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1. Introduction

This issue showcases a compilation of papers on fluid mechanics (FM) education,
covering different sub topics of the subject. The success of the first volume [1] prompted
us to consider another follow-up special issue on the topic, which has also been very
successful in garnering an impressive variety of submissions.

As a classical branch of science, the beauty and complexity of fluid dynamics cannot
be overemphasized. This is an extremely well-studied subject which has now become
a significant component of several major scientific disciplines ranging from aerospace
engineering, astrophysics, atmospheric science (including climate modeling), biological
and biomedical science and engineering, energy harvesting, oceanography, geophysical
and environmental science and engineering, etc. While each of these disciplines has its
own nuances and specific constraints, the fundamental physics behind the kinds of ‘flow’
phenomena discussed remains the same. In this volume, we bring together articles from
authors with diverse expertise ranging from mathematics, physics, mechanical engineering,
aerospace engineering, environmental engineering, and chemical engineering to discuss
topics in fluid mechanics, many of which are of multidisciplinary interest.

The focus of all articles in this issue remains on the presentation of fundamental and
advanced ideas on fluid mechanics which are suitable for presentation in an undergraduate
or graduate course in fluid mechanics. Overall, I would divide the collection into the
following four categories: (a) Pedagogy of fluid mechanics; (b) experimental or lab-based
perspectives; (c) computational approaches; and (d) mathematical fluid mechanics. The
following pages provide a brief summary of each of the contributions.

2. Pedagogical Issues

Student-centered practices such as problem-based and project-based learning (PBL)
are more commonly practiced in the arts. PBL related instructional methods promote a
more inductive approach to learning whereby generalizations and abstractions follow from
first understanding specific cases. This approach is in contrast to the deductive strategy
taken in the sciences which is a more top-down approach and a possible cause of alienation
towards math and science in several students. The concept of problem-based learning
began more than 30 years ago in the context of medical education and has been defined
as the “posing of a complex problem to students to initiate the learning process” [2,3]
and as “experiential learning organized around the investigation and resolution of messy,
real-world problems.” [4]. PBL can be implemented at various scales in a course with a
focus from a “teacher to student-centered education with process-oriented methods of
learning.” [5]. The recent popularity of the project-based learning approach in physics and
engineering education is based on research indicating the effectives of PBL in enhancing
student engagement [5–7]. This volume presents a selection of papers that speak to the
efficacy of PBL-based experiences in fluid mechanics courses.

The first article in the collection [8] by authors Garrard, Bangert, and Beck discusses an
innovative pedagogical approach by planning and delivering large scale, multi-disciplinary
labs with as many as 80 students in a single cohort and nearly 1000 students over a year.
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Topics discussed in the lab are those which would be common to students from various
branches of engineering at their institution including basic flow measurements, pressure
driven flow in pipes, dimensional analysis, and other open ended projects. Besides the
obvious financial and logistic advantages that come from sharing of resources, the authors
point to its pedagogical value and efficiency.

The second article by Pérez-Sánchez and López-Jiménez [9] in this collection highlights
the use of PBL in a fluid mechanics course taught at a Hydraulic Engineering Department in
Spain that caters to over 2000 students. Just as in an earlier paper [8], the project described
in this article proposes the coordination of fluid-based labs in different subjects at both the
bachelor’s and master’s degree levels. The paper discusses the improvement in student
performance, as well as the new teaching approaches which the authors note to have
“increased the student’s satisfaction index”.

The final article in this section by Zoupidis, Spyrtou, Pnevmatikos, and Kariotoglou [10]
is aimed towards teaching the concept of ‘floating and sinking’ (FS) to elementary school
children. The authors explain the value of a “density-based explanatory model . . . rather
than the buoyancy-based” arguments typically used to explain FS phenomena, which is
a conceptually challenging concept for children who instinctively associate floating and
sinking with visceral experiences of ‘lightness’ and ‘heaviness’, respectively. The paper
presents and evaluates the success of a novel instructional design paradigm founded on
inquiry-based learning.

3. Experimental in Fluid Mechanics

The first article on experiments in FM by Wulandana discusses an impressive student
driven project focused on building a recirculating flow tank [11]. Such tanks are an essential
part of the collection of any fluid mechanics-based program and are very valuable due
to their versatility and the ease with which many topics can be easily introduced. The
only drawback of a prefabricated tunnel is its prohibitive cost. In this article, the author
describes the design and fabrication of an open flow tank, built by students as part of
their senior design project in a mechanical engineering program. The construction of this
tank additionally provides opportunity for training in computer aided design (CAD) and
computational fluid dynamics (CFD) as students perform comparative tests to validate flow
structures in ideal and experimental conditions and also improve experimental designs so
they meet expected flow conditions. The ideas introduced in this article can be replicated
in any engineering program and also lead to interdisciplinary learning opportunities for
students in physics and mathematics.

In the classic book, A Splash of a Drop, published by A.M. Worthington in 1895 [12], the
world was introduced to the stunning visual world of droplet splashes. Worthington was
certainly a strong influence on the movement in fluid dynamics scholarship to incorporate
a visual element in order to understand the complex and beautiful structures that lie hidden
behind the veil of transparency. Advancements and affordability of optical technologies
makes is easier to introduce students to the fascinating world of flow visualization. The
paper by Moghtadernejad, Lee, and Jadidi [13] introduces us to a course on multiphase
flow where the instructors lead students on an experimental and theoretical investigation of
splashes. Students also investigate the impact of temperature, wettability, impact velocity,
droplet volume, shape, and relative humidity upon the splash dynamics. As the instructors
note, this is an apt topic to introduce in a fluid mechanics course since it brings advanced
knowledge into the classroom and also provides opportunities to discuss fundamental
science and applications.

4. Computational Approaches

In this section we feature computation-based articles which cover both, articles of
methodological nature and those that use computations to illustrate interesting physics of
flows which can be introduced in any course on fluid mechanics.
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The article [14] by Oz and Kara discuss computational methods relevant to ‘Boundary
Layer theory’, a subject appropriate for introduction in an upper level undergraduate or
graduate course. Relevant problems such as Blasius, Hiemenz, Homann, and Falkner–Skan
flow equations are derived and numerically solved using the language, Julia. The codes
have also been made freely available to the readers.

The article [15] by Ahmed, Pawar, and San provides a fundamental introduction to
the mathematics and computational aspects of data assimilation methods which are funda-
mental to the study of climate science. Readers are exposed to the various methodologies
through a series of Python modules which can be easily incorporated and adapted in an
advanced course which treats such methods.

Mou, Wang, Wells, Xie, and Iliescu provide a survey of reduced order models which
are computational models “whose dimension is significantly lower than those obtained
through classical numerical discretizations” [16]. ROMs, in their various forms, have been
found to be valuable in several complex computations involving uncertainty quantifica-
tion, control, and shape optimization and in the numerical simulation of fluid flows. In
this article, the authors summarize recent developments in ROM for barotropic vorticity
equations, which are used to model geophysical flows.

In the article by Mongelli and Battista [17], the authors undertake a systematic study
of pendulum dynamics by properly and fully accounting for the flow around a moving
body which is not captured through the classical mechanical pendulum equations (see,
also, another recent study that examines this issue through the lens of the least action
principle [18]). The authors develop a computational fluid dynamics (CFD) model of a pen-
dulum using the open-source fluid-structure interaction (FSI) software, IB2d. Comparisons
with the results of the classical ODE model reveal very interesting and noteworthy results
which ought to be discussed in any class which discusses pendulum dynamics.

Karlson, Nita, and Vaidya [19] discuss the interesting physics behind the vortex
shedding phenomena. Computations using the program COMSOL are used to analyze
the length of the primary vortex behind an elliptical body with varying eccentricities. The
vortex length is used as a metric to understand and identify flow transitions from steady
symmetric to asymmetric regimes which could potentially also be used as a noninvasive
experimental strategy to distinguish flow regimes. The impact of the eccentricity of the
body is seen to be particularly significant. While the physics itself is interesting and easy
to follow and can even be discussed in an elementary FM course, such an example can
be easily implemented in an advanced course in fluid mechanics or CFD course where
students are exposed to a software for flow modeling.

5. Mathematical Fluid Mechanics

The final paper by Berselli and Spirito [20] is an extremely well written and much
needed review of one of the most challenging mathematical problems of the last two
centuries [21] and listed as one of the ‘Millennium problems’ in mathematics, namely
the existence of solutions to the Navier–Stokes equation (NSE). While the history of this
problem and various approaches is long and complex, the authors have done an excellent
job in explaining and leading the readers through one aspect of this problem, namely the
global existence of Leray–Hopf weak solutions to the NSE. I would strongly recommend
that this article be made part of any course in an upper level undergraduate or even in an
early graduate course in theoretical fluid mechanics or PDEs.

The papers in this volume, while selective and covering various different topics,
showcase significant and cutting-edge knowledge of fluid mechanics in a manner that
is easily adaptable for presentation in a course to undergrads, graduate students, and
even in K12 settings. While the foundational materials traditionally taught in FM courses
are important, our texts and curricula have not changed very much since the middle of
the last century. The articles here provide templates for ‘lesson plans’ which can easily
be implemented in our courses to make them more current and up-to-date. Many of
the computation focused articles provide plug-and-play codes that can be implemented

3
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without much training and time and comprising the larger objectives of the courses. We
hope that educators will take note and find these papers helpful in their own teaching
efforts and also in encouraging their own efforts towards incorporating other newer results
into their classroom discussions.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: The nature of fluid mechanics makes experimentation an important part of a course taught
on the subject. Presented here is the application of a novel, large-scale multidisciplinary model
of practical education in a fluids engineering laboratory. The advantages of this approach include
efficiencies through the economy of scale leading to better pedagogy for students. The scale justifies
dedicated academic resources to focus on developing laboratory classes and giving specific attention
to designing activities that meet learning outcomes. Four examples of applying this approach to fluid
mechanics experiments are discussed, illustrating tactics that have been developed and honed through
many repeated instances of delivery. “The measurement lab” uses a flow measurement context to teach
identifying and managing general experimental uncertainty. In this lab, new students, unfamiliar
with fluid mechanics, are guided through a process to gain understanding that can be applied to
all future experimental activities. The “pressure loss in pipes” lab discusses the advantage of and
process for sharing equipment and teaching resources between multiple cohorts. Here, the provision
for students is adapted for context, such as the degree program or year of study. The “weirs big and
small” lab provides a methodology for teaching the power of dimensional analysis to mechanical
engineers using a field of fluid mechanics that is outside their usual theoretical studies. Finally,
the “spillway design” lab discusses mechanisms for delivering independent, open-ended student
experiments at scale, without excessive staff resource requirements.

Keywords: practical engineering education; fluid mechanics; learning and teaching; laboratories

1. Introduction

Laboratory practicals are often included as part of the scheduled delivery for courses teaching
physical principles. They allow students an opportunity to understand the physical manifestation of
underlying concepts and compare theoretical models to real world results and can cater for alternative
learning styles. These justifications are pertinent for courses in fluid mechanics. The nature of the
subject often involves the understanding of qualitative or counterintuitive concepts that are best
understood through a tactile experience. It can be argued that a visceral instinct for the behaviour of
fluids can only be obtained with sufficient experience of its application in the real world. In addition,
teaching fluid mechanics usually involves understanding concepts and models to predict the behaviour
of a fluid for specific scenarios, for example, flow in a pipe or around a wing. As these scenarios
become more complex, models rely increasingly on the use of empiricism in order to overcome the
inability of analytical methods to model the flow. Indeed, compared to in other engineering disciplines,
the requirement to introduce empirical correlations into predictive models occurs for even relatively
simple physical systems, such a turbulent flow in a straight, horizontal pipe. Understanding the
value of experimental affirmation and validation is critical for the development of well-rounded
students studying fluid mechanics. This has been clearly voiced in a recent publication, where the

Fluids 2020, 5, 206; doi:10.3390/fluids5040206 www.mdpi.com/journal/fluids5
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authors describe a blended approach to experimentation [1]. Within a university, each department is
traditionally responsible for the delivery of laboratory teaching alongside a range of other teaching
methods, such as lectures, tutorials, problem classes, design classes etc, which combine to provide
students with courses in a particular subject discipline. The Faculty of Engineering at the University
of Sheffield have adopted an alternative approach. One department, Multidisciplinary Engineering
Education (MEE), is only responsible for the laboratory practicals of all 10 subject-specific degree
programmes in the Faculty of Engineering, allowing the other departments increased time and resources
to focus on classroom-based teaching methods and academic research. The volume of practical teaching
delivered by MEE is consequently an order of magnitude greater than that which would typically be
undertaken by departments offering individual degree programmes.

There are a number of advantages to this teaching model [2], such as the increased efficiency of
infrastructure in common business processes, the reuse of teaching resources across similar activities
and consistent experiences for students across the practical portion of their curriculum. The collective
purchasing allows the possibility of buying many identical copies of experimental equipment and
justifying the operation of large-capacity laboratories, with a related pedagogical advantage.

MEE is housed in the University of Sheffield’s purpose-built Diamond building. Among the
facilities is the Fluids Engineering Laboratory, which is used by Mechanical, Civil, Aerospace, Chemical,
Bio and General Engineering students, in the order of 1000 students per year group. The laboratory
has capacity for 80 students, typically working in groups of four, and is staffed by dedicated members
of academic and technical staff. The laboratory is equipped with 20 identical copies of each of the
pieces of experimental apparatus used for different aspects of fluid mechanics, including 20 hydraulic
benches, on which a variety of internal flow experiments can be performed, and 20 wind tunnels,
with which external flow experiments can be performed. The capacity provides three advantages of
particular relevance to learning and teaching.

1. Large class sizes, with students performing the same experiment at the same time, result in
laboratory teaching being temporally aligned with other classroom-based teaching, such as
lectures and seminars. For example, if a cohort of 240 aerospace engineers required access to a
single piece of experimental equipment, working in groups of 4, it would require 60 individual
timetabled sessions. There is little chance of all sessions occurring at a specific time within the
teaching calendar for the majority of students, which will impact on the effectiveness of their
learning [3,4]. With 20 copies of the same equipment, all students can be provided with the
same laboratory activity in three sessions. Thus, the design of the course structure, where and
when topics will be taught, can be made by strategic design, rather than being constrained by
timetable availability. Students can experience the reality of a practical laboratory simultaneously
with being introduced to the physics in the classroom. In this context, a lecture can also be the
introduction to an experiment that in turn shows the validity and application of the physics.
An alternative approach could be to record practicals or use demonstrations, but this removes the
engagement from the activity [5].

2. Laboratory sessions occurring in a predictable order due to Reason 1 makes it possible to sequence
activities in the laboratory to be of increasing rigour and complexity, employing the principles
of spiral learning. This would not be possible if all activities occurred in varying orders for
different groups of students. It also makes assessment easier, as a single hand-in date is used for
all students, and they all have the same amount of background to the topic.

3. The capacity of the laboratory and scale of the teaching load justifies a dedicated member of
teaching staff focusing on laboratory education. With attention focused exclusively on the
pedagogy of teaching fluid mechanics using experimentation, without the need to divert attention
to other academic tasks such as the writing of exams, delivering lectures or providing feedback
for assignments etc., significant effort can be placed in professionalising the laboratory activities.
Similarly, the volume of teaching provides considerable opportunities to learn from and refine
teaching methodologies to make them as effective as possible.
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The Fluids Engineering Laboratory in the Diamond has been operating since 2015. The subsequent
period of delivery has allowed a great deal of expertise to be developed in the teaching of practical
fluid mechanics classes. Presented here are four examples of lab classes that have been honed through
many repeated instances of running the activities.

2. The Measurement Lab

This laboratory is taught to all engineering students as one of the first tasks they perform when
arriving at the University (typically in the first or second week). It is designed to equip students with
a healthy scepticism for the results displayed on instrumentation and a toolkit for dealing with the
uncertainty inherent in all forms of experimentation. A hydraulic bench is connected to a fluidic
circuit containing a series of flow measurement devices. Although, at this stage in their programmes,
students will be unfamiliar with almost all fluid mechanics concepts, including those that underpin
flow measurement, it is explicitly stated and reinforced throughout the teaching that the activity is
about understanding and managing general experimental uncertainty. Part of the intention is to imply
the universality of error and uncertainty of techniques for any experimental set up, even ones for
which the concepts under investigation or the outcomes are unknown.

Despite the lack of technical understanding of fluid mechanics principles, it is reasonably
straightforward to explain the concepts of the conservation of mass and, for an incompressible flow,
conservation of the volume flow rate. Students are aware that they will be studying fluid mechanics as
part of the engineering programmes and are keen to understand these basic concepts early as well
as be introduced to real-world instrumentation that they may not have previously been exposed to
in schools. As water passes from one device to another in series through the hydraulic circuit, it is
evident to the students that the volume flow rate through each device must be identical. The students
are tasked with predicting if the various devices will all record identical readings for the flow rate.

Prior to starting the activity, students are given a briefing and watch an instructional video
discussing the methods for capturing uncertainty for various pieces of instrumentation, how to record
it and how it can be propagated when raw data are processed. The activity involves applying these
principles to unfamiliar equipment.

Students record raw data from the instrumentation: the heights from water columns attached to a
Venturi meter and an orifice plate, the flow rate from a calibrated rotameter measuring in litres per
minute and the timing of water collection using a measuring tank. In order to compare the measured
flow rates, the raw data from each device need to be converted. This requires students to consider that,
in order to compare, the same measuring unit is required for each device and provides an opportunity
to discuss the relative merits of the more commonly used litres/minute over the S.I. unit of meters
cubed per second. While UK students are often trained to habitually convert into S.I. units, there is
little justification for doing so in this case, particularly as it eliminates the need to convert the results of
the rotameter.

Students need to process the height difference between the water columns of the Venturi meter
and the orifice plate into a flow rate, the physics of which will not yet be known to them. For the
Venturi meter, a pre-prepared spreadsheet is provided, which outputs the flow rate when the water
column heights are input. The spreadsheet solves Equation (1), which is provided to students to
allow understanding of the mathematical relationship, but the process of manual calculation is not
required. The spreadsheet provides the opportunity to repeatedly calculate different answers quickly
and determine the relative impact of the uncertainty for different parameters. The square root function
within this equation makes this process more interesting.

Q = CdA1

√√√ 2gΔh(A1
A2

)2 − 1
(1)
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A calibration chart, shown in Figure 1, is provided to convert the raw data from the orifice plate.
The process of reading and extrapolating results from the graph introduces additional uncertainty in
processing the raw data, and students are encouraged to consider how to best incorporate this into
their calculated flow rates. This facilitates an opportunity for students to become comfortable with a
limited availability of precision in a calculation, which is a common occurrence in the application of
practical engineering.

Figure 1. Calibration chart for an orifice plate provided to students.

Students are guided through a process of calculating flow rates and the associated uncertainty
of their results for the four flow measurement devices and then through a process of presenting this
information graphically with an introduction to the concept of error bars. If conducted correctly,
the results show that all the devices will record different values of the flow rate but, when the error
bars are considered, all the results overlap within a certain region. Further discussion can be had about
the methods for reducing uncertainty in the raw data and the advantages of in-line flow measurement
compared to the volume displacement of the measuring tank.

This lab has been designed to achieve the specific learning outcomes of introducing the concepts
of, methods to record and process for handling error and uncertainty in experimentation. Students
are clearly made aware of this expectation and achieve these explicit learning outcomes as a result of
participating in the activity. The same learning outcomes could have been achieved with a paper-based
exercise, delivered outside a laboratory. However, the act of learning through doing is more likely to
result in the concepts being retained by students and provides a real-world context in which to apply
these skills in an engaging form that enhances the student experience.

As this activity is delivered to all undergraduate engineers, typically, in excess of 1000 students
per year, the investment of time to develop high-quality instructional material and training teaching
assistants is easily justified and makes the activity very resource efficient.

3. Pressure Loss in Pipes Lab

The pressure loss in horizontal pipes is measured in an experiment run in the Fluids Engineering
Lab for Mechanical, Aerospace, Civil and Chemical Engineering students. This is an important part of
the engineering curriculum [6]. The reuse of teaching material and equipment for multiple cohorts
results in efficient resource utilization. However, teaching material is adapted and contextualized for
specific degree programmes. Subject-specific nomenclature or units should be used appropriately for
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different engineering disciplines. For example, civil engineers would measure, record and process
pressure in the units of meters of head, whereas aerospace engineers would typically use Pascals.
In addition, the level of academic rigour and expectation for the students is adapted depending on the
placement of the activity within the degree programme. At the University of Sheffield, mechanical
engineering students perform the experiment in the first year, and civil engineering students, in the
second. For civil engineers, less prescriptive instructions are provided, and more independence is
expected while conducting the experiment.

During the experiment, the students will collect raw data from manometers to measure the
pressure drop and a measuring tank to measure the flow rate. A range of different-diameter and
roughness pipes are available on each of the 20 hydraulic benches. The raw data are processed
into Reynolds numbers and empirically derived friction factors, allowing students to generate their
own Moody diagram that can be compared to a published version. The objective of the laboratory
experiment is not to develop expertise in performing the mathematics. Students are provided with a
“guided calculation”, where the steps to process the raw data into a processed result are described
in the instructions and executed by students on one piece of data, to ensure they understand the
mathematical methods. Breaking each part of the calculation into defined steps makes the debugging
of errors, by the students or teaching assistants, more straightforward, which is necessary when dealing
with large class sizes. Once students have demonstrated they understand the process, a spreadsheet to
automate the calculations on the remaining data points is released.

Mandating students to complete the hand calculation before using the spreadsheet opens the
opportunity for discussion with students that perceive the activity to be a trivial task only required to
access the spreadsheet. Performing the hand calculation and using a tool to perform the calculations
allows a two-way validation of each process, by comparing the results from each. When using any tool
that has been provided, it is wise to ensure it operates as expected. Articulating the general merit of a
validation approach, and how it can be applied to a student’s future engineering tasks, can be used to
place value on performing the task. In addition, digital collection allows an individual student’s data
to be pooled into a larger dataset that can be shared with the cohort, for the purposes of error and
reproducibility analysis.

Having multiple benches to support a large class size presents an opportunity to improve
efficiency beyond the economy-of-scale issues previously described. In this experiment, to determine
the influence of the pipe specimen (diameter and roughness) on the friction factor, multiple pipes
should be investigated. With one hydraulic bench or a small number of hydraulic benches, pipes need
to be installed and removed to test the full range. With as many benches as specimens, benches can
be set up with particular specimens, and students can move around the laboratory to each piece of
apparatus. Learning the procedure, executing it and performing the subsequent bleeding of air all
consume student time and cognitive capacity in ways that do not directly relate to the intended learning.

As the students come into a session well prepared and the lectures on the subject are fresh in their
minds, they do not require much assistance to conduct the laboratory. Hence, it can be taught by four
staff (Academic, Technical and Teaching Assistants). These staff are able to spend the time discussing
the work and providing feedback to the students, resulting in a much richer experience for everyone.

4. Weirs Big and Small Lab

One of the hardest fluid mechanics topics for students to understand is the importance and power
of dimensional analysis. This is because there are a number of difficult concepts when contemplating
scales, which can be simplified through the correct application of dimensionless numbers. These include
the fact that experiments are needed to be able to obtain the constants for every geometry in a given
situation. An understanding of dimensional analysis is needed for studying aerodynamics and heat
transfer, but the teaching of it generally suffers from two deficiencies: firstly, students typically become
very tangled up in the details of the subject rather than the method application, and secondly, almost
all of the work and examples involve Reynolds numbers (as in the Pressure Loss in Pipes lab described
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above). Thus, an interesting approach to illuminating this topic has to have two requirements: not using
Reynolds number and extracting some constants that are then applied to different scales of equipment.
If it could be engaging, challenging and fun as well, that would be even better.

The hydraulic benches can be configured to allow students to perform open channel flow
experiments with sharp-edged weir plates (square and triangular) and can measure the water height
over the weir and water flow rate. The cohort for whom the lab was created are second year Mechanical
Engineers whose curriculum does not contain free surface flow. This presents an ideal opportunity to
introduce this topic to these students while showing the power of dimensionless groups. Students
are shown, using the tools from their lectures (Buckingham π theory), that the dimensionless groups
involved in this type of flow are the Froude number V√

gH
and length ratio H

b , as shown in Figure 2,

and that the volumetric flow rate (Q, m3·s−1) can be derived from Equation (2):

Q = CDb
√

gH
3
2 (2)

where CD is the discharge coefficient and must be experimentally ascertained for the given geometry.
The objective of this experiment is to experimentally determine the discharge coefficient for the small
weirs and see how this scales to a geometrically equivalent, larger weir that is installed in the lab’s
10 m flume. The main learning outcome of this activity is for students to be able to see both the
power of dimensionless numbers and how extracting the constants experimentally is a required part of
the process.

 
Figure 2. Dimensions used in weir calculations and the experimental apparatus.

In order to optimise the time students spend in the laboratory, a comprehensive pre-experimental
activity was created, material from which can be seen in Figure 3. This consisted of a series of
presentations. These were either recorded with overheads and voiceovers for theory (the flow over
weirs, which Mechanical Engineers do not cover as part of their course). Another online lecture
on fitting exponentials to a series of x and y data was created to help students understand one
way of turning experimental data into equations, which they need to do to extract the constants in
this experiment. Short quizzes created in the Virtual Learning Environment using adaptive release
ensure that the students engage with each presentation prior to moving on to a subsequent section.
The students are presented with three videos on using the large flume, operating the small flow rigs
and reading the Vernier scale on the large flume. This culminates in a quiz on reading the Vernier and
finally a compulsory test on Health and Safety issues relevant to the experiment and laboratory space.
The use of adaptive release means that students cannot get to the final test without completing all the
previous ones.
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Figure 3. Examples of instructional material, including pre-experimental videos, provided to students.

This preparation works well. Students move on very quickly to the practical experiment.
As required, they calculate the CD on the small rigs from the flow and height measurements they
recorded. For each session, the laboratory leader sets a different flow rate for the large flume,
and the students predict the height above the weir that the water should reach before they measure
it. This, in effect, gamifies the lab, as they are ascertaining their own experimental accuracy and are
able to compare it with their peers’. They are thus able to grasp the power and value of dimensionless
numbers and scaling in engineering. It shows them that methods such as the Buckingham π theory are
merely tools to be used to solve real problems. It also illuminates the way that researchers need to use
experiments to be able to create a set of results to identify and extract generalities. It is also a good way
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to use our facilities, as they only perform a single experiment on the large, unique rig but can perform
a large number on the multiple small rigs.

By the end of the experiment, it was noted that the students appreciated how it was possible
to scale between different sizes of models, but how one needed to be aware of all the important
parameters. In a more general sense, the intellectual understanding that this journey provides through
models and sizes acts as a conceptual bridge towards a better understanding of the dimensionless
numbers that they will use in their fluid mechanics and thermodynamics careers and education.

5. Spillway Design Lab

Teaching large cohorts presents a tension: investing significant resources in activities that can be
reused by many students is efficient and provides a high-quality, professional laboratory experience,
but prescribed activities can limit the opportunity for students to explore open-ended activities and,
for example, learn through failure. This tension can be partially overcome with the application of a
multidisciplinary approach. Within MEE’s portfolio of practical engineering education is manufacturing
and fabrication. This provides a holistic integration of making that is available to staff and students.

With significant manufacturing capability, department-based workshop staff and tools, in-house
builds of bespoke teaching equipment are feasible. Typically, engineering teaching equipment for
use with students would have been bought from suppliers. The two significant downsides of this
approach are that it is extremely expensive compared to an in-house build (if full-time staff time for
design, fabrication and prototyping is excluded) and the equipment is not designed to achieve specific
learning outcomes.

Unlike their Mechanical counterparts, second year Civil Engineering students study open channel
flow and the design of flow control devices during their second semester. As they are reasonably
advanced students, having been prescriptively taught the fundamentals of operating in a laboratory
environment in preceding years, their practical activities are designed to be conducted independently,
open ended and genuinely experimental, i.e., conducting empirical work to discover something
previously unknown. To achieve these outcomes, a bespoke experimental rig was conceived, as shown
in Figure 4.

Figure 4. Bespoke rig for teaching spillway design.
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The teaching of design principles is outside the remit of a fluid mechanics course, but a holistic
approach to a programme can be used to apply previously learned design principles to the design of
a weir and spillway to fulfil specific problem specifications. As such, the bespoke rig was designed
to provide a constrained number of parameters that can be adjusted. Designated adjustable parts
can be fabricated by students using readily available equipment, such as laser cutters or 3D printers,
and inserted into the rig for testing in the fluids lab flume. Students are expected to design their
adjustable parts based on theory delivered during lectures, predict the flow and test their predictions
in the laboratory.

Prior to being given access to the flume, students are provided with extensive equipment and
Health and Safety training to be allowed access to the laboratory without staff supervision. Compliance
is established with online tests, and keys to the room/equipment are provided by reception staffwho
check for completion of the test. Students are able to book use of the equipment at a time convenient
to them, and academic staff time input is minimised. This approach provides students with an
opportunity to exert agency over their own learning.

Without a dedicated team of staff focused on providing students with an exemplary practical
experience and the multidisciplinary team of academics and technicians working collaboratively,
the development of practical teaching and bespoke equipment that is unobtainable from suppliers
would be significantly more difficult for departments to justify resourcing.

6. Discussion and Conclusions

Historically, fluid mechanics laboratories have been run as a type of cottage industry, with lecturers
specifying and delivering a couple of labs across the year on a single piece or possibly a couple of
pieces of equipment. This meant that students could receive this laboratory at any time over a year.
Each experiment had to be free standing; many students would conduct the experiment long before
or after they were introduced to the theory, missing a crucial window for learning reinforcement.
This meant that different students would, in effect, obtain different learning outcomes depending on
their understanding of the background to the topic. The staffmembers responsible for the delivery of
the lectures, tutorials, exams etc. set their own labs; they tended to be similar in difficulty, scope and
assessment (usually a report). There was no coherence or progression along the course and, without
the capacity to focus exclusively on the laboratory activities, very little in the way of designing teaching
with constructive alignment towards the overall learning objectives.

MEE’s multidisciplinary approach of professionalising and integrating the practical experience
of the students allows many of these common issues to be obviated. The scale of the laboratories
allows entire cohorts to perform an experiment in a short time period so that practical and theoretical
work can be interwoven and used to support each other. In many cases, the formal lecture becomes
the introduction to the laboratory. Many Electrical Engineering departments have rooms set up with
multiples of equipment, but this approach is rare outside engineering. Having dedicated staff who
deliver the only practical experience to a cohort, it is possible to curate an entire, progressive student
experience starting from the closed and didactic (such as the Measurement Lab) and progressing
to open-ended investigations such as the Spillway Design Lab. The result is that students receive
an integrated and progressive learning experience culminating, after their first two years, in them
becoming capable, reflective and autonomous experimenters ready to start independent project work.

As well as the efficient use of space and staff time, the experiments form a portfolio of work that
can be renewed and repurposed as and when required. For example, within weeks of the creation (and
delivery) of the Weirs laboratory, a lecturer from Civil Engineering asked if there was a laboratory for
open channel flow for their MSc students. Not only was the answer “yes”, but a version of all of the
teaching and introductory material was ready for use. The laboratory sheet only needed updating to
reflect the different approach to the theory and nomenclature used by a different discipline, but this
was a minor investment of time and allowed the students to have an excellent practical experience to
support their learning that would have been impossible under a different organisation.
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There are, however, two potential drawbacks to the multidisciplinary approach, but these can
be ameliorated if properly anticipated. Firstly, when the practical and theoretical teaching on a
single module is delivered independently by different members of staff in different departments,
the experience and messaging received by the students could become disconnected and incoherent.
MEE overcomes these issues by setting up communication channels between the academics delivering
classroom and practical teaching, allowing them to agree on how the labs are presented within the
context of a module and ensure that the messaging to students is consistent. The tactics for achieving
this include using material presented in lectures as part of laboratory tuition and vice versa. Secondly,
there is a requirement for strong leadership within the faculty. The multidisciplinary model will
only work if all the departments benefiting from the service agree to contribute to its resourcing.
With any shared resource, issues of perceived value and equity for contributors can cause tension if not
carefully managed.

Thus, in conclusion, there are a number of major advantages to teaching at scale in fluids
laboratories, such as the efficiency, temporal proximity to lectures and scalability. Due to the integration
and professionalisation of the practical teaching, it allows an integrated, progressive approach to
student practical skills development to be implemented. Progressing from the usual method of teaching
practical fluid mechanics to the new one demonstrated in the examples above is a difficult, long and
potentially extremely expensive journey. We hope that we have shown you that the outcomes from it
are worthwhile.
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Abstract: Subjects related to fluid mechanics for hydraulic engineers ought to be delivered in
interesting and active modes. New methods should be introduced to improve the learning students’
abilities in the different courses of the Bachelor’s and Master’s degree. Related to active learning
methods, a continuous project-based learning experience is described in this research. This manuscript
shows the developed learning methodology, which was included on different levels at Universitat
Politècnica de València. The main research goal is to show the active learning methods used to
evaluate both skills competences (e.g., “Design and Project”) and specific competences of the students.
The research shows a particular developed innovation teaching project, which was developed by
lecturers and professors of the Hydraulic Engineering Department, since 2016. This project proposed
coordination in different subjects that were taught in different courses of the Bachelor’s and Master’s
degrees, in which 2200 students participated. This coordination improved the acquisition of the
learning results, as well as the new teaching methods increased the student’s satisfaction index.

Keywords: outcomes competences; hydraulic engineering; hydraulic teaching; active methodology

1. Evolution of Teaching in the University

1.1. New Paradigms in Hydraulic Engineering Teaching

Hydraulics disciplines are in a higher number of degrees related to engineering topics [1]. Civil
and environmental engineering courses are an example, although they are not exclusive. There are
different Bachelors’ and Masters’ degrees, in which the fluid mechanics and hydraulic topics are present
inside of the students’ curricula, such as the mandatory or optative subject.

Teaching involves many methods to reach the learning results. Some of them are: master courses
(i.e., a theoretical lesson taught by a professor); design projects; practical activities in the hydraulic lab;
and informatic sessions, among others. All actions must provide students an integral and continuous
vision of the hydraulic engineering (from fluid mechanics to environmental problems). However,
the new students must experiment a necessary change in the new learning methodologies, allowing
the students to reach the professional competences satisfactorily. Currently, the European Higher
Education plans to decrease the credits to teach, increasing the required skills acquisition by activities,
which are not an on-site class [2,3].

1.2. The Significance of the Learning Habilities

One of the problems that students must face is the complexity of numerous concepts in hydraulics
subjects (e.g., fluid mechanics). The lecturer usually teaches theoretical matters and the student has to
reach the learning results (e.g., master course, lectures, and exercises) using the professors’ information
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(e.g., bibliography and exercises). Therefore, students must learn materials on their own with minimum
guidance by professors. This methodology had good results in the last decades [4]. However, newer
student generation demands the development of new teaching methods that rely on new tools. The use
of active learning methods is highly recommendable since the students participate in the learning
process actively [5]. These methods are based on student activities (e.g., ‘playing and learning’ using
simulations, project-based learning, and role activities) they are a possible solution to improve the
students’ learning. Continuous project-based learning was proposed across different levels in 2016 as a
part of these active strategies [6,7]. The current research shows the results, which were obtained by the
coordination between bachelor and master matters from 2016 to 2018.

Currently, numerous researches show the professors should introduce the new learning tools
and activities (e.g., simulations, experimental cases, and playing learning) using information and
communication technology [8]. Using these tools engages students actively in the learning process. In
this line, the Universitat Politècnica de Valencia (UPV) carries out the ‘UPV generic students’ outcomes
2015–2020′ [9]. The main goal of this project is the introduction of 13 generic outcomes, which will
improve the students’ skills and their curricula [9].

To adapt the new strategic plans, an innovation and educational improvement project has
been implemented between different professors of the Hydraulic and Environmental Engineering
Department of the UPV since 2016. The main objective is to establish a transversal and vertical
coordination in different subjects. The purpose is the acquisition improvement of the learning results
by the students. Therefore, the project proposes an evaluation methodology using different rubrics
according to the domain level (depending on the year and degree). Besides, the research compares the
different subjects in different courses.

In this particular case, this proposal allowed students to start a hydraulic project draft in fluid
mechanics topics (e.g., students sized a water branched network). Furthermore, they continued its
development in hydraulic machinery matters (e.g., students designed a pump system) and finally, they
designed a total project in their last matter fluid facilities (e.g., students sized fluid facilities in a hotel).
The development of hydraulic projects, as a learning strategy, is a methodology that was proposed in
other universities some years ago. When this method is used, the students must plan, implement, and
evaluate complete works, which are applied in real case studies [8,10].

Project-based learning (PBL) allows students to acquire key knowledge and skills through the
development of projects that respond to real-life problems [11]. The objective is to enhance students’
autonomy. They become the main actor of their own learning process. This training evolves introducing
new complex tasks each course using the same project [8]. In this learning process, professors guide
and support the students throughout the entire project.

1.3. Hydraulic Engineering Learning Challenges

The stage of the studies of hydraulic engineering must be in constant evolution since the future
professionals must face great challenges. These are aligned on terms of sustainability and optimization
of the management. Therefore, hydraulics subjects at the university level cover many fields such
as: urban hydraulics, watershed management, the pollutants dispersion, hydraulic machinery, river
dynamics and restoration, water resources management, hydraulic works, aspects of flows to sheet
free of charge involved in sanitation, the water-energy nexus and many other subjects that are being
taught in different faculties masterfully. In all cases, the hydraulic engineering is present in the core
subject, such as fluids mechanic and/or hydraulic machinery in the engineering bachelor’s degree
(e.g., electrical, mechanical, and chemistry).

Currently, the knowledge transfer requires the future students must be autonomous and
capable. They have to develop skills, which allow them to solve the new challenges. The present
manuscript shows the continuous project-based learning experience, which has been developing at
UPV. This practice is focused on hydraulics subjects, which are teaching both the bachelors’ and
masters’ degree. The proposed teaching project increases the development of real projects, decreasing
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the hours of lessons. This time decrease is complemented with online material (e.g., teaching video
and laboratory tutorials) including workshops and specific conferences. These sessions are developed
by companies or guest speakers in the university focused on students.

This research is a good example for engineering bachelors’ and masters’ degrees related to hydraulic
and environmental topics at different levels. The manuscript summarizes teaching methodology and
results, which developed a teaching project. The experience was carried out at Universitat Politècnica
de València. Two thousand and two hundred students participated in thirteen hydraulic subjects,
which were part of the teaching project and they were from different years. The students worked
the hydraulic concepts using a methodology, in which they reached the learning results through the
development of hydraulic projects. The strategy enabled to evaluate both specific and outcomes
competences. Before this teaching project, the students were not evaluated of their skill competences
and they did not use active methods. Previous to this project, the students’ training was based on
master courses and laboratory practices. The participation was up to 80% and the student’s satisfaction
was measured by surveys.

2. Materials and Methods

2.1. Structure of the Hydraulic Engineering for a Student of a Bachelor’s and Master’s Degree in the UPV

When the structure of the hydraulic engineering was analyzed at the UPV, there was a complete
interweaving with other matters in their different bachelor’s and master’s degrees. These subjects
(Figure 1), which were distributed throughout student training, were: (i) basis subjects in hydraulics
and fluid mechanics; (ii) subjects related to hydraulic machines; (iii) subjects related to hydroelectric
plants and wind power machinery; (iv) subjects related to hydraulic facilities; (v) materials in oleo
hydraulic and pneumatic systems; (vi) matters in relation to the water-energy binomial; (vii) matters
in computational fluid dynamics (CFD) modeling; (viii) matters in relation to the hydraulic aspects
of wastewater treatment; and (ix) matters in relation to the dispersion of contaminants in receiving
fluid media.

 
Figure 1. Structure hydraulic engineering subjects at Universitat Politècnica de Valencia (UPV;
BD.—Bachelor’s degree and MD.—Master’s degree).
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2.2. Learning Proposal Based on Learning Projects at Different Levels, Developing the Transversal Competence
“Desing and Project”

The project-based learning (PBL) is a methodology focused on learning, research, and reflection.
In this methodology, the students should reach the correct solution of a problem, using an autonomous
and continuous learning. This problem was proposed by the lecturer once he/she teaches the
theoretical concepts [12]. This methodology was included on the teaching project in the hydraulic and
environmental engineering department [13]. It was applied on different matters, which were part
of different courses and levels (i.e., Bachelor’s and Master’s). Therefore, the teaching project got a
continuous project-based learning (CPBL) in the students’ training [14]. Besides, the CPBL application
at different training times of the student enables one to work and evaluate different transversal
competences (e.g., time planning, permanent self-learning, and oral communication as well as design
and project (DP)).

Time planning was proposed for each subject and it must be followed by both students and
professors through the different phases. These steps (Figure 2) were divided on face-to-face and
non-face-to-face lessons. The first phase allows students to know the theoretical concepts throughout
the master course, the development of computer practices as well as the development of basic problems
related to the taught issue. Once these are known, the learning results of each unit should be practiced
in progressive development of the project. This practice is non-face-to-face and the students must
use information from the UPV webpage. In this section, they have supplementary material. Along
this phase, the students work on self-learning and the professor gives them help in group meetings.
The collaboration between the professor and students improves the acquisition of the learning results.

 
Figure 2. Example of temporal distribution to reach the learning results in a subject (U is unit, T is a
test, and SP is simulation practice).

The different activities, their planning, and their dedication were defined using good practices
sheets. This sheet was developed by lecturers, and it enabled to coordinate the subject between
students and professors, and coordination improved when different teachers participated in teaching
the subject.

2.3. Proposal of Rubrics

One of the objectives to develop an active learning is the definition of evaluation items.
In this particular case, different rubrics were introduced to combine the evaluation of the student’s
competences (i.e., skills and concepts). These rubrics were composed of different indicators, which had
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four different descriptors for each one. The indicators measured the acquisition degree of the learning
results. Table 1 shows the proposed indicators, which were used to do the proposed rubric (Appendix A).
This rubric was used to evaluate the project in hydraulic machines. Other rubrics were published for
different subjects: the wastewater network project [6], fluid mechanics [7], or fluid facilities in the
chemistry industry [15]. The used rubrics were different in Master’s and Bachelor’s degrees, considering
the reached level in the descriptor. In the Bachelor’s degree, the pupils had to design a project with a
level of draft. In contrast, the indicators were higher in the Master’s degree, as the developed project
should be more specific, and students must be more autonomous.

Table 1. Definition of weighted in the different indicators.

Indicator Students’ Actions Weighted

I1.—The student bases the context
and the need of the project Define the need to develop the project 5%

I2.—The student formulates the
objectives of the project coherently
with regard to the needs detected

in the context

Localize them and relate them with the
taught concepts.

Correct interpretation of the goals allows
students to interpret the specific indicators of the

follow group (iii) correctly

7.5%

I3.—The student plans the action
to be developed effectively

The student has to propose and apply the solved
methodology 20%

I4.—The student plans the actions
efficiently

Design the proposed system. This group contains
seven specific indicators 50%

I5.—The student identifies the
risks and inconvenient of the

project

Consider the negative and positive aspect of the
project related to environmental and social

concepts. This indicator is measured using two
specific criteria.

7.5%

I6.—Review the results Review, analyze, and critique with the obtained
results, searching incoherent results. 10%

The attached rubric in Appendix A shows the new proposed rubric for hydraulic machines in
which specific and skills competences were evaluated. The symbiosis between specific and transversal
competences was developed using a matrix, which contained weights and ponderations. The first
discrimination was done between ‘not done’ and ‘developed task but the minimum is not reached’.
When the student did not develop the descriptor, the numeric value was zero. If the student did the
task, but it was not reached, the considered value was 3. If the descriptor was C, the numeric value was
5. When the descriptor was B, the considered value was 7 while the value was 10 when the descriptor
was A. Each indicator had a specific weighted value, which was justified in Table 1.

Therefore, the numeric mark (NM) of the specific competence was obtained using Equation (1):

NM = 0.05I1 + 0.075I2 + 0.20I3 + 0.50

(∑I=7
I=1 I4

)
7

+ 0.075I5 + 0.10I6 (1)

This expression enabled one to get the numeric value through descriptors. If the NM was less
than 4.5, the learning result was “No reach—D” for transversal competence. When the value was
between 4.5 and 6, the learning result was “In Development—C”. A learning result of “Good—B” was
reaching, when the NM was between 6 and 8. Finally, ‘Excellent—A’ was reached when the NM was
greater than 8.
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3. Results

3.1. Students, Subjects, and Proposal of Projects

The project was developed between 2016 and 2019, although it continues currently. In these years,
thirteen subjects were taught in Bachelor’s (second, third, and fourth year) and Master’s (industrial
engineering and hydraulic and environmental engineering) degree at UPV. One thousand and one
hundred students participated and 13 professors from the hydraulic and environmental engineering
department collaborated in the project each year. The manuscript shows results for all subjects although
main subjects of the students’ curricula (i.e., fluid mechanics, hydraulic machines and fluid facilities)
were described deeply in this research. Fluid mechanics was taught in a second-year course of the
Bachelor’s Degree. This subject was in chemical, electrical, and mechanical engineering degrees
(in this particular case, the results were related to the mechanic engineering degree). The students
were between 19 and 25 years. One hundred and seventy students were involved, who were divided
into two groups for theoretical teaching and four groups for practical classes.

Hydraulic machines was taught in the third-year course of the mechanical engineering degree.
The subject was focused on analyzing the pumps-operation principles (velocities triangle and Euler’s
equation) as well as the machines selection and their regulation according to demand. The students
were between 20 and 26 years. One hundred and forty students were involved. These pupils were
divided into two theory groups and four practical groups.

Fluid facilities was taught in the first-year course of the industrial engineering Master’s degree,
after students achieved their Bachelor’s degree. The subject contained the analysis of the different types
of the fluid facilities, that is, water distribution networks, gas networks, and waste-water networks
as well as the facilities, which involved the comfort in society (ventilation and hot sanitary water).
For each facility type, the normative, design, analysis, and regulation were analyzed, applying it to
the real cases study. The students were between 23 and 30 years. Three hundred and fifty students
were involved. These students were divided into seven theory groups and twenty-one groups in
practical lessons.

In relation to the fluid mechanics subject, an elemental water supply network was proposed,
in which students proposed different diameters for pipes, considering flow and pressure conditions.
Once the system was sized, the students had to analyze it using Epanet software [16], considering the
constrain conditions (e.g., demand, level node, minimum pressure, and maximum velocity). The sizing
was developed as a function on demand over time, using the uniform hydraulic slope criterion.
The students run an extended period simulation, analyzing the pressure and flow variations in the
different lines. Finally, the students proposed a short budget, considering both length and the chosen
material. In this case, the project was supervised by the lecturer. The initial information, which was
available for students was: network topology, reservoir head, water demand in each point over time,
modulation curve for the different consumption patterns, and the minimum operational conditions
of the network as well as the material type and cost of the pipelines. The work was focused on
establishing a methodology to develop hydraulic calculus, encompassing the Bernoulli’s and continuity
equations. The students compared the different studied scenarios as a function of demand pattern
using Epanet software.

The evaluation was a formative type. The students did meetings with the professor and they show
partial results. The professor verified the calculus and solutions, proposing improvements to students.
There were two meetings. The first meeting included the proposal of the network. The second meeting
addressed the sizing of the water system. The correction of the project was developed using rubric
(Appendix A), and a third meeting was done to explain to students the errors in the project.

The proposed work in hydraulic machines was individual. The activity was focused on analyzing
the energy consumption and regulation of a pumped system. This water network was supplied
considering two options. Option A: the water network was supplied from a reservoir, which was filled
using a pump station and Option B: the water was directly supplied using pump systems. Option A
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enabled one to analyze the influence of the reservoir volume in the pump selection (mainly pumped
flow) when the energy cost was considered (i.e., schedule and operation time). Option B was focused on
applying the similarity laws, regulating the operation curve. The students had to define the rotational
speed of the machine as a function of the demanded flow over time. The students defined: the control
rules, the operation costs, and the efficiency parameters for each pump system, trying to minimize
the cost per cubic meter. The student only had two constrains: demand over time and energy cost,
which was the current Spanish energy price.

Finally, when the student undertook the fluid facilities subject, the proposed work had a higher
level than previous tasks developed in the Bachelor’s degree. At this time, the students were more
mature and the cases were near real buildings. Therefore, their training should be more intensive
and closer to reality. In 2017, the proposed activity was to develop a complete project (summarize,
calculus supplements, drawings and budget, defining the qualities, and normative for the different
used materials). The project was related to a complex building (e.g., hotel, hospital, and school since
for each students’ group it is different). In this project, the students had to connect basic knowledge of
fluid mechanics and hydraulic machinery with the new learning results, which are reached in the fluid
facilities subject. The students designed the different pipelines and equipment, which were necessary
to supply the building (e.g., cold and sanitary hot water system, pumps, and ventilation, among others).
This work was developed by teams, composed of three or four students. Once the work was finished,
the students had to explain it in an oral session.

In all cases, the students’ doubts were attended by teachers. Generally, the questions were solved
by face-to-face meetings. However, the doubts solution was also solved using mail and/or a video
conference. Throughout the process, the student contacted the professor to validate the different items
of the project in each one of the phases and stages.

3.2. Analysis of Results

3.2.1. Results

Figure 3a shows marks distribution in a students’ group for hydraulic machines. Each indicator
value can be observed for each student. The project mark was the upper 8/10 for 24 students while
there were only six students who qualified below 5/10. Each indicator (from I1 to I6) is described in
Table 2 and they are drawn in the Figure 3a.

Figure 3a shows the students worked really well I3 and I4 indicators. These were focused on the
development of the simulations and the establishment of the control rules in the pumped systems to
guarantee the hydraulic constrains (i.e., flow and pressure). In contrast, I5 was the worst developed
indicator and it focused on the analysis and discussion of the results. However, the results were
highly satisfactory.

Figure 3b,c shows the transposition from the mark to transversal competence in the different
subjects that participated in the teaching project (Table 2). If observing the topic hydraulic machines
(12659), 77% of students reached the A and B descriptors when the “Design and Project” competence
was evaluated. Similar results were obtained in the rest of subjects shown in Figure 3b.

If all subjects were observed the satisfaction was higher, considering all students who participated
in the teaching project. The participation in the project development was 82%, considering there were
1051 students in thirteen different matters in 2018 (1149 students were in 2017). When the “Design and
project” competence was evaluated, 361 students reached an excellent degree (A). The B degree was
reached by 286 students while 154 and 58 (6.75%) students obtained a C and D degree, respectively
(Figure 3b).

Figure 4 shows there is a lineal relationship between exam and project marks in two years (i.e.,
2016/2017 and 2017/2018). Therefore, the development of the activity helped students to acquire the
hydraulic concepts as well as the methodology. Although there were no exams when PBL was applied,
in order to compare the previous (traditional method using master courses) and new methodology
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(CPBL), an exam was proposed. This improvement contributed to reaching the learning results
favorably. This trend was observed in majority of the studied subjects. Besides, when the project
delivery was after the exam, the test mark did not have a relationship between them. Therefore, there
was a greater significance to establish the date delivery before the test. The final marks were compared
with previous years. The score increased around the 1–2 point about 10, reducing the number of
students who failed the subject (6% in 2016/2017 and 8% in 2017/2018).

 
Figure 3. (a) Indicator in hydraulic machines related to Table 2; (b) results of the descriptors in
the “Design and Project” competence for the subjects of the Bachelor’s degree defined in Table 3;
and (c) results of the descriptors in the “Design and Project” competence for the subjects of the
Master’s degree defined in Table 3.

Figure 4 shows the correlation between project and exam marks was strongly correlated when the
students did not do the project correctly or they got a mark up to six. However, when the students
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developed an excellent project (mark between 7 and 9), they did not always get an excellent mark in
their exams. It could be due to the student’s collaboration and working on other skills such as analysis
and resolution of problems. When they did the exam, the help between partners was not there, and
therefore, they had to solve their doubts, which in some cases were not resolved correctly.

Table 2. Subjects of the teaching project.

Code Subject Bachelor’s Degree Master’s Degree

12298 Hydraulic machines Chemical Engineering -

12621 Fluid Facilities in
Building Mechanical Engineering -

12621 Fluid Mechanics Chemical Engineering -

12077 Fluid Mechanics Electrical Engineering -

12647 Fluid Mechanics Mechanical Engineering -

12349 Fluid Mechanics Chemistry Engineering -

12659 Hydraulic machines Mechanical Engineering -

33810 Fluid Facilities - Industrial Engineering

33752 Waste water treatment - Industrial Engineering

33465 Fluid Facilities in the
chemical industry - Chemical Engineering

32478 Waste water networks -
Hydraulic and
Environmental

Engineering

33683 Extension of Fluid
Facilities - Industrial Engineering

32480 Analysis and modeling
of water networks -

Hydraulic and
Environmental

Engineering

Table 3. Questions related to planning.

ID Question

Q1 Does the proposed activity allow you to apply the knowledge developed in
theory classroom and practice lessons?

Q2 Does the temporary planning to develop the project design throughout the course
allow you to start the activity well enough in advance to developing it properly?

Q3 Is the index developed by the teacher explaining the methodology and phases of
the work, sufficiently clear and concise, to develop the proposed activity?

Q4 Did the project help you to acquire the knowledge, and to prepare other
evaluations (e.g., tests and problems) of the subject?

Q5 Would you find it interesting that the development of the project proposed in this
subject involved other subjects of your grade?

3.2.2. Surveys

Two different surveys were developed for each subject. First survey gave information related to the
subject planning. This survey helped to analyze if the coordination between taught concepts and project
development was correct. Related to this, five questions were proposed (Table 3). These questions
were related to: (i) the application of the activity with the concepts, which were taught in the classroom
(Q1); (ii) the synchronism between activity and taught concepts (Q2); (iii) if the index developed by the
professor to explain the methodology was clear (Q3); (iv) if the project development helps student
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to reach the learning results and train to do the evaluations (Q4); and (v) if the student would be
interested in development of a project considering different subjects of the degree (Q5).

 
Figure 4. Relationship between the exam and project marks in hydraulic machines.

Figure 5 shows the results in the survey when it was done in hydraulic machines. The figure
shows the results once 103 students (76%) answered it. There were 90% of students that positively
agreed with Q1. This percentage was higher compared with other subjects in the UPV. This was a
goal of the project, since it wanted to develop activities to increase the satisfaction in the students.
These activities were focused on: (i) increasing the simulation lessons with software, (ii) visiting some
buildings where the students can identify the studied facilities, and (iii) increasing the number of
online videos in which they can visualize real solved case studies. In both years, the answer was
similar between students. Therefore, they considered positive the use of this methodology to apply the
teaching concepts.
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Figure 5. Survey to analyze the development of the project in the topic: hydraulic machines for the
2017 and 2018 years.

The rest of the questions were mostly approved. They showed the majority of students agreed
to develop the teaching methodology. Similar results were obtained in fluid facilities (Figure 6).
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The surveys analysis showed the student accepted this methodology although they had to invest more
effort in the subject continuously. This learning obligated students to develop a planning to reach the
objectives. In this case, results from only one year were presented, since the Master’s students only
undertook a course in the active methodology in 2017 (previously, they undertook a course in for their
Bachelor’s degree on the topic hydraulic machines using this teaching project).
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Figure 6. Survey to analyze the development of the project in fluid facilities.

Figure 7 shows the results of a survey, which had four questions. The survey was proposed to
students in the second-year or third-year level (once the student studied fluid mechanics). The questions
measured the vertical coordination between subjects. The questions (Table 4) were related to: (i) the
developed project that helped students to improve the acquisition of competences (Q6); (ii) if the
development of the project, which was developed on fluid mechanics in the previous year, helped
to improve the development of the project in hydraulic machines (Q7); if the previous study of the
hydraulic concepts helped students to develop the project (Q8); if the use of a similar methodology
between the project developed both fluid mechanics and hydraulic machines that helped students to
develop the project in the hydraulic machines topic (Q9).
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Figure 7. Survey to analyze the vertical coordination between subjects that are located on different
courses and levels (Bachelor’s or Master’s degree).

25



Fluids 2020, 5, 95

Table 4. Questions related to coordination between years.

ID Question

Q6 Does the development of a project that is related with studied subjects help you to improve
the knowledge acquisition and competences in the ‘design and project’?

Q7 Does the development of the project in fluid mechanics help you to understand and
develop better the practical applications in hydraulic machines?

Q8 Does the study and understanding of common hydraulic concepts in different subjects help
you to do the project?

Q9 Does the use of a similar methodology, which was used in fluid mechanics to do the
project, give you autonomy to do the project in hydraulic machines?

If Figure 7 was analyzed, it shows that the majority of students (upper 60%) considered the
application of this methodology positively and it had influence on achieving good results in the
development to their competences.

The developed experience verified that the students improved the acquisition of the learning results
in the different subjects when they were compared with the previous years. Therefore, the professors’
experience joined to the students’ opinion show the development of active methodologies increased
the positive attitude of the students. This emotional state made the students show a greater interest
in the subject, improving their efficiency. However, this effect cannot occur in some cases, in which
students think they learn a lot in these scenarios, but when tested they really are not. This occurs when
the students do not work in the activities continuously and correctly throughout the year.

Similar strategies are being developed currently in UPV and other universities to motivate
students to develop continuous learning. Currently, the development of projects is being planned at
an institutional level. The learning project includes subjects that are part of different years and are
in different areas. This situation improves the integration of the subjects in the students’ curricula.
Besides, the students understand better the significance of the different subjects when there is a global
learning project. It occurs even though the matters are studied in different years. The project existence
allows students not to view the subjects individually, interrelating the different matters.

This methodology can be extrapolated to other knowledge areas or degrees, adapting the projects
to the learning results of each subject. The success of this methodology is verified in other countries
and universities [2,3,17]. The development of the good practices sheet [16] and the definition of the
learning goals allow one to organize the active methodology for any subject.

4. Conclusions

A case study was described in this research, which joined different hydraulic engineering topics.
The subjects were taught using continuous project-based learning. The implementation of this
methodology was new at UPV to develop the skills competences in the students. The development
of the methodology from basic subjects (i.e., fluid mechanics) enabled one to define the procedure,
which can be applied on subjects at the upper level. The methodology allowed professors to establish
a schedule in which face-to-face time and a non-face-to-face lesson fit perfectly. Therefore, the use of a
good practice sheet allowed students and professors to know their activities for each time. The use of
these sheets improved the synchronization of the teaching (i.e., theoretical concepts, practices lessons,
and activities) between them. Besides, the development of the good practice sheet helped professors to
organize subject learning. The good practice sheet contained different tasks, which should be carried
out by professors and students, defining the data and time of their development.

The proposed methodology is crucial to give students an action strategy when they have to develop
similar projects in matters of the hydraulic area. The strategy improves the vertical coordination in the
Bachelor’s or Master’s degree. This organization maximized the reach of the learning results since it
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mixed a face-to-face class and online videos and material as well as real projects to apply the taught
concepts according to the students’ capacity.

The methodology included a rubric for each subject. These evaluation criteria enabled us to
evaluate the acquisition of the learning results, joining both specific and transversal competence of the
‘design and project’. The rubric, which was used in hydraulic machines was shown in this manuscript
(Appendix A). It defined the specific indicators and the descriptors, which are necessary to develop the
project. Besides, the used expression, which correlated the specific and transversal competences in the
students’ curricula, was presented.

Two surveys were proposed to students. These questions showed the students’ satisfaction for
the structure of the activity. Besides, they considered it necessary to improve the acquisition of the
learning results. The students were grateful of the use of this methodology in other subjects related to
hydraulic engineering topics.

Finally, the new challenge in teaching should be focused on:

• Professors need to establish active methodologies in which the students are involved, improving
their learning results.

• The students’ training should be coordinated in order to align the specific competences and
outcomes competences as well as the sustainable development goals.

• Communication technologies (ICTs) joined to use software are tools, which must be incorporated
in the teaching guides to improve the learning results and, therefore, the students’ curricula.
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Appendix A

Table A1. Specific indicators used to evaluate hydraulic machines.

Indicators (What Is the
Analyzed Point?)

Descriptors

D. Not Achieved C. In Development B. Good A. Excellent

1. The students bases the
context and the need of the

project

The student explains the
need of the project but
he/she does not justify

The student justifies the
need of the project, using

opinions that are not
checked enough

The student justifies the
need of the project correctly

but it is incomplete

The student justifies the
need of the project correctly

and completely

Introduction and
justification

There is not a definition
of the goals

The student introduces the
project to do but he/she

doesn’t justify its need or
he/she does it incorrectly

The student introduces the
projects but he/she does not

justify the need

The student introduces the
projects and he/she justifies

the need

2. The student formulates
the objectives of the project

coherently with regard to the
needs detected in the context

The student formulates
the goals without

considering the needs

The student formulates the
goals but they are not

coherent with the needs

The student formulates the
goals and they are coherent

with the needs

The student formulates the
goals and they are coherent

with the needs and these
goals are operational

Goals There is not a definition
of the objectives

The student establishes the
goals but these are

ambiguous.

The student defines the
objectives sufficiently

The defined goals are clear
and operational

3. The student plans the
action to be developed

effectively

The student does not
develop the justification

of the action

The students develop the
plan partially to reach the

goal

The students develop the
plan to reach the goal in

their major points

The students develop the
plan to reach the goal

completely
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Table A1. Cont.

Indicators (What Is the
Analyzed Point?)

Descriptors

D. Not Achieved C. In Development B. Good A. Excellent

For each section of the
project There is not a plan The student does a short

description or justification

The student describes and
justifies the development

only considering an
academic point of view

The student describes and
justifies the development,

considering both the
academic and technical

point of view

4. The student plans the
actions efficiently

He/she does not plan
efficient actions

He/she plans efficient
actions, although they are

improvable
All actions are not efficient He/she plans efficient

actions completely

Setpoint curve It is not calculated It is calculated incorrectly The result is correct but there
is no discussion about this

The result is correct and
there is an analysis of the

result

Reservoir capacity It is not calculated It is calculated incorrectly The result is correct but there
is no discussion about this

The volume is correct and
there is an analysis of the

result

Pump selection It is not developed It is developed incorrectly The result is correct but there
is no discussion about this

The selection is correct and
the student proposes

alternatives (other types and
manufacturers)

Pump selection when the
network is pumped directly.
Considering non-variable

rotational speed

The new selection is not
developed according to

the setpoint curve

It is developed but it is
incorrect

The developed selection is
correct but it is not justified

The selection is correct.
Besides, the student

develops a justification and
comparison, considering

other solutions

Economic analysis when the
rotational speed is fixed

The student does not
develop the daily

analysis

The student does the
analysis but it is incorrect

The student develops an
analysis correctly but the
analysis is not justified

The student does a detailed
analysis, developing

indicators and comparing
with others facilities

Pump selection considering
variable rotational speed

The pump selection is
not developed according
to the new setpoint curve

It is developed incorrectly The developed selection is
correct but it is not justified

The selection is correct.
Besides, the student

develops a justification and
comparison, considering

other solutions

Economic analysis when the
rotational speed is variable

The student does not
develop the daily

analysis

The student does the
analysis but it is incorrect

The student develops an
analysis correctly but the
analysis is not justified

The student does a detailed
analysis, developing

indicators and comparing
the values when the

rotational speed is fixed

5. The student identifies the
risks and inconvenience of

the project

The student enumerates
some risks but they are

not analyzed

The student enumerates
some risks but they are not

analyzed deeply

The student enumerates
some risks but they are

analyzed but he/she defines
constrains to solve the

problems

The student enumerates
risks, they are analyzed and

solved for improving the
project

Conclusion section There is no conclusion
There is a conclusion, but

the student does not discuss
the results

Different results are
discussed and compared

Results are compared,
establishing the advantages
and inconvenience for each

solution

Language, format, and
writing of the project

The presentation is poor,
the writing and language

style are not at a high
enough level according
to their academic status

The presentation is correct
although the language is not
at a high enough level since
the student uses no technical

words

Presentation, language, and
writing are correct but the
content exceeds the limit

Presentation, language, and
writing are correct and the
project is adjusted to the

requirements established by
the professors

6. Review the results The student does not
review the results

The student reviews the
results but the review is not

structured

The student plans the result
evaluation (i.e., who, when,

and how)

The student plans the result
evaluation (i.e., who, when,
and how), using indicators

Review the results of the
facilities using EPANET There is no evaluation All results are not checked All results are checked

without doing comparisons

All results are checked. The
student develops

comparisons between a
classmate or comparing
values that are obtained
from the bibliography
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Abstract: This essay synthesizes more than a decade of research, most of which has been published,
on the teaching and learning of floating and sinking (FS) phenomena. The research is comprised of the
iterative design, development, implementation and evaluation of a Teaching-Learning sequence (TLS)
for the teaching and learning of density within FS phenomena. It was initiated within the frame of
the European Community supported “Materials Science” project. Due to the many, different aspects
of the project, each publication has focused on a particular part of the study (e.g., effectiveness and
the iteration process). The didactic transformation for the teaching of FS phenomena is presented and
discussed here. In doing so, it is essential to mention: (a) the students’ ideas as the main cause of the
scientific knowledge transformation, (b) the scientific/reference knowledge, and (c) the knowledge
to be taught and its limitations. Thus, we intend to describe and justify the didactic transformation
process and briefly synthesize the published (from previous papers) and unpublished results to show
its effectiveness.

Keywords: inquiry-based instruction; science education; teaching-learning sequences; didactic
transformation; primary level

1. Introduction

School children are familiar with floating and sinking (FS) [1], which is a main topic
in the teaching of fluids in science education [2,3], especially at the primary and lower-
secondary levels (10- to 15-year-olds). Although the topic is very common, and children
have many everyday life experiences in FS phenomena, their interpretation is challenging,
not only because of the difficulty of the scientific concepts and the respective explanatory
models that are involved (e.g., density, buoyancy), but also because of these everyday
experiences that students have and their subsequent ideas [4].

Research on FS has been extensive in the last few decades, both regarding students’
ideas [5] and, consequently, about ways to effectively teach this topic [6]. Concurrently,
Teaching-learning sequences (TLSs), i.e., medium-level curriculum unit packages, that
include well-researched teaching-learning activities empirically adapted to student reason-
ing [7,8], are increasingly present in science education research, because they provide the
opportunity to integrate teaching and learning theories and approaches, students’ ideas
about science concepts and explanations of natural phenomena, as well as the historical
development of scientific concepts [7–10].

One of the most critical issues in the design and development of a TLS is the didactic
transformation of the content, i.e., transforming the scientific knowledge into appropriate
knowledge to be taught [7,11,12]. The choice of content and how it is transformed in
order for it to be easily understood and readily adopted by students is crucial in the entire
process of TLS development. Although this often takes place, none or very little of it is
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usually conveyed. In other words, even though the didactic transformation process is an
essential aspect in every teaching effort, and especially in the design and development of a
TLS, researchers rarely describe the process in an explicit and detailed manner, possibly
due to space restrictions [8,13]. Thus, colleagues who wish to further investigate any
such didactic proposal’s effectiveness do not have all the necessary information to repeat
its implementation.

To describe the didactic transformation process of certain content, in our case, FS
phenomena, it is important to mention, among other things: (a) students’ ideas about the
phenomenon and the concepts related to it, as the main reason for the scientific knowledge
transformation, (b) the scientific/reference knowledge, and (c) the knowledge to be taught,
in its new form, following scientific knowledge transformation, including its limitations.

Students’ alternative ideas have played a decisive role in the planning of teaching
in science education in the last few decades [6]. Consequently, students’ ideas about FS
phenomena, and the difficulties they face in adapting interpretations to be consistent with
the scientific ones, need to be taken into account in every teaching effort that is developed
within the frame of the prevalent constructivist approach [14]. Moreover, the study of
the historical development of scientific knowledge concerning FS interpretations could
contribute to the didactic transformation process by revealing the difficulties scientists
had come up against in understanding and interpreting those phenomena throughout the
centuries [14–16].

The TLS entitled “Density of materials in floating and sinking phenomena: Experi-
mental procedures and modelling”, which was initiated in the framework of the European
Community supported “Materials Science” project (FP6, SAS6-CT-2006-042942), has been
described elsewhere [17–22]. However, because there were many different aspects of con-
tent to be taught, i.e., declarative (density and floating sinking), procedural (control of
variables strategy), and epistemological knowledge (nature and role of models), the focus
of the previous published papers has been other than describing and justifying the didactic
transformation, which we hope to do here.

In this paper, we briefly describe elements of our developmental research that have
already been published, focusing, however, on the didactic transformation of content, as
this has not yet been thoroughly presented or discussed and which we consider to be of
paramount importance. Therefore, our aim is to describe the didactic transformation of
the content of the TLS concerning FS phenomena, to underline the factors which influ-
enced the process of its development, and to present the limitations of the transformation.
Specifically, we justify the reasons why we chose the density-based explanatory model
for FS phenomena, rather than the buoyancy-based (see Section 3), as well as providing
arguments for the didactic transformation of the concept of density, which is still an open
issue for an effective approach to FS learning. Furthermore, selected essential aspects of the
revised version of the TLS, which was adapted from an initial study, are also described [19].
Moreover, a short presentation of both our published (from previous papers) [20,21], and
unpublished results in FS [22], on the implementation of the revised TLS in a real-class
environment is given. In this sense, we consider that this work is an original sample of a
developmental research description in the framework of Design-Based Research approach
in science education [8,23,24].

2. Alternative Ideas and Difficulties in Explaining FS Phenomena

Students seem to perceive FS phenomena visually. That is to say that they decide
whether an object is in a floating or sinking state based on the object’s position relative
to the surface of the liquid [1]. For instance, the majority of students in Joung’s study [1]
answered that an object was floating in the water when at least a part of it was above the
surface, most of whom chose the case where the object touches the surface of the liquid and
fewer chose the case where the object was half-submerged. Also, the majority of students
considered that an object had sunk in the water, in the cases where it was below the surface,
i.e., (a) at the bottom, or (b) in the middle (between the bottom and the surface of the liquid),
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with a decreasing frequency of occurrence, respectively. In the same research, students
considered an object just below the liquid surface either to be floating or to have sunk. Few
students recognized that when the object was between the surface of the liquid and the
bottom, then it is in a state between floating and sinking, and therefore, was suspended
and remaining at rest in the liquid at the same location [1,25].

In addition, it seems that students explain and describe the phenomena in rela-
tion to perception-based macroscopic natural properties, such as weight, length, and
volume [5,26–28]. In other words, students formulate their estimation concerning the float-
ing of solid objects in a liquid by taking into account: (a) the heaviness/size of the objects,
(b) the existence of hollows, (c) the existence of holes, (d) the interface/edge, orientation,
shape and/or texture of the floating object, (e) the dimensions of the tanks in which floating
takes place, (f) the amount and/or depth of the liquid, and (g) the liquid stickiness [29].
Needless to say, one of the most prevalent alternative ideas that students hold is that of
case (a), that is, students most often claim that an object floats because it is small and/or
light, and it sinks because it is big and/or heavy [26,30].

Consequently, when interpreting FS phenomena, students tend to focus on the prop-
erties of the objects or the liquids. Additionally, they seem to merely use causal linear
reasoning, referring only to an object’s or a liquid’s property, instead of causal relational rea-
soning, which involves comparing object and liquid densities in their interpretations [31].
However, this is not the only obstacle in students using the specific causal relational rea-
soning to explain FS phenomena. Researchers who have studied students’ conceptions of
density [26,32,33] have found that they had difficulty in understanding this abstract con-
cept. Firstly, students find it hard to understand the ratio of two quantities [34], such as that
of mass per volume, particularly when those quantities are changing simultaneously [35].
Secondly, the concept of density is a property that is not directly perceived through the
senses but can only be understood through mental reasoning and/or calculations [33,36].
Thirdly, students’ difficulty in understanding density is rooted precisely in an already
developed conceptual framework about matter and material kind [37], which is composed
of perception-based physical quantities where the raw scientific notions of weight, volume
and density coexist undifferentiated [33]. Consequently, these students consider density to
be proportional to the size of an object or the object’s quantity of matter.

To fully understand the reasons why an object floats or sinks, one needs to comprehend
that the concept of water pressure is an intensive property, while the concept of buoyancy
is a force, and not, as is usually the case with students, a property of an object, within the
framework of Newtonian mechanics [4,5]. However, students very often confuse the FS
states with the explanatory model; that is, they equate buoyancy, a construct/force in an
explanatory model, with the state of floating. They also seem to think that buoyancy is a
property of an object opposed to the interaction between an object and its surrounding
fluid, as they are unable to understand buoyancy as a force, i.e., the interaction between
two entities. Furthermore, many students have the misconception that the buoyancy of an
object is inversely proportional to its density, while others are not sure about the direction
of buoyancy [4].

In sum, students confront severe difficulties in interpreting FS phenomena in the
framework of both density-based and buoyancy-based explanatory models. The reasons
for this difficulty, however, are not the same in both cases. In the former, the difficulty
is mainly due to the non-differentiation of the concepts of weight, mass, and density, in
contrast to the latter case, where it is mainly due to the students’ inability to understand
the concept of force as the interaction between two entities.

3. Floating and Sinking Teaching Approaches

The way educators approach the teaching of FS phenomena can be put into two
broad categories, according to the central concept of the explanation of the phenomena
(Figure 1). In the first category are those cases that provide density-based explanations,
e.g., [29], following the so-called elimination of variables approach. This approach focuses
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on highlighting the variables that affect the FS phenomena in order to derive a prediction
rule that will determine “which” body will float. In the second category are those cases that
provide buoyancy-based explanations, e.g., [38], following the so-called scientific approach,
that is, an interpretation using an equilibrium mechanism in order to explain “how” an
object floats [15]. Several researchers provide both explanations concurrently [4,32].

