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The Special Issue on “Computation in Complex Networks” focused on gathering highly original
papers in the field of current complex network research. Due to their ability to model a wide variety
of daily-life systems—including the Internet, communication, chemical, neural, social, political and
financial networks—complex network systems and their behavior need to be deeply understood. As
such, the focus of this Special Issue has been highlighting and promoting current interdisciplinary
contributions on the various fields of complex networks, thus providing a collection of high-quality
research papers that capture the challenges recently posed by these networks. We selected 20
manuscripts, which are described below.

In the paper “Active Learning for Node Classification: An Evaluation” by Madhawa and
Murata [1], the active learning framework was used as a method to make node classification on
attributed graphs by representing data instances as nodes of the graph. The authors performed an
empirical evaluation of different state-of-the-art active learning algorithms proposed for graph neural
networks, as well as other data types, such as images and text, on several real-world attributed graphs.
The results showed that active learning algorithms designed for other data types do not perform well
on graph-structured data, highlighting the importance of complementing uncertainty-based active
learning models with an exploration term.

In the paper “Spreading Control in Two-Layer Multiplex Networks” by Jaquez et al. [2], the
problem of controlling an SIS (Susceptible-Infected-Susceptible) epidemic spreading over a network
with two layers was addressed. The stabilization of the extinction state for the nonlinear discrete-time
model was obtained by properly tuning system parameters, such as intralayer and interlayer
transmission rates, for a limited number of nodes characterized by a parametric threshold condition.
The sufficient conditions for the choice of the subset of nodes and the parameters to be controlled were
established through a rigorous mathematical analysis guaranteeing the exponential stability of the
extinction state globally, with respect to the set of all possible probability states.

In the paper “Investigating the Influence of Inverse Preferential Attachment on Network
Development” by Siew and Vitevitch [3], the growth mechanism of phonological language networks,
in terms of the acquisition of new words that are phonologically similar to existing ones, was explored.
Specifically, the authors analyzed the network structure and the degree distributions of networks
synthetically generated through preferential attachment, an inverse variant of the classical version
where new nodes are connected to existing nodes with fewer edges, or combinations of both network
growth mechanisms. The simulation results showed that preferential attachment—followed by inverse
preferential attachment—in the network growth resulted in densely connected network structures.

In the paper “Classification of Literary Works: Fractality and Complexity of the Narrative, Essay,
and Research Article” by Ramirez-Arellano [4], the problem of the classification of literary works
was tackled. This research analyzed the node degree, betweenness, shortest path length, clustering
coefficient, nearest neighborhoods’ degree, fractal dimension, complexity, area under box-covering,
and area under robustness curve of the complex networks. The literary works of Mexican writers
were analyzed, with the aim of classifying them according to their genre. The results of this analysis
classified 87% of the full word co-occurrence networks as a fractal.

Entropy 2021, 23, 192; doi:10.3390/e23020192 www.mdpi.com/journal/entropy1
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In the paper “Detecting Overlapping Communities in Modularity Optimization by Reweighting
Vertices” by Tsung et al. [5], the community detection problem was considered, specifically focusing
on overlapping community sets of nodes. By first introducing a node weight allocation problem
to formulate the overlapping property, the authors proposed a genetic algorithm, exploiting an
extension of the modularity function for solving the node weight allocation problem and detecting the
overlapping communities. Moreover, three refinement strategies for improving the quality of results
were added. On both real-world and synthetic networks, the proposed algorithm was able to better
detect nontrivial overlapping nodes, compared to other contestant algorithms.

In the paper “Modelling and Recognition of Protein Contact Networks by Multiple Kernel
Learning and Dissimilarity Representations” by Martino et al. [6], the authors focused on predicting
the proteins’ functional role, proposing a hybrid classification system based on a linear combination
of multiple kernels defined over multiple dissimilarity spaces. Here, the training procedure jointly
optimized the kernel weights and the representatives’ selection in the dissimilarity spaces. The
classification system was thus characterized by a double knowledge discovery phase in which the
analysis of the weights allowed the authors to check which representations were better for solving the
classification problem—whereas the pivotal patterns selected as representatives give further insight
into the modelled system. Experimental results showed how the proposed classification system was
able to reliably analyze the considered protein contact networks.

In the paper “Cross-Domain Recommendation Based on Sentiment Analysis and Latent Feature
Mapping” by Wang et al. [7], a cross-domain recommendation algorithm (CDR-SAFM) based on
sentiment analysis and latent feature mapping was proposed. This algorithm specifically combined the
sentiment information extracted from different domains of users’ ratings. The sentiment is categorized
into (1) positive, (2) negative and (3) neutral. Moreover, the latent Dirichlet allocation (LDA) was used
to model the users’ semantic orientation to generate the latent sentiment review features. Finally, by
applying multilayer perceptron (MLP), the CDR-SAFM was able to obtain the cross-domain nonlinear
mapping function to transfer the users’ sentiment review features. Tested on the Amazon dataset, the
proposed recommendation algorithm outperformed other existing recommendation algorithms in the
considered cross-domain scenario.

In the paper “Complex Contagion Features without Social Reinforcement in a Model of Social
Information Flow” by Pond et al. [8], the problem of information spreading over social networks
through a complex contagion model was considered. Focusing on the quoter model (a model of the
social flow of written information copying or “quoting” short subsequences of text from neighbors),
the authors showed how this model has features of complex contagion, including the weakness of long
ties and the high network density that limits information flow rather than boosting it, despite lacking
an explicit mechanism of social reinforcement that distinguishes complex contagion from epidemic
spread.

In the paper “Optimizing Variational Graph Autoencoder for Community Detection with Dual
Optimization” by Choong et al. [9], variational graph autoencoders for community detection were
considered. The research underlined how variational autoencoder (VAE)-based approaches suffer from
a deviation increase from the primary objective when minimizing loss using the stochastic gradient
descent, resulting in suboptimal community structure. To smooth this effect, a dual optimization
procedure was proposed to guide the optimization process toward better communities. The results
of the experiments showed that the proposed community detection algorithm outperformed its
predecessor.

In the paper “Properties of the Vascular Networks in Malignant Tumors” by Chimal-Eguìa
et al. [10], both synthetic and real angiogenic vascular networks of patients with Hepato-Cellular
Carcinoma (HCC), extracted from digital tomographies, were analyzed. From the measurements
of network properties, such as average path length, clustering coefficient, degree of distribution
and fractal dimension, the authors showed that there is a well-connected network (high clustering
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coefficient), different from previous related works. The network exhibited efficient communication.
This was also reflected by the small average path length.

In the paper “Complex Network Construction of Univariate Chaotic Time Series Based on
Maximum Mean Discrepancy” by Sun [11], the focus was on the analysis of chaotic time series;
more specifically, on how measuring the similarity between time series affected construction of
the corresponding network. Here, a method that first transforms univariate time series into
high-dimensional phase space, then exploits a Gaussian mixture model (GMM) to represent time
series, and finally introduces maximum mean discrepancy (MMD) to measure the similarity between
GMMs was proposed. The introduced MMD was validated using the Lorenz system, showing that the
similarity between GMMs can be measured more effectively.

In the paper “Analyzing Uncertainty in Complex Socio-Ecological Networks” by Maldonado
et al. [12], the aim was to assess the impact of using the Bayesian network structure for modeling
complex socio-ecological networks, whose behavior is often uncertain. The conducted analysis was
two-fold. The first experiment assessed the impact of the Bayesian network structure on the entropy
of the model. The second compared the entropy of the posterior distribution of the class variable
obtained from the different structures. For the experiments, three types of Bayesian networks are
analyzed: naive Bayes (NB), tree augmented networks (TAN) and networks with unrestricted structure
(GSS). The results showed that GSS consistently outperformed both NB and TAN when evaluating the
uncertainty of the entire model, while NB and TAN resulted in lower entropy values of the posterior
distribution of the class variable, making them suitable for prediction tasks.

In the paper “Multi-Type Node Detection in Network Communities” by Ezeh et al. [13], a new
community detection method—able to uncover disjoint clusters of nodes, clusters with overlapping
nodes, and single isolated nodes forming a partition with a unique node—was proposed. Differing
from previous state-of-the-art methods, the authors proposed an approach which iteratively computes
the bridging centrality value of the nodes to find those with the highest bridging centrality value. Once
a bridge node has been identified, the algorithm computes the node similarity between the bridge and
its neighbors, and the neighbors with the least node similarity values are disconnected. This step is
iterated until a stopping criterion condition is satisfied. Simulations on both real-world and synthetic
networks demonstrated that the proposed method was able to efficiently classify multi-type nodes in
network communities.

In the paper “Predicting the Evolution of Physics Research from a Complex Network Perspective”
by Liu et al. [14], the problem of quantitative knowledge evolution in physics research was addressed
through complex networks, built on bibliographic coupling and co-citation data extracted from the
American Physical Society repository from 1981 to 2010. For each year, the topical clusters (TCs) were
uncovered through the Louvain method and compared to subsequent years to assess their similarity.
Once this information was gathered, a machine learning model was applied to predict the evolution
of the clusters in terms of permanence, disappearance, merging or splitting. This research showed
that the number of papers from certain journals, degree, closeness, and betweenness mostly drove the
predictor.

In the paper “Uncovering the Dependence of Cascading Failures on Network Topology by
Constructing Null Models” by Ding et al. [15], the problem of cascading failures in complex
network infrastructures was taken on. The authors analyzed the impact that underlying network
topology has on cascading failures in realistic Internet Autonomous System network scenarios by
constructing different types of null models. By analyzing the shortest paths in different topological
configurations, the results revealed the effects that microscale (e.g., degree distribution, assortativity,
and transitivity) and mesoscale (e.g., rich-club and community structure) network properties have on
cascade robustness when intentional node attacks are performed.

In the paper “Service-Oriented Model Encapsulation and Selection Method for Complex System
Simulation Based on Cloud Architecture” by Xiong et al. [16], a service-oriented model encapsulation
and selection method to construct complex system simulation applications was proposed. The method
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encapsulates models with large computational requirements in shared simulation services in the
cloud architecture. It also allows the distributed scheduling of model services and a semantic search
framework, useful for the users in searching the required models. An optimization selection algorithm
based on quality of service (QoS) was proposed to support users in obtaining an ordered candidate
model set satisfying a certain QoS. The performed experiment proved that the proposed method was
able to effectively improve the execution efficiency of complex system simulation applications.

In the paper “Minimum Memory-Based Sign Adjustment in Signed Social Networks” by Qi
et al. [17], the authors focused on signed social networks—and in particular, on the impact of
limited memory on the convergence of the network. The research analyzed random and minimum
memory-based sign adjustment rules. Under these rules, the impacts of an initial ratio of positive links,
rewiring probability, network size, neighbor number and randomness upon structural balance are
compared. The experimental results showed that the minimum memory-based sign adjustment can
globally balance the network if the rewiring probability in the Newman–Watts small world model
exceeds a critical value. When the rewiring probability is large, the resulting network is denser, and as
a consequence, it is easier for the influence of each sign adjustment to spread to the whole network.

In the paper “A SOM-Based Membrane Optimization Algorithm for Community Detection” by
Liu et al. [18], an evolutionary membrane community detection algorithm based on self-organizing
maps (SOMs) was proposed. Initially, the community detection problem was formulated as a discrete
optimization problem. Then, three features typical of the membrane algorithm—objects, reaction rules,
and membrane structure—were designed to analyze the characteristics of the community structure.
Here, an object was defined as a partition. Genetic algorithms and differential evolution were employed
as two reaction rules, to let the objects evolve in different regions of the membrane. Finally, to choose
the number of membranes by learning, and to mine the structure of the current objects in the decision
space, the SOM was employed. To validate the algorithm, simulations were carried out on both
synthetic and real-world networks. The experimental results showed that the proposed algorithm is
highly accurate, stable and efficient in the execution when compared to other contestant algorithms.

In the paper “Image Entropy for the Identification of Chimera States of Spatiotemporal Divergence
in Complex Coupled Maps of Matrices” by Smidtaite et al. [19], the complex networks of coupled maps
of matrices (NCMM) are investigated. The authors proved that an NCMM can achieve two different
steady states: quiet or divergence. The analysis of the regions around the boundary lines separating
these two steady states showed the existence of chimera states of spatiotemporal divergence. This
work demonstrated that for identifying such regions, digital image entropy can be exploited as an
effective measure in different networks, including regular, feed-forward, random, and small-world
NCMM.

In the paper “Evolution Model of Spatial Interaction Network in Online Social Networking
Services” by Dong et al. [20], the research focused on modelling the evolution of spatial interactions
between users of online social networks diffusing geospatial information at a city level. Through such
interactions, a city interaction network was built. The proposed evolution model of the city interaction
network takes into account two dynamics: the edge arrival time and the preferential attachment of
the edge. More specifically, six preferential attachment models (Random-Random, Random-Degree,
Degree-Random, Geographical distance, Degree-Degree, Degree-Degree-Geographical distance) were
considered and compared. The authors found that the degree of the node and the geographic
distance of the edge highly influenced the evolution of the spatial interaction network. Moreover, the
experiments—comparing the optimal model with the real city interaction network, extracted from the
information dissemination of WeChat users—revealed a good matching.

We hope that the selected papers described above will be of interest for the community of
physicists, computer scientists and others working in the challenging field of complex networks.

Acknowledgments: We express our thanks to the authors of the above contributions, and to the journal Entropy
and MDPI for their support during this work.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Current breakthroughs in the field of machine learning are fueled by the deployment of
deep neural network models. Deep neural networks models are notorious for their dependence on
large amounts of labeled data for training them. Active learning is being used as a solution to train
classification models with less labeled instances by selecting only the most informative instances
for labeling. This is especially important when the labeled data are scarce or the labeling process is
expensive. In this paper, we study the application of active learning on attributed graphs. In this
setting, the data instances are represented as nodes of an attributed graph. Graph neural networks
achieve the current state-of-the-art classification performance on attributed graphs. The performance
of graph neural networks relies on the careful tuning of their hyperparameters, usually performed
using a validation set, an additional set of labeled instances. In label scarce problems, it is realistic to
use all labeled instances for training the model. In this setting, we perform a fair comparison of the
existing active learning algorithms proposed for graph neural networks as well as other data types
such as images and text. With empirical results, we demonstrate that state-of-the-art active learning
algorithms designed for other data types do not perform well on graph-structured data. We study
the problem within the framework of the exploration-vs.-exploitation trade-off and propose a new
count-based exploration term. With empirical evidence on multiple benchmark graphs, we highlight
the importance of complementing uncertainty-based active learning models with an exploration term.

Keywords: machine learning; graph neural networks; node classification; active learning; graph
representation learning

1. Introduction

Supervised learning is an important technique used to train machine learning models that are
deployed in multiple real-world applications [1]. In a supervised classification problem, data instances
with ground truth labels are used for training a model that can predict the labels of unseen data
instances. Therefore, the performance of a supervised learning model depends on the quality and
quantity of training data, often requiring a huge labeling effort. Usually, the labeling of data instances
is done by humans. Labeling large amounts of data leads to a huge cost in both time and money.
The labeling cost is significantly high when the labeling task needs to be done by domain experts.
For example, potential tumors in medical images can be labeled only by qualified doctors [2,3].

With ever-increasing amounts of data, active learning (AL) is gaining the attention of researchers as
well as practitioners as a way to reduce the effort spent on labeling data instances. Usually, a fraction of
data instances are selected randomly and their labels are queried from an oracle (e.g., human labelers).
This set of labeled instances are used for training the classifier. This process is known as passive
learning [4] as the training data is selected at the beginning of the training process and it is assumed
to stay fixed. An alternative approach is to iteratively select a small set of training instances, retrieve
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their labels, and update the training set. Then, the classification model is retrained using the acquired
labeled instances and this process is repeated until a good level of performance (e.g., accuracy) is
achieved. This process is known as active learning [5]. The objective of AL can be expressed as acquiring
instances that maximize model performance. An acquisition function evaluates the informativeness of
each unlabeled instance and selects the most informative ones. As quantifying the informativeness of
an instance is not straightforward, a multitude of approaches have been proposed in AL literature [5].
For example, selecting the instance the model is most uncertain about is a commonly used acquisition
function [6].

In this paper, we study the problem of applying AL for classifying nodes of an attributed graph
(The term “network” is used as an alternative term in the literature. We use the term graph since the
usage of the term network can be confused with neural networks in this paper.). This task is known as
node classification. Reducing the number of labeled nodes required in node classification can benefit a
variety of practical applications such as in recommender systems [7,8] and text classification [9] by
selecting only the most informative nodes for labeling. Parisot et al. [3] demonstrated the importance
of representing the associations between brain scan images of different subjects as a graph for the task
of predicting if a subject has Alzheimer’s disease. Features extracted from images are represented as
node attributes. This is an example for a node classification problem where labeling is expensive as
labeling a brain scan image is time-consuming and it can only be done by medical experts.

Node classification is an important task in learning from relational data. The objective of
this problem is to predict the labels of unlabeled nodes given a partially labeled graph. Different
approaches have been used for node classification including iterative classification algorithm (ICA) [10],
label propagation [11], and Gaussian random fields (GRF) [12]. Approaching node classification as a
semisupervised problem has contributed to state-of-the-art in classification performance [13–15]. In a
semisupervised learning problem, the learning algorithm can utilize the features of all data instances
including the unlabeled ones. Only the labels of unlabeled instances are not known. Semisupervised
learning is a technique that utilizes unlabeled data to improve the label efficiency. Combining AL with
semisupervised learning can increase the label efficiency further [16]. Graph neural network (GNN)
models have achieved state-of-the-art performance in node classification [17].

Similar to other neural network-based models, GNN models are sensitive to the choice of
hyperparameters. The common hyperparameters of a GNN model are learning rate, number
of hidden layers, and the size of hidden units of each hidden layer. Unlike model parameters,
the hyperparameters are not directly optimized to improve the model performance. Finding the most
suitable set of values for hyperparameters is known as hyperparameter tuning. It is usually performed
based on the performance of the model on a separate held-out labeled set known as the validation set.
It is possible to leave a fraction of labeled data as the validation set when labeled data is abundant.
However, in a label scarce setting, it is realistic to use all the available labeled instances for training the
model. Therefore, we further reduce the size of the labeled set by not using a validation set and using
fixed standard values for hyperparameters.

With the recent popularity of GNNs, several surveys on GNNs have been done [17–19].
These works provide a comprehensive overview of recent developments in graph representation
learning and its applications. Surveys on AL research have been done separately [20,21]. However,
as far as the authors know, a survey and a systematic comparison of existing AL approaches for the
task of node classification have not been done yet. Moreover, only a handful of graph datasets are
used for benchmarking such models. Most of the benchmark graphs are similar as they come from the
same domain. In this paper, we study commonly used AL acquisition functions on the problem of
node classification using a multitude of graph datasets belonging to different domains. As shown in
previous work [22], the performance of AL algorithms is not consistent across different datasets.
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Our main contributions are

1. we discuss the importance of performing AL experiments in a more realistic setting where an
additional labeled dataset is not used for hyperparameter tuning;

2. we perform a thorough evaluation of existing AL algorithms on the task of node classification of
attributed graphs in a more realistic setting; and

3. with empirical evidence on an extensive set of graphs with different characteristics, we highlight
that graph properties should be considered in selecting an AL approach.

2. Background

2.1. Node Classification

Node classification plays an important part in learning problems when the data is represented
as a graph. A graph G consists of V nodes and E edges connecting pairs of nodes. Edges of a graph
can be directional as well. However, we limit our study to undirected graphs. Node classification
is widely used in practical applications such as recommender systems [8,23], applied chemistry [24],
and social network analysis [25]. In a node classification problem, an attributed graph G = (V, E) with
N nodes is given as an adjacency matrix A ∈ RN×N and a node attribute matrix X ∈ RN×F. Here, F is
the number of attributes. An element aij ∈ A represents the edge weight between two nodes vi and
vj. If there is no edge connecting vi and vj, aij = 0. If the graph is undirected, the adjacency matrix
A is symmetric. The degree matrix D is a diagonal matrix defined as D = {d1, · · · , dN}, where each
diagonal element di is the row-sum of the adjacency matrix such that di = ∑N

j=1 aij. Each node vi has a
real-valued feature vector xi ∈ RN×F and vi belongs to one of the C class labels.

The objective of this problem is to predict the labels of unlabeled nodes VU given a small set
of labels VL. Earlier attempts for solving this problem relied on classifiers based on the assumption
that nodes connected by an edge are likely to share the same label [26,27]. A major weakness of such
classifiers is that this assumption restricts the modeling capacity and the node attributes are not used
in the learning process. The use of node attributes of an attributed graph significantly improves the
classification performance.

2.2. Graph Neural Networks (GNNs)

A GNN is a neural network architecture specifically designed for learning with attributed
graphs. GNN models [14,28,29] achieve state-of-the-art performance on the node classification problem
providing a significant improvement over previously used embedding algorithms [30,31]. What sets
GNNs apart from previous models is their ability to jointly model both structural information and
node attributes. In principle, all GNN models consist of a message passing scheme that propagates
feature information of a node to its neighbors. Most GNN architectures use a learnable parameter
matrix for projecting features to a different feature space. Usually, two or more of such layers are used
along with a nonlinear function (e.g., ReLU). Let G be an undirected attributed graph represented by
an adjacency matrix A and a feature matrix X. By adding self-loops to the adjacency matrix we get
Ã = A + I and its degree matrix D̃ = D + I. Using this notation, the graph convolutional network
(GCN) model [14] can be expressed as

H̃(k) = D̃−1/2 ÃD̃−1/2H(k−1), (1)

where D̃−1/2 ÃD̃−1/2 is the normalized adjacency matrix. Then, the hidden representation of a layer
H(k) is obtained by multiplying the feature matrix H̃(k) with a parameter matrix θ and applying an
activation function σ as

H(k) = σ(H̃(k)θ(k)). (2)
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With normalized adjacency matrix Â = D̃−1/2 ÃD̃−1/2 a two-layer GCN model [14] can be expressed as

YGCN = softmax
(

Â ReLU
(

ÂXθ(0)
)

θ(1)
)

, (3)

where X is the node attribute matrix and θ(0) and θ(1) are the parameter matrices of two neural layers.
The softmax function defined as softmax(x) = exp(x)/ ∑C

c=1 exp(xc) normalizes the output of the
classifier across all classes. Rectified linear unit (ReLU) is a commonly used activation function where
ReLU(x) = max(0, x).

Wu et al. [29] showed that a simplified GNN model named SGC can achieve competitive
performance on most attributed graphs at a significantly lower computational cost. They obtained this
model by removing hidden layers and nonlinear activation functions in the GCN model. This model
can be written as

YSGC = softmax
(

ÂkXθ
)

, (4)

where Ak is the kth power of the adjacency matrix A. The parameter k determines the number of hops
the feature vectors are propagated to. This approach is similar to propagating node attributes over
the k-hop neighborhood and then performing logistic regression. Using a 2-hop neighborhood (k = 2)
often results in good performance.

2.3. Active Learning

In this paper, we consider the pool-based AL setting [5]. In a pool-based AL problem, the labeled
dataset L is much smaller compared to a large pool of unlabeled items U . We can acquire the
label of any unlabeled item by querying an oracle (e.g., a human annotator) at a uniform cost
per item. Suppose we are given a query budget K, such that we are allowed to query labels of a
maximum of K unlabeled items. We use the notation fθ to denote a classification model with trainable
parameters θ. The probability of an instance q belonging to class c predicted by this model is written as
Pθ(ŷq = c|x,DL). We calculate this likelihood as

Pθ(ŷq = c|x,DL) = softmax
(

fθ(xq)
)
[q=c] . (5)

AL research has contributed to a multitude of approaches for training supervised learning models
with less labeled data. We recommend the work in [5] as a detailed review of existing AL research.
The objective of AL approaches is to select the most informative instance for labeling. This task is
performed with the use of an acquisition function, where the acquisition function decides which
unlabeled example should be labeled next. Existing acquisition functions can be grouped into a few
general frameworks based on how they are formulated. In this section, we describe a few commonly
used AL frameworks.

2.3.1. Uncertainty Sampling

Uncertainty sampling [32] is one of the most widely used AL approaches. The active learner
selects the instance for which the classifier predicts a label with the least certainty. The information
entropy of the label predictions is usually used to quantify the uncertainty of the model for a given
instance xq such that

H(yq|x,DL) = −
C

∑
c=1

Pθ(ŷq = c|xq,DL)log
(

Pθ(ŷq = c|xq,DL)
)

. (6)

The instance corresponding to the maximum entropy is selected for querying

q∗ = arg max
q

H(yq|xq,DL). (7)
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The entropy computed over model predictions of a neural network does not correctly represent the
model uncertainty for unseen instances. Even though Bayesian models are good at estimating the
model uncertainty, Bayesian inference can be prohibitively time-consuming. Gal and Ghahramani [33]
demonstrated that using dropout [34] at evaluation time is an approximation to a Bayesian neural
network and this can be used to calculate the model uncertainty. Gal et al. [35] used this Bayesian
approach to perform uncertainty sampling for active learning on image data with convolutional neural
networks (CNN). Additionally, Gal et al. [35] performed a comparison of various acquisition functions
proposed for quantifying the model uncertainty of CNN models. It is shown that uncertainty sampling
is prone to select outliers [20].

Bayesian Active Learning by Disagreement (BALD) [6] is another uncertainty-based acquisition
function used with Bayesian models. BALD algorithm selects the instance that maximizes the mutual
information between the predictions and the model posterior. This can be written as

q∗ = arg max
q

H(yq|xq,DL)−Eθ∼p(θ|DL)
[
H(yq|xq, θ,DL)

]
. (8)

The left side term of the Equation (8) is the entropy of the model prediction and the right side
term is the expectation of the model prediction over the posterior of the model parameters. If the
model is certain of its predictions for each draw of parameter values, the right side term becomes
smaller. In this case the active learner selects the examples xq for which the model is most uncertain
of its predictions (high H(yq|xq,DL)), but the model is confident for individual parameter settings
(low Eθ∼p(θ|DL)

[
H(yq|xq, θ,DL)

]
) .

2.3.2. Query by Committee (QBC)

Query by committee (QBC) [36] is a simple method that outperforms uncertainty sampling in
many practical settings. This method maintains a committee of models trained on the same labeled
dataset. Each model in the committee predicts the label of an unlabeled instance. The instance for
which label predictions of the most number of committee members (models) disagrees is selected as
the most informative instance. However, QBC is not a popular choice when AL is used with deep
neural network (DNN) models since training a committee of DNN models is time-consuming.

2.3.3. Expected Error Reduction (EER)

Expected Error Reduction (EER) [37] is an AL approach that directly calculates the expected
generalization error of a model trained on labeled instances including unlabeled instances L ∪ (xq, yq).
Then, the active learner queries the instance which minimizes the future generalization error. However,
this approach involves the retraining of a model for each unlabeled instance xq with each label c ∈ C,
making it one of the most time-consuming AL approaches. Therefore, the EER approach has been
limited to simple classification algorithms such as Gaussian random fields (GRF) for which faster
online retraining is possible.

3. Active Learning for Graph Classification Problems

Compared to application of AL on other types of data such as image and text data, only a limited
number of AL models has been developed for graph data. Previous work on applying AL on graph
data [38–40] is tightly coupled with earlier classification models such as Gaussian random fields,
in which the features of nodes are not being used. Therefore, selecting query nodes uniformly in
random coupled with a recent GNN model can easily outperform such AL models. AL models which
utilize recent GNN architectures [41,42] are limited. Moreover, a comprehensive comparison of AL
algorithms proposed for other domains of data has not been done yet.

In Table 1, we provide an extensive comparison of the literature on AL approaches proposed for
node classification. We compare each work with respect to the following attributes.
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• AL approach
• Classifier: Classification model used for predicting the label of a node
• Attributes: Whether the node classifier uses node attributes
• Adaptive: Whether the active learner is updated based on the newly labeled instances
• Labels: Whether the active learner uses node labels in making a decision

In addition to generic approaches proposed for AL, there have been a few works that are
specifically designed for graph-structured data. These algorithms use graph-specific metrics for
selecting nodes for labeling. In addition to the attributes of data instances, graph topology provides
useful information. For example, the degree centrality of a node represents how a particular data
instance is connected with others. Table 1 demonstrates that most of the previous AL approaches
proposed for node classification do not use the node attribute information. Moreover, some
works [40,43] ignore the label information as well.

Table 1. Summary of existing work for active node classification on attributed graphs. The work
by Gadde et al. [43] does not use the labels of the nodes. Therefore, this method does not use a classifier.
We use the following abbreviations in the table. LR—Logistic Regression, GRF—Gaussian Random
Fields, LP—Label Propagation, SC—Spectral Clustering, NA—Not Applicable.

Work AL Approach Classifier Attributes Adaptive Labels Year

Zhu et al. [26] EER GRF No No Yes 2003
Macskassy [44] EER + Heuristics GRF No Yes Yes 2009
Bilgic et al. [39] QBC LR No Yes Yes 2010
Gu and Han [38] EER LP No No Yes 2012
Ji and Han [40] Variation Minimization GRF No No No 2012
Ma et al. [45] Uncertainty GRF No No Yes 2013
Gadde et al. [43] SC NA No No No 2015
Cai et al. [41] Uncertainty + Heuristics GCN Yes Yes Yes 2017

3.1. Active Learning Framework

In this problem, we start with an extremely small set of labeled instances. We are given a query
budget K such that we are allowed to query K number of nodes to retrieve their labels. In each
acquisition step, we select a node and retrieve its label from an oracle (e.g., a human labeler). The GNN
model is retrained using the training set including the newly labeled instance. We repeat this process
K times. The basic framework is shown in Algorithm 1. Here, fθ is any node classification algorithm
with parameters θ and we can use different acquisition functions (e.g., uncertainty sampling or QBC)
as g.

Algorithm 1 Active learning for node classification.

Input: Graph G = (A, X), Query budget K, Initial labels YL
Output:An improved model fθ

for i ← 1 to nq = K do

Select the best unlabeled instance q∗ with an acquisition function g
Retrieve its label Yq∗
Update label set YL ← YL ∪ Yq∗
Retrain the model θ ← arg minθ l( fθ(G), YL)

end for
Return θ

3.2. The Importance of Exploration

After each acquisition step, the classifier is trained on a limited number of labeled instances,
which in turn are selected by the active learner. Therefore, the selected labeled instances tend to bias
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towards instances evaluated to be “informative” by the active learner. Therefore, the distribution of
labeled instances is often different from the true underlying distribution. The active learner cannot
observe the consequences of selecting an instance which has lower “informativeness”. This leads the
active learner to converge to policies that are not able to generalize for unlabeled data. This problem is
amplified by the lack of hyperparameter tuning. A simple approach to overcome this limitation is to
query a few instances in addition to the ones maximizing our selection criteria. This step is known as
“exploration” while selecting the instance maximizing the criteria is “exploitation”. For example, if our
criterion is model entropy, the exploration step involves acquiring labels of a few instances which
do not have the maximum entropy. Intuitively, an active learner should perform more exploration
initially, so it can have a better view of the true distribution of data.

This problem is known as the exploration vs. exploitation trade-off in sequential decision-making
problems. Solving this trade-off requires the learner to acquire potentially suboptimal instances
(i.e., exploration) in addition to the optimal ones. This problem is studied under the framework
of multi-armed bandits (MAB) problems [46]. In a MAB problem, a set of actions are given and
selecting an action results in observing a reward drawn from a distribution that is unknown to
the learner. The problem is to select a sequence of actions that maximize the cumulative reward.
A multitude of approaches is used in solving online learning problems modeled as MAB problems.
ε-greedy, upper confidence bounds (UCB) [47], and Thompson sampling [48] are a few of the frequently
used techniques.

We compare the performance of each active learner using two different exploration techniques:
ε-greedy and count-based exploration.

3.2.1. ε-Greedy

ε-greedy is used as the simplest method of introducing exploration into an MAB algorithm.
In the case of AL, with probability ε the active learner randomly selects an unlabeled instance for
querying its label. The most informative instance is selected by an acquisition function with probability
(1 − ε). A key problem with this approach is that, as each unlabeled instance is selected with uniform
probability, some of the labeled instances can be wasteful. This phenomena is known as undirected
exploration [49].

3.2.2. Count-Based Exploration

In MAB problems, count-based exploration addresses the problem of undirected exploration by
assigning a larger probability to actions that have been selected fewer times compared to the remaining
actions. Based on the principle of optimism in the face of uncertainty, a count-based exploration
algorithm computes an upper confidence bound (UCB) [47] and selects the action corresponding to
the maximum UCB. We adopt the notion of count-based exploration as the number of labeled nodes
in the neighborhood of an unlabeled node. We define the exploration term of an instance i as the
logarithm of the number of unlabeled neighboring nodes of i. This term encourages the learner to
sample nodes from neighborhoods with less number of labeled nodes. As this term and the informative
metric used in the acquisition function (e.g., entropy) are on different scales, we normalize both of
these quantities into [0, 1] range and get φexp(i) and φinf(i), respectively. We linearly combine these
normalized quantities to get the criterion for acquiring nodes as

φ(i) = (1 − γt) · φinf(i) + γt · φexp(i), (9)

where the exploration coefficient γt is a hyperparameter that balances exploration and exploitation.
Setting γt to 0 corresponds to pure exploration disregarding the feedback of the classifier. On the
other hand, γt = 1 is equivalent to pure exploitation selecting a node based only on the uncertainty
sampling (e.g., entropy).
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4. Experiments

4.1. Data

We evaluate the performance of all algorithms on 11 real-world datasets belonging to different
domains. as shown in Table 2. In Table 2, we list the datasets used in experiments with several graph
properties. These datasets belong to different domains such as citation networks, product networks,
co-author networks, biological networks, and social networks.

Table 2. Dataset statistics. Labeling rate as a percentage of total nodes is shown within brackets.
Avg. deg.: Average degree, Avg. CC: Average clustering coefficient, rD: Degree assortativity, rL:
Label assortativity.

Dataset Nodes Classes Avg. Deg. Avg. CC rD rL Features Labels (%)

CiteSeer 2110 6 2.84 0.17 0.007 0.67 3703 12 (0.56)
PubMed 19,717 3 6.34 0.06 −0.044 0.69 500 6 (0.03)
n CORA 2485 7 4.00 0.24 −0.071 0.76 1433 14 (0.56)
Amazon Comp. 13,752 10 36.74 0.35 −0.057 0.68 767 20 (0.14)
Co-author Phy 34,493 5 14.38 0.38 0.201 0.87 8415 10 (0.03)
Co-author CS 18,333 15 8.93 0.34 0.113 0.79 6805 30 (0.16)
Disease 1044 2 2.00 0.0 −0.544 0.68 1000 4 (0.38)
Wiki-CS 11,701 10 36.94 0.47 −0.065 0.58 300 20 (0.17)
PPI-Brain 3480 121 31.94 0.17 −0.064 0.09 50 35 (1.0)
PPI-Blood 3312 121 32.91 0.18 −0.061 0.09 50 33 (1.0)
PPI-Kidney 3284 121 31.70 0.18 −0.067 0.09 50 33 (1.0)
Github 37,700 2 15.33 0.17 −0.075 0.38 4005 4 (0.01)

CiteSeer, PubMed, and CORA [50] are commonly used citation graphs. Each of these undirected
graphs is made of documents as nodes and citations as edges between them. If one document cites
another, they are linked by an edge. The bag-of-words features of the text content of a document
correspond to the attributes of a node.

Co-author CS and Co-author Physics are co-authorship graphs constructed from Microsoft
Academic Graph [51]. Authors are represented as nodes and two authors are linked by an edge
if they have co-authored a paper. Node features correspond to the keywords of the papers authored by
a particular author. An author’s most active field of study is used as the node label.

Amazon Computers is a subgraph of the Amazon co-purchase graph [52]. Products are
represented as nodes, and two nodes are connected by an edge of those two products that are frequently
bought together. Node attributes correspond to product reviews encoded as bag-of-words features.
The product category is used as the node label.

The disease dataset [53] simulates the SIR disease propagation model [54] on a graph. The label
of a node indicates whether a node is infected or not and the features indicate the susceptibility to
the disease.

The Wiki-CS dataset [55] is a graph constructed from Wikipedia articles corresponding to
computer science. A Wikipedia article is a node of this graph and two nodes are connected by
an edge if one article has a hyperlink to the other. GloVe word embeddings [56] obtained from the text
content of an article is used as the feature vector of the node corresponding to that article.

Each protein–protein interaction (PPI) graph represents physical contacts between proteins in
a human tissue (brain, blood, and kidney) [57,58]. Unlike other datasets, in PPI graphs a protein
(node) can have multiple functions as its label, making this a multi-label classification problem.
Learning the protein function (cellular function from gene ontology) involves learning about node
roles. Several properties of a protein such as positional gene sets, motif gene sets and immunological
signatures are used as node attributes in a PPI graph.

Github is a social network dataset constructed from developer profiles on Github who have at least
10 public repositories [59]. Details of a developer such as location, employee, and starred repositories
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are represented as node attributes. Two nodes are linked by an edge if those two developers mutually
follow each other on Github. The label of a node indicates whether a developer is primarily working
on machine learning or web development projects.

From each dataset, we randomly select two nodes belonging to each label as the initial labeled set
VL. We use 5% of the rest of the unlabeled nodes as the test set. The set of remaining unlabeled nodes
VU qualify to be queried. The size of the initial labeled set and its size as a fraction of the total nodes
(labeling rate) are shown in Table 2.

Graph Properties

In some real-world graphs, such as social and communication networks, nodes tend to cluster
together creating tightly knit groups of nodes. This phenomenon is known as clustering and the
clustering coefficient [60] quantifies the amount of clustering present in a graph. The local clustering
coefficient of a node i is calculated as

Ci =
number of triangles connected to node i

number of triples centered around node i
. (10)

Average clustering coefficient is calculated as the average of local clustering coefficients of all nodes of
a graph.

In real-world graphs, nodes tend to connect with other nodes with similar properties. In network
science literature this phenomenon is known as “assortative mixing” [61]. Assortativity coefficient
quantifies the amount of assortative mixing present in a graph. Assortativity coefficient can be
calculated with respect to any node attribute. We calculate the label assortativity (rL) with

rL =
∑i eii − ∑i aibi

1 − ∑i aibi
, (11)

where eij denotes the fraction of edges connecting a node with label i with a node with label j.
For multi-label graphs, we calculate label assortativity for each label separately and take the average.
A higher label associativity indicates that a node tends to connect with another node with the same
label. As shown in Table 2, citation and co-author graphs exhibit high assortativity. It is easier to
predict labels in a graph exhibiting high assortativity since neighbors of a node tend to have the same
label as the node. Many node classification models are based on this assumption. However, the PPI
graphs show low assortativity indicating that nodes with the same label are not necessarily in the same
neighborhood. This is due to the fact that the function of a protein (i.e., node) depends on the role of a
node in that graph rather than its neighboring proteins (i.e., nodes). Using degree centrality as a node
attribute degree assortativity rD of each node can be computed in a similar manner. Average degree
assortativity of a graph indicates whether a high degree node prefers to connect with other high
degree nodes.

4.2. Experimental Setup

4.2.1. Node Classification Model

Recent studies demonstrated that GNN-based classifiers significantly outperform previous
classifier algorithms such as GRFs. Therefore, we restrict our study of AL to GNN-based learning
models. In our experiments, we consider two types of graph neural network architectures: GCN [14]
and SGC [29]. SGC is a simplified GNN architecture that does not include a hidden layer and
nonlinear activation functions. As the goal of AL is to reduce the number of labeled instances used for
training, we do not use a separate validation set for fine-tuning the hyperparameters of a GNN model.
In addition, it is shown that tuning hyperparameters while training a model with AL can lead to label
inefficiency [62].
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For all datasets, we use the default hyperparameters used in GNN literature (e.g., learning
rate = 0.01). We use the following algorithms in our experiments.

• Random: Select an unlabeled node randomly,
• PageRank: Select the unlabeled node with the largest PageRank centrality,
• Degree: Select the unlabeled node with the largest degree centrality,
• Clustering coefficient: Select the unlabeled node with the largest clustering coefficient,
• Entropy: Calculate the entropy of predictions of the current model over unlabeled nodes and

select the node corresponding to the largest entropy.,
• BALD [6,35]: Select the node which has the the largest mutual information value between

predictions and model posterior, and
• AGE [41]: Select the node which maximizes a linear combination of three metrics: PageRank

centrality, model entropy and information density.

Here, PageRank, degree, and clustering coefficient-based sampling do not use node attributes or
the feedback from the classification model. On the other hand, entropy BALD are uncertainty-based
acquisition functions that calculate an uncertainty metric using the performance of the classifier trained
using the current training set. We acquire the label of an unlabeled node and retrain the GNN model
by performing 50 steps of adam optimizer [63]. We perform 40 acquisition steps (query budget = 40)
and repeat this process on 30 different randomly initialized training and test splits for each dataset.
Test dataset is often unbalanced. Therefore, accuracy is not suitable to be used as the performance
metric. We report the average F1 score (macro-averaged) over the test set in each experiment. F1-score is
the harmonic mean of the precision and recall metrics. Macro-F1 score is calculated by first calculating
F1-scores for each class separately and then taking the average of class-wise F1-scores.

4.2.2. Packages and Hardware

We use the NetworkX library [64] for representing and processing graphs. We use the Pytorch [65]
implementations of GCN [14] and SGC [29] node classification models. All experiments are run on
a computer running Ubuntu 18.04 OS on an Intel(R) Core i9-7900X CPU @ 3.30GHz processor with
64GB memory and a NVIDIA GTX 1080-Ti GPU.

5. Results and Discussion

5.1. Performance Comparison of AL Approaches

In this section, we compare the performance of acquisition functions which use only a single type
of approach. Figures 1 and 2 show how the performance of the node classification model varies with
the number of acquisitions.

As shown in previous works, AGE [41], the current state-of-the-art AL algorithm, performs well
on citation networks (CiteSeer, CORA, and PubMed). However, the performance of this algorithm
is suboptimal on other datasets such as Wiki-CS. The citation datasets possess similar characteristics.
For example, average degree centrality of them is in the same range as shown in Table 2. Therefore,
selecting AL algorithms based on their performance on a handful of graphs from the same domain
may result in suboptimal algorithms.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 1. Macro-F1 score (test) of active learning algorithms with number of acquisitions. A two-layer
graph convolutional network (GCN) is used as the graph neural network (GNN) model. (a) CiteSeer.
(b) PubMed. (c) CORA. (d) Amazon Computers. (e) Co-author CS. (f) Co-author Physics. (g) Disease.
(h) Wiki-CS. (i) PPI-Brain. (j) PPI-Blood. (k) PPI-Kidney. (l) Github.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2. Macro-F1 score (test) of active learning algorithms with number of acquisitions. SGC model is
used as the GNN model. (a) CiteSeer. (b) PubMed. (c) CORA. (d) Amazon Computers. (e) Co-author CS.
(f) Co-author Physics. (g) Disease. (h) Wiki-CS. (i) PPI-Brain. (j) PPI-Blood. (k) PPI-Kidney. (l) Github.

5.2. Comparison of Exploration Strategies

In this experiment, we run uncertainty sampling algorithms: BALD and entropy with ε-greedy and
count-based exploration terms. In the count-based exploration policy, we set the exploration coefficient
β to 0.5. In Tables 3 and 4, we present the performance of GCN and SGC classifiers when 40 nodes are
acquired using each of the acquisition functions. Entropy-Count and BALD-Count correspond to max
entropy sampling and BALD policy combined with count-based exploration term. The values in bold
indicate that the performance of an algorithm is significantly better (at 5% significance level) than the rest
of the algorithms on that dataset. We calculate the statistical significance between the performance of two
algorithms using paired t-test. If no single algorithm is significantly better than the rest, all statistically
significant values are marked in bold. We summarize the results in Table 5 and show the best performing
AL algorithm along with the classifier. Uncertainty-based acquisition functions, when combined with
the count-based exploration term (Entropy-Count and BALD-Count), achieve the best performance on
average on four datasets. It highlights that encouraging the active learner to select nodes in less explored
neighborhoods is effective than selecting a node in random as the exploration step (ε-greedy).
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5.3. Running Time

Table 6 shows the execution time each algorithm spends to acquire a set of 40 unlabeled instances
on average. AGE, the current state-of-the-art, is several magnitudes slower compared to the rest of
the algorithms. The clustering step performed to compute the information gain is responsible for the
additional time. The time complexity of this step grows O(n2) with the number of vertices n of a graph
making AGE not suitable for large attributed graphs. For example, the AGE algorithm is 80 times
slower than random sampling for the Amazon Computers graph but achieves inferior performance.
Additionally, the SGC model can be trained in a relatively less time compared to the GCN model and
this difference is significant for larger graphs such as Wiki-CS and co-authorship graphs. However,
in AL problems, the time spent for selecting an unlabeled example is a minor concern since the labeling
time is more valued.

Table 6. Running time (seconds): average execution time to acquire 40 unlabeled instances. We run all
experiments on a single NVIDIA GTX 1080-Ti GPU. PR: PageRank, CC: Clustering coefficient.

Clf. Dataset Rand Ent PR Deg CC AGE BALD
ε-Greedy Count

Ent BALD Ent BALD

GCN

CiteSeer 4.2 4.8 4.8 4.7 4.9 4.8 4.8 4.8 4.8 4.8 4.8
PubMed 6.9 7.6 25.4 7.3 32 1125.9 7.9 7.5 7.8 7.6 7.9
CORA 4.2 4.5 4.6 4.4 14.5 26.8 4.5 4.5 4.5 4.5 4.5
Coauthor CS 20.4 22.3 40.8 21.9 39.3 2154 .2 23.7 22.3 23.6 22.4 23.6
Coauthor Phy 46.1 50.5 116.4 48.5 98.6 2436.9 50.8 50.4 50.7 50.5 50.8
Amazon Comp. 17.5 19.1 31.8 18.8 33.8 1688.9 19.2 19.1 19.1 19.1 19.2
Disease 4.1 4.3 4.2 4.1 4.2 8.7 4.3 4.3 4.3 4.3 4.3
Wiki-CS 15.3 16.6 30.0 28.3 33.0 410.8 16.7 16.6 16.6 16.7 16.7
PPI Brain 8.3 8.9 11.5 10.2 10.9 133.3 9.0 8.4 8.6 8.4 8.7
PPI Blood 7.9 8.2 10.4 9.4 9.9 130.2 8.4 8.2 8.4 8.3 8.5
PPI Kidney 7.3 7.8 9.8 8.0 8.8 129.4 7.7 7.7 7.7 7.8 7.9
Github 57.1 69.2 211.8 102.9 121.4 6810.0 72.1 69.6 71.1 70.5 73.2

SGC

CiteSeer 1.7 1.9 5.6 1.8 2.7 18.3 1.9 1.9 1.9 1.9 1.9
PubMed 2.0 2.2 3.9 2.2 21.1 1229.2 2.2 2.2 2.2 2.2 2.2
CORA 3.8 4.8 5.8 4.7 2.3 23.7 4.9 4.8 4.8 4.8 4.9
Coauthor CS 16.8 19.8 33.2 19.3 37.9 2098.2 19.8 19.8 19.8 19.8 19.8
Coauthor Phy 35.6 40.7 90.4 39.8 88.7 2232.3 40.8 40.4 40.5 40.7 40.7
Amazon Comp. 12.2 14.7 17.2 16.9 17.1 1134.6 14.8 14.6 14.7 14.8 14.8
Disease 1.4 1.4 1.5 1.4 1.4 6.0 1.4 1.4 1.4 1.4 1.4
Wiki-CS 1.9 2.0 13.6 8.2 18.3 400.5 2.1 2.0 2.0 2.1 2.1
PPI Brain 4.4 4.5 5.1 4.8 4.9 142.2 4.6 4.4 4.6 4.5 4.7
PPI Blood 4.1 4.3 4.9 4.7 4.8 139.4 4.4 4.3 4.3 4.4 4.5
PPI Kidney 3.9 4.1 4.4 4.3 4.5 135.6 4.1 4.1 4.1 4.1 4.2
Github 22.3 24.5 166 78.3 106.2 4905.1 25.8 24.4 25.4 24.6 26.0

5.4. Discussion

As shown in Table 5, the performance of acquisition functions is diverse such that no single
approach can be considered the best for all datasets. Sampling nodes based on graph properties
leads to good performance depending on the graph structure. We make several key observations on
how average clustering coefficient and label assortativity of a graph impact the performance of AL
acquisition functions as following.

Graphs with high level of clustering. Amazon computers, co-authorship graphs, and Wiki-CS
graphs have larger average clustering coefficients. For these datasets, sampling the node with the
largest clustering coefficient outperforms sampling with other node centrality measures.

Graphs with medium level of clustering. CiteSeer, CORA, Github, and PPI graphs possess a
medium level of average clustering in the range of 0.1 to 0.2. On CORA, CiteSeer, and Github datasets
uncertainty-based acquisition functions and their variants obtain the best performance. However,
the performance of PPI graphs is quite different since their label assortativity values are significantly
low compared to all other datasets.
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Graphs with low level of clustering. Pubmed and the disease graphs have the lowest average
clustering coefficients. In most cases, the use of clustering coefficient to select the nodes for querying
lead to suboptimal results. However, sampling with clustering coefficient on PubMed dataset obtained
good performance when the GCN model was used as the node classifier.

Graphs with low label assortativity. Out of all graph datasets, PPI graphs exhibit the lowest label
assortativity. As most of the graphs used in node classification literature exhibit high label assortativity,
commonly used node classification models are build on the assumption that neighbors of a node may
have the same label. Therefore, such models are not confident in predicting the labels of unlabeled
nodes, specially when the training data is scarce. On PPI graphs, we observe that performing AL by
sampling the query nodes based on PageRank and degree centrality contributes to the best performing
models. However, one limitation in calculating the label assortativity is that node labels need to be
known beforehand. When we are given an unlabeled graph, one way to overcome this problem is we
can use similar labeled graphs belonging to the same domain to approximate the label assortativity.

6. Conclusions

In this paper, we studied the application of the active learning framework as a method to make
node classification on attributed graphs label efficient. We have performed an empirical evaluation
of state-of-the-art active learning algorithms on the node classification task using twelve real-world
attributed graphs belonging to different domains. In our experiments, we initiate the active learner
with an extremely small number of labeled instances. Additionally, we assumed a more realistic
setting in which the learner does not use a separate validation set. Our results highlight that no
single acquisition function can be performs consistently well on all datasets and the performance
of acquisition functions depend on graph properties. We further show that selecting an acquisition
function based on the performance on a handful of attributed graphs with similar characteristics result
in suboptimal algorithms. Notably, our results point that SGC, a simpler variant of GNN performs
better and efficiently on most datasets compared to more complex GNN models.

A key takeaway of this research is that AL is beneficial in reducing the labeling cost of
semisupervised node classification models and the choice of an AL acquisition function depends
on the properties of the graph data at hand. Using an extensive set of graph datasets with a wide
variety of characteristics, we showed that there is no single algorithm that works across different
graph datasets possessing different graph properties. We further made the observation that using
node PageRank and degree centrality of nodes achieve the best performance on graphs with low
label assortativity.

Moreover, the current state-of-the-art active learning algorithm (AGE) [41] uses a combination
of multiple acquisition functions and it is several magnitudes slower than all other acquisition
functions that were used in this paper. Therefore, it is not suitable for large real-world attributed
graphs. Lack of hyperparameter tuning and a minuscule number of training instances lead to
classifiers that cannot generalize well for unlabeled data. We expressed this problem as balancing the
exploration-vs.-exploitation trade-off and propose introducing an exploration term into acquisition
functions. We evaluated the performance of two exploration terms using multiple real-world graph
datasets. The introduction of this exploration term into existing uncertainty-based acquisition
functions make their performance competitive with the current state-of-the-art AL algorithm for
node classification on some datasets. As future work, we would like to explore how AL can be utilized
for other graph-related learning tasks.
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Abbreviations

The following abbreviations are used in this manuscript.

DNN Deep neural network
GCN Graph convolutional network
GNN Graph neural network
SGC Simplified graph convolution
AL Active learning
CNN Convolutional neural network
BALD Bayesian Active Learning by Disagreement
QBC Query by committee
EER Expected error reduction
GRF Gaussian random fields
AGE Active graph embedding
PR PageRank
UCB Upper confidence bound
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Abstract: The problem of controlling a spreading process in a two-layer multiplex networks in such
a way that the extinction state becomes a global attractor is addressed. The problem is formulated
in terms of a Markov-chain based susceptible-infected-susceptible (SIS) dynamics in a complex
multilayer network. The stabilization of the extinction state for the nonlinear discrete-time model by
means of appropriate adaptation of system parameters like transition rates within layers and between
layers is analyzed using a dominant linear dynamics yielding global stability results. An answer
is provided for the central question about the essential changes in the step from a single to a
multilayer network with respect to stability criteria and the number of nodes that need to be controlled.
The results derived rigorously using mathematical analysis are verified using statical evaluations
about the number of nodes to be controlled and by simulation studies that illustrate the stability
property of the multilayer network induced by appropriate control action.

Keywords: multilayer complex networks; stability; spreading control

1. Introduction

Multiplex networks are a collection of coupled networks placed in different layers with each
layer having the same set of nodes but not necessarily the same topology. Layer interactions are
given via counterpart nodes of each network layer. Multilayer networks build key elements in the
structure of many modern technological systems including social cyber and computer networks as
well as in fundamental natural systems determining the functioning of gene regulation and brain
dynamics [1–6]. A central advantage in comparison to single-layer networks is that each node can
have different states in the different networks. This enables them e.g., to analyze the spreading of
information or computational viruses among different social or cyber networks [7], thus enabling
the identification, understanding and possibly the manipulation of the corresponding mechanisms
associated to each layer and between layers.

Spreading processes in complex networks have attracted recent attention for the purpose of
analyzing the intertwined dynamics of epidemics [8–13] or information transmission in [14–18].
The control of such problems has to address fundamental questions as (i) which parameters of the
system are amenable to manipulation and (ii) which nodes must be actively controlled. The latter
question goes in particular in hand with the aim to develop control strategies with minimum need
of implementation costs. In multilayer networks the additional question arises if nodes need to be
controlled in all layers or just in some of them or maybe only in one single layer, as long as the nodes
to be controlled are defined accordingly.

The question of network control has been addressed on one side using classical control theory
methods as controllability analysis [19–26] including statistic evaluations of the number of nodes to
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be controlled in networks of certain structures [11,27–33]. Given that nonlinear system controllability
analysis is much more involved than for linear systems [34] controllability studies are typically
focussing on linear models or the linearization about some equilibrium point. Only a few recent
studies explicitly considered nonlinear controllability and control design approaches in complex
networks [25,26]. It should be mentioned that even though network controllability ensures that
a desired state can be reached or stabilized, it does not necessarily guide the way for the design
of a decentralized control but typically leads to centralized control strategies. On the other hand,
the control of networks has been explicitly addressed using stabilization and stability analysis leading
the way to the choice of nodes to be controlled with implicit decentralized parametric control
strategies [35–38]. In particular, the approach followed in [36–38] yields global stability assessments
by means of the derivation of a global dominant linear dynamics. Furthermore, optimization based
approaches for parameter adaptation and node or link removal have been widely discussed, as has
been summarized in [39].

In the present study the control of a spreading process in a complex multilayer network
is addressed on the basis of the classical Markov-based susceptible-infected-susceptible (SIS)
dynamics [40–44] in a multilayer version that has been adapted from [7] in such a way that the
unit polytope is an invariant set for the dynamics. Following the global stability analysis and
parametric control design studies for SIS processes in homogenous and inhomogeneous single-layer
complex networks [36,38] and extensions of it including quarantine [37,45] a decentralized parametric
control strategy is developed providing sufficient conditions for global stability of the extinction
state without altering the topology of the networks as is suggested in other studies related to
adaptive networks [39,46]. Instead of involving computationally expensive optimization procedures,
simple analytic measures are provided which can be quickly determined for a given network
topology and parameter set. Accordingly, the present result provides (i) a solution to the problem of
designing decentralized spreading control strategies with global stability assessment and without huge
computational effort, which to the knowledge of the authors is still an open question, and (ii) presents
an extension of the approaches in [36–38] to the case of two-layer multiplex networks. It turns
out that the step from a single layer to a two-layer network allows to clearly identify some of the
main challenges when considering multiplex networks. In particular, having in mind the nonlinear
dynamics in each network and its non-trivial interplay between networks it is clear from the theory of
input-to-state stability [47,48] that it is not sufficient that both nonlinear systems are asymptotically
stable for their own but the specific interconnection needs to satisfy some additional, small-gain-like
criteria. A sufficient criterion ensuring the asymptotic stability of the complete multiplex networks and
its differentiation to the stability criteria for each network on its own is a central result that is derived.
Based on this criterion it is highlighted how the number of nodes that need to be controlled changes
when the interconnection of two networks is considered. Besides a rigorous mathematical derivation
of the results some statistical analysis is provided to show the expected variation in the number of
nodes that need to be controlled for some illustrative setups.

The paper is organized as follows: In Section 2 the problem formulation is stated, in Section 3 the
system analysis is presented along with the main mathematical results of this work. Control design,
a statistical analysis of the number of nodes to be controlled, and simulations to corroborate our results
are presented in Sections 4 and 5, respectively. Finally, conclusions are presented in Section 6.

2. Problem Formulation

Consider a two layer network of any topology with adjacency matrices given by A and B.
Each network has the same set of N nodes, and the adjacency matrix associated to network A is
defined as A = [aij], where aij = aji = 1 if nodes i and j are connected and zero otherwise (that means,
we consider non-directed graphs), the adjacency matrix associated to network B is defined in the same
way as B = [bij]. Any node i in network A is connected with node i in the network B, as it is shown in
Figure 1.
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Network B

Network A

Figure 1. Networks A and B of arbitrary topology with each node i in network A being connected with
its equivalent node i in network B.

Using a slightly modified version of the model defined in [7,8], the underlying process for every
node in both layers of the network is modeled as a discrete time SIS Markov process. A node i can
be in state I (infected) with probability pAi(t) (or pBi(t)) at time t ∈ N0, or in state S (susceptible)
with probability 1 − pAi(t) (or 1 − pBi(t)). The probabilities pAi(t) and pBi(t) then correspond to the
solutions of the following dynamical system:

pAi(t + 1) = (1 − μAi)pAi(t) + (1 − qAi(t))(1 − pAi(t)),

pBi(t + 1) = (1 − μBi)pBi(t) + (1 − qBi(t))(1 − pBi(t)),

pki(0) = pki0, k = {A, B}, i = 1, 2, . . . , N.

(1)

In the preceding Equations μki is the recovery probability of node i in the network k ∈ {A, B}, qki(t) is
the probability that node i in network k is not infected by some neighbor in network A or B, which is
given by

qAi = ϕAi(PA, PB) :=
N

∏
j=1

(1 − βAiaij pAj)(1 − γAi pBi),

qBi = ϕBi(PA, PB) :=
N

∏
j=1

(1 − βBibij pBj)(1 − γBi pAi),

(2)

with Pk = [pk1, . . . , pkN ]
T for k = A, B. The parameters βAi and βBi represent the transmission

probabilities of the node i in each layer-network, and γAi and γBi are the transmission probabilities of
a node i from B to A and from A to B, respectively.

Note that in Equations (1) and (2)

0 ≤ pki(t), μki, qki(t), γki, βki, pki0 ≤ 1, k = {A, B}, i = 1, 2, . . . , N.

Additionally, in order to propose a control mechanism, we consider that each node has a manipulable
variable uki(t) (k ∈ {A, B}), which is amenable for control. In the present study, we consider that the
amenable variables are taken from the set {γAi, βAi, γBi, βBi; i = 1, . . . , N}.

The problem addressed in the following consists in determining the m ≤ N nodes whose
interaction parameters γki, βki have to be adapted in order to ensure the global exponential stability of
the extinction state, i.e., such that for all pki0 ∈ [0, 1] there are constants mki ≥ 1, α ∈ (0, 1) such that

pki(t) ≤ mkiα
t pki0. (3)
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3. System Analysis

The fixed points p∗ki, k = {A, B}, i = 1, . . . , N associated with the dynamics (1) for some constant
values μki, γ∗

ki, and β∗
ki are determined by substituting pki(t + 1) = pki(t) = p∗ki into (1). After some

algebra it follows that

p∗ki =
1 − q∗ki

μki + 1 − q∗ki
, k = {A, B}, i = 1, . . . , N, q∗ki = ϕki(P∗

A, P∗
B) (4)

with ϕki defined in (2) and P∗
k = [p∗k1, . . . , p∗kN ]

T . Note that p∗ki = 0 for all k = {A, B}, i = 1, . . . , N
is a fixed point given that this condition implies that qki = 1. This fixed point is referred to as
extinction state.

Given that model (1) represents the evolution of probabilities it is important to ensure that
all solutions for pki are contained in the unit hypercube P = [0, 1]2N . This is established in the
following Lemma.

Lemma 1. The set P = [0, 1]2N is a positively invariant set for the dynamics (1).

Proof. Let pki(t) ∈ [0, 1], k = {A, B}, i = 1, . . . , N. From (1) it follows that

pki(t + 1) = (1 − μki)pki(t) + (1 − qki(t))(1 − pki(t)) ≤ pki(t) + (1 − pki(t)) = 1

and

pki(t + 1) ≥ (1 − μki)pki(t) ≥ 0.

Next, sufficient conditions for the (global in P) exponential stability of the extinction state
(PA, PB)

T = (0, 0)T are presented in the following Theorem.

Theorem 1. Consider the dynamics (1) on a two-layer network with adjacency matrices A and B. The extinction
state (PA, PB) = (0, 0) is globally exponentially stable in the hypercube P if

σ(H) < 1, (5)

where σ(·) is the spectral radius, and the matrix H is defined as follows

H =

[
I − MA + BAA GA

GB I − MB + BBB

]
,

where Mk = diag(μki), Bk = diag(βki), Gk = diag(γki) (k ∈ {A, B}), and I is the identity matrix.

Proof. The exponential stability is assessed through the determination of a linear dominant dynamics,
whose stability features imply the desired result similar to the development in [36,37,45].
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Note that for all pki ∈ [0, 1], k = {A, B}, i = 1, . . . , N it holds that

qAi =
N

∏
j=1

(1 − βAiaij pAj)(1 − γAi pBi)

≥
(

1 − ∑
j

βAiaij pAj

)
(1 − γAi pBi)

= 1 − ∑
j

βAiaij pAj − γAi pBi + ∑
j

βAiaij pAjγAi pBi

where in the second step the Weierstrass product inequality [49] has been employed. It follows that

1 − qAi ≤ ∑
j

βAiaij pAj + γAi pBi − ∑
j

βAiaij pAjγAi pBi

≤ ∑
j

βAiaij pAj + γAi pBi.

Equivalently it holds that

1 − qBi ≤
N

∑
j=1

βBibij pBj + γBi pAi.

Substitution of these inequalities into Equations (1) and taking into account that 0 ≤ 1 − pki ≤ 1 holds
true it follows that

pAi(t + 1) ≤ (1 − μAi)pAi(t) +
N

∑
j=1

βAiaij pAj(t) + γAi pBi(t),

pBi(t + 1) ≤ γBi pAi(t) + (1 − μBi)pBi(t) +
N

∑
j=1

βBibij pBj(t).

(6)

The preceding Equations can be written in matrix form as[
PA(t + 1)
PB(t + 1)

]
≤
[

I − MA + BAA GA

GB I − MB + BBB

] [
PA(t)
PB(t)

]
≤ H

[
PA(t)
PB(t)

]
(7)

with I, Mk, Bk and Gk, k = A, B defined in the statement of Lemma 1. In virtue of (5) it follows that
there exists a constant α = σ(H) ∈ (0, 1) so that∥∥∥∥∥

[
PA(t + 1)
PB(t + 1)

]∥∥∥∥∥ < α

∥∥∥∥∥
[

PA(t)
PB(t)

]∥∥∥∥∥
implying the exponential stability (4) of the extinction state.

Remark 1. It should be noted at this place that according to the dynamics in (7) for the asymptotic stability of the
origin [PT

a , PT
B ]

T = 0 it is not sufficient to ensure the asymptotic stability in both sub-networks, what would be
ensured by analyzing the diagonal sub-matrices I − MK + BKK separately for K = A, B, but that it is required
to account explicitly for the particular interconnection structure and the associated transition probabilities
between sub-networks. This establishes a significant difference to the case of single-layer networks as considered
e.g., in [36–38]. Given that the solutions of the linear dynamics (7) bound the one for the nonlinear dynamics,
Theorem 1 is intrinsically connected with the input-to-state stability and the small-gain condition [47,48] for the
interconnection (1).
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4. Control Design

The next question to be addressed is how the sufficient condition established in Theorem 1 can be
used to design an efficient control strategy, and how the number of nodes to be controlled varies when
considering the interconnection of two networks. This question is addressed in the following Lemma.

Lemma 2. Let Nki, k = {A, B}, i = 1, . . . , N denote the number of neighbors of node i in network k.
For constant values μki, γ∗

ki, and β∗
ki, the extinction state is (globally in P = [0, 1]2N) exponentially stable if for

every node i in A and B it holds that

μAi > γ∗
Ai + β∗

Ai NAi, (8a)

μBi > γ∗
Bi + β∗

Bi NBi. (8b)

Proof. In virtue of Lemma 1, it is sufficient to show that the conditions (8) ensure that σ(H) < 1.
This is achieved by applying Geršgorin’s theorem [50] to the matrix H using an upper-bound estimate
for the spectral radius.

Let λ be an arbitrary eigenvalue of H. Recalling that all entries of the matrices A and B are
non-negative, Geršgorin’s theorem [50] implies the following inequalities

|λ| ≤ γ∗
Ai + ∑N

j=1 β∗
Aiaij + 1 − μAi,

|λ| ≤ γ∗
Bi + ∑N

j=1 β∗
Bibij + 1 − μBi.

Thus |λ| < 1 is satisfied if

|λ| < γ∗
Ai + ∑N

j=1 β∗
Aiaij + 1 − μAi < 1,

|λ| < γ∗
Bi + ∑N

j=1 β∗
Bibij + 1 − μBi < 1.

Rearranging and taking into account that the numbers of neighbors of node i in network A and B is
given by NAi = ∑N

j=1 aij, NBi = ∑N
j=1 bij, respectively, it follows that this condition is satisfied if

γ∗
Ai +

N

∑
j=1

β∗
Aiaij = γ∗

Ai + β∗
Ai NAi < μAi,

γ∗
Bi +

N

∑
j=1

β∗
Bibij = γ∗

Bi + β∗
Bi NBi < μBi,

for i = 1, 2, . . . , N. These inequalities correspond to the ones stated in (8).

Remark 2. The stability conditions (8) of the system basically state that the recovery rate of each node must be
higher than the rate with which it potentially receives infected messages or has contact with infected neighbors,
measured by the total amount of intra-layer contacts in each network k = {A, B} during one time interval,
i.e., βki Nki plus the inter-layer contacts γki during the same time interval.

Condition (8) can be used to determine which nodes should be controlled, i.e., for which nodes i
inequalities (8) are not satisfied in either of the networks A and/ or B and thus either of the rates γki or
βki should be adapted in such a way that γki < γ∗

ki and/ or βki < β∗
ki with γ∗

ki, β∗
ki chosen so that (8)

holds. This is summarized in the following corollary.

Corollary 1. The extinction state is (globally in P) exponentially stable if for all nodes i for which either of the
conditions in (8) does not hold the parameter γki and/ or βki are adapted so that the inequalities (8) are satisfied.
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Remark 3. It should be noted that the conditions of Corollary 1 are only sufficient and not necessary. Actually,
in specific scenarios the number of nodes for which the transmission parameters have to be adapted can be smaller.
Alternative (non-analytic) approaches to determine the nodes to be controlled would be e.g., using optimization
or genetic algorithms.

Remark 4. In comparison with the single-layer setup considered, e.g., in [36–38] the additional dependency on
γki, k = A, B introduces stronger conditions. This will most probably imply a higher number of nodes to be
controlled in the case of interconnecting the network with another one, i.e., the number of nodes that need to be
controlled to ensure an asymptotically stable interconnection will be larger then the sum of the numbers of nodes
that need to be controlled in each sub-network to achieve individual asymptotic stability. This is a particularly
important point highlighting a consequence of the complex interplay of two nonlinear dynamical systems pointed
out in Remark 1.

Remark 5. Conditions (8), as alternative to Corollary 1, also suggests as sufficient condition, to adapt the
parameters NAi and/or NBi. This adaptation requires disconnecting links from those nodes that do not satisfy
condition (8) in order to reach the extinction state, resulting in an equivalent method as the one proposed in
Adaptive Networks [39,46]. However, our approach keeps the network structure, modifying the parameters
associated with the interaction probabilities of the model, avoiding disconnecting nodes.

According to inequalities (8), a set of all possible scenarios for adaptation of parameters in every
layer and for every node is presented in Table 1. That means that every node could have a different set
of parameter to be controlled as shown in the Table, with the exception of those nodes that satisfied the
condition (8) that do not need to be controlled as is shown in scenario 1. We can notice that in scenario
2 the critical parameter (i.e., the parameter to be controlled) of node i, situated in layer k = {A, B},
is given by γki. For the scenario 5 we have several options and the criterion to be selected will depend
on the specific implementation costs varying with the particular case example at hand.

Note from Table 1 that it is not necessary for the nodes of any layer to be acquainted of the
structure and properties of the nodes of the other layer in order to control and eventually reach the
extinction state. This constitutes one of the virtues of non centralized control.

Table 1. Amenable control parameters for the nodes of every layer k = {A, B}.

Scenario Critical Parameter Satisfied Not Satisfied

1 - μki > γki + βki Nki -
2 γki μki − βki Nki ≥ 0 μki > γki + βki Nki
3 βki μki − γki ≥ 0 μki > γki + βki Nki
4 γki and βki - μki > γki + βki Nki

5 γki or βki
μki − βki Nki ≥ 0

μki > γki + βki Nkiμki − γki ≥ 0

5. Simulations

To corroborate the theoretical results, numerical simulations have been performed considering
a spreading process in a two-layer network with N = 105 nodes in each layer. In the simulations
performed, in order to verify that our results are independent of the topology, we have selected three
different types of networks: Barabási–Albert scale-free (BA type), Regular nearest-neighbor (R type)
and Small-World (WS type). Every network was built according to the methods discussed in [51],
and as it is stated in this reference, the WS network was constructed randomly rewiring a Regular
network with parameters shown in Table 2. As stated above, each node in layer A is connected to its
counterpart in layer B.
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Table 2. Construction parameters for networks Barábasi-Albert (BA), Regular (R) and Small-World (WS).

Network Parameters

BA1 m0 = 10, m = 2
BA2 m0 = 5, m = 3
R1 Every node is connected with 20 nearest neighbors.
R2 Every node is connected with 10 nearest neighbors.

WS1 Every node in R1 network was randomly rewired with probability 0.2.
WS2 Every node in R2 network was randomly rewired with probability 0.3.

For the subsequent analysis the parameter intervals shown in Table 3 were selected for μi, γi
and βi and every type of network in Table 2 and for every node i = 1, 2, . . . , N in such a way
that a considerable endemic response can be observed when the network parameters are uniformly
distributed over these intervals.

Table 3. Simulation parameters for each node i = 1, 2, . . . , N, in every network in Table 2.

Network μi γi βi

BA1, R1, WS1 (0.60, 0.80) (0.40, 0.80) (0.01, 0.03)
BA2, R2, WS2 (0.50, 0.70) (0.20, 0.35) (0.02, 0.06)

Considering the parameters shown in Table 2, six network layers were built (two networks for
each network BA, R and WS) that were combined to form six different two-layer networks as listed in
Table 4. The parameters of each node in each layer were assigned randomly according to the intervals
given in Table 3. Based on these scenarios the nodes to be controlled were identified and classified
according to Table 1 to establish a control criteria. The results are summarized in Table 5 showing the
number of nodes for which γ needs to be adjusted, those for which β needs to be adjusted, those for
which either of both needs to be adjusted and those for which both need to be adjusted. Accordingly,
the total number of nodes to be controlled is given in the last column.

Table 4. Amenable parameters chosen to control every two layer network. Compare this with data
shown in Table 5.

No. Layer A Layer B Amenable Parameters Chosen Figure

1 R1 R2 βAi and βBi 2
2 BA1 BA2 γAi, βAi and βBi 3
3 WS1 WS2 γAi, βAi and βBi 4
4 R2 BA2 βAi and βBi 5
5 BA1 WS2 γAi, βAi and βBi 6
6 R1 WS2 γAi and βBi 7

Table 5. Number of nodes and their parameters to control for every network.

Network γi βi γi or βi γi and βi Nodes to Control

BA1 12,178 25,716 52,080 7761 97,735
BA2 0 5082 12,191 0 17,273
R1 19,939 0 67,448 0 87,387
R2 0 6138 62,286 0 68,424

WS1 19,915 30 66,501 24 86,470
WS2 0 11,697 52,678 0 64,375

The difference between analyzing and controlling the networks in a single layer context to the
two-layer one becomes clear when comparing the numbers in Table 4. Without interconnection of
the two layers only the third column is relevant, i.e., the number of nodes for which β must be
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adjusted. It can be clearly seen that due to the coupling with a second layer very drastic changes occur,
independent of the choice of topology in the attached layer. In particular, consider an interconnection
of R1 and WS1. In the isolated network R1 no node needs to be controlled as the extinction point
is globally asymptotically stable. The network WS1, when isolated only requires 30 nodes to be
controlled. When interconnecting both networks it becomes necessary to control 87,387 nodes in R1

and 86,470 in WS1.
Note further that according to Table 5 several scenarios could arise depending on the networks

selected to build the two layer multiplex network, for example, if we propose a two layer multiplex
network made up of R2 (layer A) and BA2 (layer B) then, according to Table 5, it is only necessary to
control both networks taking β as amenable parameter.

In order to show the effect of the proposed control law, we simulate several two layer networks
as described in Table 4. The changes in the transmission parameters are applied at time 35. In these
simulations, and following the above discussion, the specific values for the control parameters are
chosen either as one of the following:

βki(t) =

{
βki t < 35,

0.99 μki−γki
Nki

t ≥ 35
(9a)

γki(t) =

{
γki t < 35,

0.99(μki − βkiNki) t ≥ 35
(9b)

for k = {A, B} and i = 1, 2, . . . , N. Besides, in this case it is also possible to chose γ and β (at the same
time) as control parameters (scenario 4 from Table 1). This is also the case of networks 2, 3 and 5 in
Table 4, where an specific combination of control parameters are chosen as γki = 0.99μki and (9a).

In consequence of this control scenario, at the beginning the state converge to an endemic fixed
point that disappears after applying the control strategy at t = 35, causing the states to exponentially
converge to the extinction state, as shown in Figures 2–7. In the figures each line corresponds to the
mean value (or probability density)

ρA(t) =
N

∑
i=1

pAi(t) (red) and ρB(t) =
N

∑
i=1

pBi(t) (blue), (10)

in the respective network for the initial conditions pAi(0), pBi(0)∈{0.1, 0.3, 0.5, 0.7, 0.9}, i = 1, . . . , N.
For example, in Figure 3 around 28% of the nodes in layer A are infected meanwhile in network B,
around 17% of the nodes are. Once the control is activated, in all simulations, the state of the system
exponentially converges to the extinction state according to the assertion of Corollary 1.

In order to analyze the dependency of the number of nodes to be controlled on the particular choice
of network a statistical analysis has been carried out for the networks BA1, BA2, R1, R2, WS1, WS2 with
construction specified in Table 2 by randomly assigning the seeds for the network generation and
the parameters using a uniform distribution over the intervals provided in Table 3. For the BA-type
networks a total of 481 networks were considered, for the R-type networks 600, and for the WS-type
networks 464. The resulting sample distributions showing the number of times a certain number of
nodes needs to be controlled are shown in Figure 8. For all six networks two scenarios are evaluated:
(a) the isolated network and (b) the network in interconnection with another one. From the sub-figures
it can be seen that (i) in all networks a very small variation is observed in the number of nodes to
be controlled, and (ii) in the passage from the isolated to the interconnected network the number of
nodes to be controlled increases considerably. This last fact illustrates again the substantial difference
between controlling isolated and interconnected networks, as highlighted above at several places.
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Figure 2. ρA(t) (red) and ρB(t) (blue) for several initial conditions in network R1-R2.
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ρ
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,ρ
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Figure 3. ρA(t) (red) and ρB(t) (blue) for several initial conditions in network BA1-BA2.
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Figure 4. ρA(t) (red) and ρB(t) (blue) for several initial conditions in network WS1-WS2.
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Figure 5. ρA(t) (red) and ρB(t) (blue) for several initial conditions in network R2-BA2.
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Figure 6. ρA(t) (red) and ρB(t) (blue) for several initial conditions in network BA1-WS2.
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Figure 7. ρA(t) (red) and ρB(t) (blue) for several initial conditions in network R1-WS2.
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Figure 8. Sample distributions of the number of nodes to be controlled in the considered networks
specified in Table 2: (a) isolated network and (b) interconnected network.

6. Conclusions

The control of a spreading process in a two-layer multiplex network with a parametric control
strategy is analyzed. Sufficient conditions for the choice of nodes and parameters to be controlled
are established using rigorous mathematical derivations ensuring the exponential stability of the
extinction state globally with respect to the set of all possible probability states. The proposed
control strategy consists in the adaptation of the parameters specifying the intra-layer and inter-layer
transmission rates only for a limited number of nodes that are characterized by a parametric threshold
condition. Particular emphasis is made on the substantial difference between controlling isolated and
interconnected networks, showing intrinsic cnections with the individual input-to-state stability
and the small-gain criterion. It results that in the passage from controlling isolated networks
to interconnected ones, the number of nodes that need to be controlled significantly increases.
The theoretical results are analyzed in multiplex networks with different representative topologies in
each layer with 105 nodes each. The corresponding simulation studies and statistical evaluations of
the number of nodes to be controlled corroborate the theoretical findings.
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Based on the presented results future studies will focus on the generalization of the discussed
ideas to the case of n-layer multiplex networks, in order to further enlighten the expected challenges
when adding additional layers. Furthermore, the model identification and testing of the presented
approaches in real-world scenarios based on explicit data will be focused on in future studies.
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Abstract: Recent work investigating the development of the phonological lexicon, where edges
between words represent phonological similarity, have suggested that phonological network
growth may be partly driven by a process that favors the acquisition of new words that are
phonologically similar to several existing words in the lexicon. To explore this growth mechanism,
we conducted a simulation study to examine the properties of networks grown by inverse preferential
attachment, where new nodes added to the network tend to connect to existing nodes with
fewer edges. Specifically, we analyzed the network structure and degree distributions of artificial
networks generated via either preferential attachment, an inverse variant of preferential attachment,
or combinations of both network growth mechanisms. The simulations showed that network
growth initially driven by preferential attachment followed by inverse preferential attachment led to
densely-connected network structures (i.e., smaller diameters and average shortest path lengths),
as well as degree distributions that could be characterized by non-power law distributions, analogous
to the features of real-world phonological networks. These results provide converging evidence that
inverse preferential attachment may play a role in the development of the phonological lexicon and
reflect processing costs associated with a mature lexicon structure.

Keywords: network growth; preferential attachment; inverse preferential attachment; language
networks; language development

1. Introduction

Many complex systems, such as the Internet, brain networks, and social networks, can be classified
as networks—collections of entities connected to each other in a web-like fashion—permitting the
application of network analysis to study these systems (see [1] for a review). A common feature across
diverse complex networks is their scale-free degree distribution, whereby most nodes in the network
have very few edges or links and a few nodes have many edges or links. Preferential attachment
models of network growth, where new nodes that are added to the network tend to connect to existing
nodes with many links (i.e., high degree nodes), have been prominent in the literature covering
network growth and evolution, because such models describe a generic mechanism that provides an
elegant account of the emergence of scale-free complex networks [2–5]. In this paper, we conducted a
series of network simulations to specifically examine the properties of networks grown via a different
mechanism, which we refer to as inverse preferential attachment, where new nodes added to the
network tend to connect to existing nodes with fewer edges.

Our present approach of simulating network growth via inverse preferential attachment was
directly motivated by recent research examining the development of language networks constructed
from phonological similarity among words. In these language networks, nodes represent words,
while edges are placed between words that share similar sounds [6]. Previous research has shown
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that the structure of the phonological lexicon has measurable influences on various language-related
processes [7–9]. Research investigating the processes that facilitate the acquisition of the phonological
form of a word indicate that phonological network growth may be driven by alternative network
growth mechanisms other than the widely studied preferential attachment [10–12]. Central to the
present study is a recent paper by Siew and Vitevitch [12], who conducted a longitudinal analysis
of phonological networks of English and Dutch words and found that preferential attachment was
a better predictor of acquisition than preferential acquisition. Furthermore, although the standard
preferential attachment model was a significant predictor of acquisition at early stages of network
growth (i.e., when the phonological network was “young”), there was a subsequent shift in the network
growth mechanism, such that an inverse variant of preferential attachment became a significant
predictor of acquisition at later stages of network growth (i.e., when the phonological network matured
and contained many nodes and edges). To put it in another way, a network growth mechanism that
prioritized the learning of words that were phonologically similar to words with many phonological
neighbors (i.e., many edges) in the lexicon was important in the early stages of development, whereas
a growth mechanism that prioritized the learning of words that were phonologically similar to words
with few phonological neighbors (i.e., few edges) in the lexicon was important in the later stages of
development. Siew and Vitevitch [12] provided further empirical support for inverse preferential
attachment by conducting a word learning experiment, which found that people with mature lexicons
(i.e., college students) were able to better learn made-up words that were phonologically similar to
words with few phonological neighbors in the lexicon, as compared to made-up words that were
phonologically similar to words with many phonological neighbors.

Given these intriguing patterns of phonological network growth observed in our prior work,
the aim of the present paper was to conduct a computational exploration of these patterns. To this
end, we conducted a series of network growth simulations to examine if networks generated by the
preferential attachment growth algorithm and its inverse variant, as well as combinations of each
algorithm, might lead to structurally different networks. Even though we examine a simple model
of network growth here, this has potentially important theoretical implications for understanding
how the large-scale development of the phonological lexicon could occur. For instance, the artificial
randomly grown networks examined by Callaway and colleagues [13] exhibited many network
characteristics that were also observed in real phonological networks [6], and we wanted to investigate
if simulating network growth with typical or inverse preferential attachment mechanisms may also
lead to networks with characteristics observed in real phonological networks. Computing network
measures (such as average shortest path length, network diameter) and degree distributions is one way
of evaluating the structure of simulated networks. Network measures such as the average shortest
path length and network diameter provide an indication of the overall efficiency of the network
(i.e., efficiency referring to a network’s ability to quickly exchange information or for activation to
spread in a network [14]), whereas degree distributions can be considered as structural signatures of
the network, which can inform us about the growth processes that gave rise to the network [2]. If the
overall network measures of simulated networks are qualitatively similar to real-world phonological
language networks, this suggests that growth mechanisms that gave rise to the observed structure of
the simulated networks might also contribute to the acquisition of phonological representations.

It is important to acknowledge that the approach taken here does not provide conclusive proof
that either one of these network growth algorithms is entirely responsible for producing the structures
observed in real-world phonological networks. Indeed, much research (e.g., [15]) has demonstrated
that the famed scale-free network, for example, can be produced not only by the preferential attachment
algorithm proposed by Barabási and Albert [2], but also by a number of other methods as well. In the
absence of any other information, it would indeed be unwise to assert that a particular algorithm
was responsible for producing a network with a particular set of characteristics. In the domain of
psycholinguistics, however, there is a long and rich history of research that provides some guidance on
which possible algorithms are unattested in the languages of the world, and therefore not plausible
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as a mechanism for the acquisition of words; or which algorithms have been observed with other
research methods (e.g., case studies, archival analyses, laboratory-based experiments), and therefore
might be plausible mechanisms for the acquisition of words and may also provide insight into certain
language disorders (e.g., [16]). We performed the present simulation merely to offer an additional piece
of evidence to complement the archival analyses and experiments in our earlier work [12], which might
help to constrain the realm of possibility to the more restricted space of plausibility.

2. Materials and Methods

Each simulation began with a single node. The growth of the network was simulated by adding
a new node and a single new link to the network at each iteration. Each simulation continued for
999 iterations, such that each resulting network consisted of 1000 nodes and 999 edges. To simulate the
growth of the network via preferential attachment, the probability that a new node connected to a
given existing node was proportional to the number of connections that the existing node had to other
nodes in the network. Therefore, a new node was more likely to connect to an existing node with a
high degree. To simulate the growth of the network via inverse preferential attachment, the probability
that a new node connected to a given existing node was inversely proportional to the number of
connections that the existing node had to other nodes in the network. In this case, a new node was
more likely to connect to an existing node with a low degree. Finally, in random attachment, the new
node had an equal probability of connecting to any existing node, regardless of its degree.

There was a total of 11 different network types, i.e., networks that were grown by different
mechanisms and by various combinations of those mechanisms (see Figure 1 for a summary).
Three network types were generated by a single mechanism, i.e., entirely via preferential attachment
(PATT), entirely via inverse preferential attachment (iPATT), and via random attachment (Random).
For ease of exposition, PATT refers to networks generated by preferential attachment and iPATT refers to
networks generated by inverse preferential attachment. The remaining 8 network types were generated
using a combination of preferential attachment and inverse preferential attachment, to explore how the
“blending” of different growth models affected the development of the network, given that Siew and
Vitevitch [12] found that preferential attachment was influential earlier in development but not later
in development. Of these 8 network types, four were generated via preferential attachment first (for
200, 400, 600, and 800 iterations) followed by the inverse variant for the remainder of the iterations,
and four were generated via inverse preferential attachment first (for 200, 400, 600, and 800 iterations)
followed by the original preferential attachment model for the remainder of the iterations. The network
growth simulations were repeated 100 times for each network type, resulting in a total of 1100 simulated
networks. All simulations were conducted in R using the igraph library [17]. Analyses of the final
network structure and their degree distributions were also conducted in R using the igraph and
poweRlaw [18] libraries, respectively. The simulation and analysis R scripts, as well as the simulated
network data, are available via the Supplementary Materials.

The characteristics of the 1100 simulated networks can be quantified in various ways to examine
how the overall structures of these networks differ across different simulation conditions (i.e., network
type). The following network measures will be computed: average shortest path length, network
diameter, and degree distribution.

The shortest path length between two nodes refers to the fewest number of links that must be
traversed to get from one node to another node in the network. The average shortest path length
(ASPL) is the mean of the shortest path length obtained from every possible pairing of nodes in the
network. A closely related measure is the diameter of the network; this is the longest shortest path
length that exists in the network. The degree distribution refers to the probability distribution of node
degrees in the network; in other words, how many nodes have a given number of connections in the
network. Recall that degree refers to the number of connections incident to a node.
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Figure 1. A summary of the 11 network growth conditions simulated in the present study. Red cells
indicate growth by standard preferential attachment, blue cells indicate growth by inverse preferential
attachment. PATT, preferential attachment.

3. Results

3.1. Overall Network Characteristics of Simulated Networks

For each of the simulated networks, the average shortest path length and network diameter was
computed. Table 1 shows the mean ASPL and network diameter for the networks in each condition
(i.e., network type) of the simulations.

Table 1. Means and standard deviations of network measures of simulated networks, summarized by
each of the 11 simulation conditions. Note that all simulated networks had the same number of nodes
and edges (1000 nodes and 999 edges).

