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Tens of millions of images are captured every day for a variety of applications in almost all

domains of human endeavors. We have come to rely on machine learning, including deep learning,

to analyze and extract actionable information from captured images via recognizing the presence

of patterns of interest. In recent years, these methods, particularly those using deep learning, have

exhibited performance levels surpassing human performance in certain applications. The purpose of

this book is to chart the progress in applying machine learning, including deep learning, to a broad

range of image analysis and pattern recognition problems and applications. To this end, we have

assembled original research articles making unique contributions to the theory, methodology, and

applications of machine learning in image analysis and pattern recognition.
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Abstract: Tea is one of the most popular beverages in the world, and its processing involves a number
of steps which includes fermentation. Tea fermentation is the most important step in determining
the quality of tea. Currently, optimum fermentation of tea is detected by tasters using any of the
following methods: monitoring change in color of tea as fermentation progresses and tasting and
smelling the tea as fermentation progresses. These manual methods are not accurate. Consequently,
they lead to a compromise in the quality of tea. This study proposes a deep learning model dubbed
TeaNet based on Convolution Neural Networks (CNN). The input data to TeaNet are images from
the tea Fermentation and Labelme datasets. We compared the performance of TeaNet with other
standard machine learning techniques: Random Forest (RF), K-Nearest Neighbor (KNN), Decision
Tree (DT), Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), and Naive Bayes
(NB). TeaNet was more superior in the classi�cation tasks compared to the other machine learning
techniques. However, we will con�rm the stability of TeaNet in the classi�cation tasks in our future
studies when we deploy it in a tea factory in Kenya. The research also released a tea fermentation
dataset that is available for use by the community.

Keywords: machine learning; deep learning; image processing; classi�cation; tea; fermentation

1. Introduction

Tea is one of the most popular and lowest cost beverages in the world [ 1]. Currently, more than
3 billion cups of tea are consumed every day worldwide. This popularity is attributed to its
health bene�ts, which include prevention of breast cancer [ 2], skin cancer [3], colon cancer [4],
neurodegenerative complication [ 5], prostate cancer [6], and many others. Tea is also attributed
to the prevention of diabetes and boosting metabolism [ 7]. Depending on the manufacturing technique,
it may be described as green, black, oolong, white, yellow, and compressed tea [8]. Black tea accounts
for approximately 70% of tea produced worldwide. The top four tea-producing countries are China,
Sri Lanka, Kenya, and India (Table 1).
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Table 1. Top tea-producing countries globally.

Rank Country Percentage

1 China 20.6%
2 Sri Lanka 19.3%
3 Kenya 18.2%
4 India 7.5%

Kenya is the largest producer of black tea in the world [ 7] due to its low altitude, rich loamy
soil conditions, ample rainfall, and a unique climate [ 9]. In Kenya, tea is produced by small- and
large-scale farmers. Small-scale farmers are more than 562,000 and account for about 62% of the total tea
produced in Kenya [ 10]. The rest are produced by large-scale tea plantations that operate 39 factories.
Smallholder farmers are managed by the government through the Kenya tea development agency
(KTDA) board [ 11]. The board manages 66 tea factories across the country where smallholder tea is
processed [1]. Tea is regarded as a signi�cant contributor to the country's economy as it is the leading
exchange earner and contributes to more than 4% of the gross domestic product (GDP). The sector
is also a source of livelihoods to more than 10% of the country's estimated population of 40 million
people [12,13]. Despite the importance of tea to the country, the sector is facing a myriad of challenges
which include high production cost, mismanagement, bad agricultural practices, climate change,
market competition from other countries, low prices, and lack of automation, among others [ 13].

There are 5 steps in the production of black tea (Figure 1). The process starts with the plucking of
green tea, where two leaves and a bud is the standard. The next step is withering, where tea leaves are
spread on a withering bed for them to lose moisture.

1. Plucking

2. Withering

3. Cut Tear and Curl

4. Fermentation

5. Drying

6. Sorting

Figure 1. Processing steps of black tea.

There is then the cut, tear, and curl step, where tea leaves are cut and torn to open them up for
oxidation. The fermentation stage is where tea reacts with oxygen to produce compounds that are
responsible for the quality of tea. Heat is passed through tea in the drying stage to remove moisture.
The last step is sorting where tea is put into various categories based on their quality. Out of these
steps, fermentation is the most important in determining the quality of tea produced [ 14].

The fermentation process begins when cells of ruptured tea leaves react with oxygen to produce
two compounds: Thea�avins (TF) and Thearubins (TR) [ 15,16]. Thea�avins are responsible for the
brightness and briskness of the tea liquor while TR is responsible for the color, taste, and body of
tea [16]. During fermentation, the following parameters must be maintained: temperature, relative
humidity, and time [ 15]. The optimum temperature under which fermentation should take place
should be approximately 25 °C. The ideal humidity should be approximately 42% [ 17]. Fermentation
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is a time-bound process (Figure 2); at the beginning, the liquor is raw and with a green infusion.
The formation of TF and TR increases with time until optimum fermentation is achieved. At the
optimum fermentation time, the liquor is mellow and with a bright infusion. This is the desired point
in fermentation. After optimum fermentation time, the formation of TR reduces and degradation of TF
begins. This stage is over-fermentation, where the liquor is soft and with a dark infusion.

Figure 2. Tea fermentation process.

Currently, tea tasters determine optimum fermentation manually by either of the following
methods: smell peaks, color change, infusion, or tasting of tea. The constant intervention of humans
in a fermentation room disturbs the environment created for fermentation and is also unhygienic.
Moreover, humans are subjective and prone to error [ 7]. These manual methods lead to a compromise
in the quality of produced tea and translate to low prices of tea. Therefore, there is a need for alternative
means of monitoring the process of fermentation which is the focus of this research.

Currently, machine learning has been applied to many different �elds: engineering, science,
education, medicine, business, accounting, �nance, marketing, economics, stock market, and law,
among others [18–22]. Machine Learning (ML) is a branch of arti�cial intelligence (AI) that enables
a system to learn from concepts and knowledge [ 23]. Deep learning is a collection of machine
learning algorithms which models high-level abstractions in data with nonlinear transformations [ 24].
Deep learning works with the principle of the Arti�cial Neural Networks (ANN) system, and its
fundamental computation unit is a neuron [ 19,24,25]. In ML, feature extraction and classi�cation are
in different steps, while in deep learning, they are in a single step and are done concurrently.

The contribution of this paper is twofold: First, this research proposes a deep learning model
based on CNN for monitoring black tea during fermentation. Secondly, this research releases a tea
fermentation dataset [26]. The rest of the paper is arranged as follows: presentation of some of the
studies aimed at digitizing fermentation is done in Section 2 and a discussion of materials and methods
used in this research is presented in Section3. We provide implementation of the models and the
evaluation metrics in Section 4, while Section 5 provides the results and their discussions. We conclude
the study in Section 6.
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2. Related Work

With advancements in computing, digitization across many �elds is being witnessed [ 27].
In agriculture, tea processing has been receiving attention from researchers. Proposals have been made
on improving the detection of optimum fermentation using the following techniques: electronic nose,
electronic tongue, and machine vision. An electronic nose is a smart instrument designed to detect
and discriminate odors using sensors [28]. The basic elements of an electronic nose are an odor sensor
and an actuator. Proposals to use the electronic nose in detecting optimum tea fermentation have been
proposed in References [14,29–32]. In Reference [31], a handheld electronic nose is proposed, while in
Reference [32], ultra-low power techniques have been incorporated into an electronic nose. From the
literature, it is evident that the electronic nose has made technological breakthroughs. However,
they have not been implemented in many tea factories due to its high price and since they are
power-hungry. Going into the future, adoption of the electronic nose will depend on innovative ways
of using low-cost sensors in their design. It will also depend on the ability to apply ultra-low-power
power design techniques to minimize power consumption.

Some studies exist on the application of an electronic tongue to monitor tea fermentation. They
include References [33–36]. In Reference [33], an optimal fermentation model with the use of electronic
nose and machine learning techniques is proposed. In Reference [34], the authors applied CNN
in the development of an electronic tongue. In Reference [37], an electronic tongue to monitor
biochemical changes during tea fermentation is proposed. The authors in Reference [35] designed an
electronic tongue for testing the quality of fruits. Research in Reference [ 36] proposes an electronic
tongue with the use of a KNN algorithm and adaptive boosting for development. A fusion of the
electronic nose and electronic tongue technologies has been proposed in Reference [38]. It is evident
from the literature that there have been proposals to use the electronic tongue in detecting optimal
fermentation. However, they have not been implemented in tea factories because these technologies
are power-hungry and expensive.

The rapid development of computer vision technology in recent years has led to an increased usage
of computational image processing and recognition methods. Proposals to apply image processing in
the fermentation of tea are reported in References [39–44]. Research in Reference [39] proposes
a quality indexing model for black tea during fermentation using image processing techniques.
Another remarkable research is in Reference [40], which detects changes in color during fermentation.
In Reference [41], arti�cial neural networks (ANN) and image processing techniques are applied to
detect color changes of tea during fermentation. Research in Reference [42] applied SVM with image
processing to detect optimum tea fermentation. In Reference [43], the authors used image processing
to detect the color change of tea during fermentation. The authors in Reference [44] implemented an
electronic tongue with machine vision to predict the optimum fermentation of black tea. From the
literature, tea fermentation is an active research area with authors suggesting different approaches.
However, the tea fermentation dataset has not to be used. The use of image processing is the most
viable approach due to the low cost of imaging devices. Additionally, a color change is easy to detect
compared to taste and odor.

3. Materials and Methods

After acquiring data, the next phase was data preprocessing where activities discussed in
Section 3.2 were done. The cleaned data was fed to the ML classi�ers for training (Figure 3).
The training involved hyperparameter tuning until the models were fully trained. Some of the
hyperparameters are the learning rate, number of the epoch, regularization coef�cient, and batch
size. Currently, the available optimization strategies include grid search, random search, hill-climbing,
and bayesian optimization, among others [ 45]. In this study, we adopted the grid search and random
search methods. The models were then validated and evaluated using the data discussed in Section 3.1.
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Figure 3. Implementation of machine learning techniques.

In model validation, models which did not pass the validation tests were taken back to the
training phase. The evaluation results are presented in Section 5. The models can be deployed to a tea
fermentation environment after the aforementioned steps.

This section discusses the datasets used, data preprocessing steps, feature extraction methods,
machine learning classi�cation models, and the proposed deep learning model.

3.1. Datasets

In this paper, two datasets were used: tea fermentation and LabelMe datasets. Since there was no
existing standard dataset on tea fermentation images existing in the community, we used the LabelMe
dataset to validate our results for it is widely used by researchers in image classi�cation to report
their results, the dataset is available at no cost, and there was no available dataset on images of tea
fermentation images. We discuss each of the datasets in the following paragraphs.

3.1.1. Tea Fermentation Dataset

The images in the tea fermentation dataset [26] were taken in a black tea fermentation environment
in a tea factory in Kenya. We used a 5-megapixel camera connected to a Raspberry Pi 3 model B+
to capture the images. Fermentation dataset contains 6000 images that were captured during the
fermentation of black tea. Figure 4 shows an image of each of the classes of the tea fermentation dataset.
The classes of the images in this dataset are: underfermented, fermented, and overfermented.

�8�Q�G�H�U�I�H�U�P�H�Q�W�H�G �)�H�U�P�H�Q�W�H�G �2�Y�H�U�I�H�U�P�H�Q�W�H�G

Figure 4. Examples of classes of the tea fermentation dataset.

Table 2 shows the number of images for every class that was used as training, validation,
and testing datasets for the classi�cation algorithms. The 80/20 ratio of training/test data is the
most commonly used ratio in neural network applications and was adopted in this research. Besides,
10% subset of the test dataset was used to validate the results. A total of 4800 images distributed equally
to the 3 classes of images were used for training of the models. To perform validation, 40 images were
used in each of the classes while 360 images were used to test the model in each of the 3 classes.
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Table 2. The image dataset comprising of three classes of images.

Class Images Used for Training Images Used for Validation Images Used for Testing

Underfermented 1600 40 360
Fermented 1600 40 360

Overfermented 1600 40 360
Total 4800 120 1080

3.1.2. LabelMe Dataset

As explained in Section 3.1, the other dataset that we adopted in this study is the LabelMe
dataset [46]. The dataset is one of the standard datasets which researches in the �eld of image
classi�cation use to report their results. The dataset contains 2688 images from 3 classes of outdoor
scenes. The classes are forest, coast, and highway. Examples of images from each of the classes are
shown in Figure 5.

Figure 5. Examples of categories of LabelMe dataset.

Table 3 shows the number of images used for training, validation, and testing in each of the
categories. As with the case in Section3.1.1, we adopted the 80/20 ratio for training and testing and
10% for validation.

Table 3. Number of images used for training, validation, and testing in the LabelMe dataset.

Class Images Used for Training Images Used for Validation Images Used for Testing

Coast 717 18 161
Forest 717 18 161

Highway 717 18 161
Total 2151 54 483

3.2. Data Preprocessing and Augmentation

After collecting the images as discussed in Section3.1.1, the images were resized to 150� 150.
Resizing images to 150� 150 before inputting them into different networks was done to adapt different
pretraining CNN structures. We adopted the semantic segmentation annotation method discussed
in Reference [47] to annotate the images. There are numerous types of noise in images but the most
common are photon noise, readout noise, and dark noise [48,49]. To perform denoising, we adopted
the linear �ltering method.

3.3. Feature Extraction

Feature extraction in image processing is the process of extracting image features. It is the most
crucial step in image classi�cation as it directly affects perfomance of the classi�ers [ 50]. There are
various techniques of feature extraction, but in this paper, we adopted color histogram for color feature
extraction and Local Binary Patterns (LBP) algorithm for texture extraction.

6
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3.3.1. Color Feature Extraction

Color is an important feature descriptor of an image. During tea fermentation, the color change is
evident as the process continues. Relative color histograms in different color spaces can be used to
describe tea fermentation images. There are several color spaces which include Red-green Blue (RGB),
Hue Saturation Value (HSV), and Hue Saturation Brightness (HSB), among others [ 51–54]. RGB color
space represents a mixture of red, green, and blue. This is the color space that was used to represent
the images in this paper. We used color histogram [ 55] to extract color features of the images that are
then fed to the classi�ers for training, evaluation, and testing. To construct a feature vector from the
color histogram, we used OpenCV [ 56]. The input was an image of RGB color space. The RGB color
space was converted to HSV and represented by 3 channels (the hue, the saturation, and the value).
We used 8 bins to represent the three channels. Finally, the range of the channels was between 0–150
since the images had been resized to 150 by 150 pixels. Figure6a shows an image of underfermented
tea, while Figure 6b shows the corresponding color histogram.

(a) Original image (b) Color histogram of Figure 6a

Figure 6. Generation of color features of an image using color histogram.

3.3.2. Texture Feature Extraction

Textures are characteristic intensity variations that originate from the roughness of an object
surface. The texture of an image is classi�ed into �rst-order, second-order, and higher-order
statistics [57]. There are a variety of methods of extracting texture features including Local Binary
Patterns (LBP), the Canny edge detection, discrete wavelet transform, and gray level occurrence matrix,
among others [58–60]. In this paper, we adopted LBP to extract the texture features of the images.
LBP has many advantages which include reduced histograms and consideration of the center pixels
point effect [ 61], among others. The LBP algorithm is represented by Equation ( 1):

LBPxc,yc =
7

å
n= 0

2n( In � I (xc, yc)) (1)

where LBP xc,yc is the value at the center pixel xc,yc, In is the values of neighbor pixel, and I(xc, yc) is
the intensity at the center pixel.

The steps of the texture feature extraction were as follows:

1. The original image was converted into a grayscale image using the approach discussed in
Reference [62]. The color grayscale image generated is shown in Figure 7b.

2. LBP algorithm was then used to calculate each of the pixels in the grayscale image as shown
in Figure 7. Both LBP xc,yc value and texture image are generated. The generated texture image is
shown in Figure 7c.

3. Finally, the texture image obtained was converted into gray- scale histogram as shown
in Figure 7d.

7
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���D�����2�U�L�J�L�Q�D�O���L�P�D�J�H ���E�����*�U�D�\���V�F�D�O�H���R�I���L�P�D�J�H���L�Q�����D���¬���F�����7�H�[�W�X�U�H���L�P�D�J�H���H�[�W�U�D�F�W�H�G���E�\���/�%�3 ���G�����*�U�D�\���V�F�D�O�H���K�L�V�W�R�J�U�D�P

Figure 7. Conversion of image to grayscale histogram using Local Binary Patterns (LBP).

3.4. Classi�cation Models

In this paper, we perform the classi�cation of the images in the datasets discussed in Section 3.1
using the following classi�ers: decision tree, random forest, K- nearest neighbor, TeaNet, support
vector machine, linear discriminant analysis, and naive Bayes. The next paragraphs discuss each of
the classi�ers.

3.4.1. Decision Tree (DT)

Decision tree is a machine learning technique that employs a tree structure to specify the order
of the decisions and the consequences [63]. During training, it generates rules and decision trees.
The generated DTs are followed in the classi�cation of the new data [ 64]. It has the following
constituents: root node, internal node, and leaf node (Figure 8). Branches and leaves point to the
factors that concern a particular situation [ 65].

�*�U�H�H�Q���L�Q���F�R�O�R�U�"

�8�Q�G�H�U�I�H�U�P�H�Q�W�H�G �&�R�S�S�H�U�\���E�U�R�Z�Q���L�Q���F�R�O�R�U�"

�)�H�U�P�H�Q�W�H�G�'�D�U�N���U�H�G���L�Q���F�R�O�R�U�"

�2�Y�H�U�I�H�U�P�H�Q�W�H�G �8�Q�N�Q�R�Z�Q

�/�H�J�H�Q�G

�5�R�R�W���Q�R�G�H

�L�Q�W�H�U�Q�D�O���Q�R�G�H

�/�H�D�I���1�R�G�H

�<�H�V
�1�R

�1�R
�<�H�V

�<�H�V �1�R

Figure 8. Example of classi�cation by a decision tree.

It is one of the most used machine learning algorithms in classi�cation [ 66,67] because of its
advantages which include high tolerance to multicollinearity [ 68], �exibility, and exclusion of factors
which are not important automatically [ 63,69], among others. However, DT training is relatively
expensive as complexity and time taken are more, a small change in data changes the DT structure,
and it is inadequate in predicting continuous values, among others [ 70].

8
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3.4.2. Random Forest (RF)

Random forest is a machine learning model that operates by constructing multiple decision
trees during training [ 71,72]. The constructed multiple trees are then used for prediction during
classi�cation. Each individual tree in the random forest outputs a class prediction and the class with
most votes becomes the model's prediction [73]. Figure 9 shows an example of classifying an image
using random forest. The image was classi�ed as belonging to class A since the majority of the trees (2)
classi�ed the image as belonging to class A. The classi�er can estimate missing data, can balance errors
in datasets where classes are imbalanced, and can be used for both classi�cation and regression [74–77].
Additionally, it has better results compared to decision tree algorithm; the random forest has a better
classi�cation result [ 72,78]. However, random forest is not as effective in regression tasks as it is in
classi�cation and is a black box model [ 79–81].

�W�U�H�H���� �W�U�H�H���� �W�U�H�H���Q

�F�O�D�V�V���$ �&�O�D�V�V���%
�&�O�D�V�V���$

�0�D�M�R�U�L�W�\���9�R�W�L�Q�J

�)�L�Q�D�O���&�O�D�V�V�����&�O�D�V�V���$��

Figure 9. Example of a random forest operation.

3.4.3. K-Nearest Neigbor (KNN)

K-Nearest Neighbor (KNN) is a nonparametric machine learning model used for classi�cation
and regression [82–84]. In classi�cation tasks, KNN determines the class of a new sample based on
the class of its nearest neighbors. During decision making in a classi�cation task, it �nds k training
instances that are closest to the unknown instance. It then picks the most occurring classi�cation for
the k instances [85]. It determines a dominant category to the target object in which k is the number of
training samples. This algorithm assumes that samples close to each other belong to the same category
in classi�cation [ 84]. Figure 10 illustrates an example of a classi�cation using KNN. The task is to �nd
a class that the triangle belongs to. It can either belong to the blue ball class or the green rectangle
class. The k is the algorithm we wish to take a vote from. In this case, let us say k = 4. Hence, we will
make a cycle with the triangle as the center just to enclose only three data points on the plane. Clearly,
the triangle belongs to the blue ball class since all of its nearest neighbors belong to that class.

The algorithm is simple to implement and has a robust search space [86–88]. The main challenge
of the model is the expense incurred in terms of large computations in identifying neighbors in a large
amount of data [ 89,90].
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Figure 10. K-Nearest Neighbor (KNN) proximity algorithm map.

3.4.4. Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is a class of deep learning technique that is currently
emerging in solving computer vision challenges, which includes detection of objects [ 91],
segmentation [92], and dimage classi�cation [ 93], among others. CNN emerged in the mid-2000s due
to the development in computing power of hardware of the computer [ 94]. A CNN is composed of the
following layers (Figure 11): an input layer, convolutional layer, pooling layer, dense layer, and output
layer. An input layer of a CNN is the layer where the input is passed to the network. In Figure 11,
the input layer contains an image which needs to be classi�ed [ 95]. Convolutional layers are a set of
�lters needed to learn. The �lters are used to calculate output feature maps, with all units in a feature
map sharing the same weights [96–98]. A pooling layer will then sum up the activities and selects the
maximum values in the neighborhood of each feature map [ 99]. A dense layer consists of neurons in a
neural network which receive inputs from all the neurons in the previous layer [ 100]. Convolutional
has shown high accuracy in image recognition tasks; however, they have high computation tasks [ 101].
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�2�Y�H�U�I�H�U�P�H�Q�W�H�G
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�,�Q�S�X�W���/�D�\�H�U �&�R�Q�Y�R�O�X�W�L�R�Q���/�D�\�H�U �3�R�R�O�L�Q�J���/�D�\�H�U �'�H�Q�V�H���/�D�\�H�U �2�X�W�S�X�W���/�D�\�H�U

Figure 11. A typical Convolution Neural Network (CNN) architecture.

3.4.5. Support Vector Machine (SVM)

Support Vector Machine (SVM) is a non-probabilistic binary classi�er that aims at �nding a
hyperplane with a maximum margin to separate high dimension classes by focusing on the training
samples located at the edge of the class distribution [102]. The model is based on statistical learning
theory and the structural risk minimization theory [ 103]. The model chooses extreme vectors which
help in creating the hyperplane. These extreme points are referred to as support vectors. The binary
classi�cation problem with linear separability (Figure 12) has a goal to �nd the optimum hyperplane,
through maximizing the margin and through minimizing the classi�cation error between each class.

Some of the advantages of SVM is its ability to rely on its own memory ef�ciency and its ability to
work well with classes having distinct margins [ 104,105]. However, SVM tends to take a large training
time for a large dataset and is not effective for overlapping classes [ 106,107].
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Figure 12. An example of a classi�cation task using Support Vector Machine (SVM).

