the magenta line is the original ECG signal
without adding any noise. The red (green) vertical lines indicate the estimated T-end by the chosen
detection algorithm on noisy signals without (with) OS applied. The deep blue vertical line indicates
the annotated T-end by Cardio 1. The plots in the first (second) row are the results when the SNR is
10 dB (5 dB). The chosen T-end algorithm in the first, second and third column is Zhang’s, Carlos’s,
and Martinez’s algorithms respectively. The case index of each plot is in the title.
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3.3. Evaluation in the QT and 14-Day ECG Databases

We applied the proposed tSQI and OS denoising to the QT and 14-day ECG recording databases.
We considered tSQI thresholds q = 0.9 when applying the proposed algorithm; that is, the OS was
applied to those cardiac cycles with the tSQI less than 0.9. Note that q = 0 means we do not apply
the OS. The results are shown in Tables 3 and 4. First, note that in Zhang’s and Carlos’s algorithms,
the ME and SD were defined without taking the absolute value. The error is thus underestimated since
the detection error of the estimated T-end has positive or negative values. Therefore, smaller MEs
were reported by Zhang and Carlos in comparison with our results when q = 0, even if we applied
their announced codes on the same database. We see that, overall, the MAD and 97.5% quantile are
improved, while there is no statistical significance. To have a better feeling about how the algorithm
performs, the scatterplots of T-end detection errors of the QT database are shown in Figure 4.

Table 3. Evaluation of algorithms on the QT database.

Zhang Carlos Martinez

# of Beats Before OS After OS Before OS After OS Before OS After OS

Set 1 1417
12.00 ± 20.83 12.00 ± 18.96 12.00 ± 35.82 12.00 ± 32.84 12.00 ± 40.59 12.00 ± 37.88

[0, 128.00] [0, 116.00] [0, 212.30] [0, 224.00] [0, 304.60] [0, 332.00]

Set 2 169
12.00 ± 9.43 16.00 ± 9.17 12.00 ± 20.41 12.00 ± 19.94 12.00 ± 20.33 12.00 ± 18.47

[0, 44.80] [0, 44.00] [0, 108.00] [0, 101.60] [0, 92.00] [0, 84.80]

Set 3 132
16.00 ± 27.49 12.00 ± 27.37 8.00 ±14.22 8.00 ± 13.35 16.00 ± 22.60 12.00 ± 21.87

[0, 100.00] [0, 100.80] [0, 72.00] [0, 49.6] [0, 79.20] [0, 81.60]

Note: Column one indicates which set is analyzed. Column 2 is the number of heart beats. Column 3, 4, and 5 are
the results of T-wave end detection error using algorithms of Zhang, Carlos, and Martinez respectively. The median
±mean absolute deviation (MAD) of detection errors are evaluated. The unit is millisecond. Note that since the
sampling rate is 250 Hz, the median error is the multiple of 4 ms.

Table 4. Evaluation of algorithms on the Ultra-Long-Term ECG recordings database.

Labeled
Quality

# of Beats Zhang Carlos Martinez

Before OS After OS Before OS After OS Before OS After OS

Good 538
0.00 ± 17.05 5.00 ± 13.55 5.00 ± 13.65 5.00 ± 12.95 10.00 ± 14.09 10.00 ± 13.68
[0, 125.00] [0, 115.25] [0, 105.00] [0, 95.50] [0, 120.25] [0, 115.50]

Averaged 148
0.00 ± 33.99 10.00 ± 29.94 10.00 ± 33.88 15.00 ± 38.23 10.00 ± 33.73 15.00 ± 34.10
[0, 168.00] [0, 159.00] [0, 145.00] [0, 200.00] [0, 157.00] [0.00, 169.00]

Bad 127
0.00 ± 45.04 30.00 ± 47.90 25.00 ± 50.46 35.00 ± 50.38 35.00 ± 54.88 50.00 ± 50.07
[0, 208.25] [0, 208.25] [0, 236.63] [0, 230.00] [0, 216.63] [0, 225.00]

Note: Column one indicates which set is analyzed. Column 2 is the number of heart beats. Column 3, 4, and 5 are
the results of T-wave end detection error using algorithms of Zhang, Carlos, and Martinez respectively. The median
±mean absolute deviation (MAD) of detection errors are evaluated. The unit is millisecond. Note that since the
sampling rate is 200 Hz, the median error is the multiple of 5 ms.

Figure 4. Scatterplot of T-end prediction error before and after applying the OS. From left to right are
the scatterplot of applying Zhang’s algorithm to the set 1, set 2, and set 3 of the QT database.
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4. Discussion

In this report, we showed that the labeled quality in the 14-day ECG database provided by the ECG
core lab is well captured by the proposed tSQI. We also showed how the noise deteriorates the signal
quality and thus induces high detection errors in both databases when the commonly applied T-end
detection algorithms are applied. The proposed OS denoise was able to recover the ECG morphology
when the signal was contaminated by noise, and hence stabilized the T-end detection algorithm. In the
arrhythmic cases, the T-wave morphologies could be visually better recovered by selecting proper
metric between cardiac cycles.

The spike model underlying the proposed algorithm deserves discussion. As shown in Figure 5,
there is T-wave distortion after the OS, and hence the T-end location shifts. In other words, when the
ECG signal is clean, a morphology distortion after the OS is applied. This observation suggests that the
cardiac cycles cannot be fully captured by the spike model used in Gavish’s and Donoho’s work [26]
for the OS, and hence the morphology is distorted when the noise is dominated by the beat to beat
variation. Recall that the PQRST morphology is not fixed from cycle to cycle, and the variation is
caused by various physiological dynamics such as the respiratory and heart rate [2]. See Figure 6 for an
example, where 20 cycles of clean PQRST waves from the same subject were superimposed. It is also
clear that the PQRST variation from cycle to cycle is small compared with the dominant PQRST pattern.
Therefore, the data matrix for a set of clean cardiac cycles can be modeled by E =

∑p

i=1 μieia
′
i
∈ Rp×n,

where μ1 
 μ2 ≥ μ3 ≥ · · · , e1 ∈ Rp is the dominant PQRST pattern, a1 ∈ Rn describes the magnitude
the dominant PQRST pattern of each cycle, e2 . . . ep ∈ Rp describe the variation of the PQRST pattern,
and a2 . . . ap ∈ Rn describe the magnitude of each variation of the PQRST pattern. Clearly, E can be
well approximated by a spike model Ẽ = μ1e1a′1 ∈ Rp×n. While this seems to be a nice approximation,
it does generate trouble when we apply the OS. Specifically, when the signal is clean, Equation (5) for
noise level estimation will consider the physiological variation

∑p

i=2 μieia
′
i

between each PQRST cycle
as a source of noise. Thus, the noise level of the clean signal is overestimated. As a result, the OS
might eliminate

∑p

i=2 μieia
′
i

in order to recover the “clean matrix” μ1e1a′1, which leads to a distortion
of morphology. The critical observation is that the variation of T wave morphology from cycle to cycle
is quantified by the variation term

∑p

i=2 μieia
′
i
. However, due to the nonlinear relationship among T

waves from cycle to cycle, it is not clear how to directly use the T wave information in
∑p

i=2 μieia
′
i
.

When the signal is heavily contaminated by noise, E =
∑p

i=1 μieia
′
i
+ ξ, where ξ is the noise matrix,

the small variation term μ2e2a′2, . . . ,μpepa′p will be dominated by the noise, particularly those with
small singular values. Hence, there is benefit from applying the OS because it will balance between
recovering the morphology and reducing the noise. This explains why we only apply OS to those
cycles with low tSQI. We mention that in general, the dynamics of T wave morphology can be modeled
by a low dimension manifold, which is referred to by the wave-shape manifold [43]. An exploration of
this model to further improve the denoising performance, or even noise estimation shown in Equation
(5), is out of the scope of this paper.
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Figure 5. Comparison of the estimated T-end with or without optimal shrinkage on P-QRS-T cycles
with high signal quality in the QT database. The black line is the preprocessed ECG signals from the
first channel of one subject, and the light blue line is the same signals with the optimal shrinkage
applied, where the whole signal is shifted down by 0.5 to enhance visualization. The red vertical line
indicates the T-end point estimated by the chosen algorithm on the original signal. The green vertical
line indicates the T-end point by the chosen algorithm on the denoised signal. The deep blue vertical
line indicates the time point of T-end annotations provided by Cardio 1. Zhang’s algorithm is applied
for the T-end detection. The case index is in the title.

Figure 6. Illustration of cardiac cycles variation. The gray lines are 20 cardiac cycles from subject id
sel30 in QT database. The red line is the median over the 20 cycles.

In the QT and ultra-long-term ECG recordings databases, while there was improvement of the
T-end algorithm after applying OS with a properly chosen tSQI threshold, this improvement did not
reach statistical significance. See Table 3. There are two possible explanations. First, the motion or
other artifacts are inevitable. Usually, artifacts have structures that are unknown to us, unless we have
other ECG channels to confirm. Due to these artifacts, visual manual annotation of T-end might be
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challenging. Consider the following scenario. Suppose the visual manual annotation of T-end was
deviated by the existence of noise or artifacts. On the other hand, the denoising tool recovered the
T wave, and hence the automatic T-end annotation algorithm provided the correct T-end annotation.
In this case, the “correctly detected T-end” will be viewed as a bad annotation compared with visual
manual annotation of T wave. To visualize this effect, we show some results in Figure 7. When the
signal quality is labeled as average in the ultra-long-term ECG recording database, it is challenging
even for experts to annotate the T-end due to noise and artifacts.

Figure 7. Comparison of the estimated T-end points with or without optimal shrinkage over
Ultra-Long-Term ECG recordings Database with intermediate quality. In each subplot, the black
line is the original ECG signal, and the blue line is the denoised ECG signal estimated by the optimal
shrinkage. The red (green) vertical lines indicate the estimated T-end by the chosen detection algorithm
on noisy signals without (with) OS applied. The deep blue vertical line indicates the annotated T-end
provided by EPICARE Center. The chosen T-end algorithm in the first, second and third column is
Zhang’s, Carlos’s, and Martinez’s algorithm respectively.

Second, the OS performance might be masked by the experts’ annotation process. This can
be observed clearly in the ultra-long-term ECG recording database. Due to the labor-intensive
annotation process, the data analysis team provided the automatic annotated labels by applying
Zhang’s algorithm, and the experts only provided a corrected T-end when they disagreed with the
automatic label. This “semi-automatic” process might bias the experts’ T-end annotation. We can
see this potential bias in Table 4. Before applying the OS, the Zhang’s algorithm outperforms other
algorithms with or without OS. Therefore, we may conclude that it is possible that the non-statistical
significance comes partially from the label uncertainty issue. Combining these facts and its performance
when marked noise of different kinds exists, we may argue that the proposed stabilization algorithm by
combining tSQI and OS is potential for automatic T-end annotation purpose in practice. We may also
discuss a relevant but different topic. The labeling procedure for the ultra-long-term ECG recording
database in this study can be viewed as an artificial intelligence aided approach to speed up the
standard annotation procedure. By and large, the common labeling procedure is composed of two steps.
First, one group of experts provide an initial manual annotation of ECG waveform. Then, another group
of experts doubly confirm the provided annotation and edit extreme values as a quality control. In this
study, we replace the first step by the existing best automatic annotation system and control the overall
quality by a human expert intervention. How to improve this semi-automatic labeling procedure to
avoid the above-mentioned issues is of its own interest, and it will be explored in our future work.

Another topic deserves a discussion is arrhythmic ECGs. It is well-known that occasional
arrhythmias, like premature ventricular contraction (PVC), can cause sudden T wave changes in normal
rhythms. Although we cannot find a publicly available arrhythmia database with T-end annotation,
we provide some preliminary visual evaluation of the OS algorithm on the ECG signals with arrhythmia.
We consider the Physionet MITDB [44] that contains 48 half hour excerpts of two-channel ambulatory
ECG recordings. Each recording has 2 channels with the sampling frequency 360 Hz and the 11-bit
resolution over a 10-mV range. The R peak annotations are provided. To see the performance of our
proposed algorithm on arrhythmic ECGs, we applied OS on MITDB with Zhang’s method for T-end
annotation. Both the R-R interval difference and the l2-norm of difference between cardiac cycles were
applied as the metric d(sa, sb). See Figure 8 for a typical result. We see that the distortion of T-wave

35



Sensors 2020, 20, 7052

morphology is obvious when the RRI metric is applied. The distortion is less when the l2 norm is used
as the metric to compare two cardiac cycles. For example, for the cycles around 1719.2 s and 1723 s,
the T wave is distorted when the RRI metric is applied, and these distortions disappear when the l2
norm is considered and the ECG signal is better recovered. While we do not have experts’ label for
T end, visually when the l2 norm is applied, the detected T ends are closer to those detected from
the original ECG signal, while the detected T-ends might not be correct. This preliminary result is
encouraging, but an extensive study is needed to evaluate its performance. While developing a more
accurate T-end detection algorithm is not the focus of this paper, we mention that developing such an
algorithm that is suitable for arrhythmic ECG is another critical topic for exploration.

Figure 8. A preliminary comparison of ECG morphologies with different metrics for arrhythmic ECG.
For each subplot, the blue line is the ECG contaminated by ARMA (1,1) noise, the orange line is the ECG
after OS with RRI as the metric, the yellow line is the ECG after OS with l2 norm as the metric, the purple
line is the original ECG, green vertical lines are the locations of R peaks in each PVC occurrence, and the
magenta spots are the corresponding estimations of T-end locations by Zhang’s algorithm. The signal
is from the first channel of case 106 in MITDB. From top to bottom subplot, the noise level is 20 dB,
10 dB, and 5 dB respectively.

There are several limitations in this study. First, the labeled database is small. Because manual
T-end labeling for ultra-long ECG recording to validate the algorithm is a labor intense process,
even with the help of the initial labels, the sample size was small. Second, we need to develop a new
denoising algorithm that can handle structured artifacts. The main challenge is how to model artifacts
when there is no extra information. A basis pursuit approach might be suitable, and we will report
our theoretical research result in our future work. Third, in this article we focus on the tSQI and ECG
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denoising. To further improve the T-end annotation accuracy, we may need to further improve existing
T-end annotation algorithms, probably by incorporating some machine learning algorithms.

In conclusion, our proposed T-end annotation algorithm has the efficiency and accuracy that make
it a good fit for clinical applications and large ECG databases.
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Abstract: Electroencephalogram (EEG) biosignals are widely used to measure human emotional
reactions. The recent progress of deep learning-based classification models has improved the accuracy
of emotion recognition in EEG signals. We apply a deep learning-based emotion recognition model
from EEG biosignals to prove that illustrated surgical images reduce the negative emotional reactions
that the photographic surgical images generate. The strong negative emotional reactions caused by
surgical images, which show the internal structure of the human body (including blood, flesh, muscle,
fatty tissue, and bone) act as an obstacle in explaining the images to patients or communicating
with the images with non-professional people. We claim that the negative emotional reactions
generated by illustrated surgical images are less severe than those caused by raw surgical images.
To demonstrate the difference in emotional reaction, we produce several illustrated surgical images
from photographs and measure the emotional reactions they engender using EEG biosignals; a deep
learning-based emotion recognition model is applied to extract emotional reactions. Through this
experiment, we show that the negative emotional reactions associated with photographic surgical
images are much higher than those caused by illustrated versions of identical images. We further
execute a self-assessed user survey to prove that the emotions recognized from EEG signals effectively
represent user-annotated emotions.

Keywords: emotion; EEG; DEAP; CNN; surgery image; disgust

1. Introduction

From the early days of brain science, many researchers have studied negative human emotions
that come from surgical images showing blood, injection, and injury (BII). Usually, the negative emotion
caused by surgical images is classified as fear and disgust. Even though emotional responses can be
different according to the subject’s experience, knowledge, and personality, the emotional responses are
located in close distances when mapped on widely used Russell’s emotional coordinate [1].

Ordinary people rarely have the chance to view surgical images. However, there are certain
situations in which people should carefully inspect surgical images. For example, when we or our
family members face surgical operation, surgeons explain the process of the operation by showing
surgical images. Even though we feel very negative emotions in response to the images, we still have
to study them very carefully to understand the procedure. In cases such as this, the negative emotional
response to surgical images can prevent people from understanding necessary surgical procedures.

Some studies have tried to reduce impact of the image by simplifying the color of the images
through image abstraction schemes [2,3]. They employed existing image abstraction techniques on
surgical images to produce illustrated expressions in order to reduce the negative affective responses.
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Even though many of the existing image abstraction techniques fail to present the details of the surgical
images, some surgeons participating in these studies recommend the illustrated surgical images for
explaining the images to ordinary people or training students [4,5].

Even though several image abstraction algorithms such as [4,5] have demonstrated effectiveness
for abstracting surgical images, it is difficult to retain the diverse and fine details of human organic
structures which is especially important for educational purposes while reducing negative emotional
response. It would take a lot of cost and effort to develop an algorithm that satisfies the above
requirements. Before undertaking such an effort, we need objective evidence that the illustrated
surgical images can reduce the severity of negative emotional reactions to photographic surgical
images. Unfortunately, the works of Besancon et al.’s [2,3] lack such an evidence, as they did not
include quantitative study such as EEG-based emotion measurement on the emotional reactions
comparing abstracted surgical images from original images.

We argue that objective and quantitative strategies including biosignal-based methods are needed to
confirm the hypothesis that illustrated surgical images can reduce negative emotional reactions. The cost
of developing an automatic algorithm that produces illustrative representations of surgical images
with preserving sufficient details would be surprisingly expensive; before deciding whether to develop
such an algorithm, we need concrete evidence that supports our hypothesis. Among the various kinds
of biosignals, the electroencephalogram (EEG) is very widely used to measure emotional responses.
Recently, many deep learning-based methods employing EEG have been presented [6–18].

We employ an EEG-based emotion recognition framework in order to present a quantitative
measure of the difference in emotional reactions to illustrated surgical images and photographic
surgical images. To this end, we employ professional scientific illustrators to produce illustrations of
surgical images, and execute a user study with a deep learning-based emotion recognition model with
EEG biosignals. Our study seeks to provide a confidence that the negative emotional reactions caused
by surgical images can be reduced through abstraction via illustration.

We employ two groups of participants who view photographic surgical images and illustrated
surgical images, respectively. Their emotional responses are measured through an EEG capturing
device and processed with a deep learning-based emotion recognition model. To show the effectiveness
of the model, we additionally execute a nine-metric user survey for the participants, then compare those
results with those of the model. From the results of this experiment, we suggest that the illustrated
surgical images successfully reduce the negative emotional responses caused by their photographic
counterparts.

2. Related Work

2.1. Emotional Reactions to Surgical Images

Many researchers have studied human emotional reactions on BII (blood, injection, and injury)
scenes including body mutilation [19], surgical procedures [20,21], blood drawing [22], open-heart
surgery [23], and surgical amputation [24]. Other studies presented human reactions to repelling scenes
including homicide scenes [25], spiders [21], vomit [23], and dirty toilets [26]. To estimate human
reactions to these scenes, most studies employed either estimation of physical reactions or subjective
methods. For estimating physical reactions, they examined heart rate [19,23], facial expression [27],
electromyography [23,28], skin conductance [28], neural activation by fMRI [26], eye tracking [29],
and visuomotor processing [30]. The subjective methods include user survey [20,21], rate of refusal
to watch [23], and experienced vasovagal symptoms [22]. Even though these schemes are used to
estimate human reactions to repelling scenes including surgery images, Cisler et al. found that there is
no universal scheme to consistently estimate human reactions [31].

Surgical images incur various human reactions including anxiety, fear, disgust, and vicarious
pain [31,32]. Among them, fear and disgust are suggested to be the most prominent. Cisler et al.
and Olatunji et al. reported disgust as the most representative emotion [31,33]. Their reason is that
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fear is an emotion of avoiding danger, which is not induced by watching images of bodily injury or
surgery. Chapman and Anderson classified blood-injury disgust as a subtype of physical disgust [34].
Olatunji et al. further divided blood-injury disgust into contamination disgust and animal-reminder
disgust, where animal-reminder disgust is defined as the reminder of one’s mortality and inherent
animal nature [23].

2.2. CNN-Based Emotion Recognition from EEG

From the great success of AlexNet [35] and VGGNet [36] in image classification, deep convolutional
neural networks are employed in various EEG analytic tasks.

Tang et al. [6] proposed an early deep CNN-based classification model for single-trial EEG.
Their model, which is composed of five layers, is applied to classify motor imagery of left and right
hand movement. The model recorded F1 scores of 87.76% 86.64% for classification of motor imagery.
While the performance of the model does not show significant improvement over conventional
hand-crafted feature-based models, this study has shown the promise of CNN for EEG recognition.

Schirrmeister et al. [7] presented a deep CNN to analyze EEG biosignals. Their model is composed
of four blocks, each of which executes convolution and max pooling operations. The first block is
distinguished from the others, as it executes spatial filtering between the convolution and max pooling
operations. The result of fourth block is linearly classified to four soft max units including left hand,
right hand, feet, and rest. They also visualized the features of their CNN to analyze the relationships
between the features and EEG signals.

Li et al. [17] presented a hybrid model of convolutional neural network and recurrent neural
network to recognize emotions from a multi-channel EEG dataset. As a preprocessing of their data,
they employ wavelet and scalogram transform to encapsulate multi-channel neuro-signals into grid-like
frames. Their model extracts task-related features and mines correlation between channels, incorporating
contextual information. They demonstrate their accuracy by estimating valence and arousal.

Salama et al. [8] presented a 3-dimentional CNN approach for recognizing emotions from
multi-channel EEG signals. Their model is constructed using two convolutional layers and two max
pooling layers, followed by a fully connected layer. The 3D representation of EEG data is fed into
a data augmentation phase, which improves the performance of their 3D CNN model. The simple
structure of their model leaves many aspects to be improved. They achieved 87.44% accuracy for
valence and 88.49% for arousal.

Moon et al. [9] applied CNN models for EEG-based emotion recognition. They tested three
CNN models: CNN-2, CNN-5, and CNN-10, which are distinguished by the number of convolutional
layers. The CNN-2 model has one convolutional layer followed by one max pooling layer; CNN-10
has five convolutional layers followed by five max pooling layers. Among the three models, CNN-5,
which has three convolutional layers and two max pooling layers, shows the best accuracy for PSD,
PCC, and PLV features.

Chiarelli et al. [10] presented a hybrid framework to construct a brain-computer interface
using EEG and infrared spectroscopy (fNIRS). They employed DNN, which recorded unprecedented
classification outcomes, for their framework. They performed a guided left and right hand motor task
on 15 participants. The left-to-right classification accuracy of the DNN was estimated and compared to
a stand-alone EEG and fNIRS. The results of their multi-modal recording and DNN classifier significant
improvement over the state-of-the-art techniques.

Lawhern et al. [11] presented an EEGNet, a DNN-based approach for constructing brain-computer
interface using EEG biosignals. Their EEGNet has three blocks of layers: Conv2D, DepthwiseConv2D,
and SeparableConv2D. In this network, they introduce depthwise convolution and separable
convolution to process the EEG signals effectively. They tested their method on three datasets: P300
Event-related Potential, Feedback Error-related Negativity, and Movement-related Corticial Potential.
The results demonstrate EEGNet’s improved performance over reference algorithms.
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Croce et al. [12] applied a CNN model to a large dataset of independent component (IC)s extracted
from multi-channel EEG and magnetoencephalographic (MEG) signals. Their aim was to classify brain
IC and artifactual IC from the biosignals. The EEG, MEG, and combined EEG + MEG signals were
processed through a CNN model to compare its accuracy of classification with state-of-the-art models;
their classification accuracies reached 92.4% for EEG, 95.4% for MEG and 95.0% for EEG + MEG.

Yang et al. [13] proposed a CNN-based approach to recognize valence and arousal from
unstationary EEG signals. Their model has a multi-column structure of independent modules, each of
which was designed using DenseNet [37]. The independent decisions from the modules were merged
using a voting strategy to make a final decision. Their model was trained and optimized using
DEAP dataset, and applied to distinguish the emotional responses between photographs and artwork
images [38] and to verify the influence of contrast on valence [39].

2.3. RNN-Based Emotion Recognition from EEG

The spatio-temporal aspect of EEG biosignals invites the use of a recurrent neural network (RNN),
which is known as an effective model for processing time-serial data, to analyze EEG signals.

Khosrowabadi et al. [14] presented a biologically inspired feedforward neural network (ERNN),
which has six layers, to recognize human emotions from EEG biosignals. The ERNN model employs a
serial-in/parallel-out shift register to simulate the short term memory of emotion. This model with a
radial basis function shows very competitive accuracy compared with other feature extraction methods.

Alhagry et al. [16] presented an RNN-based emotion recognition model from EEG biosignals.
Their model has two long short term memory (LSTM) layers, one dropout layer and one fully connected
layer. Since the EEG biosignal captured from subjects watching a movie clip has a time-serial property,
the RNN structure demonstrates competitive accuracy in emotion recognition. Their model showed
85.65% accuracy for arousal and 85.45% for valence.

Soleymani et al. [15] employed an LSTM RNN with conditional random fields to trace the emotions
captured from EEG biosignals of subjects watching video. They also captured facial expressions of
the subjects. The combination of EEG biosignals and facial expressions was able to provide adequate
information for emotion recognition.

Xing et al. [18] presented a framework consisting of a linear EEG mixing model and an LSTM
RNN model. For EEG mixing, they employed stack auto encoder (SAE), which is similar to the
standard auto encoder; the difference lies in the processing of source signals, which are separated by
brain region. The EEG source signals processed by SAE are fed into the LSTM RNN model, which then
extracts features from them. This model achieved 81.10% accuracy for valence and 74.38% for arousal.

3. Overview of Our Framework

Our assumption is that the negative emotions caused by photographic surgical images would
hinder non-professional people in understanding necessary information conveyed by the images.
Since these people are not trained with surgical images, the negative emotions such as fear and disgust
arise at their first glance of the images. To reduce negative emotion and to increase the understanding of
the information conveyed by surgical images, anatomy textbooks tend to use illustrations, rather than
photographs. From this point, we build our assumption that illustrated surgical images evoke less
negative emotion from ordinary people than photographic surgical images.

To prove our assumption, we chose 10 photographic surgical images and produced their illustrated
versions by hiring professional scientific illustrators. The photographic surgical images and their
illustrated counterparts are presented in Figures 1–3. Before producing the illustrations, the illustrators
were instructed to preserve as much fine details as possible. The target images were collected from
various sources and are released under ’fair use’ purpose.
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Figure 1. The first comparison of photographic surgical images and illustrated surgical images.
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Figure 2. The second comparison of photographic surgical images and illustrated surgical images.
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Figure 3. The third comparison of photographic surgical images and illustrated surgical images.

From the ten pairs of photographic and illustrated surgical images, we hired 40 participants
to record their emotional reactions to both photographic surgical images and illustrated images.
To record their emotional reactions, we employed two different processes. One was the usage of EEG
biosignals; the EEG signals captured from participants were processed through a deep multi-channel
emotion recognition model [13] and quantized into valence and arousal scores. The other process
was a self-assessed user survey. The participants were given a 9-metric survey to record their valence
and arousal.

The 40 participants were randomly partitioned into two groups. The first group underwent the
above processes for photographic surgical images, while the second worked with illustrated images.
The results of these two groups are analyzed and discussed; the outline of this study is illustrated in
Figure 4.
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Figure 4. Overview of our framework.

4. Deep Emotion Recognition Model

4.1. Structure of the Model

In this section, we describe our deep emotion recognition model, which was presented in our
previous study [13]. Our model is based on a multi-column structure: five independent modules
process the EEG signal and make estimations of valence and arousal. Results from these modules are
ensembled into concerted valence and arousal scores, effectively recognizing emotional responses.

4.2. Dataset Preparation

For the training of our model, we employ the DEAP dataset [40], one of the most widely used
EEG datasets. The DEAP dataset consists of preprocessed EEG signals and their corresponding labels
which describe emotional states. As instructed by the original authors [40], and similar to our previous
study [38], we downsample the EEG signal in DEAP to 128 Hz and process it with a 4.0–45.0 Hz
band pass filter. Therefore, we extract 128 × 60 samples from a trial for 40 channels of the dataset.
Among the 40 channels, we exclude 8 for normalization and employ 32 channels for the input of our
model. For each input channel, we prepare 32 consecutive samples for an input for each module of our
model, effectively creating 32 × 32-sized input data. Figure 5 (a) illustrates the sampling process of
EEG data, (b) shows the structure of a recognition module, and (c) shows the overall multi-column
structure of the model.

Figure 5. Structure and dataflow of our model, which is constructed according to [13].
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4.3. Model Training

The DEAP dataset is constructed using the EEG signals captured from 32 participants. We segment
the dataset into three groups: training, validation and test. Out of the 32, EEG signals from
22 participants are used for training, validation and the remaining 5 for test. Each participant executed
40 experiments. Therefore, the numbers of the EEG signal data for training, validation, and test are
880, 200, and 200, respectively.

5. Implementation and Experiment

5.1. Implementation

We implemented our emotion recognition model with Pytorch library on a machine with an Intel
Core i7 CPU, 64 GB main memory, and nVidia GTX 2080TI GPU. We employed LiveAmp32 with
LiveCap [41], which supports 32 channels following a standard 10/20 system [42].

5.2. Preparation of Surgical Images

While preparing our dataset of surgical images, we surveyed various open emotional image
datasets including IAPS [43], GAPED [44], NAPS [45], CAPD [46], SMID [47], ISEE [48] and
COMPASS [49]. Some of the datasets are specialized for scary images (SFIP) [50], disgusting images
(DIRTI) [51], natural disaster images (NDPS) [52], and adult images (BAPS-adult) [53]. However,
there was no existing dataset dedicated to surgical images; therefore, we collected several “fair-use”
images from various sources for our experiment.

5.3. Preparing of User Annotation

For user annotation of emotional responses, we presented participants with a nine-point metric
separated into valence and arousal. They were asked to mark the metric for the photographic and
illustrated surgical images they saw. The leftmost point means very negative reaction, which matches
to −1 in EEG-based estimation, and the rightmost point means very positive reaction, which matches
to 1. The mid-point signifies a neutral reaction, which matches to 0. The nine-point metric form for
user annotation is presented in Figure 6.

5.4. Experiment

For the experiment, we hired 40 participants and separated them into two groups: group1 watched
photographic surgical images and group2 watched the illustrated versions. The characteristics of the
two groups are suggested in Table 1. In the case of a participant watching both photographic and
illustrated surgical images in a short timeframe, the emotional response from the images they watched
first can affect that from the images that they watched later. This was our motivation for employing
disjoint groups. We address the issue that personal differences between participants may affect
their emotional responses by increasing the number of participants. Before participants watched the
images, we explained what they were about to see and allowed withdrawal from the experiment.
The participants were asked to watch a 100 s movie clip, wich each image lasting 10 s. In the first
round of our experiment, we extracted EEG biosignals from the participants for objective responses.
We performed the second round by asking the participants to mark their valence and arousal on
a 9-point metric for subjective responses. To avoid the diminishment of emotional reactions in the
second round, the participants were instructed to remember their emotions during the first round and
mark those. The results of both rounds of the experiment on each group are illustrated in Table 2 and
Figure 7. We further visualize the comparison of personal responses for EEG-based and user-annotated
emotion in Figures 8 and 9.
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Figure 6. Nine-point metric for user annotation.

Table 1. Gender and age distribution of the participants.

Total
Gender Age

Female Male 20 s 30 s >40

group1 20 10 10 13 6 1
group2 20 10 10 12 8 0

Figure 7. Results plotted in Russell’s emotion circumplex model.
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Table 2. Results of our experiment valence and arousal values in EEG-estimated matrix are rearranged
to (−1∼1) scale.

EEG-Estimated User-Annotated

Photographic Surgical Illustrated Surgical Photographic Surgical Illustrated Surgical

Part. No. Val. Arou. Part. No. Val. Arou. Part. No. Val. Arou. Part. No. Val. Arou.

01 −0.86 0.34 21 −0.68 0.21 01 2 6 21 2 3
02 −0.91 0.64 22 −0.39 0.24 02 1 9 22 4 5
03 −0.76 0.47 23 −0.54 0.09 03 2 7 23 1 4
04 −0.85 0.55 24 −0.48 0.19 04 3 7 24 4 5
05 −0.73 0.49 25 −0.45 0.17 05 3 7 25 4 4
06 −0.93 0.51 26 −0.53 0.18 06 1 7 26 3 5
07 −0.81 0.58 27 −0.59 0.13 07 2 7 27 2 5
08 −0.84 0.63 28 −0.52 0.25 08 1 8 28 3 6
09 −0.85 0.65 29 −0.63 0.21 09 1 8 29 2 5
10 −0.86 0.61 30 −0.61 0.311 10 1 9 30 3 6
11 −0.84 0.59 31 −0.43 0.26 11 3 8 31 3 6
12 −0.88 0.52 32 −0.47 0.24 12 1 7 32 5 6
13 −0.92 0.51 33 −0.51 0.23 13 1 7 33 3 5
14 −0.78 0.48 34 −0.56 0.28 14 2 5 34 3 5
15 −0.83 0.53 35 −0.64 0.27 15 1 7 35 3 6
16 −0.89 0.55 36 −0.65 0.26 16 1 7 36 1 7
17 −0.79 0.59 37 −0.59 0.23 17 1 7 37 3 5
18 −0.80 0.53 38 −0.58 0.26 18 2 7 38 3 6
19 −0.76 0.51 39 −0.52 0.31 19 4 6 39 2 6
20 −0.74 0.55 40 −0.61 0.33 20 2 7 40 3 6

Figure 8. Results from photographic surgical images. Subjects 01∼20 participated in the experiment
for photographic surgical images. The left box, which corresponds to EEG-based recognition has a
range of (−1, 1)× (−1, 1), while the right box corresponding to user-annotated emotion has a range of
(1, 9)× (1, 9). The x-axis of each box represents valence and the y-axis represents arousal.
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Figure 9. Results from illustrated surgical images. Subjects 21∼40 participated in the experiment for
illustrated surgical images. The left box, which corresponds to EEG-based recognition has a range
of (−1, 1) × (−1, 1), while the right box corresponding to user-annotated emotion has a range of
(1, 9)× (1, 9). The x-axis of each box represents valence and the y-axis represents arousal.

6. Analysis

We have two research questions regarding our experiment.

• RQ1 Are emotional responses from illustrated surgical images discernably less negative than
those from photographic surgical images?

• RQ2 Is our emotional recognition model reliable? In other words, is there sufficient evidence that
the emotions recognized by our model resemble self-assessed ones?

6.1. Analysis 1: t-Test

We have set up our null hypothesis for RQ1 as follows:

• H0 There is no notable difference between emotional responses from photographic surgical images
and illustrated images.

To answer RQ1, a t-test is executed between group1 who watch photographic surgical images
and group2 who watch illustrated surgical images. The p values of this t-test are presented in Table 3.
According to the very small p values in Table 3, we can reject H0 in favor of the alternative hypothesis.

Table 3. p values for t-test between photographic and illustrated surgical images.

EEG-Estimated User-Annotated

Photographic Surgical Illustrated Surgical Photographic Surgical Illustrated Surgical
(group1) (group2) (group1) (group2)

valence 2.27 × 10−15 7.6 × 10−4

arousal 2.07 × 10−17 2.2 × 10−7
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Another t-test regarding the emotions estimated by EEG and the emotions annotated by users,
leads us to answer RQ2. RQ2’s null hypothesis is:

• H1 There is no notable difference between EEG-based assessment and user-annotated approach.

The p values for this second t-test are presented in Table 4. For group1, who watched photographic
surgical images, the valence and arousal estimated from EEG biosignals and annotated by users are
very closely related; the strong negative emotion recognized from photographic surgical images is
consistent regardless of the recognition scheme. However, for group2, who watched illustrated surgical
images, the valence is closely related, while the arousal is not. Therefore, we cannot reject H1 except in
case of arousal. We assume that pictures of organs, blood, and flesh effect similar negative emotions
in viewers, even though they are reduced by the illustrated representation. Therefore, the different
approaches for estimating emotions show consistently similar valence scores; for arousal, however,
ordinary people have only rarely seen surgical images even, even in their illustrated form. Users who
have watched illustrated surgical images in the first round of the emotion recognition experiment
through EEG biosignals may pay less attention in the second stage experiment using user annotation.
Therefore, the arousal values for illustrated surgical images in user annotation can be lower than those
in EEG-based estimation.

Table 4. p values for t-test between EEG-estimated and user-annotated valence and arousal.

Photographic Surgical (group1) Illustrated Surgical (group2)

EEG-Estimated User-Annotated EEG-Estimated User-Annotated

valence 0.72134 0.844513
arousal 0.942176 0.007345

6.2. Analysis 2: Effect Size

We estimate the effect size by calculating Cohen’s d values for the pairs of the emotions.
The formula for Cohen’s d (X, Y) is suggested as follows:

d(X, Y) =
Exp(X)− Exp(Y)

SDpooled
,

where Exp(X) and Exp(Y) are the mean values of the distributions X and Y, respectively, and SDpooled

is the pooled standard deviation of X and Y.
We estimate Cohen’s d to measure the difference between the emotional reactions of photographic

and illustrated surgical images in the following four combinations in Table 5:

(i) the valence estimated by EEG between photographic and illustrated surgical images,
(ii) the arousal estimated by EEG between photographic and illustrated surgical images,
(iii) the valence estimated by user-annotation between photographic and illustrated surgical images,
(iv) the arousal estimated by user-annotation between photographic and illustrated surgical images.

The Cohen’s d values for these four matches are greater than 0.8, which denotes that the effect
size is very large.

Table 5. Cohen’s d values to measure the difference in emotional reaction between photographic and
illustrated surgical images.

EEG-Estimated User-Annotated

Photographic Surgical Illustrated Surgical Photographic Surgical Illustrated Surgical
(group1) (group2) (group1) (group2)

valence (i) 1.78 (ii) 1.01
arousal (iii) 1.82 (iv) 1.37
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We also estimate Cohen’s d to measure the difference between the emotions estimated by EEG
and the emotions estimated by user-annotation in the following four combinations in Table 6:

(i) the valence for photographic surgical images estimated by EEG biosignal and user annotation,
(ii) the arousal for photographic surgical images estimated by EEG biosignal and user annotation,
(iii) the valence for illustrated surgical images estimated by EEG biosignal and user annotation,
(iv) the arousal for illustrated surgical images estimated by EEG biosignal and user annotation.

The Cohen’s d values for cases (i)∼(iii) are less than 0.23, which denotes that the effect size is
small, and the d value for case (iv) implies there is relatively larger effect size. The reason case (iv) has
a medium effect size can be described as similar to the reason results from the case (iv) in the prior
t-test are more weakly related.

Table 6. Cohen’s d values to measure the difference of the emotional reaction estimation methods:
EEG-biosignal and user-annotation.

Photographic Surgical (group1) Illustrated Surgical (group2)

EEG-Estimated User-Annotated EEG-Estimated User-Annotated

valence (i) 0.12 (ii) 0.06
arousal (iii) 0.23 (iv) 0.64

7. Discussion

7.1. Discussion 1: Comparison of Performances

In the relevant literatures, many models, including conventional machine learning techniques
or deep learning techniques, have been employed to estimate valence and arousal from EEG signal.
According to [13], models using machine learning-based approaches such as SVM or decision tree show
71.66% average accuracy for valence and 69.37% for arousal, while the models using deep learning
schemes such as CNN or RNN show 81.4% for valence and 80.5% for arousal. Clearly, emotion
recognition schemes based on deep learning techniques outperform those based on conventional
machine learning techniques. The accuracy of our model is compared to that of several important
existing studies that estimate emotion through valence and arousal, as shown in Table 7.

Table 7. Comparison to existing models that recognizes valence and arousal using DEAP dataset.

Existing Models Classifier
Accuracy (%)

Valence Arousal

Khosrowabadi et al. 2014 [14] RNN 71.43 70.83
Alhagry et al. 2017 [16] LSTM RNN 85.00 85.00

Li et al. 2017 [17] CRNN 72.06 74.12
Salama et al. 2018 [8] 3D CNN 87.44 88.49
Xing et al. 2019 [18] LSTM 81.10 74.38

Ours multi-column 90.01 90.65

7.2. Discussion 2: Increase of Valence

Our experiment reveals that the valence estimated from illustrated surgical images is significantly
higher than the valence from photographic surgical images. We assume that the unpleasant feelings
from photographic blood and flesh are decreased by substituting the color of photographic blood and
flesh with a similar color that has higher saturation or intensity. Classic artistic media, such as pencil
or watercolor brush, produce similar effects. It is also notable to invoke the conclusion of the work
of Yang et al’s work [38] that the artwork images induce higher valence than photographs. Since the
illustrated surgical image can be regarded as a kind of artwork, the increased valence for the illustrated
surgical image reinforces the conclusion of [38].
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The change in valence in our study, however, is greater than that in [38]. We assume that emotional
reactions to surgical images generally more negative: fearsome or disgusting. Therefore, the increase
of valence between the surgical image and its illustrated version is greater than the increase of valence
between a photograph and an artwork image when the image itself is neutral.

7.3. Discussion 3: Decrease of Arousal

Our result shows a decrease in arousal for the illustrated surgical images compared to the
photographic surgical images. Since photographic surgical images are distinguished from other
images, their engendered arousal is very great. The reason for the photographic surgical images
showing higher arousal is reasoned to be that seeing flesh and blood usually occurs only in very
frightening or alerting situations. The decrease in arousal for the illustrated images can be explained
by the fact that the realistic colors of flesh and blood are converted to less threatening colors frequently
seen in animations or cartoons. The simple and friendly color of the illustrated flesh and blood reduces
the sense of actual alert or frightening, which results in the decrease of arousal.

7.4. Discussion 4: Evaluation from a Surgeon

We have asked a surgeon to evaluate the illustrated surgical images. The surgeon marked some
regions of the photographic and illustrated surgical images and suggested the following opinions:

(1) Color transform of the illustrated images is reasonable. Replacing vivid colors such as red and
violet by less vivid colors can help reducing negative reactions from the people who do not have
an experience in the surgical images

(2) In the illustrated versions, the reflections on the surface of organs are illustrated as a narrow spot
with higher brightness (the yellow circles in Figure 10). Since the spots on organs can be from
some disease or from the reflection, the reflections should be illustrated in different style.

(3) The blood vessels, which play important role in many diagnosis cases, are not illustrated in a
consistent way. In some figures, they are preserved in a very salient way (the blue circles in
Figure 10), and in others, they are omitted (the green circles in Figure 10). Presenting details such
as blood vessels should be expressed in a consistent way.

Figure 10. The marks drawn by a surgeon for the evaluation of the illustrated images.
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As a conclusion, the surgeon suggested a positive answer for using the illustrated images to
reduce negative emotional reactions from ordinary people. However, he suggested several points to
improve for educational or professional purposes.

7.5. Discussion 5: Limitations

The limitation of this study is that we have not taken into account the opinions of experts,
such as surgeons or pathologists in producing the illustrative surgical images. Surgeons may provide
productive insights in the illustration of surgical images, for example, which fine details are important
and must be kept. They may also be able to suggest proper colors to replace the original colors of flesh
and blood.

This limitation of this study can be addressed in two points. Similar studies [2,3] hired a small
group of surgeons to confirm that the illustrated surgical images could be used for communication
and education. In another point, we collected a series of opinions from a surgeon for the illustrative
surgical images in Section 7.4. The opinions can be employed to give a guidance for developing an
automatic algorithm that produces illustrative surgical images.

8. Conclusions and Future Work

In this paper, we produced illustrated surgical images to prove their ability to reduce the
negative emotional responses engendered by photographic surgical images. We executed emotion
recognition processes on 40 participants to compare their emotional responses to photographic and
illustrated surgical images. The emotional responses were estimated in a bi-modal approach: a deep
learning-based emotion recognition model from EEG biosignals was combined with a 9-point metric
user annotation. From the results, we conclude that illustrated surgical images indeed capable of
reducing the negative emotions of participants.

In our future research, we will study relevant methods to create appropriate illustrated images.
We will consult with experts including surgeons and pathologists to enrich the illustration schemes
on surgical images. We will also examine the illustrated surgical images from experts to improve
the quality of the illustrations. These approaches will help developing an automatic algorithm for
generating illustrated surgical images that satisfy both ordinary people and experts.

Author Contributions: Conceptualization, H.Y., J.H. and K.M.; methodology, H.Y.; software, J.H.; validation, J.H.;
formal analysis, J.H.; investigation, K.M., resources, J.H.; data curation, J.H.; writing–original draft preparation,
H.Y.; writing–review and editing, K.M.; visualization, K.M.; supervision, K.M.; project administration, K.M.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Russell, J. Evidence for a three-factor theory of emotions. J. Res. Personal. 1977, 11, 273–294. [CrossRef]
2. Besancon, L.; Semmo, A.; Biau, D.; Frachet, B.; Pineau, V.; Sariali, E.H.; Taouachi, R.; Isenberg, T.; Dragicevic, P.

Reducing affective responses to surgical images and videos through color manipulation and stylization.
In Proceedings of the Expressive, Vancouver, BC, Canada, 17–19 August 2018; pp. 11:1–11:13.

3. Besancon, L.; Semmo, A.; Biau, D.; Frachet, B.; Pineau, V.; Sariali, E.H.; Soubeyrand, M.; Taouachi, R.;
Isenberg, T.; Dragicevic, P. Reducing affective responses to surgical images and videos through stylization.
Comput. Graph. Forum 2020, 39, 462–483. [CrossRef]

4. Kyprianidis, J.; Dollner, J. Image abstraction by structure adaptive filtering. In Proceedings of the EG
UK—Theory and Practice of Computer Graphics, Manchester, UK, 9–11 June 2008; pp. 51–58.

5. Kyprianidis, J.; Kang, H. Image and video abstraction by coherence-enhancing filtering. Comput. Graph.

Forum 2011, 30, 593–602. [CrossRef]
6. Tang, Z.; Li, C.; Sun, S. Single-trial EEG classification of motor imagery using deep convolutional

neural networks. Optik 2017, 130, 11–18. [CrossRef]

56



Sensors 2020, 20, 7103

7. Schirrmeister, R.T.; Springenberg, J.T.; Fiederer, L.D.J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.;
Hutter, F.; Burgard, W.; Ball, T. Deep learning with convolutional neural networks for EEG decoding and
visualization. Hum. Brain Map. 2017, 38, 5391–5420. [CrossRef]

8. Salama, E.S.; El-Khoribi, R.A.; Shoman, M.E.; Shalaby, M.A.E. EEG-based emotion recognition using 3D
convolutional neural networks. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 329–337. [CrossRef]

9. Moon, S.-E.; Jang, S.; Lee, J.-S. Convolutional neural network approach for EEG-based emotion recognition
using brain connectivity and its spatial information. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, Calgary, AB, Canada, 15–20 April 2018; pp. 2556–2560.

10. Chiarelli, A.M.; Croce, P.; Merla, A.; Zappasodi, F. Deep learning for hybrid EEG-fNIRS brain-computer
interface: Application to motor imagery classification. J. Neural. Eng. 2018, 15, 036028. [CrossRef]

11. Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A compact
convolutional neural network for EEG-based brain–computer interfaces. J. Neural. Eng. 2018, 15, 056013.
[CrossRef]

12. Croce, P.; Zappasodi, F.; Marzetti, L.; Merla, A.; Pizzella, V.; Chiarelli, A.M. Deep Convolutional Neural Networks
for Feature-Less Automatic Classification of Independent Components in Multi-Channel Electrophysiological
Brain Recordings. IEEE Trans. Biom. Eng. 2019, 66, 2372–2380. [CrossRef]

13. Yang, H.; Han, J.; Min, K. A Multi-Column CNN Model for Emotion Recognition from EEG Signals. Sensors

2019, 19, 4736. [CrossRef]
14. Khosrowabadi, R.; Chai, Q.; Kai, K.A.; Wahab, A. ERNN: A biologically inspired feedforward neural network

to discriminate emotion from EEG signal. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 609–620. [CrossRef]
[PubMed]

15. Soleymani, M.; Asghari-Esfeden, S.; Fu, Y.; Pantic, M. Analysis of EEG signals and facial expressions for
continuous emotion detection. IEEE Trans. Affect. Comput. 2016, 7, 17–28. [CrossRef]

16. Alhagry, S.; Fahmy, A.A.; El-Khoribi, R.A. Emotion recognition based on EEG using LSTM recurrent neural
network. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 355–358. [CrossRef]

17. Li, X.; Song, D.; Zhang, P.; Yu, G.; Hou, Y.; Hu, B. Emotion recognition from multi-channel EEG data
through convolutional recurrent neural network. In Proceedings of the IEEE International Conference on
Bioinformatics and Biomedicine, Kansas City, MO, USA, 13–16 November 2017; pp. 352–359.

18. Xing, X.; Li, Z.; Xu, T.; Shu, L.; Hu, B.; Xu, X. SAE + LSTM: A New framework for emotion recognition from
multi-channel EEG. Front. Nuerorobot. 2019, 13, 37. [CrossRef]

19. Klorman, R.; Weissberg, R.; Wiesenfeld, A. Individual differences in fear and autonomic reactions to affective
stimulation. Psychophysiology 1977, 14, 45–51. [CrossRef]

20. Sawchuk, C.; Lohr, J.; Westendorf, D.; Meunier, S.; Tolin, D. Emotional responding to fearful and disgusting
stimuli in specific phobics. Behav. Res. Ther. 2002, 40, 1031–1046. [CrossRef]

21. Tolin, D.; Lohr, J.; Sawchuk, C.; Lee, T. Disgust and disgust sensitivity in blood-injection-injury and spider
phobia. Behav. Res. Ther. 1997, 35, 949–953. [CrossRef]

22. Gilchrist, P.; Ditto, B. The effects of blood-draw and injection stimuli on the vasovagal response.
Psychophysiology 2012, 49, 815–820. [CrossRef]

23. Olatunji, B.; Haidt, J.; McKay, D.; David, B. Core, animal reminder, and contamination disgust: Three kinds
of disgust with distinct personality, behavioral, physiological, and clinical correlates. J. Res. Personal. 2008,
42, 1243–1259. [CrossRef]

24. Rohrmann, S.; Hopp, H. Cardiovascular indicators of disgust. Int. J. Psychophysiol. 2008, 68, 201–208.
[CrossRef]

25. Hare, R.; Wood, K.; Britain, S.; Shadman, J. Autonomic responses to affective visual stimulation.
Psychophysiology 1970, 7, 408–417. [CrossRef] [PubMed]

26. Schienle, A.; Stark, R.; Walter, B.; Blecker, C.; Ott, U.; Kirsch, P.; Sammer, G.; Vaitl, D. The insula is not
specifically involved in disgust processing: An fMRI study. Neuroreport 2002, 13, 2023–2026. [CrossRef]
[PubMed]

27. Lumley, M.; Melamed, B. Blood phobics and nonphobics: Psychological differences and affect during
exposure. Behav. Res. Ther. 1992, 30, 425–434. [CrossRef]

28. Lang, P.; Greenwald, M.; Bradley, M.; Hamm, A. Looking at pictures: Affective, facial, visceral, and
behavioral reactions. Psychophysiology 1993, 30, 261–273. [CrossRef]

57



Sensors 2020, 20, 7103

29. Armstrong, T.; Hemminger, A.; Olatunji, B. Attentional bias in injection phobia: Overt components, time
course, and relation to behavior. Behav. Res. Ther. 2013, 51, 266–273. [CrossRef]

30. Haberkamp, A.; Schmidt, T. Enhanced visuomotor processing of phobic images in blood-injury-injection
fear. J. Anxiety Disord. 2014, 28, 291–300. [CrossRef]

31. Cisler, J.; Olatunji, B.; Lohr, J. Disgust, fear, and the anxiety disorders: A critical review. Clin. Psychol. Rev.

2009, 29, 34–46. [CrossRef]
32. Benuzzi, F.; Lui, F.; Duzzi, D.; Nichelli, P.; Porro, C. Does it look painful or disgusting? Ask your parietal and

cingulate cortex. J. Neurosci. 2008, 28, 923–931. [CrossRef]
33. Olatunji, B.; Cisler, J.; McKay, D.; Phillips, M. Is disgust associated with psychopathology? Emerging research

in the anxiety disorders. Psychiatry Res. 2010, 175, 1–10. [CrossRef]
34. Chapman, H.; Anderson, A. Understanding disgust. Ann. N. Y. Acad. Sci. 2012, 1251, 62–76. [CrossRef]
35. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.

In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA,
3–6 December 2012; pp. 1097–1105.

36. Simonyan, K.; Andrew, Z. Very deep convolutional networks for large-scale image recognition. arXiv 2014,
arXiv:1409.1556.

37. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
USA, 21–26 July 2017; pp. 4700–4708.

38. Yang, H.; Han, J.; Min, K. Distinguishing emotional responses to photographs and artwork using a deep
learning-based approach. Sensors 2019, 19, 5533. [CrossRef]

39. Yang, H.; Han, J.; Min, K. Emotion variation from controlling contrast of visual contents through EEG-Based
deep emotion recognition. Sensors 2020, 20, 4543. [CrossRef]

40. Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A
Database for Emotion Analysis; Using Physiological Signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31.
[CrossRef]

41. BCI+: LiveAmp. Compact Wireless Amplifier for Mobile EEG Applications. BCI+ Solutions by Brain
Products. Available online: bci.plus/liveamp/ (accessed on 12 December 2019).

42. Klem, G.H.; Lüders, H.O.; Jasper, H.H.; Elger, C. The ten-twenty electrode system of the International Federation.
The International Federation of Clinical Neurophysiology. Electroencephalogr. Clin. Neurophysiol. Suppl. 1999,
52, 3–6.

43. Lang, P.; Bradley, M.; Cuthbert, B. International Affective Picture System (IAPS): Technical Manual and Affective

Ratings; Technical Report A-8; University of Florida: Belle Glade, FL, USA, 2008.
44. Dan-Glauser, E.; Scherer, K. The Geneva affective picture database (GAPED): A new 730-picture database

focusing on valence and normative significance. Behav. Res. Methods 2011, 43, 468. [CrossRef] [PubMed]
45. Marchewka, A.; Zurawski, L.; Jenorog, K.; Grabowska, A. The Nencki Affective Picture System (NAPS):

Introduction to a novel, standardized, wide-range, high-quality, realistic picture database. Behav. Res. Methods

2014, 46, 596–610. [CrossRef] [PubMed]
46. Moyal, N.; Henik, A.; Anholt, G. Categorized Affective Pictures Database (CAP-D). J. Cogn. 2018, 1, 41.

[CrossRef]
47. Crone, D.; Bode, S.; Murawski, C.; Laham, S. The Socio-Moral Image Database (SMID): A novel stimulus set

for the study of social, moral and affective processes. PLoS ONE 2018, 13, e0190954. [CrossRef]
48. Kim, H.; Lu, X.; Costa, M.; Kandemir, B.; Adams Jr., R.; Li, J.; Wang, J.; Newman, M. Development and

validation of Image Stimuli for Emotion Elicitation (ISEE): A novel affective pictorial system with test-retest
repeatability. Psychiatry Res. 2018, 261, 414–420. [CrossRef]

49. Weierich, M.; Kleshchova, O.; Reider, J.; Reilly, D. The Complex Affective Scene Set (COMPASS): Solving the
Social Content Problem in Affective Visual Stimulus Sets. Collabra Psychol. 2019, 5, 53. [CrossRef]

50. Michalowski, J.; Drozdziel, D.; Matuszewski, J.; Koziejowski, W.; Jednorog, K.; Marchewka, A. The Set
of Fear Inducing Pictures (SFIP): Development and validation in fearful and nonfearful individuals.
Behav. Res. Methods 2017, 49, 1407–1419. [CrossRef] [PubMed]

51. Haberkamp, A.; Glombiewski, J.; Schmidt, F.; Barke, A. The DIsgust-RelaTed-Images (DIRTI) database:
Validation of a novel standardized set of disgust pictures. Behav. Res. Ther. 2017, 89, 86–94. [CrossRef]
[PubMed]

58



Sensors 2020, 20, 7103

52. Merlhiot, G.; Mermillod, M.; Le Pennec, J.; Mondillon, L. Introduction and validation of the Natural Disasters
Picture System (NDPS). PLoS ONE 2018, 13, e0201942. [CrossRef]

53. Szymanska, M.; Comte, A.; Tio, G.; Vidal, C.; Monnin, J.; Smith, C.; Nezelof, S.; Vulliez-Coady, L.
The Besançon affective picture set-adult (BAPS-Adult): Development and validation. Psychiatry Res. 2019,
271, 31–38. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

59





sensors

Article

Wearable Sensors for Assessing the Role of Olfactory Training
on the Autonomic Response to Olfactory Stimulation

Alessandro Tonacci 1 , Lucia Billeci 1,* , Irene Di Mambro 2 , Roberto Marangoni 3,4 , Chiara Sanmartin 5

and Francesca Venturi 5,6

��������	
�������

Citation: Tonacci, A.; Billeci, L.; Di

Mambro, I.; Marangoni, R.;

Sanmartin, C.; Venturi, F. Wearable

Sensors for Assessing the Role of

Olfactory Training on the Autonomic

Response to Olfactory Stimulation.