Network Nodes Edges ASPL Diameter

PATT
M 1000 999 8.34 11.55
SD 0 0 0.50 1.42

Inverse PATT
M 1000 999 13.07 16.42
SD 0 0 0.62 1.80

Random
M 1000 999 10.91 13.81
SD 0 0 0.52 1.54

PATT–Inverse PATT

200/800
M 1000 999 9.97 13.27
SD 0 0 0.50 1.47

400/600 M 1000 999 9.22 12.58
SD 0 0 0.49 1.58

600/400 M 1000 999 8.83 12.29
SD 0 0 0.49 1.43

800/200 M 1000 999 8.55 11.93
SD 0 0 0.49 1.50

Inverse PATT–PATT

200/800 M 1000 999 11.25 14.28
SD 0 0 0.59 1.60

400/600 M 1000 999 12.00 15.17
SD 0 0 0.61 1.63

600/400 M 1000 999 12.48 15.59
SD 0 0 0.59 1.76

800/200 M 1000 999 12.81 15.92
SD 0 0 0.62 1.74

Legend: M =mean; SD = standard deviation; ASPL = average shortest path length; PATT = preferential attachment.
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Independent samples t-tests comparing the average shortest path length and network diameter
of PATT and iPATT networks showed that iPATT networks had larger diameters (t(189.76) = 59.47,
p< 0.001) and longer ASPLs (t(187.7)= 21.27, p< 0.001) than PATT networks (see Figure 2). This suggests
that networks generated by preferential attachment tend to be denser and more compact as compared
to networks generated by inverse preferential attachment, despite having the same numbers of nodes
and edges (see Figure 3 for network visualizations of the overall network structures).

a b
Network measures of pure networks

Figure 2. Boxplots of ASPL (a) and network diameter (b) values of networks grown via preferential
attachment (PATT), inverse preferential attachment (Inverse PATT), and random attachment (Random).

Pure Preferential Attachment Pure Inverse Preferential Attachment Hybrid Model

Figure 3. Network visualizations of exemplar networks generated via pure preferential attachment (left),
pure inverse preferential attachment (center), and preferential attachment followed by inverse preferential
attachment (hybrid model; right). Each network consisted of 100 nodes. The size of each node reflects
its degree.

Interestingly, the networks grown by PATT first followed by iPATT tended to have smaller
diameters and shorter average shortest path lengths than the networks grown by iPATT first followed
by PATT, regardless of when the growth model “switched” to the other growth model (see Figure 4).
This observation is supported by significant the interaction effects of the network type (PATT–inverse
PATT; inverse PATT–PATT) and time of switch (20%, 40%, 60%, 80% of nodes added) for ASPL
(F(1, 796) = 761.04, p < 0.001) and diameter (F(1, 796) = 91.68, p < 0.001) in a between-group two-way
analysis of variance. This result may suggest that networks generated by the preferential attachment
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growth algorithm at the initial stages (even for a short period) may be more navigable than networks
that are generated by the inverse preferential attachment growth algorithm at the initial stages.

a b
Network measures of blended networks

Figure 4. Boxplots of ASPL (a) and network diameter (b) values of networks grown via blends of
preferential attachment and inverse preferential attachment. The x-axis indicates the percentage
proportion of nodes added before the network algorithm was switched. Red bars indicate networks
first grown by PATT followed by inverse PATT. Blue bars indicate networks first grown by inverse
PATT followed by PATT.

3.2. Degree Distributions

In this section, we examine the degree distributions of networks generated in Section 2. Raw counts
of the numbers of nodes with degrees of various values were obtained from each network. In part 1,
a power law was first fitted to the degree distributions and the goodness-of-fit of the power law
to the data was evaluated via a bootstrapping approach. In part 2, the data were fit to alternative
distributions (log-normal, exponential, and Poisson distributions) and tests were conducted to assess
the fit of the power law to the data as compared to alternative distributions. This sequence of analyses
closely follows the recommendations of Clauset, Shalizi, and Newman [19] for analyzing power
law-distributed data in a statistically rigorous manner (see [18] for more information on how to
implement this analysis pipeline).

3.2.1. Test for Power Law Fits via Bootstrapping

A power law was fit to the degree distributions of each of the simulated networks. Specifically, a power
law was fit to the data and the scaling parameter, α (i.e., the exponent of the power law), was computed
for a given xmin value (the minimum value for which the power law holds; see the xmin and α columns in
Table 2). Note that all exponents were <2, lower than what is usually observed in real-world networks,
where 2 < α < 3 [19]. This may be due to the simplicity of the simulations conducted (i.e., only 1 node and
1 edge were added to the network at each iteration), which led to sparser networks.

As suggested by Clauset et al. [19], we evaluated whether the observed degree distributions
actually followed a power law via a bootstrapping approach. Specifically, 1000 degree distributions
were sampled from the empirical degree distribution of interest, a power law was fit to that
degree distribution, and the exponent was computed. Mean α indicates the mean exponent of
the 1000 bootstrapped networks and SD α indicates the standard deviation of the 1000 bootstrapped
networks. A goodness-of-fit test was then conducted to determine if the exponent obtained from the
original degree distribution was likely to have come from the bootstrapped “population” of exponents.
As the point estimate p-values were not significant (all p-values > 0.05), this indicated that for all
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11 network types, the power law distribution provided a plausible fit to the degree distributions
(i.e., the exponent estimate is stable despite random fluctuations). Table 2 shows a summary of the
results of the goodness-of-fit test for all 11 network types (see the mean α, SD α, Kolmogorov–Smirnov
statistics, and p-value columns).

Table 2. Power law scaling parameter estimates and uncertainty estimates from the bootstrap procedure.
Note that the bootstrap procedure was conducted for each simulated network; the means and standard
deviations of estimates are shown in the table.

xmin α Mean Bootstrapped α SD Bootstrapped α KS-Statistic p-Value

Network M SD M SD M SD M SD M SD M SD

PATT 2.09 2.27 1.45 0.06 1.55 0.08 0.36 0.14 0.11 0.02 0.74 0.16
Inverse PATT 9.98 10.97 1.42 0.15 1.70 0.24 0.74 0.26 0.25 0.02 0.34 0.08

Random 10.51 13.51 1.49 0.17 1.68 0.20 0.67 0.23 0.19 0.02 0.52 0.15
PATT/Inverse PATT

200/800 1.14 0.51 1.34 0.03 1.47 0.05 0.40 0.07 0.16 0.02 0.60 0.13
400/600 1.13 0.40 1.39 0.03 1.51 0.04 0.40 0.08 0.12 0.02 0.72 0.18
600/400 1.28 0.80 1.41 0.04 1.51 0.05 0.37 0.09 0.11 0.02 0.76 0.16
200/800 1.34 0.89 1.42 0.04 1.52 0.05 0.35 0.09 0.11 0.02 0.73 0.19

Inverse PATT/PATT
200/800 8.50 6.87 1.56 0.13 1.72 0.15 0.63 0.18 0.15 0.02 0.70 0.20
400/600 18.07 14.73 1.64 0.20 1.84 0.21 0.81 0.26 0.17 0.02 0.67 0.19
600/400 23.40 20.21 1.65 0.25 1.87 0.26 0.86 0.28 0.20 0.02 0.59 0.18
200/800 24.34 27.48 1.61 0.29 1.84 0.28 0.84 0.29 0.23 0.02 0.48 0.14

Legend: M =mean; SD = standard deviation; KS = Kolmogorov–Smirnov; PATT = preferential attachment.

Although the results of the bootstrap seem to suggest that both degree distributions from the PATT
and iPATT networks followed a power law, a closer look at Table 2 indicates that the Kolmogorov–Smirnov
statistic for the iPATT network (D = 0.25) was larger than the Kolmogorov–Smirnov statistic for the PATT
network (D = 0.11). The magnitude of D is an indicator of the “distance” between the fitted distribution
and the actual data. In this case, the degree distribution of the network that was simulated via inverse
preferential attachment deviated to a greater extent from a power law as compared to the network that
was simulated via preferential attachment. This was confirmed by a visual inspection of the cumulative
degree distributions (see Figure A3 in the Appendix A).

3.2.2. Statistical Comparison with Other Degree Distributions

As recommended by Clauset et al. [19], another way of investigating the nature of degree
distributions in networks is to fit alternative distributions (exponential, log-normal, and Poisson
distributions) to the degree distributions of all networks and conduct the relevant goodness-of-fit tests
to compare the fit of these distributions to the fit of the power law to the data. The comparison of
the power law and these distributions constitutes a non-nested model comparison, so Vuong’s test
of non-nested hypotheses was used instead of the likelihood ratio test (for details, please see [20]).
Vuong’s test computes a V-statistic, one-sided p-value, and two-sided p-value. The one-sided p-value
indicates the probability of obtaining the particular value of log likelihood ratio if the power law is not
true. In other words, a significant one-sided p-value indicates that the power law distribution is a good
fit to the data (low probability that the alternate distribution could account for the data), whereas a
non-significant one-sided p-value indicates that the power law distribution is a not good fit to the data
(high probability that the alternate distribution could account for the data). The two-sided p-value
indicates the probability that both distributions being compared are equally “distant” from the data.
In other words, a significant two-sided p-value indicates that one distribution is a significantly better
fit to the data than the other distribution, whereas a non-significant two-sided p-value indicates that
neither distribution is preferred.

The results of these comparisons are summarized in Table 3 below, with more detailed statistics
available in Table A1 of Appendix A. For the power law and Poisson comparison, the significant
two-sided p-values and significant one-sided p-values for all 11 network types indicate that a power
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law distribution was a significantly better fit to the data than a Poisson distribution. For the power law
and log-normal comparison, the non-significant two-sided p-values for all 11 network types indicate
that one distribution cannot be favored over the other. See Figures A1 and A2 in the Appendix A for a
visual depiction of these results.

Table 3. Summary of Vuong’s tests of non-nested models comparing power law distributions to
alternative distributions (exponential, log-normal, Poisson). The cell indicates the preferred distribution
from the comparison; n.d. indicates that no distribution can be favored.

Network PL vs. Exp PL vs. LN PL vs. Pos

PATT PL n.d. PL
Inverse PATT n.d. n.d. PL

Random n.d. n.d. PL
PATT/Inverse PATT

200/800 n.d. n.d. PL

400/600 PL n.d. PL
600/400 PL n.d. PL
200/800 PL n.d. PL

Inverse PATT/PATT
200/800 n.d. n.d. PL
400/600 n.d. n.d. PL
600/400 n.d. n.d. PL
200/800 n.d. n.d. PL

Legend: PL = power law; LN = log-normal; Pos = Poisson; Exp = exponential; PATT = preferential attachment;
n.d. = no difference.

The comparison between the power law and exponential distribution is more informative
(see Figure 5). For the PATT network, the two-sided p-value was significant, indicating that the
two distributions were not equivalent in terms of their fit to the data, with one distribution being a
better fit. The results of the one-sided test indicate that the power law was a better fit for the degree
distribution generated by the preferential attachment as compared to an exponential distribution.
For the iPATT and random network, the two-sided p-value was not significant, indicating that the
two distributions (power law and exponential) were equivalent in terms of their fit to the data.

Turning to the results of Vuong’s test for the combination (i.e., blended) networks, we observe
that for all network types generated with iPATT followed by PATT, the two-sided p-values for the
power law and exponential comparison were non-significant, indicating that the two distributions
were equivalent in terms of their fit to the data, similar to the iPATT-only and random networks.
In contrast, the pattern of results varied for the networks generated with PATT followed by iPATT.
The network where the first 200 iterations were based on the PATT model had two-sided p-values that
were non-significant (similar to the iPATT-only network), whereas the other networks where the first
400, 600, and 800 iterations were based on the PATT model had two-sided and one-sided p-values
that were significant, indicating that the power law was a better fit than the exponential distribution
(similar to the PATT only network).

In summary, the key finding of the analyses of the network structure and degree distributions
was that the blended network that was first generated by PATT followed by iPATT led to (i) a network
structure with relatively low values for the ASPL and diameter (i.e., low values of ASPL and diameter
in Figure 4a,b) and (ii) degree distributions that could not be exclusively classified as a power law
(i.e., p-values > 0.05 in Figure 5b)—qualitatively resembling the properties of real-world phonological
networks [21].
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Figure 5. Boxplots of two-sided p-values from Vuong’s test of non-nested models comparing the
fits of power law and exponential distributions to the degree distributions of simulated networks.
Panel (a) compares the degree distributions of pure networks and panel (b) compares the degree
distributions of blended networks. Non-significant p-values (based on an alpha-level of 0.05) indicate
that neither distribution is preferred. Significant p-values (based on an alpha-level of 0.05) indicate that
one distribution fits the empirical data better. Based on the 1-sided p-values (see Table A1), the power
law distribution provides a better fit than the exponential distribution for all networks grown by
preferential attachment, except for when the switch to its inverse variant occurs early.

4. Discussion

The key finding from the simulations was that a model where the network was first generated
by PATT for a short period (the first 200 out of 1000 iterations) before switching to the iPATT growth
mechanism led to a network structure that was (i) more densely connected than if the growth models
were reversed (i.e., smaller diameters and ASPL) and (ii) had a degree distribution that could be
accounted for by alternative distributions (i.e., the exponential distribution that provided similar fits to
the data as did the power law).

Recall that Siew and Vitevitch [12] found through an archival analysis and laboratory-based
experiments that novel words that connected to existing words with few phonological neighbors in
the lexicon were more likely to be learned than novel words that connected to existing words with
many connections at later stages of development. We suggested that this switch may arise due to the
increased processing costs associated with navigating a lexicon with a crowded phonological space [22],
as well as the increased pressures on lexical representations to be better differentiated from each other
in a more densely connected phonological lexicon (see the lexical restructuring hypothesis; [23,24]).
We wished to explore these intriguing ideas computationally and simulated networks that were
generated by a blend of different network growth mechanisms. Our results suggest that it is possible
that the development of the phonological network may be better captured, at least partly, by an
alternative network growth algorithm.

Overall, the simulations suggest that a particular combination of the PATT and iPATT network
growth algorithms (i.e., the network that is initially “grown” by PATT followed by inverse PATT) led
to the emergence of network characteristics that are suggestive of increased efficiencies in network
navigation [25] (i.e., lower ASPL and smaller diameter) and degree distributions that are not necessarily
best captured by a pure power law (i.e., not a purely scale-free degree distribution). We observed this in
the case where the network was generated with PATT driving the initial stage for a short period (200 out
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of 1000 iterations) and iPATT driving the later stages of growth. This led to a network structure that was
more densely connected than if the order of the growth models was reversed (i.e., iPATT followed by
PATT) and a degree distribution that could be accounted for by alternative non-power law distributions,
such as the exponential distribution, rather than if preferential attachment persisted for a longer period
of time at the beginning (i.e., PATT continued for a longer period before the switch to iPATT occurred
in the simulations).

Although small, simple networks were simulated in this study, the present findings nevertheless
provide a proof-of-concept that the new growth principle that we proposed—inverse preferential
attachment—can produce a degree distribution that is not necessarily captured by a power law and still
lead to the emergence of network characteristics that facilitate efficient navigation (i.e., small diameter
and low ASPL). These network features are qualitatively similar to the network features observed in
real-world phonological networks [6,21]. In addition, we wish to highlight that the present analyses
do not provide evidence that only the preferential attachment or inverse preferential attachment
mechanisms are directly influencing the network structure of the phonological lexicon. What these
results do suggest is that a countably infinite list of complicated and detailed constraints that capture
the microscopic details of language may not be necessary to produce the structure observed in the
phonological network. Rather, a simple assumption, such as the assumption examined mathematically
by Callaway et al. [13]—stating that newly added nodes do not necessarily need to be attached to an
existing node in the network—may lead to some of the structural features of the phonological network,
such as the presence of lexical hermits in the phonological lexicon as observed by [6]. The results of the
present simulation in conjunction with the long and rich history of research in psycholinguistics also
allows us to constrain our search of possible algorithms involved in the acquisition of words to the
space of plausible algorithms. Furthermore, the results of the present simulation lend credence to the
idea that the principles that affect word learning may change over time as the lexicon becomes more
“crowded” with similar sounding words or other cognitive constraints begin to exert an influence on
acquisition (for similar influences on semantics, see [26]).

Finally, our results provide new avenues for research within the field of network science.
First, although network scientists have previously examined the influence of constraints of costs on
network growth (e.g., financial or space limitations on the expansion of air transportation networks [27]),
the present findings suggest that it may also be important to consider how different costs introduced
at different time-points of development shape future network growth. Second, network scientists
commonly view network growth as operating via a process that maximizes node fitness [3,5]. In the
case of preferential attachment and close variants of this model, the fitness of an individual node
(i.e., its ability to gain new edges) is maximized by attaching to a high-degree node. The present
findings suggest that understanding network growth requires a careful consideration of the functional
purpose of each complex network. In the case of phonological network development, prioritizing the
acquisition of new words that occupy sparser, peripheral areas of the phonological space at later stages
of development when the core of the lexicon is already highly filled out may be especially important
to increase the overall fitness and efficiency of the entire network. This provides accurate coverage
of the entire phonological space in order to attain an overall network structure that is optimized for
language processing. In other words, network growth may not be only about maximizing the fitness of
individual nodes, but may also leverage on different types of network growth algorithms (such as
inverse preferential attachment) to maximize the fitness of the network as a whole in order to facilitate
the processes and operations that occur within that network.
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Appendix A

The appendix contains additional detail in relation to the analyses of the degree distributions of
the simulated networks.

Table A1. Degree distributions of simulated networks were fitted to exponential, log-normal,
and Poisson distributions and compared against the fitted power law distribution using Vuong’s test of
mis-specified, non-nested hypotheses. Note that each set of model comparisons was conducted for
each of the 100 simulated networks per condition or network type. The present table displays the mean
and standard deviations of the test statistic and p-values.

Power Law Vs. Exponential

V-statistic 2-sided p 1-sided p

Network M SD M SD M SD

PATT 2.387 0.614 0.046 0.080 0.023 0.040
Inverse PATT −0.156 0.251 0.800 0.113 0.560 0.098

Random 0.420 0.359 0.682 0.222 0.347 0.120
PATT/Inverse PATT

200/800 1.614 0.399 0.135 0.111 0.067 0.056
400/600 2.320 0.483 0.037 0.048 0.018 0.024
600/400 2.597 0.578 0.025 0.041 0.012 0.021
200/800 2.626 0.511 0.021 0.039 0.011 0.020

Inverse PATT/PATT
200/800 1.116 0.357 0.293 0.151 0.147 0.076
400/600 0.593 0.288 0.570 0.176 0.285 0.088
600/400 0.221 0.241 0.817 0.161 0.416 0.088
200/800 0.009 0.253 0.849 0.120 0.498 0.097

Power law vs. Log-normal

V-statistic 2-sided p 1-sided p

Network M SD M SD M SD

PATT −0.735 0.350 0.488 0.171 0.756 0.085
Inverse PATT −0.695 0.227 0.498 0.137 0.751 0.069

Random −0.672 0.267 0.517 0.160 0.742 0.080
PATT/Inverse PATT

200/800 −0.777 0.201 0.446 0.091 0.777 0.045
400/600 −0.809 0.391 0.448 0.132 0.776 0.066
600/400 −0.798 0.340 0.450 0.154 0.775 0.077
200/800 −0.774 0.354 0.465 0.138 0.768 0.069

Inverse PATT/PATT
200/800 −0.519 0.272 0.618 0.172 0.691 0.086
400/600 −0.500 0.272 0.631 0.176 0.685 0.088
600/400 −0.514 0.260 0.620 0.167 0.690 0.084
200/800 −0.590 0.270 0.570 0.171 0.715 0.085

Power law vs. Possion

V-statistic 2-sided p 1-sided p

Network M SD M SD M SD

PATT 1.860 0.066 0.063 0.009 0.032 0.005
Inverse PATT 3.198 0.411 0.003 0.005 0.002 0.003

Random 2.453 0.151 0.015 0.006 0.008 0.003
PATT/Inverse PATT

200/800 3.390 0.161 0.001 0.001 0.000 0.000
400/600 2.926 0.138 0.004 0.002 0.002 0.001
600/400 2.554 0.118 0.011 0.003 0.006 0.002
200/800 2.184 0.075 0.029 0.005 0.015 0.003

Inverse PATT/PATT
200/800 1.899 0.072 0.058 0.009 0.029 0.005
400/600 1.967 0.084 0.050 0.009 0.025 0.005
600/400 2.103 0.118 0.037 0.010 0.018 0.005
200/800 2.460 0.240 0.017 0.012 0.008 0.006
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Figure A1. Boxplots of two-sided p-values from Vuong’s test of non-nested models comparing the
fits of power law and log-normal distributions to the degree distributions of simulated networks.
Panel (a) compares the degree distributions of pure networks and panel (b) compares the degree
distributions of blended networks. Non-significant p-values (based on an alpha-level of 0.05) indicate
that neither distribution is preferred.

Figure A2. Boxplots of two-sided p-values from Vuong’s test of non-nested models comparing
the fits of power law and Poisson distributions to the degree distributions of simulated networks.
Panel (a) compares the degree distributions of pure networks and panel (b) compares the degree
distributions of blended networks. Significant p-values (based on an alpha-level of 0.05) indicate that
one distribution fits the empirical data better. Based on the one-sided p-values (see Table A1), the power
law distribution provides a better fit than the Poisson distribution.
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Figure A3. Cumulative degree distributions of exemplar networks generated via pure preferential
attachment (left), pure inverse preferential attachment (center), and preferential attachment followed
by inverse preferential attachment (hybrid model; right).
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Abstract: A complex network as an abstraction of a language system has attracted much attention
during the last decade. Linguistic typological research using quantitative measures is a current
research topic based on the complex network approach. This research aims at showing the node
degree, betweenness, shortest path length, clustering coefficient, and nearest neighbourhoods’ degree,
as well as more complex measures such as: the fractal dimension, the complexity of a given network,
the Area Under Box-covering, and the Area Under the Robustness Curve. The literary works of
Mexican writers were classify according to their genre. Precisely 87% of the full word co-occurrence
networks were classified as a fractal. Also, empirical evidence is presented that supports the conjecture
that lemmatisation of the original text is a renormalisation process of the networks that preserve their
fractal property and reveal stylistic attributes by genre.

Keywords: complex networks; literary works; genre classification; stylistic attributes; lemmatization;
renormalisation process

1. Introduction

A complex network as an abstraction of a language system has attracted attention in the last
decade. The current linguistics research, based on the complex network approach, follows three major
lines [1,2]: characterisation of human language as a multi-level system, linguistic typological research
using quantitative measures, and the relationship between system-level complexity of human language
and its microscopic features.

Word co-occurrence networks and their measures have been widely employed to analyse the
syntactic features for multiple purposes, such as: identifying authors’ writing styles [3–8] and evaluating
machine translations [9]. Also, Ferraz de Arruda, Nascimento Silva [10], as well as F. de Arruda,
Q. Marinho [11] built a complex network where the nodes are the representation of adjacent paragraphs
that share a minimum semantical content to classify the text as real (written by an author) or randomly
constructed (built from random blocks of real texts).

In most of the research mentioned above, well-known measures such as: node degree (k), shortest
path length (spl), betweenness (b), clustering coefficient (cc), and the average of nearest neighbourhoods’
degree (nnd) are applied to characterise the word co-occurrence networks. The k, b, and nnd are
centrality measures that characterise local properties of the network that are useful for authorship
attribution [3–8]. However, these measures do not capture the global network structure that could give
us insight into the literary genre. This research aims at showing that local and global measures of the
word co-occurrence networks—of literary works of Mexican writers—let us classify them according to
the genre. Thus, the following research questions are formulated:

1. Are measures of the complex network useful to classify literary works by genre?

Entropy 2020, 22, 904; doi:10.3390/e22080904 www.mdpi.com/journal/entropy57
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2. Is the full word co-occurrence network of literary works fractal?
3. Do pre-process tasks such as: deletion of number, punctuation, functional words,

and lemmatisation generate fractal networks?

2. Measures of Complex Networks

Formally, a network is defined by G = (V, E) where V is the vertexes or nodes, and E is the edges.
The complex networks exhibit non-trivial topological features that do not occur in simple networks,
such as: lattices or random graphs [12], and their overall behaviour cannot be predicted by observing
the behaviour of their nodes [13]. Since the complex network theory has its root in graph theory, some
measures are presented below.

The degree of a node i is defined by:

ki =
N∑
j

vi j (1)

where j represents a given neighbour of the node i, and N is the total neighbours. The value of vij is
defined as one, if there is a connection between nodes i and j, and as 0 otherwise.

Similarly, the betweenness of a node is defined as:

bi =
∑
j,m�i

Ljm(i)
Ljm

(2)

where Ljm, is the number of shortest paths between nodes j and k, and Ljm(i) is the shortest paths
between nodes j and m that go through i.

The average nearest neighbourhoods’ degree (nnd) of a given node can be computed by:

nndi =
∑

j∈V(i)

kj

ki
(3)

where ki is the degree of the node i, and the set V(i) contains its nearest neighbours, and kj is the degree
of a given neighbour.

A definition of network clustering is expressed by:

cc(G) =
3τ

spl(2)
(4)

where τ is the number of triangles of the network and spl(2) is the shortest path of length two.
A “triangle” is a set of three nodes in which each contacts the other two.

2.1. Fractality of Complex Networks

A fractal is an object that is similar to itself on all scales [14]. A network is a fractal network if its
box-covering follows the power law given by:

Nb(l) ∼ βl−db (5)

where Nb(l) is the minimum number of boxes of diameter l to cover the network—the procedure of
box-covering that gives us this number is detailed later—β is the scaling factor, and db is the box
dimension of a complex network that can be obtained as follows:

db = −lim
l→0

ln Nb(l)
ln l

(6)
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On the other hand, a non-fractal network is characterised by a sharp decay of Nb(l), with l described
by an exponential function as follows [15,16]:

Nb(l) ∼ βe−dbl (7)

2.2. Complexity of Networks

The complexity measure of a network proposed by Lei, Liu [17] is defined as:

c(G) = d(G)s(G) (8)

where d(G) = |E|/
(
4CR3/3Δ

)
is the absolute density [18]; |E|, C, R, and Δ are the number of edges,

circumference, radius, and diameter of the network, respectively. s(G) = −k
|V|∑
i=1

(
pqi

i − pi
)
/(1− qi) is

known as structure entropy based on degree and betweenness [17], where k is the Boltzmann constant,
|V| is the number of nodes, pi =

ki
|V|∑
i=1

ki

, qi = 1 + (bmax − bi), and bmax is the maximum value of the

betweenness computed by the Equation (2). This measure captures the topology of the networks, but it
is not affected by scales and their types.

2.3. Box-Covering of Complex Networks

To obtain Nb(l), consider the phrase “No one behind, no one ahead”. Its word co-occurrence
network is shown in Figure 1. The number of boxes to cover the network Nb(l) for l = 1, and l =
Δ + 1—where Δ is the diameter of the network—is the number of nodes of the network and one,
respectively. The Nb(l) from 2 to Δ is not a trivial answer.

Figure 1. Word co-occurrence network of “No one behind, no one ahead”; the nodes in same colour
belong to the same box.

For example, Nb(l = 1) = 4 and Nb(l = Δ + 1) = 1 for the network of Figure 1. To obtain the Nb(l = 2),
we first compute a dual network (G’) from the original (G) as follows: given a distance l; two nodes i, j,
in the dual network, are connected if the distance between lij is greater than or equal to l. For example,
we start the procedure from the node “no”, see Figure 2; “no” and “behind” have a distance of two in
G, thus, they will be connected in G’. Next, the node “ahead” as the starting node is chosen—notice
that the distance from it to “behind” is two—thus, a connection in G’ will be drawn (see Figure 2).
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Figure 2. Covering of the network for a given box size (l = 2). The number of boxes in this network is
Nb(2) = 2.

Then, the nodes of G’ must be coloured following a single rule: two nodes directly connected
will be painted different colours. The nodes of the resulting coloured dual network G’ are mapped
to original network G. The number of colours of G’ represents the minimum number of boxes Nb(l)
of a given value of l to cover the network. The nodes of G, in the same colour, belong to the same
box. The procedure described above is repeated until l = Δ + 1. For more profound details of the
box-covering algorithm, the reader is referred to the work of Chaoming, Lazaros [19]. Since l vs.
Nb(l) characterises the topology of the network, the area under the box-covering curve, l vs. Nb(l)
(AUB), was also included in the measures of the word co-occurrence network.

2.4. Robustness of Fractal Networks

Intentional network attacks are based on different centrality measures such as: the node degree or
betweenness. They differ in the approach to compute those centrality measures such as: computing
the global degree or betweenness, then performing the attack, or recomputing the centrality measure
after a node is removed [20–23]. The fraction of nodes necessary to break down a fractal network
(pc) by a random attack are close to the total number of nodes; thus, these networks are extremely
robust [24]. On the other hand, this robustness decreases drastically when the nodes with a high degree
are selected to be removed [20,25]. This vulnerability to intentional attack relies on that a few nodes,
with a high degree, maintain the connectivity of the network [26]. The robustness of each network is
quantified by the size of the largest connected component Cc after removing a fraction p node from the
network [20,24,26,27] when Cc(pc) � 0 the network has been disintegrated. The value of pc is low for
fragile networks, and the opposite for robust networks.

Although the pc value is useful for measuring the overall damage caused by the attack strategy, it
does not reflect the damage of an individual node removal; for example, Figure 3 shows the plot of Cc

vs. p, where the value of pc is 0.5 and 0.49 for networks one and two, respectively.
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Figure 3. The damage of an individual node removal of network one and two. Although the pc of
networks one and two are 0.5 and 0.49, respectively, the area under the robustness curve reflects more
precisely the vulnerability of the networks (0.0956 for network one and 0.060 for network 2).

This means that for both networks, it is necessary to remove approximately 50% of the nodes
to disintegrate them in components that contain at most one node. Moreover, based on Figure 3,
the removal of the nodes from network two causes more damage than the removal of those from
network one. This damage can be quantified by computing the Area Under the Robustness Curve
(AURC)—0.0956 for network one and 0.060 for network 2—to a higher the value, the higher the
robustness of the network. The AURC of the attack performed by node degree was included as a
measure of network robustness instead of pc.

3. Materials and Methods

From seven Mexican writers —Juan José Arreola Zúñiga, Carlos Fuentes Macías,
Jorge Ibargüengoitia Antillón, Carlos Monsiváis Aceves, José Emilio Pacheco Berny, Octavio Irineo Paz
Lozano, and Alfonso Reyes Ocha—21 essays, 21 narratives (15 tales and six novels), and 21 research
articles were the corpus for this research (see Table 1). Noticeably, some authors wrote titles classified
as essays, tales, or novels, such as Carlos Fuentes, Jorge Ibargüengoitia, and José Emilio Pacheco.
The essays, narratives, and research articles were published between 1911 and 2019. All the titles were
obtained in an electronic format such as pdf and then converted to plain text.

The node degree (k), betweenness (b), shortest path length (spl), clustering coefficient (cc),
and nearest neighbourhoods’ degree (nnd), as well as more complex measures such as: the fractal
dimension (db) obtained by the Equation (6), the complexity of a network c(G) given by the Equation (8),
the Area Under Box-covering (AUB), and the Area Under the Robustness Curve (AURC), were computed
for each network of each title. Statistical analysis was carried out to select those measures that have a
significant difference by literary genres and produce a better classification.

Then the Support Vector Machine (SVM), Naïve Bayes (NB), Decision Tree (DT), and Neural
Network (NN) implemented in Weka [28] and fourth data mining views—described later and based
on the measures mentioned above—were employed to classify the literary works. The hyperparameter
optimisation of the data mining techniques was conducted by sequential model-based algorithm
configuration [29,30]. The hidden layers and the nodes learning function of NN were 28 and sigmoid,
respectively. The polynomial kernel was used in SVM, and all measures of the networks were
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normalised before training and validating SVM and NN. The NN technique was used with a normal
distribution to estimate the probabilities of the network measures. DT uses the C4.5 algorithm [31].

Table 1. The genre, number of titles, and primary author of the corpus.

Genre Number of Titles Primary Author

Essay 6 Alfonso Reyes Ochoa
Essay 3 Carlos Fuentes Macías
Essay 6 Carlos Monsiváis Aceves
Essay 6 Octavio Irineo Paz Lozano

Narrative (Tale) 2 Carlos Fuentes Macías
Narrative (Tale) 5 José Emilio Pacheco Berny
Narrative (Tale) 3 Jorge Ibargüengoitia Antillón
Narrative (Tale) 5 Juan José Arreola Zúñiga

Narrative (Novel) 1 Carlos Fuentes Macías
Narrative (Novel) 1 José Emilio Pacheco Berny
Narrative (Novel) 3 Jorge Ibargüengoitia Antillón
Narrative (Novel) 1 Juan José Arreola Zúñiga
Research Article 16 Several authors

The efficacy of each data mining technique and data mining views was validated by 5-fold
cross-validation, comparing the Area under the Receiver Operating characteristic Curve (AROC).
The AROC is useful to measure the performance of a data mining technique when the dataset is
unbalanced [32]. Values of AROC closer to 1 mean a better classification than those closer to 0.5.
This analysis shows the impact of data mining techniques and the measures on the classification
of literary works. These results answer research question one (see Figure 4). Also, the accuracy of
classification is presented as additional information that is computed as (TP Positive (TP) + False
Positive (FP) + False Negative (FN) + True Negative (TN)). The computation of AROC and accuracy
are well-known for a two-class problem. Furthermore, for a multi-class problem, for each time one
class could be considered as positive, then all the others as negative. This means that TP, TN, FP,
and FN are calculated for each class. Therefore, a confusion matrix and AROC curve is obtained for
each class (see [33,34] for more details).

Figure 4. The experimental design followed to answer the research questions.

A set of word co-occurrence networks of each title was obtained and the first network was
built using the full text. The second was obtained by deleting numbers and functional words.
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A lemmatisation stage created the third after numbers and functional words deletion, and the fourth
network was attained only through a lemmatisation stage (see Figure 4).

The networks were obtained by using the full text, by deleting numbers and functional words,
by adding a lemmatisation stage after the numbers and functional words deletion, and through only a
lemmatisation stage, are classified as fractal or non-fractal. Thus, research question two and three will
be answered.

4. Results and Discussion

Tables 2–5 show the descriptive statistics by literary genre of the three types of networks—the
first was built using the full text; the second was built by deleting numbers, punctuation marks,
and functional words; the third was built by adding a lemmatisation stage; and the fourth was built
through only a lemmatisation stage, denoted by subscripts f, nf, l and ol, respectively.

Table 2. Mean and standard deviation by genre of node degree (k), betweenness (b), shortest path
length (spl), clustering coefficient (cc), nearest neighbourhoods’ degree (nnd), fractal dimension (db),
complexity c(G), the Area Under Box-covering (AUB), and the Area Under the Robustness Curve
(AURC) of the networks built using the full text.

Genre Kf(μ–σ) bf (μ–σ) slpf (μ–σ) ccf (μ–σ) nndf (μ–σ) dbf (μ–σ) c(G) f (μ–σ) AUBf (μ–σ) AURCf (μ–σ)

Essay 5.39–0.94 8249.16–4869.58 2.9–0.81 0.427–0.107 282.51–234.12 6.07–0.772
7.84 ×

10−4–3.83 ×
10−4

1510.61–969.37 0.0154–0.0031

Narrative
(Tale) 4.76–0.536 3868.33–1709.2 3.02–0.94 0.311–0.082 99.57–55.59 5.06–0.801

7.22 ×
10−4–3.62 ×

10−4
685.86–315.90 0.0231–0.0067

Narrative
(Novel) 6.81–1.01 13667.19–4796.52 2.78–0.061 0.577–0.088 559.34–233.84 7.42–0.644

6.78 ×
10−4–2.48 ×

10−4
2631.5–1013.36 0.01456–0.0017

Research
Article 5.80–0.94 5995.1–2013.42 3.00–0.092 0.374–0.065 153.31–73.31 5.43–0.539

3.72 ×
10−4–2.39 ×

10−4
1068.4–379.76 0.0284–0.0071

Table 3. Mean and standard deviation by genre of node degree (k), betweenness (b), shortest path
length (spl), clustering coefficient (cc), nearest neighbourhoods’ degree (nnd), fractal dimension (db),
complexity c(G), the Area Under Box-covering (AUB), and the Area Under the Robustness Curve
(AURC) of the networks built by deleting numbers and functional words.

Genre knf(μ–σ) bnf (μ–σ) slpnf (μ–σ) ccnf (μ–σ) nndnf (μ–σ) dbnf (μ–σ) c(G)nf
(μ–σ) AUBnf (μ–σ) AURCnf (μ–σ)

Essay 3.763–1.067 15092.572–8418.110 5.370–0.911 0.052–0.037 12.101–9.638 2.057–0.352
1.5 ×

10−5–1.32 ×
10−5

2299.330–1416.600 0.077–0.010

Narrative
(Tale) 3.998–0.861 13572.998–7935.093 5.109–0.922 0.710–0.042 12.319–5.054 2.141–0.302

2.1 ×
10−5–1.61 ×

10−5
2022.467–1173.400 0.083–0.018

Narrative
(Novel) 4.703–0.425 16327.442–11950.3024.460–0.249 0.097–0.029 17.797–5.444 2.390–0.160

1.8 ×
10−5–0.77 ×

10−5
2656.333–1971.806 0.087–0.006

Research
Article 3.483–1.054 15538.651–7392.827 5.770–1.03 0.037–0.024 10.648–9.539 1.940–0.383

1.2 ×
10−5–0.59 ×

10−5
2339.476–1314.540 0.070–0.012
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Table 4. Mean and standard deviation by genre of node degree (k), betweenness (b), shortest path
length (spl), clustering coefficient (cc), nearest neighbourhoods’ degree (nnd), fractal dimension (db),
complexity c(G), the Area Under Box-covering (AUB), and the Area Under the Robustness Curve
(AURC) of the networks built by deleting numbers, functional words, and lemmatisation stage.

Genre kl(μ–σ) bl (μ–σ) slpl (μ–σ) ccl (μ–σ) nndl (μ–σ) dbl (μ–σ) c(G)l (μ–σ) AUBl (μ–σ) AURCl (μ–σ)

Essay 4.081–1.649 21871.411–7787.529 5.418–0.960 0.009–0.005 9.074–7.389 1.990–0.358
1.37 ×

10−5–1.87 ×
10−5

2202.024–752.531 0.115–0.023

Narrative
(Tale) 3.148–0.544 9538.206–4171.808 5.823–0.816 0.008–0.004 5.652–2.372 1.758–0.193

2.1 ×
10−5–1.61 ×

10−5
1121.733–411.3845 0.003–0.0149

Narrative
(Novel) 6.197–1.796 25284.524–7739.246 4.181–0.499 0.020–0.010 20.689–10.965 2.489–0.379

1.9 ×
10−5–1.49 ×

10−5
2760.667–677.608 0.138–0.017

Research
Article 4.849–0.691 11758.340–6325.385 4.296–0.352 0.207–0.010 11.169–2.802 2.234–0.155

2.8 ×
10−5–1.85 ×

10−5
1272.857–540.06 0.138–0.016

Table 5. Mean, and standard deviation by genre of node degree (k), betweenness (b), shortest path
length (spl), clustering coefficient (cc), nearest neighbourhoods’ degree (nnd), fractal dimension (db),
complexity c(G), the Area Under Box-covering (AUB), and the Area Under the Robustness Curve
(AURC) of the networks built only by lemmatisation stage.

Genre kol(μ–σ) bol (μ–σ) slpol (μ–σ) ccol (μ–σ) nndol (μ–σ) dbol (μ–σ) c(G)ol
(μ–σ) AUBol (μ–σ) AURCol (μ–σ)

Essay 5.377–0.94 2943.853–1852.075 2.915–0.081 0.413– 0.093 280.854–232.41 6.041–0.775
7.85 ×

10−4–3.84 ×
10–4

1520.381–972.673 0.0151–.003

Narrative
(Tale) 4.756–0.534 1324.018–

628.419 3.033–0.095 0.289– 0.06 99.135–
55.332 5.019–0.798 7.24 × 10−4–

3.63 × 10−4 693.8– 316.46 0.0242–0.007

Narrative
(Novel) 6.794–1.014 5035.632–1864.014 2.793–0.062 0.507–0.093 555.98–

231.929 7.383–0.673
6.79 ×

10−4–2.49 ×
10−4

2644.833–
1012.555 0.0151–0.002

Research
Article 5.777–0.466 2096.629–725.505 3.015–0.095 0.349–0.05 152.065–72.851 5.378–0.559

3.59 ×
10−4–2.42 ×

10−4
1078.357–379.765 0.0283–0.007

An Analysis of Variance (ANOVA) or a Kruskal–Wallis test—an ANOVA test carried out if the
normality and homoscedasticity assumptions were valid for the given measure—was performed to
select the measures of complex network that are influenced by essay, tale, novel, and research article
genres. The one-way ANOVA conducted on the individual influence of essay, tale, novel, and research
article on kc, splf, ccf, dbf, c(G)f, and AURCf shows significant effects: F(3,59) = 12.81, p < 0.0001; F(3,59)
= 15.039, p < 0.0001; F(3,59) = 14.77, p < 0.0001; F(3,59) = 19.27, p < 0.0001; F(3,59) = 6.40, p < 0.001;
and F(3,59) = 22.35, p < 0.0001. Similarly, a Kruskal–Wallis test shows a significant difference of the
literary genres on nndf, AUBf, bf; H(3) = 29.44, p < 0.0001; H (3) = 27.98, p < 0.0001; and H(3) = 28.68,
p < 0.0001.

The one-way ANOVA conducted on the individual influence of essay, tale, novel, and research
article on splnf, ccnf, dbnf, and AURCnf shows significant effects: F(3,59) = 3.70, p = 0.016; F(3,59) = 6.17,
p = 0.001; F(3,59) = 3.00, p ≤ 0.037; and F(3,59) = 4.28, p = 0.008. On the other hand, no effect on knf
F(3,59) = 2.65, p = 0.057; nndnf F(3,59) = 1.12, p = 0.347; bnf F(3,59) = 0.227, p = 0.877; c(G)nf H(3) =
3.99, p = 0.262; and AUBnf H(3) = 1.29, p = 0.731 by genres were found. Although splnf, ccnf, dbnf, and
AURCnf have a significant difference, they do not provide additional information—of those provided
by the measures of full-text networks—to differentiate the genre. For example, splnf is only statistically
different for the novel and tale (see Table 6). However, slpf is statistically different for the novel, essay,
and both the research article and tale. Thus, splnf, ccnf, and dbnf were not included in the set of measures
to build data mining models. Table 6 summarises the significant statistical difference for splf and splnf.

Finally, the one-way ANOVA conducted on the individual influence of essay, tale, novel, and
research article on spll and AURCl shows significant effects: F(3,59) = 17.62, p < 0.0001; F(3,59) = 4.28,
p = 0.008. Similarly, a Kruskal–Wallis test shows a significant difference of kl, ccl, dbl, c(G)l, nndl, AUBl,
and bl by genre: H(3) = 32.98.44, p < 0.0001; H(3) = 23.38, p < 0.0001; H(3) = 30.20, p < 0.0001; H(3)
= 22.03, p < 0.0001; H(3) = 29.38, p < 0.0001; H(3) = 32.40, p < 0.0001, p < 0.0001; and H(3) = 32.64,
p < 0.0001.
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Table 6. The subsets built using the significant statistical differences between slpf and slpnf induced by
the novel, essay, research article, and tale. The value in the intersection of each row and column is the
means of each measure for a given genre.

Genre Subset 1 Subset 2 Subset 3

Novel–slpf 2.78
Essay–slpf 2.90

Research Article–slpf 3.00
Tale–slpf 3.02

Novel–slpnf 4.46
Essay–slpnf 5.10 5.10

Research Article–slpnf 5.37 5.37
Tale–slpnf 5.77

After these analyses, the splf, kf, nndf, ccf, bf, dbf, AURCf, AUBf, c(G) f, spll, kl, nndl, ccl, bl, dbl,
AURCl, AUBl, and c(G)l were selected to classify the genre of each literary work. This set of measures
is a data mining view named DV1, and DV1 was compared with a data mining view named DV2 that
contains all the measures computed on the three types of co-occurrence networks described previously.
Also, a third data mining view named DV3, which contains only the measures spl, k, nnd, cc, and b
obtained from the three types of co-occurrence networks, was tested to show that measures such as db,
c(G), AUB, and AURC contribute to capturing the features of the literary genre. Since the influences of
the data mining technique and data mining view on the AROC need to be tested, a two-way ANOVA
is appropriate for this purpose, providing the data is normal and homoscedastic [32,35]. However,
the AROC generated by our experiments does not meet these assumptions; thus, a Scheirer–Ray–Hare
test [36,37] was used instead. A Scheirer–Ray–Hare test shows there is a significant difference among
the AROC of the data mining views: H(2) = 21.496, p < 0.001, the data mining techniques: H(3) = 84.79,
p < 0.001, and the interaction between both: H(6) = 30.167, p < 0.001. Figure 5 summarises the effect of
both data mining view and data mining technique on AROC that are detailed below.

Figure 5. The effect of data mining view and data mining technique on Area under the Receiver
Operating characteristic Curve (AROC).

A Kruskal–Wallis test shows that DV1, DV2, and DV3 affect the median of the AROC:
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H (2) = 21.496, p < 0.001. A posthoc Mann–Whitney test using a Dunn–Sidak adjustment [38]
(α = 0.0169) shows that the median of DV1 (Mdn = 0.975) is higher than DV2 (Mdn = 0.968)—U (NDv1

= 400, NDv2 = 400) = 68704, z = −3.59, p < 0.001 and DV3 (Mdn = 0.955)—U (NDv1 = 400, NDv2 = 400) =
66131, z = −4.388, p < 0.001. Thus, the statistical analysis carried out on the measures of three types of
networks is useful to select relevant measures that increase the AROC. No statistical difference was
found between DV2 and DV3, U (NDv2 = 400, NDv2 = 400) = 78117, z = −0.59, p = 0.236. This evidence
suggests that well-known measures such as: node degree, shortest path length, betweenness, clustering
coefficient, and the average of nearest neighbourhoods’ degree—used to build DV3—applied in the
previous research to identify authors’ writing styles [3–8] are not enough to produce a higher AROC.
On the other hand, more complex measures such as: db, c(G), AUB, and AURC improve the classification.

Similarly, the Kruskal–Wallis test shows that the medians of the AROC obtained from NN, SVM,
NB, and DT affect the AROC, H (3) = 84.793. A posthoc Mann–Whitney test using a Dunn–Sidak
adjustment [38] (α = 0.0085) shows that the median of both NN (Mdn = 1.00) and SVM (Mdn = 0.975)
were higher than those of NB (Mdn = 0.968)—see the corresponding row and column of Table 7 for the
result of the pair-wise test e.g., row NB and column NN show a significant difference: U (NNN = 300,
NNB = 300) = 36784.5, z = −3.995, p < 0.0001— and DT (Mdn = 0.911). No statistical difference between
NN (Mdn = 1.00) and SVM (Mdn = 0.975) was found.

Table 7. Pair-wise Mann–Whitney test using a Dunn–Sidak adjustment (α = 0.0085) among data mining
techniques. The intersection of a row and a column presents the result of the test between the two data
mining techniques.

NN SVM NB DT

NN —

SVM
U (NNN = 300, NSVM =
300) = 41859, z = −1.55,

p < 0.120
—

NB
U (NNN = 300, NNB =

300) = 36784.5, z =
−3.995, p < 0.0001

U (NSVM = 300,
NNB = 300) =

35311, z = −4.749, p
< 0.0001

—

DT
U (NNN = 300, NDT =

300) = 29119, z =
−7.816, p < 0.0001

U (NNN = 300, NDT
= 300) = 30523, z =
−6.989, p < 0.0001

U (NNN = 300, NDT =
300) = 35438.5, z =
−4.588, p < 0.0001,

—

Then a significant difference between NB (Mdn = 0.968) and DT (Mdn = 0.911), was found.
These results suggest that the DV1 and the use of NN or SVM produce statistically equal values of
AROC. The accuracy of NN and SVM based on DV1 are 0.93 and 0.90, respectively, based on DV1.

To support the conjecture that deleting number, punctuation, and functional words do not have
a significant effect on the AROC, the models of NN based on DV1 and the fourth data mining view
named DV4, which contain the measures from the networks built using the full text (splf, kf, nndf, ccf, bf,
dbf, AURCf, AUBf, and c(G) f) and those from networks built using only a lemmatisation stage (splol,
kol, nndol, ccol, bol, dbol, AURCol, AUBol, and c(G) ol), were compared. The Mann–Whitney test shows
no statistical difference—U (NDV1 = 100, NDV2 = 100) = 4793, z = −0.631, p = 0.528—between the
AROC of DV1 (Mdn = 1) and DV4 (Mdn = 0.98). The accuracy of DV1 and DV4 is 0.93 for both. Thus,
the deletion of the number and punctuation marks is not useful to reveal stylistic attributes by genre
as lemmatisation does. Furthermore, all these stages together modify the network fractality, as the
evidence presented later suggests. The accuracy of the NN model based on DV1, DV2, DV3, and DV4
are 0.93, 0.90, 0.89, and 0.93, respectively.

To classify each network as fractal or non-fractal, the Akaike Information Criterion (AIC) [39]
were computed for the networks based on the full text. The second network was obtained by deleting
numbers, punctuation marks, and functional words. The third was created by adding a lemmatisation
stage, and the fourth was attained only through a lemmatisation. The AIC is useful to classify networks

66



Entropy 2020, 22, 904

as fractal and non-fractal [40]. To select the better mathematical model, first the AIC for power (denoted
by subscript P) and exponential (denoted by subscript E) models—Equations (5) and (7)—were
computed, then the minimum value is chosen (AICmin). ΔAICi was computed by AICi - AICmin,
where i is the AIC of power or exponential models. The AIC’s rule of thumb is that the two models
are statistically different if ΔAIC is greater than two, thus, the model with ΔAIC = 0 should be
selected [41,42]. Table S2 of the supplementary material shows that the difference between ΔAICP and
ΔAICE for about 87% of the full word co-occurrence network is higher than two; thus, the mathematical
model for the relation l vs. Nb(l) computed by the box-covering algorithm of these networks is the
power model (see Equation (5)). Although for 13% of the networks, a model cannot be selected feasibly
based on ΔAIC, the power model obtained the least value. Thus, most of the full word co-occurrence
networks of literary works are fractal. This result supports the fractality founded in other languages
and English literature by different mathematical analyses [43–46]. Noticeably, selecting the better
model based on the adjusted coefficient of determination (R2) is rather difficult.

Similarly, Table S3 of the supplementary material shows that the difference between ΔAICP and
ΔAICE for about 89% of the word co-occurrence networks—built by deleting numbers, punctuation
marks, and functional words—suggests they are fractal; 2% were classified as exponential, and 9%
were undetermined (since ΔAIC ≤ 2). However, adding a lemmatisation stage to the previous ones
dilutes the fractality (25.3% are fractal, 33.3% are exponential, and 41.3 are undetermined), see Table S4.
The lemmatisation stage alone preserves the fractality of the full-text networks (87% are fractals, and
13% are undetermined); see Tables S2 and S5, which show no difference between the AROC curve of
the classification of literary works according to their genre. Note that the lemmatisation stage preserves
the original fractality of the networks. Thus, this supports the conjecture that lemmatisation is a kind
of renormalisation of a complex network that preserves the fractality. This paves the way to compare
this linguistic renormalisation with that introduced by Song, Havlin [16].

5. Conclusions

This research aims at showing that measures of the word co-occurrence network of literary
works—by Mexican writers—classifies them according to the literary genre. The local measures—such
as: node degree, the average of nearest neighbourhoods’ degree, and global measures using shortest path
length, betweenness, clustering coefficient, and the average of nearest neighbourhoods’ degree—widely
used in the previous research to identify authors’ writing styles, produces acceptable values of AROC
classification. However, more elaborate measures using fractal dimension, complexity, the AUB,
and the AURC show an improvement of AROC. These measures capture the topology based on
the minimum number of boxes to cover the network, the robustness, and the complexity measured
by structural entropy and density. Precisely 87% of the full word co-occurrence networks were
classified as a fractal. Thus, those findings support the conjecture that fractality occurs in the literary
works of Mexican writers, as was previously reported by their English-speaking counterparts. Also,
the empirical evidence suggests that the lemmatisation of literary works is a renormalisation stage that
preserves the original text fractality. On the contrary, the deletion of numbers, punctuation marks,
and functional works, as well as lemmatisation, dilute the fractality. The number of literary works
included in this study limit the generalisation of this conjecture. Also, it would be interesting for
future research directions to compare the renormalisation induced by a lemmatisation stage—linguistic
renormalisation—to renormalisation of networks based on the box-covering algorithm.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/22/8/904/s1,
Table S1 Title, primary author and the gender of the literacy works, Table S2, The adjusted determination coefficient,
AIC, ΔAIC and classification for the networks based the full text, Table S3 The adjusted determination coefficient
R2, AIC, ΔAIC and classification for the networks obtained by deleting numbers, punctuation marks and functional
words, Table S4 The adjusted determination coefficient R2, AIC, ΔAIC and classification for the networks obtained
by deleting numbers, punctuation marks, functional words and a lemmatisation stage, and Table S5 The adjusted
determination coefficient, AIC, ΔAIC and classification for the networks obtained only by a lemmatisation stage.
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Abstract: On the purpose of detecting communities, many algorithms have been proposed for
the disjointed community sets. The major challenge of detecting communities from the real-world
problems is to determine the overlapped communities. The overlapped vertices belong to some
communities, so it is difficult to be detected using the modularity maximization approach. The major
problem is that the overlapping structure barely be found by maximizing the fuzzy modularity
function. In this paper, we firstly introduce a node weight allocation problem to formulate the
overlapping property in the community detection. We propose an extension of modularity, which is
a better measure for overlapping communities based on reweighting nodes, to design the proposed
algorithm. We use the genetic algorithm for solving the node weight allocation problem and detecting
the overlapping communities. To fit the properties of various instances, we introduce three refinement
strategies to increase the solution quality. In the experiments, the proposed method is applied on
both synthetic and real networks, and the results show that the proposed solution can detect the
nontrivial valuable overlapping nodes which might be ignored by other algorithms.

Keywords: data mining; community detection; overlapping communities; modularity

1. Introduction

Determining the group with some particular properties helps the analysts to capture the common
properties from the members in the community. Many applications could be considered based on
the community detection. For example, the precise information delivery, e.g., Google AdWords [1]
increases the transaction amounts for sending the advertisement information to the right person.
Therefore, detecting communities is a popular research topic [2–8].

Many results focus on the disjoin community sets that each node belongs to exactly one
community [2,3]. However, in the real-world networks, many people may belong to multiple
communities, so the communities may overlap with each other. For example, an engineer may
belong to many projects in a company. Thus, instead of strict partitions, fuzzy partitions are more
appropriate for understanding the network structures [9,10]. Fuzzy partitions allow a node belongs to
multiple communities simultaneously. Considering a real-world situation, some staff work together in
a building, and the manager would like to track the movement history for each staff [11]. Each one
may move to various rooms, and the move purpose comes from the role of each staff. When we treat
the purpose of all staff to be the communities, the staff may belong to different communities.

The modularity function proposed by Newman and Girvan [12] is the famous measurement of
network partitions to measure the structure of a given network. The modularity function calculates

Entropy 2020, 22, 819; doi:10.3390/e22080819 www.mdpi.com/journal/entropy71
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the difference between the number of real intra-community edges and the expected number of edges
to identify the qualities of the communities. The partition with larger modularity value has better
community structure than those with lower modularity values. Finding the partitions with maximum
modularity is a straightforward solution to the community detection. However, the modularity
maximization has been proved as an NP-hard problem [13], and finding the partition with maximum
modularity is difficult. Therefore, many results are proposed to calculate the near optimal solutions,
such as the random walk processes [14], the structural clustering [15], and the polynomial-time
approximation algorithms [16].

On the other hand, besides the computation complexity, the modularity maximization has two
problems in detecting communities:

Resolution limits Fortunato et al. introduced that small communities cannot be detected in large
networks [17,18]. Since the null model of modularity provides the global connectivity, the expected
number of edges between two small groups in a large network might be very small. Eventually,
the two small groups will be treated as one community. Many approaches are proposed for solving
resolution limits to provide high solution qualities, such as greedy algorithms [19,20], spectral
algorithms [21–23], simulating annealing algorithms [24] and mathematical programing [25].
Overlapping community Some nodes may belong to several communities, so simply assigning
the nodes to one community is difficult. Thus, the straightforward solution is to modify the
modularity for allowing the nodes belonging to multiple communities at the same time [26–30].
Figure 1 shows two benchmarks about overlapping communities. In Figure 1a, the node v9 is the
overlapping node, and we assign v9 to community B and C. Thus, we get three communities, and
they are {{v1, v2, v3, v4}, {v5, v6, v7, v8, v9}, {v9, v10, v11, v12, v13, v14}}. Moreover, v5 is assigned to
A and B in Figure 1b.

(a) G4415, an example with three communities (b) G415, an example with two communities
Figure 1. The benchmark with more than two communities and two communities.

In this paper, we focus on the overlapping community detection, and propose the node weight
allocation problem denoted by NWAOCD to formulate the community overlap. Since computing the
partition with maximum modularity is NP-complete, decreasing the computation cost to seek the
near optimal partitions is the popular approach in solving the overlapping community detection.
The heuristic algorithms are outstanding in seeking better solutions in large search space, especially
for the genetic algorithms (GAs) [2,3,8]. Therefore, some works consider GA as the core approach in
their solutions. Mu et al. use a hybrid heuristic approach including GA and the simulated annealing
to find out the communities [2]. Shang et al. use GA with an extra local search [3]. The heuristic
algorithms perform well in seeking the solution with high quality in a large search space. However,
the above results do not deal with the overlapping properties. The overlapping networks have
various properties, so some approaches consider the multi-objective approach to find the balanced
results [4–6,31]. The balanced results mean that most properties are considered, but the derived results
may not be closed to the real-world properties. Therefore, Behera et al. check the similarity between
each pair of nodes [8]. The node similarity is also considered by Ezeh et al. to the overlapping nodes
and their neighbors [32]. To emphasize the community attribution of each node, Shakya et al. combine
fuzzy with the GA to calculate the detail properties of the nodes [7]. Shakya et al. consider the GA to
reduce the computation time without decreasing the solution quality too much and adopt the fuzzy
communities to identify the overlapping nodes.
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Even if some approaches provide the solutions with high modularity, the partitions may not
reflect the properties of the real-world networks in some situations. We found that the solution quality
could be refined by considering following issues: ignoring overlapping nodes, merging clusters,
and reweighting nodes. Therefore, we consider the modularity to design the solution searcher of the
approach GANWA

IMR . We firstly modify the fitness function in GANWA
IMR to show the network properties by

considering the null model, so the revised fitness function could output the partitions that are closer
to the real-world behavior. Moreover, we design three refinement strategies to make the solutions to
reflect the real-world properties.

In the simulation, we consider the synthetic network and popular networks that include Zachary
Karate Club Network, Books about American Politics, and American College Football to evaluate
the solution quality calculated by GANWA

IMR and other approaches. The derived networks correctly
reflect the real-world properties in the synthetic networks and the real-world networks. Moreover, the
proposed refinement strategies are also evaluated, and the refinement strategies provide higher quality
of the derived partitions in the perspective of the real-world behavior. Therefore, the simulation results
show that GANWA

IMR outputs the partitions, and the results are closed to the real-world properties.
This paper is organized as follows. The overlapping communities and the problem definition are

introduced and formulated in Section 2. The proposed approach GANWA
IMR is shown in Section 3, and the

refinement strategies are also listed in this section. The simulation and comparisons are arranged in
Section 4, and we show the network partitions in this section. Eventually, the conclusion and future
works are stated in Section 5.

2. Preliminary

2.1. Modularity in Overlapping Communities

The community detection of a given network involves two processes. The first one is to find out the
network structure and the other one is to determine the numbers of communities. Here we introduce
the works proposed by Nepusz et al. [33] to explain the modularity in overlapping communities.
Nepusz et al. consider a belonging coefficient matrix U = [αic]n×k, where n is the number of nodes,
and k is a given number of communities. Each entry αic shows how strongly the node vi belongs to the
community c. The constraint of the relationship between vi and all communities is:

k

∑
c=1

αic = 1, ∀αic ∈ [0, 1], 0 <
n

∑
i

αic < n. (1)

So, the objective function is:

DG(U) =
n

∑
i,j=1

wij(s̃ij − sij)
2, (2)

where wij is the predefined weight, sij = ∑k
c=1 αicαjc, and s̃ij is the prior similarity of vi and vj.

By minimizing Equation (2), the nodes with high similarity will be grouped together. So, U with
optimal result DG(U) is the overlapping community structure.

To determine an appropriate number of communities k, Nepusz et al. iteratively increase the
value of k from 2, and then choose the value of k with the highest fuzzy modularity value calculated
by Equation (3).

QNe
ov =

1
2m

k

∑
c=1

n

∑
i,j=1

(Aij −
kikj

2m
)αicαjc (3)

2.2. Problem Definition

The overlapping community detection problem is considered as a node weight allocation problem,
denoted by NWAOCD for short. Given a network G(V, E), a maximum number of communities k,
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and a null model weight γ. Find a modified belonging coefficient matrix M = [λic]n×k, such that the
Q

′
ov value is maximized. The objective function and constraints are:

max Q
′
ov =

1
2m

k

∑
c=1

n

∑
i,j=1

(Aij − γ
kikj

2m
)λicλjc

s.t. λic ∈ [0, 1]
|C|
∑
c=1

λ
inc f
ic = 1.

(4)

We consider inc f as the increasing factor. Given inc f > 1, the total weight of an overlapping node over
all communities is larger than one, i.e., ∑k

c=1 λic > 1. The total weight of a non-overlapping node is
still equal to one exactly, i.e., ∑k

c=1 λic = 1.
By solving the NWAOCD problem, the overlapping community structure will be obtained by

modifying the optimal solution. Note that if inc f = 1 and γ = 1, Equation (4) is the same with
Equation (5), which means the fuzzy modularity is a special case of the NWAOCD problem.

max Qov =
1

2m

k

∑
c=1

n

∑
i,j=1

(Aij −
kikj

2m
)αicαjc

s.t. αic ∈ [0, 1]
k

∑
c

αic = 1.

(5)

Although Griechisch et al. [34] apply the fuzzy modularity to find overlapping communities,
there are still some networks are unresolved. We introduce the networks with more than two
communities and two communities to show this issue. The benchmark is shown in Figure 1. The values
of Qov for G4415 and G415 are shown in Table 1. We can see that v9 belongs to B in G4415 while v5

belongs A in G415, and they are not overlapping nodes.
The major difference between Equations (4) and (5) is the coefficient matrix. Each entry in

Equation (5) is unweighted while that is weighted in Equation (4). Therefore, we need a mapping as
shown in the following equations.

λic = inc f
√

αic

αic = λ
inc f
ic

(6)

Table 1. The values of Qov in G4415 and G415.

(a) The Qov values with different assignments of v9 in G4415.

α9,B α9,C α9,D Qov

1 0 0 0.5736
0.7 0.3 0 0.5709
0.3 0.7 0 0.5664
0 1 0 0.5624
0 0 1 0.5560

(b) The Qov values with different assignments of v5 in G415.

α5,A α5,B α5,C Qov

1 0 0 0.4305
0 0 1 0.4151
0 1 0 0.4058
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3. Allocate Node Weight by Genetic Algorithms

Computing the partition with maximum modularity has been proved as the NP-complete
problem [13]. Even if we consider the solution with high computation performance, e.g., the cloud
computing [35,36] and the parallel computing [37], to compute the partitions for maximizing the
modularity, it still requires huge computation resource. Therefore, we propose a GA-based approach
to get the near-optimal solution with minimum computation. The proposed algorithm GANWA

IMR
includes two steps. We first apply GA to obtain a high-quality feasible solution, and then design three
refinement strategies to improve the derived solution to modify the derived partition to be closer to
the real-world behavior. In the following context, we will introduce the revised GA algorithm and the
refinement strategies.

3.1. Genetic Algorithm

The iterative process of GA as shown in Algorithm 1 includes three major processes: crossover,
mutation, and selection. Before invoking the iterative process, the initial population P with indin
chromosomes will be determined firstly. Each chromosome is represented by M = [λic]n×k, as shown
in Figure 2. Each entry λic is a weight to indicate the assignment from vi to c. The initial population
is generated randomly, and each row of M must satisfy the problem constraints. Given a maximum
number of iterations maxt, the GA then invokes following processes.

1. Crossover: we randomly select two chromosomes CA and CB form P, and a random column.
The offspring is generated by the selected column of CB and the remaining part of CA as shown
in Figure 3. The number of offsprings is determined by indin, and in other words, we will obtain
2 × indin chromosomes after the crossover.

2. Mutation: the mutation process is launched in 80% probability after finishing the crossover.
Once the mutation is invoked, one λic of a randomly selected chromosome will be picked up
within [−0.1, 0.1]. Eventually, the offspring will be normalized to be a feasible solution to fit the
requirements in NWAOCD.

3. Selection: we consider the modularity to be the objective function, and finding the partition with
maximum modularity is the purpose of GA. We use Q

′
ov to be the fitness function and calculate

Q
′
ov of each solution. Moreover, all chromosomes are sorted in the descending order of Q

′
ov.

Computing the chromosomes with maximum Q
′
ov is the major goal of the GA, so we select top

indin individuals, and they will survive to the next generation.

Algorithm 1: Genetic algorithm for allocating node weight
Data: maxt: the maximum number of iteration, indin: the number of survival genes

1 P ← initialization(indin);
2 for t = 1 : maxt do

3 P′ ← crossover(P);
4 P′ ← mutation(P′);
5 P ←selection(P′);

Figure 2. The representation of a chromosome.
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Figure 3. The idea of the crossover operation. Two chromosomes are switched the selected area to
generate one offspring.

To keep the heavily overlapping nodes, a threshold αT in terms of α is given. We transform αT to
the corresponding λ with the threshold λT by Equation (6).

3.2. Refinement Strategies

GA provides an elite solution from the population, but this solution may not be suitable for
all instances. In the pre-analysis phase, we observed three situations derived by GANWA

IMR , and we
could receive better solutions by some extra processes. The situations are (1) lightly overlapping
nodes, (2) mergeable clusters, and (3) reweight nodes. We call the processes that are used to get better
solutions the “refinement strategies”. Therefore, we provide three refinement strategies to refine the
solutions for the above situations, respectively.

Ignore slight overlapping nodes The overlapping degree of each λ is important for splitting
the communities. Determining the community with low value of λ is easier than that with a
higher value. We use a threshold λT corresponding to Equation (6) to determine that the entry
should be treated as an entry without overlaps. In addition, we also can derive λT by Equation (6).
When λ < λT , we set λ as zero. When λT is set as a higher value, more entries will be assigned to
single community.
Merge clusters Some small communities should be merged by other large community. If the
overlapping ratio of any two communities is larger than a given merge threshold mT , they should
be simply merged to a single community. Given two non-empty communities, we define ovratio =

|C1 ∩C2|/min(|C1|, |C2|) to be the overlapping ratio. When ovratio is larger than a given threshold,
C1 and C2 will be merged.
Reweight node values To calculate the weight distribution of each overlapping node, directly
converting λ to α via Equation (6) results in a situation that a node belongs to multiple
communities but the majority of its weight is allocated to one community. To avoid this problem,
we propose the reweight strategy. The weight should be proportional to the number of edges that
vi linked in c. Moreover, if the neighbors of vi in c are more than the average number of nodes in c,
c is more important than others for vi. Given a community c, avgNighborc = ∑i,j∈V(c) Aij/|V(c)|
represents the average number of neighbors and αi = ∑c∈C(i) ∑j∈V(c) Aij/avgNighborc be the
normalized term. Therefore, we have the new weight is:

αic =
1
αi

∑
j∈V(c)

Aij

avgNighborc
, (7)

where V(c) is the set of nodes belong to c and C(i) is the set of communities that vi belongs to.
We use αi for normalization, so we have ∑k

c=1 αic = 1.

4. Simulations

We consider a synthetic network and three real networks including Zachary Karate Club network,
Books about American Politics, and American College Football to evaluate the performance of GANWA

IMR .
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The evaluation criteria involve detecting overlapping community structure, detecting meaningful
communities, detecting dense overlaps, and detecting heavily overlapping nodes.

4.1. Synthetic Network

We consider G210 as our synthetic network which has 210 nodes and four pre-defined
communities A, B, C and D. Each of them has 60 nodes and 10 shared by any two continuous
communities, i.e., A = {v1 : v60}, B = {v51 : v110}, C = {v101 : v160}, and D = {v151 : v210}. Note that
A and B share nodes {v51, . . . , v60}, B and C share nodes {v101, . . . , v110} and so on. Each pair of nodes
has 3% chances to be linked to each other, and for each community they shared, an extra 55% chances
for them to be linked. Thus, overlapping parts will be denser than non-overlapping parts [38].

Since the fuzzy modularity is a special case of the NWAOCD problem, we could use the same
optimization strategy to solve the problem. The parameter settings are inc f = 1.5 and 1, αT = 0,
mT = −1, k = 6, and γ = 1. Figure 4 shows the bitmaps of sorted adjacency matrices. The black and
white points represent the entries of 1s and 0s respectively. The adjacency matrices are sorted by the
following strategy:

1. Nodes are grouped by the detected community id. For the overlapping nodes, only the smallest
id is counted.

2. For each c, all nodes are sorted in descending order of λic. Therefore, the overlapping nodes will
be in the bottom area of each community.

(a) Result of our method (b) Result of fuzzy modularity

Figure 4. The comparison between GANWA
IMR and fuzzy modularity.

Figure 4a is the result obtained by GANWA
IMR . The dense blocks indicate four communities, and two

continuous blocks have an overlapping part which is composed of overlapping nodes. In this result,
all the overlapping and non-overlapping nodes are correctly identified. Figure 4b is the result of fuzzy
modularity. Four communities are detected too, but no overlapping nodes are identified.

Although the maximum number of communities is six, only four communities were detected
while the other two were empty communities. Since the number of communities could be captured by
modularity [39], it is unnecessary to know the exactly value of number of communities in our method.

4.2. Zachary Karate Club Network

Zachary karate club network [40] is a popular benchmark for community detection algorithms.
It has 34 nodes and 78 edges while nodes are members and edges are friendships between them.
This network includes two groups due to a disagreement between the administrator and the instructor.
Figure 5 is the result captured by the fuzzy modularity. In this experiment, we evaluate the results with
different inc f settings, and show the importance of “ignore slight overlapping nodes” and “reweight
node values”. Finally, we apply our method on the case with the value k = 2, and halved the
null model.
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Figure 5. Detected communities of the karate network by fuzzy modularity.

4.2.1. Effects of Weight Increasing Factor

We first evaluate the communities captured by GANWA
IMR in the networks with inc f =

{1, 1.2, 1.5, 1.7} while αT = 0.01, mT = −1, k = 8, and γ = 1. The corresponding Q
′
ov =

{0.419, 0.422, 0.427, 0.430}. We consider the fuzzy modularity with inc f = 1 as our baseline since it
outputs the correct solution.

Figure 6a is the result with inc f = 1.2, and we get four communities and three overlapping nodes
while λ is shown in Table 2a. The network separation in Figure 6a is identical to that in Figure 5,
but maximizing the modularity outputs a larger one than that we derived. When inc f is increased
from 1.2 to 1.5, we get two extra overlapping nodes, and they are v12 and v34. When inc f is set as 1.7,
the values of λ are changes as shown in Table 2c, and others are identical to that derived by inc f = 1.5.
Therefore, larger settings of inc f results in more overlapping nodes.

Table 2. The comparison with various inc f settings.

(a) λ values of overlapping nodes in Figure 6a with inc f = 1.2

Node λiA λiB λiC λiD

v1 0.967 0.068
v10 0.747 0.362
v24 0.419 0.696

(b) λ values of overlapping nodes in Figure 6b with inc f = 1.5

Node λiA λiB λiC λiD

v1 0.917 0.246
v3 0.986 0.075
v10 0.700 0.556
v12 0.993 0.048
v24 0.553 0.703
v34 0.993 0.048

(c) λ values of overlapping nodes in Figure 6b with inc f = 1.7

Node λiA λiB λiC λiD

v1 0.888 0.369
v3 0.987 0.108
v10 0.694 0.636
v12 0.926 0.290
v24 0.600 0.726
v34 0.989 0.097
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(a) Detected communities with inc f = 1.2 (b) Detected communities with inc f = 1.5 and 1.7

Figure 6. The communities detected by GANWA
IMR under various inc f settings.

Considering that a node has only one edge connecting to an overlapping node, e.g., v12,
the isolation has the same property with that held by the overlapping node. Moreover, we found that
Q

′
ov derived by GANWA

IMR is higher than the optimal Q. It implies that the overlapping structure is easier
to be detected as assigning higher weight to the overlapping nodes.

Here we consider an extreme case that all nodes are overlapped, i.e., inc f = 4. We analyze the
obtained result, and then find the “duplicate communities”. Two or more communities are extremely
overlapped with each other, and even some of them are just the same community.

Figure 7 shows the fuzzy partition result. Four communities are detected, but two of them
denoted by dotted lines are the subsets of the rest two communities denoted by solid lines. Therefore,
two sets should be merged to a correct community. After merging the communities, we derive two
communities, and there is only one overlapping node v10. However, the value of Q

′
ov is decreased

from 0.526 to 0.371 simultaneously.

Figure 7. Duplicate communities result.

Even if we derive the result with maximized value of Q
′
ov, the solution does not show the correct

properties of the communities. We use the refinement strategies to get the solution with lower quality
but more closed to the real-world properties. Therefore, the refinement strategies are useful for
improving the solution quality in terms of the real-world consideration.

4.2.2. Effects of Ignoring Slight Overlapping Nodes

We consider the network with inc f = 1.5 to evaluate the effects of the ignore step. The result
with and without the ignore step are 0.427114 and 0.427117, respectively. Figure 8 and Table 3 are
the detected communities and values of λ. Two overlapping nodes v28 and v30 are ignored. Since
most of their weights were kept in a specific community, reducing the weights will not decrease Q

′
ov
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dramatically. Therefore, the process of ignoring slight overlapping nodes helps to keep those heavily
overlapping nodes.

Figure 8. Detected communities with inc f = 1.5 (before ignoring).

Table 3. λ values of overlapping nodes in Figure 8 with inc f = 1.5 (before ignoring).

Node λiA λiB λiC λiD

v1 0.917 0.246
v3 0.986 0.075
v10 0.700 0.556
v12 0.993 0.048
v24 0.553 0.703
v28 0.002 0.999
v30 0.999 0.004
v34 0.993 0.048

4.2.3. Effects of Reweight Strategy

To emphasize the importance of the communities, we propose a reweight strategy to assign
various weights. The result with reweight strategy is identical to that shown in Figure 6b. Table 4a,b
show the value of λ without and with considering the reweight strategy, respectively. The reweight
strategy reduces the gap of the number of edges for connecting the inside-community nodes and
outside-community nodes. However, the structure of the main community may be changed after
reweighting, because the values are inversely proportional to the average number of neighbors in the
communities to that out of communities. For example, v12 is unbalanced before reweighting, but the
value of λ of v12 reflect the real-world behavior.

4.2.4. The Network with Two-Communities

We examine the network with exactly two communities to verify the property illustrated in
Figure 1b can be captured by GANWA

IMR . We consider inc f = 1.5, αT = 0.01, mT = −1, k = 2, and γ = 0.5.
In this case, we easily find out the overlapping nodes. The results are shown in Figure 9 and Table 5.

GANWA
IMR derives three overlapping nodes as shown in Table 5. From Figure 9, we have Q

′
ov = 0.628,

and the dotted curve is the real split of the club network. v3 is the main overlapping node since it has a
roughly balanced weight value. In summary, the two-community problem is solved by reducing the
number of expected edges.
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Table 4. The comparison of GANWA
IMR with reweighting and without reweighting.

(a) Before reweighting

Node λiA λiB λiC λiD

v1 0.917 0.246
v3 0.986 0.075
v10 0.700 0.556
v12 0.993 0.048
v24 0.553 0.703
v34 0.993 0.048

(b) After reweighting

Node αiA αiB αiC αiD

v1 0.611 0.389
v3 0.709 0.291
v10 0.52 0.48
v12 0.440 0.560
v24 0.468 0.532
v34 0.725 0.275

Figure 9. Detected communities with k = 2, and γ = 0.5

Table 5. λ values of overlapping nodes in Figure 9.

Node λiA λiB

v3 0.493 0.753
v9 0.987 0.071
v10 0.984 0.085

4.2.5. Compare with Different Algorithms

In the above simulations, GANWA
IMR detects two communities, and we compare the result with

previous algorithms in this dataset. Shen et al. captured three overlapping communities [30], and the
overlapping nodes are v1, v3 and v9. However, v12 is missed in the method of Shen et al. The property
of the overlapping communities in v12 is not discovered. The node v12 has exactly one neighbor that is
node v1, so v12 should have the same overlapping properties as that of v1.

Chen et al. captured two overlapping communities [29], and their results are similar to ours as
shown in Figure 9. Chen et al. found one overlapping node v10. Node v10 has two edges that one
connects to the left community while the other one comments to the right community. Therefore,
considering v10 as the overlapping node is reasonable. However, the node v3 has five edges where
three edges connect to the left community while two connect to the right community. v3 is more
appropriate than v10 to be the overlapping node.

From the above observation, the communities are split more precisely by GANWA
IMR than the

previous works. For the considerations of the split appropriateness, e.g., the number of detected
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communities, and the split correctness, e.g., the overlapping nodes, GANWA
IMR provides more precise

results than other approaches.

4.3. Books about American Politics

This network is built from the transaction data from amazon.com [41]. The network has 105 nodes
and 441 edges while nodes indicate books and edges are frequent co-purchase events. The nodes are
labeled by three categories including liberal, neutral, or conservative. Each category has 43, 13, and 49
nodes respectively. In this simulation, we consider inc f = 1.5, αT = 0.01, mT = 0.5, k = 8, and γ = 1.
We evaluate the performance of the merge strategy. Figure 10a,b are the solutions with and without
merge strategies respectively. The text on each node is the node id and the real label. The results of
Q

′
ov are 0.528 and 0.533 for the results with and without merge strategy.

(a) Book communities after merging (b) Book communities before merging

Figure 10. The book comparison between GANWA
IMR with merging and without merging.

4.3.1. The Result with Merge Strategy

GANWA
IMR with the merge strategy detects four communities denoted by W, X, Y, and Z. Most nodes

belong to two large communities W and X, which are mainly consisted of conservative and liberal books
respectively. Most neutral books belong to two small communities. This result is similar to that obtained
by Newman [39]. Table 6 is the values of λ for ten overlapping nodes. There are four neutral nodes,
that is 40% of all overlapping nodes and 30% of all neutral nodes. The result implies that neutral books
are often co-purchased with different books.

4.3.2. The Result without Merge Strategy

GANWA
IMR without the merge strategy splits W and X into two parts respectively denoted by W1,

W2, X1 and X2. A small community including v48, v49 and v57 has been detected by the modularity
maximization [25]. Therefore, we also found this community and labeled it by W2.

Moreover, we also detect an extra community X2. After analyzing the edge density of X1 and X2,
they are both denser than the merged community X. Besides, the overlapped part is even denser as
shown in Table 7. The density function definition is as follows:
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D(c) =
1

(|V(c)|
2 )

∑
i,j∈V(c)

Aij

2
. (8)

Table 6. λ values of overlapping nodes in Figure 10a.

Node λiW λiX λiY λiZ Label

v3 0.986 0.076 conservative
v7 0.254 0.913 neutral
v9 0.975 0.11 conservative
v18 0.528 0.724 neutral
v22 0.955 0.164 conservative
v25 0.922 0.236 conservative
v28 0.72 0.533 neutral
v46 0.921 0.238 neutral
v50 0.458 0.781 conservative
v85 0.981 0.093 liberal

Table 7. Density value of each part of community X.

X X1 X2 X1 ∩ X2

D(c) 0.20 0.27 0.34 0.63

The overlapping ratios of (W1, W2) and (X1, X2) are 57% and 53%, respectively. High overlapping
ratios indicate that we could merge each pair of them without decreasing Q

′
ov too much. Therefore,

modularity can not detect X2 because of high overlapping ratio and dense overlapped part. This result
shows the dense overlaps can be discovered by GANWA

IMR correctly.

4.4. American College Football

This is the network of American football games between Division IA colleges in 2000 [42]. It
has 115 nodes, 613 edges and 12 conferences as shown in Table 8. Nodes are teams and edges are
games between the corresponding two teams while nodes are labeled by the conferences they belong
to. We apply inc f = 1.5, αT = 0.01, mT = −1, k = 15, and γ = 1 in this simulation.

Table 8. Labels of conferences.

Label Conference #Teams Label Conference #Teams

0 Atlantic Coast 9 6 Mid-American 13
1 Big East 8 7 Mountain West 8
2 Big Ten 11 8 Pacific Ten 10
3 Big Twelve 12 9 Southeastern 12
4 Conference USA 10 10 Sun Belt 7
5 Independents 5 11 Western Athletic 10

Figure 11 shows the result with Q
′
ov = 0.607, true labels are on the nodes. Ten communities and 17

overlapping nodes are detected. Most conferences are well matched to the detected communities except
for the conferences Independents (Label 5) and Sun Belt (Label 10). There are total seven overlapping
nodes in these two conferences. From Table 9, 41% overlapping nodes and 58% nodes are in the
two conferences.
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Figure 11. Football communities.

Table 9. λ values of overlapping nodes in Figure 11.

Node λiA λiB λiC λiD λiE λiF λiG λiH λiI λiJ Label

v2 0.06 0.99 2
v8 0.058 0.991 8
v9 0.971 0.123 7
v11 0.937 0.204 10
v23 0.981 0.094 7
v36 0.575 0.682 5
v44 0.11 0.975 4
v50 0.902 0.274 10
v58 0.961 0.149 11
v66 0.067 0.989 4
v67 0.05 0.993 11
v69 0.992 0.054 10
v78 0.05 0.992 8
v80 0.941 0.121 0.126 5
v82 0.065 0.082 0.097 0.953 5
v97 0.704 0.326 0.368 10
v112 0.065 0.989 4

The conference Independents has five teams, and only one game was held. This is the major reason
that makes this conference undetectable. However, the teams often play with other teams in varied
conferences, and this phenomenon results in the overlapping property. For example, v82 is assigned to
four communities, although it connected to community G with four edges. v82 still connects to other
three communities with a significant number of edges, so that is why it belongs to many communities
simultaneously as shown in Figure 12. On the other hand, Sun Belt is in the similar situation. In this
example, the heavily overlapping nodes could be detected by our method.
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Figure 12. The node v82 and its neighbors in football network.

4.5. Dolphin Network

The Dolphin Network is a common benchmark for evaluating the overlapping communities.
Some results consider the Dolphin Network to evaluate the community quality [26,43]. We compare
the proposed GANWA

IMR with related results in this simulation. The Dolphin Network includes 62 nodes
and 159 edges, and two communities are detected eventually for a long-term observation.

The distribution of λ for overlapping nodes is listed in Table 10 while the separation with
Q′ = 0.535 is illustrated in Figure 13. According to the refinement strategy Ignore slight overlapping
nodes, we get three overlapping nodes v20, v28, and v44 after decreasing the setting of λT from 1.0 to
0.9. The overlapping nodes are marked by the red circle with dot lines, and they are marked by the
overlapping nodes based on the distribution of λ. On the other hand, we also consider mT = −1 in
Dolphin network as the same setting in the above simulations. The community B, C, D, and E are
merged according to the refinement strategy Merge clusters. Eventually, we get two communities.

Figure 13. Five communities are detected by the proposed approach. There are three overlapping
nodes when using λT = 0.9. Therefore, the community B, C, D, and E could be merged by refinement
strategy Ignore slight overlapping nodes, and we find two communities eventually.
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Nicosia et al. found four communities in Dolphin network [26]. The overlapping nodes are
mentioned, but the authors did not list the overlapping nodes. Wang and Fleury provided detail
analysis and found two communities from Dolphin network with Q = 0.385 [43]. The separation
is acceptable, but the network structure is not so strong comparing to Figure 13. After considering
the refinement strategies, the separation derived by the proposed GANWA

IMR is similar to that provided
by Wang and Fleury in [43], but the structure of our network is stronger than the network in [43].
In summary, the refinement strategies are useful in revising the network separation to be closer to the
real-world behavior, and the strength of the network structure is also improved.

Table 10. λ values of overlapping nodes in Figure 13.

Node λiA λiB λiC λiD λiE

v0 0.008 0.999
v1 0.998 0.023
v2 0.076 0.986
v7 0.990 0.061
v8 0.022 0.998
v15 0.999 0.000 0.013
v19 0.986 0.074
v20 0.361 0.364 0.682
v23 0.909 0.261
v28 0.823 0.400
v30 0.051 0.992
v36 0.013 0.999
v37 0.990 0.062
v39 0.255 0.912
v40 0.998 0.021
v44 0.844 0.362 0.038
v45 0.992 0.053
v47 0.999 0.011
v50 0.928 0.175 0.103
v52 0.999 0.009
v59 0.138 0.965
v61 0.925 0.229

5. Conclusion and Discussion

Given a network, the modularity is used for measuring the partition quality while the fuzzy
clustering recognizes the overlapping communities. Combining above concepts together to be the
fuzzy modularity is an appropriate method to formulate the structure of the given network with
overlapping communities. Maximizing the modularity outputs the partition with well network
structure, but computing the partition with maximum modularity requires huge computation cost.
Therefore, the heuristic algorithms are outstanding in seeking high quality solution from a large
search space, and we can find some research results of using heuristic algorithms for finding the
partitions with maximum modularity. However, there are some special cases that we have to deal
with. We find out three common situations from the partitions derived from the GA with modularity
maximization and propose three solution refinement strategies to ignore overlapping nodes, merge
clusters, and reweight nodes to separate the network to be closer the real-world behaviors. Moreover,
we modify the fitness function of the GA to consider the null model for measuring the distance between
the derived partition and the random graph. Thus, the simulation results show that the proposed
GANWA

IMR provide significant improvement comparing with previous approaches. The derived partition
may not always have maximum modularity, but the community structure is more reasonable than
the partitions derived by previous works. GANWA

IMR measures the connectivity of nodes and reweight
the overlapping nodes to reflect the correct properties in the given networks. Eventually, GANWA

IMR
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determines the partitions appropriately, but the heavily overlapping nodes may be marked as the
interior nodes by other approaches.

The overlapping nodes could be detected and provided appropriate allocation by GANWA
IMR . During

the simulations, we found some extension works that will be address in the future, and they are listed
as follows:

1. In our simulations, we got an interesting result as shown in Figure 14 from the karate network
with inc f = 2. The result consists of three communities, and they are grouped by v33, v3 and v1.
The community with v3 that the nodes are marked by red could be consider as an overlapping set.
It means that the networks not only have overlapping nodes but also overlapping groups. Thus,
applying the fuzzy concept to the communities will eliminate the group with v3, and they may
be more closed to the real-world behavior. Since the members in the group with v3 may belong to
different communities based on the situations, e.g., the competitions or the events. Therefore,
assigning the red nodes to any community may be inappropriate.

2. The proposed algorithm invokes GA to compute the preliminary partitions and then
adopts proposed refinement strategies to correct the partitions by the secondary processes.
The refinement strategies could be considered as the local search to improve the partition quality
in each iteration. However, it is a tradeoff between the computation cost and the partition quality.
Once the refinement strategies are modified from the external processes to the internal processes
in GA, the computation cost will be increased. Moreover, the given networks may not always
consist of the target properties that could be improved by the refinement strategies. Therefore, the
refinement strategies could be designed as local search approaches, but the trigger of launching
the local search approaches should be analyzed in the future.