3.4.6. Naive Bayes (NB)

Naive Bayes is a probabilistic model based on Bayes' theorem. Bayes' theorem provides the
relationship between the probabilities of two events and their conditional probabilities [ 108–110].
A Naive Bayes classi�er assumes that the presence or absence of a particular feature of a class is
unrelated to the presence or absence of other features [111,112]. In classi�cation tasks, NB constructs a
probabilistic model of the features and applies the model in prediction of the new instances. Figure 13
shows a sample of balls belonging to two classes: yellow and green. The task is to estimate the class for
which the ball with a question mark belongs to. There is a very high probability that the ball belongs
to class green since most of the balls belong to that class.

(a) Problem (b) Classi�ed data

Figure 13. Example of classi�cation using Naive Bayes.

3.4.7. Linear Discriminant Analysis (LDA)

Linear discriminant analysis is an approach developed by the famous statistician R.A. Fisher,
who arrived at linear discriminants from a different perspective [ 113]. He was interested in �nding
a linear projection for data that maximizes the variance between classes relative to the variance for
data from the same class [114]. LDA combines features of a class and builds on separating the classes.
It models the differences between classes and builds a vector for differentiating the classes based
on the difference in the classes [115,116]. LDA is popular because of its low-cost implementation
and its ease of adaptation for discriminating nonlinearly separable classes through the kernel trick
method [ 117], among others. Some of the weaknesses of LDA includes its challenge in handling large
datasets, among others [118]. Figure 14a shows a classi�cation problem, while Figure 14b shows the
solution to the classi�cation problem using LDA.
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(a) Problem (b) Classi�ed images

Figure 14. Example of classi�cation using Local Discriminant Analysis (LDA).

3.5. TeaNet

TeaNet is a deep learning model based on Convolutional Neural Network (CNN). The network
architecture of TeaNet is an improvement upon the standard AlexNet model [ 119]. We designed
an optimum tea fermentation detection model with relatively simple network structure and small
computational needs. To construct TeaNet, we reduced the number of convolutional layer �lters
and the number of nodes in the fully connected layer. This reduces the number of parameters that
require training, thus reducing the over�tting problem. The basic architecture of the network is shown
in Figure 15.
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Figure 15. The architecture of the TeaNet that we propose for optimum detection of tea fermentation.

The input images were rescaled to 150 � 150 pixels, and the three color channels discussed
in Section 3.3.1were all processed directly by the network. Table 4 shows the layer parameters
of TeaNet.

Table 4. Layer parameters for TeaNet.

Layer Parameter Activation Function

input 150 � 150 � 3 —

Convolution1 (Conv1) 32 convolution �lters (11 � 11), 4 stride ReLU

Pooling1 (Pool1) Max pooling (3 � 3) 2 stride —

Convolution2 (Conv2) 64 convolution �lters (3 � 3), 1 stride ReLU

Pooling2 (Pool2) Max pooling (2 � 2) 2 stride —

Convolution3 (Conv3) 128 convolution �lters (3 � 3), 3 stride ReLU

Pooling3 (Pool3) Max pooling (2 � 2) 2 stride —

Full Connect4 (fc4) 512 nodes, 1 stride ReLU

Full Connect5 (fc5) 128 nodes, 1 stride ReLU

Full Connect5 (fc6) 3 nodes, 1 stride ReLU

Output 1 node Softmax
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The layers are de�ned as follows:

1. The �rst convolutional layer comprises of 32 �lters and a kernel size of 11 � 11 pixels. This layer
is followed by a recti�ed linear unit (ReLU) operation. ReLU is an activation function that
provides a solution to vanishing gradients [ 96]. Its pooling layer has a kernel size of 3 � 3 pixels,
with two strides.

2. The second convolutional layer comprises of 64 �lters and a kernel size of 3 � 3 pixels and is
followed by a ReLU operation; its pooling layer has a kernel size of 2 � 2 pixels.

3. Additionally, the third convolutional layer comprises of 128 �lters and a kernel size of 3 � 3
pixels, followed by ReLU with a kernel size of 2 � 2 pixels.

4. The �rst full connection layer was made up of 512 neurons, followed by a ReLu and a dropout
operation. The dropout operation [ 120] is proposed to solve over�tting as it trains only a randomly
selected nodes. We set the ratio of dropout to 0.5.

5. The second full convolutional layer had 128 neurons and was followed by a ReLU and
dropout operations.

6. The last fully convolutional layer contains three neurons, which represent 3 classes of images in
tea fermentation and LabelMe datasets. The output of this layer is transferred to the output layer
to determine the class of the input image. A softmax activation function is then implemented to
force the sum of the output values to be equal to 1.0. Softmax also limits the individual output
values between 0–1.

At the beginning, the weights of the layers were initialized with random values from a Gaussian
distribution. To train the network, a stochastic gradient descent (SGD) technique with a batch size of
16 and a momentum value of 0.9 [121] was adopted. Initially, the learning rate across the network was
set to 0.1, and a minumum threshold was set at 0.0001. The number of epochs was set as 50, and the
weight decay was set to 0.0005. The accuracy of TeaNet increased with an increase in epoch, and it
achieved an accuracy of 1.0 at epoch 10 (Figure16a). At the beginning of the iteration, the accuracy is
low since the weights of the neurons are not fully set. After each iteration, the weights are updated.
The validation accuracy shows a steady increase, and the model had an accuracy of 1.0. The loss of
TeaNet during training and validation is illustrated in Figure 16b. There is a steady reduction in the
loss from the �rst epoch up to epoch 10, where the loss value is at 0 for both the training and validation
sets. From Figure16, the model has good performance and is not over�tted as it records good results
in unseen data.

(a) Accuracy curve (b) Loss curve of TeaNet

Figure 16. Accuracy and loss of TeaNet during training and validation.

4. Implementation

To implement the classi�cation models discussed in Section 3.4and the TeaNet model discussed
in Section 3.5, python programming language was adopted. After implementation, it was necessary to
evaluate the performance of the various classi�cation models. This section provides the implementation
of the models and the metrics that were adopted in evaluating their performances.

13



Data2020, 5, 44

4.1. Implementation of the Classi�ers

As mentioned in Section 4, we adopted python programming language to implement the
classi�cation models. Some of the reasons for adopting python were that it has rich libraries [ 122],
that it has moderate learning curve [ 123], and that it is free and open source [ 124]. Some of the
libraries that we adopted alongside python are Tensor�ow [ 125,126], Keras [127], Seaborn [128],
matplotlib [ 129], sklearn [130,131], OpenCV [56], pandas [132], and numpy [ 133]. The implemented
classi�cation models are available at http://classi�er.sisiboportal.com/ .

4.2. Evaluation Metrics

In Section 4, we mentioned the various evaluation metrics that were adopted in this study to
evaluate the classi�cation models. The following paragraphs discuss each of the metric in detail.

4.2.1. Precision

Precision is the ratio of the correct classi�cation to the total number of classi�cations [ 134,135].
A low precision indicates a large number of false positives [ 136]. It can be represented by Equation (2).

Precision=
TP

TP + FP
(2)

where TP is an outcome where the model correctly classi�es a class and FP is an outcome where the
model incorrectly classi�es a class.

4.2.2. Recall

Recall is the ratio of the number of correctly classi�ed images to the total number of
images [134,136]. It is the actual positives that are correctly classi�ed to the correct classes. Recall can
be represented by Equation (3).

Recall=
TP

TP + FN
(3)

where TP is an outcome where the model correctly classi�es the positive class and FN is an outcome
where the model incorrectly classi�es the negative class.

4.2.3. F1-Score

F1 Score is the harmonic mean between precision and recall. It tells how precise a classi�er is in
the classi�cation tasks as well as how robust it is [ 137]. It is represented by Equation ( 4).

F1 � Score= 2 �
P � R
P + R

(4)

where P is the precision and R is the recall.

4.2.4. Accuracy

Accuracy is the fraction of predictions that the model got right. Therefore, it is the sum of correct
predictions divided by all the predictions. It can be represented by Equation ( 5).

Accuracy=
TP + TN

TP + TN + FP+ FN
(5)

where TP is an outcome where a model correctly classi�es the positive class, FP is an outcome where a
model incorrectly classi�es the positive class, TN is an outcome where the model correctly classi�es a
negative class, andFN is an outcome where a model incorrectly classi�es a negative class.
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4.2.5. Logarithmic Loss

Logarithmic loss or log loss works by penalizing false classi�cations [ 134]. In classi�cation tasks,
it is the measure of the inaccuracy of classi�cation. An ideal logarithmic loss should be 0. Logarithmic
loss can be represented by Equation (6).

Loss= � (g( log(p)) + ( 1 � g) log(1 � p)) (6)

where g is the predicted probability and p is the true label.

4.2.6. Confusion Matrix

A confusion matrix is used to summarize the classi�cation performance of a classi�er with test
data. Sensitivity in a confusion matrix measures the proportion of actual positives that are correctly
identi�ed and can be represented by Equation ( 7).

Sensitivity =
TP

TP + FN
(7)

where TP is the number of correct classi�cation while FN is an outcome where the model incorrectly
classi�es the negative class.

5. Evaluation Results

In this section, we provide the results of the evaluation of the classi�cation models based on the
metrics discussed in Section4.2.

Results of the precision of the classi�ers in the two datasets are shown in Figure 17. All the
other classi�ers generally categorized the majority of the images correctly. TeaNet classi�er clearly
performed better than the rest of the classi�ers. TeaNet achieved average precisions of 1.0 and 0.96
in the tea fermentation and LabelMe datasets, respectively. Generally, the majority of the classi�ers
except decision tree produced better precision in the fermentation dataset compared to the LabelMe
dataset. This is because there was a distinctive change in color in the 3 categories of fermentation
images. The classi�ers recorded an average precision of between 0.78–1.00 in the fermentation dataset
and between 0.65–0.96 for the LabelMe dataset.

Figure 17. Precision of classi�cation for each of the classi�ers for the two datasets.

Recall values are illustrated in Figure 18. Once again, TeaNet outperformed the other classi�ers
by producing the highest average recall values across the datasets. The majority of the classi�ers had
better performances in the tea fermentation dataset compared to the LabelMe dataset. The classi�ers
had an average recall of 0.75–1.0 for the tea fermentation dataset and an average of 0.58–0.96 for
LabelMe dataset. KNN also had a good performance by recording average recalls of 0.93 and 0.85 for
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the tea fermentation and the LabelMe dataset, respectively. Naive Bayes recorded the lowest recall
values. From these results, it is evident that TeaNet and KNN produced the best recall values.

Figure 18. Recall of classi�cation for each of the classi�ers for the two datasets.

We compared the F1 score of TeaNet with the other classi�ers and presented the results in Figure 19.
The F1 score values of TeaNet was higher than the other classi�ers. The classi�ers recorded F1 values
of between 0.58–0.9 for the LabelMe dataset and between 0.75–1.00 for the tea fermentation dataset.
We can note that TeaNet showed alot of effectiveness as it achieved an F1 of 1.00 in the tea Fermentation
dataset and of 0.9 for the LabelMe dataset (Figure19). KNN also recorded good performances of 0.93
and 0.85 for tea fermentation and LabelMe datasets, respectively.

Figure 19. F1 scores of classi�cation for each of the classi�ers for the two datasets.

The performance of the classi�ers in terms of accuracy is presented in Figure 20. The majority
of the classi�ers had good accuracy results. TeaNet achieved an average accuracy of 1.00 for the tea
fermentation dataset and an average accuracy of 0.958 for the LabelMe dataset. This shows that TeaNet
once again outperforms the other classi�ers. Each of the classi�ers produced an accuracy of more than
0.6 across the datasets. It shows that the probability of each of the classi�ers in classifying the dataset
is more than 60%. Naive Bayes recorded average accuracies of 0.67 and 0.77 for the LabelMe and tea
fermentation dataset, respectively. On the other hand, decision tree recorded average accuracies of
0.94 and 0.85 for the tea fermentation and the LabelMe datasets, respectively. These results show that
the majority of the classi�ers can be applied to detect the tea fermentation images.
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Figure 20. Accuracy of classi�cation for each of the classi�ers for the two datasets.

Additionally, logarithmic losses of the classi�ers were evaluated. The results of the analysis
are shown in Figure 21. TeaNet had the least logarithmic loss at 0.136 and 0.09 for LabelMe and
Fermentation dataset, respectively (Figure 21). Generally, the Logarithmic losses recorded by the
majority of the models was higher than 0.55 for the LabelMe dataset. For tea fermentation, the majority
of the models had logarithmic loss of less than 0.50. Evidently, most of the classi�ers had a lower
logarithmic loss in the fermentation dataset compared to the LabelMe dataset. Random forest recorded
the highest logarithmic loss at 0.7 for the LabelMe dataset. On the other hand, Naive Bayes recorded
the highest logarithmic loss of 0.64 for the tea fermentation dataset.

Figure 21. Logarithmic Loss of classi�cation for each of the classi�ers for the two datasets.

Finally, a confusion matrix was used to further evaluate the classi�cation models and results
are shown in Table 5. The least speci�city recorded by the classi�ers was 73.5%, and the highest
was 100.0%. TeaNet recorded an average sensitivity of 100% for fermented, an average of 100% for
overfermented, and �nally an average of 100% for underfermented. TeaNet outperformed the other
classi�ers. Consequently, the TeaNet proposed to classify tea images is superior to the other previously
described algorithms.
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Table 5. Confusion matrix of the classi�ers.

Class Fermented Overfermented Underfermented Sensitivity

DT (fermented) 250 32 78 69.4%
DT (overfermented) 59 301 0 83.6%

DT (underfermented) 271 0 89 75.3%

SVM (fermented) 296 22 39 82.2%
SVM (overfermented) 68 291 1 80.8%

SVM (underfermented) 61 0 299 83.1%

KNN (fermented) 339 14 7 94.2%
KNN (overfermented) 41 300 19 83.3%

KNN (underfermented) 17 0 343 95.3%

LDA (fermented) 331 11 18 92.0 %
LDA (overfermented) 17 335 8 93.3%

LDA (underfermented) 76 0 284 78.9%

RF (fermented) 325 14 21 90.3%
RF (overfermented) 50 310 0 86.1%

RF (underfermented) 45 0 315 87.5%

NB (fermented) 261 19 80 72.5%
NB (overfermented) 89 253 19 70.3%

NB (under fermented) 96 0 264 73.3%

TeaNet (fermented) 360 0 0 100.0%
TeaNet (overfermented) 0 360 0 100.0%

TeaNet (underfermented) 0 0 360 100.0%

6. Conclusions and Future Work

In this paper, we have proposed a deep learning model dubbed TeaNet. We have assessed
the capabilities of TeaNet and other standard machine learning classi�ers in categorizing images.
We used tea fermentation and LabelMe datasets for training and evaluating the classi�ers. From the
experimental results, TeaNet outperformed the other classi�ers in the classi�cation tasks. In general,
all the classi�ers had good performance across the two datasets. These results show that the majority
of the classi�ers can be used in real deployments. Importantly, the effectiveness of TeaNet in the tea
fermentation dataset is a great achievement. This is a game changer in the application of deep learning
in agriculture and most speci�cally in tea fermentation.

Additionally, the results from this study highlight the feasibility of applying TeaNet in the
detection of tea fermentation, which would signi�cantly improve the process. This will, in turn,
increase the quality of produced tea and subsequently increase the value of the made tea. This will
lead to improved livelihoods of the farmers and to general improvement of the country's GDP.
The same technique can be applied to the fermentation of coffee and cocoa. In our future studies,
we will implement TeaNet with the Internet of things in real deployment in a tea factory to monitor
fermentation of black tea.
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Abstract: Aphids are small insects that feed on plant sap, and they belong to a superfamily called

Aphoidea. They are among the major pests causing damage to citrus crops in most parts of the world.

Precise and automatic identi�cation of aphids is needed to understand citrus pest dynamics and

management. This article presents a dataset that contains 665 healthy and unhealthy lemon leaf

images. The latter are leaves with the presence of aphids, and visible white spots characterize them.

Moreover, each image includes a set of annotations that identify the leaf, its health state, and the

infestation severity according to the percentage of the affected area on it. Images were collected

manually in real-world conditions in a lemon plant �eld in Junín, Manabí, Ecuador, during the winter,

by using a smartphone camera. The dataset is called LeLePhid: lemon (Le) leaf (Le) image dataset for

aphid (Phid) detection and infestation severity. The data can facilitate evaluating models for image

segmentation, detection, and classi�cation problems related to plant disease recognition.

Dataset: https://doi.org/10.17632/tndhs2zng4

Dataset License: CC-BY

Keywords: plant disease recognition; image segmentation; image classi�cation; aphid; Aphoidea;

lemon

1. Summary

The dataset, called LeLePhid in short, provides images of lemon leaves. This dataset
contains 665 photos of the top and back of lemon tree leaves in which there are healthy
and unhealthy leaves; these were collected manually in citrus crops from Junín, Ecuador,
in winter, from December to May, when the weather is warm and rainy in this country.
For the annotation process, it was carried out with the Labelbox © annotation tool, and to
assign the severity of the infestation, three annotators manually inspected the image and
set the grade of infestation severity according to [ 1] and the OIRSA method [ 2]. These data
can be used for training, testing, and validation of computational models related to image
segmentation and object detection in plant disease studies. At the same time, they can be
helpful for researchers and professionals working on computer vision-based models for
image classi�cation and object detection using images of healthy leaves and leaves with the
presence of aphids. The data annotations can be used to develop and improve the accuracy
of lemon leaf aphid infestation severity and detection algorithms.
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2. Data Description

The LeLePhid dataset provides lemon leaf images that can be used to develop and
evaluate the performance of models of image segmentation, object detection, and classi�ca-
tion problems related to plant diseases. The dataset contains imagery of the upper and back
sides of leaves of lemon trees manually collected in citrus crops around Junín, Ecuador.
On each image, the foreground leaf is identi�ed, and its status is labeled, i.e., healthy and
aphid 1 presence. The dataset also includes annotations to identify the infestation severity
of the leaves affected by aphids. It can be used to design automatic aphid counting models
because, as stated in [3], compared with manual counting 2, these models can calculate the
percentage of the affected area through analyzing the image information. The released
�les for the so-named LeLePhid dataset are two folders: the raw data are available in the
“Images” folder (665 images of lemon leaves) and pre-processed data are available in the
“Annotation” folder (.json and .xlsx �les). Samples of them are depicted in Figures 1 and 2.
Figure 1 shows an example of the annotated images for segmentation purpose. In a green
limited-area is identi�ed the a lemon leaf. In purple areas the aphids presence. In Figure 2A,
the class of the image is healthy meanwhile in Figure 2B the class is aphids, i.e., the leaf has
presence of this insect. In addition, Tables1 and 2 describe the levels or infestation severity
on each lemon leaf available in the dataset. Finally, Figure 3 describes the distribution of
images by health status and levels of infestation of aphids.

Figure 1. Annotation examples of a segmentation mask in the LeLePhid dataset.

1 Aphids are tiny insects that feed by sucking sap from plants, and they can cause diseases.
2 An adhesive board is placed on the plants, and researchers count the aphids on it.
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A B

Figure 2. Annotation examples of lemon leaf image classi�cation.

Figure 3. Distribution of images according to infestation severity levels.

29



Data2021, 6, 51

3. Methods

LeLePhiD is designed to support computer vision research related to image processing
with a particular focus on the detection and infestation severity of aphids on lemon leaves.
The pipeline of the creation of this dataset is shown in Figure 4.

 

Figure 4. Pipeline of creation of LeLePhid dataset.

In Figure 4, we can see three steps, including the data acquisition, the incorporation of
annotations, and the validation. In the following subsections, we detail each part of the
process of creating this dataset.

3.1. Data Acquisition

The lemon leaf images were manually acquired on a crop �eld in a rural area of Junín,
Manabí, by using a 2 megapixel smartphone camera. Lemon images were captured follow-
ing the procedure in [ 4] during cloudy, sunny, rainy, and windy days. The images were
taken at a distance of 30–50 cm from the plant. The data capture process was performed in
a time window of two weeks with different climatic conditions and background scenarios.
We took 665 leaf images of the upper and back sides of healthy and unhealthy lemon plants.
All images were rotated to a vertical position and resized to 800 � 600 pixels, keeping the
aspect ratio. The process can be observed in Figure4A.
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3.2. Annotations

The annotation process was performed by using the Labelbox © annotation tool and
can be observed in Figure 4B. In the object segmentation annotation, for each image,
the foreground leaf is identi�ed, and also, if the leaf is diseased, the area affected by aphids
is marked (Figure 1). In the classi�cation annotation, each image is labeled healthy or
aphids according to the leaf health status (Figure 2). These annotations were assigned
based on the comprehensive evaluation of the images of leaves according to the experience
of the annotators.

Figure 1 shows an example of an annotation where the green-limited area identi�es a
lemon leaf and the magenta areas show the presence of aphids.

In Figure 2, the labeled lemon leaf images are shown. In Figure 2A, the image class
is healthy; meanwhile, in Figure 2B, the class is aphids, i.e., the leaf has the presence of
this insect. Note that only certain areas with white spots and texture correspond to aphids.
Other spots related to other leaf conditions are not considered in this study.

To assign the infestation severity of each leaf, three annotators manually inspected the
image and set the grade of infestation severity according to [ 1] and the OIRSA method [ 2].
The description of the levels of infestation severity grades of the affected area in lemon
leaves can be observed in Table1.

Table 1. Infestation severity scale of aphids in plants.

Level % Affected Area Symptom

0 0 Healthy plant with no aphid presence.
1 [0–5) Few aphids. Foliage with no yellowing symptoms.
2 [5–20) Crinkling and curling of few leaves of the plant.
3 [20–50) Crinkling and curling of leaves almost all over the plant.
4 >50 Extreme curling, crinkling, and drying all over the plant.

3.3. Validation

The validation process can be observed in Figure 4C. The consistency of the anno-
tations was validated using the agreement between annotators. This was achieved by
seeking matches in the category assigned to each image by the annotators. To quantify this,
we used the kappa coef�cient and the interpretation suggested by [ 5]. It can be simpli�ed
in Table 2 as follows:

Table 2. Interpretation of Cohen's kappa.

Kappa Level of Agreement % of Data Reliability

0–0.20 None 0–4%
0.21–0.39 Minimal 4–15%
0.40–0.59 Weak 15–35%
0.60–0.79 Moderate 35–63%
0.80–0.90 Strong 64–81%

Above 0.90 Almost Perfect 82–100%

In Table 2, any kappa value below 0.60 indicates inadequate agreement among the
annotators and that little con�dence should be placed in the labeling process. Here, the
percentage of data reliability corresponds to the squared kappa value. The �nal value of
each label (level) was selected using a plurality strategy, i.e., when the matches are greater
than 2. In cases of ties, the value was arbitrarily chosen in random order. The level of
agreement obtained by our annotators was 91.0%, which means that the real percentage of
affected area by aphids with LeLePhid is almost perfect.

