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The study of autonomous agents is a well-established area that has been researched for
decades, both from a design and implementation viewpoint. Nonetheless, the application
of agents in real-world scenarios is largely adopted when logical distribution is needed, but
it is still limited when physical distribution is necessary. In parallel, robots are no longer
used only in industrial applications but are instead applied in an increasing number of
domains, ranging from robotic assistants to search and rescue. Robots in these applications
often benefit from (or require) some level of (semi or full) autonomy. Thus, multi-agent
solutions can be exploited in robotic scenarios, considering their strong similarity both in
terms of logical distribution and interaction among autonomous entities.

The autonomous behavior responsible for decision making should (ideally) be verifi-
able since these systems are expensive to produce and are often deployed in safety-critical
situations. Thus, verification and validation are important and necessary steps toward
providing assurances about the reliability of autonomy in these systems. Likewise, software
engineering techniques are an integral part of development in order to make sure that the
systems meet requirements.

This Special Issue brings together researchers from the autonomous agents, software
engineering and robotics communities, as combining knowledge from these three research
areas may lead to innovative approaches that solve complex problems related with the
verification and validation of autonomous robotic systems. We (the Special Issue editors)
have written a perspective paper (peer-reviewed by members of the editorial board of the
journal) that is included in our Special Issue [1]; in the perspective, we give an overview
of recent research trends for researchers that aim at working in the intersection of these
research areas.

This Special Issue was created based on the topics discussed at the First Workshop
on Agents and Robots for reliable Engineered Autonomy (https://area2020.github.io/
accessed on 30 June 2021) (AREA 2020). One of the accepted papers in the workshop was
invited to extend their work and underwent additional peer-review evaluation before being
accepted for publication [2]. Paper [2] contains details about an architecture for linking
robots with autonomous agents applied to a case study of campus mail delivery.

The other three remaining papers, refs. [3–5], were all new submissions. Paper [3]
introduces a novel formal verification approach by combining the use of two well-known
model checkers to verify the decision making in self-driving vehicles; it evaluates the
resulting hybrid technique on a robotic simulator with a rational agent performing the
decision making. Paper [4] is also applied to the autonomous automotive domain using
agent-based control, but it is focused on the traffic rules that govern road junctions; it
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applies two different model checkers to assess the behavior of the agent at two different
levels (design and development). Paper [5] provides an interpretation of the multi-agent
systems as part of the aggregate programming paradigm to support the programming of
collective autonomous behavior. Table 1 shows an overview of the main areas discussed in
each paper of the Special Issue.

Table 1. Distribution of the papers across the main areas of the Special Issue.

Autonomous
Agents

Robotics
Verification
and Validation

Software
Engineering

Paper [1] � � � �

Paper [2] � �

Paper [3] � � �

Paper [4] � �

Paper [5] � �

We hope that the different research communities that are represented in our Special
Issue will improve their collaboration efforts in the future so that the best proposals from
these different areas can be combined to create new and exciting solutions and tools to be
exploited both in academia and in industry.
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Abstract: Multi-agent systems, robotics and software engineering are large and active research areas
with many applications in academia and industry. The First Workshop on Agents and Robots for
reliable Engineered Autonomy (AREA), organised the first time in 2020, aims at encouraging cross-
disciplinary collaborations and exchange of ideas among researchers working in these research areas.
This paper presents a perspective of the organisers that aims at highlighting the latest research trends,
future directions, challenges, and open problems. It also includes feedback from the discussions held
during the AREA workshop. The goal of this perspective is to provide a high-level view of current
research trends for researchers that aim at working in the intersection of these research areas.

Keywords: multi-agent systems; robotics; software engineering; verification and validation; human–
agent interaction

1. Introduction

The robotics market is dramatically changing. Robots are more and more used to
replace humans in their activities. For example, robots can be used in emergency search
and rescue scenarios to reduce risks for humans rescuers. To operate in unpredictable
environments, robots often need to be autonomous. Autonomous robots can perform
their tasks with a high degree of autonomy without any human supervision. In addition,
robots need to operate in a reliable manner to avoid failures that can have catastrophic
consequences and lead to the loss of human life. The design of such robotic applications is
complex since it requires engineers to consider different requirements related to different
research domains.

The design of robotic applications requires multi-agent solutions. Robots are no longer
only used in industrial applications, where robots operate in highly controllable and
predictable environments. They are also used in an increasing number of domains, where
the environment is often unpredictable and agents can have unexpected behaviours. For
example, in an emergency search and rescue scenario the environment in which the robots
operate is unpredictable: the structure of the buildings where robots are deployed may
not be known in advance, and humans can have unpredictable reactions in emergencies.
Robots in these applications often benefit from (or require) some level (semi or full) of
autonomy. In addition, the missions the robots need to achieve are more and more complex
and require multiple robots, with different capabilities, to collaborate. Thus, multi-agent
solutions are required.

J. Sens. Actuator Netw. 2021, 10, 33. https://doi.org/10.3390/jsan10020033 https://www.mdpi.com/journal/jsan
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Verification and Validation (V&V) aims at checking whether software behaves as ex-
pected. The distributed and autonomous nature of multi-agent systems poses a novel set of
challenges for V&V. For example, the autonomous behaviour responsible for decision-
making should (ideally) be extensively verified since these systems are expensive to
produce and are often deployed in safety-critical situations. However, the autonomous
behaviour of these systems is often unpredictable: it depends on the environmental con-
ditions in which the system operates, and often changes at runtime. Thus, autonomous
robotic systems are introducing a novel set of challenges that need to be addressed by
novel V&V techniques.

Software Engineering (SE) refers to a branch of computer since that aims at supporting
rigorous software development. Engineering multi-agent systems requires systematic and
rigorous techniques that allow developing systems that meet their requirements. Multi-
agent systems are instances of complex distributed systems. They require engineers to
define the software architecture, to design the agent behaviours (e.g., through models),
the protocols (if any) that agents should use to communicate, and how and when agents
need to collaborate. Selecting and defining all of these components is often a difficult and
complex activity, since it requires cross-disciplinary skills, and knowledge of multi-agent
solutions, and the verification and validation to be used to support software design.

Finally, since multi-agent systems usually need to interact with people, engineers
need to consider human–agent interactions as a key feature during the software design.
Human–robot interactions are complex to be designed. Humans can (negatively) affect the
behaviour of the robots, especially when humans and robots are collaborating for achieving
certain goals. Human behaviour can trigger unexpected software reactions. Software
components must be designed to adapt and modify their behaviours and to effectively
support unexpected human actions.

Therefore, the design of complex robotic applications requires combining solutions
coming from different research areas: multi-agent systems, verification and validation,
software engineering, and human–agent interaction. This paper presents a perspective
from the organisers of the first workshop on Agents and Robots for reliable Engineered
Autonomy (https://area2020.github.io/ accessed: 14 May 2021) (AREA 2020). The goal of
this workshop was to attract researchers from these areas, to support the exchange of ideas,
and the cross-fertilisation and collaboration among the different research communities.
This perspective presents some of the latest research trends and promising solutions in
each of these areas. It is based on the research experience of the authors, and some of the
discussions held during the AREA workshop. As such, it does not aim to be a complete and
detailed review of the work done in these research areas, but it aims to be an initial read
for researchers that aim at working in the intersection of these areas based on a speculative
view of the organisers of AREA 2020.

This perspective paper is organised as follows. Section 2 concerns multi-agent program-
ming. It discusses the use of programming languages designed for multi-agent systems
for developing decision-making in robots, listing some of the tools for agents and robots
individually and how these have been combined by the community. Section 3 concerns
verification and validation. It presents works performed in the verification and validation
with a special interest on multi-agent systems and robotic applications. Section 4 concerns
software engineering. It describes research work in SE with a special interest in multi-agent
systems. Section 5 concerns human–agent interactions. It describes research works that
concern the development of robotic applications that consider human–agent interactions
in the software design. Finally, Section 6 concludes our perspective. It summarises and
discusses the challenges identified for each of the research areas we considered, and links
the findings of the different sections.
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2. Multi-Agent Programming

In this section, we will present some techniques that support the use of agent program-
ming for the development of robotic applications. We will then present some challenges
that prevent the effective use of agent programming for developing robotic systems.

One of the most popular models for agent programming languages is the Belief–Desire–
Intention (BDI) model [1,2]. In the BDI model, there are three major concerns to model
the agent behaviours: beliefs—knowledge that the agent has about the world, itself, and
other agents; desires—goals that the agent wants to achieve; and intentions—recipes on how
to achieve goals. Some examples of BDI agent programming languages include Jason [3]
(used in many of the applications we cite in our perspective paper), JaCaMo [4,5] (Jason
combined with two other technologies to provide first-class support for programming
agents, environments, and organisations), and GWENDOLEN [6] (a more bare-bones agent
language made specifically to support formal verification of agent programs).

The Robot Operating System (ROS) [7] is the de facto standard for the development of
software for robotic applications. ROS supports the development of robotic applications
through ROS nodes. An ROS node is a process that performs some computation. An
ROS application is made by several nodes (representing components and subsystems of
the robot) that communicate with one another following the publisher/subscriber model.
The main advantage of ROS is its interoperability with different robot manufacturers and
models. Since robot manufacturers provide support for executing the ROS, developers do
not have to learn the firmware of each robot model.

An approach combining JaCaMo (in particular, the agent and environment layers)
with ROS is presented in [8]. Their approach uses environment artifacts to implement
ROS nodes and to provide actions for agents to publish and subscribe to nodes. Since
environment artifacts in JaCaMo are implemented in Java, the approach makes use of the
rosjava package (http://wiki.ros.org/rosjava accessed: 14 May 2021) (an implementation of
some of ROS core features in Java) to make the artifacts able to interact with ROS. However,
rosjava is not directly maintained by the ROS community. Therefore, it requires additional
time to be supported after each new ROS release.

A Jason based integration with ROS is introduced in [9]. Their approach modifies
Jason’s reasoning cycle to support agents with the ability to subscribe and publish in topics
from ROS nodes. Extra code for ROS (written in C++) is required for the integration as well.

In [10,11], Jason is linked with ROS through their SAVI ROS BDI architecture. This
architecture is implemented in Java (using the rosjava package, and as such has the same
disadvantage present in [8]) and mainly introduces a state synchronisation module that acts
as a mediator between ROS and Jason by managing perceptions, incoming and outgoing
messages, and actions being sent by the agent.

Differently from all of the above approaches, the authors in [12] propose an interface
for programming autonomous agents in ROS that works without any changes to ROS
or to any of the supported agent languages (Jason and GWENDOLEN). This is achieved
through the rosbridge library [13], which allows code written in other languages (ROS has
native support for C++ and Python only) to communicate with ROS topics through the
WebSocket protocol.

Perspective of the Authors

As noted in recent agent programming reviews and surveys [14–16], there are still
many open challenges that prevent agent programming languages to be used in the robotic
domain. Some of these challenges include:

• the limited set of features provided by existing agent-based languages;
• immature methodologies and tools;
• no significant advantages for developers to change to agent programming since most

applications can be implemented in more contemporary programming languages;
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• the lack of quantitative and qualitative comparisons with other agent languages and
other programming paradigms that guide developer in the selection of the most
suitable language for their needs;

• the limited integration of agent-based technologies with other techniques, e.g., tech-
niques coming from Artificial Intelligence (AI).

Additionally, there are other challenges that are more specifically related to the use of
agent programming languages in robotic systems development.

One of these challenges is the limited support for high frequency data that coming
from sensors, which are commonly used to represent “beliefs.” When high-frequency data
representing beliefs come from sensors, then the agent has to spend a large amount of
time reasoning on these new perceptions. This reduces the performance of the robots in
computing the new actions to be executed. A common solution to this problem is to use
filters that limit the amount of data that is perceived, either by decreasing the frequency or
limiting data based on its content and what would be interesting to the agent. However,
these filters are often domain-specific and have to be tweaked based on the application.

Another challenge is the compatibility of agent languages with popular robotic frame-
works such as ROS. An increasing number of languages are being extended by the commu-
nity to work with ROS; however, these often modify either ROS or the agent language (or
sometimes both) which can discourage new developers from using them.

An earlier survey [17] on agent languages for programming autonomous robots has
identified four major challenges:

1. support for agent languages in robotic frameworks;
2. effectively managing sensor data into beliefs;
3. support for real-time reactivity;
4. synchronising robots while executing their plans.

As previously discussed, a significant amount of research has been conducted for
addressing challenges 1 and 2. However, more work is needed to support additional agent-
based languages, and more sophisticated and effective filtering techniques to manage
sensor data. Less research has been conducted to address challenges 3 and 4, since these
challenges do not always appear in robotic applications. For example, in a scenario
in which a robot has to inspect a nuclear facility, the robot should be able to handle
and adapt to failures. We believe that research on real-time reactivity of robots and the
effective synchronisation of robots for executing their plans, on the one hand, will benefit
from the additional support provided for existing agent-based languages and the more
sophisticated and effective management, on the other hand, may highlight limitations of
these frameworks and pave the way for further additional research.

3. Verification and Validation

As discussed in our introduction, reliability is very important in the design of robotic
applications. However, multi-agent applications are posing a new set of challenges for the
verification and validation (V&V) activities. In this section, we are considering both static
verification techniques for MAS and dynamic verification techniques. Static formal verifi-
cation techniques, such as Model Checking and Theorem Proving, usually check whether
the system meets its requirements. Requirements are usually represented using formal
specifications, a.k.a. properties, the system is usually represented using models. Dynamic
formal verification techniques, such as Runtime Verification techniques, usually monitor the
system execution and check whether observed behaviours meet the system requirements.

In this section, we describe the latest developments in the context of formal verification
and validation of MAS (Section 3.1) and robotic systems (Section 3.2). Some of the works we
present in this section were also discussed by a recent survey on formal verification applied
to autonomous systems and robotic applications [18]. Then, we will argue (Section 3.3)
that, as also argued by [19], robotic applications and autonomous systems pose a new set
of challenges for formal verification and validation techniques.

6
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3.1. Multi-Agent Systems

For MAS, V&V techniques usually check the behaviour of a set of agents collaborating
or competing amongst themselves to achieve certain goals.

3.1.1. Model Checking

Model-checking exhaustively verifies a system against a formal property. It returns
a Boolean verdict: true if the property is satisfied, and false and a counterexample, if it is
not. Model-checking techniques are usually compute-intensive since the implemented
procedures have a high temporal complexity because all the behaviours of the system need
to be analysed for proving that the property is satisfied.

In [20], a model checker for verifying MAS, called MCMAS, is proposed. MCMAS
supports temporal, epistemic and strategic properties. In its standard version, MCMAS
requires to know the number of agents at design time. In [21], a parametric extension
(MCMAS-P) to handle scenarios where the number of components cannot be determined
at design time is presented, while, in [22], a more expressive extension (MCMAS-SL) is
proposed to support strategy logic. MCMAS has been used in many different works for
verifying MAS. In particular, in [23], where an analysis is carried out on the verification
problem of synchronous perfect recall multi-agent systems with imperfect information.
While the general problem is known to be undecidable, [23] shows that, if the agents’
actions are public, then verification is decidable.

In [24], the authors propose a method for, and implement a working prototype of, an
ethical extension to a rational agent governing an unmanned aircraft. Differently from [20],
this work is focused on verifying BDI agents, defined using the agent language Ethan, an
extension of GWENDOLEN. The resulting ethical agent is verified in AJPF [25], a model
checker for agent programs. Differently from MCMAS, which verifies an abstract model
of the MAS (i.e., a Concurrent Game Structure—CGS), AJPF verifies the source code of
the MAS application. Furthermore, MCMAS assumes that properties are expressed using
Alternating-Time Temporal Logic (ATL), which allows for reasoning on agents’ strategies,
while AJPF assumes that properties are expressed in Linear Temporal Logic (LTL) (enriched
with epistemic logic operators).

In [26], the authors proposed the VERMILLION framework. VERMILLION targets
a broad class of avionics systems that is amenable to analysis using formal methods. It
extends the BDI model to incorporate learning, safety, determinism, and real-time response,
and represents the abstract formal model using the Z language [27]. Compared to MCMAS,
VERMILLION performs formal verification on an abstract model of the system, and not
to the source code of the MAS. This requires engineers to build the abstract model of the
MAS before running the verification framework.

Autonomous platoons are a typical example of MAS which are subject to extensive
research. Formal verification of autonomous platoons has been considered for example
in [28]. In this work, the authors proposed a reconfigurable multi-agent architecture to en-
sure the safety of the platoon, and specifically to guarantee a certain inter-vehicle distance
among the different vehicles of the platoon. The authors proposed a model for the platoon
that enables vehicles to join and leave the platoon, and verified whether this model ensures
the satisfaction of a set of safety properties. Safety properties are formally verified using the
Uppaal model checker [29]. Additionally, this work proposes to use the Webots simulator
(https://github.com/cyberbotics/webots accessed: 14 May 2021) to simulate certain be-
haviors of the model.

Similarly, in [30], the authors applied formal verification to the model of the system
and the actual implementation to ensure that autonomous decision-making agents in
vehicle platoons never violate some safety requirements. In addition, in this work, the
model checking procedure relies on the Uppaal model checker: the models of the agents
are translated into timed automata, which are verified in Uppaal.

In [31], the authors present a new technique for model checking the logic of knowledge
and commitments (CTLKC+). The proposed technique is fully-automatic and reduction-
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based. It reduces the problem of model checking CTLKC+ specifications to the problem of
model checking an ARCTL [32] specifications. ARCTL is an existing logic that is supported
by an existing model checker that relies on the NuSMV symbolic model checker [33].

3.1.2. Runtime Verification

There are various runtime verification techniques available in literature for MAS.
In [34], the authors present a framework to verify agent interaction protocols at runtime.
The formalism used in this work allows using variables to represent complex MAS be-
haviours. In [35], the authors extended their approach by supporting the usage of multiple
monitors. Specifically, the global specification, which is used to represent the global proto-
col, is translated into partial decentralised specifications—one for each agent of the MAS.
In [36,37], other works on runtime verification of agent interactions are proposed for the
JADE platform. Specifically, in [36], the authors propose a framework called Multi-agent
Runtime Verification (MARV). In this framework, requirements of MAS interaction during
runtime are defined, such as availability and trustability. Differently from the other works,
the requirements are expressed using natural language. The translation to a more formal
representation is seen as a future work and not supported yet. Considering interactions in
JADE, in [37], we may find a different approach which is partially obtained at runtime. In
fact, the proposed method is performed in a semi-runtime way, where logs of messaging
events are kept, and an algorithm for converting these logs to Time Petri Net as runtime
program models is used.

When agents are dynamically adaptable, we may find application of runtime verifica-
tion as presented in [38], where a runtime verification framework for dynamic adaptive
MAS (DAMS-RV) based on an adaptive feedback loop is presented.

In [39], the authors propose a framework that combines model checking and runtime
verification for analysing MAS. In this framework, the agents are first verified statically
(using the AJPF [25] model checking), and, then, they are validated at runtime, through
runtime verification using an extension of the work proposed in [34].

3.2. Robotic Applications

This section analyses works related to the formal V&V of robotic systems.

3.2.1. Model Checking

In [40], the authors propose an approach to formally verify an autonomous decision-
making planner/scheduler system for an assisted living environment with the Care-O-bot
robotic assistant. This is done by converting the robot house planner/scheduler rules into
a multi-agent modelling language, i.e., Brahms model [41], and then, by translating this
model into the PROMELA [42] language, which is then verified using the SPIN model
checker [43]. Differently from the works we presented in the previous section, in this work,
the model to be verified concerns scheduling rules used by an actual robot, rather than the
reasoning process of an abstract agent.

In [44], the authors verified a formal model that describes mobile robot protocols
operating in a discrete space is proposed. This formal model is then verified using the
DiVinE model checker [45]. In [46], the authors propose an approach to verify real-time
properties of ROS systems related to the communication between ROS nodes. Specifically,
the authors analysed the source code of the Kobuki robot. Verification is performed by
using the Uppaal model checker.

In [47], the authors analysed a collision avoidance protocol for multi-robot systems
based on control barrier functions. The authors formally verified the properties of the
collision avoidance framework. They showed that their controller formally guarantees
collision free behaviour in heterogeneous multi-agent systems by applying slight changes
to the desired controller via safety barrier constraints.

Finally, formal methods are also used to check whether the tasks of a robotic applica-
tion can be scheduled with respect to a given hardware platform (e.g., [48,49]). For example,
some of these works considered components specified in GenoM [50] (a middleware for
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robotic development similar to ROS) and automatically translate them into FIACRE [51], a
formal language for timed systems.

3.2.2. Human–Robot Interaction

Building reliable software systems involving human–robot interactions poses sig-
nificant challenges for formal verification. In [52], the authors propose a risk analysis
methodology for collaborative robotic applications, which relies on well-known standards,
and use formal verification techniques to automate the traditional risk analysis methods.
In [53], the authors propose an innovative methodology, called SAFER-HRC, is presented.
This methodology is centred around the logic language TRIO and the companion bounded
satisfiability checker Zot [54], to assess the safety risks in a Human–Robot Collaboration
(HRC) application.

3.2.3. Runtime Verification

Runtime Verification approaches for robotic applications are also discussed in the
scientific literature. RobotRV [55] is a data-centred real-time verification approach for
robotic systems. Within this approach, a domain-specific language named RoboticSpec is
designed to specify the complex application scenario of the robot system.

Another runtime verification framework, called ROSMonitoring [56,57], allows the
verification of ROS-based systems. In ROSMonitoring, runtime monitors are automatically
synthesised from high-level specifications and used to verify formal properties against
message passing amongst ROS nodes. The advantage of this framework is its being
formalism-agnostic and portable. Indeed, the formal part of the monitors is decoupled and
can be easily replaced.

3.2.4. Machine Learning

Machine learning is widely relevant for designing robotic applications. In [58], the
authors consider the problem of formally verifying the safety of an autonomous robot
equipped with a neural network controller that processes LiDAR images to produce control
actions. The contributions are: (i) the definition of a framework for formally proving
safety properties of autonomous robots equipped with LiDAR scanners; (ii) the notion
of imaging-adapted partitions along with a polynomial-time algorithm for processing
the workspace into such partitions; and (iii) a Satisfiability Modulo Convex (SMC)-based
algorithm combined with an SMC-based pre-processing for computing finite abstractions
of neural network controlled autonomous systems.

3.3. Perspective of the Authors

A lot of research was done on formal verification of MAS and Robotic applications.
However, many challenges still need to be addressed. In the following, we will discuss
two of these challenges.

• scalability. Many approaches suffer from scalability issues [59]. Researchers should
find more efficient ways to verify the system under analysis especially when the
number of agents and robots increases. Indeed, MAS and robotic applications are
intrinsically distributed, and we expect the number of robots and agents of future
robotic applications to increase over time. As previously mentioned, scalability issues
are less relevant for dynamic verification approaches, such as runtime verification
that only verify subsets of system executions. We believe that combining static and
dynamic verification may be a valuable direction to address this challenge;

• verification of ML components. ML components are mode and more used in safety-
critical scenarios (e.g., Robotic applications). However, the behaviours of machine
learning components are usually not understandable by humans. Indeed, the be-
haviour of ML components is not defined a priori by humans, but ML components
learn their behaviours from a set of training data. This poses the challenge of under-
standing if a ML component ensures the satisfaction of safety properties. While in
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the past years many works have been proposed to enhance learning algorithms with
formal methods, a lot of work needs to be done to make these approaches applicable
in practice. For example, for MAS applications, some works have been proposed
for single Reinforcement Learning agents, but few of them considered Multi-Agent
Reinforcement Learning.

4. Software Engineering

This section provides a brief overview on some of the software engineering (SE) tech-
niques that aim to support the development of reliable multi-agent and robotic applications.
Researchers are extending, adapting, and creating new SE techniques to meet the needs of
robotic applications. However, there are still many challenges that prevent the effective
and efficient development of multi-agent systems and the community requires novel SE
solutions. We introduce the overall main problems by giving an overview of them, citing
some of the existing and known approaches and solutions, and discussing promising
research trends and open problems.

Specifically, in this section, we discuss rigorous and systematic techniques that allow
the specification of MAS requirements (Section 4.1), effective and efficient techniques that
support testing MAS (Section 4.2), and simulation tools that enable reproducing the MAS
and robotic behaviour with reasonable accuracy (Section 4.3). Finally, we will discuss our
perspectives (Section 4.4).

4.1. Requirement Specification

The specification of the requirements of a multi-agent application is critical during
software development. In MAS, requirements specification often concerns the definition
of the task, also known as mission [60], what the application should achieve, and how to
make the requirement executable by the MAS. Compared with conventional software, the
presence of multiple agents makes the requirement specification phase more complex and
error-prone since engineers need to precisely identify the different agents and identify the
tasks they need to execute [61]. To support engineers in the specification of the requirements
of the MAS application, several tools were proposed in the literature, such as natural
languages, logic-based languages, pattern-based languages, domain-specific languages,
and goal-modelling techniques.

In the following, we summarise some of the solutions proposed in these areas and
evaluate how these solutions were used within the papers presented in the AREA 2020
workshop (https://area2020.github.io/ accessed: 14 May 2021), since they provide good
examples of research covering different aspects of MASs. Specifically, Table 1 summarises
the requirement specification technique used for each of the papers presented in the AREA
2020 workshop. Each row contains a requirement specification technique, i.e., natural
languages, logic-based languages, pattern-based languages, domain-specific languages,
and goal-modelling. Each column contains the reference to one of the papers presented in
the AREA 2020 workshop. The cell at the intersection between a row of one requirement
specification technique, and a column, of one paper presented in the AREA 2020 work-
shop, indicates the requirement specification technique used in that paper. For example,
the marker at the intersection between the row labelled as “logic-based languages” and
the column labelled with the reference [62] indicates that a logic-based language is the
requirement specification technique used in [62].
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Table 1. Requirements specification technique used by the papers published in AREA 2020 ([63] is not reported in the table
since it does not consider MAS requirements).

[62] [64] [65] [66] [67] [68] [69] [70] [10]

Natural Language �
Logic-based � �

Pattern-based
Domain-specific � � � � �
Goal-modelling
Demonstrations �

4.1.1. Natural Languages

In many contexts, requirements are initially expressed in natural language. This is
a common case in many industrial applications (e.g., [71,72]). Natural languages offer
significant benefits, they are easy to understand, and they support effective communication
among different stakeholders. Several works considered the role of natural languages in
the requirement specifications of multi-agent and robotic systems. For example, in [73], the
authors proposed an approach to teach agents to communicate with humans in natural
language. In [74], the authors analyse how to utilise and extend the Software Requirements
Specifications model (IEEE Std 830-2009) to support the specification of requirements of
multi-agent systems. In [75], the authors apply techniques of natural language processing
for identifying the requirements and goals of multi-agent systems.

One paper presented at the AREA workshop assumed that the requirements of the
MAS are specified using natural language. Specifically, in [68], the authors propose dif-
ferent types of interactions between an MAS and the final users who might benefit from
communication-intensive, voice-based interactions.

4.1.2. Logic-Based Languages

Many researchers specify the requirements of the MAS in a logic-based language
(e.g., [18,19,76–78]). Logic-based languages, such as LTL or CTL, assume that requirements
are expressed using a set of atomic propositions that express relevant statements on the
multi-agent system, combined with logical operators. One of the main advantages of using
logic-based language is the availability of automated tools that support verification (e.g.,
model checking) and synthesis.

Two papers presented at the AREA workshop assumed that the requirements of the
MAS are specified using logic-based languages. In [62], the authors use the TRIO [79]
logical-language to specify the requirements of the MAS. TRIO is a first-order logical
language. It provides temporal operators to constrain the values of some propositions at
different time instants. In [64], the authors use the logical-based language provided by
Uppaal [80] to specify the requirements of the MAS. Uppaal allows specifying missions
through an extension of the CTL logic, which is a subset of TCTL. Specifically, it allows the
specification of properties constraining a proposition to hold globally (resp. eventually)
for every execution or querying whether there exists an execution such that a proposition
holds globally (resp. eventually).

4.1.3. Pattern-Based Languages

Pattern-based languages are a common solution to solve recurrent problems of
many domains, including robotics [60,81], cyber-physical systems [82], self-adaptive
systems [83,84], machine learning [85], IoT [86], and multi-agent systems [84,87–89]. Exist-
ing design patterns in the field of multi-agent systems were classified in a recent survey [88].

By analysing the papers presented at the AREA workshop, we noticed that none of
the published papers used pattern-based languages to specify the requirements of the
multi-agent system.
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4.1.4. Domain-Specific Languages

Several Domain-Specific Languages (DSL) for MAS were proposed in the literature
(e.g., [90–92]). For MAS, DSLs usually provide constructs that enable engineers to model
agents, the task they need to execute, and their interactions. Some of the recent DSLs for
multi-agent systems are reported in the following.

In [93], the authors present a DSL for multi-robot application, based on the robotic
mission specification patters [60]. In [94], the authors apply the DESIRE specification
framework [95] on a case study on multi-agent systems. In [91], the authors propose a DSL
for MAS. They also use the language and their graphical tool support for developing an
MAS using a model-driven development approach.

Four papers presented at the AREA workshop proposed a DSL for the specification
of a robot’s core behaviours. In [65], the authors propose the use of Capability Analysis
Tables (CATs). CATs provide a tabular representation that connects the inputs, outputs,
and the behaviours of an MAS. Differently from other tools, e.g., logic-based languages,
CATs are more understandable by non-expert users. We also considered the language
used for specifying requirements by [66] as a domain-specific language. In this work,
the authors assume that the requirement concerns reaching some specific states of the
competence-aware systems used to model the MAS.

In [67], the authors use Jadescript [96] to specify the MAS and its requirements.
Jadescript is a novel agent-oriented programming language compiled to Java. In [70], the
authors consider the Planning Domain Definition Language (PDDL) [97] to specify the task
to be performed by the MAS. PDDL is a DSL that is proposed to standardise automated
planning languages. It enables the definition of the domain and the problem. The domain
definition allows users to define predicates and operators (a.k.a. actions). The problem
definition defines the objects of the problem instance, its initial state, and the goal. In [10],
the authors use the Jason language to express the requirements of the MAS application.
Jason is an agent-oriented programming language based on the BDI software model.

4.1.5. Goal-Modelling Techniques

Several goal-modelling techniques (e.g., Tropos [98], Gaia [99], Mobmas [100], INGE-
NIAS [61]) support the development of multi-agent applications. These techniques enable
users to identify the goals and the agents of the application. They also usually support the
decomposition of goals into subgoals, and subgoals into tasks, and the assignment of tasks
to agents.

By analysing the papers presented at the AREA workshop, we noticed that none of
the published papers used goal-modelling techniques to specify the requirements of the
multi-agent system.

4.1.6. Demonstrations

Many approaches use demonstrations to train the agents of a multi-agent application
to perform their tasks [101–104]. Demonstration approaches usually require a human to
demonstrate to the agent the task to be performed. Then, the agent learns and repeats
the task.

One paper presented at the AREA workshop used demonstrations to specify the sys-
tem goals. Specifically, in [69], the authors proposed a semi-supervised learning approach
from demonstrations through program synthesis. Within this approach, a human operator
specifies the goals by demonstrating to the agents how to perform the task. The MAS auto-
matically infers high-level goals from the demonstration, synthesises a computer program
based on the demonstrations, and learns behavioural models for predictive control.

The analysis of the papers presented at the AREA workshop (see Table 1) shows
that, despite the many approaches proposed in the literature, it seems that there is still no
consensus on the strategy to be used to specify MAS requirements. Most of the papers
(5) used domain-specific languages for specifying the MAS requirements, followed by
logic-based languages (2), natural languages (1), and demonstrations (1). Many research
papers often do not explicitly discuss the reason that motivates the usage of a given
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specific language for the requirement specification. For example, many papers assume that
requirements are expressed using logic-based languages (a formalism that easily supports
the development of research prototypes). We believe that this is often dictated by the fact
that these languages have formal semantics and are supported by verification and synthesis
tools that can be reused for verifying and synthesising plans of the MAS. Others use DSLs.
We believe that this choice is dictated by the need of providing solutions closer to the needs
of the final users.

4.2. MAS Testing

Testing robotic and multi-agent systems is a complex activity. It starts from the
unit testing level, where the units can be the single agent functionalities, to the system
integration level. At the system integration level, many aspects, such as the concurrent
execution of the agents, the environment integration, the control over the coordination
protocol and communication management and modalities, are considered. Testing all
these aspects is inherently complex, and becomes even harder when tools do not provide
appropriate support.

Agent development frameworks, such as JADE [105] or Jason, support developing
and testing of MAS and robotic applications. However, each of these frameworks comes
with some limitations. These limitations are particularly relevant for the design and devel-
opment of MAS that need to be executed in a physical distributed environment, deployed
over many machines and used by humans. A concrete testing and maintenance support
that covers all of these requirements is still missing. In addition, the performances of V&V
techniques are not sufficient to support the requirement of distributed environments, and
cannot be easily integrated in the running environment.

In this section, we summarise a set of works that considered the problem of testing
MAS and robotic applications. These works have been selected based on the authors’
knowledge and experience. Specifically, in this section, we considered works that are:
(1) exploring current support for testing MASs, (2) analysing applications of standard
testing techniques from the software engineering community, and (3) reporting how V&V
approaches have been exploited in the field.

4.2.1. Support for Testing MASs

A starting point for testing an MAS is provided by the development framework itself,
allowing and supporting the agent internal state inspection and the messages exchange
supervision. Both JADE and Jason offer such kind of tools (the Mind Inspector in Jason,
the Introspector agent, and the Sniffer in JADE), which are usually necessary to perform a
manual first check of the behaviours of agents and of the overall MAS, or that can be the
used to perform more automated tests and verification.

Some studies related to JADE are, for example, [106,107]. In [106], the authors pro-
posed a solution, based on mock agents, that is presented to perform testing of a single role
of an agent under successful and exceptional scenarios; in [107], the authors proposed a
framework developed on JADE [105] for building and running MAS test scenarios. This
framework relies on the use of aspect-oriented techniques to monitor the autonomous
agents during tests and control the test input of asynchronous test cases.

In [108], the authors proposed an approach for enabling DevOps activities (that is,
collaborative programming features to achieve fast and continuous deployment of complex
systems) in a new framework based on JaCaMo-web IDE [109] (which is a tool related
to JaCaMo (http://jacamo.sourceforge.net/ accessed: 14 May 2021), and consequently to
Jason). This extension to the IDE enables for interactive facilities, such as the automatic
access to the updates made to the components (agents), and the possibility to execute
tests on temporary running instances (allowing the framework to check the compatibility
of new changes using the real scenario, since tests are performed while the programmer
types, without affecting running instances). In addition, this extension provides facilities
for preventing conflicts when developers attempt to edit a resource simultaneously, and
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for managing versions. Thus, this is a concrete step toward offering real testing facilities
to AOP.

There are some other works related to MAS testing that do not consider JADE or Jason.
The SUnit framework [110] provides a model based approach based on an extension of
Junit. The eCAT testing framework [111,112] supports continuous testing and automated
test case generation. In [113], the authors proposed a tracing method supported by a tool
implementation to capture and analyse dynamic runtime data collected by logging the
behaviours of a set of agents. These solutions are ad-hoc solutions with limited practical
adoption, compared to JADE or Jason. They usually rely on specific formal languages that
make their use difficult, in particular in industrial applications.

4.2.2. Applications of Standard Testing Techniques from Software Engineering

Standard model-driven testing techniques coming from the SE domain (e.g., [114])
are usually difficult to be used in multi-agent applications. One of the main limitations
of these techniques is that they require a model of the multi-agent application. While
there are standard approaches for modelling object-oriented or service-oriented systems,
standard models for MAS are less mature. Therefore, MAS design is still often performed
by relying on ad-hoc solutions, which need to be standardised. Therefore, we believe that
there is room for exploiting SE techniques in the Agent-Oriented Software Engineering
(AOSE) area [115].

Some examples where standard SE testing approaches or techniques have been
adopted for MASs platforms are reported in the following.

The BEAST methodology [116] is an example of agile testing methodology for multi-
agent systems based on Behaviour Driven Development (BDD). It automatically generates
test cases skeletons from BDD scenarios specifications. The BEAST framework enables
testing MASs based on JADE or JADEX [117] platforms.

In [118], mutation testing is used to test Jason specifications. The authors propose
a set of mutation operators for Jason, and present a mutation testing framework for
individual Jason agents based on these mutation operators. In [119], the authors proposed
a property-based testing (a particular form of model based testing) framework for MASs
specified in Jason. Specifically, the authors proposed to replace a subset of the agents by
a QuickCheck [120] state machine. This state machine interacts with the other agents by
sending messages and modifying the environment, and judging whether the remaining
real agents are correctly implemented by examining the messages sent to any replaced
agent, and the belief perceptions that they receive.

4.2.3. Exploitation and Integration of V&V Approaches

There are many studies to check that the interaction between agents conforms to a
formal specification (which is as a part of the testing activity). This is a very complex
task since it involves the need to formally model and verify the protocol (as described in
Section 3), and a concrete way to oversee the runtime execution, mixing together both a
theoretical and an applied aspect.

A concrete example of the integration of a V&V technique directly into a development
platform is proposed in [121,122], where an extension of the JADE Sniffer is used to create
a monitor able to verify at runtime the MAS execution with respect to a global protocol
specified using the Attribute Global Types formalism [123–125]. Since this is a JADE
agent, it can be directly used in any JADE MAS, provided that the global protocol (if any) is
translated into the requested language. Similarly, in [121], an extension of Jason is proposed
to achieve the same monitoring.

In [39], we can find a work presenting the combination of formal verification and
validation in the context of MAS verification, integrated into the MCAPL [126] framework.
The verification part is obtained through the verification of the BDI agent, implemented in
Gwendolen [6], against a formal model of the environment, while the corresponding valida-
tion is achieved through runtime verification, where monitors are used to verify at runtime
that the real environment does not violate the assumptions made by the model checker.
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4.3. Simulation Tools

Physically distributed systems are often needed in industrial and academic solutions,
such as unmanned vehicles, logistic, ambient intelligent systems.

4.3.1. Simulation Tools for MASs

JADE is largely adopted in industry, due to its simplicity in modelling agents’ tasks,
its support for agent communication, and its extensive community support. JADE suffers
from scalability issues [127,128]. In addition, it provides limited support for dynamically
discovering new platforms that join the MAS at run-time. This limitation forces the usage
of p2p communication, which is quite common in real world applications ([129]). However,
differently from Jason, JADE was integrated within existing simulation platforms.

Before deploying the MAS, developers need to test their solutions. To be representative
of a real situation, the physical environment must contain agents representing physical
entities, such as vehicles, computers, and production systems. Testing these systems is
usually done by first relying on simulations. We can simulate the behaviour of an MAS
by relying on some stub entities, instead of using the actual MAS components. Stubs
implement a logic which is similar but usually simpler than the one that will be executed
by the actual agents. For example, stubs may abstract and simplify the interaction protocols
used by the different agents to communicate.

Some simulators for MASs exist, and we will present them in this section, but they
deal with the simulation in different ways.