Figure 14. The 5th detected community of the karate network.
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Abstract: Multiple kernel learning is a paradigm which employs a properly constructed chain of
kernel functions able to simultaneously analyse different data or different representations of the
same data. In this paper, we propose an hybrid classification system based on a linear combination
of multiple kernels defined over multiple dissimilarity spaces. The core of the training procedure
is the joint optimisation of kernel weights and representatives selection in the dissimilarity spaces.
This equips the system with a two-fold knowledge discovery phase: by analysing the weights, it is
possible to check which representations are more suitable for solving the classification problem,
whereas the pivotal patterns selected as representatives can give further insights on the modelled
system, possibly with the help of field-experts. The proposed classification system is tested on
real proteomic data in order to predict proteins’ functional role starting from their folded structure:
specifically, a set of eight representations are drawn from the graph-based protein folded description.
The proposed multiple kernel-based system has also been benchmarked against a clustering-based
classification system also able to exploit multiple dissimilarities simultaneously. Computational
results show remarkable classification capabilities and the knowledge discovery analysis is in line
with current biological knowledge, suggesting the reliability of the proposed system.

Keywords: dissimilarity spaces; support vector machines; kernel methods; computational biology;
systems biology; protein contact networks

1. Introduction

Dealing with structured data is an evergreen challenge in pattern recognition and machine
learning. Indeed, many real-world systems can effectively be described by structured domains such
as networks (e.g., images [1,2]) or sequences (e.g., signatures [3]). Biology is a seminal field in which
many complex systems can be described by networks [4], as the biologically relevant information
resides in the interaction among constituting elements: common examples include protein contact
networks [5,6], metabolic networks [7] and protein–protein interaction networks [8,9].

Pattern recognition in structured domains poses additional challenges as many structured
domains are non-metric in nature (namely, the pairwise dissimilarities in such domains might not
satisfy the four properties of a metric: non-negativity, symmetry, identity, triangle inequality) and
patterns may lack any geometrical interpretation [10].

In order to deal with such domains, five mainstream approaches can be pursued [10]:

Entropy 2020, 22, 794; doi:10.3390/e22070794 www.mdpi.com/journal/entropy91



Entropy 2020, 22, 794

1. Feature generation and/or feature engineering, where numerical features are extracted ad-hoc
from structured patterns (e.g., using their properties or via measurements) and can be further
merged according to different strategies (e.g., in a multi-modal way [11]);

2. Ad-hoc dissimilarities in the input space, where custom dissimilarity measures are designed in
order to process structured patterns directly in the input domain without moving towards
Euclidean (or metric) spaces. Common—possibly parametric—edit distances include the
Levenshtein distance [12] for sequence domains and graph edit distances [13] for graphs domains;

3. Embedding via information granulation and granular computing [3,14–25];
4. Dissimilarity representations [26–28], where structured patterns are embedded in the Euclidean

space according to their pairwise dissimilarities;
5. Kernel methods, where the mapping between the original input space and the Euclidean space

exploits positive-definite kernel functions [29–33].

This paper proposes a novel classification system based on an hybridisation of the latter two
strategies: while dissimilarity representations see the (structured) patterns according to the pairwise
dissimilarities, kernel methods encode pairwise similarities. Nonetheless, the class of properly-defined
kernel functions is restricted: the (conditionally) positive definitiveness may not hold in case of
non-metric (dis)similarities. The use of kernel methods in state-of-the-art (non-linear) classifiers
such as Support Vector Machines (SVM) [34,35] is strictly related to their (conditionally) positive
definitiveness due to the quadratic programming optimisation involved: indeed, non-(conditionally)
positive definite kernels do not guarantee convergence to the global optimum. Although there is
some research about learning from indefinite kernels (see, e.g., [36–40]), their evaluation on the top of
Euclidean spaces (e.g., dissimilarity spaces) retain the (conditionally) positive definitiveness, devoting
matrix regularisation or other tricks to foster positive definitiveness.

The proposed classification system is able to simultaneously explore multiple dissimilarities
following a multiple kernel learning approach, where each kernel considers a different (dissimilarity)
representation. The relative importance of the several kernels involved is automatically determined via
genetic optimisation in order to maximise the classifier performance. Further, the very same genetic
optimisation is in charge of determining a suitable subset of representative (prototypes) patterns in
the dissimilarity space [27] in order to shrink the modelling complexity. Hence, the proposed system
allows a two-fold a posteriori knowledge discovery phase:

1. By analysing the kernel weights, one can determine the most suitable representation(s) for the
problem at hand;

2. The patterns elected as representatives for the dissimilarity space (hence determined as pivotal
for tracking the decision boundary amongst the problem-related classes) can give some further
insights for the problem at hand.

In order to validate the proposed classification system, a bioinformatics-related application is
considered, namely protein function prediction. Proteins’ 3D structure (both tertiary and quaternary)
can effectively be modelled by a network, namely the so-called Protein Contact Network (PCN) [5].
A PCN is a minimalistic (unweighted and undirected) graph-based protein representation where nodes
correspond to amino-acids and edges between two nodes exist whether the Euclidean distance between
residues’ α-carbon atom coordinates is within [4, 8]Å. The lower bound is defined in order to discard
trivial connections due to closeness along the backbone (first-order neighbour contacts), whereas the
upper bound is defined by considering the peptide bonds geometry (indeed, 8Å roughly correspond to
two van der Waals radii between residues’ α-carbon atoms [41]). It is worth stressing that both nodes
labels (i.e., the type of amino-acid) and edges labels (i.e., the distance between neighbour residues)
are deliberately discarded in order to focus only on proteins’ topological configuration. Despite the
minimalistic representation, PCNs have been successfully used in pattern recognition problems for
tasks such as solubility prediction/folding propensity [42,43] and physiological role prediction [44–46];
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furthermore, their structural and dynamical properties have been extensively studied in works such
as [47–50].

In order to investigate how the protein function is related to its topological structure, a subset of
the entire Escherichia coli bacterium proteome, correspondent to E. coli proteins whose 3D structure is
known, is considered. The problem itself is cast into a supervised pattern recognition task, where each
pattern (protein) is described according to eight different representations drawn by its PCN and its
respective Enzyme Commission (EC) number [51] that serves as the ground-truth class label. The EC
nomenclature scheme classifies enzymes according to the chemical reaction they catalyse and a generic
entry is composed by four numbers separated by periods. The first digit (1–6) indicates one of the six
major enzymatic groups (EC 1: oxidoreductases; EC 2: transferases; EC 3: hydrolases; EC 4: lyases;
EC 5: isomerases; EC 6: ligases) and the latter three numbers represent a progressively finer functional
enzyme classification. In this work, only the first number is considered. However, proteins with no
enzymatic characteristics (or proteins for which enzymatic characteristics are still unknown nowadays)
are not provided with an EC number, thus an additional class of not-enzymes will be considered,
identified by the categorical label 7. It is worth noting that the EC classification only loosely relates
to global protein 3D configuration, given that structure is affected by many determinants other than
catalysed reactions like solubility, localisation in the cell, interaction with other proteins and so forth.
This makes the classification task intrinsically very difficult.

This paper is organised as follows: Section 2 overviews some theory related to kernel methods
and dissimilarity spaces; Section 3 presents the proposed methodology; Section 4 shows the results
obtained with the proposed approach, along with a comparison against a clustering-based classifier
(also able to explore multiple dissimilarities), and we also provide some remarks on the two-fold
knowledge discovery phase. Finally, Section 5 concludes the paper. The paper also features two
appendices: Appendix A describes in detail the several representations used for describing PCNs,
whereas Appendix B lists the proteins selected as prototypes for the dissimilarity representations.

2. Theoretical Background

Let D = {x1, . . . , xNP} be the dataset at hand lying in a given input space X . Moving the problem
towards a dissimilarity space [26] consists in expressing each pattern from D according to the pairwise
distances with respect to all other patterns, including itself. In other words, the dataset is cast into the
pairwise distance matrix D ∈ RNP×NP defined as:

Di,j = d(xi, xj) ∀i, j = 1, . . . , NP , (1)

where d(·, ·) is a suitable dissimilarity measure in D, that is d : D ×D → R. Without loss of generality,
hereinafter let us consider D to be symmetric: if d(·, ·) is at least symmetric, D is trivially symmetric;
in case of asymmetric dissimilarity measures, D can be ‘forced’ to be symmetric, e.g., D := 1

2 (D + DT).
The major advantage in moving the problem from a generic input space X towards RNP×NP is that the
latter can be equipped with algebraic structures such as the inner product or the Minkowski distance,
whereas the former might not be metric altogether. As such, in the latter, standard computational
intelligence and machine learning techniques can be used without alterations [10]. On the negative
side, the explicit evaluation of D can be computationally expensive as it leads to a time and space
complexity of O(N2

P). To this end, in [27], a ’reduced’ dissimilarity space representation is proposed,
where a subset of prototype patterns R ⊂ D is properly chosen and each pattern is described according
to the pairwise distances with respect to the prototypes only. This leads to the definition of a ’reduced’
pairwise distance matrix D̄ ∈ RNP×|R| defined as:

D̄i,j = d(xi, xj) ∀i = 1, . . . , NP, ∀j = 1, . . . , |R|. (2)
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Since usually |R| < |D|, there is no need to solve a quadratic complexity problem such as
evaluating Equation (1). On the negative side, however, the selection of the subset R is a delicate and
challenging task [10] since:

1. They must well-characterize the decision boundary between patterns in the input space;
2. The fewer, the better: the number of representatives has a major impact on the model complexity

(cf. Equation (1) vs. Equation (2)).

Several heuristics have been proposed in the literature, ranging from clustering the input space to
(possibly class-aware) random selection [10,27,52].

Kernel methods are usually employed whether the input space has an underlying Euclidean
geometry. Indeed, the simplest kernel (namely, the linear kernel [30,53]) is the plain inner product
between real-valued vectors. The kernel matrix K (also known as the Gram matrix) can easily be
defined as:

Ki,j = 〈xi, xj〉 ∀i, j = 1, . . . , NP. (3)

Let K be a symmetric and positive semi-definite kernel function from the input space X towards
R, that is K : X ×X → R such that

K(xi, xj) = K(xj, xi) ∀xi, xj ∈ X (4)
NP

∑
i=1

NP

∑
j=1

cicjK(xi, xj) ≥ 0 ∀ci, cj ∈ R, ∀xi, xj ∈ X . (5)

As in the linear kernel case, starting from pairwise kernel evaluations, one can easily evaluate the
kernel matrix as

Ki,j = K(xi, xj) ∀i, j = 1, . . . , NP (6)

and if K is a positive semi-definite kernel matrix, then K is a positive semi-definite kernel function.
One of the most intriguing kernel methods property relies on the so-called kernel trick [29,30]:
kernel of the form Equations (4) and (5) are also known as Mercer’s kernel as they satisfy the Mercer
condition [32]. Such kernel functions can be seen as the inner product evaluation on a high-dimensional
(or possibly infinite-dimensional) and usually unknown Hilbert space H. The kernel trick is usually
described by the following, seminal, equation:

K(x, y) = 〈φ(x), φ(y)〉H, (7)

where φ : X → H is the implicit (and usually unknown) mapping function. The need for using a
non-linear and higher-dimensional mapping is a direct consequence of Cover’s theorem [33]. Thanks
to the kernel trick, one can use one of the many kernel functions available (e.g., polynomial, Gaussian,
radial basis function) in order to perform such non-linear and higher-dimensional mapping without
knowing and explicitly evaluating the mapping function φ(·). Further, kernel methods can be used in
many state-of-the-art classifiers such as (kernelised) SVM [35,54].
In multiple kernel learning, the kernel matrix K is defined as a properly-defined combination of a
given number of NK kernels. The most intuitive combination is a linear combination of the form:

K =
NK

∑
i=1

βiK
(i), (8)

where sub-kernels K(i) are single Mercer’s kernels. The weights βi can be learned according to different
strategies and can be constrained in several ways—see, e.g., [55–61], or the survey [62]. The rationale
behind using a multiple kernel learning with respect to a plain single kernel learning depends on the
application: for example, if data come from different sources, one might want to explore such different
sources according to several kernels or, dually, one might want to explore the same data using different

94



Entropy 2020, 22, 794

kernels, where such different kernels may differ in shape and/or type. In this work, a mixture between
the two approaches is pursued: same source (PCN), but different representations (see Appendix A).
Further, a linear convex combination of radial basis function kernels is employed. The ith radial basis
function kernel is defined as

K
(i)
j,k = exp

{
−γi · ‖xj − xk‖2

}
∀j, k = 1, . . . , NP (9)

and γi is its shape parameter. Further, the weights βi are constrained as

NK

∑
i=1

βi = 1 (10)

βi ∈ [0, 1] for i = 1, . . . , NK. (11)

It is rather easy to demonstrate that these selections for both kernels and weights lead to the
final kernel matrix (as in Equation (8)) which still is a valid Mercer’s kernel, therefore it can be used
on kernelised SVMs. Indeed, Cristianini and Shawe-Taylor in [31] showed that the summation of
two valid kernels is still a valid kernel. Further, Horn and Johnson in [63] showed that a positive
semi-definite matrix multiplied by a non-negative scalar is still a positive semi-definite matrix. Merging
these two results automatically prove that kernels of the form (8) and (9) with constraints (10) and (11)
are valid kernels.

3. Proposed Methodology

Let D be the dataset at hand, split into three non-overlapping subsets DTR, DVAL and DTS

(namely training set, validation set and test set). Especially for structured data, several representations
(e.g., set of descriptors) might hold for the same data, therefore let {X(1), . . . , X(NR)} be the set of
NR representations, split in the same fashion (i.e., {X

(i)
TR}NR

i=1, {X
(i)
VAL}NR

i=1 and {X
(i)
TS}NR

i=1). Finally,
let {d(1)(·, ·), . . . , d(NR)(·, ·)} be the set of dissimilarity measures suitable for working in their
respective representations.

The respective training, validation and test pairwise dissimilarity matrices, as in Equation (1) can
be evaluated as follows:

D
(1)
TR = d(1)(X(1)

TR, X
(1)
TR) . . . D

(NR)
TR = d(NR)(X

(NR)
TR , X

(NR)
TR )

D
(1)
VAL = d(1)(X(1)

VAL, X
(1)
TR) . . . D

(NR)
VAL = d(NR)(X

(NR)
VAL , X

(NR)
TR )

D
(1)
TS = d(1)(X(1)

TS , X
(1
TR) . . . D

(NR)
TS = d(NR)(X

(NR)
TS , X

(NR)
TR ).

(12)

Let w ∈ {0, 1}|DTR| be a binary vector in charge of selecting columns from all matrices in
Equation (12): the full pairwise dissimilarities can be sliced to their ’reduced’ versions (cf. Equation (1)
vs. Equation (2)), hence:

D̄
(1)
TR = D

(1)
TR(: , w) . . . D̄

(NR)
TR = D

(NR)
TR (: , w)

D̄
(1)
VAL = D

(1)
VAL(: , w) . . . D̄

(NR)
VAL = D

(NR)
VAL (: , w) (13)

D̄
(1)
TS = D

(1)
TS (: , w) . . . D̄

(NR)
TS = D

(NR)
TS (: , w).

where, due to the number of subscripts and superscripts in Eq. (13), for ease of notation, we used a
MATLAB®-like notation for indexing matrices.

In other words, w acts as a feature (prototype) selector. Given this newly obtained dataset, it is
possible to train a kernelised ν-SVM [64] whose multiple kernel has the form Equation (8) where each
one has the form Equation (9), thus:
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K =
NR

∑
i=1

βi · exp
{
−γi · ‖D̄

(i)
TR � D̄

(i)
TR‖2

}
, (14)

where � denotes the pairwise difference. Hence, each dissimilarity representation is subject to a proper
non-linear kernel (NK ≡ NR).

A genetic algorithm [65] acts as a wrapper method in order to automatically tune in a fully
data-driven fashion the several free parameters introduced in this problem. The choice behind a
genetic algorithm stems from them being widely famous in the context of derivative-free optimisation,
embarrassingly easy to parallelise and for the sake of consistency with competing techniques (see
Section 4.4). For our problem, the genetic code has the form:[

ν β γ w
]

, (15)

where ν ∈ (0, 1] is the SVM regularisation term, β = [β]NR
i=1 contains the kernel weights, γ =

[γi]
NR
i=1 contains the kernel shapes and w properly selects prototypes in the dissimilarity space, as

described above.
For the sake of argument, it is worth remarking that there have been several attempts to use

evolutionary strategies in order to tune multiple kernel machines: for example in [66] a genetic
algorithm has been used in order to tune the kernel shapes (namely, γ), whereas in [67] both the
kernel shapes and the kernel weights have been tuned by means of a (μ + λ) evolution strategy [68].
Conversely, the idea of using a genetic algorithm for prototypes selection in the dissimilarity space has
been inherited from a previous work [44].

The fitness function to be maximised is the informedness J (also known as Youden’s index [69])
defined as:

J = specificity + sensitivity − 1, (16)

which is, by definition, bounded in range [−1, 1] (the closer to 1, the better). For the sake of comparison
with other performance measures (e.g., accuracy, F-score and the like) which are, by definition,
bounded in [0, 1], the fitness function sees a scaled version of the informedness [23–25], hence:

f1 ≡ J̄ =
J − (−1)
1 − (−1)

=
J + 1

2
∈ [0, 1]. (17)

The rationale behind using the informedness rather than other most common performance
measures (mainly accuracy and F-score) is that the informedness is well suited for unbalanced classes
without being biased towards the most frequent class (the same is not true for accuracy) and whilst
considering also true negative predictions (the same is not true for F-score) [70].

By assuming that the full dissimilarity matrices are pre-evaluated beforehand, the objective
function evaluation is performed for each individual from the current generation as follows:

1. The individual receives the NR full dissimilarity matrices between training data samples, i.e.,
D

(1)
TR, . . . , D

(NR)
TR as in Equation (12);

2. According to the w portion of its genetic code (see Equation (15)), a subset of prototypes is selected,
leading to the ‘reduced’ dissimilarity matrices between training data, i.e., D̄

(1)
TR, . . . , D̄

(NR)
TR as in

Equation (13);
3. Considering the β and γ values in its genetic code, the (multiple) kernel matrix is evaluated by

using Equation (14);
4. A ν-SVM is trained using the regularisation term ν from the genetic code and the kernel matrix

from step #3;
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5. The individual receives the NR full dissimilarity matrices between training and validation
data, each of which is computed by considering all possible 〈x, y〉-pairs where x belongs to
the validation set and y belongs to the training set, i.e., D

(1)
VAL, . . . , D

(NR)
VAL as in Equation (12);

6. The ‘reduced‘ dissimilarity matrices are projected thanks to w, i.e., D̄
(1)
VAL, . . . , D̄

(NR)
VAL as in

Equation (13);
7. The (multiple) kernel matrix between training and validation data is evaluated thanks to β and γ,

alike Equation (14);
8. The (multiple) kernel matrix from step #7 is fed to the SVM trained on step #4 and the predicted

classes on the validation set are returned;
9. The fitness function is evaluated.

At the end of the evolution, the best individual (i.e., the one with best performances on the
validation set) is retained and its final performances are evaluated on the test set.

Finally, it is worth remarking the rationale behind the proposed, structured, genetic code since a
genetic code of the form Equation (15) allows, in a two-fold manner, a deeper a posteriori knowledge
discovery phase. Indeed, using upfront good classification results (for the sake of reliability), by looking
at β, it is possible to check which kernels (representations) are considered as the most important (higher
weights) for the learning machine in order to solve the problem at hand. Similarly, by looking at w,
it is possible to check which training set patterns have been selected as representatives and ask why
those patterns have been selected instead of others, leading to a pattern-wise check (possibly with help
by field-experts). Especially the latter a posteriori check might be troublesome if a huge number of
representatives is selected. In order to alleviate this problem (if present), it is possible to re-state the
fitness function (formerly (17)) by considering a convex linear combination between the performance
index and the feature selector sparsity, hence:

f2 = ω (1 − J̄) + (1 − ω)
|{i : wi = 1}|

|w| , (18)

where ω ∈ [0, 1] in a user-defined parameter which tunes the convex linear combination by weighting
the rightmost term (sparsity) against the leftmost term (performance). It is worth noting that whilst
fitness (17) should be maximised, (18) should be minimised.

4. Tests and Results

4.1. Data Collection and Pre-Processing

The data retrieval processing can be summarised as follows. Using the Python BioServices
library [71]:

1. The entire protein list for Escherichia coli str. K12 has been retrieved from UniProt [72];
2. This list has been cross-checked with Protein Data Bank [73] in order to discard unresolved

proteins (i.e., proteins whose 3D structure is not available).

Then, using the BioPython library [74]:

1. .pdb files have been downloaded for all resolved proteins;
2. information such as the EC number and the measurement resolution (if present) have been parsed

from the .pdb file header;
3. proteins having multiple EC numbers have been discarded.

Finally, using the BioPandas library [75]:

1. α-carbon atoms 3D coordinates have been parsed from each .pdb file;
2. In case of multiple equivalent models within the same .pdb file, only the first model is retained;
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3. Similarly, for atoms having alternate coordinate locations, only the first location is retained.

After this retrieval stage, a total number of 6685 proteins has been successfully collected.
Some statistics on the measurement resolutions and the number of nodes are sketched
in Figure 1a,b, respectively.

(a) Resolution (b) Size

Figure 1. Distributions within the original 6685 proteins set.

In order to keep only good quality structures (with reliable atomic coordinates), all proteins
with missing resolution in their respective .pdb files and proteins whose resolution is greater than
3Å have been discarded. Further, proteins having more than 1500 nodes have been discarded as well.
These filtering procedures dropped the number of available proteins from 6685 to 4957. The class
labels (EC number) distribution is summarised in Table 1.

Table 1. Classes distribution within the filtered 4957 proteins set.

Total

Class EC1 EC2 EC3 EC4 EC5 EC6 not-enzymes
Count 540 1017 919 329 182 244 1726 4957
Percentage 10.89 20.52 18.54 6.64 3.67 4.92 34.82 100%

For each of the 4957 available proteins, its respective eight representations (see Appendix A) have
been evaluated using the following tools:

• The NetworkX library [76] (Python) for evaluating centrality measures (X(2)) and the Vietoris–Rips
complex (X(1));

• The Numpy and Scipy libraries [77,78] (Python) for several algebraic computations, mainly
spectral decompositions for energy, Laplacian energy, heat trace, heat content invariants (X(3),
X(5), X(6), X(8)) and the homology group rank (X(1));

• The Rnetcarto (https://cran.r-project.org/package=rnetcarto) library (R) for network cartography
(X(4)).

As in previous works [45,46] the 7-class classification problem is cast into seven binary
classification problems in one-against-all fashion, hence the ith classifier sees the ith class as positive
and all other classes as negative. The eight representations X(1), . . . , X(8) are split into training,
validation and test set in a stratified manner in order to preserve labels’ distribution across splits. Thus,
each of the seven classifiers sees a different training-validation-test split due to the one-against-all
labels recoding. The genetic optimisation and classification stage has been performed in MATLAB®

R2018a using the built-in genetic algorithm and LibSVM [79] for ν-SVMs.
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4.2. Computational Results with Fitness Function f1

The first test suite sees f1 (17) as the fitness function, hence the system aims at the maximisation
of the (normalised) informedness.

The genetic algorithm has been configured to host 100 individuals for a maximum of 100
generations and each individual’s genetic code (upper/lower bounds and constraints, if any) is
summarised in Table 2. At each generation, the elitism is set to the top 10% individuals; the crossover
operates in a scattered fashion; the selection operator follows the roulette wheel heuristic and the
mutation adds to each real-valued gene (ν, β, γ) a random number extracted from a zero-mean Gaussian
distribution whose variance shrinks as generations go by, whereas it acts in a flip-the-bit fashion for
boolean-valued genes (w).

Table 2. Genetic algorithm parameters description.

Parameter Bounds Contraints

ν (0, 1] by definition
β βi ∈ [0, 1], ∀i = 1, . . . , NR ∑NR

i=1 βi = 0
γ γ ∈ (0, 100], ∀i = 1, . . . , NR
w wi ∈ {0, 1}, ∀i = 1, . . . , |DTR|

Table 3 shows the performances obtained by the proposed Multiple Kernels over Multiple
Dissimilarities (MKMD, for short) approach using the fitness function f1. Due to randomness in
genetic optimisation, five runs have been performed for each classifier and the average results are
shown. Figures of merit include:

• Accuracy =
TP + TN

TP + FP + TN + FN
;

• Precision =
TP

TP + FP
;

• Recall (Sensitivity) =
TP

TP + FN
;

• (Normalised) Informedness as in Equation (17);
• Area Under the Curve (AUC), namely the area under the Receiver Operating Characteristic (ROC)

curve [80];

where TP, TN, FP and FN indicate true positives, true negatives, false positives and false negatives,
respectively.

Table 3. Test Set Performances with Fitness Function f1.

Class Performances Complexity

Accuracy Precision Recall Informedness † AUC Sparsity

1 (EC1) 0.95 0.87 0.68 0.83 0.92 49.43
2 (EC2) 0.91 0.88 0.66 0.82 0.90 49.62
3 (EC3) 0.90 0.84 0.58 0.78 0.88 49.48
4 (EC4) 0.97 0.90 0.56 0.78 0.88 49.42
5 (EC5) 0.98 0.83 0.44 0.72 0.78 50.78
6 (EC6) 0.99 0.94 0.76 0.88 0.95 49.28

7 (not-enzymes) 0.82 0.77 0.70 0.79 0.89 50.52
† Normalised.

Similarly, Figure 2 shows the ROC curves for all classifiers by considering their respective run
with greatest AUC.
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Figure 2. ROC curves with fitness function f1. In brackets, the respective AUC values.

4.3. Computational Results with Fitness Function f2

These experiments see the fitness function f2 (Equation (18)) in lieu of f1 (Equation (17)), where the
weighting parameter ω is set to 0.5 in order to give the same importance to performances and sparsity.
In order to ensure a fair comparison with the previous analysis, the same training-validation-test splits
have been used for all seven classifiers, along with the same genetic algorithm setup (genetic code,
number of individuals and generations, genetic operators). Table 4 shows the average performances
obtained by the seven classifiers across five genetic algorithm runs. As in the previous case, Figure 3
shows the ROC curves for all classifiers by considering their respective run with greatest AUC.

Table 4. Test set performances with fitness function f2 and ω = 0.5.

Class Performances Complexity

Accuracy Precision Recall Informedness † AUC Sparsity

1 (EC1) 0.95 0.86 0.69 0.84 0.92 33.08
2 (EC2) 0.91 0.88 0.67 0.82 0.90 32.48
3 (EC3) 0.90 0.83 0.57 0.77 0.87 29.94
4 (EC4) 0.97 0.88 0.54 0.77 0.88 33.89
5 (EC5) 0.98 0.85 0.45 0.73 0.79 35.54
6 (EC6) 0.98 0.91 0.76 0.88 0.95 35.38

7 (not-enzymes) 0.82 0.77 0.69 0.79 0.88 33.37
† Normalised.

Figure 3. ROC curves with fitness function f2 and ω = 0.5. In brackets, the respective AUC values.
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4.4. Benchmarking against a Clustering-Based One-Class Classifier

In order to properly benchmark the proposed MKMD system, a One-Class Classification
System (hereinafter OCC or OCC_System) capable of exploiting multiple dissimilarities is used.
This classification system has been initially proposed in [81] and later used for modelling complex
systems such as smart grids [81–83] and protein networks [44].

The main idea in order to build a model through the One-Class Classifier is to use a
clustering-evolutionary hybrid technique [81,82]. The main assumption is that similar protein types
have similar chances of generating a specific class, reflecting the cluster model. Therefore, the core of
the recognition system is a custom-based dissimilarity measure computed as a weighted Euclidean
distance, that is:

d(�̌x1, �̌x2; �W) =

√
(�̌x1 � �̌x2)T �WT �W(�̌x1 � �̌x2), (19)

where �̌x1, �̌x2 are two generic patterns and �W is a diagonal matrix whose elements are generated through
a suitable vector of weights �w. The dissimilarity measure is component-wise, therefore the � symbol
represents a generic dissimilarity measure, tailored on each pattern subspace, that has to be specified
depending on the semantic of data at hand.

In this study, patterns are represented by dissimilarity vectors extracted from each
sub-dissimilarity matrix, one for each feature adopted to describe the protein (see Section 2). In other
words, patterns pertain to a suitable dissimilarity space.

The decision region of each cluster Ci is constructed around the medoid ci bounded by the average
radius δ(Ci) plus a threshold σ, considered together with the dissimilarity weights �w = diag(�W) as
free parameters. Given a test pattern �̌x the decision rule consists in evaluating whether it falls inside
or outside the overall target decision region, by checking whether it falls inside the closest cluster.
The learning procedure consists in clustering the training set DTR composed by target patterns,
adopting a standard genetic algorithm in charge of evolving a family of cluster-based classifiers
considering the weights �w and the thresholds of the decision regions as search space, guided by a
proper objective function. The latter is evaluated on the validation set DVAL, taking into account a linear
combination of the accuracy of the classification (that we seek to maximise) and the extension of the
thresholds (that should be minimised). Note that in building the classification model we use only target
patterns, while non-target ones are used in the cross-validation phase, hence the adopted learning
paradigm is the One-Class classification one [84,85]. Moreover, in order to outperform the well-known
limitations of the initialization of the standard k-means algorithm, the OCC_System initializes more
than one instance of the clustering algorithm with random starting representatives, namely medoids,
since the OCC_System is capable of dealing with arbitrarily structured data [86–88]. At test stage (or
during validation) a voting procedure for each cluster model is performed. This technique allows
building a more robust proteins model.

Figure 4 shows the schematic representing the core subsystems of the proposed OCC_System,
such as the ones performing the clustering procedure and the genetic algorithm. Moreover, it is shown
the Test subsystem, where given a generic test pattern and given a learned model, it is possible to
associate a score value (soft-decision) besides the Boolean decision. Hence, we equip each cluster Ci
with a suitable membership function, denoted in the following as μCi (·). In practice, we generate a
fuzzy set [89] over Ci. The membership function allows quantifying the uncertainty (expressed by the
membership degree in [0, 1]) of a decision about the recognition of a test pattern. Membership values
close to either 0 or 1 denote ”certain” and hence reliable decisions. When the membership degree
assigned to a test pattern is close to 0.5, there is no clear distinction about the fact that such a test
pattern is really a target pattern or not (regardless of the correctness of the Boolean decision).
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Figure 4. Schematic of the classification system able to learn a classification model for each positive class.
The model provides the crisp decision as well as a score (a real number) encoding the decision reliability.

For this purpose, we adopt a parametric sigmoid model for μCi (·), which is defined as follows:

μCi (x) =
1

1 + exp{(d(ci, x)− bi)/ai} , (20)

where ai, bi ≥ 0 are two parameters specific to Ci, and d(·, ·) is the dissimilarity measure (19). Notably,
ai is used to control the steepness of the sigmoid (the lower the value, the faster the rate of change),
and bi is used to translate the function in the input domain. If a cluster (that models a typical protein
found in the training set) is very compact, then it describes a very specific scenario. Therefore,
no significant variations should be accepted to consider test patterns as members of this cluster.
Similarly, if a cluster is characterised by a wide extent, then we might be more tolerant in the evaluation
of the membership. Accordingly, the parameter ai is set equal to δ(Ci). On the other hand, we define
bi = δ(Ci)+ σi/2. This allows us to position the part of the sigmoid that changes faster right in-between
the area of the decision region determined by the dissimilarity values falling in [B(Ci)− σi, B(Ci)],
where in turn B(Ci) = δ(Ci) + σi is the boundary of the decision region related to the ith cluster.

Finally, the soft decision function, s(·), is defined as

s(x̄) = μC∗(x̄), (21)

where C∗ is the cluster where the test (target) pattern falls.
With the aim of making a synthesis, we remark that the OCC_System works in two phases:

1. Learning a cluster model of proteins through a suitable dataset divided into two disjoint sets,
namely training and validation set;

2. Using the learned model in order to recognise or classify unseen proteins drawn from the test set,
assigning to each pattern a probability value.

The OCC parameters defining the model are optimised by means of a genetic algorithm guided
by a suitable objective function that takes into account the classification accuracy. For the sake of
comparison, the same genetic operators (selection, mutation, crossover, elitism) as per the MKMD
system and have been considered (see Section 4.2). As concerns the complexity of the model, measured
as the cardinality of the partition k, we choose a suitable value k = 120.

Table 5 shows the comparison between the OCC_System and the MKMD approach. In order to
ensure a fair comparison, since the OCC_System does not perform representatives selection in the
dissimilarity space, in the MKMD genetic code (cf. Equation (15)), the weights vector w has been
removed and all weights have been considered unitary (i.e., no representative selection). Similarly,
Figure 5b and Figure 5a show the ROC curves for OCC and MKMD, respectively.
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From Table 5 is evident that MKML outperforms OCC in terms of accuracy, informedness and
AUC (see also the ROC curves in Figure 5b and Figure 5a), but a clear winner does not exist as regards
precision and recall. As regards the structural complexity, OCC is bounded by the number of clusters k,
whereas MKMD is bounded by the number of support vectors as returned by the training phase [24].
Indeed, the computational burden required to classify new test data is given by:

• The pairwise distances between the test data and the k clusters centres (for OCC);
• The dot product between the test data and the support vectors (for MKMD).

Specifically, for OCC, a suitable number of 120 clusters has been defined for all classes, whereas the
training phase for MKMD returned an average of 1300 support vectors (∼52% of the training data) for
class 1, 1881 support vectors (∼76%) for class 2, 1745 support vectors (∼70%) for class 3, 1213 support
vectors (∼49%) for class 4, 767 support vectors (∼31%) for class 5, 864 support vectors (∼35%) for
class 6 and 1945 support vectors (∼78%) for class 7. In conclusion, whilst MKMD outperforms OCC in
terms of performances, the latter outperforms the former in terms of structural complexity.

Table 5. Test set performances with the one-class classifier.

Class Classifier Performances

Accuracy Precision Recall Informedness † AUC

1 (EC1) OCC 0.92 0.97 0.35 0.67 0.85
MKMD 0.95 0.88 0.67 0.83 0.91

2 (EC2) OCC 0.83 0.87 0.45 0.69 0.76
MKMD 0.91 0.89 0.66 0.82 0.91

3 (EC3) OCC 0.83 0.86 0.49 0.70 0.77
MKMD 0.90 0.84 0.57 0.77 0.88

4 (EC4) OCC 0.68 0.60 0.78 0.61 0.72
MKMD 0.97 0.89 0.53 0.76 0.87

5 (EC5) OCC 0.85 0.75 0.37 0.62 0.69
MKMD 0.98 0.82 0.44 0.72 0.78

6 (EC6) OCC 0.97 0.96 0.57 0.78 0.88
MKMD 0.99 0.92 0.77 0.88 0.95

7 (not-enzymes) OCC 0.68 0.60 0.78 0.61 0.72
MKMD 0.82 0.78 0.68 0.79 0.88

† Normalised.

(a) MKMD (b) OCC

Figure 5. ROC curves comparison (best run for all classes). In brackets, the respective AUC values.
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4.5. Comparing against Previous Works

In Table 6 are reported the performances (in terms of AUC only, for the sake of shorthand) between
the proposed MKMD approach with fitness function f1 (Table 3), with fitness function f2 (Table 4) and
with no representatives selection in the embedding space (Table 5) against our previous studies for
solving the same classification problem. For the sake of completeness, the results obtained by OCC
(Table 5) are also included.

Table 6. Comparison (in terms of AUC) between the proposed MKMD approach and previous studies.

Approach EC1 EC2 EC3 EC4 EC5 EC6 Not-Enzymes

DME + Logistic Regression [44] – – – – – – 0.62
DME + SVM [44] – – – – – – 0.64

DME + Naïve Bayes [44] – – – – – – 0.62
DME + Decision Tree [44] – – – – – – 0.60

DME + Neural Network [44] – – – – – – 0.63
OCC [44] – – – – – – 0.63

Feature Generation via Betti Numbers + SVM [46] 0.79 0.75 0.73 0.73 0.46 0.77 0.77
Feature Generation via Spectral Density + SVM [45] 0.85 0.82 0.85 0.81 0.59 0.81 0.82

MKMD with f1 (Table 3) 0.92 0.90 0.88 0.88 0.78 0.95 0.89
MKMD with f2 (Table 4) 0.92 0.90 0.87 0.88 0.79 0.95 0.88

MKMD with no representative selection (Table 5) 0.91 0.91 0.88 0.87 0.78 0.95 0.88
OCC (Table 5) 0.85 0.76 0.77 0.72 0.69 0.88 0.72

In [44], two experiments have been performed: the first relied on the Dissimilarity Matrix
Embedding (DME) by considering different protein representations (similar to the ones considered
in this work) and the second one relied on OCC being able to explore those different representations
simultaneously (alike this work). There are three main differences between this work and [44]: first,
the set of representations is different; second, we only managed to solve the binary classification
problem between enzymes and not-enzymes; third, the set of considered proteins is different. In fact,
in [44], we performed an additional filtering stage in order to select (for the same UniProt ID) only
the PDB entry with best resolution: we found that this heavily limits the number of protein samples
available, possibly reducing the learning capabilities.

In [45,46] we used the sampled spectral density of the protein contact networks (more information
can be found in Appendix A.8) and the Betti numbers (more information can be found in Appendix A.1),
respectively: the results in Table 6 feature the same proteins set used in this work. Indeed, thanks
to the observation above, experiments have been repeated with an augmented number of protein
samples [90,91].

Results in Table 6 highlight that:

1. Avoiding to filter out PDB structures by considering only the best resolution for a given UniProt ID
(as carried out also in this work) helps in improving classification models: indeed, performances
from [44] are amongst the lowest ones;

2. The proposed MKMD approach, regardless of the fitness function and/or representative selection,
outperforms all competitors for all EC classes (including not-enzymes).

4.6. On the Knowledge Discovery Phase

Apart from the good generalisation capabilities, it is worth remarking that an interesting aspect of
the proposed multiple kernel approach is the two-fold knowledge discovery phase:

1. By analysing the kernel weights β, it is possible to determine the most important representations
for the problem at hand;
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2. By analysing w, namely the binary vector in charge of selecting prototypes from the dissimilarity
space, it is possible to determine and analyse the patterns (proteins, in this case) elected
as prototypes.

Let us start our discussion from the latter point. From a chemical viewpoint, proteins are
linear hetero-polymers in the form of non-periodic sequences of 20 different monomers (amino-acids
residues). While artificial polymers (periodic) are very large extended molecules forming a matrix,
the majority of proteins fold as self-contained water-soluble structures. Thus, we can consider the
particular linear arrangement of amino-acid residues as a sort of ’recipe’ for making a water-soluble
polymer with a well-defined three-dimensional architecture [92]. “Well-defined three-dimensional
structure” should not be intended as a ’fixed architecture’: many proteins appear as partially or even
totally disordered when analysed with spectroscopic methods. This apparent disorder corresponds
to an efficient organisation as for protein physiological role giving to the molecule the possibility to
adapt to rapidly changing microenvironment conditions [93].

This implies the two main drivers of amino-acid residues 3D arrangement (from where the
particular properties of relative contact networks derive) are:

1. To efficiently accomplish the task of being water soluble while maintaining a stable structure
(or dynamics);

2. To allow for an efficient spreading of the signal across amino-acid residues contact network so to
sense relevant microenvironment changes and to reshape accordingly—allosteric effect, see [94].

Currently, we have only a coarse-grain knowledge of such complex tasks, and biochemists are
still very far to be able to reproduce this behaviour by synthetic constructs.

The ability to catalyse a specific class of chemical reactions (the property the EC classification is
based upon), while being crucial for the biological role of protein molecules is, from the point of view of
topological and geometrical proteins structure, only a very minor modulation of their global shape [92].
Notwithstanding that, the thorough analysis of representative proteins (thus pivotal for discrimination)
can give us some general hints, not only confined to the specific classification task, but extending to all
the ’hard’ classification problems based upon very tiny details of the statistical units.

Looking at the representative proteins (hence, endowed with meaningful discriminative power) in
Tables A1–A7 (Appendix B) we immediately note that the pivotal proteins come from all the analysed
EC categories and not only from the specific class to be discriminated. This is expected by the absence
of a simple form-function relation, hence they can be considered as an ’emergent property’ of the
discrimination task. The presence of molecules of different classes crucial for a specific category
modelling and thus the image in light of a peculiar strategy adopted by the system is analogue to
the use of ’paired samples’ in statistical investigation [95,96]. When in presence of only minor details
discriminating statistical units pertaining to different categories, the only possibility to discriminate
is to adopt a paired samples strategy in which elements of a category is paired with a very similar
example of another category so to rely on their differences (on a sample-by-sample basis) instead of
looking for a general ’class-specific’ properties. This is the case of proteins whose general shape is only
partially determined by the chemical reaction they catalyse: looking at the 3D structures of relevant
proteins, we can easily verify they pertain to three basic patterns (Figure 6):

1. Cyclic pattern with an approximately spherical symmetry (Figure 6a);
2. A globular pattern with ’duplication’: protein can be considered as two identical half-structures

(Figure 6b);
3. Elongated non-cyclic pattern, typical of membrane-bound proteins (Figure 6c).

Even if the three above-mentioned patterns have slightly different relative frequencies in the EC
classes (e.g., pattern 3 is more frequent in non-enzymatic proteins), they are present in all the analysed
classes so allowing for the ‘between-categories’ sample-by-sample pairing mentioned above.
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This peculiar situation is in line with current biochemical knowledge (minimal effect exerted by
catalysed reaction on global structure) and it is a relevant proof-of-concept of both the reliability of
the classification solution and of the power of the proposed approach. On the other hand, it is very
hard to de-convolve the discriminating structural nuances from the obtained solution that, as it is,
only confirms the presence of ’tiny and still unknown’ structural details linked to the catalytic activity
of the studied molecules.

As regards the former point, Figure 7 shows the average weights vector β across the
aforementioned five runs for ω = 0.5, showing that the MKMD approach considers for almost
all classes centrality measures (X2) and the protein size (X7) as the most relevant representations,
followed by the Betti numbers sequence (X1), heat content invariants (X5) and heat kernel trace (X6).

(a) (b) (c)

Figure 6. Three basic patterns in protein 3D structures. (a) Transferase—PDB ID 1KOF, (b) Proline
dehydrogenase (oxidoreductase)—PDB ID 3E2R, (c) Transport Protein (Non-Enzyme)—PDB ID 3RGM.

X1 X2 X3 X4 X5 X6 X7 X8

EC 1

EC 2

EC 3

EC 4

EC 5

EC 6

not-enzymes

0.1270 0.2791 0.0465 0.0546 0.1287 0.1225 0.1883 0.0534

0.1771 0.3478 0.0742 0.0500 0.0242 0.0780 0.1695 0.0792

0.0847 0.2849 0.0646 0.0241 0.0809 0.1576 0.2338 0.0695

0.0525 0.3758 0.0820 0.0364 0.1270 0.1164 0.1710 0.0390

0.2438 0.2239 0.0853 0.0939 0.0468 0.1361 0.1025 0.0677

0.1223 0.2962 0.0327 0.0301 0.1464 0.0517 0.2790 0.0415

0.2179 0.2027 0.1033 0.0916 0.0226 0.0604 0.1937 0.1077

Figure 7. Average kernel weights vectors β.

It is worth noting that enzymes have a more pronounced allosteric effect with respect to
non-enzymatic structures. This is a consequence of the need to modulate chemical kinetics according
to microenvironment conditions—allostery is the modulating effect of a modification happening in
a site different from catalytic site on the efficiency of the reaction [97]. Allostery implies an efficient
transport of the signal along protein structure and it was discovered to be efficiently interpreted in
terms of PCN descriptors [98] thus, the observed kernel weights fit well with the current biochemical
knowledge.

5. Conclusions

In this paper, we proposed a classification system able to explore simultaneously multiple
representations following an hybridisation between multiple kernel learning and dissimilarity
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spaces, hence exploiting the discriminative power of kernel methods and the customisability of
dissimilarity spaces.

Specifically, several representations are treated using their respective dissimilarity representations
and combined in a multiple kernel fashion, where each kernel function considers a specific dissimilarity
representation. A genetic algorithm (although any derivative-free evolutive metaheuristic can be
placed instead) is able to simultaneously select suitable representatives in the dissimilarity space and
tune the kernel weights, allowing a two-fold a posteriori knowledge discovery phase regarding the
most suitable representations (higher kernel weights) and the patterns elected as prototypes in the
dissimilarity space.

The proposed MKMD system has been applied for solving a real-world problem, namely protein
function prediction, with satisfactory results, greatly outperforming our previous works in which
graph-based descriptors extracted from PCNs have been tested for solving the very same problem.
Further, the proposed system has been benchmarked against a One-Class Classifier, also able to
simultaneously explore multiple dissimilarities: whilst the former outperforms the latter in terms of
accuracy, AUC and informedness, a clear winner between the two methods does not exist in terms of
precision and recall.

As far as the two-fold knowledge discovery phase for the proposed application is concerned,
results both in terms of selected representatives in the dissimilarity space and weights automatically
assigned to different representations are in line with current biological knowledge, showing the
reliability of the proposed system.

Furthermore, due to its flexibility, the proposed system can be applied to any input domain (not
necessarily graphs), provided that several representations can be extracted by the structured data at
hand and that suitable dissimilarity measures can be defined for such heterogeneous representations.
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Abbreviations

The following abbreviations are used in this manuscript:

AUC Area Under the Curve
DME Dissimilarity Matrix Embedding
MKMD Multiple Kernels over Multiple Dissimilarities
OCC One-Class Classification (also OCC_System)
PCN Protein Contact Networks
PDB Protein Data Bank
ROC Receiver Operating Characteristic
SVM Support Vector Machine

Appendix A. Selected Representations

The set of eight representations X(1), . . . , X(8) used to characterise PCNs are described in the
following eight subsections.

Appendix A.1. Betti Numbers

Topological Data Analysis [99,100] is a novel data analysis approach useful whenever data can
be described by topological structures (networks) as it consists in a set of techniques in order to
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extract information from data (starting from topological information) by means of dimensionality
reduction, manifold estimation and persistent homology in order to study how components lying
in a multi-dimensional space are connected (e.g., in terms of loops and multi-dimensional surfaces).
One can start either from so-called point clouds, where objects are described by their coordinates in a
multi-dimensional space equipped with notion of distance, or by explicitly providing the pairwise
distance matrix between objects. Hereinafter, the former case is considered.

The most intuitive scenario in order to study how components lying in a multi-dimensional
space are connected is (trivially) by studying the connectivity itself. To this end, it is worth defining
simplices as (multi-dimensional) topological objects which can be extracted from a given topological
space X : points, lines, triangles and tetrahedrons are (for example) 0-dimensional, 1-dimensional,
2-dimensional, 3-dimensional simplices and, obviously, higher-order analogues exist. Simplices
can be seen as descriptors of the space under analysis, thus worthy of attention when studying
X . Starting from simplices, it is possible to define simplicial complexes as properly-constructed
collection of simplices able to capture the multi-scale organisation (or multi-way relations) in complex
networks [101–103]. The two seminal examples of simplicial complexes are the Čech complex and the
Vietoris–Rips complex [99,100,104,105], however due to its intuitiveness and lighter computational
complexity, one in practice uses the latter. The Vietoris–Rips complex can be built according to the
following rule: initially, all 0-dimensional simplices belong to the complex, then a given set of k points
forms a (k − 1)-dimensional simplicial complex to be included in the Vietoris–Rips complex if the
pairwise distances are all less than or equal to a user-defined threshold ε.

The homology of a simplicial complex can be described by its Betti numbers. Formally, the ith
Betti number is the rank of the ith homology group in the simplicial complex. Informally, the ith
Betti number corresponds to the number of i-dimensional ’holes’ in a topological surface. In this
work, 3-dimensional graphs are considered and the first three Betti numbers have the following
interpretations: the 0th Betti number is the number of connected components, the 1st Betti number is
the number of 1-dimensional (circular) holes, the 2nd Betti number is the number of 2-dimensional
holes (cavities). The Betti numbers vanish after the spatial dimension.

From the above Vietoris–Rips complex definition, it is clear that the choice of ε is critical as it
somewhat defines the resolution of the simplicial complex. In many cases, one builds a sequence
of Vietoris–Rips complexes as ε varies in order to study how ’holes’ appear and disappear as the
resolution changes and then selects a desired value ε� by studying the ’holes’ lifetime in order to obtain
a useful homology summary: in algebraic topology, this concept is known as persistence [106].

Instead of having a ’topological summary’, following a previous work [46], the rationale is to
keep proper track of the number of holes as ε changes. To this end, the range ε ∈ [4, 8] with sampling
step 1 is considered, according to the PCN connectivity range. Hence, the first representation X(1) sees
each protein as a 15-length integer-valued vector obtained by the concatenation of b4, b5, b6, b7, b8,
where bi is (in turn) a 3-dimensional vector containing the first three Betti numbers for ε = i.
Technically speaking, for a given ε, the Vietoris–Rips complex can be evaluated in two steps [107]:

1. Build the Vietoris–Rips neighbourhood graph GVR(V , E): an undirected graph where edges
between two nodes, say vi, vj ∈ V , are scored if d(vi, vj) ≤ ε;

2. The set of maximal cliques in GVR form the Vietoris–Rips complex.

Let ∂k : Sk → Sk−1 be the boundary operator, an incidence-like matrix which maps Sk (i.e., the set
of simplices of order k) with the set of simplices of order k − 1. The k-order homology group is defined
as [108]:

Hk = ker{∂k}/im{∂k+1}, (A1)

where ker{·} and im{·} denote the kernel and image operators. The rank of Hk, namely the kth Betti
number is then defined as [102]:

b(k) = rank{ker{∂k}} − rank{im{∂k+1}} (A2)
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or, thanks to the Rank–Nullity theorem [109]:

b(k) = (dim{∂k} − rank{im{∂k}})− rank{im{∂k+1}}, (A3)

where the rank of the image corresponds to the plain matrix rank in linear algebra.

Appendix A.2. Centrality Measures

In graph theory and network analysis, centrality measures indicate the node/edge importance
with respect to a given criterion. Let G = (V , E) be a graph and let V and E be the set of nodes and
edges, respectively. The following centrality measures are considered:

• The degree centrality [110] DC(vi) for node vi ∈ V , defined as the percentage of nodes connected
to it:

DC(i) =
1

|V| − 1 ∑
j

Ai,j, (A4)

where A is the adjacency matrix, defined as in Equation (A22). The normalisation coefficient 1
|V|−1

takes into account the maximum attainable degree in a simple graph, thus making the degree
centrality in Equation (A4) independent from the number of nodes in the graph;

• The eigenvector centrality [110] highly rank nodes whether they are connected to other high-rank
nodes. Formally, the eigenvector centrality ei for node vi ∈ V is given by:

ei =
1
λ ∑

j
Aj,iej , (A5)

where λ �= 0 is a scalar constant. Equation (A5) can be re-written in matrix form as:

λe = eA. (A6)

Hence, the eigenvector centrality vector e is the left-hand eigenvector of the adjacency matrix
A associated with the eigenvalue λ. According to the Perron–Frobenius theorem, by choosing
λ as the largest (in absolute value) eigenvalue of A, the solution e is unique and all its entries
are positive;

• The PageRank centrality [110] pi for node vi ∈ V is given by:

pi = α ∑
j

Aj,i

D(vj)
pj +

1 − α

|V| , (A7)

where α is a scalar constant (usually α = 0.85) and D(vj) is the degree of node vj. It is worth
remarking the difference between degree and degree centrality: the degree is the number of nodes
connected to a given node (namely Equation (A4) without the normalisation term), whereas
the degree centrality includes the normalisation term. As in the eigenvector centrality case,
Equation (A7) can be re-written in matrix form as:

p = αpD−1A + β, (A8)

where D−1 is a diagonal matrix whose ith element equals 1/D(vi) and β is a vector whose
elements are all equal to 1−α

|V| ;
• The Katz centrality [110,111] ki for node vi ∈ V is given by:

ki = α ∑
j

Ai,jkj + β, (A9)
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where β controls the initial centrality (first neighbourhood weights) and α < 1/λmax attenuates the
importance with respect to higher-order neighbours (in turn, λmax is the largest eigenvalue of A). It
is worth noting that if α = 1/λmax and β = 0, the Katz centrality equals the eigenvector centrality;

• The closeness centrality [110] CC(vi) for node vi ∈ V is the inverse sum of shortest path distances
between node vi ∈ V and all other n − 1 reachable nodes. Formally:

CC(vi) =
n − 1
|V| − 1

n − 1

∑n−1
j=1 δ(vi, vj)

, (A10)

where δ(·, ·) indicates the shortest path distance. The normalisation factor takes into account the
graph size in order to allow comparison between nodes of graphs having different sizes, also in
case of multiple connected components [112]. Indeed, n can be seen as the number of nodes in
the connected component in which vi lies. In case of one connected component, the scale factor
(n − 1)/(|V| − 1) can be neglected since n = |V|;

• The betweenness centrality [110] BC(vi) quantifies how many times a given node vi ∈ V acts as a
bridge along the shortest paths between any two nodes:

BC(vi) = ∑
vi �=vj �=vk

s(vi)(vj, vk)

s(vj, vk)
, (A11)

where s(vj, vk) is the number of shortest paths from vi to vj and s(vi)(vj, vk) is the number of
shortest paths from vi to vj passing through vi. As in the closeness centrality case, it is often
customary to normalise the betweenness centrality in order to avoid dependency from the number
of nodes, thus:

BC(vi) :=
2 · BC(vi)

(|V| − 1) · (|V| − 2)
; (A12)

• The edge betweenness centrality [113] EBC(ei) is the edge counterpart of the “standard” (node)
betweenness centrality as it quantifies how many times a given edge ei ∈ E acts as a bridge along
the shortest paths between two nodes:

EBC(ei) = ∑
vi ,vj∈V

s(ei)(vi, vj)

s(vi, vj)
, (A13)

where s(ei)(vi, vj) is the number of shortest paths between nodes vi and vj passing through edge
ei and s(vi, vj) is the total number of shortest paths between nodes vi and vj. As in the “standard”
betweenness centrality, the edge betweenness centrality can be normalised as follows:

EBC(ei) :=
2 · EBC(ei)

(|V| − 1) · |V| ; (A14)

• The load centrality [113,114] LC(vi) for node vi ∈ V is the percentage of the total number of
shortest paths passing through vi;

• The edge load centrality ELC(ei) for edge ei ∈ E is the edge-related counterpart of the load
centrality (like betweenness vs. edge betweenness): it is defined as the percentage of the total
number of shortest paths crossing edge ei;

• The subgraph centrality [115] SC(vi) for node vi ∈ V is the sum of (weighted) closed walks (i.e.,
connected subgraphs) starting and ending at vi (the longer the walk, the lower the weight). It can
be evaluated thanks to the spectral decomposition of the adjacency matrix, which reads as A =
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BΛ(A)BT where Λ(A) = diag
{

λ
(A)
1 , . . . , λ

(A)
|V|
}

is a diagonal matrix containing the eigenvalues in
increasing order and B contains the corresponding unitary-length eigenvectors, thus:

SC(vi) =
|V|
∑
j=1

eλ
(A)
j
(
bj(vi)

)2 , (A15)

where λj and bj are the eigenvalue and eigenvector associated to node vj ∈ V and bj(vi) indicates
the value related to vi in the jth eigenvector;

• The Estrada Index [116] EI(G) of a graph G quantifies the compactness (or ‘folding’, since the
Estrada Index was indeed originally proposed in order to study molecular 3D compactness)
of a graph starting from the spectral decomposition of the adjacency matrix (as in the
subgraph centrality):

EI(G) =
|V|
∑
j=1

eλ
(A)
j ; (A16)

• The harmonic centrality [117] HC(vi) is the sum of inverse shortest paths distances from a given
node vi ∈ V to all other nodes:

HC(vi) =
|V|
∑
j=1
j �=i

1
δ(vi, vj)

; (A17)

• The global reaching centrality [118] GRC(G) of a graph G is the average (over all nodes) of
the difference between the maximum local reaching centrality and each node’s local reaching
centrality. Formally:

GRC(G) = ∑
|V|
i=1 (LRCmax − LRC(vi))

|V| − 1
, (A18)

where LRC(vi) is the local reaching centrality of node vi ∈ V and LRCmax is the maximum local
reaching centrality amongst all nodes. In turn, the local reaching centrality for a given node vi is
defined as the percentage of nodes reachable from vi;

• The average clustering coefficient [119] ACC(G) of a graph G is given by:

ACC(G) = 1
|V|

|V|
∑
i=1

cc(vi), (A19)

where cc(vi) is the clustering coefficient for node vi, defined as:

cc(vi) =
2 · tri(vi)

DC(vi) · (DC(vi)− 1)
, (A20)

where, in turn, tri(vi) is the number of triangles passing through node vi and D(vi) is its degree;
• The average neighbour degree [120] AND(vi) of node vi ∈ V is given by:

AND(vi) =
1

|N (vi)| ∑
vj∈N (vi)

D(vj), (A21)

where N (vi) is the set of neighbours of node vi.

Apart from ACC, EI and GRC, which are global characteristics (i.e., related to the whole graph),
the others are local characteristics (i.e., related to each node or edge). As such, it is impossible
to compare graphs having different sizes (number of nodes and/or edges) by considering their
local centralities. The second representation X(2) sees each protein as a 27-length real-valued vector
containing D̄C, D̃C, ē, ẽ, p̄, p̃, k̄, k̃, C̄C, C̃C, B̄C, B̃C, ¯EBC, ˜EBC, L̄C, L̃C, ¯ELC, ˜ELC, S̄C, S̃C, EI,
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H̄C, H̃C, GRC, ACC, ¯AND, ˜AND (where bar and tilde indicate the average and standard deviation
centrality across nodes/edges).

Appendix A.3. Energy and Laplacian Energy

Let G = (V , E) be a graph and let V and E be the set of nodes and edges, respectively. Since in this
work unweighted and undirected graphs are considered, the adjacency matrix A is a binary |V| × |V|
matrix defined as:

Ai,j =

{
1 if (vi, vj) ∈ E
0 otherwise.

(A22)

From A, it is possible to define the diagonal |V| × |V| degree matrix as:

Di,j =

{
D(i) if i = j

0 otherwise,
(A23)

where D(i) is the degree of the ith node. In turn, from A and D, it is possible to define the Laplacian
matrix as:

L = D − A, (A24)

The spectrum and Laplacian spectrum of G are defined as the set of eigenvalues from A and L,
respectively [121]:

λ(A) =
{

λ
(A)
1 , . . . , λ

(A)
|V|
}

, (A25)

λ(L) =
{

λ
(L)
1 , . . . , λ

(L)
|V|
}

. (A26)

From Equations (A25) and (A26), it is possible to define the graph energy E and the Laplacian
energy LE as

E =
|V|
∑
i=1

∣∣∣λ(A)
i

∣∣∣ , (A27)

LE =
|V|
∑
i=1

∣∣∣∣λ(L)
i − 2|E |

|V|
∣∣∣∣ . (A28)

The third representation X(3) sees each protein as a 2-length real-valued vector containing E
and LE.

Appendix A.4. Nodes Functional Cartography

Guimerà and Amaral in their seminal work [122] proposed a methodology in order to extract
functional modules from a graph by maximising its modularity using simulated annealing [123].
Their definition of modularity takes into account both within-module degree and between-module
degree with the idea that a good graph partition (i.e., high modularity) must have many within-module
links and few between-module links.

Each node is then assigned with two scores: the z-score and the participation coefficient P.
The former measures how well-connected a given node is with respect to other nodes in its own
module. The latter quantifies how many connections a given nodes has with respect to nodes belonging
to different modules.

The z − P plane has been heuristically divided into seven regions and each node can be classified
into one of seven functional roles by considering its z-score and its participation coefficient P. Nodes
having z < 2.5 are non-hubs, whereas nodes having z ≥ 2.5 are hubs. In turn, non-hub nodes can
be divided in: ultra-peripherals (if P ≤ 0.05), peripherals (if P ∈ (0.05, 0.62]), non-hub connectors (if
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P ∈ (0.62, 0.8]) and non-hub kinless (if P > 0.8). Finally, hub nodes can be divided in: provincial hubs
(if P ≤ 0.3), connector hubs (if P ∈ (0.3, 0.75]) and kinless hubs (if P > 0.75).

The fourth representation X(4) sees each protein as an 8-length real-valued vector containing the
modularity (as returned by the simulated annealing) and the percentage of nodes belonging to each
functional role.

Appendix A.5. Heat Content Invariant

From the graph Laplacian and degree matrices (Equations (A24) and (A23), respectively),
the normalised Laplacian matrix can be evaluated as:

L̃ = D− 1
2 LD− 1

2 , (A29)

The spectral decomposition of L̃ reads as:

L̃ = VΛVT , (A30)

where Λ = diag
{

λ
(L̃)
1 , . . . , λ

(L̃)
|V|
}

is a diagonal matrix containing the eigenvalues in increasing order
and V contains the corresponding unitary-length eigenvectors.

The heat equation associated to L̃ is given by [124,125]:

∂H(t)
∂t

= −L̃H(t), (A31)

where H(t) is the |V| × |V| heat kernel matrix at time t. The heat content HC(t) of H(t) is given by:

HC(t) = ∑
vi∈V

∑
vj∈V

Hi,j(t)

= ∑
vi∈V

∑
vj∈V

|V|
∑
k=1

exp
{
−λ

(L̃)
k t
}

vk(vi)vk(vj),
(A32)

where vk(vi) is the value related to node vi in the kth eigenvector.
The MacLaurin series for the negative exponential reads as:

exp
{
−λ

(L̃)
k t
}
=

∞

∑
m=0

(
−λ

(L̃)
k t
)m

tm

m!
(A33)

and substituting Equation (A33) in Equation (A32) yields:

HC(t) = ∑
vi∈V

∑
vj∈V

|V|
∑
k=1

∞

∑
m=0

(
−λ

(L̃)
k t
)m

tm

m!
vk(vi)vk(vj) (A34)

By re-writing Equation (A32) in terms of power series as:

HC(t) =
∞

∑
m=0

qmtm, (A35)

where the set of coefficients qm are the so-called heat content invariants and can be evaluated in
closed-form as:

qm =
|V|
∑
i=1

⎛
⎝(∑

v∈V
vi(v)

)2
⎞
⎠
(
−λ

(L̃)
i

)m

m!
. (A36)
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The fifth representation X(5) sees each protein as a 4-length real-valued vector containing the first
four coefficients from Equation (A36); that is q1, q2, q3, q4.

Appendix A.6. Heat Kernel Trace

Recalling the heat equation from Equation (A31) and the spectral decomposition of the normalised
Laplacian matrix from Equation (A30), the solution to the former (already in Equation (A32)) reads as:

H(t) = exp
{−tL̃

}
= Vexp {−tΛ}VT

=
|V|
∑
i=1

exp
{
−λ

(L̃)
i t
}

viv
T
i .

(A37)

The heat kernel trace is evaluated by taking the trace of H(t):

HT(t) = Tr {H(t)} =
|V|
∑
i=1

exp
{
−λ

(L̃)
i t
}

. (A38)

The sixth representation X(6) sees each protein as a 10-length real-valued vector containing the
heat kernel trace for t = 1, 2, . . . , 10. These values for t have been chosen by visual inspection: indeed,
for t > 10 the heat kernel trace decay makes proteins undistinguishable one another.

Appendix A.7. Size

The seventh representation X(7) sees each protein as a 4-length real-valued vector containing
the number of nodes, the number of edges, the number of protein chains and the radius of gyration.
Whilst the first two items are rather straightforward, the latter two items deserve some further
comments. Proteins are composed by one or more amino-acids chains (linear polymers), thus the
number of chains may impact on the overall protein size. Finally, the radius of gyration [126] is a
measure of how-compact is the overall folded protein structure with respect to its centre of mass.

Appendix A.8. Normalised Laplacian Spectral Density

Recalling the spectral decomposition of the normalised Laplacian matrix from Equation (A30),

let λ(L̃) =
{

λ
(L̃)
1 , . . . , λ

(L̃)
|V|
}

be the normalised Laplacian spectrum (namely, the set of eigenvalues from

L̃). One of the interesting properties of the normalised Laplacian matrix is that its spectrum lies in range
[0, 2], regardless of the underlying graph [127]. The size of the spectrum, however, equals the number
of nodes and therefore one cannot easily compare graphs having different sizes just by considering
their respective spectra. In order to overcome this problem, following previous works [45,50], it is
possible to estimate the (normalised Laplacian) spectral density using a kernel density estimator (also
known as Parzen window [128]) equipped with the Gaussian kernel. The spectral density thus has
the form:

p(x) =
1
|V|

|V|
∑
i=1

1√
2πσ2

· exp

⎧⎪⎨
⎪⎩
−
(

x − λ
(L̃)
i

)2

2σ2

⎫⎪⎬
⎪⎭ , (A39)

where σ is the kernel bandwidth which determines the estimate resolution. Following [50], the Scott’s
rule [129] has been used in order to determine the proper bandwidth value, hence:

σ =
3.5 · std

{
λ(L̃)

}
|λ(L̃)|1/3

. (A40)

In this manner, the bandwidth scales in a graph-wise fashion by considering each graph’s
spectrum size (denominator) and its standard deviation (numerator). Let G1 and G2 be two graphs,
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their distance can be evaluated by considering the �2 norm between their respective spectral densities
p1(x) and p2(x):

d(G1,G2) =
∫ 2

0
(p1(x)− p2(x))2dx. (A41)

The same operation can be carried in the discrete domain by extracting n samples from p(x)
(equal for all graphs) and the latter collapses into the standard Euclidean distance.

The eighth representation X(8) sees each protein as an 100-length real-valued vector containing
n = 100 samples uniformly drawn from their respective normalised Laplacian spectral densities.

Appendix B. Selected Prototypes

In the following, the sets of proteins elected as prototypes for each of the seven classification
problems are shown. In order to shrink the output size, our a posteriori analysis has been carried only
on proteins which have been selected in all of the five runs of the genetic algorithm (in order to remove
’spurious’ representatives due to randomness in the optimisation procedure).

Table A1. Selected proteins in order to discriminate EC 1 (oxidoreductases) vs. all the rest.

PDB ID Notes/Description

1KOF Transferase
1XFG Transferase
3E2R Oxydoreductase
4TS9 Transferase

1ZDM Signalling Protein
1MPG Hydrolase
1QQQ Transferase

Table A2. Selected proteins in order to discriminate EC 2 (transferases) vs. all the rest.

PDB ID Notes/Description

3EDC LAC repressor (signalling protein)
1DKL Hydrolase
1JKJ Ligase
2DBI Unknown function
3UCS Chaperone
1LX7 Transferase
2GAR Transferase
3ILI Transferase
1S08 Transferase
4IXM Hydrolase
4XTJ Isomerase

1KW1 Lyase
1BDH Transcription factor (DNA-binding)
4PC3 Elongation factor (RNA-binding)
5G1L Isomerase

Table A3. Selected proteins in order to discriminate EC 3 (hydrolases) vs. all the rest.

PDB ID Notes/Description

4RZS Transcription factor (signalling protein)
1ZDM Signalling protein
3I7R Lyase

1HW5 Signalling protein
1SO5 Lyase
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Table A4. Selected proteins in order to discriminate EC 4 (lyases) vs. all the rest.

PDB ID Notes/Description

2BWX Hydrolase
3UWM Oxydoreductase
2H71 Electron transport
1D7A Lyase
4DAP DNA-binding
1SPV Structural genomics, unknown function
1EXD Ligase + RNA-binding
1X83 Isomerase
3ILJ Transferase

2D4U Signalling protein
1JNW Oxydoreductase
1TRE Oxydoreductase
1ZPT Oxydoreductase
3LGU Hydrolase
1IB6 Oxydoreductase

3C0U Structural genomics, unknown function
5GT2 Oxydoreductase
2RN2 Hydrolase
4L4Z Transcription regulator

3CMR Hydrolase
1NQF Transport protein
1GPQ Hydrolase
4ODM Isomerase + chaperone
2NPG Transport protein
2UAG Ligase
1OVG Transferase
3AVU Transferase
1RBV Hydrolase
5AB1 Cell adhesion

1TMM Transferase
4NIY Hydrolase
4WR3 Isomerase

Table A5. Selected proteins in order to discriminate EC 5 (isomerases) vs. all the rest.

PDB ID Notes/Description

4ITX Lyase
2BWW Hydrolase
5IU6 Transferase

1ODD Gene regulatory
5G5G Oxydoreductase
1G7X Transferase
2E0Y Transferase
2SCU Ligase
1HO4 Hydrolase
3RGM Transport Protein
1OAC Oxydoreductase
5MUC Oxydoreductase
3OGD Hydrolase + DNA binding
4K34 Membrane protein
1Q0L Oxydoreductase
1G58 Isomerase
5M3B Transport protein

2WOH Oxydoreductase
2PJP Translation regulation (RNA-binding)
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Table A6. Selected proteins in order to discriminate EC 6 (ligases) vs. all the rest.

PDB ID Notes/Description

2OLQ Lyase
1JDI Isomerase
4NIG Oxydoreductase + DNA-binding
5T03 Transferase

5FNN Oxydoreductase
2Z9D Oxydoreductase
2V3Z Hydrolase
4ARI Ligase + RNA-binding
3LBS Transport protein
4QGS Oxydoreductase
5B7F Oxydoreductase

2ABH Transferase

Table A7. Selected proteins in order to discriminate not-enzymes vs. all the rest.

PDB ID Notes/Description

1SPA Transferase
2YH9 Membrane protein
1NQF Transport protein
1LDI Transport protein
1TIK Hydrolase

1MWI Hydrolase + DNA-binding
1GEW Transferase
5CKH Hydrolase
3ABQ Lyase
3B6M Oxydoreductase
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Abstract: Cross-domain recommendation is a promising solution in recommendation systems by
using relatively rich information from the source domain to improve the recommendation accuracy of
the target domain. Most of the existing methods consider the rating information of users in different
domains, the label information of users and items and the review information of users on items.
However, they do not effectively use the latent sentiment information to find the accurate mapping
of latent features in reviews between domains. User reviews usually include user’s subjective
views, which can reflect the user’s preferences and sentiment tendencies to various attributes of the
items. Therefore, in order to solve the cold-start problem in the recommendation process, this paper
proposes a cross-domain recommendation algorithm (CDR-SAFM) based on sentiment analysis
and latent feature mapping by combining the sentiment information implicit in user reviews in
different domains. Different from previous sentiment research, this paper divides sentiment into three
categories based on three-way decision ideas—namely, positive, negative and neutral—by conducting
sentiment analysis on user review information. Furthermore, the Latent Dirichlet Allocation (LDA)
is used to model the user’s semantic orientation to generate the latent sentiment review features.
Moreover, the Multilayer Perceptron (MLP) is used to obtain the cross domain non-linear mapping
function to transfer the user’s sentiment review features. Finally, this paper proves the effectiveness
of the proposed CDR-SAFM framework by comparing it with existing recommendation algorithms
in a cross-domain scenario on the Amazon dataset.

Keywords: cross-domain recommendation; sentiment analysis; latent sentiment review feature;
non-linear mapping

1. Introduction

A recommendation system helps a user discover the information he/she wants such as products
and content from the massive information produced by the Internet. Recommendation systems are
primarily used in commercial applications. A recommendation system helps users find valuable
information as the interested information can be recommended to users. This is a win-win situation for
both consumers and manufacturers. A good recommendation system can not only accurately detect
the user’s behavior, but also help users find the potential information they are interested in.

There are a lots of achievements in recommendation systems, which try to enhance the
accuracy, diversity and novelty of recommendation. For example, a collaborative filtering-based
recommendation algorithm [1] is one of the most popular and widely used algorithms and it can be
divided into two categories—user-based recommendations and item-based recommendations. Among
model-based collaborative filtering methods, matrix factorization [2] technology is popular because it
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is extremely scalable and easy to implement. The accuracy of the matrix factorization recommendation
to a great extent depends on the rating matrix. However, in real life, with the rapid growth of users and
items, the rating matrix is very sparse, which has a great impact on the recommendation of new users
and new items. Thus, the cold-start and data sparsity problems in the recommendation process arise.

Recently, more and more researchers [3] have researched cross-domain recommendation by
introducing the concepts of source domain and target domain in order to solve the problem of data
sparsity and cold-start in the single-domain recommendation process. The purpose of cross-domain
based recommendation is to use the richer information in multiple domains than in a single-domain
and to transfer the knowledge between different domains effectively based on the idea of transfer
learning. One of the key assumptions that cross-domain recommendation can work is that there exist
consistency or correlation between users’ interest preferences or item features between domains. This
hypothesis is also supported by some research work. The cross-domain recommendation utilizes the
consistency or correlation between domains, such as the intersection of users and items, the similarity
between user interests, the similarity between item features, and the relationship between latent factors,
and so forth, to make up for the problem of insufficient information in the target domain.

However, the existing cross-domain recommendation methods are only based on the sharing
and transfer of knowledge in the text information such as rating, tag or review, and ignore the latent
sentiment information in the review. User reviews usually include user’s subjective views, which can
reflect the user’s preferences and sentiment tendencies to various attributes of the item. Fully mining
and using the implied sentiment information is helpful to solve the cold-start problems and data
sparsity in the process of cross-domain recommendation. The existing cross-domain recommendation
algorithms using user reviews do not make full use of the sentiment information in these reviews. They
mixed positive sentiment, neutral sentiment and negative sentiment together to realize knowledge
transfer, which will weaken or even lose some sentiment information of users, especially negative
sentiment. Therefore, it has a great significance to make cross-domain recommendations by combining
the user’s sentimental features implicit in the review information.

To address the problem of cold-start in the process of recommendation, we propose a cross-domain
recommendation algorithm based on sentiment analysis and latent feature mapping (shorted by
CDR-SAFM ) in this paper, by combining with the implicit sentiment information in user reviews.
First, this paper divides the sentiment of user review information into three categories based on the
theory of three-way decisions [4,5], namely positive, negative and neutral. Then, the Latent Dirichlet
Allocation method is used to model users’ semantic orientation to generate users’ latent sentiment review
features. Finally, the Multi-Layer Perceptron method is used to obtain the cross-domain non-linear
mapping function to transfer the user’s sentiment review features. The main contributions are concluded
as follows:

• A novel algorithm for cross-domain recommendation named CDR-SAFM is proposed for
cold-start users in target domain. It employs sentiment analysis and latent feature mapping and
it can transfer latent sentiment review feature from source domain to target domain and make
recommendation for cold-start users in target domain.

• Basing on the idea of three-way decisions, we take into account neutral sentiment to generate the
latent sentiment review feature from both the source and target domains, which can affect ratings
in the two domains.

• The LDA models is used to generate user latent review features. When generating features, we
consider the sentiment information from reviews, and generate the user sentiment review features
in different domains.

• The Multi-layer Perceptron is employed to accurately map the latent sentiment review feature
from the source domain to the target domain, which improves recommendation accuracy.

The rest of the paper is organized as follows. Section 2 introduces the related work. In Section 3,
the preliminary work is reviewed. A detailed description of our algorithm is stated in Section 4.
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Subsequently, in Section 5, we discuss experimental settings and the comparative results. Finally, we
conclude the paper in Section 6.

2. Related Work

Aiming at the cold-start problem caused by too sparse rating matrices in different domains, some
scholars [6–8] tried to use the common users in the two domains as bridges, using the data in the
auxiliary domain to solve the cold start problem in the target domain by feature mapping. Pan and
Yang [6] learned a transformation matrix based on the feature representation of common users in the
two domains, and realized the mapping of features between different domains. The transformation
matrix implements a linear mapping, and the mapping relationship of features in different domains
may be non-linear. Then, Xin et al. [7] modeled a non-linear feature mapping function through
a multi-layer perceptron, and obtained a better mapping effect than the transformation matrix.
Wei et al. [8] implemented the recommendation of e-commerce website products to social networking
sites through common users and the recommendations for cold-start users are made through the
mapping of user features.

Moreover, in order to make full use of the hidden user and item relationships between domains,
some works [9–11] proposed combining them with transfer learning. For example, Jiang et al. [9]
connected different domains with each other through social networks, forming a hybrid graph with
a social network-centric star structure, and used a random walk algorithm to predict the user and
item relationship. In addition, some scholars [12–14] try to analyze the behavior of users in multiple
social web platforms. The semantic relationships of items in each domain are also used for knowledge
transfer. Yang et al. [15] introduced the tag system into the cross-domain recommendation, and
successfully implemented the cold-start problem of recommending, that is, to recommend movies
to the new user based on the blog posts on Weibo. The basic idea of the work is to use the semantic
relationship between tags on user blog posts and movie tags as a bridge to associate users with movies,
and then it predicts user preferences based on graph models. Shi et al. [16] proposed a cross-domain
recommendation algorithm for collaborative filtering with fused labels. The model first uses the rich
label information in the labeling system that the user has labeled the item to calculate the user-user
similarity matrix and the item-item similarity matrix. Then it uses the information as a smoothing
term to improve the probability matrix decomposition model PMF [17]. The trained user and item
feature vectors can also satisfy the similarity relationship between users and items on the basis of
minimizing the error between the predicted rating and the actual rating. Kumar et al. [18] used the
Latent Direchlet Allocation (LDA) topic model [19] to model the user’s tagging information to build a
user feature topic sharing space shared by different domains and then, based on this space, to find
users with similar preferences in different domains and implement cross-domain recommendation.

Furthermore, Song et al. [20] believed that, compared with the rating information, the user
review information cannot only express the user’s preferences for the item, but also cover other user
interest preferences. Therefore, they proposed a joint tensor decomposition model based on review
information for cross-domain recommendation. The model is trained by using the AIRS method
rating information proposed in Reference [21], analyzing user reviews from multiple different angles,
and obtaining the user’s rating and degree of interest at each angle. This is achieved by sharing
feature vectors in the source and target domain Knowledge transfer. Hu et al. [22] aimed at the
problem of data sparseness and integrated auxiliary information such as product reviews and news
headlines to form a hybrid filtering method transferring knowledge from other source domains, such
as improving movie recommendations with knowledge in the book domain, and thus forming a
transfer of learning methods.
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3. Preliminary Work

3.1. Sentiment Analysis

Text sentiment analysis refers to the process of analyzing, processing, and extracting subjective
text with emotion using natural language processing and text mining technology [23]. The sentiment
analysis task can be divided into chapter level, sentence level, word or phrase level according to its
analysis granularity; according to its processing text category, it can be divided into sentiment analysis
based on product reviews and sentiment analysis based on news reviews; according to its research
tasks types can be divided into sub-problems such as sentiment classification, sentiment retrieval and
sentiment extraction.

Sentiment classification refers to the identification of subjective text in a given text, whether it is
positive or negative, which is the most researched in the field of sentiment analysis. There are usually
a lot of subjective texts and objective texts in network texts. Objectivity text is an objective description
of things, without emotion color and emotional tendency, and subjective text is the author’s views or
ideas on various things, with emotional tendencies such as the author’s likes and dislikes. The object
of sentiment classification is subjective text with emotional tendency, so emotion classification must
first be subjective and objective classification of text. The subjective and objective classification of texts
is mainly based on the recognition of sentiment words. Using different text feature representation
methods and classifiers for classification, subjective and objective classification of web texts in advance
can improve the speed and accuracy of sentiment classification. Looking at the current research
work on subjective text sentiment analysis, the main research ideas are divided into semantic-based
sentiment dictionary methods and machine learning-based methods.

In the semantic-based sentiment dictionary method, the construction of sentiment dictionary is the
premise and basis of sentiment classification. At present, it can be classified into four categories: general
sentiment words, degree adverbs, negative words, and domain words. The construction method
of emotional dictionaries is to use existing electronic dictionary extensions to generate emotional
dictionaries. English is mainly based on the expansion of the English dictionary WordNet to form
SentiWordNet lexicon. Hu and Liu [24] have manually established the seed adjective vocabulary and
used the synonymous relationship between words in WordNet to determine the emotion tendency of
emotion words, and use this to judge the emotional polarity of the point of view.

The tendency calculation of semantic-based sentiment dictionaries is different from the machine
learning algorithms that require a large number of training datasets. It mainly analyzes the special
structure and sentiment tendency words of text sentences by using sentiment dictionary and sentence
lexicon, and uses weight algorithm instead of traditional manual discrimination or simply statistical
method for sentiment classification. Emotional words with different sentiment intensity are assigned
different weights, and then weighted summation is performed.

Finally, the threshold is determined to judge the tendency of the text. In general, the weighted
calculation result is positive to indicate positive tendency; the result is negative to indicate negative
tendency, and the score is zero to indicate no tendency. Compared with the classification algorithm
based on machine learning, the sentiment dictionary-based method is a coarse-grained tendency
classification method, but because it does not rely on a well-labeled training set, implementation is
relatively simple. It can effectively and quickly classify sentiment for web texts in universal fields.

Sentiment analysis has been widely used in recommendation systems. Calculating the sentiment
orientation of user reviews has been studied by some researchers. Diao [25] built a language model
component in the JMARS model they proposed to capture hidden points in reviews. Zhang [26]
performed phrase-level sentiment analysis on user reviews to extract clear product features and
user opinions to generate interpretable recommendation results. Li [27] proposed a SUIT model for
sentiment analysis using both text themes and user items. In this article, we apply sentiment analysis
to cross-domain recommendation tasks, focusing on finding latent sentiment review features of users
and mapping them from the source domain to the target domain.
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3.2. Topic Model

In natural language processing, the Latent Dirichlet Allocation (LDA) [19] is a powerful and
practical tool for analyzing large text documents. Latent Dirichlet Allocation is also a common
method to solve the cold start problem. LDA can automatically cluster words into topics and
discover relationships between documents from a dataset. It assumes that the authors of the resource
have multiple themes; based on their vocabulary, the author chooses specific vocabulary to describe
their topic. Formally, resources are distributed on topics and topics are distributed on vocabularies.
Vocabulary consists of different words in the corpus.

As shown in Figure 1, the symbolic representation of standard LDA is shown. ϕ refers to
the representation of topic in vocabulary, and θ refers to the distribution of resources across topics.
Variables α and β are hyperparameters of the model. Parameter α controls the distribution of resources
on topics, and parameter β controls the distribution of topics in vocabulary. Variable z represents
subject assignment, while variable w is the observed word. R is the number of resources in the corpus,
and N is the number of words in the resources. Parameter K indicates the number of topics suitable
for corpus. K is allocated during initialization. Among the variables, only w is the observation variable
and the rest is the latent variable.

Figure 1. Standard Latent Dirichlet Allocation (LDA).

The process of LDA starts from the sampling of topic z. Based on topic z, the word w is obtained
by sampling ϕ with a polynomial, which is described as follows (1)–(5):

ϕ(wi|k, β) =
n(wi, k) + β

∑w∈V n(w, k) + (β − 1)
. (1)

θ(k|d, α) =
n(r, k) + α

∑k∈K n(r, k) + (α − 1)
. (2)

Variable k represents the k topic of model sampling, and ϕ(wi|k, β) calculates the probability
that word wi is the k topic in the dictionary. n(wi, k) indicates the number of occurrences of word wi
assigned to topic k. θ(k|d, α) calculates the probability of document d for topic k. n(r, k) is the number
of times resource r is assigned to topic k. The joint distribution of the model is as follows:

p(θ, z, w|α, β) = p(θ|α)
N

∏
n=1

p(zn|θ)p(wn|zn, β). (3)

p(θ, z|w, α, β) = p(θ, z, w|α, β)p(w|α, β). (4)

Equation (4) is used to infer markers, but it is difficult to calculate the real posterior distribution.
Gibbs sampling is used to estimate the posterior distribution in order to deal with the difficulty. Gibbs
sampling starts by randomly assigning a word to a topic. In subsequent iterations, it assigns a word to
a topic based on the following equation:

p(zi = k|z−i, w, θ) =
n(wi, k)−i + β

∑w∈V n(w, k) + (β − 1)
× n(r, k)−i + α

∑k∈K n(r, k) + (α − 1)
. (5)
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where n(wi, k)−i represents the number of times a word wi appears in topic k without including the
currently assigned task.

4. The CDR-SAFM Algorithm

4.1. Notations

We suppose that there are two domains sharing the same user. Users who appear in one domain
can appear in another domain. In this sense, the two domains share the same user. Without losing
generality, one domain is called the source domain. The other is called the target domain.

Define the recommended objects in the target domain as items. Let U = {u1, u2, ..., u|U|}
represent the common users of source domain and target domain, that is overlapping users. Let
JS = {i1, i2, ..., i|JS |} and JT = {l1, l2, ..., l|JT |} be the item sets from the source and target domains
respectively. The user review dataset is represented as SRU = {ru1 , ru2 , ..., ru|U| } in source domain and
TRU = {ru1 , ru2 , ..., ru|U| } in target domain, where rui is all of reviews of user ui in the corresponding
domain. Similarly, we let TRI = {ri1 , ri2 , ..., ri|JT | } denote the item review dataset in target, where rij

is all of reviews which item ij acquired in target domain. Rs and Rt be two rating matrices from the
source and target domains respectively, where Rs

ij is the rating that user ui gives to item ij in the source
domain and Rt

ij is the corresponding rating in the target domain.

4.2. Problem Formulation

Given the review information SRU and TRU of two domains, and overlapping user sets U across
domains, we aim to analyze the sentiment information of the source domain and the target domain,
use the common user as a bridge to realize the knowledge transfer from the source domain to the
target domain, and solve the problem of rating prediction of cold-start users in the target domain.
For this purpose, we propose a cross-domain recommendation algorithm, CDR-SAFM, based on
sentiment analysis and latent feature mapping. This framework contains three major steps, that is,
latent sentiment review features modeling, latent sentiment review features mapping and cross-domain
recommendation, as illustrated in Figure 2.

Figure 2. Illustrative diagram of the CDR-SAFM algorithm.
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At the first step, we aim to analyze the emotional orientation of user reviews in two domains
through sentiment analysis methods, so that the original dataset in the two domains is divided into
three parts: positive reviews, neutral reviews, and negative reviews. Reviews in the source domain
are divided into SRpos

U , SRneu
U and SRneg

U , and reviews in the target domain are divided into TRpos
U ,

TRneu
U and TRneg

U . Then we aim to find the representation of latent sentiment review features by
LDA, including positive sentiment review features, neutral sentiment review features, and negative
sentiment review features. The latent sentiment review feature assumes the association between a
user’s reviews on an item, and the user’s reviews on an item are actually the result of the combination
of the user and the sentiment review features. That is to say, users’ reviews always contain sentiment
features. In order to reduce the influence of previous sentiment classification methods on the overall
algorithm results, we classify users’ review information by users’ rating of the item, because a user’s
review emotion polarity of an item can be reflected in the rating information. For example, if a user
likes an item, the user’s final reviews will be more positive, and the user’s rating will be higher.

In the second step, we aim to obtain a mapping function for modeling cross-domain relationship
of sentiment review features. We assume that there is a latent mapping relationship between the
sentiment review features from source domain and target domain, and then capture this relationship
by mapping function. To avoid the mutual interference among the features of positive, neutral and
negative sentiment review during the process of knowledge transfer, we use mapping function to
model the cross-domain relationship of different sentiments respectively. In order to avoid the lack of
different sentiment review features of users in the mapping process, we train the mapping function of
different emotions by preprocessing the data and using the common users in the two domains whose
sentiment review features are not missing.

Finally, we recommend a cold-start user in the target domain. Using this method, we can get the
corresponding latent sentiment review feature in the target domain and use these features to affect the
final recommendation results. Different mapping results of sentiment review features of cold-start
users have different influence on users’ ratings. Therefore, we set different weights for different results
of sentiment review features to get the emotional ratings of cold-start users. The complete CDR-SAFM
algorithm is presented in Algorithm 1.

Algorithm 1 The CDR-SAFM algorithm.