Figure 1. Categories of teaching approaches to floating and sinking phenomena; recreated by the
authors according to [15].

The scientific approach is rooted in Archimedes’ and Galileo’s explanatory models [15,39].
In brief, Archimedes explained the floating of a solid in an infinite container, using only
the concept of weight as a quality/property of objects [40] and comparing the weight
of the solid to the weight of the fluid that was displaced by the immersed portion of
the solid. He proposed that the weight of the fluid displaced would be equal to the
weight of the solid. However, Archimedes’ model was effective only for FS phenomena in
infinite containers [40]. On the other hand, Galileo overcame Archimedes’ inadequacy by
explaining floating of a solid in a finite container. Galileo’s model comprised important
discriminations of new-defined concepts [15,40], such as the distinction of floating and
surface tension phenomena [41] and the differentiation of the concepts of weight and
specific weight in a qualitative manner [15]. Both models derive their floatation laws
from an analysis of the conditions that result in equilibrium. However, Galileo’s model
consists of more delicate and abstract concepts and, subsequently, can explain a larger
range of phenomena [15,39]. On the other hand, the elimination of variables approach
is rooted in Inhelder and Piaget’s work [42]. These researchers were the first to record
children’s explanations on the floating phenomenon, focusing mainly on the ability of
children to (a) classify a set of objects according to whether they float or sink in the water,
and (b) explain the criterion by which the classification was made [15]. Moreover, they
were interested in testing children’s ability to eliminate inconsistencies in their initial
explanations, such as using the weight of objects in order to interpret FS phenomena, and at
the same time, to formulate the predictive floating law; that is, objects float if their density
is less than that of water, where density is defined as the ratio of weight to volume. Thus,
contrary to the scientific approach, which focuses on the construction of an interpretive
model that will explain “how” a body floats, the elimination of variables approach focuses
on the construction of a predictive model for FS phenomena, with the latter being less
complicated, and subsequently, an easier process for students [15].
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Usually, the density-based approach is adopted by primary schools and junior high
schools [6,15], while senior high schools and colleges/universities adopt the buoyancy-
based approach [15] or a combination of both [4]. When one develops a curriculum for
this topic, the chosen approach, whether density- or buoyancy-based, would also involve
selecting different steps, practices and concepts in the teaching and learning process.
Therefore, in the case of the elimination of variables approach being chosen, there would
need to be an intermediate goal of the learning process, which would involve differentiating
weight, volume, and density as this approach requires a clear understanding of these the
concepts (Figure 1). Another intermediate goal would be explaining FS phenomena by
using a partially correct explanatory model, that is, that an object’s density as a property of
materials determines its sinking or floating.

A correct explanatory model within the frame of the elimination of variables approach
would be to use the concept of density in causal relational reasoning, that is, comparing the
densities of an object and a liquid in order to come to a decision about the FS situation [31].
Contrastingly, in those curricula where FS is taught through an analysis of the equilibrium
approach, it is not needed for students to discover or to be introduced to any interme-
diate/precursor concepts [29]. For example, sinking and floating can be explained as a
result of the balance between gravity and buoyancy. In that case, the forces of buoyancy
and gravity are the required concepts for the final learning goal. However, both buoyancy
and gravity are scientific—rather than intermediate/precursor—concepts, which makes
their understanding more difficult. Although the latter explanatory model is more potent
than the first one, because it is capable of explaining more cases of natural phenomena,
e.g., motion involved in FS phenomena, concurrently, it is more complex, and hence, more
difficult to understand, especially for younger students [4]. This is one of the reasons why
primary and junior high schools adopt the density-based approach, in other words, the
elimination of variables approach. In this case, teachers are faced with the difficult choice
of introducing density using one of the following three ways: (a) the mathematical ratio
of mass per volume, (b) the particle theory of matter, or (c) a visual representation that
emphasizes the qualitative aspect of density [15]. However, the first case, i.e., a math-
ematical introduction of density, has been proven to be ineffective, due to the fact that
students find it hard to differentiate between the concepts of mass, volume and density, or
understand that density is an intensive quantity [15,34]. In addition, the second case, i.e.,
using the particle theory of matter, would most probably create misconceptions or reinforce
students’ prior ideas, such as the non-differentiation of density and denseness [43]. It has
been shown that introducing density through this approach is rather abstract, which makes
it very difficult for 9- to 12-year-old students to comprehend [44]. It would, thus, appear
that the last case is the most appropriate because, in contrast to the first two, the use of a
visual representation also provides opportunities for differentiating the focal concepts [26].

In the last few decades, teaching approaches have been developed in the framework of
inquiry, emphasizing both the content of science and scientific practices [29,45,46]. As can
be seen in Figure 1, there is a need for the emphasis to be on the understanding of the meta-
concepts of scientific practices, e.g., the process of developing evidence-based conclusions
through an experimental procedure, which, from an early stage, had been the focus of the
elimination of variables approach. By this comment, we do not claim that inquiry-based
teaching is not suitable or feasible to be implemented in the scientific approach of the anal-
ysis of equilibrium for FS phenomena. Rather, in order for the results of the eliminating of
variables, experimental procedures to be understood and adopted by students, they need to
be aware of the reasoning behind the scientific practices involved [15,46]. We claim that the
TLS described in the next section is an example of effective density-based implementation,
concurrently aiming at declarative knowledge (FS and density), procedural knowledge
(control of variables strategy), and epistemological knowledge (nature of models) [18].
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4. Description of the TLS: Emphasis on the Content of FS and Its Didactic Transformation

4.1. The Design Principles of the TLS

A case example of the elimination of variables approach for teaching and learning FS
phenomena is presented with the five-unit TLS entitled “Density of materials in floating
and sinking phenomena: Experimental procedures and modelling”. The design principles
of the TLS have been discussed in detail in former publications, e.g., [19]. For the sake of
clarity, a brief reference to the six design principles of the TLS is made here, focusing on
those regarding FS didactic transformation and relevant activities. More specifically, the
design principles of the TLS were as follows [19]:

1. The didactic transformation of content [11] concerning FS phenomena, that is, firstly,
the decision to adopt a density-based approach to negotiate FS phenomena, and,
secondly, the decision to introduce the concept of density in a qualitative way. Both
decisions were driven by the difficulties that primary school students confront when
prompted to negotiate FS phenomena.

2. The participatory design and developmental character [47] of the TLS includes teach-
ers, together with researchers, in its designing, developing and evaluating processes.
Teachers discussed the nature of the TLS activities with the researchers, how they
understood the activities, the possible difficulties that students might face, and con-
sequently the possible changes and/or specific teaching methods that would be
suggested. Thus, the research was adapted to the particular needs of the school and
the students.

3. The TLS’s iterative process [8], which provided the opportunity to both researchers
and teachers to evaluate together the initial implementation of the TLS and to propose
improvement modifications [19]. Thus, the iterative evolution of the TLS contributed
to the final version of the TLS and its didactic transformation.

4. The technological problem scenario, to provide a supportive context for learning [48].
The scenario was based on salvaging the Sea Diamond shipwreck. Discussion is
initiated with an everyday problem (in our case, technological), which poses ques-
tions. These are answered through scientific knowledge that is eventually applied
to solve the initial real-life problem. The combination of technological and scientific
knowledge in teaching promotes active learning, improves students’ performance
and attitudes towards science, enhances positive interaction between teachers and
students, and provides students with opportunities to participate in authentic ex-
ploratory processes, which are usually carried out by scientists [49,50].

5. The Inquiry-Based Science Education (IBSE) approach, by emphasizing the need to
use scientific practices: (a) as a means of teaching and learning, e.g., investigating the
variables that possibly influence the FS phenomena in groups, and (b) as an educa-
tional end, whose aim is to understand specific aspects of scientific practices [46,51,52].
Within this framework, learning is perceived as active and student-centered, due to
pupils’ increased interest and autonomy [53], and the intention is for them to gain
ample practice in scientific reading and writing [54].

6. The use of digital tools, such as a simulation that was developed from scratch for
the TLS [17]. Looking at existing educational software on FS phenomena, the pro-
posals were inappropriate for our task, mainly because it was difficult to implement
the inquiry-based activities and also because they tended to have a mathematical
approach to the introduction of the concept of density. Therefore, a specially designed
software package that followed the design principles of the TLS was designed from
scratch. Furthermore, a simulated website on a local network was designed and
developed for students to investigate information about materials, with the aim of
becoming accustomed to scientific reading and writing skills.

4.2. The Didactic Transformation of the TLS

FS phenomena are not included in the Greek primary school curriculum. However, the
concept of density is introduced in fifth grade (10–11-year-olds) as a property of materials,
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with a limited number of examples, including one task that negotiates the sinking of a
real ship. Although the curriculum proposes a guided discovery approach for negotiating
phenomena and concepts, and one of the aims explicitly referred to is for students to
understand the scientific method, the majority of teachers implement traditional deductive
teaching-learning practices, followed by experimental demonstrations, whereas group
work is sporadic [19].

As mentioned, the TLS was developed within the “Materials Science” project and is
proposed as part of a broader curriculum for primary and lower-secondary level students
(10- to 15-year-olds). The general objective of this broader curriculum is to restructure
students’ conceptual framework as regards the concepts of matter and material kind [33],
including fluids. The elimination of variables rather than an analysis of equilibrium
explanatory model for FS phenomena was adopted for reasons to do both with students’
difficulties and the project’s characteristics. Students’ difficulty in understanding and
effectively implementing an equilibrium mechanism, such as the buoyancy-based model to
explain FS phenomena, has already been documented [4,15] and is analytically discussed
in Section 3.

Furthermore, the emphasis of the project, which, on the one hand, is on the properties
of materials properties, and the other, on inquiry-based teaching and learning, appears to
be more compatible with the elimination of variables approach, that is, the density-based
approach for teaching FS phenomena [15] (see Section 3). By highlighting the variables of
these phenomena in order to derive a prediction rule that will determine “which” body
will float, instead of negotiating the forces that are acting on an object when it is immersed
in a liquid, we believe is easier for students in this age range to understand, and thus more
conducive to the teaching/learning process.

It was decided to introduce the concept of density through the visual “dots-in-a-box”
representation (Figure 2) as a property of materials [26]. As students would have already
investigated the variables that affect the FS phenomenon, this visual representation shows
several variables in only the one diagram. Obviously, the “dots-in-a-box” representation
depicts the weight of the object by the number of dots, and the cube represents its volume
or size, while its kind of material is now assigned to the conjunction of the weight and
volume and not to any realistic representation of its external appearance. This enables
students to easily make comparisons of the densities of the different materials in order
to predict and explain FS phenomena, and if possible, to grasp the “heavy for its size”
intermediate/precursor concept of density. In this way, the usual introduction of density
using the mathematical ratio mass to volume, which has been shown to be difficult for
students of these ages to grasp such relationships, has been bypassed [34].

Figure 2. The visual “dots-in-a-box” representation of the density of several materials, reprinted
by permission from Springer Nature Customer Service Centre GmbH: Springer, Iterative design of
Teaching-Learning Sequences, by D. Psillos and P. Kariotoglou, 2016 and by permission from [20],
http://earthlab.uoi.gr/tel/index.php/themeselearn (accessed on 20 March 2021).

With a view to preventing or eliminating any misconceptions, such as “all hollow
objects float” or “objects with air always float”, as reported in the study by Yin et al. [29],
we also thought it best to first introduce students to homogenous objects in the variable of
solids. In the TLS, density is introduced within the context of floating or sinking of various
everyday objects. First, students are introduced to homogeneous and then to composite
objects, such as an iron cube and a ship, respectively, using causal relational reasoning, in
other words, by comparing the density of the object and liquid, one is able to interpret
and/or predict the FS of each object [31].
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In sum, the didactic transformation of the TLS consists of two core choices (a) selecting
the density-based approach to teach FS, and (b) qualitatively introducing the concept of
density through the “dots-in-a-box” representation. Reference is made here to the other two
subsidiary but significant aspects of the didactic transformation: (a) integrating scientific
and technological knowledge into a context-based approach (fourth design principle),
and (b) incorporating guided discovery experimentation into the explicit teaching of
procedural and epistemological knowledge within an inquiry-based approach (fifth design
principle). The teaching/learning environment for the experimentation activities was
initially structured, which was gradually decreased with the aim of enabling students to
become more autonomously involved [19,53].

More specifically, FS phenomena are introduced in the fourth design principle through
a technological-problem scenario based on salvaging the Sea Diamond shipwreck [19].
The scenario, which runs throughout the entire TLS, has a dual role, on the one hand,
it forms the familiarization phase, and on the other, it involves the following scheme:
“technological problem”, “scientific investigation”, and “return to the problem” with
the aim of increasing students’ curiosity and motivation leading to the solution of the
problem [49,50]. In contrast to the traditional approach, which proposes only the scientific
investigation of the phenomena and the related concepts, our context-based approach
through the technological-problem scenario increases students’ interest and succeeds in
involving them in the entire teaching/learning process [48].

The content of the TLS within the fifth design principle, which is the IBSE approach,
includes elements of the inquiry method, i.e., aspects of the control of variables method as
well as the nature and role of the models [18,19]. In other words, students are explicitly
taught that to test if a variable influences a phenomenon, e.g., FS, then only this variable
should differ, and all the other independent variables should be controlled [55]. In addi-
tion, students are explicitly taught aspects of nature and the role of scientific models, for
instance, that models are not an exact representation of reality and that they are used to
describe, predict, or explain a phenomenon [19,56]. Our hypothesis that procedural and
epistemological knowledge would positively affect the understanding/interpretation of
FS phenomena has been confirmed [18]. Thus, our claim that inquiry as a teaching goal
constitutes part of the TLS’s didactic transformation has been reinforced.

Summing up, the didactic transformation of the TLS described in this paper is based on
(1) the elimination of variables approach to teaching FS phenomena, and (2) the qualitative
introduction of the concept of density using the “dots-in-a-box” visual representation [26].
The explanatory model proposed for students to use in order to predict and explain FS
phenomena for both solid and composite objects is based on the “dots-in-a-box” repre-
sentation, in conjunction with the causal relational FS rule, which is, if an object’s density
is smaller than the liquid’s density, then the object will float, and if an object’s density is
greater than the liquid’s density, then the object will sink. We maintain that it is easier
for young students (primary and junior high school) to grasp a qualitative representation
of density, as a property of materials, rather than the scientific knowledge of the specific
content, which is traditionally presented as a mathematical ratio of mass per volume, or
even weight per volume [26,27]. Understanding the concept of density as “heavy for its
size”, thus perceiving density to be related simultaneously to both weight and volume,
was an implicit teaching goal of the TLS. In this sense, we claim that by using the “dots-
in-a-box” visual representation in their explanations for FS phenomena, as a property of
materials and not of objects, students can differentiate the concepts of density and weight
and consequently come closer to an intensive perception of the concept of density.

Every didactic transformation of content in science education is characterized by
limitations related to (a) the kind of explanation of the focal phenomena and/or (b) the
range of the phenomena explained when the model that is related to the transformed
content is being used [12]. Therefore, the explanatory model of FS presented here (visual
representation of density in conjunction with causal relational FS rule) has some limitations
in comparison to other more abstract explanatory models (e.g., the analysis of equilibrium
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model for the explanation of FS and/or mathematical ratio for the representation of density).
These are:

1. Only static FS phenomena can be interpreted: It was decided not to study buoyant
force as an alternative explanatory model of FS phenomena because we considered
the analysis of equilibrium approach between buoyant and gravity forces, which is
implied in the buoyant force model (see Section 3) is particularly difficult for primary
school and some junior high school students. Additionally, the concept of displaced
liquid, which is not necessary for the density-based model, was omitted as it might
distract students from the expected learning outcomes of the TLS. This means that
several aspects of FS phenomena regarding objects in fluids that are not at rest but in
motion cannot be explained. For instance, the motion of an object that is initially sunk
in the water and then is released when the density of the object is smaller than that of
the water can only be explained if an analysis of equilibrium model is used.

2. Only a qualitative estimation of material density can be determined: We are aware
that the qualitative “dots-in-a-box” representation does not accurately match the
actual value of material density. It provides an approximate estimation of density that
also enables an approximate estimation of the inequality of the relationships between
the densities (larger-smaller). For example, the relationship between the density of
oil and rubber, of course, is not equal to the ratio of one to two (1:2) (Figure 2); the
diagram depicts only that the density of rubber is larger than that of oil. However,
when it is necessary to determine the density of a composite object consisting of two
materials of different densities, the only information the qualitative “dots-in-a-box”
representation can give us is that the density of the composite object ranges between
the densities of these two materials. In contrast, if we use the mathematical ratio
of the concept of density, then we can precisely calculate the average density of
the composite object. Another limitation of the qualitative introduction of density
as a property of materials is that it cannot predict nor explain changes in density
(especially of gases) under temperature and pressure fluctuations. Such changes
could be explained microscopically, at an older age though, using the particle model
of matter.

4.3. The FS Content of the TLS

The teaching and expected learning trajectory of the TLS implementation, along with
a brief description and the activities in the five units, are presented here. The sequence
of the activities is a fundamental element of the teaching design and implementation.
In order to focus on the content that is directly relevant to FS phenomena, we do not
include here any content to do with the control of variables strategy and models, which
has, however, been described in previous publications [18,19]. The description follows
the scheme of “main aim, content, and activities that students participated in” (Table 1).
Students worked: (a) in groups of three to complete structured worksheets on both the
real and simulated experiments that followed the POE (Predict–Observe–Explain) teaching
strategy [57], and/or (b) in a whole class arrangement, following formative assessment
activities [4].

In the first unit, our main aim was to provide students with a familiarization phase of
FS through the technological problem of salvaging the shipwreck. Students participated in:
(a) an introductory discussion about the variables that might influence floating and sinking,
resulting in five independent variables: weight, material, and shape of the object, width of
the container, type of liquid; and (b) a thorough discussion about the concept of a solid and
homogeneous object, in contrast to a hollow object, in order to focus on solid objects. The
teacher demonstrated an experiment in the POE approach to check if the first of the five
independent variables, i.e., the weight of an object, influences the object’s FS situation.
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Table 1. Main aim, content and activities concerning FS in the five units of the TLS.

Unit Main Aim Content Activities

1st Familiarization phase through
technological problem.

Technological problem of lifting shipwreck.
Distinction of variables that possibly influence FS.
Difference between solid and hollow objects.

Groups and classroom discussion.
POE activities.
Demonstration of experiments.

2nd Test variables that influence FS.

FS of solid objects influenced both by the
material of object and liquid.
FS not influenced by other variables, e.g.,
weight of object.

Groups and classroom discussion.
POE activities with gradual
increase in openness.

3rd

Introduction of “dots-in-a-box”
representation of density.
Use of causal relational
FS rule for solid objects in water.

“Dots-in-a-box” representation describes
“heavier-lighter” relationship between
different materials.
Compare “dots-in-a-box” representations for
solid objects and water to decide objects’ FS
in water.

Groups and classroom discussion.

4th

Generalization of causal
relational FS rule.
“Dots-in-a-box” renamed
“density”.

Density of a two-material composite object lies
between the densities of these two materials.
Compare composite object’s and liquid’s
densities to decide object’s FS in a liquid.

Groups and classroom discussion.
POE activities.

5th Lifting shipwreck. Implementing generalized causal relational FS
rule within the technological framework. Groups and classroom discussion.

In the second unit, our main aim was for the students to understand that the FS of a
solid and homogeneous object is influenced by the material of the object and the type of
liquid. The POE activities that students participated in were characterized by the gradual
decrease of scaffolding or the gradual increase of openness. In these activities, students
were prompted to test the other four variables that might influence the FS of solid and
homogeneous objects; we note here that the teacher has demonstrated the variable weight
in the previous unit.

In the third unit, the main aim was the introduction of the “dots-in-a-box” represen-
tation of density and the use of this representation to predict and explain FS of solid and
homogeneous objects, in conjunction with the causal relational FS rule, i.e., if an object’s
“dots-in-a-box” representation is smaller than the water’s, then the object will float in water,
and if an object’s “dots-in-a-box” representation is greater, then it will sink in the water.
Students: (a) searched and gathered information about the properties of several natural
and artificial materials, such as glycerin and polyurethane, and the ways they can be used,
(b) negotiated with cubes of the same volume but different material and were assigned with
a task prompting them to express the “heavier-lighter” material relationship (Figure 3),
and (c) completed a task in a simulated environment, using a balance in order to put cubes
of the same volume but different materials in the order of heavier to lighter. The sequence
of densities of the materials in Figure 2 resulted from this sequence of tasks.

Figure 3. One of the students’ proposals to represent the “heavier-lighter” relationship of cubes of
different materials, noted on the relevant worksheet.

In the 4th unit, the main aim was to generalize the causal relational FS rule to explain
FS in any liquid and for both solid and composite objects. First, students participated
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in real and simulated experiments of several homogeneous objects in glycerin instead of
water, emphasizing once again the role of the type of liquid in the explanatory model of
FS phenomena (Figure 4a). In addition, understanding that the density of a two-material
composite object lies between the densities of these two materials was crucial, so students
participated in real experiments of composite objects in water, emphasizing the role of the
average density of an object in predicting and/or interpreting its FS. In this unit, the phrase
“dots-in-a-box” was replaced with “density” to refer to the property of materials.

Figure 4. (a) A simulated experiment using glycerin instead of water, reprinted by permission from Springer Nature
Customer Service Centre GmbH: Springer, Iterative design of Teaching-Learning Sequences, by D. Psillos and P. Kariotoglou,
2016; (b) simulated environment to investigate FS of the Sea Diamond shipwreck.

In the 5th unit, the main aim was to find the best solution for lifting the shipwreck, if
possible, by implementing the generalized causal relational FS rule. The students had the
opportunity to work in groups both in real and in a simulated environment (Figure 4b) so
as to investigate the FS of the Sea Diamond shipwreck, studying the effect of excess water
in the hold of the ship and discuss how it could be salvaged.

5. Selected Results

Here, a short description of the research method, and selected results on the learning
of FS, of the implementation of the revised TLS are presented to show its effectiveness and
its didactic transformation.

5.1. Method

The TLS described in this essay was developed, implemented and evaluated twice
in an iterative evolution manner [19]. The initial and the revised versions were imple-
mented on twelve and forty-one 5th graders, respectively, in a real-classroom educational
context [20–22].

Data were collected using several sources (questionnaires, interviews, researchers’
notes, etc.). For the sake of brevity, we focus on six Tasks of the questionnaire (see Ap-
pendix A) in order to evaluate the impact of the TLS implementation on students’ FS
explanations. The students answered the same questionnaire before, immediately after the
TLS intervention, and seven months later (Pre, Post, and Delayed Post, respectively). More
specifically, Tasks 1 and 2 were answered all three times, whereas Tasks 3–6 were answered
in the Post and Delayed Post Tests. These tasks were not included in the Pre-questionnaire,
either because students did not know the ‘dots-in-a-box’ representation before the inter-
vention (Tasks 3 and 4) or because the questions were too complex to be attempted before
the intervention (Tasks 5 and 6). While the results for Tasks 1–4 have been published in
previous papers [20,21], the findings for Tasks 5 and 6 are presented here for the first time.
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5.2. Results

The analysis results of students’ responses for the six Tasks (Means and Standard
Deviations) are presented in Table 2.

Table 2. Means and Standard Deviations of the students’ responses in the six Tasks (n = 41).

Pre Post Delayed Post

M SD M SD M SD

Task 1 1.10 0.664 1.78 0.936 1.68 0.879

Task 2 0.78 0.613 1.39 0.862 1.37 0.859

Task 3 - - 0.63 0.488 0.56 0.502

Task 4 - - 0.73 0.449 0.54 0.505

Task 5 - - 0.44 0.502 0.44 0.502

Task 6 - - 0.51 0.506 0.46 0.505

Tasks 1 and 2 examined students’ explanations about FS phenomena, whereas the
‘dots-in-a-box’ visual representation was not given. In both Tasks, the weight or the size of
the object is the characteristic that could mislead students’ responses to the alternative idea
that “an object sinks because it is heavy” or “because it is big”. The responses were classified
thus: 0 for no or irrelevant answers, 1 for reference to the object’s weight, 2 for reference to
the material the object consists of, and 3 for reference to the causal relational FS rule, i.e.,
comparing the densities of the object and the liquid to predict and/or explain the object’s
FS. The study findings showed that there was a statistically significant improvement after
the TLS intervention for both Tasks 1 and 2 (z = 3.446, p < 0.001 and z = 3.801, p < 0.001,
respectively), which was retained seven months later. More specifically, for Task 1, the
mean was 1.10 for the Pre-Test, which went up to a high 1.78 in the Post-Test, and which
was maintained with a slight decrease seven months later in the Delayed Post-Test (1.68).
The results were similar for Task 2, where the mean in the Pre-Test was only 0.78, which
rose to 1.39 immediately after the TLS intervention in the Post-Test and was maintained
almost at the same level (1.37) in the Delayed Post-Test.

Tasks 3 and 4 examined students’ explanations about FS in a simulated environment,
while the “dots-in-a-box” representation was also given. Students’ responses were classified
as 0 for causal linear reasoning, i.e., focusing only on one characteristic of the objects, and
1 for causal relational reasoning, i.e., a comparison of the densities of the object and the
liquid. The results showed that most of the students were able to use the “dots-in-a-
box” representation to successfully apply causal relational reasoning in their responses,
immediately after the intervention and seven months later (Table 2). More specifically, for
Tasks 3 and 4, the means for the Post-Test were 0.63 and 0.73, respectively, which decreased
slightly in the Delayed Post-Test to 0.56 and 0.54, respectively. In addition, it appears that
most of the students who were able to apply causal relational reasoning in Task 4 could
also understand differences in float levels in relation to material density [20], a topic that
had not been covered in the intervention.

The last two Tasks 5 and 6 examined whether students could effectively determine the
position of an object, in relation to the surface of a liquid, in order to establish its density.
In Task 5, in order for students to correctly decide the relationship between the densities
of the two objects by applying the causal relational FS rule, they would have to disregard
the size of the two objects, which could have been misleading. Students that did not, even
qualitatively, differentiate between weight and density would intuitively think that the
bigger object had a greater density. Students’ responses were classified as 1 for using the
causal relational FS rule and 0 in all other cases. The results in Table 2 show that a large
number of students were able to successfully answer Task 5, with a mean of 0.44 in both the
Post- and delayed Post-Tests, thus indicating that they, at least, qualitatively differentiated
between weight and density. For Task 6, in order to successfully apply the causal relational
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FS rule and come to the conclusion that the density of the object is equal to the density of
the liquid, students had first to recognize that the object was in a state between floating
and sinking, and therefore suspended, which meant that it remained in the liquid at the
same location at rest. Responses were classified as 1 for recognizing that the object was
suspended and for successfully applying the causal relational FS rule, and 0 in all other
cases. The results in Table 2 show that a large number of students were able to successfully
answer this question, with means of 0.51 and 0.46 for the Post- and Delayed Post-Tests,
respectively. This finding indicates that the students were able to apply the causal relational
FS rule in a new situation, that of the suspension of an object in a liquid, which had not
been covered in the TLS intervention.

6. Discussion and Conclusions

In this paper, we describe and examine certain elements in the teaching of floating
and sinking, with focus on the didactic transformation of content, which was part of a
long-term developmental study. The didactic transformation process is an essential aspect
in each teaching effort and especially in the design and development of a TLS.

In our research on the teaching of floating/sinking (FS) phenomena to 5th grade
Primary school students, we adopted the elimination of variables approach (density-based)
rather than an analysis of equilibrium explanatory model (buoyancy-based). The reasons
for this decision were: (1) students find it difficult to understand and effectively implement
the buoyancy-based model to explain FS, in contrast to density which is an easier concept
to comprehend; (2) The emphasis of our developmental study project was on materials and
their properties; and (3) Inquiry-based teaching and learning is more compatible with the
elimination of variables approach, for the teaching of FS phenomena, as well as being more
in line with the current Greek school curriculum.

The concept of density was introduced to students qualitatively through a visual
representation called “dots-in-a-box”. The qualitative method was chosen over (a) the
mathematical ratio of mass per volume and (b) the particle theory of matter. The reasons for
this choice are as follows: (1) the visual representation makes it easier for students to grasp
this scientific concept, whereas the mathematical introduction of density has several times
been shown to be ineffective, at least with primary and junior high school students [34];
(2) misconceptions would most likely arise with the particle theory of matter; and (3)
introducing density with a visual representation also provides students with opportunities
for differentiating the concepts involved in the interpretations of FS phenomena, e.g.,
density, weight and volume.

The study findings strongly suggest that our TLS and the didactic transformation of
content that was developed had a significant level of success in the teaching/learning of FS
to young students, which seems to have been maintained seven months later. Most of the
students adopted explanations that were compatible with scientific ones and were able to
overcome their prior alternative ideas, such as “heavy objects sink and light objects float”.
In addition, when given the “dots-in-a-box” visual representation of density, the students
successfully implemented the causal relational FS rule, i.e., comparing the densities of
the objects and liquid to predict and/or explain the FS state of objects. Finally, several
students were able to implement the density-based model, which they had been taught, to
explain situations that had not been covered in the TLS intervention, such as successfully
predicting the floating level of objects made of different materials and applying the causal
relational FS rule for objects suspended in a liquid. Both cases are considered difficult for
students in this age range (10–15 y-o) to comprehend and explain [1].

We consider that this work is an original sample of a developmental research descrip-
tion, in the sense of the Design-Based Research approach in science education [8,23,24], and
consequently an example of effective good teaching practice, that can help teachers to elab-
orate on their teaching and inspire innovative treatment of the topic of floating and sinking
in science curricula for primary school physics. The teaching and learning intervention for
floating/sinking phenomena, which is in itself a difficult conceptual science topic, to this
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young target population, was successful, we strongly believe, due to the contribution of
the didactic transformation of content.
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Appendix A

The questionnaire tasks

Task 1

On a big ship, among other objects, you can find an anchor. Does it float or sink if we drop
it into the sea? Justify your answer.
The anchor: floats sinks I do not know
Because:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Task 2

Costas drops a small piece of a particular material into a container filled with water, and
he observes that it floats. Afterwards, Irene drops a bigger piece of the same material into
the same container. In your opinion, at which point will the big piece stop moving? Circle
which number: 1, 2 or 3 in the diagram you think represents the final position of the two
bodies that Costas and Irene dropped into the container. Justify your choice.

Task 3

You are given two objects A and B, and a container which contains a liquid. The densities
of the two objects and that of the liquid are given with the “dots-in-a-box” representation,
as you can see in the gray box. If you drop objects A and B into the container with the
liquid, what will their final position be? Draw objects A and B in their final position in the
liquid. Justify your answer:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Task 4

The densities of the two objects and that of the liquid are given with the “dots-in-a-box”
representation, as you can see in the gray box. We drop objects A and B into the liquid.
Circle which number: 1, 2 or 3 in the diagrams best represents the final positions of the two
objects after we have dropped them into the liquid.

Justify your choice:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Task 5

We drop the two Objects (A) and (B) in the liquid (C). Object (A) floats in the liquid, whereas
Object (B) sinks in the liquid. Decide if the following sentence is correct or incorrect:

Object (A) has a greater density than Object (B).
It is right It is wrong I don’t know

Justify your choice:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Task 6

While Georgia, Petroula, and Sophia were playing with some toys, one of the toys acciden-
tally fell in the container with the liquid that you can see in the picture. The girls noticed
that the toy did not float up towards the surface of the liquid, nor did it sink to the bottom
of the container. They wondered what the density of the toy could be, but they disagreed
in their opinions:

Georgia says that this object has a greater density than the liquid.
Petroula believes that the object has a lower density than the liquid.
Sophia says that the object has the same density as the liquid.

Which of the girls do you agree with? With:

Georgia Petroula Sophia I don’t know

Justify your choice:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Abstract: Open water flume tanks with closed-loop circulation driven by centrifugal pumps are
essential for hydro experimentation in academic settings as well as research centers. The device is
also attractive due to its versatility and easy-to-maintain characteristics. Nevertheless, commercial
open flume systems can be expensive and become less prioritized in engineering schools. This paper
describes the design and fabrication of an affordable, medium-size water flume tank, suitable for
education purposes. The central piece of the system is a transparent observation chamber where fluid
experiments are typically conducted and observed. The expected maximum average water speed in
the observation chamber of about 60 cm per second was achieved by the inclusion of a 3 hp centrifugal
pump. The size and capacity of the current design were constrained by space limitation and available
funds. The educational facility was assigned as a two-semester multi-disciplinary capstone senior
design project incorporating students and faculty of mechanical, electrical, and computer engineering
programs in our campus. The design process provides a training platform for skills in the area of
Computer Aided Designs (CAD), Finite Element Analysis (FEA), Computational Fluid Dynamics
(CFD), manufacturing, and experimentation. The multi-disciplinary project has contributed to the
improvement of soft skills, such as time management, team working, and professional presentation,
of the team members. The total material cost of the facility was less than USD 6000, which includes
the pump and its variable frequency driver. The project was made possible due to the generous
sponsor of the Vibration Institute.

Keywords: open water tank; education; fluid mechanics

1. Introduction

Open water flumes provide effective hands-on multidisciplinary learning tools for
students matriculated in engineering programs, as well as in the physical education pro-
gram [1]. Senior students participating in the design and fabrication process of the flume
obtained the opportunity to reinforce fundamental engineering concepts and to master
valuable technical skills [2–4]. The reported open flume was motivated by the need of a test
chamber for an ongoing research on bladeless turbines, as well as the desire to have such
device in the fluid mechanics laboratory. The current design was inspired by a small scale
commercial water flow tank used in the investigation of vortex-induced autorotation and
oscillation of straight cylinders [5,6], as well as the energy potential from such vibration
modes of symmetric geometries [7,8]. Open channel tanks are paramount for various
hydrodynamic research areas, such as designs of hydrokinetic energy harvesters, investi-
gation of flow characteristics in the presence of obstacles, drag and lift of objects exposed
to fluid flows, etc. The vortex-induced vibration (VIV) of objects exposed to flow has
emerged as attractive potential sources of renewable energy. Additionally, the versatility of
open channel flumes has allowed plethora of vibration modes to be experimented. Sun
et al. used a 40 cm wide and long rectangular channel to convert vortex-induced vibration
and galloping of blunt bodies into electricity via piezoelectric strips [9]. In a small scale
water tank, Cao et al. attempted to amplify the vibration amplitudes of piezoelectric strips
by means of magnet fields [10,11]. Arionfard and Nishi utilized a small (30 cm × 1 m)
water channel to investigate power harnessing potential of pivoted cylinder exposed to
highly turbulent flow [12]. The utilization of much larger size channels allows modeling of
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near-realistic flow and full-scale energy harvesters. Rostami and Fernandes studied the
energy harvesting from the torsional galloping, fluttering, and autorotation modes of flat
and S-shape plates using a 1.4 m, wide 22 m long water channel [13–16]. Furthermore, a 1 m
wide water flume tank is used in the development of VIVACE (Vortex-Induced Vibration of
Aquatic Clean Energy), which exploits the transverse-to-the-flow (lateral) oscillation mode
of VIV at large range of Reynolds numbers using magnets attached to cylindrical bars as
harvesters [17–19]. An open channel with similar width but five times longer (about 42 m
long) was recently used in the attempts to utilize the galloping modes of triangular cylin-
drical bars at much higher velocity [20,21]. Generally, interests in the designs of innovative
hydrokinetic energy turbines have been well facilitated by open water flumes. The facility
is adaptable for various types of turbines and its blades, as well as a range of measurement
needs. Barber et al. studied the power and thrust improvement of axial turbines after
the utilization of carefully designed adaptive pitch composite blades [22]. A small com-
mercial flow loop water tank was used in the investigation of wake behind the propellers
of wind turbines [23]. Open water flume experimentations of vertical axis hydrokinetic
generators, such as Savonius and Darrieus turbines, have been intensified lately. These
turbines are attractive renewable energy harvesters due to their simple designs, low-cost
manufacturing, easy maintenance, and independence of flow direction. Talukdar et al.
demonstrated that the performance of two-bladed semi-circular Savonius turbines is better
than two-bladed elliptical and three-bladed semi-circular designs [24]. On the other hand,
Sarma et al. pointed out that the three-bladed Savonius model performs better in water than
in air flow [25]. It is interesting to note that placing an upstream obstacle can improve the
performance of a modified two-bladed Savonius turbines [26] and Darrieus turbines [27].
Attempts to assemble and test the two turbines into one single hybrid unit have shown
promising outcomes [28,29]. In the hydrology area, large size tanks facilitate investigations
of particle sedimentation carried by water flow [30], improvement of hyporheic zones due
to riverbed restoration [31], and effects of flood waves on river banks [32] among many
other studies. The open channel allows examination of flow qualities, such as head loss
and turbulence, by placing out obstacles in its test section. Investigation of the head loss
due to the presence of submerged baffle-posts [33,34] and examination of water turbulence
due to rib roughness [35] are examples of important studies to be carried out for better
irrigation systems. Examinations on the interaction between vegetation and water flows
shed light on the life quality of river. Here, the vegetation under investigation is carefully
arranged along the base of the test chamber and its effects on water waves are studied
using camera [36]. Lastly, we would like to mention flume experimentations to test the
drag and lift of 3D-printed models of swimmers [1] that show the capability of water flume
to accommodate large range of multidisciplinary applications. The transparent chamber of
the flume certainly allows flow measurement by either direct observation [33,34] or flow
visualization technology such as dye injection [31], hydrogen bubble [37], particle image
velocimetry (PIV) [23,37,38], planar laser-induced fluorescence (PLIF) [39], stereoscopic
digital particle image velocimetry (SDPIV) [40], laser doppler velocimetry (LDV), and
acoustic doppler velocimetry (ADV) [30] methods. It is obvious that the versatility and
easy-to-maintain characteristic of the open flume systems makes the device very attractive
to be included in fluid mechanics and hydrology labs.

The presented work discusses the design and fabrication of a small size (15 cm wide
and 75 cm long test chamber) open water flume with closed flow loop driven by a 3 hp
centrifugal pump. The designs must consider limited funds, available space in the lab,
and mobility requirement. The overall size of the system, the materials for the structural
frame and the chambers, as well as the pump selection, can be determined by the flow
requirement in the observation chamber and experiments that would be conducted. In
this project, the maximum fund was set to be USD 10,000 and the overall size is governed
by the size of the freight elevator in the school. The overall length of the system must be
kept to about 2.5 m or shorter, so that it can fit in the school’s freight elevator. Reported
in this paper are the pump selection process, structural analysis of the supporting frame,

50



Fluids 2021, 6, 242

computational fluid dynamic analysis of the flume, manufacturing process, and conducted
experimentations on the flow visualization using dye injection and investigation of drag
forces on submerged objects. A brief discussion on the budget is presented before the paper
is closed with a discussion and conclusion sections.

2. Basic Design and Pump Selection

This water flow tank is designed to provide straight uniform flow with an average
speed of as much as 60 cm/s through its transparent observation chamber. The cross-
sectional dimension of the observation chamber is planned to be at least 15 × 15 cm2. The
length of the observation chamber was designed to be 60 cm. This length is needed to
provide enough observation room for vortex trail and wakes behind objects exposed to
water flow. The final length of the test chamber is 75 cm. The selection of the maximum
speed and chamber dimension was based on a commercial water flume used in experiments
on vortex-induced oscillation of cylinders [41]. An upstream manifold in a shape of
converging chamber of about 44 cm is added to provide room for the water to reduce
its turbulence and complex characteristics prior to enter the observation chamber. The
height of the observation chamber was designed to be ~1.2 m, a little less than the average
height of human eyes of ~1.4 m. The top side of the observation chamber is expected to be
open to allow direct physical access to the flow and, more importantly, easy placement of
objects exposed to the flow. Tight covering of the top side to achieve high speed of water
flow is possible, but the pressure increase must carefully be calculated. The flow tank was
designed to be mobile, so that it can be easily moved when needs arise. The overall length
and width of the flow tank therefore is constrained to size of the school’s freight elevator of
approximately 2.16 by 2.44 m2. This size put limitation on the total length of the equipment
to be about 2.5 m. The overall budget of this device is set to be less than USD 10,000, based
on the maximum fund by the sponsor for this project: Vibration Institute. As the project
is scheduled for a senior design project, the design and construction must be finished in
two semesters.

The design process begins with a preliminary calculation for the pump specification,
which would determine the pipe diameters, the dimension of supporting frames, and
required power outlet. Detail calculation would require flowrates, height of the observation
chamber, lengths, diameters, and materials of various pipes involved in the designs,
as well as connections and pipe bends. In the absence of many of these parameters,
the needed pump power can be calculated using the required flowrates and maximum
elevation that needs to be overcome by the water. Other parameters need to be estimated.
Figure 1 panel (a) shows an example of simple conceptual sketch of the water flow system
drawn by students involved in this project. The flowrate can be determined from the
demanded speed V of ~0.6 m/s and cross section area of the observation chamber of
A = 0.15× 0.15 = 0.0225 m2, through the equation for flowrate Q = V × A = 0.0135 m3/s,
or about 12,800 gph or 214 gpm. Figure 1 panel (b) depicts a simple open flow diagram
to represent the design of the water tank. The pump must overcome the height of the
observation chamber and resistance by all pipes and chambers (major losses) and various
connections (minor losses) along the loop. Note also that the effects of gravity on the
returning channel from the observation chamber is not included in the calculation, as the
power discount may not be significant. The flow diagram shown in Figure 1 guides us in
determining the Bernoulli equation to be used.
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(a) (b) 

Figure 1. (a) Sketch of 1st design of the flow tank loop given by students and (b) the basic flow diagram for the calculation
of pump head needed to determine the pump power.

The total head hp for the calculation of pump power can be obtained from the Bernoulli
equation easily found in fluid mechanics text books [42,43];

hp = Δh + Σ f
L
D

V2

2g
+ Σ K

V2

2g
(1)

The Δh represents the elevation difference between two end points in the flow diagram.
In our case, we would take this as the largest height difference available in the water tank
system, which is the height of the observation chamber. The second and third terms in
the equation are known as the major and minor losses, losses that are caused by the wall
friction along the pipes and channels in the system, and losses that are caused by any other
obstacles in the system, respectively. For the major loss, the Darcy’s friction factor f is
known to depend on the Reynolds numbers of the flow and roughness of the pipe. The
L and D are length and diameter of pipe, respectively. In the third term, the constant K
represents resistance factors for various obstacles along the loop, such as bends, junctions,
entrances, etc. The Reynolds number is defined as

Re =
ρVD

μ
(2)

where ρ and μ are the water density and absolute viscosity, respectively. In calculating the
major and minor losses, the average speed V of the water should be taken at each section
along the pipe where the loss is calculated, and the D represents hydraulic diameter of
that particular section. As the detail geometry of the flume is not yet known, we assume
the contribution of these losses to be simply double the elevation difference, hence the
total head is hp = 1.2 + 2 × 1.2 = 3.6 m. It will be shown later that this estimation is larger
than an alternative estimation based on possible major and minor losses in the flume. The
required pump power can be calculated using [42,43]

Wp =
ρ g Q hp

η
(3)

In estimating the needed pump power, we took the density (ρ) and absolute viscosity
(μ) of water at atmospheric pressure and 20 ◦C to be 998 kg/m3 and 0.001 Pa.s [43,44],
respectively, while the gravitational constant g = 9.81 m/s2. Not knowing the pump to
be purchased yet, we estimated the pump efficiency η from commercial pump examples
presented in textbooks [43,44]. Based on these examples, for the required flow rate of
214 gpm, the efficiency was found to be about η ≈ 60%. Using these data, we can estimate
the required pump power to be only Wp = 793 W or about 1.06 hp. Note that the power
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calculation here is based on high flow rate but very low head loss, due to the very short
pipe and minimal height involved in the current design. Consequently, such a pump, with
such combination of low pump power and high flow rate, may not be available in the
market. Here, students need to realize that the market availability of the pump puts a
constraint in the design.

Alternatively, the major and minor losses could be estimated based on the possible
materials and components to be used in the designs. This detail calculation process
provides valuable realistic exercise for the students involved in this project. Table 1 shows
list of pipes and channels, as well as estimated major head losses. The mean velocity for
each section is estimated from the flowrate of 0.0135 m3/s based on the required flow speed

of 60 cm/s. The major loss is defined as h = f L
D

V2

2g and the friction factor for each section
is determined from the Moody chart based on the associated Reynolds number and given
roughness factors of the pipes [42–45]. Due to the short pipes involved in this design, this
calculation renders net head much less than 1 m, well below the estimated head mentioned
before. As expected, the required head is dominated by the height of the water column
that must be overcome.

Table 1. List of friction and major head loss of pipes and channels involved in the designs.

Materials Length (m) Diameter (m) Roughness (mm)
¯
V (m/s) Re f h (m)

Plexiglass 0.6 0.15 × 0.15 0.0015 0.6 100,921 0.018 0.001
Stainless

Steel 4.0 ~0.4 × 0.3 0.002 0.11 49,339 0.021 <<0.001

Plastics 1.0 π × 0.052 Smooth 1.7 95,315 0.017 0.05

Similarly, the minor losses can be estimated by considering all possible pipe compo-
nents that are to be included in the system and evaluate its contribution. Table 2 shows
the list of possible components to be installed in the system and its corresponding “K”
values obtained from a textbook [42,45]. The total K value is about 4, and this results in
minor head loss of about 0.2 m, after assuming velocity of 1 m/s. Combined with the major
head loss calculated above, the total would still be less significant compared to the head by
elevation difference.

Table 2. In this table, we list of possible minor loss components to be included in the design.

Components Amount K

Ball valve 1 0.05
Couplings 7 0.08
Entrances 6 0.5

Sudden Expansion 1 0.5

Three (3) pumps for minimum 190 gpm flow rate are selected from McMaster–
Carr [46]; (A) High-Efficiency Circulation Pumps for Water, Coolants, and Oil, (B) Harsh-
Environment Self-Priming Circulation Pumps for Water and Coolants, and (C) High-Flow
Inline Circulation Pumps for Water. Shown in Table 3 are features of the three pumps
considered for the system. The price range is approximately USD 1000 to 2000 (2018 price).
The specification of these pumps shows that the flow rates and power requirement slightly
above our design requirement and the prices are within the budget range.
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Table 3. List of potential centrifugal pumps available in McMaster–Carr and its working fluid, maximum flow rate, power
requirement, maximum head, and unit price.

Pump # Product Name Working Fluid
Max. Flow
Rate (gpm)

Power
(hp)

Maximum
Head (m)

Price (USD,
2018)

A High-efficiency Circulation
Pumps

Water, coolants,
oil 190 5 19 ~1800

B
High-Flow

Harsh-Environment
Circulation Pump

Water, coolants 375 3 20 ~1105

C High-Flow Inline Circulation
Pumps for Water Water only 240 3 14.6 ~2100

In selecting the pump, students may be asked to setup a simple decision matrix. The
matrix allows a group of students to quantify their opinions on factors that weigh the
buying decision such as price, capacity, pump power, and type of fluids that can be handled
by the pump. In using the matrix, each student in the design team gives score between 1 to
3 (as there are three pump candidates), indicating the level of preference, for each category.
For example, a student who prefers to buy pump B as they think that the price is the most
reasonable, not necessarily the cheapest, should score 3 for pump B under the category of
“Price”. If the student considers that they prefer another pump for the power, then they
can put a score of either 2 or 1 under the “Power” category for pump B. Students involved
in the pump selection process collect their matrix, and the pump with highest total score
should be selected. Table 4 shows an example of such decision matrix performed by one
student. This example shows that the student preferred to purchase pump B over the other
two pumps.

Table 4. An example of decision matrix for pump selection process. Each student involved in the
project may participate in the selection process by filling out this table.

Product
Working

Fluid
Flow Rate Power

Maximum
Head

Price
Total
Score

A 1 1 3 2 2 9
B 3 2 2 3 3 13
C 2 3 1 1 1 8

The selected 3”-self-priming pump is manufactured by AMT, a Gorman–Rupp Com-
pany based in Mansfield, OH, USA [47]. This is a 3-phase pump that draws 10 Amps at
208–230 V. The stainless-steel impeller is encased in cast iron and capable of delivering
375 gpm maximum capacity of water at its 3450 rpm. The pump is selected due to its
availability, capability in delivering 200 gpm, and affordability. Testing of the pump after
the complete assembly indicates that the flow speed reaches 60 cm/s at the maximum
50 Hz input.

3. Static and Dynamic Analysis of Supporting Frame

Structural analysis is paramount to determine the integrity of the flow tank and its
supporting frame. Figure 2 panel (a) shows the final Computer Aided Design (CAD) draw-
ing prepared by students and its major components. The final product of the water flow
tank is shown on panel (b). The final total length of the water tank system is 2.51 m, which
includes the 75 cm long observation chamber (1) and inlet manifold into the observation
chamber (5) with enough entry length. In the discussion below, only the structural analysis
of the supporting frame is presented.

54



Fluids 2021, 6, 242

 
(a) (b) 

Figure 2. Left panel (a) shows the drawing of the water tank and its major components; 1. observation
chamber, 2. centrifugal pump, 3. variable frequency drive or pump controller, 4. return pipe to the
pump, 5. inlet manifold into the observation chamber, 6. holding tank, 7. structural frame, 8. wheels,
and 9. ball valve. On the right, panel (b) shows the final product of the water tank supported by
frames and wheels.

The material chosen for the supporting frame is ASTM A513, which has a yield
strength of 220.6 MPa (32,000 psi). Considering a safety factor of 1.3, the maximum
yield strength for the system is σy = 169.72 MPa (24,615 psi). The beam profile used is
5.08 × 5.08 cm2 hollow square tubing with a thickness of 2.11 mm. The static analysis
involves calculations of dead loads acting on the system, which includes the weight of the
water and the tank. Table 5 lists all possible static load items and its estimated amount. The
list was prepared by students as part of the full static and dynamic structural analysis of
the supporting frame. Several possible designs were analyzed and results from one design
is presented here.

Table 5. The table shows main loads to be considered in the design of the supporting frame.

Components Weight (kg) Description

Water 362.87 Total weight of water at full capacity
Observation chamber 11.16 This section is made out of acrylic

Pump 43.54 Self-priming centrifugal pump
Piping 4.72 Total weight of steel channels

Manifolds 29 Inlet and outlet chambers, made out of
stainless steel

Steel strucure 4.99 Constructed out of 2 × 2 square tubings

Total dead load 456.28

The maximum deflection of 0.0254 mm was discovered on one of the cross beams
directly supporting the observation chamber. This value is considered very minimal, and it
indicates that the selected channel is sufficiently strong. In this model, the frame is assumed
to be supported by pins on its four bottom corners. Static loads, representing items listed in
the Table 5 are applied as point loads on several locations on top beams. The water weight
is distributed throughout several points on the frame. Figure 3 displays the deformation of
the frame in the full 3D static analysis. As is expected, the bottom beams show minimum
deformation due to the supports, while the top beams show large deformation due to the
application of load.
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Figure 3. The deformed shape of the supporting frame due to the dead loads indicate maximum
deflection of about 0.001 inch occurs on the cross beam that supports the observation chamber. The
3D static analysis in ANSYS is performed by members of capstone senior design team.

Additionally, a dynamic modal analysis was performed using ANSYS (ANSYS Inc.,
Canonsburg, PA, USA) to check the mode shapes and natural frequencies of the supporting
system. Outcomes from the modal analysis indicate possible resonance and amplification
of deformation when the pump’s operating frequency is in the vicinity of the natural
frequency of the support system. Due to the simple vibration load that is being considered,
the modal analysis was set to find only the first six (6) natural frequencies. The resulting
natural frequencies of the frame are presented in Table 6. These natural frequencies were
used in harmonic response analysis to determine the maximum deflection of the frame.
The maximum deformation of 5.51 mm occurs for Mode 5 corresponding to the frequency
of 73 Hz. Other frequencies result in maximum deformation of less than 2.54 mm. The
first three (3) modes correspond to the operating frequencies of the pump of 0 to 60 Hz.
Nevertheless, due to the rigidity of the structure, the amplification was found to be very
minimal. The outcome suggests that the structure and material selection for this flow tank
is sufficiently strong to sustain the vibration load by the pump. The study also shows that
only the first 3 (or at most 4) modes need to be considered as the maximum operating
frequency of the pump is only 60 Hz. Table 6 shows the six (6) first natural frequencies
of the supporting frame. The maximum deformation from the harmonic analysis, based
on the given static load, is also shown in this table. A maximum deformation of 5.08 mm
can potentially occur for Mode 5, corresponding to ~73 Hz. Other modes show maximum
deformation of less than 2.54 mm.

Table 6. The first six natural frequencies of the supporting frames are listed in this table, along with
the maximum deformation associated with the harmonic analysis.

Modes 1 2 3 4 5 6

Freq. (Hz) 23.53 36.21 39.28 70.91 73.18 86.59
Max δ (mm) 2.108 2.489 2.108 2.007 5.512 2.108

The first, second, and third modes represent predominantly lateral deformation of
the top beams due to the rigid support of the bottom beam. The lateral deformation can
occur harmoniously between the parallel top beams (Modes 1 and 3), but it can also occur
non-harmoniously as in Mode 2. Mode 3 shows lateral deformation in the long direction
of the frame. While the dynamic analysis shows sufficient stiffness and unlikeliness for
large amplification, rubber footings were placed underneath the pump’s platform to damp
the vibration.
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4. Computational Fluid Dynamics

Computational fluid dynamics (CFD) analysis suggests useful information for the
design of various channels of the flume. Nevertheless, the CFD simulation and analysis
provide hands-on exercise materials that allow students to better understand the dynamics
of flow phenomena through visualization and parametric studies [48]. Possible analysis
to be performed ranges from two-dimensional to full three-dimensional study of either
unsteady or steady water flow. Examples of topics to be studied include studying the flow
characteristics in the observation chamber, pressure losses across the flume, undesired
circulation zones, areas of turbulence, extreme stresses caused by fluid flow, etc. The
computation domains of such studies can be either developed from scratch or imported
from the structural mechanics CAD designs. In this section, results from a full 3D steady
state analysis of water flows in a semi-loop model of the tank are briefly presented. The
study is performed using the commercial package COMSOL Multiphysics 5.5 with CFD
module (COMSOL Inc., Burlington, MA, USA). Most of the computations are performed
using HP ProBook 640 G2 Notebook PC (Hewlett-Packard Company, Palo Alto, CA, USA).
operated using 64-bit Windows 10 Enterprise version 1909 with a total capacity of ~465 GB.
The computer has an installed RAM of 16 GB and is equipped with Intel® Core™ i7-6600U
CPU @ 2.60 GHz. One model is run using a desktop HP Compaq Elite 8300 CMT computer
equipped with Intel® Core TM i7-3770 CPU at 3.40 GHZ and 16.0 GB RAM.

The computation domains can be differentiated into several parts, as shown in Figure 4
panel (a). The pipe inlet domain represents the vertical cylindrical thick PVC pipe channel
that delivers water from the pump’s exit into the main part of the water tank. This channel
is 8 cm in internal diameter and the length is 40 cm. The pipe is extended into the diffusing
chamber before it splits into two horizontal branches with the same internal diameter.
The resulting T-pipe allows the water to be distributed in the diffusing chamber. The
T-pipe also prevents the water to “shoot up” and put high pressure on the ceiling of the
diffusing chamber. The next important domain is the converging chamber that functions to
collect the water and channel it into the observation chamber. A flow straightener could
be included in the converging section, however this part is not modeled due to its large
amount of mesh. This simplification is justified by the computation results that indicate
straight uniform flow in the observation chamber (Figure 6). The observation chamber is a
60 cm long prismatic pipe with a square cross section of 15 × 15 cm2. At the end of the
chamber, the water is collected in a rectangular drainage tank of 60 × 30 × 40 cm3. The
CFD model does not include a horizontal transparent plastic pipe that returns the water
back from the drainage chamber into the centrifugal pump.

(a) (b) 

Figure 4. Panel (a) shows the computational domains involved in the analysis and panel (b) shows the non-uniform mesh
generation implemented for the analysis.
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Several simplifications are implemented in the CFD model. For instance, the actual
drainage chamber is converging downward, but in the model only the top 40 cm section
is included. It is assumed that the inclusion of this part is sufficient to recreate necessary
backflow effects that occur in the observation chamber. The converging chamber attached
to the distal face of the observation chamber is made to be plain horizontal, parallel to the
observation chamber. The actual configuration of this curved chamber includes a slight
decline in the vertical direction into the entrance of the observation chamber. Lastly, in
the CFD, the observation chamber is assumed to be a closed rectangular pipe. The actual
observation chamber is open on its top side to allow direct access to the water.

The inlet boundary condition is located at the free end of the inlet pipe that represents
the conduit between the centrifugal pump and water tank body. Not knowing the exact
velocity profile produced by the centrifugal pump, a uniformly distributed velocity profile
is assumed at the inlet. The exit boundary condition is located at the bottom of the drainage
chamber and a zero-pressure outlet is assumed here. The actual pressure level required by
the centrifugal pump to produce the flow can be obtained by adding known hydrostatic
and dynamic pressures occurred at the exit level. The internal wall is assigned to the wall of
the T-pipe domain, as this pipe is located inside the diffusion chamber. The physical T-pipe
has a non-zero pipe thickness that has been ignored in this CFD modeling. This important
feature certainly leads to a convenience and efficient mesh generation. The remaining walls
are assumed to have zero velocity. Figure 4 shows the complete model, domains, boundary
conditions, and partial mesh generation that results in non-uniform mesh size throughout
the domains.

CFD analysis requires a delicate balance between demands for accuracy of the out-
comes versus the computational cost that are the direct results of both mesh generation and
complexity of the selected flow model. Table 7 lists CFD models studied in this work and
their mesh generation scenarios. Models As and Bs are all meshed using “Global Mesh”
method, where the same mesh size or scheme is applied uniformly on all domains of the
model. However, models As are computed by means of “Laminar” flow model, while
models Bs are executed using “Turbulent” flow model. The C, D, E, and F models are
discretized using “Partial Refinement” method and are executed using “Turbulent” flow
model. Effects of the two flow models will be explained later in this section. All models
are computed using the HP ProBook laptop, except model D that is executed using the
desktop computer. The Global Mesh method is straightforward, but for three-dimensional
models this method may result in astronomical element numbers and computation time
with possible less-than-sufficient accuracy at places of interest. In the current work, we
later show that partial mesh refinement on places of interest should be practiced as a choice
of practice in CFD modeling, particularly for three-dimensional modeling. In our work,
the “Extremely Coarse” mesh option of COMSOL Multiphysics (COMSOL Inc., Burlington,
MA, USA) for our model results in 21,011 elements. Increasing the accuracy by selecting
the “Normal” mesh generation option multiplies the element number to 414,735 elements,
almost 20 times more than “Extremely Coarse” option. However, the computational time
needed to run the model using turbulence k-ε scheme is multiplied from 6760 s to almost
286,538 s, 40 times longer. The partial refinement mesh generation, used for models C, D,
E, and F, is performed by selecting domains or regions of interest (ROI) to be discretized
finer than other domains. Here, the observation chamber, T-pipe, and inlet pipe are se-
lected as the ROI so that the velocity profiles and other important aspects in the region
can be studied more accurately. This method aims to reduce the amount of mesh and
computational time, and to avoid unnecessary data collection in non-ROI parts such as the
diffusing chamber, drainage chamber, and converging chamber. The Partial Refinement
method certainly opens numerous possible mesh arrangements. To limit the study, we
focus on mesh refinement of the ROI only. The refinement of the observation chamber sub
domain will enhance accuracy of the velocity profiles in the region needed for possible two-
dimensional modeling. On the other hand, the refinement of the inlet pipe and the T-pipe
is expected to give accurate information on the amount of pump pressure needed in the
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design. These three domains will be refined using “Extremely Fine” mesh or customized
mesh, while the remaining body will be meshed using either “Normal” of “Finer” scheme.
For Model C, the ROI are meshed using “Extremely Fine”, while the remaining domains
are meshed using “Normal”. For Models D and E, the mesh for the test chamber domain
of Model C is further refined by reducing the “maximum element size” from 0.0318 to
0.015 m. Model D is the only model that is computed using the HP desktop computer. It
should be noted that the “Normal” size used in the non-ROI domains of models C, D, and
E employs “maximum element size” that is about triple than that of the “Normal” size used
in Model B4 with global mesh method. Consequently, although the ROI domains of Models
C, D, and E, are finely meshed, the total number of elements of these models are less than
that of Model B4. The difference in the “maximum element size” is due to the different
“Calibration” option offered by COMSOL (COMSOL Inc., Burlington, MA, USA). The
mesh configuration for Model F is the finest among models with partial refinement mesh.
Here, the mesh configuration of the ROI used in Model D is maintained, but the remaining
domains are meshed using “Finer” mesh. This refinement results in 355,730 elements, and
the computation time is 145,860 s, only half of the time needed by model B4.

Table 7. This table lists CFD models used in this project and their associated number of elements and computation
times. Only models A1 and A2 are executed using Laminar fluid model. All other models are executed using Turbulent
model—RANS K-ε . All models are run in the HP ProBook, except Model D.

Model # Mesh Method Fluid Model Number of Elements Computation Time (s)

A1 Partial Refinement Laminar 91,162 3630
A2 Partial Refinement Laminar 289,796 21,787
B1 Global Extremely Coarse Turbulent 21,011 6760
B2 Global Extra Coarse Turbulent 43,753 17,861
B3 Global Coarser Mesh Turbulent 76,983 34,030
B4 Global Normal Mesh Turbulent 414,735 286,538
B5 Global Fine Mesh Turbulent 9,797,088 Failed to converge
C Partial Refinement Turbulent 113,624 25,626
D Partial Refinement Turbulent 160,774 20,680
E Partial Refinement Turbulent 160,378 35,046
F Partial Refinement Turbulent 355,730 145,860

Shown in Figure 4 panel (b), results of Partial Refinement strategy where high mesh
density (“Extremely fine mesh”) is applied on the observation chamber, pipe inlet, and
T-junction domains. The remaining domains are discretized using “Finer” mesh. The
minimum and maximum element sizes employed in the observation chamber are 5 mm
and 15 mm, respectively. The application would result in at least 10 computation nodes
across the 15 cm wide observation chamber, which should be enough for accuracy.

The volumetric flowrate (Q) and mean velocity (V) in the observation chamber in the
inlet pipe and observation chamber will be used to measure the accuracy of the solution.
The volumetric flowrate across planes perpendicular to the long direction of the observation
chamber must equal to that of the inlet. This flowrate can be obtained from the uniform
inlet velocity Vin provided at the pipe inlet; Q = Vin

π
4 D2, where D is the pipe diameter.

The mean velocity in the observation chamber can be easily estimated using V = Q
Ach

,
where the cross-section area of the chamber is known as Ach = 0.152 = 0.0225 m2. As the
outlet at the base of the drainage chamber is assumed to have a pressure drop, the flowrate
at this location should also be verified.

Second only to the mesh generation, the selection of appropriate physical modeling
of the fluid is the most crucial aspect of CFD modeling. The selection between Laminar
and Turbulent models is often determined by Reynolds numbers involved in the problem.
The laminar threshold for fully developed flow in long pipe with circular cross sections is
typically around 2300, while for an open channel flow is 500. Students have to understand
that the change from laminar to turbulent flow is a gradual transition, and therefore it is
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not practical to point out a single number to differentiate the two regimes. As pointed
out by Lowe, the confusion over the critical Reynolds number is not new in the Fluid
Mechanics community [49]. Nevertheless, smaller Reynolds numbers should be treated
as turbulent when the complex geometry of the domains include circulation zones that
are best captured using turbulent models. In the current water tank design, the maximum
expected mean velocity occurring in the 15 × 15 cm square observation chamber is 60 cm
per second, which results in the Reynolds number of 90,000, which puts the model under
turbulent category. A long list of turbulent models is available in COMSOL Multiphysics
software (COMSOL Inc., Burlington, MA, USA). For this project, we selected the standard
k-ε model to serve our purpose. This suggested model is selected due to its popularity for
industrial applications, easy convergence, and low memory requirement [50]. Alternatively,
the analysis on such water flume can be performed using k-ω SST model [51]. However, a
comparison study performed on a water flume with 5 m wide and 17 m long test section
suggest that the outcomes from the two different Turbulent models do not show significant
differences [52]. Heyrani et al. compare the performance of seven (7) turbulent models
used in steady state modeling of a venturi flume. It was discovered that the k-ε model
performs slightly better than the k-ω SST model [53].

Figure 5 shows the accuracy and computation times that are plotted against the mesh
number for different models. The graph shows that Turbulent model with Partial Refine-
ment (rectangular markers) produces the best accuracy among the three models (Laminar
model with Partial Refinement, Turbulent model with Global Mesh, and Turbulent model
with Partial Refinement). Moreover, its computing time is less than the Turbulent model
with Global Mesh (circular markers). The computing time of the Laminar model with
Partial Refinement (triangular marker) is the lowest, but the accuracy is also very low.
The laminar model should only be used to make sure that the CFD model can be prop-
erly executed. High accuracy can be easily achieved by the Turbulent model with Partial
Refinement, even with a low amount of mesh.

Figure 5. Convergence studies—data with dark labels indicate relationship between number of
mesh and computation time, while the white markers indicate the relationship between the number
of mesh and accuracy. The Laminar model shows the lowest accuracy and computing time. The
Turbulent models can take 10 times longer time than the laminar flow, but its accuracy is very high.
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Streamlines in the water tank when the mean inlet flow is 3 m/s are shown in Figure 6.
The streamlines are obtained using “standard point controlled” method and using “Number
of Points” entry of 80 points. The streamlines on the left and right are obtained when the
computation modules used are Laminar model and Turbulent k-ε model, respectively. The
streamlines from the Laminar model are parallel and straight in the observation chamber,
but they are clearly absent from the circular flows in the drainage chamber, as well as in
the diverging chambers that are demonstrated by the Turbulent model.

(a) (b) 

Figure 6. Three-dimensional streamlines obtained from an (a) Laminar model and (b) Turbulent
model. The Turbulent model captures well the twin circulation zone occurring in the drainage tank
and the collecting chamber. The Laminar model fails to capture the circulation zone despite of the
use of large number of elements.

Observing the axial velocity profiles along the observation chamber, the Laminar
model shows reasonable parabolic shapes (data are not shown here), however the amount
of flow rate and mean velocity show deviation from the correct values. The profile of
axial velocity along the observation chamber obtained from the Turbulent models are
depicted in Figure 7. Each velocity profile is obtained at the same horizontal mid-section of
the observation chamber, but at different distances “Y” from the starting of the chamber
(taken as the interface between the converging chamber and observation chamber). The
development of the velocity profile can be observed in this figure as the profile changes
into a more parabolic shape as the Y is increasing. The velocity profiles demonstrate the
typical characteristic of turbulent profile consisting of a turbulent core in the middle and
laminar sublayer near the wall [45]. Note, however, that for the Model B4 (global mesh), the
laminar sublayer is pronounced, while for Model F (partial refinement), it is very difficult
to observe due to its small thickness. The accuracy of Model F in predicting the expected
flowrate and mean velocity however is higher than that of Model B.

The velocity map and streamlines, viewed from the top of the flume, can be seen in
Figure 8. The flow direction goes from top to bottom (diffusing chamber to the drainage
chamber). Panel (a) on the left shows the velocity map of laminar model, while panels (b)
and (c) are from the turbulent model, but with different mesh schemes. All models present
reasonable straight parallel streamlines in the observation chamber. The Laminar model
shows gradual increase in speed as it enters the observation chamber, as can be observed
from the changing color. On the contrary, the Turbulent models both show consistent
average velocity along the observation chamber. The Laminar model fails to produce
the twin circulation zones that occur in the drainage chamber. These circulation zones
are physically observed during real experimentation. The two Turbulent models clearly
show these circulation zones with slight difference. The circulation zones by the Model B4
(Figure 8 panel (b)) are shown to be less chaotic than that of Model F (Figure 8 panel (c)).
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(a) (b) 

Figure 7. Axial velocity profiles obtained at the horizontal mid-section of the observation chamber taken at different
distances Y from the entrance obtained using (a) Global Mesh refinement and using “Normal” scheme (Model B4) and
(b) Partial Refinement method (Model F).

(a) (b) (c) 

Figure 8. Streamlines in the observation chamber and the diffusion chamber as well as in the collecting chamber produced
by (a) Laminar model, (b) Turbulent model with Global Mesh “normal” refinement, and (c) Turbulent model with Partial
Refinement method. The mean velocity of these models at the inlet is 3 m/s.

Vorticity is a local measure of the rotational motion of fluid particle relative to its own
centroid, while the circulation can be considered as the measure of the rotational motion in
global sense, relative to a distance reference point. After passing the observation chamber,
water enters a short drainage chamber that is three times wider than the observation
chamber but much deeper in the vertical sense. Here, due to the high speed in the
observation chamber, the water shoots into the back wall of the chamber, but it also starts
to fall due to the gravity. Hence, the stream splits into a pair of almost identical spiraling
flows downward. Shown in Figure 9 are streamlines projected on a two-dimensional plane
cut across approximately the middle height of the drainage chamber. On each panel, the
streamlines demonstrate a pair of spiraling circles running in opposite directions. Note
that the flow is coming from the observation chamber located, according to these pictures,
relatively above the rectangular areas shown in the panels. The color map describes local
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vorticity values, and the scales indicate that, on average, the two pairs have a similar
amount but in opposite directions. In this figure, each panel represents a circulation zone
in the chamber from the same Reynolds numbers, around 72 K (uniform inlet velocity
of 3 m/s), but each is computed using different mesh density and element types used in
the drainage chamber domain. On panel (a), the fluid model is laminar, and the elements
used in the drainage chamber is tetrahedral. On panels (b), (c), and (d), the k-ε Turbulent
model is used, but the number of elements used (only in the drainage chamber) are 5498,
14,681, and 61,052, respectively. On panel (b), only tetrahedral elements are used, but
various elements are used for results shown in panels (c) and (d). It can be seen that the
utilization of various elements results in smooth vorticity map and streamlines that are
less discrete. The symmetry of the circular flow is captured when the mesh density is very
high but, generally, panel (c) shows that essential flow structure is sufficiently captured.
The maximum and minimum values on the scales indicate the amount of vorticity details
that can be captured by the respected mesh density. On panels (b), (c), and (d), while the
maximum and minimum vorticity are different, the average values inside and around the
cores of the circulation area is around 4 to 5. On panel (c) and (d), zones with large vorticity
up to 20/s can be captured, but these areas are concentrated near the walls. As is expected,
the large vorticity occurs near the walls where large shear strain is expected to occur. On
panel (a), the Laminar model results in a pair of seemingly symmetric circulation zones.
The zones, however, appear to be shifted to the side walls. Moreover, the vorticity map
shows some level of local spins, but the distribution is different from that shown in other
panels. The laminar model certainly has failed to produce the desired outcomes, despite of
the high mesh density that has been employed.

  
 

(a) (b)  

 
(c)  (d)  

Figure 9. Panel (a) shows the circulation zone captured using laminar modeling; (b) Partial Refine-
ment results in 5498 tetrahedron elements in the drainage tank, a minimum element quality of 0.6541,
and an element volume ratio of 0.001275; (c) Global “Coarser Mesh” mesh with Turbulent model
with 14,681 mixed elements, a minimum element quality 0.1307, and an element volume ratio 0.0021;
and (d) Global Mesh refinement with “Normal” mesh with Turbulent model with 61,052 mixed
elements in the drainage tank, a minimum element quality of 0.1251, and an element volume ratio of
9.8 × 10−4.

5. Fabrication and Manufacturing

Welding was the most challenging process of the manufacturing activity in this project.
All fabrication (cutting, folding, welding, assembly, etc.) had to be performed mostly
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off-site at a private workshop due to the space limitation for hot works in our campus.
Particularly, the welding of individual manifold was the primary challenge. The inlet and
outlet manifolds needed to be designed, cut, welded, and assembled without the benefit of
a fully equipped fabrication facility. Furthermore, the limitations of the available workshop
dictated that tolerances could be held only down to 1/4 ” (~6.35 mm) for most features of
size and 1/2 ” (~12.7 mm) for some larger features. The choice of 18 GA (0.049” or 1.27-mm)
Austenitic Stainless Steel for the manifolds dictated that TIG (Tungsten static electrode Inert
Gas shielded) welding was necessary to accomplish production. Alternative processes
were ruled out for manifold production due to heat transfer concerns that would lead to
excessive warpage of the fabricated sheet metal structures. Additional requirements of the
design included the need for flush weld joints which would be less easily accomplished
than other welding processes. Shown in Figure 10 one of the completed holding tanks (left)
prior to being assembled with the inlet manifold (top right). The student who performed
the welding used many cardboard templates (such as the one shown on panel (a) of
Figure 10) to determine the cutting of the steel plate.

Figure 10. Panel (a) shows the cardboard model used in the making of the diffusion channel. Panel (b)
shows the observation chamber being assembled, and panel (c) shows the final product of drainage
chamber before being assembled into the main body.