In [130], the authors propose DMASF, a Python distributed simulator for large scale
MASs (made of billions of agents). In this simulator, agents are implemented as specific
entities using the simulator language. This means that a large number of agents can be
simulated (we speak of numbers that are usually not manageable with JADE nor Jason,
even using a simulation setup with many machines). However, the agents have to be
re-implemented using the language of the simulator. This prevents user from testing actual
code executed by agents of the MAS. Netlogo (http://ccl.northwestern.edu/netlogo/index.
shtml accessed: 14 May 2021) is another simulator that can handle MAS applications with
a high number of agents. However, similarly to DMASF, the logic of the MAS agents has
to be re-implemented using the input language of the simulator. We do not provide a
deeper analysis of these types of simulators since, in the rest of this paper, we will focus on
simulators that can support JADE specifications.

The JREP platform [131] integrates JADE and Repast Simphony [132]. It solves some
limitations of a similar approach presented in [133] that supports an older version of Repast
and was limited by the focus on supply chain performance analysis and by an inefficient
polling strategy affecting performances. The JREP platform offers an MAS development
platform exploiting the JADE support for modelling the internal agent behaviour and the
Repast support for simulating an environment where entities can interact in a simulation.
JREP is a new development platform, where JADE agents need to be modified to implement
new interfaces to be able to interact with the Repast environment. In this way, a bidirectional
interface between the JADE agents and the Repast running environment is achieved, but the
resulting JADE MAS is no longer able to run independently outside of the JREP platform.

In [134,135], the authors proposed the SAJaS API. This API has to be used with Repast
Simphony to create, or improve, MAS based simulations enhanced with JADE-based
features. Then, the “MAS Simulation to Development (MASSim2Dev)” code conversion
tool transforms an MAS, developed using the SAJaS API, to a “standalone” standard JADE
MAS. This tool is useful in scenarios where JADE developers need to perform tests in
a simulator before distributing their JADE MAS. The architectural design of the JADE
framework is based on Repast. However, since it is “JADE-like” environment, it is simpler
to generate the JADE standard implementation. Unfortunately, MASSim2Dev can not
manage the JADE blocking functions, and does not allow Ticker and Waker behaviours
due to problems with time management.
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4.3.2. Simulation Tools for Robots

Robotics systems also need to be extensively tested before deployment. Testing these
systems is even more complex since robots interact with their physical environments
through sensors and actuators. Therefore, to test these systems, simulators must provide
reliable and accurate simulators between the robots and their environment. The variety of
the environments in which the robots operate (e.g., very deep sea, disaster areas, no gravity
scenarios and so on), makes the creation of accurate simulators even more complex.

In the following, we report a few examples of simulators present in the literature.
USARSim (Urban Search and Rescue Simulation) [136] is a general-purpose multi-

robot simulator environment used as the simulation engine for the Virtual Robots Com-
petition within the Robocup initiative, and has been often adopted in research activities.
It presents an interface with Player [137] (a popular middleware used to control many
different robots), and, thanks to this interface, the code developed within USARSim can be
transparently moved to real platforms without any change (and vice versa). This simulator
provides is relatively accurate: there is a close correspondence between results obtained
within the simulation and the one obtained by the corresponding physical system.

MORSE (Modular Open Robots Simulation Engine) [138] is an open-source application
that can be used in different contexts for the testing and verification of robotics systems. It
is completely modular and can interact with any middleware used in robotics. In addition,
it does not impose a format to which programmers must adapt. MORSE is designed to
handle the simulation of several robots simultaneously, as a distributed application where
the robotics software being evaluated can run on the same or a different computer as the
simulation one. The evaluated components are executed on the target hardware and interact
with the simulator with the very same protocols as the ones of the actual robots, sensors,
and actuators, to make the shift from simulations to actual experiments transparent.

Gazebo [139] is a 3D dynamic multi-robot environment simulator. It is developed
starting from the well known Player/Stage project [137], with the goal of enabling simu-
lating dynamic outdoor environments and providing realistic sensor feedback, while still
modelling robots as dynamic structures composed of rigid bodies connected via joints.
The hardware simulated in Gazebo is designed to accurately reflect the behaviour of its
physical counterpart: consequently, a client program shows an interface that is identical
to the one that will be executed on the final robot. This makes Gazebo to be seamlessly
inserted into the development process of a robotic system. Nowadays, it is largely adopted
by the robotic community, and has a large and active supporting community.

4.4. Perspective of the Authors

Many SE approaches for MAS and robotic applications were proposed in the literature.
However, many challenges still need to be addressed. In the following, we will discuss
three of these challenges.

• lack of clear guidance for the selection of the specification language to be used for the re-
quirement specification. The analysis of the paper presented in Section 4.1 showed the
absence of a consensus on the strategy to be used to specify MAS requirements. Given
the limited number of papers analysed (10), we cannot make any general claim on
our observations, which should be confirmed by more extensive and in-depth studies.
However, we believe that all the formalisms proposed in the literature for requirement
specifications offer pro and cons, and that the research community should spend some
effort in understanding when and how to use them and providing guidelines that
can be used in research and practical works. We believe that our observations can
pave the way for discussions and further studies on the requirement specification of
multi-agent systems.

• lack of mature testing tools for MAS and robotic applications. The works summarised in
Section 4.2 are some examples of SE techniques that support testing MAS and robotic
applications. However, these techniques are supported by research prototypes that
are still not mature enough to be used in industrial settings. Therefore, we believe
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that more effort is needed to implement and develop mature tools that can be used in
industrial applications.

• lack of use of industrial simulators. As discussed in Section 4.3, there are many simulators
for JADE MASs. However, these simulators are still not ready for industrial usages.
In addition, while there are many platforms for simulating robotics systems, the
continuous innovation of available solutions from the robotic community (e.g., new
sensors and actuators) is asking for more accurate simulators. It is also necessary to
precisely document the usage scenarios and assumptions of each simulator, to enable
developers to quickly find the best simulation platform for their needs. For this reason,
we believe that research should work with integrating research solutions with real
industrial products.

5. Human–Agent Interaction

Building reliable applications is of primary importance when agents and robots need
to interact with humans. Robots or humans could be directly (negatively) affected by an
agent’s behaviour, e.g., when humans and agents are working together to achieve a goal.

To ensure reliable interactions, humans and agents need to anticipate each other’s
actions and reactions to some degree. They need to communicate and understand each
other, as well as develop a shared understanding of their environment. In addition, humans
need to trust the autonomous system.

We discuss three main approaches for realising reliable applications based on human–
agent interaction, namely (i) building it right from the ground up, (ii) analysing existing
interactions, and (iii) adjusting the users’ expectations when necessary. In addition, the
verification of human–robot interaction was discussed in Section 3.

5.1. Interaction Design

Agent interaction is usually based on interaction protocols. If humans are part of the
system, the means of interaction between a user and an autonomous component have to be
designed before the deployment of the application. Some approaches have been proposed
to design human–robot interaction protocols.

Interaction Design Patterns (IDPs) [140] have been proposed to capture workable
solutions for human–agent interaction. As design patterns are rather descriptive in nature,
they allow for more flexibility in how they are actually implemented. In [141], five design
patterns for eliciting self-disclosure are presented, as self-disclosure is an important part of
getting acquainted, which leads to more trust and helps with long-term interactions. In
their paper, children were the target audience. IDPs are also used in the framework of [142]
to specify how to communicate explanations in order to improve the performance of mixed
human–agent teams.

In [143], 18 guidelines for interactions between humans and AI are proposed from
the perspective of the human–computer interaction field and evaluated through a user
study. The guidelines include making clear what the system can do, how well it can do
it, considering social norms, supporting efficient interaction, giving explanations, and
adapting to the current user.

In [144], planning agents are used to coordinate in disaster response scenarios so that
humans can choose to be guided by an agent. The authors also propose some guidelines
for interaction design: agents should always be able to respond to the needs of the users,
interactions should be rather simple with limited options, and interaction should enable
transfer of control between the autonomous agent and its user. In [145], the authors pro-
posed adjustable autonomy, which enables a (human) controller to switch unmanned aerial
vehicles operation between manual control and autonomy, enabling them to supervise
multiple entities at once and only assume control when necessary.

5.2. Modelling Mixed Human–Agent Systems

If a system can be modelled, it can be simulated (or even verified), it is easier to reason
about it and reach a deeper understanding of the system behaviour. Modelling human–
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agent interaction is a challenging endeavour. On the one hand, we have the autonomous
nature of the agent, while, on the other hand, human behaviour tends to be unpredictable.

In [146], the authors proposed an approach to synthesise control protocols. An un-
manned aerial vehicle and the operator are modelled as Markov Decision Processes (MDP),
interacting via synchronised actions. MDPs allow modelling uncertainties regarding the
behaviour of the human operator. The model is then augmented to a stochastic two-player
game to account for non-determinism.

Another modelling approach for autonomous systems (e.g., autonomous driving) is
proposed in [147]. They combine discrete event simulation with system dynamics models
to simulate the effects of different system designs.

In [148], an entire robot swarm interacting with humans is considered. Challenges
include which control type to use in which situation (assigning and controlling a leader,
using the environment, controlling only parameters, or assigning behaviours), and also
visualisation techniques to help the user understand a swarm’s behaviour.

The modelling approaches for interaction design presented in this section are all
created for a specific use case. More work is required to find general-purpose models that
can be used in different domains.

5.3. Trust and Transparency

As systems get more and more autonomous, anticipating their behaviour becomes
more challenging. Transparency can help users understand what their system is doing.
In [149], the authors use a tiered transparency model based on situation awareness to
show that more agent transparency leads to better trust calibration of the human operator
without necessarily increasing their workload. This is further developed in [150], where
the authors argue that bidirectional transparency is important. Thus, agents have to be
designed to understand the plans, reasoning and future projections of their users.

In [151], the author argues that trust (in an autonomous system) at least requires a
framework for recourse, the system’s ability to give explanations, and verification and
validation of the system.

In [150], the authors discuss further challenges regarding trust, namely how to quantify
trust, how to model its evolution, how to create a logic that allows for specifications
including trust, and also how to verify whether a system satisfies such a specification.

5.4. Behaviour Explanations

There are still many cases where full autonomy is not yet achievable. In these cases,
humans have to take on a supervisory role. In these cases, humans may want to implicitly
perform some kind of (mostly informal) verification of the agents’ autonomous behaviour.
One way of achieving this is giving autonomous systems the ability to explain their actions,
their decisions and reasoning. While the previous paragraph handled how to enable users
to get expectations which are more justified, some expectations might still be unreasonable.
Behaviour explanations are one way of realigning these expectations, or even finding flaws
in the autonomous logic of the system.

In [152], the author draws on the large body of work on explanations in the social sci-
ences to infer properties of good explanations that humans will accept. They are contrastive
(explaining why something happened instead of something else), selected (giving only
relevant and important information) and social (considering the needs and background of
the recipient).

In [153], a mechanism for answering “Why?”-questions about an agent’s behaviour is
implemented for the GWENDOLEN language. The questions are answered by identifying
causal factors in the trace of the program, i.e., choice points, where another decision
wouldn’t have led to the result that needs to be explained.

A general perspective on explanations in AI is taken in [154] with a focus on systems
incorporating machine learning. They give a formal definition of explainability, distin-
guishing it from interpretability and transparency of learning algorithms. Among others,
they give possible reasons for making a system explainable (since each system does not
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need to be, e.g., if users have no way of reacting to an explanation), possible groups of
target recipients, ways to create interpretations and the relations between these questions.

In [155], the authors take another stance on explanation. They consider explanation as
a model reconciliation problem. Explaining means making the mental models of the agent
and the user converge, leading to a shared understanding of their world, so that the plan
of the agent appears optimal.

5.5. Perspective of the Authors

Many researchers had considered human–agent interaction problems and designed
solutions for these problems. However, many challenges still need to be addressed. In the
following, we will discuss three of these challenges:

• Making human–agent interaction more reliable. There is an increasing need for making
human–agent interaction more reliable. This problem can and has to be tackled from
many different research angles. Interaction design, employing foremost guidelines and
design patterns have laid the foundation for reliable interaction. However, reliability
is mostly targeted implicitly, which leaves a need for the incorporation of an explicit
notion of reliable interaction.

• Providing modelling formalisms that effectively enable modelling human–agent systems.
Modelling human–agent systems requires new ways of specifying formerly informal
concepts, such as trust, transparency, and maybe even more exotic concepts (for a
machine) such as honesty and loyalty. Of course, the ability to model such systems is
closely linked to being able to verify them.

• Making systems more understandable. Finally, making systems more understandable,
e.g., by explaining them, requires many different parts coming together. In the
concrete case of improving reliability, challenges include making sure users correctly
understand what they are told, systems explaining their actions truthfully and users
being able to verify that, or agents being able to understand why users perceive them
as unreliable and act upon that.

6. Conclusions

In this perspective paper, we have discussed the applicability of agent-based program-
ming in robotics, presented an overview of the landscape in the verification and validation
of MAS and robot systems, analysed the use of software engineering in MAS, and described
the latest research in human–agent interaction. Combining knowledge coming from these
research areas may lead to innovative approaches that solve complex problems related to
the development of autonomous robotic systems, and there is growing interest in solutions
that are at the intersection of these research areas. The AREA workshop was a successful
event attended by researchers working in these areas. It was an exciting event that enabled
sharing ideas, open problems, and solutions and fostering cross-disciplinary collaborations
among researchers. In this work, we used the papers and discussions from this workshop
to analyse some of the aspects covered in this perspective.

Our perspective provided a high-level view of current research trends. We also identi-
fied a set of challenges for each of the areas we considered. For multi-agent programming,
the challenges we identified include among others, the limited set of features provided by
existing agent-based languages, immature methodologies and tools, and the limited inte-
gration of agent-based technologies with other techniques. For verification and validations,
the challenges include the scalability of the proposed techniques and the verification of ML
components. For software engineering, the challenges include the lack of clear guidance
for the selection of the specification language to be used for expressing requirements,
the lack of mature testing tools for MAS and robotic applications and the lack of use of
industrial simulators within research works. Finally, for human–agent interactions, the
challenges include the still inadequate reliability of human–agent interaction systems, the
still immature modelling support for these systems, and the lack of techniques able to
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make these systems more understandable. We believe that this perspective can be useful
for researchers that aim at working at the intersection of these research areas.

We hope that the different research communities improve their collaboration efforts,
so that the best proposals from different areas can be combined to create new and existing
solutions and tools to be exploited both in academia and in industry.
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Abstract: Autonomous systems developed with the Belief-Desire-Intention (BDI) architecture tend to
be mostly implemented in simulated environments. In this project we sought to build a BDI agent for
use in the real world for campus mail delivery in the tunnel system at Carleton University. Ideally,
the robot should receive a delivery order via a mobile application, pick up the mail at a station,
navigate the tunnels to the destination station, and notify the recipient. In this paper, we discuss
how we linked the Robot Operating System (ROS) with a BDI reasoning system to achieve a subset
of the required use casesand demonstrated the system performance in an analogue environment.
ROS handles the connections to the low-level sensors and actuators, while the BDI reasoning system
handles the high-level reasoning and decision making. Sensory data is sent to the reasoning system
as perceptions using ROS. These perceptions are then deliberated upon, and an action string is sent
back to ROS for interpretation and driving of the necessary actuator for the action to be performed.
In this paper we present our current implementation, which closes the loop on the hardware-software
integration and implements a subset of the use cases required for the full system. We demonstrated
the performance of the system in an analogue environment.

Keywords: belief-desire-intention (BDI); jason; robot operating system (ROS); robotic agents

1. Introduction

An autonomous agent can be defined as a system that pursues its own agenda, affecting what it
senses in the future, by sensing the environment and acting on it over time [1]. Autonomous systems
should be designed in such a manner that they can intelligently react to ever-changing environments
and operational conditions. Given such flexibility, they can accept goals and set a path to achieve these
goals in a self-responsible manner while displaying some form of intelligence.

The Belief-Desire-Intention (BDI) framework is meant for developing autonomous agents,
in that it defines how to select, execute and monitor the execution of user-defined plans (Intentions)
in the context of current perceptions and internal knowledge of the agent (Beliefs) in order to satisfy
the long-term goals of the agent (Desires). However, so far, very few applications of BDI have been
observed outside of simulated or virtual environments. In this paper, we describe how we built our
autonomous robot that uses BDI (and specifically, the Jason implementation of the BDI AgentSpeak
language) and Robot Operating System (ROS) to eventually deliver interoffice mail in the Carleton
University campus tunnels. The Carleton tunnel system allows people to go from one campus building
to another without having to face Ottawa’s harsh winters and makes for a more controlled environment
for our robot to navigate. However, being underground also means that access to Global Navigation
Satellite System (GNSS) signals, such as Global Positioning System (GPS), is not possible, and internet
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access is limited to certain areas. In this context, ultimately the robot will have to know where it is and
where to deliver mail, but there are also some sub-goals, like obstacle avoidance and battery recharge,
which it might have to achieve in order to get to its main goal.

Our use of BDI for this work is two fold. First, BDI provides a good goal-oriented agent
architecture that is resilient to plan failure and changes to context. It also supports the notion of
shorter-term and longer-term plans that can be organized so as not to conflict with each other. Granted,
BDI may not necessarily be the perfect ad hoc solution for agent-based robotics, but there is just not
enough literature to demonstrate the appropriateness of BDI (or lack thereof) in robotics.

There are alternative agent architectures to BDI that are available, for example the subsumption
architecture [2,3]. Although it is possible that the robotic behaviours implemented in this paper could
have implemented the same robot using subsumption, our longer-term goals for this project would
likely make the use of other architectures more difficult. BDI is goal-directed whereas in the case of the
subsumption architecture, the agent behaviour emerges from the various layers built into the agent [4].

In the remainder of the paper, we first provide some background on BDI and ROS (Section 2),
and related work on known implementations of agent-based robots (Section 3). We then describe our
overall hardware and software architecture (Section 4). Next, we describe in more detail the hardware
and software implementation (Section 5) followed by an evaluation of the architecture (Section 6) and a
discussion of the lessons learned using our method for agent-based robotics (Section 7). Our conclusion
(Section 8) provides a summary of the key accomplishments presented in this paper as well as our plans
for future work. Additional details with respect to the hardware implementation, specifically related
to our connections between our computer and the robot’s power system and our line sensor circuit,
used for path following, are provided (Appendix A).

2. Background

We provide background on BDI and the AgentSpeak language in Section 2.1. We then introduce
ROS in Section 2.2.

2.1. Belief-Desire-Intention Architecture

The principles that underpin BDI originated in the 1980s cognitive science theory as a means of
modelling agency in humans [5]. Since that time, this model has been applied in the development
of software agents as well as the field of Multi Agent System (MAS). An example of a popular
implementation of applying BDI to agent reasoning is Jason [1,6]. In Jason, an agent’s initial belief
base, goals and plans are specified using AgentSpeak.

In BDI systems, a software agent performs reasoning based upon internally held beliefs, stored in
a belief base, about itself and the task environment. The agent also has objectives, or desires, that are
provided to it, as well as a plan base, which contains various means for achieving goals depending on
the agent’s context. The agent’s reasoning cycle consists of first perceiving the task environment and
receiving any messages. From this information, the agent can then decide on a course of action suitable
to the context provided by those perceptions, the agent’s own beliefs, messages received, and desires.
Once this course of action has been selected, we can say that the agent has set an intention for itself.
These plans can include updating the belief base, sending messages to other agents, and taking some
action. As the agent continues to repeat its reasoning cycle, it can reassess the applicability of its
intentions as it perceives the environment, dropping intentions that are no longer applicable [1,6].

Agents developed for BDI systems using Jason are programmed using a language called
AgentSpeak. This is a logic-based programming language that bears similarities to Prolog. The syntax
provides a means for specifying initial beliefs for the agent to have, rules that can be applied for
reasoning as well as plans that can be executed. The Extended Backus–Naur form (EBNF) description
of AgentSpeak can be found in Appendix A.1 of [1]. Here, we provide a brief overview of AgentSpeak.

In general, AgentSpeak plans have the form of:

triggeringEvent : context <- body.
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A triggering event is the addition or deletion of a belief, achievement goal, or a test goal.
The syntax of these triggers takes the form of predicates. To differentiate goals from beliefs, achievement
goals begin with an exclamation mark (!) and test goals begin with a question mark (?). Triggers that
are based on the addition or deletion of a belief or goal begin with a positive (+) or negative (−) sign
respectively. An achievement goal is used for providing the agent with an objective with respect
to the state of the environment whereas a test goal is generally used for querying the state of the
environment. The context is a set of conditions that must be satisfied for the plan to be applicable
based on the state of the agent’s belief base. This is a logical sentence that can use both beliefs as well
as previously defined rules. The body includes the instructions for the agent to follow for executing
the plan. The plan body can include the addition or deletion of beliefs and/or goals as well as actions
for the agent to perform [1].

Listing 1 provides an example of an AgentSpeak plan. Here, we have a simple plan for the
achievement goal of !goTo(LOCATION). The variable LOCATION, interpreted as a variable due to the
capitalization of the first letter, specifies the agent’s destination. This specific plan is meant for the
context where the agent has arrived at the destination. Therefore, the plan context requires the agent
have direction(LOCATION,arrived) be a logical consequence of its belief base. This can either be
the result of this predicate being perceived, the belief being communicated to the agent, or adopted
through plan execution. This context is applicable when LOCATION unifies the goal with the agent’s
belief. For example, during execution, the agent could adopt the goal of !goTo(post1). In this case,
post1 specifies the specific location that the agent needs to travel to. This plan would become applicable
if the predicate direction(post1,arrived) is a logical consequence of the belief base. The body of
the plan is for the agent to execute the stop action, specified using the drive(stop) predicate.

Listing 1. Example AgentSpeak program.

+!goTo(LOCATION)
: direction(LOCATION,arrived)
<- drive(stop).

BDI enables agent-based systems to perform reasoning based upon beliefs in order to enable the
agent to achieve its goals, making it an attractive way for the implementation of autonomous systems.
However, for the application in this paper, this language needs a means to communicate to its sensors
and actuators. ROS, described in the next section, provides the middleware necessary to connect Jason
to hardware.

2.2. Robot Operating System (ROS)

ROS is a package for developing software for robotic applications [7]. ROS has an active
community supporting a variety of robotic platforms, sensors, and actuators. By building robotic
applications that are compatible with ROS, developers enable their applications to be compatible with
other devices and software nodes supported by the community. This allows developers to focus on the
implementation of individual nodes and enables flexibility to use one of many available nodes that are
compatible with ROS. For example, various hardware component developers have made ROS nodes
available, allowing systems developers to use those modules without concern as to how those nodes
are implemented in detail.

ROS operates using a tuple-space architecture. Various software nodes publish and subscribe
to various topics using socket-based communications instead of communicating with other nodes
directly. This removes the need for developers of individual nodes to concern themselves with which
nodes they are interacting with, they need only concern themselves with the topics that they use.
This is managed using a central master node which has the role of brokering peer-to-peer connections
between nodes that publish and subscribe to the same topics. ROS also provides functionality for
recording run-time data, which can be used for diagnostics.
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3. Related Work

Although there are many examples of research on software agents and the use of BDI, this review
of related work focuses on the application of BDI to robotics where the development was targeted
toward real-world applications. We will also discuss work that sought to use BDI agents with ROS.
This work is discussed in Section 3.1. Next, in Section 3.2, we discuss how our approach in the context
of the related work.

3.1. BDI for Robotic Applcations

The Australian military conducted research into the use of BDI for controlling a fixed-wing
Unmanned Aerial Vehicle (UAV) called a Codarra Avatar. As part of this project, they developed
both the “Automated Wingman”, a graphical programming environment where pilots could provide
mission-specific programming for a UAV, as well as a BDI-based flight controller for the UAV itself.
The intent of this research was to enable pilots, who may not have programming skills, to provide
mission parameters in a way more natural to them using the military’s Observe Orient Decide
Act (OODA) loop. The authors proposed that the OODA loop could be approximated using BDI.
Successful flight tests were performed using these systems in the mid 2000s, although it is unclear if
any follow-on research was conducted [8,9].

A more recent example of BDI being used for controlling a drone was provided by Menegol [10,11].
Their implementation used the JaCaMo framework [12], which includes Jason. A video of their UAV
flying is available online [13]. This work is currently being extended to use the ROS as the core of
the architecture [14,15]. Their approach is to build a linkage between ROS and Jason, where Jason
agents can run actions by passing messages to modules in ROS and receive perceptions by receiving
messages from other modules. The perceptions and actions are defined using manifest files that specify
the properties and parameters of the messages. A more generalized version of this project called
jason_ros, for other types of integration between Jason and ROS for other applications has evolved out
of the work with UAVs [16]. This is similar to other efforts to link ROS to Jason, such as rason [17],
and JROS [18], although it is unclear if these efforts are related to this project.

Taking another approach using Python, the Python RObotic Framework for dEsigning sTrAtegies
(PROFETA) library implements BDI and the AgentSpeak language for use with autonomous robots [19].
They are interested in determining if Agent Oriented Programming (AOP) can be implemented
with Python for simpler robotic implementations. In their paper, the authors used the Eurobot
challenge as well as a simulated warehouse logistics robot scenario as case studies. In the Eurobot
challenge, the robot must sort objects in the environment while also working in the presence of other,
uncooperative, robots [20].

The ARGO project [21] has interfaced Jason agents with an Arduino using a library called
Javino [22]. Javino is a Java library for controlling Arduino computers from Java programs that was
specifically designed with the intention of using it to control a robot using Jason programs. The authors
of the ARGO paper claim to not be tied to specific hardware or a specific AOP language, such as
AgentSpeak [21,22].

Alzetta and Giorgini contributed work toward a real-time BDI system connected to ROS 2 [23,24].
Their implementation uses a custom built BDI engine, implemented in C++, which supports soft
real-time constraints. The agent’s desires are encoded with soft real-time deadlines for when they need
to be achieved. The plans in the agent’s plan library include the execution time for that plan. The agent
reasoning system can then reason about the priority of desires, time constraints and execution time
when performing plan selection.

Dennis et al. explored the use of rational agents implemented with GWENDOLEN and several
robotic applications [25]. A key feature of their implementation was the use of an “abstraction
engine” for performing the translation between the agent, the “physical engine” and the “continuous
engine”, which were responsible for the interface with the real world (or simulated) sensors and
actuators of the robot. They used this method to address the challenge of using an agent reasoning
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system, which operates using “discrete first order logic predicates”, to control a robot in the real-world
which can include continuous sensor signals. Their concern was that such continuous signals could
overwhelm the BDI reasoner.

Cardoso et al. interfaced BDI agents, implemented in GWENDOLEN, with ROS as described
in [26]. Their implementation uses the rosbridge protocol to connect their agent reasoner with ROS.
They also experimented with connecting Jason to ROS using the protocol approach. Their choice of
GWENDOLEN was motivated by their desire to make use of the Agent Java PathFinder (AJPF) model
checking tool. They also highlight two interesting issues related to linking agents with robots. First,
the concern that the sensors may overwhelm the reasoner, as the sensors may generate data faster than
the agent can handle it. They address this issue by proposing the use of filters to the sensor data to
prevent the agent from being overwhelmed. They also mention an issue with implementing actions
using synchronous service routines in ROS, which would cause the agent to wait for the action to
be completed before continuing the reasoning cycle. Their proposed approach is to use an external
handler for executing longer term actions. This handler provides updates to the agent, which can in
turn command the handler to stop or continue the longer-term action, as necessary.

The authors’ own related work includes the Simulated Autonomous Vehicle Infrastructure (SAVI)
project, which aimed to develop an architecture for simulating autonomous agents implemented using
a Jason BDI [27,28]. Among its key features is the decoupling of the agent reasoning cycle from the
simulation time cycle, enabling the simulated agents to run in their own time. The agent’s perceptions
and actions passed between the simulated agent body running in a separate thread and decoupled
from the agent’s reasoning cycle. Although this system was targeted toward a simulated environment,
the design was intended to be useful for application to robotic agents, not only simulated agents.

3.2. Comparison to Related Work

Our goal is to use an established BDI system, namely Jason, in an ecosystem for various robotic
platforms (ROS) and enable the use of agent systems to solve real-world problems using robotics,
taking advantage of ROS’ ecosystem of publishers and subscribers. As mentioned in Section 3.1,
while there are some projects that have sought to control real-world robotics using BDI reasoning
systems, there are a limited number of works in this area. Here, we will discuss the difference in our
approach to those discussed in the related work.

In the case of the Codarra avatar agent, although it is very interesting, it does not seem to be
openly available. Other work, such as PROFETA, uses a Python based BDI, as opposed to the more
commonly used Jason. Our work is more similar in motivation to the efforts to link Jason and ROS,
although our implementation of the connection between ROS and Jason is quite different. In our
case, the BDI reasoning system is built as a stand-alone program with rosjava using Jason as a library,
without the use of an external middleware.

Our approach does have similarities with the approach taken by Dennis et al. with respect to the
use of abstraction engines. The perception and action translators that we use could also be thought of as
abstraction engines. A key difference in our approach is that we do not have a single abstraction engine
for the agent to interact with but several translators for various sensors and actuators, although they
could also be implemented as a single node. The idea here is that a developer could add or remove such
translators (as well as the underlying sensors and actuators) as necessary, without necessarily needing
to rework the unaffected nodes. This allows for more flexibility in reconfiguring the system to support
new sensors and actuators. The challenge, however, is that we need to handle issues with asynchronous
sensor data becoming asynchronous perceptions. This challenge was mentioned by Dennis et al. as
well as by Cardoso et al. They also highlighted the challenges of potentially overwhelming the
reasoner with frequent sensor updates and the issue of the agent waiting synchronously while actions
are completed, possibly stalling the reasoning cycle while an action that takes a long time is executed.
As mentioned in the related work, they proposed an external handler for executing these longer-term
actions. This handler provides updates to the agent, which can in turn command the handler to stop
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or continue the longer-term action, as necessary. This bears some similarity with the our approach,
which uses the action translator in this service handler capacity, however our reasoning system does
not wait for the action to be completed, only for the action to be passed to the state synchronization
module within SAVI ROS BDI. The trade-off of this design difference is discussed in greater detail in
Section 7.

4. Architecture

This section outlines the architecture of the mail delivery robot. The robot is intended to function
on an on-demand basis, where a mail-sending user would summon the robot to collect mail, like how
users request rides using ride-sharing apps. The robot would then autonomously navigate to a nearby
mail collection and delivery location to collect the item from the user. Once the mail has been collected,
the robot would then autonomously navigate to the mail delivery location and alert the receiver that
there is mail for them to receive. The receiver would then meet the robot at another mail collection
and delivery location. For the purposes of this early stage prototype, the mail delivery locations,
and any other points of interest are indicated using a Quick Response (QR) code, and the robot paths
are marked using a line for the robot to follow. Removing the need for instrumenting the environment
will be discussed in the future work, in Section 8.2.

First, in Section 4.1, we examine the task environment that the robot will operate in. We then
discuss the hardware configuration in Section 4.2. The software architecture is discussed in Section 4.3.

4.1. Environment

The eventual task environment for the robot is the tunnel system that connects the buildings of
Carleton University. This provides our robot with an indoor space which connects to almost every
building on campus with no weather to deal with and smooth floors to drive on. Although these
are attractive features of the tunnel system, there are some drawbacks. First, the tunnels do not have
consistent wireless internet coverage, although there are locations where there is reliable network
access. The tunnels also have lower lighting levels than typical office environments, providing a
potential challenge to the design. Finally, in the tunnel there is no access to GNSS signals, such as
GPS, meaning that the robot will need to determine its location another way. At our current stage
of development, we have focused our development and testing efforts in an analogue environment
where we have focused our testing on the performance of the agent reasoning system in preparation
for our planned work with the actual tunnels.

4.2. Hardware

The hardware configuration of the mail delivery robot is shown in Figure 1. The mail delivery
robot is primarily implemented using an iRobot Create2, which is the development version of the
Roomba vacuum cleaning robot, without the vacuum-cleaning components. This robot can be
controlled using a command protocol over a serial interface [29] and can also be used to provide
power to other connected devices. A Raspberry Pi 4 computer was attached to the robot and connected
via a serial cable and powered from the robot’s battery using a power adapter. Furthermore, connected
via a serial connection are a camera and a line sensor used for detecting a line on the floor of the tunnels.
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Figure 1. Mail delivery robot hardware.

4.3. Software

The control software is implemented using a set of modules connected via ROS, as shown in
Figure 2. The reasoning system for this robot, inspired by the SAVI project [27,28], decouples the
reasoning cycle from the interface to the sensors and actuators using a state synchronization module.
The internal reasoning system for this project, called SAVI ROS BDI, and shown in Figure 3, is inspired
by the original SAVI configuration. Implemented in Java, using the rosJava package [30] and the Jason
BDI engine, this module connects to ROS directly, subscribing to perceptions and inbox messages
and publishing actions and outbox messages as required. Again, the state synchronization module is
important as perceptions and messages can arrive at any time, decoupled from the reasoning cycle of
the agent. This is set up in three main components: The ROS connectors, the state synchronization
module, and the agent core. The ROS connectors are responsible for subscribing to either perceptions
or inbox messages, or publishing actions or outbox messages, each in their own thread of execution.
These are connected to the state synchronization module, which manages queues or messages in and
out of the agent as well as perceptions and actions in and out of the agent. The agent core, which runs
the agent reasoning cycle in a separate thread of execution, checks for perceptions and inbox messages
at the beginning of the reasoning cycle. Then, the agent decides on an appropriate course of action
and then updates the agent state with new outbox messages and actions which need to be executed.
The agent behaviour is defined by an AgentSpeak file which is parsed by the reasoning system at
start-up, making this module fully platform agnostic: there are no assumptions about the underlying
hardware, capabilities, or mission of the agent in the implementation of this system. This agent
reasoning system is available at [31].

The Create2 robot platform can use the create_autonomy package available in ROS,
which connects to an underlying C++ library called libcreate to ROS, publishing the data from
various sensors as ROS topics and subscribing to topics related to the various commands available
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to the robot [32]. Furthermore, connected in this way are drivers for the QR camera and photodiode
line sensor, which each publish their data as ROS topics. SAVI ROS BDI is similarly connected to ROS.
Lastly, as required by SAVI ROS BDI, are the application node translators, which translate sensor data
into AgentSpeak perceptions and conversely translate action commands in AgentSpeak to the relevant
topics being subscribed to by the create_autonomy package. A user interface, which publishes to the
inbox and subscribes to the outbox is included for the user to be able to communicate with the agent
using Jason’s agent communication mechanism. Lastly, an AgentSpeak program is provided to the
reasoning system, which defines the behaviour of the agent. The implementation of the perception
and action translators, the drivers for the QR camera and the line sensor, and the AgentSpeak program
are discussed in Section 5. The implementation of these programs is available at [33].

Figure 2. Mail delivery robot software architecture (robot image credit [29], camera image credit: [34]).

Figure 3. SAVI ROS BDI internal architecture.

5. Implementation

This section discusses the implementation of the various aspects of the system, shown in Figure 4.
The source code for this project can be found on GitHub [33,35]. First, we discuss how the agent
perceives the battery’s state of charge in Section 5.1. Next, we discuss the means of maneuvering the
robot using line sensing in Section 5.2. As the robot is expected to operate in an environment without
access to GNSS signals, the robot uses a system based on QR floor markers for determining its position.
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This is discussed in Section 5.3. The user interface is discussed in Section 5.5. The action translator,
which handles the implementation of the robot’s actuators is explained in Section 5.6. The details of
the implementation of the agent behaviour, in AgentSpeak are provided in Section 5.7.

(a) (b)

Figure 4. Assembled robot prototype (side view: (a), top view: (b)).

5.1. System Power

The robot and control computer (a Raspberry Pi 4) were both powered using the iRobot
Create2’s power system. The method of connecting these components is described in Appendix A.1.
With the robot and computer successfully powered by the robot’s power supply, it is necessary
for the reasoning system to have awareness of the battery charge state so that it can report to a
charging station if necessary. The create_autonomy package regularly publishes a ROS topic called
battery/chargeratio which indicates the percentage of charge left on the battery based on its capacity.
The perception translator node, implemented in Python, subscribes to this topic and publishes a
battery(full), battery(ok), or battery(low) string to the perceptions ROS topic. If the battery has
greater than 99 % charge remaining, the battery(full) and battery(ok) perceptions are published.
If the battery has less than 25 % charge, the battery(low) perceptions is published. If the battery has
between 25 % and 99 % charge, the battery(ok) perception is issued. These perceptions enable the
robot to drop its intentions and seek a charging station when needed as well as resume its mission
when charging is complete. These robot behaviours are explained in more detail in Section 5.7.

5.2. Maneuvering with Line Sensing

As our robot operates in an indoor environment without the support of GNSS systems for
navigation, a simple means of moving through the tunnels and navigation was required. As an
initial implementation, a line sensor was used for the robot to follow lines on the tunnel floor.
The implementation of this line sensor is discussed in Appendix A.2.

With the line sensor hardware implemented, we needed to consider how the signals would
be sent to the BDI reasoning system. A ROS node was implemented for measuring the line sensor
signal and publishing it for the reasoner. This node ran in a 10 Hz loop, implemented using ROS’s
rospy.Rate() and rospy.sleep() functions, and interfaces with the hardware via the Raspberry Pi’s
General-Purpose Input/Output (GPIO) library. The software monitors if the signals from the GPIO pins
are HIGH or LOW, indicating if the diodes of the line sensor are detecting the line under them. The line
sensor driver interprets the signals from the sensor to estimate if the line was centered under the sensor,
to the left or right side of the sensor, lost, or visible across the whole sensor. This information was
published to the perceptions topic. The content of these messages was formatted as logical predicates
which are useful for the reasoning system. These include line(center), line(left), line(right),
line(across), and line(lost). These perceptions were then received by the BDI reasoner and
interpreted as part of the agent reasoning cycle, discussed in Section 5.7. The line sensor software node
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was implemented together with the QR node in order to ensure that the perceptions for the line were
generated together with any position data. Location sensing with QR codes is discussed in Section 5.3.

5.3. Location Sensing with QR Codes

As the tunnel system in which the robot is expected to operate has no access to external navigation
systems, such as GNSS, it was necessary for the robot to have another means of identifying its location.
This was accomplished by posting QR codes along the path of the robot but without obstructing
the line track that the robot would be following. The camera used for scanning the codes was also
positioned on the left side of the robot and ten inches from the floor because of its focal length; this was
to enable the camera to capture the code properly.

The QR code is scanned using software responsible for managing the camera. Implemented in
Python, the camera driver scans for QR codes at a rate of 10 Hz. When a code is detected, the location
code included in the image is logged. A perception is prepared and published to the perceptions topic
as well as to the postPoint topic. The format of this perception is: postPoint(CURRENT, PREVIOUS)

where CURRENT is the current scanned location code, and PREVIOUS is the previously scanned location
code. This predicate is received by the BDI reasoning system and processed using the AgentSpeak
rules discussed in more detail in Section 5.7. It is also received by the navigation module, discussed in
Section 5.4. As mentioned in Section 5.2, this node was implemented together with the line sensor
node to ensure that the perceptions associated with the line sensor and location sensor were perceived
together by the reasoning system.