Require:

Source domain SRU , target domain TRU ;

Common User set U;
Ensure:

Make recommendation for cold-start users in the target domain;

Sentiment Analysis

1: Learn {SRpos
U , SRneu

U , SRneg
U } from SRU ;

2: Learn {TRpos
U , TRneu

U , TRneg
U } from TRU ;

Latent sentiment review feature

3: Learn {Spos
U , Sneu

U , Sneg
U } from {SRpos

U , SRneu
U ; , SRneg

U };
4: Learn {Tpos

U , Tneu
U , Tneg

U } from {TRpos
U , TRneu

U ; , TRneg
U };

Latent Sentiment Review Feature Mapping

5: Learn the mapping function fpos(·), fneu(·) and fneg(·) by users across domain;

Cross-domain Recommendation

6: Get affine features UT.pos
new , UT.neu

new and UT,neg
new of target users;

7: Make recommendation for target users.
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4.3. Latent Sentiment Review Feature Modeling

In this section, we aim to analyze the sentiment information hidden in the user’s review
information and extract the user’s review features under different sentiments from the source domain
and the target domain, as illustrated in Figure 3.

Figure 3. Sentiment analysis and feature extraction.

4.3.1. Sentiment Analysis

According to general psychology, sentiment has an important influence on one’s behavior
and choices. Sentiment analysis plays an important role in information retrieval. It clarifies
people’s thoughts and feelings about something or someone in a certain situation. This kind
of high level information can be used in many applications, such as customer review analysis,
business and government intelligence, personalized recommendation and so on. User reviews on
online platforms show similar sentiment expressions, which is generated by similar psychological
stimulation. Therefore, it is valuable to combine the latent sentiment information in reviews with cross
domain recommendation.

Sentiment analysis (SA) is a process of analyzing, processing, summarizing and reasoning
subjective characters with emotional color. Among them, sentiment analysis can also be divided
into emotional orientation analysis, emotional level analysis, subjective and objective analysis, and
so forth. The purpose of emotional orientation analysis is to judge the positive, negative and neutral
meaning of the text. In most application scenarios, there are only two types. For example, the two
words “love” and “disgust” belong to different emotional orientations.

However, in the past work based on sentiment analysis, most of the sentiment analysis problems
are expressed as—given a set of review R, a sentiment classification algorithm can divide each sentence
of a review r ∈ R into two categories—positive Rpos and negative Rneg. In real life, some texts can not
be directly classified into positive sentiment or negative sentiment. Therefore, in this paper, based
on the three-way decision ideas, we divide the source domain review data information into positive
SRpos

U , neutral SRneu
U and negative SRneg

U , and the target domain review data into TRpos
U , TRneu

U and
TRneg

U . Because the sentiment analysis algorithm is not the focus of this paper, it is suggested that
readers refer to the relevant literature. To achieve this goal, we use a method based on statistics to do
sentiment analysis on the review dataset.

We extract “ratings” and “reviews” from the dataset for analysis. “Ratings” represents the user
rating of the item in the review, and the rating range is 1–5. “reviews” is the text information of the
user review. We randomly selected 1000 reviews each of 1–5, and performed basic de-punctuation,
lowercase, and stop word processing on the text to count the word frequency to make a word cloud
diagram. Based on the analysis of word cloud diagram with different ratings, most reviews rated as
1, 2 are negative sentiment reviews, and reviews rated as 4, 5 are mostly positive sentiment reviews.
However, it is difficult to define the division of reviews with a score of 3, which also proves the idea
of three-way decision ideas, so we regard them as a separate category. Therefore, we can divide the
dataset into positive sentiment reviews with a rating of 4 or 5, neutral sentiment reviews with a rating
of 3 and negative sentiment reviews with a rating of 1 or 2.
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4.3.2. Latent Sentiment Review Feature

Obtaining the latent sentiment feature of users is the key for improving the performance of
recommendation algorithms. Review-based recommendation algorithms tend to extract latent feature
by topic models. In this paper, we use an LDA topic model to extract latent feature. Each latent
feature (topic) extracted by LDA is associated with a set of keywords. Thus, we can get interpretable
recommendation results by matching the topic distribution of users and items.

Take the analysis of user features under positive sentiment in source domain as an example
(other similar). We use the review information of all users as a corpus for LDA model training,
and use all the reviews of each user as a document. Finally, we find the word distribution of
the topics and the topic distribution of the document under the positive sentiment of the source
domain. The topic distribution of the document is the user’s latent sentiment review feature, which
represented as Spos

U = {θ
pos
S,u1

, θ
pos
S,u2

, ..., θ
pos
S,u|U|

}. Similarly, we can calculate the latent sentiment review

feature of users in the source domain and target domain under the positive, negative and neutral
sentiment. The sentiment review features in the source domain are Spos

U = {θ
pos
S,u1

, θ
pos
S,u2

, ..., θ
pos
S,u|U|

},

Sneu
U = {θneu

S,u1
, θneu

S,u2
, ..., θneu

S,u|U|
} and Sneg

U = {θ
neg
S,u1

, θ
neg
S,u2

, ..., θ
neg
S,u|U|

}, where θ
pos
S,ui

represent positive review

features of user ui in the source domain. Similarly, θneu
S,ui

and θ
neg
S,ui

represent the neutral review features
and the negative review features, respectively. The sentiment review features in the target domain
are Tpos

U = {θ
pos
T,u1

, θ
pos
T,u2

, ..., θ
pos
T,u|U|

}, Tneu
U = {θneu

T,u1
, θneu

T,u2
, ..., θneu

T,u|U| } and Tneg
U = {θ

neg
T,u1

, θ
neg
T,u2

, ..., θ
neg
T,u|U|

},

where θ
pos
T,ui

represent positive review features of user ui in the target domain. θneu
T,ui

and θ
neg
T,ui

represent the neutral review features and the negative review features, respectively. In addition,
Tpos

I = {θ
pos
T,l1

, θ
pos
T,l2

, ..., θ
pos
T,l|I|

}, Tneu
I = {θneu

T,l1
, θneu

T,l2
, ..., θneu

T,l|I|
} and Tneg

I = {θ
neg
T,l1

, θ
neg
T,l2

, ..., θ
neg
T,l|I|

} respectively

represent the distribution of sentiment review topics of all items in the target domain, and θ
pos
T,li

represents the distribution of positive review topics of items li in the target domain.

4.4. Sentiment Review Feature Mapping

How to transfer users’ sentiment information effectively is an important problem to be solved
in this paper. Existing cross-domain recommendation algorithms that use user reviews do not make
full use of the sentiment information in these reviews. They achieve knowledge transfer by mixing
positive, neutral, and negative sentiment, which will weaken or even lose some of the user’s sentiment
Information, especially negative sentiment. For example, users may be very concerned about the
plot of a novel and make positive reviews on the plots of some novels in the field of e-books (source
domain), while making negative reviews on the plots of other novels. If we transfer the knowledge
obtained from user reviews from the source domain to the target domain without distinguishing the
emotional orientation of these reviews, the underlying sentiment factors in the reviews will be mixed
together and transferred to the target domain as user features. In movies (target domain), movies with
poor plots will match user features transferred to the target domain. But users may not like the movie.

To connect the source domain and the target domain, we assume that we can get the relationship
between domains through a mapping function. The mapping architecture is shown in Figure 4.
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Figure 4. Mapping architecture.

To obtain the mapping function, we can formalize the learning process into a supervised regression
problem. In particular, we minimize the mapping loss to obtain the mapping function.

min
θ

∑
ui∈U

L
(

fU(Us
i ; θ), Ut

i
)
, (6)

where L(·, ·) is the loss function that defines the corresponding vector in the source domain and the
target domain. Because the input and output of the mapping function are multi-dimensional numerical
vectors, we choose the square error as the loss function.

Multilayer Perceptron (MLP) is a nonlinear transformation, which is more flexible than a linear
mapping function. Thus, we choose mapping based on multi-layer perceptron to realize cross domain
connection between different domains. It makes the user’s sentiment review feature in the source
domain play a complementary and perfect role in the target domain recommendation.

MLP can be optimized using back propagation. The optimization problem can be formalized as

min
θ

∑
ui∈U

L
(

fmlp(Us
i ; θ), Ut

i

)
, (7)

where fmlp(·; θ) is MLP mapping function, θ is its parameter set, which are the weight matrices and
bias terms between layers. In this paper, we use the method of random gradient descent to study its
parameters and get MLP mapping function. By traversing the training set, refresh the parameters of
MLP with any user ui across the source and target domains. The gradient of parameters is calculated
by back propagation algorithm. Until the model converges, the iterative process stops.

In this paper, through sentiment analysis and feature extraction of the source domain and target
domain datasets, we can get the user sentiment review features Spos

U , Sneu
U and Sneg

U in the source
domain, and the user sentiment review features Tpos

U , Tneu
U and Tneg

U in the target domain. In order to
connect the source domain and the target domain, we train the feature mapping relationship f pos

MLP
of positive sentiment in different domains through Spos

U and Tpos
U (the negative and neutral feature

mapping relationships are similar, respectively f neu
MLP and f neg

MLP).
Let Spos

U = {θS
1 , θS

2 , ..., θS
N} denote s set of sentiment review feature in the source domain, Tpos

U =

{θT
1 , θT

2 , ..., θT
N} denote s set of sentiment review feature in the target domain. N is the number of

common users. We formalized mapping problem as: given N training samples
(
θS

i , θT
i
)
, θS

i , θT
i ∈ RM

(i = 1, 2, ..., N), we aim to learn a mapping function so that we can get the sentiment review features in
the target domain through the sentiment review features in the source domain.

That is to say, Spos
U and Tpos

U are used to train the mapping function of source domain and target
domain in positive sentiment review feature. Similarly, Sneu

U and Tneu
U are used to train the mapping

function of neutral sentiment review feature, and Sneg
U and Tneg

U are used to train the mapping function
of negative sentiment review features. Specifically, given positive sentiment review features Spos

u′
and Tpos

u′ in two domains of user u′, we use a mapping function f (·; θ) to capture the cross domain
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relationship Tpos
u′ = fpos(S

pos
u′ ; θ), where θ is the parameter of the mapping function. Similarly, we can

get Tneu
u′ = fneu(Sneu

u′ ; θ) and Tneg
u′ = fneg(S

neg
u′ ; θ).

4.5. Cross-Domain Recommendation

Given a cold-start user, we cannot recommend it directly because of its sparse data. We first can
get the user’s sentiment review feature in the source domain and get the sentiment review feature in
the target domain through the learned sentiment feature mapping function. Then by combining the
existing user benchmark recommendation results and the influence of sentiment information on user
recommendations, we can get the final recommendation results. The specific formal description is
as follows:

Given a cold-start user u′ in the target domain, we classify all the user’s review information into
Spos

u′ , Sneu
u′ and Sneg

u′ in the source domain. We can obtain the sentiment review features θ
pos
S,u′ , θneu

S,u′ and
θ

neg
S,u′ by Latent Dirichlet Allocation. Then we aim to get sentiment review features θ̃

pos
T,u′ , θ̃neu

T,u′ and θ̃
neg
T,u′

of user u′ in the target domain is defined as:

θ̃
pos
T,u′ = f pos

MLP(θ
pos
S,u′ ; θpos), (8)

θ̃neu
T,u′ = f neu

MLP(θ
neu
S,u′ ; θneu), (9)

θ̃
neg
T,u′ = f neg

MLP(θ
neg
S,u′ ; θneg). (10)

Calculating the topic similarity under the same sentiment in different domains is defined as:

SIMpos = {simpos
i,j }, i, j = 1, 2, ..., M, (11)

SIMneu = {simneu
i,j }, i, j = 1, 2, ..., M, (12)

SIMneg = {simneg
i,j }, i, j = 1, 2, ..., M. (13)

Therefore, we can get the predicted sentiment rating of cold-start users. That is, the impact of
sentiment information in user reviews on the final recommendation is defined as:

e(u′) = w1 × θ̃
pos
T,u′ · SIMpos · TposT

I − w2 × θ̃
neg
T,u′ · SIMneg · TnegT

I + w3 × θ̃neu
T,u′ · SIMneu · TneuT

I , (14)

where the parameters w1, w2 and w3 represent different weights. Finally, combined with the user’s
benchmark rating and prediction sentiment rating, we can get the final prediction rating of cold-start
user u′ on the item li, which can be expressed as:

pre(u′) = R_base + e(u′), (15)

where R_base = bT + bu′ + bIj , bT represents the average rating of all items in the target domain.
The parameter bu′ is the user rating bias in the source domain and bIj is the item rating bias in the
target domain.

5. Experiments

In this section, we test the CDR-SAFM algorithm proposed in this paper with a real-world
dataset. Firstly, the experimental dataset is introduced, and the possible rating of cold-start users
in the target domain is predicted by using review data from two different domains—Electronics,
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and Movies and TV. Then we compare the proposed model with the common methods in the
recommendation system. Finally, we randomly select different percentages of cold-start users and
analyze the experimental results.

5.1. Experimental Settings

Datasets. We employ Amazon cross-domain dataset [28] in our experiment. This dataset contains
product reviews and star ratings with 5-star scale from Amazon, including 142.8 million reviews
spanning May 1996–July 2014. In our experiment, we select the top two domains with the most widely
used in previous studies to employ in our cross-domain experiment: Electronics and Movies & TV.
The global statistics of two domains used in our experiment are shown in Table 1.

Table 1. Statistics of the Amazon dataset.

Datasets Electronics Movies & TV

Num. of users 192,403 123,960
Num. of Items 63,001 50,052

Num. of reviews 8,898,041 1,697,533

Experimental Settings. In the experiment, we set Electronics as the source domain and Movies &
TV as the target domain. After data preprocessing, the number of common users in the two domains is
2406. The items in these two domains are very different, forming a cross domain user sharing scenario.
To evaluate the validity and efficiency of the proposed algorithm on cross-domain recommendation
task, we randomly remove all the rating information of a fraction of entities in the target domain and
take them as cross-domain cold-start entities for making recommendation. For the sake of stringency of
the experiments, we set different fraction for cold-start entities, namely, 20%, 50% and 70%. In addition,
since different sets of cold-start entities may affect the final recommendation results, we repeatedly
sample users for 10 times to generate different sets. Dimension K of latent sentiment review features is
set as 50 and 100. For the MLP mapping function, we choose the structure of the MLP as one-hidden
layer, the dimension of input and output of the MLP is set as K, whilst the number of nodes in the
hidden layer is set as 2K. The weight and bias parameters of the MLP is initialized according to the
rule in Reference [29]. Finally, a tan-sigmoid function is employed as the activation function. In order
to obtain the mapping function of MLP, we use stochastic gradient descent to learn the parameters.
Through the loop on the training set, the parameters of the MLP are updated. This back-propagation
algorithm is used to calculate the gradient of the parameters, and this process continues until the
model converges.

Models for Comparison. We compare the CDR-SAFM algorithm with the following baseline
models and algorithms for validating the performance.

• AVE: It predicts ratings by the following equation: rui = bt + bu + bi where bt is the overall
average ratings of all items in the target domain, bu denotes the user rating bias in the source
domain and bi represents item bias in the target domain.

• MF: This is the single-domain matrix factorization algorithm proposed in [2].
• MF_MLP: This is a cross-domain recommendation algorithm based on MF and MLP, which is

proposed by [30]. In our experiment, for MF_MLP, the structure of the MLP is set as one-hidden
layer, and the number of nodes in the hidden layer is set as 2M.

Evaluation Metric. We adopt the Root Mean Square Error (RMSE) to evaluate the prediction
performance. It is defined as:

RMSE =

√√√√ ∑
yui∈T′

(yui − ỹui )
2

|T′| , (16)
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where T′ is the set of test ratings, yui denotes an observed rating in the test set, and ỹui represents the
predictive value, |T′| is the number of test ratings.

5.2. Experimental Results

The experimental results in terms of RMSE on the Amazon dataset are presented in Table 2, where
K represents the number of topics. For the sake of stringency of the experiments, we set different
fractions for cold-start entities, namely, 20%, 50% and 70%. It can be seen that the performance of our
proposed method is superior to other comparative methods.

Table 2. Recommendation performance in terms of RMSE on the Amazon dataset.

K: the Number of Topics Algorithms 20% 50% 70%

50 AVE 1.4998 1.5020 1.5163
50 MF 1.6300 1.7071 1.7682
50 MF_MLP 1.4996 1.5021 1.5113
50 CDR-SAFM 1.4650 1.4912 1.5073

100 AVE 1.4998 1.5020 1.5163
100 MF 1.7494 1.8300 1.8950
100 MF_MLP 1.5338 1.5726 1.5929
100 CDR-SAFM 1.4829 1.4940 1.5100

As the proportion of cold-start users increases, the recommended performance decreases. The
decline of single-domain recommendation method MF is the most obvious, while the performance
of cross-domain recommendation method is relatively good, which also proves the effectiveness of
knowledge transfer in cross-domain recommendation. The result of MF_MLP is better than MF, which
also shows that the mapping function based on MLP is feasible in knowledge transfer. Compared with
MF_MLP, the CDR-SAFM method proposed in this paper has been improved in terms of RMSE. When
the number of topics K = 50, the mean square errors of our method are reduced by 0.0346, 0.0109 and
0.004 respectively. When the number of topics K = 100, the mean square errors are reduced by 0.0509,
0.0786 and 0.0829, respectively. These results demonstrate that the CDR-SAFM is more suitable for
making recommendations to cold-start users compared to other cross-domain baseline methods, and
also proves the effectiveness of our method in the cross-domain recommendation scenarios.

In the topic model, the number of topics is very important. The number of topics directly affects
the results of the experiment. However, the number of topics is not directly proportional to the results.
As the number of topics increases, more computing costs will be required and there will be a risk of
overfitting. In our method, we select the number of topics K as 50 and 100, and analyze the results
under different number of topics. As shown in Figure 5, we tested RMSE with the number of topics
K = 50 and K = 100 on the Electronics and Movies & TV datasets, respectively. We can see that the
comparison results of AVG and MF_MLP are most obvious with the change of topic number. When the
topic number K = 100, the difference between the two methods is more obvious. At the same time, we
can see that when the number of topics K = 100, the CDR-SAFM method is relatively stable for different
proportions of cold-start users in term of RMSE, which also proves the rationality of our method.

A cross-domain recommendation algorithm is an effective recommendation method. Its purpose
is to transfer the knowledge in the source domain to the target domain, so as to improve the quality
of recommendations and alleviate the cold start problem in the recommendation system. However,
existing works on cross-domain algorithms mostly consider ratings, tags and text information such
as reviews, but cannot use the sentiments implicated in the reviews efficiently. In this paper, we
propose a cross-domain recommendation algorithm (CDR-SAFM) based on sentiment analysis and
latent feature mapping by combining the sentiment information implicit in user reviews in different
domains. The results of comparative experiments show that our method is effective. At the same time,
it also proves that it is feasible for us to consider the implicit sentiment information in the reviews into
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the cross-domain recommendation method. However, there are still many deficiencies in our work. In
this paper, we only validate our method on one dataset, and need to validate our method on more
datasets in different fields. At the same time, there is a lot of space for data preprocessing and method
improvement, which is also the problem we need to solve in future work.

Figure 5. RMSE of the number of different topics.

6. Conclusions

In this paper, we address the cold-start problem in the recommendation process. We proposed a
cross-domain recommendation algorithm based on sentiment analysis and latent feature mapping by
combining the sentiment information implicit in user reviews in different domains. We first employed
the latent feature model to project users in both source and target domains into two different feature
spaces. Then, we learned an appropriate non-linear mapping function to capture the coordinate
relationship across the two domains. To avoid mutual interference between different sentiment
features during the process of knowledge transfer, we have learned three different types of sentiment
mapping function, respectively based on three-way decision ideas, including positive, neutral and
negative mapping functions. For a cold-start user in the target domain, we made recommendations
by mapping a user’s sentiment features from the source domain to the target domain. Experimental
results from a cross-domain recommendation scenario on the Amazon dataset demonstrate that the
proposed framework can improve the quality of cross-domain recommendation. There are possible
minimum biases in the rating process in relation to some factors as interests of raters. This work does
not make a contribution to the bias. Developing an efficient method to preprocess the rating data is
part of our planned future work.
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Abstract: Contagion models are a primary lens through which we understand the spread of
information over social networks. However, simple contagion models cannot reproduce the complex
features observed in real-world data, leading to research on more complicated complex contagion
models. A noted feature of complex contagion is social reinforcement that individuals require
multiple exposures to information before they begin to spread it themselves. Here we show that the
quoter model, a model of the social flow of written information over a network, displays features of
complex contagion, including the weakness of long ties and that increased density inhibits rather than
promotes information flow. Interestingly, the quoter model exhibits these features despite having no
explicit social reinforcement mechanism, unlike complex contagion models. Our results highlight the
need to complement contagion models with an information-theoretic view of information spreading
to better understand how network properties affect information flow and what are the most necessary
ingredients when modeling social behavior.

Keywords: online social networks; social media; information spreading; information diffusion;
cross-entropy

1. Introduction

Social networks mediated through online platforms are an increasingly important way in which
individuals send and receive information, and their influence is now felt in economics, politics, and
the workplace [1–6]. These platforms provide rich opportunities for researchers to collect and study
real-world data related to human behavior and the spread of information. In concert with these
datasets, considerable research has worked towards better statistical and information-theoretic tools to
quantify information flow [7–9] and towards more accurate mathematical models to understand and
even predict information flow [10–12].

A common approach to measuring information flow over a network is to idealize information
as a collection of ‘packets,’ and then track the spread of those packets throughout the network. This
approach is especially common when studying social media where keywords such as hashtags or
URLs are easily tracked. More complex phenomena, such as the adoption of behaviors can also be
monitored and used as a proxy for information flow [13]. Treating information flow in this way brings
to mind the spread of infections and the use of epidemiologically inspired models is popular. In this
context, the social “diffusion” of information is often characterized as either a simple contagion or a
complex contagion [14]. Simple contagions are those where each exposure can independently lead
to an infection. Complex contagions, in contrast, introduce a social reinforcement mechanism where
multiple exposures are needed before the contagion can spread.
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However, despite its simplicity and popularity, there can be drawbacks to treating information
as the contagion of discrete packets. Within social media, for example, there is a wealth of written
information being posted by users that is ignored when focusing only on particular keywords. Likewise,
considerable information could be exchanged between individuals without leading to an observable
adoption of behavior. Therefore, we argue in this work that a more nuanced approach grounded in
information theory can give a better view of information flow in online social networks while more
fully using the available data.

The goal of this work is to study how network properties can affect information flow when
taking an information-theoretic view on information flow, and how this information-theoretic view
compares to contagion. We study the quoter model [12], a simple model for individuals generating
text data within social media and apply information-theoretic estimators to the model text. Using
both network models and real-world network data, we compare the behavior of information flow
in this model with traditional simple and complex contagion, to see the similarities and differences
we may observe through these contrasting viewpoints. Interestingly, we find that the quoter model
exhibits several phenomena characteristic of complex contagion, despite lacking an explicit social
reinforcement mechanism, the key feature of complex contagion.

The rest of this work is organized as follows. In Section 2 we describe information-theoretic
estimators of information flow and mathematical models of information flow and contagion. In
Section 3 we describe the materials and methods used in this study, including simulation details,
measures of information flow, the network properties we investigate, and the network data we
use. Section 4 presents our results comparing contagion models with the information-theoretically
motivated quoter model and exploring how various network properties affect information flow in the
quoter model. We conclude with a discussion in Section 5.

2. Background

2.1. Measuring Information Flow

Suppose an individual within a social network generates a stream of text representing posts
shared online on Twitter, for example. The entropy rate h of this text captures the information present
within it. It can be challenging to estimate h for natural language data as information is present in the
ordering of the words, not just the relative frequencies of words [15]. To help address this challenge,
Kontoyianni et al. [16] proved that the estimator

ĥ =
T log2 T

∑T
t=1 Λt

, (1)

converges to the true entropy rate h of a text, where T is the length of the sequence of words and Λt is
the match length of the prefix at position t: it is the length of the shortest substring (of words) starting at
t that has not previously appeared in the text. This estimator has been used to study human dynamics
including mobility patterns and social media predictability [11,17].

Equation (1) generalizes to an estimator of the cross-entropy h× between two texts A and B [11,18]:

ĥ×(A | B) =
TA log2 TB

∑TA
t=1 Λt(A | B)

, (2)

where TA and TB are the lengths of the two texts, and Λt(A|B) is the length of the shortest substring
[At, At+1, . . . , At+Λt(A|B)+1] starting at position t of text A not previously seen in text B. Previously,
in this case, refers to all the words of B written prior to the time when the tth word of A was
written. Specifically, compute Λt(A|B) by searching for each substring [At], [At, At+1], ... within
B:t ≡ [Bj | time(Bj) < time(At)], the ordered sequence of words in B that appear before the time of
the t-th word in A, until the first substring [At, . . . , At+Λt(A|B)+1] that is not seen in B:t. By matching
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the future text of A (words posted at times ≥ time(At)) against the past text of B (words posted
at times < time(At)) at every t, only B’s past predictive information about A’s future is estimated
and temporal precedence is satisfied. The cross-entropy can be applied directly to the texts of a pair of
individuals by choosing B to be the text stream of one individual and A the text stream of the other,
and Equation (2) can be used to measure the information flow between those individuals by asking
how much predictive information about one text is contained within the other. This can be a quite
powerful and effective measure of information flow, as it satisfies temporal precedence of the text
streams and it uses all of the available (text) data for the pair of users [7,11,12,16,18].

We focus on the cross-entropy estimated using Equation (2) as a pairwise measure of information
flow, but generalizations can capture information flow from multiple social ties towards a single
individual [11,12]. Doing so allows for measures of more complex information flow such as analogs
of transfer entropy or causation entropy [7,8,19]. The best extensions of information flow estimators
beyond pairwise measures remains an active and fruitful area of research (see also our discussion in
Section 5).

Closely associated with the cross-entropy is the predictability Π. Predictability, given by Fano’s
Inequality [20], provides a bound on how accurately an ideal predictive method can perform when
working with data of a given entropy: Π is the probability the most accurate possible method will
correctly predict the subsequent word with the given information’s uncertainty (i.e., the cross-entropy).

h(Π) + (1 − Π) log(z − 1) ≥ h× (3)

where h(Π) = −Π log(Π)− (1 − Π) log(1 − Π) and z is the cardinality of the sample space; in our
problem, this is the vocabulary size or number of unique words for the quoter model (Section 3.1).
The predictability is then given by finding numerically the largest Π that satisfies Equation (3).
Equation (3) demonstrates that h× and Π are functionally equivalent (and inversely related, with
higher h× corresponding to lower Π and vice versa) as z is a constant for the model we study here
(see also discussion in Section 5). Higher values of Π (lower h×) correspond to higher amounts of
information flow.

2.2. Quoter Model

To study the effects of network properties on information flow, we use the recently proposed
quoter model [12]. The quoter model represents an idealized model of social conversations, meant to
capture some of the processes by which individuals in an online social network post text while also
being analytically tractable. Nodes in a network generate text streams both by sampling from a given
vocabulary distribution and by copying (“quoting”) short sub-sequences of text from their neighbors.
This model provides a parameter q, the quote probability that tunes the degree of information flow.
(Full details of the model and how we simulate it are given in Section 3.1.) After simulating the quoter
model for a given number of time steps (Section 3.1), a text stream has been generated by each node in
the network, and we can estimate the cross-entropies between these texts to study the social flow of
written information. See Bagrow and Mitchell [12] for full details on the quoter model.

2.3. Other Models of Information Flow

Contagion approaches are often used to model information flow [14]. A classic simple contagion
approach to information flow is compartment models, taken from models of epidemics. Two simple
compartment models are Susceptible-Infected (SI) and Susceptible-Infected-Recovered (SIR) models.
On a network, a small number of nodes are initially “infected” while the remaining nodes are
susceptible. The contagion then spreads from those infected nodes with a constant transmission
rate per link so that each node in the “S” compartment has a constant probability to move to the “I”
compartment with any given exposure. For SIR models, an additional “R” compartment is used to
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model a recovery process where infected nodes cease spreading the contagion while also becoming
immune to reinfection. Many variants on these models exist.

Complex contagion phenomena are typically captured with threshold models [21,22]. Here nodes
are again labeled as susceptible or infected, but the probability for a node i to become “infected” is a
function of the number of neighbors of that node already infected. If too few neighbors are infected
there is zero probability that i will be infected. Yet if a sufficient fraction of i’s neighbors become
infected, then i has a non-zero probability of becoming infected. This social reinforcement mechanism is
intended to capture the cognitive mechanisms underlying opinion change, knowledge acquisition,
and other facets of how individuals respond to and adopt information and ideas [23,24].

Complex contagion leads to several phenomena that differ from simple contagion. For one, there
is an interesting cascade window where network density leads to a non-monotonic relationship with the
spread of the contagion. Often denser networks lead to less spread, unlike simple contagion where a
contagion will spread more easily as denser networks afford more opportunities (links) for spreading.
Another feature of complex contagion is the complicated role of clustering where clustering can appear
to either promote or inhibit contagion [25–28]. Complex contagion also exhibits a “weakness of long
ties” effect, where long ties impede the flow of contagion [29], in contrast with the seminal “strength
of weak ties” result [30] that implies long-range ties have an out-sized role in promoting information
flow. The goal of our work here is to study the information-theoretic view of information flow we
adopt here with the quoter model and compare to the effects of complex contagion that is commonly
used as a non-information-theoretic view to study information flow.

3. Materials and Methods

In this study, we use the quoter model on networks to elucidate the role of network structure on
information flow. Here we describe the procedures to simulate the quoter model, measure information
flow between nodes in networks, we describe the network features we study in relation to information
flow, and we provide the details on the network models (random graphs) and real-world network
datasets we study.

3.1. The Quoter Model

We use the following process to simulate the quoter model on a given network. The quoter model
requires a directed graph G = (V, E) (where N = |V| is the number of nodes and M = |E| is the
number of edges) and, in the most general case, quote probabilities quv on each directed edge (we
say node v (ego) may quote u (alter) if the edge u → v exists and has quv > 0). We simplify this for
our simulations: when an ego generates new text, with probability q (bidirectional quoting) we pick
an alter (predecessor) uniformly at random to quote from; otherwise, with probability 1 − q the ego
generates new content. If an ego quotes an alter (probability q), copy a random segment of the alter’s
past text and append this onto the ego’s growing text stream. We take the “quote length” (number of
words) being copied to be Poisson-distributed (with mean λ) for all users; Otherwise, if not quoting
(probability 1− q), generate new content by sampling with replacement from a vocabulary distribution
W(w) and appending those samples onto the ego’s growing text stream, where the number of samples
is again Poisson-distributed with mean λ. We assume a common, fixed vocabulary distribution W(w)

that follows a Zipf law of word use, as in prior studies and motivated by real-world language usage
patterns [12]. Specifically, a Zipf law defines the probability of using word w to be a power law based
on the rank rw of w: W(w) = H−1

z,α r−α
w , where z is the vocabulary size and Hz,α = ∑z

r=1 r−α. Here we
take z = 1000 as in [12] and, unless otherwise stated, focus on the exponent α = 1.5, a value typical of
social media data. We focus in this work on q = 1/2 and λ = 3 but we explore the robustness of our
results to other parameter choices in Appendix A. This process repeats for T = 1000N time steps so
that each user has generated approximately 1000λ = 3000 words when complete. This number of time
steps was chosen to ensure the entropy estimator would converge (see [16,18] for convergence proofs).
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While very short amounts of text will make the estimated entropy too uncertain to be reliable, this
length of text is in line with the empirical convergence of h× reported in real data [11].

3.2. Measuring Information Flow over the Network

After generating text streams for all nodes in G by iterating the quoter model, the cross-entropy
estimator (Equation (2)) is then applied as needed to compute h×. We compute the cross-entropy
over all edges, {h×} = {h×(u | v) | (u, v) ∈ E}, and report the mean 〈h×〉 and variance Var(h×)
of these values. (We examine the distribution of h× in Appendix B to show that 〈h×〉 and Var(h×)
are reasonable summaries of the distribution of h×.) Likewise, the predictability Π, given by Fano’s
Inequality [20], is a functionally equivalent measure of information flow (as we assume the same
vocabulary sizes for nodes in the quoter model). We focus on link-based cross-entropies although the
cross-entropy estimator can be applied to non-neighboring nodes. Indeed, when studying the role of
community structure in modular networks (see Section 3.4), we also consider cross-entropies between
nodes in different modules, to assess information flow between and within said modules.

3.3. Simulating Contagion Models

To compare and contrast information flow in the quoter model, we also simulate traditional
models of information flow, specifically simple and complex contagion. For simple contagion we
simulate a stochastic SIR model on different networks (1000-node Erdős-Rényi and Barabási-Albert
networks, as well as a sample of real-world networks) using [31]. For the simulations here we set
the transmission rate 20 and recovery rate 1. We initialize with a random 5% of the nodes infected,
and run 10 outbreaks on 100 realizations of the network for each choice of average degree 〈k〉. For
complex contagion we use exactly the same parameters, except we introduce a threshold function for
transmission as in [22], where the transmission rate is set to zero if the proportion of infected neighbors
is below some threshold φ (and we set φ = 0.18 following [22]). For all simple and complex contagion
simulations we measure the peak outbreak size, noting that larger outbreak sizes conventionally
correspond to greater information flow.

3.4. Assessing the Impact of Structure on Dynamics

In this work we use several network models (random graphs) tailored to control for various
network properties such as density, clustering, and modular structure. Here we describe the models
and properties we study in relation to information flow in the quoter model.

Density and Average Degree

To explore how network density relates to information flow, we create Erdős-Rényi and
Barabási-Albert networks of N nodes with varying average degree, 〈k〉, allowing us to the tune
their densities. For the Erdős-Rényi networks we add edges independently with probability
p = 〈k〉/(N − 1). For the Barabási-Albert model we start with m = 〈k〉/2 nodes with no edges and
add nodes which each form m links with previous nodes according to preferential attachment. Here
we measure how cross-entropies varies with the densities of the networks using their average degree
〈k〉 and edge density M/(N

2 ) where M is the total number of edges in the network. To complement the
Erdős-Rényi and Barabási-Albert results, we also compare the densities of real networks with their
average cross-entropy.

Degree Heterogeneity

To assess the role of degree heterogeneity on information flow, we study the simplest random
graph model with tunable degree heterogeneity, termed “dichotomous networks” in [32]. Dichotomous
networks are generated via the configuration model. They have only two types of nodes—those with
degree k1 and those with degree k2. We assume there are N/2 nodes of each degree and fix k1 + k2

143



Entropy 2020, 22, 265

so that the average degree is fixed. The mean and variance of the degree distribution, respectively,
are given by μ = 1

2 (k1 + k2) and σ2 = (k1 − k2)
2/4. We are interested in how the cross-entropy varies

with k1/k2. When k1/k2 = 1 the network reduces to a random k-regular graph (σ2 = 0), while σ2 → ∞
as k1/k2 → 0.

Clustering

Clustering or triadic closure, the tendency towards forming triangles, is a key feature of social
networks. We studied clustering using a network model with tunable numbers of triangles and
with a randomization procedure that can lower the number of triangles in an existing network. We
quantify a network’s clustering using transitivity T(G), the fraction of possible triangles in the network
which actually exist: T(G) = 3Ntriangles/Ntriads, where Ntriangles counts the number of triangles in the
network and Ntriads is the number of triads or paths of length 2.

We constructed “small-world” networks using the Watts–Strogatz (WS) model [33] to tune their
clustering. We generated a one-dimensional periodic lattice of N nodes with k nearest-neighbor
connections, and randomly rewired lattice edges with a rewiring probability p. Varying the rewiring
probability p allows us to tune the network diameter and clustering.

While the Watts–Strogatz model lets us generate networks with different clustering values,
a generic challenge when assessing the impact of clustering (and other network properties) on
dynamics is generating networks with tunable clustering, but for which other structural properties,
such as density or diameter, can be controlled for. To study the relationship between transitivity
and information flow, we apply the established degree-preserving stochastic rewiring or “x-swap”
method [34–36], in which we repeatedly choose two links at random and two randomly selected
endpoints of those links are swapped as long as the number of links does not change by swapping and
the network does not become disconnected. These swaps lower transitivity while fixing the number
of links and degrees of all nodes in the network. We performed 5M swaps for each real network.
Examining information flow on the randomized network compared with information flow on the
original network can then illustrate what effect, if any, transitivity had on information flow.

Community Structure and Modularity

Community structure is another inherent property of social networks. It is commonly quantified
using modularity [37]:

Q =
1

2M ∑
i,j

(
aij −

kikj

2M

)
δ(ci, cj),

where M is the total number of links, the sum runs over all pairs of nodes in the network, A = [aij]

is the adjacency matrix of the network, ki is the degree of node i, δ is the Kronecker delta, and ci
denotes the community containing i. The community structure encoded in the {ci} can be found
using a community detection algorithm or it may be planted within a network model. To investigate
community structure within a network model, we examined instances of the stochastic block model
(SBM) [38,39] with N nodes and two planted blocks, or groups of nodes, denoted A and B, of equal size
m = N/2. Here there are two connection probabilities: p0 (the within-block connection probability)
and p1 (the between-block connection probability) governing the probability for a link to form between
nodes in the same block and in different blocks, respectively. The expected modularity in this two-block
stochastic block model is

Q =
1
2

(
p0 − p0m + p1m
p0 − p0m − p1m

)
.

Our main quantities of interest are the average cross-entropy on within-block edges, 〈h×(within)〉,
the average cross-entropy on between-block edges 〈h×(between)〉 and their difference, Δh× ≡
〈h×(between)〉 − 〈h×(within)〉. These quantities describe to what extent information flows within
and between communities.
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We also computed modularity for real networks using the Louvain method [40]. The Louvain
method is a hierarchical community detection algorithm that finds a partition of nodes that maximizes
modularity Q. As commonly done, we initialize each node in its own community.

Multiple Vocabulary Distributions

A recent study [41] showed that heterogeneity in the dynamical parameters can be as important
as structural heterogeneity. Communities offer an obvious way to implement such heterogeneity:
We also investigate a two-block SBM where we distinguish the two groups A and B by giving them
different Zipf exponents αA, αB, respectively, for their vocabulary distributions.

3.5. Network Datasets

To supplement the above graph models, we also studied contagion and quoter model dynamics
on real-world networks. We developed a corpus of 10 social networks spanning a range of sizes and
densities that were used as the basis for simulation. See Appendix C for details on network sources
and processing. Table 1 shows several descriptive statistics for the networks we analyzed.

Table 1. Descriptive statistics for real-world networks used in this study. ASPL: Average Shortest Path
Length. Modularity computed using the Louvain method [40].

Network |V | |E| 〈k〉 Density Transitivity ASPL Modularity Assortativity

Sampson’s monastery 18 71 7.9 0.464 0.53 1.54 0.29 −0.07
Freeman’s EIES 34 415 24.4 0.740 0.82 1.26 0.07 −0.15
Kapferer tailor 39 158 8.1 0.213 0.39 2.04 0.32 −0.18

Hollywood music 39 219 11.2 0.296 0.56 1.86 0.20 −0.08
Golden Age 55 564 20.5 0.380 0.53 1.64 0.45 −0.13

Dolphins 62 159 5.1 0.084 0.31 3.36 0.52 −0.04
Terrorist 62 152 4.9 0.080 0.36 2.95 0.52 −0.08

Les Miserables 77 254 6.6 0.087 0.50 2.64 0.56 −0.17
CKM physicians 110 193 3.5 0.032 0.16 4.24 0.61 0.11

Email Spain 1133 5452 9.6 0.009 0.17 3.61 0.57 0.08

4. Results

Here we compare information flow in the quoter model with traditional simple and complex
contagion (Section 4.1), then investigate how degree heterogeneity (Section 4.1), clustering (Section 4.2)
and network modularity (Section 4.3) affect information flow. We also study how heterogeneity in the
parameters affects information flow compared to the effects of network structure (Section 4.4).

4.1. Information Flow and Models of Contagion

A distinguishing feature of simple and complex contagion is that denser networks lead to higher
spreading for simple contagion and lower spreading (mostly) for complex contagion. We illustrate this
difference using simulations in Figure 1A,B. For the simple and complex contagion models we use
the average peak size of the outbreak as our measure of information flow in the network, whereas for
the quoter model we use the average predictability over links. The decrease in spreading in complex
contagion is due to its social reinforcement mechanism: it is more difficult for a contagion to spread
when egos have many alters as more alters must adopt the contagion before the ego does. Yet we see in
Figure 1C that the quoter model, which lacks an explicit social reinforcement mechanism, also exhibits
lower information flow at higher density. Here we measure information flow using predictability on
links (Section 3.2), which is functionally equivalent (Section 2.1) in our simulations to the cross-entropy
h× (Figure 1C inset). Please note that while the curve for h× looks visually similar to that of simple
contagion’s average peak size, it is measuring the opposite effect: higher h× corresponds to lower
information flow. These results also hold on our corpus of real-world networks (Figure 2).
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Figure 1. Denser networks are associated with higher information flow for simple contagion but
lower information flow for both complex contagion and the quoter model. Here density is measured
by average degree 〈k〉 for Erdős-Rényi (ER) & Barabási-Albert (BA) model networks. (A) Simple
contagion. (B) Complex contagion (C) Quoter model. (Panel C, inset) Average cross-entropy on links;
higher cross-entropies correspond to lower predictabilities and lower information flow, unlike for
contagions where higher average peak sizes correspond to higher information flow. Networks consisted
of N = 1000 nodes and each point constitutes 200 simulations; parameters for simulating information
flow in these models are described in Section 3.

Figure 2. Information flow on real-world networks. (A) Simple contagion. (B) Complex contagion.
(C) Quoter model. Here information flow measures (average peak size, average text predictability) are
compared to network density M/(N

2 ). The association between information flow and density, either
positive (simple contagion) or negative (complex contagion, quoter model), is significant (Wald test on
non-zero regression slope, p < 0.05). Each point constitutes 300 simulations.

Somewhat surprisingly, in Figure 1C we see that Erdős-Rényi (ER) and Barabási-Albert (BA)
networks are qualitatively indistinguishable in terms of information flow, despite the preponderance
of hubs in the latter that we expect would play an out-sized role in information flow. To better
understand this observation, we investigated the variance of h× over links in Figure 3A. We see that
the cross-entropy varies more from link to link in the BA networks than for ER networks, indicating
that hubs do not move the average information flow but do create fluctuations in the flow, especially
for sparser networks.

To further explore the role of network structure heterogeneity, we investigate dichotomous
networks (Section 3.4). Here half the nodes have degree k1 and the other half have degree k2. Varying
the degree ratio k1/k2 allows us to tune the degree variance within this simplified network model. In
Figure 3B we see that the total number of nodes and average degree change the average information
flow while the degree heterogeneity (k1/k2) has little effect. Yet degree heterogeneity does affect the
variance of information flow (Figure 3C). These simpler dichotomous networks show the same effects
as observed previously in BA networks.

The simplified bimodal degree distribution of dichotomous networks also lets us explore the
effects of ego and alter degrees by computing conditional expectations of h× conditioned on degree.
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We see from the grouping of curves in Figure 3D that the degree of the ego (the node being predicted)
but not the alter (the node predicting) plays a role in the information flow: degree-k1 egos have more
information flow than degree-k2 egos regardless of the degree of the alter.

Figure 3. Exploring the variance of information flow. (A) Variance of cross-entropy is higher at low
densities for BA than ER networks despite the average h× being similar (Figure 1C). (B–D) Information
flow on dichotomous networks (random networks where all nodes have degree k1 or degree k2,
allowing tunable degree heterogeneity) of size N ∈ {500, 1000} with 〈k〉 ∈ {16, 32}. Each point
constitutes 500 trials. (B) Average cross-entropy versus k1/k2. Degree heterogeneity does not affect
average cross-entropy, supporting Figure 1C. Network size has a smaller effect on h× compared to
the average degree. (C) Variance of cross-entropy versus k1/k2. Higher degree heterogeneity (lower
k1/k2) leads to higher variation in h× over links, indicating the existence of highly predictive nodes and
nodes that contribute little predictive information within heterogeneous networks. (D) Dichotomous
networks of size N = 1000 and 〈k〉 = 16. Average cross-entropy over links conditioned on degrees
of endpoints (predicting ego from alter). Only the degree of the ego matters, approximately, not the
degree of the alter.

4.2. Interplay of Clustering and Information Flow

Next, we study how clustering (transitivity) affects information flow. Clustering plays a
complicated role in both simple and complex contagion [25,27] and we report interesting, if mixed,
results in Figure 4 with the quoter model’s information flow.

First, in Figure 4A we study information flow for small-world networks that are randomly rewired
to remove clustering [33]. Regardless of network size or average degree, information flow decreases
(higher h× in top panel of Figure 4A) as clustering decreases (Figure 4A bottom panel). Please note
that rewiring also changes the diameter of the small-world network, but we see that the main increase
in h× occurs when clustering begins to drop. In small-world networks, clustering tends to promote
information flow.

Next, in Figure 4B we investigate transitivity in the corpus of real-world networks. For each
network, we compute information flow on the original network and on a replicate of the network
that is randomized by the “x-swap” method. The x-swap method lowers transitivity for all networks
but for half of the networks it also lowers h×, contradicting the previous results on small-world
networks by indicating that transitivity inhibits information. However, it is challenging to draw a sharp
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conclusion from this x-swap procedure as it also affects other network properties simultaneously. We
illustrate this in Figure 4C where we compare four network properties in the original and x-swapped
networks. X-swapping affects transitivity but also average shortest path length (ASPL), modularity and
assortativity (degree correlations). This means the changes in information flow seen in Figure 4B may
be due to changes in a combination of these (and possibly other) network properties. Unfortunately,
it remains an open research problem how best to systematically control for network properties to
uncover their effects on dynamics.

Figure 4. Mixed effects of clustering on information flow. (A) Information flow on small-world
networks of size N ∈ {200, 400} and average degree k ∈ {6, 12}. As network rewiring increases (and
clustering decreases) h× increases. This suggests that clustered networks promote information flow.
Rewiring a small-world network changes the diameter (L) as well the clustering (panel A, bottom);
however, h× begins to increase primarily when the clustering begins to drop, not when diameter
begins to drop. Each point constitutes 300 trials. (B) Average cross-entropy versus transitivity for
real-world networks. By randomizing networks using the standard “x-swap” method (Section 3.4), we
can lower the transitivity and investigate how h× changes. Some networks show little change in h× on
randomized networks compared with the original networks, while others show a slight decrease in
h×. This is especially visible in the inset comparing h× directly. Each point constitutes 300 simulations.
(C) Several network properties before and after the x-swap method. While the x-swap method lowers
transitivity, it also alters other important network properties, making it challenging to isolate the role
of clustering from other properties.

4.3. Community Structure and the Weakness of Long Ties

The effects of long-range links on information flow have been investigated for some time, from
the seminal “strength of weak ties” [30] and the contrasting “weakness of long ties” in complex
contagion [29]. Here we investigate long ties in the context of community structure: In networks
with densely connected groups of nodes, long ties act to bridge nodes in different groups. How does
information flow differ between groups compared to flow within groups?

Using the stochastic block model (Section 3.4) with two groups of equal size as a model for
networks with dense modules, we study in Figure 5 information flow between and within groups. The
two-group SBM is parameterized by two connection probabilities, the probability for a link within
each group (p0) and the probability for a link between the two groups (p1). In Figure 5A we see that
information flow decreases as p0 increases and the network becomes denser. Likewise, the difference
in information flow Δh× increases due to between-block links containing less predictive information
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(Figure 5B). This supports the well-known “weakness of long ties” feature of complex contagion. For
larger values of p1, when there are more links connecting the groups making them less distinct, this
difference decreases. The collapse of curves in Figure 5C indicates Δh× is entirely predicated on the
network modularity Q.

Interestingly, we also remark that Δh× is always positive—even when p0 < p1 (equivalently,
Q < 0). We would expect more information flow between groups than within when within this
“anti-community” regime of the SBM, when there are more links between groups than within groups,
yet we observe a weak effect otherwise.

Figure 5. Information flow within the stochastic block model (SBM) of N = 100 (two blocks
of size N = 50). Each point constitutes 10k trials. (A) Average cross-entropy on within-block
edges and between-block edges as a function of the within-block connection probability p0 for
different between-block connection probabilities p1. (B, C) Examining the cross-entropy difference
Δh× ≡ 〈h×(between)〉 − 〈h×(within)〉 across (B) connection probabilities and (C) modularity Q.
Examining Δh× as a function of modularity Q shows a clear collapse across values of SBM probabilities.
Interestingly, anti-community structure (Q < 0) still leads to positive Δh×, indicating that information
flow is still more prevalent within blocks.

4.4. The Role of Dynamic Heterogeneity

In our results so far, we have treated nodes as identical within the quoter model and focused only
on their topological differences within the network. Yet recent studies have underlined the importance
of comparing dynamic heterogeneity with structural heterogeneity [41]. Here we taken an exploratory
step in this direction by considering a generalization of the quoter model where nodes have different
vocabulary distributions.

We explored how information flow changes in the stochastic block model when the nodes in
the two blocks have different vocabulary distributions. This is intended to model a difference in
the nodes between the two groups, capturing in the quoter model a social homophily in how egos
write. Specifically, we assume they have the same vocabularies and follow Zipf distributions, but the
exponent of the Zipf distribution is different: nodes in block A have exponent αA and nodes in block B
have exponent αB. A larger α (steeper distribution) corresponds to a less diverse vocabulary, and could
capture a group of nodes that is more consistent and repetitive in their dialog. In contrast, a lower α

(shallower distribution) may describe a group of nodes that uses more diverse words.
Figure 6 shows how information flow changes when the two blocks have different vocabulary

distributions (Figure 6A,C) compared with the same distribution (Figure 6B). For illustration, we show
the Zipfian vocabulary distributions for the two groups as insets in Figure 6. We observe a much larger
trend in how cross-entropy changes with modularity when the exponents are not equal compared
to when they are equal. This underscores how structural features (the degree of modularity) greatly
magnifies the effects of intrinsic dynamic heterogeneity (different vocabulary distributions). While
modularity plays a role even when the two groups have identical vocabulary distributions (Figure 5),
this difference is challenging to detect in Figure 6B when viewed on the scale of groups with different
vocabulary distributions (Figure 6A,C).
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Figure 6. Effects of dynamic heterogeneity on information flow in the stochastic block model. Nodes
in group A have Zipfian vocabulary distribution with exponent αA while nodes in B have exponent
αB. The between-block connection probability is fixed (p1 = 0.15) and the within-block connection
probability p0 is varied to generate a range of modularities. Since the structure is symmetric (subgraphs
A and B have the same size and expected density), we only show the result of fixing αA = 2 and
varying αB. Each point constitutes 150 trials. (A) The vocabulary distribution of group A has a lower
Shannon entropy than of B, and this difference is visible from examining links A → A and B → B.
When examining links A → B and B → A, the cross-entropy is mainly dependent on the vocabulary
distribution of the alter. As modularity increases, differences between the predictabilities of various
nodes are exaggerated. (B) In homogeneous communities, the cross-entropy does not vary with
modularity at such a scale. (C) The vocabulary distribution of group A has a higher Shannon entropy
than of B. Similar mirror results are seen as in panel A.

5. Discussion

In this work, we have studied how the social flow of written information can be affected by
network properties such as the density of links, preponderance of triangles, and modular or community
structure. We focused on the quoter model, a toy model for a network of individuals to communicate
by generating text sequences and applied information-theoretic estimators of the information flow to
these texts. We compared results of information flow in the quoter model with traditional simple and
complex contagion models.

A particularly intriguing facet of the interplay between quoter model dynamics and network
topology is how the quoter model exhibits both the density-driven inhibition of information flow
and the weakness of long ties that are signatures of complex contagion, despite lacking an explicit
mechanism of social reinforcement. Social reinforcement, the idea that individuals adopt a piece of
information only after receiving repeat exposure from social ties, is considered one of the characteristics
that distinguishes complex contagion from epidemic spreading. Social reinforcement mechanisms
better model how people perceive and react to information. Yet we found here that social reinforcement
is not strictly necessary when modeling a more nuanced view of information flow. In particular,
considering text streams (as generated by the quoter model) and predictive measures of information
flow (as quantified using cross-entropy estimators) allows us to capture how information can be
“drowned out” by the increased “cross-talk” that occurs in denser networks, showing how increased
density can inhibit information flow. Further pursuing this line of investigation may give more insight
into information flow and even human behavior within social networks.

We also found a mixed combination of results relating clustering to information flow. For
small-world (Watts–Strogatz) networks, increasing the clustering leads to a significant increase in
information flow (decrease in cross-entropy). At the same time, however, experiments on real-world
networks showed the opposite effect: randomizing networks to lower transitivity while preserving
connectedness and the degree distribution leads to a decrease in information flow. However, this
well-established randomization procedure does not control for other network properties such as
modularity or average shortest path length, so it remains an open question if the interplay of multiple
effects may resolve the discrepancy between these results.
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Another interesting result related information flow to community structure, with the modularity
Q used to measure the strength of the modular divide. When Q > 0, meaning there were fewer links
between modules than expected, we found in Figure 5 an increase in cross-entropy between modules
compared with the cross-entropy between nodes that share a module, as expected by the “weakness
of long ties”. However, we found the same increase in cross-entropy when Q < 0, where there were
more links between modules than expected. We would initially expect this regime of “anti-community”
structure to have more information flow between modules as there exist more links to facilitate this
flow. One possible reason for this anti-community result is that nodes in the same group, while having
fewer direct links to one another, may have many links to common nodes in the other group, leading
to more similar inputs to their texts. This nonlocal interplay of information flow and network structure
is an intriguing avenue for future work.

There are some important limitations to discuss regarding this work. We only considered
undirected, unweighted networks. In the context of social networks, this implies all relationships
are reciprocal and equal in strength. Future work should extend to directed, weighted networks.
Furthermore, a more exhaustive study of the robustness of results to parameter choices is necessary
(we take a first step towards this in Appendix A). Vocabulary size is another parameter worth exploring;
here we assume it is constant across all nodes. Likewise, cross-entropy (Equation (2)) is a somewhat
simplistic information-theoretic measure of information flow, and it is important to consider more
advanced measures. Measures such as transfer or causation entropy can offer more insight, quantifying
non-redundant information and allowing us to identify indirect influences [7,8]. However, in the context
of time-ordered social text data, it is challenging to estimate conditional entropies, making it non-obvious
how to implement such measures [12]. Finally, while we observed several features that are signatures of
complex contagion, not all features of complex contagion are exhibited by the quoter model. For example,
there is an optimal modularity that maximizes spreading of complex contagions within the stochastic
block model: if Q is either too small or too large then the contagion will not spread [42]. We were unable
to observe a corresponding feature within the quoter model. This warrants further investigation, in
particular to understand if this is due to how the quoter model differs from complex contagion models,
or if it is due to the information-theoretic measure of information, or a combination of the two.

In general, contagion models are a successful way to study information flow in social networks,
but to gain more insight it is necessary to adopt more nuanced views of information flow. We argue
here that information theory can provide a pathway towards these insights, especially when combined
with models such as the quoter model that capture features of human behavior while also modeling
key aspects of the data being generated by social network platforms.
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Appendix A. Further Exploring Quoter Model Parameters

To support our results, here we explore other choices of quoter model parameters (q and λ).
The simulations are done on smaller networks to make it less computationally expensive to do a
wide sweep of the parameter space. We first simulate the quoter model on ER, BA, and small-world
networks for q ∈ {0.1, 0.5, 0.9} and vary 〈k〉 or the rewiring probability, p, to support results from
Section 4.1 and Section 4.2. We then simulate the ER, BA, and small-world experiments again for
various combinations of the quote probability q and mean quote length λ. We evaluate the robustness
of results for ER networks as follows. For each combination of (q, λ), we calculate the difference
〈h×〉k=20 − 〈h×〉k=6, whereby 〈h×〉k=20 we mean the average cross-entropy on ER networks of average
degree k = 20. The quantity will be positive if density inhibits information flow. This allows us to
assess the how the magnitude of our results vary with (q, λ), although it does not confirm a monotonic
trend holds. We repeat these calculations with the BA networks and extend them to the small-world
networks by replacing 〈k〉 with p ∈ {0, 1}. In general, we find in Figures A1 and A2 that our results are
qualitatively robust to parameter choices, with the exception of very small values of q, as we expect.

Figure A1. Trends in information flow in ER, BA, and small-world networks for q ∈ {0.1, 0.5, 0.9}.
Except for very low quote probabilities, we see qualitatively similar trends. (A) ER & BA networks of size
N = 100 with varying average degree. Each point constitutes 200 simulations. (B) Small-world networks
of size N = 200 with k = 6 with varying rewiring probability. Each point constitutes 500 simulations.

Figure A2. Effects of quoter model parameter choices on observed trends. Information flow is lower
for denser ER and BA networks across a range of q and λ with the effect being more pronounced at
higher values of q and λ. Likewise, for small-world networks, more clustering (lower p) exhibits higher
h× than less clustering (higher p), with the effect being most pronounced at q > 0.5 regardless of λ.
Here, ER & BA networks had N = 100 and small-world networks had N = 200 and k = 6. Each cell
constitutes 100 simulations.
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Appendix B. Summarizing h×

In this work, we summarized h× by the mean 〈h×〉 and variance Var(h×). In Figure A3, we see
that this choice was appropriate: examining the distributions of h× for various networks shows that
they are approximately normal. We also find the mean and median h× to be approximately equal.

Figure A3. The distributions of h× for quoter model simulations on various networks. Examining the
distributions supports using 〈h×〉 and Var(h×) as summary statistics, although some real networks
show a small bimodality (an excess of h× < 3 bits). We also remark that the mean and median are
approximately equal (solid line shows 〈h×〉, dashed line shows median h×) for all networks. ER &
BA networks have N = 1000 nodes with 〈k〉 = 12, and 200 simulations as in Figure 1. Small-world
networks have N = 200 nodes with k = 6 and p = 10−4, and 500 simulations as in Figure 4A.
Real-world networks are from 300 simulations as in Figures 2 and 4B,C. Quoter model parameters are
given in Section 3.1.

Appendix C. Network Corpus

All networks studied here can be found through the Index of Complex Networks (ICON) [43]. We
converted any directed or weighted networks to undirected (bidirectional) and unweighted. Details
for each of the ten networks:

1. Les Miserables co-appearances [44] [Undirected, Weighted].
2. Hollywood film music [45] [Undirected, Weighted]. This is a bipartite network; we converted it

to a one-mode projection (nodes are composers and two composers are linked if they worked
with the same producer).

3. Freeman’s EIES dataset [46] [Directed, Weighted]. We used the “personal relationships (time 1)”
network.

4. Sampson’s monastery [47] [Directed, Weighted]. We used the Pajek dataset. The weight of a
directed link represents how an individual rates the other. The rating can be positive (1,2,3 =
top 3 ranked) or negative (-1,-2,-3 = worst 3 ranked). We chose to only keep links which were
positive.

5. Golden Age of Hollywood [48] [Directed, Weighted]. We used the aggregated network over
1909-2009.

6. 9-11 terrorist network [49] [Undirected, Unweighted].
7. CKM physicians social network [50] (1966) [Directed, Unweighted]. We used “CKM physicians

Freeman” networks hosted by Linton Freeman, and chose the “friend” network (i.e., the third
adjacency matrix). We took only the giant component.

8. Kapferer tailor shop [51] (1972) [Undirected, Unweighted]. We used the “Kapferer tailor shop 1”
Pajek dataset (kapfts1.dat).

9. Dolphin social network [52] (1994-2001) [Undirected, Unweighted].
10. Email network (Uni. R-V, Spain, 2003) [53] [Directed, Unweighted]. We used the

“email-uni-rv-spain-arenas” network.
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Abstract: Variational Graph Autoencoder (VGAE) has recently gained traction for learning
representations on graphs. Its inception has allowed models to achieve state-of-the-art performance
for challenging tasks such as link prediction, rating prediction, and node clustering. However,
a fundamental flaw exists in Variational Autoencoder (VAE)-based approaches. Specifically, merely
minimizing the loss of VAE increases the deviation from its primary objective. Focusing on Variational
Graph Autoencoder for Community Detection (VGAECD) we found that optimizing the loss using
the stochastic gradient descent often leads to sub-optimal community structure especially when
initialized poorly. We address this shortcoming by introducing a dual optimization procedure.
This procedure aims to guide the optimization process and encourage learning of the primary
objective. Additionally, we linearize the encoder to reduce the number of learning parameters.
The outcome is a robust algorithm that outperforms its predecessor.

Keywords: variational inference; graph neural network; variational autoencoder; network embedding

1. Introduction

Networks (graphs) with nodes (vertices) and edges (links) are a considerable simplification of
complex patterns observed in real life, thus permitting studies of complex systems. For instance,
the study of social interactions between individuals can be represented in the form of social
networks [1]. Researchers who published together can be related in a collaboration network [2]. Movies
and their respective critics can be presented as a bipartite graph with the edge-weight indicating a
user-movie rating [3] which further allow applications like recommender systems [4]. The flexibility of
networks and its vast literature on graph theory makes network science [5,6] extremely appealing to
researchers.

An area of interest with significant importance is community detection, also known as graph
clustering [7], i.e., identifying groups of densely connected nodes. Traditionally, researchers have
measured communities in terms of partition quality, known as modularity [8]. A recovered community
structure with high modularity implies good partitioning. To this date, community detection
algorithms have evolved from traditional algorithms to the usage of complex learning algorithms like
graph representation learning [9,10]. In graph representation learning, one can enforce nodes within
the same community to share similar representations. These representations are learned by aggregating
features from neighboring nodes. In addition, graph representation learning is extremely appealing
because it provides a generalized application for downstream tasks such as link prediction [11],
classification [12] and clustering [13]. By exploiting existing literature on representation learning, these
tasks can be solved simply by reusing existing machine learning techniques.

Among many types of graph representation learning algorithms, Graph Neural Network (GNN)
has recently gained significant popularity. Inspired by Deep Learning methodologies, GNN is designed
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to follow a similar learning approach, but with graphs as its primary application. For instance,
in graphs, convolutional layers are replaced with graph convolutional layers [14]. The outcome
is a translation of Deep Learning techniques from computer vision readily applied to graph data.
Likewise, GNN inherits similar disadvantages from deep learning algorithms, which is widely known
to be a black-box learning algorithm. To overcome this problem, machine learning researchers have
explored explainable artificial intelligence (XAI) algorithms. Causal inference [15] and Bayesian Deep
Learning [16,17] are some examples of attempts to unravel the mysteries behind machine learning
algorithms by presenting uncertainties and causal reasons.

From a different paradigm, generative models are equally appealing for introducing explainability.
Stochastic Blockmodel (SBM) [18,19] is a popular approach to model networks. By proposing an
assortative configuration on the stochastic matrix, one can generate networks that exhibit community
structures. Leveraging on the reparameterization trick, Variational Autoencoder (VAE) [20] improves
explainability by introducing uncertainty to an autoencoder. Recently, Kipf and Welling [21] proposed
Variational Graph Autoencoder (VGAE), which results in research variants such as VGAECD [22] and
ARVGA [23].

Albeit powerful, VGAE-based algorithm suffers from an optimization problem. When trained,
it has tendencies to deviate from its primary objective in favor of the reconstruction of the input network
and eventually lead to a posterior collapse [24]. In this work, we focus our attention on a variant of
VGAE, namely Variational Graph Autoencoder for Community Detection (VGAECD) [22]. We found
that optimizing the loss using stochastic gradient descent often leads to sub-optimal community
structure when the model is initialized poorly. Figure 1 demonstrates an example of the quality of
detected communities (measured by NMI) with respect to the loss during training in a synthetic
network generated by the LFR benchmark with μ = 0.60. We can observe that the training loss is
consistently decreasing as expected. However, the NMI suddenly drops approximately after 80 epochs
and gradually begins its re-ascent. This tendency has also been observed in other unsupervised deep
learning algorithms [25–27]. To circumvent this problem, one can train the unsupervised algorithm
with a meta-learner [25,26]. More specifically, one can introduce a guide that prevents the algorithm
from going astray. This new formulation comes with an advantage and disadvantage. Specifically,
the weakness comes at the cost of more computation complexity.

(a) NMI Performance (b) Loss Performance

Figure 1. Left: The deviation problem exhibited when training VGAECD. The NMI drops
approximately after 80 epochs and gradually begins its re-ascent. In most cases, it deteriorates in
favor of its secondary objective of minimizing the reconstruction loss. Right: The performance of loss
continues to drop regardless of its NMI performance.

Additionally, generalization becomes difficult because of the high coupling between the learner
and the task of interest (task-dependent). Instead, in our work, we chose to leverage a variational
solution. More specifically, we maximize the lower bound introduced in the Variational Autoencoder
such that no additional modification is required on the original loss function. Instead, the optimization
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procedure follows a Neural Expectation-Maximization (NEM) algorithm [28], which guarantees that
communities do not collapse. This is possible because NEM can be formulated in terms of maximizing
a variational lower bound [29]. Maximizing this lower bound ensures that every new update is an
improvement over the previous step. Furthermore, it has a theoretical guarantee for convergence
up to local optima. We term our improved version, Variational Graph Autoencoder for Community
Detection - Optimized (VGAECD-OPT).

To summarize, we improve VGAECD and propose a robust algorithm (VGAECD-OPT) for
community detection. Our contributions are as follows,

• Demonstrate the efficacy of linearization on VGAECD’s encoder in community detection
task [30,31].

• Propose a dual optimization approach to alleviate the deviation of objective functions (community
detection vs. network reconstruction)

The proposed algorithm, like VGAECD, inherits properties unique to generative models such
as the possibility to generate a synthetic network with community structure. Such models can be
useful to application areas such as high-performance computing [32,33]. On the other hand, the model
itself can be used as a network anonymizer by inducing artificial links or nodes on an existing social
network [34].

2. Related Work

From a probabilistic modeling perspective, community detection can be divided into two classes,
namely discriminative and generative models. The former is a class of algorithms that attempt to
maximize the community structure recovery while the latter considers the process of generating a
network that exhibits community structure with high fidelity. In this section, we briefly explain recent
work on these algorithms.

2.1. Discriminative Models

Traditionally, community structures were identified via connectivity patterns such as density
within a community [35,36]. In practice, these patterns can be measured by a quality metric such as
modularity [8] and conductance [37]. The Louvain method [38], is a greedy algorithm that maximizes
the modularity objective function. Although popular, modularity maximization is known to exhibit
a resolution limit [39] and degeneracies [40]. On the other hand, propagation algorithms such as
label propagation [41] are popular for detecting communities in networks at scale. Other approaches
such as WalkTrap [42] and Infomap [43] balances scalability with computational performance [44].
Representation learning methods such as GraRep [45] and CFOND [46] cast community detection
as a matrix factorization problem. Models like GA-Net [36] employ a traditional genetic algorithm
while maximizing a community score defined on the maximization of the dense internal sub-matrices.
Moscato et al. [47] formulates community detection as a game model, employing Game Theory
approaches to maximize the community assignment.

Recent successes [48,49] in deep learning rekindled interest in unsupervised learning models
such as autoencoders for networks. In particular, GraphEncoder proposed by Tian et al. [50] showed
that optimizing the objective function of the autoencoder is similar to finding a solution for Spectral
Clustering [50]. Leveraging on deep learning’s non-linearity and recent advances in Convolutional
Neural Networks, Defferrard et al. [51] proposed Graph Neural Network (GNN), with Kipf and
Welling [14] further simplifying to Graph Convolutional Neural Network (GCN).

On the other hand, DeepWalk [12] and node2vec [11] are popular algorithms for graph embedding.
To generate a co-occurrence context, random walks are used in conjunction with negative sampling
for large scale datasets. More recently, this line of algorithms can be generalized to a class of matrix
factorization algorithms [52,53]. Albeit powerful, the model has many hyperparameters to tune, which
can be time-consuming.
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2.2. Generative Models

Generative models can be classified into two types: algorithmic and statistical models. In the
former case, graphs are generated under assumptions of prior knowledge. For instance, Kronecker
Graphs [54] considers the generation of graphs via a Kronecker product. The Block Two-Level
Erdős-Rényi (BTER) model [55] considers a greedy approach for matching clustering coefficient and
degree distribution. Simpler models include benchmark graph models such as Girvan-Newman [35],
Lancichinetti–Fortunato–Radicchi (LFR) Graph [56] and mLFR [57]. The latter considers a class of
algorithms from the lens of probabilistic graphical modeling. Given a network as the input, its goal is
to maximize the likelihood of the latent variables which generate the same input network. For example,
the Stochastic Blockmodel (SBM) [18] considers a stochastic matrix B as the probability of connectivity
under the assumption of stochastic equivalence (i.e., nodes within the same community shares the
same connectivity pattern). Karrer and Newman [19] further extends this work to community detection
by introducing a degree correction procedure to the algorithm. Extensions to SBM includes the Mixed
Membership SBM (MMSBM) [58] for identifying mixed community participation and bipartite SBM
(biSBM) [59] for finding communities in bipartite networks. Today, SBM is well explored, and its
limitations have been widely studied [60,61]. However, SBM is not a network representation learning
model. In other words, SBM’s learning paradigm differs from representation learning, which is the
goal of this work.

From the lens of representation learning, autoencoders are considered the closest cousin to
generative models. With an encoder and decoder framework, it is no surprise that one considers
autoencoders as a generative model. In reality, the autoencoder lacks sampling capability, which is the
core of a generative model. To alleviate this problem, recent literature considers alternative models
such as Generative Adversarial Networks (GAN) or Variational Autoencoder (VAE), which introduces
an approximate posterior. For graphs, Kipf and Welling [21] introduced a variant of VAE for link
prediction tasks in graphs and Pan et al. [23] recently introduced Adversarially Regularized Graph
Autoencoder (ARGA) using GAN.

3. Problem Definition

Formally, a network with N nodes can be defined as G = (V , E), where V = {vi, . . . , vN} denotes
the set of nodes and E = {eij} is the set of edges. Incidentally, each node may be described by some
features X = {x1, . . . , xN} where xi ∈ RD defines a vector of real-values associated with node vi with
D-dimension. Vectorizing the notations, A = {a1, . . . , aN} ∈ RN×N is the adjacency matrix of G . In this
work, we consider the undirected and unweighted network G, such that Aij = 1 if eij ∈ E otherwise 0.
Given the network G, we aim to partition the nodes in G into K disjoint groups {c1, c2, ..., cK} such
that nodes grouped within the same communities share a similar connectivity pattern. We define the
connectivity pattern by the node’s edge probability p. Specifically, pin is the probability of connecting
between nodes of the same community and pout is the probability of connecting nodes between other
communities. Consequently, the community structure is defined as,

pin > pout. (1)

We refer to this as the modern view community structure definition as suggested in [62]. This notion
of community structure is a generalization to a probabilistic perspective.

Additionally, we further constrain our problem definition to the view of a generative model.
Given a generative model, p(θ | X, A) infers the model parameters θ from the observed network G.
Concretely, we are interested to maximize,

arg max
θ

p(A | θ). (2)
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Under this optimization condition, a similar graph, G′ with adjacency matrix A′ can be generated
from the same set of parameters such that p(A′ | θ) defines the reconstruction probability of the original
adjacency matrix A. According to Bayesian principles, one can say that the model is a good model
when A′ � A and satisfies the condition of having community structures as defined in Equation (1).

4. Model Description

4.1. Variational Graph Autoencoder for Community Detection

Kipf and Welling [21] introduced Variational Graph Autoencoder (VGAE) by replacing the
encoder of Graph Autoencoder (GAE) [21,50] with a Graph Convolutional Network [14] and an inner
product decoder. Formally, VGAE’s decoder can be defined as

p(A | Z) =
N

∏
i=1

N

∏
j=1

p(Aij = 1 | zizj) = τ(z�i zj), (3)

where Z ∈ RN×F is the latent representation with N nodes and F is the size of the latent representation,
given as a hyperparameter. Additionally, we denote the latent representation of node vi as zi such that
{zi, ...zN} ∈ Z. The decoding process then follows a sampling process from the variational distribution
q(·). Specifically, the model samples from a Gaussian prior distribution, N (· | μi, σ2

i I) with mean μ,
variance σ2 and the identity matrix I. Samples are then mapped through a non-linear function denoted
by τ(·). Most commonly, the non-linear function can be a logistic sigmoid function, τ(t) = 1/(1+ e−t))

or a ReLU function, ReLU(t) = max(0, t). The encoder is then defined as

q(Z | X, A) =
N

∏
i=1

q(zi | X, A)

q(zi | X, A) = N (zi | μi, σ2
i I).

(4)

The encoder q(·) is a variational distribution that approximates the true distribution p(·) [20,29].
By mathematical convenience, q(·) is usually a member of the exponential family. The mean μ and
standard deviation σ are obtained through amortization using a two-layer GCN defined as,

GCN(X, A) = Âτ(ÂXW0)W1, (5)

where Â is obtained through a renormalization trick [14], Â = D− 1
2 AD− 1

2 and {W0, W1} are the trainable
weight filters for each GCN layer. To train VGAE, we optimize the evidence lower bound (ELBO) L(·),

log pθ(X) ≥ L(θ, φ; X) = Eqφ(Z|X,A) [log pθ(A | Z)]

−DKL[qφ(Z | X) ‖ pθ(Z)].
(6)

DKL[qφ(·) ‖ pθ(·)] defines the Kullback–Leibler (KL) divergence between qφ(·) and pθ(·).
The lower bound can be maximized with respect to the variational parameters (θ, φ) = Wi via
stochastic gradient descent. Here, the prior is defined as pθ(Z) = ∏N

i=1 N (zi | 0, I), the isotropic
Gaussian. Since this requires sampling from a Gaussian white noise, backpropagation from a
stochastic variable is not trivial. Equation (6) via stochastic gradient descent. However, by applying
a reparameterization trick [20], gradients can backpropagate to deterministic variables and stochastic
variables can be effectively ignored.

Following prior work, Variational Graph Autoencoder for Community Detection (VGAECD) [22]
generalizes the generation process of VGAE by introducing a mixture of Gaussians in the generation
process (decoder). The generation process can be generalized to a mixture of Gaussians by introducing
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a community assignment parameter c. Specifically, we would like to calculate the joint probability
distribution of p(a, z, c) such that

p(a, z, c) = p(a | z)p(z | c)p(c)

p(c) = Cat(· | γ)

p(z | c) = N (· | μc, σ2
c I)

p(a | z) = φ(zT
i z;N (· | μa, σ2

a I)).

(7)

For brevity, we drop the explicit subscript notation z = zi and a = ai. In Equation (7), we obtain
p(c) from the categorical distribution parameterized by γ with K communities. The parameter γ

encodes our prior belief and is commonly initialized with a non-informative priors such as a uniform
probability distribution. The reconstruction probability, p(a | z) is the inner product between latent
representations z parameterized by embeddings sampled from the Gaussian distribution. Effectively,
two nodes νi and νj are more likely to have an edge eij when their latent representations are closer to
one another.

4.2. Linearization of the Encoder

VGAECD uses Graph Convolution layer (GCN) for its encoder to approximate parameters μ and
σ. Albeit powerful, GCN is more computationally expensive due to its non-linearity and increase in
training parameters required. Wu et al. [30] recently proposed a simplification of GCN by removing
the non-linear component, τ(·), effectively linearizing GCN.

SGC(X, A) = Â . . . ÂÂXW(1)W(2) . . . W(L). (8)

Equation (8) describes SGC layer formally. In Equation (8), the non-linear function τ is removed
and features from L-hop neighbors are accumulated. Equation (8) further simplifies to

SGC(X, A) = ÂLXW, (9)

with W = W(1)W(2) . . . W(L). Similar to the renormalization trick, A two-layer L = 2, SGC, ÂL can
be pre-computed before training. Extending Wu et al. [30]’s work, Salha et al. [31] demonstrated
performance improvement upon linearization of the encoder on GAE and VGAE in link prediction and
clustering tasks. From the perspective of graph signal processing, NT and Maehara [63] considered
GCN & SGC to be equally powerful since both encoders resemble low-pass filters. Under the
aforementioned motivation, we experimentally show that the linearization of the encoder reduces
training time for convergence and time complexity. We further discuss about the implications of
changing the encoder in Section 6.

4.3. Dual Optimization

In Section 4.1, we briefly discuss about the weakness of VGAECD. Formally, the objective function
of VGAECD can be formulated into two losses,

L = Lrecon + Lcomm, (10)

such that the reconstruction loss Lrecon and the community’s quality loss, Lcomm is minimized.
It follows that optimizing the loss is not trivial. Given enough capacity, an autoencoder trained with
stochastic gradient descent would favor optimizing its reconstruction loss (Lrecon), eventually leading
to a posterior collapse [64]. Furthermore, as studied in [25–27], unsupervised deep learning algorithms
tend to deviate from their main objective. They converge slowly especially when no guidance is given.
In a similar fashion, we depict this problem exhibited by VGAECD in Figure 1. To rectify this issue,
we propose a dual optimization algorithm based on Neural Expectation-Maximization (NEM) [28].
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Unlike the Expectation-Maximization algorithm [65], Neural Expectation-Maximization (NEM)
can be trained with gradient descent. As a result, VGAECD can be trained end-to-end.
From Equation (7), the objective function can be defined as,

log p(a) ≥ LELBO(a) = Eq(z,c|a)
[

log
p(a, z, c)
q(z, c | a)

]
. (11)

Reformulating Equation (11), we obtain

LELBO(a) = Eq(z,c|a)[log p(a | z)]︸ ︷︷ ︸
reconstruction loss

−DKL[q(z, c | a) ‖ p(z, c)]︸ ︷︷ ︸
community loss

. (12)

In Equation (12), by using a dual optimization process, the reconstruction loss is first optimized,
followed by the community loss. This process is then repeated until convergence. Similar to [21,22],
the reconstruction loss is minimized using binary cross-entropy and optimized using Adam [66].
The community loss is then minimized using an Expectation-Maximization (EM) algorithm [65] which
guarantees a local optimum. Given ψi,k = fφ(μk)i parameterized by φ and θ = μ1, . . . , μK, the loss of
our variational distribution follows,

Lcomm

(
θ, θold

)
= ∑

c

p
(

c | a, ψold
)

log p(a, c | ψ). (13)

To optimize Equation (13), we use NEM as the optimization algorithm. First, we compute the
expectation, obtaining γ, the soft assignment of each node vi,

γi,k := p
(

ci,k = 1 | zi, ψold
i

)
. (14)

Next, the maximization step follows,

θnew = θold + η
∂L
∂θ

(15)

where
∂L
∂μk

∝
N

∑
i=1

γi,k (ψi,k − ai)
∂ψi,k

∂μk
. (16)

In Equation (15), η is the learning rate hyperparameter,. This process can be repeated R-times or
until convergence. In practice, we found that R ≈ 5 and η = 0.01 would suffice to achieve convergence.
The complete algorithm is described in Algorithm 1. For our decoding function fφ(·), we use a single
layer Multilayer Perceptron (MLP) in this work.
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Algorithm 1 VGAECD-OPT
Input: Features X, Adjacency Matrix A, no. of comm. K, filter size D, number of epochs L,

NEM steps R.
Output: Community Assignment Probability γ and Reconstructed Adjacency matrix Ã

1: π ∼ U (0, 1)
2: for l = 1, ..., L do

3: for i = 1, ..., N do

4: μi = SGCμ(xi, ai)
5: σi = SGCσ(xi, ai)
6: Sample zi ∼ N (μx|i, diag(σ2

x |i))
7: Obtain ãi = σ(z�i zj)
8: Compute loss, LELBO � From Equation (12)
9: and backpropagate gradients.

10: end for

11: for r = 1, ..., R do

12: Compute E-Step: γ, {μc, σc} � From Equation (14)
13: Compute M-Step: μc, σc, {γ} � From Equation (16)
14: Compute loss, Lcomm
15: and backpropagate gradients.
16: end for

17: end for

18: Extract community assignment arg maxk γ

19: Return Ã = {ã1, ..., ãN}

To explain this intuition, we refer to the theoretical formulation of VAE [66] and the bits-back
argument [67]. Intuitively, while training, gradient signals would favor Lrecon over minimizing Lcomm

when the model has high capacity. Consequently, each centroid μk is neglected; the centroid’s is
randomly positioned in the embedding’s manifold and remain unoptimized. In an extreme case,
the model would choose to collapse the posterior; resulting in a single cluster. To discourage this
behavior, a dual optimization process allows gradient signals to be backpropagated to μk and σk. More
specifically, turning Lcomm to a variational EM optimization problem guarantees that the centroid’s
embedding has a higher presence of encoding useful information. Moreover, this formulation retains
the main characteristic of VAE without requiring auxiliary loss functions commonly found in other
literature [24]. The complete algorithm can be found in Algorithm 1 with illustration shown in
Figures 2 and 3.

Da

c

Figure 2. The probabilistic graphical model of VGAECD-OPT. The variable z is acquired from sampling
of the variational distribution p(z | c), π is the non-informative prior initialized uniformly. fφ is the
decoding function to obtain logits ψ. K is the number of clusters and D is the total number of data
samples (i.e., |V|).

164



Entropy 2020, 22, 197

z z

c c

a a

Figure 3. VGAECD optimized under Neural Expectation-Maximization algorithm (NEM). In the first
iteration, the community assignment probability c is first computed (Expectation) followed by the
Maximization step. We obtain probability ψ from the decoding function fφ(·) with embeddings z.

5. Experiments

In this section, we evaluate the optimized proposed algorithm (VGAECD-OPT). Similar to [22],
we first evaluate on two benchmark graphs followed by real-world datasets. We note that all datasets
have associated ground truths. In later subsections, we list our experiment settings and evaluation
metric. We leave the discussion of our experimental findings to Section 6.

5.1. Synthetic Datasets

Two synthetic benchmarks are used in our evaluation. We consider the two most common
benchmarks used for benchmarking community detection algorithms. Specifically, synthetic networks
with community structures were generated with Girvan-Newman (GN) [7,35] benchmark and the
LFR [56] benchmark. The result is a set of generated graphs with ground-truth labels (true partitions)
used for evaluation purposes.

The GN benchmark is a variant of the planted l-partition model. Given a fixed number of
communities c = 4, and fixed number of nodes n = 128, the GN benchmark graph generator
generates a graph with M number of edges with an average degree k = 16. A mixture variable zout is
manipulated from {1, ..., 8}, effectively controlling the connectivity pattern between intra-community
pin and inter-community pout probabilities.

The LFR benchmark is an extension of the GN benchmark. It is considered to be more realistic than
the GN benchmark while accounting for network heterogeneity and follows a power law distribution
for the degree and community size distributions. The result is a generated network with variable
communities of different sizes. To ensure consistency, default parameters were used [56]. These
parameters are, number of nodes (N = 1000), average degree (k = 15), minimum (cmin = 30)
and maximum (cmax = 50) number of nodes per community. The generation follows the scale-free
parameters settings of exponents τ1 = −2 and τ2 = −1 respectively. On average, between 20 to 30
communities are generated.

5.2. Real-World Datasets

To evaluate performance of VGAECD-OPT, real-world datasets were used. These datasets are
divided into two categories; networks with and without features. All datasets have ground-truth labels
associated with them. The datasets are listed as follows:

• Karate: A social network that represents friendship among 34 members of a karate club at a
US University observed by Zachary [1]. Community assignment corresponds to the clubs that
members went to after the club split.

• PolBlogs: A network of political blogs assembled by Adamic and Glance [68]. The nodes are
blogs, and web links between them are represented by its edge. These blogs have known political
leanings and were labeled by hand by Adamic and Glance [68].
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• Cora: A citation network with 2708 nodes and 5429 edges. Each node corresponds to a document
and the edges are citation links [69,70]. Class labels correspond to each paper’s topic curated by
Cora’s site portal [70] and were compiled by Sen et al. [69].

• PubMed: A network consisting of 19,717 scientific publications from PubMed database pertaining
to diabetes classified into one of three classes (“Diabetes Mellitus, Experimental”, “Diabetes
Mellitus Type 1”, “Diabetes Mellitus Type 2”). The citation network consists of 44,338 links. Each
publication in the dataset is described by a TF-IDF weighted word vector from a dictionary, which
consists of 500 unique words.

For starters, we perform experiments on datasets following Karrer and Newman [19].
These networks (Karate and PolBlogs) are featureless and only contain structural information. The
Karate network is a commonly studied real-world network for community detection. Similar to [19],
we consider the largest connected component and its undirected form for the PolBlogs dataset. Next,
we used two networks containing features (Cora and PubMed) [10,14]. Table 1 summarizes the list of
datasets and their respective properties.

Table 1. Empirical network datasets

Dataset Type Nodes Edges Communities (K) Features

Karate Social 34 78 2 N/A
PolBlogs Blogs 1222 16,717 2 N/A
Cora Citation 2708 5429 7 1433
PubMed Citation 19,717 44,338 3 500

5.3. Experimental Settings

For a baseline comparison, we chose to compare with VGAE and VGAECD. For generative
models, we chose SBM [18], SBM (D.C) [19], VGAE and VGAECD as baseline comparisons. SBM and
SBM (D.C) requires a specific optimization algorithm. In this case, it is optimized with Variational
Expectation-Maximization (VEM) for the best performance. The encoder of VGAE and VGAECD
consists of a 2-layer GCN (L = 2) with configuration settings of (32-16), (32-16), (32-8), and (32-8)
D-dimension for Karate, PolBlogs, Cora and PubMed respectively. Since VGAECD-OPT consists of
only a single layer W, for a fair comparison, we use (16), (16), (8), and (8) for Karate, PolBlogs, Cora,
and PubMed which are the deepest layer’s dimension in VGAECD. Additionally, we set the number
of hops the same in Equation (9), i.e., L = 2 and the fixed number of epochs to 200 [21].

For generative models, we chose SBM [18], SBM (D.C) [19], VGAE and VGAECD as baseline
methods. SBM and SBM (D.C) employ different optimization strategies. For runtime feasibility, we
have chosen to use a Markov Chain Monte Carlo (MCMC) sampling strategy. The encoder of VGAE
and VGAECD consists of a 2-layer GCN with configuration settings of (32-16), (32-16), (32-8), and
(32-8) D-dimension for Karate, PolBlogs, Cora and PubMed respectively. Since VGAECD-OPT consists
of only a single layer W, for a fair comparison, we use (16), (16), (8), and (8) for Karate, PolBlogs, Cora,
and PubMed which are the deepest layer’s dimension in VGAECD.

All experiments are conducted on a Linux Machine with Intel i9-7900X CPU @ 3.30GHz, 64GB
@ 2666 MHz DDR3 memory and Nvidia GeForce GTX 1080Ti (12GB GPU memory) ×2 GPU with
PyTorch framework. By default, all compatible algorithms were performed on GPU; otherwise,
they are experimented using CPU computation.

5.4. Evaluation Metric

For evaluation purposes, we chose standard baseline metrics from [71]. These metrics are divided
into two types. Specifically, the first three metrics have known ground truth, and the last three do not.
In this case, the previous three metrics are useful to determine the quality of communities recovered.
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• Accuracy measures the number of correctly classified clusters given the ground-truth. Formally,
given two sets of community labels, i.e., C is the ground-truth and C′ is the detected community
labels, the accuracy can be calculated by,

ACC(C′) = ∑
|C|
i=1 δ(ci, c′i)

|C| × 100%.

ci ∈ C, c′i ∈ C′, where δ(·) denotes the Kronecker delta, δ(ci, c′i) = 1 when both labels matches
and | · | denotes the cardinality of a set. For clustering tasks, accuracy is usually not emphasized
as labels are known to oscillate between clusters.

• NMI and VI are based on information theory. NMI measures the ‘similarity’ between
two community covers, while VI measures their ‘dissimilarity’ in terms of uncertainty.
Correspondingly, a higher NMI indicates a better match between both covers while VI indicates
the opposite. Formally [72],

NMI(C, C′) = 2I(C, C′)
(H(C) + H(C′))

and
VI(C, C′) = H(C) + H(C′)− 2I(C, C′),

where H(·) is the entropy function, and I(C, C′) = H(C) + H(C′) − H(C, C′) is the mutual
information function.