MIG (Metal wire feed electrode Inert Gas shielded) welding was chosen for frame
production. Mild Steel Square Tube with 1/16” wall thickness (~1.59 mm) was chosen for
the frame and could withstand MIG welding with minimal concerns for warpage. The
design did not require the welded joints to be flush with the welded materials. The steel
square tubes that were welded together required a coat of rust protective paint due to
the material properties that would cause rusting. A Miller Multi-Matic 220 multi-process
welder (Miller Electric Manufacturing Co., Appleton, WI, USA) was used for all welding
processes, selected due to its versatility of process selection and advanced user interface
and arc control systems. The frame had undergone minor modifications from the original
design to acclimate for the weight of the pump, transportation, and vibrations that would
pass through the system. Jack screws, similar to stands, allowed the system to elevate off
the wheels to limit vibration through the floor, level the entire system and to relieve stress
from the wheels, as their specifications stated that they would only withstand 544.31 kg.
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The frame that the pump was set onto had its own set of jack screws that allowed it to
be lifted off the frame for the rubber insulators to absorb vibrations produced by the
pump. The 15 × 15 × 60 cm3 observation chamber was made of 0.635 cm thick transparent
plexiglass. The corners are secured using both glue and bolts. To prevent leaking, rubber
gasket is applied throughout. Finally, several holes are drilled on the upper edge of the
chamber wall (not shown in the figure) to allow experiment platform to be secured onto.

6. Experiment Results and Discussion

The following experiments were conducted using the water tank after its fully built to
test its capability:

1. Velocity Measurement of flow in the observation chamber;
2. Tests on flow straightener designs;
3. Flow visualization using dye;
4. Measurements of drags.

6.1. Velocity Measurement of Flow in the Observation Chamber

The speed of the water flow can be controlled by adjusting the rotational speed or
frequency of the pump’s propeller using the programmable speed controller. In the first
experiment, we wish to establish the relationship between the frequency of the propeller
and the resulting water velocity in the observation chamber. The average velocity in the
observation chamber is measured using a flow meter by Vernier (Vernier, Beaverton, OR,
USA) (product number FLO-BTA) shown in Figure 11 panel (a). The sensor is designed for
external flow measurement such as flow in open channels and rivers. The measurement
range of this affordable sensor is up to 4 m/s, with a typical resolution of ±1.2 mm/s, and
an accuracy of about 1 percent. A data acquisition card, LabQuest Mini, also by Vernier
(product number LQ-MINI), is used to collect the data and transfer the data to a laptop
through a USB cable. The dynamic data can be displayed by Graphical Analysis GUI
software available for free by Vernier. The data can be exported to either Excel, Matlab, or
Phyton, for further analysis and post processing. Typical data sampling in our experiment
is 1 Hz.

 
 

(a) (b) 

Figure 11. The panel (b) displays the velocity reading by Vernier flow meter versus time when the pump operates at 40 and
50 Hz. The propeller is placed either near the floor of the chamber (“Bottom”) or approximately in mid-height (“Middle”).
Data suggests minimum difference by the two methods. The panel (a) shows the propeller being lowered in the “Middle”
position in the observation chamber.
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During one set of data collection, we seek to check the speed variability across the
chamber’s depth. Here, we perform the flow measurement by placing the sensor’s propeller
near (about 3 cm above) the chamber’s floor and approximately at mid-height above the
chamber’s floor. The data collection for each trial was done at least for 40 s. On each trial,
the frequency of the pump is increased from 10 Hz to 60 Hz using intervals of 10 Hz. This
data collection results in insignificant variability of the time-averaged speed between the
two locations. Examples of data collected over a period of 120 s for pump frequencies of
40 Hz and 50 Hz are shown in Figure 11 panel (b). The transient regime for about 25 s at the
beginning of data collection can be easily identified in both data. The steady state regime
maintains a constant average speed and indicates small fluctuations. Data with solid labels
are taken for measurement at “Bottom”, while data with open labels are from “Middle”.
Data indicate that the placement of samples in between these two locations would result in
more-or-less identical outcomes.

6.2. Tests on Flow Straightener Designs

The second set of experiments involved velocity measurement in the presence of a
flow straightener. The flow straightener functions to dissipate the turbulence water flowing
into the observation chamber. The three (3) designs by students are shown in Figure 12;
Models 1, 2, and 3 displayed in panels (a), (b), and (c), respectively. The cross section
of all the models is 15 × 15 cm. Model 1 was constructed by PVC tubes of the same
diameter (12.7 mm) cut at the same length (~10 cm) that are glued along its long sides.
These cut pipes were then arranged in parallel, and bonded together on its long sides to
form a channel. This model has the largest area of holes. Model 2 is a 3D-printed PLA
plastic rectangular block of 15 × 15 × 5 cm3, furnished with 12-by-12 holes, each about
1.2 cm in diameter. Model 3 is a combination of parallel 0.5”-PVC (12.7 mm in diameter)
pipes that are hold together using 3D-printed blocks with holes on their ends. Among
the three models, Model 1 is the cheapest, but is very tedious to make, as each pipe has
to be glued one by one. During the bonding process, the pipes can be placed in between
two parallel walls. Model 2 is the most expensive, when the printing time is included
in the calculation. While the SolidWorks (Dassault Systèmes SolidWorks, Inc., Waltham,
MA, USA) CAD model for this model is easy to make, it took more than 12 h to print the
model using a regular desktop 3D-printer. The thin walls separating the holes require the
model to be printed with high density (high infills), and this prolongs the printing process.
While involving 3D-printed blocks, Model 3 is inexpensive, as the holes on these blocks
are well separated from one another, requiring less printing density compared to Model 2.
Nevertheless, the arrangement of the pipes into these blocks is quite tedious. In terms of
durability, it was quickly found that Model 1 disintegrated quite easily after several tests in
the water. Model 2 also shows signs of plastic fibers detached from the bulk structure after
several tests. Model 3 is the most durable, but its effectiveness is the lowest.

The data of flow velocity, taken when the pump’s speed is 10 Hz, versus time for
different models of flow straighteners, are presented in Figure 13. The blue, red, black, and
green lines indicate water velocity without flow straightener, with Model 1, with Model 2,
and with Model 3, respectively. On average, the velocity data for Model 1 (red line) is
very similar to the case where no flow straightener is installed (blue line). Some degree of
deviation from the flow with no straightener (blue line) is reflected by data using Model 2.
Compared to other models, Model 3 shows the largest deviation from the flow with no
flow straightener (blue line). Clearly, the Model 1 produces the least flow disturbance in
terms of time-averaged velocity outcome. The expected outcomes can be attributed to the
difference in the cross-section areas of the holes of each model. The largest area of holes
for Model 1 is contributed by the holes by the pipes and the holes in between these pipes.
Nevertheless, the Model 2 can be seen to produce a more stable velocity (black line) across
the time compared to Model 1 and Model 3.
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(a) (b) (c) 

Figure 12. Models of flow straightener used in the flow experimentation—(a) Model 1 is made of cut PVC pipes that are
glued together in parallel arrangement. (b) Model 2 is a full 3D-printed apparatus designed in SolidWorks. (c) Model 3 is an
assembly of PVC pipes fitted into 3D-printed block with holes.

 
Figure 13. This figure shows mean velocities from the flowmeter for various flow straightener models
taken for a period of 120 s when the pump speed is 10 Hz. The blue line is the velocity of water flow
without flow straightener. The velocity after the installation of Model 2 shows stability compared to
other models.

Time-averaged (over the steady state period) water flow velocity obtained from the
flow meter for various pump’s frequencies are presented in Figure 13. The data points
are labeled using white circles (no flow straightener), white square (Model 1 of flow
straightener), and white triangle (Model 2 of flow straightener). A linear relationship of

V = 0.014 × Fr − 0.042
(

R2 = 0.9999
)

(4)

was discovered for data obtained without the flow straightener. Here, V (m/s) and
Fr (Hz) are the mean velocity and pump’s frequency, respectively. The non-zero intercept
suggests the minimum frequency (associated with a minimum water velocity) needed to
turn the propeller of the flow meter of about 3 Hz. The known linear relation between
the pump’s frequency and average velocity establishes the formulation of V vs. F. for
future experimentation. Velocity data obtained using the flow straightener Model 1 shows
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similarity to the data obtained without the flow straightener. On the other hand, Model 2
produces velocity data that deviates at high pump’s frequency. The linear relationship is
also quantified as V = 0.0166 × Fr − 0.0663

(
R2 = 0.9951

)
.

On a separate, simple experiment, two students measured the water velocity by means
of a Lagrangian approach. Here, the time needed by a ~1 × 1 × 2 cm3 cork to travel for
50 cm is measured using a manual stopwatch. This measurement results in smaller velocity
compared to ones measured using the propeller. These Lagrangian velocities are displayed
in Figure 14 using dark cross legends. The lower estimation can be attributed to the drag
produced by the weight of the cork, as well as accuracy of the manual data collection.
Nevertheless, the manual measurement using cork provides a simple and quick validation
of the Eulerian method employed in the automatic measurement using digital flow meter.

 
Figure 14. This figure shows the comparison of time-averaged velocity data versus pump’s frequency.
The data are obtained using Models 1 and 2 of the flow straighteners. The data from measuring
the water velocity using floating cork are presented using cross symbols. Data from Model 1 shows
minimal deviation from the reference data. The cork data underestimates the reference data, but it
gives good estimate for a quick verification of the flow meter.

6.3. Flow Visualization Using Dye

The effects of placing the flow straightener in the water stream was examined by
means of dye injection. While this method is simple and affordable, students performing
the tasks can learn valuable lessons. For example, students realize that the fluid density had
to be carefully chosen, as a fluid that was too light would rise to the top (float) and the fluid
mixture was too dense then it would sink to the bottom. The fluid was also mixed with
food coloring to make it easier to observe. After running several tests using hand soap, oil,
sugar, and honey, it was concluded that honey diluted with a small amount of water gave
the best results. These tests were run by using a syringe with the mixed fluid. Figure 15
shows the difference in flow behavior through the utilization of injected dye. The left
picture (panel (a)) shows the flow turbulence when there is no flow straightener inserted in
the chamber. Panels (b) and (c) show the resulting flow behavior when Model 2 is used.
Here, the flow is almost straight and uniform with minimum turbulence characteristic.
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(a) (b) (c) 

Figure 15. The flow behavior at about 10 cm/s. was observed using color dye injected by a syringe. The left panel (a) shows
the dispersion of the dye when no flow straightener was used. Turbulence characteristic can be seen from the dyes. Panels
(b,c) shows the flow characteristic when Model 2 is used as flow straightener. Straight streamline is easily observed in
this case.

6.4. Measurements of Drags

Objects exposed to fluid flow experienced both drag and lift forces. Being able to
demonstrate this phenomenon for objects in the water flow is one important objective of the
water flume project. Experimentation on drag reported below was performed by students
in Thermal Fluid Lab course on Fall 2019. The drag force acting on objects, such as long
prismatic cylinders and bars, is registered using a force sensor from Vernier (Go Direct ®

Force Sensor—GDX-FOR) that uses strain gauge to measure as small as ±0.1 N up to ±50 N
of axial force, sufficient range for our fluid application. A sampling rate of 50 Hz, out of a
possible maximum of 1000 Hz, is used in our application. This device can be either directly
connected to a laptop using a USB cable, or wirelessly using a Bluetooth to a mobile device.
The stream data can be displayed on a laptop and recorded using a software Graphical
Analysis available for free from Vernier. The force sensor can also be connected to the
data acquisition card by Vernier—LabQuest Mini. This allows simultaneous measurement
of multiple sensors with other data such as water speed, temperature, and lift. The
~7 × 4 × 5 cm3 sensor device is placed on ~15 × 15 × 1.5 cm3 (1.36 kg) aluminum sled
supported by four smooth wheels (rollers) that rest on the walls of the observation chamber
(Figure 16). The sled was machined to include a hollowed pin on its top to secure the force
sensor. A hole was drilled at the center of the sled to allow samples to be secured using bolt
and nut. The other end of the bar is free. The force registration is performed by aligning
the sensor’s hook to the flow direction and securing it to a reference point fixed to the
chamber’s wall. The four smooth wheels reduce the contribution friction caused by the
sled’s weight and maximize the registration of the hydrodynamic drag by the sensor.

 
(a) (b) 

Figure 16. The figure on the left panel (a) shows the force sensor supported by the aluminum platform (sled) with its wheels
placed along the wall of the observation chamber. The panel (b) on the right shows the complete setup of the drag sensor
secured on the observation chamber with the flow meter placed upstream to allow simultaneous measurements of flow
speed and drag forces. The water flows from left to right.

The drag measurement has been conducted for several objects: plastic cylinders, 3D-
printed cylinders, solid aluminum cylinders, and square bars, as well as rotating bladeless
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turbine models. A preliminary attempt using a 3D-printed fixture to hold hollow plastic
cylinder samples and 3D-printed samples resulted in promising data. However, it also
indicated the need for rigid and sturdy support and samples that do not float. The force
data is converted into Drag Coefficient, CD using the following formulation [43,44]:

CD =
2FD

ρV2 A
(5)

where FD, ρ, V, and A are the time-averaged drag force, water density, time-averaged
water velocity, and frontal area of the cylinder sample, respectively. The frontal area only
accounts for surface perpendicular to the water flow. Only data from the 16 mm diameter
aluminum cylinder and square aluminum bar are presented in this report.

Shown in Figure 17 is an example of raw data of the force obtained from the force
sensor for a period of 120 s when the data is taken at 50 Hz sampling frequency. The
average velocity of the water flow here is about 59.4 cm per second. The oscillation of drag
force is expected to be caused by the unsteadiness of the flow and the vortex shedding
that occurs when fluid flow passes the object. The average force is about 0.38 N, and its
standard deviation is ±0.072 N.

 
Figure 17. This graph shows typical force data collected during a test. For this data, the time-averaged
velocity is 0.594 ± 0.01 m/s (not shown), while the time-averaged force is 0.386 ± 0.072 N. The
sample is 16 mm cylinder bar using data sampling of 50 Hz.

The drag force data for each sample was collected for four different pump speeds:
0.35, 0.50, 0.60, and 0.66 m/s. All measurement was obtained when steady state had been
reached. Figure 18 shows monotonic and non-linear increase in the drag forces for the
samples in the range of the applied flow speed. The two samples demonstrate a very
similar trend. The error bars show the standard deviation over the data population of
speed and force measurement. The error percentage presented by the flow meter is less
than that by the force sensors. A consistent increase in the deviation from the mean of the
force data is observed when the flow speed increases. This is expected, as the force should
be proportional to the square of flow speed. Data from the flow meter indicate consistent
deviation throughout the range of the flow speed.
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Figure 18. The mean velocity vs. mean force shows monotonic increase in the drag force with the
increase in applied velocity. Error bars show standard deviations that increase with the velocity. The
errors from the flow meter are relatively smaller compared to that from the force sensor.

Figure 19 shows the plot of the average drag coefficients for increasing Reynolds
numbers. The average CD here is calculated using the time-averaged velocity and time-
averaged force taken at a specific pump’s frequency. The error bars indicate the “maximum”
and “minimum” values of the drag coefficients, calculated using the maximum and mini-
mum velocity and force data reading. The large fluctuation of force data at high velocity is
reflected here as large range of “maximum” and “minimum” coefficients. Nevertheless, the
average drag coefficients for both cases remain relatively constant in the presented range
of Reynolds numbers. The average drag coefficients, over the given Reynolds numbers,
are 1.48 ± 0.25 and 1.58 ± 0.13 for the cylinder and square bar, respectively. The plot of
CD for cylindrical bar as a function of Reynolds numbers for 0 ≤ Re ≤ 104, proposed by
Tang et al. [54], is also shown in this figure. The expression is stated here for clarity:

CD = 10(0.0041×(log (Re))3+0.0853×(log (Re))2−0.65×log (Re)+1.05) (6)

The function is obtained by regression analysis of CD data on cylinder bars obtained
from various data collection. The dash line in Figure 19 shows the constant CD number
for a long cylinder that is typically published in textbooks. The presented comparison
shows that the CD values obtained in our lab can be considered reasonable. For CD of the
cylinder bar, the deviation from both published CDs is large when the Reynolds number is
low, but the error is minimized as the Reynolds number increases. The outcome certainly
warrants further refinement of the experiment apparatus and more data collection at
various Reynolds numbers.

71



Fluids 2021, 6, 242

 
Figure 19. Average drag coefficients (CD) for the circular cylinder and square bar for various flow
speeds (Reynolds numbers). The error bars indicate the “maximum” and “minimum” CD values
calculated using the extreme values of speeds and forces obtained during the sampling period of
120 s. The average CD values across the range of Reynolds number for the cylinder and square bar
are 1.48 and 1.58, respectively. The data marked by dark circles are obtained using formulation
proposed by Tang et al. [54], and the dash line represents the constant known CD typically presented
in textbooks.

Alternatively, the drag coefficients can be obtained by first plotting the drag force data
against the square of the time-averaged speed, as shown in Figure 20. Using standard
linear regression analysis, the linear relationship between FD and V2 can be obtained.
For the presented samples, the following relations are obtained FD = 1.1623 V2 and
FD = 1.3449 V2 for the cylinder bar and square bar samples, respectively. The high R2

values for the two samples indicate a strong fit in the regression process. It also indicates
that the linear relation is appropriate, as the CD is expected to be constant in the applied
range of Reynolds numbers. Note that the zero intercept in this case is not automatic, and
it must be enforced as the zero force should be correlated with zero velocity. Eventually,
the drag coefficients can be calculated from the gradients of the lines using the following
formulation, which can be derived from (4)

ĈD =
2 K
ρ A

(7)

where K is the gradient of the linear relationship between FD and V2. The coefficients
found using this method are very similar to the average coefficients, however this method
results in coefficients that are closer to the known values from textbooks [43–45].
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Figure 20. Linear correlation between the drag force and V2 (square of the velocity) can be used to
obtain the drag coefficients. The high R2 numbers suggest that the linear regression fits the data very
well. The gradient for the square bar data (empty square markers) is slightly higher than that of the
cylindrical bar (circle markers).

Presented in Table 8 is a list of the CD values obtained in our experiments compared
to those presented in textbooks. The 2D and 3D refer to the two-dimensional and three-
dimensional assumptions of the immersed bodies. The CD refers to the averaged coefficient
of drag. This CD is obtained by simply taking the average of all CDs calculated using
different mean velocities and their corresponding drag forces. The alternative ĈD is
obtained by first plotting the drag force versus the square of the mean velocities (FD vs. V2

)
and then computing the gradients of their linear relationship. The last column of the table
shows the CD value when the cylinder is considered as a three-dimensional (3D) body. The
length-to-diameter ratio of our sample is L

D ∼ 7, and the corresponding CD value is in
between 0.74 and 0.82 [44]. Compared to the 2D version of the known values, both methods
result in drag coefficients within reasonable margin errors for the given experiment setup
and range of applied Reynolds numbers (5000 ≤ Re ≤ 104). The known 2D CD is stated
to be valid for 103 ≤ Re ≤ 104 (laminar regime), while the 3D CD is valid for Re ≥ 104

(turbulent regime) [44].

Table 8. List of the CD values obtained in our experiments compared to that presented in textbooks. The 2D and 3D refer to
the two-dimensional and three-dimensional assumptions of the immersed bodies. The CD refers to the averaged coefficient
of drag. The ĈD is obtained using the linear regression analysis of FD vs. V2.

Sample Diameter/Side
¯
CD

^
CD

Known CD (2D) [44] Known CD (3D) [44]

Cylinder 15.94 mm 1.48 ± 0.25 1.39 1.2 0.74–0.82
Square bar 15.93 mm 1.58 ± 0.13 1.61 2.1 or 2.2

Given the limitation of the support system and the accuracy of the sensors, the drag
coefficients obtained in this experiment can be considered reasonable. The close walls
presented by the observation chamber introduce effects on the vortex trail, hence the
drag forces. Numerical studies at low Reynolds numbers showed that the wall increases
the drag coefficient [55,56]. Experimentation at high Reynolds numbers (above 3000) on
a cylinder, flat plates, and a square bar indicates the effects of walls on the pattern of
the vortex-shedding [57]. The presence of the flow meter upstream of the sample, as
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mentioned previously, should have affected the force reading. Simultaneous flow rate
reading is not necessary, as the relationship between the pump’s frequency and flow speed
has been known. Alternative supporting systems for the bar, for example pin support
or fixed support on both ends, should be studied in future. Lastly, the absence of flow
straightener needs to be considered, as it is known to affect the flow characteristics in the
observation chamber.

7. Budget

Table 9 shows major items purchased for the flow tank, totaling approximately USD
5550. This is slightly higher than the USD 3500 cost of a custom-made water tunnel with
a 30 cm wide and 180 cm long test section reported by Darfler and Tsai [2]. Our budget
matches well with a flow loop with similar scale testing chamber reported by Northern
Arizona State University [58]. However, this system can only perform laminar flow due
to the small pump size. The centrifugal pump, as is expected, is the most expensive item
in our project. However, its cost is still less than 22% of the total budget. The cost for the
speed controller is also modest. The remaining cost covers the materials, such as stainless
steel plates for the tank body, an acrylic sheet for the observation chamber, various pipes
and valves for connectors, and steel tubes for the supporting frames. Gas supply for the
welding takes less than USD 1000. The total cost listed here does not include the labor cost
for the welding, assembly, design, transportation, wiring, and painting. All price is based
on 2018 market values. An up-to-date pump price may be found on the manufacturer’s
website [59].

Table 9. List of major components of the flume, amount and its 2018 price. Note that the labor cost is not included here.

Item Total Price (USD) Percent of Total Cost (%)

3” Self-priming centrifugal pump 1105 19.91
Programmable 3-phase AC motor speed control 723 13.03

Acrylic Sheet 0.7” thickness 298 5.37
Stainless Steel (various thickness) 805.9 14.52

Low-carbon steel square tubes and sheets 694.5 12.51
Various hoses, pipes, and fittings 654 11.78
Various bearings and mountings 138.8 2.50

PVC pipes, fitters, and elbows 159 2.86
Welding screen 240 4.32

Argon gas supply for welding 504 9.08
Various shipping of items 228.5 4.12

Total 5551 100

8. Conclusions

The design and manufacturing process of an educational water flume has been shown
to provide a learning platform for engineering students. The project is suitable for a
senior design capstone project that would take two (2) semesters to complete. The design
process has provided complex hands-on exercise materials for students desiring to master
engineering fundamentals and skills such as computer aided designs, computer analysis of
structures and fluid flows, electrical circuits, and experimentation. The open flume can be
an expensive investment, but its versatility truly provides avenues for multi-disciplinary
creative research. For a small-scale water flume, the required pump is governed by the
height of the observation chamber and desired flow rate for the experiments. Welding
of the tank body and supporting frames take the most challenging step and must be
facilitated well. Professional welding and manufacturing, when budget is allowed, should
be preferred to obtain a quality product, as rusting can become imminent.
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Abstract: An intensive training course has been developed and implemented at the California State
University Long Beach based on 8 years of experience in the multiphase flow area with the specific
focus on droplet–solid interactions. Due to the rapid development of droplet-based equipment and
industrial techniques, numerous industries are concerned with understanding the behavior of droplet
dynamics and the characteristics that govern them. The presence and ensuing characteristics of the
droplet regimes (spreading, receding, rebounding, and splashing) are heavily dependent on droplet
and surface conditions. The effect of surface temperature, surface wettability, impact velocity, droplet
shape and volume on droplet impact dynamics, and heat transfer are discussed in this training paper.
Droplet impacts on moving solid surfaces and the effects of normal and tangential velocities on
droplet dynamics are other topics that are discussed here. Despite the vast amount of studies into the
dynamics of droplet impact, there is still much more to be investigated as research has expanded
into a myriad of different conditions. However, the current paper is intended as a practical training
document and a source of basic information, therefore, the scope is kept sufficiently broad to be of
interest to readers from different engineering disciplines.

Keywords: droplet impact; undergraduate education; applications of fluids

1. Introduction

This paper summarizes an intensive course on the subject of multiphase flow with the focus on
both the theoretical and practical knowledge on droplet–solid interactions. More specifically, the goal of
this training manuscript is to provide students with in-depth practical knowledge of droplet dynamics
due to its numerous industrial and scientific applications. The dynamics of droplet impacts on solid
surfaces has been studied for years starting with the work of Worthington [1,2]. To this day, droplet
impact dynamics are widely studied as further improvements in understanding of droplet behavior
due to the variety of their industrial applications. In particular, droplet impacts are imperative to
industrial processes employing spray coating and painting, spray cooling, inkjet printing, combustion
engines, and anti-icing characteristics of critical industrial components such as aircraft surface, powder
lines, and wind turbines [3–7]. A brief discussion for some of these usages is presented below.

One of the prominent applications of droplet studies is aircraft icing, which refers to creation of
ice on the surface of flying objects. This usually happens at the presence of super-cooled water droplets
and below icing temperature. Those droplets are formed as droplets with various size merge in clouds,
or when the falling snow melts as it passes through a warmer layer (weather inversion). In either case,
they are very unstable, and any disturbance will cause ice formation. During a flight, a fraction of
super-cooled droplets tracks through the airflow and impact the aircraft surface. In most cases, the low
energy droplets freeze upon impact, whereas the ones with higher energy flow along the surface until
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their energy is depleted and then freeze. Consequently, the resulting ice changes the surface structure
of the aircraft and this reduction in the aerodynamic of the wing increases the fuel consumption [8–13].
As such, a detailed understanding of this process is much needed to engineer more efficient wings.

Other application of droplets is in direct injection combustion engines, where the behavior of
fuel droplet impingement on the piston and surrounding cylinder walls is heavily studied [14–18].
The formation of the wall-fuel film and the improvement in the efficacy of combustion engine promote
a wide variety of research into droplet dynamics [14–18]. The properties of superhydrophobic surfaces
are of major interest in aerospace and power industries for their anti-icing characteristics, to prevent
ice formation on wind turbine blades, power-lines, or aircraft wings [11,19–21]. Methods improving
the repulsion of water droplets off surfaces have been heavily studied. Such methods involve variable
surface inclination and application of superhydrophobic coatings [4,22–26].

Another interesting application of droplet dynamics is in the thermal spray process, where molten
or semi-molten metal and ceramic particles are deposited on a substrate to generate various types of
coatings such as thermal barrier, wear resistance, and corrosion resistance ones [27–32]. During the
thermal spray process first, a heated gas is created via chemical combustion or electrical energy in
a torch. Then the gas is used to melt the coating powder or wire into droplets and accelerate them
toward a substrate, where the particles generate a splat. Finally, a coating is formed via multiple layers
of splats. In that regards, most research studies the effect of droplet’s inflight behaviors such as velocity,
temperature, and trajectory, and their interaction with the substrate’s temperature and roughness on
the process of droplet solidification and coating structure [27–31,33–38].

Yet another importance of fundamental study in the droplet impact field is its application in spray
cooling, where an array of small droplets is applied to a heated surface as a cooling mechanism to
enhance its heat transfer [39–44]. In this operation, the cooling effectiveness is strongly influenced by
fluid properties and droplet’s size and velocity. Amongst the numerous usages here are dermatological
operation, fire protection, and cooling of hot surfaces like hot strip mill and high-performance electronic
devices. For example, cryogenic spray cooling is selectively directed to pre-cool human skin in laser
treatments and hair removal procedures. Similarly, in steel strip casting, a jet gas with water droplets
is guided to cool a high temperature (up to 1800 K) steel surface that shapes the final microstructure
optimization. All in all, new developments in spray cooling technology demand improving the
heat transfer rate, while maintaining uniform heat removal, and preventing temperature overshoot.
They also require uniform operating temperatures maintenance, the removal of high heat flux, or the
adaptability to changes in heat flux [39,42,45].

Furthermore, droplet dynamics are widely used in ink-jet printing as it involves the generation
and deposition of small droplets, usually containing colorants, onto a substrate in certain patterns.
Main challenges in the process are when droplets bounce back or spread unevenly on the paper.
The development in understanding droplet dynamics is thus motivated by the vast applications of
ink-jet printing, where improvements in droplet positioning, volume, and directionality are the main
concerns [46–48]. Note that, the input substance (ink) can be a tiny liquid of “smart” material. As such
today’s applications of ink-jet technologies include printing solar cells, medical sensors, and electronic
circuits. Particularly, ink-jet printing techniques have rapid developments in medical industry, where
the manipulation of small amounts of liquid is essential in cell culture growth and pharmaceutical
drug production [49–51].

Lastly, there has been rapid developments in microfluidic technologies, where liquid drops are
handled on nano or micro scales. Microfluidic technologies have heavily impacted the biomedical,
environmental, food, and chemical industries [52–54]. Other notable industrial applications of droplet
impacts include quenching of aluminum alloys and steel, fire suppression, incinerators, soil erosion,
and crop spraying [3,55–58].
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Key Dimensionless Numbers in Droplet Impact Dynamics

To facilitate the characterization of droplet dynamics several dimensionless numbers have been
introduced in the literature. The main dimensionless numbers are given in Table 1 [3,59,60], where ρl
denotes the liquid density, d0 is the droplet diameter, u0 is the droplet impact velocity, σ is the surface
tension, μl is the liquid viscosity, g is the gravity, and t is time. Furthermore, in this table, dcl, cl, kl,
T0, hlv, Q, and Mevap denote the diameter of the wetted region, liquid specific heat, liquid thermal
conductivity, initial temperature, enthalpy of vaporization, total heat that is transferred to the droplet,
and the evaporated mass at a given time, respectively. Subscripts l and s also stand for liquid and solid,
respectively. It is worth mentioning that Table 1 only covers the main dimensionless numbers, while
additional dimensionless numbers can be defined for the contact angle of the droplet on the surface,
the boundary layer thickness, vapor properties, etc.

Table 1. Key dimensionless numbers to study droplet impact dynamics.

Dimensionless Number Formulation

Weber number (ratio of inertial to surface tension forces) We =
ρld0u2

0
σ

Reynolds number (ratio of inertial to viscous forces) Re = ρld0u0
μl

Ohnesorge number Oh = We0.5Re−1

Bond number (ratio of gravitational to surface tension forces) Bo =
ρl gd2

0
4σ

Dimensionless time τ = u0t
d0

Spreading ratio S = dcl
d0

Prandtl number Pr = μlcl
kl

Stefan number St = clΔT0
hlv

Ratio of the thermal effusivity of the liquid and the solid Re f f =

√
(ρck)l√
(ρck)s

Ratio of specific heat capacities Rc =
(ρc)l
(ρc)s

Ratio of the total heat Q transferred to the droplet to the maximal
possible heat transfer E∗ = 6Q

πρld3
0hlv

Evaporation efficiency E∗evap =
6Mevap

πρld3
0

2. Droplet Impact on Static Solid Surfaces

Experimental investigations suggest the presence of six possible regimes for droplet impact
on dry surfaces, including deposition, receding breakup, rebound, and splashing (see Figure 1).
The characteristics of these regimes after droplet impact has been deeply investigated [3,57,59,61–64].
The presence, or lack of each regime is dependent upon multiple conditions of the impacting droplet
and characteristics of the surface. Such properties include impact velocity, droplet size, liquid surface
tension and viscosity, surface temperature, wettability [3,4], etc.
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Figure 1. Droplet impact regimes on dry surfaces (reproduced with permission from [65]).

The expansion of the droplet after its impact on the surface is known as the spreading regime. This
phenomenon is observed at relatively low Weber number values and low surface temperatures [3,63,66].
One of the most important parameters for characterizing the spreading regime during the droplet
impact is the maximum spreading diameter of the droplet. The maximum spreading diameter of the
droplet is imperative when heat transfer is a concern as the maximum spreading defines how much
surface area is available for heat transfer [66]. Several characteristics of both the droplet and surface can
affect the maximum spreading, such as droplet impact velocity and surface wettability [67–70]. Initial
droplet velocity heavily impacts its spreading. As the droplet impacts on the surface, the kinetic energy
in the vertical direction is transferred to the radial direction, promoting the spreading of the droplet.
Lann et al. [69] described in their work that droplets spreading behavior is overseen by the conversion
of kinetic energy into surface energy or dissipated heat. Different models have been developed to
predict the maximum spreading ratio, Smax = dcl,max/d0, as a function of the impact parameters. Some
of the most commonly used formulas in the literature are as follows:

Jones [71]

Smax =

√
4
3

Re1/4 (1)

Chandra and Avedisian [72]

3We
2Re

S4
max + (1− cosθ)S2

max −
(We

3
+ 4
)
= 0 (2)

Asai et al. [73]
Smax = 1 + 0.48We0.5 × exp

[
−1.48 We0.22 Re−0.21

]
(3)

Pasandideh-Fard et al. [74]

Smax =

√
We + 12

3(1− cosθA) + 4
(
We/

√
Re
) (4)

Mao et al. [75] [
1
4
(1− cosθ) + 0.2

We0.83

Re0.33

]
S3

max −
(We

12
+ 1
)
Smax +

2
3
= 0 (5)
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Ukiwe and Kwok [76]

(We + 12) Smax = 8 + S3
max ×

[
3(1− cosθA) + 4

We√
Re

]
(6)

where θA stands for the advancing contact angle.
The receding regime involves the contraction of the droplet once it has reached the maximum

spreading. Droplet receding is due to the liquid surface tension, which pulls the droplet together [3,66].
The receding time depends on several factors including the surface shape and the liquid surface
tension [67,77]. The suppression of this regime has also been observed under various conditions.
For example during the impact of liquid fuels such as decane, ethanol, and tetradecane due to their low
surface tension, the contraction phase is suppressed [77]. This regime has also been shown to be heavily
affected by surface temperature. Receding can be hindered or even vanished by sufficiently low surface
temperatures. For instance, during the water droplet impact on ice films, once the droplet reaches
maximum spreading, the contact interface between the droplet and the ice film freezes, preventing the
formation of a receding regime [78–82].

After receding, the droplet may show rebounding depending on various parameters such as
surface wettability, temperature, and kinetic energy. In the rebound regime, if the droplet has a high
contact angle and sufficient kinetic energy, it may bounce off the surface. The rebound regime has
also been shown to be absent under various conditions. For instance, upon impact on a super-cooled
superhydrophobic surface, water droplet freezes and adheres to the surface as it spreads, therefore,
no rebounding occurs [83].

The appearance of the splashing regime is also dependent on various conditions of the droplet
and surface. During impact with high enough energy, the droplet hits the surface and disintegrates
into secondary droplets. Splashing can be induced by changing the orientation of the surface, such as
having spherical or inclined surfaces, or impact on a moving liquid film [84–86]. There are several
types of splash such as corona, prompt, and fingering within the splashing regime [77,87–89]. In corona
splashes (see Figure 1) the outer rim of the lamella lifts off the surface forming a crown. From the crown,
the lamella breaks apart forming secondary droplets. In prompt splashes, the droplet disintegrates,
and secondary droplets form immediately after impact. Finally, in fingering splashes, protrusions
extend from the droplet, eventually disintegrating and forming secondary droplets [77,87–89]. Various
boiling regimes have also been experimentally studied at super-heated temperatures. This causes
different splash phenomena, such as boiling-induced breakup or boiling-induced splashing, due to
nucleate boiling in the contact interface [66].

As mentioned earlier in this manuscript, the regimes and phenomena observed during droplet
impact significantly depend on a variety of droplet/surface conditions. Here we aim to describe the key
conditions affecting the impact dynamics of droplet on solid substrates. As such the article is divided
into two sections describing the droplet impacts on (1) stationary solid surfaces and (2) moving solid
surfaces. Noting that due to the vast number of characteristics defining the behavior of droplets only
the major ones will be discussed in this article; namely impact velocity, droplet shape and size, surface
wettability, and temperature.

2.1. Effect of Surface Temperature

Surface temperature is an important characteristic affecting the dynamics of impacting droplets,
particularly when heat transfer is a concern. In the case of a hot, dry solid surface, the droplet impact
outcomes are classified into several regimes: evaporation, nucleate boiling, foaming, transitional
boiling, and film boiling. In the nucleate boiling regime, which occurs at relatively high surface
temperatures, the droplet is in direct contact with the surface and vapor bubbles are formed at various
isolated nucleation sites. These bubbles rise and the droplet will eventually boil off (see Figure 2b) [67].
In the foaming regime, which is a subcategory of nucleate boiling, the entire drop starts to foam.
The vapor bubbles grow much larger in this regime while no separation from the liquid–gas interface
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and no coalescence are detected. In the transition boiling, due to high wall temperature, the generation
rate of the vapor bubble increases quickly. Owing to bubbles coalescence, a vapor layer is formed
over some portions of the area between the drop and the surface, while the rest of the drop wets the
surface. In this regime, liquid layers frequently collapse, therefore, this regime is very unstable and
secondary droplets are also generated [90]. Further increasing the temperature changes the regime to
film boiling. In this regime, a vapor layer forms preventing the complete contact between the liquid
and the surface [67]. In the film boiling regime, the droplet levitates on a vapor layer, as shown in
Figure 3. This phenomenon is heavily studied and called the Leidenfrost effect [91]. The Leidenfrost
effect also promotes rebounding of the droplet without disintegration into secondary droplets.

Figure 2. Outcomes of droplet collision with a hot, dry solid surface: (a) evaporation, nucleate
(b) boiling, (c) foaming, (d) transition, and (e) film boiling (reproduced with permission from [90]).

Figure 3. The Leidenfrost phenomenon forms vapor layer preventing droplet from contacting
the surface.

One important characteristic of heat transfer in droplet dynamics is the evaporation time. When the
surface temperature is within the nucleate boiling regime, it was observed that as surface temperature
increases, the evaporation time decreases due to an increase heat transfer. During the transitional
regime, the evaporation time is variable due to uneven contact between the liquid and surface. However,
in the film boiling regime, the evaporation time sharply increases due to the Leidenfrost effect. When
the droplet enters the film boiling regime, it is no longer in contact with the surface as the vapor layer
separates the two. This vapor layer acts as an insulating layer, slowing down evaporation [67]. Further
increasing the temperature past the Leidenfrost effect will decrease the evaporation time [92].

Liquid surface tension has significant influence on the dynamic Leidenfrost temperature.
The dynamic Leidenfrost temperature is the minimum surface temperature at which the impacting
droplet bounces without splashing, in other words the minimum temperature to induce the Leidenfrost
effect [93]. Chen et al. [93] studied the effects of surfactants on the dynamic Leidenfrost temperature.
In these sets of experiments alcohol surfactants, octanol and ethyl-hexanol, were added to water
droplets causing a reduction in surface tension of the droplet. As a result, the maximum spreading
diameter increased during the spreading regime. Additionally, it was observed that the time to
reach maximum spreading was decreased. Chen et al. [93] found that by adding surfactants the
dynamic Leidenfrost temperature increased. The addition of surfactants promotes splashing and
prevents the formation of vapor layer. The reduced surface tension promotes a thinner lamella during
spreading, this makes it easier for vapor bubbles to burst out from the boiling film and break the vapor
layer, preventing the Leidenfrost state [93]. The reduced surface tension also makes it difficult for
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vapor bubbles to coalesce and form a vapor layer as a result of the lower bubble departure diameter.
The dynamic Leidenfrost temperature can also be raised higher by increasing the concentration of
surfactants in the droplet due to increased reduction in surface tension. Surface wettability is another
parameter that affects the Leidenfrost point in a way that more hydrophilic surface leads to a higher
Leidenfrost temperature [67,90].

Cooled and super-cooled surface temperatures also have an intense effect on droplet dynamics.
At sufficiently cool temperatures, droplets begin to nucleate and freeze. The sessile droplet undergoes
a complex solidification process, typically split into five stages [83,94,95], which is similar to the
freezing of suspended water droplets. First, the droplet is cooled from its initial temperature to
temperatures below the equilibrium freezing temperature during a cooling stage. Second, the droplet
experiences a nucleation stage, where ice crystal nucleation occurs. Third, rapid crystal forms from the
nucleation points driven by supercooling during the recalescence stage until it reaches the equilibrium
temperature. Fourth, crystal growth is driven by heat transfer until the droplet is completely frozen
during the freezing stage. Lastly, during the solid cooling stage, the temperature of the solidified
droplet decreases due to the continuous cooling of the cold plate [83,94,95]. At this stage the ensuing
droplet forms a peculiar shape with a pointed tip as shown in the last sequence of Figure 4.

Figure 4. Sequences of water droplet impact on a cold hydrophobic surface, in a way (a–m): the
starting point of the process to the end of the phenomenon. Droplet diameter = 2.82 mm, impact
velocity = 0.77 m/s, and surface temperature = −10 ◦C (reproduced with permission from [68]).
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The deformation of an impacting water droplet throughout the freezing process on a hydrophobic
horizontal surface is shown in Figure 4. Experimental studies have shown that sub-cooled temperature
has no significant effect on the spreading of the droplet after impact [80,96]. However, it shows
significant suppression of the receding speed and height when the period of receding is sufficiently
long [96,97].

2.2. Effect of Surface Wettability

Surface wettability is the ability of surface to be wetted by a liquid and is mainly determined by
surface roughness and chemistry. The Wenzel [98] and Cassie-Baxter [99] states describe the droplet
wetting regime on the surface (see Figure 5). In the Wenzel state, water penetrates into the surface
structures and conforms to the surface while in the Cassie-Baxter state, the water droplet remains
above the surface structures, maintaining an almost spherical shape [4].

Figure 5. Wetting regimes of droplet on a solid surface: (a) Cassie-Baxter state and (b) Wenzel state
(reproduced with permission from [4]).

Static contact angle, θ, which is defined as the angle between the droplet and the surface at
the contact line (see Figure 6) is a characteristic used to define the degree of surface wettability.
The advancing contact angle, θA, is the contact angle for a droplet with an advancing contact line (e.g.,
for a growing droplet), while the receding contact angle, θR, is the contact angle for a receding contact
line (e.g., a shrinking droplet). Contact angle hysteresis is defined as θA −θR and is an indication of the
droplet mobility on the surface, in a way that the lower is the hysteresis the easier the droplet moves on
the surface (higher mobility). In general, in contact with water, a hydrophilic surface displays a contact
angle of less than 90◦, while a hydrophobic surface shows a contact angle of more than 90◦. On a
superhydrophobic surface, contact angle is more than 150◦, and the contact angle hysteresis should be
less than 10◦ [4,68].

Figure 6. Schematic of static, θ, receding, θR, and advancing, θA, contact angles [100].
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The wettability of a surface considerably affects the droplet dynamics after impact. It is shown
that the wetted area during the spreading regime decreases with lower surface wettability [68]. It is
also found that as wettability decreased a longer time was required for a droplet to reach equilibrium.
This is due to oscillations in the droplet as more kinetic energy remains after the spreading regime.
As spreading is suppressed, less energy is dissipated [68]. Tang et al. [77] studied the droplet dynamics
of various liquid on surfaces with variable roughness. It was shown that as surface roughness increases,
the droplet has a slower spreading time and smaller maximum spreading diameter. It was also observed
that increase of surface roughness, promotes droplet splashing. Moreover, it was demonstrated that
surface roughness has a prominent impact on the promotion of splashing in liquids with a smaller
Ohnesorge number.

Surface wettability has a significant impact on the heat transfer rate in droplet dynamics.
Pan et al. [68] studied droplet impacts on cold surfaces and observed how wettability affects the
freezing process. As surface wettability decreases the total icing time of the droplet increases. This is
because of a lower heat transfer rate due to a smaller heat transfer area. The lower surface contact area
is due to the high interfacial tension in low wettability surfaces, which prevents droplet spreading.
As expected, on hydrophilic surfaces the total freezing time is shorter comparing to the hydrophobic
surfaces. On hydrophilic surfaces spreading is promoted due to more heat transfer area. Overall, more
contact surface area leads to a higher heat transfer rate and in turn a shorter freezing time [68].

Surface wettability also has an impact on the boiling process during droplet dynamics. In general,
as wettability increases the rate of phase-change heat transfer enhances [92,101]. As surface becomes
more hydrophilic, smaller and faster bubble growth occurs [102,103]. Kim et al. [92] studied the effects
of surface wettability on droplet rebounding on hot surfaces above the Leidenfrost temperature. In their
experiments four surfaces were prepared, a smooth hydrophilic, a smooth hydrophobic, a hydrophilic,
and a hydrophobic surface both with nanoscale structures. For both smooth and nanoscale hydrophobic
surfaces, rebounding of the droplet was achieved, but at varying surface temperatures. For both
hydrophilic surfaces, it was found that a higher surface temperature was needed to induce rebounding
as more energy was required to disperse the droplet from the surface. On hydrophilic surfaces, there is
more contact area and more surface tension, thus more work is needed to break the droplet adherence
to the surface. Finally, on the nanoscale hydrophilic surface, splashing was induced caused by the
capillary effects and cavities of the surface [92].

2.3. Effect of Impact Velocity

One of the most important characteristics affecting the dynamics of droplet impact is the droplet
impact velocity. Specifically, impact velocity has a profound effect on the droplet spreading regime.
Clearly, when the impact velocity increases, more kinetic energy is given to the droplet. The momentum
in the vertical direction is then transferred in the radial direction upon impact [3,67,68]. As higher
impact velocities a higher degree of spreading is promoted, leading to more surface area for heat
transfer [62,66–68,93,104]. Rajesh et al. [67] showed that on superheated concave and convex surfaces,
an increase in impact velocity translated to an increase in both maximum droplet spreading and contact
time. This increase in maximum spreading diameter is due to a rise in impact kinetic energy allowing
the droplet to spread more. Similarly, the increase in maximum droplet spreading, due to higher
impact velocity, affects the freezing time of the droplet on cold surfaces. With higher impact velocities,
a trend of shorter icing time and faster freezing is observed (faster spreading and higher heat transfer
dispersal occurs upon impact [68]). Furthermore, as mentioned above, if the droplet has enough energy,
it rebounds after retraction. Increase of the impact velocity has shown to promote rebounding and
further increase of the impact velocity can induce splashing [3,59]. Chen et al. [93] studied the effect of
the initial droplet impact momentum on the Leidenfrost point and detected that at high impact velocity,
a higher surface temperature is needed to induce the Leidenfrost effect. The increased droplet impact
momentum leads to higher kinetic energy in the spreading droplet, this causes a thinner liquid disk,
hence nucleate bubbles are easier to burst out from the disk, which breaks the Leidenfrost state [93].
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2.4. Effects of Droplet Shape and Volume

The shape of the droplet can impact its dynamics and the heat transfer rate. By increasing the
ellipticity and asymmetry of the droplet, the spreading and retraction regimes are significantly changed.
Generally, asymmetrical droplets require a higher impact velocity for rebounding [105–108]. Yun [109]
studied the effects of asymmetry and ellipticity on droplet dynamics, specifically on its rebound regime.
Asymmetric droplets, in the shape of an egg, showed uneven spreading and retraction in both the
x and y axis (see Figure 7). To investigate the effect of asymmetry and ellipticity on the rebound
regime, the height of the droplet at the center of mass was measured. It was found that with increasing
ellipticity the height of the droplet decreased [109]. Additionally, with decreasing asymmetry the
droplet showed a reduced rebound height. This suggests that suppression of droplet rebound can be
induced by variances in its ellipticity and asymmetry. In other words, the degree of droplet deposition
can be promoted with variances in the droplet’s shape. The suppression of droplet bouncing is due to
a break in the horizontal momentum of the droplet at low asymmetry and high ellipticity [109].

Figure 7. Simulation and experimental snapshots of the impact dynamics of (a) spherical and
(b) asymmetric droplets on a hydrophobic surface (reproduced with permission from [109]); the
equivalent droplet diameter is 2 mm and We = 17. SV and BV stand for the side and bottom-views in
the experiment, respectively.

The size of the impacting droplet can also affect multiple characteristics of droplet dynamics.
Pan et al. [68] studied how the initial droplet diameter affected its maximum spreading diameter and
heat transfer rate. By increasing the initial droplet size, water droplet spreads more and showcases
more oscillation during the spreading regime owing to an increase in initial kinetic energy. Additionally,
upon impact on a cold surface, larger droplets showed increase in freezing time. Despite an increase in
surface area during the spreading regime, larger droplets needed a longer time to freeze due to an
increase in mass [68]. This experiment demonstrated the predominance of droplet volume over the
effects of droplet dynamics on freezing time due to longer time spent during the heat transfer process
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compared to the droplet dynamic process. It is worth mentioning that an increase in droplet volume
can induce splashing due to an increase in the Weber number.

2.5. Effect of Relative Humidity

Relative humidity has considerable influence on droplet dynamics. Bobinski et al. [110]
qualitatively observed the effects of relative humidity and surface temperature on droplet impact in
icing conditions. In their studies, relative humidity was kept constant and equal to 75%, while the
surface temperature was reduced to −10 ◦C. It was found that droplet freezing is triggered during the
spreading phase and it freezes when the maximum spreading is reached, even on the superhydrophobic
surface. By decreasing the relative humidity to 9%, it was shown that the impact process on the
superhydrophobic surface is similar to the case of room temperature tests and the droplet does not
freeze. Experimental study was also performed by Jadidi et al. [111] to understand the effects of
relative humidity, surface temperature, and wettability, and the frosting mechanism on water droplet
impact dynamics. In their study superhydrophobic, aluminum, and glass surfaces with three different
surface temperatures (i.e., 20, 2, and −2 ◦C) were used. Furthermore, three different relative humidities
(i.e., 10%, 20%, and 30%) were applied while the droplet Weber and Reynolds numbers, and the air
temperature were fixed. It was revealed that the ratio of the surface temperature to the dew point
temperature, which depends on relative humidity and air temperature, has a significant impact on
droplet spreading, recoil, and contact angle. In general, when the mentioned ratio is less than one and
decreases (it can be done by increasing the relative humidity or decreasing the surface temperature),
condensation and frost formation become important, droplet spreading diameter increases significantly,
and the equilibrium contact angle decreases.

2.6. Effect of Dimensionless Numbers

The effect of dimensionless numbers on the spreading ratio, S, during droplet deposition on a dry
surface is shown in Figure 8 [60]. To obtain these results, one dimensionless number was individually
changed while other dimensionless numbers as well as contact angles were kept constant. As shown
in Figure 8a, the maximal spreading ratio increases with Reynolds number. On the other hand, the
minimal spreading ratio at the end of the receding phase slightly decreases as the Reynolds number
increases. Furthermore, the Reynolds number does not significantly affect the duration of spreading
and receding phases in terms of dimensionless time. In contrast, as can be seen in Figure 8b, the Weber
number does not affect the spreading phase. However, by increasing the Weber number, receding is
slowed down. Increasing the Bond number, results in a slight increase of the spreading ratio in all
impact stages (see Figure 8c). In short, the competition of inertial and viscous forces has significant
influence on the spreading phase, while the surface tension force mainly affects the receding phase [60].

Herbert et al. [60] also showed that by increasing the Reynolds number, the total heat transfer from
the substrate to the droplet significantly decreases. It was explained that although the heat transfer area
is larger during the spreading and the beginning of the receding stages for large values of Reynolds,
the heat flow is noticeably lower in these phases. In addition, it was shown that increasing the Weber
number causes the dimensionless heat flow during the spreading and the receding phases to decrease
and enhance, respectively. Moreover, increasing the Prandtl number results in significant reduction of
heat transfer due to a suppressed convective heat transfer at the solid–liquid interface. It was also
revealed that a higher value of Bond number causes the heat transfer rate to increase throughout the
entire process since the wetted area is enlarged, as shown in Figure 8c.
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Figure 8. Effect of dimensionless numbers on the droplet spreading ratio; (a) effect of the Reynolds
number (We = 15, Bo = 0.5, Pr = 9.54), (b) effect of the Weber number (Re = 1000, Bo = 0.5, Pr = 9.54), and
(c) effect of the Bond number (We = 15, Re = 1000, Pr = 9.54; reproduced with permission from [60]).

3. Droplet Impact on Moving Surfaces

Droplet impact onto moving surfaces shows vast differentiations in their dynamics. The degree
of droplet deformation and induction of splashing are heavily dependent on droplet impact velocity
and surface tangential velocity. Povarov et al. [112] observed the presence of the air layer causing
the droplet to lift off at high tangential velocities. At low surface velocity, the droplet is deposited
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onto the surface with no lift off. The bottom layer of the droplet adheres to the surface and spreads
in a tear-like shape. At higher velocities, there is partial lift off of the droplet. The bottom layer
of the droplet adheres to the surface and moves with it while the remainder of the droplet stays
above the impact point. As the bottom layer is dragged away, sufficiently high tangential velocities
cause the formation of an air layer. This triggers the rear edge of the droplet to splash and partially
rebound off the surface. Total rebounding occurs at even higher tangential velocities as the droplet
becomes significantly deformed [112]. Figure 9 illustrates droplet deformation on a moving surface.
Mundo et al. [113] studied the splashing threshold of a droplet during impact on a moving substrate.
Based on their observations, for high impact velocities, as the droplet impacts on the surface, a liquid
film forms and spreads. The liquid film then deforms with the moving surface forming corona around
the droplet. As the droplet continues to impact the surface, the fluid is fed into the corona film allowing
it to grow. Whereas when less fluid is fed into the corona film, it becomes thinner and eventually
disintegrates into secondary droplets. At lower impact velocities, the droplet impacts and spreads
on the surface since there is not enough normal momentum to allow the corona formation and the
kinetic energy is lost during the deformation process [86,113]. Mundo et al. also investigated the
effects of surface roughness on droplet impacts on moving surfaces. They figured out that at increased
surface roughness the droplet shows irregular deformation. Here the formation of the corona film
and sequential instabilities were not observed due to vigorous splashing. Increased surface roughness
also showed an increase in the formation of secondary droplets. On the other hand, decreased surface
roughness promotes deposition of the droplet and splashing can be suppressed [113].

 

(a) 

(b) 

(c) 

Figure 9. Side (Left) and top (Right) view of droplet deformation on a moving surface showing
(a) deposition, (b) partial lift off, and (c) partial lift offwith side-splash; scale bar is 1mm (reproduced
with permission from [86]).

Zen et al. [86] studied how impacting velocity affected the splashing on moving surfaces.
They described two splash phenomena, splash-around and side-splash in the rear edge. The threshold
between splash-around and side-splash is dependent on the impact and surface velocities. In general,
increasing the impact velocity induces side-splash and further increases in velocity lead to splash-around.
It was also observed that increase of the impact velocity promotes the formation of smaller secondary
droplets. Increasing the tangential velocity lead to promotion of side-splashing in the rear edge and
lower tangential velocities promotes splash-around in all edges. Yao and Cai [114] demonstrated the
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predominance of tangential velocity on splashing threshold. They observed that as the surface velocity
increased, the critical impact velocity to induce splashing significantly decreased.

4. Conclusions

The importance of droplet impact dynamics in a vast number of industrial applications such as
spray coating and painting, spray cooling, ink-jet printing, combustion engines, etc., drives numerous
studies into this area. This paper summarized the intensive training course aimed at discussing some
of the main governing factors on droplet impact dynamics and heat transfer on both static and moving
solid surfaces. In details on solid static surfaces, the effects of surface temperature, wettability, impact
velocity, dimensionless numbers, and droplet shape and volume were discussed. Surface temperature
played a major role on droplet dynamics, particularly at super-heated or super-cooled temperatures.
At ample temperatures, the Leidenfrost effect or the freezing process can be induced, wildly changing
the droplet dynamics. Surface wettability also greatly affected the droplet dynamics as spreading,
retraction, and rebounding can be promoted or suppressed depending on impact conditions. Impact
velocity of the droplet heavily affects spreading and splashing regimes owing to transfer of kinetic
energy after impact.

The effects of tangential and impact velocity on the impact dynamics on moving surfaces were
also discussed in this article. Droplet impact dynamics are heavily dependent on the impact and
surface velocity. Splashing is easily promoted on moving surfaces due to deformations in droplet
caused by the moving surface. In general, having training on droplet impact subject for engineering
students is essential due to the real-world applications of this topic.
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Abstract: Numerical simulations of laminar boundary-layer equations are used to investigate
the origins of skin-friction drag, flow separation, and aerodynamic heating concepts in advanced
undergraduate- and graduate-level fluid dynamics/aerodynamics courses. A boundary-layer is a
thin layer of fluid near a solid surface, and viscous effects dominate it. Students must understand
the modeling of flow physics and implement numerical methods to conduct successful simulations.
Writing computer codes to solve equations numerically is a critical part of the simulation process.
Julia is a new programming language that is designed to combine performance and productivity. It
is dynamic and fast. However, it is crucial to understand the capabilities of a new programming
language before attempting to use it in a new project. In this paper, fundamental flow problems
such as Blasius, Hiemenz, Homann, and Falkner-Skan flow equations are derived from scratch and
numerically solved using the Julia language. We used the finite difference scheme to discretize
the governing equations, employed the Thomas algorithm to solve the resulting linear system,
and compared the results with the published data. In addition, we released the Julia codes in
GitHub to shorten the learning curve for new users and discussed the advantages of Julia over other
programming languages. We found that the Julia language has significant advantages in productivity
over other coding languages. Interested readers may access the Julia codes on our GitHub page.

Keywords: CFD; Julia; Blasius; Hiemenz; Homann; Falkner–Skan; boundary-layer

1. Introduction

Computational fluid dynamics (CFD) simulation is one of the vital steps of the design
of a product that includes fluid motion. Since fluid dynamics are extremely complex and
the motion equations have nonlinear terms, usage of numerical approaches is inevitable to
simulate or predict fluid motion. Predictions can also be done with experiments. However,
it is usually costlier than a regular CFD simulation. On the other hand, fundamental
knowledge about the flow, that is planned to simulate, is necessary because of the required
numerical approach decision. Learning the canonical flows well is extremely important
in this point because most of the complex flow consists of a combination of a couple of
canonical flows. An airfoil CFD simulation can consist of boundary-layer flow over the
smooth part of the airfoil, mixing layer flow where the tail ends, and blunt body flow
in the wake region. One airfoil simulation consists of three different canonical flows.
A full understanding of the canonical flows is extremely important to model an accurate
airfoil simulation.

Prandtl [1] stated that some of the terms in the Navier–Stokes equations can be
neglected for the boundary-layer flows. As a result of this assumption, well-known
boundary-layer equations arose. These approaches are still valid after a century and
the resultant system of equations inspired lots of researchers in their studies. One of
them was Blasius who is the Ph.D. student of Prandtl. Blasius [2] worked on the same
problem as Prandtl did. However, he aimed to overcome the enigma of turbulence by
considering the phenomenon of boundary-layer flow explained by Hager [3]. He further
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simplified the boundary-layer equations for a flat plate. He assumed that the flow is
parallel. In other words, the velocity component in the parallel direction is not zero and
the velocity in the transverse direction is zero. Moreover, he represented the resultant
system of equations with a third-order ordinary differential equation, which is known as
the Blasius similarity solution.

The Falkner–Skan similarity solution is another laminar similarity solution. Cebeci [4]
explains the Falkner–Skan equations named after V. M. Falkner and Sylvia W. Skan. Falkner
and Skan generalized the Blasius similarity solution for non-parallel flows, such as wedge
flows and corner flows. The resultant equation can be used to predict the boundary-layer
thickness for wedge flow. It has to be noted that these assumptions are available in the
laminar region. Once the turbulence occurs, both of these similarity solutions will be
inaccurate. In the incompressible region, the Falkner–Skan equation can be used without
additional equation; however, after the compressibility limit, the temperature effect must
be introduced to the system as an additional equation. If the Falkner–Skan equation
is solved with the energy equation, the boundary-layer profile can be obtained in the
compressible region.

One of the other Ph.D. students of Prandtl is Karl Hiemenz who worked on Hiemenz
flow which is a type of stagnation point flow. Hiemenz [5] formulated and calculated the
stagnation point problem as explained in the Schlichting [6]. The problem was a special case
of the Falkner–Skan similarity solution. Howarth [7] also worked on the same problem and
concluded similar results. Another Ph.D. student of Prandtl, Fritz Homann [8] worked on
the same problem for axisymmetric bodies as Schlichting [6] explains. Homann’s similarity
formulation was for a sphere while Hiemenz’s similarity formulation was for a cylinder.
Both similarity solutions are being widely used for stagnation flows.

The aforementioned papers are the origins of the boundary-layer theory. As it is
mentioned, the boundary-layer theory is the origin of many problems, such as the laminar
to turbulent boundary-layer transition and flow separation. The main concern of these
researches is to increase the performance of the vehicle because the transition increases the
heat transfer and the vehicle requires a better thermal protection system at high speeds due
to increased heat transfer rate. On the other hand, flow separation may lead to a lift force
loss on the wing as a result, the performance of aircraft decreases. Since the focus of the
present paper is the fundamentals of laminar boundary-layer theory, the details will not be
provided about advanced researches. However, readers who are interested in details may
check [9–12] for subsonic boundary-layer transition, Ref. [13–21] for supersonic/hypersonic
boundary-layer transition, and Ref. [22–24] for flow separation. The other researches where
boundary-layer flow is involved are [25–30].

Understanding the aforementioned fundamental flows are crucial for a senior under-
graduate student or a graduate student in order to simulate more complex flows. However,
modeling these equations in a computer environment requires more than knowledge about
canonical flows instead it requires knowledge about programming languages as well.
There are several learning modules and papers [31–35] for computational fluid dynamics
simulation coding; however, there is not enough publication for Julia language [36]. It
is a relatively new coding language among the other coding languages such as Fortran,
C/C++, Python, and MATLAB but it is getting popular fast because it is trying to fill the
gap between the language of the state-of-art CFD codes, Fortran and C/C++, and straight-
forward/user-friendly languages, Python and MATLAB. Most of the state-of-art CFD
codes are written in Fortran and C/C++ because it is so fast and random access memory
usage (RAM) can be reduced drastically. On the other hand, MATLAB and Python have
user-friendly and easy syntax which makes them favorites of students, with a price, which
is the speed of computation. Julia is a language that tries to fill this gap between two
different coding styles. It has a user-friendly environment, while also being fast. It provides
a working space that helps users to write clear, high-level, generic code that resembles
mathematical formulas. Julia’s ability to combine high-performance with productivity
makes it a great choice for researchers working in different areas.
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In this paper, fundamental flow problems such as Hiemenz flow, Homann flow,
Blasius flow, and Falkner–Skan flow will be derived from scratch and modeled in the Julia
environment. The finite-difference discretization in space with Thomas algorithm as linear
system solver is used. Outputs of the code are provided and they are compared with
the literature. Additionally, the advantages of the Julia language over other languages
will be discussed. The computer codes and the implementation instructions will help
students to understand the fundamental flows which will provide insight for student’s
course work and researches. Using these examples, they can solve more complex flow
types and develop their own codes. We make all these codes available on GitHub and they
are accessible to everyone. We provide installation instruction for Julia and the required
packages in Appendix A. The GitHub link of the codes also can be found in Appendix A.

2. Laminar Boundary-Layer Theory

Understanding canonical flows is crucial to understanding more complex flows such
as flow over a wing or an airfoil. Hosseini et al. [37] studied flow over a wing section with
a direct numerical simulation (DNS) study. They created a great video about how flow is
formed over the aircraft. The video shows the development of the boundary-layer, how the
trailing edge looks like a mixing-layer flow, and how Karman vortex street type of wake
structures occurs. If the pre-study work is examined, it can be seen that the mesh structure
is built on the flow prediction. Using a finer mesh on the critical regions is a key point of
the CFD and it requires predictions about the possible flow behavior. The boundary-layer
is the origin of many engineering problems in aerodynamics, including wing stall, the skin
friction drag on an object, and the heat transfer that occurs in high-speed flight. In this
present paper, boundary-layer theory will be examined under two subsections, which are
laminar boundary-layer problems and stagnation point problems. In this present paper,
fundamental fluid dynamics problems related to boundary-layer theory will be derived
and implemented in a relatively new programming language, Julia. The contribution is
employing the Julia language. The governing equations and solution methodologies are
already published in the literature. The interested reader should refer to the additional
references [6,38] for detailed derivations. The manuscript may enable students to adopt
the programming language easily.

2.1. Laminar Boundary-Layer Flow Problems

Velocity distribution over a flat plate can be represented with a similarity solution.
In this subsection, Blasius and Falkner–Skan similarity solutions will be derived from
scratch and they will be solved numerically in the Julia environment. The Julia codes will
be available to shorten the learning curve.

2.1.1. Blasius Flow Problem

Schematic description of flow over a flat plate, in other words, Blasius boundary-
layer flow can be illustrated as in Figure 1. The governing equations for Blasius flow are
boundary-layer equations. These equations can be obtained by non-dimensionalizing the
two-dimensional Navier–Stokes equations that are:

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

= −1
ρ

∂p
∂x

+ ν

(
∂2u
∂x2 +

∂2u
∂y2

)
(2)

u
∂v
∂x

+ v
∂v
∂y

= −1
ρ

∂p
∂y

+ ν

(
∂2v
∂x2 +

∂2v
∂y2

)
, (3)
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where u and v are the velocities in the x-direction and y-direction, respectively. p is
the pressure, ν is the kinematic viscosity, ρ is the density. If Equations (1)–(3) are non-
dimensionalized with:

u∗ =
u

U∞
, v∗ =

v
U∞

, p∗ =
p

ρU2
∞

, (4)

x∗ =
x
L

, y∗ =
y
L

, (5)

where L is the plate length and U∞ is the free-stream velocity. The two-dimensional,
incompressible non-dimensional Navier–Stokes equations can be shown as:

∂u∗

∂x∗
+

∂v∗

∂y∗
= 0 (6)

u∗ ∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
= −∂p∗

∂x∗
+

1
Re∞

(
∂2u∗

∂x∗2 +
∂2u∗

∂y∗2

)
(7)

u∗ ∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
= −∂p∗

∂y∗
+

1
Re∞

(
∂2v∗

∂x∗2 +
∂2v∗

∂y∗2

)
. (8)

Star superscript ([ ]∗) corresponds to non-dimensional variable. In a boundary-layer
flow, some variables are smaller than others. For example, u∗ = O(1) and x∗ = O(1) so
∂u∗
∂x∗ = O(1). In the continuity equation, two terms must be in the same order to obtain
0 so ∂v∗

∂y∗ = O(1). It can be seen that from Figure 1, y = O(δ∗) where δ∗ is the non-
dimensionalized boundary-layer thickness. From here, it can be concluded that v = O(δ∗).
It has to be noted that δ∗ << 1. If the same approach is applied to momentum equations,
the final system of equations will be:

∂u∗

∂x∗
+

∂v∗

∂y∗
= 0 (9)

u∗ ∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
= −∂p∗

∂x∗
+

1
Re∞

∂2u∗

∂y∗2 (10)

∂p∗

∂y∗
= 0. (11)

Figure 1. Schematic description of the flow over a flat plate.

For an inviscid flow, where the Reynolds number is so high, the viscous term can be ne-
glected. The pressure is constant as obtained in the Equation (11) and v = 0. Equation (10)
will be:

− dP∗
e

dx∗
= U∗

e
dU∗

e
dx∗

, (12)

where Ue and Pe are the inviscid velocity and pressure. Finally, the two-dimensional
boundary-layer equations in the dimensionless form can be written as:

∂u
∂x

+
∂v
∂y

= 0 (13)

u
∂u
∂x

+ v
∂u
∂y

= Ue
dUe

∂x
+ ν

∂2u
∂y2 . (14)
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It has to be noted that star superscript is suppressed to avoid confusion. In order to
solve this problem, similarity transformation can be used. The similarity parameter (η) can
be chosen as:

η =
y√
νx
U∞

. (15)

After that, velocity components can be shown as:

u(x, y) = U∞F(η) (16)

v(x, y) =
G(η)√

x
U∞ν

. (17)

If Equations (13) and (14) are rearranged with the given velocities, the boundary-layer
equations will be:

G′ =
η

2
F′ (18)

F′′ = −1
2

ηFF′ + GF′. (19)

In order to make the next procedure easier, it can be assumed that F = f ′. After that,
Equation (18) can be integrated and put into Equation (19). The final ordinary differential
equation can be obtained as:

2 f ′′′ + f f ′′ = 0. (20)

The boundary conditions of the system will be:

u(x, 0) = U∞F(η = 0) = 0 −→ F(0) = f ′(0) = 0 (21)

v(x, 0) =
G(η = 0)√

x
U∞ν

= 0 −→ G(0) = f (0) = 0 (22)

u(x, y −→ ∞) = U∞F(η −→ ∞) = 1 −→ F(∞) = f ′(∞) = f (∞) = 1. (23)

The given assumptions reduced the system of second-order partial differential equa-
tions into a third-order ordinary differential equation. The computational approach will be
examined in the Julia framework.

2.1.2. Numerical Solution of Blasius Flow Problem

In this computational section, the solution of the third-order ordinary differential
equation will be transformed into two equations and they will be solved with Thomas
algorithm [39] which is one of the best methods for the tridiagonal matrices. It has to be
noted that the same equations can be solved with any other methods such as Runge-Kutta,
Runge-Kutta-Fehlberg, compact finite difference, high-order finite-difference; however,
in this present paper, authors used the finite difference method for spatial discretization
with the Thomas algorithm for the linear system solution. If it is assumed that f ′ = h and
f = p in Equation (20), the system of equations will be:

2h′′ + ph′ =0 (24)

p′ − h =0, (25)

with the following boundary conditions:

p(0) = 0 (26)

h(0) = 0 (27)

h(∞) = 1. (28)
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If the second-order central finite difference method is applied to h variable:

h′′n =
hn+1 − 2hn + hn−1

(Δη)2 + O((Δη)2) (29)

h′n =
hn+1 − hn−1

2Δη
+ O((Δη)2). (30)

In this paper, details of the finite difference and derivation of it from Taylor’s series
will not be covered. If the reader is curious about the derivation of them, the book of
Moin [40] can be checked. If the finite difference approach for h is substituted into the
Equation (24), the final equation will be:

Anhn+1 + Bnhn + Cnhn−1 = 0, (31)

where the An, Bn, and Cn are:

An =
2

Δη2 +
pn

2Δη
(32)

Bn =
−4
Δη2 (33)

Cn =
2

Δη2 − pn

2Δη
, (34)

with the boundary conditions for the system the tridiagonal system (Ax = b) can be
shown as: ⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0
A2 B2 C2 0 · · · 0
...

. . . . . . . . .
...

0 0 AN−2 BN−2 CN−2 0
0 0 0 AN−1 BN−1 CN−1
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

A

⎡⎢⎢⎢⎢⎢⎢⎢⎣

h1
h2
...

hN−2
hN−1

hN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

x

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸︷︷︸

b

(35)

It has to be noted that the first and last rows of the matrix are known and they
are coming from the boundary conditions. In order to solve this problem, the Thomas
algorithm can be applied. If relation between hn and hn−1 is:

hn =Gn + Hnhn+1 (36)

hn−1 =Gn−1 + Hn−1hn. (37)

If Equation (37) is substituted into Equation (31), the final equation will be:

hn =
−CnGn−1

Bn + Cn Hn−1
+

−An

Bn + Cn Hn−1
hn+1. (38)

If Equations (36) and (38) are compared, Gn and Hn coefficients can be found as:

Gn =
−CnGn−1

Bn + CnHn−1
(39)

Hn =
−An

Bn + CnHn−1
. (40)

The problem here is that one has to know G1 and H1 in order to start the calculation.
H1 can be assumed as 0 and the G1 can be calculated as 0 from the boundary conditions.
Once G1 and H1 are calculated, Gn and Hn can be calculated from Equations (39) and (40).
The given formulations can be implemented as it is shown in Listing 1.
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The problem in Listing 1 is the usage of the p and h values which are not defined
yet. In order to start to iteration, the initial assumption for h must be given. Most of the
time, the linear assumption is the best assumption. Figure 2 shows the schematic of the
profile transformation after some iterations. Once the initialization of h is done, p can be
calculated from the integration of p′ = h. The discrete integration of p can be written as:

pn = pn−1 +
∫ ηn

ηn−1

hdη. (41)

Listing 1. Implementation of Thomas algorithm for Blasius profile.
� �

1 A = [ 2/Δη2 + p[i]/(2*Δη) for i=1:N]
2 B = [−4/Δη2 for i=1:N]
3 C = [ 2/Δη2 − p[i]/(2*Δη) for i=1:N]
4 D = [ 0 for i=1:N]
5

6 for i=2:N−1
7 G[i] = − ( C[i]*G[i−1] + D[i] )/(B[i] + C[i] * H[i−1])
8 H[i] = − A[i] /(B[i] + C[i] * H[i−1])
9 end

10

11 for i=N-1: -1:2
12 h[i] = G[i] + H[i] * h[i+1]
13 end
� �

Figure 2. Schematic description of the change in the velocity profile from initial guess to final solution.

If the integration is done numerically with the trapezoidal rule [41], the initial guess
for h and p can be calculated in Julia as shown in Listing 2

After the initialization is done, Listing 1 can be run with p calculation of Listing 2,
until the change in h is smaller than an arbitrary parameter ε which can be taken as 1× 10−8.
The final profile will be as shown in Figure 3. The profile is also compared with Schlicht-
ing [6] in order to validate the results. It has to be noted that, Schlichting used η = y√

2νx
U∞

as

similarity coordinate so the figure is plotted according to this nondimensionalization.

Listing 2. Implementation of initial velocity guess and initial p for Blasius profile.
� �

1 h = [(i−1)/(N−1) for i=1:N]
2

3 for i = 2:N
4 p[i] = p[i−1] + (h[i] + h[i−1])*Δη/2
5 end
� �
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Figure 3. The velocity distribution of the Blasius similarity solution obtained by given Julia code and
data digitized from Schlichting [6].