Sensors 2021, 21, 770. https://

doi.org/10.3390/s21030770

Academic Editor: Alan Jović
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Abstract: Wearable sensors are nowadays largely employed to assess physiological signals derived
from the human body without representing a burden in terms of obtrusiveness. One of the most
intriguing fields of application for such systems include the assessment of physiological responses to
sensory stimuli. In this specific regard, it is not yet known which are the main psychophysiological
drivers of olfactory-related pleasantness, as the current literature has demonstrated the relationship
between odor familiarity and odor valence, but has not clarified the consequentiality between the
two domains. Here, we enrolled a group of university students to whom olfactory training lasting
3 months was administered. Thanks to the analysis of electrocardiogram (ECG) and galvanic skin
response (GSR) signals at the beginning and at the end of the training period, we observed different
autonomic responses, with higher parasympathetically-mediated response at the end of the period
with respect to the first evaluation. This possibly suggests that an increased familiarity to the
proposed stimuli would lead to a higher tendency towards relaxation. Such results could suggest
potential applications to other domains, including personalized treatments based on odors and foods
in neuropsychiatric and eating disorders.

Keywords: autonomic nervous system; electrocardiogram; galvanic skin response; olfactory training;
psychophysics; smell; wearable sensors; wine sensory analysis

1. Introduction

As recently reviewed by Kryklywy and co-workers [1], from an evolutionary point
of view, representations of valence-labeled sensation in emotion-processing regions are
not an ancillary feature developed to inform centralized affect representation. Rather, they
reflect the ancestral role of these structures; they are relics of a time when the experiences
of sensory information and emotional-motivational states were one and the same.

While the whole mechanism still seems far from being fully understood, interactions
between cortical and thalamic regions appear to play a key role in cognitive functions, with
several lines of research now suggesting that a fundamental aspect of thalamic functioning
is that it fuses perceptual, emotional and cognitive information into one single meaningful
experience [2].

More than any other sensory modality, olfaction is like emotion in attributing positive
(appetitive) or negative (aversive) valence to the environment, and the close anatomic
relations between the systems deployed for olfaction and for emotion [3] account for the
important links found between these two functions [4–7].
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In this context, in the clinical field the sense of smell is mainly related to neurode-
generative processes, where olfactory impairments are reported, somewhat linked to the
disease progression [8].

Notably, abnormal olfactory processing is also seen in other neurodevelopmental [9]
and neuropsychiatric disorders, including those where an impaired attitude towards
feeding represents one of the hallmarks of the condition [10].

Among them, anorexia (AN) and bulimia nervosa (BN) experience, especially in
more severe cases, a peculiar olfactory processing, made up of distorted sensitivity and
reactivity to sensory stimulation, possibly related to the food aversion typical of those
individuals [10–12].

Recently, a significant literature has been focused on the positive effects of olfactory
training [13]. Indeed, the unprecedented worldwide pandemic represented by COVID-19
has put anosmia and dysgeusia at the forefront of clinical investigation, the loss of smell
and taste being some of the most prevalent side effects of the infection, often occurring
also in asymptomatic or pauci-symptomatic subjects, possibly representing a biomarker of
infection occurrence and, somewhat, severity [14,15]. In this specific domain, Liu et al. [16]
demonstrated the capability of the sense of smell to regenerate, in turn contributing to
an overall improvement of the quality of life in individuals already challenged by the
diverse physically-, psychologically- and socially-disrupting consequences of the COVID-
19 infection [17–19].

Until now, olfactory training was seen to be effective in individuals where a signif-
icant related sensory impairment is present; however, it was never analyzed in terms of
enhancement of the sensory function in individuals where the olfactory pathway is already
optimal, nor in relation to psycho-physiological changes eventually occurring in the human
body following the modification of odor familiarity and/or valence, two dimensions of the
olfactory stimulus often neglected but worth investigation.

Previous studies conducted on healthy subjects have hypothesized the existence of a
significant correlation between odor familiarity and pleasantness, intended as the positive
attitude experienced by an individual towards an odorous compound [20–22]. However,
those works have not clarified exhaustively and objectively the consequentiality between
those two domains of the olfactory processing. This represents a significant gap in the
current literature, since knowing how those two domains interact to each other can be
critical to thinking about possible therapeutic strategies based on sensory, particularly
olfactory, stimulation, addressed to several disorders where an abnormal attitude towards
feeding represents one of the main clinical features.

To objectively and quantitatively assess the physiological response to olfactory stim-
ulation, several strategies have been adopted throughout the years, with a number of
either invasive or unobtrusive techniques applied, each displaying significant drawbacks
in terms of applicability, acceptability and informativity [23–25]. A reasonable solution,
merging acceptability, low cost and reliability and providing useful information about the
physiological reactions to odorous stimuli is represented by the assessment of biomedical
signals triggered by the activity of the autonomic nervous system (ANS), including electro-
cardiogram (ECG) and galvanic skin response (GSR), already studied in relationship with
the olfactory assessment [26,27]. Such signals can be acquired in a completely non-invasive
manner using wearable sensors, as demonstrated in several literature works published to
date (e.g., [26,27]).

Therefore, the aim of the present article is to investigate the relationship between odor
familiarity and pleasantness, the latter studied not using basic questionnaires, possibly
associated with conscious responses and subsequent biases, but evaluating the activation
of the ANS in a cohort of healthy individuals. This first approach is mandatory to under-
stand, net of any possible clinical condition, the relationship between the two odor-related
domains paving the way, in case of significant correlations, for more tailored investigations
on specific clinical disorders.
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2. Materials and Methods

2.1. Selection and Training of Panelists

For this study, 25 students (9 females and 16 males; ranging from 21 to 29 years old)
enrolled in the bachelor degree in “Oenology and Viticulture” of the University of Pisa
(Italy) were initially recruited based on their motivation and willingness.

Selection and training of panelists was performed according to the University of Pisa,
Department of Agriculture, Food and Environment (DAFE) internal procedure, which
is based on a normalized technical procedure reported in literature with some modifica-
tions [21]. The trained panelists are then included in the official panel of the DAFE. They
have to repeat and pass re-qualification tests once a year, considering their efficacy as
tasting judge, in terms of their own repeatability, discrimination ability and compliance.
Re-qualification tests, in addition to providing information about panelists’ suitability, help
to keep the panelists alert, avoiding relaxation and undervaluation of training.

A multi-step training period was therefore arranged in order to select a group of
students characterized by the necessary motivation during the whole activity (attendance
at more than 75% of training sessions) together with the minimum sensory skills required
for wine tasting and description (including visual, aroma and taste attributes).

The training of the 25 students was arranged as follows over a period of three months:

(i) Step 1 (15 h): Theoretical introduction to the principles of human physiology of sight,
smell and taste.

(ii) Step 2 (20 h): Arrangement of preliminary training tests, mainly based on the utiliza-
tion of model standard solutions, to collect information about the tasting capacity of
each panelist (i.e., sensory acuity (detection thresholds); odor and flavor memory;
term use and recall; scoring consistency).

(iii) Step 3 (30 h): As discrimination is probably based as much on odor memory (that
accumulates with experience) as on sensory acuity, ten wine tasting sessions were
carried out in the morning, in a well-ventilated quiet room and in a relaxed atmo-
sphere. During each of the ten tasting sessions, the panelists evaluated three different
commercial wines (globally thirty different wines were assessed including white,
rosé and red wines). The assessors used a sensorial sheet, specifically developed for
this purpose, consisting of a non-structured, parametric, descriptive wine scoring
chart [28]. Before starting the sensory evaluations, panelists were provided with the
synthetic definitions of each descriptors proposed in the sensorial sheet. Furthermore,
the panelists were also asked to freely describe the specific olfactory expression of each
tasted wine to familiarize themselves with the main descriptors generally utilized for
wine’s sensory analysis [29].

The overall experimental design, including the sensory assessment, is displayed in
Figure 1.

2.2. Model Solutions Used for the Olfactory Stimulation

To reproduce, as much as possible, the main olfactory sensations that are mostly uti-
lized for the description of wine’s olfactory behavior, some model solutions were prepared
in an affordable and easily reproducible way by utilizing raw material widely available at
the supermarket (i.e., commercial fruit juices; fresh fruits and vegetables; distilled flower
water). Furthermore, as threshold values are significantly influenced by the solvent (i.e.,
water vs. ethanol) model solutions were prepared in a neutral white wine base.

As during tasting experience both synergistic and suppressive influences among
different wine’s aromatic compounds must be always taken into account, our approach
allowed us to create a more real tasting experience than what could have been obtained
by utilizing model solutions produced starting from chemical pure standards diluted in
artificial model wine.

In Table 1, the odorous solutions used for the olfactory stimulation are reported.
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Figure 1. Experimental design.

Table 1. Odorous solutions used for the stimulation.

Sample Code Descriptor Formulation

1 Apricot 80 mL of commercial juice (brand: Skipper Zuegg, 40% min.
fruit pulp) + 100 mL of white table wine *

2 Berries 80 mL of commercial juice (brand: Skipper Zuegg, 30% min.
fruit pulp) + 100 mL of white table wine *

3 Blueberry 80 mL of commercial juice (brand: Skipper Zuegg, 40% min.
fruit pulp) + 100 mL of white table wine *

4 Raspberry 80 mL of commercial juice (brand: Esselunga Bio, 45% min.
fruit pulp) + 100 mL of white table wine *

5 Grapefruit 80 mL of commercial juice (brand: Esselunga Bio, 45% min.
fruit pulp) + 100 mL of white table wine *

6 Orange 80 mL of commercial juice (brand: Skipper Zuegg, 65% min.
fruit pulp) + 100 mL of white table wine *

7 Pineapple 80 mL of commercial juice (brand: Skipper Zuegg, 55% min.
fruit pulp) + 100 mL of white table wine *

8 Figs 10 g dried figs without dilution

9 Walnut Maceration ** of 25 g walnut kernels in 100 mL of white
table wine *

10 Asparagus 60 mL of cooking water + 100 mL of white table wine *

11 Peach 80 mL of commercial juice (brand: Skipper Zuegg, 65% min.
fruit pulp) + 100 mL of white table wine *

12 Apple 80 mL of commercial juice (brand: Skipper Zuegg, 85% min.
fruit pulp) + 100 mL of white table wine *

13 Pear 80 mL of commercial juice (brand: Skipper Zuegg, 65% min.
fruit pulp) + 100 mL of white table wine *
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Table 1. Cont.

Sample Code Descriptor Formulation

14 Green pepper Maceration ** of 20 g of fresh green pepper in 100 mL of
white table wine *

15 Banana Maceration ** of 20 g of banana pulp in 100 mL of white
table wine *

16 Mango Maceration ** of 5 g of dried mango in 100 mL of white
table wine *

17 Plum Maceration ** of 5 g of dried plums in 100 mL of white table
wine *

18 Lemon 50 mL of commercial juice (brand: Eurofood, 100% lemon
juice) + 100 mL of white table wine *

19 Mix of exotic
fruit

80 mL of commercial juice (brand: Skipper Zuegg, 55% min.
fruit pulp) + 100 mL of white table wine *

20 Zagara 8 mL of distilled orange blossom water + 100 mL of white
table wine *

21 Rose 4 mL of distilled rose water + 100 mL of white table wine *
* Brand: Tavernello. ** Maceration conditions: storage for 24 h in the dark at room temperature (20 ± 1 ◦C).

Among them, a subset of 10 odorants were employed for the testing sessions. This
choice was performed for two main reasons: (i) to reduce the duration of testing, therefore
avoiding problems related to the conditioning of physiological signals by the fatigue or
annoyance eventually felt by the panelists, and (ii) to keep significant information about
the physiological response to a “representative” subset of odors, with the odorants selected
belonging to different families (e.g., fruity, floral, etc.).

To such extent, the ten odorants finally selected for testing are displayed in Table 2.

Table 2. Odorants selected for the testing sessions.

Sample Code Descriptor

4 Raspberry

5 Grapefruit

6 Orange

7 Pineapple

8 Figs

10 Asparagus

11 Peach

14 Green pepper

16 Mango

21 Rose

2.3. Testing Procedure

Two test sessions were carried out for the present study, respectively, namely before
the training period (T0), and after the three-month education (T1).

In both sessions, an assessment of ANS activity was performed using wearable sensors,
as later described, within three different sessions:

(i) Baseline (3′ duration): At baseline, the subjects were comfortably sitting on a chair
and asked to relax.

(ii) Task (6′ 40” duration): At task, 10 model solutions were administered to the panelists
for odors detection for 10” each, with an inter-stimulus interval of 30” to allow
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cleaning the nasal cavity from the previous odor [30] as well to let the GSR signal
return to the baseline condition. The subjects were asked to report the identifier for
each of the odor presented on a paper sheet.

2.4. ANS Assessment

The assessment of the ANS activity was performed studying physiological signals
acquired by wearable sensors.

Notably, two signals of interest to this extent included (i) the ECG, one of the most
important biomedical signals as it relies on the electrical activity of the heart, and (ii) the
GSR, related to the electrical activity of the skin caused by the activation of the sweat glands.

Both those signals are normally correlated with the activation of the ANS, thus repre-
senting a useful, non-invasive means to assess its functioning, as demonstrated in [26,27].

2.4.1. ECG Acquisition and Processing

The acquisition of the ECG signal was performed using a commercial wearable,
Bluetooth-equipped sensor, named Shimmer ECG (Shimmer Sensing, Dublin, Republic
of Ireland), attached to a commercial fitness-like chest strap (Polar Electro Oy, Kempele,
Finland). In order to comply with the international guidelines for the estimation of the
Heart Rate (HR) and its variability (heart rate variability (HRV)) [31], the ECG signal was
acquired at 500 Hz, not requiring particular controls about the battery duration given the
structured experimental setting.

The ECG signal was analyzed using a dedicated routine implemented in MATLAB
(The MathWorks, Inc., Natick, MA, USA) [32] and optimized for the present work.

ECG signals were pre-processed for artifact removal, QRS complexes were detected
and then the RR series were reconstructed and corrected (for an example, see Figure 2).
The correction was applied to remove correction of non-sinusoidal beats in order to obtain
an RR series that only contains variations due to the sinus node and thus reflects the
activity of the ANS [32]. From the corrected RR series, a number of significant features
were extracted, notably:

- Time-domain features:

• Heart rate (HR): number of heart beats per unit of time. Measured in beats
per minute (bpm), it is usually associated with the sympathetic branch of the
ANS [33];

• Standard deviation of the normal R–R intervals (SDNN): measured in ms, it is an
estimate of the HRV influenced by both the sympathetic and para-sympathetic
branches of the ANS [33];

• Root mean square of the successive differences (RMSSD): measured in ms, it
represents the root mean square of the differences between neighboring R–R
intervals. It is an estimate of the parasympathetic activity of the ANS [33];

• Number of normal R–R intervals differing for more than 50 ms (NN50): it esti-
mates the number (or the percentage) of the normal R–R intervals differing for
more than 50 ms from each other. Under resting state short-term recordings, it
refers to the parasympathetic activity of the ANS [33];

• Variance of the R–R intervals (VAR): it refers to the variability of the R–R intervals;
• SD1: standard deviation of the projection of the Poincaré plot on the perpendicu-

lar line to the identity. It estimates the short-term HRV;
• SD2: standard deviation of the projection of the Poincaré plot on the parallel line

to the identity. It estimates the long-term HRV;
• Cardiac sympathetic index (CSI): obtained by the Poincaré plot and calculated as

SD2/SD1, it is employed as a reliable indicator of the sympathetic activity of the
ANS [34];

• Cardiac vagal index (CVI): obtained by the Poincaré plot and calculated as log10
(SD1 × SD2), it is employed as a reliable indicator of the parasympathetic activity
of the ANS [34].
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- Frequency–domain features:

• Low frequency (LF): power spectral density of the ECG signal at low frequencies
(0.04–0.15 Hz), it is employed as an estimator of the sympathetic activity of the
ANS [33];

• High frequency (HF): power spectral density of the ECG signal at high fre-
quencies (0.15–0.4 Hz), it is employed as an estimator of the sympathetic and
parasympathetic activity of the ANS [33];

• Low-to-high frequency components ratio (LF/HF): it indicates the overall bal-
ance between low and high frequency components of the ECG signal. A ratio
exceeding 1 suggests a sympathetic dominance, whereas for values below 1, the
parasympathetic nervous system appears to be prevalently activated [33]. It
should be stated that the reliability of the LF/HF ratio in quantifying the overall
sympathetic/parasympathetic balance is often questioned by several works in
the scientific literature, as it is judged less accurately and is more affected by
artifacts than what occur with time-domain features [35].

Figure 2. ECG signal processing for a sample data: (A) original ECG signal with the markers indicating the start (purple)
and the end (green) of each odor stimulation;(B) the same signal after the application of the QRS complexes detector (QRS
markers indicated in red); (C) the RR series obtained from the ECG signal before (red) and after (blue) correction.

2.4.2. GSR Acquisition and Processing

The acquisition of the GSR signal was conducted with a commercial wearable sensor,
Shimmer3GSR (Shimmer Sensing, Dublin, Republic of Ireland), communicating via Blue-
tooth to the manufacturer user interface. Here, the sampling frequency was kept at 51.2 Hz,
which was one of the higher with respect to the available choices allowed by the sensor
firmware and in compliance with previously published protocols [36]. The GSR sensor
captured the corresponding signal, being attached to two adjacent fingers of the subject’s
non-dominant hand at the phalanx level with the support of two comfortable soft rings in
turn worn by the individual studied.

Concerning the processing, the GSR signal was analyzed using Ledalab, a MATLAB-
based tool devoted to the processing of this specific biomedical signal [37]. The GSR
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signal was filtered at first with a first order Butterworth low-pass filter at 5 Hz to remove
high frequency noise, and then continuous decomposition analysis was applied for the
extraction of both tonic and phasic activities (see Figure 3 for an example). As such, the
following features were extracted:

- Global GSR signal: composed of the sum of the tonic and phasic components of the
signal;

- Tonic GSR component: mainly refers to slow changes of the electrical skin signal,
dominant at rest and during relaxing activities not including specific stimuli;

- Phasic GSR component: extracted to study the response to the sensory (olfactory)
stimulation, as it refers to quick responses to specific stimuli. It is often termed skin
conductance response (SCR).

Figure 3. Galvanic skin response (GSR) signal processing: (A) the Ledalab interface displaying the raw signal (upper plot)
and a 60-s portion of it (medium plot); (B) the same 60-s portion after the application of the first order Butterworth low-pass
filter at 5 Hz; (C) the signal filtered (upper plot), the 60-s portion (medium plot) and the phasic component extraction after
applying a continuous decomposition analysis (lower plot).

2.5. Statistical Analysis

Data normality was assessed using the Shapiro–Wilk test for each of the parameters
studied [38]. In case of parameters displaying a normal distribution, Student’s t-test was
applied to compare couples (e.g., scores at baseline vs. task, or at T0 vs. T1), whereas with
data deviating from normality, the Wilcoxon signed-rank test was applied.

For all the analyses conducted, statistical significance was set at p < 0.05.

3. Results

3.1. ECG Signal

In the ECG signal, the features extracted and described above were analyzed in terms
of the comparison between T0 and T1 of the baseline, as well as within each testing session
(e.g., at T0 and at T1) in terms of the comparison between baseline and task. Due to the
nature of the HRV, it is quite infrequent (and useless) to calculate HRV features within short
time windows like the ones dealing with the odorous stimulation (e.g., 10 s); therefore
at both T0 and T1, the task phase was further divided into task ON and task OFF, being,
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respectively, the portion of the task phase where the odorous stimulation took place and
the inter-stimulus portion of the task phase.

The results obtained are displayed in Table 3.

Table 3. Main results concerning the ECG features throughout the protocol phases (B: baseline, T OFF: task inter-stimulus, T
ON: task with olfactory stimulation; *: p < 0.05; **: p < 0.01; n.s.: not significant).

Feature B T0 B T1 T ON T0 T ON T1
T OFF

T0
T OFF

T1
B T0 vs.

B T1
B T0 vs.

T ON T0
B T1 vs.

T ON T1

T ON T0
vs. T

OFF T0

T ON T1
vs. T

OFF T1

HR
(bpm)

71.9 ±
10.6

67.7 ±
9.4

78.8 ±
12.1

75.1 ±
9.0

78.3 ±
9.6

74.0 ±
7.1 n.s. 0.005 ** <0.001 ** n.s. n.s.

RMSSD
(ms)

0.063 ±
0.031

0.071 ±
0.031

0.083 ±
0.055

0.067 ±
0.031

0.063 ±
0.045

0.050 ±
0.015 n.s. n.s. n.s. n.s. 0.018*

NN50 18.9 ±
12.8

47.8 ±
34.4

4.4 ±
2.1

4.5 ±
1.8

12.1 ±
7.1

9.1 ±
4.4 0.036 * 0.002 ** 0.002 ** <0.001 ** <0.001 **

SD1 0.044 ±
0.022

0.050 ±
0.022

0.058 ±
0.039

0.047 ±
0.022

0.044 ±
0.032

0.035 ±
0.011 n.s. n.s. n.s. n.s. 0.018 *

CSI 2.238 ±
0.770

2.100 ±
0.546

2.224 ±
0.939

2.346 ±
0.512

2.825 ±
0.919

2.783 ±
0.451 n.s. n.s. n.s. 0.020* 0.036 *

CVI −2.490
± 0.362

−2.361
± 0.309

−1.510
± 0.521

−2.418
± 0.351

−2.474
± 0.444

−2.545
± 0.260 n.s. n.s. n.s. n.s. 0.007 **

LF
(ms2)2/Hz

0.264 ±
0.167

0.233 ±
0.048

0.119 ±
0.031

0.098 ±
0.021

0.240 ±
0.049

0.237 ±
0.046 n.s. 0.004 ** <0.001 ** 0.017 * <0.001 **

HF
(ms2)2/Hz

0.255 ±
0.450

0.802 ±
0.569

0.255 ±
0.156

0.288 ±
0.195

0.329 ±
0.318

0.351 ±
0.216 n.s. 0.010* 0.001 ** n.s. n.s.

LF/HF 2.364 ±
3.620

0.535 ±
0.458

1.227 ±
1.479

0.098 ±
0.021

1.969 ±
1.769

1.177 ±
0.687 n.s. n.s. n.s. 0.013* 0.016 *

3.2. GSR Signal

As for the GSR signal, comparisons between baseline at T0 and at T1, as well between
baseline at T0 and task at T0 (and baseline at T1 and task at T1) were conducted evaluating
differences arising in terms of global and tonic GSR. The responses to single odorants
at T0 with respect to T1 were compared by means of the phasic component of the GSR.
This analysis, slightly different with respect to those carried out with the ECG signal, was
possible thanks to the fact that the GSR analysis, particularly concerning the tonic phase
evaluation, can be performed also on very short time windows like the ones represented
by the 10 s of olfactory stimulation foreseen in the present protocol.

The results obtained are displayed in Table 4.

Table 4. Main results concerning the GSR signal analysis (B: baseline, T: task; *: p < 0.05; **: p < 0.01;
n.s.: not significant).

Feature B T0 B T1 T T0 T T1
B T0 vs.

B T1
B T0 vs.

T T0
B T1 vs.

T T1

GSR
global
(μS)

2.13 ±
2.33

3.75 ±
4.90

3.09 ±
3.16

4.73 ±
6.88 n.s. 0.015 * n.s.

GSR
tonic
(μS)

1.93 ±
2.14

3.56 ±
4.64

2.84 ±
2.73

4.53 ±
6.58 n.s. 0.009 ** n.s.

On the other hand, no significant differences between the GSR phasic signals were
seen for any of the odorants administered at T1 with respect to T0.
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4. Discussion and Conclusions

The analysis of such results should be performed taking into account the physiological
meanings of both ECG and GSR signals and their ability to map the activity of the ANS.

Notably, the various features extracted from the ECG signal can reliably detect changes
occurring at both the sympathetic and parasympathetic branches of the ANS (see [33] for
a review), whereas the GSR signal is capable of monitoring the sympathetic arousal [39],
albeit often reported to be less sensitive to subtle modifications of the ANS activity with
respect to the ECG-related features [40–42].

In fact, more specifically, it is well known that different components of the ANS
activated by emotional reactions can be detected by both signals. Concerning the ECG,
the heart rhythm and its variability are modulated by the activity of both sympathetic
and parasympathetic nerves, whereas the GSR only reflects the activation of the sympa-
thetic branch of the ANS, probably representing the elective method for assessing the
emotional arousal [43]. Several works have demonstrated the higher performance of the
ECG signal with respect to the GSR in representing a useful indicator of emotions (see [44])
for some related description), but the use of both signals is basically justified by their
informative value.

As such, it is reasonable that slight, sometimes pleasant sensory stimulations, as repre-
sented by olfactory stimuli, could drive quite subtle changes in the ANS activity, therefore
requiring a comprehensive analysis of both ECG and GSR signals to be appreciated, at least
in individuals with preserved sensory ability.

Overall, the results obtained in the present work suggest that the engagement in
an emotionally-demanding task like sniffing an odorant might drive the ANS towards a
higher sympathetic activation and somewhat vagal withdrawal in cognitively- and sensory-
intact individuals. Indeed, both the ECG and GSR features are consistent about this point,
especially during the first session (T0), conducted prior to the olfactory training. Such a
result appears consistent with previous literature works, proving once more this existing,
albeit subtle association [26,45].

Interestingly, ECG features were also able to retrieve some differences between the
“sub-phases” of the task, displaying higher vagal activation while sniffing and higher
sympathetic activity during inter-stimulus phases, where individuals are engaged in a
more cognitively demanding task, again consistently with the literature [26].

The effect noticed comparing results at the two testing sessions also suggests a slightly
different behavior at T1 with respect to T0. In fact, the higher vagal withdrawal highlighted
by RMSSD at T1 during inter-stimuli with respect to the olfactory stimulation sub-phase,
and the absence of any sympathetically-driven arousal detectable by the tonic GSR signal
suggest that the more odors become familiar to the panelists (as occurring after the training
period, at T1, in our protocol), the more they show a tendency to provoke higher vagal
responses in the individuals evaluated.

Such results lead to the consideration about a clear link between familiarity and pleas-
antness [46], the latter being studied through the “implicit” assessment of the ANS [47].

Generally, sensory channels, at least concerning unpleasant triggers, display an adap-
tation for repeated stimulations, with lower autonomic reactivity as much as the stimulus
becomes familiar. However, this was demonstrated only limited to unpleasant stimuli
and excluding the olfactory channel [48], this domain remaining yet poorly explored in
the literature.

The results obtained in the present article go beyond such retrievals and makes sense
also from an evolutionary perspective. Indeed, the main survival role of the olfactory
system is to identify potential environmental hazards and to adopt the optimal approach
to the surrounding universe [49], including that with respect to feeding, activating an
approach/avoidance behavior, which is critical to ensure the individual’s survival [50,51].
As such, odors are highly capable of eliciting affective responses and emotions, thanks to
the direct connections between primary olfactory areas and the areas of the limbic systems,
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without a thalamic relay [52], making olfaction a particularly useful, non-invasive mean to
somewhat access some specific information processed by specific areas of the brain.

Proving, using an implicit methodology and thus relying on the study of the autonomic
changes brought by odors, that olfactory training, beyond enhancing familiarity, also
leads to different autonomic reactivity, particularly on domains concerned with odor
pleasantness, can be of critical importance from a clinical perspective. Indeed, although
this work has demonstrated the association only on healthy individuals, and in particularly
university students, which are probably interested and more favorable to the present
approach, it could form the basis for future investigations on clinically relevant cohorts.

Administering a similar protocol, for example, to subjects characterized by disturbed
sensoriality, in turn leading to abnormal behavior towards feeding, such as extreme food
aversion, binge eating or overfeeding, would help in understanding eventual autonomic
abnormalities in such specific cohorts and eventually in hypothesizing a treatment based on
repeated olfactory stimuli tailored on the specific disease phenotype and, in some instances,
on an individual-basis. If proven to be beneficial, this would represent an undoubted
advancement in the current clinical practice that the development of Information and
Communication Technology would enable.
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Abstract: Diverse computer-aided diagnosis systems based on convolutional neural networks were
applied to automate the detection of myocardial infarction (MI) found in electrocardiogram (ECG) for
early diagnosis and prevention. However, issues, particularly overfitting and underfitting, were not
being taken into account. In other words, it is unclear whether the network structure is too simple
or complex. Toward this end, the proposed models were developed by starting with the simplest
structure: a multi-lead features-concatenate narrow network (N-Net) in which only two convolutional
layers were included in each lead branch. Additionally, multi-scale features-concatenate networks
(MSN-Net) were also implemented where larger features were being extracted through pooling the
signals. The best structure was obtained via tuning both the number of filters in the convolutional
layers and the number of inputting signal scales. As a result, the N-Net reached a 95.76% accuracy in
the MI detection task, whereas the MSN-Net reached an accuracy of 61.82% in the MI locating task.
Both networks give a higher average accuracy and a significant difference of p < 0.001 evaluated by
the U test compared with the state-of-the-art. The models are also smaller in size thus are suitable
to fit in wearable devices for offline monitoring. In conclusion, testing throughout the simple and
complex network structure is indispensable. However, the way of dealing with the class imbalance
problem and the quality of the extracted features are yet to be discussed.

Keywords: accuracy; convolution neural network (CNN); classifiers; electrocardiography; k-fold
validation; myocardial infarction; sensitivity

1. Introduction

Myocardial infarction (MI), defined in pathology as myocardial cell death due to
prolonged ischemia, is a serious heart disease that can cause death and disability [1].
According to the American Heart Association, it is estimated that 750,000 Americans
have a heart attack every year, with approximately 116,000 deaths [2]. Therefore, early
diagnosis and detection are the utmost important task. Nowadays, several methods already
exist to recognize MI, including electrocardiogram (ECG), biomarkers, imaging technique,
or defined by pathology. Yet, the non-invasive ECG is the most economical and widely
used one for the sake of immediate treatment strategies among them [3–7]. Performing
ECG analysis manually may not merely be time-consuming but leads to inter-observer
variability [8,9]. Consequently, a computer-aided diagnosis system may come in handy to
solve these difficulties. Moreover, wearable devices are common technology in recent days
and are rising in numbers. Wang et al. [10] provided a wearable ECG monitoring system
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with the benefits of low power and high data transmitted function. Wang used a micro
control unit (MCU) to realize the adjustable radio frequency (RF) and power reduction
that optimized the ECG system. Another novel technical design is the antenna for wireless
devices. Chiang et al. [11] proposed a multiband and power efficiency antenna for a USB
dongle application.

MI can be detected by the abnormalities waveform features of the ECG, including ST
displacement, T wave inversion, silent Q wave, and so on [1,12]. Hence, it is effective to
make use of machine learning algorithms to achieve an automated MI diagnosis [13–15]. In
the past few years, deep learning (DL) methods, including convolutional neural networks
(CNN), recurrent neural networks, restricted Boltzmann machines [16], autoencoder, and
generative adversarial networks are proposed [17–20]. These network architectures or
learning methods are used for ECG classification, denoising, reconstruction, annotation,
data compression, data generation, and data synthesis purposes. Among all DL methods
described above, CNN is the most commonly used method for MI detecting and locat-
ing [21]. Acharya et al. [22] proposed a CNN model for MI detection on noisy lead II ECG
and reached an accuracy of 93.53%. Alghamdi et al. [23], on the other hand, treated the lead
II ECG as a 2D image and employed the transfer learning method by utilizing a pre-trained
visual geometry group network (VGG-Net) [24] as a feature extractor incorporating an
additional trainable classifier where the yielded accuracy after model retraining was as
high as 99.22%. However, the above methods only make use of single-lead ECG informa-
tion. To this end, Baloglu et al. [25] implemented a simple approach where a single CNN
model was trained using all lead signals, resulting in a model that is capable of detecting
and locating MI regardless of the input lead. Another way is to regard 12-lead ECG as a
12-by-signal-length image and perform the convolution along the signal direction but not
lead direction [26]. A limitation of this is that the features in each lead will be extracted by
the same filters. To extract features in each lead independently, Lodhi et al. [27] trained a
CNN model for each lead. The 12 models were then used for a voting mechanism to yield a
unified prediction of MI appearance, yet such a high number of CNNs will not be practical
for portable devices. To improve on this drawback, Reasat et al. [28] proposed a high-level
architecture CNN model named shallow-CNN, where each lead was passed through an In-
ception module [29] to execute feature extraction. The features were then concatenated and
performed classification. This way, each lead of features can be extracted independently
while giving a single prediction. As those leads are more relevant to inferior MI (IMI), II, III
and augmented vector foot (aVF) were utilized to output the prediction between healthy
control (HC) and IMI. Liu et al. [30] came up with the same approach, but with a total of six
diagnosis classes and using all 12-lead ECG compared to previously mentioned work. The
classes include the anterolateral (ALMI), anterior (AMI), anteroseptal (ASMI), inferolateral
(ILMI), IMI, and HC, and they called the proposed model MFB-CNN. Han et al. [31] also
implemented a similar approach and experiment but with some structural improvements
in their ML-ResNet, which includes the residual network (ResNet) to improve the gradient
vanishing problem [32] and the batch normalization (BN) to reduce the internal covariant
shift [33]. Last but not the least, Hao et al. [34] worked on a similar approach as well
but using DenseNet [35], a novel network architecture. Although both ResNet [36] and
DenseNet [37] are famous for their skip connection approach, the latter achieved better
performance via feature concatenate, whereas the former adopted feature addition.

Among all aforementioned state-of-the-art methods, different issues appear in differ-
ent studies. In [22–24], only single lead information was utilized, which is not sufficient
if the multiple MI location predictions are applied. In [25,26], every lead was used to-
gether as an input into CNN while training, but the features should be extracted separately.
In [27], 12 models were trained, one for each lead and the final prediction was considered
using a voting mechanism. However, the fact is that the multi-lead features-concatenate
technique used to accomplish extracting inter-lead ECG features independently can be
utilized while getting a unified prediction [28–32,34]. While there are plenty of studies that
achieve remarkable accuracy [22–26,34], none mentioned and considered intra-individual
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variability (AIV) nor inter-individual variability (RIV) in ECG [38]. AIV is defined as the
variability between ECGs from the same individual or variability within one ECG, while
RIV is the variability between ECGs from different individuals. Though not explicitly
mentioned in [22–26,34], their experimental scheme can be referred to as a beat-to-beat AIV
cross-validation (bAIV-CV) scheme. In [28–31], the RIV problem was taken into account
through implementing RIV cross-validation (RIV-CV), which regards the data from the
same individual as a whole to prevent ECGs from appearing in the different folds at the
same time. bAIV-CV, on the other hand, simply randomly crop segments from an ECG to
form different folds. Even though there may be bAIV contained in the ECG from various
sources [38], most of the aforementioned studies have already shown that it is insignificant
in the Physikalisch-Technische Bundesanstalt (PTB) database. Simonson et al. [39] showed
that AIV is smaller than RIV in ECG. Another potential problem is the so-called class
imbalance problem [40], which refers to the data in a class outnumbered the other class.
Such scenarios may induce the models to classify samples as belonging to the majority
class simply. It can be observed that, while validating MI detection performance, studies
that were previously considered and mentioned earlier tend to allow the number of data
in the class MI to be significantly larger than in HC. Finally, in [28–31], features in every
lead were utilized independently, but the performance, especially in MI locating, has
room for improvement. In machine learning, overfitting is a production of an analysis that
corresponds to how close or how exact something is to a particular set of data and may,
therefore, fail to fit the held-out data or predict future observations reliably. Overfitting
is caused by exceeding some optimal network size, whereas overtraining refers to the
excessive time for network training. Both may finally result in losing the predictive ability
of the model [41]. Most of the aforementioned literature prevent overtraining by using
an early stopping mechanism, which stops the training by monitoring the accuracy or
loss. However, none of them take the overfitting problem into account in the process of
designing and validating a model. To verify the occurrence of overfitting in the model
development phase, one should start from the simplest architecture then gradually increase
the complexity when observing the validated result [42]. A. Kumar et al. [43] used a novel
fuzzy cross-entropy loss together with transfer learning to increase the accuracy of the
model. The work from M. Piekarski et al. [44] mainly focused on the implementation of
transfer learning by utilizing various pre-trained networks where the VGG16 outperformed
among all models considered in the study. Toward this end, a network should be simple
and adjustable where the sequence of double-convolution-follow-by-pooling structure
observed in VGG13 [24], together with multiscale features concatenate structure, was
inspired by [45,46]. A multi-lead features-concatenate and multiscale features-concatenate
integrating structure were developed, which is much like a transposed version of the
VGG13 structure. Signals will first be pooled then passed to the convolutional layers to
extract features that exist in different scales. The number of inputting scales and the number
of filters remain adjustable to find the best architecture and justify overfitting.

As technology advances, utilization of smaller computers together with faster internet
speeds for smart devices makes the improvement in portable devices and the Internet of
Things nowadays an advanced research area. These open a new and wide range of solutions
in e-health, surveillance, and monitoring for medical purposes. However, portable devices
are prone to having a lower level of computational capability as well as having a battery
consumption problems. This research aims to demonstrate the solutions to address the
research challenges in the development of MI detection models using the CNN algorithm to
apply feature extraction, classification, and further detection for portable devices. Figure 1
is the schematic diagram of healthcare application related to the research, 12-lead ECG
signals, or other physiological signal values captured by portable devices sent to a smart
device. It can either choose offline monitoring or cloud computing if the internet is available.
Physicians can investigate or diagnose and undertake further actions, such as calling
ambulance control or ward management. In other words, the proposed models are kept
in both smart devices and cloud servers. Once an abnormality on the ECG waveform is
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identified by the model, the ECG will be sent to the physician in the hospital for further
investigation. A smaller yet more accurate model allows the whole system to be more
sustainable and makes it possible to fit inside a smart device for offline monitoring. Since
bAIV about the MI and HC is negligible in the PTB database and assessing the RIV-CV
has more clinical significance, only RIV-CV will be implemented. Moreover, considering
it may lead to model performance reduction, the class imbalance problem should be
considered. The main contributions in this research are as follows: First, by carefully verify
the occurrence of underfitting and overfitting, the proposed N-Net for MI detection task
outperformed the previous works considered in this study. Second, the proposed MSN-Net
outperformed both the N-Net and the previous works, which indicates that multiscale
features can improve the performance of the model. Third, networks were trained with a
different number of input signal scales and a different number of filters in the convolutional
layer. The ones that achieved the best accuracy in MI detecting and MI locating were then
compared with several state-of-the-art techniques. The comparison was conducted using
several parameters, including the nonparametric Mann–Whitney U test, to determine the
difference of performances between the previous works.

Figure 1. The schematic diagram of healthcare application with integration of Internet of Things (IoT) technology. 12-lead
electrocardiogram (ECG) information can combine with other physiological signal values from different wearable devices,
such as blood glucose, body temperature, and blood pressure, for algorithm models. Physicians can investigate or diagnosis
and undertake further action, such as calling an ambulance or ward, through offline monitoring and/or cloud computing.

2. Materials and Methods

In this section, the experimental dataset and the signal preprocessing methods are
first introduced, including signal denoising and data rearrangement. Next, the network
architecture is presented and illustrated. Finally, verifying the performance of the models
proposed in this research is discussed. Figure 2 demonstrates the block diagram of the
research. The final objective is to build models that are capable of detecting and/or locating
the occurrence of MI by analyzing the 12-lead ECG. First of all, the PTB 12-lead ECG
databases were gathered, and signals were then denoised and segmented. When forming
folders for 5-fold cross-validation, it was necessary to prevent patients’ data from appearing
in the different folders at the same time. Next, networks with a different number of
inputting signal scales and a different number of filters in the convolutional layer were
trained. The ones that achieved the best accuracy in MI detection and/or locating were
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then compared with several state-of-the-art networks. The comparison was conducted
using several clinical indexes, including accuracy (ACC), sensitivity (SEN), specificity
(SPE), and F1-score (F1), and area under curve (AUC), together with the nonparametric
Mann–Whitney U test to determine whether the difference in performances between the
previous works and the proposed networks are significant. The training was conducted
on several computers with different hardware configurations. Yet, only the version of
TensorFlow affected the network performance. In this study, the TensorFlow 2.0.0 GPU
version was chosen.

Figure 2. Block diagram of the research, including Physikalisch-Technische Bundesanstalt (PTB), 12-lead ECG database
gathering, signal preprocessing, data rearrangement, study model networks training, and performance, compared with
other studies. The final objective was to build models capable of detecting and/or locating the occurrence of MI by analyzing
the 12-lead ECG.

Figure 3 is the block diagram of the method used in this research. During the signal
preprocessing phase, the signal was down sampled to 100 Hz to reduce the computational
cost of the subsequent steps. Next, segmentation using R-peak detection was conducted to
shorten the length of the signals, thus simplifying the input layer of the neural network. Af-
terward, in the dataset rearrangement phase, under sampling was preferred to preliminary
tackle the class imbalance issue since there was enough data for all classes. One of the main
aims of the proposed research was to compare MI detection and locating performance of the
model with previous works. With that, the MI locating dataset was created, and part of it
was used to form the MI detection dataset. The k-fold CV was used to provide a measure of
how accurately the model could predict across the whole dataset. To fulfill the inter-patient
experimental scheme, it was necessary to prevent the patients’ data from appearing in
the different folds at the same time. Finally, in the model development phase, instead of
testing the performance of one or more fixed network architecture, testing started from a
simple network structure and gradually increased the complexity to find the maximum
performance between underfitting and overfitting. The adjustable parameters included
the number of inputting signal scales and the number of filters in the convolutional layers.
The configuration that achieved the best ACC evaluated by k-fold CV was chosen and was
compared with several state-of-the-art techniques by some clinical indexes, including ACC,
SEN, SPE, F1, and AUC. The proposed networks showed promising results that achieved
both higher average performance and significant differences evaluated by the U test.
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Figure 3. Block diagram of the proposed method, including signal preprocessing, dataset rearrangement, and model development.

2.1. ECG Dataset

To evaluate the performance of the proposed model, the open-access PTB ECG
database [47] collected from PhysioNet [48] was used. The PTB ECG database comprises
52 healthy controls (HC) and 148 MI patients. Since patients may have more than one
record, a total of 80 HC records and 368 MI records were found. Each record contains a
standard 12-lead ECG together with 3 Frank lead ECGs under 1000 Hz sampling rate and
16-bit resolution ranging from −16,384 μV to 16,384 μV. Figure 4 shows the snapshot of the
12-lead HC and IMI ECG. According to the information provided by the header file in the
database, MI records can be further divided by occurred MI locating. Five MI locations
were utilized in this study, namely 43 ALMI, 47 AMI, 77 ASMI, 56 ILMI, 89 IMI.

Figure 4. Samples of healthy control (HC) and inferior myocardial infarction (IMI) 12-lead ECG. IMI can be detected by the
abnormalities waveform features of the ECG, as indicated by the arrows that include the ST displacement, T wave inversion,
silent Q wave, and so on.
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2.2. Signal Preprocessing

Since the ECG maximum frequency band is about 40 Hz [49], applying an anti-aliasing
filter and down sampling to 100 Hz can eliminate high-frequency noise and reduce the
computational cost on the later steps of the experiment while still taking the Nyquist
theorem into consideration. A median filter with a 0.857-s window was then employed to
find and remove baseline wander. The window size was calculated based on the objective
of completely covering one cardiac cycle (PQRST waves) under a 70 beats per minute
assumption. Denoised signals were then segmented into pieces using the R-peak detection
algorithm proposed by Christov [50], while serving as a data augmentation method where
every piece of data contained 50 points before the R-peak and 349 points after the R-
peak. Lastly, to prevent the model from tending to predict classes that have more training
data [40], the quantity of data in each class was required to be equal. This was achieved
through random under sampling, a data level solution for imbalanced data [51]. Thirty
(30) data pieces were chosen from every 40 chosen records in all 6 diagnostic classes,
resulting in a total of 7200 data pieces in the MI locating dataset. Cross-validation (CV) was
implemented after model training. A similar method to a CV is called leave-one-out, while
the standard method is the leave-one-patient-out CV [52]. However, it was impractical
to execute CV on a per subject basis since given a total of 96 chosen patients, 96-fold
CV has to be performed. Thence, a subject-based k-fold CV was more suitable for the
current investigation. A subject-based 5-fold CV was performed to evaluate the model
performance, in which every fold contained multiple patient records. In the meantime, it
was necessary to prevent a patient record from appearing in other folds. As for the MI
detection dataset, 6 out of 30 were selected from each segmented data in all five MIs to
fulfill class balancing. Table 1 summarizes the dataset after the rearrangement.

Table 1. Patient and data distribution after rearrangement.

Class No. of Subjects No. of Records
No. of Pieces
(Detection)

No. of Pieces
(Locating)

HC 25 40 1200 1200
ALMI 14 40 240 1200
AMI 14 40 240 1200

ASMI 13 40 240 1200
ILMI 16 40 240 1200
IMI 14 40 240 1200

2.3. Network Architecture

First of all, the network took 12-lead ECG at the input layer, as shown in Figure 5.
Each lead was fed into a lead branch CNN to extract features independently. In the lead
branch CNN, the input was passed through several parallel paths, as illustrated in Figure 6.
In each parallel path, the input was sequentially passed through two convolutional layers
marked in blue in Figure 6 for features extraction and a global average pooling (GAP)
layer for overfitting prevention. To extract larger features, pooling the signal can let the
features become smaller, which allows the filters with the same kernel size to extract it.
This is in contrast to having a larger kernel size, which has a higher computational cost.
Furthermore, instead of using common maximum pooling or average pooling, convolution
with both kernel size (K) and stride (S) with the same value was introduced to accomplish
the down sampling operation [53], which is considered a learnable pooling layer. Hence a
specialized convolutional layer marked in purple in Figure 6 was used to pool the signal
for larger features extraction. The extracted features were then concatenated and linked to
a fully connected (FC) layer for classification. This FC layer was the only non-convolutional
layer in the proposed model. It used the SoftMax activation function, which is the most
commonly used activation function in the output layer of a model for classification tasks.
To be more specific, 2 neurons for MI detection and 6 neurons for MI locating at the output
FC layer were used. The parameter F represents the number of filters on a scale branch.
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Since non-zero paddings were executed, the convolutional layers colored in blue in Figure 6
reduced the length of the passing signals by 2 since K was 3. All the convolutional layers
used the rectified linear unit [54] as the activation function. Preventing overfitting is the
utmost important task. Therefore, a dropout layer [55] was inserted with a rate of 0.5
right before FC. Finally, the number of filters and the number of scales were reserved as
variables for tuning the best structure. Models using single-scale features were named
narrow net (N-Net), while models using multi-scale features were named multi-scale
narrow net (MSN-Net).

Figure 5. Multi-lead features-concatenate network. Twelve (12) lead branch convolutional neural net-
works (CNNs) were used to extract features in each lead independently and were then concatenated
and classified.

Figure 6. Multi-scale features-concatenate network in every lead branch. K represents kernel size, S represents strides. The
N-Net only contained structures illustrated in scale 1, and MSN-Net that used two scales will contain the structure of both
scale 1 and scale 2. MSN-Net that used three scales contained structures of scale 1, scale 2 and scale 3, and so on.

2.4. Model Training

The models described in Section 2.3 were trained with categorical cross-entropy loss,
a common loss function for the multi-class classification task, and Adam optimizer [56]
with a 0.001 learning rate. The model parameters updated after every 300 data were
inputted. Training stops if it did not get any improvement for 20 continuous epochs or
when a maximum of 200 epochs was reached. The accuracy and loss at each epoch were
recorded. Additionally, how the number of filters and scales affect the model performance
was explored. Performances of models with filter numbers from 1 to 10 and scale numbers
from 1 to 5 were recorded. Since the robustness of MI locating models using single-scale
features were too weak, the performances with filter number up to 15 were recorded. This
resulted in a total of 50 different models for MI detection and 55 for MI locating. Since
different starting conditions of model parameters led to different final accuracy, a total
of 15 times subject-based 5-fold CV were executed for each model. In other words, one
model would have 15 sets of CV results. The models were trained in a fixed order of data
input to reduce the inter-model accuracy deviation. To compare the results with the current
state-of-the-art models proposed by [24,26,27] were retrained since BN was removed and,
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more importantly, the dataset was different. All the networks were implemented using
Keras [57], a neural network library.

2.5. Performance Metrics

Predictions given by subject-based 5-fold CV were gathered to form 15 sets of con-
fusion matrixes for both detection and locating models proposed by [28,30,31] as well as
this study. The performances of the models were then evaluated in terms of several clinical
indexes, including accuracy (ACC), sensitivity (SEN), specificity (SPE), and F1-score (F1)
with their corresponding equation for computation as shown in Equations (1)–(4), respec-
tively. Only ACC was evaluated for MI locating models. All above criteria were calculated
based on true positive (TP) rate, true negative (TN) rate, false positive (FP) rate, and false
negative (FN) rate.

ACC% =
TP + TN

TP + TN + FP + FN
× 100 (1)

SEN% =
TP

TP + FN
× 100 (2)

SPE% =
TN

TN + FP
× 100 (3)

F1% =
2 × TP

2 × TP + FP + FN
× 100 (4)

In addition to the aforementioned indexes, the receiver operating characteristic (ROC)
curve [58] and area under the ROC curve (AUC) of MI detection models were also calcu-
lated. As described in Section 2.4, the subject-based 5-fold CV 15 times was performed to
evaluate the overall model performances. To verify whether a model had better perfor-
mance than the other, aside from observing the box plot for comparing the distribution,
statistical analysis was also included to determine whether there were significant differ-
ences between the performance of the models. Instead of using a t-test, the nonparametric
Mann–Whitney U test [59], also known as the Wilcoxon rank–sum test, was utilized since
it is more suitable for small population data. Finally, the AUC and U test were calculated
using SPSS, a common statistical analysis tool.

3. Results

The data preprocessing and rearrangement were executed. The studies in [28,30,31]
and the proposed networks in this study were implemented. Subject-based 5-fold and
10-fold CV was performed 15 times for each model in a 2-class detective dataset. Subject-
based 5-fold was performed 15 times for each model in a 6-class detective dataset. Before
picking the models that achieved the best average accuracy in MI detection or MI locating
and compared them with the state-of-the-art, the training and validation accuracies, as well
as the loss, were plotted to observe the training effectiveness. Afterward, the comparison
was done by determining the significant difference in accuracy using the U test. The
significant differences in SEN, SPE, F1, and AUC carried out by MI detection models were
also calculated and compared.

3.1. Accuracy of N-Net and MSN-Net for MI Detection in 2-Class Dataset

Figure 7 shows the ACC trend of the proposed MI detection models with varying filter
numbers and scale numbers. It can be observed that at low filter numbers, as the number
of filters increased, the ACC increased significantly and gradually converges at about 95%
for larger filter numbers. In addition, when using a low filter number, the ACC increased
as the number of the inputted signal scale increased. But the increase was not as much
as the filter number increase. By observing all the graphs, it can be seen that no matter
how complex the network is, the ACC converged to about 95% with a small deviation. In
using single-scale features, the best average ACC% of 95.76% was achieved with nine filters
by 5-fold validation, and 94.30% was achieved with four filters by 10-fold validation. In
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using two-scale features, the best average ACC% of 95.60% was achieved with 10 filters by
5-fold validation, and 94.03% was achieved with six filters by 10-fold validation. In using
three-scale features, the best average ACC% of 95.33% was achieved with six filters by
5-fold validation, and 96.29% was achieved with four filters by 10-fold validation. In using
four-scale features, the best average ACC% of 95.27% was achieved with five filters by
5-fold validation, and 93.80% was achieved with five filters by 10-fold validation. In using
five-scale features, the best average ACC% of 94.95% was achieved with nine filters by
5-fold validation, and 93.40% was achieved with seven filters by 10-fold validation. Models
that were double confirmed by 5-fold or 10-fold validation demonstrated a similar trend
of results. To reduce the number of computer calculations, subsequent verifications were
conducted by 5-fold validation. To summarize, using the single-scale features together
with nine filters yielded the best result among all models that are for the MI detection task.
As the number of used scale features increased, the best average ACC gradually decreased.
This may be caused by overfitting due to the excessive model strength, which is proven
in Section 3.3.

Figure 7. Accuracy trends of the proposed myocardial infarction (MI) detection models plotted in shaded error bar. Blue-
and gray-shaded areas indicate the range of one standard deviation, and the best average accuracy under the same scale
number is marked by an arrow: Accuracy of models using (a) single-scale features; (b) two-scale features; (c) three-scale
features, (d) four-scale feature, and (e) five-scale features.

3.2. Accuracy of N-Net and MSN-Net for MI Locating in 6-Class Dataset

Figure 8 shows the ACC trend of the proposed MI locating models with different filter
numbers and scale numbers. Similar to MI detection results, it can be observed that at
low filter numbers, as the number of filters increased, the ACC increased significantly and
gradually converge at about 60% when using larger filter numbers. Furthermore, when
using a low filter number, the ACC increased as the number of the inputted signal scale
increased. The increase was not as much as the increase in the filter number. By observing
all the graphs in Figure 8, it can be seen that no matter how complex the network was, the
ACC converged at about 60% with a slightly small deviation. Models that used single-scale
features incorporating 15 filters achieved the best average ACC at about 60.49%. Two scales
with 10 filters had an ACC of 61.19%, while three scales with 10 filters had an ACC of
61.52%. As for the four scales with nine filters, and five scales with 10 filters, an ACC of
61.82% and 60.87% were achieved, respectively. To summarize, using the four-scale features
together with nine filters yielded the best result among all models for the MI locating task.
As the number of used scale features increased, the best average ACC increased gradually.
This indicates that multi-scale features can help the network in determining the location of
MI, which was proved in Section 3.3.
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Figure 8. Accuracy trends of our proposed MI locating models plotted in shaded error bar. Blue- and gray-shaded areas
indicate the range of one standard deviation and best average accuracy under the same scale number are marked by an
arrow: Accuracy of models using (a) single-scale features, (b) two-scale features, (c) three-scale features, (d) four-scale
features, and (e) five-scale features.

3.3. Verifying Training Effectiveness

To examine the occurrence of overfitting and overtraining, results were collected and
analyzed. Figure 9 shows the box plot and significance of the accuracy of the proposed
network. It can be observed in the left graph that using a model that was too robust for
the current task will, on the contrary, lower the performance of the model from 95.76% to
94.95% (p < 0.05) due to overfitting.

Figure 9. Box plot and significance of the accuracy of the proposed network where 1S indicates
models using single-scale features, 9F indicates models using nine filters, and so on. (a) Evidence
that supports accuracy decrease due to overfitting caused by excessive model strength. The average
accuracy decreased from 95.76% to 94.95% (p < 0.05); (b) Evidence that supports using multi-scale
features will increase MI locating accuracy. The average accuracy increased from 60.49% to 61.82%
(p < 0.05).

Hence, the use N-Net instead of MSN-Net for MI detection tasks is preferred. On the
other hand, using multi-scale features can increase the accuracy of the model from 60.49%
to 61.82% (p < 0.05) during MI locating tasks. This can be observed in the graph on the right.
It is, therefore, useful to use multi-scale features to enhance the performance of the model.
In examining the occurrence of overtraining, one should normally be able to determine
whether the validated loss was increased during training. However, in this case, both the
training and validation curves had a similar trend. It can be found in Figure 10a that both
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trained and validated loss curves had a similar profile. The loss dropped exponentially
and then converged between 0.1 and 0.15. A similar but opposite profile can be found
in Figure 11b. Hence, the phenomenon of overtraining did not occur. A significant detail
shows that the final trained loss was larger than the final validated loss, whereas the final
trained accuracy was higher than validated accuracy. This is due to the fact that the model
correctly predicted the label, but only with the confidence that was slightly above 50%.
From Figure 10c, it can be seen that during the training stage of the MI locating model,
the network had a harsh time optimizing the loss function. Moreover, the validated loss
was not as low as that of the trained loss. The same situation can be found in Figure 10d,
which points out that there was serious RIV in the dataset, but at least the model was
not overtrained. Conclusively, both overfitting and underfitting did not occur in the MI
detection model and MI locating model. This is because the models were simple or robust
and selected the best one that lies between them. In addition, by examining both the
training and validation curves, it can be concluded that overtraining and undertraining
were not the case.