5.4. Navigation Module

The navigation module uses an A* search to find the best path to the destination from the
current location. Implemented in Python, this module subscribes to the location sensing module,
reading the postPoint data. This module also subscribes to setDestination, monitoring for a
command specifying the agent’s desired destination. The map of the environment, shown in Figure 5,
is loaded from configuration files which define the coordinate locations of all the QR code post
points on the map and the available paths between those locations. With the location data provided
by the connection to ROS, the navigation module receives the current and previously observed
locations for the robot. Using this location knowledge, and the coordinate locations of these locations,
an approximate direction vector for the robot can be calculated. Next, with the current location of the
robot, A* search, implemented using the python-astar package [36], is used to find the best path to
the destination. Using the generated path, the location of the current and next locations that the robot
needs to visit are used to generate a direction vector that the robot needs to follow in order to move
toward the next post point on the journey. By comparing these two direction vectors, the navigation
module can prepare a perception with the direction to the destination. The perception is generated
and published to the perceptions topic, telling the robot if the destination is to the left, right, ahead,
or behind. This perception is of the format direction(DESTINATION,DIRECTION), where DESTINATION
is the destination that the navigator is searching for and DIRECTION is either left, right, forward,
or behind, or arrived. In the event that the destination has not been specified, both DESTINATION and
DIRECTION are specified as unknown. This direction is finally published to perceptions for the agent
to use in decision making.
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Figure 5. Map of the test environment.

5.5. User Interface

The user interface currently consists of Python script that resides on the robot, responsible for
relaying messages from the user to the inbox topic and subscribing to the outbox topic. We plan
to develop this into an application where a user would be able to specify specific commands
for the robot using either a web browser or an Android application. On start-up, the script
queries the user to specify the location of the mail sender, the mail receiver, and the docking
station. The agent is informed of the docking station location using a tell message containing
dockStation(LOCATION), where LOCATION is the user specified location code for the docking station.
The mission parameters, the sender and receiver location, are passed to the agent using an achieve

message of the form collectAndDeliverMail(SENDER,RECEIVER). This tells the agent to adopt the
goal of !collectAndDeliverMail(SENDER,RECEIVER) with the sender location being specified by
SENDER and the receiver location specified by RECEIVER [1]. Once these messages have been sent to
the robot, the user interface prints messages received from the agent via the outbox, which provides
updates of the robot’s progress on its mission.

5.6. Action Translator

When the robot reasoning system requests that an action be performed by the robot, the action is
published to the actions ROS topic. These messages are interpreted by the action translator, a Python
script which subscribes to the actions topic and then publishes messages to the appropriate topics for
the create_autonomy node to control the lower level hardware of the robot and to the setDestination
topic, for setting the robot’s destination in the navigation module. The action messages that are
currently supported include actions for maneuvering the robot, docking and undocking the robot from
a charging station, and setting the destination for the navigation module.

The maneuvering actions include drive(DIRECTION) and turn(DIRECTION), where DIRECTION

can be either forward, left, right, stop, or spiral (where the robot will drive in a widening spiral
pattern). The drive(DIRECTION) action commands the robot to drive a short distance using the
predefined motor settings for the specified direction whereas turn(DIRECTION) performs the drive
action repeatedly until the line sensor detects that the line is centered under the line sensor. This is
useful for turning at intersections, or for searching for the line if it has been lost using the spiral.

For setting the destination of the robot, the action translator sends a specified DESTINATION to
the navigation module when setDestination(DESTINATION) is received. The action translator also
supports actions for docking and undocking the robot from the charging station using the internal
programming of the robot: station(dock) and station(undock).
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As the agent reasoning system continues the reasoning cycle once actions are sent to ROS, it is
important for the action translator to ignore any conflicting actions while the action is completed.
Trade-offs with respect to how actions are handled are presented in the Discussion, in Section 7.

5.7. Agent Behaviour

The reasoning system receives inputs via perceptions and a message inbox and actuates via
actions and outbox messages based upon the results of its reasoning cycle. The agent behaviour is
defined for the Jason BDI reasoner in AgentSpeak. The agent implementation for this project uses a
hierarchy of behavioural goals, each of which have supporting plans providing the agent with a means
of achieving the goals in a given context. At the top of the hierarchy are the battery charging and mail
mission related goals and plans. The plans that are triggered are used to adopt sub-goals for navigating
the robot to the destinations that the robot needs to visit in order to accomplish these objectives. Next in
the plan hierarchy are the plans that implement the navigation behaviours. These plans are responsible
for ensuring that the robotic agent travels to the required locations in the environment. Next in the
hierarchy are the plans for implementing the line following behaviour, which is how the robot moves
between the post points. Lastly, we have default plans for all of the goals that the agent can adopt.

We first discuss the goals associated with sending and delivering mail in Section 5.7.1. We next
discuss the plans for achieving the goal of charging the battery in Section 5.7.2. Both the battery
charging and mail delivery plans depend on lower level plans for navigation, discussed in Section 5.7.3.
The navigation plans use the path following goals for movement between post points on the map.
These goals are achieved using the path following plans discussed in Section 5.7.4. Lastly, a set of
default plans are discussed in Section 5.7.5.

5.7.1. Collecting and Delivering Mail

The !collectAndDeliverMail(SENDER,RECEIVER) mission is the main mission of this agent.
This mission is adopted by an achieve command from the user interface. For this plan, provided in
Listing 2, to be applicable, the robot must not have the belief of charging, which would preclude the
robot from being available to perform this mission. From here, the plan is very simple. First, the agent
makes a mental note of the mail mission parameters, in case the intention to complete this goal, or any
other goals associated with it, needs to be suspended and readopted later. Next, the agent adopts
the goal of !collectMail(SENDER) and !deliverMail(RECEIVER) before finally dropping the mental
note that of the mail mission parameters.

The plans for achieving the goal of !collectMail(SENDER) and !deliverMail(RECEIVER),
also provided in Listing 2, are similarly simple. First, the plan for collecting the mail for the context
where the agent has not yet collected it is provided. To accomplish this, the robotic agent must first
go to the sender’s location and then adopt the belief that it has the mail. There is a second plan for
!collectMail(SENDER) for the context where the mail has already been collected. This is necessary in
case the agent needs to restart the mail delivery mission after being interrupted. In this case, the mail
has already been collected, so no further action is necessary. The plans for !deliverMail(RECEIVER)
are similarly implemented, instead sending the robotic agent to the receiver’s location if the mail has
already been collected. Otherwise, there is nothing to deliver, so no action is required.
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Listing 2. Collect and deliver mail plans [33].

+!collectAndDeliverMail(SENDER,RECEIVER)
: (not charging)
<- +mailMission(SENDER,RECEIVER);

!collectMail(SENDER);
!deliverMail(RECEIVER);
-mailMission(SENDER,RECEIVER).

+!collectMail(SENDER)
: not haveMail
<- !goTo(SENDER,1);

+haveMail.

+!collectMail(SENDER)
: haveMail.

+!deliverMail(RECEIVER)
: haveMail
<- !goTo(RECEIVER,1);

-haveMail.

+!deliverMail(RECEIVER)
: not haveMail.

5.7.2. Charging Battery

The plans which implement the battery charging behaviour are provided in Listing 3. The agent
perceives the battery using three specific predicates, which are generated by the battery translator:
battery(full), battery(ok), and battery(low). Rather than having the agent adopt the goal of
monitoring the battery, we instead have two plans that trigger on the addition of the predicate
battery(low) to the agent’s beliefs. For either of these plans to be applicable, the agent needs to not
already be charging the battery and have knowledge of the dock station location. The first of the plans
is for the context where the agent’s belief base contains mailMission(SENDER,RECEIVER), a predicate
added to the belief base by the plans that achieve the !collectAndDeliverMail(SENDER,RECEIVER)

goal. In this case, the agent needs to add the belief of charging to the belief base and drop any other
intentions that the agent may have had. Next, the agent must charge the robot’s battery by adopting the
goal of !chargeBattery. Once this has been achieved, the agent can then drop the charging belief and
adopt the goal of !collectAndDeliverMail(SENDER,RECEIVER) in order to finish the mail mission that
was interrupted. The second plan provided for the addition of the belief battery(low) is applicable for
the context where the agent does not have mailMission(SENDER,RECEIVER) in its belief base. The only
difference between the body of these plans is that the agent does not need to drop intentions, nor does
it need to end by adopting the goal of !collectAndDeliverMail(SENDER,RECEIVER), as there was no
mail mission when the battery charging plan was triggered.

There are two plans triggered by the addition of the !chargeBattery goal, shown in Listing 3.
The first is for the context where the battery is not yet full, and the robot is not docked with the charging
station. Here, we adopt the goal of !goTo(DOCK,1), followed by taking the action of station(dock)
and adopting the belief of being docked, to prevent this plan from executing more than once. Lastly,
we readopt the goal of !chargeBattery for the agent to maintain the goal of !chargeBattery while
the battery charges. The last plan in this listing is applicable for the context where the battery is
fully charged, and the robot is still docked with the charging station. The plan body here is to first
undock the robot and then drop the belief that the robot is docked, having successfully charged the
robot’s battery.
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Listing 3. Battery charging plans [33].

+battery(low)
: (not charging) and

dockStation(_) and
mailMission(SENDER,RECEIVER)

<- +charging;
.drop_all_intentions;
!chargeBattery;
-charging;
!collectAndDeliverMail(SENDER,RECEIVER).

+battery(low)
: (not charging) and

dockStation(_) and
not mailMission(SENDER,RECEIVER)

<- +charging;
!chargeBattery;
-charging.

+!chargeBattery
: (not battery(full)) and

dockStation(DOCK) and
(not docked)

<- !goTo(DOCK,1);
station(dock);
+docked;
!chargeBattery.

+!chargeBattery
: battery(full) and docked
<- station(undock);

-docked.

5.7.3. Navigation Plans

The plans triggered by the addition of the goal of !goTo(LOCATION,WATCHDOG) are presented in
Listing 4. These plans are responsible for navigating the robot to locations, called post points, on the
map. These plans further adopt the goal of !followPath for moving between post points. This goal
predicate has two parameters: the location where the robot needs to move, and a watchdog parameter.
As the robot is navigating in an environment where the only means of position knowledge comes
from QR codes, which are not always visible, there is a possibility that the robot may need to make a
navigation decision without a visible post point code. As the navigation decisions require position
knowledge, we have added a watchdog counter to help the robot assess if it is stuck in such a state.
When adopting the plan to go to a new location, the watchdog parameter should be set to one.

The first plan for this goal is applicable in when the robot has not yet set a destination to navigate
to. In this case, the agent needs to specify the destination for the navigation module to generate
appropriate turn by turn directions. The plan body readopts this goal recursively as the robotic agent
has not yet arrived at the destination. The second plan is applicable when an old destination needs
to be updated to a new destination. Here, the agent has received directions from the navigation
module, however the destination parameter in the associated belief is for a previously requested
destination. In this case, the navigation module is updated to the new destination and the goal is
readopted recursively. The third plan is for the context where the robot has arrived at the destination.
Here, the robot is commanded to stop. The fourth, fifth, and sixth plans are all recursive navigation
plans associated with either turning the robot around, driving forward, turning left, or turning right
depending on the navigation recommendation that has been generated by the navigation module
and perceived by the agent. In all of these cases, once the agent executes the necessary maneuver,
the !followPath goal is adopted to drive the robot between post points. The last plan in this listing
relates to the watchdog. If the watchdog parameter has grown past 20, meaning that the agent has
tried to address this goal over 20 times, it is probable that the robot is stuck without a visible post point.
In this scenario, the !followPath goal is adopted as well as the !goTo() goal, resetting the watchdog.
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The effect of adopting the goal of !followPath is to move the robot to a location where it can see a post
point. Keen readers will note that none of these plans address incrementing the watchdog. That role is
completed by a default plan, discussed in Section 5.7.5.

Listing 4. Navigation plans [33].

+!goTo(LOCATION,_)
: direction(unknown,_)
<- setDestination(LOCATION);

!goTo(LOCATION,1).

+!goTo(LOCATION,_)
: direction(OLD,_) and

(not (OLD = LOCATION))
<- setDestination(LOCATION);

!goTo(LOCATION,1).

+!goTo(LOCATION,_)
: direction(LOCATION,arrived)
<- drive(stop).

+!goTo(LOCATION,_)
: direction(LOCATION,behind)
<- turn(left);

!followPath;
!goTo(LOCATION,1).

+!goTo(LOCATION,_)
: direction(LOCATION,forward)
<- drive(forward);

!followPath;
!goTo(LOCATION,1).

+!goTo(LOCATION,_)
: direction(LOCATION,DIRECTION) and

((DIRECTION = left) | (DIRECTION = right))
<- turn(DIRECTION);

!followPath;
!goTo(LOCATION,1).

+!goTo(LOCATION,WATCHDOG)
: (WATCHDOG > 20)
<- !followPath;

!goTo(LOCATION,1).

5.7.4. Path Following Plans

The plans triggered by the addition of the !followPath goal are responsible for the line following
behaviour. The intent of this behaviour is to have the robot follow the line taped to the floor,
adjusting course as needed, until a post point is visible and then stop. If the line is not visible,
the agent needs to search for the line. The plans that implement this behaviour are provided in
Listing 5.

First, the applicable plan for the context where there is a post point visible. In this case, there is no
need to follow the path any further, so the agent stops the robot. Next, the applicable plan used for the
context where the agent perceives line(center) and no post point is visible. Here, the robot should
drive forward and readopt the !followPath goal. For the context where the line is lost, the agent
drives in a spiral pattern in the direction that the line was last seen in an effort to search for the line,
again recursively readopting the goal of !followPath. For the context where the line is perceived to be
across, the agent uses the command to drive to the left to recenter itself over the line. Lastly, we have a
plan for turning the robot to the left or to the right in order to readjust the robot over the line.
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Listing 5. Path following plans [33].

+!followPath
: postPoint(A,B)
<- drive(stop).

+!followPath
: line(center) and

(not postPoint(_,_))
<- drive(forward);

!followPath.

+!followPath
: line(lost) and

(not postPoint(_,_))
<- drive(spiral);

!followPath.

+!followPath
: line(across) and (not postPoint(_,_))
<- drive(left);

!followPath.

+!followPath
: line(DIRECTION) and

((DIRECTION = left) | (DIRECTION = right)) and
(not postPoint(_,_))

<- drive(DIRECTION);
!followPath.

5.7.5. Default Plans

It is important to have default plans for the agent if there are no other applicable plans available
to achieve its goals. These may run when perceptions for sensors unrelated to the goal are received,
for example when a battery perception is received on its own when the agent is working through its
navigation goal. In this situation, we need to ensure that these goals are not inadvertently dropped,
using recursion to readopt the goals, as necessary. The default plans used by this agent are provided in
Listing 6.

The first plan ensures that the !collectAndDeliverMail(SENDER,RECEIVER) is not dropped in
error. Next is the plan for the !goTo(LOCATION,WATCHDOG) goal for the context where the reasoning
cycle runs on a perception other than a post point. In this scenario we readopt the goal with an
increment to the watchdog !goTo(LOCATION,WATCHDOG + 1). Next we have the default plans for the
!followPath and !chargeBattery goals which ensure that the goal is not dropped inadvertently.
Lastly, we have the default plan for !collectMail(SENDER) and !deliverMail(RECEIVER).

Listing 6. Default plans [33].

+!collectAndDeliverMail(SENDER,RECEIVER)
<- !collectAndDeliverMail(SENDER,RECEIVER).

+!goTo(LOCATION,WATCHDOG)
<- !goTo(LOCATION, (WATCHDOG + 1)).

+!followPath
<- !followPath.

+!chargeBattery
<- !chargeBattery.

+!collectMail(SENDER).

+!deliverMail(RECEIVER).

42



J. Sens. Actuator Netw. 2020, 9, 56

6. Testing and Evaluation

In this section we discuss the ways that we tested at the unit level and the system level to confirm
that the agent behaviour was working properly. We also discuss our performance evaluation results.
The development of software for robotic systems comes with several practical challenges. Among those
challenges are issues related to how to isolate and debug specific segments of the software as well as
developing without necessarily having access to the actual hardware. We will discuss those issues
as well as methods used to mitigate these issues that were used as part of this project. We discuss a
simple AgentSpeak simulator that we developed and used in Section 6.1. Next, a custom simulated
environment used for testing the higher-level behaviour of the agent is discussed in Section 6.2.
System level testing of the robot in the analogue environment is presented in Section 6.3. Finally,
a performance evaluation is provided in Section 6.4.

6.1. AgentSpeak Debug Tool

In writing software, it is always prudent to perform unit level tests of the various
components. Behaviours programmed in AgentSpeak are no different in this regard. Unfortunately,
debugging agents for robotics involves additional challenges, as it may be more difficult or impractical
to isolate specific aspects of the software in the system under test. To assist in isolating specific aspects
of the AgentSpeak programs, a debugging tool was developed. This tool, although very simplistic,
was found to be a great asset for unit level testing and confirming that the agent behaviours were as
expected under very controlled circumstances.

To accomplish this, an environment was developed for a Jason agent which reads perception
inputs from a file. Each line in this file contained the perceptions meant to be sent to the agent at
the beginning of each reasoning cycle. All actions that the agent takes are simply printed to the
console window. When used with the Jason mind inspector debugging tool, this environment proved
very useful for catching errors, especially in the plan context components as well as syntax errors.
This debugging tool is available on GitHub [37].

6.2. Custom Simulator

Moving past the unit level testing discussed in the previous section, it became necessary to
perform testing of the agent behaviour, as well as the other ROS nodes developed for this system,
without necessarily having access to the robot and hardware. In practical work environments this can
happen for several reasons. For example, the hardware and software being under development in
parallel. Another possibility is that the robot is unavailable as it is in use for multiple projects, or that
team members are geographically dispersed. Another reason for using simulation based testing is that
testing on the robot itself may be time consuming; if every minor change in software required a time
consuming experimental setup in order to test it, a developer could find themself delaying testing
until there have been many new changes. The issue with such an approach is that tracing back the
cause of an issue could become more difficult. Using a simulator enables the developer to test for
minor changes often and find those issues. Lastly, it may also be more difficult to replicate the specific
scenario needed to be tested in the real world, which may be more easily controlled in simulation.

To assist with development and testing, a mock simulation environment was developed [38].
This tool was used as a substitute environment which could be used for isolating specific aspects
of the agent’s behaviour. It included a grid style map of the environment with specific points on
the map being designated as post points. The grid squares between those post points were the path
from which the robot would be able to perceive the line. The environment also included a charging
station with which the robot could dock. Based on the position and actions of the robot, the robot
was able to move about this environment while perceiving sensor data from mock sensors for the
battery state, line sensor and QR scanner. The battery was programmed to deplete at a configurable
rate, enabling testing of the agent’s battery charging behaviours.
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This tool was developed as a ROS node that published to the ROS topics for the sensor data. It also
monitored the actions topic for the agent to control it. In this setup, we were able to develop and
test the perception translators, action translators, navigation module and agent behaviours without
access to the robot. Despite the limitations of this test setup, including the lack of realism of the
environment as well as the difficulty in assessing the performance of the hardware sensors themselves
we were able to demonstrate most of the behaviours of the agent using this environment. The only
behaviour that was not tested using this method was the line following behaviour as this was more
easily accomplished with the robot itself. With any issues stemming from the implementation of
the behaviours associated with navigation, mail delivery, and battery management resolved with
the simulation, testing effort with the robot could focus on the interface with the sensors themselves
and the line following behaviour. The simulation did not need to have high fidelity in order to be
highly useful.

6.3. System Level Testing

A video of the robot operating in the analogue test environment is available [39]. Still images
from that video are shown in Figure 6. In this case, the robot has been given the task of delivering
mail collected at the top left corner of the map to a location at the bottom right corner of the map.
In this example we see the robot having already collected the mail, shown in Figure 6a. Next,
the robot begins to move toward the destination, detecting a post point along the path, as we see in
Figure 6b. Having decided to turn, the robot continues toward the destination, shown in Figure 6c.
Having received a battery(low) perception, the robot suspends the intention of delivering mail and
instead moves toward the charging station, as is shown in Figure 6d. Figure 6e shows that the robot
has docked with the charging station and is charging. Once charging is complete, the robot proceeds
to the mail delivery destination, shown in Figure 6f.

(a) (b) (c)

(d) (e) (f)

Figure 6. Demo of robot operation, video available at [39]. (a): mail collected; (b): detecting post
point; (c): turned to continue; (d): interrupt delivery to charge battery; (e): charge battery; (f): proceed
to destination.
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6.4. Performance Evaluation

We examined the performance of the agent by logging the messages passed through the various
ROS topics used by the agent. Specifically, we logged the content and time stamps of all messages
passed through the perceptions, actions, inbox, and outbox topics. We also instrumented the
reasoner to publish the length of the reasoning cycle to another ROS topic so that the reasoning
performance could be logged. By parsing the logs of over 28 test runs we have made several
observations. We will first discuss the performance of the reasoning system in Section 6.4.1 and
then the plan and action frequency in Section 6.4.2.

6.4.1. Reasoning Performance

Our assessment of the performance of the reasoning system focused on whether the reasoner
was able to keep up with the sensor updates. Using the logs of the perceptions, specifically their
timestamps, we measured the time elapsed between publications to the perceptions topic resulting
in a measurement of the perception period, shown in Figure 7. We also measured the time taken by the
agent to perform reasoning cycles, shown in Figure 8. Outliers, which tended to be artifacts of the test
start-up and shutdown process, were removed using mean absolute deviation.

Figure 7. Perception period.

Figure 8. Processing time of the agent reasoning cycle.

We observed that the bulk of the perceptions were published more frequently than every 100 ms.
By contrast we observed that the reasoning cycle generally took between 100 ms and 106 ms to complete.
This means that the perceptions were usually being published at a rate that was faster than the

45



J. Sens. Actuator Netw. 2020, 9, 56

reasoning rate meaning that the reasoning system would need to queue the perceptions as they were
received. This was confirmed to be occurring by inspection of the reasoning system’s perception
queue. In the rare instances where the reasoning system performed faster than perceptions were
received, the reasoner would wait for the next perception. What is interesting to note, however,
is that the reasoning period was very reliably within a 6 ms range; the performance was consistent.
Most importantly, despite this difference between the reasoning rate and the perception rate, the agent
was able to properly perform its mission.

6.4.2. Plan and Action Frequency

Using logs from the actions and the outbox topic, we assessed the decision making of the
agent during standard mail delivery missions. Each plan in the agent’s plan base contained agent
communication messages that were used for debugging purposes. These messages identified the goal
that the agent was working to achieve and well as identifying information about which plan was
being used. Therefore, using the outbox logs, we measured the proportion of time that the agent spent
performing different types of plans, and for what goal it was attempting to achieve, shown in Figure 9.
We also measured the proportion of the various actions that the agent performed. This is shown in
Figure 10.

In examining the plan usage we see that the bulk of the time was spent achieving the !followPath
goal, used for performing the line following task. We also see that there was usage of the default plans,
specifically for the !goTo(LOCATION,WATCHDOG) goal as well as for !followPath, highlighting the
importance of the default plans. Had these default plans not been provided, the agent would
not have had a way of continuing the mission. We also see that, although infrequently used,
the overflow plan associated with the watchdog counter for the !goTo(LOCATION,WATCHDOG) goal
was used, validating this design choice. The !goTo(LOCATION,WATCHDOG) goal, and associated plans,
were generally used infrequently. This was to be expected, as those plans were only to be used when
navigation decisions were needed, at intersections on the map or when the robot was establishing
its mission. We see that the !collectAndDeliverMail(SENDER,RECEIVER), !collectMail(SENDER),
and !deliverMail(RECEIVER) goal plans were seemingly infrequently used. This was expected as the
plans associated with these goals are rather short and adopt the goals of !goTo(LOCATION,WATCHDOG),
which in turn adopts the goal of !followPath. Lastly, it is important to note that, even though a
plan may be infrequently used, its presence in the plan base remains essential. Without, for example,
the rarely used default plans, which ensured recursion by readopting the goals, those goals would
have been dropped by the reasoner and the agent would not have completed the mission.

Figure 9. Plan frequency.
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Figure 10. Action frequency.

In alignment with the plan frequencies discussed above, we see that the actions associated with
the line following behaviour were the most used. We see that the plans associated with setting the
destination were rare, which was expected since this occurs once per mission. We also see that the
actions used for turning the robot were infrequently used as well. This was also expected as the robot
only uses these actions to affect a turn at an intersection on the map. Lastly, we do see a concerning
high use of the drive(spiral) command, which was used whenever the line sensor lost sight of the
line and needed to search for the line in order to reacquire the path. This confirms our qualitative
observations during testing: the line sensor was less effective than we had hoped, resulting in the
robot losing the path more frequently than desired. This was especially problematic when the robot
performed turns at intersections on the map.

7. Discussion

In developing agents for embedded applications, several lessons have been learned about
designing such agents and the practical issues that arise in setting up such systems. Here we will
discuss practical advice for developing these agents. First, we discuss plan design in Section 7.1. Next,
the management of the belief base is discussed in Section 7.2. We then discuss practical issues around
perceptions and actions in Sections 7.3 and 7.4, respectively.

7.1. Plan Design

In developing the behaviours for the agent discussed in this paper, various design iterations
were used to find a working solution. Ultimately, we settled on a solution which uses abstraction of
lower level behaviours using a hierarchy of goals and sub goals. We also defined our goals to use
predicates to manage parameters. For example, for navigation we used the goal of !goTo(LOCATION),
where the location that the agent needs to get to is defined in the predicate. This was instead of
using a belief and a generic goal, such as destination(LOCATION) and the goal of !goToDestination.
Although it is possible to implement a working behaviour with both methods, the second requires that
the developer manage the beliefs associated with the destination manually, whereas the first option
allows the reasoning system to handle that, reducing the complexity of the plan base and ultimately
reducing the likelihood of syntax errors.

Another phenomenon we encountered was that of tangled plans, where the implementation of
plans for achieving a goal required intimate knowledge of the implementation of plans for other goals.
We found that this was more likely to occur when revising the belief base with beliefs that were used
for multiple goals. In this scenario, any updates to the plans for one goal required refactoring of the
plans for the other goals as well. The goal of the developer should be that the plan implementations
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should be as self contained as possible, with the exception of the use of adopting goals for achieving
lower level behaviour.

In planning behaviours, it is also important to consider how goals are achieved. An earlier version
of the implementation of the agent used in this project used recursive plans for a goal that could not be
achieved as a means of keeping the agent working on missions. Although it was possible to implement
working behaviours this way, the implementation was admittedly clumsy and confusing to human
readers. This can also be problematic if multiple goals that are never achieved, which are infinitely
recursive, are adopted at the same time. In this scenario, the agent behaviour can become unpredictable.

The prioritization of plans in the plan base is very important. The default behaviour in Jason
is that the first applicable plan in the plan base is selected as part of the intention selection function.
Although this worked for our purposes, when refactoring the plan base, or simply adding and
removing plans, care needs to be taken to ensure that the low priority plans are not listed too high in
the implementation. For example, we opted to group all the default plans at the end of the AgentSpeak
source file in order to ensure that a default plan, which was intended only to keep the agent from
dropping goals prematurely, were not selected in lieu of other potentially applicable plans. Jason does
allow the developer to override the event selection and intention selection functions. The authors
intend to investigate these options in future work.

Consider how plans are triggered. We found that in general it made sense to make most plans
trigger on the adoption of an achievement goal. We had one exception to this: the plans associated
with charging the battery. These plans triggered on the perception that the battery state of charge was
below a certain threshold. This was done as we needed these plans to interrupt the behaviour of the
agent when potentially working toward another goal. By doing so, the agent could reason about the
battery charge state when its goal was for an activity unrelated to the battery management. Had this
not been implemented this way, we would have had to add context checks for the battery to plans
throughout the plan base, likely tangling the plans.

Beware of death modes, situations where the agent can find itself in an unrecoverable state without
any malfunctions. In the case of the mail delivery agent, a death mode existed in that the navigation
plan contexts required position knowledge, which was only available when the post point QR codes
were visible. If a navigation goal is adopted a time when such a perception is not available, the agent
could find itself unable to execute the plan despite there being no malfunction of any components
of the robot. To recover from this death mode, a watchdog was used to enable to agent to detect
such modes. This timer was implemented by adding a predicate to the navigation goal which was
incremented by the default plan. If the watchdog incremented past a certain threshold, the agent
adopted the goal of following the path, in a hope that the robot could maneuver to a new location such
that a QR code would be visible, enabling the continuation of the navigation goals.

7.2. Managing Beliefs

As mentioned earlier, it is important to manage beliefs carefully. The authors authors adopted a
number of principles to facilitate this. First, if a belief is intrinsically tied to the achievement of a goal,
consider refactoring the goal to use a predicate for that belief. By doing this, the developer simplifies
the management of that belief in the knowledge base.

If beliefs are needed, and the option of using goal predicates is impractical, try to manage the
applicable belief in the plans related only to one goal, if possible. This way, a developer does not
require intimate knowledge of the implementation of plans for other goals in order to develop plans
for other goals. However, if mental notes are needed for plans for multiple goals, we recommend
managing these beliefs using the fewest possible number of plans in order to avoid the phenomenon
of tangled plans, discussed earlier. Furthermore, be sure to remove mental notes when they are no
longer needed.

48



J. Sens. Actuator Netw. 2020, 9, 56

7.3. Practical Management of Perceptions

Our agent implementation used ROS as a means of connecting the reasoning system to the robot
hardware. A key feature of ROS is the abstraction of how nodes publish and subscribe to topics,
as opposed to publishing and subscribing to other nodes directly. This means that multiple nodes can
publish data relevant to perceptions at different rates: there is no guarantee that the agent will perceive
data from all the sensors at every reasoning cycle. Furthermore, there is no guarantee that the sensors
relevant to the goals being achieved will have been perceived at the start of every reasoning cycle.
For example, the robot may be attempting to achieve the goal of !followPath, which primarily uses
the line sensor for implementing the line following behaviour. If a reasoning cycle were to begin with
the agent having only received perception data from the battery, the plan contexts associated with the
line sensor would not be applicable. Therefore, it is important that a default plan be available to the
agent to prevent this goal from being dropped prematurely.

Another way that this issue can manifest itself is if plan contexts use perceptions generated by
different sensors. It is possible for these perceptions to be perceived in separate reasoning cycles,
meaning that the desired plan context might not be applicable. If possible, the developer could
avoid having plan contexts which depend on perceptions generated from multiple unrelated sensors,
especially if they publish at different frequencies. Another approach could be to consider having
perceptions feed into the update of the agent’s beliefs about the environment. The agent’s decision
making could then focus on the use of these beliefs instead of the perceptions themselves. This will be
explored as part of our future work.

We also found that there are scenarios where the agent works toward its goals but also receives
perceptions related to the health and status of the robot. In the case of this project, the battery updates
were largely irrelevant to the execution of the mail delivery mission unless the state of charge was
getting too low. In this case instead of having context checks on almost all of the plans confirming that
the battery state of charge was acceptable to continue, we used a high priority plan triggering on the
perception of battery(low) which was used to adopt the goal of recharging the battery.

7.4. Practical Use of Actions

In working with our agent, we came to appreciate that there are several different types of actions.
There are actions which take a short time to perform. There are actions which take a longer time
to perform where the agent should wait for that action to finish. Finally, there are actions that may
be more about setting a parameter that is used by some other module which performs some other
required function. With this agent, all three types of actions were used.

In implementing the connection between the reasoning system and ROS, we set up the action
implementation to be a publisher to the actions topic. Jason, however, implements actions as a
function which returns a Boolean. The intention is that the action function should return true if
the action was successful and false if the action was not. In our case, the function returned true if
the action was successfully published to the actions topic. For the first type of actions, where they
take a very short time to execute, for example for commanding the robot to drive a short distance,
this method worked well.

For actions of the second type, which took longer to execute, for example turning at intersections,
an action that took several seconds to complete, this was more problematic. With a reasoning system
that executes a reasoning cycle every 100 ms or so, the agent would continue to perform reasoning
before the robot had completed that action. This resulted in other actions being published, causing the
robot behaviour to become erratic in these situations. A practical solution we found was to have the
node which implements the actions simply ignore any conflicting actions that were published before
the longer duration action was complete. Another solution would be to implement the actions topic
with a service handler, where the service handler would return a Boolean resulting from the success or
failure of the actions. This would force the agent to wait for actions to be completed prior to moving on.
This would also cause the reasoning cycle period to increase, as the execution of the action would now
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be part of the reasoning cycle. This can also be used to ensure that action failure is more appropriately
handled by the agent, which may not be able to achieve its mission if an actuator has stopped working,
for example.

The third type of action was where an action sets some parameter used by another module.
In the case of the mail delivery system, the action associated with setting the destination was such an
action. In this case the agent needed a means of knowing that the correct destination was set, if the
agent needed to change its destination. In this case, the perceptions that were generated by that node
included the destination, so that the agent could confirm that the correct destination was set.

7.5. Code Readability and Troubleshooting

From a practical perspective, the authors found several useful practices which facilitated easier
development and troubleshooting. Firstly, the authors found that it was prudent to avoid similarities
between perceptions, knowledge, goal names, actions, etc. If these were too similar, we found that
simply missing a character such as a ‘+’ sign or an ‘!’ would dramatically change the execution
of the plans. The authors recommend adopting a naming convention when implementing their
AgentSpeak programs. Secondly, it is recommended that the context guards be kept as simple as
possible. Complex context guards can become difficult to read and understand and can easily become
a source of error. Finally, the authors found that using agent communication could significantly help
with troubleshooting and debugging. We used agent communication messages in all plans for both
performance measurement and debugging purposes. These messages made it much easier to trace
back what had occurred when troubleshooting.

8. Conclusions

In this paper, we presented the work to date on the development of a robotic agent for eventually
performing autonomous mail delivery in a campus environment. We conclude with a description of
our key accomplishments and a view toward our future work.

8.1. Key Accomplishments

We demonstrated the feasibility of using BDI in an embedded system. We accomplished this using
the SAVI ROS BDI framework, linking Jason’s BDI reasoning system to ROS. We also implemented our
initial robot behaviours in BDI, navigating through an analogue development and testing environment
using line following and QR codes while also monitoring the battery state, seeking a charging station
as needed. Through performance evaluation, we observed that Jason is able to keep up with the
frequency of perception updates in order to accomplish its missions, and seems therefore (at least
based on this experiment) a viable language and framework for developing robot control programs
that deal with multiple short-term and long-term missions.

We integrated the reasoning system onto a Raspberry Pi computer and connected it to the iRobot
Create2, powering it from the robot’s internal power. We integrated a line sensor and camera and
developed the necessary nodes for providing their data to the BDI reasoner as perceptions via ROS.
We provided a translator for the create_autonomy package, passing sensor data from the robot to the
reasoning system, and actions back to the actuators.

8.2. Future Work

Our implementation uses line sensing and QR codes for localization in an analogue testing
environment. This method was used as a first iteration for early development of our prototype
system, but it has drawbacks, notably requiring the environment to have line tracks and QR codes.
Additionally, the line following was more difficult that anticipated, with the robot frequently losing
track of the line. One approach could be to add radio beacons to the environment and to use these
as an indoor positioning system for navigation and path following. We could also add additional
charging stations, which include infrared transmitters on them, for the robot to track. The robot could
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use these for more than just as a charging station but also as guiding beacons (make each station
emit a different code to make it distinguishable by the robot), and more generally turning them into
full-blown stations for mail drop-off and pick-up. These spots could be placed where wi-fi is accessible
so that the robot can receive its missions and notify the recipient that the delivery is ready. We also
intend to move beyond the analogue testing environment to the real world tunnel environment as our
development progresses.

Another desire is to have multiple robots handling mail delivery together. The robots could work
as a team, possibly handing off mail from robot to robot, and managing their battery levels. A user
would not summon a specific robot to collect their mail, but would instead request the mail service,
which would dispatch a robot to collect mail. From there, the robots could hand off the mail item
amongst themselves while working together to deliver all mail that they have within their network.
Individual robots may also carry multiple mail items. The user interface could be developed into a
mobile app which can be improved to have maps of segments of the tunnel and estimates for when
the mail will be delivered.

With an eye to the implementation of SAVI ROS BDI, the authors intend to investigate various
design trade offs as part of their future work. This includes revisiting how actions are implemented,
using ROS service handlers for implementing the actions, forcing the agent to block and wait for actions
to complete, or possibly fail. The authors also intend to explore the event and intention selection
functions with respect to the prioritization of plans so that the order that plans are listed in the source
code is not a main factor in plan selection. Lastly, there is a need to explore knowledge and perception
management for these agents. This is especially important in considering that perceptions can be
generated at different rates and by different nodes, resulting in relevant perceptions not always being
available at the start of applicable reasoning cycles.
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GPS Global Positioning System
MAS Multi Agent System
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51



J. Sens. Actuator Netw. 2020, 9, 56

QR Quick Response
ROS Robot Operating System
SAVI Simulated Autonomous Vehicle Infrastructure
UAV Unmanned Aerial Vehicle

Appendix A. Additional Implementation Details

In this appendix we provide additional implementation details with respect to the robot hardware.
These details are provided so that an interested reader can recreate our implementation if they so
desired. First, our method of powering the computer from the robot is discussed in Appendix A.1.
Appendix A.2 details the line sensor implementation.

Appendix A.1. System Power Connections

In order to power the robot’s computer (a Raspberry Pi 4) without having it tethered to a socket
in a wall, we utilized the iRobot Create 2’s power system. This was possible as the serial connection
between the computer and the robot also provides access to the robot’s internal rechargeable battery.
Conveniently, the serial cable used to connect the Create 2 to the Raspberry Pi exposes the robot’s
power bus through its RS232 pinout, as seen in Figure A1 and Table A1 [29,40].

(a) (b)

Figure A1. Serial connection pinout. (a): robot’s RS232 pinout; (b): Create cable pinout.

Table A1. Create 2 external serial port RS232 connector pinout.

Pin Name Description

1 Vpower Battery + (unregulated) 16 V to 20 V
2 Vpower Battery + (unregulated) 16 V to 20 V
3 RXD 0 V to 5 V Serial input to robot
4 TXD 0 V to 5 V Serial output from robot
5 BRC Baud rate change
6 GND Battery ground
7 GND Battery ground

Although this pinout provides access to the robot’s power supply, it must be converted from
16 V to 20 V to the regulated 5 V required by the Raspberry Pi computer via its USB-C connector or its
GPIO pin. To get a stable 5 V for our Raspberry Pi, we used a Tobsun 15 W DC to DC power converter
by feeding power to its input (12 V/24 V positive and negative) terminal from pin 4 and pin 3 of the
Serial to USB header described in Figure A1b respectively. We connected the exposed wires of an
improvised USB type C cable to the converter and then we plugged in the cable to the Raspberry Pi;
when the RS232 end of the Serial-to-USB cable is plugged into the Create2 robot, the entire system is
powered successfully.