Finally, the LeLePhid dataset contains 665 lemon leaf images distributed into 330
healthy leaves and 335 leaves with aphid presence. The latter are categorized according to
leaf infestation severity and distributed as summarized in Figure 3.
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In Figure 3, we include the image distribution according to the infestation severity
levels. Note that there are 330 images with 0% of affected area, i.e., they correspond to
healthy photos. The 335 images with aphid presence are divided into four levels. The �rst
one has 129 leaf images with less than 5% of affected area (level 1). Most of the leaf images
(161) are of level 2, i.e., they have between 5% and 20% of affected area. Further, there are
38 images with between 20% and 50% of infestation (level 3). Finally, the dataset contains
seven leaf images with more than 50% of affected area (level 4).

4. User Notes

The data described in this paper are from a citrus crop near Junín, Ecuador (latitude
� 0.9277, longitude � 80.2058). They were acquired using a smartphone camera. The identi-
�cations of the leaf, its state, and the area affected by aphids were individually incorporated
as annotations over the image. The annotation is provided as a JSON �le supported in any
computer vision software. The possibilities of practical application are the following:

• The data can be used to train, test, and validate computational models related to
image classi�cation on plant disease studies. In this sense, we already have evidence
from a previous work [ 6], where convolutional neural networks (CNNs) were used
to board a binary classi�cation problem related to lemon leaves with aphid presence.
The quality of LeLePhid was evidenced by allowing the model to achieve average
rates between 81% and 97% of correct aphid classi�cation.

• The data can be helpful to researchers and professionals working on computer vision-
based models for image segmentation and object detection using images of healthy
leaves and leaves with aphid presence. Cases such as those discussed in [3,7] are
examples of the potential that our dataset can offer from the point of view of con-
tinuous improvement of machine learning algorithms to address segmentation and
identi�cation problems related to plant diseases.

• The data can serve as a motivation to encourage further research into the agriculture
sector and computer vision methods for citrus pest identi�cation. Image annotation is
the data labeling technique used to make the varied objects recognizable for computers.
Our dataset includes image annotations of leaves and aphid-infected areas to make
them recognizable or even understandable for computers. These annotations can be
used to help the large-scale monitoring of the health of crops through, for instance,
devices such as UAVs (unmanned aerial vehicles) or drones, where works in [ 8–11]
have already demonstrated the bene�ts that can be obtained in the agricultural sector
when devices such as drones are used in conjunction with computer vision.

Note that most of the images used by algorithms of the two �rst bullet points were cap-
tured in controlled environments, i.e., computer vision laboratories where the photos are
treated arti�cially: constant backgrounds, homogeneous luminosity, and other conditions
not usually occurring in lemon crops. Our dataset stands out from the others because the
images were captured during cloudy, rainy, sunny, and windy days and considered scenar-
ios with a variety of backgrounds in a typical lemon crop. This ensures that the algorithms
learn from representative images of the type and complexity of real-world scenes.
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Abstract: The Two-stream convolution neural network (CNN) has proven a great success in action
recognition in videos. The main idea is to train the two CNNs in order to learn spatial and temporal
features separately, and two scores are combined to obtain �nal scores. In the literature, we observed
that most of the methods use similar CNNs for two streams. In this paper, we design a two-stream
CNN architecture with different CNNs for the two streams to learn spatial and temporal features.
Temporal Segment Networks (TSN) is applied in order to retrieve long-range temporal features, and to
differentiate the similar type of sub-action in videos. Data augmentation techniques are employed to
prevent over-�tting. Advanced cross-modal pre-training is discussed and introduced to the proposed
architecture in order to enhance the accuracy of action recognition. The proposed two-stream model
is evaluated on two challenging action recognition datasets: HMDB-51 and UCF-101. The �ndings
of the proposed architecture shows the signi�cant performance increase and it outperforms the
existing methods.

Keywords: segment-based temporal modeling; two-stream network; action recognition

1. Introduction

Human Action Recognition is an emerging research area that has gained prominent attention
in computer vision. One of the reason for which researchers are interested in the action recognition
in video is the wide range of its applications in human-computer communication, video retrieval,
management of web videos, surveillance [1], medicine, etc. When ompared to the still image
recognition, temporal content in the video provides supplemental data for action recognition, as the
number of actions can be accurately recognized using motion information. Action recognition in
videos is a strenuous job because of the similarity in visual contents (frames) [ 2], view-point variation,
camera motion, scale and pose of actor, and lighting conditions. Recently, the introduction of deep
CNNs has made a major breakthrough performance in speech and image recognition tasks. Since then,
computer vision researchers have started to apply the deep CNNs to action recognition in videos [ 3,4].

Deep learning in video action recognition is relatively slow when compared to image recognition.
There are two reasons; �rst, scale and diversity of the video action recognition datasets are relatively
small as compared to the image recognition datasets. Thus, small datasets will lead to over�tting,
and the model will not be generalized for recognition. It is hard to create large-scale video datasets
and train them on depth networks. Second, when compared to the image datasets, video data
will contain an additional cue, called temporal information, which needs complex data analysis.
Recently, many researchers have made attempts to solve these challenges and proposed solutions.
Karpathy et al. [ 3], studied the performance of video action recognition on SPORTS-1M video
classi�cation dataset, compared the different CNN models. Du et al. proposed the C3D model,
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a three-dimensional convolution network for video action recognition. Later, Simonyan et al. [ 5]
presented a two-stream architecture for the �rst time for action recognition in videos, that works on
two CNNs which showed good performance improvement. The researchers for the aforementioned
methods are able to utilize the temporal component, but work only for a short time; in lengthy videos,
information cannot persist for a long time. To solve this problem, Wang et al. [ 6] designed a video level
segmental architecture, called Temporal Segment Networks that can ef�ciently learns the features and
retrieve the long-range time-varying features from the videos.

In this paper, we propose a two-stream CNN model for identifying actions in videos built on
a two-stream network model. The proposed architecture is inspired from a two-stream idea [ 5],
a two-stream model with the similar two-stream structures for human action recognition in videos.
Speci�cally, the RGB image is the input to the spatial stream. Furthermore, the stack of consecutive
optical �ow images is the input to the temporal stream. Each stream is implemented while using
identical two-stream, and the �nal results of both streams are combined with the late fusion technique.
The other methods proposed in [ 5–11], by researchers utilized similar network models for two streams
for human action recognition in videos. However, in human visual cortex systems, recognizing an
object and its action are entirely two different processes. Inspired by the human visual cortex process,
we proposed similar two-stream CNN architecture for action recognition in videos. Because of the
variable length of videos, we attempt to add a video segmentation technique [ 6], to retrieve the
long term temporal features. The proposed model of two-stream convolutional network is shown in
Figure 1. Data augmentation and advanced cross-modal pretraining are employed because of the small
size of datasets and to avoid labeled noise. The �rst step in our model is segmenting video in three
parts. In the next step, the three snippets are randomly sampled and fed into the proposed two-stream
network. Subsequently, the �nal category score is captured at the end of each stream of the network
and fused for the �nal video level prediction.

With experimental results of our proposed model using the two most popular action recognition
datasets, HMDB-51, and UCF-101, the contribution to this papers is three-fold. First, two-stream with
multiple networks produces better performance than the two-stream with similar network models.
In our experimentation, we found that ResNets and Inception-V2 produced better feature extraction
and performance than other network models. Second, data augmentation and advanced cross-modal
pre-training techniques are employed because of existing small datasets and noisy labels. Finally,
the segment based temporal modeling technique for long-term temporal information better captures
long-range information.

Figure 1. Distinct Two-Stream Convolutional Networks for Human Action Recognition in Videos while
using Segment-Based Temporal Modeling.
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2. Related Works

Recently, deep CNNs attained tremendous success in image recognition. Driven with the success
of CNNs in image recognition, computer vision researchers transferred to videos. Action recognition in
videos in deep learning is categorised into three categories that are based on the network architectures
(1) Space-time networks. (2) Hybrid networks. (3) Two-stream networks.

2.1. Space-Time Networks

Space-time networks are the two-dimensional convolution networks with an additional
convolution operation for temporal information. Ji et al. [12] presented a model that is one of the
seminal works, recognizes actions in videos applying convolution neural networks. Ji et al. [12]
extract spatial and temporal information by applying three-dimensional convolutions on adjacent
frames. The networks repeat the same three-dimensional (3D) convolutions and sampling. Finally,
a 128-dimensional feature vector is generated and it is used for action classi�cation.

The 3D CNN in [ 12] was later extended to three-dimensional convolution networks [ 4], a deep
network architecture trained on large scale datasets. The three-dimensional convolution networks
contain �ve convolution layers, �ve max-pooling layers, two fully connected layers, and a softmax
loss function layers. Even though information of the two streams is considered in training, the overall
cost of computing and model storage is remarkably high. Liu et al. [ 13] proposed SSNET, stack of
convolutional layers are added to temporal data and showed the best performance on skeleton
data. Diba et al. [14] presented a three-dimensional temporal architecture, a new temporal layer
called “Temporal Transition Layer” applied in the 3D DenseNet-based network. This method ignored
the temporal information and only evaluated the RGB frames. Qui et al. [ 15], proposed Pseudo-3D
Residual Network, (3*3*3) convolution �lters are replaced with (1*3*3) in the spatial stream and (3*1*1)
convolution �lters in the temporal stream. (3*1*1) convolution �lter is used in order to extract spatial
information, and (1*3*3) is used to retrieve temporal features. When compared to the 3D convolution
networks, this architecture is successful in terms of performance in video action recognition.

2.2. Hybrid Networks

Hybrid networks work on the principle of aggregating temporal information [ 16,17].
The aggregation of temporal information is done by adding the recurrent layers on the top layers of
CNN's. These networks take advantage of both CNNs and LSTMs, and shows the positive results
in capturing the spatial information, temporal information, and long-range dependencies [ 8,18–20].
Wang et al. [16], presented Long-term Recurrent Convolution Network (LRCN), in which frames
were processed with CNN, and the output of CNN is fed into a stack of LSTMs. Veeriah et al. [ 21],
designed a different gating for LSTM, called differential Recurrent Neural Network (dRNN).
This method is good at learning signi�cant spatio-temporal structures. Ng et al. [ 17] proposed two
methods that can handle full-length videos. Two methods aggregates frame-level outputs of CNN to
video level prediction. They discussed six different methods that showed, adding of LSTM layers after
CNN outperforms temporal pooling information. Wu et al. [ 22] presented a hybrid network that uses
both CNN and LSTM. They �rst extract spatial, temporal features with CNN and later fed as input
to LSTM network for long term temporal features. However, because of the additional parameter of
LSTM, LSTM has not shown the acceleration in performance in action recognition in videos.

2.3. Two-Stream Networks

Two stream networks use two CNNs for spatial and temporal information in videos.
Simonyan et al. [5], presented a two-stream architecture for action recognition in videos. In this
architecture, RGB images are fed into a spatial stream, optical �ow frames are fed into temporal
stream. Finally, softmax scores are obtained by fusing outputs of two-stream outputs. Wang et al. [ 8]
presented Trajectory-pooled Deep-convolution Descriptor and integrated trajectory features and deep
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network learned features. This method shows superior performance by combining deep networks and
shallow local features. Feichtenhofer et al. [9] proposed a new spatiotemporal architecture and explored
various fusing schemes. They found fusing network spatially at last convolution layers boosts accuracy.
Wang et al. [6] introduced Temporal Segment Networks, in which they improved the performance by
training on the whole video by modeling long-range temporal structure. Yunbo et al. [ 11] introduced
an end-to-end learning neural network, which combinedly performs pixel level action recognition
and segmentation. They solved the action recognition by two-stream network along with temporal
aggregation. Christoph et al. [ 7], designed a spatio-temporal ResNet, which allows the learning of the
spatio-temporal feature by connecting static and optical �ow channel streams, which increases the
interactions between both streams.

3. Technical Approach

In this section, we provide a comprehensive overview of our proposed network architecture
for action recognition in videos. First, we discuss the proposed distinct two-stream convolutional
networks for human action recognition in videos. Subsequently, ResNet and Inception-V2 used as
CNN model for spatial stream and temporal stream are discussed. After that, Temporal segmentation
Network is introduced to capture the long-range temporal features. Finally, optimizing the network
training strategies are presented.

3.1. Distinct Two-Stream Convolution Networks

Video is a collection of spatial and temporal information. The human visual cortex system that is
mentioned in [ 23] processes information with two streams called spatial stream and temporal stream.
Information is static image appearance in spatial stream; it only depicts scenes and objects. In the
temporal stream, information is the movement of objects between consecutive frames, conveys the
orientation of camera and objects. Inspired from [ 5,23], designed a two-stream CNN to retrieve the
spatial and temporal features with two similar CNN models from videos. For spatial information,
RGB frames are used. For temporal information, dense optical �ow frames are used in order to extract
the motion of objects across the video. Each of these streams is processed identical and independent
deep convolutional neural network models. Speci�cally, the RGB image is fed to the spatial stream
CNN. For temporal stream, stack of optical �ow images are fed as input. Optical �ow images are
a combination of horizontal and vertical convoluted images. The number of optical �ow images
(L) is set to ten. Because the optical �ow images consist of both horizontal and vertical convoluted
images, the total number of �ow images is set to 2L = 20 [ 5]. Finally, spatial and temporal streams
are individually trained end-to-end, and the output of two streams are combined to get the �nal
classi�cation decision. Averaging and SVM are two fusing methods used in [ 5], in order to fuse scores
of two streams.

In this subsection, we present our distinct two-stream CNN for action recognition based on the
architecture presented in [5]. In this network architecture, the spatial and temporal streams are trained
with different CNN models, as shown in Figure 2. The reasons for modeling our proposed architecture
is, when two-streams with similar CNNs are trained and fused together, generates a large number
of redundant features. Because optical �ow frames are horizontal and vertical components that are
derived from the RGB image, and when trained with a similar CNN generates redundant features.
The second reason is, in human action recognition, object recognition and motion recognition are two
different processes. Similarly, here. two-stream action recognition can be trained with two different
CNN models. With many experiments, we observed that the performance of distinct two-stream action
recognition is better than the two-stream model with similar CNNs.
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Figure 2. Distinct Two-Stream Convolutional Network.

3.2. Base Networks

In the above section, we discussed a two-stream spatio-temporal action network. A good action
recognition model will retrieve more discrete spatial and temporal features. Previous studies [ 24,25]
have shown that deeper CNN models can extract discrete features. In [25], the features of hidden layers
and its mechanism of the CNN model were visualized. Moreover, when compared to the different
CNN models with different depths and going deeper layer, the CNN model is better in extracting
discriminant features, which can increase the prediction rate of the model. Another set of recent
studies [26,27], showed that with the increase in network depth can learn more features in lengthy
videos. Residual Networks (ResNet) in [ 24,28], addressed the issue of degradation [29], which is caused
by deep layers of the CNNs. ResNets and Inception-V2 are the underlying networks in our models.
ResNet is used to retrieve spatial and temporal features and Inception-V2 is utilized to increase the
performance of model. We introduce two models ResNet and Inception-V2, in order to investigate
them further and explore the potential of the distinct two-stream CNN.

3.2.1. Residual Network

ResNet is used as one of the CNN models in our proposed network. The primary reason to use
ResNet with deep layers is that it extracts discriminant features from frames. Network degradation
arises as to the number of layers increases. To solve this issue, He et al. [24] presented a deep ResNet.
Instead of the original underlying �tting function, they use a trained residual network by residual
unit is

xi+ 1 = s (xi + F (xi ;Wi )) (1)

where xi and xi+ 1 are the input and output of the ith layer of the network. F (xi ;Wi ) is non-linear

residual mapping of the weight of CNN �lters Wl =
n

Wl ,k
�
�
1< k< K

o
, and sigma is the ReLU

function [ 30]. The bene�t of using the residual block is that it acts as the shortcut connection that
connects the �rst layer to any layer in the network, which breaks the conventional form of connecting
one layer to the next layer. With this, the gradient loss may skip some layers and pass from the loss
layer to any layer that it is connected, and this will avoid the gradient explosion problem. This shortcut
connection does not increase the computational cost and an increase in the number of parameters.
In ResNet, after every convolution operation and before the activation layer, batch normalization
(BN) [31], is performed. This will solve the covariate shift problem and, also, the convergence of
the network will be fast [ 24]. Finally, the global average pooling and softmax layer are employed
combinedly in the place of a single fully connected layer. This effectively decreases the number of
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parameters. Besides, the bottleneck structure will decrease the computational overhead, and the
network ef�ciency is guaranteed.

3.2.2. Inception-V2

Inception-V2 [ 31] is used as another CNN model in our proposed network. Inception-V2 is the
module used in order to reduce the CNN complexity. This CNN model is the advanced version of the
GoogleLeNet [26], which solves the saturation and vanishing gradient problem. The distribution of
X is to be unchanged, because even a minor change will be change the value of X when the network
goes deep. A higher learning rate can be used for faster optimization. The primary concept of the
Inception-V2 is the replacement of 5*5 convolution with two 3*3 convolutions. This replacement
of convolution will not only decrease the parameter number, but also increase more non-linear
transformations, enhances the model to learn more features. Other advantages of adding the batch
normalization reduce the internal covariate shift by normalizing the output of each layer to N(0,1).

In original two-stream CNN for video action recognition [ 5], VGG-M-2048 [32], is used to train the
model, and both of the streams use the same network structure. Feichtenhofer et al. [9], improved the
performance using VGG-16 [25] instead of VGG-M-2048. ResNet and Inception-V2 are used as the
CNN models in our proposed architecture. ResNets with an increase in the number of layers can
extract more features [24]. Furthermore, Inception-V2, with an increase in the network depth and
width, can improve performance [ 31]. Looking at the bene�ts of the ResNet and Inception-V2, we used
these as base models in our two-stream architecture. ResNet has less computational complexity
and �lters when compared to the VGG-M-2048. In terms of computational complexity, VGG-16 uses
15.3 B FLOPs and VGG-19 uses 19.6 B FLOPs, whereas ResNet-152 only uses 11.3 B FLOPs. Similarly,
the computational complexity of ResNet-50 is 3.8 B FLOPs and ResNet-101 is 7.6 B FLOPs. Finally,
the total number of parameters of both streams are 182 M in our model.

3.3. Segment-Based Temporal Modeling

Problem with the original two-stream CNN [ 5] architecture is its inability to maintain temporal
information in deep CNN networks. The cause for this problem is, it only works on one frame in the
spatial stream or a stack of optical �ow frames for the temporal stream. Therefore, the network is
unable to retrieve long-range temporal information effectively. Segment based long-range temporal
information plays an important role in �nding action recognition in videos. For example [ 22,33],
in some complex video actions, comprises multiple stages are required in order to classify the action
and subject. And, action is important from the beginning to the �nal point of the video (basketball dunk
and shooting similar for some short time, so start to the endpoint to be considered to classify correct
action). Therefore, there may be misclassi�cation of action if a video is considered only for some part
of the time, which leads to unsatis�ed performance. To improve the performance, we implement the
long-range temporal model proposed in [ 6] to extract long-term temporal information in our proposed
distinct two-stream convolutional networks for human action recognition in videos.

In order to model the long-range segment based temporal modeling [ 6], we divided the video
into K segments (K = 3) in equal duration, expressed as {S1, S2, S3}. For short snippets, modeling is
done while using,

TSN
�
T1, T2, � � � , Tj

�
= H

�
G

�
F (T1; W) , F (T2; W) , � � � , F

�
Tj ; W

���
(2)

where F (T1; W) represents Convolutional function with parameters, G represents an averaging
function, H represents softmax function. Subsequently, we sample each segment (Sj ) into short snippets
{T1, T2, T3}. These short snippets are fed as an input to the proposed two-stream architecture to get
an initial action classi�cation score. Afterwards, this score is fused with average function to obtain
a �nal decision among snippets. Based on this consensus, the �nal prediction scores are calculated
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while using the widely used softmax function. Additionally, the �nal loss function of segmental
consensus is calculated while using the equation,

L (y, G) = �
C

å
i= 1

yi

 

Gi � log
C

å
j= 1

exp Gj

!

(3)

where 'n' is the total number of the acting categories, yi is the ground-truth label, G is classi�cation
score of i. The value of G is average result of the short snippets of same categories. For the proposed
architecture, all segmental frames are utilized together to optimize the network parameter W. In the
backpropagation, the gradient of W to the loss value L can be derived as,

¶L (y, G)
¶W

=
¶L
¶G

K

å
k= 1

¶G
¶F (Tk)

¶F (Tk)
¶W

(4)

Subsequently, we use stochastic gradient descent (SGD) to train the model parameters. As in
Equation (4), guarantees that the model parameters are updated using the segmental consensus
category G for three short snippets. Thus, with this optimization technique, long-range segment
based temporal information is preserved, and model parameters are learned from the entire video.
Aggregation function ( G) is the main concept in segment-based temporal modeling. The averaging
function is an aggregation function used to predict by averaging �nal results at the snippet level for
every class with gi = 1

N å N
n= 1 f n

i . Final result of this function, gi with respect to f k
i is,

¶gi

¶f n
i

=
1
N

(5)

4. Network Training Strategies

4.1. Data Augmentation

Data augmentation is used in our model in order to create manifold training samples.
Data augmentation strategies are used when there are fewer training samples to avoid over�tting
problems. In our proposed model, horizontal �ipping, random cropping, and scale-jittering [ 27] are
employed to augment the training data. In corner cropping, the extracted regions are only selected
from the corner or center of the image to avoid focus of the information only on the center of the image.
We use the multi-scale jittering technique [ 34], which is applied in ImageNet classi�cation. We set the
input size of the image or optical �ow �eld to 256 � 340. Height and width of cropped region are
selected randomly from {256,224,192,168} and resized to 224� 224 for model training.

4.2. Advanced Cross-Modal Pre-Training

Pre-training is a great way to initialize the deep convolution neural network model when the
dataset size is small, i.e., when the training samples are less [5]. Input to the Spatial stream network
is RGB images, so a pre-trained model can be used, such as ImageNet [30], in order to set the
initial weights of CNN. However, the input to the temporal stream network is optical �ow frames,
and, Optical �ow frames and RGB difference contain the distinct features of video, and their data
distribution is not the same as RGB images. Therefore, it is not possible to use pre-trained networks for
temporal stream networks. Accordingly, we propose an advanced cross-modal pre-training technique.
First, we apply the linear transformation operation [ 6] on optical �ow frames to get the values in
an interval of [0, 255]. Now, the values of optical �ow frames will be in the same range of RGB images.
Then, the �rst layers of CNN weights of RGB models are modi�ed to �t the weights of the optical
�ow �elds (because the RGB image has three channels and temporal stream input has 10 inputs,
including horizontal and vertical images, we average the weight of the three channels weights of RGB

41



Data2020, 5, 104

to replicate the channel number of temporal network input (output kernel size = (64,10,7,7))). We do
this process from scratch, and then we replace the values of the �rst layer of CNN model with the
values of same layers of the RGB pre-trained model.

5. Experiments

In this section, we discuss the implementation details of proposed architecture and the datasets.
Subsequently, we evaluate the performance of two-stream networks with similar and distinct network
architectures. Afterwards, the performance of the proposed advance cross-modal pre-training is
presented. Finally, we present the experimental results and analysis in the last section.