• Modularity (Q) [73] measures the quality of a particular community structure when compared
to a null (random) model. Intuitively, intra-community links are expected to be stronger than
inter-community links. Specifically,

Q =
1

2m ∑
ij

(
Aij −

kikj

2m

)
δ(ci, cj),

where Aij − kikj/2m measures the actual edge connectivity versus the expectation at random
and δ(ci, cj) defines the Kronecker delta, where δ(ci, cj) = 1 when both node i and j belongs to
the same community, and 0 otherwise. The modularity score Q ∈ [−1, 1] approaches 1 when
partitioning is close to optimum.

• Conductance (CON) [37,71] measures the separability of a community across the fraction of
outgoing local volume of links in the community, which is defined as,

CON(C) =
∑i∈C,j∈C′ Aij

min(a(C), a(C′)) ,

where the nominator defines the total number of edges within community C and a(C) = ∑i∈C(j ∈
V) defines the volume of set C ⊆ V. A better local separability of community is achieved when
the overall conductance value is the smallest.

• Triangle Participation Ratio (TPR) [71] measures the fraction of triads within the community C.

TPR(C) = |{vi ∈ C, {(vj, vk) : vj, vk ∈ C,

(vi, vj), (vj, vk), (vi, vk) ∈ E} �= ∅}|/|C|,

where E denotes the total number of edges in the graph G. A larger TPR value indicates a denser
community structure.

167



Entropy 2020, 22, 197

6. Results and Discussion

In this section, we compare our proposed model (VGAECD-OPT) with several baseline methods.
Among the generative models, SBM is an unsupervised model that does not use representation
learning. For methods such as VGAE, DeepWalk, and node2vec, the latent representation is first
learned then a clustering algorithm such as k-means is used. The * symbol denotes methods that were
confined to structural information only.

We begin by discussing the stability performance of VGAECD-OPT in contrast to VGAECD
in Section 6.1. In Section 6.2 we discuss the performance on several synthetic datasets. Section 6.3
provides in-depth discussion on VGAECD-OPT’s performance and Section 6.4 compares the runtime
and time complexity of VGAECD-OPT against baseline methods. Finally, we end this section with a
discussion on the limitations of the VGAE framework in Section 6.5.

6.1. Stability Performance

As discussed in Section 4.3 and illustrated in Figure 1, we show that optimizing VGAECD with
standard SGD will eventually result in a deviation. To show that VGAECD-OPT does not exhibit
such property, we illustrate VGAECD-OPT’s performance curve in Figure 4. Since VGAECD-OPT
optimizes Lrecon and Lcomm loss in two different steps, VGAECD-OPT is more stable under the same
training settings as VGAECD. On the contrary, our proposed algorithm achieves much higher NMI
performance when initialized (epoch 0). At epoch 80, we achieve similar performance as VGAECD
(Figure 1). After epoch 80, our algorithm continues to ascend without any decline in performance.
Although we note that the rate of convergence for our loss is much slower in comparison to VGAECD,
it does not hinder our main objective of achieving better community structure recovery.

(a) NMI Performance (b) Loss Performance

Figure 4. The proposed algorithm, VGAECD-OPT with Dual Optimization. In contrast to VGAECD,
performance deviation is alleviated.

6.2. Performance on Synthetic Datasets

For starters, VGAECD-OPT is evaluated against existing discriminative and generative methods
on two synthetic datasets. For methods that were confined to structural information only (i.e., absence
of features), we denote them with an asterisk (*) sign. The results performed on synthetic datasets
are shown in Figure 5. As shown, VGAECD-OPT can recover community structures even in difficult
settings (i.e., zout ≥ 6 and μ ≥ 0.50) meanwhile other algorithms exhibit difficulties. This proves
that with linearization and dual optimization, VGAECD-OPT is much more stable than VGAECD.
Its resiliency to posterior collapse has been mitigated, subsequently increasing the probability of
community structure recovery.
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(a) GN Benchmark Graph (b) LFR Benchmark Graph

Figure 5. Comparative performance of VGAECD-OPT against VGAECD on Synthetic Networks

6.3. Performance on Real-World Datasets

We now demonstrate the effectiveness of linearization and dual optimization approach towards
real-world datasets. Tables 2 and 3 demonstrates the performance of VGAECD-OPT on datasets
without the presence of features. The arrows (↑ and ↓) indicate the direction towards better
performance. For example, NMI (↑) indicates that the higher the value, the better the performance.
Values marked in bold denote best-performing results. Additionally, we also note that the performance
measure on ACC is subject to label oscillation. For instance, in a binary community detection
task, communities are measured by an overlap between two covers (ground-truth and detected
communities), but in classification tasks, exact label assignment assignments are accounted for
(i.e., labeling a cat as a dog is a false positive).

As for competing baselines, we show that discriminative models such as Louvain’s algorithm,
DeepWalk, and node2vec have competitive baseline performance. In general, Louvain’s method
performs very well with modularity score. This is because Louvain’s method is by design an algorithm
that maximizes modularity. However, this does not translate to true performance, as shown metrics
with ground-truth measures (i.e., NMI, VI, and ACC). Node2vec and DeepWalk remain competitive
in all datasets but performs poorly in Cora and PubMed datasets. These datasets contain features
that determine the outcome of the algorithms’ performance. Among discriminative methods, Spectral
Clustering has the highest variance in terms of performance. It performs extremely poor in PolBlogs
like its generative model counterpart, the SBM. We reason that the algorithm is affected by hubs with
high degrees like PolBlogs dataset [19]. As a result, both algorithms pick these hubs as single node
communities resulting in poorer performance.

On the other hand, generative models such as SBM performed poorly, mainly when datasets such
as Cora and PubMed are used. Since SBM does not support features, it is difficult for SBM to thrive,
especially when these datasets are feature-driven [63]. Indeed, with VGAE-based approaches, the
performance increases significantly. Most importantly, we note that VGAECD-OPT achieves the best
performance among other variants.

In Karate dataset, it can be observed that VGAECD-SGC* and VGAECD-OPT* both performed
poorer than VGAECD* in terms of NMI, VI, and ACC. Further analysis shows that the non-linearity
of VGAECD was a contributing factor to its higher performance. However, as we demonstrate in
Tables 3–5, the presence of non-linearity was mostly negligible. Instead, the NMI performance
improved when VGAECD adopts an SGC encoder. For baseline purposes, we introduced
VGAECD-SGC, which comes with a linearized encoder but an absent dual optimizer. Coupled
with dual optimization, VGAECD-OPT consistently shows improvements in contrast to VGAECD.
We describe this with Equation (13) such that θ > θold ensures each new community membership
proposal follows proportionally to the loss.
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Table 2. Experimental results on karate dataset.

NMI (↑) VI (↓) ACC (↑) Q (↑) CON (↓) TPR (↑)

Spectral Clustering 0.7323 0.8742 0.6765 0.3599 0.1313 0.9403
Louvain 0.4900 1.5205 0.3235 0.4188 0.2879 0.7333
DeepWalk 0.7198 0.8812 0.9353 0.3582 0.1337 0.9353
node2vec 0.8372 0.8050 0.9706 0.1639 0.4239 0.4549

Stochastic Blockmodel 0.0105 1.1032 0.4412 −0.2084 0.7154 0.4034
Stochastic Blockmodel (D.C) 0.8372 0.8050 0.9706 0.3718 0.1282 0.9412
VGAE* + k-means 0.6486 0.8189 0.9647 0.3669 0.1295 0.9407
VGAECD* 1.0000 0.6931 1.0000 0.3582 0.1412 0.9412
VGAECD-SGC* 0.8372 0.8050 0.9706 0.3714 0.1282 0.9409
VGAECD-OPT* 0.8372 0.8050 0.9706 0.3742 0.1282 0.9409

Table 3. Experimental results on PolBlogs dataset.

NMI (↑) VI (↓) ACC (↑) Q (↑) CON (↓) TPR (↑)

Spectral Clustering 0.0014 1.1152 0.4828 −0.0578 0.5585 0.7221
Louvain 0.6446 1.0839 0.9149 0.2987 0.8130 0.1922
DeepWalk 0.7367 1.0839 0.9543 0.0980 0.3873 0.6870
node2vec 0.7545 0.8613 0.9586 0.1011 0.3827 0.6863

Stochastic Blockmodel 0.0002 1.2957 0.4905 −0.0235 0.5329 0.5657
Stochastic Blockmodel (D.C) 0.7145 0.8890 0.9496 0.4256 0.0730 0.8101
VGAE* + k-means 0.7361 0.8750 0.9552 0.4238 0.0752 0.8089
VGAECD* 0.7583 0.8583 0.9601 0.4112 0.0880 0.7913
VGAECD-SGC* 0.7235 0.8808 0.9492 0.4248 0.0735 0.8142
VGAECD-OPT* 0.7620 0.8558 0.9601 0.4252 0.0734 0.8086

Table 4. Experimental results on Cora dataset.

NMI (↑) VI (↓) ACC (↑) Q (↑) CON (↓) TPR (↑)

Spectral Clustering 0.2623 2.4183 0.1770 0.0011 0.8527 0.0577
Louvain 0.4336 4.0978 0.0081 0.8142 0.0326 0.2821
DeepWalk 0.3796 2.7300 0.1626 0.6595 0.0396 0.4949
node2vec 0.3533 2.9947 0.1359 0.6813 0.1078 0.4902

Stochastic Blockmodel 0.0917 3.5108 0.1639 0.4068 0.4280 0.3376
Stochastic Blockmodel (D.C.) 0.1679 3.4547 0.1176 0.6809 0.1736 0.5112
VGAE* + k-means 0.2384 3.3151 0.1033 0.6911 0.1615 0.4906
VGAE + k-means 0.3173 3.1277 0.1589 0.6981 0.1517 0.5031
VGAECD* 0.2822 3.1606 0.1532 0.6674 0.1808 0.5076
VGAECD 0.5072 2.7787 0.1101 0.7029 0.1371 0.4987
VGAECD-SGC* 0.3003 3.1734 0.1418 0.6116 0.2125 0.4479
VGAECD-SGC 0.5170 2.7707 0.2610 0.7138 0.1345 0.5053
VGAECD-OPT* 0.3735 2.4200 0.2717 0.4930 0.1792 0.4921
VGAECD-OPT 0.5437 2.6877 0.3190 0.7213 0.1227 0.5324
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Table 5. Experimental results on PubMed dataset.

NMI (↑) VI (↓) ACC (↑) Q (↑) CON (↓) TPR (↑)

Spectral Clustering 0.1829 1.4802 0.3405 0.4327 0.0249 0.1850
Louvain 0.1983 3.6667 0.0954 0.7726 0.1388 0.1592
DeepWalk 0.2946 1.7865 0.3101 0.5766 0.0499 0.2461
node2vec 0.1197 1.9849 0.2228 0.3501 0.3170 0.2269

Stochastic Blockmodel 0.0004 1.9340 0.3080 −0.1620 0.1038 0.1965
Stochastic Blockmodel (D.C.) 0.1325 2.0035 0.3118 0.5622 0.8121 0.2441
VGAE* + k-means 0.2041 1.8096 0.3724 0.5273 0.1320 0.2898
VGAE + k-means 0.1981 1.8114 0.2751 0.5297 0.1283 0.2900
VGAECD* 0.1642 1.8320 0.1956 0.4966 0.1252 0.2692
VGAECD 0.3252 1.7056 0.4216 0.6878 0.1636 0.4827
VGAECD-SGC* 0.2350 1.8630 0.4155 0.5501 0.1163 0.2524
VGAECD-SGC 0.2948 1.7960 0.2396 0.5413 0.1044 0.2463
VGAECD-OPT* 0.2505 1.8517 0.3223 0.5853 0.0800 0.2519
VGAECD-OPT 0.3552 1.7082 0.3223 0.5378 0.0830 0.2446

6.4. Time Complexity Analysis

We now discuss the time complexity and runtime of the proposed algorithm. We divide our
runtime analysis into four parts. In the first part, we will discuss the convergence rate of our proposed
method. The second part analyzes the runtime performance of all methods on real-world datasets.
The third part explores the scalability performance of our proposed method on synthetic networks.
Finally, we present our analysis of the time complexity of all methods.

To measure convergence rate, we introduced an early stopping criterion (The early stopping
criterion serves the purpose of measuring convergence rate only. In practice, algorithms run with
a fixed number of epochs); when a specific NMI threshold is achieved, we terminate the algorithm.
This allows fairer comparison since VGAECD-SGC and VGAECD-OPT converges faster than VGAECD.
We present this result in Table 6. We show a marginal improvement in speed when the encoder has
been replaced with a linear encoder. Coupled with a dual optimization process, we can obtain a faster
convergence rate, resulting in a fewer number of training iterations. For Karate dataset, VGAECD-OPT
is ahead by 1 s, whereas in the Cora dataset, it achieved a speedup of almost 2×. In contrast to
VGAECD-SGC, the proposed algorithm is faster on Karate and Cora datasets but is slower on PolBlogs
on average run time. We find this to be insignificant since the standard deviation is more unstable.

Table 6. Convergence rate of VGAECD-OPT vs. VGAECD.

Karate PolBlogs Cora PubMed

VGAECD 3.3297 ± 0.0336 8.6538 ± 0.2808 6.6419 ± 0.1886 82.2131 ± 0.1321
VGAECD-SGC 2.8960 ± 0.0320 4.7735 ± 0.0372 3.9832 ± 0.0209 68.2313 ± 0.0332
VGAECD-OPT 2.1015 ± 0.0100 5.0768 ± 0.0120 3.6996 ± 0.0275 67.8840 ± 0.0313

For complete runtimes analysis, we allow all VGAE variants to complete 200 epochs without early
stopping. We present these results in Table 7. Overall, the fastest algorithm is Louvain’s method, which
has been shown to run near-linear time in a very sparse network [7]. In the worst case, it performs with
time complexity of O(N log N) as presented in Table 8. On the other hand, our proposed algorithm
performs better than state-of-the-art representation learning methods such as DeepWalk and node2vec
on all real-world datasets (Karate, PolBlogs, Cora, and PubMed) despite being a generative model.
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Table 7. Runtime comparison between VGAECD-OPT and baseline methods in (s)econds.

Karate PolBlogs Cora Pubmed

Spectral Clustering 0.0111 ± 0.0004 0.0981 ± 0.0129 0.1932 ± 0.0247 14.835 ± 0.1107
Louvain 0.0020 ± 0.0003 0.2765 ± 0.0204 0.2571 ± 0.0201 3.1068 ± 0.0021
DeepWalk 0.2805 ± 0.0204 29.3969 ± 1.7295 60.2633 ± 3.3005 446.1594 ± 1.5393
node2vec 4.1691 ± 0.0071 73.8038 ± 0.2477 59.8279 ± 0.0681 451.6884 ± 0.1085

Stochastic Blockmodel 0.2126 ± 0.0030 0.2831 ± 0.0078 7.4576 ± 4.7685 6.3896 ± 3.9298
Stochastic Blockmodel (D.C.) 0.1452 ± 0.0336 0.2344 ± 0.0796 3.2463 ± 1.7783 3.3545 ± 2.7707
VGAE* + k-means 3.2319 ± 0.1204 18.6163 ± 0.3803 6.5510 ± 0.2043 93.4253 ± 0.2476
VGAECD* 3.3363 ± 0.0539 21.3191 ± 0.2571 7.4428 ± 0.1177 93.5190 ± 0.3785
VGAECD-SGC* 3.3503 ± 0.0418 19.0820 ± 0.0386 4.7377 ± 0.1175 89.8966 ± 0.0844
VGAECD-OPT* 2.4467 ± 0.0238 20.2052 ± 0.0649 7.4037 ± 0.0342 92.1212 ± 0.1192

Table 8. Time complexity.

Method Complexity

Spectral Clustering O(N3)
Louvain O(N log N)
DeepWalk O(γNTW(D + D log N))
node2vec O(γNTW(D + D log N))

Stochastic Blockmodel O(N2K)
Stochastic Blockmodel (D.C.) O(N2K)
VGAE + k-means O(NXD2) +O(NK)
VGAECD O(NXD2) +O(N2)
VGAECD-SGC O(NXD) +O(N2)
VGAECD-OPT O(NXD) +O(NK) +O(N2)

To demonstrate runtime scalability, Figure 6 shows the algorithm’s expected runtime as the
number of nodes and community increases. Each network is generated from an LFR benchmark
with standard parameters (see Section 5.3), but with a variable number of nodes and communities.
The resulting network is summarized in Table 9. Due to the nature of our proposed method being
a generative model, the runtime performance approximately polynomial in runtime. Although
SBM is a generative model, it employs different optimization strategies. For instance, the original
implementation by Karrer and Newman [19] struggles beyond 5000 number of nodes. To overcome
this, we used a Markov Chain Monte Carlo sampling strategy to obtain reasonable runtime results.
When nodes and communities are fewer than 10,000 and 10, respectively, the performance of our
method is comparable to DeepWalk and node2vec. This is because both discriminative methods do
not account for communities and k-means is used instead, resulting in faster runtimes.

Table 9. Networks used.

Number of Nodes Edges Communities

5000 74,278 5
10,000 148,427 10
20,000 295,857 20
40,000 599,396 40
80,000 1,189,991 80

We now analyze the time complexity of VGAECD-OPT. From Algorithm 1, the encoder has a time
complexity of O(2N2XDl) where N is the number of nodes, D is the size of the trainable graph filter,
l is the number of linear layers, and X is the dimension of each node features. Since the number of
filters is constant with respect to the number of layers, we have l = 1. The constant 2 accounts for the
computation of μ and σ. If we assume that the adjacency matrix is sparse, we can have an encoder with
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a complexity of O(NXD). With NEM, we introduce two additional steps, which has a time complexity
of O(2NK) for performing the Expectation-Maximization steps. Given many samples, we can further
simplify this to O(NK). With an inner product decoder, it has a time complexity of O(N2). Overall,
the final time complexity for one epoch is O(NXD) +O(NK) +O(N2). In comparison, VGAECD
has a time complexity of O(NXD2) +O(N2) due to its two-layer GCN architecture. Thus, we can
conclude that VGAECD-OPT is relatively competitive with VGAECD in terms of time complexity.

We list a summary of the competing method’s time complexity in Table 8. Additionally, we note
the following notations: N—number of nodes, γ—the number of random walks, T—walk length,
W—window size, D—the representation size and K—number of communities.

Figure 6. Runtime of VGAECD-OPT & baseline methods on LFR benchmark graphs.

6.5. Limitations of VGAE Framework

Overall, VGAE and its variants have proven to be an effective algorithm for learning networks
with features. In this section, we highlight one shortcoming of VGAE that remains a challenge.
In particular, VGAE has scaling difficulties. In VGAE, the inner product decoder uses a cross-entropy
loss function. Unfortunately, this requires a dense by dense matrix multiplication, which requires a
significant amount of memory for backpropagation purposes. In other literature, methods such as
LINE [50] and DeepWalk [12] employs a negative sampling loss function for link prediction. In VGAE’s
case, such implementation is not trivial as the task differs (reconstruction vs. link prediction). To explain
this, let us consider an undirected unweighted graph G. One can observe that negative sampling
considers the connectivity of each node by considering edges that are present and absent, eij ∈ {0, 1}.
Formally, negative sampling can be defined as

log τ
(

z�j · zi

)
+

K

∑
i=1

Evn∼pn(v)

[
log τ

(
−z�n · zi

)]
. (17)

Here, we consider positive samples (edges) in the first term of Equation (17) with zi being the
representation of node vi and negative samples in the second term. τ(·) denotes the non-linear function
and K defines the number of negative samples which are drawn from some probability distribution
pn(v). The first term of Equation (17) defines the likelihood of positive samples inducing an edge while
the second term negates such probability. In other words, the loss function in Equation (17) induces
separation of the positive samples from the negative samples, in such a way that the representations
of each positive edge would stay further apart from negative edges. In DeepWalk and LINE, the
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effectiveness of negative sampling is highly dependent on the context (random walker’s chain). Under
the current VGAE framework, such a context does not exist. Implementing this in VGAE is non-trivial.
Hence, to scale our model, we need more efficient decoders, which remains a challenging task.

7. Conclusions

In this paper, we demonstrate that VAE and its variants (including VGAE & VGAECD) have a high
tendency to favor minimization of the reconstruction loss over a clustering loss. As a result, it performs
poorer as training prolongs overtime. To rectify this problem, we propose a dual optimization approach
for optimizing VGAECD. We experimentally show the effectiveness of our dual optimization approach
on VGAECD, allowing us to outperform its previous achievements. Moreover, to increase the speed
of learning, we follow new practices of linearizing the encoder. Although the performance gain is
marginal in terms of community detection, it has reduced the number of learnable parameters, which
results in faster convergence and training speed.
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Abstract: This work presents an analysis for real and synthetic angiogenic networks using a
tomography image that obtains a portrait of a vascular network. After the image conversion into a
binary format it is possible to measure various network properties, which includes the average path
length, the clustering coefficient, the degree distribution and the fractal dimension. When comparing
the observed properties with that produced by the Invasion Percolation algorithm (IPA), we observe
that there exist differences between the properties obtained by the real and the synthetic networks
produced by the IPA algorithm. Taking into account the former, a new algorithm which models the
expansion of an angiogenic network through randomly heuristic rules is proposed. When comparing
this new algorithm with the real networks it is observed that now both share some properties.
Once creating synthetic networks, we prove the robustness of the network by subjecting the original
angiogenic and the synthetic networks to the removal of the most connected nodes, and see to what
extent the properties changed. Using this concept of robustness, in a very naive fashion it is possible
to launch a hypothetical proposal for a therapeutic treatment based on the robustness of the network.

Keywords: complex networks; angiogenesis; network properties

1. Introduction

The development of cancer has thereby concentrated on an approach which is center around
the genetic events which allow cells to escape from growth control and become cancerous. However,
even if cancer cells have been generated and can evolve to accumulate more mutations, these cancer
cells might not be able to grow beyond a very small size.

One of the most important factors in this respect is the blood supply which provides cancer cells
with oxygen, nutrients and necessities required for survival. When the growth of tumoral cells is high
enough to consume all supplies in a specific organ or tissue, the tumor stops its growth in order to
induce the generation of new blood supply to sustain its growth; this process is called angiogenesis.

Whether a new blood supply can be formed or not appears to be determined by the balance
between angiogenesis inhibitors and promoters. When angiogenic cell lines emerge they can shift
the balance away from inhibition and in favor of promotion. This induces blood vessels to grow
towards the tumor and this process leads to the complete vascularization of the tumor, i.e., a vascular
network [1].
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Our understanding about the role of angiogenesis in the development of cancers has advanced
significantly since the studies of Judah Folkman [2]. Many of these studies have been focused mainly
on the understanding of the cells at molecular level. To fully understand the behaviour of an organism,
organ or even a single cell, we need to fully comprehend the collective behaviour of the whole system.
Recently, the analysis of the behaviours of the biological systems or their emergent properties, that are
not apparent from the examination of only a few isolated interactions alone, have emerged as new
insights in the study of the systems in biology.

For instance, the use of fractal geometry [3] can describe the pathological structure of tumors, and
give us some insights into the mechanisms of tumor growth and angiogenesis, that complement those
obtained by modern molecular methods. Another good example is the comparative analysis of the
transcription gene regulatory networks of the E. Coli and S. Cervisae made by Santillan et al. [4], or the
interesting work made by Abdollahi et al. [5]. In both articles, the authors noticed how the network
properties of the gene networks revealed some interesting data from an evolutionary point of view.

These among many others [6–9], are good examples of how emergent properties could help
us understand the behaviour of biological systems. In particular, the use of network theory is
important because it allows the description of a network structure using graph concepts. Furthermore,
the observed network topology gives clues about the evolution, structure, which helps us elucidate the
dynamics of hundreds of interacting components [10–13] .

In this work, we present an analysis of two angiogenic networks in patients with Hepato-Cellular
Carcinoma (HCC). We used a tomography image (obtained from the National Institute of Nutrition
of México INNSZ) in order to obtain the vascular network. After the conversion of the image
into a binary skeletonized form, we measured some of the network properties; the performed
measurements includes the average path length, the clustering coefficient, the degree distribution,
and the fractal dimension.

The observed properties of the tumor vasculature as a whole closely correspond to those produced
by a new algorithm of random growth process known as Angiogenesis Random Growth Algorithm
(ARGA). ARGA models the expansion of an angiogenic network through randomly heuristic rules.
We test the network robustness by subjecting the original angiogenic and the synthetic networks
produced by ARGA to the removal of the most connected nodes and seeing to what extent the
properties changed (in particular the clustering coefficient). Taking into account this robustness, we
proposed a hypothetic therapeutic treatment based on the network robustness.

The paper is organized as follows: In Section 2 we present the analysis of the angiogenic network,
after converting into a binary skeletonized form from a tomography image and then analyzed its
network properties. Section 3 presents a robustness study of the real network compared with those
processed by a new algorithm called ARGA. Finally, Section 4 gives some concluding remarks.

2. Analysis of the Angiogenic Network

Angiogenesis is an important natural process that takes into account the growth of new blood
vessels that occur in the body, both in health and disease. Angiogenesis is now recognized as one
of the critical events required for tumor progression [14], where cancerous growth is dependent on
vascular induction and the development of a new vascular supply.

The idea of targeting angiogenesis to inhibit tumor growth was proposed more than three decades
ago, and since then, several approaches to block or disrupt tumor angiogenesis have been explored.
However, all of these have been focused on the understanding of the molecular behaviour, and only a
few in other properties that are not apparent from the molecular point of view.

For instance, some authors have declared: “Angiogenesis in tumors leads to tumor vessels
with multiple functional and structural abnormalities. Tumors consist of a chaotic, poorly organized
vasculature, with tortuous, irregular shape, and leaky vessels that are often unable to support efficient
blood flow and leading to an aberrant vascular system” [15,16]. Furthermore, is it possible to consider
that the tumor angiogenesis leads to a poorly organized vasculature without another measurement
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that the observation in situ. In our opinion, the answer to this question should be supported by
some structural analysis. In this context we proposed the following analysis in order to have more
elements that show if the vasculature network created by the tumor has this chaotic image, or has
some structural elements that are not apparent only from observation that make them in some sense
efficient to their purposes.

2.1. Creating the Network from a Image Tomography

The first step in our analysis is to obtain the vascular network from a tomography image.
In mathematical terms a network is represented by a graph, which is a pair of sets G = (P, E),
where P is a set of nodes (or vertices or points) P1, P2, . . . , Pn and E is a set of edges (or links or lines)
that connect two elements of P. Graphs are usually represented as a set of dots, each corresponding to
a node, two of these dots being joined by a line if the corresponding nodes are connected.

From the department of radiology of the National Institute of Medical Sciences “Salvador Zuviran”
(INNSZ) of Mexico City, we obtained images used by the INNSZ in order to diagnose the development
of the malignant tumors of four patients with Hepato-Cellular Carcinoma (HCC) (see Table 1).

Table 1. Characteristics of the four patients studied in the INNSZ, all with Hepato-Cellular
Carcinoma (HCC).

Patient Sex Age Date

A Female 44 23 November 2007
B Male 57 5 February 2008
C Female 63 30 October 2007
D Female 55 8 March 2007

The progress in the development of the disease of these patients in the INNSZ is made by a
computerized tomogram. This tomograph is not only dedicated to diagnosis of the angiogenesis
process, but also other cancerous diseases such as the detection of gliomas, etc. The images taken by
the tomogram have a resolution of 960 by 1260 pixels. These images are stored in DICOM format, and
using the MedimaIView software we can manipulated it to obtain BMP images with a resolution of
960 by 1240 pixels (8 bits for pixel). From the BMP image we obtain different images with different
sizes. In our study we obtained four sizes 32 by 32 pixels, 64 by 64 pixels 128 by 128 pixels and 256 by
256 pixels.

Once the image is obtained in a BMP format we proceed to make a digital processing of the image
to obtain a binary skeletonized image. The procedure is as follows [17]:

1. Pre-Processing

The tomographic images were subjected to a pre-processing stage to obtain the tumor vascular
network. Using a representation of the image in 2-D, the first step was to display the image into
a gray scale, where each pixel uses an individual value that represents its luminescence, and
thus, have greater ease in handling the image. All the tomography images given by the INNSZ
were very noisy, making it difficult to identify the blood vessels, so it was decided to make an
improvement in the image by adjusting the contrast automatically.

The representation of an image in an 2-D array is given by the intensity values f (x, y) at each
image pixel. The arrangement has M rows and N columns, where (x, y) are discrete coordinates.
We used for convenience integer values for discrete coordinates. Then we have for each coordinate
x = 0, 1, 2, . . . , M − 1 and y = 0, 1, 2, . . . , N − 1. In a matrix representation obtaining

f (x, y) =

⎡
⎢⎣

f (0, 0) f (0, 1) · · · f (0, N − 1)
...

...
. . .

...
f (M − 1, 0 f (M − 1, 1) · · · f (M − 1, N − 1)

⎤
⎥⎦ (1)
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The gray scale adjustment consists of multiplying each RGB component by three constants defined
by: α, β and γ. Subsequently, the intensity obtained in each channel is averaged.

This process subtracts all the color information contained in each pixel and gives a separation of
255 levels between black and white.These three constants are obtained as the separation between
the RGB and the black channels as:

• α: Division between the red and black. (0.2989)
• β: Division between the green and black. (0.5870)
• γ: Division between the blue and black. (0.1140)

Now to obtain the equivalent gray scale value for each pixel we use the following equation:

I = α ∗ R + β ∗ G + γ ∗ B

We shall now proceed to the brightness adjustment as the last part of the stage of pre-processing
algorithm. Brightness is the percentage of luminescence or darkness of a color. It is possible to go
from 0 % which means black, up to 100% which means white. Mathematically, the operation
corresponding to the brightness adjustment is: M + B = C, where M corresponds to the image
matrix, C corresponds to the adjusted image M, and p is the parameter adjusting brightness
whose standard ranges from −100 to 100.

2. Segmentation

Now proceed to the image segmentation stage in which we obtain the angiogenic network by
extracting most of the blood vessels that are connected within the image and store them in a new
image. To achieve this we use a threshold which cleaves the image into two classes of objects:
blood vessels and background image. Otsu’s method [18] calculates this threshold automatically
in the following way: in order to find the value of a threshold T, for which the variance σ2

B(T)
between two regions C0 and C1 (considering only two regions) is maximum (i.e., the point where
the two classes are separated), we use following the equation:

σ2
B(T) =

[mGP1(T)− m(T)]2

P1(T)[1 − P1(T)]
(2)

where, mG is the average gray level of the entire image and P1(T) is the occurrence probability
into the region.

To separate the blood vessels from the background, the general idea was to label each region of
contiguous pixels with a different value, and with this value one can obtain the number of objects
in the image which depends on the adjacency used.

3. Obtaining the skeletonized binary form

Skeletonization of an image makes possible the classification, recognition and simplification of
the objects within it, and one of its most important applications is that skeletonization reduces the
structural form of an image to a graph. The skeleton tries to represent the shape of an object with
a relatively small number of pixels and the position, orientation and length of the skeleton lines
correspond to those equivalent to the original image.

Once the vascular network is segmented we proceed to represent the image network with a
relatively smaller number of pixels using the skeleton of the original image. This process generates
a binary image which is stored in an array of 0′s and 1′s, where the value of 1 corresponds to the
image skeleton, while the value of 0 will be considered the image background.
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The region skeleton can be defined by the transform of the Median Axis Transformation (MAT)
proposed by Blum et al. [19]. To define the MAT for each point p in R (the region), we seek if the
point p is a close neighbor to B (edges of the region R).

If p has more than one closed neighbor, it is said to belong to the median axis (i.e., it belongs to
the skeleton) of R. It is important to notice that the concept of proximity depends on the definition
of distance used. All the procedure is shown in Figure 1.

It is worthwhile to mention that the skeletonized binary form is a 2D representation of the vascular
network, this means that we only have 8 possible neighbors with respect to one single node.
This apparently limitation can be overcome considering a 3D model and developing the same
steps as those mentioned above. In recent years there have appear other models trying to resemble
this process [20–22].

Figure 1. Step by Step of the digital processing make to the BMP image to obtain a binary skeletonized
form: (a) image in gray scale, (b) Image in binary form, (c) Segmentation procedure, (d) Skeletonized
binary form.

Once the skeletonized binary form has been obtained, we proceed to get the graph of the vascular
network as follows: we postulate that every image pixel represents a single cell or point into a binary
matrix. In order to form the network, it is proposed that every cell occupied (value of one) represents a
node into the network. If any of these cells have other adjacent cells with value of one, i.e., occupied,
it is possible that nodes are connected with their neighbors, so we assigned an edge between these two
nodes, creating in this way the edges of the network, as shown in Figure 2.

Figure 2. Modeling the complex network (a) binary skeletonized form. (b) Zoom of one part of the
skeletonized binary form pixel by pixel (c) Network obtained after the assignation of nodes and edges
to each pixel.
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2.2. Structure of the Network

We have built from a tomography image a complex network defined as a graph. With this
in mind, we can measure some properties related to the complex network just created and try
to understand the system behavior as a whole. Motivated by these ideas and considering that
many biological networks share properties of the small world networks, we proceed to perform four
measurements [17,23], namely,

• Clustering Coefficient: A common property of complex networks is the cliques that it forms.
This inherent tendency to cluster is quantified by the clustering coefficient. Let us analyze briefly
the concept; if we focus on a selected node i in the network, having ki edges which connect it to
other ki nodes. If the nearest neighbours of the original node were part of a clique, there would be
ki(ki − 1)/2 edges between them. The ratio between the number Ei of edges that actually exist
between these ki nodes and the total number ki(ki − 1)/2 gives the value of the node clustering
coefficient i, as;

Ci =
2Ei

ki(ki − 1)

The clustering coefficient of the whole network is the average of all individual Ci.

• Degree Distribution: The way in which the degree of the nodes is distributed is characterized by
the distribution function P(k), which is the probability that a randomly selected node has exactly
k edges. For complex networks there are three types of important distributions, which determine
different structures or topology of them, namely; Poisson Distribution, Exponential Distribution
and Scale-Free Distribution.

Networks that have a power-type distribution are called scale-free distributions or Power Law
distributions. These networks arise in the context of network growth, in which each new node
connects preferably to the nodes that are connected to the largest number of nodes in the network.
Scale-free networks are also networks of the small world, because they have a coefficient of
Clustering larger than a random network and the average of the shortest distance increases
logarithmically with the number of nodes N, for this Distribution the probability density function
is given by: P(k) = Ck−α [1].

• Average path length: If we consider a unweighted graph G with the set of edges E and let d(e1, e2),
where e1 and e2, e1, e2 ∈ E denote the shortest distance between e1 and e2. Then, the average path
length lG is defined as;

lG =
1

n(n − 1) ∑
i,j

d(ei, ej)

where n is the number of vertices of G.

• Fractal dimension: The fractal dimension is a statistical quantity that gives an indication of how
completely a fractal appears to fill space, as one zooms down to finer scales. In order to obtain the
fractal dimension we use the box counting method, this method of counting is used to determine
the fractal dimension of an irregular object. It consists of covering the object with a grid and
counting how many boxes of the grid contain parts of the object. This process is repeated, several
times using boxes with sides equal to 1/2 of the size of the previous box [24]. The fractal dimension
d is then the slope that is obtained from graphing LogN(r) vs Log(1/r) in an equivalent way,
the negative of the gradient of graphing LogN(r) vs Log(r);

d =
ΔlogN(r)
Δlog(r)
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Taking into account the aforementioned properties, it is possible to perform these measurements
over the binary skeletonized forms obtained from the images of four different patients. We report our
results in Table 2.

Table 2. General structural properties of the four networks. For each network we have indicated the
number of nodes (size), the average degree k, the clustering coefficient C, the average path length l, the
fractal dimension D and the distribution exponent α (this exponent was calculated taking into account
a power law distribution).

Image Size k C l D α

A (32 × 32 ) 98 2 0.169 0.061 1.304 3.256
A (64 × 64 ) 340 3 0.279 0.035 1.395 3.034

A (128 × 128) 630 2 0.231 0.020 1.357 4.0624
A (256 × 256) 2301 2 0.226 0.010 1.409 4.334

B (32 × 32) 79 2 0.122 0.066 1.278 3.302
B (64 × 64) 234 2 0.201 0.036 1.332 4.168

B (128 × 128) 1248 2 0.180 0.009 1.470 4.481
B (256 × 256) 2247 2 0.187 0.009 1.396 4.222

C (32 × 32) 111 2 0.156 0.063 1.342 2.552
C (64 × 64) 211 2 0.152 0.029 1.301 3.507

C (128 × 128) 987 2 0.214 0.015 1.425 2.703
C (256 × 256) 3570 2 0.230 0.009 1.494 2.907

D (32 × 32) 103 2 0.251 0.071 1.322 3.101
D (64 × 64) 428 2 0.207 0.026 1.463 3.320

D (128 × 128) 894 2 0.204 0.014 1.390 3.921
D (256 × 256) 1260 2 0.169 0.010 1.291 4.250

Figure 3 depicts the skeletonized binary form and the degree distribution for the patient A, as an
example of the network that we obtain for this special case.

(a) (b)

Figure 3. (a) Example of the Binary skeletonized form for patient B. (b) Degree distribution obtained
from patient B.

2.3. Robustness Analysis

Angiogenesis is an important natural process that takes into account the growth of new blood
vessels that occur in the body, both in healthy and ill hosts. Angiogenesis is now recognized as one of
the critical events required for tumor progression [14]. In other words, cancerous growth is dependent
on vascular induction and the development of new vascular supplies.

The idea of targeting angiogenesis to inhibit tumor growth was proposed more than three decades
ago, and since then, several approaches to block or disrupt tumor angiogenesis have been explored.
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However, all of these have been focused on the understanding of the molecular behaviour, and only a
few in other properties that are not apparent from the molecular point of view.

Recent studies suggest that a network’s connectivity pattern determines its robustness to external
perturbations, such as removal of nodes or links [24]. To test this, we measured the effects of directed
attacks and random failures on network organization. These measures were carried out as follows:

1. A given fraction of the vascular network nodes was eliminated from the original network.
The nodes to be removed were either chosen as the most connected (directed attacks), or at
random (random failures).

2. The network’s emerging was evaluated by calculating their structural properties, namely,
the average path length, the clustering coefficient and the degree distribution.

3. The whole process was repeated for several fractions of removed nodes.

In Tables 3 and 4 we showed the results of the robustness analysis for the real networks for the
four patients taken from both directed (Table 3) and at random (Table 4) attacks.

Table 3. Robustness analysis for two networks using a random attack. For each network we have
indicated the number of nodes (N), and the number of nodes eliminated randomly (EN), beginning
with 1% of the nodes (corresponding to the first row of each patient). It is worthwhile to note that 1%
corresponds, in the first case, to 3 disconnected nodes; however, when we disconnect these 3 nodes
other adjacent nodes are also disconnected, giving 6 in total disconnected nodes. We did the same for
5%, 10% and finally 15%, the average degree k, the average length l, the clustering coefficient C, the
fractal dimension D and the exponent of the distribution α. In all the attacks we used images of 64 by
64 pixels.

PATIENT A N EN k l C D α

340 6 3 0.0339 0.279 1.390 0.740
340 18 2 0.039 0.262 1.387 0.687
340 35 2 0.051 0.267 1.326 0.704
340 52 3 0.122 0.303 1.144 0.550

PATIENT B N EN k l C D α

234 3 2 0.045 0.188 1.396 0.944
234 13 2 0.036 0.187 1.272 1.074
234 24 2 0.077 0.227 1.083 0.626
234 36 2 0.218 0.254 1 0.548

Table 4. Robustness analysis for two networks using a direct attack. For each network we have
indicated the number of nodes (N), and the number of nodes eliminated (EN), beginning with the
nodes with 7 connections (this corresponds to the first row of each patient and in parenthesis are the
remaining nodes), then the nodes with 6 (corresponding to the second row) and so on, the average
degree k, the average length l, the clustering coefficient C, the fractal dimension D and the exponent of
the distribution α. In all the attacks we used images of 64 by 64 pixels.

PATIENT A N EN k l C D α

340 6 (334) 2 0.03 0.262 1.392 0.7984
340 19 (315) 2 0.036 0.217 1.391 1.0072
340 21 (294) 2 0.048 0.226 1.237 0.78551
340 64 (230) 2 0.060 0.118 1.089 1.292

PATIENT B N EN k l C D α

234 1 2 0.036 0.197 1.332 1.008
234 1 2 0.036 0.198 1.332 1.223
234 7 2 0.0364 0.164 1.326 0.870
234 28 3 0.110 0.144 1 0.778
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Tables 4 shows that for both patients (patient A and B), when we carried a direct attack,
the statistical properties were lost after we eliminated nodes with five connections, i.e., the average
path length become higher and the clustering coefficient lower, compared with the original. Our
calculations also reveal that random removal nodes (see Table 3) have almost the same effect as in the
direct attack when removing almost 15% from all the nodes.

3. Computational Modeling of Angiogenic Networks

3.1. Invasion Percolation Algorithm

Some years ago, Baish et al. [3] introduced an algorithm called Invasion Percolation in order to
show that the fractal dimensions observed in tumor vasculature closely correspond to those produced
by a statistical growth process known as Invasion Percolation [25]. In a more technical sense, Invasion
Percolation is an algorithm that models the expansion of a network through a medium with randomly
distributed heterogeneities. The resulting network always expands into the weakest available sites,
yielding structures with voids on a wide range of length scales and pathways that are tortuous over
many scales.

The Invasion-Percolation model is motivated by the problem of a fluid to be dispersed in a porous
medium. This principle may be applied to any type of invasion process in which the path shows fluid
passage resistance [25]. The porous medium may be represented as a network of pores which are
connected between the pores. In an ideal medium the network can be viewed as a matrix in which the
cells and their neighborhoods represent the pores and the connections between them. It is assigned
random numbers to each cells in order to represent the pore size. The simulation of the fluid path
through the pores consists of a series of discrete jumps, where each discrete step will be that offering
less resistance (low random number). The Invasion-Percolation model involves a single time, in which
the jump is generated in the matrix and provides a unique way to traverse the porous medium.

To show how the Invasion-Percolation algorithm works, we performed several experiments in
which some networks were generated with this algorithm. Figure 4a depicts a single example of the
synthetic network created by the Invasion-Percolation algorithm, for this case we have used a size of
the matrix of 128 × 128 cells. Likewise, Figure 4b shows the distribution of nodes generated by the
algorithm, in which it is observed how the distributions does not resembles to that obtained using the
patient data (see for example Figure 3b for patient B).

The pseudo-code for Percolation is presented as follows:

(1) A matrix M of size n x n is initialized with aleatory values between 0 to 1.

(2) The position of the first blood vessel $(x,y)$ will be located on the left

border of the matrix M, where the vertical position (y) of the blood vessel is

chosen by the little value located on the line. The horizontal position (x) will be

equal to 1.

(3) The matrix M is crossed from left to right until the right edge is reached.

(3.1) The number of divisions per blood vessel is chosen between their 8 neighbors.

with the least value from the above we can have the following

results:

(a) The blood vessel stays the same (this means that the 8 neighbors have the

same value).

(b) The blood vessel have two o more branches.

(4) The matrix M is updated with the new blood vessels.

(5) Then , we return to step 3.
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Figure 4. Example of the network generated by Invasion-Percolation algorithm. (a) Network generated
by the algorithm. (b) Distribution of nodes generated by the same algorithm.

As was mentioned previously, the design of the Invasion Percolation algorithm intents to mimic
or model the vasculature shown in real tumors. So, in order to have a trustworthy algorithm that could
simulate angiogenic networks, we suggest that it is necessary that the Invasion Percolation algorithm
could reproduce some of the properties shown in our angiogenic networks. For this purpose, all the
synthetic networks produced by the Invasion Percolation were subjected to a structural analysis (i.e.,
measuring the average path length, the clustering coefficient and the degree of distribution) and a
geometry analysis (i.e., measuring its fractal dimension), both previously proposed for studying real
networks. The results obtained are presented in Table 5, which shows the study was made using
synthetic networks. It is worthwhile to mention that in order to obtain Table 5 we have run our
algorithm around five hundred times for different sizes of the matrix (32 × 32, 64 × 64, 128 × 128,
256 × 256 cells) to obtain as many as possible synthetic networks to work with.

Table 5. General structural properties for networks created by the Invasion-Percolation algorithm
for different matrix sizes. After several simulations (we only have reported the average values for
each measure) for each size, we have indicated the average number of nodes (average size) N, the
average degree k, the average clustering coefficient C, the average path length l and the average of the
fractal dimension D, also we have added the standard deviation (in parenthesis) for each size and for
each measure.

Matrix N Z C l D

32 × 32 310 (79.14) 4 0.49 (0.02) 0.007 (0.008) 1.64 (0.092)
64 × 64 837 (235.3) 4 0.44 (0.14) 0.08 (0.014) 1.62 (0.07)

128 × 128 4373 (1515.95) 4 0.477 (0.007) 0.018 (0.002) 1.72 (0.07)
256 × 256 16441 (5876) 4 0.47 (0.006) 0.009 (0.0019) 1.75 (0.075)

A detailed analysis of Figure 4 and Table 5, it is shown that the Invasion-Percolation algorithm
did not share the structural and geometrical properties shown by those obtained from real networks
obtained in patients (see for instance, Table 2 and Figure 3). So, in our opinion the Invasion Percolation
algorithm should be transformed in order to share the properties aforementioned. In order to address
this point it was necessary to design a new algorithm in which we incorporated some strategies to
better simulate not only the fractal properties shown by Baish [3], but also the structural properties
revealed by the structural analysis made in real networks.

3.2. A New Algorithm Called Arga (Angiogenesis Random Growth Algorithm)

A new algorithm for the generation of angiogenic networks complying with the characteristics of
structure and geometry of the modeled network obtained from tomographic images is proposed.
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The new algorithm is motivated by the changes that could occur in the medium and responsible
for the division of blood vessels. Its aim is to find a pathway through the medium, giving priority to
the front feed (from left to right of the matrix) [25].

Similar to the Invasion-Percolation algorithm for network formation an ideal medium is assumed,
i.e., it is homogeneous and symmetric. This medium will be represented by a matrix of size n x n and
ideally when a change happened in the medium, this will be reflected in a change in the formation
behaviour of the synthetic network. However, it is impossible to know these changes in situ. We will
simulate these changes using a random variable which varies in time.

Basically, the pseudo-code for ARGA is presented as follows:

(1) A matrix A of size l x l is initialized

(2) The first position of the first blood vessel $(x,y)$ will be located on the left

border of the matrix , where the vertical position (y) of the blood vessel is chosen

in a random way between 0 and 1. The horizontal position (x) will be equal to 1.

(3) As long as there is no position on the edge without dividing and not reaching

position 1, the matrix is traversed untill the right edge is reached.

(3.1) The number of divisions per blood vessel is chosen which can have the following

results:

(a) The blood vessel stays the same

(b) A random number of new blood vessels is produced (5 maximum)

(3.2) If new blood vessels are produced , by each of them a random advance in the

network will occur. Following the following rules:

(a) The highest priority is assigned to the front directions

(b) The direction to advance is selected randomly giving priority to the highest.

(c) The advance for each direction is calculated randomly (maximum size 10).

(4) Changes are made

(5) They are stored in matrix A.

(6) Then , we return to step 3.

To show how the ARGA algorithm works, we performed several experiments in which some
networks were generated with this algorithm. Figure 5a depicts a single example of the synthetic
network created by the ARGA algorithm, for this case we have used a size of the matrix of 128 × 128
cells. Likewise, Figure 5b shows the distribution of nodes generated by the algorithm, in which it is
observed how the distributions resembles in a better way to those obtained using the patient data (see
for example Figure 3b for patient B).
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Figure 5. Example of a single network (with a size of 128 × 128 cells ) generated by ARGA algorithm.
(a) Network generated by the algorithm. (b) Distribution of nodes generated by the same algorithm

Once we have our algorithm running, we developed hundreds of simulations (it is worthwhile
to mention that in order to obtain Table 6 we have run our algorithm around five hundred times
for different sizes of the matrix (32 × 32, 64 × 64, 128 × 128, 256 × 256 cells)) to obtain as many as
possible synthetic networks to work with. All these synthetic networks produced by ARGA were
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subjected to a structural analysis (i.e., measuring the average path length, the clustering coefficient
and the degree of distribution) and a geometry analysis (i.e., measuring its fractal dimension), both
previously proposed for studying real networks. The results obtained are presented in Table 6, using
these synthetic networks, the table only shows the average values and the standard deviation obtained
for all the synthetic networks.

Table 6. General structural properties for networks created by the ARGA algorithm for different matrix
sizes. For each size we have indicated the average number of nodes (average size) N, the average
degree k, the average clustering coefficient C, the average path length l, the average of the fractal
dimension D and the average exponent of the distribution α (this exponent was calculated taking into
account a Poisson distribution), also we have added the standard deviation (in parenthesis) for each
size and for each measure.

Matrix N Z C l D α

32 × 32 110 (16.2) 3 0.26 (0.08) 0.032 (0.001) 1.32 (0.125) 2.92 (0.67)
64 × 64 458 (174.8) 3 0.27 (0.04) 0.03 (0.004) 1.48 (0.09) 3.094 (0.51)

128 × 128 1772 (490.31) 3 0.27 (0.025) 0.08 (0.002) 1.56 (0.06) 3.8 (0.48)
256 × 256 8522 (3961) 3 0.295 (0.02) 0.09 (0.001) 1.6 (0.08) 3.78 (0.61)

3.3. Robustness Analysis for the Arga Algorithm

Below are the results obtained from the robustness analysis made to the synthetic networks
produced by the ARGA algorithm, using the previous cuts of size(32 × 32, 64 × 64, 128 × 128 and
256 × 256 cells). As explained in Section 2.3 (for the real networks case), the robustness analysis was
carried out by attacking the networks, randomly and in directed way, and then characterized them
using the proposed structure and geometry analyzes. The full results of the robustness analysis for the
case of the networks created by the ARGA algorithm can be seen in Tables 7 and 8. In these we have
shown the results of the robustness analysis for the synthetic networks for four different sizes taken
from both directed (Table 7) and random (Table 8) attacks.

Table 7. Robustness analysis for synthetic networks using a random attack. For each network we have
indicated the number of nodes (N), the number of nodes eliminated randomly (EN) beginning with
1% of the nodes (corresponding to the first row to the size of the network), for 5%, 10% and finally
15% respectively, the average degree k, the average length l, the clustering coefficient C and the fractal
dimension D.

Size (32 × 32 cells) N EN k l C D

1% 108 1 3 0.0839 0.3754 1.4235
5% 108 7 2 0.0819 0.3870 1.415
10% 108 12 2 0.0737 0.3606 1.3853
15% 108 18 3 0.1030 0.3545 1.2682

Size (64 × 64 cells) N EN k l C D
1% 483 6 3 0.0412 0.3345 1.4860
5% 483 25 3 0.0409 0.3352 1.402
10% 483 49 3 0.0456 0.3185 1.450
15% 483 73 3 0.346 0.3580 1.340

Size (128 × 128 cells) N EN k l C D
1% 1463 32 2 0.017 0.2708 1.5544
5% 1463 837 2 0.026 0.2767 1.3553
10% 1463 911 2 0.0298 0.2668 1.378
15% 1463 1216 2 0.0319 0.2780 1.19

Size (256 × 256 cells) N EN k l C D
1% 4231 1904 2 0.009 0.2443 1.4980
5% 4231 617 2 0.0094 0.2592 1.5412
10% 4231 2060 2 0.0064 0.2757 1.4808
15% 4231 3767 2 0.011 0.2732 1.200
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Table 8. Robustness analysis for the synthetic networks using a direct attack. For each network we
have indicated the number of nodes (N), the number of nodes eliminated (EN) beginning with the
nodes with 7 connections (this corresponds to the first row), then the nodes with 6 (corresponding to
the second row) and so on, the average degree k, the average length l, the clustering coefficient C and
the fractal dimension D.

Size (32 × 32 cells) N EN k l C D

7 108 0 3 0.0839 0.3754 1.4253
6 108 7 2 0.07020 0.2799 1.409
5 108 6 2 0.0807 0.313 1.411
4 108 21 2 0.0758 0.1760 1.557

Size (64 × 64 cells) N EN k l C D
7 483 5 3 0.0411 0.3248 1.4867
6 483 26 2 0.03834 0.3016 1.4763
5 483 48 2 0.0334 0.2709 1.4685
4 483 126 2 0.1023 0.1031 1.05

Size (128 × 128 cells) N EN k l C D
7 1463 4 2 0.0180 0.2614 1.5592
6 1463 21 2 0.0177 0.2472 1.5577
5 1463 59 2 0.0168 0.2310 1.5540
4 1463 1354 2 0.0356 0.068 1.1899

Size (256 × 256 cells) N EN k l C D
7 4231 14 2 0.0105 0.2591 1.5716
6 4231 96 2 0.0102 0.2439 1.5697
5 4231 329 2 0.0093 0.2260 1.5610
4 4231 3971 2 0.022 0.2239 1.03

4. Concluding Remarks

An analysis has been carried out on the vascular angiogenic network on four patients with
Hepato-Cellular Carcinoma (HCC). This analysis consisted of measuring a number of statistical
properties of a vascular network obtained from four digital tomographies and digitalized until a
binary skeletonized scheme is obtained. From this, we generated a network of nodes and edges which
represent the original angiogenetic vascular network. Some interesting observations arising from these
measurements are:

• The clustering coefficient in all 16 generated networks is less than 0.4. This indicates that they
were well connected networks.

• The degree distribution in all the networks have an exponential tail with the distribution exponent,
between 0.6 and 1.1.

• The average path length is small in all the networks being between 0.009 and 0.071.
• The fractal dimension is found to be around 1.4.

Many authors have considered that: “Tumor consists of a chaotic, poorly organized vasculature, with
tortuous, irregularly shape, and leaky vessels that are often unable to support efficient blood flow and leading to
an aberrant vascular system”. From our observations the above consideration is incorrect because we
have shown that there is a well connected network (high clustering coefficient); besides, the network
has an efficient communication. This is reflected in a small average path length. So, when observing in
situ a poorly organized shape, it does not take into account that there are good structural properties
that offer support for various dynamical processes, i.e., it is thought that the network topology plays a
crucial role, which supports an efficient blood flow among other dynamical properties.

The high interest in scale-free networks in literature might give the impression that all complex
networks in nature have power-law degree distributions. It is true for several complex networks of
highest interest in the scientific community, such as the World Wide Web, social networks among
others, that in all of them the degree distribution has a power-law tail. However, some other networks
such as neural and power grid showed exponential degree distributions in literature, and these are
called evolving networks [3]. In our case, we have exponential distributions for all the vascular
angiogenic networks generated. This means having and evolving a network with aging effects and
growth constraints that leads to this exponential decay.
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A study of the robustness of the generated angiogenic vascular network has been carried out.
We studied the robustness of the network analyzing the connectivity pattern subjected to external
perturbations, such as the removal of nodes or links. To test this, the effects of directed attacks and
random failures on the network organization were measured.

This study shows that both patients (patient A and B), when we carried a direct attack, their
statistical properties were lost after we eliminated nodes with five connections, i.e., the average path
length become higher and the clustering coefficient lower, compared with the original. Our calculations
also reveal that random removal nodes have almost the same effect as in the direct attack when
removing almost 15% from all the nodes.

Taking into account a new kind of algorithm (ARGA) it was shown that this algorithm simulates in
a better way the growth of the vascular network than the Invasion-Percolation algorithm. This is clear
because with this algorithm it was possible to reproduce, in a better way, the structural and geometric
measurements for the real network than with the Invasion-Percolation algorithm. Some interesting
observations arising from these measurements (see Table 6) are:

• The clustering coefficient in all the generated networks is less than 0.3. This indicate that they
were well connected networks, as in the case of real data.

• The degree distribution in all the networks have an exponential tail with the distribution exponent,
between 2.9 and 3.78.

• The average path length is small in all the synthetic networks being between 0.03 and 0.09, as in
the case of real data.

• The fractal dimension is found to be around 1.4, as in the case of real data.

Furthermore, both algorithms were subjected to a variety of direct attacks and random failures
and, for the ARGA algorithm the same effect as in the patients A and B was observed, i.e., all the
statistical properties were lost in the same manner as the real networks (see Tables 7 and 8). However,
the Invasion Percolation did not share the behaviour (the experiments are not included in this article)
of real networks as the ARGA algorithm did for the case of direct and random attacks. This indicates
that in order to simulate in a better way real networks the use of the ARGA algorithm will produce
synthetic networks more similar to the real ones.

Taking into account the considerations of the last two paragraphs, and based on the statistical
properties of the network, some possible therapies could be suggested. We think that more clinical
research related to the structure and robustness of the vascular network for the angiogenic process
could be done in order to prove the latter hypothesis.
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Abstract: The analysis of chaotic time series is usually a challenging task due to its complexity.
In this communication, a method of complex network construction is proposed for univariate chaotic
time series, which provides a novel way to analyze time series. In the process of complex network
construction, how to measure the similarity between the time series is a key problem to be solved.
Due to the complexity of chaotic systems, the common metrics is hard to measure the similarity.
Consequently, the proposed method first transforms univariate time series into high-dimensional
phase space to increase its information, then uses Gaussian mixture model (GMM) to represent time
series, and finally introduces maximum mean discrepancy (MMD) to measure the similarity between
GMMs. The Lorenz system is used to validate the correctness and effectiveness of the proposed
method for measuring the similarity.

Keywords: complex network; chaotic time series; Gaussian mixture model; maximum
mean discrepancy

1. Introduction

Chaotic time series exist widely in many fields, such as economics, physics, hydrology and so
on [1]. In chaotic systems, the “butterfly effect” is a typical phenomenon in which small causes can
have large effects [2]. Therefore, a chaotic system usually has highly complex behaviours, and the
relevant analysis is a challenging task.

In recent years, the application of complex network theory to time series analysis is increasing
rapidly. Firstly, the time series was transformed into a network, and then, various complex network
tools were used for analysis [3–7]. There are three kinds of network reconstruction methods: recurrence
network based on phase space and visibility graphs and transition network based on Markov chain [6].
Regardless of the network construction method, a key problem to be solved is how to measure the
similarity between nodes. For example, in order to measure the similarity between nodes, Euclidean
distance, visual distance, and transition probability were applied to recurrence network [8], visibility
graphs [9], and transition network [10], respectively.

In this communication, we focus on the construction of a complex network of univariate chaotic
time series, which is an effective way to analyse the time series [11]. Similarly, in this task, a core problem
to be solved is how to measure the similarity between time series. In the community of time series
analysis, some commonly used metrics, such as Euclidean distance [12], correlation coefficient [13],
and dynamic time warping distance (DTW) [14], were used to measure similarities between time
series. Especially for DTW, its outstanding advantage lies in the ability to find the optimal nonlinear
alignment between two given sequences. However, most of the metrics cannot effectively measure the
similarity in the case of chaotic time series. For example, time series from the same chaotic system are
completely different in the form of local sub-sequences, which makes the pair matching metric, such as
Euclidean distance, unable to measure the similarity between them. Even with statistical metrics such
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as the correlation coefficient, due to the rich structure of chaotic system, its effect is not as expected.
In addition, the probability distribution of chaotic time series usually presents mixed distribution [15],
which also brings challenges to measuring the similarity between sequences using statistical distances.

Considering the characteristics of chaotic time series mentioned above, in this communication,
we improved the performance of similarity measurement from two aspects: (1) transform univariate
time series (UTS) into a high-dimensional space to describe time series more accurately; (2) in the
high-dimensional space, Gaussian mixture model (GMM) is used as the representation of time series,
and distance metric is introduced to catch the similarity between GMMs.

2. Approach of Constructing Complex Networks

In the complex network constructed, nodes represent the time series themselves, and the edges
between nodes are determined by the strength of similarity between the time series. The process of
constructing a network can be divided into the following sections.

2.1. Representation of Univariate Chaotic Time Series

We can realize the representation of UTS by using the idea of phase space reconstruction.
Although a complex system is usually described by multiple variables, in most cases we can only
observe a univariate (scalar) time series T = {x1, x2, . . . , xn} from the system, where n is the length of
the time series. Fortunately, using the embedded theorem [16], we can reconstruct the original space of
the system by unfolding the scalar time series into higher dimensional phase space. With the help of
phase space reconstruction, we can investigate the geometric and dynamic properties of the original
phase space as well as unobserved variables. In other words, it provides a new approach, which
can transform UTS into state vectors in higher dimensional space, so as to describe and understand
the characteristics of the system more accurately. This is exactly the motivation for representation of
univariate time series.

By choosing an appropriate embedding dimension m and a time delay τ, we can transform a UTS
T = {x1, x2, . . . , xn} into a state vector in the phase space as

xi =
(
xi, xi+τ, xi+2τ, . . . , xi+(m−1)τ

)T
(1)

where m can also be regarded as the number of variables in the original phase space. Therefore,
the phase space can be described by a m× (n− τ) matrix X, where each column represents the state
point xi at time i, and each row represents a subsequence of the UTS. On the other hand, each row in X
can also be viewed as observation of a variable. Consequently, X is multivariable time series (MTS)
with m variables, which is converted from the UTS.

To illustrate the phase space reconstruction clearly, the well-known Lorenz system is used as an
example to illustrate the reconstruction process [2]. The Lorenz system is described by three ordinary
differential equations:

dx
dt = σ(y− x),
dy
dt = x(ρ− z) − y,
dz
dt = xy− βz

(2)

where x, y, and z are system variables; t is the time, and σ, ρ, β are the system parameters. Two time
series T1 and T2 (x component of the system) shown at the top of Figure 1a are generated using (2)
with σ = 8, ρ = 28 and β = 8/3. All system parameters are kept the same here, except that the initial
conditions for generating T1 and T2 are slightly different by 10−2. The difference between the two-time
series is shown at the bottom of Figure 1a. It can be seen from Figure 1a, in the beginning, the two-time
series kept the same shape, but as time went on, the differences became larger and larger, and this
phenomenon is known as the “butterfly effect”. In other words, although the two time series are
generated from the same system with slightly different initial values, they are very different in local

196



Entropy 2020, 22, 142

characteristics. Therefore, it is usually not feasible to measure the similarity between chaotic time series
by general metric. In Figure 1b, pairs of time series values xi = (xi, xi+τ)

T are plotted with black dots;
this is the state vector in the reconstructed phase space of the x component of T1 using (1). In other
words, a system with two variables is reconstructed from the observation of one variable (a scalar time
series). As can be seen from Figure 1b, more abundant geometric structure of the time series can be
seen by using the phase space reconstruction, thus it can provide more information about the time
series.

 
 

(a) (b) 

Figure 1. Chaotic time series of Lorenz system and its reconstructed phase space. (a) x component of
Lorenz system. (b) Reconstructed phase space of T1.

When the phase space is constructed, the next problem to be solved is how to represent the time
series in the space. As mentioned above, the general point-to-point metrics are hard to measure the
similarity between chaotic time series due to the complexity. Therefore, it is a more reasonable choice
to calculate the statistical characteristics of time series and then measure the similarity between them.
An intuitive way is to estimate the covariance matrix of the multivariable time series (MTS) in phase
space and then calculate geodesic distance between them [17]. However, considering the complex
structure of MTS in phase space, a single covariance matrix usually cannot accurately describe the
data distribution of a chaotic system. For example, in Figure 1b, at least two independent Gaussian
distribution models are required to accurately describe the Lorenz systems. Thus, a natural way here
is to adopt multivariate GMM to represent MTS generated by chaotic systems. The GMM is given by

G =
n∑

i=1

αigi =
n∑

i=1

αiN(μi, Σi) (3)

where the i-th component is characterized by normal distributions gi = N(μi, Σi) with weights αi,
means μi, and covariance matrices Σi. In other words, GMM is a linear combination of several Gaussian
distribution functions. In theory, GMM can fit any type of distribution, which is usually used to solve
the case that one data set contains many different distributions. As shown in Figure 1b, GMM with
two components is used to model MTS, and it (denoting as the ellipses) can well describe the double
scroll structure of Lorenz system.

2.2. Complex Network Construction with Similarity Metric

Once the time series is represented by GMM, the similarity between time series is converted into
the similarity between GMMs. Kullback–Leibler divergence is a commonly used solution to measure
the distance between two probability distributions. However, it has no closed form solution in the case
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of GMM, and the implementation of Monte Carlo simulation becomes computationally expensive [18].
Therefore, we introduce maximum mean discrepancy (MMD) in reproducing kernel Hilbert spaces to
quantify the similarity between GMMs [19]. Suppose we have two GMMs in Rd:

P =
m∑

i=1
αipi =

m∑
i=1
αiN(μi, Σi)

Q =
n∑

j=1
β jqj =

n∑
j=1
β jN
(
μ′j, Σ′j

) (4)

where pi = N(μi, Σi); qj = N
(
μ′j, Σ′j

)
; and m, n is the components number of P and Q, respectively.

Given a kernel function k(x, y) =
〈
ϕ(x),ϕ (y)

〉
H , the reproducing kernel Hilbert space (RKHS) H

corresponding to k(x, y) can be defined, where ϕ(x) is a feature mapping [20]. Given that we are in an
RKHS, the mean map kernel can be defined as

K(P, Q) = Ex∼P,y∼Qk(x, y) =
〈
Ex∼P[ϕ(x)],Ey∼Q[ϕ(y)]

〉
(5)

Then MMD can be easily defined as

MMD(P, Q) = ‖Ex∼P[ϕ(x)] −Ey∼Q[ϕ(y)]‖
=
√

K(P, P) + K(Q, Q) − 2K(P, Q)
(6)

In the case of insufficient data, we can approximate the kernel function K(P, Q) by empirical
estimation [21]:

Kemp(P, Q) =
1

nP·nQ

nP∑
i=1

nQ∑
j=1

k
(
xi, yj

)
(7)

where {xi}nP
i=1 and

{
yj
}nQ

j=1
are random samples. However, the approximation obtained with (7) introduces

errors with high probability. Fortunately, when enough data is available, we can estimate the true
distribution of the data; when GMM is used to approximate the distribution of the data, K(P, Q) has a
closed solution:

K(P, Q) =
∑
i, j

αiβ jK
(
N(μi, Σi),N

(
μ′j, Σ′j

))
(8)

With (8), the form of K(P, P) and K(Q, Q) can be derived similarly. It turns out, introducing the
Gaussian RBF kernel k(x, y) = exp

(
−γ‖x− y‖2/2

)
, the product kernel of the Gaussian distribution is

derived as:

(
N(μi, Σi),N

(
μ′j, Σ′j

))
= 1/

∣∣∣γΣi + γΣi + I
∣∣∣ 12 exp

(
−1

2

(
μi − μ′j

)T(
Σi + Σ′j + γ

−1I
)−1(
μi − μ′j

))
(9)

With (6), (8), and (9), we can obtain the analytic form of MMD(P, Q) by introducing the Gaussian
RBF kernel.

Once similarity measures are in place, the construction of complex networks is straightforward.
First, each UTS is represented by a GMM, and then, MMD in (6) is used to calculate the distance
between each pair of GMM to form a distance matrix D =

(
MMD

(
Pi, Qj

))
, where i and j denote different

UTS. With a critical threshold rc, D can be converted into adjacent matrix whose elements indicate
whether pairs of nodes are connected or not in the network. An adjacent matrix A =

(
a
(
Pi, Qj

))
, here

a
(
Pi, Qj

)
= 1 if MMD

(
Pi, Qj

)
≤ rc and a

(
Pi, Qj

)
= 0 if MMD

(
Pi, Qj

)
> rc.

3. Experiments and Results

The Lorenz system in (2) has highly complex behaviors with the variation of the system parameters.
With the change of system parameters, Lorenz system presents highly complex behavior. We randomly
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generate 150 time series of x components by keeping σ = 10.0 and β = 8/3 while varying ρ ∈ [28, 45].
The reason is that (σ,ρ, β) form a vast three-dimensional parameter space. Considering the complexity
of the Lorenz system, its characteristics have not been fully studied when σ and β take other values [22].
To simplify the problem, many researchers fix σ and β. while changing ρ. That is, each set of (σ,ρ, β)
corresponds to a UTS and different parameter ρ corresponds to different class of time series. The
length of each time series is 6000 data points, and the first 1500 points are removed to reduce the
initialization effect of the system. The differential equation (2) is solved by scipy.integrate.odeint() in
Python package SciPy [23], and the time point step is 0.01.

Firstly, with m = 3, τ = 8, each UTS is transformed into MTS in phase space by (1). Then, the GMM
corresponding to each MTS is estimated, where the components number is 3. Finally, the MMD between
the GMMs is calculated and eventually converted to the adjacency matrix. In addition, to evaluate the
proposed method, three other metrics (geodesic distance, DTW and correlation coefficient) are also
used to construct the network for comparison. By estimating the covariance matrix of MTS in phase
space, the geodesic distance can be obtained and then a network formed [5]. For DTW and correlation
coefficient, the metrics can be calculated directly between UTS.

The spring layout method in NetworkX package [24] was used to plot the network, and the results
were shown in Figure 2. In the network, each node corresponds to a UTS, and the connection between
nodes is determined by the adjacency matrix. The selected threshold rc. enables 20% of the edges to be
preserved to highlight the geometric structure of the network. The validity of network construction can
be evaluated from two aspects: one is to see whether the similarity between nodes can be effectively
captured; the other is to see whether the geometry of the network is conducive to the analysis of
time series. In the first aspect, geodesic distance (Figure 2a) and MMD (Figure 2b) are better metrics
of similarity because nodes with similar ρ are clustered together. In contrast, in Figure 2c,d, nodes
with different ρ are mixed together, especially in Figure 2d, the nodes are completely confused and
indistinguishable, like a random network, indicating that the metric used cannot effectively measure
similarity. From the second aspect, the MMD is superior to the geodesic distance in the geometry of
the network because the nodes in Figure 2a are squeezed together to make it difficult to distinguish.
This phenomenon also indicates that MMD is more sensitive to measure similarity, which results in a
looser network. In the following description, we will explain why a loose network structure is better
than a tight one.

 
(a) (b) 

 
(c) (d) 

Figure 2. Construction of complex network based on different metric (colour bar denotes the value of
ρ). (a) Network construction based on geodesic distance; (b) network construction based on maximum
mean discrepancy (MMD); (c) network construction based on dynamic time warping distance (DTW);
(d) network construction based on correlation coefficient.
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To analyse the characteristics of MMD and geodesic distance in detail, we show the heat map
of the related distance matrix in Figure 3, which corresponds to the network structure. The size of
the heat map is 150× 150, corresponding to 150 nodes, and each pixel denotes the distance between a
pair of nodes (time series). The nodes are arranged in ascending order according to the value of ρ.
From Figure 3a,b, it can be seen that the distance near the diagonal is small (high similarity), otherwise
the distance is large, which means that the node pairs with similar ρ have high similarity. To investigate
this point more clearly, we set a certain threshold rc and retained the 20% of the edge (mentioned in
Section 2.2), as shown in Figure 3c,d. As you can see, the reserved edges are centered diagonally and
gradually spread to both sides. Therefore, if more edges are retained by increasing rc, the topology of
the network (the relationship between adjacent nodes) can still remain stable to some extent.

  
(a) (b) 

  
(c) (d) 

Figure 3. Heat map of distance matrix based on MMD and geodesic distance (coordinate label indicates
the number of nodes and colour bar denote the value of distance between two nodes). (a) Heat map
based on geodesic distance; (b) heat map based on MMD; (c) heat map in (a) with 20% of the edges to
be preserved; (d) heat map in (b) with 20% of the edges to be preserved.

By comparing Figure 3c,d (similar to Figure 2a,b), we can find that the network structure based
on MMD is looser. From the characteristics of Lorenz system, the loose network structure is more
reasonable. This is because small changes in ρ do not exactly correspond to smooth changes in the
properties of time series. Although time series with similar ρ usually have similar properties, time
series with different ρ sometimes have similar behaviors [25]. That is, a node should be similar to a
node with a similar ρ, but it may also be similar to a node with a different ρ, which results in a loose
network structure. Compared with geodesic method, MMD can capture the two similarities more
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effectively, and this results in a looser network. This is because the geodesic method is a special case of
MMD in some ways. The deeper reason is that geodesic method uses only ONE covariance matrix
(Gaussian distribution with a zero mean vector) to represent the data, while the MMD method uses
GMM (linear combination of multiple Gaussian distributions) to fit the data. In contrast, MMD can
capture more detailed information to find more neighbor nodes.

4. Conclusions

In this communication, a method was proposed for constructing a complex network of univariate
chaotic time series. Compared with the commonly used metric, the introduced MMD can capture
the similarity between GMMs more effectively, which is the key problem of constructing complex
networks of the chaotic time series. Although the proposed method is specific to chaotic time series,
it can also be applied to time series in other fields. In addition, it can be directly generalized to the case
of multivariate time series by omitting phase space reconstruction.
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Abstract: Socio-ecological systems are recognized as complex adaptive systems whose multiple
interactions might change as a response to external or internal changes. Due to its complexity,
the behavior of the system is often uncertain. Bayesian networks provide a sound approach for
handling complex domains endowed with uncertainty. The aim of this paper is to analyze the
impact of the Bayesian network structure on the uncertainty of the model, expressed as the Shannon
entropy. In particular, three strategies for model structure have been followed: naive Bayes (NB),
tree augmented network (TAN) and network with unrestricted structure (GSS). Using these network
structures, two experiments are carried out: (1) the impact of the Bayesian network structure on the
entropy of the model is assessed and (2) the entropy of the posterior distribution of the class variable
obtained from the different structures is compared. The results show that GSS constantly outperforms
both NB and TAN when it comes to evaluating the uncertainty of the entire model. On the other
hand, NB and TAN yielded lower entropy values of the posterior distribution of the class variable,
which makes them preferable when the goal is to carry out predictions.

Keywords: Bayesian networks; entropy; socio-ecological system

1. Introduction

Socio-ecological systems (SESs) constitute an outstanding example of complex systems,
where multiple social and ecological components interact with each other in space and time [1,2].
SESs are complex adaptive systems whose interactions might change as a response to external events or
endogenous changes [3,4]. As a consequence, the state of the SES evolves to a new one to adapt to these
changes [5]. This brings about challenges not only from the modeling perspective but also when it
comes to making predictions and diagnosing problems. An example of such complex socio-ecological
systems is cultural landscapes, which are the outcome of the interaction of humans and nature over
time [6]. Cultural landscapes [7] are typically heterogeneous systems providing diverse ecosystem
services as the result of a complex relationship between human cultural management and the ecosystem.

Furthermore, there is a strong relationship between cultural landscapes and the
socio-economy [8–10] and this relationship must be appropriately modeled in order to make well
founded decisions on, for instance, implementing suitable landscape conservation policies [9].
Traditional analysis methods have been applied to this problem [11–13] but they sometimes fail
to capture the complexity of the cultural landscape elements, connections and cause-effect relations,
specially when ecosystem services are taken into account [14].
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Another key issue is handling the uncertainty in data and in the predictions made by the models.
In this sense, Bayesian networks (BNs) [15], provide a sound approach for handling complex domains
endowed with uncertainty. The underlying formalism for uncertainty treatment is probability theory,
which entails to quantify the uncertainty associated with the decisions made from BNs using measures
as, for instance, Shannon entropy [16].

BNs have been widely used in the last decade as a modeling tool in environmental problems
in general [17] and in cultural landscapes applications in particular [18]. A recent example employs
the so-called object-oriented Bayesian networks (OOBNs) which are basically a structured way of
representing Bayesian networks taking advantage of repeated and hierarchical components [19] so
that the modeling task is simplified [20].

In this paper, we analyze the resulting model uncertainty when complex socio-ecological systems
are modeled using Bayesian networks. More precisely, we investigate the impact of different network
structures on the value of Shannon entropy from an experimental point of view. This analysis is
relevant for practitioners when making decisions, since less uncertain models are potentially more
reliable when making predictions using the model.

2. Materials and Methods

From now on, we will use uppercase letters to denote random variables and lowercase letters
to denote a value of a random variable. Boldfaced characters will be used to denote random vectors
(i.e., multidimensional random variables). The set of all possible values of a random vector X (also
called its support) is denoted as ΩX. A Bayesian network [15] with variables X = {X1, . . . , Xn} is a
directed acyclic graph with n nodes where each one corresponds to a variable in X. Attached to each
node Xi ∈ X, there is a conditional distribution of Xi given its parents in the network, Pa(Xi), so that
the joint distribution of random vector X factorizes as

p(x1, . . . , xn) =
n

∏
i=1

p(xi|pa(xi)), (1)

where pa(xi) denotes a configuration of the values of the parents of Xi.
A simple example of a Bayesian network representing the joint distribution of variables X1, . . . , X5

is shown in Figure 1. It encodes the factorization

p(x1, x2, x3, x4, x5) = p(x1)p(x2|x1)p(x3|x1)p(x5|x3)p(x4|x2, x3). (2)

X1

X2 X3

X4 X5

Figure 1. An example of a Bayesian network structure with 5 variables.

From a modeling perspective, one advantage of Bayesian networks is that the induced
factorization avoids the specification of large multivariate distributions that are replaced by a set
of smaller ones, which are more easily specified, since the number of parameter is lower. For example,
the factorization in Equation (2) replaces the specification of a joint distribution over 5 variables by the
specification of 5 smaller distributions, each one of them with at most 3 variables. Another advantage
is that the network structure describes the interaction between the variables in the model, in a way
that can be easily interpretable.

204



Entropy 2020, 22, 123

One of the most successful areas of application of Bayesian networks is classification [21], which is
a prediction task in which there is a discrete target variable C, called the class, whose value is to be
forecasted from the values of a set of feature variables X = {X1, . . . , Xn}. The predicted value c∗ of C is
computed as the one that maximizes the posterior distribution of C given the observed values of the
features, that is,

c∗ = arg max
c∈ΩC

p(c|x1, . . . , xn). (3)

Note that

p(c|x1, . . . , xn) =
p(c)× p(x1, . . . , xn|c)

p(x1, . . . , xn)
∝ p(c)× p(x1, . . . , xn|c), (4)

which means that solving the classification problem requires the specification of an n-dimensional
distribution for X1, . . . , Xn given C. The problem can be simplified by representing the joint distribution
using a Bayesian network and taking advantage of the factorization encoded by its structure.
The strongest simplification is achieved when the network is forced to adopt a naive Bayes (NB)
structure, where the feature variables are assumed to be conditionally independent given the class.
The BN structure is depicted in Figure 2a.

C

X2X1
... Xn

(a)

C

X2X1 X3 X4

(b)
Figure 2. Structure of a naive Bayes model with n features (a) and a tree augmented network (TAN)
model with 4 features (b).

Adopting an NB structure actually means a strong independence assumption, but in practice it is
compensated by the low number of parameters that need to be specified. Notice that, in this case the
factorization results in

p(c|x1, . . . , xn) ∝ p(c)
n

∏
i=1

p(xi|c), (5)

meaning that n one-dimensional conditional distributions must be specified, instead of one
n-dimensional conditional distribution.

The independence assumption underlying NB models can be relaxed, resulting in more expressive
models that still keep a reduced number of parameters. This is the motivation of the tree augmented
network (TAN) structure [21], where each feature variable is allowed to have another feature as a parent,
besides the class, as long as the resulting subgraph containing the features is a tree (i.e., it contains no
directed cycles). An example of a TAN model is given in Figure 2b, corresponding to the factorization

p(c|x1, . . . , xn) ∝ p(c)p(x1|x2, c)p(x1|c)p(x3|x2, c)p(x4|x3, c). (6)

Given that there are multiple structures that one can choose when facing classification problems,
ranging from NB to unrestricted Bayesian networks, a natural question is to know whether this choice
has an impact on the performance of the classification model. This problem has been analyzed from
the point of view of the accuracy of the classification model [21]. In this paper we are more interested
in analyzing the impact of the model structure on the uncertainty over the predictions, which in this
context can be evaluated as the uncertainty of the used Bayesian network.
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After all, a Bayesian network represents a probability distribution and a well known approach to
quantifying the uncertainty of a probability distribution is to use Shannon entropy [16]. The Shannon
entropy of a discrete random variable X is

H(X) = − ∑
x∈ΩX

p(x) log p(x). (7)

Analogously, it can be defined over a random vector X = {X1, . . . , Xn} as

H(X) = − ∑
x∈ΩX

p(x) log p(x), (8)

which in the case of a Bayesian network can be written as

HBN(X) = − ∑
x∈ΩX

n

∏
i=1

p(xi|pa(xi)) log
n

∏
j=1

p(xj|pa(xj))

= − ∑
x∈ΩX

n

∏
i=1

p(xi|pa(xi))

(
n

∑
j=1

log p(xj|pa(xj))

)
. (9)

Particularly, for a Bayesian network with NB structure and variables X = {C, X1, . . . , Xn},
the entropy can be computed as

HNB(X) = − ∑
x∈ΩX

p(c)
n

∏
i=1

p(xi|c)
(

log p(c) +
n

∑
j=1

log p(xj|c)
)

. (10)

Shannon entropy is usually preferred to other entropies as a measure of uncertainty within the
context of Bayesian networks due to its decomposability properties, which allow to efficiently compute
it by taking advantage of the factorization of the distribution induced by the Bayesian network.

2.1. Experimental Analysis

In order to study the impact of the Bayesian network structure on the model uncertainty, we have
conducted an experiment taking as a basis a Bayesian network that models a complex socio-ecological
system. More precisely, we use the network described in [20]. It models the entire region of Andalusia
(southern Spain) which contains a wide variety of scenarios from an ecological point of view.

The variables in the network describe social and economic indicators taken from the
Multiterritorial Information System of Andalusia (SIMA) (http://www.juntadeandalucia.es/
institutodeestadisticaycartografia/sima/) as well as environmental information collected from the
Andalusian Environmental Information Network (http://www.juntadeandalucia.es/medioambiente/
site/rediam). The network contains a total of 75 variables, described in the on-line material (https:
//w3.ual.es/personal/amg457/Downloads_protected/Experimentos.zip).

We conducted two experiments:

2.1.1. Experiment 1

The goal of this experiment is to assess the impact of the Bayesian network structure on the
entropy of the model. The starting point was the Bayesian network in [20], that will be referred to
as Original BN. Its structure is displayed in Figure 3 and it gives an idea of the complexity of the
described system. Out of Original BN, we generated samples of sizes ranging from 500 to 100,000.
From each sample, we constructed 9 networks with NB structure, each one of them with a different
class variable, 9 networks with TAN structure, with the same class variables as NB and 1 network
where we imposed no restriction on its structure. NB and TAN networks were built using package
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bnlearn in R [22] while the other network was constructed using the greedy search (GSS) method
implemented in Hugin (http://www.hugin.com).

Instead of computing the entropy of each of the obtained networks using Equations (9) and (10),
we decided to estimate them. The reason is that a straight application of those formulas requires
summing over a number of terms that grows exponentially with the number of variables. For instance,
in the case of Original BN, that contains 75 variables, assuming that all of them had only 2 possible
values, evaluating the entropy would require summing over 275 terms (approximately 3.8 × 1022).

Figure 3. Structure of the Bayesian network used as reference in the experiments.

The estimation of the entropy was carried out using the same samples utilized for constructing
the Bayesian networks. For a sample of size m, {x(1), . . . , x(m)}, we estimated HBN(X) as

ĤBN(X) = − 1
m

(
n

∑
j=1

log p(x(r)j |pa(x(r)j ))

)
, (11)

where x(r)j denotes the value of variable Xj in the r-th element of the sample and pa(x(r)j ) is the value
of the parent variables of Xj in the r-th element of the sample.

Similarly, we estimated HNB(X) as

ĤNB(X) = − 1
m

(
log p(c(r)) +

n

∑
j=1

log p(x(r)j |c(r))
)

. (12)

Note that ĤBN(X) and ĤNB(X) are, respectively, unbiased estimators of HBN(X) and HNB(X).
It can be easily proved taking into account that

HBN(X) = − ∑
x∈ΩX

n

∏
i=1

p(xi|pa(xi))

(
n

∑
j=1

log p(xj|pa(xj))

)

= Ep

[
−

n

∑
j=1

log p(Xj|pa(Xj))

]
,

where Ep denotes the expectation computed with respect to distribution ∏n
i=1 p(xi|pa(xi)). Therefore,

ĤBN(X) is just the sample mean estimator of HBN(X), which is known to be unbiased. Likewise,
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ĤNB(X) is the sample mean estimator of HNB(X). Since both estimators are unbiased, their accuracy
can be measured using their variance or equivalently, their standard deviation, as variance coincides
with mean squared error for unbiased estimators.

2.1.2. Experiment 2

In this experiment we used the same networks as in Experiment 1. Then we generated three
scenarios in the socio-ecosystem described by the Bayesian network. Each scenario corresponds to a
particular configuration of values of some variables in the network. For each scenario, we computed
the posterior distribution of the class variable—see Equation (4)—from each one of the nine networks
in Experiment 1 and estimated the entropy of the posterior distribution as we describe next. The prior
distribution of the class variable corresponds to the marginal distribution of variable C in the
corresponding network in Experiment 1, without taking into account the data corresponding to the
three scenarios analyzed here. This is equivalent to adopting a parametric empirical Bayes approach,
where the parameters of the prior distribution are estimated by maximum likelihood. This is the usual
way of approaching prediction problems with Bayesian networks when we have an initial sample with
a high number of elements and without missing values. If we denote by q(c) the posterior distribution
of the class variable for one particular scenario, then the entropy in this experiment is calculated as

H(C) = − ∑
c∈ΩC

q(c) log q(c). (13)

Note that in this case there is no need to estimate the entropy from the sample, as we only need to
sum over the values of the class variable.

3. Results and Discussion

The results of Experiment 1 are reported in Figure 4. The dashed line corresponds to the Original
BN, that constitutes the ground truth. The dots represent the estimated entropy values, while the bars
centered on each point represent the standard deviation, and thus the accuracy of the estimated value.
It can be seen how in this case the network with unrestricted structure (GSS), consistently outperforms
both NB and TAN. In fact, the entropy of the GSS network converges to the exact one (Original BN)
when the sample size increases. Focusing on the classification-oriented networks, the uncertainty is
clearly lower (lower entropy) for TAN compared to NB. This comes to no surprise, as the structure of
the NB is the most simple one and therefore it is more unlikely that it is able to capture the exact model
accurately and this is reflected in the model uncertainty. In the case of NB and TAN, the increase in
sample size does not lead to a reduction in the entropy. This is also consistent with the lack of ability
to fit the right model of both structures, due to the independence assumptions.

With respect to Experiment 2, the results for the three scenarios considered is similar, as can be
inferred from Figures 5–7. The comparison carried out in this experiment is more fair with respect
to NB and TAN because it refers to prediction scenarios, in which case we are only interested in the
distribution over the target variable and not the entire model. In the three scenarios, the entropy
corresponding to NB and TAN, likewise GSS, also converges to the entropy of the class posterior
distribution computed with the original network.
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Figure 4. Shannon entropy vs. sample size for the Bayesian networks used in Experiment 1.

For smaller sample sizes, the uncertainty of GSS is typically higher than the exact one, which is
in-line with the result obtained in Experiment 1 for this network. However, the uncertainty of the class
posterior obtained from NB and TAN structures is often below the entropy of the Original BN and, in
general, clearly below the uncertainty obtained from GSS. The extreme case is the posterior of variable
MCR in scenario 1 computed from NB (bottom left panel of Figure 5).
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Figure 5. Shannon entropy of the class posterior distribution vs. sample size for scenario 1 in
Experiment 2.