2.1.3. Falkner–Skan Flow Problem

The Falkner–Skan similarity solution can be considered as a family of the similarity
solutions since it is a general solution that includes Blasius flow, Hiemenz flow (see
Section 2.2.1), and more. Falkner–Skan equation cannot represent Homann flow (see
Section 2.2.3) because Homann flow is an axisymmetric flow. On the other hand, Falkner–
Skan flow is a two-dimensional flow. The name ‘similarity solution’ arises from the
solutions at two arbitrary stations which are related to one another by means of a scale
factor. A flow that can be represented with boundary-layer Equations (13) and (14), and
satisfies the following equation:

u(x1),
y

g(x1)

Ue(x1)
=

u(x2),
y

g(x2)

Ue(x2)
, (42)

can be considered as self-similar. If boundary-layer Equations (13) and (14) are considered
and similarity a transformation is assumed as:

u(x, y) = Ue(x) f ′(ξ), ξ =
y

g(x)
. (43)

If the continuity equation of boundary-layer Equation (13) is modified with the given
transformation, the final equation will be:

∂v
∂ξ

= −U′
e f ′g + Ue f ′′g′ξ. (44)

If Equation (44) is integrated over ξ to find the velocity v, the v velocity will be:

v(x, ξ) = −(Ueg)′ f + Ueξg′ f ′ + H(x). (45)

H(x) can be calculated from the boundary conditions on the wall where ξ is zero
and correspondingly, velocities and f ′(0) are zero. H(x) will be 0 if f (0) is chosen as
0. If calculated derivatives and velocities are substituted into Equation (14), after some
simplification, the final equation will be:

f ′′′ +
g
ν
(Ueg)′ f f ′′ +

g2U′
e

ν
(1 − f ′) = 0. (46)
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Since f must be the function of ξ only and must not be a function of x, the coefficients
of second and third terms must be constant. The final Falkner–Skan equation for the family
of self-similar solutions:

f ′′′ + α f f ′′ + β(1 − f ′2) = 0, (47)

where α = g
ν (Ueg)′ and β = g2U′

e
ν . The α and β can be further solved for the velocity scale

and length scale. If the following consideration is applied:

α∗ =g(Ueg)′ (48)

β∗ =g2U′
e. (49)

If (Ueg2)′ is written in terms of α∗ and β∗, the obtained equation integrated with
respect to x, the resultant equation will be:

Ueg2 = (2α∗ − β∗)x + c. (50)

The constant of the integration represents a shift in the origin on x. Hence it doesn’t
affect the result and it also can be calculated from the stagnation point where x = 0 and
Ue = 0 as a result, c = 0. If relation of β∗ = g2U′

e is divided by Equation (50) and integrated
with respect to x, Ue can be calculated as:

Ue = c1xm, (51)

where m = β∗
2α∗−β∗ and c1 is a positive or negative constant which depends on the sign

of Ue. It can be concluded from these calculations that similar solutions exist when the
inviscid velocity is proportional to x raised to some power. Next, Equation (50) can be used
by taking c = 0 to calculate the g which is:

g =

√
2α∗

c1(1 + m)
x1−m. (52)

Self-similar boundary-layers occur when the external velocity is the simple power law
(Ue = U0(x/L)m), where the arbitrary constants U0 and L have the same sign as U and x.
The similarity variable for these kinds of flows can be written as:

η =
y
δ
=

y√
± νx

Ue

=
y√

± νL
U0

( x
L )

1−m
. (53)

When Ue and x have the same signs, the Falkner–Skan equation can be written as:

f ′′′ +
1
2
(m + 1) f f ′′ + m(1 − f ′2) = 0. (54)

The two arbitrary constants α and β have been reduced to one constant m by fixing
the scale for the function δ(x). The boundary conditions of the equation are:

f (0) = 0 (55)

f ′(0) = 0 (56)

f ′(η −→ ∞) = 1. (57)

If the Falkner–Skan Equation (54) is carefully examined, it can be seen that when
the constant m is 0, the equation will be Blasius flow. Moreover, if the constant m is 1,
the equation will be Hiemenz flow (see Section 2.2.1). This important point is stated before
and it is emphasized one more time after the derivation. Another great usage of the Falkner–
Skan equation is to simulate the boundary-layer over a wedge with half-angle θ = mπ

m+1
when the m is between 0 and 1. If the m is in between 1 and 2, the Falkner–Skan equation
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will solve a corner flow with θ > π
2 . The visual schematic of four different physical

flows that can be calculated from the Falkner–Skan equation can be seen in Figure 4. One
interesting point of the equation is that when m = −0.0904, the obtained profile will
have zero-shear at the wall which corresponds to the verge of the separation point for all
x stations.

(a) (b)

(c) (d)

Figure 4. The representation of flow types that can be calculated with the Falkner–Skan equation. (a)
Blasius flow (m = 0), (b) wedge flow (0 < m < 1), (c) Hiemenz flow (m = 1), and (d) corner flow
(1 < m < 2).

2.1.4. Numerical Solution of Falkner–Skan Flow Problem

In this section, the Falkner–Skan equation will be solved with the Thomas algorithm
and central finite difference scheme. In order to do that, the third-order ordinary differential
equation should be reduced to second-order and first-order differential equations as it is
done in Blasius flow. If it is assumed that f ′ = h and f = p in Equation (54), the system of
equations will be:

h′′ +
1
2
(m + 1)ph′ + m(1 − h2) =0 (58)

p′ − h =0, (59)

where the boundary conditions of the system are:

p(0) = 0 (60)

h(0) = 0 (61)

h(∞) = 1 (62)

If finite difference scheme is applied to h variable, the final system of equations will be:

Anhn+1 + Bnhn + Cnhn−1 + Dn = 0, (63)

where the An, Bn, Cn, and Dn are:

An =
1

Δη2 + (m + 1)
pn

4Δη
(64)

Bn =
−2
Δη2 − mhn (65)

Cn =
1

Δη2 − (m + 1)
pn

4Δη
(66)

Dn =m. (67)
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The relation between hn and hn−1 is taken as it is done in Blasius flow. When
Equation (37) is substituted into Equation (63), the final Gn and Hn will be:

Gn =
−CnGn−1 + Dn

Bn + Cn Hn−1
(68)

Hn =
−An

Bn + Cn Hn−1
. (69)

The implementation of these variables in the Julia environment can be seen in Listing 3.

Listing 3. Implementation of the Thomas algorithm for the Falkner–Skan profile.
� �

1 m = 0.5
2 h = [(i−1)/(N−1) for i=1:N]
3

4 for i = 2:N
5 p[i] = p[i−1] + (h[i] + h[i−1])*Δη/2
6 end
7

8 while 1e-8<= errorProfile
9

10 A = [ 1/Δη2 + (m+1)*p[i]/(4*Δη) for i=1:N]
11 B = [−2/Δη2 − m*h[i] for i=1:N]
12 C = [ 1/Δη2 − (m+1)*p[i]/(4*Δη) for i=1:N]
13 D = [ m for i=1:N]
14

15 for i=2:N-1
16 G[i] = − ( C[i]*G[i−1] + D[i] )/(B[i] + C[i] * H[i−1])
17 H[i] = − A[i] /(B[i] + C[i] * H[i−1])
18 end
19

20 hp = copy(h)
21

22 for i=N−1:−1:2
23 h[i] = G[i] + H[i] * h[i+1]
24 end
25

26 errorProfile = maximum(abs.(hp -h))
27

28 for i = 2:N
29 p[i] = p[i−1] + (h[i] + h[i−1])*Δη/2
30 end
31 end
� �

The final profiles for the varying m values can be seen in the Figure 5. The profiles are
also compared with Schlichting [6] in order to validate the results. It has to be noted that,

Schlichting used η =
√

m+1
2

y√
νx

U∞
as similarity coordinate so the figure is plotted according

to this nondimensionalization.
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Figure 5. The velocity distribution of the Falkner–Skan similarity solution obtained by Julia code and
data digitized from Schlichting [6] for varying m values.

2.2. Stagnation Point Flow Problems

Boundary-layer velocity distribution over a wall that is perpendicular to the flow
velocity vector can be represented with a similarity solution. In this subsection, Hiemenz
and Homann similarity solutions will be derived from scratch and they will be solved
numerically in the Julia environment. The Julia codes will be available to shorten the
learning curve.

2.2.1. Hiemenz Flow Problem

This problem is that of a fluid flow that is parallel to the y-axis in the far-field impinging
on a wall that coincides with the x-axis. The flow which is perpendicular to a cylinder can be
assumed as the Hiemenz flow around the stagnation point. The schematic description of the
Hiemenz flow can be seen in Figure 6. In the Hiemenz flow, viscous forces away from the
wall become so small in comparison with the inertia forces, particularly when the Reynolds
number is large. In this case, inviscid irrotational flow assumption (ξ = ∇× U = 0) can
be done. The velocity can be represented with a scalar function, φ, which is the velocity
potential. The velocities in the x-direction and y-direction can be written as:

Figure 6. Schematic description of the Hiemenz and Homann flow. Left side corresponds to general
flow and the Right side is the extended vision of the dashed rectangle. The flow represents Hiemenz
flow if the circle is the projection of a cylinder and Homann flow if the circle is the projection of
a sphere.

u =
∂φ

∂x
, v =

∂φ

∂y
. (70)
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If the dimensional Navier–Stokes equations (Equations (1)–(3)) are considered for this
flow as well, and the continuity equation becomes:

∂2φ

∂x2 +
∂2φ

∂y2 = 0. (71)

On the wall, in the absence of viscosity, the flow can slip in the x-direction but in
y-direction the velocity must be zero ( ∂φ

∂y |y=0 = 0) because of the no-penetration boundary
condition. The inviscid flow solution for the potential function was found to be:

φ(x,y) =
a
2
(x2 − y2), (72)

where a is a constant that depends on the freestream flow and the body shape. This
solution satisfies the governing equations for inviscid, irrotational flow, and the boundary
conditions which can be shown as:

u =
∂φ

∂x
= ax, v =

∂φ

∂y
= −ay. (73)

Since potential the function is obtained, the stream-function can be calculated from
the potential function. the velocity components, in terms of stream-function, ψ(x,y):

u = ax =
∂ψ

∂y
, v = −ay = −∂ψ

∂x
. (74)

If Equation (74) is integrated for x and y, the stream function can be found as:

ψ = axy + c. (75)

In order to find the pressure in the inviscid flow, Bernoulli equation [42] can be used.
The pressure from the Bernoulli equation is:

p0 − p =
a2ρ

2
(x2 + y2), (76)

where p0 is the stagnation pressure and ρ is the density. So far, flow is assumed as inviscid
flow; however viscous forces will modify the inviscid solution, in particular in the y-
direction. Hence, the viscous velocity components can be assumed as:

u(x, y) =xg(y) (77)

v(x, y) =− f (y) (78)

If Equations (77) and (78) are substituted in the Navier–Stokes equations (Equations (1)–(3)),
the final system of equations will be:

g = f ′ (79)

xg2 − x f g′ =− 1
ρ

∂p
∂x

+ νxg′′ (80)

f f ′ =− 1
ρ

∂p
∂y

+ ν f ′′. (81)
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Once Equation (79) is substituted into Equations (80) and (81), two non-linear ordinary
differential equations can be obtained as:

x f ′2 − x f f ′′ =− 1
ρ

∂p
∂x

+ νx f ′′′ (82)

f f ′ =− 1
ρ

∂p
∂y

+ ν f ′′ (83)

It has to be noted that these two equations are coupled, which means they have to be
solved together. If the x-momentum and y-momentum are solved for pressure, it can be
seen that the pressure will be in the form of:

p(x, y) =
1
2

x2(constant) + H(y), (84)

where H(y) is a function depends on only y. On the other hand, if the inviscid pressure
compared with the viscous pressure as y −→ ∞, the pressure gradient in x-direction and
y-direction can be found as:

∂p
∂x

=− a2ρx (85)

∂p
∂y

=− a2ρ

2
F′(y). (86)

If the pressure gradients are substituted into Equations (82) and (83), the resultant
system of ordinary differential equations can be found as:

f ′2 − f f ′′ =a2 + ν f ′′′ (87)

f f ′ =
a2

2
F′ − ν f ′′. (88)

Momentum equations are decoupled in this system of equations so once, f (y) is
calculated from Equation (87), F(y) in the Equation (88) can be solved. The boundary
conditions of the system are:

u(x, 0) = 0 −→ f ′(y=0) = 0 (89)

v(x, 0) = 0 −→ f(y=0) = 0 (90)

u(x, y −→ ∞) = ax −→ f ′∞ = a (91)

v(x, y −→ ∞) = −ay −→ f ′′∞ = 0 (92)

Additionally, F(y −→ ∞) = y2 can be obtained from y-momentum equation as y −→ ∞.
The final Equations (87) and (88) can be solved with the given boundary conditions;
however, it is possible to get rid of the dependence on a. In order to do that, affine
transformation [43] can be used. If it is assumed that f (y) = Aϕ(η) and y = Bη where A
and B are constant to be determined, the f derivative functions can be calculated as:

f ′ =
A
B

ϕ′ (93)

f ′′ =
A
B2 ϕ′′ (94)

f ′′′ =
A
B3 ϕ′′′ (95)
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If Equations (93)–(95) substituted into the Equations (87) and (88) and assume that
ν

AB = 1 and a2B2

A2 = 1, the A and B coefficients can be calculated as:

A =
√

aν (96)

B =

√
ν

a
(97)

The given transformation allows to reduce two ordinary differential equations into
one third-order ordinary differential equation as:

ϕ′′′ + ϕϕ′′ − ϕ′2 + 1 = 0 (98)

where the boundary conditions are:

f ′(0) =0 −→ ϕ′(0) = 0 (99)

f (0) =0 −→ ϕ(0) = 0 (100)

f ′(∞) =a −→ ϕ′(∞) = 1 (101)

and the velocities:

u = axϕ′(η) (102)

v = −
√

aνϕ(η) (103)

the resultant equation along with the boundary conditions can be solved with different
numerical approaches such as Runge-Kutta, Runge-Kutta-Fehlberg, compact finite differ-
ence, high-order finite difference; however, in this present paper, the Thomas algorithm
with finite difference discretization will be used to solve the Hiemenz profile in the Julia
framework.

2.2.2. Numerical Solution of Hiemenz Flow Problem

The computational approach for the Hiemenz flow is similar to the Blasius solution
since the final ordinary equation of the Hiemenz flow (Equation (98)) is similar to the
Blasius similarity solution (Equation (20)). If it is assumed that ϕ′ = h and ϕ = p in
Equation (98), the system of equations will be:

h′′ + ph′ − h2 + 1 =0 (104)

p′ − h =0, (105)

where the boundary conditions of the system are:

p(0) = 0 (106)

h(0) = 0 (107)

h(∞) = 1. (108)

If finite difference scheme is applied to the h variable as in Blasius flow. The final
system of equations will be:

Anhn+1 + Bnhn + Cnhn−1 + Dn = 0, (109)
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where the An, Bn, Cn, and Dn are:

An =
1

Δη2 +
pn

2Δη
(110)

Bn =
−2
Δη2 − hn (111)

Cn =
1

Δη2 − pn

2Δη
(112)

Dn =1. (113)

The relation between hn and hn−1 is taken as it is done in Blasius flow. When
Equation (37) is substituted into the Equation (109), the final Gn and Hn coefficients can be
found as:

Gn =
−CnGn−1 + Dn

Bn + Cn Hn−1
(114)

Hn =
−An

Bn + Cn Hn−1
. (115)

In order to start the calculation, H1 can be assumed as 0 and the G1 can be calculated
as 0 from the boundary conditions. Once G1 and H1 are calculated, Gn and Hn can be
calculated from Equations (114) and (115). p can be calculated as it is done for Blasius flow:

pn = pn−1 +
∫ ηn

ηn−1

hdη. (116)

The system of equations can be implemented in the Julia environment as it is shown
in Listing 4. The linear profile assumption is taken as the initial condition of h (see Figure 2)
as it is done for the Blasius solution. The reason hp and errorPro f ile variables are used in
the Listing 4 is that the linear profile converges to the Hiemenz profile in each iteration so
in order to check the difference between previous and present profiles, the solution vector
from the previous iteration is copied and it is compared with the new solution vector. If the
difference between these two solution vectors is less than ε, which is an arbitrary limit and
can be taken as 1 × 10−8, then it can be said that the solution has converged. It has to be
noted that ε can be taken as any number; however, if it is small, the solution will be more
accurate. The final result of the Hiemenz flow can be seen in Figure 7. The results are also
validated with White [44].

2.2.3. Homann Flow Problem

Homann flow is similar to Hiemenz flow. The only difference is that Homann flow is
an axisymmetric version of the Hiemenz flow. The same schematic (Figure 6) can represent
this flow as well; however, in this flow, the circle is the projection of a sphere. On the
other hand, it was the projection of a cylinder in Hiemenz flow. Derivation of the Homann
similarity solution has the almost same procedure as well but it uses cylindrical coordinates
instead of Cartesian coordinates. The velocity components of the flow can be shown as:

vr =vr(r, z) (117)

vθ =0 (118)

vz =vz(r, z) (119)

p =p(r, z). (120)
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Figure 7. The velocity distribution of Hiemenz similarity solution obtained by Julia code and data
digitized from White [44].

As axisymmetric assumptions, derivative with respect to θ ( ∂
∂θ ) and vθ can be assumed

as zero. The Navier–Stokes equations in cylindrical coordinates can be written as:

∂vr

∂r
+

vr

r
+

∂vz

∂z
=0 (121)

vr
∂vr

∂r
+ vz

∂vz

∂z
=− 1

ρ

∂p
∂r

+ ν

(
∂2vr

∂r2 +
1
r

∂vr

∂r
− vr

r2 +
∂2vr

∂z2

)
(122)

vr
∂vz

∂r
+ vz

∂vz

∂z
=− 1

ρ

∂p
∂z

+ ν

(
∂2vz

∂r2 +
1
r

∂vz

∂r
+

∂2vz

∂z2

)
. (123)

If the same procedures applied to Navier–Stokes in Cartesian coordinates for Hiemenz
flow, are applied in cylindrical coordinates, the final potential function and stream function
will be:

φ(r, z) =k(
r2

2
− z2) (124)

ψ(r, z) =kzr2, (125)

where k is a constant which depends on the freestream flow and the body shape. The corre-
sponding velocities are:

vr =
∂φ

∂r
=

1
r

∂ψ

∂z
= kr (126)

vz =
∂φ

∂z
=

−1
r

∂ψ

∂r
= −2kz. (127)

Once velocities are calculated, the pressure from the Bernoulli can be calculated as:

p0 − p =
1
2

ρk2(r2 + 4z2). (128)

The viscous velocity components and pressure can be calculated as:

vr =rg(z) (129)

vz =− 2 f (z) (130)

p0 − p =
1
2

ρk2(r2 + F(z)). (131)
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Listing 4. Implementation of Thomas algorithm for Hiemenz profile.
� �

1 h = [(i−1)/(N−1) for i=1:N]
2

3 for i = 2:N
4 p[i] = p[i−1] + (h[i] + h[i−1])*Δη/2
5 end
6

7 while 1e−8<= errorProfile
8

9 A = [ 1/Δη2 + p[i]/(2*Δη) for i=1:N]
10 B = [−2/Δη2 − h[i] for i=1:N]
11 C = [ 1/Δη2 − p[i]/(2*Δη) for i=1:N]
12 D = [ 1 for i=1:N]
13

14 for i=2:N−1
15 G[i] = − ( C[i]*G[i−1] + D[i] )/(B[i] + C[i] * H[i−1])
16 H[i] = − A[i] /(B[i] + C[i] * H[i−1])
17 end
18

19 hp = copy(h)
20

21 for i=N−1:−1:2
22 h[i] = G[i] + H[i] * h[i+1]
23 end
24

25 errorProfile = maximum(abs.(hp−h))
26

27 for i = 2:N
28 p[i] = p[i−1] + (h[i] + h[i−1])*Δη/2
29 end
30 end
� �

After the affine transformation, the final ordinary differential equation will be:

ϕ′′′ + 2ϕϕ′′ − ϕ′2 + 1 = 0, (132)

where the boundary conditions of the equation is:

ϕ′(0) = 0 (133)

ϕ(0) = 0 (134)

ϕ′(∞) = 1 (135)

If one compares Hiemenz and Homann similarity solutions (see Equations (98) and (132))
the only difference is the 2 in the second term. In the same manner, the computational
process will be the same except for two lines of code.

2.2.4. Numerical Solution of Homann Flow Problem

Since equations of Hiemenz and Homann similarity solutions are the same except one
coefficient, procedures for the solution are also the same, except for two lines of code. If it
is assumed that ϕ′ = h and ϕ = p in Equation (132), the system of equations will be:

h′′ + 2ph′ − h2 + 1 =0 (136)

p′ − h =0, (137)

where the boundary conditions of the system are:

p(0) = 0 (138)

h(0) = 0 (139)

h(∞) = 1 (140)
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If the finite difference scheme is applied to the h variable, the final system of equations
will be:

Anhn+1 + Bnhn + Cnhn−1 + Dn = 0, (141)

where the An, Bn, Cn, and Dn are:

An =
1

Δη2 +
pn

Δη
(142)

Bn =
−2
Δη2 − hn (143)

Cn =
1

Δη2 − pn

Δη
(144)

Dn =1. (145)

The final Gn and Hn coefficients are the same as Hiemenz flow as well and they are:

Gn =
−CnGn−1 + Dn

Bn + Cn Hn−1
(146)

Hn =
−An

Bn + Cn Hn−1
. (147)

The final code can be seen in Listing 5. If the Hiemenz code (4) and Homann code (5)
are compared, the only difference is in the A and C and it is because of the finite difference
approach for the h′.

Listing 5. Implementation of Thomas algorithm for Homann profile.
� �

1 h = [(i−1)/(N−1) for i=1:N]
2

3 for i = 2:N
4 p[i] = p[i−1] + (h[i] + h[i−1])*Δη/2
5 end
6

7 while 1e−8<= errorProfile
8

9 A = [ 1/Δη2 + p[i]/Δη for i=1:N]
10 B = [−2/Δη2 − h[i] for i=1:N]
11 C = [ 1/Δη2 − p[i]/Δη for i=1:N]
12 D = [ 1 for i=1:N]
13

14 for i=2:N-1
15 G[i] = − ( C[i]*G[i−1] + D[i] )/(B[i] + C[i] * H[i−1])
16 H[i] = − A[i] /(B[i] + C[i] * H[i−1])
17 end
18

19 hp = copy(h)
20

21 for i=N−1:−1:2
22 h[i] = G[i] + H[i] * h[i+1]
23 end
24

25 errorProfile = maximum(abs.(hp−h))
26

27 for i = 2:N
28 p[i] = p[i−1] + (h[i] + h[i−1])*Δη/2
29 end
30 end
� �

The final solution profile can be seen in Figure 8. The results are also validated with
White [44]. One can use these results to validate their own codes. Reference data will be
shared on GitHub as well.
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Figure 8. The velocity distribution of Homann similarity solution obtained by Julia code and digitized
from White [44].

3. Discussion

Fast computational fluid dynamics solvers are crucial for engineers because the design
process requires a lot of simulations to reach the final and optimized design. One of the
most important factors that make a solver fast is the language itself. Writing almost the
same script in different languages may give different solution central processing unit (CPU)
times. For instance, a script that uses long and complex for loops in both Julia and Python
environments will result in different solution times because Python is slower with for loops
in general. The reasons that cause this slow behavior will not be covered in this paper since
it is out of the scope of this paper. However, it is important to state these differences in
order to decide which coding language is proper for the simulation that is planned.

Sometimes, some other criteria, such as a user-friendly environment, might be the
critical condition. The easy matrix–matrix multiplication and backslash linear system
solver can be some of the user-friendly examples. In CFD, the usage of vectors and matrices
is so common. Most of the time, it is required to multiply or add vectors or matrices
with one another. Fortran, which is one of the fastest languages and also one of the
fundamental languages in the CFD industry, does not have a built-in element-wise vector
or matrix multiplication feature. This requires the use of for loops for each element-wise
matrix and vector operation. As a result of this, every time, one needs to use a for loop
to do these operations. This ends up with hard-to-read codes and also excessive usage of
indices is another source of possible mistakes that will cause trouble during the debugging.
However, in the Julia environment, it can be done in one line without any trouble. Listing 6
is showing the two for loop usage. Both of them use Julia syntax in order to prevent
confusion; however, it is required to state that Fortran has a different syntax than this but,
logically, the for loops are the same with Fortran logic.

Another user-friendly feature of Julia over Fortran is to plot a vector in the code with
built-in functions. However, in Fortran, it is not possible to do it with built-in functions so
one needs to extract the solution vector or matrix to an external file to visualize it. As it
is stated before, coding language selection can be an important topic. In this section, the
strong sides of the Julia environment will be stated. One of the user-friendly features of
Julia is compact for loop syntax. Listing 7 shows the traditional way and compact way to
use a for loop in the Julia environment.
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Listing 6. Comparison of the element-wise and compact matrix-matrix multiplication.
� �

1 for l=1:m
2 for k=1:nz
3 for j=1:ny
4 for i=1:nx
5 A[i,j,k,l] = B[i,j,k,l]*C[i,j,k,l]
6 end
7 end
8 end
9 end

10

11 A .= B.*C
� �

Listing 7. Comparison of the traditional and compact way of for loop usage.
� �

1 for i=1:N
2 h[i] = (i−1)/(N−1)
3 end
4

5 h = [(i−1)/(N−1) for i=1:N]
� �

The readability of the code is also extremely important in order to explain the code to
others or provide it as open-source code. Julia is so strong in this topic because it allows the
usage of LATEX language within the code. It is one of the unique abilities of this language.
If you are writing a formula that is full of Greek letters and regular letters, it is inevitable to
use complex variable names. Comparison of the usage of Greek letters and regular formula
writing can be seen in Listing 8.

Listing 8. Comparison of the Greek letter usage and conventional formula writing in Julia.
� �

1 alpha = a*beta−c/(gamma−1)*(d_i−1/( eta ^2))
2

3 α = a*β−c/(γ−1)*(di−1/(η2))
� �

The last advantage of Julia stated in this present paper is the ability to do both dynamic
and static RAM allocations. It may be important to manually allocate the variable sizes
and types for optimized code. However, sometimes it is easier to use just variables without
any initializing. Initializing differences in the Julia environment can be seen in Listing 9.

Listing 9. Different initializing methods in Julia environment.
� �

1 nx = 10
2 ny = 15.2
3

4 q = Array{Float64 }(undef , nx)
5 for i=1:nx
6 q[i] = i
7 end
8

9 a = Array{Float64 }(undef , nx)
10 c = zeros(nx)
11 a = q
12 b = q
13 c = q
� �

As it is seen from the example scripts, Julia is a user-friendly, fast, open-source, and free
language which can increase productivity drastically [36]. It is a great choice both for those
who are new to coding and coding experts. Julia also can call the C, Fortran, and Python
libraries so it is great for experienced engineers who think their previous code in other
coding languages will be useless.

4. Conclusions

In the computational fluid dynamics industry, it is crucial to have some predictions
about the flow that will be simulated. It helps to spot the location at which finer mesh is re-
quired. Fundamental knowledge about canonical flows is crucial in this point because most

117



Fluids 2021, 6, 207

of the complex flow consists of a combination of a couple of canonical flows. For example,
an airfoil CFD simulation can consist of boundary-layer flow over the smooth part of it,
mixing layer flow where the tail ends, and blunt body flow in the wake region. In other
words, one airfoil simulation consists of three different canonical flows. A full understand-
ing on canonical flows is extremely important in order to simulate similar flows accurately
and cheaply. In this paper, boundary-layer theory is introduced and boundary-layer flows
are derived from scratch. The Blasius flow, Hiemenz flow, Homann flow, Falkner–Skan
flow are the focus of this paper. Once the derivations of them are completed, derived
forms are implemented in the Julia environment. In order to model the equations, a finite
difference scheme for space discretization is used and the Thomas algorithm is used for
the linear system solution. It has to be noted that other methods such as Runge-Kutta,
Runge-Kutta-Fehlberg, compact finite difference, high-order finite difference can also be
used to solve the given ODEs; however, in this present paper, authors preferred the finite
difference method and Thomas algorithm. The authors further discussed the advantages
of the Julia language over some other coding languages available in the literature. It is
shown that Julia syntax is so straightforward, easy, and user-friendly. Strong sides of the
Julia environment are stated with the given comparisons as well. The popularity of Julia
may drastically increase in the near future because of its potential.

Author Contributions: code generation, F.O. and K.K.; validation, F.O. and K.K.; writing—original
draft preparation, F.O.; writing—review and editing, F.O. and K.K.; visualization, F.O. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data used and generated in this study is available in the GitHub
link provided in Appendix A.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Julia setup files can be downloaded from their website (https://julialang.org/downloads/
(accessed on 1 June 2021)). The website also includes instructions on how to install Julia on
Windows, Linux, and mac operating systems. Some of the useful resources for learning Julia
are listed below:

• https://docs.julialang.org/en/v1/ (accessed on 1 June 2021)
• https://www.coursera.org/learn/julia-programming (accessed on 1 June 2021)
• https://www.youtube.com/user/JuliaLanguage/featured (accessed on 1 June 2021)
• https://www.youtube.com/user/Parallel Computing and Scientific Machine Learn-

ing (accessed on 1 June 2021)
• https://discourse.julialang.org/ (accessed on 1 June 2021)

It is common to use external packages for Julia. In order to do that, Pkg, which is Julia’s
built-in package manager, can be used. Once Julia is opened, Pkg can be activated with
the “]” button in Windows. In Linux, calling “julia” in the terminal will open it. After that
“Pkg.add(“Pluto”)” will trigger the setup process for that package. In here, we used Pluto
as an example because, in GitHub, our codes are developed in the Pluto environment.
After Pluto is installed. Pluto can be run with “Pluto.run()”. This command will open a
new tab in the browser which you can run your Julia codes. After that, the “using Pluto”
line must be placed to the top of the file. For “Plots” package, the commands will be
“Pkg.add(“Plots”)” and “using Plots”. Since the Plots package does not have a GUI, there is
not a command called “Plots.run()”.

Other than Pluto, JuliaPro which includes Julia and the Juno IDE (https://juliacomputing.
com/products/juliapro/ (accessed on 1 June 2021)) can be used as an editor and compiler.
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This software contains a set of packages for plotting, optimization, machine learning,
database, and much more. Pluto is appropriate for small scripts while JuliaPro is better for
more complex codes. The GitHub link of the codes used in this paper is:

• https://github.com/frkanz/A-CFD-Tutorial-in-Julia (accessed on 1 June 2021)
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Abstract: Dynamic data assimilation offers a suite of algorithms that merge measurement data with
numerical simulations to predict accurate state trajectories. Meteorological centers rely heavily on
data assimilation to achieve trustworthy weather forecast. With the advance in measurement systems,
as well as the reduction in sensor prices, data assimilation (DA) techniques are applicable to various
fields, other than meteorology. However, beginners usually face hardships digesting the core ideas
from the available sophisticated resources requiring a steep learning curve. In this tutorial, we lay
out the mathematical principles behind DA with easy-to-follow Python module implementations
so that this group of newcomers can quickly feel the essence of DA algorithms. We explore a series
of common variational, and sequential techniques, and highlight major differences and potential
extensions. We demonstrate the presented approaches using an array of fluid flow applications with
varying levels of complexity.

Keywords: data assimilation; variational and sequential methods; Kalman filtering;
forward sensitivity; measurements fusion

1. Introduction

Data assimilation (DA) refers to a class of techniques that lie at the interface between
computational sciences and real measurements, and aim at fusing information from both sides to
provide better estimates of the system’s state. One of the very mature applications that significantly
utilize DA is weather forecast, that we rely on in our daily life. In order to predict the weather (or the
state of any system) in the future, a model has to be solved, most often by numerical simulations.
However, a few problems rise at this point and we refer to only few of them here. First, for accurate
predictions, these simulations need to be initiated from the true initial condition, which is never known
exactly. For large scale systems, it is almost impossible to experimentally measure the full state of the
system at a given time. For example, imagine simulating the atmospheric or oceanic flow, then you need
to measure the velocity, temperature, density, etc. at every location corresponding to your numerical
grid! Even in the hypothetical case when this is possible, measurements are always contaminated
by noise, reducing the fidelity of your estimation. Second, the mathematical model that completely
describes all the underlying processes and dynamics of the system is either unknown or hard to
deal with. Then, approximate and simplified models are adopted instead. Third, the computational
resources always constrain the level of accuracy in the employed schemes and enforce numerical
approximations. Luckily, DA appears at the intersection of all these efforts and introduces a variety
of approaches to mitigate these problem, or at least reduce their effects. In particular, DA techniques
combines possibly incomplete dynamical models, prior information about initial system’s state and
parameterization, and sparse and corrupted measurement data to yield optimized trajectory in order
to describe the system’s dynamics and evolution.
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As indicated above, dynamical data assimilation techniques have a long history in computational
meteorology and geophysical fluid dynamics sciences [1–3]. Then comes the question: why do we write
such an introductory tutorial about a historical topic? Before answering this question, we highlight a
few points. DA borrows ideas from numerical modeling and analysis, linear algebra, optimization,
and control. Although these topics are taught separately in almost every engineering discipline,
their combination is rarely presented. We believe that incorporating DA course in engineering curricula
is important nowadays as it provides a variety of global tools and ideas that can potentially be
applied in many areas, not just meteorology. This was proven while administering a graduate
class on “Data Assimilation in Science and Engineering” at Oklahoma State University, as students
from different disciplines and backgrounds were astonished by the feasibility and utility of DA
techniques to solve numerous inverse problems they are working on, not related to weather forecast.
Nonetheless, the availability of beginner-friendly resources has been the major shortage that students
suffered from. The majority of textbooks either derives DA algorithms from their very deep roots or
surveys their historical developments, without focus on actual implementations. On the other hand,
available packages are presented in a sophisticated way that optimizes data storage and handling,
computational cost, and convergence. However, this level of sophistication takes a steep learning
curve to understand the computational pipeline as well as the algorithmic steps, and a lot of learners
fall hopeless during this journey.

Therefore, the main objective of this tutorial paper is to familiarize beginning researchers and
practitioners with basic DA ideas along with easy-to-follow pieces of codes to feel the essence of DA
and trigger the priceless “aha” moments. With this in mind, we choose Python as the coding language,
being a popular, interpreted language, and easy to understand even with minimum programming
background, although not the most computationally favored language in high performance computing
(HPC) environments. Moreover, whenever possible, we utilize the built-in functions and libraries to
minimize the user coding efforts. In other words, the provided codes are presented for demonstrative
purposes only using an array of academic test problems, and significant modifications should be
incorporated before dealing with complex applications. Meanwhile, this tutorial will give the reader a
jump-start that hopefully shortens the learning curve of more advanced packages. A Python-based
DA testing suite has been also designed to compare different methodologies [4].

Dynamical data assimilation techniques can be generally classified into variational DA and
sequential DA. Variational data assimilation which works by setting an optimization problem defined
by a cost functional along with constraints that collectively incorporate our knowledge about the
system. The minimizer of the cost functional represents the DA estimate of the unknown system’s
variables and/or parameters. On the other hand, in sequential methods (also known as statistical
methods), the system state is evolved in time using background information until observations become
available. At this instant, an update (correction) to the system’s variables and/or parameters is
estimated and the solver is re-initialized with this new updated information until new measurements
are collected, and so on. We give an overview of both approaches as well as basic implementation.
In particular, we briefly discuss the three dimensional variational data assimilation (3DVAR) [5,6],
the four dimensional variational data assimilation (4DVAR) [7–12], and forward sensitivity method
(FSM) [13,14] as examples of variational approaches. Kalman filtering and its variants [15–22] are
the most popular applications of sequential methods. We introduce the main ideas behind standard
Kalman filter and its extensions for nonlinear and high-dimensional problems. The famous Lorenz
63 is utilized to illustrate the merit of all presented algorithms, being a simple low-order dynamical
system that exhibit interesting dynamics. This is to help readers to digest the different pieces of
codes and follow the computational pipeline. Then, the paper is concluded with a section that
provides the deployment of selected DA approaches for dynamical systems with increasing levels
of dimensionality and complexity. We highlight here that the primary purpose of this paper is
to provide an introductory tutorial on the data assimilation for educational purposes. All Python
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implementations of the presented algorithms as well as the test cases are made publicly accessible at
our GitHub repository https://github.com/Shady-Ahmed/PyDA.

2. Preliminaries

2.1. Notation

Before we dive into the technical details of dynamical data assimilation approaches, we briefly
present and describe our notations and assumptions. In general, we assume that all vector-valued
functions or variables are written as a column vector. Unless stated otherwise, boldfaced lowercase
letters are used to denote vectors and boldface uppercase letters are reserved to matrices. We suppose
that the system state at any time t is denoted as u(t) = [u1(t), u2(t), . . . , un(t)]T ∈ Rn, where n is the
state-space dimension. The dynamics of the system are governed by the following differential equation

du

dt
= f(u; θ), (1)

where f : Rn ×Rp → Rn encapsulates the model’s dynamics, with θ ∈ Rp being the vector of model’s
parameters and p being the number of these parameters. With a time-integration scheme applied,
the discrete-time model can be written as follows,

u(tk+1) = M(u(tk); θ), (2)

where M is the one-time step transition map that evolves the state at time tk to time tk+1 = tk + Δt,
with Δt being the time step length.

We denote the true value of the state variable as ut, which is assumed to be unknown and a
good approximation of it is sought. Our prior information about the state u is called the background,
with a subscript of b as ub. This represents our beginning knowledge, which might come from
historical data, numerical simulations, or just an intelligent guess. The discrepancy between this
background information and true state is denoted as ξb = ut − ub, resulting from imperfect
model, inaccurate model’s initialization, incorrect parameterization, numerical approximations, etc.
From probabilistic point of view, we suppose that the background error has a zero mean and a
covariance matrix of B. This can be represented as E[ξb] = 0 and E[ξbξT

b ] = B, where B ∈ Rn×n

is a symmetric and positive-definite matrix and the superscript T refers to the transpose operation.
Moreover, we assume that unknown true state has a multivariate Gaussian distribution with a mean
ub and a covariance matrix B (i.e., ut = N (ub, B)).

We define the set of the collected measurements at a specific time tk as w(tk) ∈ Rm, where m is
the dimension of observation-space. We highlight that the observed quantity need not be the same as
the state variable. For instance, if the state variable that we are trying to resolve is the temperature of
sea surface, we may have access only to radiance measurements by satellites. However, those case be
related to each other through Planch–Stefan’s law, for instance. Formally, we can relate the observables
and the state variables as

w(tk) = h(ut(tk)) + ξm, (3)

where h : Rn → Rm defines the mapping from state-space to measurement-space and ξm ∈ Rm denotes
the measurement noise. The mapping h can refer to the sampling (and probably interpolation) of
state variables at the measurements locations, relating different quantities of interest (e.g., relating see
surface temperature to emitted radiance), or both! The model’s map M and observation operator h can
be linear, nonlinear, or a combination of them. Similar to the background error, the observation noise
ξm is assumed to possess a multivariate normal distribution, with a zero mean and a covariance matrix
R ∈ Rm×m, i.e., ξm = N (0, R). An extra grounding assumption is that the measurement noise and the
state variables (either true or background) are uncorrelated. Furthermore, all noises are assumed to be

123



Fluids 2020, 5, 225

temporally uncorrelated (i.e., white noise). Even though we consider only Gaussian distribution for
the background error, and observation noise, we emphasize that there has been a lot of studies dealing
with non-Gaussian data assimilation [23–26].

The objective of data assimilation is to provide an algorithm that fuses our prior information ub
and measurement data w to yield a better approximation of the unknown true state. This better
approximation is called the analysis, and denoted as ua. The difference between this better
approximation and the true state is denoted as ξa = ut − ua.

2.2. Twin Experiment Framework

In a realistic situation, the true state values are unknown and noisy measurements are collected by
sensing devices. However, for testing ideas, the ground truth need to be known beforehand such that
the convergence and accuracy of the developed algorithm can be evaluated. In this sense, the concept
of twin experiment has been popular in data assimilation (and inverse problems, in general) studies.
First, a prototypical test case (all called toy problems!) is selected based on the similarities between its
dynamics and real situations. Similar to your first “Hello World!” program, the Lorenz 63 and Lorenz
96 are often used in numerical weather forecast investigations, the one-dimensional Burgers equation is
explored in computational fluid dynamics developments, the two-dimensional Kraichnan turbulence
and three-dimensional Taylor–Green vortex are analyzed in turbulence studies, and so on. A reference
true trajectory is computed by fixing all parameters and running the forward solver until some final
time is reached. Synthetic measurements are then collected by sampling the true trajectory at some
points in space and time. A mapping can be applied on the true state variables and arbitrary random
noise is artificially added (e.g., a white Gaussian noise). Finally, the data assimilation technique of
interest is implemented starting from false values of the state variables or the model’s parameters
along with the synthetic measurement data. The output trajectory of the algorithm is thus compared
against the reference solution, and the performance can be evaluated. It is always recommended
that researchers get familiar with twin experiment frameworks as they provide well-structured and
controlled environments for testing ideas. For instance, the influence of different measurement sparsity
and/or level of noise can be cheaply assessed, without the need to locate or modify sensors.

3. Three Dimensional Variational Data Assimilation

The three dimensional variational data assimilation (3DVAR) framework can be derived from
either an optimal control or Bayesian analysis points of view. The interested readers can be referred to
other resources for mathematical foundations (e.g., [27]). In order to compute a good approximation of
the system state, the following cost functional can be defined,

J(u) =
1
2
(w − h(u))TR−1(w − h(u)) +

1
2
(u − ub)

TB−1(u − ub), (4)

where the first term penalizes the discrepancy between the actual measurement w and the state variable
mapped into the observation space h(u) (also called the model predicted measurement). The second
term aims at incorporating the prior information, weighted by the inverse of the covariance matrix to
reflect our confidence in this background. We highlight that all terms in Equation (4) are evaluated at
the same time, and thus the 3DVAR can be referred to as a stationary case.

The minimizer of J(u) (i.e., the analysis) can be obtained by setting the gradient of the cost
functional to zero as follows,

∇J(u) = −DT
h (ua)R

−1(w − h(ua)) + B−1(ua − ub) = 0, (5)

where Dh(u) ∈ Rm×n is the Jacobian matrix of the operator h(u). The difficulty of solving Equation (5)
depends on the form of h(ua) as it can either be linear, or highly nonlinear.
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3.1. Linear Case

For linear observation operator (i.e., h(u) = Hu, and Dh(u) = H, where H is an m × n matrix),
the evaluation of the analysis ua in Equation (5) reduces to solving the following linear system
of equations

(B−1 + HTR−1H)ua = (B−1ub + HTR−1w). (6)

We note that (B−1 + HTR−1H) on the left-hand side is an n × n matrix, and hence this is called
the model-space approach to 3DVAR. Furthermore, a popular incremental form can be derived from
Equation (6) by adding and subtracting HTR−1Hua to/from the right-hand side and rearranging to
get the following form,

ua = ub + (B−1 + HTR−1H)−1HTR−1(w − Hub). (7)

Moreover, the Sherman–Morrison–Woodbury inversion formula can be used to derive an
observation-space solution to the 3DVAR problem (for details, see [27], page 327) as follows,

ua = ub + BHT(R + HBHT)−1(w − Hub). (8)

Note that (R + HBHT) is an m × m matrix, compared to (B−1 + HTR−1H) being an n × n matrix.
Thus, Equation (7) or Equation (8) might be computationally favored based on the values of n and
m. We also highlight that in either cases, matrix inversion is rarely (almost never) computed directly,
and efficient linear system solvers should be utilized, instead. An example of a Python function for the
implementation of the 3DVAR algorithm with a linear operator is shown in Listing 1.

Listing 1. Implementation of 3DVAR for with a linear observation operator.
� �

import numpy as np
def Lin3dvar(ub,w,H,R,B,opt):

# The solution of the 3DVAR problem in the linear case requires
# the solution of a linear system of equations.
# Here, we utilize the built-in numpy function to do this.
# Other schemes can be used, instead.
if opt == 1: #model-space approach
Bi = np.linalg.inv(B)
Ri = np.linalg.inv(R)
A = Bi + (H.T)@Ri@H
b = Bi@ub + (H.T)@Ri@w
ua = np.linalg.solve(A,b) #solve a linear system

elif opt == 2: #model-space incremental approach
Bi = np.linalg.inv(B)
Ri = np.linalg.inv(R)
A = Bi + (H.T)@Ri@H
b = (H.T)@Ri@(w-H@ub)
ua = ub + np.linalg.solve(A,b) #solve a linear system

elif opt == 3: #observation-space incremental approach
A = R + H@B@(H.T)
b = (w-H@ub)
ua = ub + B@(H.T)@np.linalg.solve(A,b) #solve a linear system

return ua
� �
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3.2. Nonlinear Case

On the other hand, if h(u) is a nonlinear function, Equation (5) implies the solution of a system of
nonlinear equations. Unlike linear systems, few algorithms are available to directly solve nonlinear
systems and their convergence and stability are usually questionable. Alternatively, we can use
Taylor series to expand h(u) around an initial estimate of ua, denoted as uc, where ua = uc + Δu.
The first-order approximation of h(ua) can be written as

h(ua) ≈ h(uc) + Dh(uc)Δu, (9)

and Equation (5) can be approximated as

DT
h (uc)R

−1(w − h(uc)− Dh(uc)Δu) = B−1(uc + Δu − ub). (10)

Thus, the correction to the initial guess of ua can be computed by solving the following system of
linear equations(

B−1 + DT
h (uc)R

−1Dh(uc)

)
Δu =

(
B−1(ub − uc) + Dh(uc)

TR−1(w − h(uc))

)
, (11)

and a new guess of ua is estimated as uc + Δu, which is then plugged back into Equation (11) and
the computations are repeated until convergence is reached. Python implementation of the 3DVAR
in nonlinear observation operator is presented in Listing 2 Although we only present the first order
approximation of h(u), higher order expansions can be utilized for increased accuracy [27].

Listing 2. Implementation of the 3DVAR for with a nonlinear observation operator,
using first-order approximation.

� �

import numpy as np
def NonLin3dvar(ub,w,ObsOp,JObsOp,R,B):

# The solution of the 3DVAR problem in the nonlinear case requires
# the solution of a linear system of equations.
# Here, we utilize the built-in numpy function to do this.
# Other schemes can be used, instead.
Bi = np.linalg.inv(B)
Ri = np.linalg.inv(R)
ua = np.copy(ub)
for iter in range(100):
Dh = JObsOp(ua)
A = Bi + (Dh.T)@Ri@Dh
b = Bi@(ub-ua) + (Dh.T)@Ri@(w-ObsOp(ua))
du = np.linalg.solve(A,b) #solve a linear system
ua = ua + du
if np.linalg.norm(du) <= 1e-4:
break
return ua
� �
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3.3. Example: Lorenz 63 System

The Lorenz 63 equations have been utilized as a toy problem in data assimilation studies, capturing
some of the interesting mechanisms of weather systems. The three-equation model can be written as

dx
dt

= σ(y − x),

dy
dt

= x(ρ − z)− y,

dz
dt

= xy − βz,

(12)

where the values of σ = 10, β = 8/4, ρ = 28 are usually used to exhibit a chaotic behavior. If we like to
put Equation (12) with the notations introduced in Section 2, we can write u = [x, y, z]T with n = 3,
and θ = [σ, β, ρ]T with p = 3. A Python function describing the dynamics of the Lorenz 63 system is
given in Listing 3.

Listing 3. A Python function for the Lorenz 63 dynamics.
� �

import numpy as np
def Lorenz63(state,*args): #Lorenz 96 model
sigma = args[0]
beta = args[1]
rho = args[2]
x, y, z = state #Unpack the state vector
f = np.zeros(3) #Derivatives
f[0] = sigma * (y - x)
f[1] = x * (rho - z) - y
f[2] = x * y - beta * z
return f
� �

Equation (12) describe the continuous-time evolution of the Lorenz system. In order to obtain the
discrete-time mapping M(·; ·), a temporal integration scheme has to be applied. In Listing 4, one-step
time integration functions are provided in Python using the first-order Euler and the fourth-order
Runge–KuKutta schemes. Note that these functions requires a right-hand side function as input, this is
mainly the continuous-time model f (u) (e.g., Listing 3).

Listing 4. Python functions for the time integration using the 1st Euler and the 4th
Runge–Kutta schemes.

� �

import numpy as np
def euler(rhs,state,dt,*args):
k1 = rhs(state,*args)
new_state = state + dt*k1
return new_state

def RK4(rhs,state,dt,*args):
k1 = rhs(state,*args)
k2 = rhs(state+k1*dt/2,*args)
k3 = rhs(state+k2*dt/2,*args)
k4 = rhs(state+k3*dt,*args)
new_state = state + (dt/6)*(k1+2*k2+2*k3+k4)
return new_state
� �

For twin experiment testing, we suppose a true initial condition of ut(0) = [1, 1, 1]T and
measurements are collected each 0.2 time units for a total time of 2. We suppose that we measure
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the full system state (i.e., h(u) = u, m = 3, and H = I3, where I3 is the 3 × 3 identity matrix).
Measurements are considered to be contaminated by a white Gaussian noise with a zero mean and
a covariance matrix R = Diag(σ2

1 , σ2
2 , σ2

3 ). For simplicity, we let σ1 = σ2 = σ3 = 0.15. For data
assimilation testing, we assume that we begin with a perturbed initial condition of u(0) = [2, 3, 4]T .
Then, background state values are computed at t = 0.2 by time integration of Equation (12) starting
from this false initial condition. Observations at t = 0.2 are assimilated to provide the analysis at
t = 0.2. After that, background state values are computed at t = 0.4 by time integration of Equation (12)
starting from the analysis at t = 0.2, and so on. A sample implementation of the 3DVAR framework
is presented in Listing 5, where a fixed background covariance matrix B = Diag(0.01, 0.01, 0.01) is
assumed. Solution trajectories are presented in Figure 1 for a total time of 10, where observations are
only available up to t = 2.

Listing 5. Implementation of the 3DVAR for the Lorenz 63 system.
� �

import numpy as np
import matplotlib.pyplot as plt

#%% Application: Lorenz 63
# parameters
sigma = 10.0
beta = 8.0/3.0
rho = 28.0
dt = 0.01
tm = 10
nt = int(tm/dt)
t = np.linspace(0,tm,nt+1)

u0True = np.array([1,1,1]) # True initial conditions

############################ Twin experiment ##################################
np.random.seed(seed=1)
sig_m= 0.15 # standard deviation for measurement noise
R = sig_m**2*np.eye(3) #covariance matrix for measurement noise
H = np.eye(3) #linear observation operator

dt_m = 0.2 #time period between observations
tm_m = 2 #maximum time for observations
nt_m = int(tm_m/dt_m) #number of observation instants

#t_m = np.linspace(dt_m,tm_m,nt_m) #np.where( (t<=2) & (t%0.1==0) )[0]
ind_m = (np.linspace(int(dt_m/dt),int(tm_m/dt),nt_m)).astype(int)
t_m = t[ind_m]

#time integration
uTrue = np.zeros([3,nt+1])
uTrue[:,0] = u0True
km = 0
w = np.zeros([3,nt_m])
for k in range(nt):
uTrue[:,k+1] = RK4(Lorenz63,uTrue[:,k],dt,sigma,beta,rho)
if (km<nt_m) and (k+1==ind_m[km]):
w[:,km] = H@uTrue[:,k+1] + np.random.normal(0,sig_m,[3,])
km = km+1

plt.plot(t,uTrue[0,:])
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plt.plot(t_m,w[0,:],’o’)

########################### Data Assimilation #################################
u0b = np.array([2.0,3.0,4.0])
sig_b= 0.1
B = sig_b**2*np.eye(3)

#time integration
ub = np.zeros([3,nt+1])
ub[:,0] = u0b
ua = np.zeros([3,nt+1])
ua[:,0] = u0b
km = 0
for k in range(nt):
ub[:,k+1] = RK4(Lorenz63,ub[:,k],dt,sigma,beta,rho)
ua[:,k+1] = RK4(Lorenz63,ua[:,k],dt,sigma,beta,rho)

if (km<nt_m) and (k+1==ind_m[km]):
ua[:,k+1] = Lin3dvar(ua[:,k+1],w[:,km],H,R,B,3)
km = km+1

############################### Plotting ######################################
import matplotlib as mpl
mpl.rc(’text’, usetex=True)
mpl.rcParams[’text.latex.preamble’]=[r"\usepackage{amsmath}"]
mpl.rcParams[’text.latex.preamble’] = [r’\boldmath’]
font = {’family’ : ’normal’,
’weight’ : ’bold’,
’size’ : 20}
mpl.rc(’font’, **font)

fig, ax = plt.subplots(nrows=3,ncols=1, figsize=(10,8))
ax = ax.flat

for k in range(3):
ax[k].plot(t,uTrue[k,:], label=r’\bf{True}’, linewidth = 3)
ax[k].plot(t,ub[k,:], ’:’, label=r’\bf{Background}’, linewidth = 3)
ax[k].plot(t[ind_m],w[k,:], ’o’, fillstyle=’none’, \
label=r’\bf{Observation}’, markersize = 8, markeredgewidth = 2)
ax[k].plot(t,ua[k,:], ’--’, label=r’\bf{Analysis}’, linewidth = 3)
ax[k].set_xlabel(r’$t$’,fontsize=22)
ax[k].axvspan(0, tm_m, color=’y’, alpha=0.4, lw=0)

ax[0].legend(loc="center", bbox_to_anchor=(0.5,1.25),ncol =4,fontsize=15)

ax[0].set_ylabel(r’$x(t)$’)
ax[1].set_ylabel(r’$y(t)$’)
fig.subplots_adjust(hspace=0.5)
� �
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Figure 1. Results of 3DVAR implementation for the Lorenz 63 system.

4. Four Dimensional Variational Data Assimilation

We highlighted in Section 3 that the 3DVAR can be referred to as a stationary case since the
observations, background, and analysis all correspond to a fixed time instant. In other words,
the optimization problem that minimizes Equation (4) takes place in the spatial state-space only. As an
extension, the four dimensional variational data assimilation (4DVAR) aims to solve the optimization
in both space and time, proving a non-stationary framework. In particular, the model’s dynamics are
incorporated into the optimization problem to relate different points in time to each other. The cost
functional for the 4DVAR Can be written as follows,

J(u(t0)) = ∑
tk∈T

1
2
(w(tk)− h(u(tk)))

TR−1(tk)(w(tk)− h(u(tk))), (13)

where w(tk) is the measurement at time tk and T defines the set of time instants where observations
are available. Note that the argument of this cost functional is the initial condition u(t0). In other
words, the purpose of the 4DVAR algorithm is to evaluate an initial state estimate, which if evolved in
time, would produce a trajectory that is as close to the collected measurements as possible (weighted
by the inverse of the covariance matrix of interfering noise). This is the place where the model’s
dynamics comes into play to relate initial condition to future predictions when measurements are
accessible. In other words, the values of u(tk)) are constrained by the underlying model. Instead of
presenting the linear and nonlinear mappings separately, we will focus on the general case of both
nonlinear model mapping and nonlinear observation operator, where simplification to linear cases
should be straightforward.
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In Equation (2), we introduced the one-step transition map and here, we can extend it to the k-step
transition case by applying Equation (2) recursively as

u(tk) = M(k)(u(t0); θ) = M(M(k−1) (u(t0); θ); θ) , (14)

where M(1)(u(t0); θ) = M(u(t0); θ). Now, we consider a base trajectory given by u(tk) for k = 1, 2, . . .
generated from an initial condition of u(t0). A perturbed trajectory (u(tk) for k = 1, 2, . . . ,) can be
obtained by correcting the initial condition as u(t0) = u(t0) + Δu0 and the difference between the
perturbed and based trajectories can be written as

u(tk)− u(tk) = M(k)(u(t0) + Δu0; θ)− M(k)(u(t0); θ). (15)

A first-order Taylor expansion of M(u(t0) + Δu0; θ) around u(t0) can be given as follows

M(u(t0) + Δu0; θ) ≈ M(u(t0); θ) + DM(u(t0))Δu0, (16)

where DM(u(tk)) is the Jacobian of the model M(u; θ), evaluated at u(tk), also known as the tangent
linear operator. Note that M(u(t0); θ) = u(t1) and M(u(t0) + Δu0; θ) = u(t1), thus Δu1 = u(t1)−
u(t1) ≈ DM(u(t0))Δu0. Similarly, we can expand M(u(t1) + Δu1; θ) around u(t1) as follows,

M(u(t1) + Δu1; θ) ≈ M(u(t1); θ) + DM(u(t1))Δu1, (17)

where u(t2 = M(u(t1); θ) ≈ M(u(t1) + Δu1; θ) and u(t2) = M(u(t1); θ). Consequently,
Δu2 = u(t2)− u(t2) ≈ DM(u(t1))Δu1, which can be generalized as,

Δuk+1 ≈ DM(u(tk))Δuk, (18)

with u(tk) ≈ Δuk + u(tk). It is customary to call Equation (18) as the perturbation equation, or the
tangent linear system (TLS). Equation (18) can be related to Δu0 by recursion as follows,

Δuk+1 ≈ DM(u(tk))Δuk

≈ DM(u(tk))DM(u(tk−1))Δuk−1

≈ DM(u(tk))DM(u(tk−1))DM(u(tk−2))Δuk−2

≈ DM(u(tk))DM(u(tk−1))DM(u(tk−2))DM(u(tk−3)) . . . DM(u(t0))Δu0,

which can be short-handed as Δuk+1 ≈ DM(u(tk:0))Δu0 (please, notice the order of matrix
multiplication and the subscript “k : 0”).

Now, we investigate the first order variation ΔJ of the cost functional J(u(t0)) induced by the
perturbation Δu0 in the initial condition. This can be approximated as below,

ΔJ = ΔuT
0 ∇J(u(t0)) (19)

= − ∑
tk∈T

ΔuT
k DT

h
(
u(tk)

)
R−1(tk)

(
w(tk)− h(u(tk))

)
. (20)

Given that Δuk ≈ DM(u(tk−1:0))Δu0, then ΔuT
k ≈ ΔuT

0 DT
M(u(t0))D

T
M(u(t1)) . . . DT

M(u(tk−1)) =

ΔuT
0 DT

M(u(t0:k−1)) and Equation (20) can be rewritten as

ΔJ = − ∑
tk∈T

ΔuT
0 DT

M(u(t0:k−1))D
T
h
(
u(tk)

)
R−1(tk)

(
w(tk)− h(u(tk))

)
. (21)
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By comparing Equations (19) and (21), the gradient of the cost functional can be approximated as

∇J(u(t0)) = − ∑
tk∈T

DT
M(u(t0:k−1))D

T
h
(
u(tk)

)
R−1(tk)

(
w(tk)− h(u(tk))

)
(22)

= − ∑
tk∈T

DT
M(u(t0:k−1))f(tk), (23)

where f(tk) = DT
h
(
u(tk)

)
R−1(tk)

(
w(tk) − h(u(tk))

)
. If we denote the time instants at which

measurements are available as T = {tO1, tO2, . . . , tON}, Equation (23) can be expanded as

∇J(u(t0)) = −
{

DT
M(u(t0:O1−1))f(tO1) + DT

M(u(t0:O2−1))f(tO2) + · · ·+ DT
M(u(t0:ON−1))f(tON)

}
. (24)

Now, defining a sequence of λk ∈ Rn as below,

λk =

⎧⎪⎪⎨⎪⎪⎩
fk, if tk = tON

DT
M(u(tk))λk+1 + fk, if tk ∈ {tO1, tO2, . . . , tON−1}

DT
M(u(tk))λk+1, otherwise.

(25)

It can be verified that ∇J(u(t0)) = −λ0 (assume some numbers and you can see this relation
holds!). Therefore, in order to obtain the gradient of the cost functional, λ0 has to be computed,
which depends on the evaluation of λ1. In turn, the computation of λ1 requires λ2 and so on.
Equation (25) is known as the first-order adjoint equation, as it implies the evaluation of λk sequence
from tk+1 to tk (i.e., reverse order).

Therefore, the first-order approximation of the 4DVAR works as follows. Starting from a prior
guess of the initial condition, the base trajectory is computed by solving the model forward in time
until the final time corresponding the last observation point (i.e., k = 0, 1, 2, . . . , ON). Then, the value
of λON = fON is evaluated at final time. After that, λk is evolved backward in time using Equation (25)
until ∇J(u(t0)) = −λ0 is obtained. This value of the gradient is thus utilized to update the initial
condition and a new base trajectory is generated. The solution of the 4DVAR problem requires the
solution of the model dynamics forward in time and adjoint problem backward in time until to
compute the gradient of the cost functional and update the initial condition. The process is thus
repeated until convergence takes place. Listing 6 shows a sample function to compute the gradient
of the cost functional ∇J(u(t0)) corresponding to a base trajectory generated from a guess of the
initial condition u(t0). We highlight that, in practice, the storage of the base trajectory as well as the λ

sequence at every time instant might be overwhelming. However, we are not addressing such issues
in these introductory tutorials to data assimilation techniques.

Listing 6. Computation of the gradient of the cost functional with the 4DVAR using the first-order
adjoint algorithm.

� �

def Adj4dvar(rhs,Jrhs,ObsOp,JObsOp,t,ind_m,u0b,w,R,opt,*args):

# The solution of the 4DVAR problem requires the evaluation of
# the forward model to generate base trajectory and
# the Jacobian of the model to solve the adjoint problem.
# Inputs:
#rhs: defines the right-hand side of the continuous time forward model f
#Jrhs: defines the Jacobian matrix of rhs D_f(u)
#ObsOp: defines the observation operator h(u)
#JObsOp: defines the Jacobian of the observation operator D_h(u)
#t: vector of time
#ind_m: indices of measurement instants
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#u0b: initial condition for base trajectory
#w: matrix of measurements
#R: covariance matrix of measurement noise
#opt: [0=euler] or [1=RK4] defines the time integration scheme to
#comptue the discrete-time forward map and its Jacobian
# Output: The Jacobian of the cost functional

n = len(u0b)
#determine the assimilation window
t = t[:ind_m[-1]+1] #cut the time till the last observatino point
nt = len(t)-1
dt = t[1] - t[0]
ub = np.zeros([n,nt+1]) #base trajectory
lam = np.zeros([n,nt+1]) #lambda sequence
fk = np.zeros([n,len(ind_m)])

Ri = np.linalg.inv(R)

ub[:,0] = u0b
if opt == 0: #Euler
#forward model
for k in range(nt):
ub[:,k+1] = euler(rhs,ub[:,k],dt,*args)

#backward adjoint
k = ind_m[-1]
fk[:,-1] = (JObsOp(ub[:,k])).T @ Ri @ (w[:,-1]-ObsOp(ub[:,k]))
lam[:,k] = fk[:,-1] #lambda_N = f_N

km = len(ind_m)-2
for k in range(ind_m[-1],0,-1):
DM = Jeuler(rhs,Jrhs,ub[:,k-1],dt,*args)
lam[:,k-1] = (DM).T @ lam[:,k]
if k-1 == ind_m[km]:
fk[:,km] =(JObsOp(ub[:,k-1])).T @ Ri @ (w[:,km]-ObsOp(ub[:,k-1]))
lam[:,k-1] = lam[:,k-1] + fk[:,km]
km = km - 1

elif opt == 1: #RK4
# forward model
for k in range(nt):
ub[:,k+1] = RK4(rhs,ub[:,k],dt,*args)

#backward adjoint
k = ind_m[-1]
fk[:,-1] = (JObsOp(ub[:,k])).T @ Ri @ (w[:,-1]-ObsOp(ub[:,k]))
lam[:,k] = fk[:,-1] #lambda_N = f_N

km = len(ind_m)-2
for k in range(ind_m[-1],0,-1):
DM = JRK4(rhs,Jrhs,ub[:,k-1],dt,*args)
lam[:,k-1] = (DM).T @ lam[:,k]
if k-1 == ind_m[km]:
fk[:,km] = (JObsOp(ub[:,k-1])).T @ Ri @(w[:,km]-ObsOp(ub[:,k-1]))
lam[:,k-1] = lam[:,k-1] + fk[:,km]
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km = km - 1

dJ0 = -lam[:,0]
return dJ0
� �

The gradient ∇J(u(t0)) should be used in a minimization algorithm to update the initial condition
for the next iteration. One simple algorithm is the simple gradient descent where an updated value
of the initial state is computed as u(t0))

new = u(t0))
old − βn∇J(u(t0)

old), where βn is some step

parameter. This can be normalized as u(t0))
new = u(t0))

old − β
∇J(u(t0)

old)

‖∇J(u(t0)old)‖ . The value of β might

be predefined, or more efficiently updated at each iteration using an additional optimization algorithm
(e.g., line-search). For the sake of completeness, we present a line-search routine in Listing 7 using the
Golden search algorithm. This is based on the definition of the cost functional in Listing 8.

Listing 7. A line-search Python function using the Golden search method.
� �

def GoldenAlpha(p,rhs,ObsOp,t,ind_m,u0,w,R,opt,*args):

# p is the optimization direction
a0=0
b0=1
r=(3-np.sqrt(5))/2

uncert = 1e-5 # Specified uncertainty

a1= a0 + r*(b0-a0);
b1= b0 - r*(b0-a0);
while (b0-a0) > uncert:

if loss(rhs,ObsOp,t,ind_m,u0+a1*p,w,R,opt,*args) < loss(rhs,ObsOp,t,\
ind_m,u0+b1*p,w,R,opt,*args):
b0=b1;
b1=a1;
a1= a0 + r*(b0-a0);
else:
a0=a1;
a1=b1;
b1= b0 - r*(b0-a0);
alpha = (b0+a0)/2

return alpha
� �

Listing 8. Computation of the cost functional defined in Equation (13).
� �

# cost functional (w-h(u))^T * R^{-1} * (w-h(u))
def loss(rhs,ObsOp,t,ind_m,u0,w,R,opt,*args):

n = len(u0)
#determine the assimilation window
t = t[:ind_m[-1]+1] #cut the time till the last observation point
nt = len(t)-1
dt = t[1] - t[0]
u = np.zeros([n,nt+1]) #trajectory

u[:,0] = u0
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Ri = np.linalg.inv(R)
floss = 0
km = 0
nt_m = len(ind_m)
if opt == 0: #Euler
#forward model
for k in range(nt):
u[:,k+1] = euler(rhs,u[:,k],dt,*args)

if (km<nt_m) and (k+1==ind_m[km]):
tmp = w[:,km] - ObsOp(u[:,k+1])
tmp = tmp.reshape(-1,1)
floss = floss + np.linalg.multi_dot(( tmp.T, Ri , tmp ))
km = km + 1

elif opt == 1: #RK4
# forward model
for k in range(nt):
u[:,k+1] = RK4(rhs,u[:,k],dt,*args)
if (km<nt_m) and (k+1==ind_m[km]):
tmp = w[:,km] - ObsOp(u[:,k+1])
tmp = tmp.reshape(-1,1)
floss = floss + np.linalg.multi_dot(( tmp.T, Ri , tmp ))
km = km + 1

floss = floss[0,0]/2
return floss
� �

Example: Lorenz 63 System

Similar to the 3DVAR demonstration, we apply the described 4DVAR using the first-order
adjoint method on the Lorenz 63 system. We also begin with the same erroneous initial condition of
u(0) = [2, 3, 4]T and observations are collected each 0.2 time units, contaminated with a Gaussian
noise with diagonal covariance matrix defined as R = σ2

mI3, where σm = 0.15 is the standard deviation
for measurement noise. Moreover, we simply define a linear observation operator defined as h(u) = u,
with a Jacobian of identity matrix. We utilize the simple gradient descent for minimizing the cost
functional, equipped by a Golden search method for learning rate optimization. A maximum number
of iterations is set to 1000, but we highlight that this is highly dependent on the adopted minimization
algorithm as well as the line-search technique. In practice, the evaluation of each iteration might be
too computationally expensive, so the number of iterations need to be as low as possible. We define
two criteria for convergence, and iterations stop whenever any one of them is achieved. The first one
is based on the change in the value of the cost or loss functional and the second one is based on the
magnitude of its gradient. Extra criteria might be supplied as well.

Results for running Listing 9 is shown in Figure 2, where we can notice the significant
improvement of predictions, compared to the background trajectories. Moreover, we highlight the
correction to the initial conditions in Figure 2 which resulted in the analysis trajectory. This is opposed
to the 3DVAR implementation, where correction is applied locally at measurements instants only as
seen in Figure 1.
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Listing 9. Implementation of 4DVAR using the first-order adjoint method for the Lorenz 63 system.
� �

import numpy as np
import matplotlib.pyplot as plt

#%% Application: Lorenz 63
# parameters
sigma = 10.0
beta = 8.0/3.0
rho = 28.0
dt = 0.01
tm = 10
nt = int(tm/dt)
t = np.linspace(0,tm,nt+1)

############################ Twin experiment ##################################
def h(u): # Observation operator
w = u
return w

def Dh(u): #Jacobian of observation operator
n = len(u)
D = np.eye(n)
return D

u0True = np.array([1,1,1]) # True initial conditions
np.random.seed(seed=1)
sig_m= 0.15 # standard deviation for measurement noise
R = sig_m**2*np.eye(3) #covariance matrix for measurement noise

dt_m = 0.2 #time period between observations
tm_m = 2 #maximum time for observations
nt_m = int(tm_m/dt_m) #number of observation instants

ind_m = (np.linspace(int(dt_m/dt),int(tm_m/dt),nt_m)).astype(int)
t_m = t[ind_m]

#time integration
uTrue = np.zeros([3,nt+1])
uTrue[:,0] = u0True
km = 0
w = np.zeros([3,nt_m])
for k in range(nt):
uTrue[:,k+1] = RK4(Lorenz63,uTrue[:,k],dt,sigma,beta,rho)
if (km<nt_m) and (k+1==ind_m[km]):
w[:,km] = h(uTrue[:,k+1]) + np.random.normal(0,sig_m,[3,])
km = km+1

########################### Data Assimilation #################################
u0b = np.array([2.0,3.0,4.0])
u0a = u0b
J0 = loss(Lorenz63,h,t,ind_m,u0a,w,R,1,sigma,beta,rho)
for iter in range(1000):

#computing the gradient of cost functional with base trajectory
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dJ = Adj4dvar(Lorenz63,JLorenz63,h,Dh,t,ind_m,u0a,w,R,1,sigma,beta,rho)
#minimization direction
p = -dJ/np.linalg.norm(dJ)
#Golden method for linesearch
alpha = GoldenAlpha(p,Lorenz63,h,t,ind_m,u0a,w,R,1,sigma,beta,rho)
#update initial condition with gradient descent
u0a = u0a + alpha*p

J = loss(Lorenz63,h,t,ind_m,u0a,w,R,1,sigma,beta,rho)

if np.abs(J0-J) < 1e-2:
print(’Convergence: loss function’)
break
else:
J0=J
if np.linalg.norm(dJ) < 1e-4:
print(’Convergence: gradient of loss function’)
break

##################### Time Integration [Comparison] ###########################
ub = np.zeros([3,nt+1])
ub[:,0] = u0b
ua = np.zeros([3,nt+1])
ua[:,0] = u0a
km = 0
for k in range(nt):
ub[:,k+1] = RK4(Lorenz63,ub[:,k],dt,sigma,beta,rho)
ua[:,k+1] = RK4(Lorenz63,ua[:,k],dt,sigma,beta,rho)

#%%
############################### Plotting ######################################
import matplotlib as mpl
mpl.rc(’text’, usetex=True)
mpl.rcParams[’text.latex.preamble’]=[r"\usepackage{amsmath}"]
mpl.rcParams[’text.latex.preamble’] = [r’\boldmath’]
font = {’family’ : ’normal’,
’weight’ : ’bold’,
’size’ : 20}
mpl.rc(’font’, **font)

fig, ax = plt.subplots(nrows=3,ncols=1, figsize=(10,8))
ax = ax.flat

for k in range(3):
ax[k].plot(t,uTrue[k,:], label=r’\bf{True}’, linewidth = 3)
ax[k].plot(t,ub[k,:], ’:’, label=r’\bf{Background}’, linewidth = 3)
ax[k].plot(t[ind_m],w[k,:], ’o’, fillstyle=’none’, \
label=r’\bf{Observation}’, markersize = 8, markeredgewidth = 2)
ax[k].plot(t,ua[k,:], ’--’, label=r’\bf{Analysis}’, linewidth = 3)
ax[k].set_xlabel(r’$t$’,fontsize=22)
ax[k].axvspan(0, tm_m, color=’y’, alpha=0.4, lw=0)

ax[0].legend(loc="center", bbox_to_anchor=(0.5,1.25),ncol =4,fontsize=15)
ax[0].set_ylabel(r’$x(t)$’)
ax[1].set_ylabel(r’$y(t)$’)
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ax[2].set_ylabel(r’$z(t)$’)
fig.subplots_adjust(hspace=0.5)
� �

Figure 2. Results of 4DVAR implementation for the Lorenz 63 system.

Before we move to other data assimilation techniques, we highlight a few remarks regarding our
presentation of the 4DVAR

• In Listing 9, we utilize the gradient descent approach to minimize the cost function. Readers are
encouraged to apply other optimization techniques (e.g., conjugate gradient) that achieve higher
convergence rate.

• The determination of the learning rate can be further optimized using more efficient line-search
methods, rather than the simple Golden search.