Figure 10. The performances of the proposed networks were recorded during each epoch where 1S
indicates networks using single-scale features, 9F indicates networks using nine filters, and so on.
(a) Trained and validated loss of MI detection model during each epoch; (b) Trained and validated the
accuracy of MI detection model during each epoch; (c) Trained and validated loss of MI locating model
during each epoch; (d) Trained and validated the accuracy of MI locating model during each epoch.

3.4. Comparing with State-of-the-Art

The MFB-CNN [26], ML-ResNet [31], and Shallow-CNN [28] were retrained under
the validating scheme using the rearranged dataset. Fifteen (15) times subject-based 5-fold
CV were executed on each model.

The ACC was recorded and used to generate the box plot and calculate the significant
difference compared to the proposed model. Only MI detection performances were used
to derive SEN, SPE, F1, and AUC, which is due to the fact that these parameters were
internally designed to investigate the binary classification performance. By looking at the
box plot in Figure 11a,b, it is clearly illustrated that the average accuracy was higher than
the rest. By employing the U test, p < 0.001 was given in all previous works, which implies
that the N-Net and MSN-Net outperformed in the MI detection task and MI locating task,
respectively. As for clinical indexes shown in Figure 11c,f, the SEN was significantly higher
than MFB-CNN (p < 0.001). It showed no difference compared to ML-ResNet and Shallow-
CNN. The rest of the performances, including SPE, F1, and AUC, showed promising.
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Figure 11. Comparison between the proposed model and literature where 1S indicates models
using single-scale features, 9F indicates models using nine filters, and so on. Single star interprets
p < 0.05, double star interprets p < 0.01, and triple star interprets p < 0.001. (a) MI detection accuracy
comparison; (b) MI locating accuracy comparison; (c) MI detection sensitivity comparison; (d) MI
detection specificity comparison; (e) MI detection F1-score comparison; and (f) MI detection area
under the receiver operating characteristic curve comparison.

4. Discussion

N-Net for the MI detection task and an MSN-Net for MI locating task were developed.
By carefully designing and validating the network robustness, the performance distribution
of N-Net and MSN-Net under different parameters were recorded, and the best one was
selected. The results showed that both MI detection and MI locating outperformed the cur-
rent state-of-the-art. However, the results need to be justified. Furthermore, some detailed
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issues were not taken into consideration in this work. Additionally, to clarify some potential
directions of on-going studies, all the above will be discussed in the following sections.

4.1. Verifying the Results of the Proposed N-Net and MSN-Net

In the developing phase of the model, by starting from the simplest network, in-
crementing the model complexity, and finding the best one among them, the issues of
overfitting and underfitting were detected and thus, addressed. In other words, structures
that were simpler with respect to the best one can refer to as underfitting and vice versa.
Previous works straightforwardly start from a complex model, and as they are revalidated,
excessive model strength exhibited a decrease in performances due to overfitting. As such,
it is considered that overfitting has also occurred in the network design. Hence, the pro-
posed networks exhibited better performance, and that the proposed networks were less
overfitted compared to previous works. During the developing stage of the model, starting
from the simplest model and proceeding with gradually increasing the model complexity
should be considered.

4.2. Issues While Validating the Proposed Network Design

Though the structure of the proposed networks was carefully validated, some detailed
issues need to be considered further. First of all, the validation scheme incremented the
input signal scale and tested it on each network structure. To improve on this validation
scheme, testing can be conducted independently on each kind of input scale. The best ones
are then selected and incorporated into those structures and revalidate the new integrated
network. Such an experimental scheme can validate which of the input scales contain
more features that are more relevant to the task at that particular time, thus utilizing the
multi-scale features more effectively. In addition, by comparing the proposed network
structure, it can be seen that the design is quite similar to the Inception module [29] and
the one that utilizes it on IMI detection [28]. Larger features were extracted by pooling the
signals, whereas the latter extract larger features by expanding the kernel size. It remains a
question as to which of the network structures would achieve better performance. Another
interesting thing to consider is which network can complete one prediction faster. The
Inception module [29] extracts larger features by using wider kernels which contain more
parameters and will lengthen the time it takes in executing convolution. This directly
affects the time required to complete a forward pass, which in turn directly affects the time
it takes to give a prediction making it less suitable for real-time portable devices.

4.3. Limitations of the Proposed Experimental Scheme

One limitation of the proposed experimental scheme is that the class imbalance
problem was addressed using under sampling, a data level method that is simple but
makes it impossible to directly compare the results of the proposed model with the other
existing works. This is due to the fact that a different dataset in this study was used. To
overcome this drawback, a better data level approach can be utilized and can be found
in [40] or consider using another category of approaches, called classifier level methods.
These classifier level methods keep the dataset unchanged while adjusting the process of
learning or training, as discussed in [50].

4.4. Potential for Future Study

This study can be extended by developing a computer-aided diagnosis system to
lower the computational cost and achieve real-time functionality through a simple yet
accurate model. In Section 4.2, examining which of the input scale will yield the best
results can be explored. Further validation can be conducted to determine if the proposed
design or the Inception modulus [29] is better at extracting multi-scale features. It is also
significant to determine and compare the average time it takes for the network to complete
a forward pass. Moreover, the geometric separability index [60] can be explored to examine
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the quality of features extracted by Inception modulus [29] and the proposed method and
ultimately, implement the final model in portable devices.

5. Conclusions

In this research, data collection, preprocessing, and rearrangement were implemented
for training the proposed N-Net and MSN-Net. To carefully verify the occurrence of un-
derfitting and overfitting, two hyperparameters, the number of filters in the convolutional
layer, and the number of inputting scales remained variable for tuning the best structure.
Furthermore, 15 times patient-based 5-fold CV was run on each candidate model, and the
best structures were obtained by comparing the average accuracy. As a result, the N-Net
that used single-scale features together with nine filters (1S-9F) yielded a 95.76% average
accuracy in MI detection, whereas the MSN-Net that used four-scale features together
with nine filters yielded a 60.49% average accuracy in MI locating. By observing indexes
including ACC, SEN, SPE, F1, and AUC, together with significant differences evaluated
by the U test, both N-Net and MSN-Net outperformed the previous works considered in
this study in MI detection and locating tasks, respectively, which indicates that previous
works encountered the issue of overfitting. Furthermore, the MSN-Net outperformed the
N-Net in MI locating tasks, which means that multi-scale features can improve the MI
locating performance. More importantly, the proposed networks contained fewer parame-
ters, which points out the potential and suitability in the applications of wearable devices.
With all aforementioned promising results, several issues are yet to be explored, such as
assessing the quality of the extracted features since it can provide a clearer idea of how to
design the network. In future analysis, the testing model can be conducted independently
on each kind of input scale. This contains more features relative to the particular time in
each task, and then selecting these structures and incorporating them to revalidate the
new integrated network to improve the validation. Another recommendation is to deploy
the proposed models on portable devices to test their performance on a limited resource
device further.
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Abstract: Sleep staging is important in sleep research since it is the basis for sleep evaluation and
disease diagnosis. Related works have acquired many desirable outcomes. However, most of
current studies focus on time-domain or frequency-domain measures as classification features using
single or very few channels, which only obtain the local features but ignore the global information
exchanging between different brain regions. Meanwhile, brain functional connectivity is considered
to be closely related to brain activity and can be used to study the interaction relationship between
brain areas. To explore the electroencephalography (EEG)-based brain mechanisms of sleep stages
through functional connectivity, especially from different frequency bands, we applied phase-locked
value (PLV) to build the functional connectivity network and analyze the brain interaction during
sleep stages for different frequency bands. Then, we performed the feature-level, decision-level and
hybrid fusion methods to discuss the performance of different frequency bands for sleep stages.
The results show that (1) PLV increases in the lower frequency band (delta and alpha bands) and vice
versa during different stages of non-rapid eye movement (NREM); (2) alpha band shows a better
discriminative ability for sleeping stages; (3) the classification accuracy of feature-level fusion (six
frequency bands) reaches 96.91% and 96.14% for intra-subject and inter-subjects respectively, which
outperforms decision-level and hybrid fusion methods.

Keywords: sleep staging; electroencephalography (EEG); brain functional connectivity; frequency
band fusion; phase-locked value (PLV)

1. Introduction

With social pressure increasing in this high-speed development era, more and more
people are faced with deep sleeping problems. The chronic lack of sleep or getting poor-
quality sleep is a risk factor for cognitive disorders, mood disorders, and diseases such as
high blood pressure, cardiovascular disease, diabetes, depression, and obesity [1,2]. Sleep
staging is the basis of sleep quality evaluation, and plays an important role in the early
diagnosis and intervention of sleep disorders. In 1968, R&K [3] identified sleep staging
into awake, rapid eye movement (REM) and non-rapid eye movement (NREM) stages, and
NREM is further subdivided into four stages: S1, S2, S3, and S4. Since S3 and S4 are similar
in many aspects, American Academy of Sleep Medicine (AASM) [4] revised the R&K rules
and used N1, N2, N3 to represent different sub-stages for NREM stage, combining both S3
and S4 into N3 stage.

In practice, clinical sleep staging is still based on visual inspection by sleep experts
for decades according to the duration and proportion of special brain waves. Such waves
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during sleep include delta waves, alpha waves, sleep spindle waves and K-complex
waves. Delta waves are slow waves, mainly appearing in N2 and N3 stages with different
proportions. The frequency range of the alpha wave (8–13 Hz) and sleep spindle wave
(12.5–15.5 Hz) is partially overlapping. Alpha waves generally appears in the REM stage.
Both frequency band range and the occurring brain area of sleep spindle waves are different
between N2 and N3 stage. The k-complex waves are the combination of apical waves and
sleep spindle waves. The types and spatial distributions of these waves are different during
sleep stages, see Table 1 for more details. Therefore, frequency bands should be considered
in sleep staging analysis.

Table 1. Types and spatial distributions of brain waves during stages of sleep, ‘/’ means no appearance.

N3
N1/S1 N2/S2

S3 S4
REM

delta waves / <20% 25∼50% 0.75∼3 Hz >50% /

alpha waves <50% / / / mainly in
Occipital lobe

sleep spindle waves /

12.5∼15.5 Hz,
occur in central,
bilateral frontal,

parietal,forehead,
temporal lobes

about 12 Hz
gradually reduce,

mainly in
frontal lobe

6–10 Hz,
gradually
disappear,
mainly in

frontal lobe

/

K-complex waves / occur mainly
in frontal lobe

evoked by
external stimuli

evoked by
strong stimuli

/

However, such manual sleep staging judgment by sleep experts easily brings problems
of low efficiency, long time consuming, and subjective errors. Chapotot et al. [5] show that
the average same judgment accuracy between two experts in labeling sleep-wake stage
scores is only about 83%. Therefore, a more accurate and objective method for sleep staging
is very required. Moreover, sleep is a complex and dynamic process, so that humans always
hope to have a better understand of the brain mechanisms of sleep for human health. With
the help of the signal recording technology, several sleep physiological signals acquisition
methods are existed. For instance, polysomnography is a powerful tool for sleep signal
acquisition including electroencephalography (EEG), electromyography (EMG), functional
magnetic resonance imaging (fMRI), and electrooculography (EOG). Herein, EEG has
advantages of low cost, high temporal resolution and easy operation which result in the
wide application in sleep stages research [6,7]. Afterwards, sleep-related researchers take
use of the recorded signals to conduct sleep staging research.

For computational sleep staging research, the main objective of this area is to find
out discriminative features and good-performing classification strategies. Currently, EEG-
based sleep staging research has brought out many desirable results such as most of
the features are extracted from the single channel and end-to-end classifier models [8–
14]. For instance, Ahmed et al. [15] designed a 34-layer deep residual neural network
to classify the raw single-channel EEG sleep staging data and obtained the improved
accuracy of 6.3%. This end-to-end classifier usually has a good classification performance,
but it lacks the exploration of sleep mechanisms. On the other hand, Thiago et al. [16]
proposed a feature extraction method based on wavelet domain, which increases the
classification performance nearly 25% compared to the temporal and frequency domains;
Zhang et al. [17] proposed a feature selection method based on metric learning to find out
the optimal features. However, existing feature extraction methods (temporal, frequency
and temporal-frequency domains) are difficult to explore the sleep staging information
from a global level [18–20] since the calculation is performed on single-channel separately.
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[21,22] also pointed out that the amount of information obtained through a single channel
does not fully characterize the changes in brain activity during sleep.

Brain functional network is a relative new measurement to characterize the infor-
mation exchanging between brain region through calculating the temporal correlation or
coherence between brain areas. It is verified that each sleep stage is associated with a
specific functional connectivity pattern in fMRI studies [23–25]. EEG-based brain func-
tional connectivity has been employed in sleep research [26–28] to distinguish the sleep
disease and health groups. We would use functional connectivity to explore the synchro-
nization mechanisms between different brain regions and the classification accuracy for
sleep staging.

In summary, in addition to pursuing the higher classification accuracy, we also want
to, within different frequency bands, explore the information exchanging between brain
areas for sleep staging. Specifically, this paper analyzed the sleep stage with single-band
functional connectivity and then used the bi-serial correlation coefficient method to evaluate
the frequency bands. Based on the evaluation results, features from frequency band are
fused at the feature-level, decision-level and hybrid-level, respectively. Furthermore, we
also investigated the mutual influence between frequency bands to identify the sleep stages.
The remaining parts of this paper are organized as follows. Section 2 describes the materials
and our method. Section 3 indicates all results. Section 4 and 5 provides the discussions
and summarizes the future work, respectively.

2. Materials and Methods

2.1. Dataset Description

The data analyzed in this manuscript is from the public CAP Sleep Database [29,30].
The database was built to facilitate sleep research that includes 108 polysomnographic
recordings provided by the Sleep Disorders Center of the Ospedale Maggiore of Parma,
Italy. There are 16 healthy subjects without any neurological disorders and drug problems.
The number of EEG channels varies from 3 to 12 and the data with the number of channels
as more as possible are needed for functional brain connectivity calculation, therefore,
we selected the subjects (namely n3, n5, n10, n11 respectively) who were recorded with
12 EEG channels, aging between 23 and 35 (mean 30.25) years old. According to the
International 10–20 System, the placements of the bipolar electrodes were Fp2-F4, F4-C4,
C4-P4, P4-O2, F8-T4, T4-T6, Fp1-F3, F3-C3, C3-P3, P3-O1, F7-T3, and T3-T5, shown in
Figure 1. The sampling rate is set at 512 Hz. For each subject, the continuous recorded
sleep EEG lasted about 9 h (from 10:30 p.m. to 7:30 a.m.).

Figure 1. The layouts of EEG electrodes. The electrodes used in this study are labeled in blue circles.
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The experts labeled sleep stages based on the standard rules by R&K every 30 s and
sleep is a cyclical process, the duration of a cycle is about 90 to 110 min, humans generally
experience 4 to 5 sleep cycles per night [3]. Since the N1 accounts for 5–10% or less of the
total sleep duration (only lasts about 1–7 min) [31], we selected the other three sleep stages
including the REM and N2, N3 during non-REM.

2.2. Framework of Our Method

In this study, we first perform data preprocessing, then calculated the brain func-
tional connectivity for different frequency bands to compare the characteristics of brain
mechanism during sleep stages. Moreover, bi-serial correlation coefficient was adopted to
evaluate brain connectivity features across different frequency bands. Then, we used three
fusion strategies for frequency band fusion to classify the sleep stages based on the findings
in the frequency band evaluation results. The framework of our method was depicted in
Figure 2.

PLV matrix
Brain-Network

analysis

feature-level

decision-level

Hybrid 
fusion

Figure 2. The flow diagram of the proposed method.

2.2.1. Data Preprocessing

It is difficult to draw clear boundaries between different sleep stages because the
stage usually changes gradually and continuously. To confirm the sampling with the exact
sleeping stage label, we delete the following three kinds of data that:

• belonging to the same stage, but duration is too short (such as only 2 to 3 min).
• the unusual waking duration (tens of seconds) and its before and after 30 s duration

during a certain sleep stage.
• the beginning 30 s and the last 30 s of a certain sleep stage.

After that, we segmented the EEG into 30 s epochs as analyzed samples without
overlapping. Note: for sleep staging, the adopted 30 s epoch is derived from the R&K and
AASM rules [32], and related works also revealed that 30 s length of epoch is viable to
characterize intrinsic brain activity [33,34]. The total number of samples with sleep staging
labels REM, N2 and N3 is 801, 900, and 1001, respectively. Herein, the number of samples
from subjects n3, n5, n10, n11 is 651, 639, 559 and 853, respectively.

For data preprocessing, we adopted common average reference (CAR) [35] to minimize
the uncorrelated noise among channels, then we removed the artifacts with independent
component analysis (ICA) [36] and Adjust plugin which is realized in EEGLAB [37]
followed by the band-pass filtering with a passband from 0.5 to 40 Hz. Furthermore, we
filtered the denoised EEG into six frequency bands: delta (0.5–4 Hz), theta (4–8 Hz), alpha
(8–13 Hz), beta1 (13–22 Hz), beta2 (22–30 Hz), and gamma (30–40 Hz).
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2.2.2. Phase-Locked Value

We estimated brain functional connectivity with phase-locked value (PLV). The PLV [38]
was proposed to measure the phase synchronization between two signals which is only
sensitive to phase but not to amplitude. Compared with other synchronization measures,
PLV is simple to operate and can maintain the same information level as other more com-
plex indicators [39]. Here, the PLV is used to analyze the phase synchronization between
two channels of EEG in specific frequency, defined as follow:

PLVn =
1
N
|

N

∑
k=1

ei(φ(t,k)−ψ(t,k))| (1)

where N represent the number of epochs, φ(t, k) and ψ(t, k) indicates the phase values of
channel φ and ψ for the epoch n at the time t. Specifically, we used HERMES toolbox [40]
to obtain PLV matrices. In our case, 12 channels of EEG were used, which resulted in 12
× 12 symmetric matrix for each epoch. Each entry in matrix stood for synchronization of
a pair of channels. This synchronization calculation was done for six frequency bands of
each subject. The one-way ANOVA was used to assess differences between sleep stages or
frequency bands of the PLV for REM, N2 and N3 stages. The observed returning values of
ANOVA is p-value and lower p-value means more significant difference.

In addition, we also compared the brain network analysis between sleep stages with
PLV matrices. We averaged the PLV matrix for each sleep stage and constructed the brain
networks based on a threshold. The threshold is selected from the maximum value at
which no isolated points appearing in the network.

2.2.3. Band Evaluation

We use bi-serial correlation coefficient as an indicator to measure the ability of features
to classify classes. The bi-serial correlation coefficient, r2, is a measurement to evaluate the
performance of one feature in distinguishing various classes. For a two-classes classification
scenario (class 1, 2), the bi-serial correlation coefficient is defined as:

r2
X = [

√
N+ × N− × [mean(X+)− mean(X−)]

(N+ × N−)× std(X+ ∪ X−)
]2 (2)

where X+and X− represent all samples of class 1 and class 2, respectively. The N+ and
N− indicate the number of two class samples [41]. The r2 is ranging from 0 to 1 and its
bigger value means more discriminate between the two classes. We calculated the bi-serial
correlation coefficient between every two sleep stages (REM and N2, REM and N3, and N2
and N3) for PLV feature matrices. In total, we sorted the 3 × 66 × 6 (sleep stages × PLV ×
frequency bands) r2 values to evaluate the features across different frequency bands. We
also defined the discriminative ratio as setting a threshold t to represent the number of
features, calculating the sum of the first sorted t r2 between every two sleep stages and
then obtaining the ratio of each frequency band. In our case, t is set to 36.

2.2.4. Classifier

We adopted support vector machine (SVM) with the Gaussian kernel function, which
is implemented in the LIBSVM library [42]. The way to achieve multi-class classification is
used the One-against-one strategy. We evaluated classification performance in terms of
accuracy for single frequency band and the three level strategies fusion between frequency
bands. The 75% samples were used for model training and the remaining 25% samples
were used as testing data.

2.2.5. Frequency Band Fusion Strategy

Based on the evaluation of brain functional connectivity across different frequency
bands, we used three band fusion strategies to integration of multiple information sources

97



Sensors 2021, 21, 1988

for classification. The multiple information sources refer to the brain functional connectivity
features of different frequency bands and the three fusion strategies are feature-level fusion,
decision-level fusion, and hybrid-level fusion. The graphical description of feature-level
and decision-level fusion strategies are shown in Figure 3.

Figure 3. Schematic diagram of fusion strategy. (a) indicates the feature-level fusion and (b) is the decision-level fusion
using stacking.

For feature-level fusion, we concatenated the PLV features of six frequency bands
before feeding into classifier; For decision fusion using stacking [43], we constructed
individual classifiers for PLV features of a single frequency band separately, namely base
classifier and then a meta classifier learns to use the predictions of each base classifier to
obtain a target decision result. For hybrid fusion, we combined feature-level and decision-
level fusions, which includes two steps: first constructing individual classifiers for specific
groups of selected two frequency bands based on the band evaluation result and then
conducting ensemble classifier of these individual classifiers. Hereinafter, ‘C’, ‘E’ and ’E(C)’
represent the classification result obtained by using the feature after feature-level fusion,
decision-level fusion and hybrid fusion strategy, respectively.

3. Results

3.1. PLV Values between Six Frequency Bands for Different Sleep Stages

The comparisons on average PLV between six frequency bands for three sleep stages
are in Figure 4. In some low frequency bands, delta and alpha bands, the PLV values are
increased from N2 to N3 sleep stages while in high frequency bands, beta2 and gamma
bands, the PLV values are decreased. Moreover, compared with N2 sleep stage, the PLV
value for N3 is significantly bigger (with p < 0.001) in delta and alpha bands but smaller
in beta 2 and gamma bands. Generally, the PLV values are significantly decreased as the
frequency bands increase, from delta to gamma bands for REM, N2 and N3 sleep stages.
Only the PLV value of alpha is significantly bigger than theta band, shown in Figure 5.
Figure 6 displays the differences between sleep stages for brain network analysis from
which the spatial distributions of PLV differences can be observed.
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Figure 4. Comparisons of the average PLV values between six frequency bands for three sleep stages.
The double-asterisk ’**’ indicates that there is a significant difference of p < 0.001 by ANOVA test.

Figure 5. The averaged PLV value of three sleep stages in six frequency bands to observe the PLV
distribution in different frequency bands. The double-asterisk ’**’ indicates that there is a significant
difference of p < 0.001 by ANOVA test and three rows represent the significant difference result
between two frequency bands for ’REM and N2’, ’REM and N3’ and ’REM and N2’ respectively.
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Delta Theta Alpha

Beta1 Beta2 Gamma

(a) REM vs. N2

Delta Theta Alpha

Beta1 Beta2 Gamma

(b) REM vs. N3

Delta Theta Alpha

Beta1 Beta2 Gamma

(c) N2 vs. N3

Figure 6. The brain network difference topoplot between REM and N2 (shown in (a)), REM and N3
(shown in (b)) and N2 and N3 (shown in (c)) for different frequency bands. The red line represents
the increase area, and the blue line indicates the decrease area.

3.2. Evaluation of Different Frequency Bands

Figure 7 displays the percentage of corresponding frequency bands within the first
95 and 140 sorted r2 values cases. Alpha band shows the largest percentage in both
cases, accounting for 49.74% and 45.00% and followed by beta1, accounting for 30.79%
and 27.14%, respectively. The smallest percentage is beta2 band with only 0.26% and
1.79%. The 2-D figure of PLV feature visualization for each frequency band is shown in
Figure 8. The ’Feature 1’ and ’Feature2’ are the features with first two largest r2 and the
r2 is averaged through the three r2 obtained between each two classes. We can see that
the PLV features extracted from alpha band shows a better discriminate ability. Figure
9 reveals the discriminative ratio of frequency bands for sleep staging. Alpha band also
shows the higher ratio than other bands which is consistent with the Figure 7 as well as the
following Table 2. The discriminative ratios are different for a certain frequency band (such
as delta and beta1 bands) in distinguishing different paired sleep stages. For instance, the
ratio is not high in distinguishing REM and N2, REM and N3 while it reaches 29.06% in
distinguishing N2 and N3.
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Delta Theta Alpha Beta1 Beta1 Gamma

95 Features 140 Features

0.26%

49.74% 45%

27.14%
30.79%

1.79%

Figure 7. Percentage (%) of PLV features from different frequency bands in the features with first 95
and 140 sorted r2 values

Figure 8. 2-D figure of PLV feature visualization for each frequency band. The Feature 1 and Feature 2
are the selected features with the first two largest r2 values, respectively. The dots represent different
sleep stages (red:REM, green:N2, blue:N3).
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Figure 9. The discriminative ratio of per frequency band for distinguish two sleep stages (blue: REM
and N2, orange: REM and N3, grey: N2 and N3).

Table 2. Classification accuracy (%) of PLV value with single-band. For inter-subject case, the true
positive rate of each class is also given.

Band n3 n5 n10 n11
Inter-Subjects

REM N2 N3 ACC

delta 85.80 89.31 89.21 84.98 84.86 87.87 87.65 86.86
theta 82.10 85.53 74.82 82.16 86.24 81.87 87.24 84.86
alpha 88.27 86.79 94.96 88.73 93.58 88.70 90.53 90.86
beta1 76.54 74.74 92.81 82.63 91.74 76.57 81.07 82.86
beta2 85.80 79.25 87.05 78.87 81.19 80.75 86.01 82.71
gamma 82.72 75.47 76.98 85.92 85.78 79.50 85.19 83.43

3.3. Classification

3.3.1. Classification Performance of Single-Band Feature

The average classification accuracy of PLV with single-band for intra-subject and
inter-subject are shown in Table 2. For intra-subject case, alpha band outperforms other
bands except for subject n5 and the best classification accuracy reaches 94.96% followed by
beta1 band 92.81% (from subject n10). For inter-subject case, alpha band also outperforms
other bands. The best classification accuracy reaches 90.86% followed by delta 86.86%;
There is a special result that the accuracy of beta1 reaches 92.81% from subject n10, while
the accuracy is only 82.86% in inter-subject case. The true positive rates for N2 and N3 are
76.57% and 81.07%, respectively and they are smaller than other bands.

3.3.2. Classification Performance for Bands Fusion

Based on the results of different frequency bands evaluation (Section 3.2), we explored
the three band fusion strategies for sleep staging. The two, three and four frequency bands
are selected according to the r2 values, respectively. Specifically, we combined ’delta and
beta1’, ’theta and gamma’ and ’alpha and beta2’ since the delta band is complementary to
beta1, the beta2 matches the best discriminative alpha, and theta and gamma are combined
to make the three splicing results all good. For three frequency bands fusion case, the alpha,
beta1 and delta frequency bands are selected according to Figures 7 and 9 and further
gamma frequency band is added to the four frequency bands fusion case. Finally, six
frequency bands are used in feature-level, decision-level and hybrid-level fusions.

102



Sensors 2021, 21, 1988

The classification performance of feature-level is better than decision-level and hybrid-
level. Among the results of the fusion of six frequency bands, the best single subject is
n3, with the accuracy rate of 96.91%, and the accuracy of inter-subjects is 96.14%. Note,
compared with intra-subject and inter-subject cases, we can infer that there are not so big
individual differences in sleep staging. The Table 3 shows detailed classification result.

Table 3. Classification accuracy (%) of PLV value with band fusion strategies. For inter-subject case, the true positive rate of
each class is given.

n3 n5 n10 n11
Inter-Subjects

REM N2 N3 ACC

Two bands
C(delta+beta1) 87.65 93.08 91.37 91.08 92.20 88.70 88.48 89.71
C(theta+gamma) 88.27 88.68 89.93 88.73 93.58 87.03 93.42 91.29
C(alpha+beta2) 91.36 88.68 95.37 88.26 94.04 88.70 91.77 91.43

Three bands C(alpha+beta1+delta) 94.41 93.08 92.81 94.37 93.12 92.05 95.06 93.43
E(alpha+beta1+delta) 91.30 91.19 94.96 92.49 96.33 92.89 95.88 93.43

Four bands
C(alpha+beta1+
delta+gamma) 96.89 94.34 92.81 94.37 94.95 94.14 95.47 94.86

E(alpha+beta1+
delta+gamma) 93.79 91.19 94.96 93.90 96.33 92.89 95.88 95.00

Six bands
Concatenation 96.91 95.60 94.24 96.71 96.33 94.98 97.12 96.14
Ensemble 95.06 92.45 93.53 93.90 96.33 93.72 95.88 95.29
E(C) 93.21 93.08 94.96 93.90 95.87 94.98 95.47 95.43

4. Discussion

4.1. The Dominant Role of Alpha Band in Sleep Staging

The assessment of sleep staging is based on specific EEG frequencies and on the
recognition of corresponding sleep-related EEG patterns [44]. For instance, the amount
of alpha decreases and an increase of EEG in alpha range can be found during REM
sleep while the alpha frequency is 1 to 2 Hz lower compared with wakefulness during
non-REM sleep [45,46]. More Other related works also revealed that alpha band shows
important role in sleep staging. Dkhil et al. [47] proposed the importance of alpha band in
the evaluation of drowsiness. Knaut et al. [48] finds the changes in alpha oscillations reflect
different brain states associated with different levels of wakefulness and thalamic activity.
Specifically, in our study, alpha band shows dominant role in sleep staging since the PLV
values are decreased as the frequency band increased, but alpha band is higher than theta
band (see Figure 5); in the frequency band evaluation section (Section 3.2), alpha band
shows higher discriminative ratio revealed by bi-serial correlation and 2-D feature topoplot
also shows alpha band has the less overlapping area than other bands; for classification
results (see Section 3.3), alpha band outperforms other bands in both intra-subject (except
for subject n5) and inter-subject cases.

4.2. Inconsistency between Frequency Band Evaluation and the Classification Accuracy of
Beta1 Band

EEG beta activity represents a marker of cortical arousal [49]. The conventional
power spectrum shows a significant increase of EEG in beta band of patients with primary
insomnia during N2 stage [50] while a decrease of patients with idiopathic REM sleep
behavior disorder during phasic REM [51] compared with sleep health people. In our study,
we observed the inconsistency between frequency band evaluation and the classification
accuracy of EEG functional connectivity pattern in beta1 frequency band. In frequency
band evaluation, the number of selected features of beta1 band is only less than alpha band
(see Figure 7) and discriminative ratios of beta1 between ’REM and N2’ and ’REM and N3’
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are very high, but the classification accuracy is generally low. We can also observe that
the discriminative ratios of beta1 between ’N2 and N3’ is lowest in all bands (see Figure 9)
and the true positive rate of the N2 and N3 stages is lower than other frequency bands
(see Table 2). This may explain the inconsistency of the beta1 frequency band between
band evaluation and classification accuracy. The special result from subject n10 shows
achieved a high accuracy rate of 92.81% in beta1, while only 74.74–82.86% for other cases.
Tracking the original data of subject n10, we found that there is no S3 stage which results
in the deceasing decision error between N2 and N3.

4.3. Comparisons with Start-of-Arts Works

We compared our method with the start-of-arts in sleep staging classification re-
search, shown in Table 4. Sors et al. [52] designed an end-to-end convolutional neural
network(CNN) to classify the sleep stages using the raw signals and obtained the accu-
racy of 90.74%. Sharma et al. [53] used classical three time-domain features: log energy,
signal fractal dimension, and signal sample entropy and multi-class SVM as the classi-
fier and the ACC(N1 U N2, N3, REM) is 81.13%. Lajnef et al. [54] extracted 102 features
covering the time-domain, frequency-domain and non-linear features. The accuracy of
three classifications (REM, N2, N3) is 87.06% obtained by decision-tree-based multi-SVM;
Michielli et al. [55] also combined feature extraction and deep learning and the ACC(REM
U N1, N2, N3) is 90.6%. We also used their method on the CAP data set. Our method
shows a better accuracy result compared with these related works. Hopefully, this method
would be applied for automatic sleep staging and medical intervention of sleep disorders.
For instance, in chronic insomnia, using transcranial direct current stimulation in N2 can
increase the duration of N3 and sleep efficiency and the probability of transition from N2
to N3 [56] which requires more accurate separation of N2 and N3.

Table 4. Comparison of state-of-the-art studies.

Authors Features Database Classifier
Results(%)

REM (+N1) N2 (+N1) N3 ACC

Sors et al.
[52] 2018

raw signal
samples SSH-1 CNN 90.54 85.8 92.48 90.74

Sharma et al.
[53] 2018 time-domain

Sleep-EDF Multi-class
SVM 71.81 82.57 84.48 81.13

CAP Multi-class
SVM 84.40 84.10 85.60 84.71

Lajnef et al.
[54] 2015 frequency-domain

DyCog
Lab’PSD
records

D-SVM 89.13 81.63 87.88 87.06

CAP Multi-class
SVM 87.61 82.85 90.95 87.14

Michielli et al.
[55] 2019

statistical
features and
spectral features

Sleep-EDF LSTM
-RNN 91.59 89.55 92.09 90.60

CAP Multi-class
SVM 96.79 86.61 93.42 92.14

Proposed
method PLV CAP Multi-class

SVM 96.33 94.98 97.12 96.14
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5. Conclusions

In this paper, we proposed a method to classify sleep stages with brain functional
connectivity. We analyzed the characteristics of brain network during different sleep stages
and explored the influences of frequency bands for sleep staging classification. After
applying a simple machine learning method (multi-class SVM) and a series of analysis, we
obtained that:

1. For brain functional connectivity values, the average PLV increases in the delta and
alpha band, while decreases in the high frequency beta2 and gamma band during
non-REM periods;

2. Different frequency bands have different discriminative abilities for distinguishing
between sleep stages. Herein, alpha band show the dominant role in sleeping stage.
Beta1 band shows good performance for classifying ’REM and N2’ and ’REM and N3’
but higher classification error rate for ’N2 and N3’.

3. The classification performance of PLV is better than state-of-art studies. The best
accuracy is 96.91% and 96.14% for intra-subject and inter-subject cases, respectively.
We also replicated time-domain, frequency-domain and non-linear features on the
data set used in our paper and results show the better performance of PLV.
In the future, we plan to develop on online brain computer interface for automatic
sleep staging monitoring combined with this approach and graph convolution net-
work.

Author Contributions: Conceptualization, L.Z. (Li Zhu); methodology, H. H., L.Z. (Li Zhu), J. Z.;
programming, H. H., J.T, G. L.; writing, L.Z. (Li Zhu), H. H.; revising and writing-editing, L.Z. (Li
Zhu), H.H., W. K., X. L., L.Z. (Lei Zhu); visualization, H.H., L.Z. (Lei Zhu); founding acquisition, L.Z.
(Lei Zhu), W. K. All authors have read and agreed to the published version of the manuscript.

Funding: The work was supported by the National Natural Science Foundation of China (No.61633010)
and Key Research and Development Project of Zhejiang Province (2020C04009, 2018C04012) and
National Key Research & Development Project (2017YFE0116800), Fundamental Research Funds for
the Provincial Universities of Zhejiang (GK209907299001-008), Joint Funds of the National Natural
Science Foundation of China ( U1609218) and was also supported by Laboratory of Brain Machine
Collaborative Intelligence of Zhejiang Province (2020E10010).

Data Availability Statement: The data used in the manuscript is a public dataset, namely CAP Sleep
Database, please see the link ’https://www.physionet.org/content/capslpdb/1.0.0/’. We conform
to the terms of the specified license.

Acknowledgments: We would like to thank all the reviewers for their constructive comments.

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication
of this paper.

References

1. Altevogt, B.M.; Colten, H.R. Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem; Washington: National

Academies Press, 2006.
2. Younes, M. The Case for Using Digital EEG Analysis in Clinical Sleep Medicine. Sleep Sci. Pract. 2017, 1, 1–15.
3. Rechtschaffen, A. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects.

Public Health Service, 1968.
4. Iber, C.; Ancoli-Israel, S.; Chesson, A.L.; Quan, S.F. The AASM Manual for the Scoring of Sleep and Associated Events: Rules,

Terminology and Technical Specifications; American Academy of Sleep Medicine: Westchester, IL, USA, 2007; Volume 1.
5. Chapotot, F.; Becq, G. Automated Sleep-Wake Staging Combining Robust Feature Extraction, Artificial Neural Network

Classification, and Flexible Decision Rules. International Journal of Adaptive Control and Signal Processing. 2010, 24, 409–423.
6. Acharya, U.R.; Sree, S.V.; Swapna, G.; Martis, R.J.; Suri, J.S. Automated EEG Analysis of Epilepsy: A Review. Knowledge-Based

Systems 2013, 45, 147–165.
7. Aydın, S.; Tunga, M.A.; Yetkin, S. Mutual Information Analysis of Sleep EEG in Detecting Psycho-physiological Insomnia. J. Med.

Syst. 2015, 39, 43.
8. Liu, Y.; Yan, L.; Zeng, B.; Wang, W. Automatic Sleep Stage Scoring Using Hilbert-Huang Transform with BP Neural Network. In

2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18-20 June 2010.

105



Sensors 2021, 21, 1988

9. Gao, Q.; Zhou, J.; Ye, B.; Wu, X. Automatic Sleep Staging Method Based on Energy Features and Least Squares Support Vector
Machine Classifier. Journal of Biomedical Engineering 2015, 32, 531–536.

10. Yuce, A.B.; Yaslan, Y. A Disagreement Based Co-active Learning Method for Sleep Stage Classification. In Proceedings of the 2016

International Conference on Systems, Signals and Image Processing (IWSSIP), Bratislava, Slovak, 23–25 May 2016 .
11. Diykh, M.; Li, Y.; Wen, P. EEG Sleep Stages Classification Based on Time Domain Features and Structural Graph Similarity. IEEE

Trans. Neural Syst. Rehabil. Eng. 2016, 24, 1159–1168.
12. Diykh, M.; Li, Y.; Wen, P.; Li, T. Complex Networks Approach for Depth of Anesthesia Assessment. Measurement 2018,

119, 178–189.
13. Phan, H.; Andreotti, F.; Cooray, N.; Chèn, Y.O.; De Vos, M. DNN Filter Bank Improves 1-max Pooling CNN for Single-channel

EEG Automatic Sleep Stage Classification. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018 ; pp. 453–456.
14. Zhou, J.; Tian, Y.; Wang, G.; Liu, J.; Hu, Y. Automatic Sleep Stage Classification with Single Channel EEG Signal Based on

Two-layer Stacked Ensemble Model. IEEE Access 2020, 8, 57283–57297.
15. Humayun, A.I.; Sushmit, A.S.; Hasan, T.; Bhuiyan, M.I.H. End-to-end Sleep Staging with Raw Single Channel EEG using Deep

Residual ConvNets. In Proceedings of the 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Chicago,
IL, USA, 19–22 May 2019; pp. 1–5.

16. da Silveira, T.L.; Kozakevicius, A.J.; Rodrigues, C.R. Single-channel EEG Sleep Stage Classification Based on a Streamlined set of
statistical features in wavelet domain. Med. Biol. Eng. Comput. 2017, 55, 343–352.

17. Zhang, T.; Jiang, Z.; Li, D.; Wei, X.; Guo, B.; Huang, W.; Xu, G. Sleep Staging Using Plausibility Score: A Novel Feature Selection
Method Based on Metric Learning. IEEE J. Biomed. Health Inform. 2020, 25, 577–590.

18. Liang, S.F.; Kuo, C.E.; Hu, Y.H.; Cheng, Y.S. A Rule-based Automatic Sleep Staging Method. J. Neuroence Methods 2012,
205, 169–176.

19. Liu, X.; Shi, J.; Tu, Y.; Zhang, Z. Joint Collaborative Representation Based Sleep Stage Classification with Multi-channel EEG
Signals. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Milan, Italy, 5–29 August 2015 .

20. Patrick, K.; Achim, S.; Judith, B.; Konstantin, T.; Claus, M.; Holger, S.; Maximilian, T. Analysis of Multichannel EEG Patterns
During Human Sleep: A Novel Approach. Front. Hum. Neurosci. 2018, 12, 121.

21. Zhu, G.; Li, Y.; Wen, P.P. Analysis and Classification of Sleep Stages Based on Difference Visibility Graphs From a Single-Channel
EEG Signal. IEEE J. Biomed. Health Inform. 2014, 18, 1813–1821.

22. Gopika, G.K.; Prabhu, S.S.; Sinha, N. Sleep EEG Analysis Utilizing Inter-channel Covariance Matrices. Biocybern. Biomed. Eng.

2020, 40, 527–545.
23. Stevner, A.B.A.; Vidaurre, D.; Cabral, J.; Rapuano, K.; Nielsen, S.F.V.; Tagliazucchi, E.; Laufs, H.; Vuust, P.; Deco, G.; Woolrich,

M.W.A. Discovery of Key Whole-brain Transitions and Dynamics during Human Wakefulness and Non-REM Sleep. Nat.

Commun. 2019, 10, 1035 .
24. Tagliazucchi, E.; Wegner, F.V.; Morzelewski, A.; Brodbeck, V.; Laufs, H. Breakdown of Long-range Temporal Dependence in

Default Mode and Attention Networks during Deep Sleep. Proc. Natl. Acad. Sci. USA 2013, 110, 15419–15424.
25. Enzo Tagliazucchi, H.L. Decoding Wakefulness Levels from Typical FMRI Resting-state Data Reveals Reliable Drifts between

Wakefulness and Sleep. Neuron 2014, 82, 695–708.
26. Ralf.; Landwehr.; Andreas.; Volpert.; Ahmad.; Jowaed. A Recurrent Increase of Synchronization in the EEG Continues from

Waking throughout NREM and REM Sleep. ISRN Neurosci. 2014, 2014, 756952.
27. Lv, J.; Liu, D.; Ma, J.; Wang, X.; Zhang, J. Graph Theoretical Analysis of BOLD Functional Connectivity during Human Sleep

without EEG Monitoring. PLoS ONE 2015, 10, e0137297.
28. Marie-Ve, D.; Julie, C.; Jean-Marc, L.; Maxime, F.; Nadia, G.; Jacques, M.;Antonio, Z. EEG Functional Connectivity Prior to

Sleepwalking: Evidence of Interplay Between Sleep and Wakefulness. Sleep 2017, 40.
29. Terzano, M.G.; Parrino, L.; Sherieri, A.; Chervin, R.; Chokroverty, S.; Guilleminault, C.; Hirshkowitz, M.; Mahowald, M.;

Moldofsky, H.; Rosa, A.a. Atlas, Rules, and Recording Techniques for the Scoring of Cyclic Alternating Pattern (CAP) in human
sleep. Sleep Med. 2002, 2, 537.

30. Ary L. Goldberger, Luis A. N. Amaral, L.G. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource
for Complex Physiologic Signals. Circulation 2000, 101, 215–220.

31. Ohayon, M.M.; Carskadon, M.A.; Christian, G.; Vitiello, M.V. Meta-Analysis of Quantitative Sleep Parameters From Childhood
to Old Age in Healthy Individuals: Developing Normative Sleep Values Across the Human Lifespan. Sleep 2004, 27, 1255–1273.

32. Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.A.
Rules for Scoring Respiratory Events in Sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events.
J. Clin. Sleep Med. 2012, 8, 597–619.

33. Brignol, A.; Al-Ani, T.; Drouot, X. EEG-based Automatic Sleep-wake Classification in Humans Using Short and Standard Epoch
Lengths. In Proceedings of the 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE), Larnaca, Cyprus,
11–13 November 2012.

106



Sensors 2021, 21, 1988

34. Wilson, R.S.; Mayhew, S.D.; Rollings, D.T.; Goldstone, A.; Przezdzik, I.; Arvanitis, T.N.; Bagshaw, A.P. Influence of Epoch Length
on Measurement of Dynamic Functional Connectivity in Wakefulness and Behavioural Validation in Sleep. Neuroimage 2015,
112, 169–179.

35. Ludwig, K.A.; Miriani, R.M.; Langhals, N.B.; Joseph, M.D.; Anderson, D.J.; Kipke, D.R. Using a Common Average Reference to
Improve Cortical Neuron Recordings from Microelectrode Arrays. J. Neurophysiol. 2009, 101, 1679–1689.

36. Lee, T.W. Independent Component Analysis. Springer: Berlin, Germany, 1998; pp. 27–66.
37. Mognon, A.; Jovicich, J.; Bruzzone, L.; Buiatti, M. ADJUST: An Automatic EEG Artifact Detector Based on the Joint Use of Spatial

and Temporal Features. Psychophysiology 2011, 48, 229–240.
38. Lachaux, J.P.; Rodriguez, E.; Martinerie, J.; Varela, F.J.J. Measuring Phase Synchrony in Brain Signals. Hum. Brain Mapp. 2015,

8, 194–208.
39. Quiroga, R.Q.; Kraskov, A.; Kreuz, T.; Grassberger, P. Performance of Different Synchronization Measures in Real Data: A Case

Study on Electroencephalographic Signals. Phys. Rev. E 2002, 65, 041903.
40. Bruna, Ricardo, G.B.M.F. HERMES: Towards an Integrated Toolbox to Characterize Functional and Effective Brain Connectivity.

Neuroinformatics 2013, 11, 405–434.
41. Blankertz, B.; Dornhege, G.; Krauledat, M.; Müller, K.R.; Curio, G. The Non-invasive Berlin Brain-Computer Interface: Fast

acquisition of Effective Performance in Untrained Subjects. NeuroImage 2007, 37, 539–550.
42. Chang, C.C.; Lin, C.J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011.
43. Breiman, L. Stacked Regressions. Mach. Learn. 1996, 24, 49–64.
44. Rodenbeck, A.; Binder, R.; Geisler, P.; Danker-Hopfe, H.; Lund, R.; Raschke, F.; Weeß, H.G.; Schulz, H. A Review of Sleep EEG

Patterns. Part I: A Compilation of Amended Rules for their Visual Recognition According to Rechtschaffen and Kales. Somnologie

2006, 10, 159–175.
45. Cantero, J.L.; Atienza, M.; Salas, R.M. Spectral Features of EEG Alpha Activity in Human REM Sleep: Two Variants with Different

Functional Roles? Sleep N. Y. 2000, 23, 746–754.
46. Carskadon, M.A.; Rechtschaffen, A. Monitoring and Staging Human Sleep. Princ. Pract. Sleep Med. 2011, 5, 16–26.
47. Ben Dkhil, M.; Chawech, N.; Wali, A.; Alimi, A.M. Towards an Automatic Drowsiness Detection System by Evaluating the Alpha

Band of EEG Signals. In Proceedings of the IEEE International Symposium on Applied Machine Intelligence & Informatics, Herl’any,
26–28 January 2017; pp. 000371–000376.

48. Knaut, P.; von Wegner, F.; Morzelewski, A.; Laufs, H. EEG-correlated FMRI of Human Alpha (De-) synchronization. Clin.

Neurophysiol. 2019, 130, 1375–1386.
49. Riemann, D.; Spiegelhalder, K.; Feige, B.; Voderholzer, U.; Berger, M.; Perlis, M.; Nissen, C. The Hyperarousa Model of Insomnia:

A Review of the Concept and its Evidence. Sleep Med. Rev. 2010, 14, 19–31.
50. Spiegelhalder, K.; Regen, W.; Feige, B.; Holz, J.; Piosczyk, H.; Baglioni, C.; Riemann, D.; Nissen, C. Increased EEG Sigma and Beta

Power during NREM Sleep in Primary Insomnia. Biol. Psychol. 2012, 91, 329–333.
51. Sunwoo, J.S.; Cha, K.S.; Byun, J.I.; Kim, T.J.; Jun, J.S.; Lim, J.A.; Lee, S.T.; Jung, K.H.; Park, K.I.; Chu, K.; et al. Abnormal Activation

of Motor Cortical Network during Phasic REM Sleep in Idiopathic REM Sleep Behavior Disorder. Sleep 2019, 42, zsy227.
52. Sors, A.; Bonnet, S.; Mirek, S.; Vercueil, L.; Payen, J.F. A Convolutional Neural Network for Sleep Stage Scoring from Raw

Single-channel EEG. Biomed. Signal Process. Control. 2018, 42, 107–114.
53. Sharma, M.; Goyal, D.; Pv, A.; Acharya, U.R. An Accurate Sleep Stages Classification System Using a New Class of Optimally Time-

frequency Localized Three-band Wavelet Filter Bank. Comput. Biol. Med. 2018, 98, 58–75, doi:10.1016/j.compbiomed.2018.04.025.
54. Lajnef, T.; Chaibi, S.; Ruby, P.; Aguera, P.E.; Eichenlaub, J.B.; Samet, M.; Kachouri, A.; Jerbi, K. Learning Machines and Sleeping

Brains: Automatic Sleep Stage Classification Using Decision-tree Multi-class Support Vector Machines. J. Neurosci. Methods 2015,
250, 94–105.

55. Michielli, N.; Acharya, U.R.; Molinari, F. Cascaded LSTM Recurrent Neural Network for Automated Sleep Stage Classification
Using Single-channel EEG Signals. Comput. Biol. Med. 2019, 106, 71–81.

56. Saebipour, M.R.; Joghataei, M.T.; Yoonessi, A.; Sadeghniiat-Haghighi, K.; Khalighinejad, N.; Khademi, S. Slow Oscillating
Transcranial Direct Current Stimulation during Sleep has A Sleep-stabilizing Effect in Chronic Insomnia: A Pilot Study. J. Sleep

Res. 2015, 24, 518–525.

107





sensors

Article

Wearable Technologies for Mental Workload, Stress,
and Emotional State Assessment during Working-Like Tasks:
A Comparison with Laboratory Technologies

Andrea Giorgi 1,* , Vincenzo Ronca 1,2 , Alessia Vozzi 1,2, Nicolina Sciaraffa 1,3, Antonello di Florio 1,

Luca Tamborra 2,4, Ilaria Simonetti 2,4, Pietro Aricò 1,5,6 , Gianluca Di Flumeri 1,5,6 , Dario Rossi 1,6

and Gianluca Borghini 1,5,6

��������	
�������

Citation: Giorgi, A.; Ronca, V.; Vozzi,

A.; Sciaraffa, N.; di Florio, A.;

Tamborra, L.; Simonetti, I.; Aricò, P.;

Di Flumeri, G.; Rossi, D.; et al.

Wearable Technologies for Mental

Workload, Stress, and Emotional State

Assessment during Working-Like

Tasks: A Comparison with

Laboratory Technologies. Sensors

2021, 21, 2332. https://doi.org/

10.3390/s21072332

Academic Editor: Alan Jović
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Abstract: The capability of monitoring user’s performance represents a crucial aspect to improve
safety and efficiency of several human-related activities. Human errors are indeed among the
major causes of work-related accidents. Assessing human factors (HFs) could prevent these acci-
dents through specific neurophysiological signals’ evaluation but laboratory sensors require highly-
specialized operators and imply a certain grade of invasiveness which could negatively interfere with
the worker’s activity. On the contrary, consumer wearables are characterized by their ease of use and
their comfortability, other than being cheaper compared to laboratory technologies. Therefore, wear-
able sensors could represent an ideal substitute for laboratory technologies for a real-time assessment
of human performances in ecological settings. The present study aimed at assessing the reliability
and capability of consumer wearable devices (i.e., Empatica E4 and Muse 2) in discriminating specific
mental states compared to laboratory equipment. The electrooculographic (EOG), electrodermal ac-
tivity (EDA) and photoplethysmographic (PPG) signals were acquired from a group of 17 volunteers
who took part to the experimental protocol in which different working scenarios were simulated to
induce different levels of mental workload, stress, and emotional state. The results demonstrated
that the parameters computed by the consumer wearable and laboratory sensors were positively and
significantly correlated and exhibited the same evidences in terms of mental states discrimination.

Keywords: wearable device; emotional state; mental workload; stress; heart rate; eye blinks rate;
skin conductance level

1. Introduction

This paper aims to investigate the capability of two consumer wearable devices (i.e.,
Empatica 4 and Muse 2) in assessing different levels of mental and emotional states. The
consumer devices were compared to laboratory ones (i.e., BeMicro and Shimmer) in order
to validate their reliability in scientific research.

1.1. Monitoring Mental States

In recent years there was an increasing interest toward wearable monitoring
devices to assess physiological and mental activity, both in research and industry [1,2].
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These devices are particularly important to the world’s increasingly aging population
since this aspect constitutes a relevant risk factor for work-related accidents [3]. Both
in research and industry domains the mental states’ monitoring is becoming really
important. Starting from few decades ago, there was a shift in the focus from operators’
physical demands to their cognitive demands. This shift is particularly evident for
some complex and safety-critical human activities such as air traffic control, and car
and rail train driving [4–7]. In these contexts, it is evident that most of the fatal and
non-fatal accidents occur because of Human Factors (HFs) concerns [8–11]. Among
all the HFs, stress, mental overload, and lack of vigilance could cause tragic human
errors in several working environments [12–14]. Giving the limitations imposed by
subjective evaluation of mental states [15–17] and due to the fact that in some specific
activities it is not possible to interrupt operators while working, researchers started to
acquire biosignals to monitor and assess operators’ mental states. Biomarkers such as
skin conductance level (SCL), heart rate (HR), and eye blink rate (EBR) are investigated
as correlates of users’ mental states to develop a monitoring system to diminish and
prevent fatal and non-fatal accidents [4,6,16,18–20]. For this reason, it is important to
reduce at minimum the invasiveness of the monitoring equipment. Furthermore, the
interest in consumer wearable devices was supported by the increasing advances in
microelectronics which allowed to overcome the limitations imposed by the size of
the electronic components and of the measuring sensor itself [21]. The size reduction,
other than costs reduction and easiness to use, enhanced the application of such
wearable devices to areas of research which were usually investigated using laboratory
technologies, considered in scientific literature as the gold-standard [22–24]. Indeed,
despite the improvements of the technology behind laboratory equipment such devices
are often uncomfortable and obtrusive for the participants leading to a non-optimal
condition to ecologically assess mental states [25].

1.2. Consumer Wearables in Scientific Research

Consumer wearable devices are ideal candidates to record operators’ biosignals with-
out negatively interfere with their activities and tasks. Given the emergence of an incredible
amount of commercial and user-friendly wearable devices [23,24] and given the fact that
they seem to better adapt to daily-life activities, their accuracy has to be investigated deeply.
The reliability of wearable devices in measuring biomarkers such as HR and SCL was
demonstrated. In fact, compared to gold-standard equipment, consumer wearable devices
showed a similar accuracy in measuring different biomarkers such as HR, HRV and SCL in
different conditions [26–28]. Ragot and colleagues successfully adopted the Empatica E4
wrist-band to measure physiological response in an emotion recognition task [29]. Based
on these evidence wearable devices were also used to assess different mental states. Setz
and colleagues [30] compared the reliability of a consumer wearable device (Empatica E4)
in detecting drowsiness during a driving simulation task using HRV. The authors found
that E4 wristband showed similar results compared to a medical-grade device and argued
that the latter device could be substituted with the E4 in order to detect drowsiness. The
possibility to discriminate between different levels of the same mental states was also
explored. A study on simulated train traffic controlling [25] demonstrated that it is possible
to differentiate between different level of mental workload (WL) using HRV acquired via
wearable device. Compared to an FDA-approved medical device authors showed that
a consumer wearable sensor (EmWave Pro, Boulder Creek, California, USA) had similar
results in estimating changes in HRV, while the Empatica E3, a different consumer wearable
device included in the same study, did not show the same reliability. The potentiality of
consumer wearable devices in acquiring biosignals in an unobtrusive way brought to the
development of devices to collect electroencephalographic (EEG) and electrooculographic
(EOG) signals. Krigolson and colleagues [31] validated Muse 2 wearable device for ERP
research demonstrating an adequate level of accuracy in measuring N200 and P300 compo-
nents compared to standard 10–20 electrode configuration. Other researchers investigated
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the possibility to use Muse 2 to discriminate between different levels of enjoyment while
playing videogames [32]. The authors reported no significant difference in cortical activity
while subjective reports did but the absence of a gold standard reference did not allow to
objectively assess the accuracy of the consumer wearable EEG device considered.