5.1. Datasets and Implementation Detials

We perform experiments on large-scale action recognition datasets, namely UCF101 [35] and
HMDB51 [ 36]. The UCF101 dataset consists of 101 action classes with 13,320 videos in total. Each video
consists of an average of 100–300 frames with a duration of 3–10 s. The HMDB51 dataset consists of
video clips from different online sources, such as YouTube and Google. The dataset consists of 51 action
categories with 6766 videos in total. We evaluate the proposed two-stream architecture by following
the standard evaluation scheme while using three training and testing splits of the UCF-101 dataset.
Af�tionally, the results compared with state-of-art methods. The evaluation of average accuracy is
made on three splits of UCF-101 and HMDB-51.

The mini-batch gradient descent method is implemented to train the network parameters.
We initialize the network parameters with pre-training models from ImageNet [ 30]. We initialize
the values of batch size, weight decay, and momentum to 256, 0.0005, and 0.9, respectively. Initially,
both stream's learning rate is initialized to 10 � 4. When training the spatial stream network learning
rate is decreased to 10� 1 for every 15 K iterations and the entire network training halts at 36 K
iterations. Similarly, when training the temporal stream network, the learning rate is decreased to 1/10
at 20 K and 32 K iterations and the entire network training halts at 40 K iterations. TVL1 optical �ow
algorithm [ 37] is used to extract optical �ow frames from videos. To speed-up the training process,
we apply data-parallelization with multiple GPUs on the Caffe platform [ 38] and related code is
released on GitHub (https://github.com/ashoksarabu/Distinct-Two-Stream ).

5.2. Testing

We evaluate our proposed model with the parameters of the original two-stream convolution
network [ 5]. We sample a �xed number of RGB images or optical �ow stacks (25 in our experiment)
with an equal interval of times between them. For each of the frames, we crop four corners, one center,
and horizontal �ipping to evaluate the CNNs. We use weighted averaging to fuse two stream's results.
When the network is trained, the performance gap between two streams is smaller than the original
two-stream convolution network [ 5]. Because of this small gap, we initialize the weights of spatial
stream to 1 and temporal stream to 1.5.

5.3. Exploration Study

In this section, we examine and evaluate the ef�ciency of the proposed network with the
two-stream identical networks. We propose an improved cross-modal pre-training approach in
Section3 is evaluated in the experiments and its effectiveness of the proposed network model.

The experimental tests are performed on the proposed CNN architecture using the same CNN
model with different depths, and with different CNN models. Inception-V2 [ 31] and ResNet with
different depths are used to evaluate and test the model. ResNet-50, ResNet-101, and ResNet-152 [24]
are ResNets with different depths used as CNN for both streams. The experimental results of the
proposed model are evaluated and compared in Table 1. The comparisons of experimental results
are made based on 1. Two streams with the identical CNN model, 2. Two streams with non-identical
network models and depths. From Table 1, we found out that ResNet-101 performed better for spatial
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stream network. When compared to the two streams CNN with similar networks, two-stream CNNs
with different networks performed better.

Table 1. Performance of Distincttwo-stream Convolutional Network on UCF-101.

Network Architectures for Two-Streams Spatial Temporal Two-Stream

Spatial_ResNet-101 + Temporal_ResNet-50 84.1% 85.3% 94.3%
Spatial_ResNet-152 + Temporal_ResNet-50 86.2% 85.3% 94.3%

Spatial_ResNet-101 + Temporal_Inception-V2 84.1% 88.8% 95.0%

Moreover, similar networks with different depths performed well as compared to similar networks
with similar depths. ResNet-50 performed better for the temporal stream and ResNet-101 for the
spatial stream network. We achieved the best performance with an accuracy of 95.00 percent when
ResNet-101 is used as the spatial stream network model, and Inception-V2 is used as the temporal
stream network model.

We evaluate the experiments with ResNet-50 and Inception-V2 models to verify the ef�ciency of
advanced cross-modal pre-training technique discussed in the previous section, as mentioned above.
Speci�cally, three case-studies are used. First, training the temporal stream network from scratch.
Second, training the temporal stream network with the technique proposed in [ 6]. Third, training the
temporal stream network with our proposed method. The experimental results of the three case studies
mentioned earlier are performed on UCF-101 dataset and tabulated in Table 2. From the results that
are tabulated in Table 2, we summarize that method used for pre-train the temporal stream network
and initializing a deep convolution network achieved great accuracy when compared to training from
scratch. Moreover, the proposed advanced cross-modal pre-trained has an increase of 0.3% with CNN
models ResNet-50 and Inception-V2 when compared to the method proposed in [ 6].

Table 2. Performance evaluation of temporal stream CNN on UCF-101dataset.

Training Strategy ResNet-50 Inception-V2

From scratch 78.5% 82.4%
Pre-Training [ 6] 84.1% 87.3%

Proposed - Advanced cross-modal pre-training 85.3% 88.8%

5.4. Comparison with State-of-the-Art

After investigating the different models for two-stream models for recognizing human action
in videos, we found the optimal accuracy. We evaluation of the proposed model are based on the
UCF-101 and HMDB-51 action recognition datasets on all splits and reported. The empirical results
are presented in Table3. When compared to state-of-the-art results, our proposed architecture with
ResNet-101 for the spatial stream network and the Inception-V2 model for the temporal stream
network, has performed better. Compared to the original two-stream convolution neural network [ 5]
and ST-ResNet model [7], the accuracy for the UCF-101 dataset has been improved by 7.10% and
1.7%. Similarly, for the HMDB-51 dataset, compared to the original two-stream convolution neural
network [ 5] and the ST-ResNet model [7], we got optimal accuracy has been increased by 8.5% and
1.5%, respectively. From the experimental �ndings, we conclude that effectiveness of our distinct
two-stream convolutional network for human action recognition in videos based on segment based
temporal modeling. Furthermore, spatiotemporal heterogenous network accuracy has been improved
compared to the two-stream action recognition methods with similar network models.
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Table 3. Comparison of our proposed method distinct two-stream convolutional network with
state-of-art methods on UCF-101 andHMDB-51 datasets.

Methodology UCF-101 HMDB-51

Two-stream network [ 5] 88.0% 59.4%
Two-stream network fusion [ 9] 92.5% 65.4%
Spatio-Temporal 3D CNNs [ 4] 85.2% –

Factorized Spatio-Temporal CNNs [ 36] 88.1% 59.1%
Pseudo-3D residual networks [ 14] 93.7% –
Temporal Segment Networks [ 6] 94.0% 68.5%

Temporal 3D CNNs [ 13] 93.2% 63.5%
SpatioTemporal residual networks [ 7] 93.4% 66.4%
(Proposed) Distinct two-stream CNN 95.0% 67.9%

6. Conclusions

In this paper, we presented a distinct two-stream convolutional networks for recognizing
human action in videos using segment based temporal modeling. Human action recognition is two
individual processes, which is, two different independent streams processes appearance and motion.
Inspired by this, we attempted to experiment with the two-stream convolution neural network with
two different network models for two streams. Additionally, we achieved the best performance when
compared to existing two-stream networks. With all the experiments, it is found that the distinct
two-stream convolution networks for recognizing action in videos perform better than two-stream
convolution networks with similar network models. In our experiments, we found that ResNet-101
and Inception-V2 models, when employed as network models for a two-stream network with segment
based temporal modeling, yield the best performance. Finally, data augment techniques and advanced
cross-modal pretraining are applied in order to increase the performance.
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Abstract: Tea is currently the most popular beverage after water. Tea contributes to the livelihood of

more than 10 million people globally. There are several categories of tea, but black tea is the most

popular, accounting for about 78% of total tea consumption. Processing of black tea involves the

following steps: plucking, withering, crushing, tearing and curling, fermentation, drying, sorting, and

packaging. Fermentation is the most important step in determining the �nal quality of the processed

tea. Fermentation is a time-bound process and it must take place under certain temperature and

humidity conditions. During fermentation, tea color changes from green to coppery brown to signify

the attainment of optimum fermentation levels. These parameters are currently manually monitored.

At present, there is only one existing dataset on tea fermentation images. This study makes a tea

fermentation dataset available, composed of tea fermentation conditions and tea fermentation images.

Dataset: 10.5281/zenodo.4469326.

Dataset License: Creative Commons Attribution 4.0 International.

Keywords: tea; fermentation; internet of things; detection; dataset

1. Background and Rationale

Tea is currently among the most popularly consumed beverage across the world [ 1]
and is responsible for the economic growth of many countries, including India, Sri-Lanka,
Kenya, China among other countries [ 2]. These top tea-producing countries produce
several varieties of tea, which include: yellow tea, illex tea, oolong tea, black tea, white
tea, among others [3]. Among these categories of tea, black tea is the most consumed,
accounting for approximately 78% of the total daily consumption of tea [ 4]. Kenya is the
leading exporter of black tea worldwide, with her major tea-producing counties being
Kericho, Bomet, Nandi, and Nyeri [ 5]. The crop is a source of livelihood for more than
10 million of the total countries' estimated population of 47 million people [ 6]. Although
the crop is still the leading exchange earner for the county, the sector is ailing due to ever-
reducing tea prices [7]. This is attributed to increased competition from other countries,
poor management, and the low quality of tea produced, among others [ 8].

The steps of processing black tea are plucking, withering, crushing, tearing and curling,
fermentation, drying, sorting, and packaging [ 9]. Among these processes, fermentation
is the key determinant of the �nal quality of the processed tea [ 10]. The process is time-
bound and must take place within a given temperature and humidity range [ 11]. During
fermentation processes, tea changes color from green to coppery brown and �nally to
dark red [ 12]. The optimally fermented tea is coppery brown in color, and has a fruity
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smell and a sweet taste, while the unfermented tea is green in color, and has a grassy
smell and a strong taste [13]. The overfermented tea is dark red and is characterized by
a bitter taste [14]. Currently, the optimum fermentation of tea is monitored manually by
tea tasters, adopting the following techniques: monitoring color change, tasting tea as
fermentation progresses, and smelling the odor of tea during fermentation [ 15]. These
manual methods are subjective and lead to a compromise in the quality of the made tea.
Image processing and machine learning techniques have shown high levels of ability in
various �elds, including medicine [ 16], education, E-Commerce [17] tourism and banking,
among others [18]. However, for image processing and machine learning to work, there
is a need for data for training and evaluation of the models. Worryingly, there is only
one reported open-source dataset on tea fermentation images [19], which is a limiting
phenomenon as researchers have only one dataset to train and evaluate their machine
learning models. Therefore, this study aims to resolve this challenge by adopting the
Internet of Things (IoT) to capture and release a tea fermentation dataset composed of
temperature, humidity, and black tea fermentation images.

The rest of the paper is arranged as follows. Section3 presents the description of the
data in the dataset. Section2 presents materials and methods, and Section5 presents the
conclusion of the paper.

2. Materials and Methods

This section describes the resources and the approach followed in the collection of
the dataset. Section2.1 discusses on the resources while the collection of the dataset is
discussed in Section2.2.

2.1. Resources

The following resources were instrumental in acquiring the data: Raspberry pi, Pi-
Camera, Server, and programming languages. Raspberry Pi model B+ was adopted due
to its increased processing power and its dual-band Wi-Fi Feature [ 20]. The Raspbian
operating system for raspberry pi [ 21] was used. Raspian was chosen as it is available
at no cost and is easy to install and use. A raspberry pi camera of 8 megapixels was
used. The board was chosen since it is very small, weighing around 3 g, making it perfect
for deployment with the raspberry pi. Amazon Web Services (AWS) [ 22] was chosen as
a cloud provider for storage of the data. The AWS provides services that make it easy
to store images and also offers an initial free service for 1 year. Python programming
language [23] was used in writing programs to capture the images using the Pi camera.
The block diagram of the system for capturing the dataset is shown in Figure 1.

Figure 1. Block diagram of the data collection system.

2.2. Collection of the Dataset

The Internet-of-Things-based system for capturing the data was deployed in the Sisibo
factory, Kenya for 4 days: 10–13 August 2020. The system was set up just above the tea
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fermentation bed (Figure 2). After collection of each image, the tea experts provided ground
truths on their correct classes.
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Figure 2. Collection of the dataset in Sisibo tea factory, Kenya using Raspberry pi and Pi camera.

3. Data Description

This study releases a black tea fermentation dataset which contains black tea fermen-
tation images and physical parameters of tea during fermentation, which were collected in
Sisibo tea factory, Kenya between 10 and 13 August 2020. The dataset can be found here:
https://doi.org/10.5281/zenodo.4469326 (accessed on 2 March 2021). The �le structure of
the dataset is shown in Figure 3.
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Figure 3. File structure of the black tea fermentation dataset.
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Black tea fermentation conditions are contained in a Comma Delimited Values (CSV)
�le and contain the fermentation time, temperature, humidity, reference to image and the
category of tea (Figure 4).
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Figure 4. A Screenshot of the fermentation condition CSV �le.

The images folder contains images that were taken as fermentation took place. These
images correspond with the Reference showing the images column in the CSV �les. In ad-
dition to these images, “Categorized black tea fermentation images” folder contains 6000
black tea fermentation images categorized into three classes of 2000 images each. The
classi�cation of these images was based on the decision of two tea fermentation experts.
The experts relied on the color, smell, and taste of tea during fermentation to classify the
images. The classes are unfermented, fermented, and overfermented.

The underfermented tea is in a folder labeled “unfermented tea” in the “Categorized
black tea fermentation images” folder. The level of fermentation of this category of tea
is below the optimum. These tea images are usually green. The images are labeled from
“underfermented _00 ” to ”underfermented _1999”. A sample of the images is presented in
Figure 5a.

The fermented tea is optimally fermented and is usually coppery brown. The fer-
mented tea is in a folder labeled “fermented tea” in the images folder. The images are
labeled from “fermented _00” to “fermented _1999”. A sample of the images is presented
in Figure 5b.

The fermentation level of overfermented tea is beyond the optimum and is dark red.
Overfermented tea is in a folder labeled “overfermeted tea”. The images are labeled from
“Overfermented _00” to “Overfermented _1999”. A sample of the images is presented
in Figure 5c.

���D�����8�Q�I�H�U�P�H�Q�W�H�G ���E�����)�H�U�P�H�Q�W�H�G ���F�����2�Y�H�U�I�H�U�P�H�Q�W�H�G

Figure 5. A sample of classes of tea image fermentation dataset released in this paper.

4. Data Validation

The fermentation of tea must take place within a given range of temperature and
humidity. These ranges vary in different countries but, in Kenya, the acceptable range
is between 20 and 30 degrees celcius. Figure6 shows temperature and humidity values
during a fermentation cycle in Sisibo tea factory on 10 August 2020. The fermentation
process started at 12:31:13 h. The temperature recorded ranged from 19� C to 28 � C , which
was well within the optimum ranges. The values of the temperature increased steadily
with time due to the natural climatic conditions of the area. On the other hand, humidity
was between 75% and 92% for the low and the high, respectively. The values of humidity
reduced steadily with time. The highest temperature value recorded was 28.8 � C, while the
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highest humidity value achieved was 82.6%. The fermentation curve was smooth and it
took 68 min before the tea was fully fermented.

Figure 7 shows temperature and humidity values during a fermentation cycle in
Sisibo tea factory on 11 August 2020. The fermentation process started at 08:48:03 h. The
temperatures recorded ranged from 20.6 � C to 24.50� C. These temperatures were within
the optimum. The values of the temperature increased steadily with time due to the natural
climatic conditions of the area. The highest humidity value recorded was at 90.8%. The
values of humidity �uctuated throughout the fermentation period. The fermentation curve
was smooth and it took 51 min before the tea was fully fermented. This is the shortest
fermented duration reported in this data descriptor, as the fermentation temperatures were
higher than the rest of the days.

(a) Temperature and humidity values (b) Fermentation classes of tea with time

Figure 6. Fermentation conditions of tea in Sisibo tea factory on 10 August 2020.

(a) Temperature and humidity values (b) Fermentation classes of tea with time

Figure 7. Fermentation conditions of tea in Sisibo tea factory on 11 August 2020.

Figure 8 shows temperature and humidity values during a fermentation cycle in
Sisibo tea factory on 12 August 2020. The fermentation process started at 02:00:13 h. The
temperature recorded ranged from 15 � C to 25.53� C. These temperatures fell below the
optimum, unlike on 10 August 2020. This is due to the fermentation occurring in the early
morning when the region is naturally colder than during midday hours. The values of the
temperature increased steadily with time, due to the natural climatic conditions of the area.
The highest humidity value recorded was at 95%. The fermentation curve was smooth and
it took 64 min before the tea was fully fermented.

Figure 9 shows temperature and humidity values during a fermentation cycle in Sisibo
tea factory on 13 August 2020. The fermentation process started on 07:00:00 h. The highest
temperature recorded was at 26.25 � C. Once again, the temperature ranges fell below the
optimum, unlike on 10 August 2020. This is because fermentation was carried out in the
early morning when the region is naturally colder than during midday hours. The highest
humidity value recorded was at 95%. The fermentation curve was smooth and it took 58
min before the tea was fully fermented.
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(a) Temperature and humidity values (b) Fermentation classes of tea with time

Figure 8. Fermentation conditions of tea in Sisibo tea factory on 12 August 2020.

(a) Temperature and humidity values (b) Fermentation classes of tea with time

Figure 9. Fermentation conditions of tea in Sisibo tea factory on 13 August 2020.

The average temperature and humidity values for the days are presented in Figure 10.
The highest average temperature was recorded on 10 August 2020, with 26.14� C. On 11
August 2020, an average temperature of 22.31� C was recorded. On the other days, the
average temperatures were 19.39� C and 18.83� C for 12 August 2020 and 3 August 2020,
respectively. Thus, the fermentation took place outside the range of 20–30 � C for the
two days.

Figure 10. Temperature and humidity during black tea fermentation in Sisibo tea factory between 10
and 13 August 2020.

5. Conclusions

In this paper, a tea fermentation dataset has been released. The dataset was collected in
the Sisibo tea factory, Kenya using an IoT-based model. The model predicted fermentation
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cycle of tea and correlated well with the decisions of the tea fermentation experts. Fermen-
tation experts gave ground truths for the dataset. The dataset can be used by researchers
in training machine learning models for the detection of the optimum fermentation of tea.
This is a signi�cant achievement in the �eld of applying machine learning to the detection
of optimum fermentation of tea, as there is currently only one existing dataset for training
these models.
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Abstract: Multi-instance (MI) learning is a branch of machine learning, where each object (bag)
consists of multiple feature vectors (instances)—for example, an image consisting of multiple patches
and their corresponding feature vectors. In MI classi�cation, each bag in the training set has a class
label, but the instances are unlabeled. The instances are most commonly regarded as a set of points
in a multi-dimensional space. Alternatively, instances are viewed as realizations of random vectors
with corresponding probability distribution, where the bag is the distribution, not the realizations.
By introducing the probability distribution space to bag-level classi�cation problems, dissimilarities
between probability distributions (divergences) can be applied. The bag-to-bag Kullback–Leibler
information is asymptotically the best classi�er, but the typical sparseness of MI training sets is an
obstacle. We introduce bag-to-class divergence to MI learning, emphasizing the hierarchical nature
of the random vectors that makes bags from the same class different. We propose two properties
for bag-to-class divergences, and an additional property for sparse training sets, and propose a
dissimilarity measure that ful�ls them. Its performance is demonstrated on synthetic and real
data. The probability distribution space is valid for MI learning, both for the theoretical analysis
and applications.

Dataset: Breast tissue images available athttps://bioimage.ucsb.edu/research/bio-segmentation ,
extracted feature vectors available at https://�gshare.com/articles/MIProblems_A_repository_of_
multiple_instance_learning_datasets/6633983. BreakHisdata available at https://web.inf.ufpr.br/
vri/databases/breast-cancer-histopathological-database-breakhis/ . Code available at https://github.
com/kajsam/ProbabilisticBag2Class .

Dataset License: CC BY 4.0

Keywords: image classi�cation; multi-instance learning; divergence; dissimilarity; bag-to-class;
Kullback–Leibler

1. Introduction

1.1. Classi�cation of Weakly Supervised Data

Machine-learning applications include a wide variety of data types, images being one of the most
successful areas. It has had an enormous impact on image analysis, especially in replacing small sets
of hand-crafted features with large sets of computer readable features, which often lack apparent
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or intuitive meaning. The task and problems to which machine learning is applied can be divided
broadly into unsupervised and supervised learning. In supervised learning, the training data consists
of K objects, x, with corresponding class labels, y; f (x1, y1), . . . , (xk, yk), . . . , (xK, yK)g. An object is
typically a vector of d feature values, xk = ( xk1, . . . , xkd), observed directly or extracted from e.g., an
image. In classi�cation, the task is to build a classi�er that correctly labels a new object. The training
data is used to adjust the model according to the desired outcome, often maximizing the accuracy of
the classi�er.

For many types of images, only a small part of the image de�nes the class, but the label is available
only at image level. This is common in medical images, such as histology slides, where the tumor cells
typically make up a small proportion of the image. However, the location of those cells is not available
for training. Multi-instance (MI) learning is a branch of machine learning that speci�cally targets
problems where labels are available only at a superior level, and relates to other weakly supervised
data problems, such as semi-supervised learning and transfer learning through label scarcity [ 1].

1.2. Multi-Instance Learning

In MI learning, each object is a set of feature vectors referred to as instances. The set
Xk = f xk1, . . . , xknk

g, where the nk elements are vectors of length d, is referred to as bag.
The number of instances, nk, varies from bag to bag, whereas the vector length is constant.
In supervised MI learning, the training data consists of K sets and their corresponding class labels,
f (X1, y1), . . . ,(Xk, yk), . . . ,(XK, yK)g.

Figure 1a shows an image (bag),k, of benign breast tissue [2], divided into nk segments with
corresponding feature vectors (instances)xk1, . . . , xknk

[3]. Correspondingly, Figure 1b shows malignant
breast tissue.

(a) Benign (b) Malignant

Figure 1. Breast tissue images [2]. The image segments are not labeled.

The images in the data set have class labels; however, the individual segments do not. This is
a key characteristic of MI learning—the instances are not labeled. MI learning includes instance
classi�cation [ 4], clustering [ 5], regression [5], and multi-label learning [ 6,7], but this article will focus
on bag classi�cation. MI learning can also be found as integrated parts of end-to-end methods for
image analysis that generate patches, extract features and do feature selection [7]. See also [8] for an
overview and discussion on end-to-end neural network MI learning methods.

The term “MI learning” was introduced in an application of molecules (bags) with different
shapes (instances), and their ability to bind to other molecules [ 9]. A molecule binds if at least one of its
shapes can bind. In MI terminology, the classes in binary classi�cation are referred to as positive, pos,
and negative, neg. The assumption that a positive bag contains at least one positive instance, and a
negative bag contains only negative instances is referred to as the standard MI assumption.

Many new applications violate the standard MI assumption, such as image classi�cation [ 10]
and text categorization [ 11]. Consequently, successful algorithms meet more general assumptions,
see e.g., the hierarchy of Weidmann et al. [12] or Foulds and Frank's taxonomy [ 13]. For a more recent
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review of MI classi�cation algorithms, see e.g., [ 14]. Amores [ 15] presented the three paradigms of
instance space (IS), embedded space (ES), and bag space (BS). IS methods aggregate the outcome of
single-instance classi�ers applied to the instances of a bag, whereas ES methods map the instances to a
vector, followed by use of a single-instance classi�er. In the BS paradigm, the instances are transformed
to a non-vectorial space where the classi�cation is performed, avoiding the detour via single-instance
classi�ers. The non-vectorial space of probability functions has not yet been introduced to the BS
paradigm, despite its analytical bene�ts, see Sections 3.2and 3.3.