52



J. Sens. Actuator Netw. 2020, 9, 56

Appendix A.2. Line Sensor Implementation

As our robot operates in an indoor environment without the support of GNSS systems for
navigation, a simple means of moving through the tunnels and navigation was required. As an initial
implementation, a line sensor was used for the robot to follow lines on the tunnel floor. This sensor
is implemented using three Photointerrupter LTH 1550-01 diodes, shown in Figure A2. Each sensor
detects if the line is on the left, center or right of the robot’s center. Two resistors were used per
Photointerrupter, a 220 Ω and a 33 kΩ. The 220 Ω was used as a limiting resistor for the LED within
the sensor and the 33 kΩ as a voltage divider to enable us to measure the voltage across the resistor
when light falls on the phototransistor.

Figure A2. Line sensor circuit.

The sensors were connected to three different GPIO pins on the Raspberry Pi. The right sensor is
connected to GPIO14 (pin8), the center sensor to GPIO15 (pin10) and the left sensor to GPIO18 (pin12).
The sensor is powered from the Raspberry Pi; the VCC pins are connected together and then to the 5 V
pin of the Raspberry Pi, while the ground (GND) pins are connected together and then to the ground
(GND) pin of the Raspberry Pi. When light falls on each of these sensors, their GPIO pins are set to
HIGH, and when the sensors are covered or faced with a non-reflective material or has no light falling
on them, their GPIO pins are set to LOW.

The navigation track was designed using a reflective tape, so that when it is faced by any of the
sensors, the respective GPIO pin is set to HIGH, and then it is known if the line is on the right, center or
left depending on the pin that was set to HIGH or LOW. The sensors are mounted under the center of
the Create2, in line with the right and left wheels, as seen in Figure A3a. An image of the underside
of the robot itself is provided in Figure A3b. This is to ensure more navigation accuracy, because if
the sensors are mounted in front, or behind the wheels, the line would be detected before or after the
robot needs to make a navigation decision. For example, if the sensors are mounted in front of the
wheels, and while the robot is in motion (following the line) the line changes direction; the change in
direction is detected first by the sensors making the robot to turn and change its direction before it
needs to, thereby making it go out of track.

53



J. Sens. Actuator Netw. 2020, 9, 56

(a) (b)

Figure A3. Layout of the underside of the robot. (a): robot base layout; (b): under the robot.

The robot has a broad surface area and when on the floor, has little or no light underneath it.
Since our sensors are mounted under the robot, they cannot function effectively because they need a
certain amount of light in order to detect the line. A light source under the robot using four LEDs was
added. These LEDs were mounted perpendicular to the sensors with their light directed at the sensor.
With this in place, when the robot is on the floor, the light bounces off any reflective object or material
placed on the floor and is absorbed by non-reflective materials or objects.

The line tracks are created using tapes. To ensure enough contrast between the line to follow
and the floor regardless of the environment, we had to create a track with two different types of tape,
reflective and non-reflective, with the non-reflective tape in the center. This type of line track would
work irrespective of location flooring. The robot is kept on the track, with the center sensor on the
non-reflective tape, so when any of the sensors is faced with the non-reflective tape, we know the line
track is in that direction.
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Abstract: The evolution of driving technology has recently progressed from active safety features
and ADAS systems to fully sensor-guided autonomous driving. Bringing such a vehicle to market
requires not only simulation and testing but formal verification to account for all possible traffic
scenarios. A new verification approach, which combines the use of two well-known model checkers:
model checker for multi-agent systems (MCMAS) and probabilistic model checker (PRISM), is
presented for this purpose. The overall structure of our autonomous vehicle (AV) system consists
of: (1) A perception system of sensors that feeds data into (2) a rational agent (RA) based on a
belief–desire–intention (BDI) architecture, which uses a model of the environment and is connected
to the RA for verification of decision-making, and (3) a feedback control systems for following a
self-planned path. MCMAS is used to check the consistency and stability of the BDI agent logic
during design-time. PRISM is used to provide the RA with the probability of success while it decides
to take action during run-time operation. This allows the RA to select movements of the highest
probability of success from several generated alternatives. This framework has been tested on a
new AV software platform built using the robot operating system (ROS) and virtual reality (VR)
Gazebo Simulator. It also includes a parking lot scenario to test the feasibility of this approach in
a realistic environment. A practical implementation of the AV system was also carried out on the
experimental testbed.

Keywords: self-driving vehicle; formal verification; model checking; rational agent; decision-making; ROS

1. Introduction

The Defense Advanced Research Projects Agency (DARPA) sponsored competitions
between 2004–2007 [1,2] presented new results on autonomous ground vehicles that
showed large steps forward in the field. However, the results still primarily address
non-complex driving environments [3]. AVs, which operate in complex environments, re-
quire methods that can handle unpredictable circumstances and reason in a timely manner
in complex urban situations, where informed decisions require accurate perception.

The development and deployment of AVs on some of our roads are not only realistic
but can also bring significant benefits. In particular, they promise to solve various problems
related to: (i) the improvement of traffic congestion, (ii) the reduction of the number of
accidents (iii) automate the parking operation including looking for a free parking space,
and (iv) encourage shared use of AVs to reduce overall fuel consumption [4]. Studies show
that more than 90% of all car accidents are caused by human errors and only 2% by vehicle
failures [5].

Considerable research and development resources are spent in industry and academia
on hardware and algorithms, which cover different challenges such as perception, planning,
and controls. Decision-making while driving is a vital process that needs special attention.
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The primary cause of human accidents comes from incorrect decisions, and there will be
limited benefits in developing AVs that continue to make those incorrect decisions at a
similar rate to humans. Hence, we need to make sure that any decision the vehicle is going
to take has been thoroughly verified.

AVs depend on many sensors to find their way among static and dynamic obstacles;
each of those sensors has strengths and weaknesses. Cameras and LiDARs are usually
used together in perception systems to provide a high level of certainty. LiDAR often
provides excellent odometry, localization, mapping, and range information but with a limit
to object identification. Cameras provide better recognition but with limits to localization
accuracy [6]. A multi-sensor system can provide reliable information for perception in
joined-up software architecture for timely processing of the sensory data in the context of
localization and mapping, planning, dynamic obstacle detection, and avoidance [7].

Intelligent software agents have been in development for the past two decades.
Some well-known agent types are reactive, deliberative, multi-layered, and belief–desire–
intention (BDI) agents [8,9]. The limited instruction set agent (LISA) [10] is a new multi-
layered approach to rational agents based on the BDI agent architecture, which is particu-
larly suitable for achieving goals by autonomous systems.

With the increasing demand for machine learning techniques and advanced planning
and decision-making methods, verification and guaranteed performance of the autonomous
driving process has become a challenging problem. Reconfigurable and adaptive RA-based
control systems are capable of controlling a vehicle in a trajectory to avoid other vehicles
and people [11]. Integration is essential to enable decision-making based on behavior rules
and experience in order to make decisions with foresight and consideration to other traffic
participants. RAs have demonstrated significant robustness in the implementation of vari-
ous applications. However, for real-world critical applications, some safety concerns can
still be raised even after extensive testing, creating the need for an appropriate verification
framework. It is important to note that validation and verification usually needs to be
performed together to check the system. However, this paper focuses on a new verification
framework for the safety of autonomous vehicles.

The testing of systems through prototype development only answers some of the
components of operational safety questions. The best that can be achieved in testing is to
use a representative set of scenarios on real vehicles. Simulations can provide illustrations
of the correct dynamic and social behavior of the AV. However, it is difficult to take into
account rare combinations of events that may arise during the run-time of the autonomous
system. It is unlikely that the designer will think of all potential scenarios to ensure
complete coverage. Formal verification methods try to answer the rest of the questions by
accounting for all the probabilities for a given scenario [12,13]. If accurate dynamical models
are available to represent robotic skills of sensing and action, then formal verification can
rely on a finite interaction model of the vehicle with a bounded model of the environment,
that is based on known characteristics of traffic participants.

This paper describes a novel method for the verification of the decision-making system
of an AV with a proposed architecture that lends itself to verification. We take into account
the computer-based system consisting of AV design and simulation for the new verification
platform. Safety and ease of implementation of the system are the two central themes
in this paper, with the prime focus on the safety aspect. This paper presents a prototype
system of an AV parking lot scenario with the ability to deal with the most vulnerable
traffic participants: vehicles and pedestrians. In general, the level of autonomy of a vehicle
can vary from fully human-operated (level 0) to a fully autonomous vehicle (level 5). Our
vehicle is designed to work at level 4, where it can work autonomously in a restricted
environment until it is interrupted [14].

The architecture of our proposed perception system is divided into four subsystems:
LiDAR-based, vision-based, tracking-classification, and coordinate transformation. The
perception system is used for localization and mapping, including calculating the relative
positions of objects around the AV. The cameras are responsible for object recognition and
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detection of free parking spaces, with the aid of the LiDAR to provide an occupancy grid.
The position of the objects is converted to the camera coordinate system, defining a region
of interest (ROI) in the image space, then it obtains the depth information that belongs to
that object from the LiDAR point cloud.

Most autonomous robotic agents use logic-based inference to keep themselves safe and
within permitted behavior by providing the basis of reasoning for a robot’s behavior [15].
Given a set of rules, it is essential that the robot can establish the consistency between
its rules, its perception-based beliefs, its planned actions, and their consequences. In this
paper, we are concerned with the high-level software components responsible for decisions
in an AV capable of navigation, obstacle detection and avoidance, and autonomous parking.
These logic-based decisions can either be implemented through a rational agent [9,10,16–19]
or through fuzzy logic [20–22] depending on the level of performance guarantee required.

To achieve this, we have established the following stages. First, we have built an
AV system and its environment in ROS [23] and the Gazebo Simulator [24]. Second, we
investigated how a robotic agent can use model checking through the use of the MCMAS
model checker [25] to examine the consistency and stability of its rules, beliefs, and actions
through computational tree logic (CTL) for the RA that has been implemented within the
LISA agent programming framework [10,26]. Third, we have formally specified some of
the required RA properties through probabilistic timed programs (PTPs) and probabilistic
computation tree logic (PCTL) formula, which are then formally verified with the PRISM
Model checker [27] during run-time operation of the AV. Finally, within the proposed
verification framework, which comprises both MCMAS and PRISM verification tools, we
have obtained formal verification of our AV agent for some specific behaviors.

We used Gazebo Simulator in this work because of its full compatibility with ROS, and
the huge support from the robotics community. PTP is a formalism for modeling systems
whose behavior incorporates both probabilistic and real-time characteristics. In PTP, the
location/space is discrete, while time is continuous. It is a good compromise between
computational complexity and accurate mathematical modeling. Efficient verification
algorithms have been developed to verify PTPs.

The development and deployment of these autonomous vehicles will rely on their
situational awareness [28–32]. The vehicles will be required to co-exist alongside vehicle
controlled by humans and this presents a significant problem. Whilst simulation can be
used to explore edge-cases and boundaries of operation this relies on the imagination of the
designer of these systems. Therefore vehicles could look to learn and adapt to situations to
improve their awareness and performance. The application of this situation-based learning
is out of scope for this paper but provides motivation for future work.

Contribution

This work is a continuation of our previous work [33,34] to present a new and complete
verification framework for the decision-making of an AV that combines both the design-
time and run-time verification. The main contribution can be summarized as follows:

1. New verification framework for decision-making of a self-driving vehicle that merges
design-time verification represented by the MCMAS model checker and the run-time
verification represented by the PRISM probabilistic model checker, which provide a
comprehensive approach for the verification of AV’s agent decisions.

2. Design, simulation, and implementation of an AV through ROS open-source physics-
based system for a Tata Ace vehicle. Both the AVs in simulation and experimental
implementation use the same perception, rational agent, planning, and control system
software designed for a parking lot environment.

2. Related Work

Autonomous vehicles have been a major area of research interest for the research
community since the DARPA Grand Challenge, which inspired the development of many
AV testbeds across the industry and academia. An example is the Stanford’s Junior [35],

59



J. Sens. Actuator Netw. 2021, 10, 42

which provides a testbed with multiple sensors for planning and recognition. It is capable
of dynamic object detection and tracking and also localization. Other examples are Talos
from MIT [36], and Boss from CMU [37], among many others.

In this section, we discuss some recent platforms and techniques related to our work,
developed for safe self-driving vehicle operation.

In ref. [38], the authors presented a testbed called cognitive and autonomous test (CAT)
vehicle, which is comprised of a simulation-based self-driving vehicle, with a straight-
forward transition to hardware-in-the-loop testing and execution, to support research in
autonomous driving technology. The idea is to support researchers who want to demon-
strate new results on self-driving vehicles but do not have an access to a physical platform
to mimic the dynamics of a real vehicle in the simulation and then provide a seamless tran-
sition to the reproduction of use cases with hardware. The Gazebo Simulator utilizes ROS
with a physics-based vehicle model, including simulated sensors and actuators. Gazebo
comes as a default simulator with ROS and is a physics-based simulator that has also
been used in our work. Gazebo is not the only option that is available to design and test
self-driving vehicles. Other simulators include CARLA [39], which has been developed to
support the development, training, and validation of autonomous urban driving systems.
CARLA is also compatible with ROS and supports flexible specification of sensor suites
and environmental conditions. Another simulator that is also useful to develop and test
self-driving vehicles is LGSVL [40], which is a multi-robot AV simulator. It has been de-
signed as an open-source simulator based on the Unity game engine to test autonomous
vehicle algorithms. LGSVL also supports ROS where it helps to connect the simulator to a
physical platform for tests.

Self-driving vehicles use a perception system to perceive the environment. Sensor
fusion is used to bring together inputs from multiple radars, LiDARs, and cameras to
form a single model or image of the environment around a vehicle. The resulting model
is more accurate because it balances the strengths of the different sensors. In ref. [41], the
researchers developed a perception fusion architecture based on the evidential framework
to solve the detection and tracking of moving objects problem by integrating the composite
representation and uncertainty management. They tested their fusion approach with
a physical testbed from the interactive IP European project, which includes three main
sensors: camera, LiDAR, and radar by using real data from different driving scenarios
and focusing on four objects of interest: pedestrian, bike, car, and truck. The sensor fusion
provides necessary information for different parts of the autonomous driving system, such
as simultaneous localization and mapping (SLAM) and planning, which include both path
planning and motion planning.

Other methods in the literature include the distance sensor-based parking assistance
system, which recognizes an empty space using ultrasonic and LiDAR sensors as explained
in refs. [42–44]. The problem with this system is that it will recognize a free space as a
parking slot when the space is equal to the width of the vehicle is detected, even if the
space is not a parking slot. This method is usually applied to a parking assistance system
where the driver can determine a parking space. However, it is not compatible with a fully
autonomous parking system, where the system judges a parking space and moves the car.

The around view monitoring (AVM) [45] can compensate for the disadvantages of
distance-sensor-based detection as it can detect parking spaces based on parking slot lines
instead of empty spaces. However, a false-positive (FP) can be detected from shadows
and 3D objects, or the parking slot lines may be occluded by a nearby vehicle. Hence, the
researchers proposed a probabilistic occupancy filter to detect parking slot lines. This filter
uses a series of AVM images and onboard sensors to improve the occlusion problem and
reduce the false-positive from other objects. However, this method still not very accurate
and could mislead the AV in some cases.

The main topic we discuss in this paper is the verification of decision-making for our
self-driving vehicle. This area of research has received more attention in the last few years
as the complexity of the autonomous software has increased while the safety and feasibility
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of these decisions have been under investigation due to series of fatal incidents that
occurred with these autonomous systems as listed in ref. [46]. In ref. [19], the authors show
how formal verification can contribute to the analysis of these new self-driving vehicles.
An overall representation for vehicle platooning is a multi-agent system implemented
within the GWENDOLEN agent programming language in which each agent captures
the “autonomous decisions” carried out by each vehicle. They used formal verification to
ensure that these autonomous decision-making agents in vehicle platoons never violate
any safety requirements. The authors presented a method to verify both the agent behavior
using Agent Java PathFinder (AJPF) and the real-time requirement of the system using the
Uppaal model checker where the system is represented as timed automata.

In ref. [47], Fernandes et al. modeled an AV with a rational agent for decision-making.
To achieve this, they have established the following stages. First, the agent plans and
actions have been implemented within the GWENDOLEN agent programming language.
Second, they have built a simulated automotive environment in the Java language. Third,
they have formally specified some of the required agent properties through LTL formulae,
which are then formally verified with the AJPF verification tool. Finally, within the model
checking agent programming language (MCAPL) framework they have obtained formal
verification of the AV agent in terms of its specific behaviors and plans.

In ref. [48], Giaquinta et al. presented probabilistic models for autonomous agent
search and retrieve missions derived from Simulink models for an unmanned aerial vehicle
(UAV) and they show how probabilistic model checking using PRISM model checker has
been used for optimal controller generation. They introduced a sequence of scenarios
relevant to UAVs and other autonomous agents such as underwater and ground vehicles.
For each scenario, they demonstrated how it can be modeled using the PRISM language,
give model checking statistics and present the synthesized optimal controllers.

In our work, our system is different in the following aspects: we focused on adapting
and developing different techniques and methods that contribute towards the design of a
safe self-driving operation. We used ROS to design the main system functions such as the
perception and control subsystems. We used a similar method presented in ref. [38] where
the system built-in ROS supports hardware-in-the-loop. The difference is that our ROS
system was designed to satisfy the needs for our testbed—the TATA ACE electric vehicle.
Further, it provides additional functions to connect to the main decision-maker onboard
and the verification system. This represents a modular overall system that supports adding
more subsystems when needed.

For the perception system, we used a similar set of sensors usually used by others,
where this is represented by a stereo camera, mono-cameras, and LiDAR. The combination
of this set provides sufficient data to perceive the vehicle’s surroundings. The perception
system is presented in Section 4.

We tested our system for autonomous parking scenarios. The AV needs to look for
the attached Aruco markers on each parking slot; this method is used for its simplicity,
reliability, and compatibility with the fully autonomous driving mode compared with other
methods mentioned in the literature. However, this method needs to be supported in the
parking lot by installing Aruco markers on some or all of the parking slots to be used
by AVs.

As we mentioned, this work focused on the verification of the decision-making of
AVs. The novelty of our work comes from the fact that we tried to thoroughly verify the
reasoner and the decisions from multiple aspects to make sure that any decision that could
be made is safe to apply. We applied the verification for the reasoner offline during the
design-time and online during the run-time operation.

The reasoner software has been designed by natural language programming using
software called sEnglish, as explained in Section 5. This method is used for its simplicity
and compatibility with the ROS system and the verification tools. However, this method
comes with some limitations and it is difficult to be used with a higher-level autonomous
system presented in level five autonomy.
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For the design-time verification, we used the MCMAS model checker to check the
consistency and stability of the logic predicates. The PRISM model checker is used to verify
the decisions made by the agent during run-time operation. Details of this method are
explained in Sections 6 and 7.

3. System Overview

A standard AV has a control architecture that incorporates both low-level and high-
level components. The low-level components include sensors and actuators, while the
high-level system components are often responsible for decision-making based on data
provided by low-level components.

Our perception system provides a stream of images and 3D point cloud data obtained
from sensors commonly used in AVs. It consists of eight mono-cameras (three on each side
and two at the back), a stereo camera on the front, and a LiDAR on top that can be shifted
left and right and tilted with a specific angle by the high-level system for better coverage.
The stereo camera in front of our vehicle uses a deep-learning-based object detector that
is capable of detecting different objects, including those that could exist in a parking lot
environment. The perception system can also localize free parking spaces by using fiducial
markers. These data are converted to high-level abstract statements that can be used by
the RA onboard the vehicle. A case study of a parking lot scenario has been carried out to
demonstrate the verification methods and to show the feasibility of our approach.

The AV system in Figure 1 is based on a modular design that makes practical imple-
mentations relatively simple and allows for future updates. The decision agent is central to
the system design. We used the LISA agent paradigm due to its capability to execute actions
based on decision-making to pursue goals while also not being too complicated to enable
verification. The decision process also uses rules and abstractions from future predictions
(consequences of future events) and can re-plan the path of the AV when needed.

Perception system in
ROS

Model of the sensors
in ROS and Gazebo

Control system in
ROS

Rational agent for
decision making in LISA

PRISM
Model of the

Actuators in ROS and
Gazebo

Environment

MCMAS

Environment

Figure 1. Block diagram showing the different components of the autonomous vehicle system in
simulation. Blocks in green and yellow represent the sensing and actuating systems, the block in blue
represents the rational agent that communicate with the verification system (MCMAS and PRISM).

The rational agent (RA) is capable of communicating with the perception system to
sense the environment and instruct the actuators to move the vehicle in a collision-free
path without the need for human support. To achieve this, the perception system builds a
model of the environment, localizes objects around, and keeps updating its model after
each perception cycle. The software agent has rule-based reasoning, planning capability,
and some feedback control skills for steering and velocity regulation. The RA has been
implemented using natural language programming (NLP) in sEnglish [17], as mentioned
in Section 5.

The vehicle in simulation supports a scalable, modular design to ease the imple-
mentation of different system parts and further development. The physics-engine-based
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simulation shown in Figure 2 consists of a model of the Tata Ace electric vehicle shown in
Figure 3, with the same specifications and parameters for the vehicle and sensors.

The AV is based on packages designed with ROS, using Python and C++. ROS
provides tools and libraries for writing perception and control algorithms and other ap-
plications for AVs. With various levels of hardware and software abstractions, device
drivers for a seamless interface of sensors, libraries for simulating sensors, and a visualizer
for diagnostics purposes, ROS provides middleware and interoperability to simulation
software, and the software installation is straightforward. Being a distributed computing
environment, it implicitly handles all the communication protocols. The hardware used
in this work has been selected through experimental tests, a similar set has been widely
adopted by other prototypes design of AVs.

3 Mono
cameras

3D Lidar
Stereo
camera

Figure 2. The test vehicle we designed in ROS and Gazebo showing sensor configuration.

3 RasPi mono
cameras

3D VLP-16 Lidar
ZED stereo

camera

Figure 3. Our electric testbed showing the hardware and sensor configuration.
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However, standard ROS packages lack domain-specific requirements for experimen-
tation with a car-like robot. A typical setup of an AV consists of a controller and a set of
sensors tested and mounted to provide sensing modality that provide a complete view of
the environment around the test vehicle. In order to control motion seamlessly, we created
interfaces for control and consistent consumption of sensor data. We had tested the current
state of the vehicle and issued control signals well before the real platform was engaged.
Once algorithms were tested in simulation, they could be implemented in the real vehicle,
and the physical platform was then replaced the AV in simulation. The simulated version
was used as a proving ground for the algorithms, to build confidence in their operation
before transferring to the, naturally more complex, physical system.

We created models of the AV, parking lot, pedestrians, and other vehicles in the
parking lot mainly using the SkechUp software [49] to create 3D models recognized by
Gazebo Simulator.

In this work, we are interested in both design-time and run-time verification; this
process involves the analysis of the system to detect behaviors violating the required prop-
erties. Design-time architecture verification is performed using MCMAS and probabilistic
run-time verification using PRISM. We have programmed a compiler from LISA to build
the models for MCMAS. The latter was then used to check the consistency and stability
of beliefs, rules, and actions of the AV in its environment. When the logic predicates are
inconsistent or unstable, a counterexample is generated to demonstrate the violation and
help developers to correct the system [50]. PRISM is used by the RA at run-time to ask
questions such as ‘what is the probability of success of the current action’ or ‘what is the
probability of achieving the current goal within a time limit’ [27], the parameters used to
estimate the probabilities depending on the driving scenario were, for example, the speed
of the AV, speed of moving objects, and the direction of movements. For example, the
agent can ask what is the probability of success if the AV were to move to a specific location
within a specific period, taking into account the dynamic models (generated by the agent)
of other objects moving around.

Driving in urban environments is characterized by uncertainty over the intentions
and behavior of other traffic participants, which is usually considered in the behavioral
layer responsible for decision-making using probabilistic planning formalisms, such as
Markov decision processes (MDPs) to formulate the decision-making problem in a prob-
abilistic framework. We used a different approach in probabilistic systems represented
by probabilistic timed programs (PTPs) [51] to model the behavior of the AV and the
proposed behavior of the other participants. A detailed explanation is presented in the
following sections.

4. Design and Implementation of Self-Driving Vehicle

The hierarchical system is decomposed into four components, as shown in Figure 4:
The perception system is used to receive information about the environment and feeds this
information to the second stage. Here the agent makes decisions on the suitable progress of
the car towards the destination by rules of interaction and rules of the road. The next stages
are the global path planner and the local path planner, which are responsible for generating
the path of the AV from the starting point to its destination based on the directions and
speed profile set by the RA, then select a continuous motion plan through the environment
to achieve a local navigation task. The last component is the control system that executes
the motion using actuators and corrects errors in the execution in a feedback loop. In the
remainder of the section, we discuss each of these components briefly.
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Figure 4. Our AV system showing the main nodes designed in ROS for perception, planning, and
control (secondary and supporting nodes are not shown here); RA was designed in sEnglish [17,52],
whereas the verification system was designed in MCMAS and PRISM verification tools.

4.1. Perception System

Modern vision-based detection techniques work by extracting image features to seg-
ment regions of interest (ROI) then detect different objects within those regions. In particu-
lar, the detection of people and vehicles has made significant progress in the autonomous
and assisted driving areas [53,54]. Radar is a robust and invaluable information source for
perceptual tasks; however, the spatial resolution of radar is typically poor compared to
camera and LiDAR. Thus, much recent perception research is focused toward cameras and
LiDAR. We have designed a parking lot scenario in ROS and Gazebo to explain the use of
different sensors as shown in Figure 5.

Detection methods based on mono-cameras suffer in two ways: despite the methods
proposed for moving mono-cameras, fast and accurate range measurement remains an
issue, which is vital for critical object detection in autonomous driving applications. Optical
sensors can suffer from a limited field of view and poor operation during low lighting
conditions. On the other hand, LiDAR is usually paired with the advanced driver assistance
system (ADAS) applications and has become part of the AV perception system because
of the high precision range measurements and the wide field of view that it provides.
The main issue for the LiDAR-based system is that the data from scans do not contain
information that easily allows different objects to be distinguished between, especially in a
dense environment.

Stereo cameras can provide more precise depth data and a wider angle compared with
mono-cameras. However, the detection angles are smaller than LiDAR, and it is also less
precise in providing depth information, especially over the long distances that are often
vital for AV decision-making. The integration of cameras and LiDAR sensors can enhance
fast object detection and recognition performance [41]. This type of sensor fusion system is
known as the classic LiDAR-camera fusion system.

In this simulation-based system, we tried to mimic our approach for the experimental
AV system, where we used a Velodyne VLP-16 LiDAR, one ZED stereo camera, and eight
Raspberry Pi 3 model B mono-cameras (8 megapixels each), The properties for these
sensors are mentioned in Table 1. The LiDAR is connected directly to ROS for point cloud
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data processing. The front-facing stereo camera is connected to the Jetson TX2 running
YOLOv3 [55] deep-learning-based object detection. The mono-cameras use the processing
power of their host Raspberry Pi system for aggregated channel features (ACFs) object
detector of pedestrians and vehicles [56]. Those mono-cameras, along with the stereo-
camera, cover a 360◦ FOV. The camera system has also been equipped with a method
for fiducial-follow that uses Aruco markers to detect the location and orientation of free
parking slots, as shown in Figure 6 (right camera one and two). Along with the occupancy
grid data generated by the LiDAR, the AV is capable of detecting free parking spaces
simply and efficiently. Figure 6 also shows the detection of vehicles and pedestrians, which
is a vital process for normal operation of the AV.

When a known object is detected by one of the cameras, the associated LiDAR measure-
ments are processed for the distance calculation by matching the location of the detected
object with the 3D point cloud data belonging to the same object. Based on the generated
depth map, the position and direction of the object are calculated from the ROI, those
measurements from LiDAR are calculated according to the coordinates transformation.

We used the LiDAR odometry and mapping (LOAM) [57] ROS package for Velodyne
VLP-16 3D LiDAR. This package provides a real-time method for mapping and state
estimation by applying two parallel threads: The odometry thread to measure (at a higher
frame rate) the motion of the LiDAR between two movements and to eliminates distortion
in the point cloud. The second is a mapping thread that incrementally builds the map (at a
lower frame rate) based on the undistorted point cloud, and also to compute the pose of
the LiDAR on the map.

Table 1. Properties of sensors for both simulation and real testbed.

Sensor Type No. of Sensors Resolution No. of Frames/Speed of Rotation

LiDAR 1

3D 16-layer (up to 50 m)-Simulation
3D 16-layer (up to 100 m)-Real testbed

360◦H/30◦V
1864 PPS-Simulation

300,000 PPS-Real testbed

300 RPM-Simulation
600 RPM-Real testbed

Stereo camera 1 Color 1344 × 376 10 FPS

Mono camera 8 Color 640 × 480 6 FPS

Figure 7 shows the map built for the AV current path in the parking lot shown in
Figure 5. The sides of the objects that are facing the LiDAR are shown on the map with
white lines. We added another layer of protection using a cost map function, which helps
the AV to keep an extra safe distance from any object within a specific inflation distance
where this could be set according to the environment type; it is represented on the map in
Figure 7 with the blue lines surrounding the white lines. Finally, the data for the detected
objects and their locations are sent to the RA for further processing.
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Figure 5. Parking lot scenario developed in ROS and Gazebo Simulator to check the proposed system.
The AV is looking for a free parking space in the parking lot and it is navigating among pedestrians
and other vehicles depending on the data coming from the perception system and analyzed with the
rational agent onboard the AV. The information obtained from the perception system is shown below
in Figures 6 and 7.

Figure 6. Pedestrians and cars recognized by the AV using camera sensors. “Right camera 1”
and “Right camera 2” show the Aruco marker detection attached to the parking spaces. This
can be combined with the occupancy grid generated by the LiDAR in Figure 7 to detect the free
parking spaces.
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Figure 7. Data from the LiDAR sensor placed on the top of the AV. The odometry and mapping data
are shown for the parking scenario; this is based on LOAM Velodyne ROS package shown in Figure 4.
The pedestrians and the parked vehicles around have been detected and the system adds an inflation
layer for extra protection from collision.

4.2. Autonomous Behavior

Recent approaches for AVs have used prediction methods in order to avoid collision by
estimating the future trajectory of the surrounding traffic participants. However, real traffic
scenarios include complex interactions among various road users and need to handle com-
plex clutter and modeling interactions with other road users to ensure safety. In the DARPA
urban challenge, various solutions for planning were proposed; most of those solutions
were specifically tailored to the competition demands. Many approaches (e.g., refs. [36,37])
use a state machine for AV to switch between predefined behaviors. These rule-based ap-
proaches need a safety assessment in order to deal with uncertainties. AV with human-like
driving behavior requires interactive and cooperative decision-making.

Other vehicle’s intentions need to be modeled and integrated into a planning frame-
work that allows for intelligent, cooperative decision-making without the need for inter-
vehicle communication. While AVs need the ability to reason the intentions of other
participants, those also need to infer the AV’s intention reasonably. This results in inter-
dependencies and interactions based on the scene and shown behavior without the need
for explicit communication [58].

By simulating the proposed traffic scenario, we can search for a possible best policy
measured against the AV’s cost function, and then the best policy is executed from the set
of available policies for the AV. Possible trajectories can also be sampled, and the reaction
to the environment can be determined according to the RA model.

The AV must be able to interact with other road users in accordance with codes of
conduct and road traffic rules. For a given sequence of road segments specifying the
selected route, the behavior layer is responsible for selecting appropriate driving behavior
based on the perceived behavior of other road users and the road conditions. For instance,
when the AV searches for a vacant parking space in a parking lot, the behavioral layer
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instructs the vehicle to observe the behavior of other vehicles, pedestrians, and other objects
during its movement and let the vehicle proceed once it is safe to go. Since the driving
contexts and behaviors available in each context can be modeled as finite sets, a natural
approach to automating this decision-making is to model each behavior as a state in a finite
state machine with transitions controlled by the perceived driving context as the relative
position to the planned route and nearby vehicles. Finite state machines, combined with
different heuristics specific to the driving scenarios considered, have been adopted by most
DARPA Urban Challenge teams as a behavioral control mechanism.

In the literature, similar approaches have been made by reducing decisions to a limited
set of options and conducting evaluations with an individual set of policy assignments for
each option. In general, the probabilistic representation of system models can be divided
into four main types: discrete-time Markov chain (DTMC), continuous-time Markov
chain (CTMC), Markov decision process (MDP), and probabilistic timed automata (PTA). A
typical implementation of learning different driving styles in a highway simulation showed
the potential of the probabilistic approach represented by MDP [59,60]. In ref. [61], the
authors showed an enhanced version of the algorithm and its performance by generating
human-like trajectories in parking lots, with only a few demonstrations required during
learning. A partially observable MDP (POMDP), an extension of MDP, has been used
in refs. [62,63] to integrate the road context and the motion intention of another vehicle in
an urban road scenario.

Our RA and its physical environment have been modeled as a probabilistic timed
program (PTP) model, which is an extension of PTA with the addition of discrete-valued
variables that can be encoded into locations [51], while we used the probabilistic com-
putational tree logic (PCTL) for specification logic [64]. A PTP incorporate probability,
nondeterminism, dense real-time, and data. Its semantics are defined as infinite-state
MDPs consists of the states of the environment and the transition between those states,
which, through the conditional probabilities of the environment, correspond to triggering
of predicates through the sensor system of the AV.

Pre-programmed rules are used to set the relationship between the perception pred-
icates (beliefs) and the available actions. When this combination is verified by MCMAS
during design time, then there will be no space for an unfeasible, repeated, or misleading
action in the agent’s actions list. The advantages of this operation are clearer when we deal
with general real-life driving scenarios that could have a large number of predicates; in
this case, the manual checking of those predicates would be unfeasible.

4.3. Planning System

Planning modules are concerned with vehicle motion and behavior in the perceived
environment. Typically they comprise trajectory generation and reactive control for colli-
sion risk mitigation. They are organized into sub-maps to provide the flexibility of updating
and to handle large environment maps. These are integrated and corrected for changes by
a graph optimization approach with critical landmarks as nodes [65]. The planning system
consists of two different components.

4.3.1. Path Planning

The RA is setting the waypoints to move the AV in the environment. These high-level
commands are sent to the path planning ROS node to generate the route for the AV from
the starting point to the desired destination. The entrance of the parking lot represents
the starting point, and the destination is a free parking slot, which is an unknown place
that needs to be discovered by the perception system while exploring the area. We used
an ROS-based Dijkstra algorithm [66,67] for its simplicity and efficiency. This method
represents the roads as a directed graph with weights represents the cost of passing a road
segment. This process starts with a set of nodes (free space) that the AV can navigate and
assigning a cost value to each one of them, this value is then increased with the next nodes,
and the algorithm needs to find a path with minimum cost.
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After finding the appropriate path, all the nodes in that path are translated into
positions Pi = (Xi, Yi)

T in the reference axes. The outcome is not smooth, and some
points are not compliant with the vehicle kinematics, and geometry, hence the second stage
(motion planning) is necessary.

4.3.2. Motion Planning

In order to transform the global path into suitable waypoints, the timed-elastic band
(TEB) motion planner creates a shorter set of waypoints Pi = (xi, yi, θi)

T within the orig-
inal path planner waypoints. This takes into account, as much as possible, the vehicle
constraints and the dynamic obstacles. Hence the map is reduced to the area around the
AV and is continuously updating. When the path planning node determines the path of
driving to be performed in the current context, then the ROS-based TEB local planner
algorithm [68,69] will be used to translate this path into shorter continuous trajectories that
are feasible for the control system and actuators to track and follow. This trajectory should
also avoid collision with obstacles, detected by the sensors on-board, and should also be
comfortable for the passengers. In case there is an object nearby, then the agent will check
the possibility of collision using the PRISM model checker and then modify the trajectory
when needed.

4.4. Control System

A control system is needed to execute the proposed trajectory of the AV. The move_base
control node operates the AV by executing acceleration, braking, and steering messages.
The control node takes the list of waypoints as input, and target velocities generated by
the planning subsystem. Then sends these waypoints and velocities to an algorithm that
calculates the amount of direction, acceleration, or deceleration to reach the target path.

Via a feedback controller, the appropriate actuator inputs are selected to perform the
intended motion and correct the tracking of errors. These errors generated during the
execution of a planned movement are due in part to the inaccuracies of the vehicle model.
Therefore, the focus is placed on the robustness and stability of the controlled system.
Different feedback controllers have been proposed in ref. [70] for executing the reference
motions provided by the motion planning system.

Running the move_base node on the AV that is appropriately configured results in
attempting to achieve a goal pose with its base to within a user-specified tolerance.

5. Rational Agent Design

5.1. Background

LISA [10] is a reactive agent that uses information from the environment in order to
make a decision. These decisions are based around a set of beliefs, desires, and intentions
that define its behavior [8,71]. Beliefs represent the knowledge derived from sensors to
provide an observation of the current state of the environment. For example, if the sensors
of an AV detect a person, the agent would hold the belief that a human was nearby. Desires
correspond to the long-term goals of the agent. These long-term goals can correspond
to states within the environment, for example, the position of an AV in a parking space,
which the agent will use to attempt to establish in its behavior. Intentions, contrasting with
beliefs, represent short-term goals of the agent, for example, once a person is detected, the
RA will have the intention to avoid that person while they are nearby.

5.2. sEnglish

AV’s decision-making programming is complicated, time-consuming, error-prone, and
requires expertise in both the proposed tasks and the platform. There are many proprietary
design tools in the industry [58,72] that require specialized knowledge. In order to simplify
this process and to broaden the understanding of how decisions for AV actions are taken
by non-experts to understand and verify the system in case of a legal need, such a method
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could be crucial to law enforcement agencies, insurance companies, and lawyers in the
event of an accident to review the program and the reason for AV taken a specific action.

The RA is implemented using sEnglish [17,52] natural language programming. Within
sEnglish, the plans operate over a description of the world, which is captured within the
system and environment ontology and maintained by data from sensors in the world
model. The system ontology provides a simple, translatable description between concepts
that a programmer and end-user would equally understand, such as common nouns, and
those that an agent can use or manipulate, such as variables or pieces of data. In sEnglish,
the agent’s plans are described using English sentences in a structured text, including
conditioning. The meaning of sentences is explained by an sEnglish text using sentences
until further decomposition of meaning reaches the signal processing level when C++ is
used to define the meaning. At this C++ level, no interpretable concepts need to be defined
by the ontology.

The agent takes its decisions relying on information coming from its environmental
model or knowledge base, which is a database regularly updated via sensors and perception
mechanisms, and potential any learned inferences. This database is organized into a high-
level ontology and provides information about the system and especially the current state
of the environment.

Plans are declared by the programmer. Although this makes the agent less creative
at run-time, as the plan library is fixed and not dynamically generated by the agent, this
has significant advantages in terms of fast execution and viable formal verification [73]. In
many safety-critical systems, such as formal verification, the core agent is crucial. Hence,
this kind of BDI agent combines the advantages of deliberative agents with the advantages
of reliability and explainability.

5.3. Mathematical Representation of the Agent

The LISA rational agent definition of our AV will follow [9,16,17] and it is based on
AgentSpeak-like BDI architectures of robotic agents.