1.3. Aim of the Present Study

Summarizing, there are contrasting evidence in literature about the reliability
of consumer wearable devices. The possibility of these devices to estimate different
biosignals is well accepted [26–29,32]. Additionally, some authors successfully differ-
entiated between several mental states using the neurometrics collected with consumer
wearables devices [25,30] but in other cases a failure was reported [25,31]. This pa-
per fits into this contest by comparing the Empatica E4 and Muse 2 with laboratory
equipment. The reliability and capability of the two consumer wearable devices were
investigated for stress, mental workload (WL), and emotional state (EmS) evaluation
while participants were performing three working-like tasks, comparing them with
laboratory equipment. To summarize, this paper aimed at responding to the following
research questions (RQ):

• RQ1: Are the above-mentioned neurophysiological parameters (EBR, SCL and HR)
gathered through consumer wearable devices comparable with those acquired with
laboratory equipment?

• RQ2: Are consumer wearable devices reliable in discriminating different levels of the
mental states considered (WL, Stress and EmS)?

2. Materials and Methods

2.1. Participants

Seventeen (17) participants were recruited from the Sapienza University of Rome (ten
males and seven females, 31.1 ± 3.7 years old) with normal or corrected-to-normal vision.
Due to artifacts and missing data caused by technical issues after signals processing twelve
(12) participants were considered valid for the analysis. Informed consent was obtained
from each participant after explanation of the study. The experiment was conducted
following the principles outlined in the Declaration of Helsinki of 1975, as revised in 2000
and was approved by the Sapienza University of Rome Ethical Committee in Charge for the
Department of Molecular Medicine (protocol number: 2507/2020, approved on 4 August
2020). To respect the privacy of participants, only aggregate results were reported.

2.2. Procedures

In order to test the reliability of consumer wearable devices in WL, stress, and EmS
evaluation, an experimental protocol was designed including three tasks: N-back task,
Doctor Game task, and Webcall task. These tasks were selected to respectively simulate an
office-like environment, an assembly-line and a teleworking activity. N-back task was used
to simulate an office related activity which usually do not demand a pronounced physical
effort whilst keeping high the mental one. Doctor Game (i.e., “Operation”) represents a fine
motor skill task requiring participant to use a pair of tweezers to extract several items from
their slots. This task was adopted because of its analogy with the assembly line activities.
Finally, Webcall task was used to reproduce a teleworking case, in which people are often
asked to communicate and coordinate with someone who is not physically present. The
order of tasks completion was balanced and randomized among participants.

2.2.1. N-Back Task

The N-back task (NB) (Figure 1) is a robust psychological test to manipulate working
memory load [33], one of the major components and a reasonable approximation of WL [34].
Participants are presented with a sequence of letters on a screen. The goal is to press a
button when the letters appearing on the screen is the same that occurred in the series n
steps before. The difficulty of the task can be manipulated increasing the value of n, thus
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forcing participants to retain more items in their mind. In this study, the task was composed
of a baseline and three conditions: Low WL, high WL, and stress. Under all conditions,
21 uppercase letters were used, which were displayed for 500 ms and an inter-stimulus
interval randomized between 500 to 3000 ms; 33% of the displayed letters were targets.

Figure 1. Example of N-back task under the 0-back, 1-back, and 2-back conditions.

• Baseline: Participants were instructed to watch the sequence of letters without giving
any response.

• Low WL: 0-back. The task consisted in indicating when the stimulus on the screen
matches a predetermined letter.

• High WL: 2-back. The task consisted in indicating when the stimulus occurred in
the series 2 steps before. When investigating stress assessment, we referred to this
condition as ‘No Stress’ condition (i.e., in the comparison ‘No Stress vs. Stress’) as it
differed from the Stress one only in the presence of the stressors whilst the difficulty
level was the same.

• Stress: The task was practically equivalent to the High WL one (indicating when the
stimulus occurred in the series two steps before) but simultaneously high intensity
noise was played (85 db) and the white-coat effect was used to stress the partici-
pant [35]. Four-minute relaxing music and video was played at the end of this phase
for letting the participants recover from the stressful event before continuing with the
remaining experimental conditions [36].

In all conditions, behavioral data like reaction time and number of errors were col-
lected. The low WL and the high WL conditions were performed randomly while the
baseline and the stress conditions were performed respectively at the beginning and at
the end of the experimental task. Before the 0-back and the 2-back task, the participant
performed a training session containing 21 stimuli, 33% of which were targets.

2.2.2. Doctor Game Task

This task is a fine motor skill task. We adopted the “Doctor Game” (DG) (i.e., “Opera-
tion”) board game (Figure 2). Its goal consisted in removing small objects from the board
without touching the metal edges. In this task a baseline, two difficulty levels and one
stressful condition were performed as well.
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Figure 2. The Doctor Game task consisted in extracting as many objects as possible from the “patient”
without touching the metal border. If an error occurred, the nose will emit a red light and the board
will vibrate.

• Baseline: Participants were instructed to watch the board game without touching the
board itself nor the objects.

• Low WL: Participants were asked to remove five predefined objects (the easiest ones).
They had three minutes to complete the task.

• High WL: Participants were asked to remove all 12 objects. They had three minutes to
complete the task. When investigating stress assessment, we referred to this condition
as ‘No Stress’ condition (i.e., in the comparison ‘No Stress vs. Stress’) as it differed
from the Stress one only in the presence of the stressors whilst the difficulty level was
the same.

• Stress: Participants were asked to remove all 12 objects. They had one minute to
complete the task. Additionally, high intensity noise was played (85 db) and the
white-coat effect was used to stress the participant [35]. Then, a four-minute relaxing
music and video was played at the end of this phase. This was done to let participants
recover from the stressful event before continuing with the experiment.

In all conditions, behavioral data like number of objects removed and accomplishment
time were collected. The Low WL and the High WL conditions were performed randomly
while the baseline and the stress conditions were performed respectively at the beginning
and at the end of the experimental task. Before the baseline the participant performed a
training session by extracting a couple of objects from the board.
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2.2.3. Webcall Task

This task consisted in an interactive Webcall to simulate a teleconference in smart-
working condition. This task comprised a baseline, a positive, and a negative condition
of two minutes each. The positive and negative conditions were achieved by asking
the participant to respectively recall the happiest and the saddest memory of their past,
while during the baseline condition the participant was asked to watch the teleconference
platform interface without reacting. The positive condition was always performed at the
beginning to avoid transients due to strong negative memories. One experimenter was
sitting in another room interacting with the participant. The hypothesis was that asking the
participant to talk about saddest/happiest memories will naturally induce these emotions
and thereby enable them to feel and display the relevant expressions of emotions via
multiple modalities, including physiological reactions [37,38].

2.3. Performance Assessment

Participants’ performance was assessed for NB and DG tasks. Webcall task did not
imply a right or wrong response therefore no performance was computed. Performance
in NB was assessed using the Inverse Efficiency Score (IES) [34] computed as reported in
Equation (1):

IES =
RT

1 − PE
(1)

where RT is the participant’s average (correct) reaction time within the condition considered,
and PE is the participant’s proportion of errors in the same condition. IES can be considered
as the RT corrected for the amount of errors committed [34].

For the DG task we combined the number of errors, number of extracted objects, and
the time spent to complete the task, in order to have an overall value representing the
performance. Since no standard Performance Index (PI) are reported in the literature, we
proposed the following one:

PI =

OBJ
OBJmax

+
(

1 − ERR
TIME

)
2

(2)

where OBJ is the number of extracted objects, OBJmax is the total number of objects in
the condition (5 in the low WL condition and 12 in the high WL and stress ones), ERR is
the maximum number of errors a participant could make in the condition (one error per
second, 180 in Low WL and High WL conditions and 60 in Stress one) and TIME is the
time the participant spent to complete the task in the condition.

2.4. Subjective Reports

After each experimental condition, including the baseline, two questionnaires were
administered to the participants:

• NASA Task-Load Index (NASA-TLX): It consists of six sub-scales representing inde-
pendent groups of variables: mental, physical and temporal demands, frustration,
effort and performance [39]. The participants were initially asked to rate on a scale
from “low” to “high” (from 0 to 100) each of the six dimensions during the task.
Afterwards, they had to choose the most important factor along pairwise comparisons.
The NASA-TLX was selected for subjectively quantify the mental demand perceived
by the participants with respect to the experimental condition of DG and NB tasks.

• GENEVA Emotion Wheel (GEW): It is a validated instrument to measure emotional
reactions to several stimuli [40]. The participants were asked to indicate the emotion
he/she experienced by choosing intensities for a single emotion or a blend of several
emotions out of 20 distinct emotion families. Given the nature of the task, in this
analysis we decided to use only the type of emotions selected by participants, without
considering their intensities.
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The reason why we selected these questionnaires is because they have been adopted
in several studies. In particular, the NASA-TLX has been used for WL [41,42] subjective
reports and GENEVA has been used for emotion categorization [40,43]. For the stress
self-report, we utilized only the temporal demand and frustration parameters because they
are the main components of the stressor used in this study.

2.5. EOG Recording and Analysis for Mental Workload Assessment

The vertical EOG pattern was estimated by acquiring simultaneously the EEG Fpz
channel of the BeMicro (EB Neuro, Florence, Italy) and the EEG TP9 channel of the Muse
2 (Interaxon Inc, Toronto, OH, USA), with a sampling frequency of 256 Hz and 64 Hz
respectively. Details are summarized in Table 1. The aim of the EOG analysis was to detect
the eye blinks in order to estimate the eye blink rate (EBR) and finally correlate it with the
WL variations) [7,44]. The same algorithm was adopted for the analysis of both datasets.
Firstly, the EOG signal was band-pass filtered using a 5th-order Butterworth filter within
the frequency range of 2–10 Hz, since in this range the main frequency contribute of eye
blinks is contained [45,46].

Table 1. A summary of the devices and signals used in the presented work.

Signal
Laboratory

Device
Consumer

Wearable Device
Extracted
Feature

Filter Frequency
Range

Time
Window

EOG BeMicro Muse 2 EBR 2–10 Hz -

EDA Shimmer Empatica 4 SCL 1 Hz 60 s

PPG - Empatica 4 HR 1–4 Hz 60 s

ECG BeMicro - HR 1–15 Hz 60 s

Secondly, the eyes open condition was used to identify a threshold for each participant
that, when exceeded, identified a potential blink. The threshold was calculated as follows:

Threshold = mean(EOG Eyes Open) + 3 ∗ robustStdDev (3)

where robustStdDev is the mean absolute deviation of the corresponding EOG channel.
Finally, every time the EOG signal exceeded the computed threshold, the Pearson

correlation between a common blink template (the template was built averaging the blinks
estimated from five random participants during the eyes open condition) and the EOG
signal was computed within each experimental condition (i.e., pattern-matching phase).
If this value was higher than 0.9, a potential blink would be classified as “real blink”,
similarly to what performed by the BLINKER algorithm [47].

The EBR estimated for each participant in each condition were calculated as the
total number of blinks in every condition divided by the condition duration. EBR was
evaluated under the different WL conditions to assess if it could differentiate user’s mental
workload. Previous studies demonstrated the capability of this parameter in estimating
WL demand [16,44,48].

2.6. EDA Recording and Analysis for Stress Assessment

The EDA was recorded by both laboratory and consumer wearable devices. The
sampling frequency of the Shimmer3 GSR+ unit (Shimmer Sensing, Dublin, Ireland) lab-
oratory device was 64 Hz while the sampling frequency of the Empatica E4 was 4 Hz.
Shimmer sensors were placed on the participant’s no-dominant hand on the second and
third fingers. In Empatica E4 the two electrodes are placed on the bottom part of the wrist.
The EDA was firstly low-pass filtered with a cut-off frequency of 1 Hz and then processed
by using the Ledalab suite [49], a specific open-source toolbox implemented within the
MATLAB (MathWorks, Natik, Massachussets) environment for EDA processing (details
in Table 1). The continuous decomposition analysis [50] was applied in order to estimate
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the tonic (SCL) and the phasic (SCR) components [51]. The SCL is the slow-changing
component of the EDA signal, mostly related to the global arousal of the participant. On
the contrary, the SCR is the fast-changing component of the EDA signal usually related
to single stimuli reactions. The EDA components, as well as the other neurophysiological
parameters, were estimated both using a 60 s time resolution and averaging within each
experimental condition. Finally, only the SCL was analyzed accordingly with the objectives
of the present study as demonstrated by Borghini et al. [7]. This parameter was chosen
for stress estimation since previous studies demonstrated its relation with this mental
state [7,52].

2.7. ECG Signal Recording and Analysis for Emotional State Assessment

Additonally, the HR estimation was performed using laboratory and consumer wear-
able technologies. ECG signal was collected using an electrode fixed on the participant’s
chest (laboratory device BeMicro) and referred to the potential recorded at both the earlobes
with a sampling frequency of 256 Hz. At the same time, photoplethysmographic signal
(PPG) was collected by means of Empatica E4 (Empatica, Milan, Italy). First, the ECG
and PPG signal were filtered using a 5th-order Butterworth band-pass filter (1–1 Hz, and
1–4 Hz, respectively) in order to reject the continuous component and the high-frequency
interferences, such as that related to the mains power source (details in Table 1). Another
purpose of this filtering was to emphasize the QRS process of the ECG signal [53]. The
following step consisted in computing the ECG (PPG) signal to the power of 3 to emphasize
the heartbeat peaks, as they generally have the highest amplitude, and at the same time
reduce spurious artifact peaks. Finally, the distance between consecutive peaks (i.e., each
R peak corresponds to a heartbeat) was measured to estimate the HR values every 60 s.
The Pan-Tompkins algorithm [54] was used for the HR estimation. A combination of HR
and SCL measurements was adopted in order to estimate EmS [55,56]. In this regard, an
Emotional Index (EI) was defined as:

EI = |SCL| ∗ HR (4)

where SCL and HR were normalized by subtracting the corresponding baseline and divid-
ing by the corresponding standard deviation. The resulting values were then averaged
within the considered experimental condition. The combination of these two parameters
was adopted because the sensitivity of this emotional index was already described in
previous works [56].

2.8. Statistical Analysis

Statistical analyses were performed after normalizing each data condition with the
corresponding task Baseline. For each participant, EBR, SCL, and HR data collected during
baseline were subtracted from data collected during experimental conditions. The new
EBR, SCL and HR values were named respectively EBR’, SCL’ and HR’. The Shapiro–Wilk
test was used to assess the normality of the distribution related to each of the considered
parameters. If normality was confirmed, Student’s t-test would have been performed to
pairwise compare the conditions (e.g., ‘Low WL vs. High WL’, or ‘laboratory device vs.
wearable device’). In case of non-normal distribution, the Wilcoxon signed-rank test was
performed. In case of comparisons between three or more distributions, the analysis of
variance (ANOVA) or its non-parametric equivalent (Friedman ANOVA) was performed.
For all tests, statistical significance was set at α = 0.05.

Pearson’s repeated measure correlation (rmcorr) analysis [57] was then used to assess
the reliability of the parameters estimated by the wearable device with respect to the
laboratory one both at single- participant level and on the entire group. The rmcorr was
performed on the average values of each parameter of wearable and laboratory devices
gathered during the entire experimental session.
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3. Results

3.1. Performance

3.1.1. N-back task

The Wilcoxon signed-rank test on the IES (Figure 3) revealed a significant difference
between the low WL and high WL conditions (p < 0.001) and between the “no stress” (i.e.,
high WL) and stress conditions (p < 0.001). Furthermore, the three parameters involved in
the IES computation (i.e., reaction times, wrong response, missed response) were analyzed
to determine the one was most affecting the decreasing performance while executing the
task. The Wilcoxon signed-rank test showed that both in high WL and Stress conditions
(Figure 4) the number of missed responses increased significantly compared to the low WL
condition (p < 0.001).

Figure 3. Difference in subjective performance during N-back task. Low vs. high Workload (WL)
conditions (p < 0.001). No stress vs. stress conditions (p < 0.001).

Figure 4. The number of missed responses was higher in high WL and stress conditions compared to
the low WL condition (p < 0.001).
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3.1.2. Doctor Game Task

The Wilcoxon signed-rank test revealed that the performance index significantly
decreased (p = 0.03) during the high WL condition compared to the low WL one (Figure 5).
The same was observed during the Stress condition when compared with the no stress one
(p = 0.02).

Figure 5. The performance index significantly decreased during the high WL condition compared
to Low WL condition (p = 0.03). The same result was found in the stress vs. no stress comparison
(p = 0.001).

3.2. Subjective Reports

3.2.1. N-back task

The Wilcoxon signed-rank test performed on the NASA-TLX demonstrated that
participants perceived the High WL condition significantly more demanding (p = 0.02)
than Low WL one (Figure 6). Additionally, at the end of the experiments they reported that
the High WL condition resulted too difficult to be performed and that for this reason they
did not or could not attend the task properly. Regarding the subjective stress evaluation,
the combination of frustration and temporal demand parameters of the NASA-TLX was
considered. These two parameters were selected accordingly with the relevant audio
noise and the white-coat effect induced within the stress condition. The statistical analysis
showed no significant difference (p = 0.4) in terms of perceived stress between no-stress
and stress conditions.

3.2.2. Doctor Game Task

Looking at NASA-TLX total score, participants did not perceive the High WL condition
to be significantly harder than Low WL condition (p = 0.9). Additionally, in this task we
considered the frustration and temporal demand parameters of the NASA-TLX to assess
the perceived stress, and no significant difference was found between the no-stress and
stress conditions (p = 0.8).

3.2.3. Webcall Task

As showed in Table 2, during the positive condition participants rated mostly positive
emotions than the negative ones. Instead, during negative conditions the rated emotions
were mostly negative. However, some participants selected negative emotions during the
positive calls while others positive emotions during the negative one.
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Figure 6. NASA-TLX total score during the low WL and high WL conditions (p = 0.02).

Table 2. Frequency of the emotions selected after positive and negative conditions of the Webcall.

Emotions (Geneva Emotion Wheel) Positive Webcall Negative Webcall

Admiration 1
Contentment 1 1

Joy 12
Love 3 2

Pleasure 6
Pride 3 1
Relief 1

Interest 6 2
Embarrassment 1

Compassion 1
Anger 1 2

Disappointment 4
Disgust 1

Fear 3
Guilt 3

Regret 1 1
Sadness 2 11
Shame 1 3

3.3. Neurophysiological Results

3.3.1. Methods comparisons

The statistical analysis revealed no significant difference in terms of EBR’ between the
consumer wearable and laboratory equipment during both NB (p = 0.65) and DG (p = 0.69).
Similarly, the Wilcoxon signed-rank tests on the SCL’ and HR’ showed no significant
differences in terms of SCL’ (NB: p = 0.09; DG: p = 0.4) and HR’ (NB: p = 0.18; DG: p = 0.69)
estimation. Correlation analysis between the neurophysiological parameter estimated with
wearable and laboratory devices was performed. All the parameters were significantly
correlated (p < 0.05). EBR estimated with laboratory and wearable devices resulted highly
and positively correlated (R = 0.83, p < 10−47) (Figure 7). Correlation for SCL and HR
resulted less strong but however significant. SCL correlation analysis (Figure 8) reported
and R of 0.4 (p < 10−6). Finally, R value for HR correlation (Figure 9) was 0.51 (p < 10−14).
To support correlation results, time dynamics of the investigated parameters acquired in a
representative participant are depicted in Figures 10–12.
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Figure 7. Pearson’s repeated measure correlation for the Eyeblink Rate (EBR) estimated with labora-
tory and wearable devices. R = 0.83, p < 10−47.

Figure 8. Pearson’s repeated measure correlation for the Skin Conductance Level (SCL) estimated
with laboratory and wearable devices. R = 0.4, p < 10−6.
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Figure 9. Pearson’s repeated measure correlation for the Heart Rate (HR) estimated with laboratory
and wearable devices. R = 0.51, p <10−14.

Figure 10. Time dynamics of EBR across all experimental task and conditions for both consumer
wearable (blue) and laboratory device (red).
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Figure 11. Time dynamics of SCL across all experimental task and conditions for both consumer
wearable (red) and laboratory device (blue).

Figure 12. Time dynamics of EBR across all experimental task and conditions for both consumer
wearable (red) and laboratory device (blue).

3.3.2. Mental workload

For both wearable and laboratory device the Wilcoxon signed-rank tests did not reveal
significant differences (consumer wearable: p = 0.64; laboratory: p = 0.96) in terms of EBR’
when comparing high WL vs. low WL conditions.
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3.3.3. Stress

The Wilcoxon signed-rank tests on SCL’ parameter estimated by the laboratory device
and the wearable one returned significant difference showing higher values during the
stress condition (all p < 0.05) both for the NB (Figure 13) and DG (Figure 14) task.

Figure 13. Increased SCL’ in stress vs. no stress condition during NB task. Statistical analysis revealed significant difference
between the conditions for both (a) laboratory equipment (p = 0.002) and (b) wearable device (p = 0.1).

Figure 14. Increased SCL’ in stress vs. no stress condition during DG task. Statistical analysis revealed significant difference
between the conditions for both (a) laboratory equipment (p = 0.0004) and (b) wearable device (p = 0.02).

3.3.4. Emotional State

The Wilcoxon signed-rank test demonstrated no statistical differences (wearable:
p = 0.1; laboratory: p = 0.4) in terms of EI between the positive and negative conditions.
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4. Discussion

The objectives of the study consisted in assessing the reliability and capability of
commercial wearable devices with respect to laboratory devices in estimating EBR, SCL
and HR parameters and discriminating different levels of mental workload, stress, and
emotional state.

4.1. Research Questions

Regarding the RQ1 (i.e., “Are the above-mentioned neurophysiological parameters
(EBR, SCL and HR) gathered through consumer wearable devices comparable with those
acquired with laboratory equipment?”), our results confirmed the feasibility to measure
EBR, HR and SCL using consumer wearable devices. The parameters estimated with wear-
able and laboratory devices showed significant positive correlations as a demonstration
that the two devices provided similar neurophysiological results (Figures 7–9). Addition-
ally, no statistical differences were observed in terms of EBR, HR, and SCL estimation
between the two technologies considered (i.e., consumer wearable and laboratory). In
fact, for each of the parameters considered the statistical analysis showed no significant
difference in the averaged. These results support the adoption of consumer wearable
devices and the relative collected metrics to disentangle complex mental and emotional
events in real-life environments. This aspect leads to the RQ2 (i.e., “Are consumer wearable
devices reliable in assessing different levels of several mental states?”). EBR was used as a
neurophysiological correlate of WL, and the Muse 2 (wearable) and BeMicro (laboratory)
devices were compared. No difference was found in terms of mental workload variation
during the NB and DG task.

4.2. Workload Assessment

Regarding the DG task, the absence of WL changes was probably due to the fact that
the High WL condition was not so hard as expected. Indeed, even if performance decreased
in the high WL condition compared to the low WL one, participants did not perceive the
high WL condition to be harder. It is arguable that adding more items resulted in a similar
WL demand between low and high WL conditions with no difference when comparing
EBR’ correlates.

Similarly, for the NB task, combining together performance and subjective reports,
it could be argued that the absence of WL correlates was due to the difficulty of the task
itself. In fact, NASA-TLX showed participants perceiving high WL condition to be harder
than low WL one (Figure 6). However, at the end of the experimental session they reported
that the High WL condition was too hard to be performed and for this reason they did
not or could not attend the task properly. This finding is supported by performance
analysis, where it was found number of missed responses significantly increased in high
WL condition compared to low WL one (Figure 4). In this view, the absence of WL
correlates could be a result of participants’ abandoning the task. Alternatively, the lack
of EBR’ variations in both tasks could be motivated by EBR sensitivity. EBR parameter
could be less sensitive to slight changes in task WL demand then other parameters (HR,
HRV, PSD, ERP, etc.). This means that other parameters than EBR could have detected WL
correlates in the same conditions. This points out directions for future works. The same
paradigm could be tested using different neurophysiological correlates of WL to test their
sensitivity and to support their adoption in different environments.

4.3. Stress Assessment

In terms of stress assessment, the SCL parameter was used as a neurophysiological
correlate. The Empatica E4 (consumer wearable) and Shimmer (laboratory) evaluated an
increased stress level during Stress condition compared to no stress one, both within NB
(Figure 13) and DG (Figure 14) tasks. Even if stress correlates are accompanied with a
decreased performance in both experimental tasks (Figure 3, Figure 5), participants were
not able to perceive stress variations. In accordance with this, previous studies highlighted
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the limit in assessing perceived stress using subjective reports [34]. This study, therefore,
confirmed the utility of using neurometrics to assess perceived stress [7]. It was also
demonstrated that consumer wearable devices could substitute laboratory equipment to
acquire such neurometrics. The possibility to detect stress in an obtrusive way is one of the
most promising aspects of wearable devices.

4.4. Emotional State Assessment

Finally, regarding the possibility to discriminate between a positive EmS and a neg-
ative one using a combination of SCL and HR [55], both technologies were not able to
differentiate these two conditions. Even if after positive condition participants selected
mostly positive emotions (and negative ones after negative conditions), we found that
after positive condition participants selected also some negative emotions and vice versa.
It is arguable what arose from the two conditions was a blend of emotions, with no pure
positive or negative connotations. Additionally, there is the possibility that two minutes
interaction with a stranger in a simulated webcall was not enough to elicit a measurable
neurophysiological change in the participants’ emotional states. As exposed, considering
performance and subjective evaluations, the reason for the absence of WL and EmS corre-
lates could be the experimental design itself, which did not elicit the desired mental states.
This limit points out direction for next works. Future studies should design an experiment
to more accurately define WL and EmS conditions.

4.5. Limits and Future Directions

Although both the reliability of consumer wearable devices in estimating neurophysi-
ological signals and their capability in discriminating different levels of stress is promising,
some limitations must be discussed. An experimental design and tasks capable of eliciting
the desired levels of the mental states must be implemented to better investigate the us-
ability of wearable devices. For NB and DG, an improved design should elicit the proper
level of workload while for the emotional state evaluations a longer duration of the task
should be considered in order to elicit a stronger and measurable emotional, and therefore
autonomic, response in the participants. Consumer wearable devices are user-friendly and
non-invasive technologies, allowing their usage in dynamics condition in which labora-
tory equipment would not be adequate. The possibility to use these devices in dynamics
environments must be supported by a good quality of the gathered signals. This is a
challenging aspect for consumer wearable devices and their utilization must be carefully
evaluated considering the recording settings and protocol in order to acquire a valid signal.
In particular, after this preliminary evaluation of wearables reliability, their capability in
differentiating between different mental states should will be tested in real-working condi-
tions with attention to the processing and analysis of the data gathered with these devices
and the results will be considered for the next study. Additionally, it should be underlined
that one of the considered consumer wearable devices, the Empatica E4, can be classified as
a high-level wearable device. The elevated cost of high-quality wearables could represent
a limit in their adoption. For this reason, the possibility to estimate the considered signals
and the related mental states using commercial and low-cost wearable devices should be
also explored in order to broad the mental state monitoring in the consumer world, without
limiting their adoption to the scientific research.

Furthermore, future works should investigate these and other mental states in a larger
group of participants and investigate the impact of participants’ movements on the quality
of collected data with a particular attention to the devices/parameters affected by the
movements and the intensity of the considered signals. Specifically, an important aspect
that will be investigated in the next study is the comparison of the number of artifacts and
the percentage of data loss found in consumer wearable devices with those of laboratory
equipment. Additionally, reliability of investigated parameters in estimating mental states
correlates in working-like tasks should be compared to other physiological signals (such
as EEG and HRV) in order to detect the one that better fits to the recording conditions.
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Consequently, the adoption of other physiological signals must be accompanied by an
adequate task duration to provide reliable data. Once reliability of wearable devices
has been confirmed, the possibility to discriminate mental states in real-time must be
investigated. Finally, consumer wearable devices are optimal candidate for health and
well-being monitoring [58,59]. When appropriate algorithms are applied it is possible to
monitor patients’ health by remote in real-time and prevent fatal and non-fatal occurrences.
For this reason, it is important to investigate the acceptance of this wearable devices
and their easiness to use [60]. This will be especially important for monitoring elderly
population [61].

5. Conclusions

The study demonstrated that signal recorded with consumer wearable and laboratory
devices showed a statistically positive correlation and no significant difference (RQ1).
Additionally, it was demonstrated the capability in differentiating stress levels (RQ2).
Within this experimental design it was impossible to differentiate between different levels
of WL and EmS (RQ2).

The possibility to measure neurophysiological parameters at the same level laboratory
devices do but with a limited invasiveness is one of the greatest points of strength of
consumer wearable devices. On the other side, unobtrusiveness is achieved with reduced
size which comports a limited duration of the battery, limiting these devices to short periods
of testing. Furthermore, it is reported that the contact between wearable devices and the
body id not always optimal, leading to missing or altered data [25]. This limits the use of
consumer wearables to those case in which movement is compatible with data collecting.

Taken together, these findings support the adoption of low-cost wearable device to
monitor operators’ mental states in laboratory and real-life environments. The possibility to
unobtrusively assess mental states has broad applications. It could be possible to monitor
air-traffic controllers, medical operators, surgeons, while working without interfering with
the performance. Hopefully, the ability to better differentiate between mental states will
reduce the effect of tragic occurrences.
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Abstract: In human emotion estimation using an electroencephalogram (EEG) and heart rate vari-
ability (HRV), there are two main issues as far as we know. The first is that measurement devices for
physiological signals are expensive and not easy to wear. The second is that unnecessary physiolog-
ical indexes have not been removed, which is likely to decrease the accuracy of machine learning
models. In this study, we used single-channel EEG sensor and photoplethysmography (PPG) sensor,
which are inexpensive and easy to wear. We collected data from 25 participants (18 males and
7 females) and used a deep learning algorithm to construct an emotion classification model based
on Arousal–Valence space using several feature combinations obtained from physiological indexes
selected based on our criteria including our proposed feature selection methods. We then performed
accuracy verification, applying a stratified 10-fold cross-validation method to the constructed mod-
els. The results showed that model accuracies are as high as 90% to 99% by applying the features
selection methods we proposed, which suggests that a small number of physiological indexes, even
from inexpensive sensors, can be used to construct an accurate emotion classification model if an
appropriate feature selection method is applied. Our research results contribute to the improvement
of an emotion classification model with a higher accuracy, less cost, and that is less time consuming,
which has the potential to be further applied to various areas of applications.

Keywords: emotion recognition; electroencephalogram (EEG); photoplethysmography (PPG); ma-
chine learning; feature extraction; feature selection

1. Introduction

In recent years, there has been a number of studies on estimating human emotions
in the engineering field, and there are a wide variety of fields where this technology is
expected to be applied [1–3]. In human–robot interactions (HRI), emotion estimation
technology is used to facilitate communication between humans and robots in real-life
settings, such as schools [4], homes [5], ambient assisted living [6], hospitals [7], and in
rehabilitation [8]. In the field of marketing, the best advertisements [9] for a customer are
presented by estimating a customer’s emotion. Furthermore, in the field of education, emo-
tion analysis technology is used to improve the learning process and remote teaching [4].
In daily-living scenarios, such as in homes and ambient assisted living, several sensor
technologies have been used to recognize emotions, aiming at improving emotional health
and comfort, especially for older adults and people with disabilities [5,6]. In the medical
field, mental healthcare is done by detecting unpleasant emotions, such as stress [10], and
by assisting people who have communication difficulties due to handicaps [11].

Emotion estimation, which is applicable in various fields, can be divided into several
methods. We divided them into two categories, based on the literature of Wang et al. [12]
and Jianhua et al. [3]. The first is a method that analyzes facial expressions, posture, behav-
ior, voice, etc. The second is a method that analyzes the autonomic nervous system using
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physiological indexes, such as electrocardiogram (ECG), respiration, heartbeat, electroen-
cephalogram (EEG), electromyography (EMG), and eye movements. The former method is
the result of the intervention of cognitive functions that people can express intentionally
and has the advantage of being observable from the outside. However, it can be faked;
for example, when a person expresses something different from his or her true intentions.
This means that we may not be able to guarantee that an emotion can be estimated accu-
rately [13]. The other is a method for estimating emotions based on direct physiological
responses to stimuli, unlike faces and voices, and has received a great deal of attention
in recent years [14,15]. Since physiological response to an external stimulus is difficult to
change arbitrarily via human consciousness, the latter method has the advantage of being
able to estimate emotions more objectively using physiological data [3,12,16].

In the early stages of emotion estimation by analyzing physiological data, the use of a
single type of physiological index was the main method. For example, Krishna et al. em-
ployed EEG signals to classify basic emotions using a mixture classification technique [17].
However, in recent years, it is known that more complex emotion estimations with a high
accuracy can be achieved by using multiple sources of physiological indexes [13].

To estimate emotions by analyzing physiological indexes, the Russell’s circumplex
model [18] and the Arousal–Valence space model [19] are often used (Figure 1). These
models are among the most referenced emotion classification methods in the field of psy-
chology, and represent basic human emotions on two axes, Arousal and Valence [3,14]. This
model is also commonly used in studies to estimate emotions by analyzing physiological
indexes and is regarded as a proven emotion classification model [2]. Several studies
on emotion recognition using multimodal physiological signals have been reported, in
which both basic and complex emotion recognition models have been proposed, combining
physiological signals, especially EEG, ECG, and EMG [20]. Additionally, anxiety level
recognition using blood volume pressure (BVP) and galvanic skin response (GSR), as well
as skin temperature, has been proposed recently in areas of application like VR-based
therapy [21].

Figure 1. Arousal–Valence space model.

In emotion estimation studies using multimodal physiological indexes, the issue
is how to combine physiological and psychological indexes. Ikeda et al. proposed an
emotion estimation method that combines EEG and heart rate variability (HRV) indexes
with psychological indexes based on Russell’s circumplex model [16]. Ikeda et al. assigned
EEG indexes to the Arousal axis of the psychological index (vertical axis of the Russell’s
circumplex model), and the HRV indexes to the Valence axis of the psychological index
(horizontal axis of the Russell’s circumplex model). Then, the correlation between EEG and
HRV indexes were measured in real time and the psychological indexes were analyzed
to classify emotions. It has been reported that EEG can be used to measure the state of

132



Sensors 2021, 21, 2910

concentration [22] and that it has a negative correlation with a subjectively evaluated level
of arousal [2]. Therefore, we believe that there is a certain validity in mapping EEG indexes
to Arousal. The HRV indexes have been considered reliable to detect stress as unpleasant
emotions [23]. In addition, some HRV indexes can be used to estimate a relaxed state [2].
Therefore, we believe that there is a certain amount of validity in assigning the HRV indexes
to Valence.

However, the method of Ikeda et al. does not take the individual differences that occur
in physiological indexes when mapping EEG and HRV indexes to Arousal and Valence,
respectively, into account. They mapped pNN50, one HRV index, to Valence. According to
Francesco et al., the mean value of pNN50 is 0.3 [24]. In addition, Michael et al. reported
that pNN50 is negatively correlated with stress level calculated using a self-assessment
questionnaire [25]. Based on the above points, Ikeda et al. employed 0.3 as a threshold
of pNN50: emotion is judged as having a high valence if pNN50 is above 0.3 and a low
valence if it is below 0.3. However, for more general applications, it is necessary to deal
with individual differences in physiological indexes, such as EEG and HRV indexes.

To address this issue, Urabe et al. proposed a machine learning method based
on these physiological indexes and the ground-truth information acquired from a self-
assessment [26]. They used deep learning with EEG and HRV indexes as features to
construct an emotion estimation model for each individual, which enabled highly accurate
emotion estimation. As a result of verifying the accuracy of emotion estimation using
Urabe et al.’s method, it was reported that an average classification accuracy of 80% and
a maximum classification accuracy of 100% were obtained in the four quadrants of the
Arousal–Valence space model, HAHV, HALV, LALV, and LAHV, shown in Figure 1 [25].

However, when considering applications in medical fields, such as healthcare, an
average accuracy of 80% may still be insufficient. In general, when constructing an esti-
mation model using machine learning, it is suggested that the accuracy can be improved
by discovering useful features for estimation and removing unnecessary ones through the
calculation, extraction, and selection of features [27]. However, the number of features
used in Urabe et al.’s study was only six; five for EEG indexes and one for HRV index,
which supports the idea that that the lack of feature extraction and selection is one of the
reasons for insufficient accuracy of their emotion estimation model.

Another study that used EEG and HRV indexes as features is that of Tong et al. [28].
They used a total of 34 physiological indexes: 9 HRV indexes from a photoplethysmogram
(PPG) data and 25 EEG indexes from a five-channel EEG data. They reported that the
machine learning accuracy using all indexes as features was 67% for binary classification of
low and high arousal, and 65% for binary classification of low and high valence. However,
they did not perform feature selection. By selecting features, we expected a higher accuracy
in emotion estimation.

On the other hand, Katsigiannis et al. extracted 42 EEG-based features from 14-
channel EEG data and 71 HRV-based features from ECG data [13]. They reported that the
accuracy of emotion estimation using all of these features for the binary classification of
both high/low arousal, as well as high/low valence, was about 62%.

Katsigiannis et al. extracted a larger number of features than Urabe et al. and Tong et al.
However, feature selection was still not performed. In addition, there is an issue with
the measurement equipment used for feature extraction. When wearing an EEG sensor,
the electrodes need to touch the scalp, and hair needs to be avoided. In addition, some
EEG sensors require saline solution or special gel to reduce the electrical resistance. To
increase user comfort and ease of use, it is recommended to use fewer electrodes [14],
but Katsigiannis et al. used 14 electrodes. In addition, although they used an ECG to
calculate the HRV indexes, a PPG can be an alternative to measure the same indexes more
inexpensively [2].

Therefore, our study used a simple single-electrode EEG sensor to increase user
comfort and ease of use, and a PPG sensor to collect HRV data at a low cost, in order to
verify whether emotion estimation technology can be performed more easily. In addition,

133



Sensors 2021, 21, 2910

we extracted and selected the features from EEG and HRV data, aiming at increasing the
accuracy of emotion estimation model. In this paper, our method for feature extraction and
selection, construction of deep-learning-based emotion estimation model, and validation
of the model accuracy are presented.

The structure of this paper is as follows: Section 2 describes the EEG and HRV indexes
to be used as features for model construction via machine learning; Section 3 describes
the data collection method for model construction; Section 4 describes our proposed
method, that is, the feature selection and its results; Section 5 describes the proposed
emotion classification model and its accuracy validation results; and Section 6 summarizes
the paper.

2. Feature Extraction from EEG/HRV Data

2.1. EEG Indexes

EEG is an electrical signal recorded in the brain using electrodes. The EEG signal is
classified into several bands based on the frequency, each of which has different interpreta-
tions in psychological and brain activity states [29]. Generally, wide frequency bands such
as α, β, and γ, are used as indexes to estimate human emotions. In addition, subdivided
frequency bands such as low α and high α can be used to estimated more subtle human
emotions. Therefore, we employed all of them as EEG indexes in this study.

In addition to the above EEG indexes, we used moving average of those EEG indexes
with a window size of 15. Since EEG indexes have severe fluctuations by nature, which
is considered to inhibit the effectiveness of the objective function minimization, and the
threshold value calculation of the machine learning algorithm, calculating the moving aver-
age is considered to help reduce this inhibition, and may result in the increase of accuracy
of emotion estimation model. Table 1 shows the EEG indexes and their corresponding
frequency bands and interpretations used in this study [30–32].

Table 1. Electroencephalogram (EEG) indexes used in this study.

EEG Index/Band Frequency Band (Hz) Interpretation

δ 1–3 Deepest sleep without dreams, unconscious,
non-REM sleep, cognitive task by frontal lobe

θ 4–7 Intuitive, creative, dream, recall, fantasy,
imaginary, REM sleep

α 1 8–12 Relaxed but not sleepy, tranquil, conscious

β 2 13–30 Stress, wide awake, excited, conscious

γ 3 31–50 Cognition, motor function, higher mental activity

Low α 8–9 Relaxed, peaceful, conscious

High α 10–12 Relaxed but focused

Low β 13–17 Thinking, accidents and environmental awareness,
relaxed yet focused, integrated

High β 18–30 Alert, upset, agitation

Low γ 31–40 Memory, higher mental activity

Mid γ 41–50 Visual information processing

MA15 × 4

where x = {θ, δ, α, β, γ, Low α, High α,
Low β, High β, Low γ, Mid γ}

Note 5 Note 5

1 α is calculated from Low α + High α. 2 β is calculated from Low β + High β. 3 γ is calculated from Low γ + Mid γ. 4 Moving average of
index x with window size of 15. 5 The frequency band and interpretation are corresponding to each EEG index/band x.

Urabe et al. evaluated the function of the frontal lobe in brain function in order to
measure Arousal in the Arousal–Valence space model [25]. EEG signal acquired from the
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frontal lobe is often used for an integrated measurement of concentration and drowsiness.
In addition, some studies reported that emotion estimation accuracy of 90% or more could
be achieved only with a couple of electrodes placed in the frontal lobe [3]. Therefore, this
study also measured EEG signals by placing an electrode near the left frontal lobe, namely
the AF3 channel as defined by the International 10–20 EEG system, using Mindwave
Mobile 2 manufactured by NeuroSky as EEG sensor, which is a simple and low-invasive
single-channel EEG sensor with a sampling rate of 512 Hz. The output from this EEG
sensor is acquired approximately once per second.

Although the EEG indexes α, β, and γ cannot be acquired directly from this EEG
sensor, they can be calculated from the raw data: Low α + High α for α; Low β + High β

for β; and Low γ + Mid γ for γ. Note that raw data acquired from this sensor represent the
relative EEG powers calculated using NeuroSky’s original algorithm and therefore has no
units [33].

2.2. HRV Indexes

HRV is the physiological phenomenon of the variation in the time interval between
adjacent heartbeats or inter-beat interval (IBI). We used pulse wave sensor manufactured
by Switch Science that works with Arduino kit to acquire PPG signal. It has the sampling
rate of 500 Hz and gives output approximately once per 0.5–1.5 s.

To extract HRV indexes, we employed two most widely used methods: time-domain
and frequency-domain. Table 2 shows the HRV indexes and the corresponding interpreta-
tion employed in this study [34,35].

Table 2. Heart Rate Variability (HRV) indexes used in this study.

HRV Index Definition Interpretation

Inter-beat Interval (IBI) Time interval between adjacent heartbeats Sympathetic and
parasympathetic nerves

Heart Rate (HR) Number of beats per minute Tension, Calm

pNNx 1

where x = {10, 20, 30, 40, 50}
Percentage of adjacent IBIs with absolute

values greater than x ms Parasympathetic nerve

SDNN 1 Standard deviation of IBI Sympathetic and
parasympathetic nerves

RMSSD 1 Root mean square of IBI difference Parasympathetic nerve

SDNN/RMSSD 1 Ratio of SDNN by RMSSD Sympathetic nerve

CVNN 1 Coefficient of variation of IBI Sympathetic and
parasympathetic nerves

LF 2 Frequency-domain analysis of IBI power
value of 0.04–0.15 Hz Sympathetic and parasympathetic nerves

HF 2 Frequency-domain analysis of IBI power
value of 0.15–0.40 Hz Parasympathetic nerve

LF/HF 2 LF/HF Sympathetic nerve
1 Every time an IBI value is acquired, the value is calculated with the interval of 30. 2 Every time an IBI value is acquired, the value is
calculated with an interval of 200 s.

HRV indexes are reported to be influenced by the sympathetic and parasympathetic
nervous systems. LF and HF, which are frequency-domain HRV indexes, are decomposed
from pulse wave signal into high-frequency (HF) and low-frequency (LF) domains using
fast Fourier transform (FFT). LF is considered to the reflect sympathetic nerve, and HF is
considered to reflect both parasympathetic and sympathetic nerves. Human emotions can
be evaluated by using the ratio of LF and HF (LF/HF) [35]. We described the calculation
method of LF and HF as a pseudocode, shown in Figure 2.
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Figure 2. Pseudocode showing the calculation method of LF and HF.

In addition to LF and HF as frequency-domain HRV indexes, the standard deviation
and coefficient of IBI variations can be used as time-domain HRV indexes for sympathetic
and parasympathetic nerves. We calculated several indexes (i.e., pNNx, SDNN, RMSSD,
SDNN/RMSSD, and CVNN) using 30 IBI datapoints as a sliding window size, meaning
that these indexes are newly calculated each time the new IBI is acquired.

3. Data Collection

To prepare datasets for constructing emotion estimation model by machine learning,
we needed to collect both EEG and HRV data and label them with corresponding emotions.
This section describes an experimental method used to acquire these data. In addition, we
describe how to prepare a dataset for machine learning using the collected data. The partici-
pants in this experiment were 25 adults who were in their 20s (16 Males; 6 Females) and 30s
(2 Males; 1 Female). All of them are Japanese and were physically and emotionally healthy.

3.1. Emotional Stimulus

In this study, we used music as emotional stimulus employed from a music database
created by researchers at Jyväskylä University under repeated consultation with profes-
sional musicians [30]. This database contains 110 film soundtracks, each of which is
approximately 15 s long. All music was scored by professional musicians based on the
dimensional and discrete emotion model into several emotions, such as valence, energy,
tension, anger, fear, happy, sad, beauty, etc. For each quadrant of the Arousal–Valence
space model, we selected two songs based on highest scores of corresponding emotions as
follows: In HAHV, we used songs No.23 and No.24, which have the highest energy scores.
In HALV, we used songs No.11 and No.68, which have the highest fear scores. In LALV,
we used songs No.33 and No.109, which have the highest sad scores. In LAHV, we used
songs No.41 and No.42, which have the highest beauty or tenderness scores (refer to [30]
for a full details of the music database and their scores).

3.2. Emotion Estimation toward Stimulus

We performed subjective evaluation to estimate emotions as arousal and valence
towards the eight selected songs using Self-Assessment Manikin (SAM). It is a non-verbal
emotion evaluation method that can be performed by selecting one of nine mannequins that
most closely resembles one’s emotions (Figure 3). As SAM can be performed regardless of
language, we expected that the influence by an individual difference on how one perceives
the word can be reduced [36]. In this experiment, as some participants might not be
accustomed to self-assessment of emotions using SAM; we asked them to practice using a
simple experiment before starting the real experiment.
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Figure 3. Self-Assessment Manikin (SAM) used for estimating emotions toward music stimuli. The upper scale is for the
evaluation of the Valence level. The lower scale is for that of the Arousal level.

From the results of SAM, we determined emotion corresponding to each song based
on the Arousal–Valence space model. A threshold of 5 was used as it is the mid-point on
the SAM scale of 1 to 9, that is, an emotion evaluated with valence ≥5 is judged as high
valence and vice versa. Similarly, an emotion evaluated with arousal ≥5 is judged as high
arousal and vice versa. Based on these criteria, we divided the evaluated emotion-based
Arousal–Valence space model into four classes, as follows:

• Emotions with Arousal > 5 and Valence ≥ 5 or Arousal = Valence = 5 belong to HAHV
(the first quadrant);

• Emotions with Arousal ≤ 5 and Valence > 5 belong to HALV (the second quadrant);
• Emotions with Arousal < 5 and Valence ≤ 5 belong to LALV (the third quadrant);
• Emotions with Arousal ≥ 5 and Valence < 5 belong to LAHV (the fourth quadrant).

Based on the above thresholds, we generated categorical data by dividing them into
four classes (i.e., HAHV, HALV, LALV, and LAHV): two classes of valence (low/high
valence) and two classes of arousal (low/high arousal).

3.3. Experimental Procedure and Environment

The experimental procedure (Figure 4) is described as follows:

1. Participant sits on a chair and wears EEG sensor, pulse sensor, and earphone. Then,
the recording of EEG and pulse wave data is started.

2. Participant practices the experiment by using simplified procedures of steps (3) to (4).
3. Participant waits for 10 min in a resting state (The first rest).
4. Participant listens to the music for 1 min (the same 15-s song is repeated 4 times) and

then uses SAM to perform self-assessment of his/her emotion evoked by the music
with no time limit. Then, he/she rests for 2 min.

5. Steps (3) and (4) are repeated until eight trials are finished. (Note that the music is
changed for each trial). Then, the recording of EEG and pulse wave data is stopped.

Figure 4. Experimental procedure.

In resting and music listening states, an image with a gray background and a black
cross in the center was shown on the display placed in front of the participants. Par-
ticipants were instructed to focus on the cross as much as possible in order to reduce
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unintentional visual noise. In addition, the experiment was conducted in a quiet room
while the participants were wearing earphone at all time in order to reduce unintentional
audio noise.

3.4. Dataset Construction

From the experiment, we determined sections (start/stop timestamps) when each
music stimulus was presented in order to collect EEG and pulse wave data to calculate
the EEG and HRV indexes. Since EEG and pulse wave sensors were unsynchronized, the
data were fetched from the most recent EEG and pulse wave data, every second. Since
each of the music stimulus was presented for about 60 s, approximate 60 EEGs and pulse
wave data were generated for each. Subjective evaluation results were also assigned to the
physiological data of the corresponding music. These steps were repeated eight times for
eight selected songs. Finally, we constructed a dataset as input for machine-learning-based
classification models using EEG and HRV indexes as input features and three types of
classified emotions from Arousal and Valence scores as emotion labels of the input features.
These three types were used for three types of emotion classification models: (1) four-
class model for “HAHV/HALV/LALV/LAHV”, (2) binary model for “Low arousal/High
arousal”, and (3) binary model for “Low valence/High valence”.

As a result, the constructed dataset contained 3558, 2175, 2704, and 3312 datapoints
for the four quadrants in the Arousal–Valence space model. The procedure of dataset
construction is illustrated in Figure 5.

Figure 5. The illustration of the procedure to construct emotion dataset using EEG and HRV indexes as input features for
machine-learning-based classification models and three types of classified emotions from self-assessment scores (Arousal
and Valence) as three types of emotion labels.
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4. Feature Selection

In this research, we proposed feature selection as a method to improve model accuracy,
which was not employed in the research of Urabe et al. [26]. To select the features, we used
the degree of contribution technique to generate the feature importance used for feature
ranking from multiple feature selection algorithms; an ensemble approach. It was verified
by Haq et al. that the ensemble feature selection method yielded a higher accuracy for
emotion estimation compared with a single algorithm [37].

We used the following four feature selection algorithms: correlation ratio (CR), mutual
information (MI), importance of random forest (RF), and weight of SVM L1 regularization
(SVM L1). They were employed for two reasons: (1) they have already been proven, and
(2) the feature importance can be calculated to make feature selection easier [38–40]. Each
feature selection algorithm and the procedure to combine their results are described in the
following sections.

4.1. Correlation Ratio (CR)

The correlation ratio is a value that quantifies the relationship between qualitative
data and quantitative data. Categorical data from the SAM results were used to identify
which quadrant in the Arousal–Valence space model the emotion belongs to. Correlation
ratios were used to observe the relationship between the emotions in the four quadrants as
qualitative data and the EEG/HRV indexes as quantitative data.

The calculation method is expressed by Equation (1). The definitions of the variables in
the formula are as follows: η2 denotes the correlation ratio; a denotes number of qualitative
data types; ni denotes number of features x data belonging to the i-th qualitative data; xi
denotes mean value of features x belonging to the i-th qualitative data; x denotes mean
value of feature x; and xi,j denotes the value of the j-th feature x belonging to the i-th
qualitative data.

η2 =
∑

a
i=1 ni(xi − x)2

∑
a
i=1 ∑

ni
j=1

(
xi,j − x

) (1)

4.2. Mutual Information (MI)

Mutual information is a quantified value of the relationship between two variables. In
this study, we quantified the relationship between the emotions in the four quadrants and
the EEG/HRV indexes.

The formula for calculating the amount of mutual information between qualitative
data and quantitative data is as shown in Equation (2) [39]. The definitions of the variables
in the formula are as follows: I(X; Y) denotes mutual information of X and Y; p(x) denotes
probability of x; p(y) denotes probability of y; and p(x, y) denotes conditional probabilities
of x and y.

I(X; Y) = ∑
x,y

p(x, y) log
(

p(x, y)
p(x)p(y)

)
(2)

4.3. Importance of Random Forest (RF)

The importance of a random forest is a quantified value of the degree of contribution
in estimating each feature, which is calculated by a machine learning algorithm. Random
forest creates multiple decision trees, and the data are classified at the nodes in each
decision tree. It is an algorithm that makes a final estimation by voting the classification
results based on those decision trees.

The calculation method is expressed by Equations (3) and (4). The definitions of the
variables in the formula is as follows: Ix denotes importance of feature x; N denotes number
of nodes branched by feature x; ΔIx,n denotes the amount of decrease in purity at the nth
node branched by the feature x; GParent denotes impurity in the parent node of the nth
node; GChild Left denotes impurity in the left child node in the nth node; GChid Right denotes
impurity in the right child node in the nth node; m denotes number of data in the nth node;
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mLeft denotes number of data in the left child node in the nth node; and mRight denotes
number of data of the right child node in the nth node.

Ix =
N

∑
n=1

ΔIx,n (3)

ΔIx,n = GParent − mLeft
m

×GChild Left −
mRight

m
×GChid Right (4)

At each node in multiple decision trees, the amount of decrease in impurity is calcu-
lated by classifying the ground-truth data as in Equation (3). The decrease in the impurity
can be interpreted as an increase in the purity, which contributes to the classification and
estimation. Therefore, the degree of contribution in estimation is quantified by taking the
sum, as shown in Equation (4).

For the implementation of the random forest algorithm, we employed Scikit-learn
Python-based machine-learning library. The parameter settings are as listed below.

• The number of trees in the forest: 1000
• Criterion: Gini impurity (default)
• The maximum depth of the tree: None (default)
• The minimum number of samples required to split an internal node: 2 (default)
• Bootstrap: True (default)
• All other required parameters are set as default by the library.

4.4. SVM L1 Regularization Weight (SVM L1)

Support vector machine (SVM) L1 regularization weight is the weight vector for
each feature when the L1-norm regularization term is introduced into the SVM objective
function. By introducing the regularization term, the weighting coefficients of the features
that are not useful for estimation approach zero, and their influences are reduced, and thus
the estimation accuracy is improved [41]. At this time, feature selection was performed
by removing the features whose weighting coefficient was close to zero, considering as
features not useful for estimation. The equation in which the L1-norm regularization
term is introduced into the objective function of SVM is shown in Equation (5) [39]. The
meaning of the variables in the formula is as follows: ||w||1 denotes L1-norm term; w
denotes weight coefficient; and C denotes variable that controls the degree of influence of
the L1-norm term.

min
w0,w

n

∑
i=1

[1 − yi(w0 +
q

∑
j=1

wjxi,J)] + C||w||1 (5)

For the implementation of the SVM algorithm, we employed Scikit-learn Python-based
machine-learning library. The parameter settings are as listed below.

• Kernel: Linear
• The norm used in the penalization: L1 (assigning coefficients/weights to the features)
• Regularization parameter (C): 1.0 (default)
• All other required parameters are set as default by the library.

4.5. Feature Selection Ensemble

To integrate the results from multiple feature selection algorithms, we performed the
following steps (Figure 6):
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Figure 6. The illustration of the procedure of feature selection ensemble from the calculation of feature importance values
by integrating the four feature selection methods to the selection of top 10 important features.

1. The feature importance of each feature was calculated for each feature selection
algorithm. Note that the features are the physiological indexes consisting of 22 EEG
indexes and 14 HRV indexes.

2. The feature importance values were normalized so that the maximum value was 1
and the minimum value was 0.

3. For each feature, the average normalized feature importance values were calculated
from the values of the four feature selection algorithms.

4. All features were sorted in descending order by the average normalized feature
importance values.

5. The indexes in the top 10 were selected as important features.

Figures 7 and 8 show the top 10 indexes that were judged as useful features for
emotion estimation based on feature selection results. Figure 7 shows the result of feature
selection for the classification of emotions into four classes: HAHV, HALV, LALV and
LAHV. Figure 8 shows the classification of emotions into two classes: low arousal and high
arousal. Figure 9 shows the classification of emotions into two classes: low valence and
high valence.

Figure 7. Feature selection result for HAHV, HALV, LALV and LAHV.
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Figure 8. Feature selection result for low arousal and high arousal.

Figure 9. Feature selection result for low valence and high valence.

For EEG indexes, the feature selection results of the four emotion classifications of
HAHV, HALV, LALV, and LAHV (Figure 7) suggest that the moving average of γ, that
is the index acquired from the high-frequency-band EEG signal, relatively contributes to
emotion estimation. This is consistent with the results reported by Wang et al. using a multi-
channel EEG sensor [12] and that the γ frequency band is the most sensitive to emotional
changes [3]. However, since the EEG signals were acquired only from the frontal lobe (AF4)
in this study, it is suggested that the moving average of δ, that is the index acquired from
the low-frequency-band EEG signal, also relatively contributes to emotion estimation.