Although both Carbonneau et al. [ 16] and Amores [ 15] de�ned a bag as a set of feature
vectors, Foulds and Frank [13] stated that a bag can also be modelled as a probability distribution.
The distinction is necessary in analysis of classi�cation approaches, and both viewpoints offer bene�ts,
see Section6.1for a discussion.

1.3. Bag Density and Class Sparsity

Optimal classi�cation in MI learning depends on the number of instances per bag (bag density)
and the number of bags per class in the training set (class density). Sample sparsity is a common
obstacle in MI learning [ 16], which we address in Section 3.5. High bag density ensures a precise
description of each bag, whereas high class density ensures precise modelling of each class when
training the classi�er. In image analysis, the number of patches corresponds to the number of instances,
and is commonly a user input parameter. The number of images corresponds to the number of bags,
and is limited by the training set itself.

High resolution of today's images and the increasingly common practice of sharing the images
themselves instead of extracted features ensure high bag density. The number of bags available for
training is still limited, and will continue to be so in the foreseeable future, especially for medical
images where data collection is restricted by laws and regulations. This motivates an approach to MI
learning that can exploit the increasing bag density and overcome the class sparsity.

1.4. A Probabilistic Bag-to-Class Approach to Multi-Instance Learning

We propose to model the bags as probability distributions and the instances as random samples.
The bags are assumed to be random samples from their respective classes and the instance-bag
sampling form a hierarchical distribution. Hierarchical distribution is novel for bag classi�cation
and novel outside the strict standard MI assumption. Unbiased estimators for the bag probability
distributions ensure that as the number of instances increases (nk ! ¥ ), the discrepancy between the
estimate and the underlying truth diminishes, taking advantage of increasing bag density. To overcome
the problem of class sparsity, the instances are aggregated at class level.

We further propose to use a bag-to-class dissimilarity measure for classi�cation. This is novel in the
MI context, where dissimilarity measures have been either instance-to-instance or bag-to-bag. With the
analytical framework of probability distributions and their dissimilarity measures, we present the
optimal classi�er for dense class sampling as a theoretical background and identify data-independent
properties for bag classi�cation under class sparsity.

The main contribution of this article is a bag-to-class dissimilarity measure for sparse training
data. It builds on:

• presenting the hierarchical model for general, non-standard MI assumptions (Section 3.3),

• introduction of bag-to-class dissimilarity measures (Section 3.5), and

• identi�cation of two properties for bag-to-class divergence (Section 4.1).

The novelty is that it takes into account the class sparsity by comparing a bag to one class while
conditioning on the other class.

In Section 5, the Kullback–Leibler (KL) information and the new dissimilarity measure is applied to
data sets and the results are reported. Bags de�ned in the probability distribution space, in combination
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with bag-to-class divergence, constitutes a new framework for MI learning, which is compared to other
frameworks in Section 6.

2. Related Work and State-of-the-Art

The feature vector set viewpoint seems to be the most common, but the probabilistic viewpoint
was introduced already in 1998, under the assumption that instances of the same class are independent
and identically distributed (i.i.d.) [ 17]. This assumption has been used in approaches such as estimating
the expectation by the mean [18], or estimation of class distribution parameters [ 19], but has also been
criticized [ 20]. The hierarchical distribution was introduced for learnability theory under the standard
MI assumption for instance classi�cation in 2016 [ 4]. We expand the use for more general assumptions
in Section 3.3.

Dissimilarities in MI learning have been categorized as instance-to-instance or bag-to-bag [ 15,21].
The bag-to-prototype approach in [ 21] offers an in-between category, but the theoretical framework is
missing. Bag-to-class dissimilarity has not been studied within the MI framework, but has been used
under the i.i.d. given class assumption for image classi�cation [ 22]. The sparseness of training sets
was also addressed: if the instances are aggregated on class level, a denser representation is achieved.
Many MI algorithms use dissimilarities, e.g., graph distances [ 23], Hausdorff metrics [ 24], functions
of the Euclidean distance [14,25], and distribution parameter-based distances [ 14]. The performances
of dissimilarities on speci�c data sets have been investigated [ 14,19,21,25,26], but more analytical
comparisons are missing. A large class of commonly used kernels are also distances [27], and hence,
many kernel-based approaches in MI learning can be viewed as dissimilarity-based approaches. In [ 28],
the Fisher kernel is used as input to a support vector machine (SVM), whereas in [ 11,20] the kernels
are an integrated part of the methods.

The non-vectorial graph space was used in [20,23]. We introduce the non-vectorial space of
probability functions as an extension within the BS paradigm for bag classi�cation through dissimilarity
measures between distributions in Section 3.2.

The KL information was applied in [ 22], and is a much-used divergence function. It is closely
connected to the Fisher information [ 29] used in [ 28] and to the cross entropy used as loss function
in [ 8]. We propose a conditional KL information in Section 4.2, which differs from the earlier proposed
weighted KL information [ 30] whose weight is a constant function of X.

There is a wide variety in MI learning, both in methods and data sets, and it should be clear that
state-of-the-art will depend on the type of data. Sudharshan et al. [ 31] gave a comparison of 12 MI
classi�cation methods and �ve state-of-the-art general classi�cation methods on a well-described,
publicly available histology image data set. All methods included have shown best performance on
other data sets. The �ve methods that showed best performance for at least one of the data subsets
serve as state-of-the-art baseline for evaluation in Section5.3.

Cheplygina et al. [ 1] gave an overview of MI learning applications in different categories, but
no comparison was made. The work of Sudharshan et al. falls into the “Histology/Microscopy”
category, and the overview offers a potential expansion of histology state-of-the-art. Among the
12 listed articles, Zhang et al. [32] concluded that GPMIL outperforms Citation-kNN, which is one
of the 12 methods in [31], but not one of the 5 best-performing. Kandemir et al. [ 3], Li et al. [ 33]
and Tomczak et al. [34] presented methods that outperform GPMIL on a publicly available data set.
We include these as comparison.

Of the remaining articles, none of them present an extensive comparison to other methods,
their data sets are either non-public [ 35–38], no longer available [ 39], or the reference is not
complete [40,41], which make them unsuitable for comparison. Jia et al. [ 42] presented a segmentation
method, and is therefore not comparable.
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3. Theoretical Background and Intuitions

3.1. Notation

Subscript and superscript posand negrefer to the class label of the bag, subscript and superscript
+ and � refer to the unknown instance label.

X : instance random vector
C : class, eitherposor neg
B : bag
P(�) : probability distribution
xki : feature vector (instance) in set k, i = 1, . . . ,nk

Xk: set of feature vectorsk of size nk

yk: bag label
X : sample space for instances
X + : sample space for positive instances
X � : sample space for negative instances
Bpos : sample space of positive bags
Bneg : sample space of negative bags
P(CjXk) : posterior class probability, given instance sample
Q : parameter random vector
qk : parameter vector
Pbag(X) = P(X jB) : probability distribution for instances in bag B
P(X jqk) : parameterized probability distribution of bag k
Ppos(X) = P(X jpos) : probability distribution for instances from the positive class
Pneg(X) = P(X jneg) : probability distribution for instances from the negative class
t i : instance label
p k : probability of positive instances
D(Pk, P̀ ) = D(Pk(X), P̀ (X)): divergence from Pk(X) to P̀ (X)
fk(x) = f (xjqk) : probability density function (PDF) for bag k
D( fk, f` ) = D( fk(x), f` (x)): divergence from fk(x) to f` (x)

We assumeP(X) < ¥ , and equivalently f (x) < ¥ , for all distributions.

3.2. The Non-Vectorial Space of Probability Functions

The intuition behind the probabilistic approach in MI learning can be understood through image
analysis and tumor classi�cation. Figure 1a represents parts of a tumor, chosen carefully for diagnostic
purposes. The process from biological material to image contains steps whose outcome is in�uenced
by subjective choices and randomness: The precise day the patient is admitted in�uences the state
of the tumor; the speci�c parts of the tumor that are extracted for staining; the actual stain varies
from batch to batch, and the imaging equipment has multiple parameter settings. All this means that
the same tumor would have produced a different image under different circumstances. The process
from image to feature vector set also contains several steps: Patch size, grid or random patches, color
conversion, etc. In summary, the observed feature vectors are a representation of an underlying object,
and that representation may vary, even if the object remains �xed.

From the probabilistic viewpoint, an instance, x, is a realization of a random vector, X,
with probability distribution P(X) and sample space X . The bag is the probability distribution
P(X), and the set of instances,X, is multiple realizations of X. The task of an MI classi�er is to classify
the bag given the observations, X.
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The posterior class probability, P(CjXk), is an effective classi�er if the standard MI assumption
holds, since it is de�ned as:

P(posjXk) =

(
1 if any xki 2 X + , i = 1, . . . ,nk

0 otherwise,

where X + is the positive instance space, and the positive and negative instance spaces are disjoint.
Bayes' rule, P(CjX) µ P(X jC)P(C), can be used when the posterior probability is unknown.

An assumption used to estimate the probability distribution of instance given the class, P(X jC), is that
instances from bags of the same class are i.i.d. random samples. However, this is a poor description for
MI learning.

3.3. Hierarchical Distributions

As an illustrative example, let the instances be the color of image patches from the class seaor
desert, and let image k depict a blue sea like in Figure 2a with instances Xk, and image ` depict a
turquoise sea like in Figure 2b with instances X` . The instances are realizations from P(X jqk) and
P(X jq̀ ), respectively, where q is the parameter indicating the colors. If the instance distribution were
dependent only on class, then qk = q̀ = qsea, which is clearly not the case. Instance distributions are
dependent not only on class, but also on bag. The random vectors in Xk are i.i.d., but have a different
distribution than those in X` . An important distinction between uncertain objects, whose distribution
depends solely on the class label [43,44], and MI learning is that the instances of two bags from the
same class are not from the same distribution.

(a) CC BY 3.0, Mickey
Løgitmark, cropped

(b) CC BY 3.0, Collin M,
cropped

(c) CC BY-SA 4.0,
WFan, cropped

(d) CC BY-SA 4.0,
Gui0123, cropped

(e) CC BY 4.0, Yanish E (f) CC BY-SA 3.0,
Korkut Tas

(g) CC BY-SA 4.0,
Jawzandulam

(h) CC BY-SA 3.0,
Simona.cerrato

Figure 2. Sea and desert images from Wikimedia Commons.

The dependency nature for MI learning can be described as a hierarchical distribution
(Equation (1)), where a bag, B, is de�ned as the probability distribution of its instances, P(X jB),
and the bag space,B, is a set of distributions. A bag is itself a realization from the sample space of
bags, whose distribution depends on the class. The generative model of instances from a positive or
negative bag follows a hierarchical distribution:

X jB � P(X jB) X jB � P(X jB)

B � P(Bjpos) or B � P(Bjneg),
(1)
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from image to image. Hence, q+
k and q�

k are realizations of random variables, with corresponding
probability distributions P(Q+ ) and P(Q� ). The generative model of instances from a positive bag is:

X jt , q+ , q� �

(
P(X jt = 1) = P(X jq+ )

P(X jt = 0) = P(X jq� )

T jp pos �

(
P(t = 1) = p pos

P(t = 0) = 1 � p pos

P pos � P(P pos), Q+ � P(Q+ ), Q� � P(Q� ).

(3)

The corresponding sampling procedure from positive bag, k, is

Step 1: Draw p k from P(P pos), q+
k from P(Q+ ), and q�

k from P(Q� ). These three parameters de�ne
the bag.
Step 2: For i = 1,. . . , nk, draw t i from P(T jp k), draw xi from P(X jq+

k ) if t i = 1, and from
P(X jq�

k ) otherwise.

The generative model and sampling procedure for negative bags are equivalent to that of
positive bags.

By imposing restrictions, assumptions can be accurately described, e.g., the standard MI
assumption: at least one positive instance in a positive bag: P(pk � 1/ nk) = 1; no positive instances in
a negative bag: P(P neg = 0) = 1; the positive and negative instance spaces are disjoint.

Equation (3) is the generative model of MI problems, assuming that the instances have unknown
class labels and that the distributions are parametric. The parameters p k, q+

k and q�
k are i.i.d. samples

from their respective distributions, but are not observed and are hard to estimate due to the very nature
of MI learning: the instances are not labeled. Instead, P(X jB) can be estimated from the observed
instances, and a divergence function can serve as classi�er.

The instance i.i.d. assumption is not inherent to the probability distribution viewpoint, but the
asymptotic results for the KL information discussed in Section 3.5 rely on it. In many applications,
such as image analysis with sliding windows, the instances are best represented as dependent samples,
but the dependencies are hard to estimate, and the independence assumption is often the best
approximation. Doran and Ray [ 4] showed that the independence assumption is an approximation of
dependent instances, but comes with the cost of slower convergence.

3.4. Dissimilarities in MI Learning

The information contained at bag-level is converted before it is fed into a classi�er. If the
bags are sets, they are commonly converted into distances. Dissimilarities in MI learning can be
categorized as instance-to-instance, bag-to-bag or bag-to-class. Amores [15] implicitly assumed
metricity for dissimilarity functions [ 27] in the BS paradigm, but there is nothing inherent to MI
learning that imposes these restrictions. In the case where bags are probability distributions, distances
are no longer applicable since they live in a non-vectorial space. Distances are a special case of
dissimilarity functions, and the equivalent for probability distributions are referred to as divergences,
D(Pk(X), P̀ (X)). Although distances ful�l three properties by de�nition—among them symmetry
and zero distance for identical sets—divergences do not have such properties, by de�nition.

A group of divergences named f -divergences has properties that are reasonable to demand for
measuring the ability to distinguish probability distributions [ 45,46]:

Equality and orthogonality:An f -divergence takes its minimum when the two probability functions
are equal and its maximum when they are orthogonal. This means that two identical bags will have
minimum dissimilarity between them, and that two bags without shared sample space will have
maximum dissimilarity. A de�nition of orthogonal distributions can be found in [ 47].
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Monotonicity: The f -divergences possess a monotonicity property that can be thought of as an
equivalent to the triangle property for distances: For a family of densities with monotone likelihood
ratio, if a < q1 < q2 < q3 < b, then D(P(X jq1), P(X jq2)) � D(P(X jq1), P(X jq3)). This is valid, e.g.,
for Gaussian densities with equal variance and mean q. This means that if the distance between q1 and
q3 is larger than the distance between q1 and q2, the divergence is larger or equal. The f -divergences
are not symmetric by de�nition, but some of them are.

Divergences as functions of probability distributions have not been used in MI learning, due to
the lack of a probability function space de�ned for the BS paradigm, despite the bene�t of analysis
independent of speci�c data sets [ 48]. Cheplygina et al. [ 14] proposed using the Cauchy-Schwarz
divergence with a Gaussian kernel, but as a function of the instances in the bag-to-bag setting.
The KL information [ 29] is a non-symmetric f -divergence, often used in both statistics and computer
science, and is de�ned as follows for two probability density functions (PDFs) fk(x) and f` (x):

DKL( fk, f` ) =
Z

fk(x) log
fk(x)
f` (x)

dx. (4)

An example of a symmetric f -divergence is the Bhattacharyya (BH) distance, de�ned as

DBH( fk, f` ) = � log
Z q

fk(x) f` (x)dx, (5)

and can be a better choice if the absolute difference, and not the ratio, differentiates the two PDFs.
The appropriate divergence for a speci�c task can be chosen based on identi�ed properties, e.g.,
for clustering [ 49], or a new dissimilarity function can be proposed [ 50].

3.5. Bag-to-Class Dissimilarity

Bag-to-bag classi�cation can be thought of as model selection: Two bags from the training set,
fk(x) and f` (x) are the models, and unlabeled bag fbag(x) is the sample distribution, and is labeled
according to which model it resembles the most. The log-ratio test is the most powerful for model
selection under certain conditions (Neyman–Pearson lemma). It is possible then to perform the
log-ratio test between fbag(x) and each of the bags in the training set.

The training set in MI learning is the instances, since the bag distributions are unknown. Under
the assumption that the instances from each bag are i.i.d. samples, the KL information has a special
role in model selection, both from the frequentist and the Bayesian perspective. Let fbag(x) be
the sample distribution (unlabeled bag), and let fk(x) and f` (x) be two models (labeled bags).
Then the expectation over fbag(x) of the log-ratio of the two models, Ef log( fk(x)/ f` (x)) g, is equal
to DKL( fbag, f` ) � DKL( fbag, fk). In other words, the log-ratio test reveals the model closest to the
sampling distribution in terms of KL information [ 51]. From the Bayesian viewpoint, the Akaike
Information Criterion (AIC) reveals the model closest to the data in terms of KL information, and is
asymptotically equivalent to Bayes factor under certain assumptions [ 52].

An obstacles arises: The core of MI learning is that bags from the same class are not equal, e.g.,
two images of the sea, so that the model is most likely not in the training set. In fact, for probability
distributions with continuous parameters, the probability of the new bag being in the training set is
zero. For ratio-based divergences, such as thef -divergences, the difference between D( fbag, fk) and
D( fbag, f` ) becomes arbitrary. Despite their necessary properties as dissimilarity measures, and the
KL information's property as most powerful model selector, we see that they can fail in practice.

If the bag sampling is sparse, the dissimilarity between fbag(x) and the labeled bags becomes
somewhat arbitrary regarding the true label of fbag(x). The risk is high for ratio-based divergences
such as the KL information, since fk(x)/ f` (x) = ¥ for f x : f` (x) = 0, fk(x) > 0g. The bag-to-bag
KL information is asymptotically the best choice of divergence function, but this is not the case for
sparse training sets. Bag-to-class dissimilarity makes up for some of the sparseness by aggregation
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of instances. Consider an image segment of colordeep green, which appears in seaimages, but not in
desertimages, and a segment of colorwhite, which appears in both classes (waves and clouds). If the
combination deep greenand white does not appear in the training set, then a bag-to-bag KL information
will result in in�nite dissimilarity for all bags, regardless of class, but the bag-to-class KL information
will be �nite for the seaclass.

Let P(X jC) =
R

B P(X jB)dPB(BjC) be the probability distribution of a random vector from the
bags of classC. Let D(P(X jB), P(X jpos)) and D(P(X jB), P(X jneg)) be the divergences between the
unlabeled bag and each of the classes. Choice of divergence is not obvious, sinceP(X jB) is different
from both P(X jpos) and P(X jneg), but can be done by identi�cation of properties.

4. Properties for Bag-Level Classi�cation

4.1. Properties for Bag-to-Class Divergences

We argue that the equality, orthogonality and monotonicity properties possessed by f -divergences
are reasonable also for bag-to-class divergences, although less likely to occur in practice:

The equality property and the monotonicity property are valid for uncertain objects, but in
practice it can occur with sparse class sampling, and we therefore argue that these properties are valid
also for bag-to-class divergences. The opposite implies that a bag can be regarded more similar to
one class, even though its probability distribution is identical to the other class (equality), or that,
e.g., if Pbag(X), Ppos(X) and Pneg(X) are Gaussian distributions with the same variance and means
qbag < qpos < qneg, we can have that D(P(X jqbag), P(X jqpos)) > D(P(X jqbag), P(X jqneg)). In other
words, we can have that the divergence between the bag and the positive class is larger than between
the bag and the negative class, although the bag mean is closer to the positive class mean. This is
clearly not appropriate for a dissimilarity measure.

The orthogonality property is reasonable for bag-to-class divergences: If there is no common
sample space between bag and class, the divergence should take its maximum. In conclusion,
f -divergences is the correct group for bag-to-class divergences.

There may be other desirable properties for bag-to-class divergences, where the aim is no longer to
compare an i.i.d. sample to a model, but to compare an i.i.d. sample to an aggregation of models where
the sample comes from one of them. We here propose two properties for bag-to-class divergences
regarding in�nite bag-to-class ratio and zero instance probability. Denote the divergence between an
unlabeled bag and the reference distribution, Pre f(X), by D(Pbag, Pre f).

In the seaimages example, the class contains all possible colors that the sea can have, whereas a
bag consists only of the colors of that particular moment in time. If the bag contains something that
the class does not, e.g., brown color, this should be re�ected in a larger divergence. However, the class
should be allowed to contain something that the bag does not without this resulting in a similarly
large divergence.

As a motivating example, consider the following: A positive bag, P(X ja), is a continuous uniform
distribution U(a, a+ d), sampled according to P(A) = U(h, z � d):

X ja � U (a, a+ d)

A � U (h, z � d)

A negative bag, P(X ja0), is U(a0, a0+ d0) sampled according to P(A0) = U(h0, z0� d0):

X ja0 � U (a0, a0+ d0)

A0 � U (h0, z0� d0),

and let h0 < z so that there is an overlap between the two classes. For both positive and negative bags,
we have that Ppos(X)/ Pbag(X) = ¥ for a subspace of X and Pneg(X)/ Pbag(X) = ¥ for a different
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subspace ofX , merely re�ecting that the variability in instances within a class is larger than within a
bag, as illustrated in Figure 4.

Figure 4. The PDF of a bag with uniform distribution and the PDFs of the two classes.

If Pbag(X) is a sample from the negative class, andPbag(X)/ Ppos(X) = ¥ for some subspace ofX
it can easily be classi�ed. From the above analysis, large bag-to-class ratio should be re�ected in large
divergence, whereas large class-to-bag ratio should not.

Property 1: Let XM be the subspace ofX where the bag-to-class ratio is larger than some M:

XM � X : Pbag(X)/ Pre f(X) > M,

and let X n XM be its complement. Let DXM (Pbag, Pre f) be the contribution to the total divergence

for that subspace: D(Pbag, Pre f) = DXM (Pbag, Pre f) + DX nXM (Pbag, Pre f). Let X �
M be the subspace ofX

where the class-to-bag ratio is larger than some M:

X �
M � X : Pre f(X)/ Pbag(X) > M,

and let X n X �
M be its complement. Let DX �

M (Pbag, Pre f) be the contribution to the total divergence for

that subspace:D(Pbag, Pre f) = DX �
M (Pbag, Pre f) + DX nX �

M (Pbag, Pre f).
DXM approaches the maximum contribution as M ! ¥ . DX �

M
does not approach the maximum

contribution as M ! ¥ :

M ! ¥ :

(
DXM (Pbag, Pre f) ! max(DXM (Pbag, Pre f))

DX �
M (Pbag, Pre f) 6! max(DX �

M (Pbag, Pre f)) .

Property 1 cannot be ful�lled by a symmetric divergence. This property is necessary in cases
where the sample space of a bag is a subset of the sample space of the class,Xbag � X class, e.g., for
uniform distributions, and in cases where the variance of a bag is smaller than the variance of the class.

Consider X �
M . BecauseP(X) < ¥ , this occurs for the subspace of X where Pbag(X) is smaller

than some e and Pre f(X) is not. We argue that when Pbag(X) < e, there should be no contribution to
the divergence due to the very nature of MI learning: a bag is not a representation of the entire class,
but only a small part of it.