The observed behavior of the analyzed models support the idea of using NB and TAN for
classification instead of unrestricted Bayesian network structures. The fact that the uncertainty is lower
means that the class posterior distribution is less smooth. In other words, it better discriminates the
most probable value of the class, which is in fact the value that corresponds to the outcome of the
prediction model, as seen in Equation (3). This is precisely the effect that is sought by NB and TAN,
which are focused on being accurate in the predictions rather than in goodness of fit.
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Figure 6. Shannon entropy of the class posterior distribution vs. sample size for scenario 2 in
Experiment 2.
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Figure 7. Shannon entropy of the class posterior distribution vs. sample size for scenario 3 in
Experiment 2.

4. Conclusions

In this paper we have carried out two experiments analyzing the uncertainty in various Bayesian
network structures representing complex environmental networks. More precisely, we have tested
unrestricted structure, NB and TAN models representing a complex socio-economic system with
75 variables.

According to the results of the experiments, the conclusion is that, from the point of view of
uncertainty, unrestricted structures are preferable when the goal is the representation of the entire
complex system, that is, the full model. However, if the goal is to carry out predictions, then NB and
TAN yield less uncertain results.
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Abstract: Patterns of connectivity among nodes on networks can be revealed by community detection
algorithms. The great significance of communities in the study of clustering patterns of nodes
in different systems has led to the development of various methods for identifying different node
types on diverse complex systems. However, most of the existing methods identify only either disjoint
nodes or overlapping nodes. Many of these methods rarely identify disjunct nodes, even though
they could play significant roles on networks. In this paper, a new method, which distinctly
identifies disjoint nodes (node clusters), disjunct nodes (single node partitions) and overlapping
nodes (nodes binding overlapping communities), is proposed. The approach, which differs from
existing methods, involves iterative computation of bridging centrality to determine nodes with the
highest bridging centrality value. Additionally, node similarity is computed between the bridge-node
and its neighbours, and the neighbours with the least node similarity values are disconnected.
This process is sustained until a stoppage criterion condition is met. Bridging centrality metric and
Jaccard similarity coefficient are employed to identify bridge-nodes (nodes at cut points) and the
level of similarity between the bridge-nodes and their direct neighbours respectively. Properties
that characterise disjunct nodes are equally highlighted. Extensive experiments are conducted with
artificial networks and real-world datasets and the results obtained demonstrate efficiency of the
proposed method in distinctly detecting and classifying multi-type nodes in network communities.
This method can be applied to vast areas such as examination of cell interactions and drug designs,
disease control in epidemics, dislodging organised crime gangs and drug courier networks, etc.

Keywords: bridging centrality; community detection; disjoint nodes; disjunct nodes; node similarity;
overlapping nodes

1. Introduction

Over the years, numerous research works have been devoted to identification and description
of community with respect to networks or graphs without a consensus on its definition [1].
Some characteristic features can easily be extracted from the nodes in a graph to describe
a community [2,3]. Intuitively, communities are usually acquired from the removal of bridges (edges),
bridge-nodes or articulation points (cut vertexes) from a graph. Identification and removal of these
sets of nodes and edges can effectively disintegrate a network naturally into densely connected
subgroups [4–11]. A community can effectively be described as clusters of densely connected nodes
that are revealed along disconnected lines of weak connections of bridge-nodes.

Communities are very useful in detecting hierarchical clusters in various fields such as cells
interaction, epidemic/disease control in natural and biological sciences, design of power grid and
road networks in engineering, collaboration networks, social networks in social sciences and so
on [6,7,11–13]. Most networks reveal hierarchical structures, i.e., they reveal smaller clusters contained
within larger clusters. One of the most popular clustering methods is the hierarchical clustering
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method, which is further divided into two categories namely agglomerative algorithms and divisive
algorithms. In agglomerative algorithms, clusters of nodes with high similarity are merged together
in successive iterations to achieve better clusters, whereas in divisive algorithms, nodes with low
similarity values are disconnected in successive iterations to reveal better clusters of nodes with
higher similarity [1,14].

In recent years, existing community detection algorithms reported in the literature were
specifically designed to either detect only disjoint nodes or overlapping nodes. Disjoint nodes,
also known as node clusters, are nonoverlapping groups of densely connected subgraphs of
a network [1,12,14–18]. Overlapping nodes are nodes shared by two or more communities at the
same time, thereby creating overlapping communities [1,14–16,19–22]. Previous methods rarely take
into consideration disjunct nodes (isolated or neutral nodes) [23]. However, when critically examined,
real complex networks reveal the existence of multi-type nodes [1]. For example, Peel et al. [24]
reported that the majority of community detection algorithms cannot recover the metadata of a certain
node or often mislabelled this node (person number 9) in the popular Zachary’s karate club network,
which, most likely, had a neutral political support during the feud that eventually divided the karate
club. Nodes of this type can only be discovered by suitably designed algorithms that are capable of
distinguishing the different node types on a network.

There has been proliferation of different community detection algorithms over the past few years,
with each algorithm being designed to achieve what has already been attained in the past with little or
no difference. The idea of implementing these algorithms differently on datasets for set purposes not
only consume much resources but take quite precious amount of time. We set out to achieve a unified
process of community detection which focuses on and reveals the various node types, and therefore we
propose a method that detects multi-type nodes in network communities that disintegrate a network
into communities. This method ensures that various node types are recovered and duly classified.
In other words, when an overlapping node is identified, it is easier to distinguished the communities
been overlapped by it. Also, the disjoint nodes are clearly separated whereas the disjunct nodes do
not adhere to any clusters. Some of the foremost community detection algorithms were proposed
by Girvan and Newman [4,5]. In these algorithms, the edge with the highest betweeness centrality
value is iteratively disconnected until the network disintegrates into modules. It is reported that these
algorithms cannot discover overlapping nodes, as each node is assigned to a cluster [1]. However,
we know that most real networks often share nodes between communities, resulting in community
overlap and sometimes disjunct nodes are discovered [1,22]. In their work [5], Newman and Girvan
introduced a quality measure known as modularity measure, which is used to determine the strength
of community structures found by the algorithm. This measure further inspired other community
detection algorithms based on modularity optimisation methods. Newman [25] proposed a fast
optimisation of the quality function modularity. In this method, at the initial stage, there are |N|
communities formed by each node. At every successive iteration, communities are merged only if
it improves the value of the quality function modularity [1,25]). Even though Newman’s method
is quite fast and detected quality communities on networks, Clauset et al. [26] pointed out that it
consumed much storage space and time in the computation of adjacency matrix. As a result, they
proposed a more efficient method known as greedy modularity optimisation algorithm, which uses
data structures to compute and retain only significant improvements in the value of the quality function
modularity [1,26]). Similar to the greedy modularity optimisation techniques of Newman [25] and
Clauset et al. [26] is the very popular Louvain algorithm [27]. This method is suitable for both weighted
and unweighted networks. In the first phase, each node is assigned to its own community. Nodes
are joined to form supernodes only if there is gain in the value of modularity. The second phase
involves fusion of connected supernodes on the condition that the value of modularity increased.
The entire process is repeated recursively until gain in the value of modularity is no longer possible.
The Louvain algorithm is reported to be one of the fastest community detection algorithms and is
capable of handling networks with millions of nodes and edges [1]. The modularity optimisation
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methods fall under the category of hierarchical agglomeration community detection algorithms,
and they detect only disjoint or none overlapping clusters. Unlike the modularity optimisation based
methods, Label propagation algorithm (LPA) proposed by Raghavan et al. [28] uses only structural
information of networks to detect communities. At the initial stage, each node obtains a unique
identifier or label and subsequently adopts the majority label of its neighbours after every successive
propagation iteration. The propagation process terminates when a convergence point is reached,
i.e., when every node adopts the majority label of its neighbours or the preassigned number of
iterations is attained. At this stage, densely connected clusters of nodes assume same label thereby
forming communities [1,28]. The Spectral algorithm is a matrix-based clustering method that uses
eigenvectors for clustering. Here, the nodes on a network form data points and the edges between
nodes form distances. The eigenvector of these points is calculated from the generated affinity
matrix, and a clustering method such as the k-means clustering technique is used to partition these
points [1,29,30]. As noted earlier, complex networks have the tendency to allow multi-membership
of nodes to two or more communities per time and, consequently, this brings about node overlaps
and overlapping communities in networks [22,31,32]. To capture such distinctive characteristics of
networks, researchers proposed and designed community detection algorithms that are capable of
capturing the overlapping structures of complex networks. Yuan et al. [19] proposed a constraint
model that necessitates recursive edge-cuts that meet the constraint condition. This algorithm detects
overlapped communities at the end of the process.

Note that the majority of the previously proposed algorithms can only detect disjoint nodes (node
clusters) or overlapping nodes (nodes binding overlapping communities) and rarely disjunct/neutral
nodes (single node partitions). We propose a new method which distinctly identifies disjoint nodes,
disjunct nodes and overlapping nodes following a natural pattern of network division. Our approach
rather focuses on identifying the various node types, as when these node types are identified, network
communities are naturally recovered. The procedure involves iteratively finding nodes with the highest
bridging centrality value and subsequently its neighbours that yield the least node similarity value are
determined and the links joining them disconnected [33]. The process is sustained until a stoppage
criterion condition is met. Our approach focuses on revealing the node types and this ensures that
nodes are distinctly identified as well as classified into communities with high value of modularity.
Singleton nodes with a degree value of one are ignored to avoid the possibility of cutting them off
during network division, so as not to mix them up with what we classify as disjunct nodes in this
work. Additionally, the properties that characterise disjunct/neutral nodes are highlighted and clearly
demonstrated. The proposed algorithm was tested and compared with other community detection
algorithms on artificial and real-world datasets, and the results indicated impressive performance
against the compared algorithms.

The outline for the rest of this paper is as follows. In Section 2, we define some relevant terms
and design and implement an algorithm to detect disjoint nodes, disjunct nodes and overlapping
nodes. We further highlight some of the properties that characterise disjunct nodes. We analyse the
experimental results, discuss our findings and offer recommendations in Section 3. Finally, we conclude
in Section 4.

2. Methodology

Bearing in mind the usefulness of communities in studying and understanding patterns of node
connectivity on networks, we propose a new method to discover disjoint nodes, disjunct nodes and
overlapping nodes. Our method iteratively identifies bridge-nodes using the Bridging centrality
metric [6] to compute the nodes with the highest bridging centrality value. Furthermore, the node
similarity value between the identified bridge-node and all of its neighbours is calculated. We rank the
node similarity values in decreasing order and detach the edges/links with the least node similarity
value. Intuitively, the bridge-node forms a community by aligning with its neighbours that return high
node similarity values unless there is anything to the contrary [3,34]. The edge/link which has the
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least node similarity value is the edge between the bridge-node and another community. If the node
similarity values between the bridge-node and its neighbours return a value equal to zero, then the
bridge-node would most certainly be isolated upon network division and we classify this node to
be a disjunct node without any community. This signifies that the isolated nodes do not share any
nodes in common with any of their neighbours. Some of the bridge-nodes which seem to be isolated
are actually overlapping nodes. The proposed algorithm identifies them by cutting them out just
like the isolated nodes, but they differ from isolated nodes in the sense that they have paths linking
back to them from their neighbours, they share some common nodes and can form communities with
their neighbours.

The proposed algorithm is designed to be implemented on a typical undirected and unweighted
graph G = (V, E), in which V = {v1, v2 · · · vn} is of n nodes and E = {e1, e2 · · · em} is a set of edges
denoted by m. The n nodes and their connections are represented by an adjacency matrix = [Aij](n× n)
where Aij = 1 if vi is connected to vj, and Aij = 0 otherwise.

2.1. Definition of Important Measures and Terms

2.1.1. Similarity Measure

The node similarity measure is used to compute the level of relationship between nodes.
This measure is equally used to ascertain if nodes can be grouped together into the same
community [1,3,16]. We determine the similarity between nodes via the structural similarity, which
computes the intersections between the neighbourhood sets of any two nodes. There are a couple of
node similarity measures but we adopt the Jaccard similarity coefficient because of its intuitive appeal.
The model is shown in Equation (1).

|ni ∩ nj|
|ni ∪ nj| (1)

ni is the neighbourhood set of node i and nj is the neighbourhood set of the neighbours of node i.

2.1.2. Modularity

Modularity is an optimisation function that is used to evaluate the quality of a graph partition,
which was designed by Newman and Girvan [5]. The larger the value of the modularity function,
the better the quality of the detected communities [17,18]. The model is given in Equation (2).

Q = ∑ eii − a2
i (2)

eii is the fraction of edges included in the community i and ai is the fraction of nodes’ degree included
in the community i.

eii = Ei/m (3)

where Ei is the number of edges contained inside the community i and m is the total number of edges
in G.

a2 =
∑v∈Ci

dv

∑v∈G dv
(4)

where Ci is the community i and dv is the degree of node v.

2.1.3. Betweeness Centrality

The Betweeness centrality of a node v, first designed by Freeman [35], is given in Equation (5):

CB(v) = ∑
s �=v �=t
s,v,t∈V

ρst(v)
ρst

(5)
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where ρst(v) is the number of shortest paths from node s to node t that pass through node v, and ρst is
the number of shortest paths from node s to node t.

2.1.4. Bridging Coefficient and Bridging Centrality

The Bridging coefficient is defined as

BC(v) =
d(v)−1

∑i∈N(v)
1

d(i)

(6)

where d(v) is the degree of node v and N(v) is the set of neighbours of node v. Bridging centrality,
on the other hand, is used to quantitatively measure the extent of bridging capability of all nodes in
a network. Comparatively to other components on the same network, the bridge-nodes are identified
on the basis of their high value of bridging centrality [6,7]. The bridging centrality CR(v) of a node v is
defined by

CR(v) = BC(v)× CB(v) (7)

where BC(v) is the Bridging coefficient and CB(v) is the Betweeness centrality.

2.1.5. Clustering Coefficient

Clustering coefficient measures the degree of clustering that exists between node v and its direct
neighbours [6]. The model is given in Equation (8).

Cl(v) =
2L

dv(dv − 1)
(8)

where dv is the degree of node v and L is the number of links between dv neighbours of node v.

2.2. The Algorithm

The steps involved in the implementation of the proposed method for detecting disjoint nodes,
disjunct nodes and overlapping nodes are stated in Algorithm 1. First, assign the desired number
of partitions P to be detected. Initialise modularity Q = 0 and create a copy of the network G

′ ← G.
Then, compute the bridging centrality value CBRi of all nodes in the network G. Select the node
Bri with the highest bridging centrality value. Compute the node similarity values between Bri and
all of its neighbours. Select the nodes that return the least node similarity value and delete the
links/edges connecting them to Bri . Repeat the cycle until the number of connected components,
modules or partitions of G

′
== P. In other words, the algorithm loops and keeps count of the number

of modules/partitions until the network is divided up into total number of desired partitions P which
was assigned at the beginning of the experiment. Assign all partitions with components greater than 1
to cluster nodes Ccluster. Find all single node partitions SP and compute their clustering coefficient
Clcoe f f from the original network G. Classify SP as neutral node Cneutral if Clcoe f f = 0, or overlapping
node Coverlap otherwise. Compute the quality of the resultant communities’ modularity, Q, and display
the cluster nodes Ccluster, neutral node Cneutral and overlapping node Coverlap.

2.3. Properties of an Isolated Bridge-Node

From the synthetic graph displayed in Figure 1a, we note that node v4 has the highest bridging
centrality value contained in Table 1. Further computations of the node similarity values between
node v4 and its neighbours nodes v3 and v5 returned the value 0, i.e., sim(v4, v3) = sim(v4, v5) = 0.
When the links connecting these nodes are disconnected, the network G disintegrates. This makes
node v4 become an isolated node as it has no similarity with any of its neighbours, yet it is very vital in
bridging communities. From Table 2, we note that edges G(4, 5); G(5, 4) and G(4, 3); G(3, 4) returned
the highest edge-betweeness values, respectively. These are the edges which link node v4 with its
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Algorithm 1 Multi-type Node Detection Algorithm
Input: Network G; desired number of partitions P
Output: Ccluster, Cneutral , Coverlap, Q

1: initialize Q = 0, copy G
′ ← G;

2: compute CBRi = bridgingcentrality(G
′
) � use Equation (7);

3: select Bri ← max(CBRi ) � nodes with max. bridging centrality value;
4: NebBri ← find (neighbours(Bri ));
5: if NebBri ≤ 1 then
6: continue;
7: end if
8: compute sim(Bri , NebBri ), � node similarity, use Equation (1);
9: find min(sim(Bri , NebBri )) � remove links;

10: repeat
11: 2–11
12: until number_connected_components(G

′
) == P

13: Ccluster == find(connected_components(G
′
) > 1)); SP == find(connected_components(G

′
) ==

1)); � SP refers to Single Node Partitions
14: compute Clcoe f f = clusteringcoe f f (G, SP); calculate Q;
15: if Clcoe f f = 0 then
16: Cneutral ← SP
17: else
18: Coverlap ← SP
19: end if
20: print Ccluster, Cneutral , Coverlap, Q

neighbour’s nodes v5 and v3, respectively. Even though these edges have the highest edge-betweeness
values, they are linked to an isolated bridge-node, which cannot form a community with any of its
neighbours because it has zero node similarity values with them. The network G is disconnected into
two distinct communities, with node v4 not belonging to any particular community. Therefore, we
designate node v4 as a disjunct node without any community. This also demonstrates that, with respect
to bridge-nodes, the link that yields the least node similarity value is same link with the highest
edge-betweeness centrality value. In other words, node similarity has an inverse correlation with
edge-betweeness centrality.

We can summarise the properties of an isolated-bridge node as follows.

• They are bridge-nodes.
• They have degree ki > 1.
• They have no path linking back to them. In other words, they do not share common nodes with

any other node on the network. i.e., |ni ∩ nj| = ∅. Therefore, they have zero node similarity
values with all of their neighbours.

220



Entropy 2019, 21, 1237

(a) (b)

Figure 1. Example synthetic network. (a) Full network. (b) Fragmented network.

Table 1. Bridging centrality and node similarity values of nodes in network G.

Iteration
Count

Node ID.
Bridge Centrality

Value
Neighbours.

Node Similarity
Value

1st 4 0.4592
3 0
5 0

2nd 7 0.0045

5 0.2857
6 0.2857
8 0.2857
9 0.2857

Table 2. Edge-Betweeness values of links/edges with the highest values in network G.

Edge Edge-Betweeness Value

G(4, 5); G(5, 4) 0.2778
G(4, 3); G(3, 4) 0.2500
G(1, 3); G(3, 1) 0.0972
G(2, 3); G(3, 2) 0.0972

3. Results, Evaluation and Discussion

The algorithm is implemented with PYTHON3.7 and related packages (Networkx [36],
Numpy [37,38], Matplotlib [39] and Scipy [40]) and run on a computer with Windows 7 OS (64-bits),
Intel (R) Core(TM) i7-4790 CPU (3.60 GHz) and 4 GB RAM.

3.1. Tests on Artificial Networks

The proposed algorithm was tested on Lancichinetti–Fortunato–Radicchi (LFR) benchmark [1,41]
against the greedy algorithm of Clauset, Newman and Moore (CNM) [26]; Linear Propagation
algorithm (LPA) [28]; Louvain algorithm (Louvain) [27]; Spectral Clustering algorithm (SPA) [29,30];
and Girvan-Newman algorithm (GN) [4]. The algorithm implemented in the work of Yuan et al. [19]
was not included in any of the experiments in this work as we could not re-implement it. In the LFR
benchmark, N is the number of nodes rendered in the network by the benchmark. τ1 and τ2 represent
the power law exponent of the degree distribution and the power law exponent of the community
size distribution produced in the network, respectively. <k> is the average degree of nodes in the
network, and the mixing parameter μ is the fraction of intra-community links or edges connecting each
node. minC and maxC are the minimum size of communities and the maximum size of communities,
respectively. The results obtained from the LFR benchmark, as shown in Figure 2a,b, indicate that the
quality of communities detected by all the algorithms, except for the proposed algorithm deteriorates
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sharply at mixing parameter μ = 0.2. The proposed algorithm decline steadily in contrast to LPA, GN
and SPA algorithms until μ = 0.3. The implication is that from μ ≤ 0.3 qualities of communities detected
are very good, but from μ > 0.3, the qualities of the communities detected deteriorate. In any case,
the proposed algorithm performs better than the other compared algorithms. For the LFR benchmark
experiment in Figure 2a, we set N = 1000 nodes, τ1 = 5, τ2 = 1.5,< k >= 10, minC = 20, maxC = 50.
The number of communities to be detected was set at 100 for the proposed algorithm, GN and SPA.
Likewise, In Figure 2b, we set N = 2000 nodes, τ1 = 5, τ2 = 1.5,< k >= 10, minC = 20, maxC = 60.
The number of communities to be detected was set at 200 for the proposed algorithm, GN and SPA.
Due to the high CPU time in computing GN and the proposed algorithms, we did one iteration only.

(a) (b)

Figure 2. (a) Normalised mutual Information performance comparison of the proposed algorithm
using Lancichinetti–Fortunato–Radicchi (LFR) benchmark. Number of nodes N = 1000, τ1 = 5,
τ2 = 1.5,< k >= 10, minC = 20, maxC = 50. (b) Normalised mutual information performance
comparison of the proposed algorithm using LFR benchmark. Number of nodes N = 2000, τ1 = 5,
τ2 = 1.5,< k >= 10, minC = 20, maxC = 60. The mixing parameter mu ranges from 0 to 0.8 with a step
increment of 0.1.

3.2. Tests on Real-World Network Datasets

We further demonstrate the efficiency of the proposed algorithm with real-world datasets such as
Zachary’s karate club network (Karate), Dolphins network (Dolphins), American football club network
(Football), Kreb’s network of political books (Polbooks) and email data from European research
institution (Email). Nodes and edges are indicated as n and m, respectively, whereas ground-truth
represents the number of communities in the original network as shown in Table 3. The performance of
the proposed algorithm is tested on real datasets against CNM, LPA, Louvain, SPA and GN algorithms
using modularity measure and F1-score, which is an average of precision and recall computed from
ground-truth community dataset and detected community dataset [32]. For modularity measure
comparison among the stated algorithms, the number of communities to be detected for karate club
network was set at 3 for SPA, GN and the proposed algorithm. For the dolphins network, the number
of communities to be detected was set at 4 for SPA, GN and the proposed algorithm. For football
network, the number of communities was set at 12 for SPA and GN. The proposed algorithm detected
at most nine communities in the football network. Therefore, the number of communities was set at 9.
For the polbooks network, the number of communities were set at 4 for SPA, GN and the proposed
algorithm. For the email network, the number of communities was set at 42 for SPA and GN. Just like
in the case of football network, the proposed algorithm detected at most 30 communities in the email
network. Therefore, the number of communities was set at 30. As shown in Figure 3a, the proposed
algorithm outperformed the compared algorithms in karate club network, dolphins network, football
network and polbooks network. In the email network, the proposed algorithm performed marginally
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above the other algorithms. In Figure 3b, the proposed algorithm performed better than the other
algorithms in Karate network and Dolphins network. Expectedly, LPA and Spectral algorithms
performed better ahead of the proposed algorithm, CNM, Louvain and GN algorithms in the football
network. This could be as a result of the proposed algorithm detecting at most nine communities in
this network. In the polbooks network, the performance of the proposed algorithm is good but less
than the performance of CNM and GN algorithms. The email network was not considered for the
F1-score computation due to unavailability of its ground-truth dataset.

Table 3. Properties and description of network datasets used.

Network n/m Ground-Truth Description Ref

Karate Club 34/78 2 Friendship network of karate club members [42]
Dolphin 62/159 2 Association network of bottlenose dolphins [43]
Polbooks 105/441 3 A co-purchasing network of political books [44]
Football 115/613 12 A game-scheduling network of teams [45]

Email EU 1005/16706 42 European research institution’s email data [46,47]

(a) (b)

Figure 3. (a) Modularity measure comparison among CNM, LPA, Louvain, SPA, GN and the
proposed algorithm. (b) F1-score comparison among CNM, LPA, Louvain, SPA, GN and the proposed
algorithm. The email network is ommitted in the F1-score computation due to unavailability of its
ground-truth data.

3.2.1. Zachary’s Karate Club Network

The results obtained show that the proposed algorithm is quite efficient in identifying disjoint
nodes, disjunct nodes and overlapping nodes. In Zachary’s karate club network, shown in Figure 4a,
the proposed algorithm detected three partitions (two cluster node partitions and one single node
partition). The two cluster node partitions (disjoint nodes) are the two main communities whereas
the single node partition (node 9) is a disjunct node. The ground-truth community of this network
comprises two main partitions, as indicated in Table 3, but some useful clusters can be found at
sub-modular levels as indicated in Figure 4b. The proposed algorithm was able to recover the
metadata of node 9 as a disjunct node. This corresponds to what is reported in the work of Peel et al. [24],
where person number 9 is indicated to likely have possessed neutral political inclination neither
towards the karate club president nor the club instructor during the feud between these two persons
that eventually resulted in the split of the karate club into two. Often, most algorithms fail to recover
this particular node or they mislabel it [24]. In Figure 4b, the proposed algorithm detected four main
communities with one disjunct node (node 9) and one overlapping node (node 28). The partitions
overlapped by node 28 are overlapping communities. Information revealed at sub-modular levels of
partitions can be very useful in situations where one needs to examine the connections and relationships
among nodes at sub-modular structures. Node 9 (displayed in green) in Figure 4a,b and node 28
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(displayed in cyan) in Figure 4b are shown as being isolated, but a careful examination shows that
only node 9 meets the requirements to be classified as a disjunct node. Node 28 is an overlapping node
as it has at least an edge linking back to it and it shares clusters with two of its neighbours (nodes 31
and 33), which are in different communities that form the overlapping communities. Yuan et al. [19]
correctly classified this node as an overlapping node which corresponds to node 29 in their work. Also,
the proposed algorithm achieved modularity value of 0.5789 at three communities as indicated in
Table 4, which is greater than SPA and GN’s modularity values of 0.4188 and 0.4188 respectively at
three communities each. CNM and LPA returned three communities each with modularity values of
0.4198 and 0.4198, respectively. At 4 communities, the proposed algorithm achieved modularity value
of 0.5940 which is greater than the modularity value of 0.4156 achieved by Louvain algorithm at four
communities. It is very apparent that the modularity values achieved by the proposed algorithm on
the Karate club network are higher than those of the other algorithms considered for comparison as
can be seen in Table 4. This is a clear indication that the proposed algorithm attains better clustering
quality than the compared algorithms.

(a) (b)

Figure 4. (a) Zachary’s karate club network partitioned into 2 communities with 1 disjunct node.
(b) Zachary’s karate club network partitioned into 4 communities with 1 disjunct node and 1 overlapping
node. The partitions overlapped by node 28 are overlapping communities. The rest of the nodes not
indicated on the legends in Figure 4a,b represent different communities according to their respective colours.

Table 4. Modularity values and number of communities gotten from real complex networks. Number
of communities indicated against CNM, LPA and Louvain are auto-generated since they do not need
prior parameters before execution. The proposed algorithm could detect at most 9 communities for the
football network and 30 communities for the Email network. The modularity values shown against
SPA, GN and the proposed algorithms for Karate, Dolphin and Polbooks networks are based on the
smallest number of communities returned among CNM, LPA and Louvain algorithms.

Modularity Q and Number of Communities (C)

Network CNM LPA Louvain SPA GN Proposed Algorithm

Karate
0.4198
C = 3

0.4198
C = 3

0.4156
C = 4

0.4188
C = 3

0.4188
C = 3

0.5789
C = 3

Dolphin
0.5188
C = 4

0.5196
C = 6

0.5268
C = 6

0.5188
C = 4

0.4156
C = 4

0.6989
C = 4

Polbooks
0.5266
C = 4

0.5268
C = 8

0.5270
C = 4

0.5270
C = 4

0.5266
C = 4

0.5905
C = 4

Football
0.6046
C = 6

0.6043
C = 11

0.6044
C = 10

0.6046
C = 12

0.6043
C = 12

0.8641
C = 9

Email
0.4324
C = 44

0.4306
C = 38

0.4322
C = 28

0.4314
C = 42

0.4328
C = 42

0.4415
C = 30
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3.2.2. Dolphins Network

The proposed algorithm can choose the number of partitions to be returned. This way, modular
structures at lower hierarchies are revealed. In the dolphins network, shown in Figure 5a, the two larger
communities (disjoint nodes) are clearly indicated with one disjunct node (node 39). Yuan et al. [19]
reported node 40, which corresponds to node 39 in our work, as an overlapping node rather than
as a disjunct node, but we understand that this is as a result of differences in methods implemented
in the respective algorithms. The proposed algorithm achieved modularity value of 0.6989 at
four communities, which is higher than the modularity values of 0.5188 for CNM and SPA each
and 0.4156 for GN at four communities. LPA and Louvain achieved modularity values of 0.5196 and
0.5268, respectively, at six communities each. These values are less than the modularity value of 0.6989
achieved by the proposed algorithm as indicated in Table 4.

(a) (b)

Figure 5. (a) Dolphins network partitioned into 2 communities with 1 disjunct node. (b) Dolphins
network partitioned into 4 communities with 2 disjunct nodes. The rest of the nodes not indicated on
the legends in Figure 5a,b represent different communities according to their respective colours.

3.2.3. The Other Networks

In Kreb’s network of political books, the proposed algorithm achieved modularity value of 0.5905
at four communities (all disjoint nodes) in comparison to CNM, Louvain, SPA and GN’s modularity
values of 0.5266, 0.5270, 0.5270 and 0.5266, respectively, at four communities each. At 8 communities,
LPA algorithm achieved modularity value of 0.5268 as against the proposed algorithm’s modularity
value of 0.6964 at eight communities. Yuan et al. [19] classified nodes 30 and 86 as overlapping nodes
at four communities. Our results show that these nodes which correspond to nodes 29 and 85 in
our work as shown in Figure 6 are members of clusters.

Figure 6. Kreb’s network of political books at 4 communities.
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In American college football network, the proposed algorithm could detect at most nine
communities, contrary to the ground-truth of 12 communities indicated in Table 3 and what others
reported in the literature. The quality of the communities detected by the proposed algorithm is
still quite high in comparison to other methods with modularity value of 0.8641. We noticed that
six of the conferences combined to form three bigger conferences. Clauset et al. [26] reportedly
detected six communities with modularity value of 0.6046. Yuan et al. [19] reportedly detected
10 communities with node 37 as overlapping node, whereas the proposed algorithm does not have any
overlapping node.

In the email data network of European research institution, the proposed algorithm detected at
most 30 communities with modularity value of 0.4415. CNM algorithm returned 44 communities with
modularity value of 0.4324. LPA algorithm returned 38 communities with modularity value of 0.4306.
Louvain algorithm returned 28 communities with modularity value of 0.4322. SPA and GN algorithms’
number of communities were fixed at 42 each and they achieved modularity values of 0.4314 and
0.4328, respectively. These values are presented in Table 4.

The method developed in this paper leads the way in multi-type node detection on networks
contrary to previous methods that detect either only cluster nodes or overlapping nodes. Most of the
methods often rarely identify disjunct nodes, which are integral parts of complex networks that play
various significant roles. We further highlighted the unique properties of disjunct nodes which prior to
this time had not been properly characterised by any other work. From our observation, the disjunct
nodes can have several connections to their direct neighbours but when the network is disintegrated,
they are shown to be isolated. In other words, they do not belong to any community. Discovery of
these types of nodes could be very useful in certain instances to determine the actual impact they
may have on the network and their neighbours. For example, a protein molecule in a network of
protein–protein interactions (PPI) can connect other modular protein clusters and could be revealed
to be a disjunct protein molecule at a sub-modular level when the network is divided up. One can
investigate the significant roles such protein molecules play and the possible effects their malfunction
can have on the surrounding protein molecule clusters. With an understanding of something of this
nature, careful study of biological cells can help in designing drugs for disease treatment and epidemic
controls. In computer networks, this can be very helpful in the design of network configuration of
computers. Also, in the fight against drugs and related crimes, a drug mule or courier who works for
drug cartels, but is not necessarily a member of any of the drug cartels, can be intercepted and the
cartels infiltrated. Another possible area of interest might be in the design of power grid networks.

To actualise our set objectives, we used the bridging centrality metric [6] as a tool to help us
determine bridge-nodes. We also used the Jaccard similarity coefficient to help determine the level of
similarity or relationship between the bridge-nodes and their neighbours. This helped us to distinctly
identify and classify the node types. A clear distinction was made between the disjunct nodes and the
overlapping nodes. It is imperative we point out that our method and objectives are quite different
from the method and objectives in [7]. Hwang et al. [7] proposed bridge-cut algorithm which is based
on bridging centrality of edges. We have not compared the performance of these two methods as it’s
not part of the scope of this present work.

Additionally, we set the number of desired output partitions ahead of time before executing this
algorithm. This allows one to adjust the number of partitions to be returned so as to ensure careful
study of the multi-level hierarchical structures in networks. Such information as this can be very
useful in disease control by deletion of certain edges connected to isolated or overlapping nodes. Some
existing studies also support this point of view [7,48]. Differentiating multi-type nodes in a natural
way on networks can equally be helpful in critical examination of cell interactions and drug designs,
protein–protein networks, etc. [6,7]. It can also give insight to future studies and understanding of
terrorist cells operations, illegal transfer of funds among terrorists, drug courier networks, organised
crime gangs, power grids, internet infrastructure designs, road network designs and so on.
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3.2.4. Computational Complexity Analysis

The bridging centrality metric is bounded by the time complexity of betweeness centrality based
on Brande’s betweeness algorithm, which is what is implemented in the Networkx python package
used in this work. It is calculated in O(nm) time, where n and m are the total number of nodes and
edges on a network, respectively [7,49]. Its space complexity takes Θ(n2) to be computed. The bridging
coefficient consumes approximately O(n(log n)2) time [7]. The Jaccard similarity coefficient takes
O(m2) time to be computed [50]. Due to the recomputation of bridging centrality and Jaccard similarity
coefficient after every iteration; therefore, our algorithm can be computed in a total time and space
complexity of O((nm) + (m2))2 and Θ(n2), respectively. The processing time expended on executing
each algorithm on different networks is give in Table 5. The proposed algorithm only performs better
than GN with respect to small networks and performs poorly in large networks.

Table 5. CPU execution time of the algorithms in seconds.

Network CNM LPA Louvain SPA GN
Proposed

Algorithm

Karate 0.0037 0.0012 0.0110 0.0110 0.0467 0.0311
Dolphin 0.0147 0.0101 0.0301 0.0604 0.1264 0.0960
Polbooks 0.0232 0.0061 0.0400 0.0712 1.3444 0.8653
Football 0.0513 0.0290 0.0655 0.1937 5.5780 3.5012

Email EU 2.3331 0.1486 1.3961 1.4739 324.79 6804.38

3.2.5. Limitations and Future Works

In future works, we hope to design an autonomous divisive algorithm that needs no parameters
to stop the iteration. We also hope to make the algorithm scalable for very large networks because
the betweeness centrality metric, as a global metric, has a high computational efficiency as indicated
from the processing time in Table 5. This algorithm will be deployed in various application domains to
explore further studies in these areas.

4. Conclusions

We designed a new algorithm that distinctly identifies and classifies multi-type nodes in network
communities. Bridging centrality metric was used to calculate and select nodes with the highest
bridging centrality value. Jaccard similarity coefficient was used to determine the level of similarity or
relationship between the bridge-nodes and all of their neighbours. The nodes with the least similarity
value were disconnected iteratively after which the bridging centrality of all nodes are recomputed
until the stopping condition was met. We also validated the existence of disjunct/neutral nodes
and highlighted the properties that characterise them. The results from extensive experiments done
with real-world datasets show that this algorithm is efficient in distinctly discovering and classifying
disjoint nodes, overlapping nodes and disjunct nodes, which are shown to be neutral nodes in terms
of community membership. These results demonstrate the effectiveness of the proposed method and
we believe that it will be of significant use in various application domains of community detection as
well as arouse interests in future designs of an all inclusive community detection algorithms. This way,
node connectivity relations can be revealed and studied better at sub-modular levels of different
complex systems.
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Abstract: The advancement of science, as outlined by Popper and Kuhn, is largely qualitative,
but with bibliometric data, it is possible and desirable to develop a quantitative picture of scientific
progress. Furthermore, it is also important to allocate finite resources to research topics that have the
growth potential to accelerate the process from scientific breakthroughs to technological innovations.
In this paper, we address this problem of quantitative knowledge evolution by analyzing the APS data
sets from 1981 to 2010. We build the bibliographic coupling and co-citation networks, use the Louvain
method to detect topical clusters (TCs) in each year, measure the similarity of TCs in consecutive
years, and visualize the results as alluvial diagrams. Having the predictive features describing a given
TC and its known evolution in the next year, we can train a machine learning model to predict future
changes of TCs, i.e., their continuing, dissolving, merging, and splitting. We found the number of
papers from certain journals, the degree, closeness, and betweenness to be the most predictive features.
Additionally, betweenness increased significantly for merging events and decreased significantly for
splitting events. Our results represent the first step from a descriptive understanding of the science of
science (SciSci), towards one that is ultimately prescriptive.

Keywords: SciSci; knowledge evolution; machine learning

1. Introduction

We all become scientists because we want to create an impact and make a difference to the lives
of those around us and also to the many generations that are to come. We all strive to make choices
in the problems we study, but not all choices lead to breakthroughs. There is actually much more
about scientific breakthroughs that we can try to understand. For one, science is an ecosystem of
scholars, ideas, and papers published. In this ecosystem, scientists can form strongly interacting
groups over a particular period to solve specific problems, but later drift apart as their interests
diverge, or due to the availability or paucity of funds, or other factors. The evolution of these problem
driven groups is more or less completely documented by the papers published as outcomes of their
research. By analyzing groups of closely related papers, researchers could extract rich information
about knowledge processes [1–4]. The potential to map scientific progress using publication data has
attracted enormous interest recently [5–7]. However, compared to the study of science at the level of
individual papers [8–10] and at the level of the whole citation network [11–15], where much work has
already been done, the research on science at the community level is still limited [1,3,16,17].
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In a recent paper, Liu et al. demonstrated the utility of visualizing and analyzing scientific
knowledge evolution for physics at the aggregated mesoscale through the use of alluvial diagrams [3].
In this picture, papers are clustered into groups (or communities), and these groups can grow or
shrink, merge or split, new groups may arise, while the others may dissolve. This shares a very strong
parallel with what some researchers discovered in social group dynamics [18]. More importantly, many
breakthroughs were made by scientists absorbing knowledge from other fields, often in a very short
time. On the alluvial diagrams, these knowledge transformations manifest themselves as merging and
splitting events. Clearly, funding agencies, universities, and research institutes would want to promote
growing research fields, and particularly those where breakthroughs are imminent. This is why it is
important to be able to predict future events. Liu et al. [3] attempted this in their paper by analyzing
the correlation between event types and several network metrics. Unfortunately, such predictions are
very noisy. While merging events are highly correlated with interconnections between communities,
the correlation between splitting events and the internal structure of communities are much more
complex; besides, the predictions of forming, dissolving, growing, and shrinking were not considered
at all.

Given the recent successes in the area of machine learning and artificial intelligence in a variety
of prediction problems [19,20], as well as having developed and validated a general framework to
predict social group evolution in Saganowski et al. [21], we decided to utilize machine learning
techniques to fill the gap in predicting scientific knowledge events [22–24]. The overall idea behind
the group evolution prediction (GEP) method is to build a classification model trained with historical
observations in order to predict the future group changes based on their current characteristics, such
as size, density, the average degree of nodes, etc. A single historical observation consists of a set of
features describing the group at a given point in time and an event type that this group just experienced.
The profile of the group may reflect its structure (e.g., density), dynamics (e.g., average age of its
member articles), or context (e.g., the journals from which the articles (group members) come). In total,
we used over 100 features, some of which were already known to the literature, whereas the others
focusing on the dynamics and context were the new, unique features proposed in this paper. Indeed,
when we ranked the most valuable features contributing to the successful prediction of knowledge
evolution events, the new features were among the best ones. In order to be able to perform the
prediction of future group changes, we have to track and learn the model on the historical cases.
For that purpose, the group changes from the past (historical evolution) need to be defined and
discovered using the methods successfully applied in the social network analysis field, e.g., the GED
method [25], Tajeuna et al.’s method [26], or others [27]. Most of the methods consider the similarity
between the groups in the consecutive time windows as a major factor to match similar groups and
further to identify the evolution event type between them. In our work, we apply the GED method,
which facilitates both the group quantity (the number of common members) and the group quality
(the importance of common members), in order to match related groups. This allows us to enrich the
co-citation evolution network with information about member relations, which is depicted in the social
position measure [28].

In this study, we extract groups (topical clusters (TCs)) from the bibliographic coupling networks
(BCNs) and independently from the co-citation networks (CNs) for the period 1981–2010. Next,
the GED method is utilized to label four types of evolution events (changes of TCs): continuing,
dissolving, merging, and splitting. Then, we use an auto-adaptive mechanism to find the most
predictive machine learning model, together with its parameters for each network. Additionally,
two scenarios were considered for each network: when the number of events of each kind is imbalanced
(the original case) and balanced by equal sampling. In general, the prediction quality was satisfactory
and good for all event types, with F-measures substantially exceeding 0.5. Such values are significantly
greater than the baseline F-measures of 0.14–0.21 for both networks. The feature ranking tells us
that the most informative features are context based like the number of PRE, PRB, and RMP papers
belonging to the group and the structural features like the degree, closeness, and betweenness. While
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looking more carefully at the betweenness of papers from two merging TCs, we found significantly
higher betweenness for papers that are linked across these two TCs than those connected inside the TCs.
No such enhancement in betweenness was found for continuing TCs, while a significant decrease in
average betweenness was found for splitting TCs. In summary, our findings suggest that evolutionary
events in the landscape of physics research can be predicted accurately using various machine learning
models, and understanding this predictive power in terms of important features is a worthwhile future
research direction.

2. Materials and Methods

The entire analytical process consists of several steps that are primarily defined by the group
evolution prediction (GEP) framework. First, the bibliographic coupling network (BCN) and co-citation
network (CN) are extracted from the references placed in the papers from a given time window
(see Figure 2), and this is carried out separately for each period.

As a result, we get a time series of BCNs/CNs. Next, paper groups called topical clusters (TCs)
are extracted using the Louvain clustering methods, independently for each BCN/CN in the time
series. Each group is described by the set of predictive features. Having TCs for consecutive periods,
we were able to identify changes in TC evolution using the group evolution discovery (GED) method
that appropriately labels the TC changes; see below.

Independently, the features’ ranking and its validation were performed to find the most valuable
TC measures. Based on this ranking, a structural measure node betweenness was selected for the
more in-depth studies as the early signal for splitting or merging. The above-mentioned steps are
summarized and visualized in Figure 1.

Build BCN(CN) 
series

Detect TC in each 
BCN(CN)

Calculate the 
intimacy index

TC validation

Plot alluvial 
diagram

GED: event 
labelling

Compute 
features

Train classifiers Compute 
performance

Rank features

Betweenness 
analysis

Figure 1. The workflow of this paper. TC, topical cluster.
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2.1. GEP Method

The group evolution prediction (GEP) method is the first generic approach for the prediction of
the evolution of groups [21]; in our case, groups correspond to TCs. The GEP process consists of six
main steps: (1) time window definition, (2) temporal network creation, (3) group detection, (4) group
evolution tracking, (5) evolution chain identification and feature calculation, and (6) classification
using machine learning techniques. Thanks to its adaptable character, we were able to apply it to
the BCN and CN differently. For the group (TC) detection in both networks, we applied the Louvain
method [29]. The group evolution tracking was performed with the GED method (see below), but we
used different similarity measures for each network BCN and CN (see below). The set of features
describing the group at a given time window was adjusted to our networks, as some of the features
defined in the GEP method were not applicable in our case. We also introduced some new, dedicated
measures appropriate for bibliographical data; see SI (Supplementary Information) for the complete
list. Finally, we applied the Auto-WEKA tool to find the best predictive model and its parameters
from a wide range of all possible solutions. The commonly known average F-measure was used as a
prediction performance measure. The stratified sampling and 10-fold cross-validation techniques were
used to validate the model. The feature selection technique was applied to prevent model overfitting.

2.2. Bibliographic Coupling Network and Co-Citation Network

In the BCN and CN, nodes represent papers, and undirected but weighted edges denote the
bibliographic coupling strengths and co-citation strengths, respectively. That is, if two papers share
w common references, the BCN edge between them would have a weight of w. For example, Papers
1 and 2 in Figure 2 share three citations: A, B, and C, whereas Papers 3 and 4 commonly cite only
one paper: E. On the other hand, if two papers are cited together by w′ papers, the edge between
them in the CN receives weight w′. Papers A and B are cited together by two other papers: 1 and 2,
but Papers B and C by three, i.e., additionally by Paper 3. Both BCN and CN are temporal networks,
in which the nodes are all papers published (BCN) or papers cited (CN) within a specific time window.
We assumed that the reasonable time window for bibliographical data was one year to facilitate the
analysis of changes in scientific knowledge, i.e., changes in topical clusters year-by-year. For the BCN,
only the giant component, which in most cases occupied 99% of the whole BCN, would be considered
for the TC detection and evolution analysis. For the CN, we did not use all papers cited in the given
time window because most of them were cited only a small number of times, and thus, they had
little influence on the broader knowledge evolution. Therefore, we ranked all available N papers
p1, p2, . . . , pN in descending order by the number of times they were cited in this time window (year):
f1, f2, . . . , fN , f1 ≥ f2 ≥ ... ≥ fN . Next, we chose the top n papers p1, p2, . . . , pn that totally gathered 1

4
of all citations, i.e., such that n < N was the smallest integer to satisfy ∑n

i=1 fi ≥ 1
4 ∑N

j=1 f j. The data we
used in this paper were the APSdataset, consisting of about half a million publications between 1893
and 2013 and six million citation relations among them [30].
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Figure 2. The process of building a bibliographical coupling network (BCN) and co-citation network
(CN) from the citation bipartite network for a given period: year t. Both BCN and CN are undirected
and weighted; the weights denote the number of shared citations (BCN) or co-citing papers (CN).
Separate topical clusters are extracted for BCN (C1, C2) and CN (C3, C4). Nodes with numbers are
papers from a given period being considered, and nodes with letters are their references.

2.3. Community Detection and Validation

There are many approaches to community detection, including modularity based
algorithms, hierarchical clustering, non-negative matrix factorization, principal component analysis,
link partitioning, and others [31]. In this work, we used the Louvain method [29] to extract community
structure from BCNs and CN. The community partitions we obtained in BCNs and CNs had
considerably high modularities (about 0.75), which suggest clear and robust community structures.
Furthermore, a different community detection algorithm was also used, i.e., Infomap, which gave
very similar results as the Louvain method. For instance, the normalized mutual information between
community partitions of BCN in 1991 from the Louvain method and Infomap algorithm was 0.66,
which confirmed the existence and robustness of community structure in BCNs and CNs. In this study,
we only used the Louvain method; however, the results were similar if we switched to Infomap or
other community detection algorithms.

To verify that the communities extracted were really focused on closely related questions,
we checked the Physics and Astronomy Classification Scheme (PACS) numbers of members of the
communities. This cross-validation was independent of network structure; therefore, it provided more
evidence for the robustness of TCs. In our study, we only used the first two digits of the PACS numbers,
as a balance between accuracy and coverage. To test whether the PACS numbers appearing in the
communities could have occurred due to randomness, we chose one year t, built its BCN, extracting
the community structure with sizes {s1, s2, . . . , sn}, and then randomly assigned papers in year t into
n pseudo-communities of the same sizes, to remove any potential size effects. The results showed
that the papers in the same community significantly focused on a small number of PACS numbers
compared with a null model; see Figure 3. Interested readers can get more details on the systematic
validation of TC in Liu et al. [3].
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Figure 3. Comparison of PACS homogeneity between real BCN TCs, which are between 1991 and 2000
and have more than 100 papers, and their corresponding random collections. The fraction of the largest
subset of papers sharing at least one PACS number as a function of s for real communities in the BCN
and random collections. For clarity, the error bars are not shown in the figures because they are smaller
than the marker size.

2.4. Intimacy Indices

To analyze the evolution of TCs, we needed to match them from consecutive years. The set of cited
papers to a large extent overlapped year-by-year, so for the CN, we could use the regular approach
proposed together with the GED method; see below and Brodka et al. [25]. For BCN, however, there
was no overlap at all between papers published in the successive years because every paper could
be published only once and in only one year. Even if we did not have the corresponding papers
in TCs from two BCNs, i.e., two years, the papers’ references overlapped each another. Therefore,
we could measure the similarity of their reference pools to reflect their inheritance. For that purpose,
we introduced the forward intimacy index and backward intimacy index in Liu et al. [3]. The idea
behind intimacy indices is that the references related to a particular topic change gradually. The forward
intimacy index I f

mn and the backward intimacy index Ib
mn between TCs Ct

m in year t and Ct+1
n in year

t + 1 are defined as follows:
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Here, the TCs at t and t + 1 are C t =
{

Ct
1, ..., Ct

m, ..., Ct
u
}

and C t+1 =
{

Ct+1
1 , ..., Ct+1

n , ..., Ct+1
v

}
,

and we denote the references cited by papers in Ct
m and Ct+1

n as Rt
m = R(Ct

m) =
[
Rm1, ..., Rmp

]
and

Rt+1
n = R(Ct+1

n ) =
[
Rn1, ..., Rnq

]
; Rt =

{Rt
1, ...,Rt

m, ...
}

. N(element, list) is the number of times
elementoccurs in list, and L(list) is the length of list. For more details and examples of intimacy
indices, please refer to Liu et al. [3].

2.5. GED Method

The group evolution discovery (GED) method [25] was used for tracking group evolution for
historical cases to learn the classifier and for testing cases to validate classification results. The GED
method makes use of the similarity between groups in the following years, as well as their sizes
to label one of six event types: continuing, dissolving, merging, splitting, growing, and shrinking.
However, we have adapted the GED method to label only four types of events: continuing, dissolving,
merging, and splitting, as these were the most important to us. The other two (growing and shrinking)
were covered by continuing. In general, the GED method allowed us to use various metrics as a
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similarity measure between groups. Therefore, the intimacy indices defined in Equation (1) were used
for the BCN to match similar groups in the consecutive time windows. However, the original GED
inclusion measures were used for the CN. This means that the similarity between two groups from
two successive time windows was reflected by the inclusion measure, which was calculated for two
scenarios: inclusion I(Ct

n, Ct+1
m ) of a group Ct

n from time window t in another group Ct+1
m from time

window t + 1 (forward; Equation (2)) and inclusion I(Ct+1
m , Ct

n) of this second group Ct+1
m from t + 1

in the first group Ct
n from t (backward; Equation (3)). The inclusion measure makes use of the social

position SP(p), which is a kind of weighted PageRank. It denotes the importance of paper p being
cited among all other papers [28]. The inclusions for CN are defined as follows:

I(Ct
n, Ct+1

m ) =

group quantity︷ ︸︸ ︷
‖Ct

n ∩ Ct+1
m ‖
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·
∑
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If both inclusions (CN) or both intimacy indices (BCN) are greater than the percentage thresholds
alpha and beta (the only parameters in this method), the method labels the event continuing. If at
least one inclusion or one intimacy index exceeds one of the thresholds, the splitting and merging
events considered, the proper event is assigned depending on the number of similar groups in t and
t + 1. If both inclusions or both intimacy indexes are below the thresholds, i.e., the group has no
corresponding group in the next time window, the dissolving event is assigned.

2.6. Feature Ranking

Rankings of the most prominent features were obtained by repeating the feature selection
1000 times using a basic evolutionary algorithm [32], as proposed in Saganowski et al. [21].
The alternative approach would be to use the forward or backward feature elimination technique,
but our own implementation gave us more flexibility and control over the experiment. The rankings
were received for the 30 year span (1981–2010). Next, only the top 10 features were selected to described
TCs in two additional years (2010–2012) and predict TC evolution. The results revealed the superiority
of feature selection compared to the raw approach with all features’ engagement.

3. Results

3.1. Physics Research Evolution for 1981–2010

We begin with studying how scientific knowledge evolved in terms of communities of research
papers and how these communities changed over time. There were several studies on the evolution
of knowledge within the set of whole journals [2], which was considered as the analysis on the
macroscopic level. Furthermore, some research was carried out for the collection of papers, usually
involving some subjective criterion provided by the authors, e.g., only papers cited at least 100 times [1].
As a result, they focused only on a small subset: the most prominent, frequently cited papers, which
do not represent the whole diverse domain knowledge. This kind of analysis was considered as
microscopic. In our approach, we assumed that the most informative way was to analyze neither
the entire journal, nor the most cited papers, but whole communities of closely related papers.
These communities emerged naturally since they shared the same citation patterns. The analysis
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at such a level provided a better balance between high and low granularity. We called this kind of
analysis mesoscopic because it was in between the macroscopic scale of journals and the microscopic
scale of individual papers. However, if we performed community detection directly on the citation
network, we might end up with communities consisting of both old and recent papers simultaneously.
In such a case, it is difficult to interpret how scientific knowledge has evolved from the past to the
present. We should be able to explain that such and such communities represent scientific knowledge
from an earlier year, whereas the other communities correspond to scientific knowledge from another
consecutive year. This enabled us to compare them and to distil a picture of how scientific knowledge
has evolved from past to present. It required, however, constructing the networks from research papers
that were published in a given year (bibliographic coupling) or papers that were cited in a given
year (co-citation). The bibliographic coupling network (BCN) reflected the relation between present
publications, while the co-citation network (CN) represented the relation between papers that had a
strong influence on recent publications. In this way, we could detect communities over the years and
study how they evolved year-by-year; see the Methods Section for details on BCN and CN.

After building BCN and CN, the Louvain method was used to extract the community structures.
By checking the Physics and Astronomy Classification Scheme (PACS) numbers of the papers in
these communities, we showed that the BCN communities were meaningful and reflected the real
structure of the scientific communities. These results suggested that the papers in the same community
were very similar to each other in terms of research topic. These results suggest papers in the same
community had high similarity to each other in terms of research topic. The method and results of the
validation are briefly reviewed in the Methods Section; the interested reader is referred to Liu et al.
for details [3]. For the CN communities, this validation is tricky because of two problems: (i) the
old physics review papers had no PACS numbers, and (ii) PACS was revised several times, so the
same numbers in different versions can potentially refer to different topics, or the same topics are
referred to by different numbers in different versions. Nevertheless, systematic validation seemed to
be impossible, although a quick check on some CN communities after 2010 suggested that the CN
community structure also reliably reflected the actual scientific community. We refer to these validated
units of knowledge evolution as topical clusters (TCs) in this paper.

In Figure 4, we provide the alluvial diagram that depicts the evolution of TCs within the BCNs for
the period between 1981 and 2010. The equivalent alluvial diagram for the CNs is shown in Figure S2
in the SI. In both alluvial diagrams, we visualize the sequences of TCs, their inheritance relations,
which can be intimacy indices (for the BCN communities), a fraction of common members or inclusion
measures (for the CN communities), and the evolution processes they undergo; see the Methods
Section for more details. The events (changes) that we can discern from the alluvial diagram (shown in
Figure 4) are analogous to those recognized in social group evolution [18]. They represent forming,
dissolving, growing, shrinking, merging, and splitting. We found in Liu et al. that the prediction of
such events was hard since the correlation between them was nonlinear and complex. This challenge
is addressed in the following section by tapping into the power of machine learning.
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Figure 4. The alluvial diagram of APSpapers from 1981 to 2010 for the BCNs. Each block in a column
represents a TC, and the height of the block is proportional to the number of papers in the TC. For clarity
reason, only TCs comprising more than 100 papers are shown. TCs in successive years are connected
by streams whose widths at the left and right ends are proportional to the forward and backward
intimacy indices. The colors inside a TC represent the relative contributions from different journals.

3.2. Event Labeling

The GED method takes into account the size and the similarity between groups (TCs) in the
consecutive time frames in order to label groups’ changes (assign event type). There are four events
considered in this work:

• Continuing: A research field is said to be continuing when the problems identified and solutions
obtained from one year to another are of an incremental nature. It is likely to correspond to
the repeated hypothesis testing picture of the progress of science proposed by Karl Popper [33].
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Therefore, in the CN, this would appear as a group of papers that are repeatedly cited together
year-by-year. In the BCN, this shows up as groups of articles from successive years sharing more
or less the same reference list.

• Dissolving: A research field is thought to disappear in the following year if the problems are
solved or abandoned, and no new significant work is done after this. For the CN, we will
find a group of papers that are cited up to a given year, but receiving very few new citations
afterwards. In the BCN, no new relevant papers are published in the field; hence, the reference
chain terminates.

• Splitting: A research field splits in the following year, when the community of scientists who
used to work on the same problems starts to form two or more sub-communities, which are more
and more distant from one another. In terms of the CN, we will find a group of papers that are
almost always cited together up till a given year, breaking up into smaller and disjoint groups of
papers that are cited together in the next year. In the BCN, we will find the transition between
new papers citing a group of older papers to new papers citing only a part of this reference group.

• Merging: Multiple research fields are considered to have merged in the following year when the
previously disjoint communities of scientists found a mutual interest in each other’s field so that
they solve the problems in their own domain using methods from another domain. In the CN,
we find previously distinct groups of papers that are cited together by papers published after
a given year. In the BCN, newly published papers will form a group commonly citing several
previously disjoint groups of older papers.

The GED method has two main parameters (alpha and beta), which are the levels of inclusion that
groups in the consecutive years have to cross in order to be considered as matching groups. We applied
the GED method with a wide range of these parameters from 5 to 100%. The characteristics of the
considered networks required us to set the alpha and beta thresholds to very low values, i.e., 30% for
the BCN and 10% for the CN; see SI for more details. In total, we obtained 479 various events for the
BCN and 492 events for the CN, which were our observations and the labels in the prediction part of
our study. In both networks, the distribution of the events was imbalanced with the continuing event
dominating over all other types; see Figure 5(A1,B1).

3.3. Future Events’ Prediction

The machine learning approach to prediction requires dividing the data into two parts: the training
dataset and test dataset. The training data are used to train the classifier, which can then label events in
the test data. The labeled values are compared with the event labels, and the prediction performance is
calculated. More than 450 observations were used to train the classifiers. Each observation contained 77
normalized features (preselected from the initial 100) divided into three categories: microscopic features
(related to nodes in the group, e.g., node degree), mesoscopic features (related to the entire group,
e.g., the group size), and macroscopic features (related to the whole network, e.g., network density).
Mesoscopic features calculated for individual nodes are commonly aggregated for all nodes from the
group, e.g., average node degree or betweenness in the group. See SI for the complete list of features
used.To select the best classification algorithm (model) automatically, as well as its hyper-parameter
settings to maximize the prediction performance, the Auto-WEKA software package [34] was utilized.
For each network, we ran the Auto-WEKA for 48 h, which allowed us to validate nearly 20,000
configurations per network. The metric being maximized was the F-measure, commonly used for
multi-class classification. The overall classification quality was calculated as the average F-measure for
all event types, treating them as equally important.

The predicted output variable (event labels) had an imbalanced distribution. Commonly,
classifiers tend to focus on the dominant event type (class), which is very well predicted, but at
the expense of the minority event types. For the imbalanced BCN dataset, the best performance was
achieved with the attribute selected classifier (with the SMOas a base classifier), which performed
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feature selection [35]. The percentage of the correctly classified instances was 80.6%, while the average
F-measure was only 0.50 due to classifier focusing on continuing, which was the most frequently
occurring event type; see Figure 5A. For this event, the F-measure value was equal to 0.89, and only
seven events out of 352 were incorrectly classified. The worst classified was the splitting event, whose
F-measure was only 0.11. Most of the splitting events were incorrectly classified as continuing (31
out of 33 events). The second worst was merging, with the F-measure of 0.35. Again, the majority
of the merging events were wrongly classified as continuing events: 38 out of 56. Interestingly,
the splitting and merging events were never cross-classified mistakenly. For the imbalanced CN dataset,
the best performance was achieved with a lazy classifier, which used locally weighted learning [36].
The percentage of the correctly classified instances was 73.3%, while the average F-measure was only
0.53, again due to the classifier concentrating on the dominating continuing event type; see Figure 5B.
The F-measure value for the continuing event was only 0.83; however, as many as 50 continuing events
(out of 337) were wrongly classified as dissolving. Similar to BCN, many splitting and merging events
were incorrectly classified as continuing: 17 out of 22 events and 24 out of 46 events, with the F-measure
equal to 0.30 and 0.42, respectively.

By balancing the imbalanced training datasets (i.e., by under-sampling them), we forced the
classifiers to pay more attention to the features rather than to the number of occurrences of the
particular majority event type. Please note that the test set was untouched, i.e., left imbalanced. As a
result of balancing datasets, the previously minor event types (dissolving, merging, and splitting) were
predicted much better, but with a significant drop in performance of the continuing event classification.
More importantly, by balancing the datasets, we increased the overall prediction quality by over
20%. For the balanced BCN dataset, the best performance was achieved by means of the boosting
based classifier AdaBoost with Bayes net as the base model. The percentage of the correctly classified
instances was 62.0%, and the average F-measure was 0.61. The biggest sources of errors were merging
events, which were wrongly classified as continuing and dissolving, as well as continuing wrongly
classified as splitting. The best classified event was dissolving (only four mistakes in 27 classifications;
the overall score was 0.79), followed by the splitting event (six mistakes in 27 classifications; overall
F-measure of 0.70). For the balanced CN dataset, the attribute selected classifier (with the PART [37]
as a base classifier) provided the best results: the percentage of the correctly classified instances was
69.32%, while the average F-measure was 0.69. The dissolving, merging, and splitting events were
classified very well with the F-measure values equal to 0.79, 0.82, and 0.75, respectively. Most of
the continuing events were wrongly classified as splitting (13 out of 22), which resulted in a lower
F-measure value of 0.40.

What is interesting for us to note is that the prediction results for the CN were slightly better than
for the BCN. A possible explanation is that for the CN, we used a richer similarity measure containing
users’ importance information. Thus, the event tracking and, therefore, the ground truth could be
more accurate. Overall, the prediction quality expressed by the average F-measure was very good for
the imbalanced, as well as for the balanced datasets, as the baseline results obtained with the ZeroR
classifier were much worse: F-measure of 0.21 for both BCN and CN imbalanced datasets, 0.18 for the
balanced BCN, and 0.14 for the balanced CN. For each dataset, different classifiers turned out to be the
best; however, most models were wrapped with the boosting or meta classifiers.
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Figure 5. The prediction quality of classification results. The F-measure values for the imbalanced BCN
(A) and CN (B) datasets, as well as the balanced BCN (C) and CN (D) datasets. The distribution of
classes in the training sets is provided for each dataset: A1, B1, C1, D1, respectively. For the imbalanced
datasets, the classifier focused on the dominating continuing event. Balancing the datasets increased
the overall prediction quality by over 20%.

3.4. Predictive Feature Ranking

The feature selection technique is used in machine learning to find the most informative features,
to avoid classifier overfitting, to eliminate (or at least to reduce) the noise in the data, as well as to
provide some explanations about phenomena [32]. By repeating the feature selection 1000 times,
we obtained 1000 sets of selected features. Next, we calculated how many times each feature was
selected, thus receiving the ranking of the most often selected features. For the BCN, the context-based
features dominated the ranking. It referred especially to the number of papers from the Physical
Review E, Physics Review B, and Physical Review A; see Figure 6A. Besides the context, the network
features based on degree, betweenness, size, and closeness measures were most informative, which
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tells us that the structural properties were as important as context awareness. The context based
feature, i.e., the number of papers published in the Review of Modern Physics, was the most often
selected for the CN dataset. It was followed by closeness and degree based features in the ranking;
see Figure 6B. For both networks, macroscopic features were ranked rather low, which suggests that
the general network profile was not very important, perhaps because of the smooth changes in the
entire network. Surprisingly, the dynamic features, e.g., related to the average age of references (for
BCN) and age of articles (for CN), did not show an informative value and were ranked very low for
both networks. The rankings were validated in the additional two years of data available (2010–2012).
The prediction was performed twice: (i) using all features and (ii) using the top 10 ranked features
only. Selecting only the top 10 features boosted the quality of the prediction by 11% for the CN and by
2% for the BCN, which underlined the necessity of the feature selection process.

Figure 6. Feature ranking. The most frequently selected features in 1000 iterations for the BCN (A) and
CN (B) datasets. The context based features (number of papers published in a given journal) turned
out to be the most informative, followed by the microscopic structural measures, especially closeness,
degree, and betweenness.

3.5. Changes to the Betweenness Distributions Associated with Merging and Splitting Events in BCN

Having the list of best predictive features (Figure 6), we can analyze some of them more in-depth to
look for early warning signals. Basically, we believe that scientific knowledge evolves slowly, and this
slow evolution drives the evolution of citation patterns. Therefore, there must be specific changes
in citation patterns that precede merging and splitting events. Besides the number of PRE papers in
a TC, sum_network_betweennessis also a strongly predictive feature; see Figure 6A. This suggests
that we should look at the betweenness of papers in the BCN more carefully. The betweenness of the
node denotes what percentage of the shortest paths between all pairs of nodes in the network passes a
given node. Values of nodes’ betweenness can be aggregated (sum, average, max, min) for all nodes
in the TC, as we list in Table S1 in SI. However, in this section, we only focus on the distribution of
the original node betweenness. Naively, when we considered the part of the BCN adjacency matrix
corresponding to two TCs that ultimately merged, we expected to find few links between TCs at
first. However, as the number of links between TCs increased over time, the modularity-maximizing
Louvain method would eventually merge the two TCs into a single TC. This is shown schematically in
Figure 7, where in general, betweenness would increase on average with time as the two TCs merge.
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(a) (b) (c) (d)
Figure 7. Part of the BCN adjacency matrix for two TCs (red boxes) that ultimately merged. (a) No
links between the two TCs at first. (b) Few links between the two TCs. (c) More links between the two
TCs. (d) Many links between the two TCs, leading to their identification as a single merged TC (big red
box) by the Louvain method.

In reality, there are always links between TCs, and the numbers and strengths of these links
fluctuate over time. To develop a more quantitative description of the merging events outlined in
Figure 4, as well as splitting and continuing events, we focused on five events going from 1999 to 2000,
shown in Table 1.

Table 1. The five evolution events from 1999 to 2000 in the BCN alluvial diagram Figure 4 that we will
study quantitatively. The naming convention for TC is that four digits before ‘.’ is the year of TC, two
digits after ‘.’ is the position of the TC in the diagram, starting with 00 for the bottom TC; the one just
above bottom is 01, and so on. In the left panel, we highlight the related TCs.

TC in 1999 Event TC in 2000

1999.01 split 2000.02, 2000.03
1999.01, 1999.02 merge 2000.03

1999.04 continue 2000.06
1999.11, 1999.12 merge 2000.15

1999.13 continue 2000.16

3.5.1. 1999.01 + 1999.02 → 2000.03

Let us consider the part of the BCN associated with the TCs. For example, for 1999.01 and 1999.02,
we can see from Figure 8a that connections within 1999.01 and 1999.02 were very dense, but there
were also some links between the two TCs. In fact, we found 164 out of 1849 papers in 1999.01 with
non-zero bibliographic coupling to 144 papers in 1999.02 (344 papers).
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(a) (b)
Figure 8. (a) The adjacency matrix of the BCN associated with the TCs 1999.01 (top dense block) and
1999.02 (bottom dense block). (b) The adjacency matrix of the BCN associated with the TCs 1999.11
(top dense block) and 1999.12 (bottom dense block).

The natural question we then ask is: are the betweennesses of the 164 papers in 1999.01 that are
coupled to 1999.02 larger, equal to, or smaller than the betweenness of the rest of the 1685 papers in
1999.01 not coupled to 1999.02? Alternatively, if we think of the 164 papers as randomly sampled
from the 1849 papers in 1999.01, are we sampling the 164 betweenness in an unbiased fashion?
To distinguish the different parts of the TC, we call all papers in 1999.01 that have coupling with
papers in 1999.02 as 1999.01a and the rest of the papers as 1999.01b. For more detail analysis, we will
divide 1999.01a and 1999.01b into 1999.01aα, 1999.01aβ, 1999.01bα, and 1999.01bβ. 1999.01aα consists
of 17 papers in 1999.01a that do not have references in common with papers in 1999.01b; 1999.01aβ

consists of 147 papers in 1999.01a that have references in common with papers in 1999.01b; 1999.01bα

are 907 papers in 1999.01b that have references in common with papers in 1999.01a; and 1999.01bβ

represents 778 papers in 1999.01b that do not have references in common with papers in 1999.01a.
In Table 2, we show the 25th, 50th, and 75th percentiles of the papers in these smaller groups,

compared to those of the 1849 papers in 1999.01 and the 344 papers in 1999.02. As we can see,
the 25th, 50th, and 75th percentile betweenness in the connecting parts (1999.01a and 1999.02a) were all
higher than the 25th, 50th, and 75th percentile betweenness in the non-connecting parts (1999.01b and
1999.02b). More importantly, these percentile betweenness were higher than the 25th, 50th, and 75th
percentile betweenness of the TCs 1999.01 and 1999.02 themselves. To test how significant these
quartiles were in 1999.01a, we randomly sampled 164 betweenness values from 1999.01 106 times
and measured the quartiles of these samples. When we draw random samples from a TC, the 25th,
50th, and 75th percentiles depend on the size of the TC. There as more variability in these quartiles in
smaller samples than in larger samples. Therefore, in the test for statistical significance, the observed
quartile had to be tested against different null model quartiles for samples of different sizes. To do
this, we drew samples with a range of sizes from the same set of betweenness and, for a given quartile
(25%, 50%, or 75%), fit the minimum quartile value against the sample size to a cubic spline and the
maximum quartile value against sample size to a different cubic spline. With these two cubic splines,
we could then check whether the observed quartile value for a sample of size n was more than or less
than the null model minimum or maximum using cubic spline interpolation. From the histograms
shown in Figure 9a, we see that the betweenness quartiles of 1999.01a were statistically larger than
random samples of the same size from 1999.01, at the level of p < 10−6, which means the papers in
1999.01a had significantly larger betweenness than other papers in 1999.01.
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Table 2. The 25th, 50th, and 75th percentiles of the betweenness of 1849 papers in 1999.01, the 164
papers in 1999.01a, the 17 papers in 1999.01aα, the 147 papers in 1999.01aβ, the 1685 papers in 1999.01b,
the 907 papers in 1999.01bα, the 778 papers in 1999.01bβ, the 344 papers in 1999.02, the 144 papers in
1999.02a, the 200 papers in 1999.02b, the 1014 papers in 1999.11, the 299 papers in 1999.11a, the 715
papers in 1999.11b, the 988 papers in 1999.12, the 347 papers in 1999.12a, and the 641 papers in 1999.12b.

Percentile

25 50 75

1999.01 8.06 × 10−6 5.73 × 10−5 2.05 × 10−4

1999.01a 5.90 × 10−5 1.58 × 10−4 4.67 × 10−4

1999.01aα 7.77 × 10−6 1.95 × 10−5 2.44 × 10−4

1999.01aβ 5.29 × 10−6 4.96 × 10−5 2.48 × 10−4

1999.01b 6.22 × 10−6 5.04 × 10−5 1.88 × 10−4

1999.01bα 8.59 × 10−6 6.00 × 10−5 2.14 × 10−4

1999.01bβ 7.97 × 10−6 5.32 × 10−5 1.83 × 10−4

1999.02 2.47 × 10−6 5.54 × 10−5 2.13 × 10−4

1999.02a 3.08 × 10−5 1.13 × 10−4 3.17 × 10−4

1999.02b 2.14 × 10−7 1.44 × 10−5 1.60 × 10−4

1999.11 1.73 × 10−5 9.04 × 10−5 2.81 × 10−4

1999.11a 6.38 × 10−5 1.98 × 10−4 4.61 × 10−4

1999.11b 9.91 × 10−6 6.17 × 10−5 2.17 × 10−4

1999.12 6.56 × 10−6 4.54 × 10−5 1.62 × 10−4

1999.12a 2.74 × 10−5 9.08 × 10−5 2.33 × 10−4

1999.12b 2.52 × 10−6 2.69 × 10−5 1.20 × 10−4

(a) (b) (c)

(d) (e) (f)
Figure 9. Cont.
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(g) (h) (i)

(j) (k)
Figure 9. The lower (top), median (middle), and top quartile (bottom) of the betweennesses in
(a) 1999.01a, (b) 1999.02a, (c) 1999.01b, (d) 1999.01bα, (e) 1999.01bβ, (f) 1999.01aα, (g) 1999.01aβ,
(h) 1999.11a, (i) 1999.11b, (j) 1999.12a, and (k) 1999.12b shown as red vertical lines and 106 random
samples of the same number of betweennesses from 1999.01 (a,c–g), or 1999.02 (b), or 1999.11 (h,i),
or 1999.12 (j,k) shown as blue histograms.The x-axes are “quartile value”, and y-axes are “null
model density”.

3.5.2. 1999.01 → 2000.02 + 2000.03

When a TC splits into two in the next year, we expect the links between two parts a and b in the
TC to have thinned out to the point that the modularity Q of the whole is lower than the modularities
Qa and Qb of the two parts. However, in general, we would not know how to separate the TC into
the two parts a and b. Fortunately, for the 1999.01 → 2000.02 + 2000.03 splitting event, we also
knew the part 1999.01a, which merged with 1999.02a, became 2000.03. Therefore, we might naively
expect 1999.01b to be the part that split from 1999.01 to become 2000.02. If we test the quartiles of
1999.01b, against random samples of the same size from 1999.01, we find the histograms shown in
Figure 9c. As we can see, the betweenness quartiles of 1999.01b were quite a bit lower than the typical
values in 1999.01, but this difference was statistically not as significant as the quartiles of 1999.01a.
Thinking about this problem more deeply, we realized that while papers in 1999.01b had no references
in common with 1999.02, some of them did share common references with 1999.01a. Let us call these
sets of papers 1999.01aα (papers do not have references in common with papers in 1999.01b), 1999.01aβ

(papers have references in common with papers in 1999.01b), 1999.01bα(papers have references in
common with papers in 1999.01a), and 1999.01bβ (papers that do not have references in common with
papers in 1999.01a). In Figure 9d, we learn from the histograms that the betweenness quartiles of
1999.01bα are indistinguishable with random samples of the same size from 1999.01. On the other
hand, from the histograms in Figure 9e, we find out that while the lower betweenness quartile of
1999.01bβ is indistinguishable with the random samples of the same size from 1999.01, its median and
the upper quartile are both on the low sides of the random sample distributions. This suggests a split
of 1999.01 to (1999.01a + 1999.01bα) + 1999.01bβ.

Just to be safe, we also checked the betweenness quartiles of 1999.01aα and 1999.01aβ,
against random samples of the same sizes from 1999.01. As we can see from Figure 9f,g, the lower
quartiles and medians are lower than those obtained from random samples, but the upper quartiles
are decidedly higher. However, the difference between 1999.01aα and 1999.01aβ was not as obvious as
the difference between 1999.01bα and 1999.01bβ, and one possible reason was the smaller sample size
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(17, 147 vs. 907, 778). Again, these results were consistent with the picture that the rise in betweenness
in 1999.01a was driving the merging with 1999.02a, while the fall in betweenness in 1999.01bβ was
driving a splitting inside 1999.01.

3.5.3. 1999.11 + 1999.12 → 2000.15

Although a small part split off from each of 1999.11 and 1999.12, the main event associated with
the two TCs was a symmetric merging. Looking again into the relevant parts of the BCN, we found
299 out of 1014 papers in 1999.11 coupled to 347 out of 988 papers in 1999.12, and we called them
1999.11a and 1999.12a, respectively. As we can see from the histograms in Figure 9h,j, the betweenness
quartiles in 1999.11a and 1999.12a were significantly higher than one would expect from random
samples of 1999.11 and 1999.12. Simultaneously, the betweenness quartiles in 1999.11b and 1999.12b
were significantly lower than in random samples of 1999.11 and 1999.12 (see Figure 9i,k). Therefore,
what we see here might be the early warning signals of merging, as well as that of asymmetric splitting.

3.5.4. 1999.04 → 2000.06 and 1999.13 → 2000.16

So far, we have learned that a decrease in betweenness within a TC signals a possible split,
whereas an increase in betweenness of the part of the TC coupled to another TC signals a merger
between the two TCs. For this story to be consistent, we must not see these signals in the continuing
events 1999.04 → 2000.06 and 1999.13 → 2000.16. However, if we go through the full BCN, we find
that 370 out of 389 papers in 1999.04 and 308 out of 319 papers in 1999.13 are coupled to papers outside
of these TCs, which suggests the possibility of merging or splitting.

However, as we can conclude from Table 3, while the lower betweenness quartiles of the coupling
parts of 1999.04 and 1999.13 with other TCs may be significantly larger than those of random samples
of the two TCs, the highest betweenness quartiles were never significantly larger. Therefore, at the
same level of confidence that we have set for the precursors of merging between 1999.01 and 1999.02,
as well as between 1999.11 and 1999.12, we have to say that there were no significant precursors for
1999.04 and 1999.13 to merge with other TCs.

What about splitting then? A TC is likely to split into two if at least one of two parts has reduced
betweenness. We see in Table 3 that betweenness in the coupling parts of 1999.04 and 1999.13 was
not significantly lower than that of random samples. Therefore, we looked at the non-coupling part,
i.e., papers in 1999.04 and 1999.13, which had no references in common with papers in other TCs,
but they may have common references with papers in the same TCs. We called these non-coupling
parts 1999.04b and 1999.13b, respectively (the bottom row in Table 3). Only the top betweenness quartile
of 1999.04b fell below that of random samples from 1999.04 in Table 3. Therefore, the early warning
for a splitting event in the next year is not strong enough. For 1999.13b, on the other hand, all three
betweenness quartiles fell below that of random samples from 1999.13, even after we accounted for
the small size of 1999.13b. This suggests that the probability of a splitting event next year is high,
but 1999.13 continued on to 2000.16, which thereafter continued to 2001 without merging or splitting.
This might be because additional conditions, like the size of TC being large, must be satisfied before a
splitting can occur.
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Table 3. The distributions of the betweennesses of papers in 1999.04 and 1999.13 that share common
references with the other TCs in 1999 (1999.00 to 1999.15). The four columns below 1999.04 and 1999.13
denote the following: the first column shows how many papers have common references with the
other TCs, while the second, third, and fourth columns show the lower, median, and upper quartile
values of betweennesses of these papers, respectively. For example, there are 25 papers in 1999.04 that
share common references with papers in 1999.03, and the betweennesses of these papers have a lower
quartile value of 1.6 × 10−5, a median value of 4.3 × 10−4, and an upper quartile value of 8.1 × 10−4.
Similarly, there are 254 papers in 1999.13 that share common references with papers in 1999.10, and the
betweennesses of these papers have a lower quartile value of 3.6 × 10−5, a median value of 8.8 × 10−5,
and an upper quartile value of 2.7 × 10−4. The bottom row “b” represents 1999.04b and 1999.13b,
respectively, which are papers in 1999.04 and 1999.13 that have no references in common with papers in
other TCs. A betweenness value in red means that it is larger than the maximum of the corresponding
quartile distribution of 106 random samples, and a betweenness value in blue denotes it is smaller than
the minimum of the corresponding 106 random samples.

1999.04 1999.13

Size
Percentile

Size
Percentile

25 50 75 25 50 75

1999.00 12 9.0 × 10−5 1.1 × 10−3 2.3 × 10−3 1 - - 1.8 × 10−3

1999.01 56 1.6 × 10−4 4.2 × 10−4 1.0 × 10−3 6 2.0 × 10−4 4.9 × 10−4 6.5 × 10−4

1999.02 6 3.0 × 10−4 5.1 × 10−4 7.4 × 10−4 2 6.0 × 10−4 - 2.6 × 10−4

1999.03 25 1.6 × 10−5 4.3 × 10−4 8.1 × 10−4 0 - - -

1999.04 - - - - 8 1.5 × 10−4 4.8 × 10−4 8.0 × 10−4

1999.05 179 4.9 × 10−5 1.7 × 10−4 4.5 × 10−4 4 2.2 × 10−4 4.3 × 10−4 6.5 × 10−4

1999.06 110 8.7 × 10−5 2.0 × 10−4 6.2 × 10−4 40 5.9 × 10−5 1.6 × 10−4 4.5 × 10−4

1999.07 29 1.7 × 10−4 5.6 × 10−4 1.2 × 10−3 44 1.4 × 10−4 3.1 × 10−4 5.5 × 10−4

1999.08 63 1.1 × 10−4 3.2 × 10−4 8.6 × 10−4 17 2.2 × 10−4 5.2 × 10−4 8.5 × 10−4

1999.09 49 7.8 × 10−5 2.6 × 10−4 8.0 × 10−4 99 8.0 × 10−5 2.5 × 10−4 4.8 × 10−4

1999.10 53 1.2 × 10−4 3.8 × 10−4 8.2 × 10−4 254 3.6 × 10−5 8.8 × 10−5 2.7 × 10−4

1999.11 89 1.0 × 10−4 3.2 × 10−4 9.2 × 10−4 71 1.4 × 10−4 3.4 × 10−4 5.7 × 10−4

1999.12 53 8.7 × 10−5 2.9 × 10−4 9.3 × 10−4 39 1.3 × 10−4 2.7 × 10−4 4.6 × 10−4

1999.13 9 1.3 × 10−4 4.2 × 10−4 1.1 × 10−3 - - - -

1999.14 62 1.4 × 10−4 4.8 × 10−4 1.0 × 10−3 210 4.2 × 10−5 1.0 × 10−4 2.7 × 10−4

1999.15 17 1.8 × 10−4 3.6 × 10−4 9.7 × 10−4 176 5.1 × 10−5 1.3 × 10−4 3.1 × 10−4

b 88 2.1 × 10−6 2.2 × 10−5 5.8 × 10−5 27 9.1 × 10−11 4.3 × 10−6 1.8 × 10−5

4. Discussion and Conclusions

During the past two decades, researchers have made many efforts to understand the system
of science. Many problems have been solved; however, the understanding of interactions between
different fields is still limited. Investigating the temporal network (BCN, CN) and its community
structures, we were able to measure and quantify the complex interaction between different fields,
particularly in physics, over time. Naturally, we would like to have a predictive power based on this
picture. However, the correlation between network structure and evolution events is nonlinear and
complex. Therefore, we turned to machine learning techniques, which have shown a great power to
solve predictive problems that are hard to solve using traditional statistical methods. To our knowledge,
this is the first study that utilized both machine learning and network science approaches to predict
the future of science at the community level.
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To be able to identify changes in TCs, we needed to define time windows used for network
creation and community detection. The natural choice for bibliographical data was the usage of
single years, since the publishing process may last many months. Obviously, another detail may be
considered like multiple years, e.g., two or five years. In our approach, i.e., both for BCN and CN, every
citation had the same importance. However, there were some other concepts like fractional counting of
citations [38]. It assumes that the impact of each citation is proportionate to the number of references in
the citing document. Additionally, it can be differentiated depending on, e.g., the quality of the journal.
For the CN, we calculated the similarity between groups in the consecutive time windows in two
ways: (i) using the plain relative overlap measure and (ii) using the inclusion measure based on social
position. The idea was to enrich evolution data with the structural information occurring between the
nodes. It turned out that both measures provided similar labeling, but the evolution tracking with
the social position information produced a slightly better initial prediction. Therefore, the study was
continued only for the inclusion measure; see SI for more information.

We decided to analyze more in-depth only one feature describing the structural profile of TCs,
namely node betweenness. It was primarily caused by the limited amount of resources and the
complexity of the analyses. The entire process required much human assistance and could not have
been easily automated. In our experiments, we utilized the raw, imbalanced or artificially flattened,
balanced datasets. However, depending on the study purpose, we could bias some classes we were
more interested in, e.g., split. This could be achieved either by means of appropriate balancing
(sampling for the learning set or reformulating the problem into the binary question: Is split expected
(true) or not (false)?) As of now, the betweenness analysis was still limited to several case studies;
in the future, a more rigorous framework would be desired. The idea of analyzing science by the
discovery of knowledge changes is general and can be applied to all bibliographical data containing
citations. We focused solely on APS journals; however, also papers indexed by PubMed, Web of
Science, or Google Scholar may be studied.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/21/12/1152/
s1, Figure S1: The scatter plots for simple overlap measure and inclusion measure for CNs between 1981 to 2010,
Figure S2: The alluvial diagram of APS papers’ references (CNs) from 1981 to 2010, Figure S3: Bibliographic
coupling network in 1991, Table S1: List of all features used in the study.
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Abstract: Cascading failures are the significant cause of network breakdowns in a variety of complex
infrastructure systems. Given such a system, uncovering the dependence of cascading failures on
its underlying topology is essential but still not well explored in the field of complex networks.
This study offers an original approach to systematically investigate the association between cascading
failures and topological variation occurring in realistic complex networks by constructing different
types of null models. As an example of its application, we study several standard Internet networks
in detail. The null models first transform the original network into a series of randomized networks
representing alternate realistic topologies, while taking its basic topological characteristics into
account. Then considering the routing rule of shortest-path flow, it is sought to determine the
implications of different topological circumstances, and the findings reveal the effects of micro-scale
(such as degree distribution, assortativity, and transitivity) and meso-scale (such as rich-club and
community structure) features on the cascade damage caused by deliberate node attacks. Our results
demonstrate that the proposed method is suitable and promising to comprehensively analyze realistic
influence of various topological properties, providing insight into designing the networks to make
them more robust against cascading failures.

Keywords: complex networks; cascading failures; network topology; null models

1. Introduction

Complex networks, involving interactive specific nodes abstracted from the real-world systems,
have attracted much attention in recent decades [1–3]. Many man-made infrastructure systems such as
the Internet, transportation networks, and power grids, are examples of complex networks playing
essential roles in our modern society. Understanding their robustness concerning random failures
and deliberate attacks is of utmost importance and has an increasing interest. Early studies have
concentrated on the static failures of a network and the impact of random and deliberate removal of
a node (or edge) or group of nodes altogether [4–6], while in some cases, the networks undergoing
failures may experience a more catastrophic condition as soon as cascading failures take place [7].
For instance, Hub nodes may fail due to targeted attacks. Taking into consideration the inherent
dynamics of network flow, the initial removal of only a few nodes may trigger a cascade of overload
failures and eventually propagating the failure to a large fraction of the network, leading to a much
more devastating result than the case of static failure [8]. Indeed, such cascading failures were found
to be particularly relevant for large-scale breakdowns in various infrastructure networks, such as the
Internet collapses [9] and huge blackouts in some countries [10]. As these catastrophic incidents can
induce excessive losses in a short period, they alarm the whole world and bring serious concern on the
dynamics of cascading failure [11–14].
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From the perspective of complex networks, different models were built to imitate cascading
phenomena [15,16]. Our point of interest is the type of load models, in which deriving the flow
distribution in a network is one of the key issues. Notably Motter et al. built a cascading load model,
where node betweenness based on shortest paths is used to represent the flow of physical quantities [8].
Owing to the fact that the shortest-path flow is common in realistic networks such as the Internet and
power grids, their model has enjoyed extensive adoption as the basis of various studies [17–23]. Also,
this basic model was extended to consider network information conditions [24], network weights [25],
and system laws [26].

Because it is shown that the dynamic behavior of a network largely depends on its topological
structure, based on these cascading models, many efforts were made to analyze the topological
impact on the cascade robustness of complex networks. Previous methods adopted for the analysis
can be divided into two main types: the empirical approach and modeling approach. The two
approaches focus on examining the cascade consequences on different real-life networks and traditional
model networks respectively, where the preferential attachment model [16–18], the small-world
model [19,27], and many others [28,29] are examples of such model networks. Although studies
such as these have clarified that network topological properties show some relations with the
cascade robustness, including degree distribution [18,29], interdependence characteristics [19–21],
community structure [22–24], assortativity [25], and transitivity effects [26–28], hardly any attention
is paid to enumerate a real-life network robustness to cascading failures in terms of its multi-scale
topological features.