• The Lagrangian multiplier method can be applied to solve the 4DVAR problem instead of the
adjoint method, similar results should be obtained.

• The presented algorithm relies on the definition of the cost functional given in Equation (13),
based on the discrepancy between measurements and model’s predictions. When extra
information is available, it can be incorporated into the cost functional. For instance, similar
to Equation (4), a term that penalizes the correction magnitude can be added, weighted by the
background covariance matrix. Furthermore, symmetries or other physical knowledge can be
enforced as hard or weak constraints.

• The first-order adjoint algorithm requires the computation of the Jacobian DM(u) of the
discrete-time model map M(u; θ). This can be computed by plugging the model f (u; θ) in
a time integration scheme and rearranging everything to rewrite M(u; θ) as explicit function
of u and differentiating with respect to components of u. For Lorenz 63 and 1st Euler scheme,
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this can be an easy task. However, for a higher dimensional system and more accurate time
integrators, this would be cumbersome. Instead, the chain rule can be utilized to compute DM(u)

as presented in Listing 10, which takes as input the right-hand side of the continuous-time
dynamics f (·; ·) (described in Listing 3 for Lorenz 63 system) as well as its Jacobian (given in
Listing 11 for Lorenz 63).

Listing 10. Python functions for computing the Jacobian DM(u) of the discrete-time model map
M(u; θ) using the 1st Euler and the 4th Runge–Kutta schemes with chain rule.

� �

import numpy as np
def Jeuler(rhs,Jrhs,state,dt,*args):
n = len(state)
k1 = rhs(state,*args)
dk1 = Jrhs(state,*args)
DM = np.eye(n) + dt*dk1
return DM

def JRK4(rhs,Jrhs,state,dt,*args):
n = len(state)
k1 = rhs(state,*args)
k2 = rhs(state+k1*dt/2,*args)
k3 = rhs(state+k2*dt/2,*args)
dk1 = Jrhs(state,*args)
dk2 = Jrhs(state+k1*dt/2,*args) @ (np.eye(n)+dk1*dt/2)
dk3 = Jrhs(state+k2*dt/2,*args) @ (np.eye(n)+dk2*dt/2)
dk4 = Jrhs(state+k3*dt,*args) @ (np.eye(n)+dk3*dt)
DM = np.eye(n) + (dt/6) * (dk1+2*dk2+2*dk3+dk4)
return DM
� �

Listing 11. A Python function for the Jacobian of the continuous-time Lorenz 63 dynamics.
� �

import numpy as np
def JLorenz63(state,*args): #Jacobian of Lorenz 96 model
sigma = args[0]
beta = args[1]
rho = args[2]
x, y, z = state #Unpack the state vector
df = np.zeros([3,3]) #Derivatives

df[0,0] = sigma * (-1)
df[0,1] = sigma * (1)
df[0,2] = sigma * (0)

df[1,0] = 1 * (rho - z)
df[1,1] = -1
df[1,2] = x * (-1)

df[2,0] = 1 * y
df[2,1] = x * 1
df[2,2] = - beta
return df
� �
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5. Forward Sensitivity Method

We have seen in Section 4 that the minimization of the cost functional via the 4DVAR algorithm
requires the solution of the adjoint problem at each iteration, which incurs a significant computational
burden for high dimensional systems. Alternatively, Lakshmivarahan and Lewis [13] proposed the
forward sensitivity method (FSM) to derive an expression for the correction vector in terms of the
forward sensitivity matrices [14]. In their development, simultaneous correction to the initial condition
u(t0) and the model parameters θ is treated. For conciseness and consistency with the methods
introduced here, we only consider erroneous initial conditions and assume model parameters are
perfectly known. Given the discrete-time model map M(u; θ) in Equation (2), the forecast sensitivity
at time tk+a to the initial conditions u(t0) can be defined as follows,

∂ui(tk+1)

∂uj(t0)
=

n

∑
q=1

(
∂Mi(u(tk); θ)

∂uq(tk)

)(
∂uq(tk)

∂uj(t0)

)
, 1 � i, j � n, (26)

where M(u(tk); θ) = [M1(u(tk); θ), M2(u(tk); θ), . . . , Mn(u(tk); θ)]T . Recall that the Jacobian of the
model M(u(tk); θ) is defined by the matrix DM(u(tk)) ∈ Rn×n whose (i, j)th entry is defined as
∂Mi(u(tk); θ)

∂uj(tk)
. We also define U(tk) as the forward sensitivity matrix of u(tk) ∈ Rn×n with respect to

initial state u(t0), where [U(tk)]i,j =
∂ui(tk)

∂uj(t0)
for 1 � i, j � n. Thus, Equation (26) can be rewritten in

matrix form as,

U(tk+1) = DM(u(tk))U(tk). (27)

Equation (27) provides the dynamic evolution of the forward sensitivity matrix in a recursive
manner, initialized by U(t0) = In, that can be used to relate the prediction error at any time step to the
initial condition.

Given the measurement w(tk) at time tk ∈ T , the forecast error e(tk) is defined as the difference
between the model forecast and measurements as

e(tk) = w(tk)− h(u(tk)). (28)

This is commonly called the innovation in DA terminology. The cost functional in Equation (13)
can be rewritten as

J(u(t0)) = ∑
tk∈T

1
2
‖e(tk)‖2

R−1(tk)
= ∑

tk∈T

1
2

e(tk)
TR−1(tk)e(tk). (29)

With the assumption that the dynamical model is perfect (i.e., correctly encapsulates all the
relevant processes) and the model parameters are known, the deterministic part of the forecast error
can be attributed to the inaccuracy in the initial condition u(t0), defined as Δu0 = ut(t0)− ub(t0),
where ut(t0) denotes the true initial conditions.

Considering a base trajectory u(tk) for k = 1, 2, . . . generated from the initial condition of
u(t0), related to the corrected trajectory (u(tk) for k = 1, 2, . . . ,) obtained by correcting the initial
condition as u(t0) = u(t0) + Δu0, we define the difference between both trajectories at any time tk as
Δuk = u(tk)− u(tk). We highlight that u(tk) is a function of both the initial condition (with the model
parameters being known), the first-order Taylor expansion of u(tk) around the base trajectory can be
written as u(tk) ≈ u(tk) + U(tk)Δu0, leading to the following relation

Δuk ≈ U(tk)Δu0. (30)
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If we let the perturbed (corrected) trajectory to be the sought true trajectory, Equation (3) can be
rewritten as

w(tk) = h(u(tk) + Δuk) + ξm, (31)

and a first order expansion of w(tk) (neglecting the measurement noise) will be as follows,

w(tk) ≈ h(u(tk)) + Dh(u(tk))Δuk, (32)

and the forecast error at the base trajectory can be approximated as

e(tk) = Dh(u(tk))Δuk. (33)

Equations (30) and (33) can be combined to yield the following,

e(tk) = Dh(u(tk))U(tk)Δu0, (34)

which relates the forecast error at any time tk and the discrepancy between the true and erroneous initial
condition in a linear relationship. In order to account for all the time instants at which observations are
available (T = {tO1, tO2, . . . , tON}), Equation (34) can be concatenated at different times and written
as a linear system of equations as follows,

QΔu0 = eF, (35)

where the matrix QNm×n and the vector eF ∈ RNm are computed as,

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Dh(u(tO1))U(tO1)

Dh(u(tO2))UtO2)

...

Dh(u(tON))U(tON)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, eF =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

e(tO1)

e(tO2)

...

e(tON)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (36)

Depending on the value of Nm relative to n, Equation (35) can give rise to either an
over-determined or an under-determined linear inverse problem. In either case, the inverse problem
can be solved in a weighted least squares sense to find a first-order estimation of the optimal correction
or perturbation to the initial condition Δu0, with R−1 being the weighting matrix, where R is a
block-diagonal matrix constructed as follows,

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

R(tO1)

R(tO2)

. . .

R(tON)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (37)

and the solution of Equation (35) can be written as Δu0 =
(
QTR−1Q

)−1
QTR−1eF for the

over-determined case. This first order approximation progressively yields better results by repeating
the entire process for multiple iterations until convergence with certain tolerance [13]. In essence,
the FSM is an alternative to the 4DVAR algorithm, replacing the solution of the adjoint problem
backward in time (i.e., Equation (25)), by the successive matrix evaluation in Equation (27). However,
we highlight that in the 4DVAR approach, the actual forecast error is computed as ek = w(tk)− h(u(tk))
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while its first-order approximation is utilized in the FSM development. The duality between the two
approaches is further discussed in [13].

A Python implementation of the FSM approach is presented in Listing 12. We note that we solve
the Equation (35) using the built-in numpy least-squares function. However, more efficient iterative
schemes can be adopted in practice.

Listing 12. Python function for computing the correction vector Δu0 using the forward sensitivity
method with first-order approximation.

� �

import numpy as np
from scipy.linalg import block_diag
from scipy.linalg import sqrtm

def fsm1st(rhs,Jrhs,ObsOp,JObsOp,t,ind_m,u0b,w,R,opt,*args):

# Implementation of the first-order forward sensitivity method (FSM) to
# correct the initial conditions based on the forecast sensitivity matrices
# Inputs:
#rhs: defines the right-hand side of the continuous time forward model f
#Jrhs: defines the Jacobian matrix of rhs D_f(u)
#ObsOp: defines the observation operator h(u)
#JObsOp: defines the Jacobian of the observation operator D_h(u)
#t: vector of time
#ind_m: indices of measurement instants
#u0b: initial condition for base trajectory
#w: matrix of measurements
#R: covariance matrix of measurement noise
#opt: [0=euler] or [1=RK4] defines the time integration scheme to
#comptue the discrete-time forward map and its Jacobian
# Output: the correction vector du0

n = len(u0b)
#determine the assimilation window
t = t[:ind_m[-1]+1] #cut the time till the last observation point
nt = len(t)-1
dt = t[1] - t[0]
ub = np.zeros([n,nt+1]) #base trajectory
Ri = np.linalg.inv(R)

ub[:,0] = u0b
U = np.eye(n,n) #Initialization of U
Q = np.zeros((1,n)) #Dh*U
ef = np.zeros((1,1)) #w-h(u)
W = np.zeros((1,1)) #weighting matrix
km = 0
nt_m = len(ind_m)
if opt == 0: #Euler
#forward model
for k in range(nt):
ub[:,k+1] = euler(rhs,ub[:,k],dt,*args)
DM = Jeuler(rhs,Jrhs,ub[:,k],dt,*args)
U = DM @ U
if (km<nt_m) and (k+1==ind_m[km]):
tmp = w[:,km] - ObsOp(ub[:,k+1])
ek = tmp.reshape(-1,1)
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ef = np.vstack((ef,ek))
Qk = JObsOp(ub[:,k+1]) @ U
Q = np.vstack((Q,Qk))
W = block_diag(W,Ri)
km = km + 1
elif opt == 1: #RK4
# forward model
for k in range(nt):
ub[:,k+1] = RK4(rhs,ub[:,k],dt,*args)
DM = JRK4(rhs,Jrhs,ub[:,k],dt,*args)
U = DM @ U
if (km<nt_m) and (k+1==ind_m[km]):
tmp = w[:,km] - ObsOp(ub[:,k+1])
ek = tmp.reshape(-1,1)
ef = np.vstack((ef,ek))
Qk = JObsOp(ub[:,k+1]) @ U
Q = np.vstack((Q,Qk))
W = block_diag(W,Ri)
km = km + 1
Q = np.delete(Q, (0), axis=0)
ef = np.delete(ef, (0), axis=0)
W = np.delete(W, (0), axis=0)
W = np.delete(W, (0), axis=1)

# solve weighted least-squares
W1 = sqrtm(W)
du0 = np.linalg.lstsq(W1@Q, W1@ef, rcond=None)[0]

return du0.ravel()
� �

Example: Lorenz 63 System

We apply the described FSM to estimate the initial conditions for the Lorenz 63 system, using the
same parameters and setup as described in Section 4. Sample code is presented in Listing 13.
We highlight that instead of adding the correction vector Δu0 directly to the base value u(t0),
we multiply it with a learning rate to mitigate the effects of first-order approximations. We utilize the
golden search method to update this learning rate at each iteration.

Listing 13. Implementation of the FSM for the Lorenz 63 system.
� �

#%% Application: Lorenz 63
########################### Data Assimilation #################################
u0b = np.array([2.0,3.0,4.0])
u0a = u0b
J0 = loss(Lorenz63,h,t,ind_m,u0a,w,R,1,sigma,beta,rho)
for iter in range(200):

#computing the correction vector
du0 = fsm1st(Lorenz63,JLorenz63,h,Dh,t,ind_m,u0a,w,R,1,sigma,beta,rho)
#minimization direction
p = du0#/np.linalg.norm(du0)
#Golden method for linesearch
alpha = GoldenAlpha(p,Lorenz63,h,t,ind_m,u0a,w,R,1,sigma,beta,rho)
#update initial condition with gradient descent
u0a = u0a + alpha*p
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J = loss(Lorenz63,h,t,ind_m,u0a,w,R,1,sigma,beta,rho)
if np.abs(J0-J) < 1e-2:
print(’Convergence: loss function’)
break
#else:
J0=J
if np.linalg.norm(du0) < 1e-4:
print(’Convergence: correction vector’)
break

##################### Time Integration [Comparison] ###########################

ub = np.zeros([3,nt+1])
ub[:,0] = u0b
ua = np.zeros([3,nt+1])
ua[:,0] = u0a
km = 0
for k in range(nt):
ub[:,k+1] = RK4(Lorenz63,ub[:,k],dt,sigma,beta,rho)
ua[:,k+1] = RK4(Lorenz63,ua[:,k],dt,sigma,beta,rho)
� �

Prediction results are provided in Figure 3, where we notice a large discrepancy at the estimated
initial conditions. However, the predicted trajectory perfectly match the true one for the rest of
the testing time window. This is largely affected by the nature of the Lorenz system itself and the
attachment to its attractor. Furthermore, this can be partially attributed to the lack of background
information and its contribution to the cost functional. Moreover, this can be highly improved by
adding more observations close to the initial time since the correction vector is estimated based on
the forecast error computed at observation times. Anyhow, we see that the analysis trajectory is
significantly more accurate than the background one, with iterative first-order approximations of the
forward sensitivity method, even for long time predictions.

Figure 3. Results of FSM implementation for the Lorenz 63 system.
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6. Kalman Filtering

The idea behind Kalman filtering techniques is to propagate the mean as well as the covariance
matrix of the system’s state sequentially in time. That is, in addition to providing an improved state
estimate (i.e., the analysis), it also gives some information about the statistical properties of this state
estimate. This is one main difference between Kalman filtering and variational methods, which often
assumes a fixed (stationary) background covariance matrices. Kalman filters are also very popular in
systems engineering, robotics, navigation, and control. Almost all modern control systems use the
Kalman filter. It assisted the guidance of the Apollo 11 lunar module to the moon’s surface, and most
probably will do the same for next generations of aircraft as well.

Although most application in fluid dynamics involve nonlinear systems, we first describe the
standard Kalman filter developed for the linear dynamical system case with linear observation operator
described as

ut(tk+1) = Mkut(tk) + ξp(tk+1), (38)

w(tk) = Hkut(tk) + ξm(tk) (39)

where M ∈ Rn×n is a non-singular system matrix defining the underlying governing processes and
ξp ∈ Rn describes the process noise (or model error). H ∈ Rm×n represents the measurement system
with a measurement noise of ξm ∈ Rm.

As presented in Section 2, the true state ut(tk) is assumed to be a random variable with known
mean E[ut(tk)] = ub(tk) and covariance matrix of E[(ut(tk) − ub(tk))(ut(tk) − ub(tk))

T ] = Bk.
In Kalman filtering, we note that the covariance matrix evolves in time, and thus appears the subscript.
We also assume that the process noise is unbiased with zero mean and a covariance matrix Q. That is
E(ξp(tk)) = 0 and E(ξp(tk)ξp(tk)

T) = Qk.
Thus, the goal of the filtering problem is to find a good estimate (analysis) ua(tk) of the true

system’s state ut(tk) given a dynamical model a set of noisy observation {w(ti)} collected at some
time instants ti ∈ (0, tk]. The optimality of the estimate ua(tk) is defined as the one which minimizes
E[(ut(tk)−ua(tk))

T(ut(tk)−ua(tk))]. This filtering process generally consists of two steps: the forecast
step and the data assimilation step.

The forecast step is performed using the predictable part of the given dynamical model starting
from the best known information at time tk (denoted as ûb(tk)) to produce a forecast or background
estimate ub(tk+1) = Mkûb(tk). The difference between the background forecast and true state at tk+1
can be written as follows,

ξb(tk+1) = ut(tk+1)− ub(tk+1)

= (Mkut(tk) + ξp(tk+1))− Mkûb(tk)

= Mk(ut(tk)− ûb(tk)) + ξp(tk+1)

= Mk ξ̂b(tk) + ξp(tk+1),

where ξ̂b(tk) = (ut(tk)− ûb(tk)) is the error estimate at tk, with zero mean and covariance matrix of B̂k.
The covariance matrix of the background estimate at tk+1 can be evaluated as Bk+1 =

E[ξb(tk+1)ξb(tk+1)
T ] = E

[(
Mk ξ̂b(tk) + ξp(tk+1)

)(
Mk ξ̂b(tk) + ξp(tk+1)

)T
]

. Since, ξ̂b(tk) and

ξp(tk+1) are assumed to be uncorrelated (i.e., E[ξ̂b(tk)ξp(tk+1)
T ] = 0), the background covariance

matrix at tk+1 can be computed as follows,

Bk+1 = MkB̂kMT
k + Qk+1. (40)
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Now, with the forecast step, we have a background estimate at tk+1 defined as ub(tk+1) with a
covariance matrix Bk+1. Then, measurements w(tk+1) are collected at tk+1 with a linear operator Hk+1
and measurement noise ξm(tk+1) with zero mean a covariance matrix of Rk+1. Thus, we would like
to fuse these pieces of information to create an optimal unbiased estimate (analysis) ua(tk+1) with a
covariance matrix Pk+1. This can be defines as linear function of ub(tk+1) and w(tk+1) as follows,

ua(tk+1) = ub(tk+1) + Kk+1

(
w(tk+1)− Hk+1ub(tk+1)

)
, (41)

where
(

w(tk+1)− Hk+1ub(tk+1)

)
is the innovation vector and K ∈ Rn×m is called the Kalman gain

matrix. We highlight that Kalman gain matrix is defined in such a way to minimize E[(ut(tk+1)−
ua(tk+1))

T(ut(tk+1)− ua(tk+1))] = tr(Pk+1). This can be written as [27]

Kk+1 = Bk+1HT
k+1

(
Hk+1Bk+1HT

k+1 + Rk+1

)−1

, (42)

resulting in an analysis covariance matrix defined as

Pk+1 = (In − Kk+1Hk+1)Bk+1, (43)

where In is the n × n identity matrix. The resulting analysis ua(tk+1) is known as the best linear
unbiased estimate (BLUE). We highlight that information at tk might correspond to the analysis (i.e.,
ûb(tk) = ua(tk)) obtained from the last data assimilation implementation, or just from previous forecast
if no other information is available. Thus, the Kalman filtering process can be summarized as follows,

Inputs: ûb(tk), B̂k, Mk, Qk+1, w(tk+1), Rk+1, Hk+1

Forecast: ub(tk+1) = Mkûb(tk)

Bk+1 = MkB̂kMT
k + Qk+1

Kalman gain: Kk+1 = Bk+1HT
k+1

(
Hk+1Bk+1HT

k+1 + Rk+1

)−1

Analysis: ua(tk+1) = ub(tk+1) + Kk+1

(
w(tk+1)− Hk+1ub(tk+1)

)
Pk+1 = (In − Kk+1Hk+1)Bk+1,

where the inputs at tk are defined as

(ûb(tk), B̂k) =

{
(ua(tk), Pk) if w(tk), is available,

(ub(tk), Bk) otherwise.

Listing 14 describes a basic Python implementation of the data assimilation step using the KF
algorithm described before. Although efficient matrix inversion routines that benefit from specific
matrix properties can be utilized, we use the standard built-in Numpy matrix inversion function.

Listing 14. Implementation of the KF with linear dynamics and observation operator.
� �

import numpy as np
def KF(ub,w,H,R,B):

# The analysis step for the Kalman filter in the linear case
# i.e., linear model M and linear observation operator H

n = ub.shape[0]
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# compute Kalman gain
D = H@B@H.T + R
K = B @ H @ np.linalg.inv(D)

# compute analysis
ua = ub + K @ (w-H@ub)
P = (np.eye(n) - K@H) @ B
return ua, P
� �

Different forms for evaluating the Kalman gain and the covariance matrices are presented in
literature. Some of them are favored for computational cost aspects, while others maintain desirable
properties (e.g., symmetry and positive definiteness) for numerically stable implementation [27].
Since we are more interested in nonlinear dynamical models, we shall discuss extensions for standard
Kalman filters to account for nonlinearity in the following sections.

7. Extended Kalman Filter

Instead of dealing with linear stochastic dynamics, we look at the nonlinear case with general
(nonlinear) observation operator written as

ut(tk+1) = M(ut(tk); θ) + ξp(tk+1), (44)

w(tk) = h(ut(tk)) + ξm(tk). (45)

The first challenge of applying Kalman filter for this system is the propagation of the background
covariance matrix in the forecast step. The main clue behind the extended Kalman filter (EKF) to
address this issue is to locally linearize M(u(tk)) by expanding it around the estimate ûb(tk) at tk using
the first-order Taylor series as follows,

M(ut(tk); θ) ≈ M(ûb(tk); θ) + DM(ûb(tk))ξ̂b(tk), (46)

where DM(ûb(tk)) is the Jacobian (also known as the tangent linear operator) of the forward
model M(·; ·) evaluated at ûb(tk) and ξ̂b(tk) = (ut(tk) − ûb(tk)) defining the error estimate at tk,
with zero mean and covariance matrix of B̂k. Thus, the difference between the background forecast
and true state at tk+1 can be written as follows,

ξb(tk+1) = ut(tk+1)− ub(tk+1)

= M(ut(tk); θ) + ξp(tk+1)− M(ûb(tk); θ)

≈ M(ûb(tk); θ) + DM(ûb(tk))ξ̂b(tk) + ξp(tk+1)− M(ûb(tk); θ)

≈ DM(ûb(tk))ξ̂b(tk) + ξp(tk+1).

Similar to the derivation in the linear case, with the assumption of uncorrelation between ξ̂b(tk) and
ξp(tk+1), the background covariance matrix at tk+1 can be computed as follows,

Bk+1 = DM(ûb(tk))B̂kMT
k + Qk+1. (47)

The next challenge regarding the analysis step is the computation of the Kalman gain in case of
nonlinear observation operator. Again, h(ut(tk+1)) is linearized using Talylor series expansion around
ub(tk+1) (i.e., the background forecast) as follows,

h(ut(tk+1)) ≈ h(ub(tk+1)) + Dh(ub(tk+1))ξb(tk+1), (48)
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where Dh(ub(tk+1)) is the Jacobian of the observation operator h, computed with the forecast ub(tk+1).
The Kalman gain is thus computed using this first-order approximation of h as follows,

Kk+1 = Bk+1Dh(ub(tk+1))
T
(

Dh(ub(tk+1))Bk+1Dh(ub(tk+1))
T + Rk+1

)−1

, (49)

with an analysis estimate and analysis covariance matrix defined as

ua(tk+1) = ub(tk+1) + Kk+1

(
w(tk+1)− h(ub(tk+1))

)
, (50)

Pk+1 =

(
In − Kk+1Dh(ub(tk+1))

)
Bk+1. (51)

A summary of the EKF algorithm is described as follows,

Inputs: ûb(tk), B̂k, M(·; ·), Qk+1, w(tk+1), Rk+1, h(·)
Forecast: ub(tk+1) = M(ûb(tk); θ)

Bk+1 = DM(ûb(tk))B̂kDM(ûb(tk))
T + Qk+1

Kalman gain: Kk+1 = Bk+1Dh(ub(tk+1))
T
(

Dh(ub(tk+1))k+1Bk+1Dh(ub(tk+1))
T + Rk+1

)−1

Analysis: ua(tk+1) = ub(tk+1) + Kk+1

(
w(tk+1)− h(ub(tk+1))

)
Pk+1 = (In − Kk+1Dh(ub(tk+1)))Bk+1,

and a Python implementation of the data assimilation step is presented in Listing 15.

Listing 15. Implementation of the (first-order) EKF with nonlinear dynamics and nonlinear
observation operator.

� �

import numpy as np
def EKF(ub,w,ObsOp,JObsOp,R,B):
# The analysis step for the extended Kalman filter with nonlinear dynamics
# and nonlinear observation operator
n = ub.shape[0]
# compute Jacobian of observation operator at ub
Dh = JObsOp(ub)
# compute Kalman gain
D = Dh@B@Dh.T + R
K = B @ Dh.T @ np.linalg.inv(D)

# compute analysis
ua = ub + K @ (w-ObsOp(ub))
P = (np.eye(n) - K@Dh) @ B
return ua, P
� �

Example: Lorenz 63 System

The first-order approximation of the Kalman filter in nonlinear case, known as extended Kalman
filter, is applied for the test case of Lorenz 63 system. The computation of model Jacobian DM(·)
is presented in Listings 10 and 11 in Section 4. We use the same parameters and initial conditions
for the twin experiment framework as before. The sequential implementation of the forecast and
analysis steps is shown in Listing 16 and results are illustrated in Figure 4. We adopt the 4th order
Runge–Kutta scheme for time integration. For demonstration purposes, we consider zero process
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noise (i.e., Q = 0). However, we have found that assuming non-zero process noise (e.g., Q = 0.01I3)
yields better performance.

Listing 16. Implementation of the EKF for the Lorenz 63 system.
� �

#%% Application: Lorenz 63
########################### Data Assimilation #################################
u0b = np.array([2.0,3.0,4.0])
sig_b= 0.1
B = sig_b**2*np.eye(3)
Q = 0.0*np.eye(3)
#time integration
ub = np.zeros([3,nt+1])
ub[:,0] = u0b
ua = np.zeros([3,nt+1])
ua[:,0] = u0b
km = 0
for k in range(nt):
# Forecast Step
#background trajectory [without correction]
ub[:,k+1] = RK4(Lorenz63,ub[:,k],dt,sigma,beta,rho)
#EKF trajectory [with correction at observation times]
ua[:,k+1] = RK4(Lorenz63,ua[:,k],dt,sigma,beta,rho)
#compute model Jacobian at t_k
DM = JRK4(Lorenz63,JLorenz63,ua[:,k],dt,sigma,beta,rho)
#propagate the background covariance matrix
B = DM @ B @ DM.T + Q
if (km<nt_m) and (k+1==ind_m[km]):
# Analysis Step
ua[:,k+1],B = EKF(ua[:,k+1],w[:,km],h,Dh,R,B)
km = km+1
� �

Figure 4. EKF results for the Lorenz 63 system with the assumption of zero process noise.
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8. Ensemble Kalman Filter

Despite the sound mathematical and theoretical foundation of Kalman filters (both linear and
nonlinear cases), they are not widely utilized in geophysical sciences. The major bottleneck in the
computational pipeline of Kalman filtering is the update of background covariance matrix. In
typical implementation, the cost of this step is O(n3), where n is the size of the state vector. For
systems governed by ordinary differential equations (ODES), n can be manageable (e.g., 3 in the
Lorenz 63 model). However, fluid flows are often governed by partial differential equations. Thus,
spatial discretization schemes (e.g., finite difference, finite volume, and finite element) are applied,
resulting in a semi-discrete system of ODEs. In geophysical flow dynamics applications (e.g., weather
forecast), a dimension of millions or even billions is not uncommon, which hinders the feasible
implementation of standard Kalman filtering techniques.

Alternatively, reduced rank algorithms that provides low-order approximation of the covariance
matrices are usually adopted. A very popular approach is the ensemble Kalman filter (EnKF),
introduced by Evensen [17,28,29] based on the Monte Carlo estimation methods.

The main procedure for these methods is to create an ensemble of size N of the system state
denoted as {u(tk)

(i)|1 ≤ i ≤ N} and apply the filtering algorithm to each member of the established
ensemble. The statistical properties of the forecast and analysis are thus extracted from the ensemble
using the standard Monte Carlo framework. In the previous discussions, the forecast (background)
and analysis covariances are defined as follows,

B = E[ξbξT
b ] = E[(ut − ub)(ut − ub)

T ],

P = E[ξaξT
a ] = E[(ut − ua)(ut − ua)

T ].

Alternatively, those can be approximated by the ensemble covariances, given as

B ≈ 1
N − 1

N

∑
i=1

(u
(i)
b − ub)(u

(i)
b − ub)

T ,

P ≈ 1
N − 1

N

∑
i=1

(u
(i)
a − ua)(u

(i)
a − ua)

T ,

where the bar denotes the ensemble average defined as u =
1
N ∑N

i=1 u(i). Thus, an interpretation of
EnKF is that the ensemble mean is the best estimate of the state and the spreading of the ensemble
around the mean is a definition of the error in this estimate. A larger ensemble size N yields a better
approximation of the state estimate and its covariance matrix. In the following, we describe the typical
steps for applying the EnKF algorithm.

We begin by creating an initial ensemble {û
(i)
b (tk)|1 ≤ i ≤ N} at time tk drawn from the

distribution N (ûb(tk), B̂k), where ûb(tk) represents our best-known estimate at tk. It can be verified
that the ensemble mean and covariance converge to ûb(tk) and Bk as N → ∞. Then, the forecast step
is applied to each member of the enesemble as follows,

u
(i)
b (tk+1) = M(û

(i)
b (tk); θ) + ξ

(i)
p (tk+1), (52)
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where ξ
(i)
p (tk+1) is drawn from the multivariate Gaussian distribution with zero mean and covariance

matrix of Qk+1 representing the process noise applied to each member. The sample mean of the
forecast ensemble can be thus computed, along with the corresponding covaiance matrix as,

ub(tk+1) ≈ ub(tk+1) =
1
N

N

∑
i=1

u
(i)
b (tk+1), (53)

ξ
(i)
b (tk+1) = u

(i)
b (tk+1)− ub(tk+1), (54)

Bk+1 ≈ 1
N − 1

N

∑
i=1

ξ
(i)
b (tk+1)ξ

(i)
b (tk+1)

T , (55)

which provides an approximation for the background covariance at tk+1 without actually propagating
the covariance matrix, as is the case in standard Kalman filtering.

An enesmble of observations {w(i)(tk+1)|1 ≤ i ≤ N}, also called virtual observations, is created
assuming a Gaussian distribution with a mean equal to the actual observation w(tk+1) and a covariance
matrix Rk+1. In other words, random Gaussian perturbations with zero mean and covariance matrix
Rk+1 are added to the actual measurements to create perturbed measurements. The Kalman gain
matrix can be computed as before (repeated here for completeness),

Kk+1 = Bk+1Dh(ub(tk+1))
T
(

Dh(ub(tk+1))Bk+1Dh(ub(tk+1))
T + Rk+1

)−1

. (56)

Then, the analysis step is applied for each member in the ensemble cloud as below,

u
(i)
a = u

(i)
b (tk+1) + Kk+1

(
w(i)(tk+1)− h(u(i)

b (tk+1))

)
, (57)

and the analyzed estimate at tk+1 is computed as the sample mean of the analysis ensemble along with
its covariance matrix as follows,

ua(tk+1) ≈ ua(tk+1) =
1
N

N

∑
i=1

u
(i)
a (tk+1), (58)

ξ
(i)
a (tk+1) = u

(i)
a (tk+1)− ua(tk+1), (59)

Pk+1 ≈ 1
N − 1

N

∑
i=1

ξ
(i)
a (tk+1)ξ

(i)
a (tk+1)

T . (60)

We observe that the EnKF algorithm provides approximations of the background and analysis
covariance matrices, without the need to evaluate the computationally expensive propagation
equations. This comes with the expense of having to evolve an ensemble of system’s states.
However, the size of the ensemble N is usually smaller than the system’s dimension n. Moreover,
with parallelization and high performance computing (HPC) frameworks, the forecast step can be
distributed efficiently and computational speed-ups can be achieved. A summary of the EnKF
algorithm is described as follows,
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Inputs: ûb(tk), B̂k, M(·; ·), Qk+1, w(tk+1), Rk+1, h(·)

Ensemble initialization: û
(i)
b (tk) = ûb(tk) + e

(i)
b , e

(i)
b ∼ N (0, B̂k)

Virtual observations: w(i)(tk+1) = w(i)(tk+1) + e
(i)
m , e

(i)
m ∼ N (0, Rk+1)

Forecast: u
(i)
b (tk+1) = M(û

(i)
b (tk); θ) + ξ

(i)
p (tk+1)

ξ
(i)
b (tk+1) = u

(i)
b (tk+1)− ub(tk+1)

Bk+1 ≈ 1
N − 1

N

∑
i=1

ξ
(i)
b (tk+1)ξ

(i)
b (tk+1)

T

Kalman gain: Kk+1 = Bk+1Dh(ub(tk+1))
T
(

Dh(ub(tk+1))k+1Bk+1Dh(ub(tk+1))
T + Rk+1

)−1

Analysis: u
(i)
a (tk+1) = u

(i)
b (tk+1) + Kk+1

(
w(i)(tk+1)− h(u(i)

b (tk+1))

)
ua(tk+1) ≈ ua(tk+1)

ξ
(i)
a (tk+1) = u

(i)
a (tk+1)− ua(tk+1)

Pk+1 ≈ 1
N − 1

N

∑
i=1

ξ
(i)
a (tk+1)ξ

(i)
a (tk+1)

T

and Listing 17 provides a Python execution of the presented EnKF approach.

Listing 17. Implementation of the EnKF with virtual observations.
� �

import numpy as np
def EnKF(ubi,w,ObsOp,JObsOp,R,B):

# The analysis step for the (stochastic) ensemble Kalman filter
# with virtual observations

n,N = ubi.shape # n is the state dimension and N is the size of ensemble
m = w.shape[0] # m is the size of measurement vector

# compute the mean of forecast ensemble
ub = np.mean(ubi,1)
# compute Jacobian of observation operator at ub
Dh = JObsOp(ub)
# compute Kalman gain
D = Dh@B@Dh.T + R
K = B @ Dh @ np.linalg.inv(D)

wi = np.zeros([m,N])
uai = np.zeros([n,N])
for i in range(N):
# create virtual observations
wi[:,i] = w + np.random.multivariate_normal(np.zeros(m), R)
# compute analysis ensemble
uai[:,i] = ubi[:,i] + K @ (wi[:,i]-ObsOp(ubi[:,i]))

# compute the mean of analysis ensemble
ua = np.mean(uai,1)
# compute analysis error covariance matrix
P = (1/(N-1)) * (uai - ua.reshape(-1,1)) @ (uai - ua.reshape(-1,1)).T
return uai, P
� �
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We highlight a few remarks regarding the EnKF as below,

• Ensemble methods have gained significant popularity because of their simple conceptual
formulation and relative ease of implementation. No optimization problem is required to
be solved. They are considered non-intrusive in the sense that current solvers can be easily
incorporated with minimal modification, as there is no need to derive model Jacobians or adjoint
equations.

• The analysis ensemble can be used as initial ensemble for the next assimilation cycle (in which
case, we need not compute Pk+1). Alternatively, new ensemble can be built, by sampling
from multivariate Gaussian distribution with a mean of ua(tk+1) and covariance matrix of Pk+1
(i.e., using ua(tk+1) and Pk+1 in lieu of ûb(tk+1) and B̂k+1, respectively).

• After virtual observations are made-up, an ensemble measurement error covariance matrix can
be arbitrarily computed as an alternative to the actual one [17]. This is especially valuable when
the actual measurement noise covariance matrix is poorly known.

• Perturbed observations are needed in EnKF derivation and guarantees that the posterior (analysis)
covariance is not underestimated. For instance, in case of small corrections to the forecast,
the traditional EnKF without virtual observations yields a error covariance that is about twice
smaller than that is needed to match Kalman filter [30]. In other words, the use of virtual
observations forces the ensemble posterior covariance to be the same as that of the standard
Kalman filter in the limit of very large N. Thus, the same Kalman gain matrix relation is borrowed
from standard Kalman filter.

• Instead of assuming virtual observations, alternative formulations of ensemble Kalman filters
have been proposed in literature, giving a family of deterministic ensemble Kalman filter (DEnKF),
as opposed to the aforementioned (stochastic) ensemble Kalman filer (EnKF). One such variant is
briefly discussed in Section 8.1.

8.1. Deterministic Ensemble Kalman Filter

The use of an ensemble of perturbed observations in the EnKF leads to a match between the
analysis error covariance and its theoretical value given by Kalman filter. However, this is in a statistical
sense only when the ensemble size is large. Unfortunately, this perturbation introduces sampling error,
which renders the filter suboptimal, particularly for small ensembles [31]. Alternative formulations
that do not require virtual observations can be found in literature, including ensemble square root
filters [31,32]. We focus here on a simple formulation proposed by Sakov and Oke [30] that maintains
the numerical effectiveness and simplicity EnKF without the need to virtual observations, denoted as
deterministic ensemble Kalman filter (DEnKF).

Without measurement perturbation, it can be derived that the resulting analysis error covariance
matrix is given as follows,

Pk+1 = (In − Kk+1Dh(ub(tk+1)))Bk+1(I − KDh(ub(tk+1)))
T

= Bk+1 − Kk+1Dh(ub(tk+1))Bk+1 − Bk+1Dh(ub(tk+1))
TKT

k+1

+ Kk+1Dh(ub(tk+1))Bk+1Dh(ub(tk+1))
TKT

k+1.

With the definition of the Kalman gain, it can be seen that Kk+1Dh(ub(tk+1))Bk+1 =

Bk+1Dh(ub(tk+1))
TKT

k+1. Thus,

Pk+1 = Bk+1 − 2Kk+1Dh(ub(tk+1))Bk+1 + Kk+1Dh(ub(tk+1))Bk+1Dh(ub(tk+1))
TKT

k+1.

For small values of Kk+1Dh(ub(tk+1)), this form converges to Pk+1 = Bk+1 −
2Kk+1Dh(ub(tk+1))Bk+1 up to the quadratic term. It can be seen that this asymptotically match
the theoretical value of analysis covariance matrix in standard Kalman filtering (i.e., Pk+1 = (In −
Kk+1Dh(ub(tk+1)))Bk+1 = Bk+1 − Kk+1Dh(ub(tk+1))) by dividing the Kalman gain by two. Therefore,
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it can be argued that the DEnKF linearly recovers the theoretical analysis error covariance matrix.
This is achieved by applying the analysis equation separately to the forecast mean ub(tk+1) ≈ ub(tk+1)

with the Kalman gain matrix and ensemble of anomalies ξ
(i)
b (tk+1) = u

(i)
b (tk+1)− ub(tk+1) using half

of the standard Kalman gain matrix. These steps are summarized as follows,

Inputs: ûb(tk), B̂k, M(·; ·), Qk+1, w(tk+1), Rk+1, h(·)

Ensemble initialization: û
(i)
b (tk) = ûb(tk) + e

(i)
b , e

(i)
b ∼ N (0, B̂k)

Forecast: u
(i)
b (tk+1) = M(û

(i)
b (tk); θ) + ξ

(i)
p (tk+1)

ub(tk+1) ≈ ub(tk+1)

ξ
(i)
b (tk+1) = u

(i)
b (tk+1)− ub(tk+1)

Bk+1 ≈ 1
N − 1

N

∑
i=1

ξ
(i)
b (tk+1)ξ

(i)
b (tk+1)

T

Kalman gain: Kk+1 = Bk+1Dh(ub(tk+1))
T
(

Dh(ub(tk+1))k+1Bk+1Dh(ub(tk+1))
T + Rk+1

)−1

Analysis: ua(tk+1) = ub(tk+1) + Kk+1

(
w(tk+1)− h(ub(tk+1))

)
ξ
(i)
a (tk+1) = ξ

(i)
b (tk+1)−

1
2

Kk+1

(
h(ξ(i)b (tk+1))

)
u
(i)
a (tk+1) = ua(tk+1) + ξ

(i)
a (tk+1)

Pk+1 ≈ 1
N − 1

N

∑
i=1

ξ
(i)
a (tk+1)ξ

(i)
a (tk+1)

T

and Listing 18 provides a Python execution of the presented DEnKF approach. Note that the ensemble
of observations is not created in this case, compared to the EnKF.

Listing 18. Implementation of DEnKF without virtual observations.
� �

import numpy as np
def DEnKF(ubi,w,ObsOp,JObsOp,R,B):

# The analysis step for the (stochastic) ensemble Kalman filter
# with virtual observations

n,N = ubi.shape # n is the state dimension and N is the size of ensemble
m = w.shape[0] # m is the size of measurement vector

# compute the mean of forecast ensemble
ub = np.mean(ubi,1)
# compute Jacobian of observation operator at ub
Dh = JObsOp(ub)
# compute Kalman gain
D = Dh@B@Dh.T + R
K = B @ Dh @ np.linalg.inv(D)

# compute analysis of mean
ua = ub + K @ (w-ObsOp(ub))

xbi = np.zeros([n,N]) #ensemble of forecast anomalies
xai = np.zeros([n,N]) #ensemble of analysis anomalies

for i in range(N):
# forecast anomalies
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xbi[:,i] = ubi[:,i] - ub
# analysis of anomalies
xai[:,i] = xbi[:,i] - (1/2) * K @ ObsOp(xbi[:,i])

# compute analysis ensemble
uai = xai + ua.reshape(-1,1)

# compute analysis error covariance matrix
P = (1/(N-1)) * (xai) @ (xai).T
return uai, P
� �

8.2. Example: Lorenz 63 System

The same Lorenz 63 system is used to showcase the performance of both the EnKF and DEnKF.
In Listing 19, we show the Python application of the EnKF algorithm. In general, the size of ensemble
N is much smaller than the state dimension n for the implementation of EnKF to be computationally
feasible. However, the state dimension in the Lorenz 63 is 3, and an ensemble of size 3 or less is trivial.
The uncertainty in the covariance approximation via the Monte Carlo framework with such small
ensemble becomes very high and resulting predictions are unreliable. There exists various approaches
that help to increase the fidelity of small ensembles, including localization and inflation. In Section 9.2,
we describe simple application of inflation factor and its impact with small ensembles. Here, we stick
with the basic implementation with an ensemble size of 10 for both EnKF and DEnKF.

Listing 19. Implementation of EnKF for the Lorenz 63 system.
� �

#%% Application: Lorenz 63
########################### Data Assimilation #################################
u0b = np.array([2.0,3.0,4.0])
sig_b= 0.1
B = sig_b**2*np.eye(3)
Q = 0.0*np.eye(3)
#time integration
ub = np.zeros([3,nt+1])
ub[:,0] = u0b
ua = np.zeros([3,nt+1])
ua[:,0] = u0b
n = 3 #state dimension
m = 3 #measurement dimension
# ensemble size
N = 10
#initialize ensemble
uai = np.zeros([3,N])
for i in range(N):
uai[:,i] = u0b + np.random.multivariate_normal(np.zeros(n), B)

km = 0
for k in range(nt):
# Forecast Step
#background trajectory [without correction]
ub[:,k+1] = RK4(Lorenz63,ub[:,k],dt,sigma,beta,rho)
#EnKF trajectory [with correction at observation times]
for i in range(N): # forecast ensemble
uai[:,i] = RK4(Lorenz63,uai[:,i],dt,sigma,beta,rho) \
+ np.random.multivariate_normal(np.zeros(n), Q)
# compute the mean of forecast ensemble
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ua[:,k+1] = np.mean(uai,1)
# compute forecast error covariance matrix
B = (1/(N-1))*(uai-ua[:,k+1].reshape(-1,1))@(uai-ua[:,k+1].reshape(-1,1)).T
if (km<nt_m) and (k+1==ind_m[km]):
# Analysis Step
uai,B = EnKF(uai,w[:,km],h,Dh,R,B)
# compute the mean of analysis ensemble
ua[:,k+1] = np.mean(uai,1)
km = km+1
� �

Figure 5 shows the EnKF results for the Lorenz 63 system. We see that the analysis trajectory is
close to the true one and more accurate than the background. Readers are encouraged to play with
the codes to explore the effect of increasing or decreasing the ensemble size with different levels of
noise. Furthermore, different observation operators can be defined (for instance, observe only 1 or
2 variables, or assume some nonlinear function h(·)).

Figure 5. EnKF results for the Lorenz 63 system with virtual observations.

For the sake of completeness, we also sketch the DEnKF predictions in Figure 6. The same
implementation in Listing 19 can be adopted, but calling the DEnKF function framed in Listing 18
instead of EnKF. Although different approaches might give slightly dissimilar results, we are not
trying to benchmark them in this introductory presentation since we are only showing very simple
implementation, with idealized twin experiments.
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Figure 6. DEnKF results for the Lorenz 63 system without virtual observations.

9. Applications

In this section, we gradually increase the complexity of the test cases using fluid dynamics
applications. In Section 9.1, we slightly increase the dimensionality of the system from 3 (as in Lorenz
63 system) to 36 using the Lorenz 96 system and demonstrate the capability of DA algorithms to treat
uncertainty in initial conditions. This is further extended in Section 9.2, where we show that DA can
recover the hidden underlying processes and provide closure effects using the two-level variant of
the Lorenz 96 model. We also introduce the utilization of an inflation factor and its impact to mitigate
ensemble collapse and account for a slight under-representation of covariance due to the use of a small
ensemble in EnKF and DEnKF. In Section 9.3, we illustrate the application of DA on systems governed
by partial differential equations (PDEs) using the Kuramoto–Sivashinsky equation. We highlight
that for each application, we only show results for a few selected algorithms and extensions to other
approaches covered in this tutorial are left to readers as computer projects. We also emphasize that we
are demonstrating the implementation and capabilities of the presented DA algorithms, not assessing
their performance nor benchmarking different approaches against each other.

9.1. Lorenz 96 System

The Lorenz 96 model [33] is a system of ordinary differential equations that describes an arbitrary
atmospheric quantity as it evolves on a circular array of sites, undergoing forcing, dissipation,
and rotation invariant advection [34]. The Lorenz 96 dynamical model can be written as

dXi
dt

= (Xi+1 − Xi−2)Xi−1 − Xi + F, i = 1, 2, . . . , n, (61)
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where Xi is the state of the system at the ith location and F represents a forcing constant. Periodicity is
enforced by assuming that X−1 = Xn−1, X0 = Xn, and Xn+1 = X1. In the present study, we use n = 36,
and F = 8 defining a forcing term. In order to obtain a valid initial condition, we begin at t = −5 using
equilibrium conditions defined as (Xi = F for i = 1, 2, . . . , n) and adding a small perturbation to the
20th state variable as X20 = F + 0.01. Then, ODE integrator is run up to t = 0 and solution at t = 0
is treated at the true initial conditions for our twin experiment. We assume a background erroneous
initial condition by contaminating the true one with Gaussian noise with zero mean and standard
deviation of 1.

A total time window of 20 time units is considered, with a time step of Δt = 0.01 and the RK4
schemes is adopted for time integration. Synthetic measurements are collected at every 0.2 time unit
(i.e., each 20 time integration steps) sampled at 9 equidistant locations (i.e., at i ∈ {4, 8, 12, . . . , 36})
from true trajectory assuming that sensors add a white noise with zero mean and a standard deviation
of 0.1. We also assume a process noise drawn from a multivariate Gaussian distribution with zero
mean and covariance matrix Q defined as Q = 0.12I36. We first apply the EKF approach to correct the
solution trajectory, which yields very good results as shown in Figure 7. For visualization, we only plot
the time evolution of X9, X18, and X36. We see that the Lorenz 96 is sensitive to the initial conditions
and small perturbation is sufficient to produce a very different trajectory (e.g., background solution).

Figure 7. EKF results for the Lorenz 96 system. The trajectories of X9, X18, and X36 are shown.

The second approach to test is the stochastic version of EnKF. We create an ensemble of
50 members to approximate the covariance matrices. Results are depicted in Figure 8 for X9,
X18, and X36. We highlight that observations appear only in the X36 plot because observations
are collected at i = 4, 8, 12, . . . , 36 (neither X9 nor X18 are measured). We highlight that, generally
speaking, increasing the size of ensemble improves the predictions. However, this comes on the
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expense of the solution of the forward nonlinear model for each added member. Thus, a compromise
between the accuracy and computational burden is in place.

Figure 8. EnKF results for the Lorenz 96 system using an ensemble of 50 members.

9.2. Two-Level Lorenz 96 System

In this section, we describe the two-level variant of the Lorenz 96 model proposed by Lorenz [33].
The two-level Lorenz 96 model can be written as

dXi
dt

= −Xi−1(Xi−2 − Xi+1)− Xi −
hc
b

J

∑
j=1

Yj,i + F, (62)

dYj,i

dt
= −cbYj+1,i(Yj+2,i − Yj−1,i)− cYj,i +

hc
b

Xi, (63)

where Equation (62) represents the evolution of slow, high-amplitude variables Xi (i = 1, . . . , n),
and Equation (63) provides the evolution of a coupled fast, low-amplitude variable Yj,i (j = 1, . . . , J).
We use n = 36 and J = 10 in our computational experiments. We utilize c = 10 and b = 10,
which implies that the small scales fluctuate 10 times faster than the larger scales. Furthermore, the
coupling coefficient h between two scales is equal to 1 and the forcing is set at F = 10 to make both
variables exhibit the chaotic behavior.

We utilize the fourth-order Runge–Kutta numerical scheme with a time step Δt = 0.001 for
temporal integration of the Lorenz 96 model. We apply the periodic boundary condition for the slow
variables, i.e., Xi−n = Xi+n = Xi. The fast variables are extended by letting Yj,i−n = Yj,i+n = Yj,i,
Yj−J,i = Yj,i−1, and Yj+J,i = Yj,i+1. The physical initial condition is computed by starting with an
equilibrium condition at time t = −5 for slow variables. The equilibrium condition for slow variables
is Xi = F for i ∈ 1, 2, . . . , n. We perturb the equilibrium solution for the 18th state variable as

159



Fluids 2020, 5, 225

X18 = F + 0.01. At the time t = −5, the fast variables are assigned with random numbers between
−F/10 to F/10. We integrate a two-level Lorenz 96 model by solving both Equations (62) and (63) in a
coupled manner up to time t = 0. The solution at time t = 0 represent the true initial condition. For our
twin experiment, we obtain observations by adding noise drawn from the Gaussian distribution with
zero mean and σ2

o = 1.0. We assume that observations are sparse in space and are collected at every
10th time step.

The motivation behind this example is to demonstrate how covariance inflation can be utilized
to account for the model error. Usually the imperfections in the forecast model is taken into account
by adding a Gaussian noise to the forecast model. Another method to account for model error is
covarinace inflation. It also helps in alleviating the effect finite number of ensemble members in
practical data assimilation and addresses the problem of covariance underestimation in the EnKF
algorithm. We use the multiplicative inflation [35] where the ensemble members are pushed away
from the ensemble mean by a given inflation factor and mathematically it can be expressed as

u
(i)
b (tk+1) ← ua(tk+1) + λ · (u(i)

b (tk+1)− u
(i)
a (tk+1)), (64)

where λ is the inflation factor. The inflation factor can be a constant scalar over the entire domain at all
time step or it can space and time dependent.

In this example, we discard parameterizations of fast variables in the forecast model. The forecast
model for two-level Lorenz system with no parameterizations is equivalent to setting the coupling
coefficient h = 0 in Equation (62) and it reduces to one-level Lorenz 96 model as presented in Section 9.1.
We note here that the observations used for data assimilation are obtained by solving a two-level
Lorenz 96 model in a coupled manner (i.e., without discarding fast-variables). Therefore, the effect of
unresolved scales is embedded in observations. The parameterization of fast variables (i.e., hc

b ∑J
j=1 Yj,i

term in Equation (62)) can be considered as an added noise to the true state of the system for a one-level
Lorenz 96 model. Figure 9 displays the RMSE for a two-level Lorenz system when 18 observations are
used for DA with different number of ensemble members and inflation factors for EnKF and DEnKF
algorithms. Figure 10 shows the full state trajectory of two-level Lorenz system corresponding to
minimum RMSE, which is obtained with 50 ensemble members and inflation factor λ = 1.04 for the
EnKF algorithm. The parameters corresponding to minimum RMSE for the DEnKF algorithm are
45 ensemble members and λ = 1.05.

Figure 9. RMSE for a two-level Lorenz model for different combinations of number of ensembles and
inflation factor.
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Figure 10. Full state trajectory of the multiscale Lorenz 96 model with no parameterizations in the
forecast model. The EnKF algorithm uses the inflation factor λ = 1.04 and N = 50 and the DEnKF uses
the inflation factor λ = 1.05 and N = 45. The observation data for both EnKF an DEnKF algorithm is
obtained by adding measurement noise to the exact solution of the two-level Lorenz 96 system.

9.3. Kuramato Sivashinsky

In this section, we describe the Kuramoto–Sivashinsky (K-S) equation derived by Kuramoto [36],
which is used as a turbulence model for different flows. The one-dimensional K-S equation can be
written as

∂u
∂t

= −ν
∂4u
∂x4 − ∂2u

∂x2 − u
∂u
∂x

, (65)

where ν is the viscosity coefficient. The K-S equation is characterized by the second-order unstable
diffusion term responsible for an instability at large scales, the fourth-order stabilizing viscous term
that provides damping at small scales, and a quadratic nonlinear term which transfers energy between
large and small scales. We use the computational domain extending from 0 to L, i.e., x ∈ [0, L] and
time t ∈ [0, ∞]. We impose the Dirichlet and Neumann boundary conditions as given below

u(0, t) = u(L, t) = 0, (66)

∂u
∂x

∣∣∣
x=0

=
∂u
∂x

∣∣∣
x=L

= 0. (67)

We spatially discretize the domain with the grid size Δx = L/(n − 1), where n is the degrees
of freedom. We set L = 50 and n = 129 for our numerical experiments. The state of the system
at discretized grid is denoted as ui = u((i − 1)Δx) for i = 1, . . . , n. Using the second-order finite
difference discretization, the discretized K-S equation can be written as

dui
dt

= −ν
ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2

Δx4 − ui+1 − 2ui + ui−1

Δx2 − 1
2

u2
i+1 − u2

i−1
2Δx

. (68)
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The first term on the right hand side is computed by utilizing ghost nodes and the Neumann
boundary condition is assigned for ghost points. We impose u0 = u2 and un+1 = un−1 using the
second-order discretization for Equation (67) at boundary points u1 and un, respectively.

We use the fourth-order Runge–Kutta scheme for time integration with a time step Δt = 0.25.
To generate an initial condition for the forward run we start with an equilibrium condition at time
t = −50 and integrate up to time t = 0. The equilibrium condition for the model is ui = 0.1 for
j ∈ {1, . . . , n}. Once the true initial condition is generated, we run the forward solver up to time t = 50.
We test the prediction capability of sequential data assimilation algorithms for forecast up to t = 50.
The K-S equation exhibits different levels of chaotic behavior depending on the value of viscosity
coefficient ν. The chaos depends upon the bifurcation parameter L̃ = L/2π

√
ν. We utilize ν = 1/2

which represent the less chaotic behaviour. The observations for twin experiments are obtained
by adding some noise to the true state of the system to account for experimental uncertainties and
measurement errors. The observations are also sparse in time, meaning that the time interval between
two observations can be different from the time step of the forecast model. For our twin experiments,
we assume that observations are recorded at every 10th time step of the model for ν = 1/2. Therefore,
the time difference between two observations is δt = 2.5 for the K-S equation. We present results for the
EnKF algorithm with three sets of observations. The first set of observations is very sparse with only
12.5% of the full state of the system. The first set utilizes observations for states [u8, u16, . . . , u128] ∈ R16.
In a second set of observations we employ observations at [u4, u8, . . . , u128] ∈ R32 for the assimilation.
The third set of observations consists of 50% of the full state of the system, i.e., observations at states
[u2, u4, . . . , u128] ∈ R64 for the assimilation. We apply σ2

o = 1.0 × 10−2 and σ2
i = 1.0 × 10−2 as the

variance of observation noise and initial condition uncertainty, respectively.
In Figure 11, we present the time evolution of selected states for three different number of

observations included in the assimilation of the EnKF algorithm. There is an excellent agreement
between true and assimilated states u51 and u101, for which observations are not present. We also
provide the full state trajectory of the K-S equation in Figure 12. The results obtained clearly indicate
that the EnKF algorithm is able to determine the correct state trajectory even when the observation
data are very sparse, i.e., m = 16. With an increase in the number of observations, the prediction of the
full state trajectory gets smoother, and almost the exact state is recovered with 50% observations.

Figure 11. Selected trajectories of the Kuramoto–Sivashinsky model (ν = 1/2) with
the analysis performed by the ensemble Kalman filter (EnKF) using observations from
m = 16 (left), m = 32 (middle), and m = 64 (right) state variables at every 10 time steps.
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Figure 12. Full state trajectory of the Kuramoto–Sivashinsky model (ν = 1/2) with
the analysis performed by the ensemble Kalman filter (EnKF) using observations from
m = 16 (left), m = 32 (middle), and m = 64 (right) state variables at every 10 time steps.

9.4. Quasi-Geostrophic (QG) Ocean Circulation Model

We consider a simple single-layer QG model to illustrate the application of sequential data
assimilation for two-dimensional flows. Specifically, we use the deterministic ensemble Kalman filter
(DenKF) algorithm discussed in Section 8.1 to improve the prediction of the single-layer QG model.
The wind-driven oceanic flows exhibit a vast range of spatio-temporal scales and modeling of these
scales with all the relevant physics has always been challenging. The barotropic vorticity equation
(BVE) with various dissipative and forcing terms is one of the most commonly used models for
geostrophic flows [37,38]. The dimensionless vorticity-streamfunction formulation for the BVE [39]
with forcing and dissipative terms can be written as

∂ω

∂t
+ J(ω, ψ)− 1

Ro
∂ψ

∂x
=

1
Re

∇2ω +
1

Ro
sin(πy), (69)

where ω is the vorticity, ψ is the streamfunction, ∇2 is the standard two-dimensional Laplacian
operator, Re is the Reynolds number, and Ro is the Rossby number. The kinematic relation between
vorticity and streamfunction is given by the following Poisson equation

∇2ψ = −ω. (70)

The nonlinear convection term is given by the Jacobian as follows

J(ω, ψ) =
∂ψ

∂y
∂ω

∂x
− ∂ψ

∂x
∂ω

∂y
. (71)

The computational domain for the QG model is (x, y) ∈ [0, 1] × [−1, 1] and is discretized using
128 × 256 grid resolution. Therefore, the QG model has the dimension of about 3.2 × 104. We utilize
the homogeneous Dirichlet boundary condition for the vorticity and streamfunction at all boundaries.
The vorticity and streamfunction is initialized from quiescent state, i.e., ωt=0 = ψ|t=0 = 0. The QG model is
numerically solved by discretizing Equation (69) using second-order finite difference scheme. The nonlinear
Jacobian term is discretized with the energy-conserving Arakawa [40] numerical scheme. A third-order
total-variation-diminishing Runge–Kutta scheme is used for the temporal integration and a fast sine transform
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Poisson solver is utilized to update streamfunction from the vorticity [41]. For the physical parameters,
we use values of Re = 100 and Ro = 1.75 × 10−3.

The QG model is integrated with a constant time step of 5 × 10−5 from time t = 0 to t = 0.25 to
generate the true initial condition at final time t = 0.25. Then the data assimilation is conducted from time
t = 0.25 to t = 0.4 with observations getting assimilated at every tenth time step. The synthetic observations
are generated by sampling vorticity field on 16 equidistant points in x and y directions respectively and then
adding the Gaussian noise, i.e., vk ∼ N (0, Rk), where Rk = σ2

b I. We set the observation noise variance at
σ2

b = 5. The typical vorticity and streamfunction field along with the locations of measurements are shown
in Figure 13.

Figure 13. A Typical vorticity (left) and streamfunction (right) field for the single-layer QG model.
The dots shows the locations of observations.

We employ 20 ensemble members for the DEnKF algorithm. The initialization of the ensemble members
is an important step to get accurate prediction with any type of the EnKF algorithm. We initialize different
ensemble members by randomly selecting the vorticity field snapshots between time t = 0.24 to t = 0.25.
The other methods such as adding a random perturbation from the Gaussian distribution to the true initial
condition can also be adopted. Figure 14 displays the vorticity field and the predicted vorticity field at three
different time instances along with the difference (error) between the two. We can see that the true and
analysis field are similar at all time instances and the magnitude of error is also small. We recall that we
observe only around 2% of the system (i.e., observations at 16 × 32 locations). With more observations,
the quality of the results can be further improved.

Figure 14. Snapshots of the true vorticity field (left), analysis estimate of the DEnKF algorithm (middle),
and the difference (error) between the two fields (right) obtained for a particular run of the single-layer
QG model. The snapshots of vorticity field are plotted at t = 0.3, 0.35, 0.4 (from top to bottom).
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10. Concluding Remarks

In this tutorial paper, we provided a 101 introduction to common data assimilation techniques.
In particular, we briefly covered the relevant mathematical foundation and the algorithmic steps for
three dimensional variational (3DVAR), four dimensional variational (4DVAR), forward sensitivity
method (FSM), and Kalman filtering approaches. Since it is considered as a first exposure to
DA, we focused on the simplest implementations that anybody can easily follow. For example,
to treat nonlinearity (e.g., in 3DVAR, 4DVAR, FSM and EKF), we only presented the first order
Taylor expansions. We demonstrated the execution of the covered approaches with a series of
Python modules that can be linked to each other easily. Again, we preferred to keep our codes
as concise and simple as possible, even if it comes on the expense of computational efficiency.
The Python codes used to generate this tutorial are publicly available through our GitHub repository
https://github.com/Shady-Ahmed/PyDA.

Since it is introductory exploration, we should admit that we have bypassed a few important
analyses and shortcut some key derivations. Interested readers are referred to well-established
textbooks that offer in-depth discussions about various DA techniques [14,27,29,42–47]. Likewise,
more advanced topics such as the particle filters [48], maximum likelihood ensemble filters [49,50],
optimal sensor placement [51,52], higher-order analysis of variational methods [53], or hybrid
methods [54–59] are omitted in our current presentation.
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Abstract: Reduced order models (ROMs) are computational models whose dimension is significantly
lower than those obtained through classical numerical discretizations (e.g., finite element, finite
difference, finite volume, or spectral methods). Thus, ROMs have been used to accelerate numerical
simulations of many query problems, e.g., uncertainty quantification, control, and shape optimization.
Projection-based ROMs have been particularly successful in the numerical simulation of fluid flows.
In this brief survey, we summarize some recent ROM developments for the quasi-geostrophic
equations (QGE) (also known as the barotropic vorticity equations), which are a simplified model
for geophysical flows in which rotation plays a central role, such as wind-driven ocean circulation
in mid-latitude ocean basins. Since the QGE represent a practical compromise between efficient
numerical simulations of ocean flows and accurate representations of large scale ocean dynamics,
these equations have often been used in the testing of new numerical methods for ocean flows.
ROMs have also been tested on the QGE for various settings in order to understand their potential in
efficient numerical simulations of ocean flows. In this paper, we survey the ROMs developed for
the QGE in order to understand their potential in efficient numerical simulations of more complex
ocean flows: We explain how classical numerical methods for the QGE are used to generate the
ROM basis functions, we outline the main steps in the construction of projection-based ROMs (with
a particular focus on the under-resolved regime, when the closure problem needs to be addressed),
we illustrate the ROMs in the numerical simulation of the QGE for various settings, and we present
several potential future research avenues in the ROM exploration of the QGE and more complex
models of geophysical flows.

Keywords: reduced order models; quasi-geostrophic equations; closure models

1. Introduction

1.1. Reduced Order Models (ROMs)

Reduced order modeling aims at answering the following question:

For a given system, what is the model with the minimum number of degrees of freedom? (1)

The resulting models, called reduced order models (ROMs), can decrease the compu-
tational cost of traditional full order models (FOMs) (i.e., models obtained through classical
numerical discretizations, such as finite element, finite difference, finite volume, or spectral
methods) by orders of magnitude without a significant decrease in numerical accuracy.
Thus, ROMs can be used in the efficient numerical simulation of problems that require
numerous runs, e.g., uncertainty quantification, control, and shape optimization.

ROMs come in different flavors. Projection ROMs have been used in the numerical
simulation of both nonlinear [1–3] and linear [4] systems. In particular, projection ROMs

Fluids 2021, 6, 16. https://doi.org/10.3390/fluids6010016 https://www.mdpi.com/journal/fluids

169



Fluids 2021, 6, 16

have been successful in the numerical simulation of complex fluid flows [2,5–7]. In this
survey, we exclusively consider projection ROMs that answer question (1) as follows:

To construct the ROM, use numerical or experimental data to find the “best” basis. (2)

Once the “best” basis is found, the ROM is constructed by using projection methods.
In Galerkin projection ROMs, the trial and test spaces are the same; in Petrov-Galerkin
projection ROMs, the trial and test spaces are different. In this paper, we focus on Galerkin
projection ROMs.

Specifically, to approximate the dynamics of a flow variable u of a given system

•
u = f (u) , (3)

the ROM strategy proceeds as follows:

Algorithm 1 ROM Strategy

1: Use numerical or experimental data to choose modes {ϕ1, . . . ,ϕR}, which represent

the recurrent spatial structures in the flow.

2: Choose the dominant modes {ϕ1, . . . ,ϕr}, r ≤ R, as basis functions for the ROM.

3: Use a Galerkin truncation ur(x, t) = ∑r
j=1 aj(t)ϕj(x).

4: Replace u with ur in (3).

5: Use a Galerkin projection of the PDE obtained in step (4) onto the ROM space Xr :=

span{ϕ1, . . . ,ϕr} to obtain the ROM:

•
a = F(a), (4)

where a(t) = (ai(t))i=1,..., r is the vector of coefficients in the Galerkin truncation in

step (3) and F comprises the ROM operators.

6: In an offline stage, compute the ROM operators (e.g., vectors, matrices, and tensors),

which are preassembled from the ROM basis.

7: In an online stage, repeatedly use the ROM (4) for various parameter settings and/or

longer time intervals.

At this point, several remarks are in place.
ROMs are Galerkin methods with a data-driven basis: First, we note that the general

form of projection ROMs (outlined in Algorithm 1) is strikingly similar to the general form
of classical Galerkin methods used in a finite element, spectral, or spectral element context.
Conceptually, the main difference between ROMs and classical Galerkin discretizations
is the way the basis is constructed: In classical Galerkin methods, the basis is universal,
i.e., it is the same for all the problems. For example, for finite elements, the basis functions
are piecewise polynomial functions on a given mesh. In projection ROMs, however, the
basis is a data-driven basis, i.e., a basis constructed from problem data. Thus, the ROM basis
is adapted to the specific problem (see steps (1)–(2) in Algorithm 1): Once the problem
changes, the ROM basis changes accordingly.

While the choice of basis is the main conceptual difference between ROMs and classical
Galerkin methods, this choice can make a tremendous difference in the computational cost:
For example, for a two-dimensional flow past a circular cylinder at a Reynolds number
Re = 1000, a finite element discretization requires O(105) degrees of freedom, whereas a
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ROM requires O(10) degrees of freedom [8,9]. Thus, for this particular test case, the ROM
dimension is four orders of magnitude lower than the FOM dimension.

Recurrent, Dominant, Coherent Spatial Structures: ROMs do not work well for all
problems. ROMs are numerical methods and, like any other numerical method, ROMs
work well for certain classes of problems and not so well for other classes of problems.
One class of problems for which ROMs have been particularly successful is flows that
display recurrent, dominant, coherent structures. A classical example in this class is the two-
dimensional flow past a circular cylinder, which has become the workhorse of ROMs for
fluid flows [5,6,9]. The flow past a circular cylinder displays coherent spatial structures (the
von Karman vortex street) that continuously recur in time. One can show that a few such
structures have significantly higher kinetic energy content than the remaining structures,
and, therefore, are expected to dominate the dynamics of the underlying system. Indeed,
as mentioned above, for the two-dimensional flow past a circular cylinder, the dimension
of the ROM constructed with these dominating structures can be four orders of magnitude
lower than the FOM dimension. Thus, for this test problem, ROMs work extremely well.
Other problems that display recurrent, dominant, coherent structures, for which ROMs
work well, include: (i) lid driven cavity flow [10]; (ii) flow past a backward facing step [11];
(iii) flow in a constrained channel [12,13]; and (iv) flow in the boundary layer of a pipe [2].

We emphasize, however, that there are classes of problems for which ROMs do not
work well. Homogeneous flows are one such example. Indeed, for homogeneous flows,
it was proved in [2,14] that one of the most popular ROM techniques yields a ROM basis
that is identical to the Fourier basis. Thus, in this case, the resulting ROM is nothing but a
spectral method, which does not reduce the FOM dimension.

The take-home message is that ROMs are appropriate for problems that display recurrent,
coherent, dominant spatial structures. However, for problems that do not display these types of
spatial structures (e.g., homogeneous flows), ROMs are not appropriate since they cannot reduce
the FOM computational cost.

1.2. ROMs for the Quasi-Geostrophic Equations

ROMs are an excellent fit for the numerical investigation of ocean flows. Indeed, large-
scale ocean circulation includes large-scale coherent structures (gyres) that recur in time
and permanent gyres (e.g., the Sargasso Sea) that have a relatively high kinetic energy
content. Thus, as pointed out above, ROMs could enable an efficient and relatively accurate
numerical simulation of large scale ocean circulation, decreasing the FOM computational
cost by orders of magnitude and making possible efficient ensemble calculation and
uncertainty quantification for climate modeling and weather prediction.

However, generating FOM data to build the ROM basis can be a daunting task. Specif-
ically, using an accurate mathematical model (e.g., the Boussinesq equations), including
all the relevant flow variables, and using realistic parameters, could require enormous
computational resources on state-of-the-art computational platforms, both in terms of
CPU time and memory. Thus, various simplified mathematical models for the large scale
ocean circulation have been proposed over the years [15–17]. These simplified models
are constructed by using asymptotic expansions with respect to both the time scales and
the length scales. The rotation and stratification are the two main effects that are used to
construct simplified models for geophysical flows.

One of the most popular simplified models for large scale ocean circulation is the
quasi-geostrophic equations (QGE) (also known as the barotropic vorticity equations), which
were proposed in the late 1940s by Jule Charney [18]. The QGE are a simplified model
for geophysical flows in which rotation plays a central role, such as wind-driven ocean
circulation in mid-latitude ocean basins. Specifically, the QGE ensure a near-geostrophic
balance, i.e., the pressure gradient almost balances the Coriolis force (which is due to
rotation). The one-layer QGE do not include stratification effects, but the N-layer or
continuously stratified QGE model stratification.
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The computational cost of numerical simulations of large scale ocean flows is sig-
nificantly lower for the QGE than for the full-fledged Boussinesq equations. Since the
QGE represent a practical compromise between the efficient numerical simulations of
ocean flows and the accurate representation of large scale ocean dynamics, these equations
have been often used in the testing of new numerical methods for ocean flows. Thus, to
understand the potential of using ROMs for the efficient numerical simulation of ocean
flows, ROMs have been tested on the QGE for various parameter settings. Of course, once
the ROMs are calibrated for the simplified (yet relevant) setting of the QGE, they should be
extended to more realistic mathematical models, such as the Boussinesq equations. In this
brief survey, we summarize some of the ROM developments for the QGE.

The rest of the paper is organized as follows: In Section 2, we present and discuss
the QGE. In Section 3, we summarize the main types of numerical discretizations used to
generate the FOM data for the ROM construction. In Section 4, we present the Galerkin
ROM approach for the QGE. In Section 5, we illustrate numerically the QGE reduced order
modeling for one test case. Finally, in Section 6, we present conclusions and outline open
problems in the reduced order modeling of the QGE.

2. Quasi-Geostrophic Equations (QGE)

The QGE describe the motion of stratified, rotating flows, and have been used exten-
sively for modeling mid-latitude oceanic and atmospheric circulations. In 1950, a single-
layer quasi-geostrophic model was used for modeling the atmospheric dynamics in the first
successful numerical weather prediction performed on the ENIAC digital computer [18],
which led to “enormous scientific advance”, in Richardson’s words [15,19,20]. Since then,
the QGE have been widely investigated and applied in weather prediction and climate
modeling.