Consider an unlabeled image coming from the class sea, and a binary classi�cation problem with
desertas the alternative class. If the unlabeled image contains only blue and white colors, it should not
in�uence the divergence how the different shades of brown or green are distributed in the two classes,
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as it does not in�uence the likelihood of this bag coming from one class or the other. This is in contrast
to bag-to-bag divergences, where this indicates a bad sample-model match.

As a second motivating example, consider the same positive class as before, and the two alternative
negative classes de�ned by:

A0 �

(
P(A0 = h0) = 0.5

P(A0 = h0+ 2d0) = 0.5
A0 �

8
>><

>>:

P(A0 = h0) = 0.5

P(A0 = h0+ 2d0) = 0.25

P(A0 = h0+ 3d0) = 0.25.

For bag classi�cation, the question becomes: from which class is a speci�c bag sampled? It is
equally probable that a bag Ph0(X) = P(X jA0 = h0) comes from each of the two negative classes,
since Pneg(X) and Pneg0(X) only differ where Ph0(X) = 0, and we argue that D(Ph0, Pneg) should be
equal to D(Ph0, Pneg0).

Property 2: Let Xe be the subspace ofX where Pbag(X) is larger than some e > 0:

Xe � X : Pbag(X) > e,

and let X n Xe be its complement. Let DXe(Pbag, Pre f) be the contribution to the total divergence for

that subspace:D(Pbag, Pre f) = DXe(Pbag, Pre f) + DX nXe(Pbag, Pre f).
The contribution to the total divergence approaches zero as e ! 0:

e ! 0 : DXe(Pbag, Pre f) ! 0.

This property is necessary when the bag distributions are mixture distributions with possibly
zero mixture proportion. It also covers the case when the bags are different distributions, not merely
have different parameters, which can be modelled as a mixture of all possible distributions in the class
and only one non-zero mixture proportion.

KL information is the only divergence that ful�ls these two properties among the non-symmetric
divergences listed in [ 53]. See Appendix A. As there is no complete list of divergences, it is possible
that other divergences that the authors are not aware of ful�l these properties.

4.2. A Class-Conditional Dissimilarity for MI Classi�cation

In the seaand desertimages example, consider an unlabeled image with a pink segment, e.g., a boat.
If pink is absent in the training set, then the bag-to-class KL information will be in�nite for both classes.
We therefore propose the following property:

Property 3: For the subspace ofX where the alternative class probability, Pre f0, is smaller than
some e0, the contribution to the total divergence, DXe0, approaches zero ase0 ! 0:

Let Xe0 be the subspace ofX where Pre f0(X) is larger than some e0 > 0:

Xe0 � X : Pre f0(X) > e0,

and let X n Xe0 be its complement. Let DXe0(Pbag, Pre f jPre f0) be the contribution to the total divergence

for that subspace: D(Pbag, Pre f jPre f0) = DXe0(Pbag, Pre f jPre f0) + DX nXe0(Pbag, Pre f jPre f0).
The contribution to the total divergence approaches zero as e0 ! 0:

e0 ! 0 : DXe0(Pbag, Pre f jPre f0) ! 0.

We present a class-conditional dissimilarity that accounts for this:

cKL( fbag, fposj fneg) =
Z fneg(x)

fpos(x)
fbag(x) log

fbag(x)
fpos(x)

dx, (6)
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which also ful�ls Properties 1 and 2, see Appendix A.

4.3. Bag-Level Divergence Classi�cation

With a proper dissimilarity measure, the classi�cation task is, in theory, straightforward: A bag is
given the label of its most similar class. With dense bag and class sample, the KL bag-to-bag classi�er
is the most powerful. There are, however, a couple of practical obstacles: The distributions from where
the instances have been drawn are not known, and must be estimated. The divergences usually do not
have analytical solutions, and must therefore be approximated.

We propose two similar methods based on either the ratio of bag-to-class divergences,
rD ( fbag, fpos, fneg) = D( fbag, fpos))/ D( fbag, fneg), or the class-conditional dissimilarity in Equation ( 6).
We propose using the KL information (Equation ( 4)), and report for the BH distance (Equation ( 5)) for
comparison, but any divergence function can be applied.

Given a training set f (X1, y1), . . . , (Xk, yk), . . . , (XK, yK)g and a set,Xbag, of instances drawn from
an unknown distribution, fbag(x), with unknown class label ybag, and let Xneg denote the set of all
xik 2 (Xk, yk = neg) and Xpos denote the set of all xik 2 (Xk, yk = pos). The bag-level divergence
classi�cation follows the steps:

1. Estimate pdfs: Fit f̂neg(x) to Xneg, f̂pos(x) to Xpos, and f̂bag(x) to Xbag.

2. Calculate divergences:D( f̂bag, f̂neg)) and D( f̂bag, f̂pos),

or cKL( f̂bag, f̂posj f̂neg) by integral approximation.

3. Classify according to: (7)

ybag =

(
posif rD ( f̂bag, f̂pos, f̂neg) < t

negotherwise.

or

ybag =

(
posif cKL( f̂bag, f̂posj f̂neg) < t

negotherwise.

Common methods for PDF estimation are Gaussian mixture models (GMMs) and kernel density
estimation (KDE). The integrals in step 2 are commonly approximated by importance sampling and
Riemann sums. In rare cases, e.g., when the distributions are Gaussian, the divergences can be
calculated directly. The threshold t can be pre-de�ned based on, e.g., misclassi�cation penalty and
prior class probabilities, or estimated from the training set by leave-one-out cross-validation. When the
feature dimension is high and the number of instances in each bag is low, PDF estimation becomes
arbitrary. A solution is to estimate separate PDFs for each dimension, calculate the corresponding
divergences D1, . . . ,DDim , and treat them as inputs into a classi�er replacing step 3.

In image analysis, it has become more and more common that MI data sets are limited by the
number of (labeled) bags per class, more than the number of instances per bag. With the proposed
algorithm, the PDF estimates improve with increasing number of instances, and the aggregation of
class instances allows for sparser bag samples.

5. Experiments

5.1. Simulated Data and Class Sparsity

The following study exempli�es the difference between BH distance ratio, rBH, KL information
ratio, rKL, and cKL as classi�ers for sparse training data. We investigate how the three divergences
vary in accordance with the number of bags in the training set. The minimum dissimilarity bag-to-bag
classi�ers are also implemented, based on KL information and BH distance. The number of instances
from each bag is 50, the number of bags in the training set is varied from 1 to 25 from each class,
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and the number of bags in the test set is 100. Each bag and its instances are sampled as described in
Equation (3), and the area under the receiver operating characteristic (ROC) curve (AUC) serves as
performance measure. For simplicity, we use Gaussian distributions in one dimension for Sim 1-Sim 4:

X � � N (m� , s2� )

m� � N (0, 10)

s2� = jz� j, z� � N (1, 1)

P � = p �

X+ � N (m+ , s2+ )

m+ � N (n+ , 10)

s2+ = jz+ j, z+ � N (h+ , 1)

P + = 0.10.

Sim 1:n+ = 15, h+ = 1, p � = 0: No positive instances in negative bags.
Sim 2:n+ = 15, h+ = 1, p � = 0.01: Positive instances in negative bags.
Sim 3:n+ = 0, h+ = 100, p � = 0: Positive and negative instances have the same expectation of the
mean, but unequal variance.
Sim 4: P(n+ = 15) = P(n+ = � 15) = 0.5, h+ = 1, p � = 0.01: Positive instances are sampled from
two distributions with unequal mean expectation.

We add Sim 5and Sim 6for the discussion on instance labels in Section 6, as follows: Sim 5is
an uncertain object classi�cation, where the positive bags are lognormal densities with m= log(10)
and s2 = 0.04, and negative bags are Gaussian mixtures densities withm1 = 9.5,m2 = 13.5,s2 = 2.5,
and p 1 = 0.9. These two densities are nearly identical, see [54], p. 15. In Sim 6, the parameters of
Sim 5are i.i.d. observations from Gaussian distributions, each with s2 = 1 for the Gaussian mixture,
and s2 = 0.04 for the lognormal distribution. Figure 5 shows the estimated class densities and two
estimated bag densities for Sim 2with 10 negative bags in the training set.

(a)

(b)

Figure 5. (a) One positive bag in the training set gives small variance for the class PDF. (b) Ten positive
bags in the training set, and the variance has increased.
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We use the following details for the algorithm in ( 7): 1. KDE �tting: Epanechnikov kernel with
estimated bandwidth varying with the number of observations. 2. Integrals: Importance sampling.
3. Classi�er: t is varied to give the full range of sensitivities and speci�cities necessary to calculate
AUC.

Table 1 shows the mean AUCs for 50 repetitions.

Table 1. AUC �100 for simulated data.

Bags neg: 5 neg: 10 neg: 25

Sim: pos: rBH rKL cKL rBH rKL cKL rBH rKL cKL

1 61 69 85 62 72 89 61 73 92
1 5 63 75 86 64 82 94 68 84 97

10 69 86 87 73 91 95 75 91 98

1 57 61 75 59 61 78 58 55 75
2 5 59 67 79 60 68 84 62 63 85

10 64 77 80 66 78 86 68 72 86

1 51 55 71 52 58 73 50 57 74
3 5 53 61 76 53 66 81 52 65 83

10 58 73 78 58 76 84 57 76 87

1 55 61 70 56 62 73 56 58 69
4 5 56 63 75 57 64 81 59 59 80

10 60 74 77 62 76 85 63 69 84

1 64 61 62 67 63 66 64 62 67
5 5 73 69 63 74 70 67 75 71 72

10 74 70 62 75 73 69 76 74 72

1 68 68 67 66 68 68 68 71 68
6 5 65 64 67 68 68 69 70 71 74

10 66 64 66 70 69 72 72 73 74

5.2. The Impact of Pdf Estimation and Comparison to Other Methods

We use a public data set from UCSB Center for Bio-Image Informatics to demonstrate the impact
of PDF estimation method and for comparison with other MI classi�cation methods. The UCSB data
set consists of 58 breast tumor histology images, as seen in Figure1). There are 32 images labeled
as benign and 26 as malignant. The image patches are of size 7� 7 pixels, and 708 features have
been extracted from each patch. The mean number of instances per bag is 35. We have used the
published instance values [14] to minimize other sources of variation than the classi�cation algorithms.
Following the procedure in [ 3], the principal components are used for dimension reduction, and 4-fold
cross-validation is used so that f̂neg(x) and f̂pos(x) are �tted only to the instances in the training folds.
Table 2 shows the AUC for rKL and cKL for three different methods for PDF estimation. GMMs are
�tted to the �rst principal component, using an EM-algorithm, with number of components chosen
by minimum AIC. In addition, KDE as in Section 5.1, and KDE with Gaussian kernel and optimal
bandwidth [ 55] is used.

Table 2. AUC �100 for USCB breast tissue images.

KDE (Epan.) KDE (Gauss.) GMMs

cKL 90 92 94

rKL 82 92 96

Table 3 shows the AUC of the GMM �tted rKL and cKL compared to four other MI learning
methods. For articles presenting more than one method, the best-performing method is displayed in
Table 3.

69



Data2020, 5, 56

Table 3. AUC �100 for USCB breast tissue images.

Method AUC

cKL 94

rKL 96

DEEPISR-MIL [34] 90

Li et al. [ 33] 93

GPMIL [ 3] 86

RGPMIL [ 3] 90

5.3. Comparison to State-of-the-Art Methods

The benchmark data sets that have been used for comparison of MIL methods have particularly
low number of instances compared to the number of features. e.g., in Musk1, more than half of the
bags contain less than 5 instances, and inMusk2, one fourth of the bags contain less than 5 instances.
It is obvious that a PDF-based method will not work. The COREL data base, previously used in MIL
method comparisons, is no longer available, only data sets with extracted features. Again, the number
of instances is too low for density estimation. In addition, [ 56] showed how the feature extraction
methods in�uence the results of MIL classi�ers.

We here present the results of cKL and rKL compared to the �ve best-performing MIL methods
using the BreakHisdata set, as presented in [31]. This data set is suited for PDF-based methods,
since the images themselves are available, and hence, the number of instances can be adjusted to assure
a suf�ciently dense sampling. We follow the procedure in [ 31], using the 162 parameter-free threshold
adjacency statistics (PFTAS)

features for 1000 image patches of size 64� 64. Dimension reduction is done by principal
components, so that 90% of the variance is explained, and the dimension is reduced to about 25,
depending on which data set, see Table4. Each data set is split into training, validation and test sets
(35%/35%/30%), where we use the exact same �ve test sets as [31]. There are multiple images from the
same tumor, but the data set is split so that the same tumor does not appear in both training/validation
and test set.

We use the following details for the algorithm in ( 7):

1. GMMs are �tted with 1, . . . , 100 components, and the number of components is chosen by
minimum AIC. To save computation time, the number of components is estimated for 10 bags
sampled from the training set. The median number of components is used to �t the bag PDFs
in the rest of the algorithm, see Table 4. For the class PDFs, a random subsample of 10% of the
instances is taken from each bag, to reduce computation time.

2. Integrals: Importance sampling.

3. Classi�cation: To estimate the threshold, t, the training set is used to estimate f train
pos (x) and

f train
neg (x), and the divergences between the bags in the validation set and f train

pos (x) and f train
neg (x)

are calculated. The threshold, t̂, that gives the highest accuracy will then serve as threshold for
the test set.

Please note that the bags from the test set is not involved in picking the number of components or
estimating t̂.
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Table 4. Number of components.

Data Set 40� 100� 200� 400�

Dimension 23 26 25 24
Rep 1 66 55 52 70
Rep 2 58 49 69 71
Rep 3 59 50 50 70
Rep 4 47 49 58 73
Rep 5 63 59 72 74

5.4. Results

The general trend in Table 1 is that cKL gives higher AUC than rKL, which in turn gives higher
AUC than rBH, in line with the divergences' properties for sparse training sets. The same trend can be
seen with a Gaussian kernel and optimal bandwidth (numbers not reported). The gap between cKL
and rKL narrows with larger training sets. In other words, the bene�t of cKL increases with sparsity.
This can be explained by the ¥ / ¥ risk of rKL, as seen in Figure5a. Increasingp + also narrows the gap
between rKL and cKL, and eventually (at approximately p + = 0.25),rKL outperforms cKL (numbers
not reported). Sim 1and Sim 3are less affected because the ratiop + / p � is already ¥ .

The minimum bag-to-bag classi�er gives a single sensitivity-speci�city outcome, and the
KL information outperforms the BH distance. Compared to the ROC curve, as illustrated in Figure 6,
the minimum bag-to-bag KL information classi�er exceeds the bag-to-class dissimilarities only for
very large training sets, typically for 500 or more, then at the expense of extensive computation time.

Sim 5 is an example in which the absolute difference, not the ratio, differentiates the two
classes, andrBH has the superior performance. When the extra hierarchy level is added in Sim
6, the performances returned to normal.

The UCSB breast tissue study shows that the simple divergence-based approach can outperform
more sophisticated algorithms. rKL is more sensitive than cKL to choice of density estimation method,
as shown in Table 2. rKL performs better than cKLwith GMM, and both are among the best performing
in Table 3. The study is too small to draw conclusions. Table 2 shows how the performance can vary
between two common PDF estimation methods that do not assume a particular underlying distribution.
Both KDE and GMM are sensitive to chosen parameters or parameter estimation method, bandwidth
and number of components, respectively, and no method will �t all data sets. In general, KDE is faster,
but more sensitive to bandwidth, whereas GMM is more stable. For bags with very few instances the
bene�ts of GMM cannot be exploited, and KDE is preferred.

The BreakHis study shows that both rKL and cKL perform as good as or better than the other
methods, the exception being cKL for 40� , as reported in Table 5. “As good as” refers to the mean
being within one standard deviation of the highest mean. Since none of the methods have overall
superior performance, we believe that the differences within one standard deviation is not enough to
declare a winner. rKL has overall best performance in the sense that it is always within one standard
deviation from the highest mean. However, cKL, MI-SVM poly and Non-parametricfollow close behind
with four out of �ve. Therefore, we will again avoid declaring a winner. Table 4 demonstrates that the
number of components varies between repetitions, but does not in�uence the accuracy substantially.
For reference, we have reported the AUC in Table 6, as this is a common way of reporting performance
in the MIL context.
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Table 5. Accuracy and standard deviation. Best results and those within one standard deviation
in bold.

Data Set (Magni�cation) 40 � 100� 200� 400�

MI-SVM poly [ 57] 86.2(2.8) 82.8(4.8) 81.7 (4.4) 82.7(3.8)
Non-parametric [ 58] 87.8 (5.6) 85.6(4.3) 80.8 (2.8) 82.9(4.1)

MILCNN [ 59] 86.1(4.2) 83.8(3.1) 80.2 (2.6) 80.6 (4.6)
CNN [ 31] 85.6(4.8) 83.5(3.9) 83.1 (1.9) 80.8 (3.0)
SVM [31] 79.9 (3.7) 77.1 (5.5) 84.2 (1.6) 81.2 (3.6)

rKL 83.4(4.1) 84.9(4.2) 88.3(3.6) 84.0(2.8)
cKL 81.5 (3.2) 85.2(3.5) 88.1(3.6) 85.0(3.5)

Figure 6. An example of ROC curves for cKL, rKL and rBH classi�ers. The performance increases
when the number of positive bags in the training set increases from 1 (dashed line) to 10 (solid line).
The sensitivity-speci�city pairs for the bag-to-bag KL and BH classi�er is displayed for 100 positive
and negative bags in the training set for comparison.

Table 6. AUC and standard deviation.

Data Set (Magni�cation) 40 � 100� 200� 400�

rKL 91.4 (2.4) 91.3 (2.2) 94.4 (1.9) 91.6 (1.7)
cKL 88.4 (2.6) 89.7 (1.6) 91.9 (2.7) 91.7 (2.4)

The superior performance of cKL for the KDE (Epan.) in Table 2 can be explained by the
Epanechnikov kernel's zero value, as opposed to the Gaussian kernel which is always positive. rKL
will then suffer from its ¥ / ¥ property given the limited training set for each class. With Gaussian
kernel and GMMs, rKL improves its performance compared to cKL, as demonstrated in the simulation
study. For the BreakHist data, rKL and cKL show similar performance. Although cKL is not within
one standard deviation from the best-performing method for the 40 � data set, it is within one standard
deviation from rKL. The similar performance of rKL and cKL is in line with the simulation study
where the superiority of cKL is demonstrated for sparse training sets, but not for all types of data.
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6. Discussion

6.1. Point-of-View

The theoretical basis of the bag-to-class divergence approach relies on viewing a bag as a
probability distribution, hence �tting into the branch of collective assumptions of the Foulds and Frank
taxonomy [ 13]. The probability distribution estimation can be seen as extracting bag-level information
from a set X, and hence falls into the BS paradigm of Amores [ 15]. The probability distribution
space is non-vectorial, different from the distance-kernel spaces in [15], and divergences are used for
classi�cation.

In practice, the evaluation points of the importance sampling gives a mapping from the set X
to a single vector, f̂bag(z). The mapping concurs with the ES paradigm, and the same applies for
the graph-based methods. From that viewpoint, the bag-to-class divergence approach expands the
distance branch of Foulds and Frank to include a bag-to-class category in addition to instance-level and
bag-level distances. However, the importance sampling is a technicality of the algorithm. We argue
that the method belongs to the BS paradigm. When the divergences are used as input to a classi�er,
the ES paradigm is a better description.

Carbonneau et al. [16] assume underlying instance labels. From a probability distribution
viewpoint, this corresponds to posterior probabilities, which are in practice, inaccessible. In Sim 1–Sim
4, the instance labels are inaccessible through observations without previous knowledge about the
distributions. In Sim 6, the instance label approach is not useful due to the similarity between the two
distributions:

X jq+ � P(X jq+ )

Q+ � P(Q+ )

X jq� � P(X jq� )

Q� � P(Q� ),
(8)

where P(X jQ+ ) and P(X jQ� ) are the lognormal and the Gaussian mixture, respectively. Equation ( 3) is
just a special case of Equation (8), where Q+ is the random vector f Q, P posg. Without knowledge about
the distributions, discriminating between training sets following the generative model of Equations ( 3)
and (8) is only possible for a limited number of problems. Even the uncertain objects of Sim 5are
dif�cult to discriminate from MI objects based solely on the observations in the training set.

6.2. Conclusions and Future Work

Although the bag-to-bag KL information has the minimum misclassi�cation rate, the typical bag
sparseness of MI training sets is an obstacle. This is partly solved by bag-to-class dissimilarities and
the proposed class-conditional KL information accounts for additional sparsity of bags.

The bag-to-class divergence approach addresses three main challenges of MI learning.
(1) Aggregation of instances according to bag label and the additional class-conditioning provide a
solution for the bag sparsity problem. (2) The bag-to-bag approach suffers from extensive computation
time, solved by the bag-to-class approach. (3) Viewing bags as probability distributions give access to
analytical tools from statistics and probability theory, and comparisons of methods can be done on a
data-independent level through identi�cation of properties. The properties presented here are not an
extensive list, and any extra knowledge should be taken into account whenever available.

A more thorough analysis of the proposed function, cKL, will identify its weaknesses and
strengths, and can lead to improved versions as well as alternative class-conditional dissimilarity
measures and a more comprehensive tool.

The diversity of data types, assumptions, problem characteristics, sampling sparsity, etc. is far
too large for any one approach to be suf�cient. The introduction of divergences as an alternative
class of dissimilarity functions, and the bag-to-class dissimilarity as an alternative to the bag-to-bag
dissimilarity, has added additional tools to the MI toolbox.
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Abbreviations

The following abbreviations are used in this manuscript:

MI multi-instance
PDF probability density function
IS instance space
ES embedded space
BS bag space
KL Kullback–Leibler
SVM support vector machine
AIC Akaike Information Criterion
GMM Gaussian mixture models
KDE kernel density estimation
ROC receiver operating characteristic
AUC area under the ROC curve

Appendix A

For the sake of readability, we repeat summary versions of the properties here:
Property 1:

XM � X : Pbag(X)/ Pre f(X) > M

M ! ¥ :

(
DXM (Pbag, Pre f) ! max(DXM (Pbag, Pre f))

DX �
M (Pbag, Pre f) 6! max(DX �

M (Pbag, Pre f))

Property 2:

Xe � X : Pbag(X) > e

e ! 0 : DXe(Pbag, Pre f) ! 0

Property 3:

Xe0 � X : Pre f0(X) > e0

e0 ! 0 : DXe0(Pbag, Pre f jPre f0) ! 0

Appendix A.1. Non-Symmetric Divergences:

We show that the only non-symmetric divergences listed in [ 53] that ful�l both Property 1 and
Property 2 is the KL information. For all other divergences, we show one property that it does not ful�l.

The c2-divergence, de�ned as:

Z ( fbag(x) � fre f(x)) 2

fre f(x)
dx,
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does not ful�l Property 2:

Z

Xe

(e � fre f(x)) 2

fre f(x)
dx !

Z

Xe

fre f(x)dx 6! 0.