As we all know, for a large-scale real-life network, its topological data is generally difficult to
be acquired, and once acquired, the network topology is fixed so that it is hard to study the impact
of topological variations. Due to the inflexibility of the purely empirical approach, the modeling
approach is usually preferable. However, the traditional network modeling can handle only simple
microscopic dynamics driving the formation of the network, and thus the resulting networks are
universal, which are difficult to approximate full topological properties of a real network. Moreover,
when a certain topological parameter of the model network is adjusted to study its influence,
accordingly other parameters are often changed simultaneously. Since statistical parameters which
define topological properties are not dimensioned, and network size and structure vary widely,
the research results from empirical and traditional modeling approaches cannot be carefully compared.
Therefore, with the current methods, it is hard to have a sound understanding of the dependence of
cascading failures on underlying network topology. So far, for a specific network such as the Internet,
the relationship between topological metrics, such as degree distribution, assortativity, transitivity,
rich-club, and community structure with respect to the cascading evolution is still unclear. It is thus
desirable to develop a novel approach to give the quantitatively accurate evaluation, which helps to
take appropriate measures to establish a stronger system.

Recently, null models for real-life networks were increasingly used to analyze structural
complexity [30,31], link prediction [32,33], and community detection [34]. In general, a random
network, with certain characteristics of a real network, is called a null network of the original one.
The null models (networks) may accurately reflect the non-trivial properties of the original network,
and can arrange for a precise reference of the original network together with statistical measurements.
Therefore, different from the current empirical and modeling approaches, applying null models allow
us to comprehensively and explicitly exploit topological features of a real network and systematically
study how the modification of these features can affect the cascade robustness. However, to the best
knowledge of ours, there is a lack of studies on cascading failures with null models.

In this study, we aim to close this gap by suggesting a novel approach founded on null
models to investigate cascading failures on the Internet, and the effect of the cascade with varying
topological structures is explored for a given network. To this end, we first construct various null
models to generate realistic alternate networks derived from the standard Internet, where different
topological properties are considered including degree distribution, assortativity, transitivity, rich-club,
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and community structure. Considering the distribution of the actual shortest-path flow, the cascading
failure propagation triggered by deliberate node attacks is modeled under varying topological
conditions of the Internet. For each of network topologies, the size of the largest connected component
of the attacked network is monitored. Then the results are used to establish the relationship between the
cascading failures and the variations in different topological features. Based on three Internet AS-level
networks, our study validates the proposed method and clearly show how micro-scale properties
(i.e., degree distribution, assortativity, and transitivity) and meso-scale properties (i.e., rich-club and
community structure) exert impacts on the network robustness against cascading failure, where there
are substantially different results from those in traditional model networks.

Furthermore, it should be remarked on that both the perception of the cascades with shortest-path
flow and null models were deeply studied, but the approach of integration of the two fields is novel
and adopted to investigate the relationship between cascading failures and the topological variations
occurring in a given realistic network, which is the key contribution of our paper. Although the
study is performed in the framework of propagating failures on the Internet, we believe that the
proposed approach can be applicable to studying the robustness of other kinds of real-life networks
with reasonable modification because the basic models involved are easily extended.

The remainder of the article is arranged as follows. Section 2 introduces topological parameters
and null models engaged in generating distinct topological structures of the Internet. Section 3 states
the cascading model with the routing rule of shortest-path flow. Section 4 discusses the procedure
involved to explore the topological effect on the cascade robustness and tests it on various Internet
AS-level networks with results. Finally, Section 5 concludes this work.

2. Constructing Null Models of the Internet

The Internet can be represented as a complex graph with N nodes and E edges, where the nodes
can be routers or ASs, and the edges are the physical connections between nodes. The network
topology defines how nodes within the network are arranged and connected to each other. A minor
shift in the topology, such as edge swapping, can initiate varying the properties of the network that
accordingly affect its dynamical behaviors and functions.

2.1. Network Parameters

There are many metrics or parameters to describe statistical properties of network topology,
but in this study, we restrict ourselves to consider five basic ones: degree distribution, assortativity
coefficient, clustering coefficient, rich-club coefficient, and modularity coefficient, which were widely
studied in traditional model networks and exported important impacts on a variety of network-based
dynamical processes [1–3]. The degree distribution p(k) represents the probability with which a node
in the network chosen randomly has degree k. Scale-free networks widely observed in reality have
a power-law degree distribution, namely p(k)∼k−λ, where λ is the scaling exponent. The specific
definitions of other four parameters are as follows:

1. Assortativity Coefficient

r =

E−1 ∑
eij

kikj −
[

E−1 ∑
eij

1
2 (ki + kj)

]2

E−1 ∑
eij

1
2 (k

2
i + k2

j )−
[

E−1 ∑
eij

1
2 (ki + kj)

]2 , (1)

where eij is an edge connecting nodes i and j; ki and kj denote the degrees of nodes i and
j, respectively.
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2. Clustering Coefficient

c =
1
N

N

∑
i=1

ci, (2)

where the node clustering coefficient ci =
2λi

ki(ki−1) , where λi is the number of the edges existing
among ki neighbors of node i. The clustering coefficient can be used to measure the transitivity
property of a real-life network.

3. Rich-club Coefficient

φ =
M

n(n − 1)/2
=

2M
n(n − 1)

, (3)

where n and M are the numbers of rich nodes and the edges existing among these rich
nodes, respectively.

4. Modularity Coefficient

Q = ∑i (hii − a2
i ), (4)

where ai = ∑w hiw signifies the row (or column) sums, symbolizing the fraction of edges that link
to nodes in community i and hiw is the fraction of edges in the original network that connect
nodes in the subset i with nodes in the subset w.

2.2. Synthetic Networks Generated by Null Models

Given a real network, its topological structure is settled. To investigate the influence of the above
topological properties (e.g., degree distribution, assortativity, transitivity, rich-club, and community
structure) on cascading dynamics in detail, several null models based on randomized algorithms are
considered to generate alternate realistic topologies of the original network. Here, the randomized
algorithms cannot just rewire edges of the original network but also randomize some factors on the
condition of precisely keeping some original connection properties. It is clear that the topologies
thus created can rigorously grasp real topological characteristics as they are derived from the
original network.

2.2.1. dK-Series of Null Networks

We consider two approaches with randomized algorithms for constructing null models. One is the
dK-series of prospect distributions, where all degree correlations are indicated in d-sized subgraphs
of a specified graph [35,36]. This approach can produce null models of different orders, including
0K, 1K, 2K, and 3K that are applied to approach the original network progressively and then spot its
micro-scale features at multi-levels. Null networks of all these orders are interconnected, i.e., 0K ⊇ 1K
⊇ 2K ⊇ 3K. Any higher-order null network embraces the features of lower-order null network.

Figure 1a illustrates the process of constructing the properties Pd, which we call the dK-series
of null networks. The d = 0, · · · , 4 corresponds to different order of dK-series [34]. We use the total
number of corresponding subgraphs to represent all the values of P. That is to say, P(2, 2) = 1 means
that the network has one edge between two 2-degree nodes. 0K null network in Figure 1b is the
simplest and the most randomized version of the original network, which only retains the number of
nodes and the average degree of it. 1K null network maintains the degree distribution of the original
network, but it has randomly rewired the link relationship as shown in Figure 1c. 2K null network
holds the identical joint degree distribution of the original network in Figure 1d, which means they
have the same degree values for the end nodes of each edge. That is to say, they have the same values of
assortativity coefficient as the original one. The rewiring procedure of 3K null network is demonstrated
in Figure 1e. 3K null and the original networks hold identical clustering coefficient for each node.
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Thus, with the increase of null model orders (i.e., the increase of the constraints for generating null
models), the null networks can be gradually approaching the original network theoretically.

Figure 1. The summary of dK-series null models. (a) The properties Pd, d = 0, · · · , 4, calculated for a
given toy network of size 4. The rewiring procedure of (b) 0K null network, (c) 1K null network, (d) 2K
null network, and (e) 3K null network.

2.2.2. Null Networks of Tunable Properties

Although the above four null models of different orders are useful in understanding the behaviors
of the original network, they cannot capture how to control it more efficiently. Therefore, we also
consider the approach of the targeted edge-swapping [37], which can create null models with tunable
micro-scale properties, such as assortativity, transitivity and meso-scale properties, such as rich-club,
community structure. We refer to them as null models with tunable properties.

To obtain the increased and decreased assortativity r, we consider null models of increasing and
decreasing assortativity respectively, where r is tunable [37,38]. Such null networks are constructed
as follows. The process of edge swapping is conducted on the original network with preferred r.
First, two edges est and euv are randomly picked up from the network, where the rank of the degrees
of nodes s, t, u, and v is denoted by ks > ku > kt > kv, and esu, etv, esv, and eut do not exist. Then, est

and euv are removed. For generating the null network of increasing assortativity, we add the edges esu

and etv; while for generating the null network of decreasing assortativity, we add the edges esv and eut.
The swapping procedure goes on iteratively until the error between the observed and preferred value
is within a very tiny value, such as 0.005.

Similarly, we consider null models of increasing and decreasing transitivity, rich-club
property [33,39], and community structure [34], combined with well-controlled parameters c, φ,
and Q respectively. Besides, to gain further insights about community structures, we consider null
models of rewiring edges within a community and between two communities [34]. The former only
varies the inner topology of each community, at the same time maintaining the structural features
between communities and the number of communities. The latter only changes the links between two
communities but maintains the structural features inside each community.

Note that for the null models of tunable assortativity, when the assortativity coefficient is adjusted,
its lower-order property (i.e., the degree distribution) can remain the same as that of the original
network. In a similar way, the null models of tunable clustering coefficients can keep its lower-order
properties (i.e., the degree distribution and assortativity) unchanged. Moreover, when one meso-scale
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property, such as the rich-club coefficient or modularity coefficient is adjusted, because the desired
value of the property can be obtained only by exchanging a small number of edges in the original
network, micro-scale properties of most connectivity between network nodes, including the degree
distribution, assortativitity, and transitivity, all can remain almost unchanged. Therefore, the null
models in this study allow us to identify how the modification of one meso-scale property affects
cascading dynamics in the case of keeping micro-scale properties unchanged in the network.

3. Cascading Failure Model

With the desired null networks at hand, these networks are then enriched with data flow.
We follow the routing rule of shortest-path flow described in [8]. In the rule, at each time step,
one packet is exchanged between every couple of network nodes and transferred along the shortest
paths linking them. Under this situation, the load at a node can be denoted by its betweenness [18,19].
This definition method on the load was widely applied to different kinds of realistic networks,
including communication networks such as the Internet, transmission systems such as power grids,
and transportation networks [17].

The capacity of a node is the highest load that it can handle. Generally, the capacity is restricted
by the cost in a real-life network. Therefore, it is sensible to suppose that the capacity Ci of node i is
proportional to its initial load Li(0) [21]:

Ci = (1 + α)Li(0), (5)

where α(α ≥ 0) is a redundancy parameter. α ≥ 0 guarantees that initially, all nodes work properly
(i.e., without overload).

Here, the potential cascading failure is considered to be triggered by removing a single node with
the highest load, because many prior studies concerning both model networks and real networks have
shown that such a node failure can affect loads at other nodes considerably and thus cause severe loss
to the network. Assume such deliberate attack arises at t = 1. The removal of the attacked node in
general changes the distribution of shortest paths. The traffic load used to go through this node has to
be rerouted. Therefore, the loads of some nodes may increase beyond their capacities. Consequently,
the corresponding nodes are overloaded and thus fail. Once more nodes fail, the shortest paths among
all node pairs and the loads are then recalculated based on the topological modification. The process
of node cascading failure and the load redistribution is iterated until no node fails, at which point the
cascading propagation course is considered as being accomplished.

The dynamical function of a real-life network depends on the node capability to communicate
efficiently with each other. Suppose the number of nodes in the largest component before and after
the cascade to be N and N′ respectively, without loss of generality, the damage triggered by a cascade
is calculated by the relative size G of the largest connected component, i.e., G=N′/N. As G of
the attacked networks is checked, the profile of this parameter variation can display the network
invulnerability and robustness against cascading failure. Obviously, the greater the value of the index
G, the better the network robustness against cascading failure.

4. Main Results

This section adopts real network data to identify the topological impact on the cascade damage in
detail. We consider three Internet AS-level networks [40]. They contains 3015 nodes, 530 nodes and
493 nodes, respectively. The data were collected from online data and reports of the University of
Oregon Route Views Project. For each of the original networks, their multiple alternate networks are
generated by employing four null models of different orders as well as ten null models with tunable
properties, and the cascading model is applied to them. Extensive simulations are implemented
to reveal the potential relationship between the cascade robustness with topological variations
occurring in the Internet network. In the simulations, each curve for null networks is averaged
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over 30 realizations. It should be noted that although the following analysis is performed by using the
real Internet networks, our framework and proposed approach involved are applicable to other kinds
of realistic networks.

4.1. Cascading Failures in Null Networks of Different Orders

Let us first investigate cascading failures in null networks of different orders (0K–3K). Figure 2
compares the results of cascading failures in these null networks to that in the original Internet with
3015 nodes. The curves demonstrate the association between the relative size G and the redundancy
parameter α under topological variation. As expecting in Figure 2, G monotonically increases with the
increase of α for each curve. Based on the definition of the cascading model, increasing α means each
node has more capacity redundancy to receive the redistributed load from failed nodes, which will
reduce the likelihood of subsequent overload failures. Then the robustness of the whole network
becomes stronger (i.e., the robustness measurement index G increases). Moreover, we observe that the
network robustness against cascading failure is gradually weakened with increasing the order of null
networks from 0K to 3K, leading to getting closer to the original one. This can be explained by the
different role of each topological feature in the network robustness.

Figure 2. The relationship between G and α in null networks of different orders for the Internet with
3015 nodes and 5156 edges.

Table 1 shows the variation of topological parameters for the Internet with 3015 nodes and its
corresponding 0K–3K null networks. As it is seen, 0k null networks, which are obtained after sufficient
randomization on the original network, only have the same number N of nodes and average degree
<k> as the origin. Moreover, they display a Poisson degree distribution rather than a power-law
(scale-free) distribution which the original network shows. Such homogeneous structure makes them
much more robust than the original heterogeneous network. This is in line with prior studies on
cascading failures in traditional model networks [8,23,29], where cascading failure was shown to
occur less likely in a homogeneous network than in a heterogeneous one. Because it was shown that
cascading dynamics are strongly related to the degree distribution of a network, it also raises a new
question whether it is certain that both of them have the similar ability in resisting cascading failures if
a network rigorously grasps the degree distribution of the original network.

In this work, 1K null networks are such examples but clearly perform very different ability from
the original network. Compared with 1K null networks, the robustness of 2K null networks is further
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worse, and then their curve is closer to that of the original network, because 2K null networks maintain
more micro-scale structures (i.e., assortativity). Though, there is yet a great difference between 2K null
networks and the original one. Furthermore, the evolution of 3K null networks more resembles that of
the original network, because they can preserve the transitivity characteristics of the original network.
The above findings, hence, confirm that different topological features of networks all have great impact
on the outcomes of cascading dynamics taking place on them. Actually, most previous studies based
on network models pay attention to the degree distribution to evaluate the robustness of a network
against cascading failures [23,29]. This study clearly shows that the degree distribution is not enough to
guarantee the robustness of a real-life network, and 2K and 3K micro-scale structures (i.e., assortativity
and transitivity) are also significant properties. Therefore, further studies are needed to reveal how the
modification of assortativity, transitivity and higher-order properties affects cascading failures in case
of keeping its lower-order properties of the original network.

Table 1. The variation of topological parameters for the Internet with 3015 nodes and its corresponding
0K–3K null networks. Each data point for 0K–3K null networks is averaged over 30 different
network realizations.

Network N <k> p(k) γ r c

Origin 3015 3.42 Power-law 2.5 −0.23 0.18
0K 3015 3.42 Poisson − −0.008 0.0009
1K 3015 3.42 Power-law 2.5 −0.22 0.10
2K 3015 3.42 Power-law 2.5 −0.23 0.12
3K 3015 3.42 Power-law 2.5 −0.23 0.18

4.2. Cascading Failures in Null Networks of Tunable Assortativity

Figure 3a shows the relationship between G and α in null networks of increasing assortativity
(r = −0.20) and decreasing assortativity (r = −0.26) for the Internet with 3015 nodes, where the r
value of the original network is −0.23. In contrast to the case of r = −0.26, for the curve of r = −0.20,
the values of the error bars are so small(about 0.01) that we cannot see them. This can be explained
by the fact that under the algorithm of the edge-swapping of increasing assortativity, the difference
of connectivity patterns of all generated networks is small due to the constraint of a few nodes with
high degree in the original network. Meanwhile, the structure (i.e., a large number of nodes with
low degree) of the network can make all generated null networks of decreasing assortativity show a
relatively large difference between their connectivity patterns. The difference of connectivity patterns
accordingly affect the difference of cascade results, leading to the difference of the error bars of the two
curves. In addition, from the curve of r = −0.20, we can see that α exerts a relatively small impact on
the cascade results, which is different from the case of the other two curves. The reason is also related
to the network structure.

More importantly, Figure 3a illustrates that r has a strong effect on the network robustness.
The networks of increasing assortativity take more robustness and resistance to the damage of the
cascade as compared to those of decreasing assortativity for any choice of parameter α. However,
compared with the origin, there exist crossover points αc (αc ≈ 0.6) for the networks of increasing
assortativity and αs (αs ≈ 0.2) for the networks of decreasing assortativity. When αs < α < αc,
the cascade robustness of the network with higher assortativity indeed increases. In contrast, when
α > αc or α < αs, the network with lower assortativity performs better. This means that the network
robustness does not always increase monotonically with its assortativity, which is sensitive to the
capacity redundancy. Similar evolution with different cross points can be observed in Figure 3b,c. It can
also further confirm that the capacity redundancy is considered to determine how the assortativity
affects the network robustness. This is different from the results obtained in traditional model
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networks [25], which indicate that the robustness of complex networks against cascading failures
varied monotonously with the variations of its assortativity regardless of the capacity redundancy.

Figure 3. The relationship between G and α in null networks of (a) increasing assortativity (r = −0.20)
and decreasing assortativity (r=−0.26) for the Internet with 3015 nodes and 5156 edges (r = −0.23),
(b) increasing assortativity (r = −0.08) and decreasing assortativity (r = −0.54) for the Internet with
530 nodes and 1289 edges (r = −0.22), and (c) increasing assortativity (r = −0.05) and decreasing
assortativity (r = −0.56) for the Internet with 493 nodes and 1234 edges (r = −0.22).

4.3. Cascading Failures in Null Networks of Tunable Clustering Coefficient

Figure 4 plots the relationship between G and α in null networks of increasing transitivity
(c = 0.31) and decreasing transitivity (c = 0.03) for the Internet with 3015 nodes, where the c value
of the original network is 0.18. It can be seen that the networks of both increasing transitivity and
decreasing transitivity are more invulnerable to cascading failure as compared to the original network,
and the impact of increasing transitivity on promoting the network robustness is more prominent.
For example, in the case of α = 0.3, increasing transitivity and decreasing transitivity make the value
of G increase from 0.53 to 0.65 and 0.58, respectively.

Figure 4. The relationship between G and α in null networks of increasing transitivity (c = 0.31) and
decreasing transitivity (c = 0.03) for the Internet. For comparison, the inset shows the relationship
between G and α in traditional networks (i.e., HK scale-free networks) with different values of clustering
parameter mt. Each data is averaged over 50 individual runs.
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Such results also indicate a non-monotonic behavior between the transitivity property and the
cascade robustness. This phenomenon is different from the result obtained in those traditional model
networks as shown in the subgraph of Figure 4. Here we use a typical model, namely the HK
scale-free network model proposed by Holm and Kim [26], in which the clustering coefficient can
be adjusted by a particular control factor mt. In the case of mt = 0, the HK model degenerates into
the well-known Barabási-Albert(BA) model [41]. The larger the mt value, the larger the clustering
coefficient c. When applying our cascading model to the scale-free networks with tunable clustering
coefficient c, the subgraph of Figure 4 shows that the robustness of such networks is monotonously
reduced with the increase of c. Obviously, this is not in accordance with the result of our proposed null
networks. Coupled with the results in Figure 3, we can confirm that due to the structural complexity
of real-life networks, from which deviations of traditional model networks can bring great impacts on
understanding and controlling cascading behaviors, and hence constructing null models for empirical
analysis of cascading failures is of great significance.

4.4. Cascading Failures in Null Networks of Tunable Rich-Club Property

Until now, we have shown the effects of micro-scale features (i.e., assortativity and transitivity)
on the cascade. However, we do not know what the effects of meso-scale features are on that.
The rich-club and community structure are two typical meso-scale features of the Internet. In the
following, the impact of them each on cascading behaviors will be also investigated.

Figure 5a shows the relationship between G and α in null networks of increasing rich-club property
(φ = 0.08) and decreasing rich-club property (φ = 0.02) for the Internet with 3015 nodes, where the
φ value of the original network is 0.05. Clearly, one can see that the φ value is positively related to
the network invulnerability against cascading failures, i.e., the higher φ, the more desirable network
behavior in resisting cascading failures. The similar evolutions can also be observed in Figure 5b,c.
This suggests a plausible way to enhance network robustness by increasing rich-club property.

Figure 5. The relationship between G and α in null networks of (a) increasing rich-club (φ = 0.08) and
decreasing rich-club (φ = 0.02) for the Internet with 3015 nodes and 5156 edges (φ = 0.05), (b) increasing
rich-club (φ = 0.10) and decreasing rich-club (φ = 0.05) for the Internet with 530 nodes and 1289 edges
(φ = 0.07), and (c) increasing rich-club (φ = 0.11) and decreasing rich-club (φ = 0.06) for the Internet
with 493 nodes and 1234 edges (φ = 0.08).

4.5. Cascading Failures in Null Networks of Tunable Community Structure

In Figure 6, we plot the relationship between G and α in null networks of increasing community
structure (Q = 0.63) and decreasing community structure (Q = 0.60, 0.57, respectively) for the Internet
with 3015 nodes, where the original Q value is 0.62. With decreasing Q of the original network,
the cascade robustness of the null networks becomes stronger. However, when we increase Q,
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the robustness is almost the same as that of the original one. This can be explained by the fact that the
original version of the Internet has already a clear community characteristic. Using the algorithm of
increasing community structure, the Q value can be adjusted to the maximum value (Q = 0.63), which
is only increased by 0.01 as compared to the original value. Such enhancement of the community
structure has no obvious effect on the robustness of the original network.

Figure 6. The relationship between G and α in null networks of increasing community structure
(Q = 0.63) and decreasing community structure (Q = 0.60, 0.57, respectively) for the Internet.

The characteristic of community structure is that the density of inner edges among communities
is relatively greater than the density of external edges. To disclose the community structure effect in
detail, Figure 7 displays the relationship between G and α in null networks of rewiring edges within a
community and between communities for the Internet with 3015 nodes. For generating these two null
networks, we consider the edge-swapping algorithm of the 1K null model to only destroy the inward
structure of each community and the external structure of all communities, respectively. It should be
noticed that both of them are different from the classical 1K null network, which is based on rewiring
edges within the whole original network and thus destroys the meso-scale characteristics completely.

Figure 7. The relationship between G and α in null networks of edge swapping within a community
and between communities for the Internet.
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As seen in Figure 7, different kinds of edges play different roles in the effects of cascading failure.
Rewiring edges inside a community (i.e., the random exchange of inner edges) makes the network
stronger to resist cascading failures, yet for rewiring edges among communities (i.e., the random
exchange of exterior edges), the effect on promoting the network invulnerability is not clear enough
because of their fluctuations. Furthermore, the network with the modification of inner edges is
still more vulnerable than the 1K null network. Because the 1K null network completely destroys
community structures of the original network, its modularity is lower than the other three cases,
and the smaller modularity is in favor of the cascade robustness.

5. Conclusions

In this work, Internet networks were researched in terms of topology and the association with the
cascade robustness was established. Considering realistic topological characteristics including degree
distribution, assortativity, transitivity, rich-club coefficient, and modularity, we generated multiple
null networks derived from three Internet AS-level networks. The methods used for the generation
of null networks offer feasible network configurations inherently. By considering the routing rule of
shortest-path flow, the effect of cascade-based attacks was investigated in each of the original networks
and its various null networks with the topological variation.

By comparing the largest connected sizes of these attacked networks, our results reveal that the
degree distribution is not enough to identify the robustness of a network, and micro-scale structures
(i.e., assortativity and transitivity) and meso-scale structures (i.e., rich-club and community structure)
are also important for that. In detail, at the micro-scale level, both assortativity and clustering
coefficient show a non-monotonic behavior with network robustness. Moreover, the impact of the
assortativity on network robustness is related to the capacity redundancy of nodes. In comparison to
decreasing transitivity, increasing transitivity contributes more to the promotion of network robustness.
At the meso-scale level, the rich-club structure is positively related to network robustness, indicating
that increasing it leads to stronger robustness. In contrast, the modularity is inversely related to
network robustness, indicating that the network robustness increases with reducing modularity
characteristic. In addition, the topological structure within every community plays a more significant
role in improving the robustness as compared to that between communities.

The results obtained here are meaningful in guiding the construction or optimization of the
Internet to resist the propagation of cascading failure effectively. Inspired by this work, we will aim
to understand the relationship between complex characteristics of the Internet and cascading failure
more comprehensively in our future studies. For example, an interesting challenge is to analyze
interdependence of the systems in such a way to launch a robust network design. Our results also
demonstrate the significance of constructing null networks for understanding and analysis of cascading
failure in more real-world networks, because it can produce substantially different results from those in
traditional model networks. We expect the analysis method proposed here is promising for extended
applications in studying robust systems with different network structures in the real-world other than
the Internet as well.
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Abstract: With the rise in cloud computing architecture, the development of service-oriented
simulation models has gradually become a prominent topic in the field of complex system simulation.
In order to support the distributed sharing of the simulation models with large computational
requirements and to select the optimal service model to construct complex system simulation
applications, this paper proposes a service-oriented model encapsulation and selection method.
This method encapsulates models into shared simulation services, supports the distributed scheduling
of model services in the network, and designs a semantic search framework which can support
users in searching models according to model correlation. An optimization selection algorithm
based on quality of service (QoS) is proposed to support users in customizing the weights of QoS
indices and obtaining the ordered candidate model set by weighted comparison. The experimental
results showed that the parallel operation of service models can effectively improve the execution
efficiency of complex system simulation applications, and the performance was increased by 19.76%
compared with that of scatter distribution strategy. The QoS weighted model selection method based
on semantic search can support the effective search and selection of simulation models in the cloud
environment according to the user’s preferences.

Keywords: complex system simulation; cloud computing architecture; service-oriented modeling;
semantic search framework; QoS-based service selection

1. Introduction

The continuous evolution of complex systems (e.g., social systems, ecosystems, and war systems)
has had a tremendous impact on people’s daily life and social development. Due to the limitation
of existing theoretical analysis methods and the difficulty of experimental analysis methods in some
real-world complex systems (e.g., geological changes, nuclear explosions, economic growth [1], and
ecosystem evolution), complex system simulation technology has gradually become an attractive
approach for the research on complex systems and their complexity [2].

Complex system simulation applications often contain a large number of simulation model entities,
and there are complex interactions between these entities, also the entities and the external environment.
Such system simulations usually have a large computational load [3]. With the increase in scale and
complexity of complex system simulation applications, there are increasingly requirements for the
composite mode of simulation models, the computational capabilities of simulation architectures, and
the execution efficiency of simulation applications. The popularity of cloud computing technology
provides a new approach, platform architecture, and efficient computing power for the research and
development of complex system simulations. Simulation users can use the computing resources in
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the cloud environment on demand at different terminals and invoke the simulation model services
stored in the cloud center to assemble complex system simulation applications. Therefore, the
development of service-oriented simulation models has gradually become a prominent topic in the field
of complex system simulation [4]. Service-oriented technology is mainly directed at models with large
computational requirements, such as an electromagnetic environment calculation model, a ballistic
path planning model, a radar detection model, and so forth. These models are expected to be provided
outward as a shared service. Then, their integration and code porting could be eliminated, and the
construction efficiency of complex system simulation applications and the utilization of related models
could be improved. The interoperability between heterogeneous simulation models and the distributed
collaborative calculation of simulation models on multiple computing nodes could be realized, which
could improve the execution efficiency of simulation applications. Therefore, it is necessary to carry
out the research on how to construct and select the service-oriented complex simulation models based
on cloud computing environment.

To make the complex system simulation model into a shared service in cloud, firstly, models
with large computational requirements need to be encapsulated into simulation services in the cloud
environment and be parallel processed in the execution of complex system simulation applications
under a cloud-based simulation model service framework. Because the simulation model services
released and stored in the cloud center have differences in attributes, functions, and quality of service
(QoS), it is necessary to find and select the appropriate simulation model that accurately meets the user’s
requirements in terms of function and can provide high QoS for building complex system simulation
applications [5]. Reusable model development (RUM) specification [6] cannot support network
communication between a simulation model and a simulation engine under the cloud architecture.
Ontology web language [7] (OWL)-based simulation model search methods lack the mechanism to
search simulation models through the correlations between models. Also, current simulation model
optimization selection algorithms lack the induction for QoS [8] attributes of simulation models in the
cloud environment and cannot provide a selection mechanism that satisfies the user’s preference for a
model’s QoS.

In order to solve the abovementioned problems in the existing studies, this paper proposes a
service-oriented model encapsulation and selection method for complex system simulation based
on cloud architecture. The novelty and contribution of this method includes that it designs
a cloud-service-oriented reusable model development (C-RUM) specification to encapsulate the
simulation model into a shareable simulation service in the cloud, and then devises a cloud-based
simulation model service framework, which solves the problem of network communication in the
former RUM specification. This method also uses a knowledge graph [9] to describe the simulation
model services and establishes a model semantic search framework in the constructed model description
knowledge graph, which supports users in setting correlations between models to obtain the required
model. A QoS weighted-based optimization selection algorithm is also proposed, which can select
the optimal simulation model that satisfies the user’s preference for QoS according to a weighted
comparison of QoS indices.

The organization of this paper is as follows: Section 2 discusses related works. Section 3 introduces
the C-RUM specification and the cloud-based simulation model service framework. Section 4 introduces
the selection method of simulation models based on semantic search. Section 5 describes a case study
of the service-oriented model encapsulation and selection method. Section 6 is the summary and the
outlook for future work.

2. Related Works

2.1. High-Level Architecture (HLA)-Based Simulation Model Development Specification

The basic idea of HLA is to use an object-oriented method to design, develop, and implement object
models of different levels and granularities and to obtain high-level interoperability and reusability
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of simulation models and simulation systems. The object model template (OMT) is a standardized
description of the properties of simulation models and their interaction formats, but it is not a standard
for establishing the object model. With the development of complex system simulation, there are higher
requirements for the efficiency, flexibility, and openness of simulation model development. HLA-based
simulation model development specification gradually exposes some problems in the application
process, such as efficiency, ease of use, fault tolerance, dynamic compatibility, and so forth [10].

2.2. RUM Specification

In order to realize the interapplication and interplatform reuse of simulation models and the rapid
development of simulation applications, many researchers have proposed reusable and composable
development specifications and methods for simulation models. Lee et al. applied the product line
engineering concept to the development of simulation model components [11]. Feng et al. proposed a
reusable component model development approach for parallel and distributed simulation, requiring
that the simulation model have self-contained features; that is, the model can be packaged and released
independently, without relying on other models, and is separate from the simulation engine [6]. Jianbo
and Yiping proposed a reusable component model framework (RCMF) model development tool called
SuKit, which can be used to regenerate models and guide model integration [12].

A patent for RUM specification [13] was proposed by Yiping and Feng and revised in 2017,
which has been widely used. RUM specification encapsulates the simulation model into a separate
service entity, and the model and the outside world can only interact through the “service interface”.
RUM specification enables local reuse and composition of simulation models, realizing invocation and
communication of simulation models by passing local parameters. However, in the cloud environment,
the user terminal and the cloud server are connected by the network, and RUM specification does not
support communication between the simulation model and the specific simulation engine framework
in the network. Therefore, the simulation model developed by RUM specification cannot be provided
as a shared service released and stored in the cloud environment.

2.3. OWL-Based Simulation Model Search Method

Ontologies in the Semantic Web can describe simulation models at the semantic level. Web
service ontology description language (OWL-S) was designed to make the Web service an entity which
computers can understand based on the description of ontology. OWL-S describes Web services in three
aspects: (1) service profile, (2) service model, and (3) service grounding [14,15]. Ontology can improve
the accuracy of simulation model search by describing simulation models based on semantics [16].
In order to support the composite modeling of complex system simulation applications, some experts
have carried out research on simulation service description methods based on semantics and have
proposed description ontologies of simulation model resources (e.g., OWL-SS [17] and OWL-SM [18]).
At present, OWL-based simulation model description methods generally lack descriptions of the
characteristics of simulation models in the cloud environment [19] and lack expression of the correlations
between simulation models, which are not effective enough to support users in searching and selecting
relevant models conveniently through the correlations between models in the cloud environment.

2.4. QoS-Based Simulation Model Selection Method

Similar to Web services, QoS is a key factor in choosing simulation models that are stored in the
cloud environment as a service [20]. At present, many researchers have defined suitable QoS indices
for simulation services and have proposed model selection mechanisms based on QoS [21]. However,
current descriptions of simulation models lack the induction of QoS attributes of simulation models in
the cloud environment [22]. Current selection algorithms lack a selection mechanism that can select
models in the cloud environment according to users’ preferences for QoS indices and thus cannot meet
users’ specific QoS requirements when constructing complex system simulation applications.
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In summary, current HLA-based simulation model development specification and RUM
specification cannot support simulation models as a shared service to be invoked and operated
on cloud architecture by developers. Existing OWL-based model search methods and QoS-based model
selection methods cannot support users in searching for relevant models through the correlations
between models and selecting simulation models that meet their QoS requirements to construct
complex system simulation applications in the cloud environment.

3. C-RUM Specification and Cloud-Based Simulation Model Service Framework

3.1. C-RUM Specification

Complex system simulation applications usually contain some simulation models which have a
large computational load. The operation of such a model requires an immense amount of computing
resources, making other simulation models in the same process fall into a long queue, thus delaying
the advancement of the simulation timing and reducing the execution efficiency of the simulation
application. If such simulation models are encapsulated in the form of shared services and are
distributed and stored in the cloud environment, the construction efficiency of complex system
simulation applications and the utilization of related models could be improved. Cloud computing
resources can be used to realize interoperability between heterogeneous simulation models and
distributed collaborative computing of simulation models on multiple computing nodes, so as to
improve the execution efficiency of simulation applications.

The RUM specification can implement local invocation and communication of simulation models.
However, in the cloud architecture, the cloud server where the simulation service model is located
and the user terminal are interconnected through the network. The RUM specification does not
support communication between the simulation model and the specific simulation engine framework
on the network. This paper proposes C-RUM specification by transforming the RUM specification.
The purpose is to invoke the simulation model encapsulated by C-RUM specification as a form of
shared service in the cloud architecture, to make the model service transmit the data through the
network protocol to interact with the simulation engine framework, and to implement distributed
collaborative computing and heterogeneous execution of simulation applications. The original RUM
specification specifies seven standard (service) interfaces for the simulation model to interact with the
outside world—model initialization, parameter input, model status recovery, parameter and status
adjustment, data output, model status acquisition, and model calculating interfaces—to provide seven
standard operations, as shown in Figure 1.

In the cloud architecture, the service interfaces in the original RUM specification cannot identify
or parse the network data. Therefore, the C-RUM specification defines the network data input interface
and network data output interface. These two interfaces are used to encapsulate the seven service
interfaces in order to implement data conversion between the network and the original interfaces.
According to the execution flow of the simulation model under the original RUM specification [6], the
C-RUM specification divides the network interaction into three types: model invoke command, model
calculate command, and calculating data and model status output, as shown in Figure 1. The detailed
function of the two new interfaces and the network interaction of the C-RUM-encapsulated simulation
model is discussed below.

Network data input interface. This interface is mainly used for parsing network data transmitted
based on the socket network transmission protocol. The purpose of the parsing is to obtain the
target standard service interface of the network data packet and convert the input data into the
specified standard data format of the corresponding service interface. Finally, the parsed instructions
or parameters are passed to the target standard service interface. The model invoke and calculate
commands need to be analyzed by the network data input interface.
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Figure 1. Cloud-service-oriented reusable model development (C-RUM) specification and its
execution flow.

Model invoke command: When the simulation system of the user terminal needs to be initialized,
the terminal will send a model invoke command to the simulation model in the cloud server, and
the distributed invocation system in the cloud server will mount the simulation service model into
a process. Then, the model initialization command and related parameters are passed to the model
initialization interface through the network data input interface to complete the initialization operation
of the simulation service model.

Model calculate command: When the simulation system in the user terminal needs the simulation
service model to calculate, the model calculate command will be sent to the simulation model. After the
command is parsed by the network data input interface, the model will (1) first recover its status
through the model status recovery interface, (2) then check whether there is a working parameter
adjustment instruction to adjust the working parameters and status, (3) then set the input data through
the parameter input interface, and (4) finally start the simulation model calculating operation through
the model calculating interface.

Network data output interface. This interface is used to encapsulate the data output from the
simulation model after calculation and the status information of the simulation model. That includes
indicating the standard interface source of the data and the destination address of the transmission
and converting them into the format for the socket network communication protocol. Before output
to the network, the calculating result and model status need to be encapsulated by the network data
output interface.

Calculating result and model status output: After the simulation service model finishes its
calculation, the network data output interface will obtain the data after calculating from the simulation
model output interface and acquire the model status from the simulation model status acquisition
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interface and encapsulate the data into a socket communication protocol package. The package will
be forwarded to the simulation system in the corresponding user terminal through the distributed
architecture in the cloud environment.

3.2. Cloud-Based Simulation Model Service Framework

Most of the current complex simulation system application frameworks need to integrate or
migrate simulation models into specific simulation platforms, making it difficult to separate the models
from the platform. For different simulation platforms, the operation mechanism of the simulation
engine is quite different, and it is not easy to bind the service simulation model of the cloud center
to a specific simulation platform. In order to invoke the service-oriented simulation model in the
cloud architecture without relying on the simulation platform, running under any simulation engine
framework [23,24], this paper proposes a cloud-based simulation model service framework, as shown
in Figure 2.

 
Figure 2. Cloud-based simulation model service framework.

The complex system simulation application consists of a large number of simulation object
instances, and there are complex interactions and collaborative calculations between the instances.
The simulation object framework is built on a specific simulation engine, and the simulation object
instances are defined by the simulation object framework (including the declarations of these simulation
object instances, their roles in the simulation application, the interaction between them, etc.). Each object
instance is implemented by a specific simulation model. The local simulation model can be directly
mounted or integrated into the object framework, while the simulation model service stored in the
cloud environment relies on the communication with its proxy model in the corresponding object
framework. The proxy model does not have the specific function of the simulation service model; it
only takes the place of the simulation service model in the entire simulation object framework, defining
the interaction relationship with other models. When the simulation application needs to interact with
the simulation service model in the cloud server or obtain its status, the simulation object framework
will accept and transmit the corresponding parameters and data through the socket communication
between the proxy model and the simulation service model. The cloud-based simulation model service
framework is applicable to the invocation and operation of the C-RUM-encapsulated simulation model
in the cloud environment and does not depend on a specific simulation platform.
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4. Simulation Model Selection Method Based on Semantic Search in Cloud Environment

4.1. Semantic Search Framework

The traditional Web services description language (WSDL)-based [25] simulation model search
mechanism uses keyword matching to find simulation model description texts with the same keywords.
A knowledge graph uses a more expressive way to describe simulation models by semantic description,
and a search method based on a knowledge graph can find simulation models at the semantic level
through the link relations between data and things [26]. Compared with ontology description language,
a knowledge graph stores resource description framework (RDF) [27] triples in the graph database
directly, which means the correlations between simulation models can be described in a simple and
intuitive way in the form of graphs.

In this study, a description method of cloud simulation model resources based on a knowledge
graph [28] was used to describe simulation models, which describe the characteristics of cloud
simulation models and their QoS indices. Then, a simulation model semantic search framework
was proposed based on the simulation model description knowledge graph. This search framework
provides two patterns for simulation model search: (1) users can associate the required simulation
model by attribute information such as the name, domain, type, time scale, and model granularity of
the simulation model; or (2) users can search for the required simulation model by the correlations
between models. According to the search conditions input by the user, simulation models that meet
the search conditions can be found in the knowledge graph stored in the graph database, as shown in
Figure 3.

Figure 3. Simulation model semantic search framework.

Under the search framework proposed in this paper, users input model attribute requirements
as semantic search conditions stored in the array Attributes_conditions [M]. Each item of the array
corresponds to 1 to M attribute requirements of the simulation model. The user can input one or
more attribute requirements (e.g., model name, domain, category, time scale, model granularity, etc.)
as semantic search conditions to search for simulation models that meet the requirements of these
attributes. The user can also input the required association model and specific association relationships
(e.g., command relationship, equipment-carrying relationship, etc.) as semantic search conditions
stored in the two variables Correlated model and Relationship, respectively, to search for simulation
models that have a certain relationship with the correlated model. The input of correlated models is
necessary in this search pattern. Algorithm 1 shows the semantic search algorithm.

Data_Base represents a knowledge graph database that stores simulation model description
information and correlation relationships. model ≮ α indicates that the simulation model does not
satisfy the attribute requirement α by the judgment method of fuzzy search combined with synonym
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expansion. relationship (Correlated model, model) indicates the correlation between correlated model
and present model. Relationship � β indicates that the specified association relationship does not
satisfy the correlation between correlated model and present model by means of fuzzy search combined
with synonym expansion. push_into_list (model, Ω) indicates adding the simulation model into the
model initial set Ω.

Algorithm 1 Semantic_Search

Input: Attributes_conditions [M], the vector for storing model attribute requirements;
Correlated model; Relationship, the relationship with correlated model;
Output: Ω, simulation model initial set;
1: Boolean flag1 ← true , flag2 ← true ;
2: if (Attributes_search_conditions � null)||(Relationship_search_conditions � null) then
3: for each model ∈ Data_Base do // Loop traversal of the simulation model
4: for i ← 0 to M do // Loop traversal of model attribute requirement condition
5: if model ≮ Attributes_search_conditions [i] then flag1 ← false ;
6: end for

7: if relationship (Correlation model, model) � NULL
8: if Relationship � relationship (Correlation model, model)
then flag2 ← false ;
9: else flag2 ← false;
10: if (flag1 & flag2) then push_into_list (model, Ω);
11: end for

12: end if

13: return Ω

4.2. QoS Weighted-Based Simulation Model Selection Method in Cloud Environment

The simulation model that the user needs to use has to not only meet the requirements of
its function but also have high QoS to reach the quality requirements of building complex system
simulation applications. The simulation models obtained under the semantic search framework
proposed in Section 4.1. are not unique, and they have similar functions and attributes, but they differ
in terms of QoS. In order to build higher-quality complex system simulation applications, after the
initial set that meets the search conditions is acquired under the semantic search framework, it is
necessary to order that set through a QoS-based selection mechanism and select the optimal simulation
models from the ordered candidate set, as shown in Figure 4.

Figure 4. Search and selection process of simulation model.

The QoS weighted-based simulation model selection mechanism proposed in this paper can
support users in customizing QoS index weights and selecting the simulation model that satisfies their
QoS preference from the initial set according to the weighted comparison of QoS indices. The specific
method is discussed below.
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Definition of QoS indices. Referring to the QoS indices of Web services and considering the
uniqueness of the simulation model as a kind of special Web service [21,29], the QoS indices of the
simulation model in the cloud environment can be summarized as follows:

1. Model performance (QM) is determined by the computation of the model. A simulation model
with more computations has lower model performance.

2. Communication capability (QC) reflects the communication capability of the link between the
user’s terminal node and the cloud server.

3. Availability (QA) indicates the probability that the simulation model can be called and used. It is
defined by the mean time between failures and the mean time to repair.

4. Reliability (QR) is defined by the execution success rate of the service, which refers to the
probability of obtaining the correct response to the user’s requirements within the maximum
expected time range.

5. Security (QS) is measured by the data management capability of a model service, which mainly
depends on the user’s historical experience. Terminal users should be given a [0, 10] range to
score the service (regarding the confidentiality, integrality, realness, etc., of data) after using it.
Then, the value of QS is the average score; with the increase and accumulation of evaluations, this
value becomes reliable.

QoS weighted-based selection algorithm. The above five attributes (QM, QC, QA, QR, and QS) are
all positive metrics; that is, the higher the value, the higher the quality. In order to eliminate the gap
between the different QoS indices, we used the following formula [22] to limit their values to the range
of [0, 1]:

V
(
Qk

i

)
=

maxQk
i −Qk

i

maxQk
i −minQk

i

. (1)

These five QoS indices are assigned numbers 1–5. Qk
i indicates the value of the ith QoS index of

the kth model in the candidate set, maxQk
i and minQk

i indicate the maximum and minimum values,

respectively, that the QoS index may reach, and V
(
Qk

i

)
indicates the value after standardization of this

QoS index.
After entering the search condition under the search framework, the simulation user also needs to

provide a QoS preference, which is expressed by a weight vector as the following formula:

W = (wi , 1 ≤ i ≤ 5,
∑

wi = 1). (2)

That is, the percentage each QoS index should be accounted for. According to the weight vector
given by the user, the total QoS index of the kth model in the candidate set is

Qk =
5∑

i=1

wi ← V
(
Qk

i

)
. (3)

The model that meets the user’s search conditions under the semantic search framework will be
added to the initial set. According to the weight vector representing the QoS preference provided by
the user, the target QoS index Q of each model in the initial set is obtained by the above formulas.
Finally, the candidate set of simulation models ordered by Q will be provided to the user for selection.
Algorithm 2 shows the QoS weighted-based model selection process.
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Algorithm 2 QoS Weighted-Based_Selection

Input: W, Simulation model QoS index weight vector;
Ω, Simulation model initial set (from Algorithm 1);
Output: Φ, Ordered model candidate set;
1: if Ω � null then

2: for each model ∈ Ω do // Loop traversal of model initial set
3: for each i ← 0 to 5 do // Loop through 5 QoS indices
4: V(Qi) ← maxQi−Qi

maxQi−minQi
// Calculate the standard value of the QoS index

5: Q ← 5∑
i=1

wi·V(Qi) // Calculate the target QoS value of the simulation model

6: push_into_list(<model,Q>, Φ) // Insert the binary <model, Q> into the set Φ
7: end for

8: end for

9: rank_list_by (Φ, Q) // Sort the elements in Φ by Q
10: end if

11: return Φ

5. Case Study: Airport Operation Control System Simulation

An airport operation control system simulation is mainly used to simulate the control and
arrangement of an airport control center in different dispatching strategies. By simulating a period
in the real world, simulation results of airliners’ punctuality rates and average delay times can be
obtained. This complex system simulation provides an effective research method for the scheduling
and control of airliners in airports. The airport operation control simulation system mainly includes
airliner, airport runway, and air traffic control center (ATC) models. The airliner model records the
delay time and has three statuses: taking off, landing, and waiting. The airport runway model records
the idling and queuing status of runway. The ATC model needs to do many complex calculations
based on relevant strategy, queue waiting of runways, and delay time of airliners, and then schedule
the relevant airliners to wait on specified runways. Therefore, it takes much more time to calculate
than the other two models.

The abovementioned airport operation control system simulation was used as an experimental
case to analyze the efficiency and practicability of the service-oriented model encapsulation and
selection method for complex system simulation based on cloud architecture proposed in this paper.
The simulation platform used in the case study was SUPE, and all experiments were run on two
computing nodes with a Linux (centos7) operating system. Each node was equipped with a 3.40 GHz
Intel (R) Core (TM) i7-6700 quad core CPU processor. Docker (version 1.13.0) container technology
was used as a virtualization method to build a two-node cloud architecture, in which the distributed
operation of the airport operation control simulation system was implemented. In the experiment, a
simulation time was set up corresponding to the physical time of 10 min to study the actual system
of 1 week (7 days), so each simulation promoted the logical simulation time of 1008. The time that
was measured in the test was the execution time when the simulation application finished the 1008
simulation steps (logical simulation time). Each piece of experimental data in the analysis chart was
the average value after 10 test runs. The experimental configuration is shown in Table 1.

Table 1. Experimental configuration.

Experimental Parameters Description/Value

Number of airliners (50, 250)
Number of airport runways 5
Number of air traffic control centers 1
Scheduling policy Punctuality prioritized
Simulation run time 1008
Model distribution mode Scatter, model servitization
Degree of parallelism 1, 2, 4
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5.1. Performance Evaluation

5.1.1. Cloud-Architecture-Based Distributed Simulation (CDS)

In order to test the performance of the CDS (which refers to the architecture, the computing nodes
of which communicate by a cloud architecture network), this experiment tested the execution time of
the airport operation control simulation application under three operation modes: serial simulation
on a single process in a single node (S-1P), traditional distributed simulation (TDS, which refers to
the architecture, the computing nodes of which communicate by local connection) on two processes
(TDS-2P, per process per node), and CDS on two processes (CDS-2P, per process per node) based on the
above experimental parameter settings. TDS-2P and CDS-2P used the scatter distribution method (each
type of simulation model was distributed to each process in turn), and each process ran in one node.

As shown in Figure 5, when the number of airliner instances was 50, 100, 150, 200, and 250,
compared with the running time of the simulation application using the S-1P operation mode, both the
CDS and TDS could reduce the running time of the simulation application and improve the execution
efficiency. As the number of airliner instances increased, because the model distribution mode was
scatter, the amount of computation assigned to each process would get closer to being equal. So, the
running time of TDS-2P and CDS-2P would get closer to half that of S-1P. Compared with TDS, the
performance of the CDS lost an average of 5.37% in five sets of experiments. This is because in the
cloud architecture, Docker container technology uses virtualization to isolate interprocess resources.
In CDS, processes at different nodes need to communicate through virtual addresses, which leads to
higher communication latency than TDS. However, cloud computing has the advantages of computing
resources being used on demand and service models being shareable, which would balance such
performance loss. Therefore, it is feasible to use CDS architecture to run complex system simulations.

Figure 5. Running times of serial simulation on a single process in a single node (S-1P), traditional
distributed simulation on two processes (TDS-2P), and cloud-architecture-based distribution on two
processes (CDS-2P).

5.1.2. Model Servitization

This experiment packaged the simulation models with large computational requirements into a
shareable simulation service through the C-RUM specification. The service model ran in parallel on a
single process of a cloud server node, participating in the execution of a complex system simulation
application in the cloud-based simulation model service framework (model servitization, MS). In
order to study its performance, the case study encapsulated the ATC model, which has a greater
number of calculations than the other models, into a service model based on the C-RUM specification.
Then, we tested the effect of using scatter and MS distribution methods under CDS (Scatter-CDS and
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MS-CDS) on simulation execution time. The specific operation and distribution modes are shown in
Figure 6. The experiment used two-process (per process per node) and four-process (two processes
per node) parallel simulation to test the performance of Scatter-CDS and MS-CDS (Scatter-CDS-2P,
MS-CDS-2P, Scatter-CDS-4P, and MS-CDS-4P). The MS distribution method operated the service model
separately in one process, and the remaining models were distributed to the rest of the processes using
scatter distribution.

Figure 6. Operation and distribution modes.

The results of the test are shown in Figures 7 and 8, compared with the execution time of the
simulation application by S-1P operation mode: (1) In the two-process parallel operation mode, when
the number of airliner instances was less than 150, MS-CDS-2P was better able to reduce the execution
time of simulation applications than Scatter-CDS-2P and had a higher running time speed-up ratio.
However, when the number of airliner instances exceeded 150, the computation load was more
unbalanced on two computing nodes, and the speed-up ratio of MS-CDS-2P gradually decreased
and became even lower than that of Scatter-CDS-2P. (2) In the four-process parallel operation mode,
MS-CDS-4P was better able to reduce the execution time of the simulation application and had a higher
speed-up ratio (execution performance) than Scatter-CDS-4P when instantiating the number of airliners
from 50 to 250. When the number of airliners was 250, the execution performance of MS-CDS-4P
improved by 35.28% compared with Scatter-CDS-4P.

Figure 7. Running times of S-1P, Scatter-CDS-2P, model servitization (MS)-CDS-2P, Scatter-CDS-4P,
and MS-CDS-4P.

278



Entropy 2019, 21, 891

Figure 8. Speed-up ratios of S-1P, Scatter-CDS-2P, MS-CDS-2P, Scatter-CDS-4P, and MS-CDS-4P.

Through the experimental results and analysis, we found that packaging models with large
computational loads into a shareable service, on the one hand, can provide support for quickly
constructing the simulation system in the form of service combination. On the other hand, it can
effectively improve the execution efficiency of the simulation system. Also, when the total calculation
of the remaining models is gradually increased, the degree of parallelism should be increased to
ensure load balancing, so as to maximize the effect of MS on increasing the execution efficiency of
simulation applications.

5.1.3. Simulation Model Selection Method Based on Semantic Search

In order to prove the practicability of the simulation model selection method based on semantic
search proposed in this paper, five kinds of ATC service models with different QoS attribute
characteristics were constructed by C-RUM specification. A simulation model description method
based on a knowledge graph [28] was used to describe the simulation models of the airport operation
control system simulation. The description information was added to the database that stored the
model description knowledge graph (a knowledge graph that contained the description information
of a large number of different models in various fields). Algorithm 1 was implemented by Cypher
query language [30], and the semantic search framework was built in the model description knowledge
graph database to find the required models. Then, based on Algorithm 2, according to different QoS
index weight vectors, the simulation model candidate set with optimization order could be obtained
for users to choose.

Under the simulation model semantic search framework, the five ATC service models (ATC-A,
ATC-B, ATC-C, ATC-D, and ATC-E) could be accurately found by correlation with the airliner or
runway model or by the attributes of the ATC model. These five models were added to the initial model
set, and then based on the QoS index values of the five simulation models and QoS index weight vector,
the target QoS value Q of each model could be obtained. The simulation model candidate set that was
obtained by sorting Q was available for users to select. The experiment assumed that the user wants
to select the service model that can optimize the execution efficiency of the simulation application.
Directed at two operation modes, two QoS index weight vectors for different experimental methods
were provided to select simulation models. The effectiveness of the semantic search framework and
the QoS weighted-based model selection method was verified by running and testing the performance
of the simulation application that was assembled by the selected ATC models

(1) When the entire simulation system is running on a single node, the external network
communication capability Qc does not affect the execution efficiency of the simulation application.
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The model performance QM dominates the effect (the other three QoS indices may have little effect on
the execution efficiency), so the QoS index weight was set to W = (0.7, 0, 0.1, 0.1, 0.1), and the specific
selection process is shown in Table 2.

Table 2. Selection process 1.

QoS1 [0,100] QoS2 [0,100] QoS3 [0,1] QoS4 [0,1] QoS5 [0,10] Q

ATC-A 85 (0.85) 83 (0.83) 0.98 0.9 9 (0.9) 0.873

ATC-B 65 (0.65) 55 (0.55) 0.96 0.92 9 (0.9) 0.733

ATC-C 92 (0.92) 52 (0.52) 0.95 0.92 10 (1) 0.931

ATC-D 71 (0.71) 70 (0.7) 0.97 0.93 10 (1) 0.787

ATC-E 74 (0.74) 65 (0.65) 0.95 0.91 9 (0.9) 0.794

W = (0.7, 0, 0.1, 0.1, 0.1)

Ordered candidate set: {ATC-C, ATC-A, ATC-E, ATC-D, ATC-B}

The QoS weight vector gave a large weight to QM, and the optimized candidate model set {ATC-C,
ATC-A, ATC-E, ATC-D, ATC-B} could be obtained through calculation. The five ATC service models
were assembled, respectively, to the same five airport operation control simulation systems, and the
airliner instance was set to 100. The execution times of the five simulation applications operated by
S-1P are shown in Figure 9.

Figure 9. Running times of the five simulation systems (1).

These applications could run effectively, and it can be seen that in S-1P operation mode, the
order of the ATC models corresponding to the execution efficiency of the five simulation applications
was consistent with the optimization order in the model candidate set. The simulation application
assembled by the model ATC-C, which ranked first in the candidate set, had the shortest running time
(3234 s).

(2) In cloud architecture, shareable simulation services are often stored in the cloud center.
The service model and simulation engine framework need to communicate through network
interconnection. Both QC and QM of the simulation service model affect the execution efficiency of the
simulation application, so the QoS preference weight vector was set to W = (0.35, 0.35, 0.1, 0.1, 0.1).
The specific selection process is shown in Table 3.
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Table 3. Selection process 2.

QoS1 [0,100] QoS2 [0,100] QoS3 [0,1] QoS4 [0,1] QoS5 [0,10] Q

ATC-A 85 (0.85) 83 (0.83) 0.98 0.9 9 (0.9) 0.866
ATC-B 65 (0.65) 55 (0.55) 0.96 0.92 9 (0.9) 0.698
ATC-C 92 (0.92) 52 (0.52) 0.95 0.92 10 (1) 0.847
ATC-D 71 (0.71) 70 (0.7) 0.97 0.93 10 (1) 0.7835
ATC-E 74 (0.74) 65 (0.65) 0.95 0.91 9 (0.9) 0.752

W = (0.35, 0.35, 0.1, 0.1, 0.1)

Ordered candidate set: {ATC-A, ATC-C, ATC-D, ATC-E, ATC-B}

The QoS weight vector assigned the same weight to QC and QM. After calculation, the optimized
candidate model set could be obtained as {ATC-A, ATC-C, ATC-D, ATC-E, ATC-B}. The five ATC
service models were assembled, respectively, to the same five airport operation control simulation
systems, and the airliner instance was set to 100. The execution times of the five simulation applications
operated by MS-CDS-2P are shown in Figure 10.

Figure 10. Running times of five simulation systems (2).

These applications could run effectively, and it can be seen that in MS-CDS-2P operation mode, the
order of the ATC models corresponding to the execution efficiency of the five simulation applications
was not completely consistent with the optimization order in the model candidate set. Because the QoS
weight vector W was set merely according to the experimental architecture without detailed analysis,
it was impossible to accurately quantify the extent to which the model performance QM and network
communication capability QC affected the entire execution efficiency of the simulation application.

The experimental results show that the searched model can work together with other models
and implement the simulation task, which verifies the effectiveness of the semantic search framework.
Further, the proposed QoS-based simulation model selection method can support users in selecting
the model which has the biggest target QoS index (Q) according to their QoS preference. However,
it cannot always give the optimum solution that could optimize a certain performance (execution
efficiency) of a complex simulation system.

5.2. Discussion

The experiment first tested the performance of the simulation application under three patterns:
S-1P, TDS-2P, and CDS-2P. The results prove that, compared with TDS, CDS can also effectively improve
the execution efficiency of the simulation application with little performance loss, which demonstrates
the practicability of CDS. Experiment 2 encapsulated the models with large computational loads
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into shareable services in the cloud environment by the C-RUM specification proposed in this paper.
Then, by comparing the performance of MS-CDS and Scatter-CDS, the results prove that the MS
distribution mode is better than the traditional scatter distribution mode at improving the execution
efficiency of complex system simulation. This demonstrates the feasibility of C-RUM specification
in cloud networking architecture and the effectiveness of the method, making the models with large
computational loads into shared services, proposed in this paper. In experiment 3, the required
ATC models were found under the proposed semantic search framework by attributes or correlation
searching in the model description knowledge graph. The experiment assembled the searched model
into the simulation application of the case study and verified that it can work together with other models
and effectively implement the simulation task, which verified the correctness of the semantic search
framework. Then, the model ranking based on the QoS weighted selection method was compared
with the ranking of the execution time of actual simulation systems assembled by the models in the
candidate set. This proved that the proposed QoS weighted-based simulation model selection method
can select simulation models according to users’ customized requirements, but the solution is not
always the optimum one that could optimize the performance of the complex system simulation.

6. Summary and Future Work

A service-oriented model encapsulation and selection method for complex system simulation was
proposed in this paper. This method first promotes the original RUM specification and puts forward
C-RUM specification, which solves the problem of network communication in RUM specification.
Models with large computational requirements are encapsulated into shareable services in the cloud
architecture. The experimental results showed that model servitization can effectively improve the
execution efficiency of complex system simulation applications. Then, the model semantic search
framework is built in the simulation model description knowledge graph, which increases the
correlation search ability compared with other semantic search methods. The QoS weighted-based
model selection method supports users in customizing the weight of QoS indices and obtaining the
ordered candidate model set by weighted comparison. This mechanism can support the selection of
the required simulation model that satisfies users’ QoS preference under the cloud architecture.

Future work should further improve the QoS weighted-based simulation model selection method,
considering the limitation that it cannot assist users in selecting the optimal simulation service
model directed at a specific simulation application or its certain performance. Also, future research
should confirm the metric of the model QoS indices and study how to assign the corresponding QoS
index weights.
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Abstract: In social networks comprised of positive (P) and negative (N) symmetric relations, individuals
(nodes) will, under the stress of structural balance, alter their relations (links or edges) with their
neighbours, either from positive to negative or vice versa. In the real world, individuals can only observe
the influence of their adjustments upon the local balance of the network and take this into account when
adjusting their relationships. Sometime, their local adjustments may only respond to their immediate
neighbourhoods, or centre upon the most important neighbour. To study whether limited memory
affects the convergence of signed social networks, we introduce a signed social network model, propose
random and minimum memory-based sign adjustment rules, and analyze and compare the impacts
of an initial ratio of positive links, rewire probability, network size, neighbor number, and randomness
upon structural balance under these rules. The results show that, with an increase of the rewiring
probability of the generated network and neighbour number, it is more likely for the networks to globally
balance under the minimum memory-based adjustment. While the Newmann-Watts small world model
(NW) network becomes dense, the counter-intuitive phenomena emerges that the network will be driven
to a global balance, even under the minimum memory-based local sign adjustment, no matter the
network size and initial ratio of positive links. This can help to manage and control huge networks
with imited resources.

Keywords: structural balance; minimum memory based sign adjustment; social networks; NW network;
convergence

1. Introduction

Structural balance theory has attracted many researchers from different fields to study signed social
networks, which are composed of positive (P) and negative (N) edges defined on a set of n individuals
(nodes) [1–10]. The most interesting question is whether (and how) the signed social networks can evolve
to a balanced and steady structure under individual stress-reducing adjustments. Pioneering research into
classic structural balance theory and empirical studies can be found in [1,2,5,6,11–15].

Many different assumptions on stress reduction in signed networks under local adjustment have
been designed to check whether the network will reach a global balance [5,6,9,13,16–21]. Rules which
mix imbalance stress reduction with homophily and other bilateral pressures have also been proposed,
such as those found in [8,15,22,23].

Other researchers, considering the amount of information that a node holds, proposed some “global”
and “local” sign adjustments, including add and delete mechanisms [6,19]. Under a global adjustment
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mechanism, individuals are all granted information about the whole network and can take this into account
in their sign adjustments. However, under local mechanisms, individuals can only assay the factors in their
local neighbourhood [13,24]. Local angle- or information-based sign adjustment mechanisms often cause
global turbulence and imbalance in the network.

Alter mechanisms are based upon socio–psychological insights and claim to reflect individuals’
real processes. With limitations in information access, the calculative ability of individuals becomes
constrained to the cognition span of their neighbourhoods [20,25,26]. Montgomery [20] reformulated
balance theory, by allowing actors to possess an incomplete awareness of the evaluations held by other
actors and by adopting balance closure (modified to allow incomplete awareness) as an equilibrium
concept. Their analysis revealed that an actor’s “indirect awareness” of imbalance is necessary but not
sufficient for that actor’s ambivalence in the balance closure. Volstorf [25] proposed that, with increasing
size of the interaction group, the memory becomes error-prone in the game and individuals may categorize
partners into types to decrease memory effort. A memory test showed that 126 recruited participants
from Berlin universities could remember rare partner types better than they remembered common ones.
The authors also proposed an ecologically rational memory strategy in social interactions. Brashears [26]
constructed a mathematical model of the evolution of relationships and explored the consequences
of triadic interaction rule for the relation of nations and on the polarity configuration of a system of nations,
and found that a special triadic interaction rule produced only two long term triadic configurations:
unipolarity and bipolarity.

Individuals can only remember details of interactions with important friends and enemies
accumulated in their life histories [27]. Limited information affects the decisions of an individual in many
ways. Kottonau [28] presented an agent-based computational model, a memory model of new product
diffusion within a consumer social network on the micro level, and discussed the effect of memory level
on habit breaking and product adoption. Winke and Stevens [29] investigated the specificity of memory in
co-operative contexts and found that memory accuracy is robust to differences in the cooperative context;
however, the social network size did correlate with memory accuracy. Their findings suggested that
the demands of interacting in a large social network may require excellent memory. Hassanibesheli [27]
investigated how history (or memory) has global consequences on the evolution of a signed social system.
They found that past relations surely impact on the evolution of the system and will prolong the time
necessary to reach “balanced states”, but do not change the dynamical attractors of the system.

With increases in network size, type, and scale, social networks have become more and more
complex. One feasible way to study a social network is with a computer-generated network model.
Experiments and simulation results on letter pass networks [30,31], actors collaborate networks [32,33],
organize networks [34,35], co-authorship networks [36,37], telephone calls networks [38,39], and email
networks [40] have showed that social networks are characterized as “small-world” and with
“six degrees of separation”. The computer-generated network model plays an important role in social
network analysis.

Based upon these considerations, the paper proceeds as follows: in Section 1, we introduce the basic
signed social network model. In Section 2, we analyze network fluctuations under randomly chosen node
sign adjustment. In Section 3, we propose a minimum memory-based sign adjustment rule and study
the impacts of the initial ratio of positive links α0, the rewire probability pr, network size, neighbour
number K, and randomness upon structural balance. Finally, the paper summarizes in Section 4.
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2. The Network Model and Sign Adjustment Rules

2.1. The Signed Social Network Model

With the objective of eventually studying the balancing adjustment of signed social networks
and considering (as mentioned above) that most social networks are small world networks, we initially
built a signed social network Newman–Watts small world model (NW model) [41]. The growth (formation)
process of this network model is as follows:

Signed NW network model:

1. The network is assigned n nodes and a regular ring lattice is constructed on the nodes, where each
node is connected to a total of K neighbours, each side with K/2 neighbours (where K is even integer).

2. Select all node pairs in turn.
3. Add links between the selected node pairs with probability pr, if no self-loops and link duplication.

We name the probability pr as the rewiring probability.
4. Each symmetric link is randomly set to a positive sign with a probability of α0 and to negative

with a probability of 1 − α0.

We use Ti(i = 0, 1, 2, 3), to represent the numbers of the four kinds of three-cycles, where the subscript
i represents the number of positive links in the cycle. For example, T3 is a balanced three-cycle in which all
three edges are positive. According to classical structural balance theory, as showed in Figure 1, T0 and T2

are imbalanced triangles and T1 and T3 are balanced triangles.
The density of the NW network will increase with pr as

Density ≈ (
nK
2

+ (
n(n − 1)− nK

2
)pr)/(

n(n − 1)
2

) = (
n − K − 1

n − 1
)pr +

K
n − 1

. (1)

So, according to the structure balance theory I, the initial expected balance of a structure is

β(3) =
pT1 + pT3

pT0 + pT1 + pT2 + pT3

= 3α0(1 − α0)
2 + α3

0. (2)

i

j k

T3

i

j k

T1

i

j k

T2

Positive edge Negative edge

T0

i

j k

Figure 1. Four kinds of triangle: T0, T1, T2, and T3. The solid and dashed lines, respectively, represent
the positive and negative links in triangles. T1 and T3 are balanced triangles. T0 and T2 are imbalanced
triangles. For example, if the selected imbalanced cycle is a T2 cycle in the middle and the selected duty
node is i, then changing the sign of either the red link i − j or blue link i − k can change the imbalanced
cycle T2 to a balanced cycle T3 or T1.
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2.2. Random Adjustment Rule

Following [17], individuals in the generated social network, under the stress from imbalanced
three-cycles, may adjust the cycles in which they are located. Today, with information blast and the increase
of network size, the ratio of information that individuals can hold become less. If individuals are extremely
short-sighted, they will randomly and locally adjust only one selected three-cycle, as if they have zero
memory about their neighbour. We call this rule the random adjustment rule. The iterative adjustment
process is accomplished as follows:

1. Randomly select a three-cycle from the network.
2. If the selected cycle is balanced, then return to step 1.
3. If the cycle is imbalanced, select any one of its constituent nodes as the “duty node” and change

the sign of any one of duty node’s two links, in order to achieve balance in the cycle.

Note that all nodes, under this iterative adjustment rule, are selected with equal probability; none
has priority. Of course, with the process of effective adjustment, there will be fewer imbalanced triads.
According to the adjustment rule, the selection probability of all nodes are the same, but their subsequent
actions are different. Nodes in an imbalanced triad may change their sign, but nodes in a balanced triad
will be kept the same. In each step, as soon as the duty node has successfully changed one sign in its links,
all other nodes in the network are refreshed with this information. This means that all adjustment is open
and transparent. Obviously, this adjustment is entirely random and does not take any local information,
let alone global information, into account. As the network is incomplete, each edge may belong to many
three-cycles and, so, the sign adjustment of one edge may “infect” the balance of the other three-cycles
to which this edge belongs. The random adjustment may generate new and more imbalanced 3-cycles
in the process of solving the imbalance problem of the selected three-cycle.

2.3. Minimum Memory-Based Sign Adjustment Rules

Simulation results under random sign adjustment rules have showed that the network will become
random and imbalanced. Thus, the question arises as to how the network will evolve in the case where
an individual has little memory about their neighbours. In the real world, amongst large groups of friends,
only several best friends keep in touch regularly and develop bonds which probably materially affect their
behaviour (the memory in this paper is the number of neighbours that each node can remember and will
take into account while the node adjusts its sign. This is different from the historic memory of relation
and adjustment in [27]). Thus, one may assume that limited memory is more grounded in reality.

We firs, consider the simplest condition, where only the attitude of one important neighbour is taken
into consideration. We name this the minimum memory-based sign adjustment rule. The sign adjustment
rule is as follows:

1. Set all nodes to remember only one of their most important neighbours (regardless of whether
it is friend or enemy). At the beginning of the simulation, each node randomly selects one neighbour
from amongst all of its neighbours to compose its close neighbour set.

2. Select a three-cycle at random from the network.
3. If the cycle is balanced, then return to step 2.
4. If the cycle is imbalanced, randomly select one of its nodes as the duty node.
5. Change the sign of any one of the two edges which link the duty node in the cycle if the sign change

can strictly increase the balance ratio of the duty node with his best neighbour.

Note that the relationship between node and its close neighbour can be negative. The close neighbour
set of each node does not change over the whole life cycle.
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3. Results and Discussion

The evolution of NW networks under the sign random adjustment are depicted in Figure 2.
The results in Figure 2 indicate that, under the random sign adjustment rule, the NW network

became imbalanced and disorderly, no matter the initial ratio of positive links, the rewiring probability
pr, the neighbour number K, and the network size n. The numeric value of the balance ratio of social
networks converged to β(3) ≈ 0.5, T1, T2 ≈ 3/8, and T0 = T3 ≈ 1/8. The network was imbalanced,
and nodes kept adjusting their signs randomly. The ratios of different three-cycles were statistically stable.
The results verify the ordinary common-sense that local balance optimization can not let a network reach
a global balance.

× × × × × × × ×

Figure 2. The evolution ratio of different three-cycles in the Newmann-Watts (NW) network under the sign
random adjustment rule. The horizontal axis is the simulation time t. The vertical axis gives the ratio
of three-cycles. The sampled plot in (a) gives the results for a NW network with parameters n = 100, K = 4,
pr = 0.2, and α0 = 0.2. In (b), the network parameters are n = 100, K = 4, pr = 0.8, and α0 = 0.8.

Figure 3 depicts the simulation results in social networks.
The results in Figure 3 show that:
(1) While the rewire probability was lower (pr = 0.2), as showed in the upper two panels of Figure 3a,b,

the NW network could not reach a global balance β(3) = 1, but converged to an imbalanced state
with a stable value β(3) �= 1. The size of this stable value is jointly impacted by the other variables.

(2) With an increase of the rewiring probability pr, as in the bottom Figure 3c,d, the NW network
became denser. If the rewire probability was high enough (e.g., pr = 0.8), under the minimum
memory-based sign adjustment, the NW network reached a global balance β(3) = 1.

(3) A comparison of Figures 2 and 3 shows that random adjustment could not lead network to global
balance; however, under the memory-based sign adjustment rule, even though it was a minimum memory
with only one fixed neighbour, the network could (but not surely) converge to a global balance.

To see whether convergence to global balance was dependent on any other variables, such as network
size K, rewire probability pr, and initial ratio of positive links α0, we simulated the network evolution
under the independent influence of these variables.
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× × × ×× × × × × ×
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Figure 3. The evolution ratio of different 3-cycles in the NW network under the minimum memory-based
sign adjustment rule. The horizontal axis is the simulation time t. The vertical axis gives the ratio
of three-cycles. (a) shows the results for a NW network with parameters n = 50, K = 4, pr = 0.2,
and α0 = 0.2; (b) is a network with n = 50, K = 4, pr = 0.2, and α0 = 0.8; (c) gives the results for a NW
network with n = 50, K = 4, pr = 0.8, and α0 = 0.2; and (d) is a network with n = 50, K = 4, pr = 0.8,
and α0 = 0.8.

The results in Figure 4 show that
(1) In Figure 4a, where the rewire probability was pr = 0.2, if the initial ratio of positive links

α0 was less than about 0.7, the NW network converged to an imbalanced steady state, β(3) ≈ 0.58,
and could not converge to a global balance β(3) = 1. If α0 > 0.7, the convergent value of β(3) increased.
The bigger the value of α0, the greater of balance ratio β(3) was. The reason for this is that, while α0 > 0.7,
the NW network initially had more positive links, and global balance was possibly close to the initial state.

(2) If the rewire probability was pr = 0.8, as shown in Figure 4b, no matter the value of the initial
ratio of positive links, the ratio of balanced 3-cycle converged to β(3) ≈ 0.99, and the NW network nearly
reached a global balance. (In Figure 4b, the steep drop in value of β(3) ≈ 0.955 while pr = 0.5 is an effect
of the randomness). The trend of all nodes becoming a homophily could not be influenced by the initial
ratio of positive links.

(3) In most conditions, except where the initial ratio of positive links was at its maximum value (1)
or minimum value (0), the convergence of NW network and its convergent value of β(3) were immune
to the initial ratio of positive links α0.
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Figure 4. The impact of initial ratio of positive links α0 on NW network evolution under the minimum
memory-based sign adjustment rule. The horizontal axis is the initial ratio of positive links α0. The vertical
axis is the ratio of balanced 3-cycles. Each data plot is the average value of 10 simulations and each
simulation lasted 5000 steps. The rewire probability was pr = 0.2 in (a) and pr = 0.8 in (b).
The other variables were fixed at n = 100 and K = 4.

In Figure 4, the results indicate that β(3) could be influenced by rewire probability pr. To see how can
rewire probability independently impacted on the NW network’s convergence, we conducted another
simulation, as follows:

These results in Figure 5 show that
(1) The curve in Figure 5a was similar to the curve in Figure 5b. Once again, this result verified

the conclusion that the initial ratio of positive links had little influence on NW network’s evolution,
except for when it was close to zero or unity.

(2) While the rewire probability was small (pr < 0.5), the NW network, under the minimum sign
adjustment rule, could not converge to a global balance but, instead, converged to an imbalanced stable
state β(3) ≈ 0.6; no matter the value of the initial ratio of positive links.

(3) If the rewire probability was bigger than about 0.7, the NW network converged to a global balance
β(3) = 1. This convergence was immune to the initial ratio of positive links α0.

(4) While the rewire probability was about pr ≈ 0.6, whether the network could converge to a global
balance or not was random and may have been influenced by random factors in the NW network model
and the sign adjust process.

(5) In Figure 5, a critical value (which also can be named as the chaotic area), of rewire probability
pr ≈ 0.6 emerged clearly. If the rewire probability exceeded the critical value pr ≈ 0.6, the NW network
converged to a global balance β(3) ≈ 1; the NW network became a homophily group and was divided
into two opposite subgroups, with positive links inside the subgroup and negative links among them.
If the rewire probability was pr < 0.5, the balance ratio of the NW network converged to about β(3) = 0.58,
indicating an imbalanced network.

(6) With an increase of the rewire probability, the NW network became denser. While pr = 0.6,
the density of the network with 100 nodes was about 0.616, according to Equation (1) in Section 2;
the influence of sign adjustment could spread to whole network and lead these networks to a global balance
easily, even when the adjustment was based on minimum memory (only taking one fixed neighbour’s
attitude into account). When the rewire probability was lower (pr < 0.5), the NW network was sparser,
with fewer three-cycles. The adjustment of each imbalanced three-cycle had a weak influence and
could not spread its influence to other three-cycles quickly. When the rewire probability was very
small, there were only a few, maybe several, three-cycles in the NW network. Among these fewer
three-cycles, if parts of an imbalanced three-cycle were not constituted by the node’s close neighbour,
then the adjustment of these imbalanced three-cycles had no influence on node’s local balance ratio with
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his close neighbour. Thus, these imbalanced three-cycles, although imbalanced, were kept unchanged
throughout the whole simulation.

Figure 5. The impact of rewire probability pr on NW network evolution under the minimum memory-based
sign adjustment rule. The horizontal axis is the rewire probability. The vertical axis is the ratio of balanced
three-cycles. Each data plot is the average value of 10 simulations and each simulation lasted 50,000 steps.
The initial ratio of positive links was α0 = 0.2 in (a) and α0 = 0.8 in (b). Other variables were fixed
at n = 100 and K = 4.

From the results in Figures 4 and 5, we observed the emergence of a critical value of the rewire
probability and that the convergence behaviour was independent of the initial ratio of positive links.
To check whether the critical value and balance ratio were impacted by network size and neighbour K,
we conducted another simulation, and obtained the following results:

The results in Figure 6 indicate that
(1) With an increase of K, the network became denser and the influence of each sign adjustment

could affect more nodes. So, the convergent value of the ratio of balanced 3-cycle increased, as shown in
Figure 6a. What we should emphasize here is that, when K was big and the rewire probability was very
small, although the network was dense, the network had few triangles and the balance ratio was hard
to increase. Thus, while two networks were of the same density, the small K, big pr network was better
than big K, small pr network, as more cycles contributed towards faster convergence to a global balance.

(2) The results in Figure 6b show that network size had little influence on the convergence trend
of a network. The shape of the curve in Figure 6b is similar to these curves in former Figure 3 When
the network size was smaller (e.g., n = 20, as shown in Figure 6b), even though the rewire probability
was small, the ratio of balanced three-cycle could reach about 0.82. The reason for this is that, in a small
network, each sign adjustment has a larger influence, relative to that in a huge network, and will spread
its sign adjustment influence quicker and widely.

(4) Network size had great influence on the converge time. While the network was small, each sign
adjustment had a comparatively greater influence on the whole network, and the network easily converged
to a global balance.

(5) When the network became large, the number of required simulation iterations increased very
quickly, as it is very hard for a huge network to converge to global balance. For example, if a complete
connected network’s size is 500, then each node has C2

499 = 124,251 triangles, but only 498 related triangles
contain both duty nodes and its only remembered neighbour, simultaneously. So, in each iteration,
the probability of selecting one related triangle is 498/124,251 = 1/499 ≈ 0.002. Furthermore, not every
related triangle is imbalanced and needs to adjust. Only imbalanced triangles need adjustment.
The probability that the related triangle is imbalanced is 3(α0)

2(1 − α0) + (1 − α0)
3. For example,

if α0 = 0.8, the initial balance ratio of this complete connected network is about 3× 0.8× 0.22 + 0.83 = 0.608.
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The initial probability to select a useful imbalanced and related triangle in one iteration in a completely
connected network is about 1

499 × 0.608 ≈ 0.00122. This value is very small, and will become even
smaller with the evolution of the network, with the increase of a0. This means that only in about one
in about every 820 iterations can the network adjust to become little more balanced. Every useful sign
adjustment of an imbalanced triangle can only enhance the balance ratio of whole network β(3) by about
6/C3

500 ≈ 0.000000048. To reach global balance β(3) = 1, then, the network will need somewhere around
(1−0.608)×C3

500
6 × 499

0.608 ≈ 1.11× 109 iterations, on average. Under the same conditions, a complete connected

network of size 100 will only need (1−0.608)×C3
500

6 × 99
0.608 ≈ 1.72 × 106 iterations. The needed convergence

time is T(n) = O(n4). So, the time needed for a huge network to converge to a global balance will increase
quickly and the computation time become very very long for large networks.

Figure 6. The independent influence of the parameter K and network size n on ratio of balanced 3-cycles.
The horizontal axis is K/2 in (a) and rewire probability in (b). The vertical axis is the ratio of balanced
3-cycles. The network size was 100 in (a) and 20 in (b). Other variables were fixed at pr = 0.2 and α0 = 0.2.

As the NW network was created by the NW model, the created NW networks were not absolutely
the same, as there was randomness in the NW model. The sign adjustment process will also be impacted
by the randomness of the node and cycle selection. To see whether this randomness affected the network
convergence trends and values, we carried out a deviation analysis, as shown in Figure 7.

Figure 7. The standard deviation analysis of the ratio of balanced three-cycles. The horizontal axis
is the rewiring probability. The vertical axis is the ratio of balanced 3-cycles. The blue line is the average
value of 50 trials under the same conditions. The green and black lines are the maximum and minimum
values among the 50 trials. The red line is the standard deviation of these 50 trials. Each data plot shows
the evolution simulations of 20,000 iterations in (a) and 260,000 iterations in (b). The other variables were
fixed at n = 100, K = 4, and α0 = 0.2.
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From the results shown in Figure 7, we can see that
(1) The influence of random factors decreased with the length of the simulation time and number

of iterations.
(2) When the simulation time was short and rewire probability small, as shown in Figure 7a,

the network converged quickly, for there were fewer links and triangles in the network. The standard
deviation was lower, and the maximum, average, and minimum values were very close. With increased
rewire probability, the standard deviation enlarged and the gap between the maximum and minimum
values expanded. With pr > 0.6, some lucky networks had already reached a global balance β(3) = 1,
as shown by the yellow dashed line; however, some unlucky networks were still imbalanced, and could
not reach a global balance, even when the rewire probability was near unity. The randomness in the sign
adjustment process could not ensure that every triangle became balanced.

(3) With a longer simulation time, as showed in Figure 7b, and high rewire probability, a denser
network also consistently converged to a global balance. The standard deviation decreased with the
number of simulation iterations. This result also, indirectly, verified our former conclusion in Figure 6b.

(4) When the rewire probability was close to pr = 0.5, the above-mentioned chaotic area emerged,
and the influence of randomness was greater. This result is similar to the results in [42,43].

4. Conclusions

We have studied the influence of random and minimum memory-based sign adjustment rules
on the evolution of signed social networks and analyzed the impacts of the initial ratio of positive
edges α0, the rewiring probability pr, network size, neighbour number K, and randomness upon
the balancing convergence value. We found that the minimum memory-based sign adjustment can
lead to a network global balance if the rewire probability in the NW network exceeds a critical value.
With larger rewire probability, the network is denser and it is easier for the influence of each sign adjust
to spread to the whole network.

This discovery can help researchers to judge whether an opinion change will spread to the whole
network and help network designers to manage and control large social networks. In this paper,
we only studied two kinds of simple sign adjustment in the NW network model and the influence
of some network characters, some other characters of the social network may also have an important
influence on the network evolution. For example, the cluster coefficient, as an index of triangle
density in the network, may restrict the influence area of each balance adjustment and, so, may affect
the convergence or converge speed of the network. Thus, future research should include the impact
of the network model, distribution of degree, cluster coefficient of social networks, and incorporate
real adjustment rules, according to empirical observations of the people in and the evolution
of real social networks.
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Abstract: The real world is full of rich and valuable complex networks. Community structure is
an important feature in complex networks, which makes possible the discovery of some structure
or hidden related information for an in-depth study of complex network structures and functional
characteristics. Aimed at community detection in complex networks, this paper proposed a membrane
algorithm based on a self-organizing map (SOM) network. Firstly, community detection was
transformed as discrete optimization problems by selecting the optimization function. Secondly,
three elements of the membrane algorithm, objects, reaction rules, and membrane structure were
designed to analyze the properties and characteristics of the community structure. Thirdly, a SOM
was employed to determine the number of membranes by learning and mining the structure of
the current objects in the decision space, which is beneficial to guiding the local and global search
of the proposed algorithm by constructing the neighborhood relationship. Finally, the simulation
experiment was carried out on both synthetic benchmark networks and four real-world networks.
The experiment proved that the proposed algorithm had higher accuracy, stability, and execution
efficiency, compared with the results of other experimental algorithms.

Keywords: community detection; membrane algorithm; self-organizing map network; complex
networks; optimization

1. Introduction

Many networks can be simulated by complex networks, such as social networks, biological
networks, and the World Wide Web. The study of complex networks is increasingly attracting the
attention of researchers from many different fields. These complex networks are represented by nodes
and edges. In order to clearly understand the structural characteristics and functional characteristics
of complex networks, finding the relationship between these nodes and edges is especially important
for studying the composition of the network and understanding the functional characteristics of
the network. As a method to revealing the relationship between nodes and edges in the network,
community structure has become a hot research topic in network science. More and more researchers
are paying attention to community detection problems in complex networks [1–3].

There are many algorithms for studying community detection, including the graph partitioning
algorithm, hierarchical clustering, modularity optimization algorithm, label propagation algorithm,
partition-based clustering algorithm, evolutionary algorithm, etc. [4]. Among many algorithms,
evolutionary algorithms can solve the problems of community detection without prior knowledge.
These problems need to be converted into optimization problems first, and then they can be
solved by using evolutionary algorithms, such as the genetic algorithm (GA), particle swarm
optimization (PSO), differential evolution (DE), etc. Such algorithms have the ability to automatically
detect the number of communities when the number of communities in the network is unknown,
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and is more suitable for solving real network problems [1]. The application of evolutionary
algorithms in complex networks has attracted the attention of many researchers. Tasgin et al. first
proposed a genetic algorithm to solve these kinds of complex problems [5]. Pizzuti proposed
a GA-based community detection algorithm, which introduced a genetic representation and the
concept of community score as the fitness function to detect community structure in complex
networks [6]. Pizzuti proposed a multiobjective genetic algorithm to find communities in complex
networks. The method maximizes the intra-connections inside each community and minimizes
inter-connections between different communities [7]. Gong et al. proposed a synergy of a genetic
algorithm with a hill-climbing strategy as the local search procedure to optimize modularity destiny to
explore the network at different resolutions [8]. Pizzuti et al. proposed a many-objective optimization
algorithm for community detection in multi-layer networks [9]. Meo et al. proposed a scalable
method to maximize modularity in large networks, which is a new clustering method that couples
the accuracy of global approaches with the scalability of local methods [10]. Grass-Boada et al.
proposed a multi-objective overlapping community detection algorithm, which is based on the
Pareto-dominance based multi-objective evolutionary algorithmsand global and local approaches for
discovering overlapping communities [11]. Berahmand et al. proposed a local approach by detecting
and expanding core nodes through extended local similarity of nodes [12]. Shi et al. proposed a
locally-biased spectral approximation approach to adapt the Lanczos method for local community
detection, which apply a fast random walk, personalized PageRank, and heat kernel diffusion [13].
Moradi et al. proposed an extension genetic algorithm with a novel local search strategy for community
detection [14].