The QGE can be derived from the primitive equations, that is, the incompress-
ible Navier–Stokes equations under the Boussinesq approximation in a rotating frame-
work [21–24]. The equations in Cartesian coordinates on a plane Ω tangent to the sphere read:

Du
Dt

− fcv = −1
ρ

∂p
∂x

+
∂

∂x

(
A∂u

∂x

)
+

∂

∂y

(
A∂u

∂y

)
+

∂

∂z

(
νE

∂u
∂z

)
, (5)

Dv
Dt

+ fcu = −1
ρ

∂p
∂y

+
∂

∂x

(
A ∂v

∂x

)
+

∂

∂y

(
A∂v

∂y

)
+

∂

∂z

(
νE

∂v
∂z

)
, (6)

0 = −1
ρ

∂p
∂z

− g, (7)

0 =
∂u
∂x

+
∂v
∂y

+
∂w
∂z

, (8)

Dρ

Dt
=

∂

∂x

(
A ∂ρ

∂x

)
+

∂

∂y

(
A∂ρ

∂y

)
+

∂

∂z

(
κE

∂ρ

∂z

)
, (9)

where u, v, and w are velocity components in the x, y, and z directions, D
Dt = ∂

∂t + u ∂
∂x +

v ∂
∂y + w ∂

∂z is the material derivative, ρ is density, p is the pressure, fc is the Coriolis force,
and eddy viscosity and diffusivity coefficients A, νE, and κE are either constant or functions
of flow variables and grid parameters. The dimensionless Rossby number Ro is defined
as Ro = U

fc L , in which U and L represent the velocity and length scale of the geophysical
flows. The Rossby number essentially characterizes the strength of inertia compared to the
Coriolis and pressure forces. Another dimensionless number is the Ekman number, which
is defined as Ek = νE

ΩH2 , with H the vertical extent of the flow. Since Ro is the ratio of the

respective scales U2

L and fcU of the first two terms in (5) and (6), and since Ek measures the
ratio of viscous forces to Coriolis forces, when both Ro and Ek are much smaller than 1 (e.g.,
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Ro = 0.0036 in Section 5), the Coriolis term dominates the left hand sides of momentum
Equations (5) and (6), and the equations can be simplified, yielding the geostrophic balance:

− fcv = −1
ρ

∂p
∂x

, (10)

fcu = −1
ρ

∂p
∂y

. (11)

The resulting system reaches an equilibrium state in which the pressure gradient
balances perfectly with the Coriolis force. When the Rossby and Ekman numbers are still
small, but not nearly zero, the flow only achieves a near-geostrophic balance. Considering
the beta-plane approximation fc = f0 + βy and ignoring the stratification effect, one can
obtain the single layer QGE by regular perturbation analysis [17,25,26]. The resulting equa-
tions are usually put in the following streamfunction-potential vorticity two-dimensional
formulation:

∂q
∂t

+ J(q, ψ) = Re−1Δq + Fe, (12a)

q = −Ro Δψ + y, (12b)

where Ro = U
βL2 is the redefined Rossby number [27–29], Re = UL

A is the Reynolds

number, ψ is the streamfunction, q is the potential vorticity, J(q, ψ) = ∂q
∂x

∂ψ
∂y − ∂q

∂y
∂ψ
∂x is

the Jacobian, Fe is the external forcing, and βy measures the beta-plane effect from the
Coriolis force due to rotation. By eliminating the potential vorticity, we can obtain the pure
streamfunction formulation:

− ∂

∂t
(Δψ) + Re−1Δ2ψ − J(Δψ, ψ)− Ro−1 ∂ψ

∂x
= Ro−1Fe. (13)

Equations (12) and (13) are supplemented by boundary conditions, such as ψ = ∂ψ
∂n =

0 on ∂Ω. More details regarding the parameters and nondimensionalization of the QGE are
given in, e.g., [8,30–33]. Note that the velocity can be recovered from the streamfunction
according to the following formula:

v =

(
∂ψ

∂y
,−∂ψ

∂x

)
. (14)

One can also introduce the vorticity ω = Ro−1(q − y) and recast the QGE (12) in the
following streamfunction-vorticity formulation:

∂ω

∂t
+ J(ω, ψ)− Ro−1 ∂ψ

∂x
= Re−1 Δω + Ro−1Fe , (15a)

ω = −Δψ . (15b)

This form is close to the streamfunction-vorticity formulation of the two-dimensional
Navier–Stokes equations, but it has an additional convection term Ro−1 ∂ψ

∂x1
and the forcing

term is scaled by Ro−1 due to the rotation effect of the Earth. Such rotation effect can
significantly change the behavior of QGE and yields a strong boundary layer in the solution,
as shown in Figure 1: When Ro is unphysically large (i.e., close to 1) we have larger, circular
gyres with lower kinetic energy but when Ro is decreased the gyres both increase in energy
(due to increased forcing), which can be seen in the higher vorticity magnitudes, and move
westward (due to the convection term).
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Figure 1. Solutions (vorticities) of the QGE subject to different Rossby numbers on the rectangular domain [0, 1]× [0, 2]
when Re = 100 and Fe = sin(π(y − 1)) at t = 0.1. From left to right: Ro = 1, 0.1, 0.01, and 0.001. It is seen that decreasing
the Rossby number yields a sharper western boundary layer.

When the fluid of interest is homogeneous, that is, no stratification is considered,
we have the single layer QGE model. This is what we mainly focus on in this paper.
However, to better approximate a continuously stratified fluid, a multi-layer model can be
developed that assumes that the fluid consists of stacked isopyncal layers, the variation
in the thickness of each layer is small compared to its mean thickness, and adjacent layer
equations are coupled through the quasi-geostrophic potential vorticity [17]. Numerical
investigations of multi-layer QGE have been made, for instance, in [34–36].

3. Full Order Model (FOM)

To generate FOM numerical data to construct the ROM basis, the QGE (12) need to
be discretized both in space and in time. Popular QGE spatial discretizations include
finite difference (FDM), finite volume (FVM), finite element (FEM), and pseudospectral
methods. Essentially all discretizations use the method of lines (e.g., Runge-Kutta methods
or other standard ODE solvers) to discretize in time. In this section, we survey each of
these spatial discretizations for the QGE and, where available, comment on the existing
numerical analysis results.

The primary intent of this paper is to survey the state-of-the-art for reduced order
modeling of the QGE. While FOMs are required by ROMs, this section is not intended to
be an exhaustive survey of the literature on the subject and instead only highlights the
major trends.

3.1. Finite Difference Methods for the QGE

It is straightforward to apply the FDM to a geophysical flow model on rectangular
grids. These were the first methods used [18,37] to simulate geophysical flows. In particular,
the Arakawa grids were introduced by Arakawa and Lamb [38] to conserve energy and
enstrophy at the grid level by effectively locating state variables across the mesh (i.e.,
a staggered-grid representation instead of nodal or cell-centered). See, e.g., [15,39] for
detailed discussions. Among this class of grids, the C-grid places scalar quantities at the
cell centers, while specifying the normal velocity components at the cell edges (which is
essentially the classic MAC scheme [40]). Because of its excellent representation of the
inertial-gravity waves, it has been widely used in geophysical flow simulations, for instance,
for solving QGE in [33] and is the standard solver in the Modular Ocean Model version
6 [41]. Staggered-grid grid approximations like the C-grid can be thought of as either finite
difference or finite volume schemes since the various velocity fluxes are explicitly solved
for at cell faces rather than being reconstructed first from cell-centered values—this is the
fundamental property that gives, e.g., the MAC scheme exactly zero divergence at cell
centers (when calculated with standard second-order difference operators). Such schemes
can also be extended to work with various turbulence modelling strategies [33,42–44].
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3.2. Finite Volume Methods for the QGE

Like the staggered-grid finite difference schemes, the principal advantage of the FVM
is preservation of the essential conservative quantities for the governing equations of
geophysical fluid flows while additionally dealing with unstructured grids (i.e., complex
geometries) more easily. This avoids the need for discretizing boundaries with staircasing,
which results in inaccurate modelling of coastal phenomena like Kelvin waves [45]). This
combination of properties makes the FVM the most common method for large-scale ocean
simulations, such as those performed with [41] or [46].

Methods that use C-grid like discretizations (i.e., storing normal velocities on cell faces
and mass or pressure in cell centers) on arbitrarily structured meshes must additionally
introduce corrective measures to deal with the reconstruction of the tangential velocity
(which is required by the discretization of the Coriolis force) [47–49]. These generalized
C-grid methods are applicable to a wide class of meshes including latitude-longitude grids,
Delaunay triangulations, Centroidal Voronoi tessellation (CVT), and spherical CVT. A
different approach to overcome this issue was considered in [50], where the non-staggered
Z-grid scheme [51] was used for the QGE model.

3.3. Pseudospectral and Spectral Methods for the QGE

Like finite difference methods, pseudospectral methods (due to their immediate
applicability to hypercube geometries) have been used in a variety of different ways in QGE
solvers. Some QGE solvers, like the one used in [52], use a pseudospectral discretization
to compute turbulence statistics. Alternatively, some finite difference methods use a
pseudospectral interpretation of solution grid values to do fast Laplace solves with a
multidimensional discrete sine transformation [32,53] or resolve stability problems from
nonlinearities via dealiasing [54,55].

Furthermore, pseudospectral methods have been used for the spatial discretization
of the QGE [56,57]. The FOM results used in this paper to construct the ROM basis in
Section 5 were also generated with a pseudospectral method. By pseudospectral we mean
that spatial derivatives in (12) are evaluated by performing a discrete sine transform, wave
number multiplication, and an another discrete sine transform in which dealiasing (the
3/2 s rule from [58]) is used in the nonlinear term of (12) for stability. The FOM solver
exploits the homogeneous boundary conditions to ignore even-numbered Fourier modes
(i.e., the RODFT00 transformation in [59]). Since this method permits very fast evaluation of
spatial derivatives we essentially treat them as a black box operation as part of an explicit
ODE solver for evolving the Fourier coefficients in time. The largest stable timestep is
found by using the power method for computing the principal eigenvalue of the linearized
discretization of (12). Numerical experiments imply that setting a strict error tolerance
on the error caused by the ODE solver requires smaller timesteps than the one required
for ODE stability, which validates the choice of explicit methods for the relevant range
of Reynolds numbers and grid resolutions. See Section 5.4 for additional details on the
numerical experiments used in this manuscript.

3.4. Finite Element Methods for the QGE

The FEM is particularly appealing because it combines advantages of multiple meth-
ods. It can easily handle adaptive mesh refinement and complex geometries (like the
FVMs), but also can create higher-order schemes (like pseudospectral methods) at the same
time, like the discretization used in [30,60], which is shown in Figure 2 (see also [61–63]).
The first FE approximation of the QGE, to the best of our knowledge, was a scheme based
on the mixed formulation developed in [64]. The conservation properties and stability of
the FE discretization were proved as well as the suboptimal convergence of the FE method.
The performance of FEM on simulating a multilayer QGE of ocean circulations has been
compared to the FDM in [65]. Since the vorticity-streamfunction formulation (15) of the
QGE results in a second-order PDE, for a conforming finite element discretization, a C0

element can be utilized. Considering the finite element spaces Wψ ⊂ H1
0(Ω)

⋂
W1,4(Ω),
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Wω ⊂ H1(Ω) (see, e.g., [66] for the definition of these finite element spaces), the finite
element discretization reads: Find ψh ∈ Wψ and ωh ∈ Wω satisfying{ (

∂ωh
∂t , φh

)
+ (J(ωh, ψh), φh) = −Re−1(∇ωh,∇φh) + Ro−1

(
∂ψh
∂x , φh

)
+ Ro−1(Fe, φh) ∀ φh ∈ Wψ

(ωh, vh) = (∇ψh,∇vh) ∀ vh ∈ Wω

. (16)

Figure 2. Triangulation of the Mediterranean Sea suitable for simulations with finite element methods
which was used in [30,60] (see also [61–63]).

In [34,67], Medjo considered this formulation and proved bounds for the time dis-
cretization error. Cascon et al. [68] proved both a priori and a posteriori error estimates for
the FE discretization of the linear Stommel-Munk model, which is a simplified version of
the QGE obtained by dropping the nonlinear term.

The streamfunction formulation (13) of QGE is a fourth-order PDE, which naturally
necessitates C1 elements for a conforming finite element discretization. Considering the
finite element space W ⊂ H2

0(Ω), the finite element discretization reads: Find ψh ∈ W [66]
satisfying(

∂

∂t
∇ψh,∇φh

)
+ Re−1(Δψh, Δφh) + (J(ψh, Δψh), φh)−Ro−1

(
∂ψh
∂x

, φh

)
= Ro−1(Fe, φh), ∀ φh ∈ W. (17)

To our knowledge, the first optimal error convergence results for the finite element
approximation of the QGE (12) were proved for the streamfunction formulation (17) using
Argyris elements in [30]. Several numerical tests, commonly employed in the geophysical
literature, showed the accuracy of the finite element discretization and illustrated the
theoretical estimates. Other recent developments of FEM for QGE include discontinuous
Galerkin formulation using C0 elements [62] and B-splines [69–73]. In particular, an adap-
tive refinement algorithm for B-splines finite element approximation was presented in [71]
for the streamfunction formulation.

4. Reduced Order Models (ROMs)

ROMs for the QGE have been developed for decades (see, e.g., [8,32,61,74–83]). Most
ROMs have been constructed by using a classical Galerkin projection framework, but data-
driven modeling (e.g., machine learning) has also been recently used [84,85]. In Section 4.1,
we outline the standard Galerkin ROM construction. In Section 4.2, we explain the impor-
tance of considering under-resolved regimes when developing ROMs for realistic, chaotic
flows. Furthermore, we present several ROM closure strategies, which are generally needed
when ROMs are used in an under-resolved regime. The flowchart of the ROMs presented
in this section is illustrated in Figure 3.
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Figure 3. Framework of the ROMs presented in Section 4.

4.1. Galerkin Reduced Order Model (G-ROM)

To construct the standard Galerkin ROM, we start by generating the ROM basis. To
this end, we use the proper orthogonal decomposition (POD) [2,6], which is also known
as empirical orthogonal functions (EOF) and principal component analysis (PCA). We
emphasize, however, that other ROM bases could be used, such as principal interaction
patterns (PIPs) and optimal persistence patterns (OPPs) [74] (see also [1,3,5,7,75,86,87] for
alternative strategies).

The POD starts by collecting the snapshots {ω1
h, . . . , ωM

h }, which are numerical ap-
proximations of the vorticity in the QGE (15) at M different time instances. We consider
relatively accurate snapshots. If inaccurate snapshots are used to construct the POD basis,
the resulting ROM can be inaccurate (see, e.g., [88]). For clarity of presentation, in this
paper we use the finite element discretization, but other numerical discretizations could
be used. The POD seeks a low-dimensional basis that approximates the snapshots opti-
mally with respect to a certain norm. In this presentation, we use the L2 norm and the L2

inner product: (
ω1, ω2

)
=

∫
Ω

ω1(x)ω2(x) dx . (18)

We note that, although the L2 norm and the L2 inner product are the most popular
choices in reduced order modeling, other norms and inner products could also be used (see,
e.g., [89]). To construct POD basis functions that approximate the snapshots optimally
with respect to the L2 norm, we solve the following minimization problem [89]:

min
ϕ̃1,··· ,ϕ̃N

M
∑

j=1

∥∥∥∥ω
j
h −

N
∑

i=1

(
ω

j
h, ϕ̃i

)
ϕ̃i

∥∥∥∥2

L2
(19)

s.t.
(

ϕ̃l , ϕ̃m
)
= δlm for 1 ≤ l, m,≤ N,

where δlm is the Kronecker delta. The solution of the minimization problem (19) is
equivalent to the solution of the eigenvalue problem

YT MhY ϕ̃j = λj ϕ̃j, j = 1, . . . , N, (20)

where Y denotes the snapshot matrix, whose columns correspond to the finite element
coefficients of the snapshots, Mh denotes the finite element mass matrix, and N is the
dimension of the finite element space. The eigenvalues are real and non-negative, so they
can be ordered as follows: λ1 ≥ λ2 ≥ . . . ≥ λR ≥ λR+1 = . . . = λN = 0, where R is
the rank of the snapshot matrix. It can be shown [89] that these eigenvalues determine
how well the corresponding POD modes represent the given vorticity snapshots: the
lower the eigenvalue index, the more important the corresponding POD mode. Thus,
we choose the POD vorticity basis functions {ϕj}r

j=1 from the eigenfunctions in (20) that
correspond to the first r ≤ R largest eigenvalues and define the ROM vorticity space as
Xr := span{ϕ1, . . . , ϕr}.
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To determine the POD streamfunction basis functions, we use the POD vorticity basis
functions and follow the approach in [8,32]. Specifically, we define the POD streamfunction
basis functions as the normalized functions {φj}r

j=1, which are chosen such that the satisfy
the following Poisson problem with homogeneous Dirichlet boundary conditions:

−Δφj = ϕj , j = 1, . . . , r . (21)

Next, we define the ROM approximations of the vorticity and streamfunction
as follows:

ωr(x, t) =
r

∑
j=1

aj(t) ϕj(x) , (22)

ψr(x, t) =
r

∑
j=1

aj(t) φj(x) , (23)

where {aj(t)}r
j=1 are the sought time-varying ROM coefficients. We note that we made two

important choices in our approach: (i) We enforced the coupling between the POD vorticity
and streamfunction basis functions in (21); and (ii) We used the same ROM coefficients in
the ROM vorticity approximation (22) and in the ROM streamfunction approximation (23).
The motivation for making these two choices is efficiency. Indeed, we only need to construct
a ROM for the vorticity; once the coefficients aj are determined from (15a), Equation (15b)
is automatically satisfied. (Of course, one could use a different approach and construct
two different ROM bases and two different ROM approximations for the vorticity and
streamfunction, but that would increase the ROM computational cost.) To construct a ROM
for the vorticity, we replace the vorticity ω by ωr in the QGE (15a), and then we use a
Galerkin projection onto Xr. Thus, we obtain the Galerkin ROM (G-ROM) for the QGE:
∀ i = 1, . . . , r,

(
∂ωr

∂t
, ϕi

)
+ (J(ωr, ψr), ϕi)− Ro−1

(
∂ψr

∂x
, ϕi

)
+ Re−1 (∇ωr,∇ϕi) = Ro−1

(
Fe, ϕi

)
. (24)

The G-ROM (24) yields the following autonomous dynamical system for the vector of
time coefficients, a(t) = (ai(t))i=1,...,r:

•
a = b + A a + a� B a, (25)

where b, A, and B are an r × 1 vector, an r × r matrix, and an r × r × r tensor, which
correspond to the constant, linear, and quadratic terms in the numerical discretization of
the QGE (15), respectively. The r-dimensional system (25) can be written componentwise
as follows: For all i = 1, . . . , r,

•
ai(t) = bi +

r

∑
m=1

Aimam(t) +
r

∑
m=1

r

∑
n=1

Bimn am(t) an(t), (26)

where

bi = Ro−1
(

Fe, ϕi

)
, (27)

Aim = Ro−1
(

∂φm

∂x
, ϕi

)
− Re−1

(
∇ϕm,∇ϕi

)
, (28)

Bimn = −
(

J(ϕm, φn), ϕi

)
. (29)

The G-ROM (25) has been investigated in the numerical simulation of the QGE (15)
(see, e.g., [8,32,80,83]), where it was shown that it can decrease the FOM computational cost
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by orders of magnitude. However, the numerical simulations in [8,32] have also shown
that a low-dimensional G-ROM is not able to produce accurate approximations of the
streamfunction and the velocity fields. The G-ROM’s numerical inaccuracy in [8,32] is due
to the lack of a closure model [8,9,90], which we discuss in Section 4.2.

4.2. ROM Closure Models

In this section, we survey the ROM closure models developed for the QGE (12). First,
we define closure modeling and we explain why it is needed when ROMs are used in the
under-resolved regime (Section 4.2.1). Then, we present the two main types of ROM closure
modeling for the QGE that are in current use: large eddy simulation (LES) ROM closure
models (Section 4.2.2) and machine learning (ML) ROM closure models (Section 4.2.3).
While LES and ML ROM closures are both data-driven modeling approaches, they are
different in the way they use data to develop a closure model: The LES approach is based
on ROM spatial filtering and least squares methods, whereas the ML approach is based on
machine learning techniques.

4.2.1. Under-Resolved ROMs Require Closure Models

The concept of under-resolved simulations is central in classical CFD. Under-resolved
simulations are those simulations in which the number of degrees of freedom (e.g., the number
of mesh points or basis functions) is not enough to capture the dynamics of the underlying
system. For example, in turbulent flow simulations the available number of mesh points
in a finite element or finite volume discretization, or the number of basis functions in a
spectral discretization are not enough to resolve all the lengthscales in the turbulent flow,
down to the Kolmogorov scale [91–93]. The numerical simulations at these inherently
coarse resolutions are called under-resolved simulations.

In under-resolved simulations of turbulent flows, standard discretizations yield inac-
curate results, which are not acceptable in practical engineering settings, e.g., large relative
errors, inaccurate quantities of interest (e.g., lift and drag), and inaccurate flow features
(e.g., vortex shedding frequency for the flow past a cylinder). In these cases, the classical
computational models (e.g., the Navier–Stokes equations) are generally supplemented with
correction terms that model the effect of the neglected scales (e.g., the scales smaller than the
given coarse mesh size). These correction terms are generally called closure models [91–93].

The concept of under-resolved simulations is also relevant to reduced order modeling:
Under-resolved ROM simulations are those simulations in which the ROM dimension is not enough
to capture the dynamics of the underlying system. But how exactly do we determine whether a
ROM simulation is resolved or under-resolved? Next, we present several potential answers
to this question. Some of these answers are a priori criteria (i.e., can be used before the ROM
simulation), some are a posteriori criteria (i.e., can be used only after the ROM simulation).

Kolmogorov n-width: The Kolmogorov n-width is an a priori criterion to determine
whether the ROM simulation is resolved or under-resolved. Given the solution manifold
M of the underlying system’s dynamics, the Kolmogorov n-width [94] provides a way to
quantify the best n-dimensional trial subspace X n:

dn(M) := inf
X n

sup
ω∈M

inf
g∈X n

‖ω − g‖.

Of course, calculating the Kolmogorov n-width for general systems can be challenging.
There are, however, cases when the relative size of the Kolmogorov n-width is known.
For example, it is known that, for computational problems dominated by diffusion, the
Kolmogorov n-width decays fast, while for those dominated by convection, it decays
slowly [95]. As a result, in order to obtain an accurate approximation of the solution
manifold, the dimension of the ROM trial space is expected to be much higher in the
convection-dominated case than in the diffusion-dominated case. Thus, for convection-
dominated systems, if we use a very high-dimensional (i.e., of the same order as the
Kolmogorov n-width) ROM, we obtain a resolved ROM simulation. If, however, we use
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a low-dimensional (i.e., much lower than the Kolmogorov n-width) ROM, we obtain an
under-resolved ROM simulation.

Eigenvalue decay rate: The eigenvalue decay rate is an a priori criterion to determine
whether the ROM simulation is resolved or under-resolved. The eigenvalues λ1, . . . , λR
in the eigenvalue problem (20) (used to construct the ROM basis) represent the energy
content of the corresponding ROM modes [2,89]. Thus, the ratio

∑r
i=1 λi

∑R
i=1 λi

(30)

defines the relative energy content of the first r ROM basis functions with respect to the
total energy of the system (see, e.g., page 16 in [89]). We emphasize that the concept of
“energy” in this context is used in a generic sense. For example, when the snapshots are
FOM approximations of a the velocity field in a fluid flow, the energy in (30) is the kinetic
energy; when the snapshots are FOM approximations of the vorticity field in the QGE, the
energy in (30) is the enstrophy. We can define the resolved regime as the regime in which
the ROM dimension r is large enough to ensure that the relative energy ratio (30) is larger
than a certain threshold (e.g., 90%). Thus, we expect a low-dimensional ROM to be in the
resolved regime when the eigenvalues have a fast decay, and in the under-resolved regime
when the eigenvalues have a slow decay.

To illustrate this point, in Figure 4 we plot the scaled eigenvalues λk/λ1, k = 1, . . . , 150
for two flow settings: the 2D flow past a cylinder at Re = 1000 and the QGE with Re = 450
and Ro = 0.0036 (the latter will be used in the numerical investigation in Section 5). This
plot shows that the eigenvalues decay much faster for the flow past a cylinder case than for
the QGE case.

0 50 100 150

k

10-10
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100
2D NSE
2D QGE

Figure 4. Scaled eigenvalues λk
λ1

for the 2D flow past a circular cylinder with Re = 1000 and the QGE
with Re = 450 and Ro = 0.0036 (see Section 5 for details).

Indeed, the results in Table 1 show that, in order to achieve a 90% relative energy
ratio in (30), we need to use only 2 ROM modes for the flow past a cylinder, and 77 ROM
modes for the QGE case. Thus, if we use only a handful of ROM modes to ensure a low
computational cost, we expect the resulting low-dimensional ROM to accurately capture
the dynamics of the flow past a cylinder, but not the dynamics of the QGE. In this case, we

180



Fluids 2021, 6, 16

perform a resolved ROM simulation of the flow past a cylinder, and an under-resolved
ROM simulation for the QGE.

Table 1. Number of ROM modes needed to achieve a given relative energy content (30) for the
2D flow past a circular cylinder with Re = 1000 and the QGE with Re = 450 and Ro = 0.0036 (see
Section 5 for details).

Relative Energy Content 90% 95% 99%

2D flow past a cylinder 2 4 6
QGE 77 152 380

ROM Lengthscale: The ROM lengthscale is an a priori criterion to determine whether
the ROM simulation is resolved or under-resolved. In principle, the ROM lengthscale
criterion follows the same algorithm as the standard CFD lengthscale criterion: Start with
a lengthscale that is large enough to capture the relevant dynamics, and then choose the
input discretization parameters such that phenomena occurring at the chosen lengthscale
can be approximated. Choosing the discretization parameters is, however, fundamentally
different in classical CFD and ROMs: In classical CFD, the spatial meshsize (e.g., for finite
difference or finite element methods) or the cutoff wavenumber in a Fourier truncation
(e.g., for spectral methods) clearly determines what lengthscale can be approximated.
For ROMs, however, there is no straightforward definition of a lengthscale based on the ROM
discretization parameters, i.e., the ROM dimension (r), the ROM basis ({ϕ1, . . . , ϕr}), and
the ROM eigenvalues ({λ1, . . . , λr}). To our knowledge, only very few ROM lengthscale
definitions based on the ROM discretization parameters have been proposed. In [96],
a ROM lengthscale was defined for the 3D flow past a circular cylinder at Re = 1000
(see also [2] for related work). This lengthscale was then used in [96] to build ROM
closure models.

Trial and error: The trial and error approach is an a posteriori criterion to determine
whether the ROM simulation is resolved or under-resolved. Specifically, a few ROM
simulations are run in the offline stage in order to determine the ROM discretization
parameters that yield accurate results, which are acceptable in practical engineering settings,
e.g., small relative errors, accurate quantities of interest (e.g., lift and drag), and accurate
flow features (e.g., vortex shedding frequency for the flow past a cylinder).

In Section 5, we show that under-resolved ROM simulations of the QGE can yield
inaccurate results. To increase the accuracy of these under-resolved ROM simulations, the
standard G-ROM (25) is generally supplemented with a closure model:

•
a = b + A a + a� B a + τROM, (31)

where τROM is the closure model that needs to be determined.
There are two main types of ROM closure modeling approaches, i.e., approaches to

modeling the term τROM in (31) in the offline stage:

• Black box ROM closure models: These models consider the true closure model
τFOM as a black box, i.e., the specific form of τFOM is not determined. Instead, one
first postulates a model form for τFOM, i.e., τFOM ≈ τROM, and then determines the
parameters of the model form τROM, either by using available data or physical insight.

• Mathematical ROM closure models: These models use filtering/averaging (e.g., with
respect to space, time, or initial conditions) to determine the specific form of the true
ROM closure term τFOM. As in the black box ROM closure models, one postulates a
model form for τFOM, i.e., τFOM ≈ τROM. However, the mathematical ROM closure
modeling utilizes data for the specific form of τFOM to determine the ROM closure
model τROM.

In this paper, we do not survey the ROM closure models. Instead, we only focus on
ROM closure modeling for the QGE. Specifically, in Sections 4.2.2 and 4.2.3, we present two
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different ROM closure modeling strategies for the QGE. We note, however, that there are al-
ternative ROM closure modeling strategies for the QGE, e.g., the stochastic mode reduction
strategy developed by Majda and his collaborators (see [76] and references therein).

4.2.2. Large Eddy Simulation ROM Closure Models

The large eddy simulation (LES) ROM closure modeling is inspired from classical LES
of turbulent flows [91–93]. The LES-ROM closure models come in two flavors: black box
and mathematical.

The black box LES-ROM closure models developed for the QGE use physical insight
to postulate a model form for the closure term. Specifically, they postulate that the ROM
closure term has to be dissipative. In [80], a linear damping term (i.e., a third-order
Laplace operator) is used as a ROM closure model. In [32], a nonlinear damping term
(i.e., a simplified Smagorinsky model [97]) is used as a ROM closure model. A significant
improvement to the Smagorinsky ROM closure model used in [32] is the dynamic subgrid-
scale ROM closure model which was first proposed in [96] and later adapted to the QGE
in [79].

The mathematical LES-ROM closure models developed for the QGE are an elegant
approach to closure modeling. These ROM closure models are built in three steps: In
the first step, the QGE are spatially filtered to obtain the large structures which can be
approximated at the given coarse resolution. In this first step, an exact formula for the
ROM closure term τFOM is also obtained. In the second step, a specific model form is
postulated for the LES-ROM closure model, i.e., τFOM ≈ τROM in (31). Finally, in the third
step, FOM data is used to find the parameters in the general form τROM that yield the closest
(in a least squares sense) approximation to true ROM closure term τFOM. One example of
mathematical LES-ROMs is the recently developed data-driven variational multiscale ROM
(DD-VMS-ROM) [8,9,90], which is centered around the variational multiscale framework.
There are two versions of the DD-VMS-ROM: a two-scale model [8,9] and an improved
three-scale model [90]. For clarity of presentation, we present the two-scale DD-VMS-
ROM. To construct the DD-VMS-ROM, the ROM projection from the ROM space XR =
span{ϕ1, . . . , ϕR} to the subspace Xr = span{ϕ1, . . . , ϕr}, r ≤ R is used as a spatial filter.
The filtered QGE yield an exact formula for the ROM closure term, τFOM. Next, a specific
model form is prescribed for the exact closure term

τFOM ≈ τROM := Ã a + a� B̃ a (32)

and the entries of the LES-ROM closure operators Ã and B̃ are found by solving the
following least squares problem:

min
Ã,B̃

M

∑
j=1

∥∥∥τFOM(tj)−
(

Ã aFOM(tj) + (aFOM(tj))
� B̃ aFOM(tj)

)∥∥∥2
, (33)

where aFOM are computed from the FOM data. Finally, the LES-ROM closure operators
obtained in (33) are used to build the DD-VMS-ROM:

•
a = b +

(
A + Ã

)
a + a�

(
B + B̃

)
a. (34)

In Section 5, we investigate the DD-VMS-ROM in the under-resolved simulation of
the QGE.

4.2.3. Machine Learning ROM Closure Models

Machine learning (ML) methods have recently started to make an impact in reduced or-
der modeling of fluid flows. The ML methods most frequently used to build ROMs include
multilayer perceptron (MLP) [85,98,99], convolution neural networks (CNN) [100], recur-
rent neural networks (RNN) [84,101,102], and variational autoencoder (VAE) [100,103].
Some of these ML-ROMs are nonintrusive, i.e., they use the FOM codes as black boxes,
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only to generate output data from different inputs. For these nonintrusive ML-ROMs, no
prior information about the underlying governing equations is required to construct the
model. These models fully rely on data combined with ML methods to discover the ROM
dynamics and can be written as follows:

•
a = F̂(a, θ), (35)

where a is the vector of ROM coefficients and θ is the vector of learnable parameters in the
ML model F̂. The nonintrusive ML-ROMs are fundamentally different from classical intru-
sive modeling strategies, such as the Galerkin method used to generate the G-ROM (25),
which need access to the underlying governing equations in order to construct the ROM.

Only few ML-ROMs have been developed for the QGE. For example, an extreme
learning machine concept with neural networks was introduced for the ROM closure of the
QGE in [85]. Furthermore, a nonintrusive reduced order modeling framework embedded
with a long short-term memory (LSTM) network was developed for quasi-geostrophic
turbulence to improve the time series prediction of ROMs in [84]. The LSTM-ROM for
QGE [84] was constructed (trained) in two steps:

1. The ROM coefficients in a given time window {aFOM,(n−k), aFOM,(n−k+1), . . . , aFOM,(n)}
were extracted from the high-resolution FOM data by projecting the snapshots onto
the ROM modes.

2. The LSTM neural network was used to construct an ML-ROM that mapped the old
ROM coefficients {aFOM,(n−k), aFOM,(n−k+1), . . . , aFOM,(n)} to the ROM coefficients at
the new time step aFOM,(n+1).

The resulting model was then used in the testing stage to predict the ROM coefficients
at new time instances.

Recently, hybrid ROMs that combine classical Galerkin modeling with machine learn-
ing have started to become popular. For example, a hybrid ROM closure was proposed
in [104] for the QGE. This hybrid ROM combined classical Galerkin projection methods
with neural network closures to perform near real-time prediction of mesoscale ocean flows.
The numerical investigation in [104] showed that the hybrid ROM was more accurate than
both the classical G-ROM and a pure ML-ROM (i.e., a ROM built entirely from data by
using machine learning).

5. Numerical Results

In this section, we present an illustration of the projection ROMs constructed in
Section 4 in the numerical simulation of the QGE described in Section 2. First, we describe
the details of the computational setting that we use in our ROM numerical investigation:
the regimes (Section 5.1), the test problem (Section 5.2), the criteria (Section 5.3), and
the generation of the FOM data used to construct the ROM basis (Section 5.4). After we
clarify these details, we perform a numerical investigation of the ROM accuracy and ROM
efficiency (Section 5.5).

5.1. Regimes

In our numerical illustration, we use four regimes: (i) a reconstructive regime, which is
an easier test case, in which the ROM is validated on the same time interval as the time
interval used to train the ROM; (ii) a predictive regime, which is a harder test case, in which
the ROM is trained on a short time interval and validated on a longer time interval; (iii) a
resolved regime, in which the number of ROM basis functions is enough to represent the
system’s dynamics; and (iv) an under-resolved regime, in which the number of ROM basis
functions is not enough to represent the system’s dynamics. These four regimes illustrate
different features of the ROMs.

The reconstructive regime is the first step in a ROM investigation. At the very least,
the proposed ROM needs to provide an efficient and accurate approximation of the FOM
data used to train it (i.e., the FOM results used to construct the ROM basis). The predictive
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regime is a harder test in the ROM investigation. In order to be practical, the proposed
ROM needs to be able to approximate the FOM results on time intervals and parameter
ranges that are wider than those used to train the ROM. (For clarity, in this section, we
consider only a longer time interval, but wider parameter ranges could also be considered.)
Of course, the proposed ROM generally has a harder time approximating data that it has
not seen in the training process, but the ROM needs to perform well in the predictive
regime in order to be deemed successful in practice.

The resolved regime is an easier test in the ROM investigation. Since the ROM uses a
relatively large number of ROM basis functions, which is enough to capture the underlying
system’s dynamics, a straightforward, standard G-ROM is expected to perform well in the
resolved regime. The under-resolved regime is a much harder test in the ROM investigation.
In the under-resolved regime, the proposed ROM needs to use a relatively small (i.e., not
enough to capture the system’s dynamics) number of ROM basis functions and somehow
still be able to approximate the FOM data. In classical computational fluid dynamics (CFD),
the under-resolved regime is one of the most important tests for the practicality of the
proposed numerical method. Indeed, many realistic CFD applications are turbulent and
chaotic, and standard resolved discretizations (e.g., direct numerical simulation (DNS))
are simply not possible, since they require an unrealistic number of degrees of freedom.
The under-resolved regime is relatively much less investigated in the ROM world. We
believe, however, that to develop ROMs that can be used in the numerical simulation
of realistic, chaotic geophysical flows, the proposed ROMs need to be investigated in the
under-resolved regime.

Since the reconstructive and predictive regimes, on the one hand, and the resolved
and under-resolved regimes, on the other hand, serve different purposes, we consider
four regime pairs in the ROM numerical investigation in Section 5.5: First, we consider
the resolved and reconstructive, and the resolved and predictive regimes. The goal here
is to investigate the reconstructive and, more importantly, the predictive capabilities of
the standard G-ROM in the relatively simple resolved regime. Second, we consider the
under-resolved and reconstructive, and the under-resolved and predictive regimes. The
goal here is different. We want to investigate the reconstructive and predictive capabilities
of the standard G-ROM in the challenging under-resolved regime. We expect that, when
only a few ROM basis functions are used to build it, the standard G-ROM will perform
poorly in the under-resolved regime. Thus, to address the G-ROM’s potential inaccuracies,
we also consider the LES-ROM proposed in Section 4.2.2, i.e., the DD-VMS-ROM. In the
under-resolved regime, we expect the LES-ROM to be more accurate than the standard
G-ROM.

5.2. Test Problem Setup

In our ROM numerical investigation in a QGE setting, we need to make several
choices. Specifically, in the QGE (15), we need to choose the spatial domain, the time
interval, the forcing (Fe), the Reynolds number (Re), and the Rossby number (Ro). We
emphasize that these choices are important: Some choices yield a relatively easy test
problem, i.e., a problem in which a standard ROM built with relatively few ROM basis
functions can generate an accurate and efficient approximation. Other choices, however,
yield a challenging test problem, in which standard low-dimensional ROMs produce
inaccurate results.

In our numerical investigation, we choose parameters that yield a challenging test
problem, which has been used in numerous studies (see, e.g., [8,27–29,31–33,79,85,105]) as
a simplified model for more realistic ocean dynamics. Specifically, we choose the simple
spatial domain [0, 1] × [0, 2], the relatively long time interval [0, 100], and a symmetric
double-gyre wind forcing given by Fe = sin

(
π (y− 1)

)
, which yields a four-gyre circulation

in the time mean. We also choose the same Reynolds number and Rossby number as those
used in [8,28,32,33], i.e., Re = 450 and Ro = 0.0036.
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We emphasize that this four-gyre QGE test problem represents a significant challenge
for FOM simulations with standard numerical methods. Indeed, as shown in [27], although
a double-gyre wind forcing is used, the long term time-average yields a four-gyre pattern
(see Figure 5). On realistic coarse meshes, classical numerical methods (e.g., finite element
and finite volume methods) generally produce inaccurate approximations to this test
problem. In particular, standard numerical discretizations fail to recover the correct four-
gyre pattern (see, e.g., [32,33]). One of the main reasons for the challenging character of the
four-gyre test problem is the relatively low Rossby number used (i.e., Ro = 0.0036). Indeed,
as shown in Figure 1, a relatively small Rossby number yields a sharp western boundary
layer, which makes the test problem challenging for FOM simulations (see, e.g., [32,33]).
While the Reynolds number used (i.e., Re = 450) is not large by turbulence modeling
standards, it turns out that it yields a convection-dominated regime that is challenging
for FOM simulations. Overall, these parameter choices together with the chosen spatial
domain, time interval, and forcing function, yield a challenging FOM test problem. This is
clearly illustrated in the plot of the FOM kinetic energy in Figure 6, which suggests that
this is a chaotic system, with non-periodic time evolution.

Given the non-periodic, chaotic evolution of the this four-gyre test problem, we expect
it to represent a challenging test not only for FOM simulations, but also for ROM simula-
tions. This expectation is supported by projecting the FOM data on the ROM basis functions
to obtain the true ROM coefficients, which the proposed ROMs need to approximate. These
true ROM coefficients, which are plotted in Figure 7, have a non-periodic, chaotic evolution,
which is challenging to capture by standard ROMs. In Section 5.5, we will show that this
four-gyre test problem does indeed represent a challenging test for ROMs.

Figure 5. FOM streamfunction contour plots at t = 40 (left), t = 60 (middle), and time-averaged (right).
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Figure 6. Time evolution of the kinetic energy of the FOM.

Figure 7. Time evolution of aFOM
1 (t), aFOM

10 (t), aFOM
100 (t).

Remark (QGE vs. 2D Flow Past a Cylinder). The 2D flow past a cylinder at low Reynolds
numbers has become one of the most popular test problems in the ROM world. The reason is that the
time evolution of the true ROM coefficients is periodic and a few ROM modes are required to capture
the system’s dynamics. By comparison, the QGE test problem used in our numerical investigation
is a significantly harder test problem: Its true ROM coefficients display a non-periodic, chaotic time
evolution and relatively many ROM modes are required to capture the system’s dynamics. This
statement is supported by the plot in Figure 4 and the results in Table 1: The plot shows that the
eigenvalues decay much faster for the flow past a cylinder test case than for the QGE test case. The
results in Table 1 show that, in order to achieve a 90% relative energy content (which is defined
in (30)), the flow past a cylinder test case requires only 2 ROM modes, whereas the QGE test case
requires 77 ROM modes.

5.3. Criteria

To investigate the ROMs, we use the following three criteria: (i) the relative L2 norm
of the time-averaged streamfunction errors between ψFOM and ψROM:∥∥∥∥∥ 1

M

M

∑
j=1

ψFOM(tj)−
1
M

M

∑
j=1

ψROM(tj)

∥∥∥∥∥
2

L2

/∥∥∥∥∥ 1
M

M

∑
j=1

ψFOM(tj)

∥∥∥∥∥
2

L2

. (36)
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(ii) The ROM’s ability to recover the four-gyre pattern of the time-average of the FOM
streamfunction in Figure 5. (iii) The ROM computational cost. The first two criteria quantify
the ROM numerical accuracy, whereas the third criterion quantifies the ROM efficiency. We
note that the first two criteria utilize time-averages. The reason for using time-averages is
that, in the numerical investigation of chaotic systems (such as the four-gyre test problem),
pointwise in time quantities are less robust (e.g., prone to phase errors) and can yield
deceiving results.

To define the resolved and under-resolved ROM regimes, we use two of the four
criteria outlined in Section 4.2.1: (i) the trial and error criterion; and (ii) the eigenvalue
decay rate criterion. Specifically, when we use the trial and error criterion in our numerical
investigation, we call the ROM regime resolved if its relative L2 norm of the error (36)
is O(10−1), and under-resolved otherwise. We note that an O(10−1) relative error is
large by engineering standards. However, our numerical investigation will show that
even this large threshold requires high-dimensional ROMs. When we use the eigenvalue
decay rate criterion in our numerical investigation, we call the ROM regime resolved if
its relative kinetic energy content (which was defined in (30)) is above 90%, and under-
resolved otherwise.

5.4. FOM Snapshot Generation

To generate the FOM data (i.e., snapshots) that is used to construct the ROM basis
functions, we utilize fine resolution spatial and temporal discretizations. Specifically, for
the FOM spatial discretization, we use a pseudospectral method with a 257 × 513 spatial
resolution [8]. For the FOM time discretization, we use an explicit Runge-Kutta method
(Tanaka-Yamashita, an order 7 method with an embedded order 6 method for error control),
and an error tolerance of 10−8 in time with adaptive time refinement and coarsening [8]
in addition to an eigenvalue-based time step restriction for ensuring numerical stability.
These spatial and temporal discretizations yield numerical results that are similar to the
fine resolution numerical results obtained in [32,33].

To collect FOM snapshots, we first need to decide what time interval we utilize. To this
end, in Figure 6, we plot the time evolution of the kinetic energy, E(t). Figure 6 (see also
Figure 1 in [32]) shows that the flow starts with a short transient interval (approximately
[0, 10]), after which it converges to a statistically steady state. We emphasize that, although
the flow is statistically steady, it still displays a complex, chaotic behavior. To illustrate
this, in Figure 5, we display the instantaneous contour plot for the streamfunction field at
t = 40 and t = 60. While t = 40 and t = 60 are well within the statistically steady state
regime, the flow displays a non-periodic, complex time evolution, with a high degree of
variability. Furthermore, in Figure 7, we plot the time evolution of the true ROM coefficients
aFOM

1 (t), aFOM
10 (t), and aFOM

100 (t), which are obtained by projecting the FOM vorticity data
onto the ROM bases, ϕ1, ϕ10, and ϕ100, respectively:

aFOM
i (t) =

(
ωFOM(t), ϕi

)
, (37)

where ωFOM(t) is the FOM vorticity at time t. The true ROM coefficients display a non-
periodic, chaotic behavior within the time interval [10, 80]. Thus, the numerical approxima-
tion of this statistically steady regime remains challenging for the ROMs that we investigate
in this section.

In our numerical investigation, we follow [8,32,33] and collect 701 FOM snapshots
in the time interval [Tmin, Tmax] = [10, 80] at equidistant time intervals. Collecting a large
number of snapshots ensures that the FOM data used to train the ROM is rich enough
to capture the relevant dynamics. Next, we use the algorithm outlined in Section 4 and
the FOM snapshots to construct the ROM basis. In Figure 8, we plot selected ROM
streamfunction basis functions. We observe that, as the ROM basis index increases, the
spatial structures displayed by the ROM basis functions become smaller and smaller. This
is consistent with the idea that the ROM modes are arranged in decreasing importance
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(dominance) order: The first ROM mode is the most dominant, the second ROM mode is
the second most dominant, and so on.

Figure 8. Streamfunction basis functions: φ1, φ10, and φ80.

5.5. ROM Numerical Investigation

In this section, we perform a numerical investigation of the ROM accuracy and
efficiency.

To investigate the ROM accuracy, we consider the four regimes discussed in Section 5.1.
First, we consider the resolved regime, both in the reconstructive (Section 5.5.1) and
predictive (Section 5.5.2) settings. In these two regimes, we investigate only the standard
G-ROM (25), since in the resolved case there is no need for ROM closure. The goal of
these two sections is to use the two criteria presented in Section 5.3 (i.e., the relative L2

error and the relative energy content) to determine the minimum ROM dimension (r)
that is necessary in the resolved regime. Next, we consider the under-resolved regime,
both in the reconstructive (Section 5.5.3) and predictive (Section 5.5.4) settings. In these
two regimes, we investigate the standard G-ROM (25) and one LES-ROM, i.e., the DD-
VMS-ROM presented in Section 4.2.2. The goal of these two sections is to determine
whether the LES-ROM can significantly increase the standard G-ROM accuracy in the
under-resolved regime.

To investigate the ROM efficiency, in Section 5.5.5 we discuss the computational cost
of the standard G-ROM and the LES-ROM.

For both the G-ROM and the LES-ROM, we use the same time discretization on the
time interval [10, 80]: the RK4 method with a uniform step size Δt = 10−3.

5.5.1. Resolved, Reconstructive Regime

In this section, we consider the resolved, reconstructive regime.
In Table 2, we list the relative L2 errors (36) of the time-averaged streamfunction

and the relative energy content (30) for G-ROM with several r values: r = 10, 20, 40,
and 80. As expected, as the G-ROM dimension (r) increases, the relative errors con-
verge to 0 and the relative energy content increases. We emphasize, however, that
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one needs a relatively large r value to attain what we defined as a resolved regime:
To attain an O(10−1) relative error and 90% relative energy content, one needs to take r = O(102).

Table 2. Resolved, reconstructive regime. Relative L2 errors (36) of the time-averaged streamfunction
and relative energy content (30) for G-ROM with different r values.

r 10 20 40 80 120

Relative error 2.009 × 102 7.377 × 100 4.595 × 10−1 2.999 × 10−1 1.493 × 10−1

Relative energy content 65.24% 75.25% 83.65% 90.33% 93.48%

In Figure 9, for r = 10, 40, and 120, we plot the time-average of the streamfunction ψ
over the time interval [10, 80] for the FOM and G-ROM. We note that we use the same scale
for the FOM and the G-ROM with large r values (i.e., r = 40 and r = 120). However, for
the G-ROM with a low r value (i.e., r = 10), we use a different scale, since the magnitude
of these G-ROM results is much larger than the rest. The plots in Figure 9 show that the
G-ROM with low r values (i.e., r = 10 and r = 40) fails to recover the FOM four-gyre
pattern. The G-ROM with r = 120 captures the FOM four-gyre pattern, but even in this
case the magnitude of the time-averaged streamfunction is only marginally accurate. Thus,
the plots in Figure 9 support the results in Table 2: To recover the FOM four-gyre pattern, one
needs to take r = O(102).

Figure 9. Resolved, reconstructive regime. Time-averaged streamfunction, ψ, for FOM and G-ROM with r = 10, 40, and 120.

5.5.2. Resolved, Predictive Regime

In this section, we consider the resolved, predictive regime. To construct the G-ROM
basis functions, we use data (snapshots) from the time interval [10, 45] and test the G-ROM
on a longer time interval (i.e., [10, 80]) to test the predictive capabilities of the G-ROM.

In Table 3, we list the relative L2 errors (36) of the time-averaged streamfunction and
the relative energy content (30) for G-ROM with several r values: r = 10, 20, 40, and 80. We
note that, as the G-ROM dimension (r) increases, the errors converge to 0 and the relative
energy content increases. As expected, the errors in the predictive regime are worse than
the errors in the reconstructive regime in Section 5.5.1. Furthermore, as in the reconstructive
regime, one needs a relatively large r value to attain what we defined as a resolved regime:
To attain an O(10−1) error and 90% relative energy content, one needs to take r = O(102).
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Table 3. Resolved, predictive regime. Relative L2 errors (36) of the time-averaged streamfunction
and relative energy content (30) for Galerkin ROM (G-ROM) with different r values.

r 10 20 40 80 120

Relative error 2.030 × 102 1.015 × 101 5.115 × 10−1 3.892 × 10−1 2.619 × 10−1

Relative energy content 66.03% 76.38% 85.17% 92.23% 95.41%

In Figure 10, for r = 10, 40, and 120, we plot the time-average of the streamfunction
ψ over the time interval [10, 80] for the FOM and G-ROM. We note that we use the same
scale for the FOM and the G-ROM with large r values (i.e., r = 40 and r = 120). For the
G-ROM with a low r value (i.e., r = 10), we use a different scale, since the magnitude of
these G-ROM results is much larger than the rest. The plots in Figure 10 show that, as in the
reconstructive regime in Section 5.5.1, the G-ROM with low r values (i.e., r = 10 and r = 40)
fails to recover the FOM four-gyre pattern. The G-ROM with r = 120 captures the FOM
four-gyre pattern, but even in this case the magnitude of the time-averaged streamfunction
is only marginally accurate. Thus, the plots in Figure 10 support the results in Table 3: To
recover the FOM four-gyre pattern, one needs to take r = O(102).

Figure 10. Resolved, predictive regime. Time-averaged streamfunction, ψ, for FOM and G-ROM with r = 10, 40, and 120.

5.5.3. Under-Resolved, Reconstructive Regime

In this section, we consider the under-resolved, reconstructive regime. Since we use the
under-resolved regime, we investigate the standard G-ROM and an LES-ROM. Specifically,
we investigate the improved, three-scale version [90] of the DD-VMS-ROM (34).

In Table 4, we list the relative L2 errors (36) of the time-averaged streamfunction of the
G-ROM and LES-ROM for several r values: r = 10, 15, and 20. For all the r values considered,
the LES-ROM is orders of magnitude more accurate than the G-ROM. More importantly, for r = 20,
the LES-ROM is almost one order of magnitude more accurate than the G-ROM with r = 120, which
was used in Table 2.

In Figure 11, for r = 10, we plot the time-average of the streamfunction ψ over the time
interval [10, 80] for the FOM, G-ROM, and LES-ROM. We note that we use the same scale
for the FOM and the LES-ROM. For the G-ROM, however, we use a different scale, since
the magnitude of the G-ROM results is much larger than the rest. The plots in Figure 11
show that the G-ROM fails to recover the FOM four-gyre pattern. On the other hand, the
LES-ROM successfully captures the four-gyre pattern and its correct magnitude. In fact,
the LES-ROM with r = 10 is even more accurate than the resolved G-ROM with r = 120
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in Figure 9. Thus, the plots in Figure 11 support the results in Table 4: The LES-ROM is
dramatically more accurate than the G-ROM.

Figure 11. Under-resolved, reconstructive regime. Time-averaged streamfunction, ψ, for FOM, G-ROM, and large eddy
simulation (LES)-ROM with r = 10.

Table 4. Under-resolved, reconstructive regime. Relative L2 errors (36) of the time-averaged
streamfunction for G-ROM and LES-ROM for different r values.

r G-ROM LES-ROM

10 2.009 × 102 1.074 × 10−1

15 5.569 × 101 6.780 × 10−2

20 7.377 × 100 2.784 × 10−2

5.5.4. Under-Resolved, Predictive Regime

In this section, we consider the under-resolved, predictive regime for the G-ROM and
LES-ROM. To construct the G-ROM and LES-ROM basis functions, we use data (snapshots)
from the time interval [10, 45] and test the G-ROM and LES-ROM on a longer time interval
(i.e., [10, 80]) to test the predictive capabilities of the G-ROM and LES-ROM.

In Table 5, we list the relative L2 errors (36) of the time-averaged streamfunction
of the G-ROM and LES-ROM for several r values: r = 10, 15, and 20. For all the r
values considered, the LES-ROM is orders of magnitude more accurate than the G-ROM. Most
importantly, for r = 20, the LES-ROM is more accurate than the G-ROM with r = 120, which
was used in Table 3.

In Figure 12, for r = 10, we plot the time-average of the streamfunction ψ over the time
interval [10, 80] for the FOM, G-ROM, and LES-ROM. We note that we use the same scale
for the FOM and the LES-ROM. For the G-ROM, however, we use a different scale, since
the magnitude of the G-ROM results is much larger than the rest. The plots in Figure 12
show that the G-ROM fails to recover the FOM four-gyre pattern. On the other hand, the
LES-ROM successfully captures the four-gyre pattern and its correct magnitude. Thus, the
plots in Figure 12 support the results in Table 5: The LES-ROM is significantly more accurate
than the G-ROM.
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Figure 12. Under-resolved, predictive regime. Time-averaged streamfunction, ψ, for FOM, G-ROM, and LES-ROM with
r = 10.

Table 5. Under-resolved, predictive regime. Relative L2 errors (36) of the time-averaged streamfunc-
tion for G-ROM and LES-ROM for different r values.

r G-ROM LES-ROM

10 2.030 × 102 1.622 × 10−1

15 2.880 × 102 2.385 × 10−1

20 1.015 × 101 1.266 × 10−1

5.5.5. Computational Cost

The ROM computational cost has two components: (i) the computational cost of the
offline stage, i.e., when the ROM operators are assembled; and (ii) the computational cost of
the online stage, i.e., when the ROM is actually used in practical computations. While the
offline computational cost can be high, it is often offset in the online stage, when the ROM
is used for numerous runs.

In Table 6, we list the CPU time for the FOM, G-ROM, and LES-ROM in the online
stage. We note that the CPU time of the G-ROM is similar to the CPU time of the LES-ROM.
We emphasize that both the G-ROM and the LES-ROM CPU times are orders of magnitude
lower than the FOM CPU time. Furthermore, the G-ROM CPU time increases significantly as
r increases.

Table 6. CPU time for FOM, G-ROM, and LES-ROM in the online stage.

FOM
CPU time 2.19 × 105 s

G-ROM
CPU time

r = 10
2.69 × 100 s

r = 20
4.80 × 100 s

r = 40
4.58 × 101 s

r = 80
1.32 × 102 s

r = 120
6.45 × 102 s

LES-ROM
CPU time

r = 10
3.22 × 100 s

r = 15
3.85 × 100 s

r = 20
5.07 × 100 s
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5.5.6. Summary

The results in our numerical investigation yield the following conclusions:

1. For our test problem, the resolved regime requires ROMs that have a large dimension
(i.e., r = O(102)) in both the reconstructive and the predictive regimes.

2. In the realistic, under-resolved regime, the LES-ROM is orders of magnitude more accurate
than the G-ROM in both the reconstructive and the predictive regimes.

3. The LES-ROM in the under-resolved regime (i.e., with r = 20) is significantly more
accurate and dramatically more efficient than the G-ROM in the resolved regime (i.e.,
with r = 120).

6. Conclusions and Outlook

The quasi-geostrophic equations (QGE) (also known as the barotropic vorticity equa-
tions) are a simplified mathematical model for large scale wind-driven ocean circulation.
Since the QGE computational cost is significantly lower than the computational cost of full
fledged mathematical models of ocean flows, the QGE have often been used to test new
numerical methods for geophysical flows, such as reduced order models (ROMs).

In this brief survey, we summarized projection-based ROMs developed for the QGE
in order to understand ROMs’ potential in efficient numerical simulations of ocean flows.
Specifically, in Section 2, we briefly explained how the QGE are derived from the primitive
equations by using simple scaling arguments. We also outlined the various QGE formu-
lations currently used, and we illustrated the importance of the Rossby number, which
quantifies the rotation effects in the QGE. In Section 3, we surveyed the main numerical
methods used in the spatial discretization of the QGE: finite difference, finite volume,
pseudospectral and spectral, and finite element methods. In Section 4, we presented the
main steps in the construction of the standard Galerkin ROM (G-ROM). Specifically, we
showed how the full order model (FOM) simulations generate data (snapshots) that is
used to build the ROM basis, which is then utilized in a Galerkin projection framework to
construct the G-ROM. We also emphasized the importance of appropriate treatment of the
under-resolved regime, i.e., when the number of ROM modes is not enough to capture the
relevant QGE dynamics. The ROM under-resolved regime is often encountered in realistic
geophysical settings dominated by convection, when the Kolmogorov n-width is large.
One of the main approaches for tacking the ROM under-resolved regime is ROM closure
modeling, i.e., modeling the effect of the discarded ROM modes. We reviewed two types
of ROM closure models for the QGE: large eddy simulation (LES) ROM closure models
(which are based on spatial filtering and data driven modeling), and machine learning
(ML) ROM closure models. Finally, in Section 5, we showed how ROMs are used in the
numerical simulation of the QGE. To this end, we considered a QGE test problem in which
long-term time averaging yields a four-gyre pattern. We showed that, if enough ROM
modes were used (i.e., in the resolved regime), the standard G-ROM yielded accurate
results at a low computational cost. If, however, only a few ROM modes were used (i.e., in
the under-resolved regime), the standard G-ROM yielded inaccurate results, whereas the
LES-ROM yielded accurate results at a low computational cost.

ROMs have a significant potential in efficient and relatively accurate numerical sim-
ulations of geophysical flows that display recurrent dominant spatial structures. This
brief survey aimed at showcasing the ROMs’ potential in simplified settings, i.e., for QGE
simulations. We emphasize, however, that the ultimate goal is to use ROMs in realistic
many query atmospheric and oceanic applications, e.g., uncertainty quantification and
data assimilation. While the first steps have been made (see, e.g., [106–112]), there are
significant challenges that still need to be addressed. Next, we present several potential
future research avenues in the ROM exploration of the QGE and more complex models of
geophysical flows.

To develop ROMs for geophysical flows, realistic computational settings need to be
considered. For example, realistic parameters (e.g., the Reynolds number, Re), and realistic
complex geometries need to be investigated. Since realistic oceanic and atmospheric

193



Fluids 2021, 6, 16

flows display an enormous range of spatial and temporal scales, new ROMs need to
be constructed for under-resolved regimes in which the ROM closure problem becomes
central, just as in FOM. Thus, novel robust, stable, accurate, and efficient ROM closure
models for realistic geophysical flows need to be built. But how should these ROM
closure models be developed? By using physical insight (as in classical FOMs), data
(as currently done in many research areas), or both? Furthermore, in addition to the
rotation effects modeled by the QGE, stratification should also be investigated. In the
simplified QGE setting, stratification could be included by considering the multilayer QGE
or the continuously stratified QGE. More realistic western boundary layers should also be
investigated. Of course, all these problems are compounded when mathematical models
that are more accurate than the QGE are considered, such as the Boussinesq equations.
Finally, mathematical support for these new ROMs needs to be provided. The first steps in
this direction have been made (see, e.g., [61,75]), but much more remains to be done.

Author Contributions: Conceptualization, C.M., Z.W., D.R.W., X.X. and T.I.; methodology, C.M.,
Z.W., D.R.W., X.X. and T.I.; software, C.M., Z.W. and D.R.W.; validation, C.M., Z.W. and D.R.W.;
formal analysis, C.M., Z.W. and D.R.W.; investigation, C.M., Z.W., D.R.W., X.X. and T.I.; resources,
C.M., Z.W., D.R.W., X.X. and T.I.; data curation, C.M., Z.W. and D.R.W.; writing—original draft
preparation, C.M., Z.W., D.R.W., X.X. and T.I.; writing—review and editing, C.M., Z.W., D.R.W., X.X.
and T.I.; visualization, C.M., Z.W. and D.R.W.; supervision, T.I.; project administration, T.I.; funding
acquisition, Z.W., D.R.W. and T.I. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by National Science Foundation, DMS-2012253, DMS-1953113,
DMS-1913073, OAC-1450327, and by U.S. Department of Energy, DE-SC0020270.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hesthaven, J.S.; Rozza, G.; Stamm, B. Certified Reduced Basis Methods for Parametrized Partial Differential Equations; Springer:
Berlin/Heidelberg, Germany, 2015.

2. Holmes, P.; Lumley, J.L.; Berkooz, G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry; Cambridge University
Press: Cambridge, UK, 1996.

3. Quarteroni, A.; Manzoni, A.; Negri, F. Reduced Basis Methods for Partial Differential Equations: An Introduction; Springer:
Berlin/Heidelberg, Germany, 2015; Volume 92.

4. Benner, P.; Gugercin, S.; Willcox, K. A survey of projection-based model reduction methods for parametric dynamical systems.
SIAM Rev. 2015, 57, 483–531. [CrossRef]

5. Brunton, S.L.; Kutz, J.N. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control; Cambridge
University Press: Cambridge, UK, 2019.

6. Noack, B.R.; Morzynski, M.; Tadmor, G. Reduced-Order Modelling for Flow Control; Springer: Berlin/Heidelberg, Germany, 2011;
Volume 528.

7. Taira, K.; Hemati, M.S.; Brunton, S.L.; Sun, Y.; Duraisamy, K.; Bagheri, S.; Dawson, S.T.M.; Yeh, C.A. Modal analysis of fluid flows:
Applications and outlook. AIAA J. 2020, 58, 998–1022. [CrossRef]

8. Mou, C.; Liu, H.; Wells, D.R.; Iliescu, T. Data-Driven Correction Reduced Order Models for the Quasi-Geostrophic Equations: A
Numerical Investigation. Int. J. Comput. Fluid Dyn. 2020, 34, 147–159. [CrossRef]

9. Xie, X.; Mohebujjaman, M.; Rebholz, L.G.; Iliescu, T. Data-Driven Filtered Reduced Order Modeling of Fluid Flows. SIAM J. Sci.
Comput. 2018, 40, B834–B857. [CrossRef]

10. Star, S.K.; Stabile, G.; Belloni, F.; Rozza, G.; Degroote, J. Extension and comparison of techniques to enforce boundary conditions
in finite volume POD-Galerkin reduced order models for fluid dynamic problems. arXiv 2019, arXiv:1912.00825.

11. Couplet, M.; Sagaut, P.; Basdevant, C. Intermodal energy transfers in a proper orthogonal decomposition-Galerkin representation
of a turbulent separated flow. J. Fluid Mech. 2003, 491, 275. [CrossRef]

12. Hess, M.W.; Quaini, A.; Rozza, G. Reduced basis model order reduction for Navier–Stokes equations in domains with walls of
varying curvature. Int. J. Comput. Fluid Dyn. 2020, 34, 119–126. [CrossRef]

13. Pitton, G.; Quaini, A.; Rozza, G. Computational reduction strategies for the detection of steady bifurcations in incompressible
fluid-dynamics: Applications to Coanda effect in cardiology. J. Comput. Phys. 2017, 344, 534–557. [CrossRef]

194



Fluids 2021, 6, 16

14. Skitka, J.; Marston, J.B.; Fox-Kemper, B. Reduced-Order Quasilinear Model of Ocean Boundary-Layer Turbulence. J. Phys.
Oceanogr. 2020, 50, 537–558. [CrossRef]

15. Cushman-Roisin, B.; Beckers, J.M. Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects; Academic Press:
Cambridge, MA, USA, 2011.

16. Majda, A.J.; Wang, X. Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows; Cambridge University Press:
Cambridge, UK, 2006; p. xii+551.

17. Vallis, G.K. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation; Cambridge University Press:
Cambridge, UK, 2006.

18. Charney, J.G.; Fjörtoft, R.; Neumann, J.V. Numerical Integration of the Barotropic Vorticity Equation. Tellus 1950, 2, 237–254.
[CrossRef]

19. Majda, A.J.; Shefter, M.G. Nonlinear instability of elementary stratified flows at large Richardson number. Chaos Interdiscip. J.
Nonlinear Sci. 2000, 10, 3–27. [CrossRef] [PubMed]

20. Majda, A.J.; Shefter, M.G. Elementary stratified flows with instability at large Richardson number. J. Fluid Mech. 1998, 376, 319–350.
[CrossRef]

21. Majda, A.J.; Embid, P. Averaging over fast gravity waves for geophysical flows with unbalanced initial data. Theor. Comput. Fluid.
Dyn. 1998, 11, 155–169. [CrossRef]

22. Embid, P.F. Averaging over fast gravity waves for geophysical flows with arbitary. Commun. Partial. Differ. Equ. 1996, 21, 619–658.
[CrossRef]

23. Embid, P.F.; Majda, A.J. Low Froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers.
Geophys. Astro. Fluid. 1998, 87, 1–50. [CrossRef]

24. Majda, A.J.; Grote, M.J. Model dynamics and vertical collapse in decaying strongly stratified flows. Phys. Fluids. 1997,
9, 2932–2940. [CrossRef]

25. Dijkstra, H.A. Dynamical Oceanography; Springer: Berlin, Germany, 2008; p. xvi+407.
26. Pedlosky, J. Geophysical Fluid Dynamics, 2nd ed.; Springer: Berlin, Germany, 1992.
27. Greatbatch, R.J.; Nadiga, B.T. Four-gyre circulation in a barotropic model with double-gyre wind forcing. J. Phys. Oceanogr. 2000,

30, 1461–1471. [CrossRef]
28. Holm, D.D.; Nadiga, B.T. Modeling mesoscale turbulence in the barotropic double-gyre circulation. J. Phys. Oceanogr. 2003,

33, 2355–2365. [CrossRef]
29. Nadiga, B.T.; Margolin, L.G. Dispersive-dissipative eddy parameterization in a barotropic model. J. Phys. Oceanogr. 2001,

31, 2525–2531. [CrossRef]
30. Foster, E.L.; Iliescu, T.; Wang, Z. A finite element discretization of the streamfunction formulation of the stationary quasi-

geostrophic equations of the ocean. Comput. Methods Appl. Mech. Eng. 2013, 261, 105–117. [CrossRef]
31. Monteiro, I.O.; Manica, C.C.; Rebholz, L.G. Numerical study of a regularized barotropic vorticity model of geophysical flow.

Numer. Methods Partial. Differ. Equ. 2015, 31, 1492–1514. [CrossRef]
32. San, O.; Iliescu, T. A stabilized proper orthogonal decomposition reduced-order model for large scale quasigeostrophic ocean

circulation. Adv. Comput. Math. 2015, 41, 1289–1319. [CrossRef]
33. San, O.; Staples, A.E.; Wang, Z.; Iliescu, T. Approximate deconvolution large eddy simulation of a barotropic ocean circulation

model. Ocean Model. 2011, 40, 120–132. [CrossRef]
34. Medjo, T.T. Numerical Simulations of a Two-Layer Quasi-Geostrophic Equation of the Ocean. SIAM J. Numer. Anal. 2000,

37, 2005–2022. [CrossRef]
35. Medjo, T.T. Multi-layer quasi-geostrophic equations of the ocean with delays. Discret. Contin. Dyn. Syst. Ser. B 2008, 10, 171.
36. Shevchenko, I.; Berloff, P. Multi-layer quasi-geostrophic ocean dynamics in eddy-resolving regimes. Ocean Model. 2015, 94, 1–14.

[CrossRef]
37. Phillips, N.A. The general circulation of the atmosphere: A numerical experiment. Q. J. R. Meteorol. Soc. 1956, 82, 123–164.

[CrossRef]
38. Arakawa, A.; Lamb, V.R. Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model. In

General Circulation Models of the Atmosphere; Elsevier: Amsterdam, The Netherlands, 1977; Volume 17, pp. 173–265. [CrossRef]
39. Collins, S.N.; James, R.S.; Ray, P.; Chen, K.; Lassman, A.; Brownlee, J. Grids in numerical weather and climate models. In Climate

Change and Regional/Local Responses; IntechOpen: Rijeka, Croatia, 2013. [CrossRef]
40. Harlow, F.H.; Welch, J.E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys.

Fluids 1965, 8, 2182–2189. [CrossRef]
41. Modular Ocean Model (MOM)—Geophysical Fluid Dynamics Laboratory. Available online: https://www.gfdl.noaa.gov/mom-

ocean-model/# (accessed on 9 November 2020).
42. Maulik, R.; San, O. Dynamic modeling of the horizontal eddy viscosity coefficient for quasigeostrophic ocean circulation problems.

J. Ocean Eng. Sci. 2016, 1, 300–324. [CrossRef]
43. Maulik, R.; San, O. A novel dynamic framework for subgrid scale parametrization of mesoscale eddies in quasigeostrophic

turbulent flows. Comput. Math. Appl. 2017, 74, 420–445. [CrossRef]
44. San, O.; Staples, A.E.; Iliescu, T. Approximate Deconvolution Large Eddy Simulation of a Stratified Two-Layer Quasigeostrophic

Ocean Model. Ocean Model. 2013, 63, 1–20. [CrossRef]

195



Fluids 2021, 6, 16

45. Griffiths, S.D. Kelvin wave propagation along straight boundaries in C-grid finite-difference models. J. Comput. Phys. 2013,
255, 639–659. [CrossRef]

46. Campin, J.M.; Heimbach, P.; Losch, M.; Forget, G.; Adcroft, A.; Menemenlis, D.; Hill, C.; Jahn, O.; Scott, J.; Mazloff,
M.; et al. MITgcm/MITgcm: Mid 2020 Version. 2020. Available online: https://zenodo.org/record/3967889/export/xd#.X-08
7RYRVPY(accessed on 9 November 2020).

47. Thuburn, J.; Ringler, T.D.; Skamarock, W.C.; Klemp, J.B. Numerical representation of geostrophic modes on arbitrarily structured
C-grids. J. Comput. Phys. 2009, 228, 8321–8335. [CrossRef]

48. Ringler, T.D.; Thuburn, J.; Klemp, J.B.; Skamarock, W.C. A unified approach to energy conservation and potential vorticity
dynamics for arbitrarily-structured C-grids. J. Comput. Phys. 2010, 229, 3065–3090. [CrossRef]

49. Chen, Q.; Ringler, T.D.; Gunzburger, M. A co-volume scheme for the rotating shallow water equations on conforming non-
orthogonal grids. J. Comput. Phys. 2013, 240, 174–197. [CrossRef]

50. Chen, Q.; Ju, L. Conservative finite-volume schemes for the quasi-geostrophic equation on coastal-conforming unstructured
primal–dual meshes. Q. J. R. Meteorol. Soc. 2018, 144, 1106–1122. [CrossRef]

51. Randall, D.A. Geostrophic adjustment and the finite-difference shallow-water equations. Mon. Weather Rev. 1994, 122, 1371–1377.
[CrossRef]

52. Nadiga, B. Nonlinear evolution of a baroclinic wave and imbalanced dissipation. J. Fluid Mech. 2014, 756, 965–1006. [CrossRef]
53. San, O.; Staples, A.E. An efficient coarse grid projection method for quasigeostrophic models of large-scale ocean circulation. Int.

J. Multiscale Comput. Eng. 2013, 11, 463–495. [CrossRef]
54. Phillips, N.A. An example of non-linear computational instability. Atmos. Sea Motion 1959, 501, 504.
55. Orszag, S.A. On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components. J. Atmos. Sci.

1971, 28, 1074. [CrossRef]
56. Abernathey, R.; Rocha, C.B.; Poulin, F.; Jansen, M. pyqg: v0.1.4. 2015. Available online: https://zenodo.org/record/32539#.X-09

JhYRVPY (accessed on 9 November 2020).
57. Hogg, A.M.C.; Dewar, W.K.; Killworth, P.D.; Blundell, J.R. A Quasi-Geostrophic Coupled Model (Q-GCM). Mon. Weather Rev.

2003, 131, 2261–2278. [CrossRef]
58. Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A. Spectral Methods: Fundamentals in Single Domains; Scientific Computation;

Springer: Berlin, Germany, 2006.
59. Frigo, M.; Johnson, S.G. The Design and Implementation of FFTW3. Proc. IEEE 2005, 93, 216–231. [CrossRef]
60. Foster, E.L. Finite Elements for the Quasi-Geostrophic Equations of the Ocean. Ph.D. Thesis, Virginia Tech, Blacksburg, VA,

USA, 2013.
61. Galán del Sastre, P. Estudio Numérico Del Atractor en Ecuaciones de Navier-Stokes Aplicadas a Modelos de Circulación Del

océano. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2004.
62. Kim, T.Y.; Park, E.J.; Shin, D.W. A C0-discontinuous Galerkin method for the stationary quasi-geostrophic equations of the ocean.

Comput. Meth. Appl. Mech. Engrg. 2016, 300, 225–244. [CrossRef]
63. Shin, D.W.; Kang, Y.; Park, E.J. C0-discontinuous Galerkin methods for a wind-driven ocean circulation model: Two-grid

algorithm. Comput. Meth. Appl. Mech. Engrg. 2018, 328, 321–339. [CrossRef]
64. Fix, G. Finite element models for ocean circulation problems. SIAM J. Appl. Math. 1975, 29, 371–387. [CrossRef]
65. LeProvost, C.; Bernier, C.; Blayo, E. A comparison of two numerical methods for integrating a quasi-geostrophic multilayer

model of ocean circulations: finite element and finite difference methods. J. Comput. Phys. 1994, 110, 341–359. [CrossRef]
66. Temam, R. Navier–Stokes Equations: Theory and Numerical Analysis; American Mathematical Society: Providence, RI, USA, 2001;

Volume 2.
67. Medjo, T.T. Mixed Formulation of the Two-Layer Quasi-Geostrophic Equations of the Ocean. Numer. Methods Partial. Differ. Equ.