For HRV indexes, it is suggested that LF, HF, and LF/HF, which were the indexes
acquired from the frequency-domain analysis of HRV with long time intervals, contribute
to emotion estimation. Since the analysis section was long, it was highly possible that these
indexes may reflect the state at rest more than the state at which the emotional stimuli were
presented, which make it difficult for those indexes to contribute to emotion estimation.
However, our results were contrary to this presumption. Though the HRV indexes are
related to sympathetic and parasympathetic nervous systems, there is a time lag between
the time when the stimulus is presented and the time when the HRV index reflects the
influence by the stimulus. From this point of view, the analysis interval is often set to
24 h or 5 min in order to calculate reliable HRV indexes that fully reflects the effects of
sympathetic nerves and parasympathetic nerves. In this study, it is considered that LF, HF,
and LF/HF have a relatively long analysis interval, which enhances the reliability of the
indexes and, as a result, contributes to emotion estimation. Next, RMSSD, which has a high
degree of contribution to emotion estimation, is a time-domain HRV index that has been
reported to have the same reliability even in a short analysis section like five minutes [42]
and is used for monitoring the athlete’s condition. In addition, this index is suggested to
have a high reliability for emotion estimation, despite the short analysis interval [43].
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Among the top 10 features of the emotion classification for low and high arousal
(Figure 8), the number of EEG indexes is one and the number of HRV indexes is nine. Since
EEG indexes are used to measure concentration and arousal, we expected that the number
of EEG indexes would be more than that of HRV indexes. However, the results differed
from our expectations. Related studies suggested that concentration and arousal can be
estimated by HRV [44–46], which resembles our result. Thus, we suggest that HRV is more
useful than EEG for estimating low and high arousal.

On the other hand, among the top 10 features of the emotion classification low and
high valence (Figure 9), the number of EEG indexes is four and the number of HRV indexes
is six. Since HRV indexes are generally used to measure relaxation and stress, we expected
that the number of HRV indexes would be more than that of EEG indexes. The result
is the same as expected. In addition, some EEG indexes almost have the same feature
importance as HRV indexes. Hence, there is a potential that the EEG indexes can also
be used to estimate valence in addition to the HRV indexes. Related studies suggested
that EEG is strongly correlated with valence and is useful for estimating low and high
valence [3], which resembles our result.

In addition, there is a potential that the EEG indexes calculated from the AF3 node may
be replaced by HRV indexes in the classification of low and high valence. This suggests
that only HRV may be enough to estimate emotion even without EEG, which contributes
to the simplification of emotion estimation technology.

5. Accuracy Verification and Discussion

In order to clarify the usefulness of applying our proposed feature selection method,
multimodal physiological indexes for the emotion classification model were constructed in
this study; accuracy verification was performed using a combination of several features.
For accuracy verification, we employed several cross-validation methods with an emotion
estimation model constructed using a deep learning algorithm.

5.1. Combination of Features

Table 3 shows 21 groups of feature combinations from EEG and/or HRV indexes.
Three criteria to group feature combinations were applied as described below.

Table 3. Groups of feature combinations from EEG and/or HRV indexes.

Group No. Group Name Feature Combination

#1 EEG θ, δ, Low α, High α, Low β, High β, Low γ, Mid γ, α, β, γ

#2 MA15 EEG
MA15 θ, MA15 δ, MA15 Low α, MA15 High α,

MA15 Low β, MA15 High β, MA15 Low γ, MA15 Mid γ, MA15 α,
MA15 β, MA15 γ

#3 TD HRV IBI, HR, CVNN, SDNN, RMSSD, SDNN/RMSSD,
pNN10, pNN20, pNN30, pNN40, pNN50

#4 FD HRV LF, HF, LF/HF

#5 TD HRV + FD HRV IBI, HR, CVNN, SDNN, RMSSD, SDNN/RMSSD,
pNN10, pNN20, pNN30, pNN40, pNN50, LF, HF, LF/HF

#6 ALL

θ, δ, Low α, High α, Low β, High β, Low γ, Mid γ, α, β, γ, MA15 θ,
MA15 δ, MA15 Low α, MA15 High α,

MA15 Low β, MA15 High β, MA15 Low γ, MA15 Mid γ, MA15 α,
MA15 β, MA15 γ, IBI, HR, CVNN, SDNN, RMSSD, SDNN/RMSSD,

pNN10, pNN20, pNN30, pNN40, pNN50, LF, HF, LF/HF

#7 ENSEMBLE (HAHV, HALV, LALV,
LAHV)

LF, HF, LF/HF, RMSSD, SDNN, MA15 Mid γ, CVNN, pNN30,
MA15 δ, pNN40

#8 ENSEMBLE (Low/High Arousal) RMSSD, SDNN/RMSSD, LF, LF/HF, HF, pNN30, pNN40, CVNN,
SDNN, MA15 δ
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Table 3. Cont.

Group No. Group Name Feature Combination

#9 ENSEMBLE (Low/High Valence) LF, MA15 Mid γ, HF, RMSSD, MA15 δ, LF/HF, SDNN, MA15 Low γ,
MA15 γ, pNN40

#10 CR (HAHV, HALV, LALV, LAHV) MA15 Mid γ, LF/HF, MA15 γ, MA15 δ, MA15 Low γ, MA15 High β,
SDNN/RMSSD, LF, MA15 High α, MA15 α

#11 CR (Low/High Arousal) SDNN/RMSSD, LF/HF, MA15 δ, RMSSD, pNN10, MA15 Low α, MA15
Mid γ, MA15 Low β, Low α, pNN30

#12 CR (Low/High Valence) MA15 Mid γ, MA15 γ, MA15 δ, MA15 Low γ, MA15 α, MA15 Low α,
MA15 θ, pNN50, MA15 High α, γ

#13 MI (HAHV, HALV, LALV, LAHV) RMSSD, LF, HF, SDNN, CVNN, LF/HF, β, High β, Mid γ, γ

#14 MI (Low/High Arousal) RMSSD, LF, HF, SDNN, High α, δ, Low β, θ, β, CVNN

#15 MI (Low/High Valence) RMSSD, LF, β, SDNN, HF, γ, High β, δ, Low β, CVNN

#16 RF (HAHV, HALV, LALV, LAHV) LF, HF, LF/HF, RMSSD, CVNN, SDNN/RMSSD, SDNN, MA15 Low γ,
MA15 Mid γ, MA15 High β

#17 RF (Low/High Arousal) LF, LF/HF, HF, RMSSD, SDNN/RMSSD, MA15 High β, CVNN, MA15 δ,
MA15 θ, SDNN

#18 RF (Low/High Valence) LF, HF, LF/HF, RMSSD, MA15 Low γ, CVNN, MA15 High β, MA15 Mid γ,
MA15 High α, SDNN/RMSSD

#19 SVM L1 (HAHV, HALV, LALV,
LAHV)

SDNN, pNN30, LF, HF, pNN40, pNN20, CVNN, pNN10, pNN50,
MA15 Mid γ

#20 SVM L1 (Low/High Arousal) pNN30, pNN40, MA15 Low β, pNN20, pNN10, RMSSD, MA15 δ, HR,
MA15 High β, MA15 Low γ

#21 SVM L1 (Low/High Valence) LF, HF, MA15 Mid γ, pNN40, MA15 δ, RMSSD, pNN30, pNN20,
LF/HF, HR,

1. The features were selected based on types of physiological indexes and calculation
methods (Groups #1 to #5).

2. All features employed in this research were selected (Group #6).
3. The features were selected based on our proposed four feature selection methods (i.e.,

ensemble of the four feature selection methods, correlation ratio, mutual information,
importance of random forest, and SVM L1 regularization weight) and the three
emotion classification models (i.e., “HAHV, HALV, LALV, and LAHV”, “Low/High
Arousal”, and “Low/High Valence”) (Groups #7 to #21).

Based on the above criteria, the selected features and the selection method of each
group are described as follows:

1. EEG group (#1) consists of all 11 EEG indexes employed in this study.
2. MA15 EEG group (#2) consists of 15-window-sized moving averages of all 11 EEG indexes.
3. TD HRV group (#3) consists of indexes calculated by all 11 HRV indexes calculated by

time-domain analysis.
4. FD HRV group (#4) consists of indexes calculated by all 3 HRV indexes calculated by

frequency-domain analysis.
5. TD HRV + FD HRV group (#5) consists of the combination of indexes from TD HRV

(#3) and FD HRV (#4) groups.
6. ALL group (#6) consists of indexes that combines the indexes from EEG (#1), MA15

EEG (#2), TD HRV (#3), and FD HRV (#4).
7. ENSEMBLE (HAHV, HALV, LALV, and LAHV) group (#7) consists of the top 10

indexes that contribute to emotion estimation in the four-class emotion classification
of HAHV, HALV, LALV, and LAHV.
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8. ENSEMBLE (Low/High Arousal) group (#8) consists of the top 10 indexes that have
the largest contribution of emotion estimation in the binary emotion classification
into Low Arousal and High Arousal.

9. ENSEMBLE (Low/High Valence) group (#9) consists of the top 10 indexes that have
the largest contribution in the binary emotion classification into Low Valence and
High Valence.

10. CR (HAHV, HALV, LALV, and LAHV) group (#10) consists of the top 10 indexes from
the correlation ratio as feature selection method that contribute to emotion estimation
in the four-class emotion classification of HAHV, HALV, LALV, and LAHV.

11. CR (Low/High Arousal) group (#11) consists of the top 10 indexes from the correlation
ratio as the feature selection method that contribute to emotion estimation in the four-
class emotion classification of Low Arousal and High Arousal.

12. CR (Low/High Valence) group (#12) consists of the top 10 indexes from the correlation
ratio as feature selection method that contribute to emotion estimation in the four-class
emotion classification of Low Valence and High Valence.

13. MI (HAHV, HALV, LALV, and LAHV) group (#13) consists of the top 10 indexes
from the mutual information as feature selection method that contribute to emotion
estimation in the four-class emotion classification of HAHV, HALV, LALV, and LAHV.

14. MI (Low/High Arousal) group (#14) consists of the top 10 indexes from the mutual
information as the feature selection method that contribute to emotion estimation in
the four-class emotion classification of Low Arousal and High Arousal.

15. MI (Low/High Valence) group (#15) consists of the top 10 indexes from the mutual
information as the feature selection method that contribute to emotion estimation in
the four-class emotion classification of Low Valence and High Valence.

16. RF (HAHV, HALV, LALV, and LAHV) group (#16) consists of the top 10 indexes from
the mutual information as the feature selection method that contribute to emotion
estimation in the four-class emotion classification of HAHV, HALV, LALV, and LAHV.

17. RF (Low/High Arousal) group (#17) consists of the top 10 indexes from the impor-
tance of random forest as the feature selection method that contribute to emotion
estimation in the four-class emotion classification of Low Arousal and High Arousal.

18. RF (Low/High Valence) group (#18) consists of the top 10 indexes from the importance
of random forest as the feature selection method that contribute to emotion estimation
in the four-class emotion classification of Low Valence and High Valence.

19. SVM L1 (HAHV, HALV, LALV, and LAHV) group (#19) consists of the top 10 indexes
from the SVM L1 regularization weight as the feature selection method that contribute
to emotion estimation in the four-class emotion classification of HAHV, HALV, LALV,
and LAHV.

20. SVM L1 (Low/High Arousal) group (#20) consists of the top 10 indexes from the SVM
L1 regularization weight as the feature selection method that contribute to emotion
estimation in the four-class emotion classification of Low Arousal and High Arousal.

21. SVM L1 (Low/High Valence) group (#21) consists of the top 10 indexes from the
SVM L1 regularization weight rest as the feature selection method that contribute
to emotion estimation in the four-class emotion classification of Low Valence and
High Valence.

5.2. Cross Validation

We selected the stratified K-fold (SKF) method to perform cross validation. It is a
cross-validation method in which the ratio of the amount of data of each type of objective
variable is equal when dividing training data and test data into K pieces [47]. In general,
if there is a bias in the ratio of the amount of correct data for each of the training and test
data, the amount of class 1 data will increase in the training data, while the number of
class 1 data will decrease in the test data. The amount of data may result in unfair accuracy
verification. Therefore, SKF was used to reduce these problems. For this cross-validation
method, we set k to 10 which was used to divide data into 10 folds after merging the data
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of all participants. By using this method, the accuracy of emotion estimation model in
which the data of all participants were included in the training data was calculated.

5.3. Accuracy Verification Indexes

We used Macro F1 as the accuracy verification index. Macro F1 is an extension of
F1-score, which is an accuracy verification index used in binary classification to multi-label
classification. The calculation method of F1-score is expressed by Equations (6)–(8).

precision =
TP

TP + FP
(6)

recall =
TP

TP + FN
(7)

F1 − score =
2×recall × precision

recall + precision
(8)

In the binary classification of positive and negative examples, the denotations of the
variables in the equation is described as follows: TP denotes the amount of data for which
the predicted value is a positive example and the prediction is correct; TN denotes the
amount of data for which the predicted value is a negative example and the predicted
value is correct; FP denotes the amount of data for which the predicted value is a positive
example and the prediction is incorrect; FN denotes the amount of data for which the
prediction is incorrect using the predicted value as a negative example; precision is an
accuracy index that is emphasized when you want to reduce false positives; and recall is an
accuracy index that is important when you want to avoid overlooking positive examples;
F1-score is a balanced index by taking the harmonic mean of these accuracy indexes. Macro
F1 is an accuracy index that calculates the above F1-score for each type of objective variable
and their average value [47].

To construct a deep learning model, we used the same structure of the model con-
structed by Urabe et al. [26]: Intermediate layer: 256-dimensional three layers; intermediate
layer activation function: ReLU; output layer activation function: Softmax; optimization
algorithm: Stochastic Gradient Descent (SGD); and Dropout: 0.0.

5.4. Accuracy Verification Results

Figures 10–12 show the results of accuracy verification from the cross validations,
the accuracy evaluation indexes, and the deep learning. The baseline accuracy of the
classification model that returns a random prediction without learning is used as the
baseline for accuracy comparison.

Figure 10. HAHV, HALV, LALV, LAHV (4 classes) emotion classification accuracies.
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Figure 11. Low Arousal, High Arousal (2 classes) emotion classification accuracies.

Figure 12. Low Arousal, High Valence (2 classes) emotion classification accuracies.

First, we compared the accuracies of every methods for feature selection with that of
baseline. The results of the accuracy verification using Macro F1 scores as index showed
that the accuracies range from 39% to 99% exceeding the baseline of 25% for the HAHV,
HALV, LALV, and LAHV model (Figure 10), 59% to 99% exceeding the baseline of 51% for
the Low and High Arousal classification model (Figure 11), and 59% to 99% exceeding the
baseline of 49% for the Low and High Valence classification model (Figure 12).

Next, we compared the accuracies of our proposed methods (i.e., ENSEMBLE, CR, MI,
RF, and SVM L1 groups) with that of all features (i.e., ALL group). The results show that all
of them have high accuracies, ranging from 90% to 99% for all three classification models
(i.e., “HAHV, HALV, LALV, and LAHV”, “Low Arousal and High Arousal”, and “Low
Arousal and High Valence” models). These results indicate that even if all features were not
used, the accuracy can reach 99%, which indicates the effectiveness of our proposed feature
selection methods used in this study. Since a larger number of features makes the training
time take longer in machine learning, we suggest reducing the time spent on training by
reducing the number of features while the accuracy is still maintained.

Finally, we compared the accuracies of our proposed methods (i.e., ENSEMBLE, CR,
MI, RF, and SVM L1 groups) with those of methods based on the types of physiological
indexes and calculation methods (i.e., EEG, MA15 EEG, TD HRV, FD HRV, TD HRV +
FD HRV groups). The results show that the accuracies of EEG and FD HRV groups are
much lower than those of our proposed methods. In addition, even the accuracies of
MA15 EEG, TD HRV, and TD HRV + FD HRV groups are almost the same as those of
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our proposed methods, they tended to have large variabilities indicating by the standard
deviation illustrating as the error bars, especially for the “HAHV, HALV, LALV, and LAHV”
emotion classification model. Therefore, we suggested that it is more effective to apply
feature selection techniques for constructing the emotion classification model.

Even though the feature selection methods based on the types of physiological indexes
and calculation methods are less reliable than our proposed method. By comparing the
accuracies between EEG and MA15 EEG groups among the three emotion classification
models, the result shows that the accuracy of EEG MA15 group is 56% increased at maxi-
mum from that of the EEG group. This result suggests that the accuracy was improved
more than double when the moving average is applied to the indexes, suggesting the
effectiveness of the moving average.

6. Discussion

In this research, we employed feature selection to improve the accuracy of an emo-
tion classification model. We proposed four feature selection methods: correlation ratio
(CR), mutual information (MI), importance of random forest (RF), and weight of SVM
L1 regularization (SVM L1). In addition, we proposed the feature selection ensemble
that combines the results from those four feature selection methods. Based on these, we
obtained important features that were later used for model construction.

For accuracy verification, we constructed several emotion classification models using
the feature combinations (Table 3) selected based on several criteria, including our proposed
methods. As a result, we obtained the following findings:

• A model with high accuracy can be achieved even without using all features from
physiological signals, suggesting that the accuracy is not always improved by combin-
ing large number of multimodal physiological indexes.

• The model using features only from specific physiological indexes, such as EEG or
HRV, may produce a high accuracy; however, the variability tends to be large.

• The accuracy can be improved by applying the moving average to the normal values
of physiological indexes.

Based on the above findings, we clarified that our proposed methods by using feature
selection successfully improved the accuracy of the emotion classification model. In
addition, as our proposed methods selected only top 10 important features, the training
time for machine-learning based model can be reduced. Our research results contribute
to the improvement of an emotion classification model with a higher accuracy, less cost,
and that is less time consuming, which has potential to be further applied to various areas
of applications.

This study has some limitations. First, we only collected the physiological signal data
from a small number of participants that was unbalanced between males and females.
In addition, we employed only eight music pieces (two for each of the four emotions in
the Arousal–Valence space model), which might not be enough to fulfil the variety of
music preferences among the participants and may result in not completely evoking target
emotions. Therefore, we need to employ more music pieces and collect data from a larger
number of participants in order to increase the reliability of our experimental results. In
addition, as this is our first trial, we selected only four feature selection methods that can
easily observe feature importance, and only one method for the cross validation in accuracy
verification. Other feature selections, such as neural network, as well as cross validation
methods, such as leave-one-subject-out (LOSO), should also be included and compared
with our current proposed method in order to increase even higher accuracy for emotion
classification model.

To construct the model for accuracy verification, we employed a deep learning algo-
rithm which has shown great advantages in many research fields in recent year [48]. It has
been proved to outperform the anomaly detection of medical images at a large scale [49].
Several techniques can be applied to improve the accuracy of deep learning models, such as
data augmentation [50,51], the improvement of the capability to handle unseen data [52,53],
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and the adjustment of structures and parameters to train deep learning models which is
typically an important process in every machine learning algorithm. Therefore, we will
employ these promising techniques to increase the accuracy of our emotion classification
model in order to enable the generalization capability.

7. Conclusions

Using an inexpensive and simple EEG and PPG sensors, we extracted and selected the
features of the EEG and HRV indexes for the purpose of improving the accuracy of emotion
estimation. We proposed feature selection as a method to improve the model accuracy. In
order to verify the effectiveness of feature selection, several feature combinations of EEG
and/or HRV indexes selected based on our criteria including our proposed feature selection
have been used to construct emotion estimation models by deep learning algorithm. The
accuracy verification was then performed with the stratified K-fold (SKF) cross-validation
method. As a result, we suggest that it is possible to construct an emotion classification
model using only a small number of features from physiological indexes. In addition, it
was shown that the time spent on training can be shortened by reducing the features while
maintaining an accuracy of 98% via appropriate feature selection methods.

For our future work, we will continue to improve our proposed feature selection
method, as well as the model accuracy verification, which will enable the generalization of
our emotion classification model.
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Abstract: EEG-based deep learning models have trended toward models that are designed to perform
classification on any individual (cross-participant models). However, because EEG varies across
participants due to non-stationarity and individual differences, certain guidelines must be followed
for partitioning data into training, validation, and testing sets, in order for cross-participant models
to avoid overestimation of model accuracy. Despite this necessity, the majority of EEG-based cross-
participant models have not adopted such guidelines. Furthermore, some data repositories may
unwittingly contribute to the problem by providing partitioned test and non-test datasets for reasons
such as competition support. In this study, we demonstrate how improper dataset partitioning
and the resulting improper training, validation, and testing of a cross-participant model leads to
overestimated model accuracy. We demonstrate this mathematically, and empirically, using five
publicly available datasets. To build the cross-participant models for these datasets, we replicate
published results and demonstrate how the model accuracies are significantly reduced when proper
EEG cross-participant model guidelines are followed. Our empirical results show that by not
following these guidelines, error rates of cross-participant models can be underestimated between
35% and 3900%. This misrepresentation of model performance for the general population potentially
slows scientific progress toward truly high-performing classification models.

Keywords: EEG; deep learning; non-stationarity; individual differences; inter-subject variability;
covariate shift; cross-participant; inter-participant

1. Introduction

EEG analysis has been a useful tool in neuroscience for decades in both clinical settings
and the medical research community, proving to be useful for numerous applications such
as classifying sleep patterns, epilepsy, identifying patterns of attention deficit hyperactivity
disorder (ADHD), levels of mental workload [1,2], and emotion recognition [3]. EEG has
also been useful for neural engineering with Brain–Machine Interfaces (BMIs), primarily
due to EEG being used in combination with machine learning. Over the past decade, deep
learning (DL) has been increasingly used to improve performance within models, allowing for
automatic end-to-end processing and classification of the data, to include feature extraction
using sequence models. Despite these improvements in model selection, the challenges of
EEG’s non-stationarity and inter-participant variability are still present [4,5] pp. 499–502.

One of the most significant challenges in building EEG classification models that are
intended for use on any individual’s EEG (cross-participant model) is accounting for the
covariate shift that occurs due to EEG’s non-stationarity and inter-participant variabil-
ity [6–10]. Covariate shift in machine learning is a difference in the input distributions
of the training and testing datasets [11]. This difference can significantly affect model
performance, as a general guideline and assumption that is used in supervised machine
learning is that these two input distributions are independent and identically distributed
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(i.i.d. assumption). Without this assumption, many theoretical guarantees and bounds
on minimizing the test error are lost. For EEG cross-participant classification models, this
covariate shift and its effects will always be present when the model classifies EEG data
belonging to a participant that the model has not seen. However, models should be tested
with data, which is representative of the data they will predict upon in the real world, and
thus, EEG cross-participant models should be tested with unseen participants. Therefore,
as a best practice in reporting accurate model performance for models intended to classify
any individual’s EEG, EEG cross-participant models should always be validated and tested
using EEG data that comes from participants the model has not trained upon.

Despite previous work showing that EEG has inter-participant variability [5] pp. 499–
502, and that this inter-participant variability leads to covariate shift when EEG models
are tested with an unseen participant [6–10], the majority of EEG studies built to classify
any individual’s EEG do not follow this best practice of testing the model with unseen
participants. In a recent literature review of deep learning-based EEG models by Roy
et al., only 23 out of 108 cross-participant models utilized some method of proper dataset
partitioning to ensure the model was tested with a participant that was not used for
training [3]. This same literature review also compared the number of studies exploring
models built for a specific individual (within-participant) versus cross-participant, and
they found that since 2016, the growing trend has shifted toward building cross-participant
models, with the latest ratio of studies researching cross-participant models to within-
participant models being over 5:1 [3]. With this ever-growing popularity in EEG cross-
participant models, it is critical that the body of research corrects its trend by properly
using EEG data from unseen participants for validation and testing. By not following this
best practice, the research pool may become increasingly diluted with studies reporting
model performance metrics that are unrealistic and unrepresentative of the model’s true
ability. Additionally, data repositories that split data into training and testing datasets
prior to being made available for download, such as Kaggle [12] and the University of
California, Irvine (UCI) machine learning data repository [13], should also take this best
practice into account. In this paper, we aim to present to the reader the importance of
proper dataset partitioning.

This paper has the following structure. First, in Section 2, a well-established back-
ground is presented to ground the reader in regard to covariate shift and inter-participant
variability within EEG; then, we fully articulate the problem of improper dataset partition-
ing using this background knowledge. Next, in Section 3, we demonstrate the effects of
covariate shift and inter-participant variability both mathematically and in simple models,
presenting evidence for the effects of these phenomena at a fundamental level. Finally, in
Section 4, we utilize five publicly available datasets to present empirically the difference in
model performance when following and not following this best practice of proper model
validation and testing. We close with discussion in Section 5 and conclusions and future
work in Section 6.

2. Background

2.1. Covariate Shift

For supervised machine learning, a standard guideline is that the training input
distribution PTR(x) is equivalent to the test input distribution PTE(x) [11]. However, when
these two distributions are not equivalent PTR(x) 
= PTE(x), then there is typically a decrease
in performance for most machine learning models. This form of dataset shift is referred
to as covariate shift. This can happen for a number of reasons, such as the training and
testing data being drawn from different populations, a lack of randomness in the number of
trials/observations, an inadequate amount of them, or other biased sampling measures; in
the case of EEG, covariate shift is due to individual differences and non-stationarity [10,14].

Below, in Figure 1, we see a simple example of covariate shift. Here, there is a
classification boundary between two different classes, one represented by circles, and the
other represented by triangles, with the classification boundary following the function
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y = −x3. The training dataset is marked in red and the test dataset is marked in blue.
If we train a machine learning algorithm on only the training dataset and then test it on
similar data such that PTR(x) = PTE(x), then the model will be able to perform very well
when tested, since the classification boundary is well defined between the two classes. In
fact, many functions could easily define a reasonable boundary in this case; for example,
y = x2/3 or y = 2|x| would yield good performance at discriminating the two classes of
the training set shown in Figure 1. However, if we trained the model using only the red
training data and tested with the blue testing data, the machine learning algorithm would
have been trained with different data than it would be tested with (PTR(x) 
= PTE(x)), and it
is unlikely that during training, the machine learning algorithm would have been able to
discover the more complicated underlying discriminator function y = −x3 having used
only the red training data. Thus, the model trained only on the training data would perform
poorly for classification of the test data, because the data distribution of the features from
the training data and the distribution of the features from the test data are different.

Figure 1. Simple example of covariate shift in classification data. Two classes of data are represented
by circles and triangles, with the training dataset marked in red and the test dataset marked in blue.
The true decision boundary between the two classes follows the function y = −x3.

There are a number of different methods that can be used to detect if covariate shift
is present due to the input distributions from two datasets being different. Given two
datasets, PTR(x) and PTE(x), one method is to calculate how different the two probability
distributions of the two datasets are,

DKL(PTR||PTE) = Ex∼PTR

[
log

PTE(x)
PTR(x)

]
= Ex∼PTR

[log(PTR(x))−
log(PTE(x))].

Another method for covariate shift detection is through visualization of the distri-
butions in low-dimensional space using dimensionality reduction techniques. Manifold
learning techniques such as t-Distributed Stochastic Neighbor Embedding (t-SNE), multi-
dimensional scaling (MDS), IsoMap, and others, are useful for this as they capture non-
linear information in the data [15] pp. 209–226. t-SNE is an unsupervised machine learning
algorithm that is widely used for data visualization as it is particularly sensitive to local
structure and reduces the tendency to crowd points toward the center of low-dimensional
space [16]. As an unsupervised machine learning algorithm, t-SNE does not use labels
of data for its learning, and it solely uses the features of each observation to perform
its algorithm. It does this by first constructing a probability distribution for all pairs of
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observations in high-dimensional space such that similar observations (observations that
are closer to one another in feature space) are assigned a higher probability of being neigh-
bors, and dissimilar observations (observations that are further apart in feature space) are
assigned a lower probability of being neighbors. Then, a new dataset is created with the
same number of observations, but it is now spread randomly in low-dimensional feature
space. It uses a Student’s t-distribution to compute the similarity between all pairs of
observations in low-dimensional space to create a second probability distribution and then
uses gradient descent to iteratively shift the observations such that the KL divergence
between the two different distributions is minimized. The main limitations of t-SNE are
that it is computationally expensive and that the algorithm uses a non-convex objective
function (KL divergence minimized using gradient descent, but initiated randomly), mean-
ing multiple executions of the algorithm can lead to different embeddings (mappings of
high-dimensional space to low-dimensional space). The dimensions of t-SNE are also
difficult to interpret, as they are arbitrary distances that represent that closer neighboring
points in low-dimensional space are likely to be neighbors in high-dimensional space [17].

Figure 2 shows an example of previous work utilizing t-SNE for high-dimensional
data visualization outside of the EEG domain, with t-SNE performed on the well-known
MNIST dataset, with the clusters corresponding to different input distributions within the
data, and the colors corresponding to different classes [16,18].

Figure 2. Example of 2D visualization using t-SNE on the MNIST dataset [16,18]. The dimensions of
t-SNE are arbitrary distances that represent that closer neighboring points in low-dimensional space
are likely to be neighbors in high-dimensional space.

t-SNE can also be used to visually detect covariate shift. A common example of
covariate shift is when the testing data is partitioned from a subset of the clusters (i.e.,
participants for EEG), and the training data is partitioned from a different and separate
subset of clusters; e.g., if in Figure 2 class 0 (red) was selected as the test data and classes 1–9
were selected as the training data. Cluster analysis algorithms such as k-means clustering
or fuzzy c-means clustering can be utilized to identify if the training and testing data
belong to separate clusters [19]; however, a simpler method to detect this is through visual
inspection of the t-SNE graph. One can separately label the training and test data in the
graph (e.g., with different colors) and then visually inspect to see if the training and test
data correspond to separate clusters within the graph (covariate shift). Visual inspection
for clusters involves identifying that for the majority of observations in one class, the
majority of the nearest neighbors for those observations also belong to the same class, with
a clear boundary between its class (cluster) and another class, meaning there is little to no
overlap. This simple method of visual inspection also provides the benefit of visualizing
the high-dimensional data in 2D.
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2.2. Non-Stationarity and Individual Differences

One of the significant challenges associated with EEG analysis and classification
is that EEG is both non-stationary [4] and that there are individual differences in EEG
signals across individuals that result in inter-participant variability [5] pp. 499–502. EEG
non-stationarity is due to a variety of internal and external causes, such as brain activity
causing continual changes in states of neuronal assemblies [20], user attention levels, user
fatigue, sensor equipment used, and scalp placement of electrodes [21]. Similar to non-
stationarity, the individual differences in EEG signals are also due to a variety of factors,
such as differences in variability in frequency peaks for individuals due to differences in
personality traits [22], genetic variations [23–25], gamma–aminobutyric acid concentrations
in the brain [26,27], and memory task performance [28].

These individual differences are underlying shifting covariates across participants,
and they result in a change in the input distributions across all participants, while the
conditional distribution of the output class y given the input feature vector x stays the
same, resulting in a covariate shift for cross-participant machine learning models when
they are tested upon EEG from participants that the model has not seen [6,7]. Thus, because
of this inherent inter-participant variability in EEG signals, different strategies need to
be used when performing EEG analysis [5] pp. 499–502 and training of cross-participant
models [29].

2.3. Approaches to Data and Problem Formulation

When developing an EEG classification model, it is likely that it will belong to one
of two main types of EEG models, either within-participant (a.k.a. intra-subject) or cross-
participant (a.k.a. inter-subject) [3]. A within-participant model is one that intends to
perform accurate classification of EEG for one individual and is thus built using only data
from one participant. A cross-participant model is one that intends to perform classification
on multiple individuals and is thus built using data from multiple participants. By training
on data from multiple individuals, the goal is that the model becomes invariant to inter-
participant variability, learning a function that accurately maps EEG input to the desired
output label for most people. Additionally, cross-participant models can be built for
different purposes and goals, such as for specific populations or for the general population.
For example, the goal of a cross-participant BMI model could be to perform classification
on only those specific individuals that use that specific BMI machinery. However, a more
typical cross-participant model is one in which results are reported as though they are
indicative of the model’s ability to perform classification on the general population and
thus any individual.

Each of these model types require different approaches to data partitioning across
participants in order to report results that are accurate for their intended goal and target
population. The within-participant model is more straightforward, as there is only one
participant for both training, validation, and testing. However in cross-participant models,
there are data from multiple participants, and because of the inter-participant variability
that is inherent in EEG from individual to individual, how participants are used in cross-
participant models for training, validation, and testing can have significant effects on model
performance due to the differences in input distributions from individual to individual [6,7].
For example, if a cross-participant model is tested using data from an unseen participant,
then the model’s classification performance will be reduced due to the resulting covariate
shift of this individual’s unseen data. If a cross-participant model is only intended to
perform classification on the same population that it is training upon and not also unseen
individuals, as is in some BMI models, then ensuring the model is tested with unseen
individuals is not necessary. However, for cross-participant models in which the model
is intended for the general population and therefore unseen individuals, data should be
prepared such that participants that are used for training are not also used for validation
or testing, and participants used for validation are not also used for testing; otherwise, the
model’s performance will not accurately reflect its intended purpose of classification upon
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unseen individuals. This means that if participant A is used for training, then not even
a single observation from participant A should be used for validation or testing, and if
participant B is used for validation, then not even a single observation from participant
B should be used for testing. An example of this method of proper vs. improper dataset
partitioning for general population cross-participant models is depicted in Figure 3. It is
also worth noting that proper validation of general population cross-participant models
does not exclude the use of cross-validation (CV) as a performance evaluation technique.
Instead, CV merely needs to be modified so that for each fold, participants used in training
are not also used for validation, such as a Leave-One-Participant-Out approach or a Leave-
N-Participants-Out approach.

Figure 3. Two examples of creating the training, validation, and testing datasets with data from
five participants. Numbers correspond to unique observations within each participant’s dataset,
with “1–60” referring to observations #1 through #60, “61–80” referring to observations #61 through
#80, etc. The top illustrates improper dataset partitioning: data from each participant are used for
all three datasets. In the top panel, while no unique observation is in more than one subset, each
participants’ data is still present in each subset. The bottom illustrates proper dataset partitioning:
each participant’s data are present in no more than one of the subsets.

Cross-participant models have significantly grown in popularity in recent years [3];
however, the majority of studies using cross-participant models do not follow this proper
method of dataset partitioning. In Roy et al.’s literature review of deep learning-based
EEG models, out of 108 studies using cross-participant models, only 23 utilized some
method of proper dataset partitioning with a Leave-N-Participants-Out approach or a
Leave-One-Participant-Out approach [3]. This results in the majority of studies having
overestimated performance metrics—suggesting readers use models which, when used in
scenarios involving the general population, may not perform as well as they were reported
to have performed in the research. To obtain meaningful estimates of performance in the
general population, cross-participant models need to follow proper dataset partitioning, as
shown in Figure 3. Alternately, if the intent is not to use the model in the general population
and is instead a tailored model designed for a specific population subset, the study should
specifically state that the model’s intended goal is only to perform classification upon the
individuals it has been trained upon, to prevent the reader from incorrectly believing its
efficacy would be similar in the general population.
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In the following sections, we demonstrate in greater detail how covariate shift occurs,
as well as its effects, in both simple model examples (Section 3), and in real-world, publicly
available datasets (Section 4).

3. Initial Demonstration

To build understanding for how covariate shift manifests in any data, we utilize
an initial demonstration of its effects in three settings: (1) first, we define covariate shift
mathematically and illustrate how its effects on the expected loss of the test distribution
can be accounted for; (2) next, we depict covariate shift using t-SNE, specifically using
EEG data; and (3) finally, we demonstrate how we can affect covariate shift in EEG data by
reducing the inter-participant variability through data transformations, thus increasing the
model accuracy of properly validated EEG cross-participant models.

3.1. Defining and Estimating the Effects of Covariate Shift

In order to understand covariate shift at its fundamental level, we first define super-
vised learning. Supervised learning is the task of learning a function ƒ(x), which maps an
input vector x to a labeled output y, typically done by estimating the conditional probability
p(y|x) [30] pp. 102–104. In order to estimate this function ƒ(x), a loss function �(ƒ(x),y)
provides a measure of the difference between the true output y and the estimated ŷ for the
input vector x, with the loss function producing smaller values if ŷ is correct and larger
values if ŷ is incorrect. Thus, the task of learning involves minimizing the expected loss of
�(ƒ(x),y) over the probability density p(x,y|λ) (parameterized by λ), i.e., minimizing the
loss �(ƒ(x),y) over all possible inputs x [31],

E(x,y)∼p(x,y|λ)[�( f (x), y)] =
�

�( f (x), y)p(x, y|λ)dxdy. (1)

However, in practice, the distribution p(x,y|λ) is unknown and thus replaced by the
empirical distribution, which can be estimated from training samples. If there is the set of
samples L drawn from p(x,y|λ), then Equation (1) becomes the objective of minimizing the
empirical loss [31],

E(x,y)∼L[�( f (x), y)] =
1
|L| ∑

(x,y)∈L

�( f (x), y). (2)

After minimizing the empirical loss and a prediction model is learned, the model is
tested with the set of test samples T drawn from p(x,y|λ), where T does not contain any
samples from L that were used to minimize the empirical loss.

If the training data and testing data are independently and identically distributed
(i.i.d.), meaning that every single observation of training and testing data are sampled
independently and from the same distribution of p(x,y|λ), then we expect that minimizing
the expected training loss will in general also minimize the expected test loss [31]. This
is an assumption that is common for many predictive models and is referred to as the
i.i.d. assumption. However, many models are developed under conditions such as non-
stationary signals or covariate shift. In these conditions, the i.i.d. assumption no longer
holds, as the training and testing data come from different distributions, e.g., p(x,y|λ)
(parameterized by λ) for the training data, and p(x,y|θ) (parameterized by θ) for the testing
data. As we no longer have the assumption of i.i.d. data, then we can no longer expect that
minimizing the expected training loss also in general minimizes the expected test loss,

argmin
f

E(x,y)∼p(x,y|λ)[�( f (x), y)] 
= argmin
f

E(x,y)∼p(x,y|θ)[�( f (x), y)]. (3)

One method to address this lack of minimizing the expected test loss under covariate
shift is through loss rescaling. Shimodaira proposed that if the training and test distribu-
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tions are known, that the expected test loss could be minimized by appropriately weighting
the training loss for each x with instance-specific weights p(x|θ)

p(x|λ) [31,32],

E(x,y)∼θ[�( f (x), y)] = E(x,y)∼λ

[
p(x|θ)
p(x|λ) �( f (x), y)

]
. (4)

This loss rescaling results in larger loss values for instances of x where there are
fewer training samples than test samples (weight ratio > 1), and smaller loss values for
instances of x where there are more training samples than test samples (weight ratio < 1).
Thus, in a dataset without covariate shift between training and test, more weight ratios’
magnitudes would be close to unity because the features of the training data have a similar
distribution to the features of the test data. Conversely, in a dataset with covariate shift
between training and test, fewer ratios would be closer to 1.0, and more weight ratios
would have magnitudes differing further from 1.0 because the training distribution and
test distribution differ in their feature distributions.

While loss rescaling could be used to adjust machine learning performance outcomes,
implementing loss rescaling can be difficult to achieve. As can be seen in Equation (4), for
each instance of x with positive p(x,y|θ), there must also be a positive p(x,y|λ); otherwise,
there is a zero denominator, meaning this loss rescaling can only occur if the training
distribution covers the entire support of the test distribution [31]. In high-dimensional
data, it is more difficult to have this coverage due to the curse of dimensionality, i.e., that
the sparsity of the data increases exponentially as the number of dimensions (e.g., number
of features) increase. High-dimensional data are common in EEG datasets due to the
nature of recording brain activity with high numbers of channels (i.e., scalp electrodes),
and additionally, if spectral features are utilized, there are multiple frequency bands that
could be extracted for each channel; it is not uncommon to collect spectral energy from five
frequency bands across 64 electrodes for a total of 320 features in x.

While loss rescaling is unlikely to be useful for determining better estimates of perfor-
mance in real-world EEG machine learning models, it can be useful for exploring effects of
covariate shift in low-dimensional spaces. Next, we present a low-dimensional transforma-
tion of EEG datasets using Principal Components Analysis (PCA) in order to explore the
performance differences between improper and proper partitioning of datasets for machine
learning models.

We demonstrate the effects of these loss-rescaling weight ratio values p(x|θ)
p(x|λ) [31,32]

using the spectral features of the Driver Fatigue dataset [33] described in Section 4.1. First,
the input vectors are log transformed to reduce skew, and the dataset is partitioned into
two separate training and test datasets using the proper and improper methods:

• For improper dataset partitioning, all participant data were shuffled together and
one-twelfth of the data were randomly selected for the test set, with the remaining
data selected for the training set.

• For proper dataset partitioning, one participant was selected for the test set, and the
remaining 11 participants were selected for the training set.

Then, PCA was applied separately to the improper and proper datasets in order to reduce
the dimensionality of the data to its first two principal components, with the amount of variance
explained by the first two components being 0.72 for improper and 0.73 for proper. PCA dimen-
sionality reduction is applied to both datasets so that the training distribution is more likely to
cover the entire support of the test distribution [31]. Figure 4a,b depict the graphs for improper
and proper dataset portioning: red dots representing training data observations, and blue dots
representing test data observations. Note that in Figure 4a (improper), the test distribution
is more uniformly spread throughout the training distribution, as all 12 participants are
included in the test distribution, while in Figure 4b (proper), the test distribution is more
clustered due to the entire test distribution belonging to a single participant.
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Figure 4. PCA projection of the first two principal components for (a) Improper and (b) Proper
methods of dataset partitioning for spectral features of the Driver Fatigue dataset [33]. Red dots
represent training data observations, and blue dots represent test data observations. Note that in the
improper (a) that the test distribution is more uniformly spread throughout the training distribution,
as all 12 participants are in the test distribution, while in the proper (b), the test distribution is more
clustered due to the entire test distribution belonging to a single participant. These graphs are newly
generated from the data obtained in the Driver Fatigue dataset [33].

Recall that the loss rescaling weight ratios represent a multiplier on the loss function
in order to better estimate the expected real loss function from the loss estimate produced
during evaluation of a model when there was a covariate difference between the test
(p(x,y|θ)) and training sets (p(x,y|λ)) used for machine learning. Ratios with values
higher than 1 imply that there are more test data than training in this region; thus, the
importance of the loss value in this region needs to be magnified; conversely, in regions
with ratios smaller than 1, there is less test data than training data, meaning the loss values
in this region are less important and their contribution to overall performance should
be suppressed.

To calculate the loss rescaling weight ratio values p(x|θ)
p(x|λ) [31,32] within these datasets,

some method of density estimation of the marginal input distributions is required; for the
purposes of visualization and discussion, we utilize two-dimensional histogram estimators
generated across a 7 × 7 grid of bins for each dataset (# of bins = 49). To help visualize
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this, imagine a 7 × 7 grid placed over the observations in each graph of Figure 4a and b,
with the grid extending from the minimum values within the dataset, to the maximum
values within the dataset, for both the X and Y axes. The number of training and testing
observations within each histogram bin are calculated and normalized, providing our
density estimation for the marginal input distributions, and subsequently the weight
ratio values p(x|θ)

p(x|λ) for each bin. To better display the magnitude of difference in these

weight ratio values, we display them in log scale, with a small value (ε = 1.0 × 10−5)
added to the ratio values to avoid undefined values of log(0). This results in the log-
transformed heat maps seen in Figure 5a–c, with Figure 5a being the log-transformed weight
ratio values for the proper dataset ( log(proper + ε)), Figure 5b being the log-transformed
weight ratio values for the improper dataset (log(improper + ε)), and Figure 5c being the
difference between the log transformed weight ratio values for proper minus improper
(log(proper + ε)− log(improper + ε)).

Figure 5. Heat maps for the log-transformed weight ratio values generated using two-dimensional histograms for (a) Proper
(log(proper + ε)) and (b) Improper (log(improper + ε)) (ε = 1.0 × 10−5 ) methods of dataset partitioning for spectral features
of the Driver Fatigue dataset [33]. Graph (c) depicts the difference in log-transformed weight ratio values between the
proper and improper methods (log(proper + ε)—(log(improper + ε)), with labels for each bin indicating approximately
equal weights (=), a significant negative delta (v), or a significant positive delta (+). These heat maps are newly generated
from the data obtained in the Driver Fatigue dataset [33].
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Figure 5a depicts that for the proper dataset partition, there are few bins (≈7) with a
weight ratio close to 0, and many bins that are less than 0 (with many equal to −5, i.e., log(ε))
or greater than 0. In contrast, Figure 5b depicts that for the improper dataset partition,
there are more bins (≈14) with a weight ratio close to 0, and fewer bins that are less than 0
or greater than 0. Bins that are less than 0 for proper are also darker blue than bins that
are less than 0 for improper, indicating the training data have a more similar distribution
to the test for improper vs. proper. In Figure 5c, the difference of the log-transformed
weight ratio values between the two heat maps (proper minus improper) indicates that
approximately half of the bins have a delta of 0, and the other half of the bins have a delta
that is significantly less than 1.0 or significantly greater than 1.0. This signifies that there
can be significant differences in the weights required to rescale the loss depending on how
the data are partitioned, with significantly more loss rescaling being required for the proper
method of dataset partitioning vs. the improper method. This significant difference in loss
rescaling between the two methods is indicative of proper dataset partitioning resulting in
a covariate shift, and because the only difference in partitioning between the two methods
is how participants are distributed, it is also indicative of an unseen participant resulting in
covariate shift.

3.2. Covariate Shift in EEG

In Section 2.1, we discussed how t-SNE can be utilized in order to detect covariate
shift in data, and in Section 2.2, we discussed how covariate shift is inherent in EEG models
due to the nature of EEG’s non-stationarity and the individual differences that result in
inter-participant variability. Here, we utilize t-SNE to visually showcase why this inter-
participant variability leads to the effect of covariate shift in EEG cross-participant models.
As mentioned previously, t-SNE allows one to inspect for covariate shift in the data by first
applying the unsupervised technique and then visually exploring the data in 2D space,
examining it to see if the clusters of training data and testing data are isolated from one
another through visual inspection.

We perform t-SNE on spectral features of the PTSD [34], Schizophrenia [35], and
Driver Fatigue datasets [33], as well as entropy features for the Driver Fatigue data [33],
with results shown in Figure 6. This is done to showcase that inter-participant variability
is present across many tasks and participant populations and demonstrates it visually to
complement the quantitative empirical results within Section 4. For each of the graphs in
Figure 6, we see that the majority of the data are clustered by participant, meaning that
most of the participant data belong to its own unique input distribution, with some overlap
and similarity between participants. However, there are some limitations of t-SNE that are
worth noting and that are not obvious, and without their understanding, they can lead to
incorrect assumptions about the underlying structure of the data. One limitation is that
the cluster sizes in a t-SNE plot do not relate to distance between points of the cluster,
as the algorithm adapts “distance” to each of the local clusters in the dataset, meaning
dense clusters are expanded and sparse clusters are contracted [17]. This means that the
sparsity of the cluster cannot be implied to have meaning. Another limitation is that
the global geometry of the plot is not reliable as a source of information, meaning that
the distances between clusters may or may not be accurate methods of interpreting the
high-dimensional data in 2D space. While it is possible to dial in the hyperparameters to
the correct values so that the 2D space does accurately represent the global geometry of
the data in high-dimensional space, this requires a priori knowledge of the underlying
structure of the high-dimensional data, which is unavailable. The implication of these
limitations is that when interpreting t-SNE plots, the focus should be on simply the number
of clusters present in the data and how they relate to the training dataset and the testing
dataset. Any other information within the plot should not be taken as evidence of the
underlying structure of the data in high-dimensional space. These limitations are important
in understanding the data presented in the next section.
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Figure 6. Example of using t-SNE for 2D dimensionality reduction and visualization of datasets utilized within this research,
with colors corresponding to participants within the datasets, showcasing that inter-participant variability is present across
different tasks and participant populations. Datasets depicted here are spectral features of the (a) PTSD, (b) Schizophrenia,
(c) and Driver Fatigue datasets; and (d) Entropy features of the Driver Fatigue dataset. The dimensions of t-SNE are
arbitrary distances that represent that closer neighboring points in low-dimensional space are likely to be neighbors in
high-dimensional space.

3.3. Reducing Inter-Participant Variability

As mentioned in Section 2.2, current approaches to EEG modeling are classified
as either within-participant or cross-participant. Due to inter-participant variability,
cross-participant models tend to always have lower classification accuracies than within-
participant models, despite the fact that more participants typically also result in a larger
training dataset for the model.

In order to demonstrate these effects of inter-participant variability within cross-
participant models, we study the phenomenon with synthetically altered data through
transformation. To generate the data, we utilize two mutually exclusive, independent
applied data transformations named shifted Heaviside (our own naming for the transforma-
tion for the purpose of discussion) and shift to median. The goal of these transformations
is to reduce the inter-participant variability of the data while still preserving the local
structure of each participant’s EEG data. In this manner, it can then be seen that as inter-
participant variability is reduced and participants become more similar and no longer have
different input distributions, classification performance improves because the effect of the
covariate shift has been reduced. The purpose of this exploration is to demonstrate this
performance-affecting relationship of inter-participant variability and covariate shift; we
do not recommend utilizing these transformations in practice for the purpose of improving
model performance.

The apparent performance improvement that occurs when data are transformed to
reduce inter-participant variability implies that there will likely be overestimated classifi-
cation performance in cross-participant models that are improperly validated and tested.
When a model uses the same participants for both training and validation or testing, the
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higher measured performance is due to the reduced inter-participant variability between
the training dataset and the validation or testing dataset—essentially masking the true
differences that would exist between the people the model was trained on and the people
the model was intended to be used on in the future. Similarly, when we apply transforma-
tions to reduce inter-participant variability, the goal is to transform the data in a manner
such that multiple participants appear as if they belong to a single participant, and we can
induce the effect of masking the true differences.

The transformation shifted Heaviside is both participant-based and feature-based. As
mentioned at the beginning of this section, the name shifted Heaviside is the name we
use in this paper to refer to this transformation proposed by Arevalillo-Herraez et al.
in [36], based on the Heaviside function, as this transformation was not named by its
originators. It was proposed by Arevalillo-Herraez et al. specifically for the use of reducing
inter-participant variability in EEG data, and it does so by using the median value for
each feature of each participant in order to map the original feature vector into a binary
feature vector of the same size [36]. The effect of this transformation can be thought of as
having the effect of shifting the data to the different corners of a hypercube. To create the
mapping, first, the median value of each feature of each participant is calculated. Then,
the original feature vector data are converted to a binary encoded vector where each
feature value is transformed to a 1 if the value is greater than the median of the feature
vector, or a 0 if less than or equal to the median (akin to a shifted Heaviside function).
Specifically, they formulate their algorithm as follows: for pth participant, for all feature
vectors xp,j, j = 1, 2, . . . , np in the set of training samples Xp, compute the median vector x′p.
Then, transform all feature vectors u for the same participant p according to Equation (5),
where [k] denotes the kth element (feature) of the corresponding vector.

u[k] =

{
1 u[k] > x′p[k],
0 u[k] ≤ x′p[k],

(5)

The shift to median transformation involves calculating a center point for each output
class y across all participants in feature space and then shifting by class y each partici-
pant’s data closer to those class center points so that each participant’s data distribution
moves closer together (toward the calculated class centers), while still preserving dif-
ferences within each participant’s individual data observations. The goal is to reduce
inter-participant variability by shifting all participants to a similar range in feature space,
while still preserving local structure within each participant, including class effect. The
effect of this transformation can be thought of as shifting each participant’s entire cluster of
data by a certain amount so that it is re-centered on a new point (performed by class y).
Using the same symbols in the previous paragraph, we have the following algorithm.

Shift to Median—Variables are defined as follows: y represents class, j represents the ob-
servation, p represents the participant, and N represents the total number of training samples.

1. ∀y Calculate median vector C̃y across all feature vectors xp,y,j of all participants p = 1,
. . . , P

a. C̃y =

{
xy, N+1

2
N odd

1
2

(
xy, N

2
+ xy, N+1

2

)
N even

2. ∀p ∀y ∀xp,j Calculate median centroid c̃p,y of p

b. c̃p,y =

{
xp,y, N+1

2
N odd

1
2

(
xp,y, N

2
+ xp,y, N+1

2

)
N even

3. ∀y ∀xp,j Compute shifted vector x′p,y,j = xp,y,j +
(

C̃y − c̃p,y

)
This results in three different datasets: original dataset, shifted Heaviside transforma-

tion, and shift to median transformation. Employing t-SNE on the datasets allows us to
view the local clusters within the data. For EEG specifically, this typically allows us to
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identify clustering by participant, showcasing the inter-participant variability inherent
across participants. To demonstrate this clustering as well as the EEG data transformations
described above, we utilize the Driver Fatigue dataset [33] described in Section 4.1.

This dataset contains both entropy and spectral features. In information theory, the
entropy of a time series quantifies its regularity and predictability over time [37], and
the entropy features extracted for use include approximate entropy (AE), sample entropy
(SE), and fuzzy entropy (FE) features [38]. The spectral features were extracted using
Morlet wavelet transforms in MATLAB to determine the frequency-domain mean power
of two of the five clinical frequency EEG bands: alpha (12–15 Hz) and beta (16–22 Hz) ([5]
pp. 151–174). Two frequency-spectral-power features extracted from EEG were computed
for each of the 30 channels. This results in 60 features for the spectral feature space and
90 features for the entropy feature space (three entropy measures across all 30 channels).

Figures 7a and 8a both illustrate the results of applying t-SNE to the untransformed
Drive Fatigue datasets for the entropy and spectral feature spaces, respectively. It can be
seen that in these high-dimensional data spaces of 90 and 60 features each that there is
significant clustering by participant, with coloring corresponding to a participant’s data.
Note that this coloring has no effect on the t-SNE algorithm itself and is applied afterwards
for visualization. As mentioned earlier in Section 3.2, due to the limitations of t-SNE,
we cannot reliably interpret any information from the 2D plot outside of the number of
clusters. Clusters found within t-SNE should only be treated as such: that they are localized
clusters that exist within the high-dimensional data. After a data transformation, if t-SNE
is unable to find local clustering despite hyperparameter tuning, then local clustering does
not exist [17]. For these datasets, a lack of local clustering means that the inter-participant
variability has been reduced to the point that t-SNE can no longer distinguish between
participants in the feature space.

Figure 7. Results of visualizing the data using t-SNE for the entropy feature space before and after various data transforma-
tions: (a) Before any transformations; (b) After applying shifted Heaviside transformation; (c) After applying shift to median

transformation. Colors correspond to different participants, with the same color applied to the same participant in each
figure. Note in (b,c) that there is a lack of local clustering, implying that inter-participant variability has been reduced due
to the transformations. The dimensions of t-SNE are arbitrary distances which represent that closer neighboring points in
low-dimensional space are likely to be neighbors in high-dimensional space.
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Figure 7b,c reveal the different data transformation’s effects on local clustering within
the entropy feature spaces and Figure 8b,c show the transformation’s effects on the spec-
tral feature spaces. For the entropy feature space, we see that each transformation has
reduced the inter-participant variability to the point where t-SNE no longer finds local
clustering within the data. Similarly, for the spectral feature space, we see that the shifted
Heaviside transformation has the same result, while the shift to median transformation largely
reduces local clustering within t-SNE, but not to the same effect as the shifted Heaviside
transformation.

To demonstrate the effects of reducing inter-participant variability on classification
accuracy in cross-participant models, cross-participant models were also built using each of
these three datasets of data within both of the feature spaces (entropy and spectral). As this
is the Driver Fatigue dataset, models were trained according to the methodology specified
in Section 4.1. For each of the three subsets of data within both of the feature spaces of
entropy and spectral features, separate models were trained and tested according to both
the improper and proper methods of cross-participant model generation. For proper model
generation, we follow the guidelines specified in Section 2.3, resulting in 12-fold LOPO CV.
As mentioned in Section 4.1, for improper model generation, in order to match the number
of folds (and data per fold) in LOPO CV, 12-fold CV was used with all participant data
shuffled together and split across 12-folds. Together, this results in 12 models generated for
each method.