In summary, the research results of community detection based on evolutionary algorithms
mainly focus on network coding, group initialization, evolution rule design, and objective function
selection. Although the above literature has obtained a wealth of research results, the accuracy and
complexity of these algorithm still needs to be improved. In this paper, we proposed an evolutionary
membrane community detection algorithm based on self-organizing maps (SOM), named EMCD-SOM.
SOM, an unsupervised learning algorithm for clustering and high-dimensional visualization, is an
artificial neural network developed by simulating the characteristics of the human brain’s processing
signals [15]. The proposed algorithm consists of objects, reaction rules, and membrane structure.
An object presents a partition result of the complex network. Reaction rules include GA and DE.
In the skin membrane, GA is utilized as reaction rules to evolve the objects. DE is introduced as
reaction rules in the region of each membrane. In order to find the optimal membrane structure,
SOM determines the number of membranes by learning the information of the objects. To evaluate
the performance of EMCD-SOM, synthetic benchmark networks and four real-world networks were
conducted by the proposed EMCD-SOM. The experimental results showed that the proposed method
was more useful and effective than other state-of-the-art algorithms including FastNewman [16],
LconDanon [17], GA-NET [6], CMM [18], and Meme-net [8] from the literature.

The main contributions of this paper are summarized below:

• The SOM neural network may learn and mine the structure of the current objects in the decision
space, which is beneficial for guiding the local and global search of the proposed algorithm;

• The number of membranes of the proposed EMCD-SOM is determined according to the
characteristics of SOM mapping similar data to adjacent neurons.

• GA and DE are employed as reaction rules to evolve the objects in the different region of
membrane;

• The proposed EMCD-SOM can implement the balance of exploration and exploitation in four
real world networks.

The rest of this paper is organized as follows. In Section 2, the description of the proposed
EMCD-SOM is elaborated. In Section 3, the simulation results are evaluated on the benchmark test
problems in comparison with some state-of-the-art evolutionary algorithms. Moreover, this section
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includes a sensitivity analysis for the proposed EMCD-SOM. Finally, Section 4 summarizes the
concluding remarks of this paper.

2. The Proposed Approach

This section will explain the principles of the proposed EMCD-SOM based on a membrane
system. Since the membrane system consists of three elements: object, reaction rule, and membrane
structure, the proposed algorithm also has these elements. In the proposed EMCD-SOM, the focus
is on how to achieve these three elements. The object as the first element in the region of membrane
represents candidate solution for network partitioning. The second element is the reaction rule, which
are designed to evolve objects in different region of membranes. The membrane structure is the last
element, which helps to promote the exchange of information between membranes and enhance the
diversity of objects. These features are very useful in developing a new evolutionary algorithm to
improve its solving performance.

The pseudo-code of the proposed EMCD-SOM is given in the Algorithm 1.

Algorithm 1 The pseudo-code of the proposed EMCD-SOM.

Input: The parameters of the proposed algorithm are initialized, including the number of objects in

each elementary membrane, each object within its boundaries.
Output: The best object is found from the different elementary membranes.

1: The objects are initialized from the search space.
2: The fitness of these objects is calculated according to the modularity density function in Equation (3).
3: while End Condition do

4: Determining the number of membrane (NC) by invoking SOM
5: for i = 1; i < NC; i ++ do

6: Evolving the objects in the region of elementary membrane according to the DE-based

reaction rule.
7: end for

8: The objects from the region of elementary membrane are released into the region of skin membrane.
9: All objects in the region of skin membrane are evolved according to the GA-based reaction rule.

10: end while

2.1. Object and Its Initialization

The object is encoded as a partition of community in the complex network. Depending on the
number of network communities, each object can be represented as a set of real integer values. In the
proposed algorithm, an object is defined as:

X = (x1, x2, · · · , xn) (1)

where n represents the number of the nodes in a complex network, and xi is the i-th node and is
an integer change from 1 to n. A community consists of nodes with the same value. The graphical
illustration of the object coding is shown in Figure 1. As can be seen from Figure 1, there are 14 nodes
and a total of three communities represented by objects. It is worth mentioning that the number of
communities is automatically determined by the proposed algorithm. In the worst case, a complex
network with n nodes can be divided into n communities.
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Figure 1. A generic illustration of the representation of a discrete object.

The object represents the result of network partitioning in the proposed EMCD-SOM. It is
initialized according to Equation (2):

xi,j = �xl
j + (xu

j − xl
j)× r�+ 1 (2)

where 1 ≤ i ≤ N, N is the number of objects in the region of all membranes. 1 ≤ j ≤ n, n represents
the maximum value of the node identifier in a complex network. xi,j is the value of the j-th identifier in
the i-th object, which is an integer value from 1 to n. xl

j represents the j-th lower limit of the identifier
in the complex network, which has a value of 1, and xu

j represents the upper boundary value of the j-th
identifier of the identifier in the complex network, which is n. r can generate a random number on the
interval (0, 1). In the formula, the ceiling operations is utilized to ensure that xi,j is an integer value.

2.2. Objective Function

Among many objects in the region of membranes, how to determine which object is the best
forthe best community partition requires the use of the objective function. The modularity density
widely used in community detection problems [19], and its definition is given in Equation (3).

f =
N

∑
i=1

(
L(Vi, Vi)− L(Vi, Vi)

|Vi| ) (3)

where L(V1, V2) = ∑i∈V1,j∈V2
Aij, and L(V1, V2) = ∑i∈V1,j∈V2

Aij, and V2 = Ω − V2, and A is the
adjacent matrix of the network, and Ω = V1, V2, · · · , VN is a partition.

The value of the objective function is one of the most critical steps that guides the object’s search
direction. The modularity density values are utilized to evaluate the quality of objects in all membranes.
The higher modularity density value has, the better community structure is attained by the proposed
algorithm. If the modularity density value is equal to 1, the network partition represents a very good
community structure.
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2.3. Membrane Structure

Since the proposed algorithm is based on a membrane system, it inherits the same network
structure from the membrane system. In order to simplify the implementation of this structure,
the proposed algorithm is defined as a structure containing only the elementary membrane.
Each elementary membrane can be thought of as an evolutionary unit. In the experiment, we found
that the number of membranes is difficult to set. To solve this problem, we used a self-organizing
mapping network (SOM) to determine the number of elementary membranes, specifically using SOM
to discover the structural information of the decision space of objects, and then determine the number
of elementary membranes. The details of SOM are given below.

SOM, an unsupervised learning algorithm proposed by Kohonen for clustering and
high-dimensional visualization, is an artificial neural network developed by simulating the
characteristics of the human brain’s processing signals. It is characterized by the ability to map
high-dimensional distributions to low dimensions and maintain mapping invariance. In recent years,
SOM have been applied to the solution of optimization problems. Jin et al. proposed a SOM with a
novel learning rule to solve the traveling salesman problem (TSP) [20]. Villmann et al. proposed a
hybrid system combining SOM and evolutionary algorithms to promote neighborhood cooperation [21].
Zhang et al. proposed a self-organizing multiobjective evolutionary algorithm. SOM is employed
to establish the neighborhood relationship among current solutions [22]. Liang et al. proposed a
multi-objective particle swarm optimization algorithm based on SOM, which mainly uses SOM to
discover the structural information of population and the multi-objective Pareto solution set, and then
guides the particle flight [23]. The topology of a two-dimensional SOM is shown in Figure 2.

Figure 2. An illustration of a two-dimensional self-organizing map network (SOM).

As shown in the figure, SOM consists of an input layer and a competition layer (output layer).
The number of input layer neurons is D, and the competition layer consists of a one-dimensional
or two-dimensional planar array of N = n1 × n2 neurons. Each neuron ui ∈ (1, 2, · · · , N) has
its own location information Zui = (zui

1 , zui
2 ) and weight information Wui = (wui

1 , wui
1 , · · · , wui

D ).
The network is fully connected, that is, each input node is connected to all output nodes.
SOM consists of a training phase and a clustering phase. In the first stage, the training data
is randomly selected, the winning neurons are selected according to the Euclidean distance,
and the weights of the winning neurons and their neighboring neurons are updated. The second
stage is mapping test data to neurons and similar data to neighboring neurons. The number of
membranes of the proposed EMCD-SOM is determined according to the characteristics of SOM
mapping similar data to adjacent neurons. Furthermore, the number of clusters in the SOM
is used to determine the number of membranes in the proposed algorithm. The structure of
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EMCD-SOM is conducive to improving search efficiency and is suitable for solving community
detection problems.

In the proposed algorithm, the objects in the region of elementary membrane are evolved by the
reaction rule according to the differential evolution algorithm. When objects from different membranes
are evolved, they are released into the region of the skin membrane. These objects will continue to
evolve by calling genetic algorithm-based reaction rules. Then, they are aggregated into several classes
using SOM and these clustered objects are in turn sent to the region of elementary membrane and are
evolved by invoking the reaction rule. After executing several generations, some good objects can be
generated by executing reaction rules in the different elementary membranes. The best object can be
found by comparing the modularity density values of these objects.

2.4. Reaction Rules

The reaction rule is inspired by the chemical reaction of the objects and the way of handling the
compound. Reaction rules can be implemented through mechanisms that can develop objects into the
direction of the global optimal partition of the network. According to “No Free Lunch”, there is no
single optimization algorithm to solve every optimization problem effectively and efficiently. In other
words, different algorithms possess a different accuracy to solve the same optimization problem.
The ensemble of state-of-the-art algorithms can obtain a better solution than using a single algorithm.
Inspired by this, we employed the GA algorithm and the DE algorithm to evolve objects in both the
skin membrane and elementary membrane.

GA is a computational model that simulates the natural evolution of Darwin’s biological
evolution theory and the biological evolution process of genetic mechanism. It is a method to
search for optimal solutions by simulating natural evolutionary processes. In each generation,
the optimal individual is selected based on the individual’s adaptability in the problem domain,
and new individuals are generated by crossover and mutation operations in the genetic operator.
In the proposed algorithm, GA acts as a reaction rule in the skin membrane. More specifically,
the individual in GA is represented by the object. The selection operation is used to select the
parent population of mating in the GA. Here we used a wide range of deterministic tournament
selection operators. The crossover operation was implemented by two-way crossing over operation
in the literature [8]. In mutation, we randomly selected a object in the region of the skin
membrane. A point mutation was employed, which randomly picked a dimension value on the
object and then randomly changed the value to its neighbor’s dimension value. GA facilitated
global search by the proposed algorithm. The parameters of GA were given as follows: Crossover
probability = 0.8, mutation probability = 0.2.

DE was employed as a reaction rule in elementary membranes. DE is an optimization
algorithm based on differential and simple mutation operation and one-to-one competitive survival
strategy, which reduces the complexity of genetic operations. It generates new individuals through
differential mutation with some different strategies including DE/rand/1, DE/best/1, DE/best/2,
DE/rand-to-best/1, etc. In order to improve the diversity of candidate solutions, DE introduces
crossover to operate on target vectors and mutation vectors to generate new experimental vectors.
In the proposed algorithm, DE/best/1 was utilized to evolve objects in the region of the elementary
membrane. A modified binomial crossover was employed to assign the value of either dimension in an
object to the value of the corresponding dimension in another object [24]. The parameters of DE were
given as follows: F = 0.9 is called the differential weight. CR = 0.3 is called the crossover probability.

3. Experimental Evaluation

The performance of the proposed algorithm was validated in a series of experiments based
on both synthetic benchmark networks and the four real-world networks by comparing it with
state-of-art algorithms. Section 3.1 will discuss the details of these networks. Section 3.2 will
describe the experimental condition in running the simulation. Section 3.3 will give several
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metrics of the experimental algorithms. Section 3.4 will give the simulation result of the LFR
(Lancichinetti–Fortunato–Radicchi)benchmark network calculated by all experimental algorithms.
Section 3.5 will discuss the experimental results based on the evaluation metrics of the experimental
algorithm on different network datasets.

3.1. Synthetic Benchmark Networks and Four Real-World Networks

3.1.1. Description of Synthetic Benchmark Betworks

The first set of experiments is the LFR benchmark network presented by Lancichinetti and
Radicchi in [25], which has power law degree distribution and variable sized communities. It is
the most widely used benchmark network for testing the performance of algorithms in community
detection. Compared with other synthetic networks, LFR networks can reflect some important features
of complex real-world systems. In the simulation, the number of nodes in the LFR network was 1000,
the average degree was 15, the maximum degree was 50, the mixing parameter was 0.1, the minimum
planted community size was 20, and the maximum planted community size was 50.

3.1.2. Description of Four Real-World Networks

In the following experiments, four real-world networks were employed to test the performance of
the proposed algorithm, including the Zachary’s karate club network, American college football club
network, Krebs America Political Book network, and Bottlenose dolphins network. The ground-truths
of these networks has been known. More details about the definition of these network datasets can be
discussed as follows. The Zachary’s karate club network, constructed by Zachary, is a network
of relations between 34 members of a karate club over a period of two years [26]. The karate
club is split into two communities of almost the same size on account of disagreements between
the administrator and the instructor of the club. The American college football network consists
of 115 vertices and 613 edges, which is divided into 12 communities, which was first proposed
by Girvan and Newman [27]. Vertices in the network represent teams which are identified
by their college names, and edges represent the regular season games between the two teams
they connect. This Krebs America political book network consists of 105 vertices and 441 edges
between books purchased together during the 2004 presidential election, which was compiled
by Krebs [28]. Bottlenose Dolphins network consists of 62 vertices and 60 edges based on social
acquaintances, which is naturally divided into two large groups: The male group and the female
one [29]. Each node represents a dolphin living over a period of 7 years in the bottlenose dolphins
network. The related parameters of each real-world network are described in Table 1.

Table 1. Parameters of the real-world networks.

Datasets Nodes Edges Communities

Zachary’s karate club network 34 78 2
American college football club network 115 613 12
Krebs America political book network 105 441 3

Bottlenose dolphins network 62 60 2

3.2. Experimental Conditions

In the experiments, some related community detection algorithms were employed to compare with
the proposed algorithm. These algorithms consist of Fast–Newman, Lcon-Danon, GA-net, Meme-net,
and MOGA-net. Some of them, including GA-net and Meme-net, are single-objective algorithms, while
the rest are non-evolutionary algorithms. They were run in Windows 7 enterprise version under the
hardware environment of Intel Pentium dual-core 2.93 GHZ and 16 GB RAM. The proposed algorithm
was implemented using Matlab2015.
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Since the results of the community detection method based on evolutionary algorithm depend on
the validity of the random search process, 30 repeated tests were performed independently on both
synthetic benchmark networks and 4 real-world networks, and statistical results were calculated in
order to evaluate the statistical performance of algorithms and reduce statistical errors. Moreover,
4 statistical metrics were designed, such as Mean, Std, Worst, and Best. These metrics were employed
to evaluate the solving performance of these various algorithms.

3.3. Evaluation Measures

At present, there are many metrics for evaluating the effectiveness of community detection
algorithms that detect the quality of network partitions of complex networks. Among these metrics,
the normalized mutual information (NMI) are the most widely used in community detection of
complex networks. In addition, to further evaluate the quality of the experimental results, some
clustering indicators were introduced include the F-measure and Rand Index.

NMI is a similarity measure estimating the similarity between detected partitions and true ones.
A higher NMI value represents a greater similarity between two partitions. If NMI takes its maximum
value which is equal to 1, all communities obtained by the experimental algorithms are identical to all
real communities. In the following experiment, NMI was used to evaluate the results between true
partition and the partition obtained by experimental algorithms. The definition of NMI(A, B) is shown
in Equation (4):

NMI(A, B) =
−2 ∑CA

i=1 ∑CB
j=1 Dij log(

Dij N
Di ·Dj

)

∑CA
i=1 Di · log(Di

N ) + ∑CB
j=1 Dj · log(

Dj
N )

(4)

where A and B are partitions of a network, and CA represents the number of communities in A while
CB denotes that of B. D is a confusion matrix, and Di,j stands for the number of nodes in community i
of A that also appear in community j of B. N is the number of elements. Di is the sum over row i of D
while Dj is the sum of elements in column j.

F-measure is also called F-score, which is a weighted harmonic averaging of Precision and Recall.
It is a commonly used evaluation standard in the clustering field and is often used to evaluate the
quality of the classification model. The definition of F-measure is shown in Equation (5):

F = 2 × PR
P + R

(5)

where P is the precision and R is the recall rate.
Rand Index(RI) is also called Rand measure, which is a measure of the similarity between two

data clusterings. In the experiments, Rand Index is employed to measure the similarity between real
partitions and the partitions obtained by experimental algorithms. The definition of Rand Index is
shown in Equation (6):

RI =
a

a + b
(6)

where a can be considered as the number of agreements between real partitions and the partitions
obtained by experimental algorithms, and b as the number of disagreements between real partitions
and the partitions obtained by experimental algorithms.

3.4. Experiments on Synthetic Benchmark Networks

In the following experiment, the LFR network consisted of a network of size 1000 with a mixing
parameter fixed at 0.1. All experimental algorithms ran independently 30 times in the networks.
The statistical results of the evaluation indicators with NMI, F-measure, and Rand Index were used to
evaluate the performance of all experimental algorithms.

As shown in Table 2, the proposed EMCD-SOM achieved the best results on all indicators in
comparison with other experimental algorithms. FastNewman had suboptimal results on the synthetic
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benchmark networks. Due to the fact that Meme-net runs for a long time and there is no calculation
result, the statistical result was represented by ’-’. In summary, compared with other experimental
methods, the proposed algorithm was suitable for solving networks with a large number of nodes.

Table 2. The statistical values obtained by the experimental algorithms on the synthetic benchmark
networks of size 1000 with a mixing parameter fixed at 0.1. GA-NET: GeneticAlgorithm-NET; CMM:
Convexified Modularity Maximization; Meme-net: Memeticalgorithm-net; EMCD-SOM: The proposed
algorithm; NMI: normalized mutual information; RI: Rand Index.

Metrics Statistics FastNewman [16] LconDanon [17] GA-NET [6] CMM [18] Meme-net [8] EMCD-SOM

NMI Mean 0.952684 0.945996 0.872757 0.939711 - 0.992237
Std 5.64601 × 10−16 0 0.0186498 0.0136735 - 0.0115922

Worst 0.952684 0.945996 0.827308 0.915167 - 0.947601
Best 0.952684 0.945996 0.899495 0.969452 - 1

F-measure Mean 0.881533 0.943461 0.858099 0.86981 - 0.976459
Std 3.38761 × 10−16 0 0.0256338 0.0270183 - 0.0337187

Worst 0.881533 0.943461 0.79845 0.825811 - 0.854329
Best 0.881533 0.943461 0.898216 0.937594 - 1

RI Mean 0.986993 0.992146 0.983747 0.975294 - 0.996954
Std 3.38761 × 10−16 4.51681 × 10−16 0.00267911 0.00821687 - 0.00554023

Worst 0.986993 0.992146 0.977668 0.960883 - 0.971924
Best 0.986993 0.992146 0.988004 0.993564 - 1

3.5. Experiments on Real-World Networks

In this section, the proposed algorithms were compared with other algorithms for 4 real-world
datasets with real partitions known in the following experiment. All experimental algorithms were
run 30 times, independently. The statistical results of NMI, F-measure, and Rand Index were utilized
to evaluate the performance of the experimental algorithms.

3.5.1. Display Network Partition

We visualized the community detection results obtained by the proposed algorithm on 4
real-world datasets with real partitions known. As shown in Figures 3–6, the community division was
the best result from 30 runs, and almost every partition had a good community structure and was
similar to the real division of the network. The results of Figure 3 show that the proposed algorithm
can obtain different levels of community structure on Zachary’s karate club network. The proposed
algorithm could discover 2 communities, as shown in Figure 3, which is consistent with the real
community structure in Table 1.

The community structure detected by the proposed algorithm on the American college football
network is shown in Figure 4. It can be seen from Figure 4 that the proposed algorithm detected 11
partitions, but only a few nodes had community partitioning errors. The real network had 12 partitions
in Table 1.

As seen Figure 5 in the US political book network, due to the complexity of the network structure,
the proposed algorithm had a community structure with 4 communities, but the actual network
partition was 3 in Table 1.

Lastly, Figure 6 shows the results of the community of the Bottlenose dolphins network obtained
by the proposed algorithm. As shown in Figure 6, the number of the community obtained by the
proposed algorithm was larger than the result of the real network in Table 1.
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Figure 3. The community detection result of the proposed algorithm on Zachary’s karate club network.

Figure 4. The community detection result of the proposed algorithm on the American college football
club network.
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Figure 5. The community detection result of the proposed algorithm on the Krebs America political
book network.

Figure 6. The community detection result of the proposed algorithm on the Bottlenose dolphins network.
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3.5.2. Comparison of the Proposed Algorithm with Other Algorithms

In this section, Tables 3–5 show the community detection effect of the proposed algorithm
and other experimental algorithms running 30 times with 3 evaluation indicators on 4 real networks.
As shown in Tables 3–5, compared to other algorithms, the proposed algorithm had a good performance
in community detection on 4 real-world networks.

The NMI values of all experimental algorithms are shown in Table 3. On Zachary’s karate club
network, the best results obtained by the proposed algorithm indicated that it can all converge to
the global optimal NMI = 1. The result indicates that the community obtained by the proposed
algorithm was exactly the same as the real community. This result can also be obtained from Figure 3.
To illustrate the performance of the proposed algorithm, we sorted these algorithms according to the
average of the NMI indicator as follows: CMM, Meme-net, EMCD-SOM, FastNewman, GA-NET, and
LconDanon. Compared with Meme-net, the proposed algorithm obtained the suboptimal community
partition result.

On the American college football club network, the proposed algorithm gained the best
average NMI of 0.900987 in all experimental algorithms. CMM attained the second-best NMI
average. The performance of these algorithms was sorted as follows: EMCD-SOM, CMM, Meme-net,
LconDanon, FastNewman, and GA-NET.

On Krebs America political book network, the proposed algorithm found the second-best NMI
average of 0.528597, which is not much different from FastNewman. The best result, out of the 30 times,
belonged to the proposed EMCD-SOM. According to the average value of NMI, these algorithms were
sorted as follows: FastNewman, EMCD-SOM, LconDanon, Meme-net, CMM, and GA-NET.

On the Bottlenose dolphins network, the proposed algorithm obtained the fourth average.
These algorithms were sorted as follows: CMM, LconDanon, FastNewman, EMCD-SOM, Meme-net,
and GA-NET.

Next, all experimental algorithms were evaluated by calculating the F-measure, which was
conducted on the real-world networks. This indicator is often used to evaluate the quality of the
classification model. The F-measure values obtained by the experimental algorithms on real-world
networks are shown in Table 4.

As seen in Table 4, the proposed algorithm could obtain the best results for the F-measure indicator
compared with all experimental algorithms on most of real-world networks. Compared with the
proposed algorithm, CMM gained the best result on Dolphins, and Meme-net gained the best result on
Karate Club, and FastNewman gained the best result on Political Book and Dolphins.

Finally, all experimental algorithms were evaluated according to the Rand Index indicator.
This indicator is often used to measure the similarity between two data clusterings. The Rand Index
values obtained by the experimental algorithms on the real-world networks are shown in Table 5.

As we can see, compared with the other 5 community detection methods for Rand Index on real
networks, the proposed EMCD-SOM could get satisfactory results, especially in the American college
football club network. For the karate network, Meme-net gained the best result. For Football club,
the proposed algorithm gained the best result. FastNewman gained the best result on the Political
book and Dolphins network in terms of the Rand Index. It is worth noting that the proposed algorithm
was similar with FastNewman on the Political book network.

Finally, although the proposed algorithm was not optimal, the proposed algorithm showed stable
results on different networks, which indicates that the proposed algorithm is suitable for solving
community structure partitioning problems in complex networks.
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Table 3. The NMI values obtained by the experimental algorithms on the real-world networks with
real partitions known.

Networks NMI FastNewman [16] LconDanon [17] GA-NET [6] CMM [18] Meme-net [8] EMCD-SOM

Karate Club Mean 0.692467 0.530471 0.662719 1 0.759591 0.729539
Std 2.25841e × 10−16 0 0.041038 0 0.12226 0.0916947

Worst 0.692467 0.530471 0.593038 1 0.699488 0.6895798
Best 0.692467 0.530471 0.707135 1 1 1

Football Club Mean 0.697732 0.72976 0.36438 0.900688 0.877428 0.900987
Std 1.1292 × 10−16 3.38761 × 10−16 0.0326597 0.00603723 0.0338035 0.0128863

Worst 0.697732 0.72976 0.287833 0.896274 0.757927 0.858186
Best 0.697732 0.72976 0.432277 0.914376 0.924195 0.91137

Political Book Mean 0.530814 0.522288 0.407465 0.454128 0.46474 0.528597
Std 4.51681 × 10−16 2.25841 × 10−16 0.0204818 3.38761 × 10−16 0.0283599 0.0190332

Worst 0.530814 0.522288 0.361427 0.454128 0.425702 0.482507
Best 0.530814 0.522288 0.449338 0.454128 0.522001 0.553662

Dolphins Mean 0.5727 0.574277 0.431174 0.814113 0.52687 0.567711
Std 1.1292 × 10−16 2.25841 × 10−16 0.0350064 1.1292 × 10−16 0.0510336 0.0432212

Worst 0.5727 0.574277 0.363285 0.814113 0.396634 0.501266
Best 0.5727 0.574277 0.523461 0.814113 0.612508 0.660154

Table 4. The F-measure values obtained by the experimental algorithms on real-world networks with
real partitions known.

Networks F-measure FastNewman [16] LconDanon [17] GA-NET [6] CMM [18] Meme-net [8] EMCD-SOM

Karate Club Mean 0.828011 0.758621 0.810516 0.812349 0.907227 0.89563
Std 4.51681 × 10−16 3.38761 × 10−16 0.0345437 0.0292515 0.0471795 0.0353847

Worst 0.828011 0.758621 0.761594 0.771371 0.884034 0.884034
Best 0.828011 0.758621 0.846678 0.878937 1 1

Football Club Mean 0.607997 0.624275 0.357385 0.888643 0.829276 0.881271
Std 3.38761 × 10−16 4.51681 × 10−16 0.0259086 0.0102019 0.0593904 0.0222667

Worst 0.607997 0.624275 0.304809 0.866702 0.654615 0.806481
Best 0.607997 0.624275 0.415762 0.902567 0.914482 0.896491

Political Book Mean 0.819664 0.792252 0.631611 0.778402 0.721159 0.810397
Std 1.1292 × 10−16 2.25841 × 10−16 0.0476347 1.1292 × 10−16 0.0532029 0.0256946

Worst 0.819664 0.792252 0.541227 0.778402 0.617422 0.736497
Best 0.819664 0.792252 0.700829 0.778402 0.806321 0.834708

Dolphins Mean 0.786624 0.70509 0.549487 0.968117 0.671548 0.721252
Std 0 3.38761 × 10−16 0.056409 0 0.0584518 0.0520816

Worst 0.786624 0.70509 0.444878 0.968117 0.567638 0.665973
Best 0.786624 0.70509 0.753607 0.968117 0.778187 0.88149

Table 5. The Rand Index values obtained by the experimental algorithms on real-world networks with
real partitions known.

Networks RI FastNewman [16] LconDanon [17] GA-NET [6] CMM [18] Meme-net [8] EMCD-SOM

Karate Club Mean 0.841355 0.707665 0.770291 0.762686 0.88164 0.866845
Std 2.25841 × 10−16 2.25841 × 10−16 0.0276138 0.0295904 0.0601917 0.0451438

Worst 0.841355 0.707665 0.730838 0.734403 0.85205 0.85205
Best 0.841355 0.707665 0.802139 0.834225 1 1

Football Club Mean 0.880702 0.887109 0.836476 0.971647 0.953755 0.973221
Std 4.51681 × 10−16 5.64601 × 10−16 0.0252958 0.00177524 0.0241369 0.00652113

Worst 0.880702 0.887109 0.762319 0.972387 0.886651 0.949352
Best 0.880702 0.887109 0.88177 0.979863 0.984744 0.978032

Political Book Mean 0.828205 0.804212 0.703199 0.759341 0.757045 0.820733
Std 2.25841 × 10−16 1.1292 × 10−16 0.0192073 5.64601 × 10−16 0.034364 0.0203903

Worst 0.828205 0.804212 0.6663 0.759341 0.707692 0.764103
Best 0.828205 0.804212 0.730403 0.759341 0.817216 0.843223

Dolphins Mean 0.713908 0.684294 0.570739 0.936542 0.645672 0.679129
Std 3.38761 × 10−16 2.25841 × 10−16 0.0295801 0 0.0288785 0.0398455

Worst 0.713908 0.684294 0.52935 0.936542 0.597039 0.640402
Best 0.713908 0.684294 0.700159 0.936542 0.718139 0.814384
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4. Conclusions

This paper proposed a membrane algorithm based on a self-organizing map network named
EMCD-SOM, which was used to solve complex network community detection problems. According
to the characteristics of community detection, the proposed algorithm gave the realization principle
of object, reaction rule, and membrane structure. The encoded object represented the partitioning
result of community detection. Genetic algorithm and differential evolution were employed as two
reaction rules to evolve objects in different regions of the membranes. The proposed algorithm used
SOM to determine the number of elementary membranes and fully exploit neighborhood information.
The effectiveness of the proposed algorithm was evaluated on four real-world networks. Compared
with other algorithms, the results showed that our algorithm could achieve better performance,
indicating that EMCD-SOM has great potential in solving community detection problems. In addition,
because EMCD-SOM adopts modularity density as an objective function, it can effectively solve the
resolution limitation problem of the modularity degree, and reasonably divide the network structure
at different resolutions. In the future, EMCD-SOM will be improved so that it can effectively detect
communities in overlapping networks, large-scale networks, and multi-level heterogeneous networks.
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Abstract: Complex networks of coupled maps of matrices (NCMM) are investigated in this paper.
It is shown that a NCMM can evolve into two different steady states—the quiet state or the state
of divergence. It appears that chimera states of spatiotemporal divergence do exist in the regions
around the boundary lines separating these two steady states. It is demonstrated that digital image
entropy can be used as an effective measure for the visualization of these regions of chimera states in
different networks (regular, feed-forward, random, and small-world NCMM).

Keywords: chimera states; coupled map lattice; nilpotent matrix

1. Introduction

Chimera state is a dynamical spatiotemporal behavior when structured patterns of coherence and
incoherence occur. This phenomenon was first observed in a network of non-locally coupled identical
oscillators [1]. The existence of chimera states has been investigated in theory [2–4] as well as it has
been proved in several experiments [5–7].

Chimeras are observed in optical [7,8], chemical [9,10], neuronal systems [11,12]. Experimental
verification of chimeras in the system of non-locally coupled Belousov-Zhabotinsky chemical oscillators
in a two-dimensional array is reported in [10]. The relativistic quantum chimera state is uncovered
in two-dimensional Dirac material systems where the manifestations of both integrable and chaotic
dynamics may be controlled electrically [8]. The coexistence of coherent and incoherent states, known
as chimeras, is particularly important for neuronal systems. These states have also been linked to
Parkinson’s disease, epileptic seizures, and even to schizophrenia [11]. The occurrence of chimera
states in two-dimensional and three-dimensional networks of Hindmarsh-Rose oscillators representing
realistic models of neuronal ensembles is identified in [12].

Initially it was thought that chimeras can be observed only in networks of non-locally coupled
oscillators [1]. Later studies revealed that besides non-locally connected networks [3,4,13–16],
these states can be found in local [17–19] as well as in global [6,20] coupling topologies. Chimera
patterns are analyzed in networks of Logistic maps with hierarchical connectivities [21]. The robustness
of chimera patterns to inhomogeneities in a lattice of identical FitzHugh-Nagumo oscillators
with irregular coupling topologies is demonstrated in [22]. Besides these symmetric coupling
topologies, chimera states are also observed in Erdős-Rényi [23], small-world [24], scale-free [25],
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heterogeneous [26] networks. The emergence of chimeras in a multiplex network with two
non-identical interconnected layers is investigated in [27]. It is shown that the range of parameters
displaying chimera states in the first homogeneous layer is affected by the changes in coupling of
the same nodes in the second layer. Neural modular network is analyzed in [28] where neurons
are assumed to be connected with electrical synapses within their communities and with chemical
synapses across them—these two coupling types cause the formation of chimera-like states. To evaluate
behavior of neurons measures of synchronization, metastability, and chimera-like states are estimated.
The study of multiscale network [29] observes how the appearance of chimera states in global ring is
influenced by the changes in topology of subnetworks.

The current study is focused on the dynamics of complex coupled maps of matrices. It is
demonstrated that chimera states of spatiotemporal divergence do exist in the regions around the
boundary lines separating the quiet state and the diverged state. That highlights the importance of
this paper (chimera states have not been previously explored in coupled maps of matrices). Moreover,
chimera states of spatiotemporal divergence are investigated in different types of networks, including
random networks. The exploration of the effects induced by the network structure and the development
of entropy-based visualization technique for chimera states of spatiotemporal divergence are the main
objectives of this paper.

2. Preliminary Notes and the Objective

2.1. A Network of Coupled Maps

A paradigmatic model of a lattice of translational invariance with periodic boundary conditions,
comprising m real-valued, single-variable time-discrete maps that are coupled to their closest neighbors
reads [14]:

x(t+1) (i) = f
(

x(t) (i) , a
)
+

ε

2P

i+P

∑
j=i−P

(
f
(

x(t) (j) , a
)
− f
(

x(t) (i) , a
))

(1)

where i is the number of the node (i = 1, 2, . . . , m); t is discrete time (t = 0, 1, 2, . . .); x(t) (i) is the scalar
nodal variable; ε is the coupling parameter within the interval (0, 1); P is a fixed number of nearest
neighbors to either side (P ≥ 0). The local dynamics of every element i on the one-dimensional ring is
described by the Logistic map:

f
(

x(t)(i), a
)
= ax(t)(i)

(
1 − x(t)(i)

)
(2)

where 0 < a ≤ 4 and the initial condition is bounded to 0 ≤ x(0)(i) ≤ 1 in order to ensure the mapping
to the interval x(t)(i) ∈ [0, 1] [30]. Please note that all parameters a of the Logistic map are identical for
all nodes, but initial conditions x(0)(i) are randomly distributed in interval [0, 1].

At P = 1 Equation (1) describes a standard coupled map lattice (CML). At P ≥ 2 Equation (1)
represents a regular network of coupled maps. The coupling radius r is defined as r = P

m . Please note
that r = 0.5 (r = m−1

2m if m is odd) corresponds to global coupling.

2.2. A Network of Coupled Map of Matrices

CMLs play an important role in modelling such complex phenomena as, spatiotemporal chaos,
spatial bifurcations, global travelling waves [31–33]. A scalar iterative nodal variable at each node of a
CML can be replaced by a matrix variable [34]. All scalar variables x(t)(i) are replaced by 2× 2 matrices[

x(t)11 (i) x(t)12 (i)

x(t)21 (i) x(t)22 (i)

]
in Equations (1) and (2). Such a transition from a scalar Logistic map (Equation (2)) to a

single Logistic map of matrices is explained in detail in [35]. All square 2 × 2 matrices can be classified
into idempotent and nilpotent matrices; however only nilpotent matrices can generate the effect of
divergence in an isolated Logistic map of matrices when the absolute values of the matrix elements
grow unbounded [35]. Therefore, all 2 × 2 matrices in this paper will be set as nilpotent matrices.
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Please note that a 2× 2 nilpotent matrix can be uniquely characterized by its single Eigenvalue λ(t)

and a scalar nilpotent parameter μ(t) [35]. Appropriate re-arrangements and the collection of terms do
transform the CML described by Equation (1) and Equation (2) into a one-dimensional coupled map
lattice of matrices (1D CMLM) [34]:

λ(t+1)(i) = aλ(t)(i)
(

1 − λ(t)(i)
)

, (3)

μ(t+1)(i) = (1 − ε) aμ(t)(i)
(

1 − 2λ(t)(i)
)
+

ε

2

(
aμ(t)(i + 1)

(
1 − 2λ(t)(i + 1)

)
+ aμ(t)(i − 1)

(
1 − 2λ(t)(i − 1)

))
, (4)

where 0 ≤ λ(0)(i) ≤ 1 is the single Eigenvalue of the initial nilpotent matrix at node i; μ(0)(i) = 1
(i = 1, 2, . . . , m) is the nilpotent parameter of the initial nilpotent matrix at node i. The nilpotent model
of a 1D CMLM comprises two scalar maps—therefore the lattice parameters λ(t)(i) and μ(t)(i) are
computed directly instead of performing matrix computations on the 1D lattice [34]. Please note that
the divergence of a node i is represented by the unbounded growth of μ(t)(i).

The main objective of this paper is to investigate the dynamics of a network of coupled maps
where scalar map variables are replaced by matrix variables. The model of such networks of coupled
maps of matrices (NCMM) follows from Equations (1) and (3):

μ(t+1)(i) = f
(

μ(t)(i), λ(t)(i), a
)
+

ε

2P

i+P

∑
j=i−P

(
f (μ(t)(j), λ(t)(j), a)− f (μ(t)(i), λ(t)(i), a)

)
, (5)

where
f (μ(t)(i), λ(t)(i), a) = aμ(t)(i)

(
1 − 2λ(t)(i)

)
(6)

but Eigenvalues of nilpotent matrices are computed directly according to Equation (3). At P = 1
the NCMM reduces to a 1D CMLM which (as shown in [34]) can generate fractal patterns of μ(t)(i)
representing spatiotemporal divergence that can be controlled by the coupling parameter between
the nodes.

In other words, the main objective of this paper is to investigate if NCMMs (at P ≥ 2) can exhibit
chimera states of spatiotemporal divergence. Such NCMMs will be called regular NCMMs due to the
orderly connectivity of neighboring nodes.

3. Chimera States of Spatiotemporal Divergence in Regular NCMMs

3.1. Spatiotemporal Divergence in a Regular NCMM

A regular NCMM comprising 200 nodes is investigated in this section. The parameter of the
Logistic map a is set to 3.699956 (the onset of chaos); the coupling parameter ε is set to 0.4. Initial
Eigenvalues λ(0) (i); i = 1, 2, . . . , 200 are randomly distributed in the interval (0, 1). The regular
NCMM is iterated in 1000 time-forward steps according to Equation (5). The evolution of the
network at P = 4 (r = 0.02); P = 5 (r = 0.025) and P = 6 (r = 0.03) is depicted in Figure 1 parts (a),
(b) and (c) respectively.

The regular NCMM diverges after a turbulent transient process at P = 4 (absolute numerical
values of μ(t) (i) are truncated to 5 in Figure 1a for the clarity of presentation). However, the regular
NCMM calms down (Figure 1c) when each node is connected to 12 adjacent neighbors (P = 6).
It appears that the degree of connectivity can be used to control the divergence of the network.

It is interesting to observe that the evolution of the regular NCMM results into a complex pattern
at P = 5 (Figure 1b). The nodes are grouped into clusters of temporary divergence, however they
calm down and re-explode again during the turbulent evolution of the network in time (Figure 1b).
As mentioned in the Introduction, chimera states describe a dynamical spatiotemporal behavior when
structured patterns of coherence and incoherence occur [1]. The definition of chimera states is extended
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in this paper. Figure 1b depicts a spatiotemporal behavior when structured patterns of quiet states
and diverging states occur. The quiet state of a node i is defined as the state when μ(t)(i) tends to zero.
The spatiotemporal divergence of the node i is defined as the state when the modulus of μ(t)(i) exceeds
a pre-set level (this level is set to 5 in all computational experiments in this paper). Such behavior of
the network is described as chimera states of spatiotemporal divergence. Such a complex behavior
of the regular NCMM raises a question about the global view of the dynamics of the network in the
parameter plane ε − r.
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Figure 1. The transient dynamics of a regular NCMM comprising 200 nodes (a = 3.699956; ε = 0.4;
λ(0) (i); i = 1, 2, . . . , 200 are randomly distributed in the interval (0, 1)) represented by the variation
of μ(t) (i). The network diverges at r = 0.02 (part (a)); generates complex patterns at r = 0.025 (part (b));
and calms down at r = 0.03 (part (c)). Numerical values of μ(t) (i) are truncated to 5 for the clarity
of presentation.

As mentioned previously, the standard definition of chimera states is modified to the definition
of chimera states of spatiotemporal divergence in this paper. In other words, structured patterns of
coherence and incoherence are replaced by structured patterns of quiet and diverging states. It would
be tempting to rename the diverging states as chaotic states. Also, it must be noted that spatiotemporal
chaos is a well-explored phenomenon in cellular automata [36].

However, transitional states of temporary divergence cannot be defined as chaotic transients.
By the definition, a chaotic attractor is bounded in the phase space. In our model, the evolution of a
nodal variable μ(t)(i) is not bounded. This is illustrated in Figure 2 where the evolution of 5 nodes
(μ(t)(1), μ(t)(50), μ(t)(100), μ(t)(150) and μ(t)(200)) is visualized in time interval 500 ≤ t ≤ 1000 at the
set of system parameters corresponding to Figure 1b. The numerical values of μ(t)(i) are cropped to 5
in Figure 2a—but the uncropped values of μ(t)(i) are depicted in Figure 2b. It is clear from Figure 2
that the evolution of μ(t)(i) cannot be described as the bursting chaos [37] (bounded in the phase
space). Therefore, the definition of chimera states of spatiotemporal divergence is used in this paper.

Coherent states are represented as quiet states. However, diverging nodes evolve in radically
different trajectories (Figure 2b)—what corresponds to the incoherent states.

The visualization of the transient dynamics of the NCMM at every point of the parameter
plane ε − r poses serious technical problems. Instead, the regular NCMM is evolved until the transient
processes cease down and the steady-state evolution of the network is registered for 150 time-forward
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steps. That results into a grayscale digital image representing the values of μ(t) (i); 1 ≤ i ≤ 200;
0 ≤ μ(t) (i) ≤ 5 (the size of the digital image in pixels is 200 × 150). Then, this digital grayscale
image representing the steady-state evolution of the network is reduced into one single scalar number
representing the entropy of that image (we use the standard MATLAB function entropy).
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Figure 2. The evolution of μ(t)(1), μ(t)(50), μ(t)(100), μ(t)(150) and μ(t)(200) in time interval 500 ≤
t ≤ 1000 at the set of system parameters corresponding to Figure 1b. The numerical values of μ(t)(i)
are cropped to 5 in part (a) and are shown uncropped in part (b).

The schematic diagram representing this information reduction process is illustrated in Figure 3.
The parameter r is set to 0.05; all other system parameters (except ε) are kept the same. The coupling
parameter ε is varied from 0 to 1 and image entropy is computed for the steady-state evolution of the
regular NCMM for each discrete value of ε (Figure 3). Please note that the image entropy for the quiet
network (Figure 3c) and the diverged network (Figure 3a,e) are all equal to zero. However, chimera-type
states of spatiotemporal divergence yield entropies larger than zero (Figure 3b,d).

The relationship between the image entropy and the coupling parameter ε yields two distinct
peaks in Figure 3. Such behavior of the regular NCMM is very interesting. Initially, when the coupling
parameter ε is small, the network diverges (Figure 3). When the coupling parameter ε exceeds a critical
value (over 0.38), the network’s final state is the quiet state (Figure 3). That corresponds well to the
phenomenon observed in 1D CMLM—the effect of divergence can be controlled by increasing the
coupling parameter ε [34]. However, a completely unexpected behavior of the regular NCMM is
observed when the coupling parameter ε exceeds the upper threshold (around 0.83)—the network
diverges again (Figure 3).

Such behavior of the regular NCMM reminds a coupled network of dendritic neurons [38].
A strongly coupled network of dendritic neurons tends to synchronize (what is dangerous to the
functionality of brain). The well-known medical procedure known as “the gamma knife” can be
used to eliminate synchronized tangles of dendritic neurons causing epileptic seizures. Simulation
results in [38] show that the annihilation of too many synaptic links between neurons (caused by the
overexposure of the network by a high dose of radiation therapy) leads to a synchronized state of the
random network again. A similar effect can be observed in Figure 3—which shows an astonishing
similarity (in terms of long-term behavior) between two networks of a completely different physical
and mathematical origin.

Moreover, the regular NCMM exhibits a completely unique feature (compared to the network
of dendritic neurons)—the dynamics of the network in the narrow region between the quiet mode
and the divergence mode can be characterized by the existence of chimera states of spatiotemporal
divergence (Figure 3b,d). Notably, image entropy detects the region of the existence of such chimera
states very well (Figure 3).
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Figure 3. Image entropy of patterns is calculated for regular network when parameter r is set to 0.05.
Network coupling parameter ε is set to 0.2, 0.366, 0.6, 0.823 and 0.9 in parts (a), (b), (c), (d) and (e).
Image entropy is equal to 2.29 and 0.785 in parts (b) and (d) respectively.

Finally, chimera states of spatiotemporal divergence can be identified in the whole parameter
plane ε − r (Figure 4a). Chimera states of spatiotemporal divergence are located at the boundary
between the quiet regime and the divergence regime (Figure 4a). The geometric shape of this boundary
is very sensitive to the variation of r when r is small—but gets less sensitive when the regular network
becomes denser (Figure 4a).
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Figure 4. The visualization of chimera states of spatiotemporal divergence for networks of different
structure: a regular NCMM (part (a), parameter plane ε − r); a regular unidirectional NCMM (part (b),
parameter plane ε − r); the Erdős-Rényi NCMM (part (c), parameter plane ε − d); the small-world
NCMM (part (d), parameter plane ε − r). The colorbar denotes numerical values of the entropy
computed for steady-state evolution of the networks.
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3.2. Chimera States of Spatiotemporal Divergence in a Regular Feed-Forward NCMM

Diffusive couplings between adjacent nodes is a paradigmatic choice for modelling neural
networks which proves adequate in many cases [39]. However, feed-forward connectivity is also
believed to play a significant role in a neuroscience context [40,41]. Each node is unidirectionally
coupled to its successive neighbors in a feed-forward network:

μ(t+1) (i) = f
(

μ(t) (i) , λ(t) (i) , a
)
+

ε

P

i+P

∑
j=i

(
f
(

μ(t) (j) , λ(t) (j) , a
)
− f
(

μ(t) (i) , λ(t) (i) , a
))

(7)

Please note that the coupling radius r = P
m now ranges from r = 1

m for a local feed-forward
network to r = m−1

m for global unidirectional coupling.
Computational experiments are continued with a regular feed-forward NCMM comprising

200 nodes (a = 3.699956; ε = 0.4; λ(0) (i) are randomly distributed in the interval (0, 1)). The evolution
of the network at P = 5 (r = 0.025); P = 7 (r = 0.035) and P = 9 (r = 0.045) is depicted in Figure 5
parts a, b, and c respectively.

The regular feed-forward NCMM diverges at P = 5 (Figure 5a). The network exhibits chimera
states of spatiotemporal divergence at P = 7 (Figure 5b) and completely calms down at P = 9
(Figure 5c). It is interesting to note that the feed-forward connectivity changes the shape of chimera
states (Figure 5b)—the unidirectional coupling can be clearly identified from Figure 5.
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Figure 5. The transient dynamics of a regular directional NCMM comprising 200 nodes (a = 3.699956;
ε = 0.4; λ(0) (i); i = 1, 2, . . . , 200 are randomly distributed in the interval (0, 1)) represented by the
variation of μ(t) (i). The network diverges at r = 0.025 (part (a)); generates complex fractal-type
patterns at r = 0.035 (part (b)); and calms down at r = 0.045 (part (c)). Numerical values of μ(t) (i) are
truncated to 5 for the clarity of presentation.

The location of chimera states of spatiotemporal divergence for the regular feed-forward NCMM
are shown in parameter plane ε − r in Figure 4b. Chimera states are located at the boundary between
the quiet regime and the divergence regime—but a surprising is the fact that the geometric shape of
this region is very similar to Figure 4a.
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4. Chimera States of Spatiotemporal Divergence in a Complex NCMM

Most social, biological, and technological networks exhibit non-trivial topological features,
with patterns of connection between their nodes that are neither purely regular nor purely random.
Three relevant characteristics are usually employed to characterize a complex network—randomness,
heterogeneity and modularity [42].

One extreme are regular networks. These are usually man-made networks that have the lowest
heterogeneity and lowest randomness (as discussed in Sections 3.1 and 3.2). Another extreme is
random Erdős-Rényi networks [43]. Such random networks have low heterogeneity and the degree
distribution will be a Gaussian bell-shaped curve. The emergence and visualization of chimera states
of spatiotemporal divergence in a random Erdős-Rényi NCMM is investigated in Section 4.1.

Most real-world networks, however, do not have homogeneous distribution of degree that regular
or random networks have. The number of connections each node has in most real-world networks
varies greatly and they are positioned somewhere between regular and random networks. A typical
real-world network is proposed in [44] where the connections between the nodes in a regular graph
are rewired with a certain probability. The resulting networks can be positioned between the regular
and random networks according to their topological structure—and are referred to as small-world
networks. The emergence and visualization of chimera states of spatiotemporal divergence in a
small-world NCMM is investigated in Section 4.2.

4.1. Chimera States of Spatiotemporal Divergence in the Erdős-Rényi NCMM

The Erdős-Rényi NCMM network is generated by starting with a disconnected set of nodes that
are then paired with a uniform probability. The coupling density of the Erdős-Rényi NCMM is defined
as the ratio between the existing number of edges nr and the maximum number of edges in a complete
network: d = 2nr

m(m−1) . Please note that 0 ≤ d ≤ 1.
The model of the Erdős-Rényi network is adopted from [45]:

μ(t+1)(i) = (1 − ε) f
(

μ(t)(i), λ(t)(i), a
)
+

ε

ki

m

∑
j=1

Ti,j(d) f (μ(t)(j), λ(t)(j), a), (8)

where the mapping function f remains the same as in Equation (6); ε is the coupling parameter; i is
the degree of the node i. The adjacency matrix Ti,j represents the Erdős-Rényi random network where
the average degree of node i is set to d. The iterative relationship for λ(t)(i) also remains the same as
in Equation (3).

The Erdős-Rényi NCMM diverges at d = 0.031 (Figure 6a). The network exhibits complex
transient states of spatiotemporal divergence at d = 0.033 (Figure 6b) and completely calms down at
d = 0.035 (Figure 6c).

It is well-known that the visualization of chimera states in a random network poses serious
technical problems because adjacent nodes do not necessarily belong to the same chimera state [25].
In other words, the visualization of interpretable chimera states requires special and not always clearly
defined node permutation algorithms [25].

Despite the before-mentioned problems with the visualization of chimera states, we continue with
the digital image entropy-based algorithm without the node permutation (Figure 4c). The results are
surprising. First of all, the geometric shape of the region of chimera states of spatiotemporal divergence
is very similar to Figure 4b. Secondly, the boundaries of the region of chimera states are smooth—the
random nature of the network does not substantially change the geometric shape of the region.
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Figure 6. The transient dynamics of the Erdős-Rényi NCMM comprising 200 nodes (a = 3.699956;
ε = 0.4; λ(0) (i); i = 1, 2, . . . , 200 are randomly distributed in the interval (0, 1)) represented by the
variation of μ(t) (i). The network diverges at d = 0.031 (part (a)); generates complex fractal-type
patterns at d = 0.033 (part (b)); and calms down at d = 0.035 (part (c)). Numerical values of μ(t) (i) are
truncated to 5 for the clarity of presentation.

4.2. Chimera States of Spatiotemporal Divergence in the Small-World NCMM

Computational experiments are continued with the small-world NCMM. To obtain a small-world
network the Watts-Strogatz model is considered [44]. Watts-Strogatz network is constructed starting
from a ring lattice with m nodes and k edges per node. Each pair of nodes is rewired with probability β.
Please note that a regular network is generated at β = 0. However, when all edges are rewired (β = 1)
a ring lattice is transformed into a random graph.

The implementation of the small-world network of CMM is similar to Equation (8) except that the
adjacency matrix is computed according to the Watts-Strogatz model [44].

As a starting point a ring lattice with P nearest neighbors (Equation (1)) is considered—which
results in the construction of undirected networks. The probability β to rewire the target node is set
to 0.2 in all calculations.

The Watts-Strogatz NCMM diverges at P = 3 (r = 0.015) in Figure 7 part (a). The network
experiences transient processes of spatiotemporal divergence at P = 4 (r = 0.02) in Figure 7 part (b)
and completely calms down at P = 5 (r = 0.025) in Figure 7 part (c).

Chimera states of spatiotemporal divergence for the small-world NCMM in the (r, ε) parameter
plane are shown in Figure 4d. Surprisingly, the shape of the highlighted region is very similar to
Figure 4a–c—even though the network topology is completely different.
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Figure 7. The transient dynamics of the small-world network NCMM comprising 200 nodes (a =

3.699956; ε = 0.4; λ(0) (i); i = 1, 2, . . . , 200 are randomly distributed in the interval (0, 1); β = 0.2)
represented by the variation of μ(t) (i). The network diverges at r = 0.015 (part (a)); generates complex
patterns of spatiotemporal divergence at r = 0.02 (part (b)); and calms down at r = 0.025 (part (c)).
Numerical values of μ(t) (i) are truncated to 5 for the clarity of presentation.

5. Concluding Remarks

The visualization of chimera states in a regular one-dimensional lattice does not cause much
difficulties because these chimera states are represented by compact time-varying clusters of
synchronized nodes. However, the concept of the space is lost in complex networks, which makes it not
straightforward to define a chimera state [25]. To enhance the view of chimera states, the rearrangement
of nodes can be done. The node with the highest degree is labelled to be the first, then other nodes are
arranged according to their distance from the first node [25].

The visualization scheme for chimera states in this manuscript is not based on the rearrangement
on nodes. Moreover, chimera states in NCMM are not states of spatiotemporal synchronization between
the neurons or other types of nonlinear oscillators. Chimera states in NCMM do exist in the regions
around the boundary lines separating the quiet state or the state of divergence. These chimera states
represent the self-organization of nodes into spatiotemporal clusters of divergence. It appears that
image entropy is an effective measure for the visualization of the regions of chimera states in NCMM.
Moreover, the proposed techniques work well with different topology networks (regular, feed-forward,
random, and small-world NCMM). The network structure has a strong impact to the geometrical shape
of chimera states of spatiotemporal divergence (compare Figure 1b, Figure 5b, Figure 6b, Figure 7b).
However, it appears that the boundary line separating the quiet states and the diverged states is
not strongly affected by the structure of the network—which is a completely counter-intuitive result.
This robustness of the geometric shape of boundary lines against the network structure has important
implications for different potential applications—desynchronization of complex coupled maps of
matrices, temporary control of divergence in coupled maps of matrices, etc. These applications remain
clear objectives of future research.

The existence (and appropriate visualization) of chimera states of spatiotemporal divergence is
already an interesting result in nonlinear dynamics of complex CMLs of matrices. The sensitivity of
these chimera states to different perturbations, the potential of chimera states to embed and to transmit
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secret visual information—these are important questions falling out of the scope of this paper—but
remaining a definite objective of future research.
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Abstract: The development of online social networking services provides a rich source of data of social
networks including geospatial information. More and more research has shown that geographical
space is an important factor in the interactions of users in social networks. In this paper, we construct
the spatial interaction network from the city level, which is called the city interaction network, and
study the evolution mechanism of the city interaction network formed in the process of information
dissemination in social networks. A network evolution model for interactions among cities is
established. The evolution model consists of two core processes: the edge arrival and the preferential
attachment of the edge. The edge arrival model arranges the arrival time of each edge; the model of
preferential attachment of the edge determines the source node and the target node of each arriving
edge. Six preferential attachment models (Random-Random, Random-Degree, Degree-Random,
Geographical distance, Degree-Degree, Degree-Degree-Geographical distance) are built, and the
maximum likelihood approach is used to do the comparison. We find that the degree of the node and
the geographic distance of the edge are the key factors affecting the evolution of the city interaction
network. Finally, the evolution experiments using the optimal model DDG are conducted, and the
experiment results are compared with the real city interaction network extracted from the information
dissemination data of the WeChat web page. The results indicate that the model can not only capture
the attributes of the real city interaction network, but also reflect the actual characteristics of the
interactions among cities.

Keywords: city interaction network; evolution model; preferential attachment; WeChat; maximum
likelihood

1. Introduction

With the rapid development of the Internet, smart phones, and information technology, online
social networking services such as Facebook, Twitter, Sina Weibo, and WeChat have developed rapidly.
These platforms facilitate the interactions among users and accelerate the dissemination of emotions
and opinions contained in the information. Meanwhile, these platforms provide a rich source of social
media including geospatial information for the research of social networks [1–4]. The interactions of
users in social networks usually manifest as the viewing and forwarding of information. More and
more research shows that geographical space, which seems to be a bridge between online and offline,
affects the interactions of users in social networks [5–7].
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Spatial interaction is the process whereby entities at different points in physical space make
contacts, demand/supply decisions, or locational choices [8]; for example, trade in goods among
different countries or regions, human migration among cities or countries, and people in different
cities communicating with each other by phone or social media software. In social networks, spatial
interactions are formed by users who belong to different spatial locations through viewing and
forwarding information. Naturally, spatial interactions can be described by complex network [9],
where nodes represent spatial locations, which can be cities, provinces, or countries, and edges
represent interactions of entities in different spatial locations. The research on the characteristics
of the spatial interaction network in social networks and their evolutionary mechanisms is of great
significance for providing location-based business services, planning and managing communication
network facilities, and formulating regional economic development policies. In addition, the results
also can be used to improve the performances of several types of applications in various fields, such as
social network analysis [10] and affective computing [11–13].

The existing network evolution models mainly include the random graph models
(RGM) [14–16], generated network models (GNM) [17,18], and data-driven network models
(DDNM) [19–21]. Random graph models, such as Poisson random graphs and generalized random
graphs, attempt to apply the connecting probability and changing strategy of the edge to a certain
number of nodes to generate a random network that meets specific statistical characteristics (such
as average degree, degree distribution, joint degree distribution, and degree-degree correlation).
Generated network models, such as preferential attachment models and their variants, try to generate
a network that reflects certain characteristics of the real network (such as a power-law distribution,
small-world characteristics, and homogeneity) through certain node-adding, edge-adding, and
edge-changing rules from simple graphs (regular graphs). These two widely-used models can
usually generate networks with some characteristics of the real network, but they cannot satisfy
multiple characteristics at the same time. Moreover, these models usually do not consider the
geospatial characteristics of networks, making it difficult to describe the evolution process of spatial
interaction network.

Generally, distance and location are the two important factors of geospatial characteristics. On the
one hand, it is found that the interaction frequency among users has a distance decay effect. People
tend to communicate more with friends who are close to them geographically, while users who are far
away from each other are less likely to interact [22–25]. On the other hand, the behaviors of people
living in similar geographical locations, such as the same city, often show similarities, while people in
different geographical locations will have different behavior patterns due to economic and cultural
differences, thus affecting the information interactions among regions [22].

Gravity laws are commonly found in spatial interaction networks such as crowd flow networks,
population migration networks, and commodity trade networks. Thus, a gravity model for spatial
interaction is proposed by analogy with the law of universal gravitation. The gravity model provides
an estimate of the traffic between two or more regions (such as the number of trips and the quantity
of commodity trade). In a spatial interaction network, the gravity model can be interpreted as the
frequency of interactions between two nodes. The frequency is proportional to the strength of the two
nodes and inversely proportional to the power of the distance between the two nodes. The gravity
model has become a classic model for interpreting and predicting the interactions of spatial networks
and is widely used in many fields including transportation planning [26], population migration [27,28],
international trade [29,30], and disease transmission [31]. Although the gravity model is simple,
intuitive, easy to calculate, and involves geographical factors, it lacks a rigorous theoretical foundation.
In addition, the gravity model is deterministic and cannot explain the fluctuation of the interaction
between two nodes in the spatial interaction network [32]. Therefore, this kind of static estimation is
not suitable for describing the evolution of spatial networks.

This paper proposes a spatial interaction network at the city level, which is called the city
interaction network. We study the evolution mechanism of the city interaction network formed
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in the process of information dissemination in social networks, where nodes represent cities and
edges represent interactions among cities. We consider the evolution model of the city interaction
network from the perspective of the edge, that is how each edge is added to the city interaction
network. A evolution model for describing the interactions among cities is established. The
evolution model consists of two core processes: the edge arrival and the preferential attachment
of the edge. The edge arrival model arranges the arrival time of each edge; the model of preferential
attachment of the edge determines the source node and the target node of each arriving edge. Six
preferential attachment models (Random-Random, Random-Degree, Degree-Random, Geographical
distance, Degree-Degree, Degree-Degree-Geographical distance) are built, and the maximum likelihood
approach is used to do the comparison. Finally, the evolution experiments using the optimal model
(Degree-Degree-Geographical distance) are conducted, and the experiment results are compared with
the real city interaction network extracted from the information dissemination data of the WeChat
web page.

Preferential attachment of edges: The preferential attachment model assumes that when a new
node joins the network, it creates a constant number of edges, where the selection of the target node
for each edge is proportional to the degree of the node [33]. In addition to degree, the node age and
geographic distance of the edge can be applied to the preferential attachment model [34]. This paper
considers the evolution of the network from the perspective of the edge. Therefore, when an edge
is added to the network, the source node and the target node are selected according to preferential
attachment of edges.

Evaluation by the maximum likelihood: The maximum likelihood approach is usually used to
compare a series of models numerically and select the best model (and parameters) to interpret the
data [35]. As our understanding of real-world networks improves, likelihood remains unchanged,
while the generative models improve to incorporate the new understanding. Success in modeling can
therefore be effectively tracked [34]. The maximum likelihood approach is widely used to estimate
network model parameters [35–37] and select the optional model [34,38]. Therefore, this paper uses
the maximum likelihood approach to evaluate and compare different network evolution models based
on empirical data.

WeChat: WeChat is one of the most popular social networking platforms in China. As of the
second quarter of 2016, WeChat has covered more than 94% smart phones in China, with 0.8 billion
monthly active users. WeChat has powerful social functions and a large number of users, and
WeChat has integrated almost all aspects of people’s lives, including payment, location-based services,
shopping, games, and entertainment. Therefore, WeChat is an appropriate system to study the
characteristics and evolution mechanism of the spatial interaction network in social networks.

The rest of this paper is organized as follows: the second section introduces the dissemination
data of the WeChat web page and constructs the city interaction network. The third section introduces
the evolution model of the city interaction network. In the fourth section, the maximum likelihood
method is used to evaluate the six preferential attachment models and to select the optimal model and
parameters. In the fifth section, the optimal model is used for network evolution, and the obtained
evolutionary network is compared with the real city interaction network. The potential biases and
model extension are discussed in the sixth section, and the seventh section is the conclusion.

2. Preliminaries

2.1. Dataset

WeChat provides three basic functions: instant messaging (including single and group chat),
moments (where users publish, comment, and forward information), and official accounts (including
subscription accounts and service accounts). Users can interact with their friends by posting text,
voice, pictures, emoticons, location, video, web links, and other information. This paper studies the
dissemination data of the WeChat web page (HTML5) collected by third-party service companies.
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The recording process of the WeChat web page data can be described as: when a web page with a
certain theme is created and published by the creator through the official accounts, the content of this
web page can be viewed by other users. Users who view the web page can send it to their moments
or WeChat friends, or not forward it. Thus, the users who view (or forward) and the users who are
viewed (or forwarded) are recorded.

The dissemination data of WeChat web page were obtained, and the time span of the data was
from 2–8 July 2016. There were 622,637 records in total, and each record can be represented by a
six-tuple <pageID, sourceID, targetID, type, time, ip>, where pageID represents the unique identity
of the web page, sourceID and targetID represent the unique identity of the user, type represents the
behavior type of target, including viewing and forwarding, time represents the time when the behavior
of targetID occurs, and ip represents the IP address of targetID. In order to protect the privacy of users,
web page identity and user identity were anonymized.

2.2. City Interaction Network

Most of the researches related to geography use self-reported data to identify the location of
users, which is often inaccurate. By locating users with IP addresses, the errors of self-reported data
can be avoided. Song et al. analyzed several large IP address databases, including the Chunzhen
IP address database, the Taobao IP address database, the Sina IP address database, and the Baidu
IP address database [39]. They found that the four IP address databases were quite different, and
when the administrative division level was lower, the coverage rate and coincidence rate of IP address
databases would decrease, while the data availability would also decrease. However, considering the
coverage rate and coincidence rate of the four IP address databases, they believed that the credibility
of the Taobao IP database was the highest. Therefore, the Taobao IP address database was used in our
work to locate the IP address in the data to the corresponding cities in China. Finally, the IP address
in the data was located in 34 provincial divisions of China (including 23 provinces, 4 municipalities,
5 autonomous regions, and 2 special administrative regions), a total of 372 cities. The number of cities
corresponding to each provincial division is shown in Table 1.

Table 1. City distribution of 34 provincial divisions in China. China has 34 provincial divisions,
including 23 provinces, 4 municipalities, 5 autonomous regions, and 2 special administrative regions.

Province Number of Cities Province Number of Cities Province Number of Cities

Beijing 1 Tianjin 1 Hebei 11
Inner Mongolia 12 Liaoning 14 Jilin 9

Shanghai 1 Jiangsu 13 Zhejiang 21
Fujian 16 Jiangxi 9 Shandong 11
Hubei 18 Hunan 17 Guangdong 14

Hainan 18 Chongqing 1 Sichuan 21
Yunnan 16 Xizang 7 Shannxi 10
Qinghai 8 Ningxia 5 Xinjiang 15
Shanxi 11 Heilongjiang 13 Anhui 11
Henan 17 Guangxi 14 Guizhou 9
Gansu 14 Hong Kong 1 Macao 1
Taiwan 12

Figure 1 shows the active frequency of users in each provincial division. The active frequency of a
province is the number of users located in that province. The active frequency was more in the east
and less in the west. The top three provincial divisions with the highest frequency were Shandong,
Henan, and Guangdong, and the active frequency of Xizang, Xinjiang, and Taiwan was low. This
fully reflects that information interaction is affected by political, economic, cultural, geographical, and
demographic factors.
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Figure 1. The active frequency of users in 34 provincial divisions of China. The transition of colors
from red to yellow indicates the reduction of active frequency, and the corresponding data of each color
are given by the color bar in the lower left corner.

Based on the data of the web page dissemination in WeChat, the city interaction network Gt =

(V, Et, Wt) can be constructed. Gt is a dynamic directed network, V = {v1, v2, v3, · · · , vN} is the
set of nodes in the network, representing cities of China, and the number of nodes is N; Et =

{e1, e2, e3, · · · , eMt} is the set of edges of the network from Time 0–t, representing the interactions
among cities, and the number of edges is Mt; Wt = {w1, w2, w3, · · · , wMt} is the weight set of edges in
the network from Time 0–t, representing the number of interactions among cities. The dynamics of the
city interaction network Gt is reflected in the changes of the edge and weight. We took the cities in
Shandong province as an example to elaborate the construction process of the city interaction network.
At t = 0, Gt is a network containing only 17 isolated nodes (the number of cities in Shandong province).
When a WeChat web page is published by a user in Jinan and users in Dezhou view or forward this
web page, then a directed edge from Jinan to Dezhou is established. The weight of the directed edge is
the number of Dezhou users viewing the web page. With the dissemination of the web page, it was
assumed that the interaction network one day later is as shown in Figure 2. At this time, the number
of nodes in the interaction network was N = 17, and the number of edges was Mt = 22 (bidirectional
edges are denoted as two edges), where t = 1 (day). The city interaction network in this paper allows
self-connected edges, which represents the interactions in the same city.
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Figure 2. Schematic diagram of the city interaction network in Shandong province. Red dots represent
the nodes of the network, and black arrows represent the directed edges of the network. The arrows
start from the source node and point to the target node. The bidirectional arrow indicates that the two
nodes are source and target nodes of each other.

Take the starting time of data (2 July 2016 00:00) as the time t = 0, and construct the city interaction
network. The time span of the network is T. Table 2 lists the basic properties of the network GT ,
including the number of nodes, number of edges, number of self-connected edges, average degree of
nodes, density, average clustering coefficient, and average shortest path length.

Table 2. Basic properties of the city interaction network GT . N represents the number of nodes, MT the
number of edges, Mse

T the number of self-connected edges, kavg
T the average degree of nodes, ρT the

density, and LT the average length of the shortest path.

T N MT Mse
T kavg

T ρT LT

2–8 July 2016 372 30,438 353 163.65 0.22 1.73

According to the basic properties of the network GT listed in Table 2, an overall understanding
of the interaction among cities was obtained through the dissemination of WeChat web page. The
network involved 372 nodes and 30,438 edges, which indicates that not every two nodes had connected
edges. On average, each node only had connections with 163.65 nodes, and the density of the network
was only 0.22. It can be seen that although WeChat has a large number of users in China and covers all
cities, each city will not interact with all other cities in the short term. The average shortest path length
of the network was 1.73, which means that the average hop from one node to another node was 1.73.
There were 353 self-connected edges in the network, and only 19 nodes had no self-connected edges. A
total of 622,637 interaction records were recorded, among which, 350,578 records were the interactions
in the same city, accounting for 56%. It can be seen that users were more inclined to interact with users
in the same city.

Figure 3 shows the number of non-isolated nodes and the number of edges in the city interaction
network as a function of time. Figure 3a shows the number of non-isolated nodes in the city interaction
network as a function of time. Non-isolated nodes represent the nodes that have interacted with other
nodes. In the initial stage, the number of non-isolated nodes grew rapidly, and the growth became slow
until the number of nodes was close to N. Figure 3b shows the number of edges in the city interaction
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network as a function of time. The number of edges in the network kept increasing, but due to the
limitation of the number of nodes, the growth of the number of edges gradually slowed down. In
the case where the number of non-isolated nodes in the network was almost constant, the number
of edges still kept growing. This also reflects the limitations of the evolution of the city interaction
network from the perspective of nodes.
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Figure 3. The number of non-isolated nodes and the number of edges in the city interaction network as
a function of time. (a) The number of non-isolated nodes in the city interaction network as a function
of time. (b) The number of edges in the city interaction network as a function of time. Each data point
in the figure represents the number of non-isolated nodes (or edges) in the city interaction network
from t = 0 to the current time. The time interval between two data points is one hour.

2.3. Notation

Let Z denote the set of edges to be added to the network, t(z), z ∈ Z the time when an edge z
is added to the network, and zt

u,v an edge z added to the network at time t, and its source node and
target node are connected to node u and node v respectively. Let kt(v) denote the degree of node v at
time t and d(u, v) denote the geography distance between node u and node v.

3. Evolution Model

We consider the evolution model of the city interaction network from the perspective of the edge.
The model consists of two core processes: the edge arrival and the preferential attachment of the edge.
The edge arrival determines the arrival time of each edge; the preferential attachment of the edge
determines the source node and the target node of each arriving edge.

For an edge z, it is composed of a node pair:

z = (u, v), u, v ∈ V, (1)

where V represents the node set and does not change with the network evolution. Assuming that the
arrival time of the edges is a function of time in Δt, then the arrival time of each edge in Δt will be
arranged, and all edges can be expressed in the time sequence according to the arrival time:

Z = zt1 , zt2 , · · · , ztC , (2)

t1 � t2 � · · · � tC, (3)
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where C is the length of the sequence Z, and Formula (3) guarantees the time-ordered arrival of
the edges.

Select the source node u and the target node v from node set V according to a certain preferential
attachment for the edge arriving at time t:

P(zt
u,v) ∼ X(Θ), (4)

where X(Θ) represents a distribution function and Θ is the parameter of the distribution function.
Finally, the network evolution is realized by updating the edge and weight. The edge arrival and
preferential attachment of the edge are described in detail below.

3.1. Edge Arrival

Figure 4 shows the interaction quantity among cities of the data (each record represents an
interaction) as a function of time. In the figure, each data point represents the interaction quantity
among cities from time t = 0 to the current time, and the red line is the fitting of the function. It can
be seen from the figure that the interaction quantity was a linear function of time, which satisfies
f (t) = 4025t − 4.51e4, and the time unit is hours. Since each edge represents the interaction among
nodes, f (t) can be used to describe the number of arriving edges. Thus, the number of edges added
to the network per unit time is a constant ε = 4025, and the time interval for each arriving edge is
ti − ti−1 = 1/ε, i = 2, 3, · · · , C. Let the time of the first arrived edge be t1 = 0, so that the time of each
arriving edge is determined.
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Figure 4. The interaction quantity among cities of the data as a function of time. Each data point
represents the interaction quantity among cities from time t = 0 to the current time, and the red line is
the fitting for the function; the fitting expression is given in the figure.

3.2. Preferential Attachment of the Edge

In this paper, the evolution of the city interaction network is considered from the perspective of
the edge. Therefore, when an edge is added to the network, its source node and the target node will be
selected according to a certain mechanism. This selection mechanism is called preferential attachment
of the edge. Here, six different preferential attachment models are considered in this paper:
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Random-Random (RR): for the arrived edge at time t, two nodes are randomly selected from the node
set V as its source node and the target node, respectively:

PRR(zt
u,v) =

1
N2

t
. (5)

Random-Degree (RD): for the arriving edge at time t, a node is randomly selected from the node set
V as its source node, and the selection of its target node is proportional to the degree of nodes in
the network:

PRD(zt
u,v) =

[kt(v)]α

N ∑i∈V [kt(i)]α
. (6)

Degree-Random (DR): for the arrived edge at time t, a node is randomly selected from the node set
V as its target node, and the selection of its source node is proportional to the degree of nodes in
the network:

PDR(zt
u,v) =

[kt(u)]β

N ∑i∈V [kt(i)]β
. (7)

Geographical distance (G): for the arrived edge at time t, the selection of its source node and target
node is proportional to the geographical distance between the two nodes:

PG(zt
u,v) =

[d(u, v)]γ

∑i,j∈V [d(i, j)]γ
. (8)

Degree-Degree (DD): for the arrived edge at time t, the selection of its source node and target node is
proportional to the degree of the nodes in the network. The degree index for the source node is α, and
the degree index for the target node is β:

PDD(zt
u,v) =

[kt(v)]α[kt(u)]β

∑i,j∈V [kt(i)]α[kt(j)]β
. (9)

Degree-Degree-Geographical distance (DDG): for the arrived edge at time t, the selection of its
source node and target node is proportional to the degree of the nodes in the network and to the
geographical distance between the source node and the target node. The degree index for the source
node is α; the degree index for the target node is β; and the distance index is γ:

PDDG(zt
u,v) =

[kt(v)]α[kt(u)]β[d(u, v)]γ

∑i,j∈V [kt(i)]α[kt(j)]β[d(i, j)]γ
. (10)

4. Evaluation

In this section, a quantitative approach is applied to compare the accuracies of different preferential
attachment models. The network is often considered to be the result of an evolutionary random
process that drives its growth, including new nodes and new edges [35]. Given real data about
network evolution, the extent to which the assumptions of a model are supported by the data using
the maximum likelihood approach can be tested. The maximum likelihood approach is usually used
to compare a series of models numerically and to select the best model (and parameters) to interpret
the data. Estimating the likelihood of a preferential attachment model M involves considering each
arriving edge zt and computing the likelihood PM(zt

u,v) that the edge zt selects the actual source node
u and the actual target node v according to the model M. Therefore, the likelihood of network GT
generated by model M can be expressed as:

PM(GT) = ∏
t∈T

PM(zt
u,v). (11)
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To obtain better numerical accuracy, the log-likelihood is used in this paper:

log(∏
t

PM(zt
u,v)) = ∑

t
log(PM(zt

u,v)). (12)

Since the city interaction network had self-connecting edges, which represents the interaction
in the same city, we assumed that the distance of self-connecting edges was 20 kilometers (consider
each city contour as a circle, and 20 kilometers is the approximate average of the radius of all cities).
Figure 5 shows the relationship between the log-likelihood of models and different parameters. The
RR model had no parameters, and its log-likelihood was a constant −3,185,899. In addition to the RR
model, the log-likelihoods of the other five models were all convex functions of the model parameters,
so the maximum likelihood of each model can be found to estimate the best parameters of the model.
Table 3 lists the maximum log-likelihood of different preferential attachment models and the optimal
parameters under the maximum log-likelihood. It can be seen from Figure 5 that, under the same
parameter, the log-likelihood of the RD model and DR model was approximately equal. This reflects
that the RD model and DR model had similar effects on the network evolution, and the selection of
the source node and the target node was equal. Figure 5d also reflects this point. Figure 5c shows the
relationship between the log-likelihood and parameter γ of G model, and its maximum log-likelihood
was significantly higher than that of the RR model, RD model, DR model, and DD model, indicating
that the distance played an important role in the evolution of the city interaction network. The DDG
model considered both the node degree and the geography distance among nodes in the network
evolution process. It can be seen that the maximum log-likelihood of DDG model was the highest,
which was 22% higher than that of the DD model and 11% higher than that of the G model. In addition,
in the DD model, when α = 1.0, β = 1.0, its log-likelihood was the maximum. In the G model, when
γ = −1.6, its log-likelihood was the maximum. The DDG model, which considered the node degree
and the geography distance, obtained the maximum likelihood when α = 0.6, β = 0.6, γ = −1.5. This
indicates that the distance made the degree of the node less important. Then, we applied the DDG
preferential attachment model with parameters α = 0.6, β = 0.6, γ = −1.5 to the evolution of the city
interaction network.

5. Network Evolution

In order to verify the city interaction network model and the evolution process of the network,
network evolution experiments were conducted. We considered the real network G3T/4 from 2–4 July
2016 and evolved it from t = 3

4 T until t = T. Specifically, the edge arrival model was used to determine
the edges arriving at time t ∈ [ 3

4 T, T]. For each arriving edge, the DDG preferential attachment model
was used to select its source node and target node. Finally, the evolutionary network G

′
T with the same

time length as the real network GT was obtained. GT and G
′
T were analyzed by the comparison of the

statistical characteristics and community structure of the network.
Figure 6 shows the statistical characteristics of real network GT and evolutionary network G

′
T .

Figure 6a,b are considered from the edge properties. Figure 6a shows the weight distribution of
the edges. It can be seen that the weight distributions of the real network and the evolutionary
network followed the power-law distribution. The weight distribution of real network GT was fitted as
shown in the dotted black line. The power exponents of the weight distributions of real network and
evolutionary network were 1.92 and 1.99, respectively (the weight distributions of the real network
and evolutionary network approximately overlapped, so the fit line of the weight distribution of
the evolutionary network is not drawn). The weight of the edge represents the interaction among
cities, and the power-law distribution of the weight distribution reflects that only a few cities had
frequent interactions, while the interactions among most cities was very small. Figure 6b shows the
geographical distance distribution of edges. The geographical distance distribution of edges is a
property that connects the network with geographical space. Most of the interactive distances among
cities were about 100 km. As the distance continued to increase, the probability of interaction became
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smaller. In addition, 20 km was also the high-frequency distance of city interaction (the distance was
denoted as 20 km if the interaction occurred in the same city), indicating that the interaction in the
same city occupied a large proportion.
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Figure 5. The relationship between log-likelihood of models and different parameters. (a) The
relationship between the log-likelihood of the Random-Degree (RD) model and parameter α. (b) The
relationship between the log-likelihood of the Degree-Random (DR) model and parameter β. (c) The
relationship between the log-likelihood of the Geographical distance (G) model and parameter γ.
(d) The relationship between the log-likelihood of the Degree-Degree (DD) model and parameters α

and β. (e) The relationship between the log-likelihood of the Degree-Degree-Geographical distance
(DDG) model and parameters α(β) and γ.

Table 3. The maximum log-likelihood of different preferential attachment models and the optimal
parameters under the maximum log-likelihood.

Model Parameter The Maximal Log-Likelihood

RR - −3,185,899

RD α = 1.0 −2,994,407
DR β = 1.0 −2,985,583

G γ = −1.6 −2,456,443

DD α = 1.0 −2,794,647
β = 1.0

DDG
α = 0.6

−2,180,441β = 0.6
γ = −1.5
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Figure 6c–f are considered from the perspective of node properties. Figure 6c shows the node
weight distribution; the horizontal ordinate is the node number, and the numbering order is arranged
in descending order of node weight. The node weight of a node is the sum of all the weights of edges
connected with the node, which reflects the interactions between the node and its neighbor nodes.
Figure 6d shows the betweenness centrality distribution of nodes; the horizontal ordinate is the node
number, and the numbering order is arranged in descending order of the betweenness centrality of
nodes. The betweenness centrality is to measure the importance of a node to connect with other
nodes. By comparing the real network GT with the evolutionary network G

′
T , it can be found that the

node weight and betweenness centrality of some nodes in the evolutionary network were obviously
higher or lower than the real network, but the overall trend was consistent with the real network. The
provincial capital is the economic, political, and cultural center of a province, which is also reflected
in the city interaction network. In the real network shown in Figure 6c,d, provincial capitals have
relatively high node weight and betweenness centrality, such as Beijing, Shanghai, Guangzhou, Suzhou,
Tianjin, and Hangzhou, which can also be reflected in the evolutionary network. Figure 6e shows the
relationship between node degree and node weight. Figure 6f shows the relationship between node
degree and node betweenness centrality. The greater the degree of nodes, the greater the node weight
and the betweenness centrality.
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Figure 6. Statistical characteristics of real network GT and evolutionary network G
′
T . (a) The weight

distribution of edges. The weight distribution of real network GT is fitted as shown in the dotted black
line. (b) The geography distance distribution of edges. The distance is in units of 10 kilometers. (c) The
node weight distribution. The horizontal ordinate is the node number, and the numbering order is
arranged in descending order of node weight. (d) The betweenness centrality distribution of nodes.
The horizontal ordinate is the node number, and the numbering order is arranged in descending order
of the betweenness centrality of nodes. (e) The relationship between node degree and node weight.
(f) The relationship between node degree and node betweenness centrality. In the figure, the red
circle marks represent the statistical characteristics of the real network GT , and the blue triangle marks
represent the statistical characteristics of the evolutionary network G

′
T . All subgraphs are plotted on

log-log coordinates.
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For the real network GT and evolutionary network G
′
T , two community detection methods,

Louvain [40] and Infomap [41], were used to extract the community structure of the network, and the
Normalized Mutual Information (NMI) was used to evaluate the results of community detection. The
evaluation results are shown in Table 4. GT − PAD represents the comparison between the community
structure of real networks and the provincial administrative divisions in China; GT − G

′
T represents

the comparison between the community structure of the real network and that of the evolutionary
network. It can be found that the community structure of the real network was consistent with the
administrative division to a certain extent, and it also shows the influence of the distance factor on
the interactions among cities. In addition, the community structure of evolutionary network and real
network was also similar, which indicates that the preferential attachment model in this paper can
describe the emergence of community to a certain extent. This is mainly because the distance factor
was considered in the model, so that cities in the same province were easily connected and formed
communities. In general, the evolutionary network can be well matched with the real network, which
reflects that the model can not only capture the properties of the real city interaction network, but also
reflect the geographical characteristics of the interactions among cities.

Table 4. Evaluation results of community detection in undirected networks. GT represents the
real network, PAD represents Provincial Administrative Divisions in China, and G

′
T represents the

evolutionary network.

Comparison Louvain Infomap

GT − PAD 0.738 0.831
GT − G

′
T 0.715 0.850

6. Discussion

6.1. Potential Biases

In this paper, the evolution of the city interaction network was modeled and analyzed by using
the interactive data formed in the process of information dissemination. There is no doubt that the use
of one dataset to explain the results is not complete enough. Since our model was data-driven, the edge
arrival model and maximum likelihood method were data-dependent. For the edge arrival model,
different spatial interactive data may have different situations. The selection of model parameters in
this paper was based on the method of maximum likelihood. The optimal parameters of the model
can be found using real data. Therefore, different datasets will lead to different optimal parameters
of the model. The evolution model was evaluated by comparing the structure characteristics of the
evolutionary network and the real network. From the results, the model can capture the properties of
the real city interaction network, but this is only limited to the city interaction network formed in the
process of information dissemination. In the process of information dissemination, the interaction of
information enables people to express their emotions and opinions. It is helpful to understand people’s
emotional tendency by considering the semantic characteristics of interactive information in the spatial
interaction network.

Moreover, compared with cities in other countries, Chinese cities have some specificities. (1) China
is a vast country, and the distance between cities is relatively large, making distance factors play an
important role in the interactions of cities. (2) The distribution of Chinese cities shows a convergent
pattern, which is different from Western countries. As a result, China has many large cities with large
populations, such as Beijing, Shanghai, and Guangzhou. (3) The provincial administrative divisions in
China are established around large cities, and the cities within the province are more likely to interact.
The higher the level of political and economic development of the city, the more obvious the interaction.
(4) China has a large population and a high Internet penetration rate, which makes information spread
rapidly and widely. The results of this paper were obtained in this context. However, if the background
were changed to some countries with a relatively small scale and the development levels of cities
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within the country were similar to each other, the influence of the distance factor on the interactions
among cities may not be well reflected. Therefore, different countries have influence on the settings of
the model.

6.2. Model Extension

The preferential attachment model in this paper belongs to a link prediction model based on the
similarity of the network structure. Essentially speaking, a model for link prediction makes a guess
about the factors resulting in the existence of links, which is actually what an evolving model wants to
show. Up to now, the studies of link prediction overwhelmingly emphasized undirected networks.
However, the study of link prediction in directed networks is inadequate [42].

The current common method for extending the technology applied to undirected networks
to directed networks is to divide the degrees into outdegree and indegree, such as community
detection [43–46]. According to this ideas, our model can be extended to directed networks. Take the
DDG model as an example: the model can be extended to a directed network:
Directed-Degree-Degree-Geographical distance (DiDDG): for the arriving edge at time t, the selection
of its source node is proportional to the out-degree of the nodes in the network; the selection of its
target node is proportional to the in-degree of the nodes; meanwhile, the selection of its source node
and target node is proportional to the geographical distance between the source node and the target
node. The degree index for the source node is α; the degree index for the target node is β; and the
distance index is γ:

PDiDDG(zt
u,v) =

[kout
t (v)]α[kin

t (u)]β[d(u, v)]γ

∑i,j∈V [kout
t (i)]α[kin

t (j)]β[d(i, j)]γ
. (13)

In the modified model, the degree is divided into the out-degree and in-degree for consideration, so
that the probability of connecting an edge between node u and node v will vary depending on the
direction of the edge.

7. Conclusions

This paper studied the evolution mechanism of the city interaction network formed in the process
of information dissemination in social networks, where nodes represent cities and edges represent
interactions among cities. We considered the evolution model of the city interaction network from
the perspective of the edge. In the model, the nodes were fixed, and the evolution process of the edge
consisted of two core processes: the edge arrival and the preferential attachment of the edge. The model
of edge arrival determines the arrival time of each edge; the model of preferential attachment of the
edge determines the source node and the target node of each arriving edge. Six preferential attachment
models were considered, and the comparison was done by the maximum likelihood approach. We
found that the degree of the node and the geographic distance of the edge were the key factors
affecting the evolution of the city interaction network. The DDG preferential attachment model, which
considered both the node degree and the geographical distance among nodes in the network evolution
process, was the best of the six models. Finally, we conducted the evolution experiments using the most
optimal model and compared it with the real city interaction network extracted from the information
dissemination data of the WeChat web page. By comparing the weight, geographical distance, node
weight, and betweenness centrality of the real network and the evolutionary network, it was found
that the evolutionary network could be well matched to the real network, which reflects that the
model can describe the actual characteristics of the interactions among cities. Our research is of great
significance for providing location-based business services, planning and managing communication
network facilities, and formulating regional economic development policies.

However, there are still some limitations in our work. On the one hand, the evolution process of
the city interaction network is affected by a variety of factors, such as politics, economy, population,
etc. A comprehensive comparative analysis of the effects of these factors plays a significant role
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in the evolution model. These factors should be considered in the evolution model in future work.
On the other hand, our work was verified by the real dissemination data of the WeChat web page;
whether the model is applicable to the evolution of other spatial interaction networks still needs to be
further verified.
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