The KL information, referred to as Relative information in [ 53], de�ned as:

Z
fbag(x) log

fbag(x)
fre f(x)

dx,

ful�ls Property 1:

Z

XM

fbag(x) log M dx ! ¥ = max

Z

XM �
fbag(x) log

1
M

dx 6! ¥ ,

since fbag(x) < ¥ and 1
M < ¥ , and Property 2:

Z

Xe

elog
e

fre f(x)
dx ! 0 = min

The Relative Jensen-Shannon divergence, de�ned as:

Z
fbag(x) log

2fbag(x)
fbag(x) + fre f(x)

dx,

does not ful�l Property 1:

Z

XM

fbag(x) log
2

1 +
fre f (x)
fbag(x)

dx =
Z

XM

fbag(x) log
2

1 + 1
M

dx !
Z

XM

fbag(x) log 2 dx = 6! max.

The Relative Arithmetic-Geometric divergence, de�ned as:

Z fbag(x) + fre f(x)
2

log
fbag(x) + fre f(x)

2fbag(x)
dx,

does not ful�l Property 2:

Z

Xe

e+ fre f(x)
2

log
e+ fre f(x)

2e
dx ! ¥ 6= min.

The Relative J-divergence, de�ned as:

Z
( fbag(x) + fre f(x)) log

fbag(x) + fre f(x)
2fbag(x)

dx,

does not ful�l Property 2:

Z

Xe

(e+ fre f(x)) log
e+ fre f(x)

2e
dx ! ¥ 6= min.

Appendix A.2. Class-Conditional Bag-to-Class Divergence

Class-conditional KL-divergence:
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For the class-conditional divergence, there are three PDFs involved, and therefore, we have some
additional restrictions. We show that the Equality and Orthogonality properties of f -divergences are
ful�lled also by cKL. We were not able to conclude regarding the Monotonicity property.

cKL( fbag, fposj fneg) =
Z fneg(x)

fpos(x)
fbag(x) log

fbag(x)
fpos(x)

dx

Equality, fbag(x) = fpos(x), fneg � 0 :

Z fneg(x)
fpos(x)

fpos(x) log
fpos(x)
fpos(x)

dx =
Z

fneg(x) log 1 dx = 0 = min.

Orthogonality, fbag(x)/ fpos(x) = ¥ , fneg(x) > 0 :

Z
fneg(x)

fbag(x)
fpos(x)

log
fbag(x)
fpos(x)

dx = ¥ = max.

Property 1: fneg(x) � M > 0

Z

XM

fneg(x)M log M dx ! ¥ = max

Z

XM �

fneg(x)
M

log
1
M

dx 6! ¥

Property 2:
fneg(x)
fpos(x) � e > 0

Z

Xe

fneg(x)
fpos(x)

elog
e

fpos(x)
dx ! 0

Property 3: fbag(x)/ fpos(x) > M, e0 ! 0 faster than M ! ¥

Z

Xe0

e0

fpos(x)
fbag(x) log

fbag(x)
fpos(x)

dx ! 0
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Abstract: Camera-based data collection and image analysis are integral methods in many research
disciplines. However, few studies are speci�cally dedicated to trends in these methods or opportunities
for interdisciplinary learning. In this systematic literature review, we analyze published sources
(n = 391) to synthesize camera use patterns and image collection and analysis techniques across
research disciplines. We frame this inquiry with interdisciplinary learning theory to identify
cross-disciplinary approaches and guiding principles. Within this, we explicitly focus on trends
within and applicability to environmental conservation social science (ECSS). We suggest six
guiding principles for standardized, collaborative approaches to camera usage and image analysis
in research. Our analysis suggests that ECSS may o� er inspiration for novel combinations of data
collection, standardization tactics, and detailed presentations of �ndings and limitations. ECSS can
correspondingly incorporate more image analysis tactics from other disciplines, especially in regard
to automated image coding of pertinent attributes.

Keywords: automated image coding; data collection methods; interdisciplinary learning theory;
research methods; systematic literature review; visitor use management

1. Introduction

Camera usage is a valuable research tool, particularly due to the breadth of data collection and
analysis facilitated by camera technology and related software [ 1]. In the discipline of environmental
conservation social science (ECSS), cameras and associated image data are frequent methods in
collecting information on human interactions with the environment [ 2,3]. Cameras are well suited
to examine ECSS concepts and contexts, as image data and associated analyses can be wide ranging
and capture similarly broad information. However, camera usage often requires careful attention to
detail, a substantial timeframe, and signi�cant researcher involvement, indicating opportunity for
more e� cient implementation.

Inspiration for more e � cient implementation may come from any of the many disciplines that
use cameras, yet camera usage and image analysis as a general method has yet to be systematically
explored for cross-disciplinary insight and advancement. In this regard, the lens on camera methods
remains smudgy. Because lessons from within and beyond ECSS could aid ECSS researchers in better
employing camera methods, we present a systematic literature review of camera use and image

81



Data2020, 5, 51

analysis, framed by the theory of interdisciplinary learning, to examine trends and extract guiding
principles for ECSS researchers.

2. Interdisciplinary Learning

There are substantial research bene�ts to looking beyond a particular discipline for context,
inspiration, and new advancements [ 4]. Examining cross-disciplinary approaches can advance
discipline-speci�c methods by identifying both singular methods and combinations of them applicable
to new contexts.

Interdisciplinary learning provides a framework for understanding how and why
cross-disciplinary knowledge can bene�t a particular discipline [ 5,6]. The theory of interdisciplinary
learning states that combining similar aspects of di � ering disciplines to re�ect ideas and approaches
both known and novel to a context is bene�cial and e � ective for promoting rigorous intradisciplinary
advancements [6].

Many studies have examined the bene�t of looking beyond a particular discipline for context
inspiration and new advancements [ 7–9]. Fewer have examinedmethodstransferability across disciplines,
though ones that have done so have been transformative. One example is the work of Alden, Laxton,
Patzer, and Howard [ 10] on incorporating marketing methods into scienti�c research to better enact
scienti�c policy advancement. Even fewer have examined camera methods in a cross-disciplinary
or interdisciplinary manner, suggesting an area for further development. In ECSS in particular,
interdisciplinary knowledge about camera methods remain rather underdeveloped outside of the
general references to wildlife cameras being adapted and applied in visitor use management studies [ 11].
Therefore, we focus on synthesizing camera methods (data collection and resulting image analysis
techniques) beyond wildlife and �sheries studies across disciplines to foster interdisciplinary learning
in ECSS.

3. Camera Usage as a Research Method

Many types of cameras are used in research, such as handheld digital, �eld mounted, infrared,
underwater, LAN-based, CCTV security, motion-sensing, airplane-a � xed, and satellite-based
cameras [12]. Analysis methods are correspondingly diverse, including manual coding, digital
coding, automated coding, feature detection, and time-lapse sequencing, depending on the research
aim [1]. There has been an increasing reliance on camera use as a research method in disciplines
including natural, social, and technology sciences [ 1]. Two themes of camera usage are prominent
across the literature: methodological similarities and di � erences across disciplines and time periods.

3.1. Methods Are Discipline Speci�c and Discipline Transcending

Camera-related research has both discipline-speci�c and discipline-transcending methodologies.
Speci�cally, while certain methods are considered reliable practices solely in a particular discipline,
others are considered reliable practices (with context-speci�c modi�cations) across several disciplines.
For example, marine geological research uses boat-mounted cameras to map sea�oor features, but other
disciplines rarely report using these cameras [13]. However, the remote-sensing camera method of
LiDAR is a major component of many environmental subdisciplines, such as agriculture, land use,
and climate change research [14].

Discipline-transcending camera methods are typically those that have a longer history of use (an
indicator of their reliability), are able to function alongside newer technologies, and are amenable to
adaptations for speci�c contexts and questions [ 15]. Within ECSS, camera methods are both discipline
speci�c and discipline transcending [ 15,16]. For example, participant-worn cameras to examine
park-based recreation are unique to ECSS but camou�aging �eld cameras to examine park use has
been adapted from other disciplines [ 15,17,18]. Indeed, many applications of camera methods in ECSS
were originally adapted from studies centered on studying wildlife and other non-human animals [ 19].
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3.2. Methods Have Evolved in Diversity and Complexity

Cameras have evolved from centering on large equipment with �lm and hardcopy photographs
into small devices capable of digital images accessible by many computer-based interfaces [20]. As with
other technological advancements, the shift in cameras from manual to automated processes and related
capability to digitally capture, edit /enhance, and analyze images has increased the utility of cameras to
research [20,21]. Manual coding involves someone examining the image data and assigning codes
to attributes of interest, whereas automated coding uses analysis software and arti�cial intelligence
to code these attributes [22]. YOLO: Real-time Object Detection [23], WUEPIX [24], and Amazon
Rekognition [ 25] are a few examples of automated image analysis software.

Advancements in technology have had a noticeable impact on how cameras are used in
research[20,26]. Early camera usage in research focused on providing visuals to complement evidence
described in text format and not necessarily derived from the visual itself [ 27]. In recent decades,
camera usage has shifted to become a method itself [26]. Pre-1995, camera methods focused on
�lm [ 28] and manual coding [ 29]. Post-1995, the emphasis has shifted to digital images and automated
coding [21], as well as a proliferation of the types of cameras used (e.g., satellite, surveillance). Recent
advancements in computer technologies, such as cellular and satellite technologies, and automated
image analysis software have further extended the utility of cameras from a research method in small
case studies to a tool for big data investigations [ 30].

4. Research Questions

Despite the numerous research publications showcasing the diversity and complexity of camera
methods, and the method's future applicability, there has not been a synthesis of this breadth and its
evolution to document patterns of novelty and commonality [ 31] to facilitate interdisciplinary learning
broadly or in ECSS in particular. It appears that inquiry into the subject has focused on a subset of the
broad methodology, such as reviewing techniques within facial recognition [ 32] or remote sensing [33],
analyses based on neural network segmentations [34] or classi�cation systems [ 35], or medical database
retrieval accuracy for image data [ 36]. A review across techniques, analyses, and disciplines appears to
be lacking. We address this general need for camera method interdisciplinary learning and devote
particular attention to ECSS by focusing on four primary questions:

1. In what contexts have cameras been used in general?

2. In what contexts have cameras been used in ECSS?

3. What are common image collection techniques for image data?

4. What are common analysis techniques for image data?

In synthesizing general and ECSS-specific patterns, we aimto draw conclusions for interdisciplinary
learning and related recommendations [ 37,38].

5. Materials and Methods

We performed a systematic literature review [ 39], examining studies that used camera methods and
image analysis. Our review conformed to PRISMA guidelines [ 40], modi�ed slightly for study-speci�c
aims (Figure 1). PRISMA guidelines list standard and transparent steps in the harvesting, analyzing,
and reporting of data. We followed all steps for the harvesting of data (Figure 1) and reporting on all
section/topics in the PRISMA checklist [ 40]. Modi�cations to the PRISMA process were in the analyzing
of these speci�c data, as we qualitatively coded a variety of sources and some features of PRISMA's
primarily quantitative evaluations of randomized trials did not directly apply to this particular context
or framing (e.g., source bias, meta-regressions). This methodology yielded thousands of documents
that were systematically sifted to create a subset of documents relevant to our research questions.

The author team de�ned keyword criteria for inclusion. After gaining general content familiarity
through searches for publications, we re�ned the inquiry to four primary search terms using Boolean
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operators: “camera*” AND “image*” AND “image analysis*” AND “image data*”. To �lter the general
results from this �rst broad search, we conducted a series of 15 additional searches, each with an added
keyword phrase to these four primary search terms, to focus the inquiry. The additional keyword
phrases (e.g., common image analysis software platforms) and key terms related to ECSS used in
conjunction with these four primary search terms were “Amazon Rekognition*”, “activit*”, “arti�cial
intelligence*”, “attribute*”, “cod*” [for coding-related terms], “distribution*”, “Google Vision”, “park”,
“protected area*”, “recreation*”, “timelapse*”, “use level*”, “visitor*”, “Wuepix*”, and “YOLO*”.

After an initial query into the utility of multiple databases, three were selected: Agricola, Google
Scholar, and Web of Science (Figure1). These databases were purposefully selected to capture a
breadth of sources from peer-reviewed journals to theses/dissertations to management reports. We then
conducted the �nal literature search from November 2018 to January 2019.

Exclusion criteria were used to capture the breadth of sources and disciplines but retain parameters.
An overarching exclusion criterion was wildlife and �sheries discipline sources, as the high volume
of sources pertaining to camera traps in that discipline would have otherwise overshadowed the
sources pertaining to camera and image data in other disciplines. Furthermore, because cameras are a
well-established methodology in wildlife and �sheries, reviews of these techniques have already been
published [ 38,41–44]. Therefore, so as to not take away from the ECSS focus of this literature review,
102 sources screened but relating to wildlife and �sheries research were excluded from the �nal dataset.
Relatedly, we did not include “camera trap” or other wildlife-speci�c terminology in our search terms.
Beyond this general criterion, three additional exclusion criteria �ltered the results from the remaining
relevant sources. Sources must be: (1) published in peer-reviewed journals, as theses/dissertations,
as conference proceedings, or as technical reports; (2) written in English; and (3) available to the
researchers via full-text online or through Interlibrary Loan.

The assessment of relevance detailed in Figure1 re�ned the thousands of sources for study
inclusion to 391 (see Supplementary Materials). First, the title and abstract (or similar information
if an abstract was not provided) of 3318 keyword search results were examined for initial relevance
(i.e., does the title/abstract actually discuss issues germane to the keyword search?). A subset of the
author team methodically assessed which speci�c search terms and related phrasings best �t the scope
of the sources, determined the categorization of these sources, and employed consistent practices to
systematically assess relevance. Three criteria characterized this process for potential inclusion at
this stage: 1. each source had to mention both camera use in research and a corresponding image
analysis in its title and /or abstract; 2. each source had to describe research from an image dataset (i.e.,
no reviews or syntheses); and 3. each source had to consist of more than just a title and abstract (i.e.,
an actual source had to accompany the title/abstract). The majority of the sources returned via the
keyword searches did not contain all three of these characteristics (e.g., camera usage was merely a
subsection of a certain procedure outlined rather than a detailed explanation regarding the collection
and processing of camera data) and thus were excluded.

This �rst phase, plus removing duplicates, reduced the relevant sources to 655 for potential
inclusion. In the second phase, these sources were downloaded and read in full. The author team
divided reading these sources, assessing their relevance, and, if relevant, entering them into the
study database. Intercoder reliability measures were employed to minimize discrepancies among
data entries [45], with two members of the author team acting as the primary and secondary data
enterers, respectfully, and performing checks on the others' work. This approach helped increase
standardization and decrease individual bias, ensuring that each coder was following a substantially
similar approach to entering sources into the database and eliminating non-relevant ones. It did not
fundamentally alter the number of sources inputted, but rather the consistent quality of metadata
entered about each source. Upon full review, 391 sources (62%) were deemed relevant and entered
in the study database. This database captured source metadata (e.g., citation information), camera(s)
details used in the research, image analysis technique(s), key study �ndings related to the topic, and key
study �ndings related to camera use and image analysis. The 264 sources omitted as irrelevant were
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excluded mainly because they only made tangential reference to cameras and their application, rather
than as a method for the study itself.

Following the team's entry of the 391 relevant references into the database, the resulting dataset
was coded and analyzed. This analysis was led by the primary and secondary data enterers, as they
were most familiar with the data corpus, with assistance from the full team. Six attributes of database
entries were qualitatively coded into key themes within each attribute [ 45]: research discipline, country
and continent of study, camera type, camera placement, data collection method, and data analysis
method. Other database categories (e.g., publication year, number of image attributes examined) lent
themselves to purely quantitative analysis. Descriptive statistics were generated and comprise most of
our analysis.

The Supplementary Materials accompanying this manuscript lists the 391 sources analyzed in
this systematic literature review, including their citation information and permanent access links (e.g.,
DOI). Each source has a unique ID: S (for “source”) 001–391. Hereon, we reference examples of sources
by their unique IDs. This format highlights examples across the breadth of this large dataset while
constraining super�uous in-text citations. We encourage readers to examine the supplementary �le for
citation information for a particular example or across the entire corpus of sources.

��

 

Figure 1. Steps followed to re�ne the corpus of sources included in this systematic literature review,
from initial query to �nal database. Following this process, citation metadata and six attributes were
thematically coded for each of the 391 included sources: research discipline, country and continent of
study, camera type, camera placement, data collection method, and data analysis method.
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6. Results

6.1. Contexts of Camera Use in General

Cameras have been used and discussed in a variety of contexts: research disciplines, years,
and continents (Table 1). The majority of the sources (74%) were peer-reviewed articles, followed
by dissertations and theses (20%), reports (5%), and conference proceedings (1%). Fifteen general
research disciplines were apparent, which are used as our main grouping criteria throughout this
study (Table 1). The four most prevalent were ECSS (21% of the sources), Engineering and Technology
(15%), Agriculture (11%), and Computer Science/Programming (10%). The other 11 each accounted for
<6% of the publications (Table 1). Examples of the more prevalent disciplines include an ECSS study
that used images from drones in England and Portugal to classify sections of protected areas by main
use (e.g., wildlife habitat, ecotourism, law enforcement) (S203) and an Engineering and Technology
study also using drones, but to test image quality software and facial recognition technology at varying
distances and lighting conditions (S140).

Camera use in research has increased substantially in the past 25 years. Publication distribution
over time (Figure 2) depicts this increase, especially in the past 10 years for ECSS, Engineering and
Technology, Agriculture, and Computer Science /Programming.

The locations for these studies span countries on six continents and some international
collaborations (Table 1). Study locations across research disciplines were most common in North
America (37%), particularly in the USA, followed by Europe (22%), Asia (19%), Australia and Oceania
(6%), multinational /cross-continental (4%), South America (4%), and Africa (3%).

Most of the sources (77%) focused on a sole attribute (e.g., counts or percentage cover of a
particular species or landscape formation, detection /recognition of human faces or a particular person).
The remainder focused on two (17%), three (2%), 4–10 (3%), or>10 (1%) attributes. The studies that
examined 2–10 attributes focused mainly on presence/absence or percent cover of these attributes
(e.g., categories of ecosystem services, frequency of chemical compositions). The �ve publications that
focused on >10 attributes mostly concerned di � erent vegetation or land use classes. Although almost
all publications listed the year(s) in which these attributes were collected, only 25% listed speci�c
sampling times. These were mainly those in Botany /Plant Science examining vegetation with seasonal
foliage (e.g., S199) and those in ECSS examining peak visitor use times (e.g., S239, S362). The number
of attributes considered in camera-based studies is an important measure given the opportunities
and challenges associated with analysis strategies. The more attributes to characterize in an image,
the more di � cult and time-consuming analysis becomes, whether manual or automated.
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Table 1. Source metrics by research discipline, source type, year published, and continent of study. Cells are listed as valid percentages (%) of the total sources for each
research discipline.

Agriculture
Biology /

Microbiology

Botany/
Plant

Science

Computer
Science/

Programming

Engineering
and

Technology

Environmental
Biophysical

Sciences

Environmental
Conservation

Social
Science

Food
Science

Forestry Geography
Marine
Science

Medicine /
Health
Science

Other * Psychology
Urban
Studies

Total

Source Type
Article 96 100 84 58 68 69 72 100 80 32 40 79 89 100 60 75

Conference
Proceedings

0 0 0 0 0 0 4 0 0 0 0 0 0 0 20 1

Dissertation/Thesis 2 0 11 33 24 19 24 0 16 68 20 11 5 0 20 19
Report 2 0 5 10 8 12 0 0 4 0 40 11 5 0 0 5
Year

1985–1989 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0
1990–1994 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1995–1999 2 0 5 0 2 4 1 0 12 0 0 0 0 0 0 2
2000–2004 5 0 11 3 0 4 5 0 16 11 20 0 5 0 0 5
2005–2009 14 88 21 8 20 27 10 36 24 32 0 32 0 17 0 19
2010–2014 39 0 37 0 3 23 27 14 20 37 0 21 26 33 40 21
2015–2019 41 13 26 90 75 42 57 50 28 21 80 37 68 50 60 53
Continent

Africa 0 0 0 8 0 4 7 0 0 0 0 0 0 0 0 3
Asia 11 0 26 25 34 12 15 21 32 16 20 16 11 0 20 18

Australia /Oceania 4 0 11 0 8 8 11 7 4 0 20 5 5 0 0 7
Europe 33 38 11 28 22 19 22 7 24 5 0 21 32 17 0 21

North America 18 63 37 38 32 50 32 29 36 74 20 53 26 67 80 37
South America 7 0 0 0 2 0 5 36 0 0 0 0 5 0 0 4
International 7 0 0 3 0 4 7 0 0 5 40 0 5 17 0 4

Not Mentioned 20 0 16 0 2 4 1 0 4 0 0 5 16 0 0 5

* Other are research disciplines with � 3 sources: Architecture, Astronomy, Chemistry, Climatology, Communications, Construction Science, Criminal Justice, Education, Graphic Design,
Marketing, and Textiles
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Figure 2. Publication distribution over time (5 year increments from 1995 to 2019) for each research discipline. The research discipline key is presented in the same
order as sources, from top to bottom, most to least (i.e., from Environmental Conservation Social Sciences having the highest percentage to Biology/Microbiology
having the least).
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6.2. Contexts of Camera Use in ECSS

Environmental conservation social science sources were the most numerous by a few di� erent
metrics. They were the most frequently represented across articles, conference proceedings,
and dissertations/theses (Table1). The production rate of these publications has been pronounced,
especially in the last decade (Figure 2). For example, ECSS publications comprised 31% of the total
sources included from 2010–2014 and 23% since 2015. Of the 15 research disciplines represented,
ECSS was the only one to have publications concerning all six continents (Antarctica had no studies),
as well as international /multinational domains. It was also the most numerous across each continent
and context, except in South America where Food Science had one more publication. Almost a quarter
(23%) of all the ECSS publications focused on studies in the USA.

Categorical codes were applied to attributes within ECSS studies, to examine the major areas within
ECSS that are using camera image analysis. Ten categories emerged: park visitor use management
(24%), human–wildlife interactions (22%), recreation ecology (17%), general tourism (9%), public
participatory GIS-PPGIS (6%), recreational behavior (6%), sports tourism (including extractive sports,
e.g., hunting, �shing) (6%), urban tourism (6%), climate change (2%), and environmental education
(1%). Because ECSS is an inherently applied science, all of the categories also encompass a “planning”
aspect for managerial use (e.g., park managers, urban planners).

6.3. Common Data Collection Techniques

Almost all, 97% (n = 380), of the sources stated at least a general camera type (e.g., webcam,
two thermal cameras) and 49% of these detailed the speci�c camera make and model. For ECSS
publications in particular, 41% speci�ed a camera make and model.

Words used to describe the quality of the images obtained in each study were indi � erent to
positive (e.g., fair, average, decent, good, great, precise, high resolution), with 11% (n = 42) of those
with a description of image quality forgoing an adjective in favor of listing the pixel resolution.
ECSS publications were more apt to describe variability in the images. Whereas this was mostly absent
from descriptions in other disciplines, 16% of the ECSS sources with a description noted fuzziness,
shakiness, weather-related clarity issues, or, in the case of participatory research, variability according
to the user (e.g., S022, S148, S367).