Int. J. 1999, 15, 489–502. [CrossRef]
68. Cascon, J.M.; Garcia, G.C.; Rodriguez, R. A Priori and A Posteriori Error Analysis for a Large-Scale Ocean Circulation Finite

Element Model. Comput. Methods Appl. Mech. Eng. 2003, 192, 5305–5327. [CrossRef]
69. Kim, T.Y.; Iliescu, T.; Fried, E. B-spline based finite-element method for the stationary quasi-geostrophic equations of the ocean.

Comput. Methods Appl. Mech. Eng. 2015, 286, 168–191. [CrossRef]
70. Jiang, W.; Kim, T.Y. Spline-based finite-element method for the stationary quasi-geostrophic equations on arbitrary shaped coastal

boundaries. Comp. Meth. Appl. Mech. Eng. 2016, 299, 144–160. [CrossRef]
71. Al Balushi, I.; Jiang, W.; Tsogtgerel, G.; Kim, T.Y. Adaptivity of a B-spline based finite-element method for modeling wind-driven

ocean circulation. Comp. Meth. Appl. Mech. Eng. 2018, 332, 1–24. [CrossRef]
72. Kim, D.; Kim, T.Y.; Park, E.J.; Shin, D.w. Error estimates of B-spline based finite-element methods for the stationary quasi-

geostrophic equations of the ocean. Comp. Meth. Appl. Mech. Eng. 2018, 335, 255–272. [CrossRef]
73. Rotundo, N.; Kim, T.Y.; Jiang, W.; Heltai, L.; Fried, E. Error analysis of a B-spline based finite-element method for modeling

wind-driven ocean circulation. J. Sci. Comput. 2016, 69, 430–459. [CrossRef]
74. Crommelin, D.T.; Majda, A.J. Strategies for model reduction: comparing different optimal bases. J. Atmos. Sci. 2004, 61, 2206–2217.

[CrossRef]
75. Galán del Sastre, P.; Bermejo, R. Error estimates of proper orthogonal decomposition eigenvectors and Galerkin projection for a

general dynamical system arising in fluid models. Numer. Math. 2008, 110, 49–81. [CrossRef]

196



Fluids 2021, 6, 16

76. Franzke, C.; Majda, A.J.; Vanden-Eijnden, E. Low-order stochastic mode reduction for a realistic barotropic model climate.
J. Atmos. Sci. 2005, 62, 1722–1745. [CrossRef]

77. Kondrashov, D.; Berloff, P. Stochastic modeling of decadal variability in ocean gyres. Geophys. Res. Lett. 2015, 42, 1543–1553.
[CrossRef]

78. Kondrashov, D.; Chekroun, M.D.; Berloff, P. Multiscale Stuart-Landau emulators: Application to wind-driven ocean gyres. Fluids
2018, 3, 21. [CrossRef]

79. Rahman, S.M.; Ahmed, S.E.; San, O. A dynamic closure modeling framework for model order reduction of geophysical flows.
Phys. Fluids 2019, 31, 046602. [CrossRef]

80. Selten, F.M. An efficient description of the dynamics of barotropic flow. J. Atmos. Sci. 1995, 52, 915–936. [CrossRef]
81. Selten, F.M. Baroclinic empirical orthogonal functions as basis functions in an atmospheric model. J. Atmos. Sci. 1997,

54, 2099–2114. [CrossRef]
82. Selten, F.M. A statistical closure of a low-order barotropic model. J. Atmos. Sci. 1997, 54, 1085–1093. [CrossRef]
83. Strazzullo, M.; Ballarin, F.; Mosetti, R.; Rozza, G. Model Reduction for Parametrized Optimal Control Problems in Environmental

Marine Sciences and Engineering. SIAM J. Sci. Comput. 2018, 40, B1055–B1079. [CrossRef]
84. Rahman, S.M.; Pawar, S.; San, O.; Rasheed, A.; Iliescu, T. A nonintrusive reduced order modeling framework for quasigeostrophic

turbulence. Phys. Rev. E 2019, 100, 053306. [CrossRef]
85. San, O.; Maulik, R. Extreme learning machine for reduced order modeling of turbulent geophysical flows. Phys. Rev. E 2018,

97, 042322. [CrossRef]
86. Xie, X.; Nolan, P.J.; Ross, S.D.; Mou, C.; Iliescu, T. Lagrangian Data-Driven Reduced Order Modeling Using Finite Time Lyapunov

Exponents. Fluids 2020, 5, 189. [CrossRef]
87. Perotto, S.; Reali, A.; Rusconi, P.; Veneziani, A. HIGAMod: A Hierarchical IsoGeometric Approach for MODel reduction in

curved pipes. Comput. Fluids 2017, 142, 21–29. [CrossRef]
88. Caiazzo, A.; Iliescu, T.; John, V.; Schyschlowa, S. A numerical investigation of velocity-pressure reduced order models for

incompressible flows. J. Comput. Phys. 2014, 259, 598–616. [CrossRef]
89. Volkwein, S. Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling; Lecture Notes; University of Konstanz:

Konstanz, Germany, 2013.
90. Mou, C.; Koc, B.; San, O.; Rebholz, L.G.; Iliescu, T. Data-Driven Variational Multiscale Reduced Order Models. Comput. Methods

Appl. Mech. Engrg. 2021, 373, 113470. [CrossRef]
91. Berselli, L.C.; Iliescu, T.; Layton, W.J. Mathematics of Large Eddy Simulation of Turbulent Flows; Scientific Computation; Springer:

Berlin, Germany, 2006; p. xviii+348.
92. Pope, S. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000; p. xxxiv+771.
93. Sagaut, P. Large Eddy Simulation for Incompressible Flows, 3rd ed.; Scientific Computation; Springer: Berlin, Germany, 2006;

p. xxx+556.
94. Pinkus, A. N-Widths in Approximation Theory; Springer: Berlin, Germany, 2012; Volume 7.
95. Ohlberger, M.; Rave, S. Reduced basis methods: Success, limitations and future challenges. arXiv 2015, arXiv:1511.02021.
96. Wang, Z.; Akhtar, I.; Borggaard, J.; Iliescu, T. Proper orthogonal decomposition closure models for turbulent flows: A numerical

comparison. Comput. Meth. Appl. Mech. Eng. 2012, 237–240, 10–26. [CrossRef]
97. Smagorinsky, J.S. General circulation experiments with the primitive equations. Mon. Weather Rev. 1963, 91, 99–164. [CrossRef]
98. Maulik, R.; San, O.; Rasheed, A.; Vedula, P. Subgrid modelling for two-dimensional turbulence using neural networks. J. Fluid

Mech. 2019, 858, 122–144. [CrossRef]
99. Pawar, S.; San, O.; Rasheed, A. Deep Learning Based Sub-Grid Scale Closure for LES of Kraichnan Turbulence. APS 2019,

G17-007. Available online: https://ui.adsabs.harvard.edu/abs/2019APS..DFDG17007P/abstract (accessed on 9 November 2020).
100. Lee, K.; Carlberg, K.T. Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. J.

Comput. Phys. 2020, 404, 108973. [CrossRef]
101. Ahmed, S.E.; San, O.; Rasheed, A.; Iliescu, T. A long short-term memory embedding for hybrid uplifted reduced order models.

Phys. D Nonlinear Phenom. 2020, 409, 132471. [CrossRef]
102. Ahmed, S.; Rahman, S.M.; San, O.; Rasheed, A. LSTM based nonintrusive ROM of convective flows. APS 2019, L10-003.

Available online: https://ui.adsabs.harvard.edu/abs/2019APS..DFDL10003A/abstract (accessed on 9 November 2020).
103. Parish, E.J. Machine Learning Closure Modeling for Reduced-Order Models of Dynamical Systems; Technical Report; Sandia National

Lab. (SNL-CA): Livermore, CA, USA, 2019.
104. Rahman, S.M.; San, O.; Rasheed, A. A hybrid approach for model order reduction of barotropic quasi-geostrophic turbulence.

Fluids 2018, 3, 86. [CrossRef]
105. Cummins, P.F. Inertial gyres in decaying and forced geostrophic turbulence. J. Mar. Res. 1992, 50, 545–566. [CrossRef]
106. Daescu, D.N.; Navon, I.M. A dual-weighted approach to order reduction in 4DVAR data assimilation. Mon. Weather Rev. 2008,

136, 1026–1041. [CrossRef]
107. Kaercher, M.; Boyaval, S.; Grepl, M.A.; Veroy, K. Reduced basis approximation and a posteriori error bounds for 4D-Var data

assimilation. Optim. Eng. 2018, 19, 663–695. [CrossRef]
108. Maday, Y.; Patera, A.T.; Penn, J.D.; Yano, M. A parameterized-background data-weak approach to variational data assimilation:

formulation, analysis, and application to acoustics. Int. J. Num. Meth. Engng. 2015, 102, 933–965. [CrossRef]

197



Fluids 2021, 6, 16

109. Popov, A.A.; Mou, C.; Iliescu, T.; Sandu, A. A multifidelity ensemble Kalman filter with reduced order control variates. arXiv
2020, arxiv:2007.00793.

110. Ştefănescu, R.; Sandu, A.; Navon, I.M. POD/DEIM reduced-order strategies for efficient four dimensional variational data
assimilation. J. Comput. Phys. 2015, 295, 569–595. [CrossRef]

111. Xiao, D.; Du, J.; Fang, F.; Pain, C.C.; Li, J. Parameterised non-intrusive reduced order methods for ensemble Kalman filter data
assimilation. Comput. Fluids 2018, 177, 69–77. [CrossRef]

112. Zerfas, C.; Rebholz, L.G.; Schneier, M.; Iliescu, T. Continuous data assimilation reduced order models of fluid flow. Comput. Meth.
Appl. Mech. Eng. 2019, 357, 112596. [CrossRef]

198



fluids

Article

A Swing of Beauty: Pendulums, Fluids, Forces,
and Computers

Michael Mongelli 1 and Nicholas A. Battista 2,*

1 Department of Computer Science, 2000 Pennington Road, The College of New Jersey,
Ewing Township, NJ 08628, USA; mongelm1@tcnj.edu

2 Department of Mathematics and Statistics, 2000 Pennington Road, The College of New Jersey,
Ewing Township, NJ 08628, USA

* Correspondence: battistn@tcnj.edu; Tel.: +1-609-771-2445

Received: 27 January 2020; Accepted: 5 April 2020; Published: 12 April 2020

Abstract: While pendulums have been around for millennia and have even managed to swing their
way into undergraduate curricula, they still offer a breadth of complex dynamics to which some
has still yet to have been untapped. To probe into the dynamics, we developed a computational
fluid dynamics (CFD) model of a pendulum using the open-source fluid-structure interaction (FSI)
software, IB2d. Beyond analyzing the angular displacements, speeds, and forces attained from the
FSI model alone, we compared its dynamics to the canonical damped pendulum ordinary differential
equation (ODE) model that is familiar to students. We only observed qualitative agreement after a
few oscillation cycles, suggesting that there is enhanced fluid drag during our setup’s initial swing,
not captured by the ODE’s linearly-proportional-velocity damping term, which arises from the Stokes
Drag Law. Moreover, we were also able to investigate what otherwise could not have been explored
using the ODE model, that is, the fluid’s response to a swinging pendulum—the system’s underlying
fluid dynamics.

Keywords: fluid dynamics education; damped pendulums; fluid drag; fluid-structure interaction;
computational fluid dynamics

1. Introduction

Historically, pendulums have been used for a multitude of purposes. From seismometers used
almost two thousand years ago [1,2], to devices that increase efficiency for societal capacity, such
as reciprocating saws and pumps [3,4], to keeping time [5,6], to even medieval torture devices [7],
applications of pendulums are far and wide. Edgar Allan Poe even wrote a short story about one,
The Pit and the Pendulum [8]. The esteemed polymath Galileo Galilei dreamt of the first pendulum
clock in 1637, but it wasn’t constructed until 1656 when Dutch physicist Christiaan Huygens drew
out the plans, thus designing it. He enlisted clockmaker Salomon Coster to build it. The introduction
of a pendulum clock increased time keeping accuracy from 15 minutes to a quarter of minute [5]—
pendulums changed history!

It is no surprise that the study of pendulums swings its way into many foundational courses in
science, mathematics, and engineering. Students are introduced to them in courses such as mechanics,
dynamics, or differential equations, where they are first exposed to the idea of a simple gravity
pendulum. A simple gravity pendulum is an idealized pendulum—a weight (bob) is attached to
a massless string, which is tethered to a fixed pivot point, and is allowed to swing freely, without
friction [9]. It will continue to swing forever. Realistic? Not unless one lives in a vacuum, but ultimately
a good place to begin a student’s exploration of simple harmonic motion.

If θ(t) represents the angular displacement (in radians) from the vertical at time t (see Figure 1a),
the ordinary differential equation (ODE) describing such a simple pendulum system takes the form:

Fluids 2020, 5, 48; doi:10.3390/fluids5020048 www.mdpi.com/journal/fluids199
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I
d2θ

dt2 + mgL sin θ = 0, (1)

where I, m, and L are the pendulum bob’s moment of inertia and overall mass and length, respectively,
and g is the gravitational acceleration. Since the only external force acting on this pendulum is gravity,
it will swing forever, with no loss in oscillatory amplitude, see Figure 1b for an example. Figure 1b
shows simulated results for different pendulum cases, each with a circular bob of a different radius.
Note that the ODE was solved numerically, as no small angle approximation was used [9]. For these
cases of circular bobs, of radius R, attached to a massless string of length L, the moment of inertia is
calculated to be:

I = m
1
2

R2 + mL2. (2)

There are two things to note from Figure 1b. The first is that over time the oscillation amplitudes
do not decay. The second is that although amplitudes of oscillation are not affected, the period of
oscillation is affected by bobs of different radii. Larger bobs have larger periods, due to their moment
of inertia being greater [9].

Figure 1. (a) A pendulum of length L with circular bob of radius, r, and mass, m. (b) Angular
displacement (in radians) over time for various gravity pendulums of differing radii. The
non-dimensional time is given in terms of the number of periods of the case with radius, r.

In a world (or classroom) like ours which does not exist in a vacuum, a table-sized pendulum
demonstration would eventually lead to its angular oscillations reaching zero, i.e., standing still. This
is due to the pendulum swinging in air—a fluid. The air resists the pendulum’s motion, effectively
pushing back on the pendulum. This is known as fluid drag.

The concept of fluid drag is probably familiar to you already. It is the reason why parachutes
work. The equation governing a pendulum swinging in a fluid environment is given by

I
d2θ

dt2 + b
dθ

dt
+ mgL sin θ = 0, (3)

where the parameter b is deemed a damping parameter. This is a reduced order model of the system, as
the contribution of the fluid onto the pendulum is entirely contained within the parameter, b. That is,
this equation models how the fluid is believed to affect the swinging motion of the pendulum, while
providing no mechanism to understand the underlying fluid’s dynamics. Numerical simulation results
from solving Equation (3) are presented in Figure 2.
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Figure 2. Angular displacements against non-dimensional time for damped physical pendulums in the
case of (a) constant radius and varied damping, b, and (b) constant b and varied radii.

Figure 2a holds the radius constant at r, the same r from Figure 1b, while varying the damping
coefficient, b. Compared to Figure 1b, angular oscillations decay in all cases when b > 0. The damping
induced from b > 0 will eventually lead to its equilibrium—a stationary pendulum hanging straight
down. However, the decay rate is dependent on b; larger values of b lead to a quicker decay of

oscillation. Note that b has units of kg·m2

s2 and in realistic situations, b > 0. Moreover, depending on the
value of b, the pendulum system will exhibit one of three behaviorial cases:

1. Under-damped: The pendulum will swing back and forth, although its amplitude of oscillation
will steadily decline, until it asymptotically approaches its equilibrium.

2. Critically-damped: the pendulum returns to equilibrium as quickly as it can. If the damping
parameter were made slightly more or slightly less, it would result in the pendulum returning
slower to its equilibrium position.

3. Over-damped: the pendulum moves towards its equilibrium position slower than the
critically-damped case. There is no oscillation.

The simulations shown in Figure 2b held the damping parameter fixed (b = 150 from Figure 2a)
and varied the radius of the bob. Note that changing the radius r will vary the moment of inertia (see
Equation (2)). This data suggests that as r increases for a given b, this would lead to more oscillatory
behavior. That is, smaller r tends to make the pendulum system more damped. Intuitively this doesn’t
make much sense as is—a larger pendulum bob should feel more drag since it has a larger surface
area. It would be like jumping out of an airplane with a parachute with a surface area of 10 m2 and
floating down slower (and more softly) than a parachute of 40 m2. How could this be?

For the simulations in Figure 2b, we fixed the damping parameter b and then varied r. We did not
consider that the damping parameter may depend on the radius (among a variety of other parameters),
that is, the geometry of the pendulum bob. Furthermore, we have yet to motivate where the damping
term in Equation (3) comes from. Let’s settle that.

It comes from the seminal work of prolific physicist and mathematician Sir George Stokes, who
even studied drag force using pendulums [10]! In particular, he derived a drag force equation, now
known as Stokes Law, by investigating spheres moving through a fluid at low Reynolds numbers,
i.e., situations in which either the fluid is moving extremely slowly or the fluid’s viscosity is very
high [11,12]. Stokes Law (for a sphere at low Re) is presented as the following:

FD = 6πμrv, (4)

where FD is the fluid drag, μ is the fluid’s dynamic viscosity and r and v are radius and speed of
the sphere that is moving through the fluid. Note that the Reynolds number (Re) depends on two
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fluid parameters, i.e., its density, ρ, and dynamic viscosity, μ, as well as two parameters based on the
physical system being investigated, i.e., a characteristic length and velocity scale, L and V, respectively.
The Re is defined to be

Re =
ρLV

μ
. (5)

Thus Stokes Drag describes that this damping frictional force acting on the sphere is proportional
to its size, FD ∼ r, and speed, FD ∼ v. Careful to remember that this may only be true in low Reynolds
number situations, where either v, r, or both may be small. Notice that the form that the damping term
took in Equation (3) was similar, but used angular displacement (θ(t)) and angular velocity ( dθ

dt ). As
suggested by numerical simulations presented above, this damping equation gives rise to exponential
decay in angular displacement (Figure 2).

At higher Reynolds numbers, i.e., situations in which fluid viscosity is low or the speed or size
of an object is large, the drag force takes a different form. For these situations, the drag law was
discovered by none other than the infamous Lord Rayleigh (John William Strutt) using dimensional
analysis [13]. For high Reynolds numbers settings, the fluid drag force takes the following form [14,15]:

FD = ρr2Kv2, (6)

where ρ is the fluid density, r is the sphere’s radius, v is the sphere’s velocity, and K is a non-dimensional
number that is based on the fluid flow’s speed and direction as well as the object’s shape, size, and
orientation in respect to the flow, and the fluid’s density and viscosity. In a nutshell, for a specific
object, this constant K may significantly change if one or more of these parameters are varied.

This drag force is traditionally represented in the following generalized manner:

FD =
1
2

ρACDv2, (7)

where A is a cross-sectional area of an object in flow and CD is a dimensionless number called the drag
coefficient. In this representation CD is analogous to K above.

Moreover, work in the latter half of the 20th century and early 21st century has shown that
in particular situations correction terms must be included into the drag force equations [16,17].
Furthermore there are still unknown dynamics of pendulums involving small amplitude
oscillations [18]. Although physical pendulums have been used for thousands of years and studied by
students in foundational courses for over a century, they remain an active research area [19].

With the advent of new technologies, e.g., experimental measurement and flow visualization
tools, researchers have further probed into the complex interactions of pendulums and the fluid
environments they are immersed within [20–25]. In particular, Mathai et al. [25] investigated how fluid
drag on pendulums may be enhanced due to dynamic interactions with their own vortex wake as they
swing—something not quantified previously!

Mathai et al. [25] went on to note Even with the wake history force included, the current model is
still quite basic. In reality, the dynamics <of a pendulum> is highly nonlinear, with changes in direction,
curvilinear trajectories and wide variations in instantaneous Re <Reynolds number>. . . Fully resolved direct
numerical simulations. . . can provide better insights into the flow-induced forces. That is exactly where our
work on pendulums began, although there have been two previous studies using CFD models of
pendulums [26,27].

In this paper we implemented a fluid-structure interaction (FSI) computational model of a
swinging pendulum containing a spherical bob (a circular bob in two dimensions). In our FSI model,
we varied the size of the circular pendulum bob, i.e., its radius, and its mass. We then analyzed the
resulting data in terms of angular displacement, speed of the pendulum bob, and fluid forces acting on
it, as well as compared the dynamics between our FSI model and the canonical reduced ODE model for
a damped physical pendulum, Equation (3). Furthermore, we visualized (and qualitatively analyzed)
the fluids motion in response to a swinging pendulum.
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In addition, we provide instructor resources, such as slides and movies, in the Supplemental
Materials (the items are listed in Appendix A), with the goal to streamline use of this work in
educational settings. Moreover, we also offer the science community the first open-source pendulum
models in a fluid-structure interaction framework. The models can be found at github.com/
nickabattista/IB2d in the sub-directory:

IB2d → matIB2d → Examples → Examples_Education→ Pendulum.

Note that each example is of a point mass model bob and was selected for its computational speed in
comparison to circular bobs (those of non-zero radius). Moreover, three versions are presented, each
corresponding to a different grid resolution. The least spatially resolved case, 256 × 256, will be the
fastest to run, but also the least accurate of the 3, while the 1024 × 1024 case has the highest spatial
resolution, but will run the slowest. The default setting is to only save the pendulum (Lagrangian)
data. To store the fluid (Eulerian) data, flags corresponding to the desired fluid quantities may be
selected within the input2d file. We also provided the scripts used to solve Equations (1) and (3) that
produce Figures 1 and 2.

2. Methods

To investigate the swinging motion of a two-dimensional pendulum bob immersed in a viscous,
incompressible fluid, we used computational fluid dynamics (CFD). In our model, the bob starts at
rest and begins to swing under gravitational acceleration acting on the mass of the pendulum. An
immersed boundary (IB) framework was used to couple the pendulum’s motion and the fluid it is
immersed within. Scientists and engineers can use IB to study the interactions of an object and the
fluid it is contained within, i.e., you can explore how the fluid affects the object and vice versa.

The immersed boundary method was developed by Charles Peskin, a mathematical physiologist
at the Courant Institute of Mathematics [28–30]. Even though IB was invented in the 1970s, it is still
extensively used for investigating fluid-structure interaction problems today. Many mathematicians,
engineers, and scientists have since improved the original algorithm in attempts to increase its accuracy
without significantly increasing the computational expense and time required [31–38]. IB is still a
leading numerical framework for studying problems in FSI due to its robustness [39,40].

It has previously been applied to study problems ranging from cardiac fluid dynamics [41–44] to
aquatic locomotion [45–49] to insect flight [50–52] to dating and relationships [39]. Additional details
on the IB method can be found in Appendix B.

In the remainder of this section we will introduce our FSI pendulum’s implementation into
the IB2d framework, i.e., the computational geometry, geometrical and fluid parameters, and
model assumptions.

2.1. Model Geometry

Figure 3 presents our pendulum model’s computational geometry. In particular, Figure 3a
illustrates the modeling idea—a bob (of radius r) is composed of a central point mass (of mass m) and
outer neutrally-buoyant shell layer. It is tethered to a particular fixed location, a distance L away. The
pendulum is immersed in a viscous, incompressible fluid of uniform density ρ, and dynamic viscosity,
μ. Note that the fluid within and outside the pendulum bob is uniform in its properties. We define the
pendulum’s angular displacement, θ, to be the angle from the vertical dotted line. Gravity acts on the
central mass point; as the rest of the pendulum bob’s geometry is neutrally-buoyant, all acceleration
of the bob is due to this single gravitational interaction. However, due to the structure properties of
the pendulum bob, the neutrally-buoyant shell will undergo fluid drag due to the fluid’s resistance in
letting the pendulum bob move through it.
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Figure 3. (a) Model of an immersed pendulum with circular bob of radius r in a viscous, incompressible
fluid. The fluid has density and viscosity of ρ and μ, respectively. The pendulum has length L and the
bob has mass m, concentrated at its center. (b) The computational geometry illustrating the fiber model
construction of the discretized Lagrangian mesh.

As we wished to vary the pendulum bob’s radius and mass of its central point, we considered
the parameters listed in Table 1 for our FSI pendulum model. The explicit radii, r, and masses, m
studied are r ∈ {0.001, 0.0025, 0.005, 0.0075, 0.01, 0.0125, 0.015, 0.0175, 0.02, 0.0225, 0.025} m and m ∈
{2× 102, 5× 102, 1× 103, 2× 103, 5× 103, 1× 104} kg, respectively. The initial angular displacement, θ0,
was −π

2 + π
5 = − 3π

10 radians. We did not vary properties of the fluid, neither its density nor viscosity.
Note that the kinematic viscosity in our simulations was ν = μ

ρ = 10−5 m2/s. Some common liquids

with kinematic viscosities around 10−5 m2/s are sulphuric acid at room temperature or a variety of
oils (coconut, SAE Motor Oils, peanut, whale, etc.) at ∼100–130 degrees Fahrenheit [53]. Kinematic
viscosity, ν, measures the fluid’s internal resistance to flow under gravity.

Table 1. Table of geometric and fluid parameters used in our pendulum study.

Parameter Description Value

L Pendulum Length 0.2 m
r Pendulum Bob’s Radius r ∈ [0.001, 0.025] m
m Mass m ∈ [2 × 102, 1 × 104] kg
ρ Fluid Density 1000 kg/m3

μ Fluid (dynamic) Viscosity 0.01 kg/(m · s)
g Gravitational Acceleration 9.81 m/s2

θ0 Initial Angular Displacement − 3π
10 radians

2.2. Model Construction

Figure 3b provides a more detailed overview of the computational geometry. In particular it
provides details regarding how the structure is modeled using IB fiber models, which are used to
mimic desired material properties between discretized points, i.e., Lagrangian points, that compose
the geometry [39]. The single mass point is tethered to the fixed point, a distance L away, via a virtual
spring. The static hinge point is tethered in place using the target point model. Target points can be
used to hold Lagrangian points nearly rigid. The individual mass point uses a massive point model
that tethers the individual Lagrangian point to a mass, which dampens its movement [54]. Note that
the target point and massive point models use spring-like mathematical formulations to achieve their
desired effects, see [39].

The neutrally-buoyant shell is composed of equally-spaced Lagrangian points, to which are
tethered to their neighboring points via virtual spring connections. Furthermore, each of these
Lagrangian points are further tethered to the massive point in the center of the pendulum bob by a
virtual spring. All of the virtual spring connections in the model use stiff springs with a particular
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spring resting length in order to keep the geometry from changing shape, i.e., trying to ensure that the
Lagrangian points maintain a specific distance from other points. The number of Lagrangian points in
a circular shell varies by the radius, see Table 2. Note that due to the coupled nature of the Lagrangian
structure and fluid in the standard immersed boundary framework, it was more straightforward for us
to approximately model rigid structures in this manner. Additional steps would have been necessary
to solve the problem of each Lagrangian point only being allowed to move in a constrained way, due
to the imposed rigidity, under forces from the fluid and other external forces (like gravity) pushing
on it. Please see [46,55] for further information regarding immersed boundary formulations with
rigid bodies.

Table 2. Table providing number of Lagrangian Points in the circular shell for a particular radius, r.

Radius (m) 0.001 0.0025 0.005 0.0075 0.01 0.0125 0.015 0.0175 0.02 0.0225 0.025

# Lag. Pts in Shell 12 32 64 96 128 160 194 226 258 290 320

Fiber models use a variety of different deformation force laws to model material properties.
To model virtual (Hookean) springs, deformation forces were calculated as follows,

Fspr = kspr

(
1 − RL(t)

||XA(t)− XB(t)||

)
·
(

xA(t)− xB(t)
yA(t)− yB(t)

)
(8)

where kspr is the spring stiffness, RL(t) is the spring’s resting lengths, and XA = 〈xA, yA〉 and
XB = 〈xB, yB〉 are the Lagrangian nodes tethered by the spring. Note that in our model the resting
lengths are time-independent, hence RL(t) = RL. As mentioned previously, the spring stiffnesses are
large to ensure minimal stretching or compression of the computational geometry. The spring stiffness
used to tether the massive point to the fixed hinge point and the pendulum bob points to both one
another and the massive point are denoted by ksprL and ksprB , respectively.

In the simple case where a preferred position is enforced, boundary points are tethered to target
points via springs. Its corresponding deformation force equation, which describes the force applied to
the fluid by the boundary in Lagrangian coordinates is given by Ftarget and is explicitly written as,

Ftarget = ktarget (YA(t)− XA(t)) , (9)

where ktarget is the stiffness coefficient, and YA(t) is the prescribed Lagrangian position of the target
point. In all simulations the hinge point was held nearly rigid by applying a force proportional to the
distance between the location of the actual Lagrangian point and its preferred target position. Using a
large value of ktarget helps mitigate a small deviation between the actual and preferred position.

Artificial mass is modeled using the massive point approach of Kim et al. [54]. It is similar to
target points. ZA gives the Cartesian coordinates of the massive points, with associated mass density
MA. Note that such points do not interact with the fluid directly, similar to target points. XA(t) give
the Cartesian coordinates of a neutrally-buoyant Lagrangian boundary point, which do interact with
the fluid. Similar to target points, if a Lagrangian point deviates from its massive point, a restoring
force drives them back together, as shown in its mathematical description below

FMass = kmass(ZA(t)− XA(t)) (10)

MA
∂2ZA(t)

∂t2 = −FMass − MAgŷ, (11)

where kmass is a stiffness coefficient with kM � 1, MA is the mass of the massive point, g is the
acceleration due to gravity in vertical direction, ŷ, and ZA(t) is the position of the massive point to
which the Lagrangian point, XA(t), is tethered to at time t.
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All numerical stiffness parameters are given in Table 3. The stiffnesses were selected to be
as high as possible while also maintaining stability and fidelity of our numerical solver. Each
pendulum simulated was of length 0.2 m and was immersed in a square computational domain
of size (Lx, Ly) = (1 m, 1 m), with a grid resolution of 1024 × 1024, i.e., dx = dy = Lx

Nx
=

Ly
Ny

=

0.0009765625 m. Points that compose the circular pendulum bob were evenly spaced apart at a distance
of ds = dx

2 . Note that this is the standard convention in the immersed boundary literature when
choosing the Lagrangian point spacing, ds. It is used to avoid leaky boundaries [30]. Thus, fluid will
not be allowed to flow in or out of the pendulum bob, unless due to numerical error. Moreover, note
that the adjacent nodes along the circle were a distance r from the massive point at the center of the
pendulum bob, which was tethered a distance of L from the fixed hinge target point. Each of the
spring connections between specific points used a spring resting length equal to such corresponding
distances in an effort to maintain the geometry while the pendulum was swinging. A time-step of
dt = 2.5 × 10−5 s was used to march forward in time.

Table 3. Table of numerical temporal, spatial, and fiber model parameters used in our pendulum study.

Parameter Description Value

dt time-step 2.5 × 10−5 s
Lx × Ly Grid Size 1 m × 1 m
(Nx, Ny) Grid Resolution (1024, 1024)
dx = dy Spatial Step Lx/Nx = Ly/Ny = 0.0009765625 m

ds Lagrangian Point Spacing ∼ Lx
2Nx

ksprL Spring Stiffness Coefficient (Mass to Hinge) 1.25 × 108 kg · m/s2

ksprB Spring Stiffness Coefficient (Pendulum Bob) 2.5 × 108 kg · m/s2

ktarget Target Point Stiffness Coefficient 5 × 107 kg · m/s2

kmass Massive Point Stiffness Coefficient 2.5 × 106 kg · m/s2

While running the simulations, we stored the following data every 0.005 s of simulation time:

1. Position of Lagrangian Points
2. Forces on Each Lagrangian Point (Horizontal/Vertical and Normal/Tangential Forces)
3. Fluid Velocity
4. Fluid Vorticity
5. Forces spread from the Lagrangian mesh onto the Eulerian grid

We then used the open-source software VisIt [56], created and maintained by Lawrence Livermore
National Laboratory for visualization, see Figure 4, and the data analysis package software within
IB2d [39] for data analysis. Figure 4 provides a visualization of some of the data produced for a
pendulum of mass and radius of m = 5 × 102 kg and r = 0.0175 m, respectively, at one snapshot in
time. Section 3.4 explores the underlying fluid dynamics in further detail, including the time evolution
over a pendulum’s first swing, see Figure 19.
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Figure 4. Snapshots of a single moment in time for a pendulum with mass, m = 5 × 102 kg, and
radius, r = 0.0175 m, providing some of the data stored during the time-step in which the simulation
time reached t = 0.70 s, i.e., positions of Lagrangian points (pendulum), the velocity vector field,
magnitude of velocity, and vorticity. Note that data from giving the force spread from the Lagrangian
grid (pendulum) onto the Eulerian (fluid) grid is not shown. Lagrangian Coherent Structures (LCS) via
finite time Lyapunov exponents (FTLE) are also illustrated, although they were computed during the
post-processing stage, after the data was collected.

3. Results

Using an open source implementation of the immersed boundary method, IB2d, we modeled the
motion of a pendulum with a circular bob immersed within a fluid undergoing gravity’s influence.
For this education focused paper, we explored angular displacement and speed of the pendulum bob
as well as forces acting upon the pendulum bob to impede its motion. Upon doing so we quantified
the decay in oscillation amplitude and speed damping. This was done for a variety of pendulum bob
masses as well as radii (size). We also explored the effect that the motion of the pendulum bob has
onto the fluid it was immersed. Lastly, we compared the reduced ODE model of a damped physical
pendulum and our FSI model. We organized our results into the following five subsections:

1. Angular Displacement of the pendulum bob
2. Speed of the pendulum bob
3. Forces acting on the pendulum bob
4. Effect the pendulum bob has onto the fluid
5. Comparison between reduced ODE model and FSI model

3.1. Angular Displacement of the Pendulum Bob

As suggested from Section 1, since the pendulum is immersed within a fluid environment, its
oscillation amplitude will decay over time. Figure 5 provides snapshots of multiple pendulums’
angular displacement over time for pendulum bobs of differing radius and m = 1 × 103 kg. Note that
all simulations were run independently of each other and Lagrangian position data is being overlaid
during post-processing.
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Figure 5. Snapshots of multiple pendulums’ (of differing radius) angular displacement over time in
the case of m = 1 × 103 kg.

Moreover, both the size of the bob and the mass of the bob will affect its dynamics. Figure 6
illustrates that pendulums with the same size and shape bob may experience significantly different
oscillation patterns due to different mass. In particular, depending on the mass, the pendulum could fall
into any of the 3 damping cases (under-, over-, or critically-damped). See Figure A1 for the counterpart
case where a specific mass is tested for a variety of radii. Consistent dynamics are observed.

Figure 6. Depicting the angular displacement (radians) vs. time (s) for pendulums with the same
radius but different masses. (a–c) give data for a specific radius, either r = 0.005 m, 0.015 m, or 0.025 m,
respectively, for 4 orders of magnitudes in mass in each.

Next we calculated the maximum amplitude during each oscillation cycle for a variety of masses.
The amplitude decays exponentially, see Figure 7. Figure 7 presents the displacement amplitude
against peak number (number of half swings) for a variety of masses for r = 0.005 m. The data
shows a linear relationship between the logarithm of the amplitude and the peak number, suggesting
exponential decay, although lines seem a better fit starting at the first peak, rather than the initial
displacement. Note that Figure 8 shows a steady increase in time between successive peaks for three
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different masses (m = 2 × 102, 1 × 103, and 5 × 103 kg) for a variety of radii. As mass increases, the
time between peaks decreases. Moreover, generally as more swings occur the time become peaks
becomes more consistent. We also note that the time between the start of each simulation and their
first peak generally does not fit the data. Sections 3.2, 3.3 and 3.5 will also explore this observation in
more detail.

Figure 7. (a) Plot illustrating the decay of the height (m) that the pendulum bob reaches as the
pendulum continues to swing for the case of r = 0.005 m for a spectrum of masses. The peak amplitude
decays exponentially as illustrated by the linear relationship between the logarithm of the amplitude
against peak number, as shown in (b).

Figure 8. Plots illustrating the time of the peak in angular displacement against the pendulum bob’s
radius for its 1st through 6th peak (a–c) and the time difference between the peaks (d–f) against the
pendulum bob’s radius for three different masses: (a,d) m = 2 × 102 kg, (b,e) m = 1 × 103 kg, and
(c,f) m = 5 × 103 kg.

From this data, we computed the approximate damped period of oscillation, see Figure 9a,b.
Figure 9b provides a colormap with contour lines of the period data from Figure 9a. As mass increases,
the approximate period decreases, as suggested previously. Moreover, as radius increases, the period
also increases. Note that when mass is high enough (e.g., the case of m = 1 × 104 kg), the period
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does not significantly change between different radii; however, there is still exponential decay in
the oscillatory amplitude (see Figure A2). Furthermore, for very small radii there appears to be a
non-monotonic trend in period as a function of mass. The period was computed by averaging the time
between every other peak over the first 5 full oscillations.

Next we explore how the speed of the pendulum bob is affected by variations in its mass and
radius in a fluid environment.

Figure 9. (a) The period given as a function of a pendulum bob’s radius for a variety of masses. (b) A
contour map showing the period as a function of both the pendulum bob’s radius and mass. The
highest periods occur for small masses and large pendulum bobs.

3.2. Speed of the Pendulum Bob

Recall that in Section 3.1 we observed that peaks in angular displacement decayed exponentially
over time. This suggests that the pendulum bob’s speed is inherently slowing down as well. Figure 10
details the pendulum bob’s speed vs. the number of swings (half a complete oscillatory cycle). The
data shown is for the case of r = 0.015 m for a variety of masses. During each swing the pendulum
accelerates to a maximal speed before decelerating. The maximum occurs at roughly halfway through
each swing, when the pendulum passes the point of 0 displacement from the vertical. Note that
physically the pendulum must hit a speed of zero when it swings from one direction to the other; our
data does not reflect this due to the time resolution of the sampled time-points.

Furthermore, from Figure 10b, it does not appear that the speed peaks decay exponentially
over time from the beginning of the simulation. After a few swings, the peaks in speed appear to
satisfy a linear relationship between the logarithm of speed versus time; however, the peak speed
significantly decreases from the first to second swing, see Figure 11. Figure 11 illustrates that for
most cases from the second swing on, the peak speeds approximately demonstrate exponential decay;
however, there is significantly more decay between the first and second swing than successive peaks
thereafter. Figure A3 presents the counterpart data of how the speed of pendulum bobs of the same
mass decays over time for a variety of radii. Similarly trends are observed in the data.
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Figure 10. (a) Plot depicting the linear speed of the pendulum bob against non-dimensional time given
as the # of swings (half a full displacement cycle) for the case of r = 0.015 m and a variety of masses.
Speed peaks near the center of each swing. This corresponds to when the pendulum has approximately
zero angular displacement from the vertical. The peak speed appears to begin decaying exponentially,
starting on the second or third swing in most cases. This can be seen from linear relationships between
peak speed and swings in (b).

Figure 11. Plot illustrating that exponential decay appears in peak speed starting with the second
swing. There is significantly more decay in peak speed between the first and second swings, than
successive swings thereafter.

Next we wished to quantify the amount of damping due to the pendulums immersion in a fluid
of kinematic viscosity ν = μ/ρ = 10−5 m2/s. To do this we computed the theoretical speed of a
pendulum bob void of a fluid environment by energy conservation. We set the original potential
energy when the pendulum bob was at time zero and computed the kinematic energy when the
pendulum was passing 0 displacement, i.e.,

1
2

mv2
NF = mgh0 ⇒ vNF =

√
2gh0,

where vNF is the velocity of the pendulum bob outside of a fluid environment and h0 is the initial height
of the pendulum bob before it begins swinging. For our initial setup, h0 = L(1 − cos(π/2 − π/5)),
since the pendulum is released from an initial angle of π/5 radians from the horizontal.

We then defined the speed ratio to be: SR = v/vNF and the speed damping ratio to be: SDR =

1 − SR = 1 − v/vNF. If v = vNF, SDR ≈ 0 suggesting only small damping effects. Figure 12 gives the
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speed damping ratio as a percentage. For this particular fluid environment, even cases of high mass
and small radius result in SDR’s of ∼88%, i.e., the fluid immersed pendulum bob is moving ∼88%
slower than its fluid void counterpart. As the radius increases, the SDR increases. Note that smaller
masses have less significant increases in SR. As mass increases, SDR decreases for a given radius.

Figure 12. The percentage decrease in speed when comparing pendulum bob speed once it reaches
0 degree angular displacement on the first swing compared between simulated cases in fluid and
theoretical value outside of a viscous fluid environment.

Lastly we explored the phase space between pendulum bob speed and its angular displacement.
Figure 13a presents the data for the case of r = 0.001 m for a spectrum of masses of over
3 orders of magnitude. As suggested by all data previously, the trajectories eventually converge
to zero displacement and speed. Interesting, all the trajectories collapse onto an approximate
parabolically-capped cone. The last cycle is given for all cases in Figure 13b. Similar topologies
are seen in cases of other radii (see Figure A5) over a variety of masses. Furthermore, similar topologies
emerge when fixing the mass and exploring trajectories for a variety of radii (see Figure A4).

Figure 13. (a) Phase space of linear speed of the pendulum bob vs. angular displacement (radians) for
a variety of masses in the case of r = 0.001 m. (b) A closer look at the last simulated cycle’s phase space
in each case.
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3.3. Forces on the Pendulum Bob

We have observed that a fluid-immersed pendulum experiences exponential decay in angular
displacement and speed. As discussed in Section 1, this is due to fluid drag on the pendulum bob.
In this section we will explore this drag force. We wish to emphasize that our numerical experiments
did not prescribe any specific form of the drag forces a priori, or any forces for that matter, beyond
gravity acting on the pendulum bob.

First we selected three masses, m = 5 × 102, 1 × 103, and 2 × 103 kg, and investigated the drag
force acting on the pendulum versus time for a variety of radii. This data is shown in Figure 14. The
drag force was calculated by computing the forces perpendicular to the direction of the pendulum
arm as the bob swung. A normal unit vector was computed at each sampled time-point and the drag
force was computed using a vector projection in the direction opposite to the swinging motion of the
pendulum bob.

Figure 14a–c suggest that the drag force exponentially decays as time progressed. This was further
confirmed by the linear relationship between the logarithm of drag force vs time in Figure 14d–f. As
the radius increases, the surface (circumference) of the circle increases, and thus the amount of drag
on the pendulum bob’s body increased for a particular mass as well. Hence the drag on the bob is
dependent on its geometry (shape and size), as discussed in Section 1. Furthermore, as mass increases,
so does the overall drag on the bob. This can also be seen in the counterpart case, where 3 radii are
selected (r = 0.005, 0.015, and 0.025 m) and mass was varied, see Figure A6.

Figure 14. Drag forces (N) over time in seconds for multiple radii for cases with (a,d) m = 5 × 102 kg,
(b,e) m = 1 × 103 kg, and (c,f) m = 5 × 103 kg. The semi-log data is provided in (d–f) to highlight a
linear relationship between the logarithm of the drag force and time. This linear relationship suggests
an exponential decay in drag force over time.

Next, we explored the phase space of drag force on the pendulum bob versus angular
displacement of the bob. This data is given in Figure 15. Similar to the phase plots of speed versus
displacement, the force-displacement trajectories all collapse onto a unique exponentially decaying
envelope. Smaller radii (Figure 15a, r = 0.005 m) correspond to larger angular displacements and larger
spectrum of initial drag forces corresponding to a variety of masses over 3 orders of magnitude. In the
case of a larger radii (Figure 15c, r = 0.025 m), there are smaller angular displacements, comparatively,
and the range of initial drag forces is smaller for the same variety of masses.
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Figure 15. Phase space of drag force (N) versus angular displacement (radians) for a variety of masses
in cases of (a) r = 0.005 m, (b) r = 0.015 m, and (c) r = 0.025 m. The data for each case of a specific
radius appears to overlap as well as suggesting that as the peaks in angular displacement decay
exponentially (see Figure 7), the drag forces also decay exponentially as well.

Finally, we wish to compare force information across all cases of radii and masses considered. The
metric we chose to compare for each is the drag coefficient; recall the CD term from Equation (7). To
justify our use of Equation (7), we verified that the pendulum simulations fell into the appropriate
Reynolds number range, i.e., Re > 1. Recall the Reynolds number, Re, is defined to be

Re =
ρLV

μ
, (12)

where ρ and μ are the fluid’s density and dynamic viscosity, and L and V are a characteristic length
and velocity scale, respectively. We chose L to be the length the pendulum’s arm, but rather than
select V to be a constant, we used the time-dependent speed of the pendulum bob for each case. Note
that this speed is inherently a function of the radius of the pendulum bob itself, see Figure A3 in
Appendix C. Figure 16a illustrates that for m = 2 × 103 kg that the peak in Reynolds number is greater
than one. Moreover, where Re drops down, i.e., at the beginning and end of each swing, is where
speed is near zero. Thus we assume the Drag Force Law derived by Lord Rayleigh will suffice for
our purposes here (FD ∼ V2, see Equation (7)). Note that as the pendulums continue to swing, Re(t)
will decrease in every case. Eventually there will be a shift into the regime where Lord Rayleigh’s
Drag Force Law begins to fail and one must consider Stokes Drag Law (FD ∼ V, see Equation (4))
when Re < 1. Furthermore, we computed the time-averaged Reynolds number over the first swing of
the pendulum for all masses and radii considered, see Figure 16b. Generally, as the mass of the bob
increases, the average Re increases. On the other hand, as the radius increases, average Re decreases.

Figure 16. (a) Re vs. Time for m = 2 × 103 kg and (b) a colormap depicting the temporally-averaged
Reynolds number during the first swing for different masses and radii. Note that over time as the
pendulum slows down, the average Reynolds number will decrease.
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Upon calculating Equation (7), we also need to describe A, the cross-sectional area of the circular
pendulum, and FD, the drag force on the pendulum. We define A to be the circumference of the
circle, i.e., A = 2πr, for each given radius, r. Having computed the speed of the pendulum bob and
drag force on the body previously, we could solve for the time-dependent drag coefficient CD at each
sample time-point using Equation (7). Figure 17a,b gives CD(t) over the first swing (half an oscillation
cycle) and 4 swings (2 full oscillation cycles), respectively, for the case of m = 1 × 103 and a variety of
radii. Note that the CD peaks correspond to when the pendulum bob changes direction and thus reach
speeds near zero. Moreover, the time-dependent drag coefficients will increase over time due to the
pendulum continually slowing down.

Figure 17. The drag coefficient, CD, during the first pendulum’s first swing (a) and first 4-swings
(b) for a variety of radius in the case of m = 1e3 kg. Note that the drag coefficient maximizes when
the pendulum reaches near zero speed at the end of a swing. (c) The temporally-averaged drag
coefficients across the first swing for all mass and radius cases considered. (d) A contour map of
the temporally-averaged drag coefficients over the first swing from (c) as a function of both the
pendulum bob’s mass and radius. Generally higher drag coefficients are seen for larger mass and size
pendulum bobs.

In order to compare all simulations of differing mass and radii, we averaged the time-dependent
drag coefficient, CD(t), over the first swing, as shown in Figure 17c,d. Figure 17d provides a colormap
with contour lines of the time-averaged drag coefficient using the data from Figure 17c. Larger radii
pendulums tend to have larger drag coefficients and higher mass pendulum bobs also have larger
drag coefficients. Notice that a pendulum bob with same shape (circle) and size (radius) could elicit
different drag coefficients based on variations in mass. From Section 3.2 we have already observed
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that variations in mass give rise to variations in speed, which is also required to compute CD in the
first place. The system is highly coupled in its many dynamical features!

Finally, we highlight the relationship between drag coefficient, CD, and Reynolds number, Re,
in Figure 18. For a given mass (mass is denoted by a particular shape in the figure), as average Re
increases, CD decreases. As the system is highly coupled, for a given mass, the average Re only
increases as the pendulum bob’s radius decreases (radius is denoted by the colormap). On the other
hand, for a given radius, as the mass increases, the average CD and Re also generally increase. The
overall trend of decreasing CD with increasing Re is common in many fluid dynamics phenomena, not
only physical experiments, such as flow past rigid objects [57–59], but also in biology, such as tiny
insect flight [50,51], or even sports such as baseball [60], American football [61], or football (soccer) [62].

Figure 18. The average drag coefficient, CD, vs. average Reynolds number for a variety of masses and
radii. The averages were computing over the first swing of the pendulum bob.

3.4. Effect the Pendulum Bob Has onto the Fluid

In addition to the data analysis performed in Sections 3.1–3.3, which focused primarily on the
Lagrangian structure itself—the pendulum, CFD (FSI) simulations grant us the opportunity to analyze
how the underlying fluid reacts to a pendulum swinging through it. Also, we are able to visualize the
fluid dynamics and observe the evolution of the fluid’s velocity field, u(x, t), magnitude of velocity,
|u(x, t)|, and vorticity (∇× u(x, t)), see Figure 19, for qualitative analysis.

Figure 19 shows the resulting fluid dynamics due to the swinging motion of the pendulum bob of
mass, m = 5 × 102 kg, and radius, r = 0.0175 m, during its first swing. As the pendulum swings, there
is a pocket of fast moving fluid directly behind the bob until it passes zero angular displacement, as
shown by the Velocity Field and Magnitude of Velocity plots. Note that streamlines are presented on
the velocity field’s plots and contours are given on the magnitude of velocity plot, as well. Streamlines
illustrate the path of massless tracer particles in the flow at an instantaneous point in time, while the
contours give a line in which the quantity (here, magnitude of velocity) has constant value. Note that
the direction of the pocket of fast moving fluid is towards the pendulum bob; hence objects directly
behind the moving bob receive an fluid dynamic benefit. This phenomenon is commonly called
drafting and has been studied in the context of many sports, such as ice skating [63], running [64,65],
swimming [66], or cycling [67], as well as biological locomotion [68–72].

Within the region of fast moving fluid there are two interacting, oppositely spinning vortices
behind the bob, as illustrated by the Vorticity plots. When the vortices are shed off the bob entirely, i.e.,
once the bob swings past zero displacement, the vortex pair continues to move vertically downwards,
rather than upwards and to the right with the bob. These visualizations were produced using the raw
.vtk-data produced during the FSI simulations using the open-source software VisIt [56]. We wish to
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emphasize that one cannot gain knowledge of fluid dynamics from the reduced-order ODE model,
Equation (3) alone.

Moreover, because of the FSI simulations we are able to analyze the fluid data further and
determine regions that have varying levels of fluid mixing. During data post-processing we could
compute the finite-time Lyapunov exponents (FTLE), which can be used characterize the rate of
separation in the trajectories of two infinitesimally close fluid blobs. Maxima in the FTLE (called ridges)
have been used to determine Lagrangian Coherent Structures (LCSs), which are used to determine
distinct flow structures in the fluid [73–76]. LCSs are a tool to divide the fluid’s complex dynamics
into distinct regions to better understand transport properties of flow [77–79]. In this paper, we
computed forward-time FTLE field, whose maximal ridges give LCSs corresponding to regions of
repelling fluid trajectories and low values give rise to regions of attraction [76]. This data is presented
in Figure 19 as well. Our desire here is not to emphasize fluid mixing metrics, but merely point out
that through CFD one is able to investigate deeper dynamics of a system, even one as well studied as a
damped pendulum.

Figure 19. Colormaps (and its contours) illustrating the time evolution of the fluid’s vorticity,
magnitude of velocity, and finite-time Lyapunov Exponent (FTLE), as well as the velocity field (and
its streamlines) resulting from the pendulum bob’s first swing in the case of m = 5 × 102 kg and
r = 0.0175 m.
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Furthermore, we wish to point out that the resulting fluid dynamics are diverse. Not every
pendulum bob sheds vortices in the same way as the case of (m, r) = (5 × 102 kg, 0.0175 m) (as
illustrated in Figure 19). Figure 20 illustrates differences in vortex formation and shedding for the
case of m = 5 × 102 kg for a variety of radii during the first swing. In particular the overall size
and magnitude of vortices formed is less in the smaller radius cases; however, once shed, the vortex
dynamics are different. This would give rise to different dynamics in drafting behind the bob. In the
larger radius cases (r > 0.015 m), the vortices move vertically downwards upon being shed, while
they are significantly different in the smaller cases: in the r = 0.010 m case, the vortex-pair travels
along with the pendulum bob, and for r = 0.005 m two sets of vortex-pairs move on either side of
the pendulum bob. Thus, modifying the size of the pendulum results in different dynamics of the
underlying fluid, even though all pendulums swing along the same circular arc; however, they do so
at different speeds.

Figure 20. Comparing vortex dynamics among pendulum bob of different radii for a mass of
m = 5 × 102 kg.

Lastly, taking a further look at the r = 0.010 m case (for m = 5 × 102 kg) reveals that as the
pendulum swings, it swings back through its vortex wake, see Figure 21. The act of swinging through
its vortex wake has been suggested as a possible mechanism for increased fluid drag on the pendulum
bob [25]. However, a vortex could also enhance the speed of the bob if an appropriately spinning
vortex interacts with the bob at the right moment in time, see t = 1.0 s in Figure 21. The vortex
in red is spinning counter-clockwise and may give the bob a boost in speed, as it is moving in that
same direction. There are complex interwoven dynamics within the system. Figure 22 provides an
additional sequence of snapshots depicting these complex interactions. It shows a pendulum bob
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(m = 1 × 104 kg, r = 0.005 m) swinging through its own vortex wake during the return swing of the
first oscillatory cycle. Such complex interaction mechanisms have not been fully explored and warrant
further attention from the scientific community.

Figure 21. The vortex dynamics of the case (m, r) = (5 × 102 kg, 0.0175 m) within the first 2 s of
oscillation.

Figure 22. The vortex dynamics of the case (m, r) = (1 × 104 kg, 0.005 m) on the return swing during its
first oscillatory cycle.

3.5. Numerical Comparison & Validation

Lastly, in this section we will compare and validate the canonical damped physical pendulum
equation against our fluid-structure interaction (FSI) model. Recall the damped physical pendulum
(Equation (3)) is given by

d2θ

dt2 +
b
I

dθ

dt
+

mgL
I

sin θ = 0. (13)
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Our FSI model did not assume any knowledge of the existence of this reduced ordinary differential
equations (ODE) model. Instead it placed a spherical (circular) pendulum bob into a fluid environment,
tethered it to a fixed location, and under the influence of gravity alone, it swung. This was to mimic a
physical experiment, but performed in silica, rather than in a laboratory setting.

To compare Equation (13) and our FSI model, we first matched the parameter values. For each
radius and mass considered in our FSI model, we were able to compute the exponential decay of the
peaks in angular displacement amplitude using a linear least squares framework to fit a line through
the logarithm of the peak values in angular displacement over time (linear regression), see Figure 23a
as an illustrative example. The slope of each line was γ = − b

2I for that particular mass and radius.
Hence for the parameter b/I in Equation (13), we multiplied each slope γ by −2, i.e.,

b/I = −2γ. (14)

Note that the term mgL
I is the approximate natural (undamped) angular frequency squared of the

pendulum bob, i.e.,

ω2
N =

mgL
I

. (15)

Note that this is not the true natural, undamped angular frequency, as we did not invoke the
small angle approximation, i.e., sin θ ≈ θ for small θ [9]. Moreover, due to the presence of the fluid,
the pendulum bob was not in an undamped setting, so we could not directly calculate ωN from
our numerical experiments. However, we used the pendulum’s period, as previously computed in
Section 3.1, and γ to compute ω2

N . For clarity with the undamped case, we define TD and ωD to the
damped period and angular frequency of our pendulum bob from the FSI experiments. Recall the
relationship between ωD and TD,

ωD =
2π

TD
, (16)

and the relationship between ωN , ωD, and γ,

ω2
D = ω2

N − γ2. (17)

Hence using Equations (15)–(17), we can compute the natural (undamped) angular frequency,

ω2
N =

mgL
I

=
4π2

T2
D

+ γ2. (18)

Using Equations (14) and (18) we found the appropriate parameter values for the reduced ODE
model, as computed from the FSI simulations. Figure 23b–f provides comparison of the FSI and
ODE models’ angular displacement over time for a variety of pendulum bob radii and masses. For
comparative purposes, the ODE model was initialized at the 5th peak of the FSI model and its solution
was computed by propagating both forwards and backwards in time. Moreover we also plotted the
exponential decay, using the 5th peak amplitude as the coefficient, and plotted it in a similar manner
both forwards and backwards in time from the 5th peak.
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Figure 23. (a) Slopes of the least squares (linear regression) fits through the peaks of angular
displacement over time to compute the exponential decay, γ = − b

2I , for a variety of radii in the
m = 5 × 103 kg case. (b–f) Comparison of the FSI and ODE models’ angular displacement over time
for a variety of masses and radii.
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We note that the ODE model only agrees with our FSI model after a few oscillations. If we
propagated the ODE model forward in time from the original position of the FSI pendulum, angular
displacements were not consistent, see Figure 24. Furthermore, if we used the first peak amplitude
(initial angular displacement) as the coefficient on the exponential decay, the FSI model appeared to
not agree with its own decay rate. However, the decay rates are consistent, as seen in Figure 23, but
the FSI model does not start obeying such decay until after a few oscillations. Thus, the decay rates,
γ = − b

2I , were calculated starting with the third peak rather than the initial displacement. We chose
the third peak rather than the second as the linear relationship was more prevalent from that point
on. This is the same phenomenon from Figure 11 in Section 3.2, where the exponential decay in peak
speeds did not start until what appeared to be the second swing.

Figure 24. Depicting the dynamics if the ODE model started from the original angular displacement
of the FSI pendulum rather than the the 5th peak for the case (m, r) = (5 × 102 kg, 0.005 m) and
(m, r) = (5 × 103 kg, 0.015 m) for (a,b), respectively. A visualization of the exponential decay is also
provided with the coefficient either being A0, the original angular angular displacement, or A5, the
displacement of the 5th peak.

Overall the reduced ODE model agrees with the FSI model after a few oscillations for different
size pendulum bob radii as well as over a spectrum of masses; however, the dynamics during the first
swing are substantially different (see Figure 24). This is possibly due to a different fluid drag law on
the pendulum, before it settles into the regime where the drag can be modeled as linearly proportional
to its velocity.

Lastly, we computed the damping parameter, b, by itself as a function of the mass and radius of
the pendulum bob. To compute this, we first found the effective moment of inertia of each case using
Equation (18), e.g.,

I =
mgL

4π2

T2
D
+ γ2

, (19)

and then calculated
b = −2γI. (20)

Note that we chose to calculate the effective moment of inertia, I, for each simulation here. Our FSI
pendulum bob geometry was not a solid structure, but rather, had a singular mass source at its center,
a shell composed of neutrally-buoyant points tethered together, and from the IB formulation, its shell
enclosed fluid within. This fluid had the same properties as the backward fluid environment in which
the pendulum is immersed. Moreover, as the principle of added mass states that inertia is added to a
fluid system when an object is accelerating (or decelerating) through it [21]. Thus, the appropriate
moment of inertia, I, to use in the ODE model to match the FSI model is non-trivial.
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The damping parameter, b, increased as mass increased for a particular radius, see Figure 25.
Moreover, as the radius increased for a given mass, b increased as well. While the system appears to
be more sensitive to changes in mass, recall that the mass was varied over two orders of magnitudes in
value, while the radius varied roughly over one.

Figure 25. Values of the damping parameter, b, as a function of the mass and radius of the
pendulum bob.

4. Discussion and Conclusions

Two-dimensional immersed boundary simulations were used to model the swinging motion
of a circular pendulum bob under the influence of gravity that was contained within a viscous,
incompressible fluid environment. In addition, to the authors knowledge, this is the first fluid-structure
interaction (FSI) simulation that explores the motion of an ordinary pendulum system which also
offers an open-source complement. The angular displacement data collected from the motion of the
pendulum bob was directly compared against the reduced-order damping ODE model that is familiar
to most STEM students. In general, the oscillatory dynamics agree between the ODE model and
the FSI model (see Section 3.5). However, there were discrepancies in the decay rates between the
first few swing’s maximal angular displacements and speeds with those following thereafter. The
mechanisms underlying these observations are not fully understood. There appear to be interesting
dynamics to probe further involving the pendulum bob’s mass and radius, the vortex wake it creates,
the interactions of those vortices with each other and the bob itself, and the resulting drag on the bob
during large amplitude oscillations.

Moreover, the ODE model’s linearly-proportional-velocity damping term, i.e., Stokes Drag Law,
was appropriate once the pendulum has swung a few times after a large initial angular displacement.
During the first initial swing there was an enhancement of drag on the pendulum bob, potentially
obeying Rayleigh’s Drag Law and/or from the principle of added mass [24] and/or other complex
drag mechanisms involving vortex shedding [23].

Furthermore, we were able to determine the approximate damping parameter, b, that fit the ODE
model from our FSI model. The damping parameter, b, was found to be dependent on both mass and
radius of the pendulum (see Section 3.5). Also, through the FSI simulations, we were able to quantify
how the drag coefficient, CD, increased with both increasing mass and radius of the pendulum bob
(see Section 3.3). On that note, we also illustrated how the pendulum’s period of oscillation was a
function of both the mass and radius of the pendulum bob (see Section 3.1).

223



Fluids 2020, 5, 48

Beyond the dynamics of the pendulum structure itself, using a FSI model allowed us to peek into
the resulting dynamics of the underlying fluid (see Section 3.4), which we would not have otherwise
been able to do using the reduced-ODE model alone. While the purpose of this study was to explore
the dynamics of a FSI pendulum model, which inherently did not assume any particular drag laws a
priori, and compare the results to the ODE model, this framework can be used to further probe into
new scientific frontiers that could unravel the enhanced contributions to fluid drag, whether from
traveling through your own vortex wake, as suggested by Mathai et al., 2019 [25], vortex shedding
as suggested by Bolster et al., 2010 [23], or added mass, as suggested by Bandi et al., 2013 [24]. There
are still complex relationships to decrypt between oscillatory amplitude, geometry and mass of the
pendulum bob, and fluid scale. The aforementioned studies performed physical experiments with
pendulums and used sophisticated visualization techniques, either the Baker electrolytic technique [80]
or particle image velocimetry (PIV) [81,82] to visualize the underlying fluid dynamics.

Furthermore, using this FSI framework it is possible to couple multiple pendulum together and
study the resulting complex dynamics and/or investigate the motion of a variety of geometric objects
being swung as pendulum bobs. We have seen that the size of the pendulum bob affects the underlying
fluid dynamics, as observed through different vortex dynamics in Section 3.4; however, one has yet to
explore how shape affects the fluid dynamics or motion of the bob itself.

While a student’s first brief foray into fluids may have been through the concept of damped
simple harmonic motion involving a pendulum, we hope that this manuscript provides the following
context for students in an introductory fluid mechanics course:

• A connection to where students may have seen fluid drag laws previously, i.e., the Stokes Drag
Law and Pendulum Motion. Furthermore, it illustrates for students that famous laws of physics
were discovered with systems that seem as “basic” as that of a pendulum.

• The differences that may arise between modeling a system using a reduced-order ODE model and
attempting to computationally model all aspects of the system to a higher degree. We hope this
shows students that reduced models are valuable in that they are usually easier to solve while
(hopefully) capturing a bulk of a system’s dynamics. However, there are clear disadvantages as
illustrated by the discrepancies that arise between the reduced order model and computational
model—many dynamics are not captured in the reduced-model, e.g., the vortex wake or drafting,
that maybe particularly interesting or important to understanding the system as a whole.

• Similarly, the full dynamical richness of a system may only be explored by investigating its
explicit fluid mechanics, even in a system as seemingly “simple” as a single pendulum immersed
in a fluid. Moreover, to even study systems involving fluids and objects immersed therein, it
requires either sophisticated experimental techniques or computational expertise. This work
shows that a computer can be an immensely powerful tool for performing science. More than
that, programming knowledge is highly sought after in this day and age [83,84].

• The observation that even systems that are routinely studied in some introductory courses,
like a pendulum, may still have open, exciting research questions that scientists and engineers
actively pursue.

To conclude, the pendulum may be an old, historic device that has been studied for millennia;
however, under the hood, there are a lot of hidden, complex dynamics left to discover.
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Appendix A. Instructor Resources

Teaching Resources:

Associated supplemental files contain slides, movies, and open-source codes pertaining to the
paper. It encompasses the following:

1. Pendulum_Classroom_Supplement.pptx/.pdf: presentations which may be used in class; slides
that tell the story of the paper. Note that the .pptx file has embedded movies in .mp4 format.

2. Movies: directory containing movies (.mp4 format) pertaining to each simulation shown in the
manuscript.

3. Note that an open-source fluid-structure interaction model of a point-mass pendulum can be
found at: https://github.com/nickabattista/IB2d in the sub-directory:

IB2d → matIB2d → Examples → Examples_Education→ Pendulum.

4. Visualization software used: VisIt (https://visit.llnl.gov/) (v. 2.12.3)

Appendix B. Immersed Boundary Method

The immersed boundary method [30] was used to model the motion of a pendulum under
gravitational acceleration, see Section 2. Although, IB is capable of solving fully coupled fluid-structure
interaction systems involving flexible or squishy structures, here we use it to model the stiff boundaries
of a pendulum bob immersed within an incompressible, viscous fluid. The fluid motion is governed
by the Navier-Stokes equations, given as

ρ

(
∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t)

)
= −∇p(x, t) + μΔu(x, t) + f(x, t) (A1)

∇ · u(x, t) = 0, (A2)

where u(x, t) = (u(x, t), v(x, t)) is the fluid velocity, p(x, t) is the pressure, f(x, t) is the force per
unit volume (area in 2D) applied to the fluid by the immersed boundary, i.e., the pendulum. The
independent variables are the position, x = (x, y), and time, t. Equations (A1) and (A2) are conservation
laws for the fluid, i.e., the conservation of momentum and mass, respectively. Note that Equation (A2)
is known as the incompressibility condition.

The interaction equations between the fluid and the immersed structure are given by

f(x, t) =
∫

F(r, t)δ(x − X(r, t))dr (A3)

U(X(r, t), t) =
∂X(r, t)

∂t
=

∫
u(x, t)δ(x − X(r, t))dx, (A4)
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where X(r, t) gives the Cartesian coordinates at time t of the material point labeled by Lagrangian
parameter r, F(r, t) is the force per unit area imposed onto the fluid by elastic deformations in the
boundary, as a function of the Lagrangian position, r, and time, t. Equation (A3) applies a force from
the immersed boundary to the fluid grid through a delta-kernel integral transformation. Equation (A4)
sets the velocity of the boundary equal to the local fluid velocity.

As suggested in Section 2.2, the deformation force equation, F(r,t), is specific to the system being
explored. For this pendulum model, it takes the following form

F(r, t) = Fspr + Ftarget + FMass, (A5)

that is the summation of forces arising from spring, target point, and massive point deformations
pertaining over each Lagrangian point being modeled with one or more of this model features.

IB Algorithm

In our pendulum model, we imposed periodic boundary conditions on a square domain. To solve
Equations (A1)–(A4) we need to update the velocity, pressure, and both the position of the boundary
and forces acting on it from the previous time-step data, time n. IB traditionally does this in the
following steps [30,39]:

Step 1: Calculate the force density, Fn on the immersed boundary, from its current boundary
configuration at time n, Xn.

Step 2: Use Equation (A3) to spread the force from the Lagrangian boundary to the Eulerian
(fluid) mesh to compute fn

Step 3: Solve the Navier-Stokes equations, A1 and A2, on the Eulerian grid, thus updating un+1

and pn+1 from un, pn, and fn.
Step 4: Update the Lagrangian point positions, Xn+1, using the local fluid velocities, Un+1,

computed from un+1 and (A4).
We quickly note that to approximate the integrals in Equations (A3) and (A4), discretized (and

regularized) delta functions were used. We chose to use the delta functions described in [30], i.e., δh(x),

δh(x) =
1
h3 φ

( x
h

)
φ
(y

h

)
φ
( z

h

)
, (A6)

where φ(r) is defined as

φ(r) =

⎧⎪⎨⎪⎩
1
8 (3 − 2|r|+

√
1 + 4|r| − 4r2), 0 ≤ |r| < 1

1
8 (5 − 2|r|+

√
−7 + 12|r| − 4r2), 1 ≤ |r| < 2

0 2 ≤ |r|.
(A7)

Appendix C. Additional Pendulum Data

In this appendix we provide complementary data to the data presented in Section 3, e.g., if we
provided a figure that contained a variety of masses for a particular radius (as in Figure 6), here we
will provide the opposite—a variety of radii for particular cases of mass (as in Figure A1 below). These
figures are provided for additional clarity in regards to the comparisons being discussed and analyzed.

First we provide the angular displacement (in radians) over time (in seconds) for cases of
pendulums with the same mass, but different radii in Figure A1. This data is to illustrate clearly
that pendulum bobs with the same mass can experience different oscillatory patterns for different
radii. Moreover, it appears that by increasing mass orders of magnitude, from 2 × 102 kg to 2 × 103 kg
to 1 × 104 kg could result in the pendulum bob undergoing different regimes of oscillation—either
underdamped to overdamped.

226



Fluids 2020, 5, 48

Figure A1. Depicting the angular displacement (radians) vs. time (s) for pendulums with the same
mass but different radii. (a–c) give data for a specific mass, either m = 1 × 104 kg, 2 × 103 kg, or
2 × 102 kg, respectively, and a variety of radii in each.

Next we provide a plot of the height the pendulum reaches (in meters) as a function of the
peak number in angular displacement for m = 1 × 104 kg and a variety of radii in Figure A2. This
illustrates that as the radius increases, the height decreases. Not only does the height decreases as
the radius increases, the linear speed of the pendulum also decreases as well, as given in Figure A3.
Our simulations suggest that smaller pendulum bobs generally move faster than larger ones for a
given mass. In both of these figures, among all cases, both the speed and height decay exponentially
as illustrated by the semi-logarithmic plots in Figures A2b and A3b. These data are provided to
suggest that as the size of the pendulum increases, there must be more drag force acting on the bob to
decelerate their speed and thus not allow them to reach as great of heights (angular displacements) as
other smaller bobs.

Figure A2. (a) Plot illustrating the decay of the height (m) that the pendulum bob reaches as the
pendulum continues to swing for the case of m = 1 × 104 kg for a variety of radii. The peak amplitude
decays exponentially as illustrated by the linear relationship between the logarithm of the amplitude
against peak number, as shown in (b).
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Figure A3. (a) Plot depicting the linear speed of the pendulum bob against non-dimensional time
given as the # of swings (half a full displacement cycle) for the case of m = 1 × 103 kg for a variety of
radii. Speed peaks in the middle of a swing corresponding to when the pendulum has zero angular
displacement from the vertical and the peak speed appears to decay exponentially, given by the linear
relationship in (b).

Furthermore we also provide more detailed phase space explorations of linear speed (m/s) versus
angular displacement (radians) in Figures A4 and A5. Figure A4 provides the phase space of linear
speed versus angular displacement for the case of m = 5 × 103 kg and a variety of radii, while
Figure A5 selects four radii (r = 0.001 m, r = 0.005 m, r = 0.0015 m, and r = 0.025 m) and varies mass.
Similar topological structures are observed, where the data collapses onto a parabolically-capped cone.
This is intuitive as both the peaks in angular displacement and speed decrease over time; however,
what is particularly interesting is that the cone angle looks to be approximately conserved among all
cases.

Figure A4. (a) Phase space of linear speed of the pendulum bob vs. angular displacement (radians) for
a variety of radii in the case of m = 5 × 103 kg. (b) A closer look at the last simulated cycle’s phase
space for each case.
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Figure A5. Phase space of linear speed of the pendulum bob vs. angular displacement (radians) for a
variety of masses for cases: (a) r = 0.001 m, (b) r = 0.005 m, (c) r = 0.015 m, and (d) r = 0.025 m.

Finally we provide data depicting the drag force (N) over time for 3 different radii (r = 0.015 m,
r = 0.020 m, and r = 0.025 m) over a variety of masses. Compared to Figure 14, we notice that for
the same radius but different masses, the drag forces begin to overlap with time. Specifically, the
drag forces corresponding to larger masses decay more rapidly. This could also be surmised from
Figure 17c,d, which show an increased average drag coefficient during the higher mass cases for a
specific radius.
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Figure A6. Drag forces (N) over time in seconds for a variety of masses for cases with (a,d) r = 0.015 m,
(b,e) r = 0.020 m, and (c,f) r = 0.025 m. The semi-log data is provided in (d–f) to highlight a linear
relationship between the logarithm of the drag force and time. This linear relationship suggests an
exponential decay in drag force over time.
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Abstract: We examine two dimensional properties of vortex shedding past elliptical cylinders through
numerical simulations. Specifically, we investigate the vortex formation length in the Reynolds
number regime 10 to 100 for elliptical bodies of aspect ratio in the range 0.4 to 1.4. Our computations
reveal that in the steady flow regime, the change in the vortex length follows a linear profile with
respect to the Reynolds number, while in the unsteady regime, the time averaged vortex length
decreases in an exponential manner with increasing Reynolds number. The transition in profile is
used to identify the critical Reynolds number which marks the bifurcation of the Karman vortex from
steady symmetric to the unsteady, asymmetric configuration. Additionally, relationships between the
vortex length and aspect ratio are also explored. The work presented here is an example of a module
that can be used in a project based learning course on computational fluid dynamics.