Figure 8. Results of visualizing the data using t-SNE for the spectral feature space before and after various data transforma-
tions: (a) Before any transformations; (b) After applying shifted Heaviside transformation; (c) After applying shift to median

transformation. Colors correspond to different participants, with the same color applied to the same participant in each
figure. The dimensions of t-SNE are arbitrary distances that represent that closer neighboring points in low-dimensional
space are likely to be neighbors in high-dimensional space.
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Table 1 contains the classification accuracy results for each of the 12 models. It can be
seen that for both the entropy and spectral feature spaces that improper model testing did
not benefit from the data transformations. Intuitively, this makes sense, as these models
are tested improperly; thus, the model has seen each participant’s input distribution,
and therefore, a reduction of inter-participant variability is not impactful to the model.
However, for proper model testing, we see that for both the entropy and spectral feature
spaces that the shift to median transformation results in a dominance in accuracy of the 95%
confidence interval (CI) from the transformation in comparison of the 95% CI’s. While the
shifted Heaviside transformation did result in a reduction of inter-participant variability for
both feature spaces as shown in Figures 7b and 8b, this reduced inter-participant variability
did not result in any significant effects on cross-participant model performance, suggesting
that this transformation may be best suited for only certain datasets which its developers
Arevalillo-Herraez et al. work with.

Table 1. Classification accuracies for the 12 models generated from transformed and non-transformed
driver fatigue data. Improper models were generated with the improper method of cross-participant
model generation utilizing 12-fold CV with all participant data shuffled together and split across
12 folds, and proper model generation utilized 12-fold LOPO CV. The purpose of this table is two-fold.
One is to depict that improper model generation typically results in overestimated model accuracy as
can be seen with increased accuracies for improper vs. proper. The other is to depict the results of the
proper method on untransformed data versus the proper method on the two transformed datasets.
Bold signifies dominance in accuracy of the 95% confidence interval from the transformation in
comparison of the 95% confidence intervals.

Entropy Spectral

Improper

Untransformed 0.91 (0.89, 0.93) 0.82 (0.79, 0.85)

Shifted Heaviside 0.72 (0.68, 0.76) 0.66 (0.62, 0.70)
Shift to Median 0.91 (0.89, 0.93) 0.82 (0.79, 0.85)

Proper

Untransformed 0.50 (0.46, 0.54) 0.50 (0.46, 0.54)

Shifted Heaviside 0.50 (0.46, 0.54) 0.47 (0.43, 0.51)
Shift to Median 0.80 (0.77, 0.83) 0.72 (0.68, 0.76)

4. Empirical Demonstrations in Diverse EEG Case Studies

In this section, we utilize five publicly available datasets to empirically demonstrate
the difference in machine learning performance results of using proper versus improper
methods of dataset partitioning during training, validation and testing. These five datasets
were selected to encompass diversity across the research activities using machine learning
and EEG, to demonstrate the importance of following the proper methodology in many
situations. The domains of the five datasets differ substantially in both tasks performed
during data collection and subsequent classification using EEG, including both classi-
fication of different mental states within an individual: mental fatigue (Driver Fatigue),
emotions (Confused Students), as well as determining of the existence of longer-term chronic
conditions in individuals: mental disease (Alcoholism), psychological conditions (PTSD),
and mental disorders (Schizophrenia). In the chronic condition datasets, each participant
(and all of the observations corresponding to that participant) are either in the chronic
condition class or the class representing normal. Summary details of these datasets can be
seen in Table 2.
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Table 2. Details for the publicly available datasets. All datasets are binary classification tasks, and all
datasets are balanced except for the Alcoholism dataset. This gives chance accuracy for Alcoholism
defined as 0.64 and 0.50 for all other datasets.

Dataset Year Collected Binary Classification Task # of Participants

Driver Fatigue [33] 2017 Normal vs. Fatigue 12
Confused Students [12] 2013 Confused vs. Not Confused 10

Alcoholism [13] 1999 Alcoholic vs. Non-Alcoholic 122

PTSD [34] 2018 Pre-Treatment vs.
Post-Treatment 12

Schizophrenia [35] 2014 Schizophrenia vs. Healthy
Control 30

Model architectures used are selected based on research papers with top performance
in their respective dataset and/or domain, with replication performed as closely as possible.
In some cases, research papers were missing details about hyperparameters and other
model details, and these details had to be selected using best practices of machine learning.
With architecture and hyperparameters selected, two models are then created and evaluated
separately using the same architecture and hyperparameter sweep (grid search utilized):

• Improper: trained, tuned, and evaluated during tests using all participant data.
• Proper: trained and tuned using data from a subset of the participants, then, during

the test, evaluated using only data from participant(s) that were not used to train or
tune the model.

Then, results of the two methods are contrasted and compared, with error rates
displayed in a summary table in Section 5. It is also worth noting that the amount of
data used for training and validation/testing is kept consistent across both the proper and
improper methods, meaning that both models have the same quantity of observations to
train upon, and additionally, both models are validated and tested with the same number
of observations. This ensures that there is minimal difference between the two models in
terms of architecture, hyperparameter sweeps, or the amount of data used for training,
validation, or testing, and that the only difference between the models is the restriction
surrounding which participants are used for training, validation, and testing for the proper
method vs. the improper method.

The next five subsections are structured as case studies for each of the five datasets,
and they are in the following order: Driver Fatigue, Confused Students, Alcoholism, PTSD,
and Schizophrenia. Each case study first discusses the purpose of the experiment, how it
was conducted, and what EEG data were collected (pre-processing details are provided
in Appendix A). Then, information on the model architecture and its methodology are
provided, as well as the results previous researchers had achieved using that methodology.
Then, we detail our own methodology to include having to fill any gaps missing from
their architecture or hyperparameter selection, as well as how we perform both improper
and proper training, validation, and testing for the two different models. Finally, we state
results achieved with both models and compare them.

4.1. Driver Fatigue

This dataset is available on Figshare [33] through a link provided in Min et al.’s paper,
which details both the experiment and the subsequent deep learning performed [38]. Their
experiment consisted of collecting EEG recordings during a driving simulator for the
purpose of using these signals to develop a model that could detect driver fatigue using
EEG signals. Twelve participants used the driving simulator for 1–2 h in a highway setting
with low traffic density, with EEG recorded in two phases during the session. The first
phase consisted of 20 min of continuous driving, with the last 5 min of this 20-min segment
recorded and labeled as the normal state. The second phase consisted of driving that lasted
for 40–100 min until the participant’s self-reported questionnaire indicated that they were
fatigued (surveys used were Lee’s Subjective Fatigue Scale [39] and the Chalder Fatigue
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Scale [40]), in which the last 5 min of driving were recorded in the EEG and labeled as
the fatigue state. EEG was recorded using a 32-channel electrode cap, with two of the
channels being reference channels linked to mastoid electrodes. The 5 min of EEG from
each phase were epoched into 1 s segments for 300 epochs per phase per participant,
resulting in a total of 3600 trials for the normal state and 3600 trials for the fatigue state.
Then, the data were randomly split into training and testing datasets at a 50/50 ratio,
without participants taken into account, thus resulting in improperly created datasets for
cross-participant models. Feature extraction included several entropy measures, which
were extracted for each trial and then normalized. In information theory, the entropy of a
time series quantifies its regularity and predictability over time [37], with the measures
extracted including approximate entropy, sample entropy, and fuzzy entropy [38].

In Min et al.’s work, these entropy features were then utilized for multiple classifiers,
with the classifier that achieved the highest accuracy being an artificial neural network
(ANN) [38]. The ANN had three layers, each with 20 hidden units and sigmoid activation
functions. Gradient descent was used with mean squared error (MSE) for the loss the func-
tion, and the Levenberg–Marquardt function was used as the optimization function [41].
Leave-One-Out Cross-Validation (LOOCV) was utilized to report test classification accu-
racy, with their reported test accuracy being 0.968 or an error rate of 0.032.

The architecture above was followed for training both of our models; however, 12-fold
CV was utilized, as there are 12 participants and Leave-One-Participant-Out (LOPO) CV
results in 12-fold CV. Thus, for improper training and validation, 12-fold CV was used
with all participant data shuffled together and split across 12-folds, and for proper training
and validation, LOPO CV was used. Using this configuration, for improper testing of the
cross-participant model, the best accuracy we obtained was 0.83, which was much lower
than Min et al.’s reported test accuracy of 0.968 with their 50/50 training/testing split. In an
effort to improve upon this, a hyperparameter sweep was conducted across hidden units
(20, 30, 40, and 50), dropout rate (0.0, 0.1, 0.2), different learning rates (0.01, 0.001, 0.0001),
and the reduce_lr callback of reducing the learning rate based on the number of epochs
trained. The configuration with the highest classification accuracy for the improper method
was one of 50 hidden units, 0.2 dropout rate, 0.001 learning rate, and reduce_lr callback
was utilized. This hyperparameter sweep was also conducted for the proper method, with
the configuration with the highest classification accuracy for the proper method being
40 hidden units, 0.2 dropout rate, 0.001 learning rate, and reduce_lr callback being utilized.
Then, these configurations were used for improper and proper training and validation of
the cross-participant models, respectively.

For improper training and validation of the cross-participant model using our con-
figuration above, the reported classification accuracy using 12-fold CV was 0.91 (95% CI:
0.903, 0.917) or an error rate of 0.09 (95% CI: 0.083, 0.097). While this result is significantly
lower than Min et al.’s error rate (0.09 vs. 0.032 [38]), our accuracy is still similar enough in
magnitude for our goal of contrasting proper and improper methods of model evaluation.
As such, when we built the model properly and trained and validated it using LOPOCV,
the resulting accuracy was 0.540 (95% CI: 0.528, 0.552) or an error rate of 0.46 (95% CI: 0.448,
0.472). This error rate is over five times as that of the error rate of the improper method,
illustrating how difficult classification of unseen participants is, and how significantly
overestimated test accuracies can become by following an improper methodology, which
does not account for the significance of inter-participant variability.

4.2. Confused Students

Participant data for this dataset are available on Kaggle [12] and come from an experi-
ment involving college students. The purpose of the experiment was to collect EEG from
college students while they were in a confused state and a not confused state and then build
a model that could determine if the student was confused or not confused using the EEG
signals. Researchers collected EEG while the students watched online education videos
in a confused state and a not confused state [42]. Ten young adult college students watched
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two-minute online education videos (lectures) on various topics, which were assumed to
not confuse an average college student, such as basic algebra and geometry, as well as
topics that would be confusing, such as quantum mechanics and stem cell research. Each
student watched five randomly selected videos from each category, and after each video,
students self-rated their confusion on a scale of 1 (least confused) to 7 (most confused).
EEG was recorded at a sampling rate of 512 Hz using a single-channel NeuroSky MindSet
device, which has a single electrode that rests over the middle of the forehead, and two
electrodes for ground and reference, each in contact with an ear. The first 30 s and last
30 s of each session’s EEG recording were removed in case the student was not ready;
the middle 60 s was available for analysis. Then, NeuroSky software was used to extract
features from the signal at 2 Hz to include the mean of the raw signal, mean power for the
five traditional frequency bands (to include alpha low/high, beta low/high, and gamma
low/high), and MindSet’s proprietary “attention” and “meditation” signals.

In addition to the experiment data, Kaggle also lists references with some of the latest
classification results to use these data for the purpose of binary classification of whether
a student is confused or not confused. The two references with the greatest classification
accuracies both use bidirectional Long Short-Term Memory (LSTM) models as their neural
network architecture [43,44], with the one we selected for replication being work from
Ni et al., as their work provided the most detail for replication [44]. For Ni et al.’s work,
each session consisted of a single trial as to provide sequence data for the recurrent neural
network (RNN). Sessions from all nine participants were merged together for a cross-
participant model, and 5-fold cross-validation was used across all participants (improper
method). EEG features used consisted of proprietary measures from the MindSet EEG
device labeled Attention (measure of mental focus) and Meditation (measure of calmness),
the raw EEG signal values, and mean values of eight different frequency regions in the
power spectrum. In addition to EEG signals, Ni et al. also opted to use the “Predefined
Label” of whether a session was confusing or not as a feature. The bidirectional LSTM
had 50 hidden units and used a tanh activation function, and it was followed by a fully
connected layer with a sigmoid activation function. Before the bidirectional LSTM, batch
normalization was used. No other architecture or hyperparameter methodology was
provided. The CV test accuracy varied between 0.71 and 0.74 for their work, with an
average 5-fold CV accuracy of 0.733.

To reproduce Ni et al.’s results for the improper model, the architecture above was
followed along with the hyperparameters provided, and all of the EEG features were uti-
lized, resulting in 11 total features used for training (in our replication of the research, the
non-EEG “Predefined Label” feature was omitted; we do not recommend including a class
label as a feature per standard practices of machine learning). In an effort to replicate their
methodology of hyperparameter selection for the proper model, a hyperparameter grid
search was performed across hidden units (40, 50, 60), dropout rate (0.0, 0.1, 0.2), and learn-
ing rate (0.001, 0.0001), with the highest performing proper model having hyperparameters
of 50 hidden units, 0.0 dropout rate, and 0.0001 learning rate; the same hyperparameters
Ni et al. and our improper model design used. This hyperparameter sweep ensures both
the improper and proper models have selected their best hyperparameters for their input
data. In an effort to increase the amount of training samples for the models, the EEG
data were also segmented using a sliding sequence window of 15 samples in length and
slides by 12 samples. Then, we built two separate cross-participant models using improper
training and testing for one and proper training and testing for the other. The improper
model utilized 5-fold CV for training and validation with all participant data shuffled
together, resulting in every fold including some data from every participant (exact same
method used by Ni et al.). The proper model also utilized 5-fold CV; however, it was
Leave-Two-Participants-Out CV. Outside of this change in how the folds were formed for
CV, all other variables remained the same between the models, to include architecture,
features used, hyperparameters, and the number of observations used for both training
and validation.
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For improper training and validation of the cross-participant model using 5-fold CV,
our replication of Ni et al.’s configuration [44] resulted in a test accuracy of 0.69 (95% CI:
0.654, 0.726), which was close to their reported test accuracy of 0.733, with a difference
in error rates of 0.31 (95% CI: 0.274, 0.346) vs. 0.267. However, our proper training and
validation of the proper cross-participant model using Leave-Two-Participants-Out CV
resulted in an accuracy of 0.584 (95% CI: 0.552, 0.628) or an error rate of 0.416 (95% CI:
0.372, 0.448). The error rate of the proper method is over 33% greater than the error rate
of the improper method, suggesting that improper training and testing of EEG data can
lead to overestimation of model performance on unseen participants and thus the human
population in general.

4.3. Alcoholism

Participant data for this dataset are available from both Kaggle [12] and the University
of California, Irvine (UCI) machine learning data repository [13], with this research utilizing
the Full Dataset from the UCI repository. The source of the data comes from one of a number
of experiments sponsored by the National Institute on Alcohol Abuse and Alcoholism
(NIAAA) in the early 1990s, which were conducted with the purpose of recording brain
activity during a task that was expected to elicit differences in the neural activity of healthy
participants and alcoholic participants [45,46]. In the control group, there were 45 male
participants, and in the experimental group, there were 77 alcoholic male participants.
The task used was a visual object recognition task: the participant was presented with a
sequence of two images and had to determine whether the second image was the same
as the first. Signals were recorded from 64 scalp EEG electrodes and 2 electrooculography
(EOG) electrodes, at a sampling rate of 256 Hz, and were referenced to node site Cz during
EEG measurement. This resulted in a sequence dataset with 64 features × 256 μV values
for each of the (approximately) 100 observations per participant.

Recently, the Full Dataset from the UCI repository was utilized by Farsi et al. to train
both ANN and LSTM classifiers, with their LSTM architecture having the best performance
with a reported test accuracy of 0.93 [47]. They used improper dataset partitioning, mixing
the participants data and selecting 80% of the data for training and 20% for testing. For
improper training and validation of the cross-participant model, we used 5-fold CV to
align with Farsi et al.’s 80% training 20% testing dataset preparation. For proper cross-
participant model evaluation, we utilized 5-fold Leave-N-Participants-Out CV, with N
equal to 24 or 25 depending on the fold. Although the paper provided an architecture,
it did not explicitly identify their choice of best hyperparameters that were selected for
their final LSTM model—they only provided a list of what hyperparameters were explored.
Therefore, in an effort to recreate their work, we utilized the architecture they specified
and performed a hyperparameter sweep across all of the hyperparameters that were
explored by the authors. This resulted in a 3-layer LSTM with layers and hidden units as
follows (100-(Dropout Layer)-32-1), and a hyperparameter sweep performed for activation
function (Relu, tanh, Sigmoid), dropout rate (0.2, 0.4), optimizer (Adam, SGD), batch size
(50, 150), learning rate (0.1, 0.0001), epochs (50, 100), and loss function (MSE, Binary Cross
Entropy). The resulting models from these hyperparameter sweeps performed poorly for
both improper and proper models, so we instead used a 3-layer LSTM architecture with
descending hidden units (H) across the three layers (H, H-50, H-100), dropout and recurrent
dropout activated for all three layers, with activation function tanh, recurrent activation
function sigmoid, batch size 256, optimizer Adam, learning rate 0.0001, and loss function
Binary Cross Entropy. Then, we performed a hyperparameter sweep for this architecture
across hidden units (200, 250, 300, 350), dropout rate (0.2, 0.3, 0.4), and epochs (200, 300,
400, 500). This architecture and its hyperparameter sweep had better performance, so we
opted to use it as our final architecture for both the improper and proper methods of model
creation. The best configuration for the improper model had hyperparameters of hidden
units 350, dropout rate 0.4, and epochs 500. The best configuration for the proper model
had hyperparameters hidden units 300, dropout rate 0.4, and epochs 400.
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The resulting improper model had a test accuracy of 0.84 (95% CI: 0.82, 0.86) or an
error rate of 0.16 (95% CI: 0.12, 0.18). While this result is significantly lower than Farsi
et al.’s error rate (0.16 vs. 0.07 [47]), our accuracy is still similar enough in magnitude for
our goal of contrasting proper and improper methods of model evaluation. The resulting
proper model had a test accuracy of 0.69 (95% CI: 0.67, 0.71) or an error rate of 0.31 (95% CI:
0.29, 0.33), which is close to chance accuracy of 0.64 or a chance error rate of 0.36, as this
dataset was imbalanced with a majority class of alcoholics. The error rate of the properly
data-partitioned model is almost twice as large as the error rate of the improper model,
again suggesting that if the goal is to build a model that can be used to make accurate
estimates on unseen individuals, then the EEG cross-participant model must be evaluated
properly by evaluating it only using data from participants not used during training or
validating the model.

4.4. Post-Traumatic Stress Disorder (PTSD)

This publicly available PTSD dataset can be found on Figshare [34] through an ap-
pendix and link provided in Rahmani et al.’s paper, which details the experiment used
and their subsequent EEG analysis [34] (unrelated to machine learning). Researchers cap-
tured resting-state EEG from six healthy control (HC) participants and six combat-related
PTSD participants, while they had an MRI taken, with the goal being to find differences
between HCs and PTSD participants through analysis of the EEG. For this dataset, there
were 33 channels of EEG recorded, with two of the 33 channels being used for ground
and reference, and at a sampling rate of 5000 Hz. EEG preprocessing was performed in
both the proprietary software BrainVision Analyzer2 and within EEGLAB. ICA was used
to remove blink and saccade artifacts, and time periods containing motion artifacts from
observed participant head motion were also removed. After artifact removal, the EEG was
down-sampled to 250 Hz. Scans lasted 526 s, and the first 6 s were removed for steady-state
signals, resulting in 520 s of raw voltage value data per participant. However, only the
first continuous 50,000 data points without participant motion were used within Rahmani
et al.’s analysis, and this was subsequently the case with the data uploaded and made avail-
able to the public, resulting in 200 s of raw EEG per participant being available for machine
learning. Then, EEG signals were segmented into 1-s non-overlapping epochs, resulting
in 200 observations per participant. For feature selection, spectral features were extracted
for the 31 EEG channels using Morlet wavelet transforms in MATLAB to determine the
frequency-domain mean power of the five traditional frequency bands: delta (2–4 Hz),
theta (4–8 Hz), alpha (8–12 Hz), beta (15–30 Hz), and gamma (30–80 Hz) [5] pp. 151–174.
The mean power of these five bands for all 31 channels results in a total of 155 features
(31 × 5) for each of the 260 observations for each of the 12 participants.

Since this dataset has not yet been used for published research in the area of machine
learning, there is no machine learning workflow we are attempting to replicate; instead,
we utilize a standard fully connected multi-layer perceptron neural network (MLPNN) for
our architecture, which is a common and most fundamental ANN.

A hyperparameter sweep was performed to find a good model. The sweep was con-
ducted across the following hyperparameters: hidden layers (1, 2), hidden units (20, 30, 40,
50), dropout rate (0.0, 0.1, 0.2), and learning rates (0.01, 0.001, 0.0001) for both the improper
and proper methods of model evaluation, and the hyperparameter configuration that
resulted in the highest validation accuracy was selected for each method. The architecture
used ReLU activation functions for dense layers, a Sigmoid activation function for the
output layer, and ‘Adam’ for the optimizer; training was conducted for 50 epochs. For
training and validation of the improper model, 12-fold CV was used with all participant
data shuffled together and split across the 12-folds, and for training and validation of the
proper model, 12-fold LOPO CV was used.

The best configuration for the improper model consisted of 1 hidden layer, 50 hidden
units, a learning rate of 0.001, and a dropout rate of 0.2. This configuration resulted in
a 12-fold CV accuracy of 0.995 (95% CI: 0.9922, 0.9978) or an error rate of 0.005 (95% CI:
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0.0022, 0.0078). The best configuration for the proper model was similar in that it consisted
of the same parameters for everything except the hidden units being 40 instead of 50. This
configuration resulted in a 12-fold LOPO CV of 0.803 (95% CI: 0.7871, 0.8189) or an error
rate of 0.197 (95% CI: 0.1811, 0.2129). This results in an error rate that is over 39 times larger
for the proper method versus the improper method of training and validation, which is the
2nd largest difference between proper and improper partitioning within these case studies.
Relying on the overly optimistic, extremely low error rate measured in the performance of
the model trained using the improper training method would falsely drive overconfidence
in the model’s performance in future use. Once again, the evidence suggests that if the
intent is to estimate performance on new people, proper segregation of participants in the
partitioning of the training, validation, and test datasets is paramount.

4.5. Schizophrenia

This dataset is available on Kaggle [35] and was collected in an effort to study the dif-
ference in corollary discharge between participants with schizophrenia and those without
schizophrenia (HCs) [48]. The participant’s task was to either (1) press a button every 1–2 s
to deliver an 80 dB tone, (2) passively listen to that same tone, or (3) press a button that
did not produce a tone or any other effect other than the tactile response of depressing the
button. Each event condition occurred a total of 100 times for each participant, resulting in
300 trials per participant. In total, in the dataset there were 32 HCs and 49 patients with
schizophrenia; however, data from only 40 participants were available online (25 HCs and
15 diagnosed with schizophrenia).

Data were collected using a BioSemi ActiveTwo 64 + 2 electrode cap, with 64 scalp sites
and 2 references electrodes placed over the mastoids [48]. Data were sampled at 1024 Hz
and epoched at 3 s for each trial, with the start of each epoch being time-locked to 1.5 s
before button press. The EEG data were uploaded to Kaggle [35] in two different formats,
one in time-series as raw EEG voltage values, and the other with event-related potential
(ERP) features. In order to generate richer features for machine learning, spectral features
were extracted from the raw EEG voltage values for all 64 channels. This was done similarly
as done in the PTSD dataset, using Morlet wavelet transforms in MATLAB to determine
the frequency-domain mean power of the five traditional frequency bands: delta (2–4 Hz),
theta (4–8 Hz), alpha (8–12 Hz), beta (15–30 Hz), and gamma (30–80 Hz) ([5] pp. 151–174).
This resulted in 320 features for each observation (64 channels × 5 frequency bands =
320), with participants having between 280 and 290 observations each. Unfortunately, the
dataset was heavily imbalanced, with 25 participants being HCs, and only 15 participants
being diagnosed with schizophrenia. To alleviate this imbalance, only 15 of the 25 HCs
were randomly selected to be used for machine learning.

For our architecture selection for this dataset, we use both a neural network, as well
as a more traditional machine learning model—the random forest classifier. Buettner
et al. achieved high levels of accuracy for EEG classification of HCs vs. participants
with schizophrenia using an RFC [49] (albeit on a different EEG dataset), so they are a
proven model type for this domain, with the neural network architecture implemented
for additional investigation. The spectral features generated were utilized for both the
MLPNN and the RFC, and both architectures followed both the proper and improper
methods of model evaluation, resulting in four separate models generated. For improper
training and validation, 30-fold CV was utilized with all participant data shuffled together
and split across the 30-folds, and for proper training and validation, 30-fold LOPO CV was
used. As with the PTSD dataset, we did not have a published neural network methodology
to replicate for this dataset.

For the MLPNN architecture, a hyperparameter sweep was conducted across the
following hyperparameters: hidden layers (1, 2), hidden units (20, 30, 40, 50), dropout
rate (0.0, 0.1, 0.2), and learning rates (0.01, 0.001, 0.0001). This hyperparameter sweep
was conducted for both the improper and proper methods of model evaluation, and the
hyperparameter configuration that resulted in the highest validation accuracy was selected
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for each method. Other parameters of the architecture include using the ReLU activation
function for dense layers, a Sigmoid activation function for the output layer, and ‘Adam’
for the optimizer; the number of training epochs set to 50.

RFC hyperparameters selected for hyperparameter tuning included the maximum
depth of the trees and the number of features to consider. The number of estimators (trees)
was determined by incrementally increasing the number of estimators by 5 from a low
value of 50 until validation accuracy no longer improved. For this, maximum depth was set
to its default sklearn value of ‘None’ so that there was no limit to depth, and the maximum
features set to its typical recommended amount of m =

√
p where p equals the 320 features,

and thus, m =
√

320 = 18 [50]. By incrementally increasing the number of estimators
by 5 from 50 to 750 as described above, 110 was found to result in the best validation
accuracy, and this amount was used for both proper and improper methods of model
evaluation for the RFCs. From here, a hyperparameter sweep for the number of features
and the maximum depth was conducted, utilizing values from 1 to 25 for each. These
values were determined by going far above and below the typical recommended values for
these parameters (e.g., the square root of features for the number of max_features m) [50].
This resulted in a hyperparameter sweep of 252 = 625 models for both the improper and
proper methods of model evaluation, resulting in 1250 models in total generated during
hyperparameter search.

The best configuration for the MLPNN improper model consisted of 1 hidden layer,
50 hidden units, a learning rate of 0.001, and a dropout rate of 0.2. This configuration
resulted in a 30-fold CV accuracy of 0.992 (95% CI: 0.990, 0.9939) or an error rate of
0.008 (95% CI: 0.0061, 0.01). For the proper MLPNN model, there was no significant
difference between any of the configurations, and no model was able to perform better than
random chance (50%), illustrating how severe the effect of covariate shift can be in EEG
data, depending on the participants used. The best configuration for the RFC improper
model was maximum features set to 15 and maximum depth set to 24, resulting in a 30-fold
CV accuracy of 0.941 (95% CI: 0.936, 0.946) or an error rate of 0.059 (95% CI: 0.054, 0.064).
For the proper RFC model, similar to the proper MLPNN model, there was no significant
difference between any of the configurations, and no model was able to perform better
than random chance (50%). This final case study showcases the most significant effect of
covariate shift, resulting in models that are unable to perform better than random chance
due to the significant inter-participant variability that exists between the participants.

5. Discussion

Our empirical results show that improper dataset evaluation can lead to unrealistic and
overestimated accuracies for general population EEG cross-participant models. Table 3 specifies
the extent of these differences in error rates between improper and proper methods, ranging
from a 35% increase in error rate for the confused students dataset, all the way up to a 3900%
increase in error rate in the case of the schizophrenia dataset. As mentioned in Section 4,
the diversity of these datasets and the methods used provide evidence that performance
overestimation due to improper data partitioning is indeed a phenomenon of EEG that
is not unique to any one subset of experiment, task, participant, or equipment used, nor
is it merely an aspect of only certain EEG features or types of machine learning models.
Instead, the risk of performance overestimation is an inherent phenomenon of individual
differences in EEG that should always be considered when developing general population
EEG cross-participant models.
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Table 3. Validation results for the five case studies (95% CI). All datasets are binary classification
tasks, and all datasets are balanced except for the Alcoholism dataset. This gives chance error rate
for Alcoholism defined as 0.36, and 0.50 for all other datasets. Results should be compared within
datasets (left to right) between the improper and proper method. The proper method always reveals
a significantly greater error rate than the improper method, suggesting the risks of overestimation of
performance, which can result from using the improper method.

Dataset
Architecture

Used
Error Rate–

Improper Method
Error Rate–

Proper Method

Driver Fatigue MLPNN 0.09 (0.083, 0.097) 0.466 (0.448, 0.472)
Confused Students Bi-LSTM 0.31 (0.274, 0.346) 0.416 (0.372, 0.448)

Alcoholism LSTM 0.16 (0.12, 0.18) 0.31 (0.29, 0.33)
PTSD MLPNN 0.005 (0.0022, 0.0078) 0.197 (0.1811, 0.2129)

Schizophrenia MLPNN 0.008 (0.0061, 0.01) 0.50 (0.44, 0.56)
Schizophrenia RFC 0.059 (0.054, 0.064) 0.50 (0.44, 0.56)

Proper care with EEG data preparation has been a subject of recent exploration by
Li et al. as well [51]. Li et al. demonstrated that due to EEG’s non-stationarity, proper
guidelines for the design of the experiment much be followed in order obtain model results
that are not overestimated, particularly in the block design of the experiment so that stimuli
of different classes are intermixed. If not followed, models instead learn to classify through
arbitrary temporal artifacts, giving the false appearance of high performance. Our findings
are synergistic with Li’s: we demonstrate the necessity of partitioning the data properly
when performing machine learning on collected data after the experiment is complete; due
to individual differences, proper care with EEG data partitioning by participant yields
more accurate estimates of model results on future data. Together, both Li et al.’s guidelines
for the design of the experiment and our guidelines for proper post-experiment dataset
partitioning should be followed in order to obtain results for EEG cross-participant models
that are representative of the model’s performance on the general population.

In Section 3, we demonstrated how t-SNE can be used to visualize covariate shift
between participants due to their inter-participant variability, and we also illustrated how
the shifted Heaviside and the shift to median transformations could be utilized to reduce this
inter-participant variability. Additionally, for the purpose of demonstrating the relationship
between this inter-participant variability and covariate shift, we explored the effect of these
transformations in improving cross-participant model accuracy for both improper and
proper model creation across two different feature spaces (entropy and spectral features).
As can be seen in Figures 7b,c and 8b,c, both transformations were successful in reducing
inter-participant variability for both feature spaces; however, only the shift to median trans-
formation resulted in a dominant increase in accuracy of the 95% confidence intervals for
both feature spaces for proper model creation, with the shifted Heaviside transformation
having no improvement in model accuracy. In contrast to the shifted Heaviside results,
Arevalillo-Herraez et al. (the originators of the shifted Heaviside transformation) had im-
provement of model accuracy in three different datasets they utilized, all of which were
affect recognition-based datasets with arousal and valence features [36]. In their research,
they also followed proper dataset partitioning guidelines and utilized LOPO CV. This
suggests that a transformation that results in a reduction or elimination of inter-participant
variability does not necessarily imply an improvement in cross-participant model accuracy.

6. Conclusions

As mentioned in Section 2, five out of six EEG deep learning models in research today
are cross-participant models, with only one out of those five models following some method
of proper dataset partitioning to ensure the model was tested with unseen participants [3].
Our empirical results show that models that utilize improper dataset evaluation have
overestimated and unrealistic accuracies for the general population, with the difference
in error rates for improper versus proper dataset evaluation ranging from a 35% increase
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in error rate up to a 3900% increase in error rate. These empirical findings suggest that if
this trend continues, the body of research for EEG cross-participant models will become
diluted with research that claims overestimated and unrealistic performance metrics, both
downplaying the true difficulty in creating a high-performing EEG cross-participant model,
and also slowing scientific progress of researching methodologies, which results in cross-
participant models that are truly high performing for the general population. Thus, it
is absolutely critical that the body of research corrects this trend and follows the proper
dataset partitioning guidelines described in this research. Specifically, it means that:

• Data from participants used for model training must not be used for model validation
or testing.

• Participants that are utilized for validation must not be used for testing.

This ensures the model is tested with unseen participants and reflects its intended purpose.
These findings extend beyond individual researchers. In addition, it is also impor-

tant that data contributors, and the owners and maintainers of dataset repositories (e.g.,
Kaggle [12] and the UCI machine learning data repository [13]) managing human data
ensure these guidelines are followed as well. Specifically, for these repositories, we recom-
mend that:

• Any EEG data that are made available for download should always have (de-identified)
participant labels available so that users may properly partition the data themselves.

• If the data contributors or maintainers decide to pre-partition the data into separate
training and test datasets (as is sometimes done for competitions of machine learning
models), then proper dataset partitioning guidelines should be followed for preparing
those training and test datasets before they are made available for download by the
general public.

We also recommend that the repository include these guidelines of proper dataset
partitioning with all hosted EEG datasets, as this would help spread the word in regard
to proper dataset partitioning and inform users who are unaware of inter-participant
variability and its effects.

Lastly, we strongly recommend that the “Neurotechnologies for Brain–Machine Inter-
facing” group of the Institute of Electrical and Electronics Engineers Standards Association
(IEEE SA) consider and adopt these guidelines for all future proposals of standards. In this
group’s most recent Standards Roadmap [52], stakeholders and experts across government,
academia, and industry identified the existing gap in the standardization of performance
assessment and benchmarking for BMI as a clear priority for standardization [53]. Specifi-
cally, the proposal should identify these guidelines as a minimal reporting requirement for
performance evaluation of EEG cross-participant models, leading to standardization in re-
porting how the data are partitioned, identifying their limitations, and curbing performance
claims accordingly.
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ANN Artificial Neural Network
BMI Brain–Machine Interface
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DL Deep Learning
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HC Healthy Control
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RNNt-SNE Recurrent Neural Networkt-Distributed Stochastic Neighbor Embedding
UCI University of California, Irvine

Appendix A

In this appendix, we include any pre-processing details that were provided by the
originators of the datasets used within this research.

Appendix A.1. Driver Fatigue Data

EEG was recorded using a 32-channel electrode cap, with two of the channels being
reference channels linked to mastoid electrodes [38]. Scan 4.3 software of Neuroscan was
used for preprocessing, with raw signals filtered by a 50 Hz notch filter and a 0.15 Hz to
45 Hz band pass filter in order to remove noise.

Appendix A.2. Confused Students Data

No known preprocessing information was provided by the originators.

Appendix A.3. Alcoholism Data

EEG correlates were sampled from 62 scalp electrodes and two EOG electrodes, at
a sampling rate of 256 Hz [13]. Sampling started at 190 ms before onset of stimulus in
order to record a pre-stimulus baseline, and EEG correlate durations provided in the
dataset were 1 s in duration. Sensor values were provided in μV, resulting in a sequence
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of 256 temporally organized values for each EEG channel. Trials with excessive eye or
body movements (>73.3 μV) were rejected online. Only artifact free EEG segments were
used to include eye blink artifacts. EEG electrodes were referenced to node site Cz during
EEG measurement.

Appendix A.4. PTSD Data

For this dataset, there were 33 channels of EEG recorded, with two of the 33 channels
being used for ground and reference, and at a sampling rate of 5000 Hz [34]. EEG prepro-
cessing was performed in the proprietary software BrainVision Analyzer2. MRI gradient
artifacts and cardio ballistic artifacts were removed using the template subtraction method.
Then, the EEG was down-sampled to 250 Hz and filtered with a 40 Hz low-pass filter. Then,
ICA was applied to remove residual cardioballistic artifacts as well as blink and saccade
artifacts. Time periods of head motion were removed.

Appendix A.5. Schizophrenia Data

Vertical EOG (VEOG) and Horizontal EOG (HEOG) were also collected for the purpose
of capturing eye movement and blinks [35]. Due to the size of the raw EEG signals,
preprocessing was already performed on the dataset prior to its upload for public use. This
preprocessing included re-referencing to the averaged mastoid channels, applying a 0.1 Hz
high-pass filter, interpolation of outlier channels, and rejection of outlier components and
outlier trials due to EEG artifacts using the FASTER artifact rejection method [54].
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Abstract: Detecting drowsiness in drivers, especially multi-level drowsiness, is a difficult problem
that is often approached using neurophysiological signals as the basis for building a reliable system.
In this context, electroencephalogram (EEG) signals are the most important source of data to achieve
successful detection. In this paper, we first review EEG signal features used in the literature for a
variety of tasks, then we focus on reviewing the applications of EEG features and deep learning
approaches in driver drowsiness detection, and finally we discuss the open challenges and opportu-
nities in improving driver drowsiness detection based on EEG. We show that the number of studies
on driver drowsiness detection systems has increased in recent years and that future systems need
to consider the wide variety of EEG signal features and deep learning approaches to increase the
accuracy of detection.

Keywords: drowsiness detection; EEG features; feature extraction; machine learning; drowsiness
classification; fatigue detection; deep learning

1. Introduction

Many industries (manufacturing, logistics, transport, emergency ambulance, and
similar) run their operations 24/7, meaning their workers work in shifts. Working in shifts
causes misalignment with the internal biological circadian rhythm of many individuals,
which can lead to sleeping disorders, drowsiness, fatigue, mood disturbances, and other
long-term health problems [1–4]. Besides misalignment of the internal circadian rhythms
with a work shift, sleep deprivation and prolonged physical or mental activity can also
cause drowsiness [5–7]. Drowsiness increases the risk of accidents at the workplace [8–10],
and it is one of the main risk factors in road and air traffic accidents per reports from
NASA [11] and the US National Transportation Safety Board [12].

Drowsiness is the intermediate state between awareness and sleep [13–15]. Terms like
tiredness and sleepiness are used as synonyms for drowsiness [16–18]. Some researchers
also use fatigue as synonymous with drowsiness [19,20]. Definitions and differences
between drowsiness and fatigue are addressed in many research papers [21–23]. The main
difference between the two states is that short rest abates fatigue, while it aggravates
drowsiness [24]. However, although the definitions are different, drowsiness and fatigue
show similar behavior in terms of features measured from electroencephalogram (EEG)
signal [25–28]. Because of this fact, in this review paper, we consider all the research
papers whose topic was drowsiness, sleepiness, or fatigue, and we make no distinction
among them.

The maximum number of hours that professional drivers are allowed to drive in a
day is limited, yet drowsiness is still a major problem in traffic. A system for drowsiness
detection with early warnings could address this problem. The most commonly used meth-
ods for drowsiness detection are self-assessment of drowsiness, driving events measures,
eye-tracking measures, and EEG measures. Among these methods, drowsiness detection
systems based on the EEG signal show the most promising results [18,29].
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Brain neural network is a nonlinear dissipative system, i.e., it is a non-stationary
system with a nonlinear relationship between causes and effects [30]. One way to ana-
lyze brain neural network is through feature extraction from the EEG signal. The most
used techniques for feature extraction are linear, such as Fast Fourier Transform (FFT).
Although it is a linear method, FFT also assumes that the amplitudes of all frequency
components are constant over time, which is not the case with brain oscillations, since
they are non-stationary. Because of the complexity of brain dynamics, there is a need
for feature extraction methods that can properly take into account the nonlinearity and
non-stationarity of brain dynamics. With an increase of computational power in recent
years, many researchers work on improving the feature extraction methods, and there is a
growing number of various features extracted from the EEG signal.

This paper aims to review the features extracted from the EEG signal and the appli-
cations of these features to the problem of driver drowsiness detection. We review the
features since the large number of features described in the literature makes it difficult to
understand their interrelationships, and also makes it difficult to choose the right ones
for the given problem. To our knowledge, there is no similar review work that covers all
the features discussed in this review. After the EEG features review, we continue with the
review of driver drowsiness detection systems based on EEG. The main goal is to gain
insight into the most commonly used EEG features and recent deep learning approaches for
drowsiness detection, which would allow us to identify possibilities for further improve-
ments of drowsiness detection systems. Finally, the main contributions of our work are
the following: (1) Comprehensive review, systematization, and a brief introduction of the
existing features of the EEG signal, (2) comprehensive review of the drowsiness detection
systems based on the EEG signal, (3) comprehensive review of the existing similar reviews,
and (4) discussion of various potential ways to improve the state of the art of drowsiness
detection systems.

The paper is organized as follows: In Section 2, we present the overview of the existing
review papers that are close to the topic of this paper, Section 3 provides the overview of the
different features extracted from the EEG signal, Section 4 reviews the papers dealing with
driver drowsiness detection systems, Section 5 provides a discussion about the features
and drowsiness detection systems, and Section 6 brings the future directions of research
and concludes the paper.

The search for the relevant papers included in our paper was done in the Web of
Science Core Collection database. The search queries used were: (1) In Section 2.1—
“{review, overview} {time, frequency, spectral, nonlinear, fractal, entropy, spatial, temporal,
network, complex network} EEG features“, (2) in Section 2.2—“{review, overview} driver
{drowsiness, sleepiness, fatigue} {detection, classification}”, (3) in Section 3—“<feature
name> EEG feature”, (4) in Section 4—“EEG driver {‘’, deep learning, neural network}
{drowsiness, sleepiness, fatigue} {detection, classification}”. Beyond the mentioned queries,
when appropriate, we also reviewed the papers cited in the results obtained through the
query. Additional constraints for papers in Section 4 were: (1) They had to be published in
a scientific journal, (2) they had to be published in 2010 or later, 2) at least three citations
per year since the paper was published, (3) papers from 2020 or 2021 were also considered
with less than three citations per year, but published in Q1 journals, and (4) the number of
participants in the study experiment had to be greater than 10. The goal of these constraints
was to ensure that only high quality and relevant papers were included in our study.

2. Related Work

2.1. Reviews of the EEG Signal Features

Stam [30] in his seminal review paper about the nonlinear dynamical analysis of the
EEG and magnetoencephalogram (MEG) signals included more than 20 nonlinear and
spatiotemporal features (e.g., correlation dimension, Lyapunov exponent, phase synchro-
nization). The theoretical background of these features and dynamical systems were also
covered. The paper gave an overview of the other research works that include explanations
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of the features from the fields of normal resting-state EEG, sleep, epilepsy, psychiatric
diseases, normal cognition, distributed cognition, and dementia. The main drawback of the
paper nowadays is that it is somewhat dated (from 2005) because additional approaches
have been introduced in the meantime. Ma et al. [31] reviewed the most-used fractal-based
features and entropies for the EEG signal analysis, and focused on the application of these
features to sleep analysis. The authors concluded that using fractal or entropy methods may
facilitate automatic sleep classification. Keshmiri [32], in a recent paper, provided a review
on the usage of entropy in the fields of altered state of consciousness and brain aging. The
author’s work is mostly domain-specific, as it emphasizes incremental findings in each area
of research rather than the specific types of entropies that were utilized in the reviewed
research papers. Sun et al. [33] reviewed the complexity features in mild cognitive impair-
ment and Alzheimer’s disease. They described the usage of five time-domain entropies,
three frequency-domain entropies, and four chaos theory-based complexity measures.

Motamedi-Fakhr et al. [34], in their review paper, provided an overview of more
than 15 most-used features and methods (e.g., Hjorth parameters, coherence analysis,
short-time Fourier transform, wavelet transform) for human sleep analysis. The features
were classified into temporal, spectral, time-frequency, and nonlinear features. Besides
these features, they also reviewed the research papers about sleep stages classification.
Rashid et al. [35] reviewed the current status, challenges, and possible solutions for EEG-
based brain-computer interface. Within their work, they also briefly discussed the most
used features for brain–computer interfaces classified into time domain, frequency domain,
time-frequency domain, and spatial domain.

Bastos and Schoffelen [36] provided a tutorial review of methods for functional con-
nectivity analysis. The authors aimed to provide an intuitive explanation of how functional
connectivity measures work and highlighted five interpretational caveats: The common
reference problem, the signal-to-noise ratio, the volume conduction problem, the common
input problem, and the sample size problem. Kida et al. [37], in their recent review paper,
provided the definition, computation, short history, and pros and cons of the connec-
tivity and complex network analysis applied to EEG/MEG signals. The authors briefly
described the recent developments in the source reconstruction algorithms essential for the
source-space connectivity and network analysis.

Khosla et al. [38], in their review, covered the applications of the EEG signals based on
computer-aided technologies, ranging from the diagnosis of various neurological disorders
such as epilepsy, major depressive disorder, alcohol use disorder, and dementia to the
monitoring of other applications such as motor imagery, identity authentication, emotion
recognition, sleep stage classification, eye state detection, and drowsiness monitoring. By
reviewing these EEG signal-based applications, the authors listed features observed in
these papers (without explanations), publicly available databases, preprocessing methods,
feature selection methods, and used classification models. For the application of drowsi-
ness monitoring, the authors reviewed only three papers, while other applications were
better covered.

Ismail and Karwowski [39] overview paper dealt with a graph theory-based modeling
of functional brain connectivity based on the EEG signal in the context of neuroergonomics.
The authors concluded that the graph theory measures have attracted increasing attention
in recent years, with the highest frequency of publications in 2018. They reviewed 20 graph
theory-based measures and stated that the clustering coefficient and characteristic path
length were mostly used in this domain.

Figure 1 shows the reviews presented in this section in chronological order of publication.
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Figure 1. Chronologically ordered reviews of the EEG signal features.

2.2. Reviews of the Driver Drowsiness Detection

Lal and Craig [18], in their review of driver drowsiness systems, discussed the concept
of fatigue and summarized the psychophysiological representation of driver fatigue. They
concluded that most studies had found a correlation of theta and delta activity with the
transition to fatigue.

Lenne and Jacobs [40], in their review paper, assessed the recent developments in
the detection and prediction of drowsiness-related driving events. The driving events
observed were the number of line crossings, the standard deviation of lateral position, the
variability of lateral position, steering wheel variability, speed adjustments, and similar
events. The authors concluded that these driving performance measures correlate with
drowsiness in the experimental settings, although they stipulated that the new findings
from on-road studies show a different impact on performance measures. Doudou et al. [41]
reviewed the vehicle-based, video-based, and physiological signals-based techniques for
drowsiness detection. They also reviewed the available commercial market solutions for
drowsiness detection. When it comes to the EEG signal drowsiness detection, the authors
included six papers that consider frequency-domain features in this field.

Sahayadhas et al. [42] reviewed vehicle-based measures, behavior-based measures,
and physiological measures for driver drowsiness detection. The section on physiological
measures included 12 papers with only frequency-domain features. Sikander and An-
war [43] reviewed drowsiness detection methods and categorized them into five groups—
subjective reporting, driver biological features, driver physical features, vehicular fea-
tures while driving, and hybrid features. When it comes to drowsiness detection using
EEG signals, the authors focused more on explaining frequency-domain features used
for drowsiness detection rather than presenting research that had already been done in
this field.

Chowdhury et al. [44] reviewed different physiological sensors applied to driver
drowsiness detection. Observed physiological methods for measuring drowsiness included
electrocardiogram (ECG), respiratory belt, EEG, electrooculogram (EOG), electromyogram
(EMG), galvanic skin response (GSR), skin temperature, and hybrid techniques. Related to
EEG methods, the authors included papers based on the spectral power features, event-
related potentials, and entropies. The authors also discussed different materials used for
dry electrodes and the problem of measurement intrusiveness for the drivers.

Balandong et al. [45] split driver drowsiness detection systems into six categories based
on the used technique—(1) subjective measures, (2) vehicle-based measures, (3) driver’s
behavior-based system, (4) mathematical models of sleep–wake dynamics, (5) human
physiological signal-based systems, and (6) hybrid systems. The authors emphasized
human physiological signal-based systems, but only the systems that rely on a limited
number of EEG electrodes, as these kinds of systems are more practical for real-world
applications. The authors concluded that the best results were obtained when the problem
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was observed as a binary classification problem and that the fusion of the EEG features
with other physiological signals should lead to improved accuracy.

Other review papers of driver drowsiness systems are specialized for a certain aspect
of the field, e.g., Hu and Lodewijsk [46] focused on differentiating the detection of passive
fatigue, active fatigue, and sleepiness based on physiological signals, subjective assessment,
driving behavior, and ocular metrics, Soares et al. [47] studied simulator experiments
for drowsiness detection, Bier et al. [48] put focus on the monotony-related fatigue, and
Philips et al. [49] studied operational actions (e.g., optimal staff, optimal schedule design)
that reduce risk of drowsiness occurrence.

Figure 2 shows the reviews presented in this section in chronological order of publication.

Figure 2. Chronologically ordered reviews of driver drowsiness detection methods.

3. EEG Features

The purpose of this section is to introduce features that researchers extract from the
EEG signal. We will not go into the details of the computation for each feature. For
the readers who are interested in the detailed computation for each feature, we suggest
reading the cited papers. Instead, the main idea is to present, with a brief explanation, as
many features as possible, which will later allow us to identify opportunities for further
improvements in the area of driver drowsiness detection. Tables 1 and 2 show the list of all
the features introduced in the following subsections. In the rest of this Section, we will use
bold letters for the first occurrence of a particular feature name and italic letters for the first
occurrence of a particular feature transformation or extraction method name.

3.1. Time, Frequency and Time-Frequency Domain Features

3.1.1. Time-Domain Features

The simplest features of the EEG signal are statistical features, like mean, median,
variance, standard deviation, skewness, kurtosis, and similar [50]. Zero-crossing rate

(ZCR) [51] is not a statistical feature, yet it is also a simple feature. It is the number of times
that the signal crosses the x-axis. The period-amplitude analysis is based on the analysis of the
half-waves, i.e., signals between two zero-crossings. With the period amplitude analysis,
one can extract the number of waves, wave duration, peak amplitude, and instantaneous

frequency (IF) (based only on the single observed half-wave) [52].
Hjorth parameters are features that are based on the variance of the derivatives of the

EEG signal. Mobility, activity, and complexity [53] are the first three derivatives of the
signal and the most-used Hjorth parameters. Mean absolute value of mobility, activity, and
complexity can also be used as a features [54]. K-complex [55] is a characteristic waveform
of the EEG signal that occurs in stage two of the non-rapid eye movement sleep phase.
Energy (E) of the signal is the sum of the squares of amplitude.
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3.1.2. Frequency-Domain Features

The power spectral density (PSD) of the signal, which is the base for calculation
of the frequency domain features, can be calculated with several parametric and non-
parametric methods. Non-parametric methods are used more often and include methods
like Fourier transform (usually calculated with Fast Fourier transform algorithm, FFT [56]),
Welch’s method [57], or Thompson multitaper method [58]. Examples of parametric methods
for the PSD estimation are the autoregressive (AR) models [59], multivariate autoregressive
models [60], or the autoregressive-moving average (ARMA) models [61]. The non-parametric
models have a more widespread usage, because there is no need for selecting parameters
such as the model’s order, which is the case for autoregressive models.

Statistical features like mean, median, variance, standard deviation, skewness, kur-

tosis, and similar are also used in the frequency domain. Relative powers of the certain
frequency bands are the most used frequency-domain features in all fields of analysis of
the EEG signals. The most commonly used frequency bands are delta (δ, 0.5–4 Hz), theta

(θ, 4–8 Hz), alpha (α, 8–12 Hz), beta (β, 12–30 Hz), and gamma (γ, >30 Hz), band. There
is also the sigma band (σ, 12–14 Hz) that is sometimes called sleep spindles [62]. Several
ratios between frequency bands are widely used as features in the EEG signal analysis, i.e.,
θ/α [63], β/α [63], (θ + α)/β [64], θ/β [64], (θ + α)/(α + β) [64], γ/δ [65] and (γ + β)/(δ +

α) [65].

Table 1. The list of time-domain, frequency domain and nonlinear features reviewed in this work.

Group Feature Name Abbr. Group Feature Name Abbr.

Ti
m

e-
do

m
ai

n

Mean

Fr
eq

ue
nc

y-
do

m
ai

n θ/β
Median (θ + α)/(α + β)
Variance γ/δ

Standard deviation (γ + β)/(δ + α)
Skewness Reflection coefficients
Kurtosis Partial correlation coefficient

Zero-crossing rate ZCR Wavelet coefficients
Number of waves Phase coupling

Wave duration

N
on

lin
ea

r

Hurst exponent H
Peak amplitude Renyi scaling exponent

Instantaneous frequency IF Renyi gener. dim. multifractals
Hjorth parameters Capacity dimension D0 D0

Mobility Information dimension D1 D1
Activity Correlation dimension D2 D2

Complexity Katz fractal dimension KFD
K-complex Petrosian fractal dimension PFD

Energy E Higuchi fractal dimension HFD

Fr
eq

ue
nc

y-
do

m
ai

n

Mean Fractal spectrum
Median Lyapunov exponents LE
Variance Lempel-Ziv complexity LZC

Standard deviation Central tendency measure CTM
Skewness Auto-mutual information AMI
Kurtosis Temporal irreversibility

Delta δ Recurrence rate RR
Theta θ Determinism Det
Alpha α Laminarity Lam
Beta β Average diagonal line length L

Gamma γ Maximum length of diagonal Lmax
Sigma σ Max. length of vertical lines Vmax
θ/α Trapping time TT
β/α Divergence Div

(θ + α)/β Entropy of recurrence plot ENTR
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Table 2. The list of entropies, undirected and directed spatiotemporal (spt.), and complex network features reviewed in
this work.

Group Feature Name Abbr. Group Feature Name Abbr.

En
tr

op
ie

s

Shannon entropy

U
nd

ir
ec

te
d

sp
t.

Imaginary component of Coh
Renyi’s entropy Phase-lag index PLI
Tsallis entropy Weighted phase lag index wPLI

Kraskov entropy KE Debiased weighted PLI dwPLI
Spectral entropy SEN Pairwise phase consistency PPC

Quadratic Renyi’s SEN QRSEN Generalized synchronization
Response entropy RE Synchronization likelihood SL

State entropy SE Mutual information MI
Wavelet entropy WE Mutual information in freq. MIF

Tsallis wavelet entropy TWE Cross-RQA
Rényi’s wavelet entropy RWE Correlation length ξKLD

Hilbert-Huang SEN HHSE

D
ir

ec
te

d
sp

t. Granger causality

Log energy entropy LogEn Spectral Granger causality

Multiresolution entropy Phase slope index PSI

Kolmogorov’s entropy

C
om

pl
ex

ne
tw

or
ks

Number of vertices
Nonlinear forecasting entropy Number of edges
Maximum-likelihood entropy Degree D

Coarse-grained entropy Mean degree
Correntropy CoE Degree distribution

Approximate entropy ApEn Degree correlation r
Sample entropy SampEn Kappa k

Quadratic sample entropy QSE Clustering coefficiet
Multiscale entropy MSE Transitivity

Modified multiscale entropy MMSE Motif
Composite multiscale entropy CMSE Characteristic path length

Permutation entropy PE Small worldness
Renyi’s permutation entropy RPE Assortativity
Permutation Rényi entropy PEr Efficiency

Multivariate PE MvPE Local efficiency
Tsallis permutation entropy TPE Global efficiency

Dispersion entropy DisE Modularity
Amplitude-aware PE AAPE Centrality degree

Bubble entropy BE Closesness centrality
Differential entropy DifE Eigenvalue centrality

Fuzzy entropy FuzzyEn Betweenness centrality
Transfer entropy TrEn Diameter d

U
nd

ir
ec

te
d

sp
t. Coherence Eccentricity Ecc

Partial coherence Hubs
Phase coherence Rich club

Phase-locking value PLV Leaf fraction

Coherency Coh Hierarchy Th

The frequency domain of the signal can also be obtained using wavelet decomposi-
tion [66,67] and matching pursuit decomposition [68,69] methods. Unlike Fourier transform,
which decomposes a signal into sinusoids, wavelet decomposition uses an underlying
mother wavelet function for decomposition, and matching pursuit decomposition uses the
dictionaries of signals to find the best fit for the signal.

From autoregressive models, one can extract features such as reflection coefficients

or partial correlation coefficients. Wavelet coefficients obtained after applying wavelet
decomposition can also be used as features. PSD is usually used to obtain the second-order
statistics of the EEG signal. However, one can also consider the higher-order spectrum. For
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example, phase coupling [70] of different frequency components can be obtained with the
higher-order spectral analysis.

3.1.3. Time-Frequency Features

The analysis of the EEG signal in the domains of time and frequency simultaneously is
a powerful tool, since the EEG signal is a non-stationary signal [71,72]. The most important
component of time-frequency domain analysis is the possibility to observe changes in the
frequency over time. Short-time Fourier transform (STFT) is the simplest function that
uses uniform separation of the observed signal and calculates its frequency components.
A spectrogram [71] can be obtained with the application of STFT. Wavelet transform [73]
is the usual alternative method to spectrogram that also provides coefficients as features
from the time-frequency domain. The main advantage of wavelet transform compared to
spectrogram is a variable window size, dependent on spectrum frequencies.