Data were collected through a variety of camera placement techniques. Most of the publications,
92% (n = 361), mentioned the primary camera placement technique in their methods: mounted to
outdoor �xed location (32%), indoor lab equipment (20%), aircraft /drones (18%), computer (9%),
satellite (6%), participatory (participant used in-person or online) (5%), wearable (researcher worn)
(5%), watercraft (2%), or vehicle (2%). Of the 80 ECSS publications listing the primary camera placement,
60% were in outdoor �xed locations and 19% used aerial imagery. The aerial imagery for ECSS was
mainly obtained through drones (e.g., S137, S160), whereas aerial imagery across the whole dataset
was mainly obtained from aircraft-a � xed cameras (e.g., S019, S065, S096, S255). ECSS also had the
most sources using participant-worn cameras (e.g., S082, S120, S345, S348).

While all placement techniques have generally increased over the past 25 years (Figure3), increases
over the past 10 years are especially pronounced for outdoor �xed, aircraft /drones, and computer
mounted techniques. In some cases, data from multiple scales and placements were used. For example,
aerial or satellite imagery was paired with ground-truthed transect line images to examine: leafy spurge
in wildland areas (S040), proportions of live versus burned or cut vegetation across the western USA
(S146), and sources of impact (including recreation) to coral reefs in a marine protected area (S253).
Although many camera placement technique usage rates still occupy a relatively small proportion, the
general trend is that placement technique diversity is growing, with multiple data collection formats
represented. ECSS sources illustrate this trend (Figure4), with diversity increasing over the past
decade even without indoor lab equipment or vehicle placement techniques represented.

The majority (78%; n = 304) of sources contained at least one recommendation related to
camera-based data collection. Across disciplines, the most common recommendations concerned best
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practices for using digital cameras when researchers were using �xed /mounted cameras (46%), with a
speci�c recommendation to standardize distance between the camera and object/phenomenon of interest
being paramount. Beyond this, speci�c camera features were noted. For example, an Engineering and
Technology paper on combustion behaviors in a coal furnace found that quality high-speed camera
features were crucial (S185). The second and third most common recommendations also concerned
digital cameras, but speci�cally those in �xed locations that took automated images outdoors publicly
(12%) and covertly (9%), respectfully. Recommendations for publicly located �xed cameras were
present in 11 disciplines, indicating interdisciplinary salience, whereas recommendations for covertly
located �xed cameras were only present in six disciplines and were especially concentrated (61%) in
ECSS. Common examples of recommendations for publicly located cameras included having capacity
for nighttime and infrared image capture (e.g., S226, S307), considering the stability of the mount's
substrate (e.g., S237, S271), and embedding metadata including GPS location into each image captured
(e.g., S018).

An observed pattern in key recommendations by discipline is that some disciplines are highly
specialized in a subset of particular camera data collection methods whereas others are more dispersed.
We coded 46 di� erent types of camera data collection recommendations. ECSS and Engineering
and Technology addressed at least half of these types. At the other end, Biology/Microbiology,
Geography, Psychology, Marine Science, and Urban Studies had sources addressing<20% of these
types. We collapsed these 46 types into six overarching categories: �xed/mounted (14 methods;
211 sources), held/worn (7 methods; 78 sources), alternate/modi�ed image capture (8 methods;
42 sources), moving (9 methods; 91 sources), multiple (3 methods; 8 sources), and security/surveillance
(5 methods; 37 sources) (Table2). As the distribution in each category suggests, some data collection
methods (e.g., multiple cameras) have many recommendations centralized on a few techniques and
others (e.g., �xed /mounted cameras) have more dispersed recommendations across many techniques.
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Figure 3. Publication distribution over time (5 year increments from 1995 to 2019) for each camera placement technique. The placement technique key is presented in
the same order as sources, from top to bottom most to least (i.e., from outdoor �xed having the highest number to Watercraft having the least).
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Figure 4. Environmental conservation social science publication distribution over time (5 year increments from 1995 to 2019) for each camera placement technique.
The placement technique key is presented in the same order as sources, from top to bottom most to least (i.e., from outdoor �xed having the highest number to
Computer having the least).
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Table 2. Source metrics by camera placement method and data collection and analysis recommendations. Cells are listed as valid percentages (%) of the total sources
for each research discipline.

Agriculture
Biology /

Microbiology

Botany/
Plant

Science

Computer
Science/

Programming

Engineering
and

Technology

Environmental
Biophysical

Sciences

Environmental
Conservation
Social Science

Food
Science

Forestry Geography
Marine
Science

Medicine /
Health
Science

Other * Psychology
Urban
Studies

Total

Camera Placement
Aircraft 38 13 27 5 16 21 19 14 29 38 0 0 12 0 0 18

Computer 3 0 7 25 23 8 3 7 0 0 0 6 6 0 0 8
Indoor lab
equipment

16 75 33 13 30 4 0 43 14 0 0 78 35 33 0 20

Outdoor �xed 38 13 33 35 14 29 60 29 48 6 50 0 12 17 0 34
Participatory 0 0 0 15 2 8 5 0 5 0 0 0 18 17 25 5

Satellite 0 0 0 0 2 21 3 0 5 56 25 0 6 0 75 6
Vehicle 3 0 0 5 7 4 0 0 0 0 0 6 0 0 0 2

Watercraft 0 0 0 0 0 4 6 0 0 0 25 0 0 0 0 2
Wearable 3 0 0 3 7 0 5 7 0 0 0 11 12 33 0 4

Camera Data Collection Recommendations
Alternate /Modi�ed 6 21 19 2 14 3 5 29 11 8 0 8 10 0 0 9

Fixed/Mounted 45 57 48 59 36 43 50 43 36 23 67 50 29 60 0 46
Held /Worn 6 14 5 17 26 13 15 19 18 0 0 19 33 20 0 17

Moving 27 0 14 7 17 33 22 10 29 69 33 8 14 0 100 19
Multiple 3 0 5 2 0 0 2 0 4 0 0 4 5 0 0 2

Security/Surveillance 12 7 10 14 7 7 6 0 4 0 0 12 10 20 0 7
Camera Data Analysis Recommendations

Automated 22 0 0 55 55 0 10 29 17 57 33 25 29 50 0 32
Geospatial 22 0 33 5 9 50 27 0 33 43 67 0 0 0 71 20

LiDAR 11 0 0 5 0 0 3 0 0 0 0 0 0 0 0 3
Manual 22 0 33 10 18 50 50 57 33 0 0 75 29 50 14 29

Mixed methods 22 0 33 25 18 0 10 14 17 0 0 0 43 0 14 16

* Other are research disciplines with � 3 sources: Architecture, Astronomy, Chemistry, Climatology, Communications, Construction Science, Criminal Justice, Education, Graphic Design,
Marketing, and Textiles.

93



Data2020, 5, 51

6.4. Common Image Analysis Techniques

Only 142 sources (36%) o� ered data analysis recommendations (Table 2). We coded these
recommendations into 44 di � erent analysis procedures, grouped within �ve more general categories:
automated (23 techniques; 46 sources), geospatial (2 techniques; 29 sources), LiDAR (1 technique;
3 sources), manual (12 techniques; 41 sources), and mixed-methods (6 techniques; 23 sources) analyses.
Automated techniques included analyses with customizable software such as YOLO, Google Vision,
Amazon Rekognition, and eCognition. An example of this is combining a new method of active
learning in YOLO with an incremental learning scheme to accurately code vehicle-mounted video
camera images (S185). Geospatial techniques focused on particular spatial data attributes, such as
types and resolutions of satellite imagery that adequately captured forested, urban, and benthic
features (e.g., S014, S035, S129). LiDAR highlights the utility of remote sensing in monitoring long-term
impacts of natural processes like the time-lapsed mapping of vegetation growth in forest habitats using
LiDAR surveying methods (S280). Manual analysis was concentrated in the labor-intensive process of
human coding of primary and secondary (e.g., social media images) data. Although labor-intensive,
many sources cited the increased accuracy of the manual coding as preferable over current, accessible
automated techniques (e.g., S130, S351) and some o� ered novel ways for coding large datasets, such as
utilizing citizen scientists (e.g., S335). Finally, mixed-methods analyses combined automated and
manual techniques, a “human-in-the-loop” approach, to validate automated methods with a sample of
human-coded images from the same dataset. A common example used human-in-the-loop approaches
to test whether facial recognition software could accurately recognize people, human features, and /or
emotions (e.g., S024, S113, S162, S275, S349). As the distribution of techniques and sources across
categories implies, some analysis techniques (e.g., geospatial) have many recommendations centralized
on a few procedures and others (e.g., automated) are more dispersed across procedures.

The majority of disciplines exhibited concentration of analyses within particular methods.
Ten disciplines had at least half of their sources within one category of analysis. Medicine /Health
Science was most concentrated, with 75% of its recommendations concerning manual analysis. Many
disciplines were concentrated within two analysis categories: Environmental Biophysical Sciences
(50% geospatial, 50% manual), Geography (57% automated, 43% geospatial), Marine Science (33%
automated, 67% geospatial), Medicine/Health Science (25% automated, 75% manual), and Psychology
(50% automated, 50% manual). Agriculture, Computer Science/Programming, and ECSS had all �ve
analysis categories represented. In ECSS, half of the sources had manual coding recommendations
(relatively high for the dataset) and only 10% had automated coding recommendations (relatively low
for the dataset).

7. Discussion

Our systematic review indicates an increase in the use of camera methods over the past
20 years, and a related proliferation in types of image analyses. However, camera data collection
and image analysis techniques have largely developed within disciplines, limiting the ability for
collaboration and interdisciplinary learning. Framed by interdisciplinary learning theory, the following
synthesizes patterns in camera usage and image analysis, as well as overall best practices and
ECSS-speci�c recommendations.

Although discipline and study-speci�c contexts will require adaptations, standardized data
collection methods and automated analyses can assist in interdisciplinary learning. Technological
advancements have facilitated increased camera use and complexity of analyses. Manual coding is
more time consuming but requires less sophisticated knowledge of complex software and computer
scripts. Several disciplines are utilizing automated analyses and researchers in these disciplines could
provide cross-disciplinary guidance for further usage of these analyses. As ECSS uses camera-based
data collection but rarely uses automated analysis methods, this discipline in particular could bene�t
from interdisciplinary collaborations on types of automation and relative bene�ts and costs.

94



Data2020, 5, 51

8. Camera Usage

Few sources make recommendations about camera usage. Those that do tend to focus on
standardization techniques for manually taken images. Beyond this speci�c type of recommendation,
our review suggests three areas for best practices: (1) harness the capability of digital datasets to
examine multiple locations and attributes, which may be across disciplines; (2) be intentional and
speci�c about documenting study and camera details for other researchers; and (3) examine camera
research outside of your own discipline for inspiration.

Although the purposes for image use and study contexts vary across and within disciplines,
studies tended to focus on a single attribute obtained from outdoor mounted cameras and in locations
concentrated in Europe and North America. Within ECSS, studies most commonly focused on park
visitor use management, human–wildlife interactions, and recreation ecology. These patterns suggest
an opportunity to expand in geographic settings and to harness automated analysis methods to
code beyond a sole attribute. LiDAR and satellite-based camera technology have gained prominence
and may o� er a means to collect data from more locations without the associated researcher costs
of geographic expansions. These techniques also suggest opportunity for researchers in di� erent
disciplines to share a common dataset while focusing on attributes of discipline-speci�c interest.
For example, satellite-based image data covering a designated cultural landscape could provide
information pertinent to Agriculture and ECSS.

Camera usage should be detailed further to enhance replicability. This could be through additions
as simple as stating the speci�c camera model used and speci�c data collection timeframe. Metadata
could detail image quality beyond simple adjectives, so that other researchers could assess method
utility to their contexts. Few papers detailed speci�c image quality aspects, indicating that a baseline
for comparison across camera types might be warranted for standardization (e.g., de�ned scales
and notations).

Some disciplines are more specialist, and some are more generalist. This provides an opportunity
to examine novel designs. For example, although ECSS uses the largest diversity of camera placement
methods, these tend to be concentrated in �xed and mounted designs. Other disciplines may o � er
inspiration for using other combinations of methods and placements. Di � erential LiDAR use across
disciplines provides a speci�c instance of interdisciplinary learning for ECSS. LiDAR is mostly applied
in large landscape contexts to classify vegetation growth for natural resources and agricultural studies.
Although ECSS has the fastest growth rate of camera method use compared to other disciplines
(Figure 2), it has yet to incorporate LiDAR. To date, ECSS largely uses cameras for counting attributes
within an image (e.g., visitors, vehicles, boats) to understand types and frequencies of human
behaviors in an environment. ECSS also uses cameras to understand place-based experiences through
participatory camera methods. Both applications tend to occur on the site, rather than landscape, scale.
Sub-disciplines within ECSS, such as recreation ecology, might bene�t from using LiDAR to detect
landscape level di� erences in ground cover over recreational uses and longer temporal scales.

9. Image Analysis

Sources used a range of image analysis techniques within automated, geospatial, manual, LiDAR,
and mixed methods but only approximately one-third (35%) o � ered recommendations for image
analysis. We o� er three fundamental practices for researchers to enhance interdisciplinary learning
opportunities: (1) list and provide critical analysis of image analysis methods; (2) examine image
analysis techniques beyond those typically utilized in a particular discipline; and (3) standardize
guidelines for certain analysis techniques, particularly ones that are discipline speci�c but may have
applicability across disciplines.

Disciplines favor particular categories of image analysis. This concentration implies disciplinary
expertise but also areas for more creative interdisciplinary insight. Several disciplines continue to
rely on manual coding techniques (e.g., ECSS, Medicine/Healthcare), while others have developed
automated processes (e.g., Agriculture). This discrepancy re�ects a lack of interdisciplinary sharing
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and but also a necessary emphasis on case study approaches. For example, many ECSS studies that
use outdoor �xed cameras to estimate visitor use would bene�t from automated analyses of image
attributes across these large datasets, while other ECSS studies that use participant-worn cameras
to gain in-depth visitor experience information would be better o � manually coding their images.
Although these di � erences depend on the study purpose and approach, software to facilitate automated
coding and guidelines for manual coding of image data are both needed.

Just as multiple disciplines have bene�ted from guidelines for qualitative data coding and
statistical analysis software use, guidelines for both manual and automated image coding would
provide interdisciplinary standards and e � ciencies. ECSS is still primarily dependent on manual
coding. Although there have been attempts within ECSS to codify guidelines for manual image
coding [ 46,47], these sources have yet to be cited regularly within ECSS or at all in other disciplines.
Examining methods of automated image analysis and forming partnerships with those who have
employed such methods or understand the technology behind them could open up further relevant
inquiries on ECSS image datasets. The diversity of automated analysis techniques captured in this
study suggests another area for interdisciplinary collaboration, guidelines development, and standards
de�nition, so that researchers can more easily recognize which techniques are best suited for study
purposes. This again underscores the importance of interdisciplinary learning, where examining
multiple means of image analysis may lend creative insight into how one discipline could learn
techniques from another.

10. Limitations

Keyword searches were crafted by this team of ECSS researchers and criteria for source inclusion in
this review may re�ect biases that would not be apparent if conducted by other researchers. However,
we took steps to minimize subjectivity such as using an established method for systematic literature
reviews and validating reliability among the research team. Discipline-speci�c camera usage and
analysis jargon and knowledge may have been inadvertently omitted on account of the ECSS researchers'
unfamiliarity with these technical terms and thus led to an underrepresentation of particular areas in
our �ndings. Again, we have attempted to lessen this concern through a standardized keyword search
using basic, non-technical terms that transcend disciplines and by examining sources for multiple
points of relevance.

11. Future Research

The �ndings of this review highlight four pertinent avenues of future research in general and
within ECSS. First, a streamlined method for calculating and reporting the distance between a camera
and the attributes of interest would be an interdisciplinary contribution to standardization. Second,
ECSS researchers using cameras in studies could test the applicability of LiDAR to questions and
contexts within the ECSS discipline. Third, a review of analysis strategies for images posted on online
platforms (e.g., social media) could also be conducted and more reliable analysis strategies, particularly
the development of a program that would reduce the burden of manual analysis and allow for more
images to be included in the analysis, could be developed. Thus far, studies centered on social media
images mostly involved geo-tagged images or captions rather than actual image content. Fourth,
participant-generated image data should be examined independently, as this data collection technique
is uniquely and intentionally less under researcher control.

12. Conclusions

This study assessed a large dataset of sources for enhanced methods pertaining to camera usage
and image analysis in general and in ECSS in particular. Using a systematic literature review and
interdisciplinary learning theory, this study identi�ed areas of disparity and areas for enhanced
collaboration. Six best practices for camera usage and image analysis emerged: examining multiple
attributes/phenomena, being intentionally speci�c in documenting camera details and placement,
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sourcing methods beyond a speci�c discipline for novel approaches, critiquing image analysis methods
used, examining possibilities for interdisciplinary analysis techniques, and standardizing analysis
methods at least within disciplines. The ECSS focus of the study revealed that the discipline is well
positioned to be a center of standardization in some regards (e.g., manual coding guidelines) but could
bene�t from interdisciplinary collaborations (e.g., use of LiDAR). This review provides a snapshot of
the wide lens of camera-based methods in research and underscores the need for assessing the diversity
of this method, especially as it continues to diversify and proliferate across disciplines and contexts.

Supplementary Materials: The following are available online at http: //www.mdpi.com /2306-5729/5/2/51/s1, Data:
Corpus of Sources with Citation Metadata.

Author Contributions: C.L.L. conducted the initial inquiry and phase one of the review, was task manager of all
components of phase two (including leading source input into the database), assisted in data analysis, and drafted
major portions of the manuscript. E.E.P. was project manager of all components, co-led inputting sources, led the
data analysis, drafted major portions of the manuscript, and edited the �nal manuscript. J.P.F. inputted sources,
drafted major portions of the manuscript, and edited the �nal manuscript. M.T.J.B. conceptualized the project,
inputted sources, drafted minor portions of the manuscript, and provided guidance on framing the manuscript.
R.L.S. inputted sources and provided guidance on framing the manuscript. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Con�icts of Interest: The authors declare no con�ict of interest.

References

1. Al-Rousan, T.; Masad, E.; Tutumluer, E.; Pan, T. Evaluation of image analysis techniques for quantifying
aggregate shape characteristics.Constr. Build. Mater.2007, 21, 978–990. [CrossRef]

2. Anderson, K.; Gaston, K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol.
Environ. 2013, 11, 138–146. [CrossRef]

3. Cox, M. A basic guide for empirical environmental social science. Ecol. Soc.2015, 20. [CrossRef]
4. Hazen, D.; Puri, R.; Ramchandran, K. Multi-camera video resolution enhancement by fusion of spatial

disparity and temporal motion �elds. In Proceedings of the Fourth IEEE International Conference on
Computer Vision Systems (ICVS'06), New York, NY, USA, 4–7 January 2006; p. 38. [CrossRef]

5. Mansilla, V.B. Interdisciplinary learning: A cognitive-epistemological foundation. In The Oxford handbook of
Interdisciplinarity, 2nd ed.; Frodeman, R., Ed.; Oxford University Press: Oxford, UK, 2017. [CrossRef]

6. Spelt, E.J.H.; Biemans, H.J.A.; Tobi, H.; Luning, P.A.; Mulder, M. Teaching and learning in interdisciplinary
higher education: A systematic review. Educ. Psychol. Rev.2009, 21, 365. [CrossRef]

7. Liu, J.-S.; Huang, T.-K. A project mediation approach to interdisciplinary learning. In Proceedings of the
Fifth IEEE International Conference on Advanced Learning Technologies (ICALT'05), Kaohsiung, Taiwan,
5–8 July 2005; pp. 54–58. [CrossRef]

8. Johnson, D.T.; Neal, L.; Vantassel-Baska, B.J. Science curriculum review: Evaluating materials for high-ability
learners. Gift. Child Q. 1995, 39, 36–44. [CrossRef]

9. Haigh, W.; Rehfeld, D. Integration of secondary mathematics and science methods courses: A model. Sch. Sci.
Math. 1995, 95, 240. [CrossRef]

10. Alden, D.S.; Laxton, R.; Patzer, G.; Howard, L. Establishing cross-disciplinary marketing education.
J. Mark. Educ.1991, 13, 25–30. [CrossRef]

11. Dimitropoulos, G.; Hacker, P. Learning and the law: Improving behavioral regulation from an international
and comparative perspective. J. Law Policy2016, 25, 473–548.

12. Kucera, K.; Harrison, L.M.; Cappello, M.; Modis, Y. Ancylostoma ceylanicum excretory–secretory protein
2 adopts a netrin-like fold and de�nes a novel family of nematode proteins. J. Mol. Biol. 2011, 408, 9–17.
[CrossRef]

13. Menzie, C.; Ryther, J.; Boyer, L.; Germano, J.; Rhodes, D. Remote methods of mapping sea�oor topography,
sediment type, bedforms, and benthic biology. OCEANS1982, 82, 1046–1051. [CrossRef]

14. Schuckman, K.; Raber, G.T.; Jensen, J.R.; Schill, S. Creation of digital terrain models using an adaptive Lidar
vegetation point removal process. Photogramm. Eng. Remote Sens.2002, 68, 1307–1314.

97



Data2020, 5, 51

15. An, F.-P. Pedestrian re-recognition algorithm based on optimization deep learning-sequence memory model.
Complexity2019, 2019, 1. [CrossRef]

16. Su, C.; Zhang, S.; Xing, J.; Gao, W.; Tian, Q. Deep attributes driven multi-camera person re-identi�cation.
In Computer Vision—ECCV 2016; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2016;
Volume 9906. [CrossRef]

17. Marion, J.L. A review and synthesis of recreation ecology research supporting carrying capacity and visitor
use management decisionmaking. J. For.2016, 114, 339–351. [CrossRef]

18. Peterson, B.; Brownlee, M.; Sharp, R.; Cribbs, T. Visitor Use and Associated Thresholds at Bu� alo National
River. In Ful�llment of Cooperative Agreement No. P16AC00194; Technical report submitted to the U.S. National
Park Service; Clemson University: Clemson, SC, USA, 2018.

19. Schmid Mast, M.; Gatica-Perez, D.; Frauendorfer, D.; Nguyen, L.; Choudhury, T. Social sensing for psychology:
Automated interpersonal behavior assessment. Curr. Dir. Psychol. Sci.2015, 24, 154–160. [CrossRef]

20. Kharrazi, M.; Sencar, H.T.; Memon, N. Blind source camera identi�cation. In Proceedings of the 2004
International Conference on Image Processing, ICIP '04, Singapore, 24–27 October 2004; Volume 1, pp. 709–712.
[CrossRef]

21. Huang, A.S.; Bachrach, A.; Henry, P.; Krainin, M.; Maturana, D.; Fox, D.; Roy, N. Visual odometry and
mapping for autonomous �ight using an RGB-D Camera. In Robotics Research; Christensen, H.I., Khatib, O.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 100, pp. 235–252. [CrossRef]

22. Bente, G. Facilities for the graphical computer simulation of head and body movements. Behav. Res. Methods
Instrum. Comput.1989, 21, 455–462. [CrossRef]
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