A rational agent in LISA can be fully defined and implemented by listing the follow-
ing characteristics:

• Initial Beliefs.
Initially, once the agent is initialized, it will have a set of beliefs about the environment.
These beliefs are referred to as B0 ⊂ F that are a set of literals that are automatically
copied into the belief base Bt (the set of current beliefs) on initialization.

• Initial Actions.
The initial actions A0 ⊂ A are a set of actions that are executed when the agent is first
to run. Typically these actions are general goals that activate specific initial plans set
up by the programmer.

• Logic rules.
A set of logic-based implication rules, L = RP ∪ RB, describes theoretical reasoning
about physics and behavior rules to enable the agent to adjust its current knowledge
about the world and influence its decision on actions to be taken.

• Executable plans.
A set of executable plans or plan library Π. Each plan πj is described in the form:

pj : cj ← a1, a2, . . . , anj (1)

where pj ∈ Pt is a triggering predicate, which allows the plan to be retrieved from the
plan library whenever it comes true. Next the pj ∈ Pt allows the plan to be retrieved
from the plan library whenever the belief base dictates that its triggering conditions
are true; cj ∈ B is called the context, which allows the agent to check the state of the
world, described by the current belief set Bt, before applying a particular plan; the
a1, a2, . . . , anj ∈ A then form a list of actions that the agent will execute.
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The LISA rational agent defined in this paper will follow these rules and is defined:

R = {F , B, L, Π, A} (2)

where:

• F = {p1, p2, . . . , pnp} is the set of all predicates. In practice, this set can be infinitely
large for general driving scenarios, however we are presenting this new approach to
be tested on a specific limited driving scenario, which is driving in a parking lot. With
some modifications and improvements this method could be generalized for other
driving scenarios for future work.

• B ⊂ F is the atomic belief set, the set of all possible beliefs that the agent may
encounter during operation. The current belief base at time t is defined as Bt ⊂ B.
During operation, beliefs will always be changed. This occurs through events so that
at a time t, beliefs may be added, deleted, or modified. These events are represented
in the set Et ⊂ B, which is called the Event set. Events may be based on internal or
external actions. Internal actions are described as “mental notes”. External inputs
will appear through input from a sensor and are called “percepts” as they represent a
measurement of the environment.

• L = RP ∪ RB = {l1, l2, . . . lnl} is a set of implication rules. These are logic-based and
represent a description of how the predicates B can be linked together and interpreted.

• Π = {π1, π2, . . . , πnπ} is the set of executable plans or more formally plans library.
At any time, t, there will be a collection of plans that could be activated. These are
a subset of the complete plan library, Πt ⊂ Π, which is commonly named the Desire
set. A set I ⊂ Πt ⊂ Π of intentions is also defined. This set, l, contains plans that
the agent is committed to executing. Each plan is built up as a sequence πj(λj) of
actions where π(0) is a triggering condition for the plan, and λj > 0 ∈ A provides the
subsequent series of actions that will be carried out.

• A = {a1, a2, . . . , ana} ⊂ F \ B is a set of all available actions. Actions may be either
internal, when they either modify the knowledge base or generate internal events, or
external, when they are linked to functions that operate in the environment.

This completes the definition of the AV agent used. The above list of steps are cyclically
repeated to run the reasoning process of a robotic agent. Part of the agent program is shown
in Figure 8 that has been used to generate PTP models for the AV and the other traffic
participants based on perception predicates, the values shown are tailored to the physical
characteristics of the vehicle.

In the example, the formation of plans is shown for an agent undertaking an au-
tonomous parking maneuver. In this case, eight plans are presented that represent the
agent’s actions; each is represented by a triggering condition. The perception process
represents sensing data that are collected on every evaluation. The ‘ˆ[. . .]’ represents the
evaluation of a belief condition that can be set by an internal event. In this case, both plans
start by evaluating whether a specific belief is matched. Should this belief be matched, a
series of actions is then planned, again any element headed ‘ˆ[. . .]’ shows then update of
a belief, elements shown within square brackets are executable sentences that contain code
defined deeper within the structure which links to actuation.

Plan 1 can be read as follows: if I believe that no free parking space is detected, then I
believe that I need to explore the parking lot. This is then extended by Plan 2, which can be
read as if I believe I need to explore the parking lot, then a set of exploration waypoints
should be generated, and these should be uploaded to activate the drive mode. Plan 3 is
used to capture the condition when a parking space is detected and can be read: if I believe
that I have detected a free space, then I can remove the belief that I need to explore the
parking lot, and I believe I can commence parking operation.

Plan 4 contains the high-level code with trigger for planning this movement: if I
believe that I can commence the parking operation, I should generate a set of waypoints for
the parking and update the drive mode to reflect this. Plans 5, 6, and 7 can be read as two
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pairs; each deals with the detection of an object, either a person or a moving vehicle. In
each case, if it is detected at a distance between 12 m and 6 m then new set of waypoints is
generated to avoid the object, if the distance between 6 m and 3 m, then the drive mode is
switched to a slower mode, and a new set of waypoints is generated; otherwise, the vehicle
is stopped.

1 PERCEPTION PROCESS

2 Monitor the following Boolean:

3 Parking space located.{[],[0,5]}

4 Pedestrian detected.{[],[-2,4]}

5 Generate PTP for Pedestrian.

6 {[I am at global waypoint ],[0,0]}

8 EXECUTABLE PLANS

9 // Plan 1

10 If ^ ~[Parking space located] then +^[Need to explore parking lot.].

11 // Plan 2

12 If ^[Need to explore parking lot] then [Generate exploration waypoints.

]

13 [Update drive mode.].

14 // Plan 3

15 If ^[Free parking lot detected] then -^[Need to explore parking lot]

16 +^[ Commencing parking operation].

17 // Plan 4

18 If ^[ Commencing parking operation] then [Generate parking waypoints.]

19 [Update drive mode.].

20 // Plan 5

21 If ^[ Pedestrian detected] while ^[ Distance more than 3m and less that

6m] and

22 ^[ Object getting closer] then [Activate slow mode.]

23 [Generate object avoidance waypoints.]

24 +^[ Object PTP generated.]

25 [Update drive mode.].

26 // Plan 6

27 If ^[ pedestrian detected] while ^[ distance less than 3m] then

28 [Activate stop mode.]

29 [Update drive mode.].

30 // Plan 7

31 If ^[ moving vehicle detected] while ^[ distance more than 6m and less

that 12m] and ^[ object getting closer] then

32 [Generate object avoidance waypoints.]

33 +^[ object PTP generated]

34 [Update drive mode.].

35 .

36 .

37 .

Figure 8. Part of the agent code used to control the AV.

5.4. Connecting the RA to ROS

The sEnglish agent is natively compatible with ROS. The collection of sEnglish sen-
tences that are set up by the programmer can comprise more complex sentences until
atomic actions are then reached. These atomic actions can either be represented as sen-
tences linked to libraries or native C++ code. The programmer can directly interface
this C++ code to existing ROS libraries; therefore, the agent can be directly linked to the
distributed ROS system.

A recent example of this operation is shown in handling nuclear material [18,74] for a
robot arm. In this case, an sEnglish agent is developed and linked to an ROS network, in
one case controlling a KUKA IIWA manipulator. In another, the agent is plugged into a
different, but compatible drive for a KUKA KR180 manipulator. The only difference is the
underlying drivers, providing an identical interface is provided, typically through topics
and services available in ROS. The programmer can rapidly configure an sEnglish agent to
operate within a distributed network for different applications.
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6. Verification Methodology

In our decision framework, the agent uses model checkers MCMAS and PRISM to
make appropriate and safe decisions for run-time operation. At design time, MCMAS
can check if the logical reasoning system of the agent is consistent and stable [50]. The
set of consistent and stable actions are fed into PRISM to find the most likely-to-succeed
trajectory and action for that moment during the run-time operation.

6.1. Design-Time Verification

MCMAS is a symbolic model checker for multi-agent systems. It enables the auto-
matic verification of specifications that use standard temporal modalities as well as the
correctness, epistemic, and cooperation modalities. These additional modalities are used to
capture the properties of various scenarios.

Agents can be described in MCMAS by the interpreted systems programming lan-
guage (ISPL). The approach is symbolic and uses ordered binary decision diagrams (OB-
DDs), thereby extending standard techniques for temporal logic to other modalities distinc-
tive of agents.

The logical reasoning system in the agent has a set of reasoning rules, which can be
formulated as a Boolean evolution system (BES).

Definition 1 (Boolean evolution system). BES = 〈B,R〉, where:

• B = Bknown ∪ Bunknown is a set of predicates (Boolean variables) B = {b1, · · · , bn},
• Bknown = Btrue ∪ B f alse is a set of known predicates,
• Bunknown is a set of unknown predicates in its initial evaluation that could be determined later

as Bknown (Btrue ∨ B f alse), or continue to be Unknown,
• R is a set of reasoning rules (evolution rules) of the form X → Y, R = {r1, · · · , rm} defined

over B.

In the logical system, a Boolean variable in Bknown usually represents a sensing event,
e.g., a pedestrian comes close (e.g., within 5 m) to a vehicle. A pseudo-Boolean variable
in Bunknown can express a belief, an action, or a consequence of an action, whose value is
unknown at the beginning of a reasoning cycle.

When a guard g of a rule is evaluated to true on a valuation B of B, we say that the
rule is enabled. After applying all enabled evolution rules over B simultaneously, we obtain
a new valuation B′

. If two enabled rules set a variable to different values in B′
, then the

reasoning system is inconsistent. Starting from valuation B0
, we can apply the evolution

rules infinitely and obtain valuations B1
, . . . ,Bi

, . . . if the reasoning system is consistent.

However, the system is unstable if for any pair of adjacent valuations Bi
and Bi+1

, we

have Bi �= Bi+1
.

6.2. Run-Time Verification

PRISM is a probabilistic model checker [27], a verification tool for modeling and
formal analysis of systems that present probabilistic behavior. PRISM has been used to
analyze different kind of systems from different domains, such as planning and synthesis,
communication, game theory, performance and reliability, security protocols, etc. PRISM

can build and analyze several probabilistic models including Markov decision processes
(MDPs) plus extensions of these models with costs and rewards.

PTPs is an extension of MDPs with real-valued clocks and state variables. For timed
automata formalisms, discrete variables are typically considered to be a straightforward
syntactic extension since their values can be encoded into locations.

Given a set S, P(S) denotes the power set of S and D(S) the set of discrete probability
distributions over S. A PTP contains a set of state variables and a set of clock variables. The
state variables model the discrete events in the environment and the clock variables model
the time elapse, which is a continuous process. Let X be the set of clock variables. The set of
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clock valuations is defined as RX
≥0 = {t : X → R≥0}. Given a clock valuation t and δ ≥ 0,

a delayed valuation t + δ is defined as (t + δ)(x) = t(x) + δ for all x ∈ X . Given a subset
Y ⊆ X , a new valuation t[Y := 0] is defined by setting all clocks in Y to 0, i.e., t[Y := 0](x)
is 0 if x ∈ Y, and keeping other clocks unchanged. We used probabilistic discrete time and
space in this work, hence it is necessary to use clock zones to set the time for each state and
the transitions between states. A clock zone can be defined as a set of clock valuations that
satisfy a number of clock difference constraints of the form: ρ = {t ∈ R

X0
≥0 | ti − tj � bij}.

Let Zones(X ) be the set of all zones. Given a set V of state variables, let Asrt(V), Val(V),
and Assn(V) be a set of assertions, valuations, and assignments over V , respectively.

Definition 2 (Probabilistic Timed Program (PTP) [75]). A PTP is a tuple of the form: P =
(L, l0,X ,V , vi, I , T ) where:

• L is a finite set of locations;
• l0 ∈ L is the initial location;
• V is a finite set of state variables;
• v0 ∈ Val(V) is the initial valuation;
• X is a finite set of clocks;
• I : (L,V) → Zones(X ) is the invariant condition;
• T : (L,V) → P(Trans(L,V ,X )) is the probabilistic transition relation, where:

Trans(L,V ,X ) = Asrt(V)×Zones(X )×D(Assn(V)×P(X )×L)

A state of a PTP contains the valuation of L, V , and X , and written as (l, v, t). A
new state can be reached by either an elapse of some time δ ∈ R≥0 or a transition
τ = (G, E , Δ) ∈ T (l) where G ∈ Asrt(V) is the guard, E ∈ Zones(X ) is the enabling
condition, and Δ = λ1( f1, r1, l1) + · · ·+ λk( fk, rk, lk)) is a probability distribution over an
update fj ∈ Assn(V), clock resets rj ⊆ X and a target location lj ∈ L.

When the agent starts a reasoning cycle, it will obtain a set of actions that can be safely
applied, given the characteristics of the vehicle and measurement of the environment. This
set of actions is predefined in the agent code during the design stage. If the set contains
more than one action, then we use PTP to find the most suitable action for the AV to take.
The most suitable action is the one that will not cause a collision, also compatible with
the driving rules predefined for the agent, and will ultimately participate in reaching the
destination in a shorter time and path can be considered as a safe action to apply, all of
these parameters will be thought of by the agent and checked by the verification system
while driving to make sure it is safe to apply. A PTP models the dynamic and uncertain
physical environment containing the AV itself and other static or moving objects, such as
pedestrians and other vehicles.

7. Verification of Decision-Making

This section presents an example of a parking lot scenario, where the AV is searching
for a free parking space. During this process, the RA will continuously monitor the road
users in its environment and decides its actions and trajectory based on the data from the
perception system. The RA then checks all the probability of success of the intended actions
before any execution using PRISM model checker.

MCMAS is used to verify (during design time) the beliefs, rules, actions, and their
consequences that need to be considered within zone 1 and 2 of the AV, as shown in
Figure 9. We used a limited set of rules and predicates for the parking lot scenario for proof
of concept; real-life driving scenarios will need more rules and predicates to determine the
proper behavior of the AV.

The AV needs to build a feasible trajectory and to maximize the distance from the
objects around a suitable cost-map. The movements of the traffic participants are usually
amenable to a probabilistic model based on the environment situation. A trajectory for a
pedestrian walking in a parking lot is estimated by a prediction method [76,77], also ac-
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counting for previously collected data sets in similar scenarios, e.g., Ref. [78]. A pedestrian
may keep walking at the same speed if there is a car passing nearby or could reduce the
speed, stop, or change the path; the same idea can be implemented for car drivers taking
into account the vehicle dynamics.

In this work, the agent generates probabilistic behavior models for the non-stationary
objects based on the observed situation and from previously recorded behavior of pedestri-
ans and drivers in real-life scenarios. The method used for trajectory prediction has been
combined with prior statistics for better estimation of the object’s behavior. The verification
system will take into consideration probabilities for the moving objects, verifying the
intended actions against them using the PRISM probabilistic model checker, to select the
most likely-to-succeed action for execution. The agent keeps updating the probabilistic
models of the dynamic objects and sends it to an onboard PRISM in each reasoning cycle
of the agent.

This operation is repeated as long as there are no objects within zone 1 of the AV
shown in Figure 9, If there is any moving object within zone 2, then the AV will halve the
speed. As soon as one of the moving objects comes across zone 1, then the AV will stop
based on pre-programmed rules.

7.1. Design Time Verification in MCMAS

Here we define three sets of predicates: sensing abstractions, future events consequences,
and actions, as listed below. The operational logic of the RA is restricted to the parking
lot scenario. The RA will choose its decisions based on the sensory abstractions and a set
of rules, as shown in Figure 10, those rules determine the best action to be carried out
by the AV based on the sensing abstractions and the possible future event consequences.
MCMAS is used to compute with the resulting Boolean evolution system to verify the
logical stability and consistency of those predicates.

The number of those rules could rapidly increase depending on the driving scenario
and the environmental situation. While it is challenging for the designer to check that there
is no conflict between them manually for this simple case study, it will be even harder
when taking into account other general driving scenarios.

1. The sensory abstractions of moving objects (Zone 1/outside the trajectory of the
AV) are:

• SONO1: pedestrian detected.
• SONO2: car detected.
• SONO3: object detected.

2. The sensory abstractions of moving objects (Zone 1/outside the trajectory of the AV
but predicted to come across) are:

• FSNE1: pedestrian detected.
• FSNE2: car detected.
• FSNE3: object detected.

3. The sensory abstractions of moving objects (Zone 1/within the trajectory of the
AV) are:

• SON1: pedestrian detected.
• SON2: car detected.
• SON3: object detected.

4. The sensory abstractions of moving objects (Zone 2/outside the trajectory of the AV
but predicted to come nearer) are:

• FSFE1: pedestrian detected.
• FSFE2: car detected.
• FSFE3: object detected.
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5. The sensory abstractions of moving objects (Zone 2/within the trajectory of the
AV) are:

• SOF1: pedestrian detected.
• SOF2: car detected.
• SOF3: object detected.

6. The sensory abstractions of moving objects moving fast (Zone 2/outside the trajectory
of the AV but predicted to come nearer) are:

• FASP1: pedestrian detected.
• FASP2: car detected.
• FASP3: object detected.

7. The sensory abstractions of moving objects moving fast (Zone 2/within the trajectory
of the AV) are:

• FISP1: pedestrian detected.
• FISP2: car detected.
• FISP3: object detected.

8. The sensory abstractions for parking the AV:

• PSA: parking space available.
• PSNA: parking space not available.

9. The future events (consequences) for moving objects (Zone 1) are:

• FCN1: pedestrian detected and will be collide.
• FCN2: car detected and will be collide.
• FCN3: object detected and will collide.

10. The future events (consequences) for moving objects (Zone 2) are:

• FCF1: pedestrian detected and may collide.
• FCF2: car detected and may collide.
• FCF3: object detected and may collide.

11. The movement actions available to AV:

• AM1: brake to stop.
• AM2: proceed in reduced speed (2 mph).
• AM3: proceed in normal speed (5 mph).

12. The parking actions available to AV:

• AA1: generate new motion plan for parking.
• AA2: return to previous motion plan.

7.1.1. Predicates Definition

Here we define three sets of predicates: sensing abstractions, actions, and future events
consequences, as listed in Section 7.1. The operational logic of the RA is restricted to the
parking lot scenario. The RA will choose its decisions based on the sensory abstractions
and a set of logic rules, as shown in Figure 10; those rules determine the best action to
be carried out by the AV based on the sensing abstractions and the possible future event
consequences. MCMAS is used to compute the resulting Boolean evolution system to
verify the logical stability and consistency of those rules.

7.1.2. Worst Case Mathematical Model

Each rule can be verified by computing the minimum space-time distance of the
evolution of the progress of the oncoming car/pedestrian/object (denoted by E) and that
of the AV (denoted by V):

E : Ec + [vet cos(α), vet sin(α), st], t > tc (3)

V : Vc + [vat cos(β), vat sin(β), st], t > tc (4)
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Which describes the future movements of the environmental object and the AV, re-
spectively. tc is the current time when sensing of E and AV decisions have been completed,
and Ec and Vc are the oncoming objects and the AV position at the time of the sensor
measurement are abstracted, and the decision is made by the AV what to do. We say
that no collision occurs in the worst case if the geometric distance (in 3D) of these two
lines is greater than 1 m for any possible heading angle α and positions Ec outside Zone 1
and Zone 2 in Figure 9. s is a time separation factor defined as s = 1 m/s to make the
dimensions in-space time compatible and used as a scaling factor for time equivalence of
space separation (the smaller s is chosen, the bigger will be the time difference requirement
for two objects occurring in the same place). The validity of all rules in Figure 10 has been
checked using this type of simple worst-case analysis.

AV

Zone 1

Zone 2

6m

3m

1m

1m

2m

2m

Figure 9. Schematic for the worst case analysis of the evolution rules in Figure 10. The black arrows
illustrate approaching E with its sensing and decision paths extended on both sides of the 3 m and
6 m zones ahead and on the side of the AV (rectangular box).

Figure 10. Sample of the agent’s evolution rules in MCMAS [33].

78



J. Sens. Actuator Netw. 2021, 10, 42

7.1.3. Stability and Consistency Check

Computation tree logic (CTL) [79] has been used in the verification of transition
systems to specify properties that a system under investigation may possess. CTL is a
branching-time logic, which considers all reasonable possibilities of future behavior for our
limited parking lot driving scenario. We use CTL to formulate stability and consistency
checks due to the efficient implementation of CTL model checking.

CTL is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | EXϕ | EGϕ | EFϕ | E(ϕ U ϕ) |
AXϕ | AGϕ | AFϕ | A(ϕ U ϕ)

Lemma 1. Inconsistency in the belief base can be verified by the following CTL formula:

AG(¬(EXB1 ∧ EX¬B1) ∧ · · · ∧ ¬(EXBn ∧ EX¬Bn)). (5)

Proof. If a system is inconsistent, then there must exist two successor states after a specific
state such that one of them is evaluated to true and the other to false. The formula EXBi ∧
EX¬Bi captures this case for variable bi. The negation ¬(. . .) captures the occurrence of
inconsistency through bi. Operator AG formulates that inconsistency does not occur in
any state, and we do not need to consider unknown valued variables as they cannot be
assigned to unknown during evolution.

The Boolean evolution system is consistent in case the above formula evaluated
to true.

Lemma 2. The instability problem can be checked by the following CTL formula:

AF((AG B1 ∨ AG¬B1 ∨ AG K1) ∧ · · · ∧
(AG Bn1 ∨ AG¬Bn1 ∨ AG Kn1)∧
(AG Bn1+1 ∨ AG¬Bn1+1) ∧ · · · ∧
(AG Bn ∨ AG¬Bn)).

(6)

The Boolean evolution system is stable in case the above formula evaluated to true.

Proof. For stability, we need that every path ends with a stable state, where unknown
variables will not change their values anymore. Therefore, the unknown variable bi will
hold one of three cases AG Bi, AG ¬Bi, or AG Ki in the stable state. The latter means that
the known variable cannot take value unknown during the evolution, and the unknown
variables cannot take value known. Thus, they will not be considered in the CTL formula.
AF means that eventually a stable state will be reached.

Consistent rules cannot generate contradictory conditions throughout the whole
reasoning process, which means that at no time, a predicate can be assigned to true and
false simultaneously. Stable rules make the reasoning process terminate in finite steps. In
another word, a stable evaluation is reached eventually such that this stable evaluation
is obtained by extending the reasoning process one step further. The detailed proofs of
those lemmas are illustrated in our previous work [33,50]. Table 2 below is showing the
properties of the verified system.

Table 2. Properties of the verification of the agent logic during design-time in MCMAS model checker.

Execution Time in (s) Number of Reachable States BDD Memory in Use Peak Number of Nodes

0.038 1,052,670 6,641,468 16,352
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7.2. Run-Time Verification in PRISM

Probabilistic decision-making and threat-assessment methods assign probabilities to
different events, e.g., how likely it is to collide with another object in the next few seconds
given some assumptions on uncertainties. However, when assumptions are violated (e.g.,
pedestrian walks/runs faster than anticipated) then sensors onboard will detect the speed
of moving objects in real-time. When necessary, the vehicle will stop depending on speed
measurements for the AV and other objects, and will deal with a pedestrian running
towards the AV as a possible threat. The vehicle will stop if the pedestrian is within a
specific distance from the driving path of the vehicle to avoid collision.

Figure 11 illustrates the proposed scenario for the AV in terms of trajectory generation
based on the possible behavior of other objects around where the AV is moving forward
looking for a free parking space, at the same time, a pedestrian and a vehicle (P2, V1) is
moving towards the AV, another pedestrian (P1) standing in position (x = 3.5 m, y = 4 m)
from the vehicle in relative coordinates. The RA will generate PTP models for the two
traffic participants and also for the AV to find the best trajectory and speed under the
current circumstances. The RA will keep updating the PTP models with every reasoning
cycle (100 ms) and verifying those PTPs using PRISM model checker.

Because the object (P1) is not moving and it is outside (zone 2), also not in the same path
of the AV, hence the agent will ignore it, and the AV will continue moving at the same speed
(5 mph). However, if the pedestrian (P1) entered (zone 2), then the AV will reduce the speed
according to sensory abstraction (SOF1) and action (AM2). For demonstration purposes, we
discretized the trajectory by one meter apart. We also discretized the possible pedestrian’s
and vehicle’s trajectories. While in the implementation, the RA is getting these data
continuously in real-time from the perception system without the need for discretization.

V1

P2

P1

Figure 11. A driving scenario in simulation.

For the agent to build a meaningful PTP model while the AV is moving, it has been
formerly equipped with a possible probabilistic behavior for both pedestrians and drivers
in such an environment. Usually, when a pedestrian notices an oncoming vehicle, they may
slow down with a high probability. The pedestrian may also choose to stop at some point or
even change the lane to a safer one, it is also common that the pedestrian may be distracted
by something, e.g., using a mobile device, and hence, does not notice the AV. If this is the
case, the pedestrian continues to walk at the average speed. The last case could be included
in the generated model of the traffic participants using methods explained in [80]. While
there are some similar probabilities for the driver with limits to the dynamic movements of
the vehicle, the driver may decide to continue driving the same speed, reduce the speed,
or to stop in order to give a chance for the AV to pass easily. From the above scenario in
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Figure 11, we can see that the vehicle and the pedestrian are in the same horizontal line,
and this gives a small gap for the AV to pass through.

To simulate a realistic scenario, and to equip the RA with the possible behavior of
pedestrians and drivers, we recorded some data and objects behavior manually for parking
lots, and we used JAAD dataset [81] for pedestrians and drivers reactions to vehicles
around them in different scenarios. A next step implementation would be to equip the
agent with probabilistic behavior prediction method, e.g., Refs. [82,83] instead of the
limited approach adopted in this work.

Generating PRISM Models from the Agent Code

We designed a translator that works as an Eclipse plugin (part of the sEnglish system
environment) to translate the agent reasoning code to PTP models that can be verified by
PRISM; it is a direct text processing algorithm in C++ that can run in a few milliseconds
(hence its time is neglected). The agent will also translate the properties of the models in
PCTL and the query of questions the agent needs to ask. As soon as the equivalent PTP
models verified, then the agent will know about different properties expressed in PCTL. A
Boolean variable for each belief is defined, and transition probabilities are taken from the
probability distributions defined in the sEnglish code.

7.3. Verification Example of a Parking Scenario

As mentioned before, all the possible states of the system can be explored during
formal verification, including some extreme cases that may be difficult to discover during
testing. A general parking scenario will be presented here to illustrate the use of the RA
predicates (sensory abstractions, beliefs, actions, and future event consequences) designed
for this case study: we have defined two regions around the AV for safety purposes
depending on the direction of movement, as shown in Figure 9, assuming the AV is moving
forward, as soon as the AV detect an object within (6 m) in front or (2 m) any other side
represented by (zone 2), the AV will slow down from average speed of (5 mph) to (2 mph),
as soon as this object become within (3 m) from the front of the AV or (1 m) from any
other side represented by (zone 1), the AV will stop. Here it is essential to mention that the
experimental AV has been equipped with a means of communication with other pedestrians
and drivers using audio to prevent a deadlock state when the AV stop and wait for others
to move and vice versa, the AV will play a voice to say to others that “you are free to move
and the AV will wait for you”. We have defined further details for the AV to deal with
the traffic participants around by calculating the speed of those objects using the LiDAR
sensor. Assuming there is an object moving fast towards the AV, as soon as this object enter
(zone 2) the AV will stop instead of slowing down, this will give more time for the other
object (running pedestrian or fast-moving car) to reduce their speed, change direction, or
to stop, and this will reduce or eliminate any possible collision.

A simple proposed example of how the agent chooses its actions is as follows: based
on the scenario in Figure 11, a car (V1) is coming in the opposite direction to the AV from
a distance of (8 m) and the driver starts to slow down when they notice another vehicle
coming, the AV is moving at its average speed and building its trajectory based on the
map and the moving objects around. As soon as the other vehicle (V1) enters (zone 2),
the sensing event (SOF2) from Section 7.1 will be activated, and this will activate the
future event (FCF2) then this will trigger action (AM2), which leads to slow down. In the
meanwhile, the walking pedestrian (P2) enters (zone 2), sensing event (FSFE1) is triggered
and this may lead to collision according to a future event (FCF1), the AV here will not take
any further action because it is already working in reduced speed. However, as soon as
the car or the pedestrian or both enter (zone 1) (SON2 or FCNE1 or both), future events
(FCN1 or FCN2, or both), this will trigger the action (AM1) to execute stop action. All the
stationary parked cars in the parking lot will not be considered as a threat because they are
not in the proposed path of the AV, and they are not moving.
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The regulation for the speed of vehicles in a parking lot is limited to (10 mph), based
on this and for safety reasons and prototype development we set the speed of our AV to be
(5 mph) in case of no moving objects within (zone 1 and 2). As mentioned, both the RA
and the planning system will send control commands to the move base system to set the
movements of the AV. However, actions such as (AA1 and AA2) have a pre-programmed
sequence for performing a parking maneuver, as shown in the video link we referred to in
the abstract. In case there are two or more rules in conflict with each other, MCMAS will
present this case by a counterexample showing how the inconsistency is reached. Further,
it cannot be the case that two different actions are activated at the same time.

For the run-time verification, the initial PTP model generated by the RA for the AV’s
trajectory is shown in Figure 12. We use a relative coordinate system considering that the
LiDAR position on the top of the AV is the center of the coordinates at any time, knowing
that the RA is taking the dimensions of the AV into calculations while processing. In this
example we will refer to the coordinates of the participants according to a fixed moment at
a particular time interval (x1, y1) to represent the coordinates of the AV, (x2, y2) for object
(P2), the (x3, y3) for object (V1). The (C) letter in the PTP models represents the clock, which
will be counting and resetting with every transition. The complexity of solving PTPs with
two or more clocks is EXPTIME-complete. Our previous work [64] shows experiments on
several complex models and properties and the results are promising.

Figure 13 shows the PTP model for the pedestrian’s possible behavior. For this
example, we assume that the average speed of the pedestrian is near the speed of the AV
inside the parking lot. The pedestrian may prefer to stop after noticing the AV with the
probability of (0.1) or to stop later when the distance became critical. We assume that the
pedestrian will keep walking in the same lane with a probability of (0.6), they could also
decide to change the lane and walk behind the moving car (V1) for more safety with a
probability of (0.3). In both cases, the pedestrian may prefer to walk at the same speed or
to reduce it with some probabilities, as shown in Figure 13.

Figure 14 shows the possible PTP model for (V1). We assumed that the driver might
notice the AV and decide to stop with probability (0.1). With a probability of (0.6), the driver
may decide to slow down, or may prefer to continue the same speed with a probability
of (0.3). The RA will then modify the AV’s PTP model according to the newly generated
behavior model of the other objects around.

Note that the parameters used to generate the PTP models, such as the speed and
probability, may not reflect the exact behavior of the AV, P2, or V1. The RA is building those
PTPs based on the location, speed, and direction of the moving objects. In general, this
framework will help to predict a possible behavior for the different objects around, then to
verify the current trajectory/action for the AV against the possible trajectory/action of the
nearby objects, and this will help in reducing the possibility of collision. More accurate
PTP models could be generated after collecting more behaving data through real tests.

To avoid any possible collision, we require that the pedestrian and/or the vehicle is at
least (1 m) away from the AV. This can be represented by the following expression:

φ ≡ (x1 − x2)
2 + (y1 − y2)

2 >= 1. (7)

φ ≡ (x1 − x3)
2 + (y1 − y3)

2 >= 1. (8)

where (x2, y2), represent the coordinate of the pedestrian, (x3, y3) is the coordinate for the
car. As PRISM cannot deal with real numbers, we multiply the distance by 2 (we partition
the distance by 0.5 m. Therefore, the location would have values such 0.5 and 1.5 m, by
multiplying it by 2, we obtain an integer). We compute the maximum probability of the
violation of Equations (7) and (8), by the following PCTL property:

Pmax=?[F ¬φ]. (9)

Due to the discretization of the trajectory, the negation of Equation (7) is translated
into the following expression:
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(((x2 > x1 ∧ x2 − x1 ≤ 1) ∨ (x1 > x2 ∧ x1 − x2 ≤ 1))∧
((y2 > y1 ∧ y2 − y1 ≤ 1) ∨ (y1 > y2 ∧ y1 − y2 ≤ 1)))

While the negation of Equation (8) is translated into:

(((x3 > x1 ∧ x3 − x1 ≤ 1) ∨ (x1 > x3 ∧ x1 − x3 ≤ 1))∧
((y3 > y1 ∧ y3 − y1 ≤ 1) ∨ (y1 > y3 ∧ y1 − y3 ≤ 1)))
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Figure 12. Initial PTP model for the AV’s behavior.
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Figure 13. PTP model for the pedestrian’s behavior.
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Figure 14. PTP model for the vehicle’s behavior.

The verification results for the proposed scenario are shown in Table 3 returned from
PRISM for Formula (9), which indicates information about the model generated for both
the pedestrian and the car and the chance of collision with every one of them under the
current motion plan.

Table 3. Verification results for the proposed scenario using PRISM model checker.

PTP Model States Transitions Choices Ver. Time Maximum Collision Probability

Pedestrian 1238 3884 3624 0.036 s 0.252

Car 659 2230 1960 0.019 s 0.003

All the computations in this work were carried out using two computers running
on Ubuntu OS version 16.04, first is equipped with (Intel core i7 CPU, 16 GB of RAM,
and GTX 1070 GPU) for simulation, perception, planning, and control systems and the
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second with (Intel core i7, 16 GB of RAM, and GTX 860 GPU) to run the agent code and the
verification platform.

8. Conclusions and Future Work

A new approach is presented for the verification of an agent-based decision-making
system for a self-driving vehicle. The approach considers both the design-time and run-
time verification. To contribute towards the open-source development of the self-driving
vehicles, a self-driving vehicle is presented in the simulation that is available in ROS and
the Gazebo Simulator.

A rational agent in a real traffic scenario usually faces a vast amount of situations with
related behavior rules. Many of these can be identified during the design stage. Remaining
scenarios, with possible probabilistic events in the environment, can then be handled by
run-time evaluations. Our approach is presented through a case study. The power of the
combination of the two verification tools can help the designer to eliminate any conflict
and redundancy in the agent predicates. Further, the verification tools can help to check
the agent rules for any possible instability or inconsistency with the benefit of obtaining a
counterexample when a faulty state has been reached.

The second stage of verification deals with the possible behavior of the traffic partici-
pants to determine the probability of success for the best AV action. A limited set of beliefs,
rules, and actions are presented to provide a proof of concept and to illustrate the proposed
platform. For higher levels of rationality, the agent could yet be equipped, during design
time, with a methodology for rules and predicates generation. Such a system would be
able to learn new driving scenarios for run-time verification by implementing a machine
learning approach.
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Abstract: Usually, the design of an Autonomous Vehicle (AV) does not take into account traffic rules
and so the adoption of these rules can bring some challenges, e.g., how to come up with a Digital
Highway Code which captures the proper behaviour of an AV against the traffic rules and at the same
time minimises changes to the existing Highway Code? Here, we formally model and implement
three Road Junction rules (from the UK Highway Code). We use timed automata to model the system
and the MCAPL (Model Checking Agent Programming Language) framework to implement an agent
and its environment. We also assess the behaviour of our agent according to the Road Junction rules
using a double-level Model Checking technique, i.e., UPPAAL at the design level and AJPF (Agent
Java PathFinder) at the development level. We have formally verified 30 properties (18 with UPPAAL
and 12 with AJPF), where these properties describe the agent’s behaviour against the three Road
Junction rules using a simulated traffic scenario, including artefacts like traffic signs and road users.
In addition, our approach aims to extract the best from the double-level verification, i.e., using time
constraints in UPPAAL timed automata to determine thresholds for the AVs actions and tracing the
agent’s behaviour by using MCAPL, in a way that one can tell when and how a given Road Junction
rule was selected by the agent. This work provides a proof-of-concept for the formal verification of
AV behaviour with respect to traffic rules.

Keywords: Rules of the Road; Autonomous Vehicles; agents; model checking

1. Introduction

The deployment of Autonomous Vehicles (AVs) in urban road networks is possible in
the near future. However, many challenges arise on the way towards this goal, for example:
how can policy-makers ensure an AV is safe to operate within their jurisdiction [1]? This,
and other complex issues, mean that the design and development of an AV must go
through several stages involving a multistakeholder approach, which includes regulators,
AV developers, safety experts, members of the public among others.

While the design of an AV should include sensors, cameras, software development,
security protections, etc., it should also take into consideration the assessment of the traffic
rules within which the AV will operate. If not, questions concerning safe operation cannot
be properly answered. However, as highlighted by both Prakken [2] and Alves et al. [3,4]
these traffic rules are rarely considered in the design and assessment of AVs.

1.1. Autonomous Vehicles and the Rules of the Road

Recent documents, such as [1,5,6] have started to highlight and discuss the need
for a Digital Highway Code, where an AV would need to comply with the local traffic
rules (or the “Rules of the Road”). It is well known that such a task brings challenges,
mainly since Highway Codes were not designed to operate alongside autonomous sys-
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tems, but also since the description of the rules is predominantly human-readable, and
not machine-readable.

So, how can we tackle such challenges? On the one hand, an AV should comply
with traffic laws in a way that requires very few changes to create a Digital Highway
Code [1]. On the other hand, it is understandable that new “Rules of the Road” may
need to be designed in order to properly handle autonomous systems in urban traffic
environments [6]. There is a clear trade-off between these two issues. Two examples
illustrate the need to have “Rules of the Road” designed into AVs. As highlighted in ref. [1],
in the state of Arizona (US) an AV operator may be issued a citation if the AV does not
comply with traffic laws. A further example can be seen in the PAS-1882 standard from the
BSI [7], which specifies “data collection and management for automated vehicle trials”. In
this standard several mechanisms are described for collecting the necessary data to conduct
an AV trial. To the best of our knowledge, this standard currently does not contain data
concerning questions such as when and how the “Rules of the Road” have been used by the
AV and these could be quite important. These two examples remind us that, by ensuring
the autonomous software abides by the “Rules of the Road” when AV is designed, it is
definitely a useful asset for the stakeholders concerned with the proper behaviour of an AV
on the roads.

In ref. [8], Waymo released a Safety Report on their vehicles. This document presents
a reference from the National Highway Traffic Safety Administration (NHTSA), which shows
the four scenarios that accounted for the vast majority of crashes in the US:

• 29% of the vehicles were involved in rear-end crashes;
• 24% of the vehicles were turning or crossing at intersections just before the crashes;
• 19% of the vehicles ran off the edge of the road;
• 12% involved vehicles changing lanes.

Consequently, Road Junction rules (which deal with crossing and entering intersec-
tions) provide a good case study for understanding the interaction of AVs and the Rules of
the Road. This will enable us to develop an approach that can inform stakeholders around
the development of Digital Highway Codes.

In our work, we select three Road Junction rules, from the UK Highway code [9],
because road junction behaviour is a contributory factor in many crashes as discussed
above [8]. We aim to embed these traffic rules into an agent, where this agent describes the
basic behaviour of an AV in Road Junction scenarios. With this, we intend to determine:
(i) Can these three selected road junction rules be used directly (i.e., as seen in the UK High-
way code) by an AV? (ii) How to assess the AVs behaviour against the three road junction
rules considering simple Road Junction scenarios? and (iii) Are there any guidelines that
can be given to enable the AV to work correctly with such Road Junction rules?