3.2. Nonlinear Features

Brain dynamics constitute a complex system. A system is complex when it is con-
structed from many nonlinear subsystems that cannot be separated into smaller subsystems
without changing their dynamical properties. Fractal systems are often used for describing
the brain dynamics measured with the EEG signal. To explain fractal systems, first, we
need to introduce the scaling law. The scaling law is describing (asymptomatically) a
self-similar function F as a function of the scale parameter s, i.e., F(s) ∼ sα. When applied
to a self-affine signal, each axis should be scaled by a different power factor to obtain
statistically equivalent changes in both directions. If s is used in the x-axis direction, then
s′ = sH should be used in the y-axis direction. The power factor H is called the Hurst

exponent [74,75]. The Hurst exponent is a measure of long-term memory of the signal and
is related to the fractal dimension with the equation D0 = 2 − H for self-similar time-series,
where fractal dimension D0 is defined in the next paragraph. Time-series q is monofractal if
it is linearly interdependent with its Renyi scaling exponent τ(q), otherwise, it is multifrac-
tal. The Renyi generalized dimension of multifractals is defined as D(q) = τ(q)/(q − 1).
For more detailed explanations about fractality and multifractality of the time-series, we
refer the reader to [76–78].

In EEG signal analysis, all fractal dimensions are estimated based on the underlying
attractor (a geometric structure towards which stationary dissipative system gravitates in
its state space) of the signal [79]. In a strict mathematical sense, most time-series have the
one-dimensional support fractal dimension D0 (or capacity dimension or Hausdorff di-
mension) if there are no missing values. Regardless of the value of the D0, the information

dimension D1 and correlation dimension D2 [79–81] can be calculated. The correlational
dimension D2 can be calculated with both monofractal and multifractal approaches. The
Katz fractal dimension (KFD) [82], the Petrosian fractal dimension (PFD) [83], and the
Higuchi fractal dimension (HFD) [84] are different approaches to the estimation of the
fractal dimension. With multifractal time-series analysis, a fractal spectrum consisting of
multiple fractal dimensions can be obtained [85,86].

Methods for fractal time-series analysis can be classified [76] into stationary analysis
methods (such as Fluctuation Analysis [87], Hurst’s Rescaled-Range Analysis [74], and similar),
non-stationary analysis (such as Detrended Fluctuation Analysis [88], Centered Moving Average
Analysis [89], Triangle Total Areas [90], and similar), and multifractal analysis (such as
Wavelet Transform Modulus Maxima [91], Multifractal Detrended Fluctuation Analysis [92], and
similar). Each of these methods provides its own estimation of fractal dimension or scaling
exponent features.

Lyapunov exponents (LE) [93] are measures of the attractor’s complexity. If a system
has at least one positive Lyapunov exponent, then the system can be characterized as a
chaotic dynamical system. A positive Lyapunov exponent points to exponential divergence
of the two nearby trajectories in the attractor over time [94]. Lempel-Ziv complexity

(LZC) [95] is a measure of complexity that binarizes time-series and then searches for the
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occurrence of consecutive binary characters or “words” and counts the number of times
a new “word” is encountered. The Central tendency measure (CTM) [96] is a measure
of the variability of the observed time-series and represents the percentage of points on
the scatter plot that fall into a given radius. Auto-mutual information (AMI) [97] is a
mutual information measure applied to time-delayed versions of the same EEG time-series.
Temporal irreversibility [98] of a time-series implies the influence of nonlinear dynamics,
non-Gaussian noise, or both. It is a statistical property that differs based on the direction
in which time proceeds, e.g., any sequence of measurements has a different probability of
occurrence than its time reverse.

A recurrence plot [99] is a graphical method for the detection of reoccurring patterns
in the time-series. Recurrence quantification analysis (RQA) [100] is a group of algorithms
for the automatic quantification of recurrence plots. RQA is a noise resistant method,
meaning it gives good results even when the signal-to-noise ratio of considered signals
is unfavorable [101]. The recurrence rate (RR) is the probability that a specific state of a
time-series will reoccur. Determinism (Det) is the percentage of points that form diagonal
lines on the recurrence plot and laminarity (Lam) is the percentage of points forming
vertical lines in the recurrence plot. The average diagonal line length (L), maximum

length of diagonal (Lmax), and maximum length of vertical lines (Vmax) are also used
as RQA-based features. Trapping time (TT) is the average vertical line length and it relates
to the predictability of the time-series. Divergence (Div) is the reciprocal value of the
maximal diagonal line length and it can have a trend similar to the positive Lyapunov expo-
nents. Entropy of the recurrence plot (ENTR) reflects the complexity of the deterministic
structure of the system.

3.3. Entropies

Entropy was first introduced to the field of information theory by Shannon in
1948 [102,103]. Shannon’s information entropy is calculated based on the expression
− ∑

j
pj log

(
pj

)
, where pj is the probability distribution of the observed data. It is used

to measure uncertainty or randomness in the observed time-series. There are many
derived variations of information entropy used in EEG analysis. The entropies may be
considered as nonlinear features, but we describe them in a separate subsection due to
their specific calculation.

Rényi’s entropy [104] is defined with the expression − α
1−α ∑ log pα

k , where α > 0
and α 
= 1. It is a generalization of Shannon’s entropy in the case of a limited value
of α → 1 . Quadratic Rényi’s entropy (or just Rényi’s entropy) is the case where α = 2.
Tsallis entropy (q-entropy) [105] is a generalization of the Boltzman–Gibbs entropy from

statistical thermodynamics and is defined with the expression k
q−1

(
1 − ∑

i
p

q
i

)
, where k is a

positive constant and q is the non-extensity parameter. For q > 1, the entropy has a more
significant reaction to the events that occur often, whereas for 0 < q < 1, the entropy has a
more significant reaction to rare events.

The three aforementioned entropies can be calculated from the raw EEG signal. Be-
sides that, they are a base for calculating several other entropies in the field of EEG
analysis. Kraskov entropy (KE) [50] is an unbiased estimator of Shannon’s entropy for a
d-dimensional random sample. Spectral entropy (SEN) [106] is calculated with the expres-
sion for Shannon’s entropy based on the normalized PSD of the EEG signal. Quadratic

Renyi’s spectral entropy (QRSEN) [107] is calculated with the usage of Renyi’s entropy
expression, and the difference compared to the spectral entropy is that it gives the higher
weights to the lower frequencies. Commercial M-Entropy Module [108] uses two different
components of spectral entropy—response entropy (RE) and state entropy (SE). State
entropy includes the spectrum between 0.8 and 32 Hz, while response entropy includes the
spectrum between 0.8 and 47 Hz.

Wavelet entropy (WE) [109,110] is somewhat similar to spectral entropy. The differ-
ence is that it is calculated based on the coefficients of the wavelet decomposition of the
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given time-series. There are two generalizations of wavelet entropy—Tsallis wavelet en-

tropy (TWE) and Rényi’s wavelet entropy (RWE) [111]. Hilbert–Huang spectral entropy

(HHSE) [112] applies Shannon’s entropy to the Hilbert–Huang spectrum, which is obtained
by the Hilbert–Huang transform [111,113]. Log energy entropy (LogEn) [114] is similar to
the wavelet entropy, but only uses summation of logarithms of the probabilities. Multires-

olution entropy [115] uses the combination of windowing and wavelet transform for the
detection of changes in parameters that define the observed process (i.e., the parameters of
brain dynamics).

Kolmogorov’s entropy [116] is an embedding entropy and is defined as the sum of
positive Lyapunov exponents. It represents the rate of information loss and a degree
of predictability (regularity) of the attractor. Accurate computation of Kolmogorov’s
entropy is computationally expensive, so several entropies are used for the estimation of
Kolmogorov’s entropy based on the less computationally expensive methods. Nonlinear

forecasting entropy [117] is the estimation of Kolmogorov’s entropy for time-series with
too few points. It is based on the forecasting of the time-series data, i.e., on the correlation
coefficient of the forecasted points with actually observed points. The estimation method is
independent of the forecasting method used. Maximum-likelihood entropy [118] is also
the estimation of Kolmogorov entropy. It is derived with the application of maximum-
likelihood to the correlation integral, which is treated as a probability distribution. Coarse-

grained entropy [119] is an estimation of the attractor’ entropy for cases where standardly
used dimensions, Lyapunov exponents, and Kolmogorov’s entropy are not suitable due to
the high dimensionality of the observed process. Correntropy (CoE) [120] is an estimation
of nonlinear autocorrelation.

Approximate entropy (ApEn) [121] is derived from Kolmogorov’s entropy and its
use in the analysis of the EEG signal (and other physiological signals) is widespread.
It addresses the irregularity of a time-series. Predictable time-series, i.e., time-series
with many repetitive patterns will have a small value of approximate entropy. Sample

entropy (SampEn) [122] was introduced as an improvement to approximate entropy. It
reduces the error of the approximate entropy by eliminating its two disadvantages—(1)
self-matches and (2) dependence on the time-series length. Sample entropy is also an
approximation of signal complexity. Quadratic sample entropy (QSE) [123] is SampEn
insensitive to the data radius parameter r. It allows r to vary as needed to achieve
confident estimates of the conditional probability. Multiscale entropy (MSE) [124] is
a generalization of an entropy measure (such as sample entropy) to different time
scales. Modified multiscale entropy (MMSE) [125] uses the same procedure as MSE,
but replaces coarse-graining with a moving average procedure. Composite multiscale

entropy (CMSE) [126] is a modification of the MSE that tackles the problem of increased
variance and error estimation for short time-series.

Permutation entropy (PE) [127] estimates signal variability based on the repetition of
the ordinal patterns. The algorithm requires parameter m (permutation order) to obtain
ordinal patterns and their probabilities of occurrence. These probabilities are then applied
in Shannon’s entropy expression. Moreover, Renyi’s permutation entropy (RPE) [128],
permutation Rényi entropy (PEr) [129], multivariate permutation entropy (MvPE) [130],
and Tsallis permutation entropy (TPE) [111] can be calculated for the ordinal patterns.
Dispersion entropy (DisE) [131] is a modification of permutation entropy that tackles
the problem of amplitude information loss (since permutation entropy only considers
the order of the amplitude values but not the values themselves). Amplitude-aware

permutation entropy (AAPE) [132] is based on the similar idea of using the value of the
signal with the permutation entropy. Bubble entropy (BE) [133] is similar to permutation
entropy with the main difference in the method used for ranking vectors in the embedding
space. Namely, permutation entropy uses repetition of the ordinal patterns and bubble
entropy uses the number of steps needed to sort a vector with the bubble sort algorithm.
Differential entropy (DifE) [134] calculation is based on Shannon’s entropy expression and
the estimation of the underlying probability density function of time-series. Fuzzy entropy

192



Sensors 2021, 21, 3786

(FuzzyEn) [135] is based on the concept of fuzzy sets, first introduced by Zadeh [136].
It is similar to sample entropy, but instead of using the Heaviside function for distance
calculation, it uses a fuzzy membership function. Transfer entropy (TrEn) [137] uses
concepts similar to mutual information (see Section 3.4) with the ability to quantify the
exchange of information between two systems. It is an asymmetric measure for information
transfer from process X to process Y, which measures the effect of the past values of
processes X and Y on the present value of process Y.

3.4. Spatiotemporal Features

Features that were introduced above are all calculated based on a single EEG chan-
nel. Since EEG recording devices can have hundreds of channels nowadays, features
that describe the relationship between different channels bring further insight into the
understanding of brain functions. This is the main idea behind the usage of the spatiotem-
poral features—to describe the relationship between different brain regions for particular
states or events. Spatiotemporal features can be divided into two groups—directed and
non-directed. The non-directed ones relate to the synchronization of two or more channels
without any knowledge of the direction, while the directed ones include the causation
between them, i.e., they measure functional connectivity.

3.4.1. Non-Directed Spatiotemporal Features

Coherence [138] is a cross-correlation equivalent in the frequency-domain, i.e., the
cross-correlation of the PSD from two different channels. It reflects the synchronization
of the changes of frequency components between the observed channels. Partial coher-

ence [139] is an adjusted coherence with removed common signal’s linear effect based
on the third channel, which is not physically close to the two observed channels. Phase

coherence [140] is the coherence of the phases of the signals. It was introduced to overcome
the problem of detection of nonlinear dependencies between the two channels.

The phase-locking value (PLV) [141] represents the measure of the transient phase
locking that is completely independent of the signal’s amplitude, which is not the case for
the coherence measure. Coherency [142] is calculated similar to coherence, but without
applying the magnitude operator to the cross-spectral density of two channels. The
obtained complex-valued quantity is called coherency. The imaginary component of

coherency (iCoh) [143] reflects the nonlinear interaction between the two underlying time-
series. Phase-lag index (PLI) [144] is a measure of the asymmetry of the distribution of
phase differences between two signals. It brings improvement compared to the imaginary
component of coherency by removing the effect of amplitude information. The weighted

phase lag index (wPLI) [145] uses weights to reduce a phase lag index’s sensitivity to
noise, while the debiased weighted phase lag index (dwPLI) [145] additionally reduces a
sample-size bias. Pairwise phase consistency (PPC) [146] is a measure similar to PLV, but
it quantifies the distribution of all pairwise phase differences across observations.

Generalized synchronization [147] incorporates the nonlinear property of the dy-
namical systems into its calculation. The idea is to observe two dynamical systems, a
response system and a driving system, where the response system is a function of the
driving system. Authors propose a numerical method called mutual false nearest neighbors
for distinguishing between synchronized and unsynchronized behavior of the systems.
Arnhold’s measure [148] is another algorithm for measuring such interdependence between
two dynamical systems. Synchronization likelihood (SL) [149] brings several improve-
ments into these methods—it is sensitive to linear and nonlinear brain dynamics and is
suitable for an analysis of the non-stationary systems. It is calculated based on the similarity
of the time-delayed embeddings in the state space.

Mutual information (MI) [150] quantifies the amount of information obtained about
one time-series through observing the other time-series. It is a commonly used measure in
the information theory and is calculated based on Shannon’s entropy. Mutual information
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in frequency (MIF) [151] is a recently developed measure that calculates the mutual
information between the PSDs of two time-series. Its interpretation is similar to coherence.

Cross-recurrence quantification analysis [101] is similar to RQA, but instead of ob-
serving the self-similarity of a single signal, the similarity of two different channels is
observed. The features extracted are the same as in the case of single-channel RQA (see
Section 3.2). The correlation length (ξKLD) [152] is a measure of the spatio-temporal disor-
der based on the Karhunen–Loeve decomposition.

3.4.2. Directed Spatiotemporal Features

Granger causality [153] is a well-known statistical test, which tests whether one
time-series forecasts (causes) the other time-series, and vice-versa. It is based on the
autoregressive forecast models of the two time-series. Spectral Granger causality [154]
can also be calculated and it is based on the estimation of the spectral transfer matrix and
the covariance of the autoregressive model’s residuals. The phase slope index (PSI) [155] is
a robust estimation of the information flow direction. It is insensitive to the mixtures of the
independent sources, which is the main problem for Granger causality. Transfer entropy,
which is explained in Section 3.3, can also be considered a directed spatiotemporal feature.

3.5. Complex Networks

The features introduced in Section 3.1, Section 3.2, and Section 3.3 were based only on
a single channel of the EEG signal. Section 3.4 introduced features calculated based on the
pairwise interactions between the two channels. In this section, the main goal is to introduce
the features that observe the interactions between more than two channels. Complex
networks are a graph-theory-based approach to EEG signal analysis. A connectivity matrix
obtained by observing all pairwise connections between channels is used to obtain a graph.
Any method explained in Section 3.4 can be used to determine connectivity matrix, and
popular choices are correlation, PLI, or MI. Graphs can be weighted based on the values
of the connectivity matrix or unweighted by applying thresholding to the connectivity
matrix. A minimum spanning tree can also be used as a method for obtaining an acyclic
graph with all vertices included. For more details about graph construction and complex
networks, we refer the reader to papers [156,157]. In continuation of this section, we
introduce features that are calculated based on the obtained graph. These features are
functional connectivity features.

Once the graph is obtained, the number of vertices and the number of edges can be
used as features. The degree (D) [158] of a vertex is the number of edges connected to the
vertex. The mean degree of the network is a metric of density. The degree distribution is
a probability distribution of the degrees and it provides information about the structure
of the graph. Degree correlation (r) [159] is the correlation coefficient of degrees of pairs
of neighbors in a graph. Kappa (k) [159] is a measure of the degree diversity and it
measures the broadness of the degree distribution. The clustering coefficient [160] is a
measure of the vertices connectedness in a graph and it can be local (for a sub-graph) or
global. If the local clustering coefficient is equal to one, it means that the corresponding
local sub-graph is fully connected. The global clustering coefficient is sometimes called
transitivity [161]. A motif [162] is a generalized version of the clustering coefficient and
a pattern of local connectivity. The average of all pairwise shortest path lengths is called
characteristic path length [160]. Small worldness [163] is a second-order graph statistic
and its calculation is based on the trade-off between high local clustering and short path
length. Assortativity [164] is the measure of vertex tendency to link with other vertices
with a similar number of edges.

Efficiency [165] is a measure of the efficiency of the information exchange in the
graph. Local efficiency [165] is the inverse of the shortest path lengths between vertices
on the observed sub-graph, where the sub-graph consists of all neighbors of the observed
vertex. Global efficiency [165] is the average efficiency of the graph divided by the average
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efficiency of a fully connected graph. Modularity [166] describes the structure of the graph
and represents the degree to which a graph is subdivided into non-overlapping clusters.

Each vertex in the graph has a measure of centrality degree [167], which represents
the number of shortest paths in the graph that the observed vertex is involved in. Similarly,
each vertex in the graph has a measure of closeness centrality [168], which represents the
average distance of the observed vertex from all other vertices in the graph. Eigenvalue

centrality [169] is a measure of the ease of accessibility of a vertex to other vertices. It is
computed based on the relative vertex scores, with the basic idea that the high-scoring
connections should contribute more to vertex influence than the low-scoring vertices.
Betweenness centrality [170] is a measure of the importance of the vertex in a graph. It is
computed based on the number of times a vertex occurs along the shortest path between
two other vertices.

Diameter (d) [159] is the longest shortest path of a graph. Eccentricity (Ecc) [159]
is the longest shortest path from a referenced vertex to any other vertex in the graph.
Hubs [171] are vertices with high centrality. Hubs tend to be connected and this property
is called assortativity. Rich club [172] is a sub-graph of highly interconnected hubs. Leaf

fraction [159] of a graph is the number of vertices with exactly one edge. Hierarchy

(TH) [159] captures the ratio between a small diameter on one hand and overloading of the
hub nodes on the other hand.

4. Driver Drowsiness Detection Systems

The aim of this Section is to review the work on drowsiness detection focusing on the
features used. The inclusion criteria for the papers are stated in Section 1. Tables 3 and 4
show a summary of the reviewed work on driver drowsiness detection, and the rest of the
Section briefly presents each work.

Balam et al. [173] used a convolutional neural network (CNN) for the classification
based on the raw EEG signal from the Cz-Oz channel. They used data from the Sleep-EDF
Expanded Database and their ground truth for drowsiness was the S1 sleep stage. Since
the authors used a publicly available database, they compared their deep learning (DL)
approach with the other feature-based approaches, and they concluded that this approach
resulted in at least 3% better results. Chaabene et al. [174] used frequency-domain features
for defining the ground truth. They used CNN with raw EEG signal from seven electrodes
as input and achieved 90% drowsiness detection accuracy.

Yingying et al. [175] used a Long Short-Term Memory (LSTM) network to classify
sleepiness in two classes and their final classification accuracy achieved was 98%. Their
ground truth labels for classification were based on the alpha-blocking phenomenon and
the alpha wave attenuation-disappearance phenomenon. The authors claimed that these
two phenomena represent two different sleepiness levels, relaxed wakefulness and sleep
onset, respectively. The authors used only the O2 channel of the EEG signal and per-
formed a continuous wavelet transform to obtain the PSD. Zou et al. [176] used multiscale
PE, multiscale SampEn, and multiscale FuzzyEn. Their ground truth labels were based
on Li’s subjective fatigue scale and the accuracy achieved was 88.74%. Chaudhuri and
Routray [177] used only three entropies as features—ApEn, SampEn, and modified Sam-
pEn. Their experiment was designed to slowly increase the fatigue level of the participants
because of the effects of physical and mental workload, along with the effects of sleep
deprivation. The experiment was divided into 11 stages and stages 7 and later were labeled
as the fatigue state. The authors used SVM and achieved 86% accuracy.

Budak et al. [178] used MIT/BIH Polysomnographic EEG database in their study.
Their ground truth for binary classification was based on sleep stages labeled by an expert.
The awake stage was labeled the awake state and stage I of sleep was labeled the drowsy
state. The authors used ZCR, E, IF, and SEN as traditional features, and also used AlexNet
on the spectrogram images to obtain additional 4096 features (layers fc6 and fc7 of AlexNet).
The accuracy of the binary classification was 94.31%, which is the best result achieved on
this dataset, according to the authors. Mehreen et al. [179] used δ, δ/α, θ, θ/ϕ, δ/α+β+γ,
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and δ/θ EEG features, along with blink features and head movement features and achieved
92% accuracy of drowsiness detection. Based on EEG features only, the accuracy was
76%. The authors used subjective evaluation with Karolinska Sleepiness Scale (KSS) as the
ground truth. It is unclear how the authors converted nine levels of KSS into a two-level
ground truth. Chen et al. [180] used the clustering coefficient and characteristic path length
of the graph obtained for δ, θ, α, and β frequency bands. The graph was obtained using the
phase lag index. The ground truth labels were binary. The first three minutes of participants’
driving were labeled as alert state and the last three minutes as fatigue state. SVM was
selected for classification and achieved 94.4% accuracy. The authors conclude that the
functional connectivity of the brain differs significantly between the alert and fatigue state,
particularly in the α and β bands.

Table 3. The summary of metadata of the reviewed driver drowsiness detection papers.

Author Year Participants Electrodes

Chaabene et al. [174] 2021 12 14 channels
Balam et al. [173] 2021 23 Pz-Oz

Yingying et al. [175] 2020 12 O1 and O2
Zou et al. [176] 2020 16 32 channels

Chaudhuri and Routray [177] 2020 12 19 Channels
Budak et al. [178] 2019 16 C3-O1, C4-A1, and O2-A1
Chen et al. [179] 2019 14 14 channels

Mehreen et al. [180] 2019 50 AF7, AF8, TP9 and TP10
Martensson et al. [181] 2019 86 Fz-A1, Cz-A2 and Oz-Pz

Barua et al. [182] 2019 30 30 channels
Ogino and Mitsukura [183] 2018 29 Fp1

Chen et al. [184] 2018 15 30 channels
Chen et al. [185] 2018 15 30 channels
Chen et al. [186] 2018 12 40 channels

Hu and Min [187] 2018 22 30 channels
Dimitrakopoulos et al. [188] 2018 40 64 channels

Hong et al. [189] 2018 16 Ear channel
Li and Chung [190] 2018 17 O1 and O2

Min et al. [191] 2017 12 32 channels
Awais et al. [192] 2017 22 19 channels

Nguyen et al. [193] 2017 11 64 channels
Hu [194] 2017 28 32 channels

Chai et al. [195] 2017 43 32 channels
Chai et al. [196] 2017 43 32 channels
Mu et al. [197] 2017 11 27 channels
Fu et al. [198] 2016 12 O1 and O2

Ahn et al. [199] 2016 11 64 channels
Huang et al. [200] 2016 12 30 channels

Li et al. [201] 2015 20 O1 and O2
Chen et al. [202] 2015 16 9 channels

Sauvet et al. [203] 2014 14 C3-M2 and O1-M2
Lee et al. [204] 2014 20 Fpz-Cz and Pz-Oz

Garces Correa et al. [205] 2014 18 C3-O1, C4-A1 and O2-A1
Zhang et al. [110] 2014 20 O1 and O2

Hu et al. [206] 2013 40 Fz-A1, Cz-A2 and Oz–Pz
Picot et al. [207] 2012 20 F3, C3, P3 and O1
Zhao et al. [208] 2011 13 32 channels

Khushaba et al. [20] 2011 31 Fz, T8 and Oz
Liu et al. [209] 2010 50 13 channels
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Table 4. The summary of reviewed driver drowsiness detection papers. The meanings of the abbreviations are: TD—
time-domain, FD—frequency-domain, N—nonlinear, EN—entropies, CN—complex networks, SIG—signal-based labeling,
Li’s—Li’s subjective fatigue scale, SD—sleep deprivation, NREM1—labels based on the sleep stages, BE3—first and last
three minutes as two labels, BE5—first and last five minutes as two labels, BIH—behavior-based labeling, WIE—Wierwille
scale, RT—reaction time based labeling, EXP—expert labeling, LSTM—long-short term memory, KNN—k nearest neighbor,
SVM—support vector machine, RF—random forest, ELM—extreme learning machine, GBDT—gradient boosting decision
tree, NN—neural network, FLDA—Fisher linear discriminant analysis, SDBN—sparse deep belif network, HMM—hidden
Markov model, and Thres.—thresholding-based algorithm.

Author Features Target Algorithm No. Classes Acc.

Chaabene et al. [174] Raw SIG CNN 2 90.14
Balam et al. [173] Raw NREM1 CNN 2 94.00

Yingying et al. [175] FD SIG LSTM 2 98.14
Zou et al. [176] EN Li’s KNN 88.74

Chaudhuri and Routray [177] EN SD SVM 2 86.00

Budak et al. [178] TD, FD, EN and
special NREM1 LSTM 2 94.31

Chen et al. [179] CN BE3 SVM 2 94.40
Mehreen et al. [180] FD KSS SVM 2 92.00

Martensson et al. [181] FD, N and EN KSS RF 2 93.50
Barua et al. [182] TD, FD and EN KSS SVM 2 and 3 93.00 and 79.00

Ogino and Mitsukura [183] FD and EN KSS SVM 2 67.00
Chen et al. [184] CN KSS
Chen et al. [185] CN KSS KNN 2 98.60
Chen et al. [186] CN BE3 ELM 2 95.00

Hu and Min [187] EN BE5 GBDT 2 94.00
Dimitrakopoulos et al. [188] CN BE5 SVM 2 92.10

Hong et al. [189] FD, N and EN EBE SVM 5 99.50
Li and Chung [190] FD WIE SVM 5 93.87

Min et al. [191] FD and EN BE5 NN 2 98.30
Awais et al. [192] TD, FD and EN BIH SVM 2 80.00

Nguyen et al. [193] FD SIG FLDA 2 79.20
Hu [194] EN BE5 AdaBoost 2 97.50

Chai et al. [195] FD BE5 SDBN 2 90.60
Chai et al. [196] FD BE5 NN 2 88.20
Mu et al. [197] EN Li’s SVM 2 97.00
Fu et al. [198] FD KSS HMM 3 AUC 0.841

Ahn et al. [199] FD SD FLDA 2 75.90
Huang et al. [200] FD RT

Li et al. [201] FD BIH SVM 2 93.16
Chen et al. [202] FD, N and EN SIG ELM 2 95.60

Sauvet et al. [203] FD EXP Threshold 2 98.30
Lee et al. [204] TD and FD NREM1 SVM 4 98.50

Garces Correa et al. [205] TD and FD NREM1 NN 2 87.40
Zhang et al. [110] N and EN SIG NN 4 96.50

Hu et al. [206] FD KSS SVM 2 75.00
Picot et al. [207] FD SIG Threshold 5 80.60
Zhao et al. [208] FD Li’s SVM 3 81.60

Khushaba et al. [20] FD WIE LDA 5 95.00
Liu et al. [209] EN KSS and Li’s HMM 2 84.00

Martensson et al. [181] used θ, α, θ/(θ + α), α/(θ + α), (θ + α)/β, α/β, (θ + α)/(θ +
β), θ/β, SampEn, and HFD from three EEG channels together with features from EOG
and ECG signals. The authors performed a sequential forward floating feature selection
method for dimensionality reduction and six EEG features were selected—HFD, θ, α/(θ
+ α), θ/β, θ/(θ + α) and α. Random forest was selected as the best model and achieved
93.5% accuracy on the test set and 84% on the leave-one-subject-out validation scheme.
The ground truth was obtained with the KSS. The severely sleepy class was for a KSS score
greater than seven and the sufficiently alert class was for a KSS score of less than seven.
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KSS scores equal to seven were discarded as outlined. Barua et al. [182] used δ, θ, α, β,
γ, (θ + α)/β, α/β, (θ + α)/(α + β), and θ/β from 30 EEG channels along with features
from EOG and contextual information (e.g., time awake, duration of last sleep, and the
like). The authors achieved the best accuracy of 93% for binary classification and 79%
for classification into three classes. Self-evaluation with KSS score was used as ground
truth and KSS score was classified into three classes—alert class for KSS scores below six,
somewhat sleepy class for KSS scores below eight, and sleepy for KSS scores equal to
eight or nine. In the binary classification, the authors used two methods (fuzzy centroid
redistribution and SVM predicted redistribution) for redistribution of somewhat sleepy
classes into the alert and sleepy classes. Ogino and Mitsukura [183] used δ, θ, α, β, and γ

as frequency domain features, and parameters of the autoregressive model and MSE were
also added to the feature set. Only the Fp1 channel was used and the authors achieved
67% accuracy by using SVM. The ground truth labels were based on the KSS score, where
the alert class was for a KSS score less than four and the drowsy class was for a KSS score
greater than six.

Chen et al. [184] analyzed the difference in complex network features for each fre-
quency band (δ, θ, α, and β) between alert and drowsy states. The authors used the features:
Number of vertices, number of edges, D, leaf fraction, d, Ecc, betweenness centrality, k,
Th, and r. Their ground truth was based on the KSS score. A significant difference was
found in the four features of the δ-band and five features of the θ-band. In addition, the
authors suggested a more linear graph configuration in alert states and a more star-shaped
graph configuration in drowsy states. Chen et al. [185] used the same experiment for
drowsiness classification in a related study. Three complex network features (degree, de-
gree correlation, and kappa) were extracted for each frequency band (δ, θ, α, and β). The
ground truth was based on the KSS score and they performed binary classification. The
highest accuracy of 98.6% was achieved using the k nearest neighbor (KNN) algorithm.
Chen et al. [186] used phase synchronization, phase coherence, k, betweenness centrality,
and Th as features. The first three minutes of participants’ driving were labeled as an
alert state and the last three minutes as a fatigue state. The highest accuracy achieved was
95% using the extreme learning machine (ELM) algorithm. Dimitrakopoulos et al. [187]
used 64 channels and computed three complex network features—clustering coefficient,
characteristic path length, and small-worldness. The authors achieved 92.1% accuracy for
drowsiness classification. The network values of the first and the last 5-min windows were
used to indicate the states of maximum alertness and maximum fatigue, respectively.

Hong et al. [188] used δ, θ, α, β, ratio indices, frequency domain statistics, the gen-
eralized Hurst exponent, HFD, SEN, and PE from the ear channel together with photo-
plethysmography (PPG) and ECG. The highest accuracy achieved was 99.5%. The ground
truth labels were divided into five levels and were labeled by experts based on behavioral
expressions. The authors ranked the features using four different methods, and in each
method, at least four of the seven best-ranked features were nonlinear features. Hu and
Min [189] used 30 channels and four entropies from each channel—SEN, ApEn, SampEn,
and FuzzyEn. The authors achieved 94% accuracy in drowsiness classification. They
used a ground truth based on self-reported fatigue. If the measurement lasted longer
than 30 min before the participant self-reported fatigue, the signals from the 5th to 10th
minute were used as the normal state and the signals from the last five minutes before
the end of the experiment were used as the fatigued state. Li and Chung [190] used θ, α,
and β features from O1 and O2 channels along with gyroscope-based head movement
measurement. The subjective Wierwille scale was used to obtain five-level ground truth.
The achieved accuracy for five-level classification was 93% and for binary classification
it was 96%. Awais et al. [191] used mean, variance, minimum, maximum, E, SampEn, δ,
θ, α, β, and γ from 19 channels along with ECG signal. SVM was used for classification
and they achieved 80% accuracy for binary classification. When only EEG features were
used, the accuracy was 76%. The authors used video-based facial features including eye
blink duration, facial expressions, facial tone, eye blinking rate, and movements such as
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head-nodding and yawning for establishing ground truth. When a drowsy event began,
five minutes before it were marked as the alert state and five minutes after it were marked
as the drowsy state.

Min et al. [192] used SEN, ApEn, SampEn, and FuzzyEn for fatigue detection. These
four entropies gave better results than AR coefficients. An experiment was terminated
based on the subjective report of fatigue. To confirm these fatigue reports, the authors
utilized the Chalder Fatigue Scale and Li’s Subjective Fatigue Scale before and after the
experiment. The first five minutes of the recording were labeled as the normal state and the
last five minutes of the recording were labeled as the fatigued state. The authors achieved
an accuracy of 98.3%. Nguyen et al. [193] used δ, θ, α, β, and γ features from 64 channels
along with near-infrared spectroscopy (NIRS). EOG and ECG signals were also measured,
but they were only used to establish the ground truth labels. Fisher linear discriminant
analysis (FLDA) was used for binary classification with 79.2% accuracy when EEG and
NIRS were used. The accuracy when only EEG features were used was 70.5%. The authors
introduced the drowsiness detection index, a variable derived for drowsiness detection,
and they reported that it predicts the onset of drowsiness on average 3.6 s earlier. Hu [194]
used SEN, ApEn, SampEn, and FuzzyEn features from 32 channels of the EEG signal.
An experiment was terminated based on the EOG parameter associated with fatigue and
self-reported fatigue. The first five minutes were labeled as the normal state and the last
five minutes were labeled as the fatigue state. The AdaBoost classification algorithm was
used and achieved 97.5% accuracy. Chai et al. [195] used AR coefficients as features. The
ground truth labels were binary, with the first five minutes of driving labeled as the alert
state and the last five minutes of driving labeled as the fatigued state. An experiment was
terminated when the participant drove of the road for 15 s or when consistent signs of
fatigue (such as head nodding and prolonged eye closure) were detected. The authors
used NN for classification and achieved 88.2% accuracy. Chai et al. [196] used AR features
from 32 channels. The first five minutes of data were used as an alert state and the last five
minutes as a drowsy state. The authors used a sparse deep belief network as a classification
algorithm and achieved 90% accuracy. Mu et al. [197] used FuzzyEn from Fp1 and Fp2
channels and achieved 97% accuracy using the SVM algorithm. The ground truth labels
were binary with the first 10 min labeled as the normal state and the last 10 min labeled as
the fatigued state. The stopping criteria of the experiment were based on Li’s subjective
fatigue scale and Borg’s CR-10 scale.

Fu et al. [198] used θ, α, and β features from O1 and O2 channels along with EMG
and respiration. The ground truth was set based on the KSS score, where level one was KSS
score equal to one or two, level two was KSS score equal to three or four, and level three was
KSS score equal to five or six. The reported average area under the curve (AUC) was 0.841.
When only EEG features were used, the average AUC was 0.644. Ahn et al. [199] used δ, θ,
α, β, and γ along with EOG, ECG, and fNIRS. FLDA was used for binary classification with
79.2% accuracy using all the available sensors. The accuracy based only on the EEG signal
features was 59.7%. Binary ground truth was used with the well-rested group and the
sleep-deprived group. Huang et al. [200] used only the α feature. The system developed in
this study did not use a classification algorithm. It was based on measuring the response
times of the subjects. Drowsiness was labeled for the moments when the response time
was 2.5 times greater than the mean response time, which helped the authors to determine
a threshold for α feature value indicating drowsiness. An auditory warning system was
developed to help subjects to remain alert.

Li et al. [201] used θ, α, and β features from O1 and O2 channels. The ground truth
alert and drowsy data were labeled based on the percentage of eyelid closure (PERCLOS)
and the number of adjustments on the steering wheel. The best accuracy of 93.16% was
achieved using the SVM classifier and only θ and β features. The authors used the probabil-
ity of prediction instead of the discrete class label to develop an early warning system with
a probability threshold of 0.424. Chen et al. [202] used δ, θ, α, β, γ, ApEn, SampEn, Rényi’s
entropy, and RQA features, along with the EOG. Two neurologists manually labeled binary
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ground truth values based on the EOG features and frequency domain features. ELM was
used for classification based on the nonlinear features only and achieved 95.6% accuracy.
Sauvet et al. [203] used θ, α, β, (θ + α)/β, and fuzzy fusion of these features. Feature
thresholding was applied for classification and an accuracy of 98.3% was achieved. The
ground truth was based on expert scoring, but it is unclear how this scoring was performed.

Lee et al. [204] used δ, θ, α, β, time-domain statistics, ZCR, and several ratio indices
from Fpz-Cz and Pz-Oz EEG channels. The ground truth was classified into four classes:
Awake, slightly drowsy, moderately drowsy, and extremely drowsy. These classes were
determined by experienced physicians, with the first three classes being derived from
the awake-sleep stage and the extremely drowsy class corresponding to the N1 sleep
stage. SVM was used for classification and the best accuracy achieved was 98.5%. Garces
Correa et al. [205] used MIT-BIH Polysomnographic Database in their research. Eighteen
subjects were selected and δ, θ, α, β, γ, time-domain statistics, and frequency domain statis-
tics features were extracted. The ground truth alert and drowsy labels were determined
based on the awake and S1 sleep stages, respectively. A neural network was used for
classification and it achieved 87.4% accuracy. Zhang et al. [110] used LZC and peak-to-peak
versions of ApEn and SampEn. Peak-to-peak means that instead of using all the data
points of the features, the authors used only the difference between the maximum and
minimum values in the sliding window. Four levels of ground truth labels were used,
referred to as normal state, mild fatigue, mood swing, and excessive fatigue. These labels
were determined based on the various entropy patterns used in the paper, but it is unclear
exactly how the labels were determined. A neural network was used for classification and
it achieved 96.5% accuracy.

Hu et al. [206] used δ, θ, α, β, and frequency domain statistics along with EOG signal
features. The authors achieved a final drowsiness detection accuracy of 75%. Binary
ground truth labels were used. The alert state was defined with a KSS score less than 8 and
Karolinska drowsiness score (KDS) equal to 0, while drowsiness was defined with a KSS
score greater than 7 and a KDS score equal to or greater than 50. The KDS is an EEG/EOG-
based drowsiness scoring experiment where the final score is between 0% (alert) and 100%
(drowsy) [210]. Picot et al. [207] used only α and β features from the P3 channel together
with the EOG signal. The ground truth was labeled by experts based on the EEG and EOG
signal. Five levels were used in labeling the ground truth, but three levels were used to
evaluate the drowsiness detection system. The drowsiness detection system was based
on the statistical test to compare the two populations and thresholding, and achieved an
accuracy of 80.6%. Zhao et al. [208] used multivariate autoregressive coefficients as features
along with the EOG signal. The accuracy achieved with the SVM classifier was 81.6%.
The ground truth labels were based on Li’s subjective fatigue scale. Khushaba et al. [20]
introduced a hybrid type of EEG features called fuzzy mutual information-based wavelet-
packet features, and achieved a drowsiness detection accuracy of 95%. Their ground
truth had five levels and was based on Wierewille and Ellsworth criteria. Wierwille and
Ellsworth criteria [211] is a textual description of the drowsiness continuum based on
behavioral and facial signs that should prepare raters to rate participants’ drowsiness based
on observations of the video while driving. Liu et al. [209] used ApEn and Kolmogorov
entropy of the δ, θ, α, and β frequency bands. The ground truth was binary with pre-task
time as the alert state and post-task time as the fatigue state. The authors confirmed a
statistically significant increase in fatigue level based on the five different subjective scales—
KSS, Stanford sleepiness scale, Samn–Perelli checklist, Li’s subjective fatigue scale, and
Borg’s CR-10 scale. A hidden Markov model was used for classification and achieved
84% accuracy.

5. Discussion

Section 3 presented 147 features that were classified into 7 categories, as shown in
Tables 1 and 2. As mentioned, Tables 3 and 4 show a summary of 39 reviewed papers on
drowsiness detection. The year with the most papers meeting the inclusion criteria is 2018
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with eight included papers. Figure 3 shows the number of included papers and the number
of papers as a result of the search query: “EEG driver drowsiness detection”. Based on
both trends, it can be seen that the number of papers on this topic is increasing.

Figure 3. The number of papers included in the study and the number of papers obtained as a result of the “EEG driver
drowsiness detection” and “EEG driver fatigue detection” search query, data until April 2021.

From 2013 to 2016, there were only two papers that used entropies and eight papers
that used only frequency domain statistics. Although there is a higher number of published
papers in recent years, there are fewer papers that rely only on frequency-domain features.
Nonlinear features, entropies, and complex network features have been increasingly used
in recent years. Reported drowsiness detection accuracies have remained more or less the
same over the years and are usually between 80% and 99%. There is an increasing body
of work that has been done with higher numbers of participants (30 or more), and it is
reasonable to assume that the accuracies from these works are the most reliable.

Although we often refer to accuracy as a quality measure for the developed system,
it must be noted that it is not possible to fairly compare the accuracy of different works
because most of the works have been performed with a private dataset based on different
experimental designs.

Besides the different datasets used, we observe that the methodology used for valida-
tion of the drowsiness detection systems is also a common problem. As mentioned earlier,
EEG signal is a non-stationary and nonlinear signal with high inter-individual differences.
Because of these properties, the only proper way for model validation is the validation on
the signals from an unseen subject. Empirical tests show that there is a large difference
in the accuracies between validation on the unseen subjects and validation on the unseen
parts of the signal [212]. Reporting of validation with improper methodology can create
overexpectation of the model performance, bad generalization on the unseen subjects, and
can lead other researchers in the wrong direction. This effect is visible through the examples
of papers that use validation on the unseen subjects, but also report about validation on
the unseen parts of the signal in order to be comparable with existing research [173]. The
fourth inclusion constraint defined in Section 1 was used to eliminate the papers that have
a low probability of achieving good generalization due to a low number of participants.

The highest accuracy achieved was 99.5% in the work of Hong et al. [188]. It is
interesting to note that the authors included features from three different categories. The
authors used standard frequency bands and ratio indices, the nonlinear generalized Hurst
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exponent and HFD, and the entropies SEN and PE. Although this is not a large number
of features, it is reasonable to assume that their diversity leads to the high accuracy of
drowsiness detection. It is difficult to say how reliable the given accuracy is because only
16 participants took part in the experiment and there may be a high sampling bias in the
data. The study by Martensson et al. [181] also used features from three different categories.
The features used were standard frequency domain features and ratio indices, entropy
SampEn, and nonlinear HFD. This study had the largest number of participants (86), and
the accuracy achieved was 93.5%. These two studies suggest that using different types of
features should result in high accuracy of drowsiness detection.

Complex network features for EEG signal analysis have become very popular in
recent years, and this is also true for drowsiness detection systems. There are four pa-
pers [179,184–186] that include complex network features. One of them only provides
analysis without classification and the remaining three have high accuracy—93%, 94%, and
98%. Complex networks are a promising approach, but confirming the reliability of such a
system, especially when combined with features from other categories, requires studies
with a large number of participants.

There is also a growing body of research on drowsiness detection using deep learning
models. Deep learning models are known for their high ability to learn hidden structures
in the data, but they often require a large amount of data for proper training. They can be
used with the raw data as input, but also with features, or both. There are five papers using
deep learning that met our inclusion criteria. In the first one, the authors used the LSTM
network with raw data and different types of features and achieved 94.4% accuracy [178].
Their research was based on only 16 participants. The second one also used LSTM, but for
prediction of the underlying alpha phenomena that is the base for determining drowsiness
level [175]. The other three papers used CNN as a classification method. The highest
accuracy achieved was 94% and the model used only raw data, without any pre-computed
EEG signal features [173].

The reported accuracies for these deep learning models are in line with the accuracies
of other models but, as we stated earlier, a direct comparison of the accuracies may lead
to the wrong conclusions. Balam et al. [173] provided a proper comparison of different
approaches. The authors used a publicly available dataset, so they were able to provide
a fair comparison of different approaches. Their CNN approach was compared with one
research based on the LSTM network and seven feature-based research studies. The best
accuracy was obtained with their proposed method, while the LSTM method had a slightly
lower accuracy. All seven feature-based approaches had more than 5% lower accuracy on
average. A similar comparison was provided in Budak et al. [178] on a different publicly
available dataset. Furthermore, the difference was that the authors used features and raw
data for their LSTM model. The comparison was made with one deep learning approach
and six other feature-based approaches. Again, the feature-based approaches had a lower
performance by about 7%, on average.

These two pieces of research suggest that the deep learning approach is more ap-
propriate and has higher performance for drowsiness detection than the feature-based
approach. Nevertheless, it must be noted that all of the feature-based approaches that had
lower accuracy used only time-domain and/or frequency-domain features. As shown and
discussed earlier, the addition of different types of features could lead to an improvement
of these models. From the inspected literature, it is currently unclear whether the inclusion
of additional features would outperform deep learning models. In addition, it would be
interesting to examine what effect would the addition of the features that are a measure
of signal’s memory (like Hurst exponent) have, since the LSTM model also relies on the
previous values of the signal. However, we can speculate that the addition of the memory-
based features would increase the accuracy of these feature-based models, but probably
not enough to outperform LSTM models. The reason for this is because deep models
have a higher capacity for learning hidden structures than the memory-based features, but
additional research should be made to support the speculation.
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A larger amount of data is needed for proper training of deep learning models com-
pared to non-deep learning models. Acquiring the data is often a problem when it comes
to EEG-based drowsiness detection. Authors of research studies that use deep learning
approaches often employ generative adversarial networks for the augmentation of the
dataset [175]. This process often leads to an improved performance of the model. Regard-
less of the possibilities for augmentation of the dataset, researchers should strive to gather
as much as possible real EEG signals. The larger number of participants would ensure
greater diversity of the dataset, reduce the influence of inter-individual differences in EEG
signals, make models more robust, and allow enough data for proper validation of models.

As we discussed earlier, there is evidence that different types of features improve
drowsiness detection models. In the papers that met our inclusion criteria, about 50 dif-
ferent features were used, while we introduced 147 EEG-based features in our review.
Approximately 100 unused features provide much room for further research. In par-
ticular, spatiotemporal features were only used to obtain a graph for complex network
features [184].

Another way to improve such systems is to set better ground truth labels. Currently,
many works use subjective self-evaluation as ground truth. The KSS is used most often for
this purpose. The KSS is a nine-level scale, with the first four levels describing alertness,
the 5th neutral level, and the last four levels describing sleepiness. The four levels for
alertness and sleepiness have detailed descriptions, and they are very similar. It is also
hard to tell if the scale is linear with the same distances between adjacent levels. Since it is
a subjective scale with small differences between adjacent levels, it may lead to subjectivity
bias and inconsistencies in the ground truth labels, which was confirmed in [191], where
the authors state after the statistical test results: “Subjective measures were not reliable
for detecting drowsiness alone, and that solely relying on self-reported measures may not
provide a meaningful measure of a person’s actual physiological state.” Future research on
how to provide a unified definition and description of drowsiness is needed to combat this
subjectivity bias.

For future research, we recommend the development of a drowsiness detection system
that consider raw data, features from all seven categories, and deep learning models.
Ground truth labels should be based on the unified, standard definition and description of
drowsiness. If there is not yet research providing such a unified definition of drowsiness,
then ground truth should be confirmed with multiple independent sources to reduce
subjectivity bias (even expert labels are prone to subjectivity). Because electrophysiological
signals have high interindividual differences, a large number of participants (about 100 or
more [181]) is needed to reduce sample bias and increase the chances of a model to have
good generalization.

6. Conclusions

With this review paper, we bring four contributions: (1) Comprehensive review,
systematization, and a brief description of the existing features of the EEG signal, (2) com-
prehensive review of the drowsiness detection systems, (3) comprehensive review of the
existing similar reviews, and (4) discussion of various potential ways to improve the state
of the art of drowsiness detection systems. In continuation, we summarize our suggestions
for the general improvement of the field of drowsiness detection systems.

A higher number of participants in the experiments (about 100 or more) is needed to
ensure diversity of a dataset, reduce the influence of inter-individual differences of EEG
signals, make models more robust, and allow enough data for proper validation of models.
Validation of EEG-based driver drowsiness detection should always be done based on
the data from unseen subjects (for example, using leave-one-subject-out cross-validation).
Whenever possible, datasets should be published publicly to allow fair comparison of
different approaches. Based only on the papers from this review, without additional
research, we were not able to identify a single feature or a feature category that guarantees
the best performance of the drowsiness detection system. What we can conclude is that
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a higher number of features from at least four different categories should lead to more
reliable drowsiness detection systems with lower sampling bias and higher generalization
ability. Deep learning models exhibit higher performance for drowsiness detection than
the considered non-deep learning models based on time and frequency-domain features.
Nevertheless, the use of pre-computed EEG signal features together with deep learning
models should always be considered (in addition to raw EEG data modeling), since in
some cases, the addition of pre-computed features to deep learning models additionally
boosted performance.

For future research that would have a strong impact on the field of drowsiness detec-
tion systems, we suggest the development of a unified, standard definition and description
of drowsiness, which would lead to a reduction in subjective bias and easier comparison of
different studies.
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Abstract: The early diagnosis of Alzheimer’s disease (AD) can allow patients to take preventive
measures before irreversible brain damage occurs. It can be seen from cross-sectional imaging studies
of AD that the features of the lesion areas in AD patients, as observed by magnetic resonance imaging
(MRI), show significant variation, and these features are distributed throughout the image space.
Since the convolutional layer of the general convolutional neural network (CNN) cannot satisfactorily
extract long-distance correlation in the feature space, a deep residual network (ResNet) model, based
on spatial transformer networks (STN) and the non-local attention mechanism, is proposed in this
study for the early diagnosis of AD. In this ResNet model, a new Mish activation function is selected
in the ResNet-50 backbone to replace the Relu function, STN is introduced between the input layer
and the improved ResNet-50 backbone, and a non-local attention mechanism is introduced between
the fourth and the fifth stages of the improved ResNet-50 backbone. This ResNet model can extract
more information from the layers by deepening the network structure through deep ResNet. The
introduced STN can transform the spatial information in MRI images of Alzheimer’s patients into
another space and retain the key information. The introduced non-local attention mechanism can
find the relationship between the lesion areas and normal areas in the feature space. This model
can solve the problem of local information loss in traditional CNN and can extract the long-distance
correlation in feature space. The proposed method was validated using the ADNI (Alzheimer’s
disease neuroimaging initiative) experimental dataset, and compared with several models. The
experimental results show that the classification accuracy of the algorithm proposed in this study can
reach 97.1%, the macro precision can reach 95.5%, the macro recall can reach 95.3%, and the macro F1
value can reach 95.4%. The proposed model is more effective than other algorithms.

Keywords: residual network; Mish; spatial transformer networks; non-local attention mechanism;
Alzheimer’s disease

1. Introduction

Alzheimer’s disease (AD) is a common, irreversible, progressive neurological disease
characterized by cognitive impairment, whereby the patient’s memory and thinking ability
are slowly damaged over time [1,2]. AD is characterized by an insidious onset, slow
progression, and irreversible course. Currently, there is no effective treatment that can
reverse the damage caused by Alzheimer’s disease [3,4]. At present, most patients with
clinically diagnosed AD are in the middle or advanced stage, which means that the optimal
time for treatment has already passed. Mild cognitive impairment (MCI) is an intermediate
state between normal function and AD. It refers to a mild impairment of cognitive and
memory functions rather than dementia [5,6]. According to statistics, the conversion rate
of people with MCI to AD is significantly higher than that of healthy people [7]. Accurate
diagnosis early in the course of the disease may allow patients to initiate preventive and
intervention measures to slow or stop the progression of the disease before irreversible
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brain damage takes place. Therefore, the early and accurate diagnosis of AD has important
research significance [8,9].

At present, there are the following three categories of methods for the early diagnosis
of AD: diagnostic methods based on clinical symptoms and cognitive function examination
scales, biomarker-based detection methods, and neuroimaging-based detection meth-
ods [10–12]. The diagnostic method, based on clinical symptoms and a cognitive function
examination scale, can be used in the quantitative assessment of cognitive impairment, and
has the advantages of easy operation, low cost, and standardized diagnosis. However, due
to the lack of objective evidence, it is easy for the diagnosis to be detrimentally influenced by
non-pathological subjective factors, which inevitably lead to clinical misdiagnosis. [13–15].
A biomarker-based detection method is used to diagnose the disease and judge the disease
stage by measuring biomarker levels in patients. For example, β-amyloid1–42 (Aβ1–42), total
tau protein (T-tau), and hyperphosphorylated tau (P-tau), the core biomarkers of AD that
are mostly used in clinical practice, are derived from CSF and have shown high sensitivity
and specificity in the identification of AD patients. Through providing effective diagnosis of
AD in its early or asymptomatic stages, this approach may buy time for patients, increasing
the effectiveness of treatment and reducing the disease incidence. However, this method
cannot be used as a routine detection method due to the difficulty and traumatic nature of
obtaining samples for determination of these biochemical indicators [16,17]. This problem
can be circumvented when using neuroimage-based diagnostic methods. High-quality
medical images, such as those acquired using positron emission computed tomography
(PET) and magnetic resonance imaging (MRI), can provide doctors with more sufficient
and subtle disease information, help doctors make diagnoses more quickly and accurately,
and greatly reduce the misdiagnosis efficiency [18,19]. PET scans are performed after a
patient is injected with a radioactive substance to see if there are lesions. However, PET has
the disadvantages of poor specificity, low resolution, inaccurate anatomical positioning,
and high cost [20]. MRI can clearly show the structure and anatomy of the human brain,
which is conducive to the measurement and study of changes during brain atrophy in
AD [21,22]. At present, the MRI diagnosis of AD is mainly based on subjective image
reading by imaging doctors. This method is time consuming, laborious, and subjective,
which will affect the accuracy in making judgments regarding the disease course. Hence,
how to address these issues by using a computer to automatically and accurately classify
MRI, and then identify MCI and AD has become a hot research topic in recent years [23,24].

In the past ten years, deep learning and machine learning methods have achieved
great success in the fields of speech recognition, computer vision, and image and video
analysis [25]. More and more studies have applied convolutional neural network (CNN)
combined with MRI imaging for the early diagnosis of AD [26]. The traditional CNN
network is usually composed of an input layer, hidden layer, and output layer in series.
The input layer is responsible for receiving input data [27]. The hidden layer is generally
composed of multiple convolutional layers and pooling layers. Its function is to extract
the layered features of the input images. This hierarchical structure can gradually ex-
tract the high-level features in the image. However, these methods have the following
disadvantages: given the depth of the layers in the traditional CNN network structure,
excessively deep networks can actually reduce the accuracy of classification to a certain
extent [27,28]. Moreover, traditional CNN lacks invariance to the affine transformation of
the image. This defect is caused by the CNN default sampling method (matrix sampling).
The convolutional layer of traditional CNN cannot satisfactorily extract the long-distance
correlation in the feature space. In order to solve the above problems, an improved deep
residual network (ResNet) model, combining spatial transformer networks (STN) and a
non-local attention mechanism, is proposed for the early diagnosis of AD [29–31].

In this study, our key contributions are given below:

1. We propose a new ResNet model where a new Mish activation function is selected in
the ResNet-50 backbone to replace the Relu function;
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2. The STN is introduced between the input layer and the improved ResNet-50 backbone.
This enhances the spatial invariance of the model;

3. A non-local attention mechanism is introduced between the fourth and fifth stages of
the improved ResNet-50 backbone.

2. Related Work

In this section, we review studies related to the early diagnosis of AD. With the
increasing attention given to MCI, more and more researchers have proposed new MCI
prediction methods [32].

There are diagnostic methods based on the clinical symptom and cognitive function
scale. Several AD screening scales commonly used in clinical practice include the clock-
drawing test (CDT), mini-mental state examination (MMSE), Montreal cognitive assessment
(MOCA), and Alzheimer’s disease assessment scale (ADAS-COG), among others. [33–35].
Brodaty H. et al. [36] argued that a clock map is a very effective test screening measure for
detecting mild or moderate AD in the clinical population, with very low false-negative
and false-positive rates. Pozueta A. et al. [37] proposed that a combination of MMSE and
CVLT-LDTR could distinguish PR-AD and S-MCI at the baseline. The analysis of these
two neuropsychological predictors is relatively short and may be easily accomplished in
a non-specialist clinical setting. Zainal N. et al. [38] proposed that ADAS-COG, which
is widely used in clinical trials, may be suitable for an Asian cohort, and is useful for
detecting MCI and mild AD. Roman F. et al. [39] proposed that Argentina-type MBT and
MMSE were significantly correlated with memory cells and that they were effective tools
for detecting MCI. The working characteristics of the MBT are very suitable, more so than
those of other commonly used tests for detecting MCI. Carlew A. et al. [40] proposed that
detection by MMSE is significantly affected by the disease course, while in the case of
MOCA, severe MCI results in insignificant changes. Although statistically significant, the
actual clinical significance of the changes in MOCA is unclear. The growing use of MOCA
requires further research to understand what constitutes clinically significant changes and
whether it is appropriate to track cognitive trajectories.

There are diagnostic methods based on biomarker detection; cerebrospinal fluid (CSF)
biomarkers Aβ1-42, T-tau, and P-tau are well-validated, and are being increasingly used in
clinical practice as tools for the affirmative diagnosis of AD [41]. The long-term stability of
core CSF biomarkers in patients with AD provides further support for their use in clinical
studies and treatment monitoring in clinical trials [42]. Michael E. et al. [43] proposed that
CSF Aβ1-42 showed the best diagnostic accuracy among the CSF biomarkers. At a sensitivity
of 85%, the specificity in differentiating AD dementia from other diagnoses ranged from
42% to 77%. Geijselaers S. et al. [44] provided further evidence of the relationship between
brain insulin signaling and AD pathology. This also highlights the need to consider sex
and the APOE ε4 genotype during assessment. Gs A. et al. [45] proposed that blood, urine,
saliva, and tears have yielded promising results, and several new molecules have been
identified as potential brain biomarkers thanks to the development of new ultra-sensitive
techniques. In this review, the authors discuss the advantages and limitations of classic
CSF biomarkers for AD, as well as the latest prospects for new CSF candidate biomarkers
and alternative substrates. Fossati S. et al. [46] found that plasma tau is higher in AD
independently from CSF-tau. Importantly, adding plasma tau to CSF tau or P-tau improves
the diagnostic accuracy, suggesting that plasma tau may represent a useful biomarker for
AD, especially when added to CSF tau measures. Abe K. et al. [47] found that the present
serum biomarker set provides a new, rapid, non-invasive, highly quantitative, and low-
cost clinical application for dementia screening, and also suggests an alternative pathway
or mechanism by which AD causes neuroinflammation and neurovascular unit damage.
Nabers A. et al. [48] used immune infrared sensors to measure the secondary structure
distribution of amyloid beta (Aβ) and tau in plasma and cerebrospinal fluid as structure-
based biomarkers of AD. In the first diagnostic screening step, structure-based Aβ blood
biomarkers support AD recognition with a sensitivity of 90%. In the second diagnostic
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validation step, the combination of structure-based cerebrospinal fluid biomarkers Aβ and
tau allowed the exclusion of false positives, with an overall specificity of 97%.

There are also neuroimage-based detection methods. Basheera S. et al. [49] used a
CNN model with inception blocks to extract depth features from gray matter slices for the
early prediction of AD. Ji H. et al. [50] mainly studied the early diagnosis of AD using convo-
lutional neural networks. The gray matter and white matter image slices of MRI were used
as classification inputs. After a convolution operation combined with the output of deep
learning classifier, an ensemble learning method was adopted to improve classification.
Tofail B. et al. [51] proposed constructing multiple deep two-dimensional convolutional
neural networks (2D-CNNs) to learn various features from local brain images and combine
these features with the final classification for AD diagnosis. Subramoniam M. et al. [52]
proposed a method for the prediction of AD from MRI based on deep neural networks.
The state of image classification networks, such as VGG, residual network (ResNet), etc.,
with transfer learning, show promising results. The performance of pretrained versions of
these networks can be improved by transfer learning. A ResNet-based architecture with a
large number of layers was found to give the best result in terms of predicting different
stages of the disease. Hussain et al. [53] proposed a model based on 12-layer CNN to use
brain MRI data for the dichotomization and detection of AD.

Among the abovementioned methods available for the early diagnosis of AD, the diag-
nosis method based on MRI has the advantages of non-invasiveness and non-radioactivity,
and has become an indispensable technical tool in the clinical and scientific research of AD.
In this study, ResNet-50 is used as the backbone network because of its simpler structure,
and since the increase in identity mapping does not reduce network performance. The
proposed method can extract more information from layers by deepening the network
structure through deep ResNet [54,55].

3. Materials and Methods

3.1. Data Selection

The data used in this study come from ADNI (Alzheimer disease neuroimaging
initiative) (http://adni.loni.usc.edu (accessed on 16 February 2020)) [56]. Generally, the
dataset is divided into the following 3 categories: normal control (NC), mild cognitive
impairment (MCI), and Alzheimer’s disease (AD). MCI is a major step in the transition
from a normal to AD state. We screened a total of 515 samples, which were divided into
55 AD samples, 255 NC samples, and 205 MCI samples. The proportion of men and women
in each category was roughly equal. MMSE mainly relies on experienced doctors to ask
patients to obtain scale scores. The scale score is a continuous integer from 0 to 30. The
higher the score, the healthier the patient, while the lower the score, the more severe the
dementia. For NC, the MMSE score is 24–30 and the ADAS-Cog score is <12. For MCI,
the MMSE score is 23–30 and the ADAS-Cog score is 7–17. For AD, its MMSE score is
20–26 and the ADAS-Cog score is 12–29 [57]. Information on the collected data is shown in
Table 1.

Table 1. Information of subjects from ADNI dataset used in this study.

Dataset ADNI

Diagnosis NC MCI AD

Number of samples 255 205 55
Number of female samples 127 103 27
Number of male samples 128 102 28

Age 70.6 ± 5.1 73.8 ± 7.5 78.9 ± 8.6
ADAS-Cog <12 7–17 12–29

MMSE 24–30 23–30 20–26
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3.2. Deep Residual Neural Network

ResNet was proposed by 4 Chinese scientists, including Kaiming He, from the former
Microsoft Research Institute, and the proposal of deep ResNet is a milestone event in the
history of CNN images. The residual module in the deep ResNet is shown in Figure 1 [58].

Figure 1. The residual block of the residual network.

In the figure, x is weighted by the first layer, then F(x) + x is obtained after the non-
linear variation in the Relu function and the weighting of the second layer. This is a linear
stack, and the two layers constitute a residual learning module. The network composed of
residual modules is called ResNet. The difference between the ResNet and the ordinary
network is that the jump connection is introduced, which can help the information of the
previous residual block flow into the next residual block without obstruction. The problem
of vanishing gradient and degradation caused by too deep a network is avoided [58,59].

Since the Relu function often causes the permanent inactivation of neurons, these
inactivated neurons will be occupied. Due to the computational resources involved, the
ability to extract image features still needs to be improved. In order to make up for the
deficiency of Relu, the new activation function Mish was selected to replace the function
of Relu in the model. The Mish activation function is expressed as in Equation (1) [60],
as follows:

f (x) = xtanh(ln(1 + ex)) (1)

The positive value of the Mish activation function can reach any height, avoiding
saturation due to capping. Due to the smoothness of the Mish activation curve, better
information can be penetrated into the neural network, resulting in better accuracy and
generalization. As the depth of the network increases, Mish can better maintain accuracy.

In the deep ResNet-50, the bottleneck residual module is stacked with a 1 × 1 con-
volution, 3 × 3 convolution, and 1 × 1 convolution. The two l × 1 convolutions play the
role of decreasing and increasing dimensions, respectively. The bottleneck residual module
can greatly improve the computational efficiency and significantly increase the depth of
the residual block. The introduction of more Mish activation functions can improve the
representation ability of ResNet. The bottleneck residuals module of different layers for
the ResNet-50 architecture is expressed in Figure 2 [58–60].
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Figure 2. Bottleneck residuals module of different layers for the ResNet-50 architecture. (a) Stage 2,
(b) stage 3, (c) stage 4, (d) stage 5.

3.3. Spatial Transformer Networks (STN)

STN can adaptively perform spatial transformation. In the case of large spatial differ-
ences in the input data, this network can be added to the existing convolutional network to
improve the accuracy of classification. The STN network consists of a localization network,
a grid generator, and a sampler, as shown in Figure 3 [61].

Figure 3. The STN module.

Localization net: localization net is traditional CNN and this is the network used for
the regression transformation parameter θ.

Grid generator: the grid generator generates a coordinate network corresponding to
each pixel of the output image in the input image.
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Sampler: a sampler uses the sampling network and the input element graph as an
input, then inputs, then obtains the result after transforming the element graph.

After the input picture is passed through the STN module, the transformed picture
is obtained, and the transformed picture is then input into the CNN network. Loss is
calculated through the loss function, and the gradient is then calculated to update the θ

parameter. Finally, the STN module will learn how to correct the picture [61,62].

3.4. Non-Local Attention Mechanism

The attention mechanism is a general mechanism for information acquisition, which
is applied to scenarios where a large number of sources are used to obtain specific critical
information and avoid processing all the data. The non-local attention mechanism directly
captures remote dependencies by calculating the interaction between any two locations,
rather than being limited to adjacent points. The non-local attention mechanism is shown
in Figure 4 [63].

Figure 4. Non-local attention mechanism.

Three feature images, A, B, and C, can be obtained through three 1 × 1 convolutional
layers. A and B are multiplied to obtain S using softmax. Then, the product of S and C
can be multiplied by the scale coefficient to obtain D, D can be reshaped to the original
shape, and then X is added to obtain the final output E. We can see that the value of each
position of E is a weighted sum of the original feature and each position. Ej can be written
as Equation (2) [63,64].

Ej = α
N

∑
i=1

(SjiCi) + Xi (2)

3.5. Proposed Method

In this paper, a new deep ResNet learning method that combines STN and the non-
local attention mechanism is proposed. The model uses MRI slices of a large number of
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subjects to train the network, automatically learns image features, avoiding manual extrac-
tion, and then classifies the input images based on these features to obtain diagnosis results
for the subject’s state. In this study, a new activation function Mish was selected to replace
Relu in the traditional ResNet-50 model. This method could solve the problem of local in-
formation loss in ordinary CNN and can satisfactorily extract the long-distance correlation
in feature space. The framework of the proposed method is shown in Figure 5 [58–65].

Figure 5. The framework of the proposed method.

A local network is a network used in regression of transformation parameter θ. Its
input is a feature image and its output is the spatial transformation of parameter θ through
a series of hidden network layers. If a 2D affine transformation is required, θ is the output of
a 6-dimensional (2 × 3) vector. The size of θ depends on the type of transformation applied.

A grid generator is used to build a sampling grid according to the predicted transfor-
mation parameters. It is the output of a group of points in the input image after sampling
and transformation. What the grid generator actually obtains is a kind of mapping relation
Tθ [62].

Assuming that the coordinate of each pixel of input image is (xs
i , ys

i ), the coordi-
nate of each pixel of output image is (xt

i , tt
i ). The space transformation function Tθ is a

two-dimensional affine transformation function. The corresponding relationship between
(xs

i , ys
i ) and (xt

i , yt
i ) can be written as Equation (3), as follows:

(
xs

i
ys

i

)
= Tθ(Gi) = Aθ

⎛⎝ xt
i

yt
i

1

⎞⎠ =

[
θ11 θ12 θ13
θ21 θ22 θ23

]⎛⎝ xt
i

yt
i

1

⎞⎠ (3)

In Equation (3), S represents the coordinate point of the input feature image, T rep-
resents the coordinate point of the output feature image, and Aθ is the output of the
local network.

The sampler in STN uses the sampling grid and the input feature map as the input to
produce the output. Additionally, it obtains the result after the feature map is transformed.
Further, n and m will traverse all coordinates of the original graph U, and Unm refers to
the pixel values of a point in the original graph U. Then, xs

i , ys
i denotes the coordinates

of the corresponding point in the U graph to be found at the ith point in V. The denoted
coordinates are those on the U graph. K denotes filling by different methods, usually using
bilinear interpolation. The following Equation (4) is obtained [61,62]:

Vi = ∑n ∑m
Unmmax(0, 1 − |xs

i − m|)max(0, 1 − |ys
i − n|) (4)

Integrating the STN module between the input and ResNet allows the network to
automatically learn how to transform the feature map, thus helping to reduce the overall
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cost of network training. We locate the output value in the network, indicating how to
transform each item of training data [61–64].

The non-local attention mechanism is embedded as a component in ResNet-50, and
new weights are learned in transfer learning so that pretrained weights are not unavailable
due to the introduction of new modules [63,65].

The architecture of the proposed method is shown in Table 2 [58].

Table 2. The architecture of the proposed method.

Layer Name Output Size Layer

STN 224 × 224 Localization network, grid generator, sampler

Conv1 112 × 112 7 × 7, 64, stride 2

Max pooling 56 × 56 3 × 3, stride 2

Stage 2 56 × 56

⎡⎣ 1 × 1, 64
3 × 3, 64
1 × 1, 256

⎤⎦× 3, Mish

Stage 3 28 × 28

⎡⎣ 1 × 1, 128
3 × 3, 128
1 × 1, 512

⎤⎦× 4, Mish

Stage 4 14 × 14
⎡⎣ 1 × 1, 256

3 × 3, 256
1 × 1, 1024

⎤⎦× 6, Mish

Non-local attention module 14 × 14 Attention × 1

Stage 5 7 × 7

⎡⎣ 1 × 1, 512
3 × 3, 512
1 × 1, 2048

⎤⎦× 3, Mish

Average pooling 1 × 1 7 × 7, stride 1

FC, softmax 1000-d

The environment of this experiment is a Linux system, which is designed and realized
by the Keras framework, and the model is trained using the Adam optimization algorithm.
The experiment steps are as follows:

(1) The experiment uses two-dimensional slices as training data, so it is necessary to
slice the three-dimensional MRI coronal plane. In order to ensure that the input
image size of the classifier is consistent, this experiment unifies these slices into a
size of 224 × 224. The experiment uses the CAT12 toolkit of the SPM12 software
to preprocess the images. Image preprocessing includes format conversion, skull
stripping, grayscale normalization, MRI slicing, and uniform sizing, etc. The detailed
preprocessing process is shown in Figure 6;

(2) The Keras experimental platform was built and the STN + ResNet + attention network
model was designed;

(3) The K-fold (K = 5) cross validation method was used to randomly divide the dataset,
with 80% used as the training set and 20% used as the test set;

(4) The training set was input into the network for training and the training results
were obtained;

(5) The optimal model parameters were saved and tested in the model using the test
set data.

Figure 6. Preprocessing flow chart.
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The flow chart with detailed steps is shown in Figure 7.

Figure 7. The detailed step flow chart.

4. Experimental Results and Discussion

We considered our result in the context of multi-class classification. The multi-
classification data were transformed into two classification problems and a one-vs-rest
strategy was adopted—that is, one category comprised positive samples and the other
categories comprised negative samples [66–70].

TPi: the prediction is category i, the reality is category i.
TNi: the prediction is other classes of category i, the reality is other classes of category i.
FPi: the prediction is category i, the reality is other classes of category i.
FNi: the prediction is other classes of category i, the reality is category i.
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Each category was taken as a positive sample to calculate the total accuracy, precision,
and recall values for each category. The accuracy can be expressed using Equation (5),
as follows:

Accuracy =
Number of samples correctly classified
Number of samples for all categories

(5)

The precision of a certain category can be understood as predicting the accuracy of
the sample, expressed as Equation (6), as follows:

Precisioni =
TPi

TPi + FPi
(6)

The recall of a certain category can be understood as the extent to which the sample of
category i, which was correctly predicted, covers the sample of category i in the sample set,
expressed as Equation (7), as follows:

Recalli =
TPi

TPi + FNi
(7)

To investigate the merits and demerits of classifiers under different categories, a macro
average should be introduced. Macro-averaging refers to the mathematical average of the
values of each statistical index of all types. Their calculation equations are expressed in
Equations (8)–(10), as follows:

Precisionmacro =
∑

N
i=1 Precisioni

N
(8)

Recallmacro =
∑

N
i=1 Recalli

N
(9)

F1macro =
2PrecisionmacroRecallmacro

Precisionmacro + Recallmacro
(10)

The total confusion matrix is obtained by adding the values of each folded confusion
matrix. For the convenience of calculating the Precisionmacro, Recallmacro, and F1macro, we use
the average confusion matrix of multiple classifications. We divide the value of the total
confusion matrix by five to get the average confusion matrix. The model proposed in this
study was used for training and testing on the selected ADNI dataset, and the test results
are shown in Table 3 [70].

Table 3. Average confusion matrix and experimental results.

Confusion Matrix
Predicted Class

Recall
NC MCI AD

Actual Class

NC 51 0 0 1.000

Recallmacro = 0.953MCI 1 39 1 0.951

AD 0 1 10 0.909

Precision
0.981 0.975 0.909

Acc = 0.971 F1macro = 0.954
Precisionmacro = 0.955

For the purpose of illustrating the effectiveness of the method proposed in this paper,
ResNet50 baseline, ResNet50 + Mish, and STN + ResNet50 + Mish were selected to conduct
experiments using the same dataset. The Accuracy, Precisionmacro, Recallmacro, and F1macro of
each model were, respectively, calculated as shown in Table 4.
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Table 4. Performance comparison of the proposed classification method.

Model Accuracy Precisionmacro Recallmacro F1macro

ResNet50 baseline 0.913 ± 0.035 0.871 ± 0.033 0.887 ± 0.032 0.879
ResNet50 + Mish 0.932 ± 0.032 0.893 ± 0.030 0.924 ± 0.028 0.908

STN + ResNet50 + Mish 0.951 ± 0.021 0.940 ± 0.023 0.939 ± 0.021 0.939
Proposed method 0.971 ± 0.016 0.955 ± 0.015 0.953 ± 0.018 0.954

In this paper, the Accuracy, Precisionmacro, Recallmacro, and F1macro value of the above
models were successively compared and analyzed, as shown in Figure 8.

Figure 8. Comparison of the Accuracy, Precisionmacro, Recallmacro, and F1macro value.

The experimental results show that the method proposed in this article is compared
with the other three methods in classification accuracy. There is a big improvement, and
the standard deviation of the experimental results is smaller. The experiments show that
the Mish activation function is used to replace the Relu function in the model, and the
accuracy is increased by 1.9% compared with the baseline. After the introduction of the
STN and attention mechanism, the accuracy of the model increased by 5.8%.

5. Conclusions

In this research article, we propose a deep learning model based on ResNet-50 for the
early diagnosis of Alzheimer’s disease. In the model, a new Mish activation function is
selected in the ResNet-50 backbone to replace the Relu function, the STN is introduced
between the input layer and the improved ResNet-50 backbone, and a non-local attention
mechanism is introduced between the fourth and fifth stages of the improved ResNet-
50 backbone. The Mish activation function is boundless (that is, the positive value can
reach any height) to avoid saturation due to capping. Theoretically, the slight bias toward
the negative values allows for better gradient flows in comparison with the hard zero
boundary, as in Relu. Integrating the STN module into the ResNet-50 network allows the
network to automatically learn how to transform the feature map, thus helping to reduce
the overall cost of network training. The addition of a non-local block attention mechanism
module provides a solid improvement. The proposed method was validated using the
ADNI experimental dataset and compared with the ResNet-50 baseline, ResNet-50 + Mish,
and STN + ResNet-50 + Mish models. The experimental results show that the proposed
model is more effective and provides a better robustness for clinical application. The
integration with STN enhances the ability of this model to extract network features by
improving the spatial invariance of the network. This demonstrates its good recognition
effect. The introduction of a non-local block attention mechanism can enhance model
robustness. In the end, the experiment results found using the ADNI dataset show that the
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classification accuracy of the algorithm proposed in this paper reached 97.1%, the macro
precision reached 95.5%, the macro recall reached 95.3%, and the macro F1 value reached
95.4%, thus verifying the advantages of the proposed model. The proposed method has
high significance in the practical application of AD. The combination of AD susceptibility
gene detection and pattern recognition is our future research direction [71].
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Abstract: Automatic fall detection systems ensure that elderly people get prompt assistance after
experiencing a fall. Fall detection systems based on accelerometer measurements are widely used
because of their portability and low cost. However, the ability of these systems to differentiate falls
from Activities of Daily Living (ADL) is still not acceptable for everyday usage at a large scale. More
work is still needed to raise the performance of these systems. In our research, we explored an
essential but often neglected part of accelerometer-based fall detection systems—data segmentation.
The aim of our work was to explore how different configurations of windows for data segmentation
affect detection accuracy of a fall detection system and to find the best-performing configuration. For
this purpose, we designed a testing environment for fall detection based on a Support Vector Machine
(SVM) classifier and evaluated the influence of the number and duration of segmentation windows
on the overall detection accuracy. Thereby, an event-centered approach for data segmentation was
used, where windows are set relative to a potential fall event detected in the input data. Fall and
ADL data records from three publicly available datasets were utilized for the test. We found that
a configuration of three sequential windows (pre-impact, impact, and post-impact) provided the
highest detection accuracy on all three datasets. The best results were obtained when either a 0.5 s or
a 1 s long impact window was used, combined with pre- and post-impact windows of 3.5 s or 3.75 s.

Keywords: fall detection; event-centered data segmentation; wearable sensors; accelerometer; win-
dow duration

1. Introduction

Falls among the elderly population are a major public health problem. Statistics from
the World Health Organization (WHO) indicate that around 30% of adults over 65 years of
age experience at least one fall per year [1]. Falls are one of the main causes of death in the
elderly population [2]. Non-fatal falls also pose a problem because they leave a negative
impact on both the physical and psychological health of elderly persons.

Negative consequences of a fall event can be reduced by shortening the time interval
during which a person remains involuntary on the ground after the fall [3]. For this
purpose, automatic fall detection systems can be used. Although fall detection systems
are unable to prevent falls from happening, they can ensure that immediate assistance is
provided to the faller by automatically detecting fall events and sending alarms to health
professionals or caregivers. Because the faller might be unable to activate an alarm or
search for help, it is important that such fall detection systems are automated [4].

Based on the sensor type used to detect falls, automatic fall detection systems are
categorized as wearable or non-wearable. Wearable systems are placed on a person’s body
with sensors that can track motion and gestures. On the other hand, non-wearable systems
use sensors placed in a person’s environment, such as optical sensors, cameras, and floor
sensors, to detect a fall. A review of different fall detection approaches can be found in [5].
A multitude of researchers have focused on wearable systems equipped with accelerometer

229



Sensors 2021, 21, 4335

sensors as they offer several advantages in terms of cost, power efficiency, ease of use,
and portability [6]. Our work is also based on wearable accelerometer-based fall detection
system records.

The process of accelerometer-based fall detection comprises three stages: data seg-
mentation, feature extraction, and classification. The main goal of the data segmentation
stage is to divide a continuous stream of data acquired from the accelerometer into seg-
ments, because features for classification can be extracted only from data segments of finite
duration. Features are extracted from those data segments and passed to a classifier to
discriminate whether the segment contains data from a fall event or from a regular Activity
of Daily Living (ADL).

Different features [7] and classification techniques [8] have been explored for use in
fall detection systems. In our previous work, we analyzed the performance of fall detection
systems using different classification techniques: threshold-based classification [9,10] and
different Machine Learning (ML) classifiers [11]. However, only a few research publications
so far have focused on the data segmentation stage, although it significantly affects the
systems performance in terms of power efficiency and detection accuracy [12,13].

Two approaches for data segmentation are used in fall detection research. In the first
approach, a sliding window of a fixed duration (with or without overlap) is applied to the
input data stream. The sliding window duration defines boundaries of a data segment
from which further feature extraction and classification is performed. A description of
fall detection systems that utilize sliding windows for data segmentation can be found
in [14–17]. In the second approach, a trigger is initially set to detect a potential fall event in
an input data stream by searching for acceleration peaks above a predefined threshold value.
When a potential fall event is detected, one or multiple window(s) placed around this event
determine data segments for further feature extraction and classification. Because a sudden
change in acceleration is sensed in most falls at the moment a person hits the ground, with
this approach, features are extracted from data segments centered around that potential
impact point. This type of segmentation is thus called event-centered data segmentation.

Studies have shown advantages of using event-centered data segmentation over
sliding windows. In [18], the performance of event-centered data segmentation with one
window around a potential fall event was compared to sliding window segmentation for
different window sizes. They found that the event-centered data segmentations performed
slightly better than the sliding window based data segmentation. Putra et al. [19] proposed
a fall detection system based on event-centered data segmentation with three windows.
To evaluate the performance of the proposed system, they also measured performance
when two different sliding window segmentation methods were used (with and without
overlapping windows). They found that the event-centered segmentation outperformed
sliding window segmentation while significantly reducing the computational cost.

The same as in [18], researchers in [20–22] also employed a single window for event-
centered data segmentation. Another approach was used in [19,23–26], where data seg-
mentation was based on multiple windows. Using more than one segmentation window is
justified by an idea that in spite of the variable and irregular nature and typology of falls,
they can be decomposed as a sequence of typical “stages” or phases. With this approach,
the intention is to align data segmentation windows with different fall phases and thus
extract more specific features for use in the classification stage.

Although event-centered data segmentation is regularly implemented in fall detection
systems, no research so far has explored how different configurations of data segmentation
windows affect the performance of the system in terms of detection accuracy. The aim of
this paper is to fill this gap by comparing fall detection classifier performance in the case of
implementation of either one, two, or three windows for event-centered data segmentation
and to propose the optimal duration for each of these windows.

The remainder of the paper is organized as follows: Section 2 describes the methodol-
ogy, followed by results in Section 3. A discussion of the results is provided in Section 4.
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Finally, Section 5 concludes the paper and points out the important practical implications
of this study.

2. Materials and Methods

In our research, we implemented a fall detection testing environment, as shown in
Figure 1. We used three publicly available datasets with fall and ADL records gathered
from young participants in a controlled environment while wearing an acceleration sensor
attached to the waist. Consequently, each record from the datasets contains only one fall or
ADL activity. We first take fall and ADL data records from selected datasets and search for
potential fall events. For each detected potential fall event, a part of the record before and
after the event is extracted. Data segmentation with different window configurations is
then applied to this event-centered data record. From there, data segments are obtained,
and a set of features is calculated for each segment. Finally, a classifier is used to distinguish
fall from ADL events, and its performance in terms of detection accuracy is evaluated.
These steps are described in more detail in the following sections. For all the calculation
and analyses in this study we used Matlab R2020b.

Figure 1. Architecture of the implemented testing environment for fall detection.

2.1. Fall Model

Although falls are diverse in etiologies (causes), circumstances, characteristics, and
clinical consequences, a fall can generally be defined as “an unexpected event in which the
person comes to rest on the ground, floor, or lower level” [27]. For research purposes, falls
are usually described as a sequence of multiple phases. Models with different numbers of
phases have been proposed [28–30], but a model with three phases is most widely accepted.

A fall starts when a person loses balance and starts an uncontrolled descent towards
the ground that can no longer be recovered by protective strategies. The period between
the start of the fall and the body impact on a lower surface is often called the pre-impact or
falling phase. During this phase, the acceleration towards the ground is in most cases less
than 9.81 m

s2 (1 g), but it can be influenced by balance recovery attempts such as stepping
strategies or grabbing on to other objects. The total duration of this phase depends on the
circumstances and the balance recovery strategies employed by the faller.

The moment when a person hits the ground or some other lower surface for the first
time is considered the beginning point of the impact phase. This moment usually causes an
abrupt change of the acceleration direction. The magnitude of acceleration change depends
on falling dynamics and type of ground surface.

At the end of the impact phase, the person is lying or sitting on the ground or other
lower surface. This phase is called the rest phase. If the person is unable to move due to
the fall, no significant changes in acceleration magnitude can be observed in this phase.
However, this is not the case if the person makes attempts to recover from the fall.

An example of a fall event measured with a tri-axial accelerometer is shown in Figure 2.
The figure displays measurements from three accelerometer axes combined into a sin-
gle value called Acceleration Vector Magnitude (AVM). AVM is calculated according to
Equation (1):

AVM[i] =

√
(ax[i])

2 +
(
ay[i]

)2
+ (az[i])

2, (1)

where i is the current data sample and ax, ay, and az represent, respectively, the acceleration
signals in the x, y, and z axes of the sensor. Accelerations and the AVM value are thereby
expressed in g units (1 g = 9.81 m

s2 ).
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Figure 2. An example of a fall signal with three phases: A is the pre-fall phase, B is the impact phase, and C is the rest phase.

2.2. Datasets

Three publicly available datasets that contain acceleration measurements of falls and
ADL were used in this research: ErciyesUni [17], FallAllD [31], and SisFall [32]. For all three
datasets, young subjects performed a variety of simulated falls and ADL in a controlled
environment while wearing accelerometer sensors attached to different body parts. In this
study, we used only records from the waist sensor because this position was used by all
three datasets.

Fall detection systems are mainly intended for use by elderly populations, but record-
ing unintentional falls from elderly people in real life is a complex task. Because real-life
falls are rare events, recording them is both time consuming and costly [33]. The FARSEE-
ING consortium, consisting of 10 partners from 5 EU countries, succeeded in recording 300
real-world fall events with inertial sensors over 4 years (from January 2012 to December
2015) [34]. From this collaborative project, a subset of 20 falls is publicly available. So
far, no open datasets are available that contain a significant number of real life elderly
falls. Therefore, the majority of studies still use data from simulated falls of young healthy
subjects recorded in a safe environment [35].

A separate record was created for each performed ADL or fall. In this way, each record
stored in the dataset contains only one type of fall or ADL and is uniquely labeled with
an anonymized subject identifier, activity type (e.g., frontal fall to the knees, ADL sitting
down on a chair, etc.), and trial number. Besides these common characteristics, datasets
were created by different research groups and with distinct experimental protocols.

The ErciyesUni dataset contains sensor measurements from 17 subjects (age: 19–27,
weight: 47–92 kg, height: 157–184 cm), acquired while they performed a set of scripted
ADL and simulated falls. In total, the dataset contains 1360 ADL and 1700 fall records.
Every subject performed 16 types of ADL and 20 different types of falls with 5 repeti-
tions while wearing 6 sensing units (Xsens MTw Motion Tracking Kit, Xsens, Enschede,
The Netherlands). Those sensing units measured accelerations of different body parts by
accelerometers (measurement range ±16 g, sampling frequency 25 Hz). They were worn

232



Sensors 2021, 21, 4335

by the subjects attached to different body parts: head, chest, waist, wrist, tight, and ankle.
In this work, we used data from the waist worn sensing unit in order to process signals
from the same sensor position because signals from that position are present in all three
selected datasets.

FallAllD is a dataset of falls and ADL records simulated by 15 volunteering partici-
pants. Each participant performed 35 types of simulated falls and 44 types of ADL. The
average age, height, and weight of participants were 32 years, 171 cm, and 67 kg, respec-
tively. The participants were asked to wear a sensing unit around their neck and wrist,
and attached to the waist while performing predefined movements. Each sensing unit
was equipped with four sensors: an accelerometer, a gyroscope, a magnetometer, and a
barometer. For our study, we used acceleration data from the sensing unit attached to the
waist. The measurement range of the employed accelerometer was ± 8 g and the sampling
frequency was 238 Hz.

The SisFall dataset was acquired by SISTEMIC group (University of Antioquia,
Medellin, Colombia). This dataset contains measurements from a group of 15 elderly
subjects and a group of 23 young adults. For this study, we used fall and ADL data
collected from young subjects only (age 25.0 ± 8.6 years, height 165.7 ± 9.3 cm, weight
57.7 ± 15.5 kg) because the elderly group did not perform simulated falls. Acceleration
and angular velocity measurements were acquired with an inertial sensor unit (Shimmer
sensing, Ireland) while subjects wore the sensor attached to their waist and performed a
set of 15 different types of falls and 19 types of ADL. In total, 2707 ADL data records and
1798 fall data records were acquired. Acceleration was measured with two accelerometers
embedded on the Shimmer sensing unit: ADXL345 (measurements range ±16 g) and
MMA851Q (measurements range ±8 g). A sampling frequency of 200 Hz was employed
for acceleration measurements. For this study, we selected data from the accelerometer
ADXL345 due to the larger measurement range.

From all three datasets, we excluded data records that contained physically not
interpretable data and were therefore most likely caused by a measurement/sensor error.
All falls and ADL data with the maximal value of AVM larger than 30 g and all falls
data with maximal peak value lower than 1.1 g were excluded from further analysis.
The constraint of 30 g was chosen because the accelerometer measurement range in the
employed datasets was ±16 g (SisFall and ErciyesUni) and ±8 g (FallAllD). So, even if
acceleration values from the top of these ranges (16 g and 8 g) would have been recorded
during a fall or ADL in all three axes, the value of AVM calculated according to Equation
(1) would be less than 30 g. We chose the value of 1.1 g to discard all fall records in which
potentially no fall was recorded because this value is just slightly larger than AVM recorded
during rest (1 g) and at the same time far enough from the minimal recorded acceleration
peak of 1.6 g, which was found in a study on real world falls [36]. We discarded 7 falls
and 3 ADL from the ErciyesUni dataset due to these criteria. Example of such signals are
shown in Figure 3.

Additionally, to ensure that the time span of the records was long enough for data
segmentation, only fall records with the largest AVM peak recorded more than 5 s before
the end of the signal record were taken into consideration. In total, 49 fall records from the
SisFall dataset did not satisfy this criteria and they were not used in this research. From the
FallAllD dataset, all records satisfied the criteria.
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Figure 3. Examples of fall records in the ErciyesUni dataset excluded from further analysis due to: (a) the maximal AVM

peak value larger than 30 g and (b) the maximal AVM peak value lower than 1.1 g.

2.3. Potential Fall Event Detection

The main goal of potential fall event detection is to detect changes in acceleration
that might come from a fall. By detecting a potential fall event, only a preselection of
data is made; all potential fall events are further processed for the decision as to whether
they actually come from a fall or from some fall-like ADL. A potential fall event detection
algorithm has to be simple, fast, and able to accurately identify all fall events while rejecting
ADL as much as possible. This way, the computational cost of the system is reduced because
the more complex ML based algorithm is utilized only for fall-like events while most of the
ADL is already rejected. Another benefit of this approach is that it provides a center point
for data segmentation based on extracting features from specific fall phases.

Potential fall event detection is based on detecting a sudden and large increase of
acceleration magnitude in the input signal that can be observed during fall impact [26].
The impact is the most prominent part of a fall signal measured with accelerometer sensors.
In the impact phase, when the faller hits the ground or some other lower level surface, an
abrupt change of the direction in acceleration signals occurs. This change is due to the
breaking acceleration opposite to the initial fall direction.

During a fall, multiple high acceleration peaks may be produced as a result of the
protective actions the person performs to avoid or reduce the consequences of the impact.
Examples are protective arm movements, falling to knees to break the fall in two parts, or
holding on to objects to slow down the fall [28]. During a fall, a person can also hit other
objects. The presence of multiple acceleration peaks in a fall signal may cause detection
of multiple possible fall events, thus making the alignment of fall phases more difficult.
Examples of two acceleration signals measured during a broken fall to the knees from the
ErciyesUni dataset are presented in Figure 4. The figure shows records of the same type
of fall simulated by two subjects. In these falls, subjects first fell to their knees and then
continued to fall until their chest touched the ground. In the first example, the maximal
AVM peak occurred during the initial impact to the knees, while in the second example, a
larger AVM peak, was measured when the upper part of the body impacted with ground.
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Figure 4. Examples of the same fall type from the ErciyesUni dataset simulated by two subjects: (a) the impact to the knees
produces larger AVM peak than the impact of the body to the ground; (b) the AVM peak is larger when the upper part of
the body impacts the ground.

Methods for event detection that avoid multiple-peak problems have been proposed
in the literature [19,20,37,38]. They are all based on similar reasoning. Because falling
down is a single event that happens suddenly, a fall-like event should not have traits of
repetitiveness and can be characterized as an acceleration peak higher than a predefined
threshold followed by a period without peaks larger than the threshold. We implemented
a potential fall event detector following this idea.

Firstly, we calculated the AVM for each data sample. If the AVM value exceeded a
fixed threshold, we analyzed further data in the period after the sample that was larger
than the threshold. Then, if the AVM value of all data points in that period were lower
than the threshold, a potential fall event was detected.

We had to choose the duration of the period in which we looked for further peaks after
the AVM acceleration peak. A similar method for event detection was used in a previous
study [37] and yielded good results with a time period of 2.5 s, so we chose 2.5 s as the
time period in which we look for further peaks after the acceleration peak. In order to
find the best thresholds for each dataset, we tested the method of potential fall detection
with a range of threshold values for all fall records. The threshold values were varied from
0 to 5 g with a step of 0.005 g. Only those potential fall events detected after the largest
AVM peak in fall records were labeled as true fall events. This criterion was set because the
FallAllD and SisFall datasets contain ADL activities in fall records prior to the fall event.
An example of a fall record where a potential fall event is detected during ADL before the
fall is shown in Figure 5. By using that additional criterion, we ensure that a potential fall
event detected in the ADL part of a fall record is correctly labelled as a false fall event.
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Figure 5. An example of a fall record from the FallAllD dataset that contains an ADL before the fall. The arrow indicates the
point in the signal where the ADL causes detection of a false potential fall event.

We selected the largest threshold for which in all fall records at least one true positive
event was detected. Choosing the largest threshold minimizes the number of false alarms
with ADL data. The thresholds chosen for each dataset are as follows:

• ErciyesUni: 1.330 g;
• FallAllD: 2.360 g;
• SisFall: 1.775 g.

Using this method, we detected potential fall events from ADL and fall records. We
then extracted data of each potential fall event containing 4 s of data both before and after
the event into a new record (event-centered data record). All event-centered data records
that were taken from ADL dataset records were labeled as ADL. Additionally, all parts
of the records from fall signals occurring before the largest peak were labeled as ADL
(because they were triggered by an activity before the fall, as discussed previously). Only
event-centered data records from falls that are detected after the largest AVM peak were
labeled as falls.

The maximal period of 4 s was chosen for data extraction because of the limitations in
data from the public datasets used in this study. Namely, those datasets provide records of
falls and ADL with limited duration. For this research, it is beneficial to have as much data
as possible available before and after each potential fall event in both fall and ADL records.
The duration of 4 s was chosen to provide a fair amount of time for data segmentation
analysis while preventing too many ADL and fall records being discarded due to a lack of
data (to short signal records) being available for analysis.

The final number of event-centered data records chosen for further processing is listed
in Table 1. For comparison, Table 1 also contains the number of records that would be
available if all potential fall events were used, neglecting the criterion of minimal time
for analysis (limit 0 s). The number of data records that would be available with a time
limit of 5 s is also given. Raising the limit from 4 s to 5 s would lead to a significant
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reduction of available data from the SisFall dataset and therefore we found it not acceptable
in our study.

Table 1. The number of event-centered data records referred to the minimal time available before
and after a potential fall event.

Dataset
Minimal Time
Available (s)

Number of Fall
Records

Number of ADL
Records

ErciyesUni
0 1460 914
4 1454 904
5 1448 883

FallAllD
0 314 472
4 301 368
5 300 335

SisFall
0 1823 1308
4 1649 945
5 1433 667

2.4. Event-Centered Data Segmentation

When a potential fall event is detected, a single window or multiple windows before
and after the event are used to define boundaries of the data segments from which features
for classification are calculated. So defined data segments should contain characteristics of
the entire fall or of specific fall phases. There are, however, multiple window configurations
that can be used to extract these data segments. The aim of this research was to explore
how these window configurations in the data segmentation stage influence performance of
the fall detection system and to find the best performing one. Performance was thereby
measured by the ability of the system to correctly detect falls when they really occurred
while avoiding raising false alarms for ADL.

We used the model presented in Figure 6 to create different configurations of windows
with varying durations.

Figure 6. The model for testing different window configurations in event-centered data segmentation; t0 marks the
occurrence of a potential fall event. Parameters t1–4 determine the time between t0 and the beginning or the end of
a window.

The model consists of three sequential and coupled windows labeled W1, W2, and W3,
and 4 timing parameters labeled t1, t2, t3, and t4. Each window spans a segment of input
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data. Parameters t1–4 determine the time between the beginning or the end of a window
and the detected potential fall event at time, t0. The impact window, W1, spans between
(t0 − t3) and (t0 + t4), the pre-impact window, W2, spans between (t0 − t3) and (t0 − t1),
and finally the post-impact window, W3, spans between (t0 + t4) and (t0 + t2). By varying
the criteria for parameter inclusion and duration, different configurations of windows can
be created, as shown in Table 2.

Table 2. Criteria for parameters to form specific data segmentation window configurations for testing.

Number of Windows in Configuration Window Configurations Criteria for Parameters

1 W1 t1 = t3 AND t2 = t4

2
W1 & W2 t2 = t4 AND t1 > t3 AND (t3 > 0 OR t4 > 0)
W1 & W3 t1 = t3 AND t2 > t4 AND (t3 > 0 OR t4 > 0)
W2 & W3 t3 = 0 AND t4 = 0 AND t1 > 0 AND t2 > 0

3 W1 & W2 & W3 t1 > 0 AND t2 > 0 AND t1 > t3 AND t2 > t4 AND
(t3 > 0 OR t4 > 0)

Parameters t1 and t2 were varied from 0 to 4 s, with a step size of 0.5 s. For each value
of t1, parameter t3 was changed from 0 to t1, with steps of 0.25 s. Similarly, t4 was varied
in range from 0 to t2 for each value of t2 in steps of 0.25 s. All possible combinations of
parameter values t1 ; 4 were tested. The maximal window duration is limited to 4 s due to
the available duration of data in the event-centered data records. This issue was discussed
in Section 2.3.

2.5. Feature Extraction

We calculated a set of features from each data segment provided by event-centered
data segmentation. Features should gather distinctive parameters that are used by the
classifier to differentiate between falls and ADL. The set of features we chose for this work
is commonly used in fall detection research [18]. In total, eight features were calculated
for each segment from tri-axial acceleration data (ax, ay, az) or AVM according to Equa-
tions (2)–(9). All features and variables used to calculate them were expressed in g units
(1 g = 9.81 m

s2 ).

AVM =
1
N

N

∑
i=1

AVM[i] (2)

AVMmax = max
i=1,2,...N

AVM[i] (3)

AVMmin = min
i=1,2,...N

AVM[i] (4)

AVMrange = AVMmax − AVMmin (5)

sN =

√√√√ 1
N

N

∑
i=1

(
AVM[i]− AVM

)2 (6)

SMA =
N

∑
i=1

(|ax[i]|+
∣∣ay[i]

∣∣+ |az[i]|
)

(7)

AAMV =
1
N

N

∑
i=1

|AVM[i + 1]− AVM[i]| (8)

AVMrms =

√√√√ N

∑
i=1

(
ax[i]

2 + ay[i]
2 + az[i]

2
)

(9)
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where N is the number of samples in a data record, AVM is the mean, and sN is the
standard deviation of all AVM samples in a record. The maximal and the minimal values
and the difference between the maximal and minimal values (range) of AVM samples in
a record are given by Equations (3)–(5), respectively. The Summed Magnitude Area (SMA)
is the sum of the absolute values of the acceleration components in all three axes in a
record, and it is calculated according to Equation (7). The Average Absolute Acceleration
Magnitude (AAMV) is calculated according to Equation (8) as a difference between two
consecutive AVM samples. Finally, AVMrms is calculated as a square root of the sum of
squared acceleration values in all three axes (Equation (9)).

Although orientation of the sensor can be estimated from tri-axial accelerometer data,
features based on orientation were not used in this study. Estimation of orientation assumes
a known orientation of the accelerometer sensor axes with respect to the wearer’s body.
In a real life application of a fall detection system, this would require a user to always
wear the sensor at a predefined orientation. This reduces the usability of the system and
therefore we preferred solutions that do not depend on posture information.

2.6. Classification and Performance Evaluation

For the training of the machine learning algorithm, segments from each event-centered
data record were individually labeled as either a fall or an ADL.

We used the fitcsvm function from MATLAB’s Statistics and Machine Learning Toolbox
to implement an SVM classifier. Previous works in the field of fall detection systems have
shown good performance results for the SVM classifier [11,39]. Basically, SVM tries to
find the best hyperplane that maximizes the margins between each of the classes. Several
hyperparameters affect the classification result with the SVM classifier: C, gamma, and kernel.
We standardized the features and used the radial basis function kernel. Hyperparameter
value C for the SVM classifier was set to 1. The parameter gamma was automatically set to
an appropriate value by the software using a heuristic procedure.

We employed five-fold cross validation to evaluate the performance of the classifier.
All data records were randomly partitioned into five portions. Then four portions were
utilized as training data and one portion as testing data. This was repeated five times
until each portion was used as the testing set. Averaged test results over all iterations
were taken.

The following metrics were used to evaluate the test results:

Fscore =
2TP

2TP + FP + FN
(10)

AMRtype =
FNtype

FN + TP
(11)

AFPRtype =
FPtype

FP + TN
(12)

where TP, FP, FN, TN, FNtype, and FPtype are defined as follows:

• TP = number of all true positive records; a data record is determined as a TP if it is
labeled and detected as a fall;

• FP = number of all false positive records; a data record is determined as an FP if it is
labeled as an ADL and detected as a fall;

• FN = number of all false negative records; a data record is determined as an FN if it is
labeled as a fall and detected as an ADL;

• TN = number of all true negative records; a data record is determined as a TN if it is
labeled as an ADL and detected as an ADL;

• FNtype= number of FN records for a particular type of fall;
• FPtype= number of FP records for a particular type of ADL.

Fscore is a harmonic mean of sensitivity and precision and is often used as a single
standard measure for evaluation of fall detection systems [33,40,41]. AMRtype (from Ac-
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tivity Miss Rate) and AFPRtype (from Activity False Positive Rate) express percentage of
records from a particular ADL or fall type that are misclassified. Thereby, AMRtype is the
percentage of falls of one type that are not detected and AFPRtype is the percentage of ADL
of a single type that are detected as falls.

3. Results

The performance of the SVM classifier was evaluated with different configurations of
windows in the data segmentation process. A total of 6560 classification results per dataset
were obtained for all combinations of window parameter values t1–4.

The highest classifier performances achieved when using one, two, and three windows
for data segmentation are listed in Table 3. Firstly, subsets of all results relevant to each
window combination were extracted. The criteria for parameters t1–4 given in Table 2 were
used to obtain each subset. For example, to acquire the subset of all results when one
window is used, all combinations were selected for which t1 is equal to t3 and t2 is equal
to t4. This subset then contains results of classification when window W1 with different
durations, defined by t3 and t4, are used. The highest classifier performance reported in
Table 3 is then simply the maximal value of the Fscore achieved in the subset.

Table 3. The maximal Fscore achieved for each configuration of data segmentation window.

Number of Windows
in Configuration

Window
Configurations

Max Fscore ErciyesUni (%) Max Fscore FallAllD (%) Max Fscore SisFall (%)

1 W1 99.2 89.5 94.2

2
W1 & W2 99.5 94.0 97.3
W1 & W3 99.6 93.0 97.1
W2 & W3 99.3 92.5 96.5

3 W1 & W2 & W3 99.7 96.1 98.4

The results show that the highest classification performance is achieved when all three
windows, W1–W3, were used for data segmentation. This combination has the highest
maximal achieved Fscore in all three datasets (99.7% in the ErciyesUni dataset, 96.1% in the
FallAllD dataset, and 98.4% in the SisFall dataset). Generally, the lowest scores in all three
datasets are obtained when only one window is used.

The values of parameters t1–4, for which maximal Fscore are achieved with data seg-
mentation based on three windows, are listed in Table 4. Because the results differ between
datasets, we explored whether a range of parameters can be found that performs well in
all datasets.

Table 4. Values of parameters t1–4 for which the best performance is achieved for each dataset when
three windows are used for segmentation.

Dataset t1 (s) t2 (s) t3 (s) t4 (s)

ErciyesUni 4 3.5 0.5 0.5
FallAllD 3 4 0.5 0.25
SisFall 4 3.5 0.5 0.25

The size of each window for data segmentation is determined by a pair of parameters:
W1 (t3, t4), W2 (t2, t4), W3 (t1, t3). The maximal Fscore for all tested combinations of
parameter pairs were calculated for every dataset. An average of scores from all three
datasets is shown in Figure 7. All scores are color coded to facilitate the analysis, where
darker green is showing better scores while darker red is showing low values in scoring.
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Figure 7. The average of maximal Fscore from all datasets for each pair of parameters (t3, t4), (t2, t4), (t1, t3). Scores are color
coded where darker green is showing higher scores while darker red is showing lower scores.

The best results in the three window-based data segmentation approaches were
obtained when parameters t1 and t2 were set to the maximal value tested, 4 s, and when
the t3 and t4 values were either 0.25 s or 0.5 s. Because these parameters define the duration
of the segmentation windows, as stated in Section 2.4, we can express these results in terms
of window duration. Thus, the best results were obtained for a shorter duration of the
impact window, W1 (0.5 s or 1 s), and a longer duration of the pre-impact and post-impact
windows, W2 and W3 (3.5 s or 3.75 s).

4. Discussion

In this study, we implemented a testing environment for a fall detection system in order
to explore how the configuration of windows used in event-centered data segmentation
affects the detection accuracy. Configurations of one to three windows with varying
window durations were used at the data segmentation stage. Performance of an SVM
classifier was evaluated with Fscore metrics for all configurations.

The results from Table 3 show that the highest Fscore is achieved when three windows
are used for event-centered data segmentation. In the ErciyesUni dataset, the difference
between the performances achieved with one, two, and three windows was small, and
all of the scores were higher than 99%. In the FallAllD and SisFall datasets, the difference
was more prominent and the highest achieved scores were lower than in the ErciyesUni
dataset. Overall performances differ between datasets due to the heterogeneity of fall and
ADL types present in each dataset. Figures 8 and 9 show the AMRtype and AFPRtype of
activities for the configuration where the highest Fscore is achieved with three windows for
data segmentation. Similar activities were grouped together for a better overview. Some of
the ADL types that caused false positive alarms in the FallAllD and SisFall dataset, such
as turning in bed, failed attempt to get up from a chair, and walking up stairs, are not
present in the ErciyesUni dataset. ErciyesUni does not contain any falls that follow an ADL
(such as falls during walking, jogging, or sitting). The lack of ADL and fall types that are
more difficult for classification in ErciyesUni may be the cause of the better scores achieved
compared to the FallAllD and SisFall datasets. Heterogeneity of data between datasets has
been the focus of some previous studies [2,35,42–44], which have shown that the type of
activities contained in datasets for fall detection differs significantly. Moreover, difference
between falls and ADL types contained in the datasets is one of the factors that explains the
difference in the threshold values for potential fall event detection presented in Section 2.3.
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Figure 8. Percentage of all ADL misclassified as fall, grouped by ADL types (AFPRtype).

Figure 9. Percentage of all falls misclassified as ADL, grouped by fall types (AMRtype).

Data segmentation approaches for fall detection have been explored in previous stud-
ies. In their study, Putra et al. [19] compared an event-centered data segmentation approach
with sliding window segmentation. They found that event-centered data segmentation
based on three windows outperformed segmentation with a single sliding window in terms
of computational efficacy and detection accuracy. In [18], detection accuracy between a
single window for event-centered data segmentation was compared to data segmentation
with an overlapping sliding window. On the other hand, instead of comparing perfor-
mance between the sliding window and the event-centered data segmentation approach,
we focused on finding the best performing configuration of windows for the event-centered
segmentation. To the best of our knowledge, our study is the first to compare the usage of
one, two, and three windows in event-centered data segmentation.

Further, we analyzed the effect of window durations on the system’s performance
when a configuration of three windows for data segmentation is used. Figure 7 shows the
Fscore values achieved for parameter pairs that define each window: W1 (t3, t4), W2 (t2, t4),
W3 (t1, t3). Thereby, the Fscore value represents the average of the highest scores from all
three datasets used in the study. As shown in the figure, for parameter t3, better scores are
achieved when using lower values (0.25 s and 0.5 s). This is the parameter that defines the
duration of window W1 in the period before a potential fall event and therefore incudes the
impact peak. For parameter t1, the best results were achieved with longer values (maximal
tested value of 4 s). This means that longer durations of W2 that capture activity before
the fall are favored (short t3 and long t1 values). As with t1, longer values of t2, close to
4 s, performed best. With parameter t4, similar scores are achieved in a range of values
lower that approximately 2.5 s. This parameter defines the amount of post-impact data
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included in window W1 as well as the starting point and duration of window W3. In one
way, lower values of t4 reduce the amount of post-impact data to interfere with impact
focused window W1 and enable a longer duration of W2 for gathering data during rest
after the fall. On the other hand, longer values of t4 provide a time offset for the beginning
of window W2 after the impact, so that less intermediate post-impact data is included in
the rest analysis. The choice of the value of the parameter t4 is therefore a compromise.
Nevertheless, lower values for t4 (less than 0.5 s) provided slightly better results.

To summarize, in our study, the best results were obtained when parameters t1–4 were
set to values listed in the first row of Table 5. Because these parameters define the duration
of segmentation windows, as described in Section 2.4, we can also express our results in
terms of window durations. Hence, when three sequential windows for event-centered
data segmentation are used, we recommend a shorter duration of impact window W1 (0.5 s
or 1 s) and longer durations of pre- and post-impact windows W2 and W3 (3.5 s or 3.75 s).

Table 5. Duration of data segmentation windows used in previous research compared to the ranges recommended in
this work.

Study t1 (s) t2 (s) t3 (s) t4 (s)

our study 4 4 0.25 or 0.5 0.25 or 0.5
Putra et al. [19] 1 2 0 1
Hsieh et al. [24] 0.3281 2.5 0.07815 0.0781 or 0.156 1

Zurbuchen et al. [25] rest of the record 2 rest of the record 2 1.5 0.25
1 depends on the event peak amplitude; longer duration is used for peak amplitudes < 6 g. 2 value of t1 and t2 depends on the duration of
the record after the window around the event is formed.

Event-centered data segmentation with three windows has been utilized in previous
studies with different window durations. In [19], pre-impact, impact, and post-impact
windows of 1 s were used around the impact peak. Hsieh et al. [24] presented an adaptive
approach where the duration of the impact window depended on the amplitude of the
largest acceleration peak on record. In [25], an impact window of 1.5 s before and a window
of 0.5 s after the largest acceleration magnitude was taken. Two additional windows
were then placed before and after the impact window. In Table 5, the durations of the
windows used in the aforementioned studies are expressed with parameters t1–4 for easier
comparison to our results.

An analysis of the effect of the size of windows on fall detection accuracy was pre-
viously performed by [18]. They measured performance of a fall detection system with
event-centered data segmentation using a single window of varying duration. The best
results were achieved when they used a window of 3 s centered around the potential fall
event. On the contrary, the focus of our study was in finding the best performing durations
of each of three windows, because they showed better detection accuracy compared to
using a single window.

For the purpose of this study, we employed three publicly available datasets with
acceleration data from young subjects performing simulated falls and ADL. That is a
limitation of our research because fall detection systems are aimed at assisting the elderly
population. Some of the research indicates that the patterns of falls experienced by elderly
people is similar to simulated falls from young subjects [45,46]. Acquiring data from
elderly people that experience falls in real life situations is challenging, and only a few
researchers have worked to acquire them [26,34,47–49]. Those acquired datasets are not
publicly available.

Another limitation of this study is that we had to restrict our analysis of window
durations to 4 s due to the length of data available in each fall or ADL record. The best
results for window lengths of t1 and t2 were found to be at the maximal explored value of
4 s. In our future work, we plan to create a database of simulated falls and ADL activities
with data records of sufficient duration to analyze longer ranges of window sizes.
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Based on our findings for the parameter t4 value, we plan to explore a more complex
model of windows for data segmentation. With that model, two additional parameters
will be introduced so that configurations with overlapping or separated windows can be
investigated as well.

5. Conclusions

Data segmentation is an important part of automatic fall detection systems because
it affects the overall detection accuracy. In this work, we explored different window
configurations that can be used with event-centered data segmentation. A fall detection
system based on an SVM classifier was built, and three publicly available datasets with
fall and ADL records were used for the test. We compared the fall detection classifier’s
performance in the case of implementation with either one, two, or three windows for event-
centered data segmentation. We found that using three windows for data segmentation
yields better fall detection performance than using one or two windows. Finally, we
analyzed a range of window durations and found that the best results were obtained with
a shorter duration of impact window, W1 (0.5 s or 1 s), and a longer durations of pre-
and post-impact windows, W2 and W3 (3.5 s or 3.75 s). These findings can be used as a
guideline for implementing event-centered data segmentation in fall detection systems.
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