1.2. Related Work

Considering the related work, there are Rizaldi et al. [10] and Bhuiyan et al. [11] that
present a formalisation for road traffic rules. Nonetheless, neither approach uses an agent
abstraction to represent the AV behaviour and decision-making. Besides, Kamali et al. [12]
and Al-Nuaimi et al. [13] both present the use of agents to model the AV and the formal
verification of agents. However, their AV application scenario is not related to the “Rules
of the Road”. So, our work aims to formalise the Road Junction rules, use an agent to
represent an AV and apply formal verification techniques to properly assess an agent’s
behaviour in road traffic scenarios .

In ref. [14], Bakar and Selamat present a systematic literature review of agent systems
verification, where they describe the most used techniques to formally verifying agents.
Their figures show that 49% of techniques are applied at the design stage, 27% during
development, and 25% at runtime. Model Checking or model-based verification techniques
are used in 44% of the work, while most of the properties verified are temporal ones (19%),
followed by epistemic properties (9%). These figures serve to endorse our choice of a
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double-level Model Checking, i.e., applying formal verification of temporal properties at
both design and development levels.

1.2.1. Proposal

Figure 1 shows our proposed SAE-RoR (Simulated Automotive Environment for the Rules
Of the Road) architecture. In previous work [4], we presented the first version of SAE-RoR
architecture, where we focused on the formalisation of the Road Junction rules using
Linear Temporal Logic (LTL) and also the first steps towards the implementation of a
single rule using the agent programming language, GWENDOLEN [15].Now, we extend
the SAE-RoR architecture by adding an extra layer of modelling with timed automata and
Model Checking using UPPAAL [16]. We have also added two further Road Junction rules
and the formal verification of properties using AJPF, which is responsible for Program
Model Checking of the GWENDOLEN implementation [17].

Figure 1. Proposal: SAE-RoR architecture.

Each element of the SAE-RoR architecture is described in detail in Sections 4–6. Here,
we explain the general workflow using the architecture in Figure 1. Step 1, i.e., arrow 1
between the two blue components in Figure 1, represents the formalisation using LTL of
the Road Junction rules from the UK Highway Code (this was initially described in [4]).
This LTL formalisation helps us to abstract the informal concepts and elements in the UK
Highway Code to an unambiguous formal language. Then steps 2 and 3 represent the use
of this language as a basis to respectively build the UPPAAL model and the GWENDOLEN

implementation. Notice that step 4 shows the mapping from UPPAAL model elements to
the agent’s implementation components. Next, step 5 represents the formal verification of
properties of the model using the UPPAAL model checker, while step 6 shows those prop-
erties concerned with the agent’s implementation that are verified using the AJPF model
checker. Steps 7 and 8 describe stages of the SAE-RoR architecture that are not implemented
yet (forming future work). Nonetheless, this Stakeholders stage is an important feature of
our proposal. Steps 7 and 8 represent the outcomes from property verification that could
guide the actions of a given Stakeholder. As an example, a Policymaker could use a counter-
example describing a safety violation from a given model and decide whether a traffic
rule concerning pedestrians needs to be changed. In ref. [6], some possible Stakeholders
(related to AVs) are mentioned: Driver, Road User, Safety Expert, AV developer, Researcher,
Policymaker, Traffic Officer, Emergency services and police, Local government, Highway
authorities, Public sector, Insurance, Politicians, Legal, among others. These stakeholders
form suitable end-users for our proposed workflow.

1.2.2. Contributions

The main contributions of our work are the following:

1. A complete architecture for the Formal Verification of Agents in the Rules of the Road,
which starts at the formalisation of Road Junction rules, passes these to modelling and
implementation tools, generates formal verification results, which may be of interest
to the given stakeholders.
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2. The double-level Model Checking approach, which makes it possible to formally
verify properties both at design and development levels. As proof-of-concept, we
have verified 30 properties, 18 at design level and 12 at development level.

3. A set of verified properties, where properties range from time constraints to the
analysis of the AV-agent’s behaviour considering all possible actions the agent can
take in Road Junction scenarios.

4. The creation of an agent’s environment that includes random generation of events
(following the methodology outlined in ref. [18]), where different scenarios concerning
selected Road Junction rules are simulated.

5. The use of a mapping from a given UPPAAL timed automaton to the basic elements
of a BDI (Belief-Desire-Intention) agent.

6. Implementation of a BDI agent (in GWENDOLEN), which enables tracing of an agent’s
behaviour. Taken with the model-checking process (via AJPF) it is possible to assess
what were the choices selected (autonomously) by the agent that led to any given
outcome [19]. For example, given a certain scenario with specific perceptions from the
environment, did the agent (correctly) choose to follow a given road junction rule?

1.2.3. Remarks and Limitations

It is necessary to determine some remarks and assumptions about our proposal,
making it clear what is included (or not) in our model and implementation. Further, some
limitations of our work are mentioned below.

• Single Agent: we only model a single agent in our implementation. And this agent
has no (internal) concurrency to try to enter the Road Junction.

• No driving behaviour: this single agent has no driving behaviour component, the
agent is only concerned with obeying the programmed Road Junction rules. So, we
do not verify, for example, the speed or trajectory of the vehicle.

• No collision-freedom: we do not model collision avoidance behaviour here, though
we have considered it in previous work [20,21].

• Intersection Management: we are not trying to deal with the well-known problem of
Intersection Management using multiple agents [22]. We consider only the behaviour
of a single agent following the desired traffic rules.

• Road Junction environment: The environment is represented in both modelling and
simulation as a simple (9 × 9) grid with a few road features such as stop signs, and
other road users. This is because this captures the abstract issues and, on a practical
level, model-checking does not scale well once the grid size increases dramatically.
Our environment model uses as basis the formalised abstract model which captures
the temporal elements from the road junction rules. So, we do not represent spatial
elements, as seen, for example in [23], where the author uses the Multi-lane Spatial
Logic to represent virtual lanes in an urban traffic environment.

• Time constraints: we use time constraints in our model to represent thresholds within
or after which actions and events should occur. These constraints are only used in our
model, they are not taken from any Highway Code. This illustrates the way modellers
need to extract implicit assumptions from rules written for human consumption—in
this case that actions such as waiting will take a reasonable amount of time, or will
take place within a reasonable space of time.

• Subset of Road Junction Rules: the UK Highway code has a set of 14 rules for Road
Junctions. Here, we model and implement only the first three rules from the Road
Junction set, specifically rules 170, 171, and 172.

• Modularity of the model checking stages: our two Model Checking stages (using
UPPAAL and MCAPL) are loosely coupled, i.e., they take place independently of each
other. On the one hand, this independence loses the potential benefit an integrated
model checking semantics, where one could verify the whole system (model plus
implementation). On the other hand, this modular architecture allows a separation of
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concerns meaning a user can consider separately the verification of either the timed
automata model verification or the agent’s implementation.

• Nature of verified properties: all the verified properties are related to the basic be-
haviour of our agent against the three selected road junction rules in our simple road
junction environment.

In our previous publications [3,4], we have presented the formalisation of the Road
Junction rules in LTL and a partial implementation of Rule 170 in the GWENDOLEN lan-
guage. Thus, this paper extends these initial results by the following:

• Including two new rules (171 and 172) from the UK Highway Code.
• Modelling the AV-agent and Road Junction environment using timed automata.
• Formal Verification of 18 properties of these timed automata using UPPAAL.
• Implementation of all three rules in GWENDOLEN.
• Formal Verification of 12 properties of this agent implementation using AJPF.

The remainder of this paper presents, in Sections 2 and 3, some useful terminology
and background information. Next, Sections 4–6 describe the main stages of our work on
modelling, implementation and formal verification results. In Section 7, related work is
discussed while Section 8 provides final remarks.

2. Key Terminology & the Rules of the Road

In this section, we show the Road Junction rules that are used in our work. Before
proceeding, we clarify some terms applied here to guide the description of our modelling,
implementation, and verification.

2.1. Terminology and Abbreviation

• SAE-RoR: is the name of our proposed architecture (seen in Figure 1).
• AV: According to Herrmann et al. [24], the term automated vehicles refers to autonomy

levels 1–4, while the terms autonomous, self-driving or driverless vehicles refer to
autonomy level 5. Here, for the sake of simplicity, we only use the term Autonomous
Vehicles (AV). And in our model, we are not concerned whether our agent represents
a vehicle with level 4 or 5, or if the vehicle has a human driver responsible or only
passengers inside it.

• AV-agent: is the name of our agent implemented in GWENDOLEN.
• AV_agent: is the name of the automaton modelled with UPPAAL, which represents

the AV-agent.
• RU: according to the UK Highway Code, a Road User (RU) can be any of the follow-

ing: pedestrian, cyclist, motorcyclist, powered wheelchair/mobility scooter, horse
rider, etc.

• ru: control variable that represents a Road User and it is used in the UPPAAL timed
automaton model.

• RJ: here we use the term Road Junction (RJ) which has the same meaning as an
Intersection.

• RoR: we use the term “Rules of the Road” (RoR) which has the same meaning as
traffic rules, Highway Code, traffic laws, or road traffic laws.

• Digital Highway Code: is the version of the Rules of the Road which is intended to
work for AVs.

• Cross junction: a crossroad is the place where two roads meet and cross each other.
It could be in the form of: a major road crossing a minor road; or two equal roads
crossing each other [25].

• T junction: is a place where two roads meet in the shape of letter T [25].

2.2. The Road Junction Rules

The UK Highway Code has different sections, concerning Overtaking, Roundabouts,
Road Junctions, among others [9]. We are focused on the Road Junction rules, which
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has 14 rules, from 170 to 183, describing when and how a driver is supposed to enter a
road junction, to turn right, to turn left, to enter a road junction with traffic lights, among
other situations. Here, we describe the three simple Road Junction rules that are modelled,
implemented, and verified, rules: 170, 171 and 172. Before presenting the formalisation of
these three rules we describe the LTL (Linear Temporal Logic) [26] operators and constants
that we use in our formalisation for the Road Junction rules. Further details about this
formalisation can be found in Alves et al. [4].

• Propositional operators from LTL:
∧, ∨, →, ¬.

where these four propositional logical operations represent conjunction, disjunc-
tion, implication, and negation.

�, ♦, ©, ∪.

where these four future-time operators represent: always, eventually, next, and
until.

2.2.1. LTL Formalisation

• Rule 170—UK Highway Code:

– You should watch out for road users (RU).
– Watch out for pedestrians crossing a road junction (JC) into which you are turning.

If they have started to cross they have priority, so give way.
– Look all around before emerging (NB: For the sake of clarity, we choose to use

the term enter as an action which represents not only a driver entering a road
junction, but also emerging from a road junction to another road). Do not cross
or join a road until there is a safe gap (SG) large enough for you to do so safely.

• Rule 170, represented in LTL, describes when the autonomous vehicle (AV) may enter
the junction (JC):

� ((watch(AV, JC, RU) ∧ (¬ cross(RU, JC) ∧ (exists(SG, JC)))

→ ((exists(SG, JC) ∧ ¬ cross(RU, JC)) ∪ enter(AV, JC))))

Informal Description: it is always the case that the AV is supposed to watch for
any road users (RU) at the junction (JC) and there are no road users crossing the
junction and there is a safe gap (SG). Then, no road users crossing the junction
and the existence of a safe gap should remain true, until the AV may enter the
junction.

• Rule 170 represented in LTL, when the autonomous vehicle (AV) should give way at
the junction (JC):

� (watch(AV,JC,RU) ∧ (cross(RU,JC))→ give-way(AV,JC))

Informal Description: it is always necessary to watch out for road users (RU)
and check if there is a road user crossing the junction. Then, the AV should give
way to traffic.

• Rule 171—UK Highway Code:

– You MUST stop behind the line at a junction with a ‘Stop’ sign (ST) and a solid
white line across the road. Wait for a safe gap (SG) in the traffic before you
move off.

• Rule 171 represented in LTL:

exists(ST,JC)→ � (stop(AV,JC) ∪ (exists(SG,JC)

∧ (exists(SG,JC) ∪ enter(AV,JC))))
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Informal Description: when there is a stop sign (ST), then it is always the case
the AV should stop at the junction until there is a safe gap (SG). And the safe gap
must remain true until the AV enter at the junction.

• Rule 172—UK Highway Code:

– The approach to a junction may have a ‘Give Way’ sign (GW) or a triangle marked
on the road (RO). You MUST give way to traffic on the main road (MR) when
emerging from a junction with broken white lines (BWL)across the road.

• Rule 172 represented in LTL:

� ((exists(AV,RO) ∧ enter(AV,JC))

∧ ((exists(BWL,JC) ∨ exists(GW,JC))→ give-way(AV,MR)))

Informal Description: It is always the case that when there is an AV driving
on a Road (RO) and the AV enters the junction. And there is a Broken White Line
(BWL) or a Give Way sign (GW), then the AV should give way to the traffic on the
Main Road (MR).

2.2.2. Remarks

The LTL formalisation aims to describe most of the elements from the rules as given
in the UK Highway Code, but some level of abstraction is needed to properly determine
the formalisation. And when we build the automata models in UPPAAL and also the
GWENDOLEN implementation of the AV-agent we have abstracted some additional elements
from the formalised Road Junction rules, in a way that the three rules (170, 171, and 172)
have been wrapped to work together and represent the possible behaviour of an AV
alongside the Road Junction rules. Notice that this degree of abstraction (used in our
approach) does not avoid the proper verification of the agent’s behaviour to tell which
rules have been selected by the agent. An example of such abstraction is noted in rule 172,
where there are two different terms Give Way sign and triangle marked on the road with
the same meaning. So, we only use the former term in our model and implementation.

3. Background

In this section we present some notation and concepts related to the models, languages
and tools used in this work.

3.1. Timed Automata, Temporal Logic and UPPAAL

As presented in Baier and Katoen [27], timed automata model the behaviour of time-
critical systems. A timed automaton has a finite set of clock variables. All clocks proceed at
rate one. The value of a clock denotes the amount of time that has elapsed since its last
reset. Conditions which depend on clock values are called clock (or time) constraints.

Definition 1 (Clock constraint). A clock constraint over a set C of clocks is formed according to
the grammar g:

g ::= x < c | x ≤ c | x > c | x ≥ c | g ∧ g

where c ∈ N and x ∈ C. CC(C) represents the set of clock constraints over C.

The Timed Automaton definition [27] is given below.

Definition 2 (Timed Automaton). A timed automaton is a tuple TA = (Loc, Act, C, ↪→
, Loc0, Inv, AP, L) where

• Loc is a finite set of locations,
• Loc0 ⊆ Loc is a set of initial locations,
• Act is a finite set of actions,
• C is a finite set of clocks,
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• ↪→⊆ Loc × CC(C)× Act × 2C × Loc is a transition relation,
• Inv:Loc → CC(C) is an invariant-assignment function,
• AP is a finite set of atomic propositions, and
• L:Loc → 2AP is a labelling function for the locations.

ACC(TA) denotes the set of atomic clock constraints that occur in either a guard or a location
invariant of TA.

Baier and Katoen [27] mention that Timed Computation Tree Logic (TCTL) is a real-time
variant of temporal logic used to express properties of timed automata. So, the UPPAAL
Model Checker which makes use of timed automata also uses a simplified version of TCTL
to specify verification properties. Below, the syntax of TCTL is given (as seen in [27]) and
also the corresponding syntax used in UPPAAL is provided in Table 1.

Definition 3 (Timed CTL syntax). Formulae in TCTL are either state or path formulae. TCTL
state formulae over set AP of atomic propositions and set C of clocks are formed according to the Φ
grammar:

Φ ::= true | a | g | Φ ∧ Φ | ¬Φ | ∃ϕ | ∀ϕ

where a ∈ AP, g ∈ ACC(C) and ϕ is a path formula defined by:

ϕ ::= Φ
⋃J Φ

where J ⊆ R≥0 is an interval whose bounds are natural numbers.

NB: the propositional logic operators (∨,→, etc) are obtained from ∨ and ¬. Also,
the temporal logic operators � and ♦ are obtained by using existing operators in Φ and ϕ
grammars.

In Table 1, we show the UPPAAL syntax (based on TCTL) used to write formulae and
temporal properties.

Table 1. UPPAAL syntax.

Operator Meaning

&& And
|| Or

== Equivalence
imply Conditional
not Negation
A Universal quantifier
E Existential quantifier
[] Always
<> Eventually
–-> Leads to

Below, we show an example of a formula written using UPPAAL syntax.

A[] (AV.at_roadjunction imply AV.enter_roadjunction)

This formula states: for all possible paths it is always the case that if the AV is placed at the
road junction it will enter the road junction.

NB: The above example could be slightly changed to: ∀�(AV.at_roadjunction→
∀♦AV.enter_roadjunction), using TCTL notation. However, UPPAAL does not allow
nesting of path formulae in a way that to write this formula, it is necessary to use the
operator leads to (�). The previous TCTL formula may expressed using UPPAAL syntax
as: AV.at_roadjunction --> AV.enter_roadjunction.
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3.2. BDI Model and GWENDOLEN Language

In our work we use the GWENDOLEN agent programming language [15] in order to im-
plement a BDI agent [28] to capture the core decision-making behaviour of an autonomous
vehicle. By using GWENDOLEN, we can also take advantage of the MCAPL framework [17],
where the AJPF model checker can be used to formally verify the behaviour of the agent.
The MCAPL framework allows us to program BDI agents in languages such as GWEN-
DOLEN and Goal [29], and one can also program the agent’s environment using Java. In
addition, it is possible to use the AJPF model checker to verify the agent’s programming,
where it is possible to check the agent’s behaviour. AJPF is an extension of Java PathFinder
(JPF) [30] which is, in turn, a tool for model-checking Java programs.

3.2.1. BDI Model

As described in Bordini et al. [31], the Beliefs-Desires-Intentions (BDI) Model is based
on a model of human behaviour developed by Bratman [28].

• Beliefs are information the agent has about the world.
• Desires are all possible states of events that the agent might want to achieve.
• Intentions are the state of events the agent has decided to commit towards. These

events can be goals that are assigned to the agent or the agent may choose among a
set of options.

When implementing a BDI model in an agent programming language we usually
have the following structure for an agent plan:

trigger_event : guard <- body

where a given agent may have different plans in order to achieve a certain goal.

• The trigger_event is given by a new belief or a goal.
• The guard is defined by a set of beliefs.
• The body is represented as a set of actions.

Example

We provide a simple example considering the AV-agent at a road junction.

AV-agent believes it is at the road junction.

AV-agent selects the intention to enter the road junction.

AV-agent triggers the following plan:

enter-roadjunction : at-roadjunction <- check-sign, watchout-for-road-user;

In this example initially the AV-agent believes it is placed at the road junction, next it
has the desire to enter the road junction and selects an intention to achieve this goal. As
a consequence it triggers a plan to execute two actions: the first one checks the existing
traffic sign at the road junction and the second action is responsible for watching out for
any road user crossing the junction.

3.2.2. GWENDOLEN Language

GWENDOLEN is an agent declarative logic-programming language incorporating
explicit representations of goals, beliefs, and plans. The language uses similar syntactic
conventions to other BDI agent languages. Here, we describe the syntax elements used in
our implementation:

+b adds the belief b.
-b removes the belief b.
+!g adds the goal g.
+!g[perform] adds a new goal of type perform. Perform goals are discharged by the
execution of an appropriate plan.
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+!g[achieve] adds a new goal of type achieve. Achieve goals are discharged only when
they become beliefs.
B x represents a guard condition, checks if belief x is perceivable.
G x represents a guard condition, checks if goal x has been added.
hello(x) represents that action hello(x) (defined in the agent’s environment) is
executed.

A plan in GWENDOLEN uses the syntax previously presented in a BDI model.

Example

We retake the previous example of the AV-agent, but now using GWENDOLEN syntax.

at(roadjunction) \\ predefined belief ‘‘agent is at the road junction’’

enter-roadjunction[achieve] \\ a goal (of type achieve) to ‘‘enter the road junction’’

+!enter-roadjunction[achieve] : { B at(roadjunction) } <-

check-sign(A,B), watchout-for-road-user(C,D);

In the last lines (above) there is a GWENDOLEN plan that represents the follow-
ing: when the agent recognises the trigger event (i.e., the achieve goal of entering the
road junction), it checks the guard (i.e., the predefined belief which says the agent is
at the road junction), and then the agent executes two actions: check-sign(A,B) and
watchout-for-road-user(C,D). These actions are implemented in the agent’s environ-
ment. NB: the values A, B, C, D represent coordinates in a grid which represents a road
junction environment.

3.3. The Property Specification Language

The MCAPL framework provides a Property Specification Language (PSL) used to
write properties for the AJPF Model Checker. In Table 2, we present the set of operators
from PSL which is used in the verification of properties.

Table 2. PSL operators.

Operator Meaning

<> temporal logic operator Eventually
[] temporal logic operator Always
B a Belief of the agent
G a Goal of the agent
I an Intention of the agent
D an Action of the agent

ItD an Intention to execute an action of the agent
P a Perception from the environment
& logical operator And
|| logical operator Or
–-> logical operator Implies

Example

Using the same elements from the two previous examples, we can write a PSL specifi-
cation.

<>((B(AV-agent,at(roadjunction))) & D(AV-agent,watchout-for-roaduser(1,0)))

The description of this specification is: eventually the AV-agent believes it is at the road
junction and the AV-agent executes the action watchout-for-roaduser at postion (1, 0) (in
the grid environment).

4. Modelling Using Timed Automata

The modelling of our system was carried out using timed automata within UPPAAL
model checker tool. We have divided our model into two main automata: AV_agent and
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RJ_Env (Road Junction environment automaton); and three additional (simple) automata
which model specific artefacts from the road junction environment: road_user (Watch out
Road User automaton), safe_gap (Check for a Safe Gap automaton), and sign (Check traffic sign
automaton). These five automata set up a network of automata, which can all communicate
with each other through synchronized channels. In our model, RJ_Env forms the main
communication hub among all automata, receiving information from the artefacts as well
as sending information to, and receiving information from, the AV_agent.

4.1. AV_agent Automaton

Figure 2 presents the automaton which models the basic behaviour of the AV-agent.
The agent starts in a state where it is away from the RJ, the agent uses the communication
channel to tell the RJ_Envautomaton that it is going to approach the RJ. Once the agent is
at the RJ, it will receive from the RJ_Env one of two possible alternatives that may exist at
the RJ: (i) there is only the stop sign; or (ii) there are both the stop and the give way signs.
At this moment, the clock (x) starts to work and the agent is at the state of watching out for
RU. From this state, there are two possible outcomes: (i) RJ_Env tells the agent that RJ is
free; or (ii) RJ_Env tells the agent RJ is busy. When the latter occurs the agent is supposed
to start to wait until it is possible to watch again for road users. When the RJ is free, the
agent checks for a safe gap and again two outcomes are possible: (i) there is a safe gap and
the RJ_Env tells the agent to enter the RJ; or (ii) there is no safe gap, the agent should wait,
so it moves to the waiting state (the same one which is used when the RJ is busy).

After this, the AV-agent has successfully entered the RJ, and it tells the RJ_Env that it is
now away from the RJ once more.

Figure 2. UPPAAL template for AV_agent automaton.

Time Constraints

To properly represent an AV, we have decided to add some time constraints to simulate
thresholds for each one of the main actions in the system, i.e., watching for road users,
waiting (at the RJ), check for a safe gap and entering the RJ.

Figure 3 illustrates how these time constraints work for the corresponding synchro-
nized channels: busy, free, enter, should_wait, and try_again. The time constraints establish
the lower and upper bounds for each one of the synchronized channels.

The lower and upper bounds for these time constraints have been selected considering
that we could have a cross or a T junction, where the AV-agent should watch for road users
at least in two different directions (in case of T junction) or at most in three directions (in
case of a cross junction). However, in case the road junction (either cross or T junction)
is busy, the AV-agent may only look once for road users and already check the RJ is busy.
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Thus, the lower bound for the busy channel is 1 (one). For the remaining channels (enter,
should_wait, and try_again) we only need to add one or two extra time units. The idea
behind these extra time units is to model the additional time required for the AV-agent to
execute its actions. For example, once the AV-agent checks the junction is free, then it will
need an extra time unit to actually move and enter the junction.

Figure 3. Time constraints for the AV_agent automaton synchronized channels.

4.2. Road Junction Environment Automaton

In Figure 4, the Road Junction environment automaton (RJ_Env) is shown. This model
represents the behaviour and communication that the environment engages with the
AV_agent and also with the three artefacts.

It starts in an idle state, as soon as the AV_agent approaches the RJ, the environment
should check for the traffic sign, according to the information received from the sign

artefact, the RJ_Env will tell the AV_agent if there is a single stop sign or two signs (stop
and give way). After that, the RJ_Env waits for the AV_agent to start watching the RJ for
road users. Now, two possible outcomes may be received from the road_user artefact:
(i) the RU is away from the RJ; or (ii) the RU is crossing the RJ. When the latter occurs,
the environment will notify the AV_agent that the RJ is busy, therefore the AV_agent is
supposed to wait. Next, the RJ_Env waits to receive from the AV_agent the communication
stating that it wants to try again and restart the checking for RU. But, in case the RJ is free,
the environment will check for a safe gap with the corresponding safe_gap artefact. This
artefact will answer whether or not there is a safe gap at the RJ. If there is no safe gap,
the RJ_Env tells the AV_agent that it should wait at RJ. But, if there is a safe gap, thus the
RJ_Env tells the AV_agent to enter the RJ. Finally, when the AV_agent tells the RJ_Env that
it is away from the RJ, the environment is back to the idle state.

Notice that we use a variable ru (stands for Road User), which is incremented every
time it perceives there is a Road User crossing the junction and is decreased every time
there is a Road User away from the junction. So, before the synchronisation channel with
the AV_agent is set up to communicate that the junction is free, it is necessary to check if ru
is equal to zero (i.e., there is no Road User at all). If ru is not zero, there is still some Road
User at the junction and the model does not proceed to the next stage, which is to check
for a safe gap. NB: in the stage of verifying properties (see Section 6.1) we run simulations
with one, two, and three Road Users, that is why we need this control variable ru.
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Figure 4. UPPAAL template for RJ_Env automaton.

4.3. Automata for the Artefacts

Figure 5 presents the three UPPAAL automata responsible for representing the be-
haviour of the artefacts from the environment (RJ_Env). The leftmost automaton shows the
sign artefact, which should tell the environment the existing traffic sign (only stop sign or a
stop and a give way signs). The centre automaton presents the road_user artefact, this one
will send to RJ_Env the road user state (it is away from RJ or it is crossing). The rightmost
automaton pictures the safe_gap artefact, which is responsible for telling whether or not
there is a safe gap.

Figure 5. UPPAAL templates for the environment artefacts.

5. Agent and Environment Implementation

Our SAE-RoR system was implemented using the GWENDOLEN agent programming
language and MCAPL framework. As previously shown in Figure 1, the implementation
is based on LTL formalisation of RJ rules together with a mapping from the UPPAAL
timed automata to the agent’s implementation (this is presented later in Section 5.2).
Nevertheless, some modifications were necessary because of the differences between
UPPAAL and MCAPL frameworks. For example, by using UPPAAL we have modelled time
constraints to represent the behaviour of the AV-agent in the road junction, while in MCAPL
we have used random generation of events in the environment. In the following, we also
describe the RJ environment modelling, implementation, and testing scenarios.

5.1. Setting-Up the Road Junction Environment Model

The model implemented using MCAPL is a simple representation of a crossroad
junction. Figure 6 shows the grid which splits the road junction into nine spots. The grid
set-up is as follows:
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Figure 6. Road Junction grid environment model.

• spot (0,0): the start position for the AV-agent, when it is said to be away from the
road junction.

• spot (0,1): the position the AV-agent goes when it is supposed to watch for road
users.

• spot (0,2): the position where the traffic sign is placed.
• spot (1,1): the position reached by the AV-agent once it enters the RJ. Notice that

after reaching (1,1) spot, the AV-agent may go to any of the following spots: {(1,0);
(2,1); (1,2)}.

• spots {(1,0)); (1,1)); (2,1); (1,2)} are said to be target spots. That is, spots that can
be reached by the AV-agent.

• spots {(0,0); (2,0); (2,2)} are said to be safe spots. That is, spots that can not be
reached by the AV-agent, once it arrives at the road junction, i.e., AV-agent is placed at
(0,1).

• a given road user may be placed at a safe or a target spot.

The above grid setup is implemented in the AV-agent as a set of initial beliefs.

5.2. Correspondence: Modelling and Implementation

Here we describe the correspondences from the UPPAAL modelling to the GWENDOLEN

implementation. In Table 3, we describe the mapping from the AV_agentUPPAAL Automaton
(previously seen in Figure 2) to the AV-agent implemented in GWENDOLEN (previously
shown in Listing 1).

Notice that the information in the table is separated into names and types both for the
UPPAAL model and the agent’s implementation. For the model, the names represent the
Locations or the communication channels used in the AV_agent Automaton, while the types
identify which element this name represents, it can be a Location (Loc) or a communication
channel with other UPPAAL Automata. In this case, we use the following representation:

UA1 is the AV_agent UPPAAL Automaton.
UA2 is the RJ_Env UPPAAL Automaton (see Figure 4).
UA3 is the sign UPPAAL Automaton (see Figure 5).
UA4 is the road_user UPPAAL Automaton (see Figure 5).
UA5 is the safe_gap UPPAAL Automaton (see Figure 5).

NB: when there are two pairs of different Automata as types, e.g., UA1-UA2/UA2-
UA3 in the fourth row of the table. This means, the channel stop? is a communication
from UA1 to UA2, while the channel is_stop_sign? synchronises the automata UA2 to
UA3.

For the implementation, the names represent elements used in the GWENDOLEN code.
These elements can be any of the following types:

Belief: represents an initial belief of the agent.
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Add Belief: represents a new belief acquired by the agent during execution.
Percept: is a perception obtained by the agent from the environment.
Action: is an action executed by the agent in the environment.

Table 3. Correspondence between Model and Implementation.

Model Implementation

Names Types Names Types

AV_away_from_RJ Loc av_away() Belief
AV_approach! UA1 approach_roadjunction() Action

AV_at_RJ Loc at_roadjunction() Percept
stop?/is_stop_sign? UA1-UA2/U2-UA3 check_sign()/stop_sign()/stopped Action/Percept/Add Belief

stop_and_give_way?/is_give_way_sign? UA1-UA2/U2-UA3 check_sign()/give_way_sign()/
given_way Action/Percept/Add Belief

watch_out_for_RU Loc watch() Action
watching! UA1 watching() Action

busy?/RU_crossing? UA1-UA2/UA2-UA4 road_user()/busy_roadjunction Percept/Add Belief
wait? UA2 wait/waiting(road_user) Action/Percept

try_again! UA1 try_again() Percept
free?/RU_away? UA1-UA2/UA2-UA4 no_road_user()/free_roadjunction Percept/Add Belief

check_for_safe_gap Loc check_safe_gap() Action
should_wait?/no_safe_gap? UA1-UA2/UA2-UA5 no_safe_gap()/checking() Percept/Action

enter?/yes_safe_gap? UA1-UA2/UA2-UA5 safe_gap() or for_safe_gap()/enter Percept/Action
AV_entered_RJ Loc enter_roadjunction Percept

AV_away! UA1 away_from_roadjunction Add Belief

The mapping presented is direct where a given element from the Model has a matching
element in the implementation. An additional correspondence, (that is not shown in the pre-
vious table) is the one from the UPPAAL Automata sign, road_user, and safe_gap, which
are mapped to the random generation of these three events in the agent’s environment.

However, not all elements can be mapped between the model and the implementation.
For example, the AV_agent UPPAAL Automaton uses clock constraints that do not have a
corresponding element in the agent’s implementation. In addition, the GWENDOLEN code
also has some details which are abstracted away in the timed model. The AV-agent has spe-
cific plans for different road junction rules (see the goals enter_roadjunction_rules170_171
and enter_roadjunction_rules170_172 in Listing 1). In this way, it is possible to keep
track of which rules have been selected by the AV-agent.

Listing 1. AV-agent plans.

: Plans :

+! a t _ r o a d j u n c t i o n (X , Y) [ achieve ] : { B av_away ( 0 , 0 ) , B road junct ion (X , Y) }
<− approach_roadjunction (X , Y ) ;

+ a t _ r o a d j u n c t i o n (X , Y) : { B sign (Z ,W) } <− check_sign (Z ,W) ;

+stop_sign (Z ,W) : { B sign (Z ,W) }
<− +stopped , +! enter_road junc t ion_ru les170_171 [ perform ] ;

+give_way_sign (Z ,W) : { B sign (Z ,W) }
<− +given_way , +stopped , +! enter_road junc t ion_ ru les170_172 [ perform ] ;

+! en ter_road junc t ion_ru les170_171 [ perform ] :
{ B a t _ r o a d j u n c t i o n (X , Y) , B stopped , B to_watch ( S , T ) }

<− watch ( S , T ) ;

+! enter_road junc t ion_ru les170_172 [ perform ] :
{ B a t _ r o a d j u n c t i o n (X , Y) , B given_way , B stopped , B to_watch ( S , T ) }

<− watch ( S , T ) ;

+for_road_users ( S , T ) : { B road_user ( S , T ) }
<− +busy_roadjunction , wait ;
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+wait ing ( road_user ) : { B road_user ( S , T ) }
<− watching ( S , T ) ;

+for_road_users ( S , T ) : { B no_road_user ( S , T ) }
<− +free_road junc t ion , check_safe_gap ( S , T ) ;

+t ry_again ( S , T ) : { B no_road_user ( S , T ) }
<− +free_road junc t ion , −busy_roadjunction , check_safe_gap ( S , T ) ;

+safe_gap ( S , T ) : { B no_road_user ( S , T ) }
<− enter ;

+no_safe_gap ( S , T ) : { B no_road_user ( S , T ) }
<− checking ( S , T ) ;

+for_safe_gap ( S , T ) : { B new_safe_gap ( S , T ) , B no_road_user ( S , T ) }
<− enter ;

+ e n t e r _ r o a d j u n c t i o n : { True }
<− +away_from_roadjunction , done ;

5.3. Implementation Details

Here, the implementation details concerning the AV-agent plans written in GWENDOLEN

and the agent environment are described. Listing 1 presents a fragment of the agent imple-
mentation.

The first plan of the agent is designed to make the agent approach the RJ, so the action
approach_roadjunction(X,Y) is invoked in the environment. This will only happen when
the agent acquires the goal (of type achieve) at_roadjunction(X,Y) and has as guards the
two beliefs: av_away(0,0) and roadjunction(0,0). Next, the action check_sign(Z,W) is
called, this action uses a random procedure to generate one of two possible outputs for
traffic sign: stop or give way sign. To run this action the agent needs to perceive that it is
at_roadjunction(X,Y) and believe there is a sign at (Z, W).

According to the existing traffic sign, a specific plan will be triggered. With this, we
could track which RJ rule has been used by the agent. Either way, the agent will eventually
call the action watch(S,T), which is responsible for watching for road users. This action
will return one of the two perceptions (from the environment): there is a road user or there
is no road user.

In case there is a road user (i.e., exists a belief road_user(S,T)), the actions wait and
watching(S,T) are executed. The former action will trigger a delay and the latter action is
responsible for making the agent watch again for road users. The action watching(S,T)

uses a random generation of road users at the road junction, in a way that at some point
the road junction is supposed to be free of road users.

In case there is no road user (i.e., exists a belief no_road_user(S,T)), the agent believes
the road junction is free and the action check_safe_gap(S,T) is executed. This action
works similarly to action check_sign(Z,W) because it also uses a random generation to
determine whether (or not) there is a safe gap at the road junction.

If there is no safe gap (i.e., exists a perception no_safe_gap(S,T)), a new action
checking(S,T) is invoked, this action works similarly to action watching(S,T), since it
also uses random generator until at some point a safe gap arises at the road junction. Notice
that to run action checking(S,T) the agent should still belief that there is no road user.

If there is a safe gap (and knowing that there is no road user), then the AV-agent may
successfully enter the road junction. Once the agent has entered, it acquires a perception
enter_roadjunction. After that, a new belief is added to the agent, so the agent knows
that now it is away (once more) from the road junction (away_from_roadjunction).

5.4. Testing Scenarios

To test the SAE-RoR implementation stage we have run three different scenarios (see
Figure 7). The setup of these scenarios corresponds to the placement of the road users in the
road junction environment, which are the positions the AV-agent is supposed to watch for.
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1. There are three road users, all at target spots, {(1,0); (1,1); (1,2)}.
2. There is one road user at a target spot, (1,0). And two road users at safe spots,

{(2,0); (2,2)}.
3. There are three road users, all at safe spots, {(0,0); (2,0); (2,2)}.

Figure 7. Three testing scenarios.

Figure 8 shows the output log from scenario 2. Notice that rule 171 is selected by the
agent and action watching(1,0) is executed until the road junction is free, similarly, action
checking(1,0) is also executed until there is a safe gap and the AV-agent may enter the
road junction.

Figure 8. Scenario 2: output log.

As outlined above, the environment implementation has some actions that use random
generation of events. As a result, we have run for each one of the three scenarios four
different instances, this is necessary to properly capture all the possible outcomes of the
actions. Specifically, we have observed the following elements:

• which RJ rule has been selected: rule 171 or 172.
• whether the RJ initially is busy or free.
• if initially the RJ has a safe gap or there is no safe gap.
• and whether or not the AV-agent has entered the RJ.

6. Formal Verification Results

In this section, we present the obtained results of our double-level model checking
technique, where we have applied formal verification at design (using UPPAAL) and
development (using MCAPL) levels.

All simulations and verifications (presented in this section) were done using the
following specification: OS: Linux Mint 19.3; Processor: Intel i7-8550U; RAM: 8 GB. And the
correspondent software versions: UPPAAL 4.1.24—Academic; MCAPL development version
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2019 (NB: Our repository is available at https://github.com/laca-is/SAE-RoR, accessed
on 23 June 2021).

We have successfully verified 30 properties (18 using UPPAAL and 12 using AJPF).
These properties intend to capture all possible scenarios w.r.t the agent’s behaviour against
the three road junction rules (rules 170, 171, 172). With this, we intend to verify whether or
not the agent is respecting the traffic rules according to the existing artefacts in the road
junction environment.

6.1. Verification of Properties with UPPAAL

Below, we list the 18 properties written in TCTL that were successfully verified
using UPPAAL. NB: AV.x represents the clock used in time constraints for the AV_agent

automaton.

p1: A[] not deadlock

Description: a safety property which verifies if there is no deadlock.

p2: A[] ((RoadJunction.send_stop || RoadJunction.send_stop_and_give_way)

imply AV.AV_at_RJ)

Description: For all paths always the Road Junction environment when sending the
AV to stop or to stop and give way to traffic, then the AV will be at the Road Junction.

p3: A[] (RoadJunction.waiting_for_AV imply A<> AV.watch_out_for_RU)

Description: For all paths always when the Road Junction is waiting for the AV, then
for all paths at some time the AV watches out for road users.
NB: for the sake of clarity we use TCTL notation for this property, see in Section 3.1
the corresponding UPPAAL notation.

p4: A[] (AV.AV_check_for_safe_gap imply (RoadJunction.check_for_safe_gap ||

RoadJunction.there_is_safe_gap || RoadJunction.there_is_no_safe_gap))

Description: For all paths always when the AV checks for safe gap, then the Road
Junction will be checking for a safe gap or it will know if (or not) there is a safe gap.

p5: A[] (RoadJunction.AV_may_enter imply A<> AV.AV_entered_RJ)

Description: For all paths always when the Road Junction tells the AV that it may enter
the junction, then for all paths at some time the AV will enter the junction.
NB: the same remark for p3 is valid for p5.

p6: A[] (AV.AV_entered_RJ imply AV.x >= 2)

Description: For all paths always when the AV enters the Road Junction the clock (x)
has a value greater or equal than 2.

p7: A[] ((AV.watch_out_for_RU) imply (AV.x >= 0 && AV.x <= 3))

Description: For all paths always the when the AV watches for Road Users at the Road
Junction the clock (x) has a value between 0 and 3.

p8: A[] ((AV.waiting) imply (AV.x >= 1 && AV.x <= 5))

Description: For all paths always when the AV waits at the Road Junction the clock (x)
has a value between 1 and 5.

p9: A[] ((AV.AV_check_for_safe_gap) imply (AV.x >= 2 && AV.x <= 4))
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Description: For all paths always the when the AV checks for a safe gap at the Road
Junction the clock (x) has a value between 2 and 4.

p10: A[] ((AV.watch_out_for_RU) imply

(RoadUser1.RU_crossing_RJ || RoadUser1.RU_away_from_RJ))

Description: For all paths always when the AV watches for (a single) road user, then it
is only possible to have the road user crossing or away from the junction.

p11: A[] (RoadUser1.RU_crossing_RJ imply (RoadJunction.is_RJ_free || RoadJunction.busy_RJ

|| RoadJunction.AV_should_wait || RoadJunction.AV_is_waiting || RoadJunction.check_RU))

Description: For all paths always when there is a (single) road user crossing the
junction, then it is only possible the Road Junction (environment) is checking for a
road user or it is waiting or it should wait or it knows the junction is busy or yet it
should check if the junction is free.

p12: A[] (RoadUser1.RU_crossing_RJ imply (not AV.AV_entered_RJ))

Description: For all paths always when there is a (single) road user crossing the
junction, then it is not possible that the AV will enter the junction.

p13: A[] ((AV.watch_out_for_RU) imply ((RoadUser1.RU_crossing_RJ ||

RoadUser1.RU_away_from_RJ) || (RoadUser2.RU_crossing_RJ || RoadUser2.RU_away_from_RJ)))

Description: this is basically the same property as p10, except that here there are two
Road Users at the Road Junction.

p14: A[] ((RoadUser1.RU_crossing_RJ || RoadUser2.RU_crossing_RJ) imply

(RoadJunction.is_RJ_free || RoadJunction.busy_RJ || RoadJunction.AV_should_wait ||

RoadJunction.AV_is_waiting || RoadJunction.check_RU))

Description: this is basically the same property as p11, except that here there are two
Road Users at the Road Junction.

p15: A[] ((RoadUser1.RU_crossing_RJ || RoadUser2.RU_crossing_RJ) imply

(not AV.AV_entered_RJ))

Description: this is basically the same property as p12, except that here there are two
Road Users at the Road Junction.

p16: A[] ((AV.watch_out_for_RU) imply ((RoadUser1.RU_crossing_RJ ||

RoadUser1.RU_away_from_RJ) || (RoadUser2.RU_crossing_RJ || RoadUser2.RU_away_from_RJ)

|| (RoadUser3.RU_crossing_RJ || RoadUser3.RU_away_from_RJ)))

Description: this is basically the same property as p10 and p13, except that here there
are three Road Users at the Road Junction.

p17: A[] ((RoadUser1.RU_crossing_RJ || RoadUser2.RU_crossing_RJ ||

RoadUser3.RU_crossing_RJ) imply (RoadJunction.is_RJ_free || RoadJunction.busy_RJ ||

RoadJunction.AV_should_wait || RoadJunction.AV_is_waiting || RoadJunction.check_RU))

Description: this is basically the same property as p11 and p14, except that here there
are three Road Users at the Road Junction.

p18: A[] ((RoadUser1.RU_crossing_RJ || RoadUser2.RU_crossing_RJ ||

RoadUser3.RU_crossing_RJ) imply (not AV.AV_entered_RJ))

Description: this is basically the same property as p12 and p15, except that here there
are three Road Users at the Road Junction.
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In Table 4 the execution results from the properties are summarised considering the
existence (or not) of road users in the scenarios as well as the time and memory used to
run each set of properties. Notice the highest values for time and memory respectively
are 0.01 s and 49,396 KB, which can be seen as fair values even when three road users are
considered in the simulation.

Table 4. Properties verified with UPPAAL—Execution results.

Properties Scenario Time Memory

p1–p12 with 0 or 1 RU 0 s to 0.003 s 5800 KB/49,396 KB
p13–p15 with 2 RU 0.001 s 6040 KB/48,322 KB
p16–p18 with 3 RU 0.001 s to 0.01 s 6040 KB/48,322 KB

Table 5 presents the results from the 18 properties checked using UPPAAL. In this table
we have classified each property according to the following:

• Road users: no road user at all; one, two, or three road users.
• System properties: two kinds of system properties are considered: temporal correct-

ness and liveness.
• Interaction: that is those properties that present some sort of interaction with the

environment.
• Quality: there are two kinds of properties related to quality: security and safety.
• Related Road Junction rules: each property is identified with the correspondent Road

Junction rules that are related to the verified property.

Table 5. Properties verified with UPPAAL—Classification.

System Properties Interaction Quality Related Rules

Property # Road Users?
Temporal

Correctness
Liveness

Interaction
w/Environment

Safety Security R. 170 R. 171 R.172

p1 - •
p2 - • • • •
p3 - • • •
p4 - • • • •
p5 - • • •
p6 - • •
p7 - • •
p8 - • •
p9 - • • •
p10 1 • • •
p11 1 • • •
p12 1 • • •
p13 2 • • •
p14 2 • • •
p15 2 • • •
p16 3 • • •
p17 3 • • •
p18 3 • • •

To discuss the verified properties and results we highlight some issues, as follows.

1. Properties p1 to p5 are related to security, safety, liveness, and interaction. In addition,
these properties verify some of the main actions of our model, i.e., when AV-agent
watches out for a road user, checks for a safe gap and for a traffic sign as well as will
enter the RJ.
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2. Properties p6 to p9 are responsible for verifying the time constraints included in the
AV-agent automaton. With this, we can check temporal correctness for the main
actions in our model, i.e., enter the RJ, watch out for road users, wait at RJ, and check
for a safe gap.

3. Properties p10 to p12 are safety properties used to verify the effect of having a single
road user at the RJ in some related actions. These properties formally verify what to
expect when the AV-agent watches out road users and also when there is a road user
crossing the junction what is allowed (and not) to happen considering the existent
actions in the RJ environment.

4. Properties p13 to p15 run the same kind of verification from the previous item, except
here the scenario considers the existence of two road users.

5. Properties p16 to p18 run the same kind of verification from item 3, except here the
scenario considers the existence of three road users.

6. Related RJ rules: 16 properties are related to rule 170, which is indeed a general road
traffic rule handling different possibilities of when and how a vehicle may enter the
road junction. Moreover, rules 171 and 172 are also verified in specific properties.

The verification of properties with UPPAAL generates important information for
stakeholders. Firstly, it is possible to check the main actions that can be taken by an AV-
agent at Road Junction. Secondly, the time constraints included in our model which, as
noted, are left implicit in non-digital highway codes, were shown to be reasonable and so
can form recommendations for a Digital Highway Code. Thirdly, the model is efficient at
analysing the scenario with three road users, where there is no increase in the use of time
and memory. As a result, we believe it would be feasible to analyse more complex road
junction models with more than three road users. Lastly, we have assessed the use of three
Road Junction rules from the RoR, where the main actions and artefacts of each rule have
been modelled and formally verified.

6.2. Verification of Properties with AJPF

We present the twelve properties (and their corresponding descriptions) that have been
successfully verified with AJPF. NB: these properties are labelled with ap (representing
AJPF Property) to distinguish them from the properties previously presented.

ap1: (B(av,sign(0,2)) & B(av,stopped)) -> [] G(av, enter_roadjunction_rules170_171)

Description: when AV believes there is a sign at (0, 2) and it has stopped, then it
always obtains the goal of entering the road junction using rules 170–171.

ap2: (B(av,sign(0,2)) & B(av,given_way) & B(av,stopped)) ->

[] G(av, enter_roadjunction_rules170_172)

Description: when AV believes there is a sign at (0, 2), it has given way and stopped,
then it always obtains the goal of entering the road junction using rules 170–172.

ap3: [] (B(av, at_roadjunction(1, 0)) -> <> (B(av, road_user(1, 0)) ||

B(av, no_road_user(1, 0)))

Description: It is always the case that if the AV is at a road junction at (1, 0), then
eventually it will believe that either there is a road user at the junction at (1, 0) or there
is not a road user at the junction at (1, 0).

ap4: [] (D(av,wait) -> (B(av,road_user(1,0)) & B(av,busy_roadjunction)))

Description: It is always the case that if the AV waits at the junction, then it believes
there is a road user at (1, 0) and the road junction is busy.

ap5: [] ((B(av,no_road_user(1,0)) & B(av,free_roadjunction)) -> <> (B(av,no_safe_gap(1,0)

|| B(av,safe_gap(1,0)) || B(av,new_safe_gap(1,0)) || B(av,try_again(1,0))))
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Description: It is always the case that when the AV believes there is no road user at
(1, 0) and the road junction is free, then eventually the AV will acquire the belief there
is no safe gap at (1, 0) or there is a safe gap (or a new safe gap) at (1, 0) or the belief it
has tried again at (1, 0) (in the search for road users).

ap6: [] (D(av,check_safe_gap(1,0)) -> ~B(av,busy_roadjunction))

Description: It is always the case that if the AV checks for safe gap at (1, 0), then it
should not believe there is a busy road junction.

ap7: [] (D(av,check_safe_gap(1,0)) -> ~B(av,road_user(1,0)))

Description: It is always the case that if the AV checks for safe gap at (1, 0), then it
should not believe there is a road user at (1, 0).

ap8: [] (D(av,check_safe_gap(1,0)) ->

(B(av,no_road_user(1,0)) & B(av,free_roadjunction)))

Description: It is always the case that if the AV checks for safe gap at (1, 0), then it
believes there is no road user at (1, 0) and the road junction is free.

ap9: [] (D(av,enter) -> ~B(av,busy_roadjunction))

Description: It is always the case that if the AV enters the junction, then it should not
believe there is busy road junction.

ap10: [] (D(av,enter) -> ~B(av,road_user(1,0)))

Description: It is always the case that if the AV enters the junction, then it should not
believe there is a road user at (1, 0).

ap11: [] (D(av,enter) -> ~B(av,try_again(1,0)))

Description: It is always the case that if the AV enters the junction, then it should not
believe to try again (and watch for a road user) at (1, 0).

ap12: [] (D(av, enter) -> ( B(av, safe_gap(1,0)) || B(av, new_safe_gap(1,0))

& B(av, no_road_user(1, 0)))

Description: It is always the case that if the AV enters the junction, then it believes
there is a safe gap at (1, 0) (or a new safe gap) and no road user at (1, 0).

Table 6 shows the results obtained when running the AJPF model checker. These
results consider Scenario 2 (previously seen in Figure 7), where there are three road users
at the RJ, one of them is at a target spot and two are at safe spots.

All properties can be classified as safety properties. Properties ap1 and ap2 are
specifically used to verify the application of the RJ rules, rules 170–171 and rules 170–172.

The remainder of the properties (from ap3 to ap12) are responsible for verifying that
the AV-agent performs key actions involved in the rules at appropriate points: that is to
watch for road users, wait, check for a safe gap and enter the road junction. In Figure 9
the execution log of ap12 is shown. In the last lines from the execution log (just above the
results section) we notice the AV-agent knows the road junction is free (i.e., there is no road
user) and that there is a new safe gap in the junction. This figure also shows no errors
detected, in the results section of the execution log. This means that this property has been
successfully model checked.
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Table 6. Properties verified with AJPF—Execution results.

Property # Results Elapsed Time States Search Instructions Max Memory (MB) Loaded Code

ap1 no errors detected 00:00:08 new = 703, visited = 201,
backtracked = 904, end = 8

MaxDepth = 131,
constraints = 0 36040819 603 Classes = 367, methods = 5647

ap2 no errors detected 00:00:08 new = 703, visited = 201,
backtracked = 904, end = 8

MaxDepth = 131,
constraints = 0 38107153 899 Classes = 368, methods = 5668

ap3 no errors detected 00:00:10 new = 703, visited = 201,
backtracked = 904, end = 8

MaxDepth = 131,
constraints = 0 39758810 731 Classes = 365, methods = 5630

ap4 no errors detected 00:00:07 new = 703, visited = 201,
backtracked = 904, end = 8

MaxDepth = 131,
constraints = 0 33160957 598 Classes = 368, methods = 5669

ap5 no errors detected 00:00:09 new = 703, visited = 201,
backtracked = 904, end = 8

MaxDepth = 131,
constraints = 0 45156165 896 Classes = 366, methods = 5651

ap6 no errors detected 00:00:07 new = 703, visited = 201,
backtracked = 904, end = 8

MaxDepth = 131,
constraints = 0 30367275 601 Classes = 367, methods = 5648

ap7 no errors detected 00:00:07 new = 703, visited = 201,
backtracked = 904, end = 8

MaxDepth = 131,
constraints = 0 31561846 601 Classes = 367, methods = 5648

ap8 no errors detected 00:00:07 new = 703, visited = 201,
backtracked = 904, end = 8

MaxDepth = 131,
constraints = 0 34589802 598 Classes = 367, methods = 5648

ap9 no errors detected 00:00:06 new = 703, visited = 201,
backtracked = 904, end = 8

MaxDepth = 131,
constraints = 0 30047443 602 Classes = 364, methods = 5629

ap10 no errors detected 00:00:06 new = 703, visited = 201,
backtracked = 904, end = 8

MaxDepth = 131,
constraints = 0 31242014 601 Classes = 367, methods = 5648

ap11 no errors detected 00:00:07 new = 703, visited = 201,
backtracked = 904, end = 8

MaxDepth = 131,
constraints = 0 31145552 600 Classes = 367, methods = 5648

ap12 no errors detected 00:00:08 new = 703, visited = 201,
backtracked = 904, end = 8

MaxDepth = 131,
constraints = 0 37515112 605 Classes = 368, methods = 5669

Figure 9. Execution log of ap12.

Considering the obtained results (seen in Table 6), we highlight the following: (i)
all properties have beensuccessfully verified; ii properties took from 6 (ap9 and ap10) to
10 (ap3) seconds; (iii) the results related to the states, search space, and loaded code are
basically the same for all properties; (iv) the number of instructions ranges from 30.367.275
(lowest value by ap6) to 45.156.165 (highest value by ap5); and (v) the amount of memory
(in MB) ranges from 598 (ap4 and ap8) to 899 (ap2). The similarity of the results is a
consequence of the fact that most of the computation effort in AJPF is related to the
production of an automata that represents the implemented program [32] which is identical
in all cases here.

The formal verification with AJPF acknowledges and offers some addition to the
previous verifications (carried out with UPPAAL). Firstly, we successfully verify that the
main actions the AV-agent can take at the RJ (watch, wait, check for a safe gap, and
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enter) are indeed invoked by the agent. Secondly, some properties include actions (e.g.,
check_safe_gap) that are only invoked in some cases (represented by the use of random in
the environment) and so we also verify that these actions are taken when needed. Thirdly,
we observed fair results in time, memory and other features obtained by the AJPF execution.
At last, the verification process produces traces (and if necessary counter-examples) which
allow us to identify which rules and random actions have been (autonomously) selected by
AV-agent in any given scenario. This can be helpful, for example, if a scenario we verify
leads to an accident, allowing a stakeholder to check and traceback the actions taken by
the agent that led to that outcome and so advise on whether the agent, or possibly the
representation of the rules in a Digital Highway Code, need to be amended.

7. Related Work

Here we analyse related work on the following topics: an AV application scenario, the
Rules of the Road, some kind of Formal Verification technique (mainly Model Checking),
some specification logic and the use of agents. Most of the works described here have as a
goal the formal verification of a model related to AV.

In ref. [33], Luckcuck et al. present a survey on formal specification and verification
of autonomous robotic systems. A number of these [34–37] apply formal verification to
AVs, but none relate to our particular question around the design of Digital Highway Code
rules that are intended to conform to pre-existing “Rules of the Road”.

Table 7 summarises a comparison among the related work that is presented in the
remainder of this section. The first three works [10,11,38] present some sort of formalisation
for the road traffic rules (just like our approach does). Some interesting elements from these
works are, correspondingly, the codification of traffic rules [10]; the solution for conflicts
in traffic rules using a deontic logic [11]; the use of a real traffic data-set [38]. However,
neither approach uses an agent abstraction to represent an AV decision-making. Kamali
et al. and Al-Nuaimi et al. [12,13] include the formal verification (using Model Checking
techniques) of BDI agents. But, their AV application scenario is not related to the road
traffic rules.

Besides, Table 7 outlines some specific information concerning:

• Amount of road traffic rules used: some works (including our approach) represents 3
rules, but none represents more than this.

• Formal Verification tools: Ref. [12] and our work are the only ones that use two
verification techniques at two different levels: design and development, in the other
works a single technique is applied.

• Verification of properties: most properties are related to safety issues, but some include
conflicts and consistency checking. Moreover, ref. [12] verifies 12 properties, ref. [13]
7, and ref. [10] 5 properties, while in our approach 30 properties are verified.

• Formalisation: all works use some kind of formalisation, most use temporal or deontic
logic.

• Simulation tools: References [11–13] present the use of some graphical tool for sim-
ulation, which contribute for testing the system. Our approach uses the UPPAAL
graphical tool for simulation, but for the agent’s simulation we only use a cli (command
line interface) tool.
NB: all works described in this table share the same goal of using a formalisation
technique to represent an AV, where either the road traffic rules are formalised or
some formal verification of agents is used.
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7.1. Formal Verification of Agents

Kamali et al. [12] use same tools used in our work, UPPAAL, AJPF, and GWENDOLEN

to model, implement and verify a vehicle platooning protocol. They use a mixed strategy
that combines results from UPPAAL and AJPF, to deduce properties both of individual
agents in the platoon and overall platoon behaviour. Our approach uses the two Model
Checkers separately in order to verify properties of a single agent following proposed
Digital Highway Code rules at different levels of abstraction.

In our architecture, the model developed in UPPAAL is used as a design template
for the lower-level agent implementation. Thus, our model checking stages are loosely
coupled, which is beneficial for modularity, allowing, for instance, the design level UPAAL
model to be implemented in a different programming language.

Al-Nuaimi et al. [13] use Agent Model Checking to explore the behaviour of an
AV in a parking lot. Their toolchain consists of the MCMAS model checker, Jason agent
programming language, and CTL to verify temporal properties. The authors formally verify
the AVs decisions. 12 rules are defined to verify planning, navigation, object detection and
obstacle avoidance. ROS and Gazebo [39] are used to graphically simulate the application
scenario. Again this work is targeted at the verification of proposed AV implementations
from a safety perspective rather than in terms of the digitisation of rules of the road and
verifying whether some agent can obey them.

7.2. The Formalisation of the Rules of the Road

Pek et al. [38] formalise the safety of lane change manoeuvres to avoid collisions. The
authors use as reference the Vienna Convention on traffic rules to formalise a single rule on
the safe distance.

Rizaldi et al. [10] formalise and codify part of the German Highway Code on the
Overtaking traffic rules in LTL. They show how the LTL formalisation can be properly used
to abstract concepts from the traffic rules and obtain unambiguous and precise specification
for the rules. In addition, they formally verify the traffic rules using Isabelle/HOL theorem
prover and also monitor an AV applying a given traffic rule, which has been previously
formalised using LTL.

Bhuiyan et al. [11] assess driving behaviour against traffic rules, specifically the
Overtaking rules from the Queensland Highway Code. Two types of rules are specified:
overtaking to the left and the right. Moreover, they intend to deal with rules exceptions
and conflicts in traffic rules (this is solved by setting priorities among the rules). Using
DDL (Defeasible Deontic Logic) they assess the driving behaviour telling if the driver has
permission or it is prohibited to apply a given rule for overtaking. The results basically
show if the proposed methodology has recommended (or not) the proper behaviour for
the driver (permission or prohibition). In addition, CARRS-Q, a driving simulator is used
and 24 experiments are conducted in four different scenarios.

Our approache share the same goal: assessing AV behaviour against traffic rules (in
our case, the road junction rules). However, we are using an agent-based implementation
and verification, where it is also possible to tell when and how a given road junction has
been selected and applied by the agent. In addition, our double-level model checking
architecture results in the formal verification of 30 properties (18 at design and 12 at
development level), which brings a comprehensible set of verification that ranges from
time constraints properties (at design level) to specific actions that can (or can not) be
taken by the AV in the road junction scenarios (at development level). To the best of our
knowledge, [10,11,38], do not present this variety of abstraction levels in the properties
they verify.

8. Conclusions

In Section 1 we have introduced three questions that we wanted to answer (i) Can
these three selected road junction rules be used directly (i.e. as seen in the Highway
code) by an AV? (ii) How to assess the AVs behaviour against the three road junction rules
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considering simple Road Junction scenarios? and (iii) Are there any guidelines that can be
given to enable the AV to work correctly with such Road Junction rules?

The first question is answered by the formalisation and modelling proposed in our
work. The Road Junction rules were abstracted and formalised into a Digital Highway
code to render them machine-readable. To do this, it was necessary to remove ambiguity
and make the rules explicit to the computational system. In addition, some degree of
abstraction was necessary to handle similar terms as a single one, for example the term
safe-gap, used in our work, can be found described in different ways throughout the rules
from the UK Highway code.

The second question is answered by the own use of the double-level Model Checking
technique and adoption of the methodology of exploring scenarios via random events
from [18]. This generation of events makes it possible to simulate different scenarios within
one model and explore all possible behaviours of the model’s environment. By using
the SAE-RoR architecture we have formally verified 30 properties (18 at the design level
and 12 at the development level), these properties include security, safety, liveness, and
temporal correctness properties, among others. We have obtained fair results considering
the resources used (i.e., memory, time, search space, etc) in the verification of the properties
(where all of these properties have been successfully verified). By running the verification
of properties in the road junction simulated environment, we are able to capture and assess
the AVs behaviour considering all possible actions (e.g., watch out, wait, check for safe
gap, enter, etc) that can be taken by the AV-agent according to the three implemented road
junction rules. Note that, while we do not claim that the properties verified completely
represent all the possibilities, we believe that verification stages such as these will be
necessary for reliable and compliant AVs.

For the third question, clearly we need a principled way to represent road junction
rules in a machine-readable format. As part of this we need to identify and reify implicit
the time constraints that appear in human-readable rules of the road. Similarly, the use of a
BDI agent programming languages and Program Model Checking helps generate traces of
AV-agent behaviour and so identify when and how a given Road Junction rule was applied.
This kind of information is potentially of use to stakeholders.

We return to the trade-off mentioned in Section 1. Can a Digital Highway Code can
be created with few minor changes or are several adaptions are necessary? We can only
give an answer considering the subset from Road Junction rules that we have implemented
here. These three rules express their ideas in sufficient detail for formal and executable
representation in an AV. However, the rules still need some adaptation. In future work, we
intend to revisit this question and develop a more general answer.

Having established the SAE-RoR architecture and workflow, we could now add the
remaining Road Junction rules from the UK Highway Code. These remaining rules are
similar to those already implemented, the differences lie primarily in the artefacts and
the perceptions generated in the environment. For example, to add the Road Junction
rules 175 and 176, which deal with Traffic Lights, we would need to represent the traffic
light as an artefact and the green, amber, and red light as perceptions. But, the actions
stop at the red light and follow at the green light, for instance, would not differ that
much from actions already implemented for the AV-agent, like wait and enter. This work
would be needed for full implementation of an AV but will yield little further insight at the
methodological level.

Of more interest would be to consider a different section of traffic rules from the
UK Highway Code, for example, the Roundabout rules in order to add generality to the
framework. Similarly we could consider the inclusion of a Highway Code from a different
country. Of particular interest would be to investigate how an AV-agent would work when
travelling between countries when it would need to switch to a different set of Rules of
the Road. The agent paradigm also allows us to explore behaviour in environments where
agents have different profiles. Our AV-agent is supposed to behave according to the Road
Junction rules. But, what will happen if it interacts with agents that violate traffic rules and
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can this be modelled and verified? This extension would potentially introduce the need
for the implementation and verification of communication and cooperation algorithms.
Following this idea where we would have a multi-agent system, we notice that some other
aspects offer an interesting view on how to extend the SAE-RoR architecture to consider the
implementation and verification of AVs protocols. For instance, the topics of distributed
traffic control [40], vehicle-to-vehicle and vehicle-to-infrastructure communication [41],
and also agent-based IoT (Internet of Things) applications [42], however at this moment
these lie outside the issue considered here of adherence to “The Rules of the Road”.

Moreover, we could improve our abstract model from the road junction rules by
defining an extension of the Multi-lane Spatial Logic, as seen in [23]. With this logic, we
could extend our representation in a way not to only capture the temporal aspects from the
road junction rules, but also the spatial elements. Perhaps, a proper approach to represent
a safe gap in an urban traffic environment, for instance.

Lastly, we aim to augment the SAE-RoR architecture with an Ethical Agent responsible
for monitoring and verifying an agent’s behaviour with respect to the Rules of the Road, as
discussed in [43].
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Abstract: Research and technology developments on autonomous agents and autonomic computing
promote a vision of artificial systems that are able to resiliently manage themselves and autonomously
deal with issues at runtime in dynamic environments. Indeed, autonomy can be leveraged to
unburden humans from mundane tasks (cf. driving and autonomous vehicles), from the risk
of operating in unknown or perilous environments (cf. rescue scenarios), or to support timely
decision-making in complex settings (cf. data-centre operations). Beyond the results that individual
autonomous agents can carry out, a further opportunity lies in the collaboration of multiple agents
or robots. Emerging macro-paradigms provide an approach to programming whole collectives
towards global goals. Aggregate computing is one such paradigm, formally grounded in a calculus of
computational fields enabling functional composition of collective behaviours that could be proved,
under certain technical conditions, to be self-stabilising. In this work, we address the concept of
collective autonomy, i.e., the form of autonomy that applies at the level of a group of individuals. As a
contribution, we define an agent control architecture for aggregate multi-agent systems, discuss how
the aggregate computing framework relates to both individual and collective autonomy, and show
how it can be used to program collective autonomous behaviour. We exemplify the concepts through
a simulated case study, and outline a research roadmap towards reliable aggregate autonomy.

Keywords: collective autonomy; self-organisation; aggregate computing; multi-agent systems;
coordination

1. Introduction

Research and technology trends promote a vision of artificial systems that are able to
resiliently manage themselves and autonomously deal with issues at runtime in dynamic
environments. Such a vision is mainly investigated by two related research threads. One
is the field of autonomic computing [1] and self-adaptive systems [2], which promote
the development of Information and Communications Technology (ICT) systems able to
self-manage given a set of high-level goals. Indeed, endowing systems with higher degrees
of autonomy can be leveraged to unburden humans from mundane tasks (cf. driving and
autonomous vehicles), from the risk of operating in unknown or perilous environments
(cf. rescue scenarios), or to support timely decision-making in complex settings (cf. data-
centre operations). The other is the field of multi-agent systems (MAS) [3], which evolved
from the field of distributed artificial intelligence [4]. An MAS is a system of agents, i.e., a
collection of autonomous entities interacting with their environment [5] and other agents
to satisfy their design objectives. From an engineering point of view, agents and related
abstractions are considered useful tools for the analysis and design of complex software-
based systems. There are two key problems in the use and development of agents: the
design of individual agents (micro level) and the design of a society of agents (macro
level) [3].

Indeed, beyond the results that individual autonomous agents can carry out, a
further opportunity lies in the collaboration of multiple agents or robots. Emerging
macro-paradigms [6,7] provide an approach to programming whole collectives towards
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global goals. Aggregate computing or programming [7,8] is one such paradigm, formally
grounded in a calculus of computational fields [9] (maps from agents to values) enabling
functional specification and composition of collective behaviours. The major benefit of the
aggregate programming approach is that it explicitly addresses collective adaptive behav-
ior, rather than the behavior of individuals (which is addressed indirectly, as a consequence
of the intended global behavior). The idea is to code scripts, conceptually executed by the
collective as a whole, in terms of reusable building blocks of collective tasks [10] capturing
both state, behavior, and interaction, crucially enjoying formal mapping to the behavior
of individuals and often provable convergence properties [7,11]. We argue that this pro-
gramming approach, which originated from the research areas of coordination [12] and
spatial computing [6] (see [7] for a historical note), can be suitable to MAS programming.
Accordingly, in this work, we address the concept of collective autonomy, i.e., the form
of autonomy that applies at the level of a group of individuals. Though this notion has
been investigated in the literature (cf. Section 2), there are mainly preliminary approaches
for practical programming of collective autonomous behavior by a global perspective; so,
in this manuscript, we address this software engineering problem explicitly, and sketch a
roadmap for further research. Therefore:

• we provide a review of literature about autonomy and especially collective autonomy
in MASs (Section 2);

• we analyze the aggregate computing framework by the perspective of autonomy,
by covering its positioning with respect to individual and collective autonomy, and
showing how it can support adjustable autonomy (Section 3);

• we exemplify the discussion through a simulated case study, investigating (i) the
relationship between individual goals/autonomy and collective goals/autonomy;
and (ii) the relationship between structures and collective autonomy (Section 4); and

• we discuss gaps in the literature on programming reliable collective autonomy and
delineate a research roadmap (Section 5).

Finally, we conclude with a wrap-up in Section 6. In summary, in this route, we
cover how to aggregate computing relates to and supports various forms of autonomy,
and propose it as a framework for programming and simulating collective autonomous
behavior, in a way that differs from related works and that opens up various research
directions regarding actionable notions of collective autonomy.

2. Background and Related Work

This section provides the background for our contribution, which is positioned at the
intersection of distributed artificial intelligence and software engineering.

2.1. Autonomy in Software Engineering and Multi-Agent Systems

At a first level, autonomy is used as a general informal notion, a characteristic assumed
to be possessed by some entities during design. Etymologically, autonomy refers to
an entity that follows its own laws, i.e., that is able to self-regulate its behavior. At a
second level, concrete and (semi-)formal notions of autonomy are developed to support
engineering tasks under specific viewpoints—see Table 1 for a summary. For instance,
from a programming language perspective, agents are computationally autonomous in the
sense that they “encapsulate invocation” (i.e., they act as internally defined, e.g., by rules or
goals). Therefore, agents can be thought of as the next step of an evolution from monoliths
to modules (encapsulation of behavior), to objects (encapsulation of state in addition to
behavior), to active objects/actors (decoupling invocation from execution) [13].

Autonomy, together with agency (the ability to act), appears to one of the key defining
and agreed upon characteristics of agents in MAS research [14]. From autonomy and
agency, other features naturally arise. Agents are proactive: they are not only reactive
to external stimuli, but driven towards action by an inner force. Agents are social and
interactive, as autonomy makes sense in a relational context such as a society (MAS). The
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importance of interaction has motivated research on how to effectively rule it to promote
the satisfaction of design goals—the field of coordination [12].

As a relational notion, it is more precise to say that an agent is autonomous (i) from
something and possibly (ii) with respect to something [15]. Accordingly, it is possible to
distinguish between social autonomy (the autonomy of an agent from other agents) and
non-social, environmental autonomy (the autonomy of an agent from the environment).
It is important to remember that autonomy is a gradable notion from the extremes of
no autonomy to full or absolute autonomy. Regarding the object for which autonomy is
considered, researchers typically distinguish between agents that are plan-autonomous
(i.e., are free to determine the course of actions to reach given goals) and agents that are
goal-autonomous (i.e., are free to determine their own goals). These forms are also called
as executive and motivational autonomy [16], respectively. Another common distinction
is between weak and strong agency. In the latter, goals are explicitly represented. An
approach to (strong) agency is to consider agents as intentional entities with mental states
such as epistemic (e.g., percepts, beliefs) and motivational (e.g., desires, intentions) states.
A well-known model in this class is the Belief–Desire–Intention (BDI) control architecture,
which counts several implementations and variants [17].

Table 1. A summary of common notions of autonomy.

Dimension Elements/Terms

Reference entity Agent Group of agents

individual autonomy collective autonomy

Autonomy “from” something Other agents Environment

social autonomy non-social/environmental
autonomy

Autonomy “with respect to”
something Goals Plans

motivational autonomy executive autonomy

Autonomy extremes None Full

no autonomy (passivity) absolute autonomy
(freedom)

Autonomy flexibility None Full

fixed autonomy adjustable autonomy

Source of autonomy with respect to
a component of a reference entity Internal External

endogenous autonomy exogenous autonomy

2.2. Collective Autonomy

The notion of collective autonomy emerges when the reference agent is not an atom-
ically individual agent but a whole collective, i.e., a collection of individuals (agents or
other, possibly non-autonomous agents). As autonomy as a concept tends to be related to
the existence (and possibly awareness) of a “self” [18], an autonomous collective tends to
be and work as a “unit”. Working as a unit requires the components of a collective to be
jointly directed towards goals, states of affairs, or values—a concept known as collective
intentionality [19,20]. In [19], an (intentional) collective is defined as a collection of agents
held together by a “plan”, which specifies a “goal” and their “roles”. In [21], a formal
analysis of collective autonomy is provided. A collective (agent) is defined as a collection
of complementary agents sharing a common, collective goal (which, in a sense, reduces
the individual autonomy of the members). As for individuals, autonomy for collectives
is a gradable and relational notion. A collective may be defined as plan-autonomous
(goal-autonomous) if no other entity (internal or external) can change its plans (goals).
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The focus on autonomy, together with a collective stance, can be used to model or engi-
neer complex system behavior. This is the idea of autonomy-oriented computing [22], where
computation is defined in terms of local autonomous entities, spontaneously (inter-)acting
together and with the environment to achieve self-organizing behavior. In the following
section, we cover a state-of-the-art programming model for this paradigm.

2.3. Multi-Agent Systems Programming

A recent survey on agent-based programming is by Mao et al. [23]. They classify agent
programming languages into three families according to the level they address: individual
agent programming (micro-level), agents integration and interaction programming (meso-
level), and multi-agent organisation programming (macro-level). Representatives of these
classes include cognitive-oriented languages such as AgentSpeak(L)/Jason [24], agent
communication and environment modelling languages like KQML [25], CArtAgO [26], and
SARL [27], and organisation-oriented programming such as MOISE [28]. Another recent
survey by Cardoso et al. [29] distinguishes between general-purpose agent programming
languages and languages for agent-based modeling and simulation. In the following,
we cover a programming model arising from research on spatial computing [6,30] and
field-based coordination [7,31], which provides an original approach to MAS programming
that allows driving micro-level activity based on specifications addressing the meso- and
macro-levels of a MAS.

2.3.1. Aggregate Programming

Aggregate programming is an approach to specify the collective adaptive or self-
organising behaviour of a MAS by a global perspective. The individual behavior of the
agents derives from an aggregate program that is conceptually executed by the system
as a whole. The aggregate program provides a way to map the local observations of an
individual agent (i.e., sensing information, current agent state, and inbound messages
from neighbors) to (eventually) globally-coherent local actions (i.e., actuation instructions,
and outbound messages). Therefore, an aggregate program covers the aspects of sensing,
actuation, computation, and communication to define how the MAS should collectively
behave. In particular, we define an aggregate system as a MAS of agents, structurally
connected such that an agent can only interact with a subset of other agents known as
its neighbors, and repeatedly plays an aggregate program against its up-to-date context
(further details about the execution protocol are provided in Section 3.1).

Historically, aggregate programming originated from works drawing inspiration
from nature: whereas the biological inspiration led to swarm intelligent MASs, where
agent indirectly interact by pheromones [32], the physical inspiration led to the idea of
agents acting in environments empowered with potential fields [31]. Recently, aggregate
programming has been formally backed by field calculi [7], which provide a compositional
approach to global behavior specification based on functions from fields to fields. A
(computational) field is a map associating a value to any device of a given domain. So,
for instance, controlling the movement of a swarm of drones can be expressed through a
field of velocity vectors, which maps any drone of the swarm to a corresponding velocity
(speed and direction); the set of low-energy devices can be denoted through a Boolean
field holding true for devices whose local energy level (as perceived by local sensors,
and collectively also denoted as a floating-point field) is under a certain threshold (also
a floating-point field). These fields, then, are generally manipulated through three kinds
of constructs:

1. Stateful evolution: rep(init)(f)—expressing how a field, starting as init, should
evolve round-by-round through unary function f.

2. Neighbour interaction: nbr(e)—used to exchange with neighbours the value obtained
by evaluating field expression e; this locally yields a neighbouring field, i.e., a field
that maps any neighbour to the corresponding evaluation of e.
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3. Domain partitioning: branch(c){ifTrue}{ifFalse}—used to partition the domain
of devices into two parts: the devices for which field c is locally true, which evaluate
expression ifTrue, and those for which c yields false, which evaluate ifFalse.

The idea of aggregate programming is to write programs talking about global behavior
(fields) and let these drive the local activity of every device in the system. Aggregate
programming is embodied by concrete aggregate programming languages [7], such as
ScaFi [33,34], a Domain-Specific Language (DSL) embedded in Scala as well as a toolchain
for aggregate system development and simulation [35]. ScaFi is used for the examples in
this paper and for the experimental evaluation of Section 4.

We adopt ScaFi in this paper mostly for practical reasons: with respect to other ag-
gregate programming languages such as Proto and Protelis, surveyed in [7], ScaFi is a
strongly typed, internal DSL; therefore, it enables straightforward reuse of powerful fea-
tures from the Scala host language (including its type system, type inference, programming
abstractions, libraries) as well as seamless integration with tooling supports for Java Vir-
tual Machine-based languages (including Integrated Development Environments, static
analysis, and debugging tools), at the expense of a more constrained syntax and semantics.
Additionally, ScaFi also represents an agile framework for testing experimental language
features (cf. aggregate processes [34]—referenced in Section 5.1). Hence, among the exist-
ing languages for aggregate programming, we believe ScaFi is the one better fitting rich
scenarios like those addressed in this paper.

A full account of research about aggregate programming, field calculi, and ScaFi is
beyond the scope of this article; the interested reader can refer to [7,34].

Recently, some preliminary work [36] has been carried out to consider the application
of the aggregate approach for MAS programming, along with a strong-agency viewpoint.
There, two main ideas are proposed. One is the notion of a cognitive field (e.g., fields
of beliefs, fields of goals, fields of intentions), which could be used to represent “a kind
of distributed, decentralized, and externalized mental state”. The other is the notion of
an aggregate plan, i.e., a global, collective plan of actions modeling the way in which
a dynamic team of agents cooperates towards a social goal in a self-organizing way. In
particular, aggregate plans can be created by an initiator agent and iteratively spread by
the other agents; any agent has the faculty of choosing to adopt the plan or not; if the
plan is adopted, then the agent will execute the corresponding actions, which in general
will depend on the agent’s position in space and in the team. This mechanism may be
suitable where the behavior to be executed is somehow related to the space/environment,
where the MAS can be clustered in teams of agents exhibiting uniform behavior, or where
the MAS has to embed a decentralized, self-organizing force. A management lifecycle for
aggregate plans involve the following phases: synthesis, spreading, collection, selection,
execution. In this article, we build on this perspective, and rather focus on the notion of
(collective) autonomy.

3. Autonomy in Aggregate Computing

In this section, we analyse the notion of autonomy (cf. Section 2.1) by the aggregate
computing and programming perspective (cf. Section 2.3.1). In particular, we propose the
aggregate execution protocol as basis of an agent control architecture (Section 3.1), and then
discuss aggregate programming of individual (Section 3.2) as well as collective autonomy
(Section 3.3).

3.1. Aggregate-Oriented Agent Control Architecture

The field calculus small-step operational semantics [9] provides an abstract aggregate
execution protocol for “driving” aggregate behaviour. The aggregate execution protocol
typically consists of having an agent repeatedly run (e.g., once per second, or upon change
of the local context) a computation round consisting of the following steps:

1. Context evaluation. In this step, the agent looks at its current state, its sensors, and its
message box for new information in order to update the local context.
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2. Aggregate program evaluation. In this step, the agent runs the aggregate program
providing its local context as an input: the evaluation of the program returns an
output data structure that can be used for context update.

3. Context action. Using the output of the program evaluation, the agent must

• update its local state;
• send a message to neighbours;
• trigger actuations (if needed).

Such an abstract aggregate execution protocol can effectively be used to define an agent
control architecture (Figure 1). Variants of such a control architecture can also be envisaged,
e.g., by considering asynchronicity and different rates for context evaluation, computation,
and action. Preliminary work supporting this direction can be found in [37,38], where
partitioning schemas and programmable schedulers are proposed.

This control architecture also provides a basis for integrating the aggregate paradigm
with other agent control architectures, e.g., the cognitive ones based on BDI [17]—which
makes for an interesting future fork.

agent

Computation round

Context
evaluation

Aggregate
program

evaluation

Context
action

Scheduling
policy

Sensors

State

Inbound
Message box

Outbound
Message box

Actuators

neighbours

Aggregate
program

0 1

2

3

Figure 1. Agent control architecture in aggregate programming. Notation: square boxes denote
components; rounded boxes denote activities; dashed rounded boxes denote agents; solid arrows
denote control passing; dashed arrows denote data passing.

3.2. Individual Autonomy in Aggregate Computing

As a running example, consider a crowd detection and steering application [8]
(cf. Figure 2a). When this application is built with the aggregate paradigm, the crowd is rep-
resented as an aggregate system consisting of a large-scale, dense network of smartphone-
or wearable-augmented people—co-located in a spatial region such as a public exhibition
area, a concert, or a stadium. An aggregate program can be continuously played by this
system, providing each agent with an estimation of the local density, a local risk level,
and possibly—if the vicinity to risky areas exceeds a certain threshold—advice for safe
dispersal (in terms of a field of movement directions). In ScaFi, such a program may be
implemented, reusing a library of general-purpose aggregate components [10], as per
Figure 2c. Function crowdTracking (Line 2) runs a collective crowding risk estimation
process, by calling collectiveDensityEstimation (Line 6), and selects the corresponding
output (i.e., a crowding value—NoRisk, Risk, or Danger) only for the devices for which
the perceived local density exceeds threshold value thCrowd; for the others, the output
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is NoRisk. Function collectiveDensityEstimation (whose code is not shown) may, e.g.,
using the building blocks in [10], break the system into multiple areas, compute the mean
local density in each one of them, and share to all the members the area-wide crowding
level (based on whether the average density exceeds threshold thDanger). Then, function
crowdDispersal (Line 10) provides a suggestion for dispersal for all the devices that are
closer than riskRange from any device with crowding level Risk; the suggestion is es-
sentially computed as the opposite of a vector pointing to the center of mass of a close
Overcrowded device group. We remark that, though the aggregate program is unique
(essentially like a shared plan for all the involved agents), its execution is distributed (i.e.,
decentralized) and local (i.e., with agents interacting with neighbor agents only), hence
enabling scalable collective computations.

An aggregate behavior is the result that emerges from the combination of (i) an aggre-
gate program; (ii) a concrete aggregate execution; (iii) an environment—which comprises
the behavior of the agents that is out of the control scope of the aggregate program. For the
crowd example, the aggregate program expresses how the MAS should determine risky
areas and how dispersal processes should be carried out; an aggregate execution may, e.g.,
set the round frequency to match the levels of mobility; the environment entails elements
like spatial distribution and connectivity. Therefore, for an aggregate behavior to actually
work, i.e., to correctly carry out its intended functionality (which can be seen as a “social
benefit”) it is important that the aggregate execution which is tailored to match prefigured
features of the environment, is respected by every device, generally. Indeed, there exist
guarantees regarding (i) self-stabilisation of aggregate computations [11], namely the guar-
antee to eventually converge to a correct state once perturbations cease; and (ii) adaptation
of aggregate behaviours to device distribution (density, topology) [39], namely eventual
consistency of values, whose approximation improves as the discrete network tends to
more densely cover the environment. Under this perspective, an aggregate program may
be interpreted as a representation of a social norm, and the aggregate system as a society,
or even a normative MAS [40]. So, an agent that does not run the aggregate program is a
deviant and not really part of society. On the other hand, playing by the norms implies a
limitation of individual autonomy, which is generally traded for a greater, social good. In
the crowd example, it is clear that the activity of information gathering and broadcasting
is instrumental to achieve good “social” performance in risk detection and dispersal self-
correction; moreover, great damage may result from not following dispersal advice—so, the
crowd program may be interpreted as the reification of a social norm for safe behavior in a
perilous situation. Inspired by normative MAS, deviance can be minimized by leveraging
social enforcement mechanisms such as rewards or sanctions [40]. However, an agent of an
aggregate MAS may reduce, e.g., the frequency at which rounds are executed, because of a
low-energy level, or because its portion of the environment is largely stationary. In other
words, the first element of individual autonomy in aggregate MASs revolves around how
an agent adheres to the aggregate execution protocol for the application at hand.

The other elements of individual autonomy are those provided by and undergone by
the aggregate program. Indeed, an aggregate program may be used to control individual
behavior, through local functions containing no aggregate constructs for global coordina-
tion. We call this endogenous or delegated autonomy, as it is delegated from the (inside
of the) program itself. For instance, the crowd example may be extended to leave some
individual autonomy when following the dispersal advice:

localDispersalDecision(crowdDispersal(...))

where localDispersalDecision can be a function potentially different from agent to agent,
able to affect the local socially-enforced dispersal direction. This mechanism may also
be used to program adjustable autonomy, i.e., the form supporting “agents with graded
autonomy properties” [41].
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1 /* Shared plans (see also [8]) */

2 def crowdTracking(p: Double, r: Double, w: Double, t: Double,

3 thCrowd: Double, thDanger: Double): Crowding = {

4 val localDensity = localDensityEstimation(p, r)

5 mux(recentlyTrue(localDensity > thCrowd, t)){

6 collectiveDensityEstimation(p, r, thDanger)

7 } { NoRisk }

8 }

9
10 def crowdDispersal(c: Crowding, r: Double): TargetPosition =

11 // if a device is closer than r to any device with crowding level = Risk or higher

12 // then compute a movement vector to move away from the Overcrowded area, or do not move

13 branch(distanceTo(c >= Risk) < r){ vectorFrom(c == Overcrowded) }{ currentPosition() }

14
15 /* Shared beliefs: see [8] for motivation of the specific values */

16 val p = 0.005 // proportion of people with a corresponding device (agent)

17 val r = 30 // range in metres for local crowding estimation

18 val w = 0.25 // fraction of walkable space

19 val t = 60.0 // timeframe (in seconds) for risk monitoring

20 val thCrowd = 1.08 // relevant crowding threshold

21 val thDanger = 2.17 // dangerous crowding threshold

22 val riskRange = 50 // distance to risk for triggering alert

23
24 /* Aggregate program: main logic */

25 val crowdingLevel = crowdTracking(p, r, w, thCrowd, thDanger, t)

26 crowdDispersal(crowdingLevel, riskRange) // dispersal advice

(c)

Figure 2. Crowd detection and steering example: snapshot, architecture and program. (a) A simulation snapshot of the
crowd detection and steering example. Red nodes are devices in an overcrowded area; cyan nodes are nodes at risk since
close to overcrowded devices; black nodes are in a safe location. Solid lines denote connectivity links (the longer links
are those between infrastructural nodes); (b) diagram corresponding to the ScaFi application code below. Boxes denote
computational field expressions; solid arrows denote input/output relationships; dashed arrows are a shorthand to denote
conditional selection (when initially separated—for mux, where the “then” and “else” expressions are both evaluated, but
only one is returned) and conditional evaluation (when initially joined—for branch, where only one between the “then”
and “else” expression is evaluated and returned). (c) Aggregate program as implemented in ScaFi.

On the other hand, an aggregate program may abstract over or depend on certain
elements of agent autonomy. For instance, in the crowd monitoring and control example,
the people—and hence the corresponding digital twins (agents)—maintain autonomy
regarding mobility (which may also be affected by the crowd itself), since they may choose
to follow the dispersal advice or not. We call this exogenous autonomy, as it comes from
the outside, beyond the control of the aggregate program. This also includes the influence
that an agent may exert on the aggregate program by manipulating its inputs (i.e., state,
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sensors, and messages). Aggregate programs are typically developed to expressively deal
with exogenous autonomous behavior, with strategies that the whole aggregate MAS can
follow to adapt and overcome corresponding perturbations to the collectively desired
state-of-affairs. Table 2 synthesises the various sources and forms of individual autonomy
in aggregate computing.

Table 2. Individual autonomy in aggregate computing.

Individual Autonomy Element Range (Less–More)

Adherence to the aggregate execution protocol Fully autonomous (uncooperative)—Completely
adherent (control-driven)

Endogenous autonomy (provided by the AC program) Uncontrolled–Controlled

Exogenous autonomy (undergone by the AC program) Controlled–Uncontrolled

3.3. Collective Autonomy in Aggregate Computing

As discussed in Section 2.2, collective autonomy is the form of autonomy exhibited by
a collective, i.e., a MAS as a whole. Such a concept can be framed around two notions. One
is the notion, introduced in this manuscript, of intentional collective stance, which extends
the intentional stance [42] to collectives: we may not really know whether the MAS is an
intentional collective and what makes it so, but we may still treat it like it was so, e.g., to
support reasoning and design activities. For instance, in the crowd example,

val crowdingLevel = crowdTracking(p, r, w, thCrowd, thDanger, t)

crowdDispersal(crowdingLevel, riskRange) // dispersal advice

the aggregate MAS may be considered as a collective with intentions, i.e., a single
distributed entity whose intentions include leaving its internal components free to move at
first but also monitoring and ensuring that they do not gather excessively—as a form of
(self-)protection.

The second notion is that of joint intentionality [43]. Indeed, collective intentionality
requires agents to be jointly directed towards shared activities (plans) or goals. In aggregate
computing, the shared goal and the corresponding shared plan to achieve it are reified
into an aggregate program (cf. Figure 2c), namely a program that is meant to be played
by the whole MAS. Notice that often, like in the crowd example, the individual goal (e.g.,
moving to a point of interest in the city) may conflict with the collective goal (e.g., moving
in the opposite direction to ensure safe dispersal). Therefore, collective autonomy—as
the expression of the goals and intentions of an entire collective—potentially reduces
individual autonomy, and vice versa (cf. the notion of endogenous or delegated autonomy
in the previous section).

Interestingly, an aggregate program does not just embed the collective goals, but also
the collective process leading to the selection of collective intentions. For instance, in the
crowd example, dispersal is activated once a group of devices determines that the level of
danger is sufficiently high (cf. Line 13 in Figure 2c).

As we said, collective autonomy, as a notion, is relational and gradable. The autonomy
of a collective can be related to

• the autonomy of the members of the collective—as discussed;
• the environment—namely the extent to which activity depends on environmental

situations and events.

Notice that an aggregate MAS can be collectively autonomous even if its overall
behavior is highly determined by the deliberation of few individuals—if those individuals
have been delegated for decision-making by the collective. Consider the Self-organising
Coordination Regions (SCR) pattern [44], which is also exploited in Section 4; a general
encoding in ScaFi is as follows:
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val leaders = S(grain) // sparse-choice: elect leaders at mean distance of grain

val potential = distanceTo(leaders) // gradient field from leaders

val regions = broadcast(potential, mid()) // multi-hop propagation of IDs of leaders

val collectedData = C(potential, membersData()) // collect info towards leaders

val decisions = broadcast(potential, leaderDecision(collectedData)) // propagate leader choices

localAction(decisions)

The leader agents (i.e., those for which the leaders Boolean field holds true) are
responsible for making decisions about how the members of the corresponding areas are to
behave, but those leaders are elected through a collective process represented by function
S [45] (where “S” is a contraction of “sparse-choice”, i.e., typically a spatially uniform
selection of nodes in a situated network). Function S aims at selecting leaders at a mean
distance of grain among them. For the pattern to work, further collaboration is needed
among the agents to propagate information. Function distanceTo(s) is used to compute
a self-healing gradient field [46], i.e., a self-stabilising [11] computational field of minimum
distances from any node in the system to the node(s) where s is true, which is also able
to correct the individual estimations by reacting to changes of sources, neighbours, and
corresponding positions. Such a gradient field can effectively act as a “potential field”,
namely as a kind of force providing a direction and intensity with respect to a reference
point, e.g., for moving information or agents [47]. Indeed, function broadcast(p,v) is used
to implement a multi-hop information stream of the value v at nodes of null potential (i.e.,
where p is 0) outwards by “ascending” the potential field p. Dually, function C(p,v) (for
“collection”) provides an information stream converging towards nodes at null potential
(i.e., where p is 0); sometimes, an operator is provided to specify how the information
should be aggregated along the path (e.g., when collecting sets of data, the set union
operator may be used to aggregate all the data elements).

We also stress that the collective behavior is not merely the sum of the individual
behaviors but the emergent result of repeated individual behaviors involved in a complex
network of interactions among related agents (neighbors) and with the environment as
well. In other words, an aggregate program provides a schema for self-organizing, self-
adaptive behavior that is instantiated once a proper dynamic (defined in terms of a concrete
aggregate execution and environmental evolution) is injected over it.

3.4. Summary and Comparison with Related Work

To recap, aggregate programming provides computational mechanisms for supporting
various levels of autonomy. Examples include:

• collective autonomy: by cooperative execution of the aggregate program, or in terms
of collective structures constraining individual behavior;

• (endogenous) individual autonomy: by calling local functions (as a sort of delegation);
• adjustable autonomy: by using structures or branching mechanisms to regulate the

relationship between individuals and collective autonomy, or by controlling the
amount of endogenous vs. exogenous autonomy (cf. Table 2).

The discussion in this section is substantiated by the experiments of Section 4 and
extended in Section 5 with further considerations on research gaps and potential directions
for future investigations.

The proposed approach differs from other works (such as those reviewed in Section 2)
in crucial ways. Prominently, it takes a global (“aggregate”) perspective on MAS design
and programming. Other approaches, such as AgentSpeak(L)/Jason [24], define a MAS
by focussing on the behavior of the individual agents, expressed in terms of a number
of plans describing how individual goals are to be achieved. However, a Jason program
does not directly model collective decision-making or collective action. Note that such
perspectives are not alternative but complementary: the support for reasoning available
in Jason, based on the BDI architecture, for determining what individual autonomous
behavior has to be enacted is not built into aggregate programming. As discussed in
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Section 5, the combination of cognitive architectures with collective adaptive systems is
a theme still to be investigated. The proposed architecture (cf. Figure 1) is simpler than
cognitive architectures: it is inspired by self-organising systems [48], and fosters emergence
of collective behaviour rather than reasoning.

Works that also consider MASs by a global perspective include organization-oriented
programming approaches such as MOISE [28]. MOISE is a very articulated approach for
describing agent organisations (i.e., dynamic groups of agents comprising roles, properties,
and interaction protocols) and how agents and organisations interact (e.g., participation to
organisations, evolution of organisations, and organisational effects on agents). It is a very
rich and flexible model, but it is also quite complex, requiring explicit definitions for the
structural, functional, and normative dimensions. By contrast, the aggregate computing
approach expresses collective behavior through relatively small scripts (cf. the example in
Figure 2c) obtained by composing functions of other collective behavior together. That is,
whereas MOISE builds on an explicit representation of organizations, with agents knowing
and reasoning about them, aggregate computing favors a more implicit representation of
group structures, more typical in the swarm intelligence and self-organisation tradition. As
aggregate computing builds on the main abstraction, the computational field, and neighbor-
oriented communication, there is low conceptual overhead, with the functional abstraction
enabling fine-grained problem decomposition. On the other hand, other approaches
of autonomous ensembles programming, such as SCEL [49], do not achieve the same
levels of declarativity of aggregate programming languages such as ScaFi. Arguably,
the investigation of notions like collective autonomy could take advantage of “simple”,
compact models which are however able to represent emergent, collective phenomena.

4. Case Study

To showcase the ability of aggregate computing to orchestrate collective behavior
comprising both individual and collective autonomy, in this section we present a case
study, evaluated by simulation. We conduct the experiments using Alchemist [50], a bio-
inspired large-scale multi-agent simulator supporting the ScaFi aggregate programming
language [35], which is used to write aggregate programs in our experiments.

Our basic requirements for a simulator include the ability of simulating large-scale
networks of mobile devices as well as the ability of defining a dynamics suitable to express
the aggregate execution protocol discussed in Section 3.1, which consists of asynchronous
rounds of execution with neighborhood-based communication. Therefore, Alchemist rep-
resents a first choice as it ships already with a module providing ScaFi support. Moreover,
Alchemist is solid and flexible: in the literature, it has been used extensively to simulate
multi-agent and aggregate computing systems, in scenarios including crowd simulation [8],
drone swarms [34], edge computing [51], and people rescue [36].

The simulations are open-sourced and accessible from the following public repository
https://github.com/cric96/mdpi-jsan-2020-simulation, accessed on 1 April 2021.

We consider wildlife monitoring as target application domain, which nowadays starts
to take advantages of Internet-of-Things (IoT) infrastructure, unmanned ground (UGVs)
or aerial (UAVs) vehicles [52], as well as wearables for animals (such as smart collars) or
operators [53]. In this scenario, developers could use MAS programming approaches, such
as aggregate computing, to coordinate multiple nodes and agents in performing collective
activities such as rescuing animals in danger, geofencing, and detecting/tracking poachers.
In these experiments, our emphasis is on the specification of autonomous behavior, as well
as the emergent relationship between local and collective autonomy. Bridging with realistic
environments and data is left as future work.

4.1. Experiment Setup

The collective goal is to find animals in danger and rescue them. The environment
consists of a continuous two-dimensional space with an area of 2500 m × 2500 m. There
are three types of nodes:
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• Animal: an agent that needs to be rescued if it is in danger. The danger status changes
are domain-specific dynamic. In this simulation, the animals change their status
randomly at a constant rate (one animal every two seconds). It could be a sort of
“smart collar”.

• Mobile node: an agent that moves around the world and could have the capability to
heal an animal.

• Station: a fixed node that works as a gateway for mobile nodes.

In this experiment, Mobile nodes can perform tasks, namely problems to be solved. Our
characterization of this concept is a lightweight version of the definition in [54]: each task
has a goal, a set of capabilities needed to accomplish it, and spatial constraints (e.g., on the
location of the agent or the task). We do not consider the deadline and priority concepts. The
tasks that are created collectively (e.g., by the leader on the basis of data collected from other
agents) are called Collective tasks. Local tasks are those crafted by the agents themselves
based on local perceptions and intentions. We have identified two types of tasks:

• ExploreAreaTask: leads agents to explore an established portion of the space.
• HealTask: for which a set of agents must rescue a defined animal (and must correspond-

ingly have “rescue capabilities”).

At runtime, the program identifies agent roles (healer, explorer, stationary) according
to the local behaviour sensed. There are 80 mobile nodes (40 explorers and 40 healers),
20 stations and 100 animals. Only healers can rescue animals. The animals are divided into
five independent groups. Each group moves according to the random waypoint logic [55].
An animal in danger needs a variable number of healers near to him to be rescued. The
program follows the Self-organising Coordination Regions (SCR) pattern [44]:

1. leader election is made in the stationary nodes (via S);
2. mobile nodes sense animals in danger and send the local information to the leader

(via C);
3. the leader chooses what is the animal that needs to be rescued;
4. the leader shares its choice (via broadcast);
5. the slaves act according to the leader choice.

To be more specific, the program first tries to detect nodes’ role checking how much
each node has moved in a defined time window:

val movementWindow = 6 // a domain-specific parameter

val movementThr = 1.0 // another domain-specific parameter

val trajectory = recentValues(movementWindow, currentPosition())

val lastPointInTrajectory = trajectory.reverse.head

val distanceApprox = trajectory.head.distanceTo(lastPointInTrajectory)

mux (distanceApprox <= movementThr) "stationary" else "explorer"

After, the collective chooses leaders using block S that is executed only where
isStationary is true (using branch). At this point, mobile nodes check if there is an
animal in danger in their neighborhood (i.e., they check the status of a special sensor called
danger). To do this, we use the operator foldhood(init)(acc)(expr) to aggregate values
over neighborhoods with operator acc and initial/null value init; the values that are ag-
gregated are the results of the neighbors’ evaluations of expr (where the neighbor-specific
parts are defined through operator nbr). Then the information is sent to leaders through
the C construct. This block aggregates and moves the data toward a potential field. In this
case, the potential field is centered where the leader value is true. Leaders then receive a
map specifying the approximate location of animals in danger and their ID. So they peek an
animal with a local policy (e.g., choosing the nearest node) and then they create a HealTask
that has the goal of directing healers to a chosen animal to rescue it. Besides, leaders
share tasks that lead the explorers to stay in the leader’s area of influence (i.e., creating
an ExploreAreaTask). At this point, tasks are shared across the zones with the broadcast

function. Finally, the slaves, who receive the various tasks created, choose which one
to execute according to their role and local intentions (e.g., a node may not listen to the
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collective’s decision and act by its own). With ScaFi, this behavior can be synthesized as
described in Figure 3b.

potential

leader

isStationary

S false

yes no

distanceTo

animalInDanger

foldhood

grain

AnimalInDangerInArea

C
leaderHealTask exploreTask

noAnimalcombineDanger

field-expression

isDanger

currentPosition

mid
noAnimal

noyes

expression

accumulator initial

noAnimal
grain

healTaskForSlave exploreTaskForSlave
broadcast broadcastleader

localTask

Planner

actuation

(a)
val leader = branch(isStationary) { S(grain) } { false } //(1.) leader election

//.. (2.) sense animals in danger ..

val noAnimal : Map[ID, P] = Map.empty

val animalsInDanger = {

foldhood(noAnimal)(combineDangerMap){

mux(nbr(isDanger)) {

Map(nbr(mid() -> currentPosition()))

} { noAnimal }

}

}

val potential = distanceTo(leader)

//(2.) send information to the leader

val animalDangerInArea = C(potential, combineDangerMap, animalsInDanger, noAnimal)

//(3.) leader chooses an animal to rescue

val leaderHealTask = animalDangerInArea.toSeq.sortBy {

case (_, p) => p.distance(currentPosition()) //choosing policy

}.headOption.map {

case (id, p) => HealTask(mid(), id, p)

}

val exploreArea = ExploreTask(mid(), currentPosition(), grain) //for explorers

//(4.) and share its choice via broadcast

val healTaskForSlave = broadcast(leader, leaderHealTask)

val exploreAreaToSlave = broadcast(leader, exploreArea)

//(5.) slave choose the task according its role, intentions and leader choice

val collectiveTasks = Seq(healTaskForSlave, exploreAreaToSlave)

val localTask = Planner.eval(collectiveTasks) //the task choice is encapsulated here..

val actuation = localTask.call(this) // produces data in order to achieve the task chosen

(b)

Figure 3. Wildlife monitoring and rescue example: architecture and program. (a) Diagram corresponding to the code below.
This figure uses the same notation of Figure 2b. In addition, we use a same colour to denote multiple references to the same
functional block. (b) The ScaFi code snippet for the wildlife program behaviour.
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Next, we briefly link different behaviors with different levels/types of autonomy.
From the local perspective, each agent: (i) moves around the environment; (ii) executes
tasks. Each behavior has an endogenous and exogenous aspect: with this program, we can
specify how agents should behave (endogenous) but we have not total control over them
because they maintain a certain level of exogenous autonomy. For example, when an agent
receives the task to rescue an animal, he might decide to rescue another animal because
he finds another one closer or because in that direction, there are obstacles. Moreover, the
endogenous/exogenous autonomy level depends on the agent type. Indeed, we cannot
control animal movements via the smart collar, so they maintain a total level of exogenous
autonomy with respect to the program. From a collective perspective, the MAS performs:
(i) multileader election, (ii) animal dangers sensing, and (iii) task selection to reduce the
animal in danger in zones. With ScaFi the overall behaviour is intentionally described as:

val targets = animalsInDanger()

branch(isAnimal){doNothing} {rescue(targets)}

where rescue(targets) performs the code above and animalsInDager executes the neigh-
bourhood perception danger sensor.

What we want to enforce in this experiment is that individual autonomy influences
collective autonomy. For example, the leader election happens on stationary nodes. How-
ever, the node stationary rule depends on the local agent activity (mainly how they move),
which is an exogenous behavior. So, what we expect is that most the system is locally
autonomous less the collective autonomy influences the overall behavior.

4.2. Performance Metrics and Parameters

In simulation evaluation, we consider whether functional and non-functional aspects.
The main functional metric is the rescue count, which describes how many animals are
rescued during the simulation. Another condition that will be evaluated is the number of
leaders without healers necessary to heal an animal. A non-functional value verified is the
average distance to the leader. Ideally, agents might be arranged to cover a zone uniformly.

We also introduce a metric that represents the general performance of a simulation
run. Given a period t expressed in seconds, we sample the experiment at each second. For
each sample, we evaluate two parameters, events and healed count. Given a sample t, events
measure how many animals turn on danger during the simulation until the t. Indeed, the
healed count tells how many animals were rescued by the collective. Hypothetically, if the
system is completely reactive, healed count and events should have the same value. Hence,
the greater is the distance between these two values, the worse system perform. So, as
comprehensive system performance, we decide to use Root Mean Squared Error (RMSE):

Error =

√√√√1
t
∗

t

∑
i=1

(eventsi − healedcounti)2

What we expect from these simulations is that selfish settings bring worse performance.
Indeed, here we need a collective choice to rescue an animal. We test the application varying
these parameters:

• p: is the probability to follow the collective choice, 1 − p is the probability to act
selfishly; the bigger is p the lesser the agent is autonomous with respect to the
collective goals.

• healer count: the nodes needed to rescue an animal. A higher value of healer
count needs greater control on local agent behaviour in order to accomplish the
collective task

4.3. Results and Discussion

We now present the key results produced by the different simulation runs we con-
ducted. In Figure 4 there is a graphical result obtained in Alchemist. We had varied p by
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four values (0, 0.25, 0.5, 0.75 and 1) and healer count by four values (2, 4, 6, 8). For each
p and healer count combination, 50 simulation runs are performed. The data reported
in Figure 5 contains the average behavior of those simulations. In Figure 6, the average
error is reported for each combination of healer count and p. Each run has lasts 300 s.
Furthermore, after 100 s, no other animals turn their status in danger. It helps us to see
how what system is faster to return into a stable configuration.

Figure 4. Wildlife monitoring simulation screenshot. The “wi-fi” like symbol represents a Station node. Each Station has an
influence area (displayed with a colored circle). Mobile nodes are represented with a triangle. Healers have a half-moon on
the shorter side. When healers have an animal target, a green cross appears. Animals are drawn as a half-circle. Each group
has a uniform color. When they turn in danger, a half red circle comes out.

In general, the results confirm our thesis: the more agents act autonomously, the worse
the system behaves. However, the performance depends upon the application domain.
Indeed, when healer count is little, the overall behaviors aren’t so different. Because even
if agents do not collaborate, there is a high probability that two Mobile nodes are near
to the same animal in danger. We see the benefits of collective choice with higher healer
count values (Figure 6). For example, when healer count is 8 the system at p = 1 performs
better than all other configurations. We want to emphasize how the difference w.r.t. the
other p values grows as healer count increases. The difference instead becomes marked
when healer count is 8, since the task has a greater need for collective choice and even
small local selfish choices lead to worse performance. Outside of the functional aspects, we
can clearly see that the higher the p value the more the system follows joint intentionality:
agents arrange themselves equally in each area (having a higher average) and they cover
the zones uniformly. This was an expected result, but it also makes us understand that
even if the system loses some level of collectivity, it still manages to perform well (for
example, if 25% of the time agents act independently, namely when p is 0.75, the overall
performance is practically equal to when the agents always follow the collective choice). In
general, however, we can observe that even if the system control is not total, the emerging
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behavior is comparable with others. It is because all agents must adapt to the aggregate
protocol, losing some of their autonomy.

Figure 5. Experiment results. In each plot, the color identifies the p parameter. The first column shows how many animals
are rescued during the simulation. The plots in the second column show the average distance from the leader. The plots in
the last column point out how many zones have not enough healers to rescue an animal.
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Figure 6. Average error (RMSE) for each combination of p and healer count. Horizontal lines mark the performance of p = 1.0.

4.4. Final Remarks

In this experiment, we deliberately did not consider the following aspects (even if they
could affect the system performance), which are abstracted away: how the system detects
animals in danger; the physical/hardware details of system nodes; how specific capabilities
provided by the different node roles are implemented as concrete actions. Defining when
an animal is in danger is a complex task per se and is strongly domain-dependent. In [56],
the authors use UAVs to verify the presence of poachers. Concerning geofencing, in [57]
the authors use a collar equipped with GPS to verify when animals escape from a boundary
and mark them in danger. Animal immobility is another alarm signal used in [58]. Roles
are introduced in this paper, though they are not present in other works (to the best of
our knowledge), as they are functional to divide the work between nodes. In general, we
expect that nodes could either be humans (cf., healers), UAVs (cf., explorers), or installed
gateways. In the survey [59], some interesting work such as [60] does not require human
intervention to rescue animals (cf., healer role). Finally, we want to underline that our
approach is on a higher level of abstraction, focussing on coordination and execution of
collective autonomous behavior. Environmental aspects are perceived through sensors that
can be as simple (e.g., temperature sensor) or as complex as desired (e.g., a scheduler to
choose tasks).

5. Research Roadmap

In the following, we identify a roadmap of two research directions to unveil the full
potential of aggregate programming for collective autonomy: they comprise expressing
collective autonomous behavior (Section 5.1) and achieving reliable collective autonomy
(Section 5.2).

5.1. Expressing Collective Autonomous Behaviour

Addressing problems at a suitable level of abstraction is key in modeling and program-
ming. In this section, we cover two interesting research directions related to specifying col-
lective autonomy, and point out a few starting points in aggregate programming research.

5.1.1. Cognitive Collectives

Notions like distributed cognition and group minds are often leveraged in sociology
and cognitive sciences to explain collective processes. In some works, such as in [61], a
dynamical systems approach is used to model and understand the emergence of collective
behavior and collective forms of consciousness. There, formal arguments are provided
to explain how groups exert downward causation on their components. In the aggregate
approach, groups or collectives are the target of programming, and the downward causa-
tion is a straightforward consequence of being part of the aggregate. However, collective
cognitive states are not explicitly represented, but rather mixed in the aggregate programs,
which can be seen as shared plans. Indeed, it would be interesting to investigate, along the
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lines of [36], whether more explicit representations of collective cognition might help to
drive group and individual behavior.

5.1.2. Collective Autonomy and Structural Organisation

One of the first works analyzing the relationship between organizational structure
and autonomy is by Schillo [62]. Schillo proposes a framework based on the notion of
delegation, draws a link between self-organization and adjustable autonomy, and defines a
spectrum of seven organizational forms of increasing coupling between agents in a MAS:
single-agent system, task delegation, virtual enterprise, cooperation, strategic network,
group, cooperation. In [63], Horling et al. provide a survey of MAS organizational
paradigms. They identify ten kinds of organizational structures: adhocracies, hierarchies,
holarchies, coalitions, teams, congregations, societies, federations, markets, and matrix-
like organizations. We believe that more work is needed for better understanding and
specifying the inter-dependencies between structures and collective autonomous behavior.

For instance, approaches to MAS programming based on the notion of a team (i.e., a
sub-collective) have been proposed in the past [64–66]. In the context of aggregate com-
puting, the aggregate process abstraction—modeling a concurrent, dynamically scoped
aggregate computation—has been recently introduced to extend the practical expressive-
ness of the paradigm. Aggregate processes, by defining concurrent activities with a dy-
namic and possibly overlapping scope, would support the specification of the autonomous
behavior of multiple collectives. In this respect, it would be interesting to investigate the
relationships between the autonomies of different collectives, as well as the interaction
between the autonomies of a collective and its sub-collectives. Approaches inspired by
holonic MASs [48], such as SARL [27], may prove useful or insights when considering
multiple levels of autonomy and hierarchical organizations.

5.2. Reliable Collective Autonomy

Related to the ability of expressing collective autonomous behavior is the extent
to which specifications lead to properties for dependable system operation that can be
promoted, verified, and formally guaranteed.

5.2.1. Safety and Guarantees

Currently, few results are available for programming reliable collective adaptive
behaviors. In the context of aggregate programming, major formal results include self-
stabilisation [11] and eventual consistency to device distribution [39]. These results, how-
ever, are typically valid for restricted fragments of the field calculus. Moreover, self-
stabilization does not say much about the speed of convergence, nor the ability of an
algorithm to withstand continuous change. Therefore, typical validation approaches also
include simulation [67] as a key step. Distributed runtime verification may also prove
useful [68]. In general, more work is needed towards methods, both formal and lightweight,
to verify the correctness and provide guarantees about global results in a certain range of
environments and conditions.

5.2.2. Norms and Trust

Among the notions studied in literature to promote good cooperation between agents
there are norms and trust. Through norms, and corresponding mechanisms for enforcing
them (such as sanctions, rewards, and institutions), it is possible to regulate individual
and then collective activity for social benefits. The problem is to make the MAS determine
what deviant behavior is, detect it, and take corresponding countermeasures. Norms
may be determined collectively, through processes of agreement or conflict resolution [69].
However, few results are available on conflicts among multiple norms and steering of their
emergent effects at the collective level [69].

Trust can also be used as a way to reduce cooperation inefficiency and issues. An
excess of individual autonomy may lead to deviance. In large-scale MASs, even few cases
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of deviance may result in serious emergent effects at the collective level [70]. Preliminary
work in aggregate programming research has been carried out to exclude non-trusted
devices from the collective computation [71], leveraging a notion of trust field mapping
any agent of the MAS to a trust score that is computed collectively. We believe further work
is required on these topics to promote reliable (collective) autonomy.

5.3. Applications

Multi-agent systems and technologies span various application domains [72] includ-
ing e-commerce [73], health care [74], logistics [75], robotics [76], manufacturing [77] and
energy [78,79]: they are potential application areas for the approach to aggregate pro-
gramming presented in this paper. The survey by Müller et al. [72] provides an overview
of the impact of deployed MAS-based applications, showing that MAS technology has
already been successful in various sectors. It is expected that MASs would be increasingly
significant in the future, as more and more devices get deployed in our environments (cf.
IoT, CPS, and related trends) and visions like autonomic computing continue to develop,
fostering a pervasive embedding of computational autonomy at various levels. This is also
plausible for collective autonomy, as applications involving (cyber–physical) collectives
of (variously autonomous) actors seeking global goals emerge—cf. applications in smart
city [80], swarm robotics [81], mobile social crowdsensing [82,83], and smart infrastruc-
tures contexts [51,84]. In particular, programmable approaches to collective autonomy
could contribute to research and applications of computational collective intelligence [85],
namely the field studying groups and their ability to implement effective decision-making,
coordinated action, and cooperative problem-solving. However, we also remark that
approaches to designing and programming MASs at the collective level should not be
considered as omni-comprehensive approaches that deal with every aspect of a system;
instead, they represent a tool that can be used to address certain problems (i.e., promoting
global behavior and properties) at a suitable abstraction level. In this sense, a further
challenge to be addressed in the future is the integration of collective-level approaches with
individual-level approaches and traditional paradigms, promoting the vision of system
development through integration of multiple perspectives and viewpoints [86].

6. Conclusions

In this paper, we consider the problem of programming the collective autonomous
behavior of multi-agent systems. We consider the aggregate programming paradigm, a
framework founded on a calculus of computational fields originally introduced to express
the coordination and self-organisation logic of spatially situated systems. We analyze the
support provided by aggregate computing by a MAS perspective, and, as a contribution,
(i) interpret its execution protocol as an agent control architecture; and (ii) analyze ag-
gregate programs by the point of view of individual and collective autonomy. Finally,
we provide some simulation-based experiments, to show how the framework supports
analysis of autonomy-related aspects, and discuss research gaps, pointing out opportunities
for new research.

The various goals described in the introduction have been addressed as follows.
The literature review in Section 2 provides a variegated view of autonomy in software
engineering and MAS, with emphasis on actionable notions and programming. This
helped us to position the contribution of Section 3 on aggregate computing, where multiple
autonomy-related notions are supported (also enabling adjustable autonomy) but implicit,
and had never been unveiled in previous publications. Explicit mechanisms and extensions
for (adjustable) autonomy could be considered in the future. Moreover, the contribution
of the view of the aggregate execution model as an agent control architecture represents
a step towards comparison and integration with other architectures—which is left as
interesting future work. The case study of Section 4 shows how the discussed framework
enables functional specification of MASs exhibiting a form of collective autonomy as well
as parameterized behaviors where individual and collective autonomy can be adjusted
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off-line. Qualitatively, it shows that the approach is feasible and may scale with complexity.
Self-organizing algorithms and patterns for on-line autonomy adjustment in aggregate
systems as well as more quantitative analysis of trade-offs can be considered in future
research. Finally, the discussion in Section 5 highlights significant research directions and
application domains which complement the above discussion.

We argue that it is important to directly address the collective dimension of MASs,
rather than programming individual agents and then verifying that local behaviors lead
to the intended, but not explicitly captured, global behavior. It is a matter of abstraction
and addressing concerns from a proper perspective. As discussed, specifications of collec-
tive autonomous behavior, such as aggregate programs written in ScaFi, provide natural
support for adjustable autonomy, and this could pave the way to the integration with
traditional agent control architectures. However, more work is needed to ensure that the
collective specifications result in acceptable emergent behaviors, and hence in reliable
forms of collective autonomy.
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