Keywords: vortex formation length; wake; vortex shedding

1. Introduction

Vortex development in a fluid’s flow is a highly nonlinear phenomenon which goes through
multiple bifurcations. This topic is rarely introduced in a serious manner in an undergraduate course on
fluids. However, there are simple ways to talk about vortex development by combining qualitative and
quantitative approaches that go beyond simply examining classical images or the use of sophisticated
particle image velocimetry (PIV) techniques. We introduce one such method of talking about the
physics of vortex development in this paper, which can be used in the form of a lesson plan for a
lecture or to motivate computational projects in more advanced classes in fluids. Student-centered
practices such as problem-based and project-based learning (PBL) are more commonly practiced in the
arts. Instructional methods related to PBL promote a more inductive approach to learning whereby
generalizations and abstractions follow from first understanding specific cases [1]. This approach
is in contrast to the deductive strategy taken in the sciences which is a more top-down approach
and a possible cause of alienation in several students. The concept of problem-based learning began
more than 30 years ago in the context of medical education. PBL has been defined as the “posing
of a complex problem to students to initiate the learning process” [2] and as “experiential learning
organized around the investigation and resolution of messy, real-world problems” [3]. PBL can be
implemented at various scales in a course with a focus from a “teacher to student-centered education
with process-oriented methods of learning” [4,5]. The recent popularity of project based learning
approach in physics and engineering education is based on research indicating the effectiveness of
PBL in enhancing student engagement [4,6,7]. Several recent educational papers have specifically
discussed the effectiveness of computational problems in fluid dynamics and the use of software such
as Comsol, among others, in improving classroom engagement [8–13]. The current paper is an attempt
to present a similar example of a complex problem in fluid dynamics which is apt as a unit which can
be introduced as a project.

Fluids 2020, 5, 157; doi:10.3390/fluids5030157 www.mdpi.com/journal/fluids235
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Flow past a circular cylinder is a very well studied problem in classical fluid mechanics.
While the creeping flow regime is completely understood and most related problems are approachable
analytically, the inertial regime contains several unanswered questions. The evolution of flow past a
cylinder is a particularly interesting and well studied problem [14]. The Reynolds number (Re = UL/ν,
where U and L represent the characteristic velocity and length respectivel, and ν refers to the dynamic
viscosity) has been shown to capture several critical changes in flow structure. The first of these happens
around Re = 5 [15], where the flow transitions from the creeping flow to one with a symmetric vortex
profile. A second flow bifurcation from the steady symmetric profile to a asymmetric unsteady vortex
occurs at around Re ≈ 47 [16] which lasts until about Re ≈ 150. Following the notation employed in
the recent literature [17], we identify these critical Reynolds numbers as Rec1 and Rec2, respectively.
We refer the readers to the paper by Faruquee et al. [17] who provide a thorough discussion of the
various historical experimental and numerical studies on this topic. The critical values referred to
above are sensitive to shape of the obstacle, aspect ratio (AR), blockage ratio of channel diameter to
channel width, roughness of the cylinder etc. but the qualitative aspects of the various transitions are
still maintained.

In this paper we are concerned with highlighting the dynamics of vortex formation, specifically
through an examination of the vortex length in a flow past an elliptical obstacle. Experimental
measurements of the length and width of wake vortices past cylinders have been discussed in the
literature [14,16,18–24]. The vortex length, usually denoted Lw, is defined as “the streamwise distance
between the confluence point (wake stagnation point) and the rear stagnation point of the cylinder” [17].
It is also, more commonly, defined as the distance between the rear stagnation point and the “point
downstream where the velocity fluctuation level has grown to a maximum” [14] (Figure 1 provides
a schematic explanation of this metric). Experiments and numerics indicate the relation between Lw

and maximum velocity fluctuation and the base pressure (at the rear of the obstacle) to be inversely
proportional [23,25,26]. Coutanceau and Bouard [27] put forth the linear equation Lw/d = 0.05 Re for
4.4 < Re < 40, which, in the steady, symmetric vortex regime, related the growth of the near wake
vortex as a function of Re.

The effect of AR, which is the ratio of the semi-minor (a) to semi-major (b) axis of the obstacle,
is also of interest in this study. Note that AR = a

b < 1 indicates an elongated body while, AR > 1
suggests a squat, flat object (such as disk in 3D). In two dimensions the shape itself is identical and
therefore the AR is reflective of the orientation of the body with respect to the oncoming flow. Hence
in 2D, we can describe AR < 1 as indicative of a high drag configuration where the entire length of the
body is perpendicular to the flow, while in the case of AR > 1, the body assumes a pefectly streamlined
position with the length of the body parallel to the flow. Recent numerical simulations [17] reveal
that Lw has a tendency to increase with increasing AR for Rec1 < Re < Rec2. However, for AR < 0.4,
the wake disappears. For Re = 40, Faruquee et al. [17] provide the following equation relating the
normalized vortex formation length to AR:

Lw

d
= 2.2(AR)2 + 0.5(AR)− 0.43 (1)

where d is the hydraulic diameter. This formula indicates a critical minimum AR of 0.34 below which
no symmetric vortex forms. This critical AR is sensitive to the Re and has been shown to increase with
decreasing Re Table 3 [17]. The calculations are in agreement with the experimental studies [27,28].
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Figure 1. This figure shows a visualization of the primary vortex region in a flow past an ellipsoidal
body. Based on past experimental work [24], the vortex length (denoted by the length of the bold red
line) is measured as the distance between the rear surface of the body and the “pinch-off” point where
the flow velocity vanishes.

In the rest of the paper we numerically investigate the vortex formation length for a class of
ellipse shaped obstacles in a flow in the range 10 < Re < 100 for various ARs. Our investigation goes
past Rec2 into the asymmetric, periodic vortex shedding regime. Section 2, discusses the numerical
method used and Section 3 elaborates the results of our computations and compares them with those
in the literature.

Vortex formation in flow past cylinders has been studied extensively for many practical
applications. Vortices form when fluids flow past obstacles at sufficiently high speeds and are therefore
of particular interest in various branches of engineering as they can pose a threat by inducing harmful
vibrations in aircrafts, buildings, and other structures. In the ensuing analysis, we determine the
length of the primary vortex region in the wake of an immersed body, since this region is most
influential in the dynamics of the body. More specifically, we examine 2D elliptical bodies of different
aspect ratio (henceforth denoted AR), which is a ratio of semi-major to semi-minor axis (oblate) and
semi-minor to semi-major (prolate). A total of thirteen different values of AR from 0.2 to 2.6, increasing
in increments of 0.2, have been considered. This simple numerical approach is a continuation of a
previous experiment conducted on a flow past a fixed cylinder in a flow tank, in which the vortex
length was determined by means of visualization and serves to elucidate a complex problem by simple
means, which we believe makes for an effective class project.

2. Methodology

We used COMSOL Multiphysics to model a 2D flow in a channel past a fixed cylinder.
The software uses a finite element method to solve the Navier–Stokes and incompressibility equations
given by

ρ

(
∂u

∂t
+ u · ∇u

)
− μ∇ · (∇u +∇Tu) +∇p = 0 (2)

∇ · u = 0. (3)
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Here, ρ is the density of the fluid, u = (ux, uy) is the divergence free flow field, t is time, μ is the
kinematic viscosity, and p is the pressure. The Reynolds number is defined as Re = Ud

ν , where U is
the far-field of free-stream velocity, ranging between 0.1–1 m/s, d is the characteristic length, which
in this case was 10−1 m and ν is the dynamic viscosity, taken to be 10−3 kg/m3. The solution to the
above flow equation yielded the velocity and pressure fields which were then utilized to identify the
vortex length for 10 < Re < 100 and ellipses of varying aspect ratios (AR is the ratio of minor axis to
major axis). The major and minor axes of the ellipses were chosen to conform to the desired values of
AR but with keeping the area of each ellipse the same as that of the cylinder. Table 1 summarizes the
important parameters used in the numerical computations.

Table 1. The table provides some important parameters for the numerical study. Note that the area of
the elliptical cylinders is always maintained at 0.0785 m2 in all calculations.

Channel Height Channel Length Cylinder Diameter Area of Cylinder AR Re

0.4 m 2.2 m 0.1 m 0.00785 m2 0.4–1.4 10–100

The problem of flow past a 2D cylinder is a well studied and benchmarked problem in
COMSOL [29]. A description of the code and the methodology of this standard problem can also
be found on the COMSOL website: comsol.com/model/download/449401/models.mph.cylinder_
flow.pdf. For the purposes of this work, this code was suitably adapted for the study of the elliptical
cylinder. The problem was solved using the FSI module in COMSOL which uses a PARADISO solver;
it was run for 5 s in increments of 0.01 s using a “fine” mesh consisting of 5662 elements. Convergence
tests were performed in a previous study [30,31] for a more complex problem involving 2D and 3D
elliptical cylinders with attached wings (or flexible fiber).

The dimensions and geometry of the problem studied here were similar to those used in our
previous studies [30]. We also verified our code for the case of flow past a circular cylinder with perfect
slip conditions along the top and bottom walls and no slip on the surface of the cylinder, to mimic
unbounded flow. Through this calculation we were able to obtain the critical bifurcation of around 47
where the flow transitions from steady to unsteady. This helped us to confirm that the metric used
to identify the critical Reynolds number was correct. In a classroom setting the relationship between
the Reynolds number and the Strouhal number would be appropriate as an additional validation
of the numerical scheme. The remaining computations were conducted in a bounded channel with
no-slip conditions on the channel walls and also on the surface of the ellipse. The various panels in
Figures 2 and 3 show some sample flow and pressure profiles based on our numerical simulations for
various Reynolds numbers.

Two different criteria were used to measure the length of the vortex depending on whether the
flow is steady or unsteady. For the steady case, since the flow does not vary in time (see the top panels
in Figure 4), the vortex region is symmetric about y = 0 and its length remains constant in time. In this
case, we examined the horizontal component of the velocity, ux, and of the pressure gradient, namely,
dp
dx as a function of x along y = 0. The border or separatrix of the primary vortex pair separates the
inner wake flow from the outer uniform flow. At the junction of the separatrix and y = 0, the two
flows are in opposing directions, the outer flow moving in the positive x while the wake flow moves
in the negative x direction. The point at which ux = 0 can therefore be defined as a critical point which
marks the end of the primary vortex region. The horizontal distance of this critical point from the rear
end of the cylinder is defined as the vortex length. To confirm this hypothesis, a second criterion was
also tested. We also observe that the pressure along y = 0 increases the fastest as we cross the critical
point. Therefore the vortex length can also be defined with respect to the maximum of the magnitude
of the pressure gradient. Since dp

dy is negligible, this collapses to the maximum of dp
dx along y = 0.
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(a) Streamlines of the flow in the steady regime (b) Pressure profile in the wake of the ellipse

Figure 2. Numerical simulations of the flow past elliptical objects of various ARs: steady flow.
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(a) Streamlines of the flow in the unsteady regime (b) Pressure profile in the wake of the ellipse

Figure 3. Numerical simulations of the flow past elliptical objects of various ARs: unsteady flow.
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Figure 4. The panels (a,b) show the position of the wake stagnation point in the case of steady flow,
while panels (c,d) show the periodically changing position of the stagnation point for the oscillating
flow regime.

In the case when flow becomes unsteady, the wake region oscillates in space and time (see the
bottom panels in Figure 4). The vortex region is asymmetric about y = 0 and moves in both spatial
directions x and y. In this case the critical point at a given time was defined by the maximum of
the magnitude of the pressure gradient, ∇p, which is a generalization of the criterion used in the
steady state case and the appropriate length is the time averaged vortex length over a period. We use
numerical interpolation to smooth the data and find our zeros and extremum.

3. Results and Discussion

The computations for the steady case show a monotonic increase in vortex length with increasing
Re, below a critical threshold, for all ARs (see for example, Figure 5). The rising trend is similar for
both criteria employed to measure the vortex length. When the flow becomes unsteady, the mean
vortex length is seen to decrease with increasing Re. The maximum vortex length can be associated
with the onset of a transition in stability as the flow bifurcates from steady to unsteady Karman
vortex. The Figure 5a–d show the mean change in vortex length versus Re for some sample cases
of flow past ellipses of AR 0.4, 0.8, 1.0, and 1.2. All graphs, show the same overall profile and the
turning point can be used to identify the critical Reynolds number, Rec which is sensitive to the AR
of the body. The Table 2 depicts the Lw/d versus Re profile for 10 < Re < 60, i.e., for flows that
generate a steady vortex, which is in keeping with the linear relationship proposed by Coutanceau and
Bouard [27]. The table shows the slopes of best fit lines for various ARs which appear to monotonically
decrease with increasing AR and are overall close to the value suggested in the literature. In the regime
60 < Re < 100, we use an exponential decaying function, Lw/d = AeαRe to fit the data. Table 2 also
shows the value of the exponent, α, along with the goodness of fit for various AR. As in the case of the
steady vortex, the dependence of the vortex formation length on Re is sensitive to AR. The missing
data for AR = 1.4 is due to the termination of our study at Re = 100; at this point the AR = 1.4 case
does not reveal an unsteady vortex. Table 3 also shows the average Lw/d for different AR and Re.
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Figure 5. The figures show the change in normalized vortex length, Lw/d, versus Re for AR = 0.4 in (a),
AR = 0.8 in (b), AR = 1.0 in (c) and AR = 1.2 in (d). The maximum point in each graph characterizes
the transition Re at which the flow changes from steady symmetric to unsteady asymmetric.

Table 2. This table shows the nature of the Lw vs. Re relationship in the two different flow regimes.
The first two rows provide the slope of the best line representing the changing value of Lw in the steady
wake. Rows three and four tabulate the exponentially decaying rate of Lw as a function of Re in the
unsteady, asymmetric wake.

AR = 0.4 AR = 0.6 AR = 0.8 AR = 1.0 AR = 1.2 AR = 1.4

Slope 0.108 0.095 0.082 0.068 0.059 0.046
R2 0.996 0.948 0.922 0.961 0.976 0.959

Exponent −0.024 −0.023 −0.020 −0.018 −0.034 -
R2 0.953 0.953 0.951 0.995 0.986 -

A particularly interesting relationship to investigate in this problem is that between the critical
Reynolds numbers, Rec and AR. The transitions from steady to unsteady wake are very sensitive to
the specific geometric characteristics of the cylinder. Figure 6 shows the critical Re for ARs ranging
between 0.4 and 1.4 estimated from using the velocity and pressure gradient criteria. The Rec vs. AR
curve shows a minimum at AR ≈ 0.6–0.7. Overall, for bodies with AR in the range 0.4–1.4, Rec appears
to lie in the range 55–95; for a cylinder our calculations show this critical value to lie at the accepted
value of Rec = 70. The more streamlined bodies show greater propensity to develop elongated primary
vortices. The equation:

Recrit = 79.46(AR)2 − 116.18(AR) + 100.26 (4)

captures the quadratic nature of the profile (with R2 value of 0.96) seen in Figure 6, obtained by fitting
the average of the two curves shown in the figure. This equation gives us valuable information about
the optimal geometry and its relationship with vortex formation. Engineers and designers wanting to
suppress disruptive osculations may find this equation particularly useful.
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Figure 6. The graph shows the variation of Recrit versus AR.

Table 3. The table shows the average values of the normalized vortex length Lw/d for various values
of AR and Re.

Re 10 20 30 40 50 60 70 84 88 92 96 100

AR Lw/d Lw/d Lw/d Lw/d Lw/d Lw/d Lw/d Lw/d Lw/d Lw/d Lw/d Lw/d

0.4 0.513 1 1.67 2.064 2.737 3.306 3.332 2.752 2.399 2.098 1.857 1.628
0.6 0.622 0.872 1.647 1.741 2.365 2.617 1.86 1.239 1.18 1.128 1.087 1.043
0.8 0.369 1.236 1.235 1.663 1.982 2.362 2.097 1.31 1.31 1.196 1.167 1.141
1 0.319 0.908 0.908 1.353 1.621 2.109 2.18 1.678 1.533 1.413 1.343 1.267
1.2 0.251 0.515 0.953 1.244 1.604 1.604 2.115 2.351 2.051 1.783 1.485 1.389
1.4 0.363 0.532 0.961 0.961 1.181 1.419 1.677 1.879 1.894 2.068 2.171 1.923

4. Conclusions

In summary, our overall computations and qualitative profiles are in agreement with previous
experimental results [24], where measurements of variations in vortex length were made through flow
visualization and imaging techniques of flow past various cylinders in a flow tank. These experiments
indicate a similar extremum in vortex length as a function of flow speed (Re) and AR. The central
contribution of this work lies in two consistent ways of defining the vortex formation length and the
observation of the vortex length dependence on Re, especially in the unsteady flow regime. Questions
for future investigation include extending the Re regime of the study and experimental verification
of the unsteady vortex formation length. Pedagogical treatments in the literature appear to focus
primarily on lower level courses in science and engineering. There is little discussion about the
teaching and learning of more advanced topics like fluid dynamics [32]. We believe that examples like
the ones presented here add value to the science of fluid dynamics in some capacity, but also to the
ways in which students can engage with difficult topics in fluid dynamics. Such a treatment lends
itself very well to a first serious course in fluids but also in more advanced courses where students
have greater proficiency in dealing with computational software like Comsol.
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Abstract: We give a rather short and self-contained presentation of the global existence for Leray-
Hopf weak solutions to the three dimensional incompressible Navier-Stokes equations, with constant
density. We give a unified treatment in terms of the domains and the relative boundary conditions
and in terms of the approximation methods. More precisely, we consider the case of the whole
space, the flat torus, and the case of a general bounded domain with a smooth boundary (the latter
supplemented with homogeneous Dirichlet conditions). We consider as approximation schemes
the Leray approximation method, the Faedo-Galerkin method, the semi-discretization in time and
the approximation by adding a Smagorinsky-Ladyžhenskaya term. We mainly focus on developing
a unified treatment especially in the compactness argument needed to show that approximations
converge to the weak solutions.

Keywords: Navier-Stokes equations; Leray-Hopf weak solutions; existence

1. Introduction

Let T > 0 be an arbitrary finite number representing the time, Ω ⊂ R3 be a domain
to be specified later, and ν > 0 be a positive number representing the kinematic viscosity.
The incompressible Navier-Stokes equations model the dynamic of a viscous and incom-
pressible fluid at constant temperature and with constant density. They are given by the
following system of PDE’s posed in (0, T)× Ω:{

∂t u + (u · ∇) u +∇p − νΔu = f in (0, T)× Ω,

div u = 0 in (0, T)× Ω.
(1)

The vector field u ∈ R3 is the velocity, p ∈ R is the scalar pressure, and to avoid
inessential complications, we set the external force f = 0 (but all results presented here can
be easily extended to the case of a non vanishing external force, see Remark 4). The first
equation is the conservation of linear momentum and the second equation, also called the
incompressibility constraint, can be considered as the conservation of the mass, since the
density is assumed to be constant. The system (1) has to be supplemented with initial and
boundary conditions. Regarding the initial condition we impose that

u|t=0 = u0, in Ω,

with u0 satisfying the compatibility condition div u0 = 0 in Ω. For the boundary conditions
we need to specify the assumptions on the domain. We consider three cases, Ω = R3,
Ω = T3 with T3 being the three-dimensional flat torus, and Ω ⊂ R3 being a bounded
domain, whose boundary will be denoted by ∂Ω; we refer to Assumption 1 for the precise
hypotheses on Ω.
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For each of the three different cases we impose the different and natural boundary con-
ditions:

(i) u → 0 for |x| → ∞, if Ω = R
3;

(ii) u is periodic, if Ω = T
3;

(iii) u = 0 on (0, T)× ∂Ω, if Ω is a bounded domain.

(2)

Note that the initial datum will be requested to be tangential to the boundary in the
case (i), and to satisfy the condition (ii) and (iii) in the other cases. Contrary to the system
of compressible Navier-Stokes equations, the pressure p, instead of being obtained through
a state equation, is an unknown of the system. This is a consequence of the incompressibility
conditions and indeed the pressure can be interpreted as Lagrange multiplier associated
with the incompressibility constraint. Note that there are no initial/boundary conditions
imposed on the pressure, which (since it appears only as a gradient in the momentum
equation) is always determined up to an arbitrary function of time.

Generally speaking, it is very difficult to prove existence and uniqueness of smooth
solutions to nonlinear PDE’s. Here, with existence we always mean global in time existence,
namely existence on any given time interval (0, T), for arbitrary T > 0. The available
theories for weak solutions provide a framework to give a proper meaning to PDE’s,
without requiring too much regularity on the solutions and they rely on the theory of
generalized functions and distributions. In particular, the landmark idea in the theory of
weak solutions is to give up on solving the equations point-wise but trying to solve them
in an averaged sense, which is meaningful also from a physical point of view. In the case
of fluid mechanics, we expect a very complex behavior by (turbulent) flows appearing in
real life, hence we expect to be able to capture only averages of the velocity and pressure,
see Reference [1].

The problem of global existence generally becomes easier since the class of available
solution is enlarged and several functional analysis tools can be now used. However, the
price to pay to have such a relatively simple existence theory is that the uniqueness problem
becomes a very difficult one and many calculation which are obvious when dealing with
smooth solutions are not possible or hard to be justified. The three-dimensional incompress-
ible Navier-Stokes is a paradigmatic example of a such situation and the introduction of
weak solutions dates back about 100 years ago. In fact, in a series of celebrated papers (the
time evolution is treated in Reference [2]) Jean Leray introduced the notion of weak solution
as a mathematical tool, but also with a strong understanding of the physics behind the
equations. The theory of weak solutions is also strictly linked with the name of Eberhard
Hopf [3] who gave the first contribution to the problem of existence of weak solutions in a
bounded domain, by means of the Faedo-Galerkin method.

It is interesting to observe that many methods and techniques of functional analysis
(which are now a common background of graduate students in mathematics) originated
from the study of PDE’s and especially from those arising in fluid mechanics. In this note
we are trying to explain an extremely limited part of the theory: the existence of (Leray-
Hopf) weak solutions. This is a topic at the level of most undergraduate students, with a
minimal knowledge of Sobolev spaces and functional analysis (mainly weak convergence
and weak compactness), as for instance in the widely used (text)books by Brezis [4], just
to name one. Note also that we try to present a minimal spot in the abstract theory of
Navier-Stokes equations, which can be an “appetizer” for students trying to start a serious
understanding of (part of) the mathematical fluid mechanics. It is impossible to review
what is done on the subject, even only for the mathematical analysis side. Nevertheless
many information, at an introductory or more advanced level, can be found in several
books, see for instance, just to name a few in alphabetical order [5–11].

We think that we will not discourage any reader unfolding the (many) mathematical
difficulties of the topic, but –instead– we hope that highlighting the challenges which are
typical of mathematical fluid mechanics further interest could be stimulated; To this end
we quote the following coming from an interview reported in Reference [12] in a essay in
memory of Jacob Schwartz:
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When I asked him [Jacob Schwartz] if there was a subject he had trouble learning, he
admitted that there was, namely, fluid dynamics. “It is not a subject that can be expressed
in terms of theorems and their proofs,” he said.

Following the above point of view, the first step even in the mathematical analysis of
the Navier-Stokes equations is that of giving an appropriate definition of weak solutions,
which take into account the functional spaces where it is reasonable find weak solutions,
the initial and the boundary conditions. Usually, the functional space to be considered are
hinted by the a priori estimate available for the system under consideration. The informal
notion of an a priori estimate may be a quantitative bound depending only on the data of the
problem, which holds for smooth solutions of the system under consideration, regardless
their existence. In particular, for system arising from physics, the a priori estimates usually
have a deep physical interpretation.

In the context of the three-dimensional incompressible Navier-Stokes equations the
main a priori estimate is indeed the conservation of the energy of the system and is given
by the following integral equality:∫

|u(t, x)|2 dx + 2ν
∫ t

0

∫
|∇u(s, x)|2 dxds =

∫
|u0(x)|2 dx t ∈ [0, T], (3)

where the space integral is over the domain under consideration.
The equality (3) has a very simple formal proof. Indeed, let (u, p) be a smooth solution

of (1) and (2). By multiplying the momentum equation by u and integrating over Ω we get∫
∂tu · u − νΔu · u + (u · ∇) u · u +∇p · u dx = 0.

By integrating by parts and using the divergence free condition and (2) we get

−
∫

Δu · u dx =
∫

|∇ u|2 dx,
∫
(u · ∇) u · u dx = 0, and

∫
∇p · u dx = 0.

Then, after integration in time on (0, t) with t ∈ (0, T) we get (3). Note that (3) gives a
quantitative bound depending only on T, and u0 of square integrals of the velocity field u
and its gradient ∇u. The energy equality (3) will serve as motivation for the definition of
Leray-Hopf weak solution we will give in Section 3.

Once a reasonable definition of weak solution is given, to prove global existence one
usually exploits what it is know as a compactness argument, which consists in (1) proving the
existence of a sequence of relatively smooth approximating solutions satisfying appropriate
uniform estimates; (2) proving that limits of these approximating solutions are effectively
weak solution of the problem under consideration. We remark that usually the uniform
bounds obtained on the sequence of approximating solutions are the same inferred by the
a priori estimates available for the system under consideration; These bounds are then
hopefully inherited by weak solutions obtained with a passage to the limit. To be more
precise, in the case of the Navier-Stokes equations, the approximation method should be
chosen such that the approximate solutions satisfy the energy (in)equality. Due to the
limited regularity which can be generally inferred on weak solutions, the validity of any
energy balance on the weak solutions to the 3D Navier-Stokes equations is obtained with a
limiting process on the approximate solutions and not using the solution u itself as a test
function as done to obtain (3), since this argument is only formal and not justified when
dealing with genuine Leray-Hopf weak solutions.

In this short note we provide a rather self-contained account on the global existence
of weak solutions for the three-dimensional incompressible Navier-Stokes equations and
some of the (several) approximation methods used in the literature. Since the convergence
argument is essentially the same for every approximation methods and for every choice of
the domains and boundary conditions mentioned above, we introduce (for the purpose of
the exposition) a notion of approximating solution for which we will prove the convergence
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to a Leray-Hopf weak solution of the problem (1) and (2). This is not the historical path, but
is a way we identify to have a unified treatment, which can describe the existence theory
within the notion of approximating solutions.

Then, we show how several and well-known approximations fit in the framework
introduced and, therefore, we recover the existence of Leray-Hopf weak solution by using
those methods. In particular, we will consider the most common techniques available for
the construction. Further results based on the energy type methods, concerning uniqueness,
regularity and the connection with applied analysis of turbulent flows, can be found in the
forthcoming monograph [1], which is also written in the spirit of being an introduction for
undergraduate students, interested in applied analysis of the Navier-Stokes equations.

Organization of the Paper

The paper is organized as follows: In Section 2 we introduce the functional spaces
that we use. Then, in Section 3 we define of Leray-Hopf weak solutions and study their
main properties. In Section 4 we give the definition of approximating solution and we prove
the convergence to a Leray-Hopf weak solution. Finally, in Section 5 we prove that certain
approximating schemes fit in the framework of approximating solution.

2. Preliminaries

In this section we fix some notations and we recall some basic preliminaries we will
need for the analysis. We start by fixing the assumptions on the domain Ω.

Assumption 1. The domain Ω ⊂ R3 will be of the following type:

(A1)the whole space, Ω = R3;
(A2)the flat torus, Ω = T3;
(A3)a bounded connected open set Ω ⊂ R3, locally situated on one side of the boundary ∂Ω, which

is at least locally Lipschitz.

2.1. Notation

We will never distinguish between scalar and vector functions unless it is not clear
from the context. We will denote by C∞

c (Ω) the space of compactly supported functions
which are infinitely differentiable and D′(Ω) its dual, which is the space of distributions
over Ω. In the case Ω = T3 the subscript “c” is not needed and we set C∞

c (T3) = C∞(T3).
With an abuse of notation we will use C∞

c (Ω) for all the three choices of the domain Ω
satisfying Assumption 1. We recall that for any vector f ∈ C∞

c (Ω;R3) the Helmholtz
decomposition holds true: there exists two function g ∈ C∞

c (Ω;R3) and q ∈ C∞
c (Ω;R)

such that f = g +∇q, and g is divergence-free. Given a Banach space E, we denote with
‖ · ‖E its norm. However, for the classical Lebesgue spaces Lp(Ω), with p ∈ [1, ∞], we
shall denote their norms with ‖ · ‖p. Finally, we recall that the space H1

0(Ω) is the classical
Sobolev space obtained as a closure of C∞

c (Ω) in the norm

‖v‖H1 :=
(∫

Ω
|v|2 + |∇v|2 dx

) 1
2
, v : Ω �→ R

k.

The subscript “0” is needed only when Ω is a bounded domain. In the case of Ω = R3

or Ω = T3 we have H1
0(R

3) = H1(R3) and H1
0(T

3) = H1(T3), but as before, with an abuse
of notation, we will use H1

0(Ω) for each one of the three choices of the domain Ω satisfying
Assumption 1. Moreover, we recall that H1(R3) and H1(T3) can also be characterized in
terms of the Fourier Transform and the Fourier Series, respectively. When dealing with a
Banach space (E, ‖ . ‖E) we denote by xn → x, xn ⇀ x and xn

∗
⇀ x, the strong, weak and

weak* convergence, respectively.
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Next, let E be a Banach space, then Lp(0, T; E), with 1 ≤ p < ∞, and L∞(0, T; E) denote
the classical Bochner spaces of strongly measurable (classes of) functions u : (0, T) → E
such that

‖u‖Lp(E) :=
(∫ T

0
‖u(s)‖p

E ds
) 1

p
< ∞,

‖u‖L∞(E) := ess sup
t∈[0,T]

‖u(t)‖E < ∞.

Finally, the space of weakly continuous functions in E, which is denoted by Cw([0, T]; E),
consists of functions u : [0, T] �→ E such that for any f ∈ E∗ the real function of real variable

〈 f , u〉E∗×E : [0, T] � t �→ 〈 f , u(t)〉E∗×E,

is continuous.
Finally, when we write A � B, this means that there exists a constant c > 0 (indepen-

dent on the relevant parameters of the problem) such that A ≤ cB.

2.2. The Spaces H and V

In the analysis of solutions of the Navier-Stokes equations is useful to consider spaces
of divergence-free functions. We start by defining the space

V(Ω) := {φ ∈ C∞
c (Ω) : div φ = 0},

Then, we define the spaces

H := V(Ω)
‖·‖2 , V := V(Ω)

‖·‖1,2 .

We start by noticing that H and V are closed subspace of L2(Ω) and H1
0(Ω), respec-

tively. Therefore, they are Hilbert space themselves with the inherited scalar products,
which are

(u, v) :=
∫

Ω
u · v dx ((u, v)) :=

∫
Ω

u · v +∇u : ∇v dx.

Next, although H and V are Hilbert space, hence reflexive, we will not identify them
with their duals. We will instead denote by H′ and V′ the topological dual of H and V
endowed with the classical dual norms

‖ f ‖H′ := sup
φ∈V(Ω),‖φ‖2≤1

|〈 f , φ〉H′×H |,

‖ f ‖V′ := sup
φ∈V(Ω),‖φ‖1,2≤1

|〈 f , φ〉V′×V |.

We stress that H′ and V′ are not subset of the space of distributions D′(Ω) since
D(Ω) �⊂ H.

Finally, we recall that by Sobolev embedding theorem and the interpolation inequality
for the Lp-norm, there exists a constant C > 0 such that for any 2 ≤ p ≤ 6, θ = 6−p

2p ∈ [0, 1],

and any u ∈ H1
0(Ω) it holds that

‖u‖p ≤ C‖u‖θ
2‖∇u‖1−θ

2 . (4)

The inequality (4) is a particular case of the well-known Gagliardo-Nirenberg-Sobolev
inequality, see Reference [13].
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3. Definition of Leray-Hopf Weak Solutions

In this section we give the definition of Leray-Hopf weak solutions and we prove
some related properties. The definition is the following.

Definition 1. A measurable vector field u : (0, T)× Ω �→ R3 is a Leray-Hopf weak solution of
the Navier-Stokes Equations (1) and (2) if the following conditions are satisfied.

1. It holds that
u ∈ Cw([0, T]; H) ∩ L2(0, T; V); (5)

2. For any φ ∈ V(Ω) and any χ ∈ C∞([0, T)), it holds that

∫ T

0

(
(u(t), φ)χ̇(t)− ((u · ∇) u, φ)χ(t)− ν(∇u,∇φ)χ(t)

)
dt − (u0, φ)χ(0) = 0; (6)

3. For any t ∈ [0, T]

‖u(t)‖2
2 + 2ν

∫ t

0
‖∇u(s)‖2

2 ds ≤ ‖u0‖2
2. (7)

Remark 1. It is important to point out that it is an open problem whether or not condition (7) can
be deduced from the conditions (5) and (6). Note also that in the definition we have (7) which is the
so-called global energy inequality and not the equality (3).

Remark 2. In literature Leray-Hopf weak solutions are often defined in the space L∞(0, T; H)
rather than Cw([0, T]; H) and satisfying (7) for a.e. everywhere t ∈ (0, T) instead that for any
t ∈ (0, T). This is equivalent to Definition 1, because in that case the velocity field can redefined on
a set of measure zero in time in order to lie in Cw([0, T]; H) and satisfying (7) for any t ∈ (0, T),
see Reference [14]. We preferred to start with a solution already weakly continuous, to avoid the
technical step of redefinition.

We want to show that once we have proved the existence of a vector field satisfying the
conditions in the Definition 1, we are actually solving the initial value boundary problem (1)
and (2) in the sense of distributions. First of all we notice that from the condition (1), we can
deduce that u is divergence-free and satisfies the boundary conditions (2) in the appropriate
weak sense. The following lemma guarantee that u attains the initial datum u0.

Lemma 1. Let u0 ∈ H and u a Leray-Hopf weak solution. Then,

u(t) → u0 strongly in H.

Proof. For k ∈ N and t̄ ∈ (0, T), we consider the following function

χt̄
k(t) =

⎧⎨⎩
1, t ∈ [0, t̄)

k(t̄ − t) + 1, t ∈ [t̄, t̄ + 1
k )

0, t ∈ [t̄ + 1
k , T).

Then, by using χt̄
k, after sending k → ∞ and using that u ∈ Cw([0, T]; H) we arrive to

the following estimate:

|(u(t), φ)− (u0, φ)| ≤
∫ t

0
|(∇ u(s), φ)|+ |(u(s) · ∇) u(s), φ)| ds

≤ t
1
2

(∫ T

0
‖∇u(s)‖2

2

) 1
2
(
‖φ‖

1
2
2 + ‖φ‖∞ sup

s∈[0,T]
‖u(s)‖2

)
.

Then, for any fixed φ ∈ V(Ω) we can send t → 0+ and we can conclude that
(u(0), φ) = (u0, φ). By using the Helmholtz decomposition we deduce that this is true for
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any φ ∈ C∞
c (Ω)) and therefore u(0) = u0 a.e. on Ω. Moreover, the previous calculations

also show that
u(t) → u0 in Cw([0, T]; H) as t → 0+.

and, again by using the Helmholtz decomposition, the same result is valid also for φ ∈
L2(Ω). By weak lower semi-continuity of norms in weak convergence we get

‖u0‖2 ≤ lim inf
t→0+

‖u(t)‖2
2.

Next, by using the energy inequality (7) we also get, by disregarding the non-negative
dissipative term and taking the superior limit that

lim sup
t→0+

‖u(t)‖2
2 ≤ ‖u0‖2

2.

This shows that ‖u(t)‖2 → ‖u0‖2, which combined with the weak convergence
implies the strong convergence, since we are in an Hilbert space. Since the norm induced
on H is the same as in L2(Ω), this proves the strong convergence also in H.

Finally, we show that to any Leray-Hopf weak solution u it is possible to associate a
pressure p such that (u, p) solves the momentum equation in (1) in the sense of distribu-
tions.

Lemma 2. Let u be a Leray-Hopf weak solution of (1) and (2). Then, there exists p ∈ D′((0, T);×Ω))
such that

∂t u − νΔ u + (u · ∇) u +∇ p = 0 in D′((0, T)× Ω).

and, for any t ∈ (0, T), we have p(t) ∈ L2
loc(Ω) and

∫
Ω p(t) dx = 0.

In the case of a general bounded domain Ω satisfying the Assumption 3, the proof of
the Lemma 2 is very technical and requires several preliminaries of operator theory. We
refer to References [7,10,11,15,16] for the proof. On the other hand in the case of Ω has no
physical boundary the proof is straightforward. We consider here the case Ω = T3.

Proof. Let u be a Leray-Hopf weak solution in the sense of Definition 1. For a.e. t ∈ (0, T)
consider the elliptic problem

−Δp(t) = div(u(t) · ∇u(t)) in T
3,∫

T3
p(t) dx = 0.

(8)

Note that by (5), Gagliardo-Nirenberg Sobolev inequality (4), and standard elliptic reg-
ularity we can infer that there exists a unique solution of (8) satisfying p ∈ L

5
3 ((0, T)×T3).

Next, we show that (u, p) solve the Navier-Stokes equations in the sense of distributions.
Let ψ(t, x) = χ(t)φ(x) with χ ∈ C∞

c (0, T) and φ ∈ C∞(T3). Let φ = Pφ + Qφ be the
Helmholtz decomposition, where we denote by Pφ the divergence-free part of φ. Then,
since P and Q commute with derivatives because there are no physical boundaries, we
have that

∫ T

0
(u(t), φ)χ̇(t)− ((u · ∇) u, φ)χ(t)− ν(∇u,∇φ)χ(t) + (p(t), div Qφ)χ(t) dt

=
∫ T

0
(u(t), Pφ)χ̇(t)− ((u · ∇) u, Pφ)χ(t)− ν(∇u,∇Pφ)χ(t)

−
∫ T

0
((u · ∇) u, Qφ)χ(t)− (p(t), div φ)χ(t) dt

= −
∫ T

0
((u · ∇) u, Qφ)χ(t)− (p(t), div Qφ)χ(t) dt = 0,

(9)
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where we have used (6) in the second equality and (8) together with the fact that Qφ = ∇q
for some q ∈ C∞(T3) in the last equality. Finally, by an approximation argument, we have
that (9) holds for any φ ∈ C∞

c ((0, T)×T3) and we conclude.

4. Approximate Solutions of the Incompressible Navier-Stokes Equations

In this section, we define the notion of approximate sequence of solutions to the Navier-
Stokes equations and we prove the convergence to Leray-Hopf weak solutions. We use an
approach which is a little different from the one usual used. Our choice, which does not
follows the historical path, is motivated by the pedagogical purpose of having a unified
treatment for several different methods.

Definition 2. Let n ∈ N. We say that {un}n ⊂ C(0, T; L2(Ω)) is an approximate sequence of
solutions with divergence-free initial datum un

0 if

1. It holds that

{un}n is a bounded sequence in L∞(0, T; H) ∩ L2(0, T; V); (10)

2. For any n ∈ N and any φ ∈ V(Ω) there exists Rn
φ ∈ L1(0, T) such that for any χ ∈

C∞
c ([0, T))∫ T

0

(
(un(t), φ)χ̇(t) + ((un · ∇) un, φ)χ(t) + ν(∇un,∇φ)χ(t)

)
dt

− (un
0 , φ)χ(0) =

∫ T

0
Rn

φ(t)χ(t) dt;
(11)

3. It holds
Rn

φ ⇀ 0 weakly in L1(0, T) as n → ∞; (12)

4. For any n ∈ N and t ∈ (0, T) it holds that

‖un(t)‖2
2 + 2ν

∫ t

0
‖∇un(s)‖2

2 ds ≤ ‖un
0‖2

2. (13)

Since generally the existence of (smooth) approximating sequences is rather easy to be
proved, the advantage of this definition is that one has just to check a condition on the data
and condition (12) on the remainder (commutator) to show that the approximate solutions
converge to a Leray-Hopf weak solution, as is done in the next theorem.

Theorem 1. Let u0 ∈ H and {un}n be a sequence of approximate solutions with initial data {un
0}n

such that
un

0 → u0 strongly in H. (14)

Then, up to a sub-sequence not relabelled, there exists u such that if Ω satisfies (A1) and
(A2) then

un → u strongly in L2(0, T; L2(Ω)), (15)

and if Ω = R3

un → u strongly in L2(0, T; L2
loc(R

3)). (16)

Moreover, u is a Leray-Hopf weak solution of (1) and (2).

Remark 3. We stress that because of Remark 1 requiring condition (13) (that is a good energy
balance already on the approximate functions) is fundamental in order to obtain the energy in-
equality (7). Moreover, by inspecting the proof below it will be clear that given {un}n satisfying
(1) and (2) in Definition 2 then there exists u satisfying (1) and (2) in Definition 1 such that the
convergences (15) and (16) hold. This remark will be important in the analysis of the Implicit Euler
Scheme in Section 5.3, because the scheme will not fully fit in the framework of Definition 2.
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Remark 4. We point out that Theorem 1 is not limited to the case of vanishing external force, but
the result holds also in the presence of an external body force f ∈ L2(0, T; (H1

0(Ω))′). This can be
obtained with minor changes in the proof. In this case Definition 2 must also be integrated with an
approximating sequence f n, and adding the term∫ T

0
( f n, un)χ(t) dt

to the left-hand side of (11). This is due to the fact that some of the approximation meth-
ods in Section 5 require the body force to be smooth and it is enough to require f n → f in
L2(0, T; (H1

0(Ω))′).
We also note that requiring the body force to be in L2(0, T; (H1

0(Ω))′) (and not only in
L2(0, T; V′)) is needed in order to remain inside the space of distributions and to have an associated
pressure as in Lemma 2; We refer to Reference [17] for more details on this issue.

We start with the following straightforward corollary of the classical Arzelà-Ascoli
theorem for real functions of a real variable.

Lemma 3. Let E be a separable Banach space and let E ⊂ E be a dense subset. Let {Fn}n be a
sequence of measurable functions such that Fn : [0, T] �→ E∗. Assume that

1. the sequence {Fn}n is equi-bounded in E∗,
2. for any fixed φ ∈ E the sequence of real functions 〈Fn, φ〉 : [0, T] � t �→ 〈Fn(t), φ〉, n ∈ N,

is equi-continuous.

Then, Fn ∈ Cw([0, T]; E∗) and there exists F ∈ Cw([0, T]; E∗) such that, up to a sub-sequence,

Fn → F in Cw([0, T]; E∗).

A fundamental step in the proof of existence for nonlinear partial differential equations
is the proof of certain compactness which allows to get strong convergence in suitable
norms. Observe that the a-priori bounds are useful to get weak or weak-* convergences,
by means of application of the Riesz representation theorem and –more generally– of
Banach-Alaoglu-Bourbaki theorem. On the other hand, since T(xn) ⇀ T(x) for a linear
operator T, weak convergence allows to consider linear equations, or more precisely, the
linear terms in the equations. On the other hand weak convergence is in general not enough
to prove that∫ T

0
((un · ∇) un, φ)χ(t) dt →

∫ T

0
((u · ∇) u, φ)χ(t) dt, as n → ∞.

Hence, by the a priori estimates we can construct a limit object u, but we still have to
show that u is a weak solution of the limiting problem.

To address this point several results have been used. Leray used Helly’s theorem on
monotone functions and an ingenious application of Riesz theorem with multiple Cantor
diagonal arguments. Hopf used an inequality by Friederichs to handle the Galerkin case.
Starting from the work of J.L. Lions [18] it became common to use the approach by the so-
called Aubin-Lions lemma, which is borrowed from the general theory of abstract equations
and is based on obtaining some estimates on the time derivative (at least in negative space)
of the solution. This latter approach is very flexible, but it requires some non-trivial
functional analysis preliminaries to estimate the time-derivative, since instead one can use
directly some properties coming from the proper definition of the approximation. Note
that in the Definition 1 of weak solution there is no mention to the time-derivative. We will
show how to obtain compactness in a elementary way, directly from the weak formulation
and thus avoiding the use of time derivatives in Bochner spaces. We believe this may be a
simpler approach, at least for presentation to students. We also point out that in certain
applications to more complex fluid problems as for instance fluids in a moving domain
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or non-Newtonian fluids with rheology with time-dependent constitutive law, the proper
definition of the time derivative is technically complicated and an approach avoiding the
use of this notion becomes particularly welcome.

The next lemma provides a general criterion for strong convergence, which has the
advantage to avoid assumptions on the time derivative. Of course, the lemma holds only
on bounded domains and therefore we exclude the whole space case, since in the latter
one has to work locally. We also stress that the hypothesis are not optimal since we do
not prove an if and only if, but the hypotheses are easily verifiable for general nonlinear
evolution problems.

The lemma below is very similar to the one proved by Landes and Mustonen in Ref-
erence [19] and for an application to the Navier-Stokes equations see Landes [20]. For an
optimal version (at least in general Hilbert spaces) we refer to Rakotoson and Temam [21].

Lemma 4. Let U ⊂ R3 be any bounded domain or U = T3. Let 1 < p < ∞ and assume that
g ∈ L∞(0, T; L1(U)) ∩ Lp(0, T; W1,p

0 (U)) and {gn}n is a sequence such that

{gn}n is bounded in L∞(0, T; L1(U)) ∩ Lp(0, T; W1,p
0 (U)),

and gn(t) ⇀ g(t) weakly in L1(U) for a.e. t ∈ [0, T]. Then, it holds that

gn → g in Lp(0, T; Lp(U)).

Proof. We prove the lemma only in the case of U ⊂ R3 being a bounded domain with
smooth boundary. First, since gn(t, ·) and g(t, ·) are in W1,p

0 (U), their extensions to zero off
U are both in W1,p(R3). We denote by ḡn and ḡ these extensions. a.e. t ∈ (0, T).

Let ρε be a standard spatial mollifier and set gn
ε := ρε ∗ ḡn and gε := ρε ∗ ḡ. Next, we

have that

|gn
ε (t, x)− ḡn(t, x)| ≤ ε

∫
B1

ρ(y)
∫ 1

0
|∇ḡn(t, x − ετy)| dτdy

≤ ε

(∫
B1

ρ p′(y) dy
) 1

p′
(∫

B1

(∫ 1

0
|∇ḡn(t, x − ετy)| dτ

)p

dy
) 1

p

≤ ε

(∫
B1

ρ p′(y) dy
) 1

p′
(∫

B1

∫ 1

0
|∇ḡn(t, x − ετy)|p dτdy

) 1
p
,

and the same estimate holds also for ḡ. Therefore, the following estimates hold∫ T

0
‖gn

ε − ḡn‖p
p dt � εp

∫ T

0
‖∇ḡn‖p

p dt,∫ T

0
‖gε − ḡ‖p

p dt � εp
∫ T

0
‖∇ḡ‖p

p dt,

with bounds depending only on ρ.
Next, by triangular inequality we have

∫ T

0
‖gn − g‖p

Lp(U)
dt ≤

∫ T

0
‖gn − gn

ε ‖
p
Lp(U)

dt +
∫ T

0
‖gn

ε − gε‖p
Lp(U)

dt +
∫ T

0
‖gε − g‖p

Lp(U)
dt

≤
∫ T

0
‖ḡn − gn

ε ‖
p
Lp(R3)

dt +
∫ T

0
‖gn

ε − gε‖p
Lp(U)

dt +
∫ T

0
‖gε − ḡ‖p

Lp(R3)
dt

≤ εp
∫ T

0

(
‖∇ḡn‖p

p + ‖∇ḡ‖p
p
)

dt +
∫ T

0

∫
U
|gn

ε (t, x)− gε(t, x)|p dxdt.

(17)

The first term from the right-hand side can be made arbitrarily small by choosing ε
small enough.
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To conclude, we first note that by definition of convolution, there exists C = C(ε, U)
such that

|gε(t, x)|+ |gn
ε (t, x)| ≤ C.

Next, since clearly it holds that for the extended functions it holds

ḡn(t) ⇀ ḡ(t) weakly in L1(R3),

we also have that

gn
ε (t, x) → gε(t, x), a.e. in t ∈ (0, T) and for all x ∈ R

3.

This follows by fixing ε > 0, a time t such that ḡn(t) ⇀ ḡ(t), x ∈ R3, and noticing that

ḡn
ε (t, x)− ḡε(t, x) =

∫
R3
(ḡn(t, y)− ḡ(t, y))ρε(x − y) dy → 0,

as n → ∞.
This shows that, for any fixed ε > 0, the last term in last inequality in (17) goes to zero

as n → ∞, by using Dominated Convergence Theorem. The proof is concluded since we
showed that ‖gn − g‖Lp(0,T;Lp(U)) can be made arbitrarily small.

The following theorem is the main result of this section.

Proof of the Theorem 1. Let {un}n be a sequence of approximate solutions. By condi-
tion (10) of Definition 2 we can infer that up to a sub-sequence (not relabelled) there exists
u ∈ L∞(0, T; H) ∩ L2(0, T; V) such that

un ∗
⇀ u weakly-* in L∞(0, T; L2(Ω)), (18)

un ⇀ u weakly in L2(0, T; L2(Ω)), (19)

∇un ⇀ ∇u weakly in L2(0, T; L2(Ω)). (20)

For k ∈ N and t̄ ∈ (0, T), we consider the following function

χt̄
k(t) =

⎧⎨⎩
1, t ∈ [0, t̄)

k(t̄ − t) + 1, t ∈ [t̄, t̄ + 1
k )

0, t ∈ [t̄ + 1
k , T),

(21)

Let φ ∈ C∞
c (Ω) with div φ = 0 and s, t ∈ (0, T). By using the function χt̄

k(t) with first
with t̄ = t and then with t̄ = s, together with the fact that un ∈ C(0, T; L2(Ω)) we can
infer that

(un(t), φ)− (un(s), φ) +
∫ t

s

(
((un(τ) · ∇) un(τ), φ) + ν(∇un(τ),∇φ) + Rn

φ(τ)

)
dτ = 0.

Next, for φ ∈ C∞
c (Ω), let Fn(t) := ((un(t) · ∇) un(t), φ) + ν(∇un(t),∇φ) + Rn

φ(t).
Then, condition (10), the Gagliardo-Nirenberg-Sobolev inequality (4), and the hypothesis
on Rn

φ in (11) imply that the family {Fn}n is equi-integrable and then the function t �→
(un(t), φ) is equi-continuous. Since V(Ω) is dense in H and H is reflexive, we can conclude
by using Lemma 3 that

un → u in Cw([0, T]; H). (22)

By using (22) and (20) we can prove that u satisfies the energy inequality (7). Indeed,
for any t ∈ (0, T) we have that

‖u(t)‖2
2 ≤ lim inf

n→∞
‖un(t)‖2

2,∫ t

0
‖∇u(s)‖2

2 ds ≤ lim inf
n→∞

∫ t

0
‖∇un(s)‖2

2 ds.
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Then,

‖u(t)‖2
2 + 2ν

∫ t

0
‖∇u(s)‖2

2 ds ≤ lim inf
n→∞

‖un(t)‖2
2 + lim inf

n→∞
2ν

∫ t

0
‖∇un(s)‖2

2 ds

≤ lim inf
n→∞

(
‖un(t)‖2

2 + 2ν
∫ t

0
‖∇un(s)‖2

2 ds
)

≤ lim
n→∞

‖un
0‖2

2 = ‖u0‖2
2.

where we have used (14). In order to conclude it remains only to prove (15) and (16). If Ω
is the flat torus or a bounded domain, then (15) follows directly by Lemma 4. If Ω = R3

we need a localization argument. We first note that by the Helmholtz decomposition (22)
holds also in Cw([0, T]; L2(R3)). Next, for k ∈ N let ψ ∈ C∞

c (Bk+1(0)) such that ψ = 1
on Bk and define gn := un ψ. The sequence {gn}n satisfies the hypothesis of Lemma 4,
and therefore, after a diagonal argument, it follows that there exists a sub-sequence not
relabelled such that

gn → g = u ψ strongly in L2(0, T; L2(Bk+1)). (23)

Then, condition (23) easily implies (16).

5. Approximation Methods

After the general result of the previous section, we are now going to show that a
general class of methods used to construct weak solutions will fit the in the framework of
Theorem 1, as described in Section 4.

5.1. Leray Approximation Scheme

We start describing the original scheme introduced by Leray in Reference [2] (even
if we use a completely different compactness argument to show the convergence of ap-
proximations). In this case we consider Ω = R3. We fix a sequence {εn} of positive
numbers going to zero and let ρεn be a standard mollifier (only) in the space variables. For
v : (0, T)×R3 �→ R3 we set Ψn(v) := ρεn ∗ v, where the convolution is only in the space
variables. Let u0 ∈ H and let n ∈ N. Define un

0 = Ψn(u0) and un as the solution of the
following Cauchy problem:⎧⎪⎪⎨⎪⎪⎩

∂tun − νΔun +
(
Ψn(un) · ∇

)
un +∇pn = 0 in (0, T)×R

3,

div un = 0 in (0, T)×R
3,

un|t=0 = un
0 on {t = 0} ×R

3.

(24)

We want to prove that for any n ∈ N the function un exists, is smooth, and {un}n is an
approximate sequence of solutions in the sense of Definition 2.

Theorem 2. Let u0 ∈ H. Then, it holds that

1. for any fixed n ∈ N there exists a unique un ∈ C([0, T); H3(R3)) solution of (24);
2. there exists a Leray-Hopf weak solution u and a possible sub-sequence of {un}n such that

un → u strongly in L2(0, T; L2
loc(R

3)).

Proof. Let us prove (1). The proof is very classical so we only sketch it. By using a fixed
point argument we can prove that there exists a time T1 = T1(‖un

0‖H3) > 0 such that there
exists a unique un ∈ C([0, T∗); H3(R3)) solution of (24) for T∗ ≥ T1. Let us suppose that
T∗ is the maximal time of existence of un and, if T∗ < T then limt→T∗− ‖un(s)‖H3 = ∞.
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To obtain a global solution we exploit a standard energy estimates argument. Indeed,
we first note that by multiplying (24) by un and integrating by parts we get

‖un(t)‖2
2 + 2ν

∫ t

0
‖∇un(s)‖2

2 ds = ‖un
0‖2

2, (25)

with an equality which is valid for all t < T∗. Note that this is exactly the same calculation
we have done formally to obtain the energy inequality (3) in the introduction. In particular,
from (25) we obtain

sup
t∈(0,T)

‖un(t)‖2 ≤ ‖un
0‖2. (26)

Next, by using that H3(R3) is an algebra and by using the standard properties of
mollifiers, it is easy to prove that

d
dt
‖un(t)‖2

H3 + ν‖∇un(t)‖2
H3 �

∣∣((Ψn(un(t)) · ∇) un(t), un(t)
)

H3

∣∣
� ‖Ψn(un(t))‖H3‖∇un(t)‖H3‖un(t)‖H3

� ‖Ψn(un(t))‖2
H3‖un(t)‖2

H3 +
ν

2
‖∇un(t)‖2

H3

� 1
ε6

n
‖un(t)‖2

2‖un(t)‖2
H3 +

ν

2
‖∇un(t)‖2

H3

� 1
ε6

n
‖un

0‖2
2‖un(t)‖2

H3 +
ν

2
‖∇un(t)‖2

H3 .

where in the last inequality we have used (26). Therefore, we have that

d
dt
‖un(t)‖2

H3 ≤ Cn‖un
0‖2

2‖un(t)‖2
H3

and, by using the Gronwall Lemma, we conclude that necessarily T∗ = T (this argument
shows that in fact un is defined for all t > 0, for any fixed n ∈ N).

Next, to show (2) it is enough to prove that {un}n satisfies the conditions in Definition 2.
Clearly, from(1) we have that {un}n ⊂ C([0, T]; L2(R3)). By using the standard property
of mollifiers ‖Ψn(u0)‖2 ≤ ‖u0‖2, and from the energy estimate (25) we get that {un}n is
bounded uniformly in L∞(0, T; H) ∩ L2(0, T; H). Moreover, (25) is exactly (13) and then it
remains only to verify (11). For φ ∈ C∞

c (Ω) and t ∈ (0, T) the function t �→ Rn
φ(t) is defined

as follows

Rn
φ(t) :=

(([
Ψn(un(t))− un(t))

]
· ∇

)
un(t), φ

)
.

With this choice of Rn
φ, the equation (11) is satisfied and it remains only to prove that

convergence stated in condition (12) of Definition 2. First, note that by Hölder inequality

|Rn
φ(t)| ≤ ‖∇un(t)‖2‖φ‖∞‖Ψn(un(t))− un(t)‖2. (27)

Then, for any fixed (t, x) ∈ (0, T) × R3, by a direct calculation (using again the
properties of mollifiers) we have

|Ψn(un(t, x))− un(t, x)| ≤ εn

∫
B1

ρ(y)
∫ 1

0
|∇un(t, x − ετy)| dτdy

≤ εn

(∫
B1

ρ2(y) dy
) 1

2
(∫

B1

(∫ 1

0
|∇un(t, x − ετy)| dτ

)2

dy

) 1
2

≤ εn

(∫
B1

ρ2(y) dy
) 1

2
(∫

B1

∫ 1

0
|∇un(t, x − ετy)|2 dτdy

) 1
2

.
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Then, by a further integration∫
R3

|Ψn(un(t, x))− un(t, x)|2 dx ≤ ε2
n

∫
R2

|∇un(t, x)|2 dx,

and going back to (27) we have that

|Rn
φ(t)| ≤ εn‖∇un(t)‖2

2‖φ‖∞.

Since the sequence {∇un}n is bounded uniformly with respect to n in L2(0, T; L2(R3)),
we have that Rn

φ → 0 in L1(0, T).

5.2. Faedo-Galerkin Method

The next scheme we consider is the Faedo-Galerkin method. The variant we present is
close to the one considered by Hopf and is at the basis of several computational methods,
which are used also in fields different from fluid dynamics. In particular, we will see that the
unified treatment is possible under the assumption of having a basis which is orthogonal
in both L2 and H1, as is the case of the spectral basis made by eigenfunctions of the Stokes
operator. Observe that in the space-periodic case this basis is explicitly constructed by
considering complex exponentials, while in the case of a smooth bounded domain, the
existence is obtained via the standard theory of compact operators, showing existence of
countable non-decreasing positive {λj} and smooth {ψj} such that it holds for all j ∈ N

−Δψj +∇πj = λjψj in Ω,

div ψj = 0 in Ω,

ψj = 0 on ∂Ω.

We consider Ω ⊂ R3 with smooth boundary ∂Ω or the three-dimensional flat torus. Let
be given an orthonormal basis {ψm}m∈N of H, such that ψm ∈ V(Ω). The Faedo-Galerkin
method is based on the construction of approximate solutions of the type

un(t, x) =
n

∑
j=1

cn
j (t)ψj(x) n ∈ N, (28)

which solve the Navier-Stokes equations projected equations over the finite dimensional
space Vn = Span(ψ1, . . . , ψn) ⊂ V. This means that for n ∈ N, the approximate problem to
be solved is given by⎧⎨⎩

d
dt
(un, ψm) + ν(∇un,∇ψm) + ((un · ∇) un, ψm) = 0 t ∈ (0, T),

(un(0), ψm) = (u0, ψm) t = 0,
(29)

for m = 1, . . . , n, which is a Cauchy problem for a system of n ODE’s in the coefficients
{cn

j (t)}n
j=1. Let Pn be projection operator from H into Vn:

Pn : f ∈ H �→ Pn f :=
n

∑
m=1

( f , ψm)ψm.

Then, the ODE’s (29) reduce to the following system of PDE’s:{
∂tun + Pn((un · ∇) un)− νΔun = 0 in (0, T)× Ω,

un|t=0 = Pn u0 in Ω.
(30)

In the next theorem we prove that un is smooth and exists on (0, T), and that {un}n is
an approximate sequence of solutions.
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Theorem 3. Let u0 ∈ H. Then, it holds that

1. For any fixed n ∈ N there exists a unique un ∈ C1((0, T); C∞(Ω)) ∩ C0([0, T); C∞(Ω))
solution of (30);

2. There exists a Leray-Hopf weak solution u and a possible sub-sequence of {un}n such that

un → u strongly in L2(0, T; L2(Ω)).

Proof. We prove (1). By the theory of ordinary differential equations one easily obtains
that there exists a unique solution cn

j (t) ∈ C1(0, Tn), for some 0 < Tn ≤ T, being (29) a
nonlinear (quadratic) system in the coefficients cn

j (t). Moreover, un is defined through (28)
and satisfies (30). Then, by multiplying (30) by un and integrating by parts we get

‖un(t)‖2
2 + 2ν

∫ t

0
‖∇un(s)‖2

2 ds = ‖un
0‖2

2 ≤ ‖u0‖2
2, (31)

where we have used that ‖un
0‖2 = ‖Pnu0‖2 ≤ ‖u0‖2. Therefore, for any n ∈ N we have that

n

∑
j=1

|cn
j (t)|2 = ‖un(t)‖2

2 ≤ ‖u0‖2
2,

which easily implies that necessarily Tn = T.
To prove (2) we show that {un}n satisfy the conditions in Definition 2. Clearly, the

sequence {un}n is in C([0, T]; L2(Ω)) and by (31) it verifies the condition (1) and the energy
inequality (13). To check that (11) is verified, let φ ∈ V(Ω) and, for any t ∈ (0, T), define

Rn
φ(t) :=

(
Pn((un(t) · ∇) un(t))− (un(t) · ∇) un(t), φ

)
.

Note that we have that

|Rn
φ(t)| � ‖un(t)‖3‖∇un(t)‖2‖φ − Pnφ‖6

� ‖un(t)‖
1
2
2 ‖un(t)‖

3
2
H1‖φ − Pnφ‖H1 ,

where we have used the Gagliardo-Nirenberg-Sobolev inequality (4) and that Pn is a
projection in both H and V, since in this case it holds

∥∥∇[
f −

n

∑
m=1

( f , ψm)ψm
]∥∥2

=
∞

∑
m=n+1

λm|( f , ψm)|2‖ψm‖2 n→+∞−→ 0,

for all f ∈ H1
0(Ω). Then, by using Hölder inequality, and Gagliardo-Nirenberg Sobolev

inequality and taking into account that T < ∞ we have that Rn
φ → 0 in L1(0, T).

As already specified if Ω = T3, then one can take {ψm}m∈N to be the Fourier ba-
sis. Then, the Faedo-Galerkin method consists in finding the approximated sequence of
type (28) solving the Navier-Stokes equations projected over the first n Fourier modes. On
the other hand, in the case Ω = R3 one possible choice is to use the method of invading
domains, that is to consider the problem in the ball B(0, R) with zero boundary conditions
on ∂B(0, R) and to construct a solution uR by the Galerkin method. It turns out that the
energy estimate (3) is valid for uR, providing uniform estimates (on uR which is considered
as a function over the whole space, after extension by zero off of Ω); this allows to pass to
the limit as R → +∞, more or less in the same way as before.

5.3. Implicit Euler Scheme

The scheme we consider in the present subsection deals with the time-discretization
and represents a first step also in the numerical analysis of the Navier-Stokes equations.
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We consider the case of Ω being a bounded domain satisfying the hypothesis (A3).
Let n ∈ N and define the time-step κn := T/n and the net IM = {tm}n

m=0, such that
ti − ti−1 = κn, for any i = 1, ..., n.

Moreover, given u0 ∈ H, consider a sequence (In the space periodic setting this can
be obtained simply with a mollification with kernel ρε, with ε = 1√

n .) of initial data
{un

0}n ⊂ V such that

‖∇un
0‖2 �

√
n‖un

0‖2, and un
0 → u0 strongly in H. (32)

For m ∈ {1, ..., n}, given ũm−1
n the iterate ũm

n is obtained by solving the boundary
value problem ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ũm
n − ũm−1

n
κn

− νΔũm
n + (ũm

n · ∇) ũm
n +∇ p̃m

n = 0 in Ω,

∇ · ũm
n = 0 in Ω,

ũm
n = 0 on ∂Ω,

with ũ0
n = un

0 . (In the case of a non-zero force one has to set f̃ m
n = κ−1

n
∫ tm

tm−1
f (t) dt in the

right-hand side of the momentum equation which defines ũm
n .)

For any fixed n ∈ N, we define the following sequences of functions defined on [0, T]
with values in V and in L2(Ω):

un(t) =
n

∑
m=1

χ[tm−1,tm)(t)
(

ũm−1
n +

(t − tm−1)

κn
(ũm

n − ũm−1
n )

)
, un(tn) = ũn

n,

vn(t) =
n

∑
m=1

χ(tm−1,tm ](t) ũm
n , vn(t0) = un

0 .

pn(t) =
n

∑
m=1

χ(tm−1,tm ](t) p̃m
n .

(33)

We are now ready to prove the following theorem, which is referred in literature as an
“alternate proof” by semi-discretization, see Reference [11].

Theorem 4. Let u0 ∈ H. Then, it holds that

1. For any fixed n ∈ N, there exist {ũm
n }n

m=1 ⊂ H1
0(Ω) such that for any m = 1, ..., n and any

ψ ∈ V

(ũm
n , ψ)− (ũm−1

n , ψ) + κn ν(∇ũm
n ,∇ψ) + κn((ũm

n · ∇) ũm
n , ψ) = 0; (34)

2. There exists a Leray-Hopf weak solution u such that the sequence {un}n and {vn}n, defined
in (33), satisfy

un → u strongly in L2(0, T; L2(Ω)),

un − vn → 0 strongly in L2(0, T; L2(Ω)).

Proof. For the proof of (1) we refer to Reference [11]. The idea is the following: For any
fixed n ∈ N and any m = 1, ..., n, the existence of ũm

n ∈ V solution of (34) is obtained by
applying the Brouwer fixed point theorem to the following modified version of the steady
Navier-Stokes equations, where the given iterate ũm−1

n is considered an external force:

ũm
n

κn
− νΔũm

n + (ũm
n · ∇) ũm

n +∇ p̃m
n − ũm−1

n
κn

= 0 in Ω,

∇ · ũm
n = 0 in Ω,

ũn = 0 in ∂Ω.

262



Fluids 2021, 6, 42

In particular, by the definitions (33), we have that {un}n ⊂ C(0, T; L2(Ω)) and
{vn}n ⊂ L2(0, T; L2(Ω)).

Next, we prove part (2).
By taking ψ = ũm

n in (34) and by using the elementary inequality (a − b, a) = a2−b2

2 +
(a−b)2

2 valid for all a, b ∈ R, we have that

‖ũm
n ‖2

2 − ‖ũm−1
n ‖2

2 + ‖ũm
n − ũm−1

n ‖2
2 + κnν‖∇ũm

n ‖2
2 = 0. (35)

Then, for any fixed m ∈ {1, ..., n} we have that

‖ũm
n ‖2

2 ≤ ‖un
0‖2

2 ≤ ‖u0‖2
2, (36)

κ ν
m

∑
i=1

‖∇ũi
n‖2

2 ≤ ‖un
0‖2

2 ≤ ‖u0‖2
2, (37)

m

∑
i=1

‖ũi
n − ũi−1

n ‖2
2 ≤ ‖un

0‖2
2 ≤ ‖u0‖2

2. (38)

By using (36)–(38) and (33) we easily have that

{un}n is bounded in L∞(0, T; H), (39)

{vn}n is bounded in L∞(0, T; H) ∩ L2(0, T; V). (40)

We want to prove a uniform bound in L2(0, T; V) also for {un}n. By a direct calculation
we have that∫ T

0
‖∇un(t)‖2

2 dt =
n

∑
m=1

∫ tm

tm−1

(
1 − (t − tm−1)

κn

)2

‖∇ũm−1
n ‖2

2 dt

+ 2
n

∑
m=1

∫ tm

tm−1

(
1 − (t − tm−1)

κn

)(
(t − tm−1)

κn

)
(∇ũm−1

n ,∇ũm
n ) dt

+
n

∑
m=1

∫ tm

tm−1

(
(t − tm−1)

κn

)2

‖∇ũm
n ‖2

2 dt

≤ κn

2

n

∑
m=1

‖∇ũm−1
n ‖2

2 +
κn

2

n

∑
m=1

‖∇ũm
n ‖2

2

≤ κn

2
‖∇ũ0

n‖2
2 + κn

n

∑
m=1

‖∇ũm
n ‖2

2.

By using (32) we obtain

∫ T

0
‖∇un(t)‖2

2 dt � κn

n

∑
m=1

‖∇ũm
n ‖2

2 + κn‖∇un
0‖2

2

� κn

n

∑
m=1

‖∇ũm
n ‖2

2 + ‖u0‖2
2 � ‖u0‖2

2.

where we have also used that κn = T/n and (37). Therefore we have that {un}n is
bounded in L2(0, T; V) and then, taking into account (39), {un}n satisfies the condition (1)
in Definition 2. Next, we show that {un}n satisfies the condition (2) of Definition 2. First,
for all φ ∈ V(Ω) and χ ∈ C∞

c ([0, T)) we have, by using (33) and (34), that

∫ T

0

(
(un(t), φ)χ̇(t)+ ((vn(t) ·∇)vn(t), φ)χ(t)+ ν(∇vn(t),∇φ)χ(t)

)
dt− (un

0 , φ)χ(0) = 0.
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If we define

Rn
φ := (vn(t)− un(t), νΔφ) + ((vn(t)− un(t))⊗ vn(t) + un(t)⊗ (vn(t)− un(t)),∇φ),

then {un}n satisfies the formulation (11) and we only need to prove that (12). To this end
we note that

∫ T

0
|Rn

φ(t)| dt ≤ c‖∇φ‖∞

(∫ T

0
‖un(s)− vn(s)‖2

2 ds
) 1

2
(∫ T

0
‖un(s)‖2 + ‖vn(s)‖2

2 ds
) 1

2

+ ν T
1
2 ‖∇2φ‖2

(∫ T

0
‖un(s)− vn(s)‖2

2 ds
) 1

2

.

By a direct calculation, we have that

∫ T

0
‖un(t)− vn(t)‖2

2 dt =
κn

3

n

∑
m=1

‖ũm
n − ũm−1

n ‖2
2 ≤ Cκn, (41)

and therefore ∫ T

0
|Rn

φ(t)| dt ≤ C‖∇φ‖∞ κn,

and (12) follows.
In conclusion, we have proved that {un}n satisfies the conditions (1) and (2) of Defini-

tion 2 and thanks to Theorem 1 and Remark 3, there exists u satisfying the condition (1)
and (2) in Definition 1. Then, in order to conclude, we only need to prove that u satisfies
also the energy inequality. First, we note that by using (35) and (33), a direct calculation
implies that for any t ∈ (0, T)

‖vn(t)‖2
2 + 2ν

∫ t

0
‖∇ vn(s)‖2

2 ds ≤ ‖un
0‖2

2. (42)

By using (40) and (41) we can infer that vn converges to the same limit of un, namely that

vn → u strongly in L2(0, T; L2(Ω)),

∇vn ⇀ ∇u weakly in L2(0, T; L2(Ω)).
(43)

For k ∈ N and t ∈ (0, T), let χt
k be the same function already defined in (21). Noticing

that −χ̇t
k is positive, after multiplying (42) and integrating in time we get that, for any

t ∈ (0, T), it holds

1
k

∫ t+k

t
‖vn(s)‖2

2 ds + 2ν
∫ T

0
χt

k(s)‖∇vn(s)‖2
2 ds ≤ ‖un

0‖2
2

∫ T

0
(−χ̇t

k(s)) ds = ‖un
0‖2

2.

By using (43) we get

1
k

∫ t+k

t
‖u(s)‖2

2 ds + 2ν
∫ T

0
χt

k(s)‖∇u(s)‖2
2 ds ≤ ‖u0‖2

2,

and by Lebesgue differentiation and dominated convergence theorems we obtaine that for
a.e. t ∈ (0, T)

‖u(t)‖2
2 + 2ν

∫ t

0
‖∇u(s)‖2

2 ds ≤ ‖u0‖2
2. (44)

Let N ⊂ (0, T) the set of measure zero where (44) does not hold and fix t ∈ N . Then,
there exists {tk}k ⊂ (0, T) \ N such that tk → t and

‖u(tk)‖2
2 + 2ν

∫ tk

0
‖∇u(s)‖2

2 ds ≤ ‖u0‖2
2.
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Since u ∈ Cw(0, T; H) and ‖∇u(·)‖2
2 ∈ L1(0, T) it follows that

‖u(t)‖2
2 + 2ν

∫ t

0
‖∇u(s)‖2

2 ds ≤ lim inf
k→∞

‖u(tk)‖2
2 + lim

k→∞
2ν

∫ tk

0
‖∇u(s)‖2

2 ds ≤ ‖u0‖2
2,

and therefore (44) holds for any t ∈ (0, T).

5.4. Smagorinsky-Ladyžhenskaya Model

In this section we show how the approximation by adding a nonlinear stress tensor
produce weak solutions. We consider for n ∈ N the following boundary initial value prob-
lem ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂t un + (un · ∇) un +∇pn − νΔun − 1
n

div(|Dun|Dun) = 0 in (0, T)× Ω,

div un = 0 in (0, T)× Ω,

un = 0 on (0, T)× ∂Ω,

un(0) = u0 in Ω,

(45)

where Dun = ∇un+(∇un)T

2 . This system has been introduced for numerical approxima-
tion of turbulent flows by Smagorinsky [22] and its analysis as a possible approxima-
tion for the Navier-Stokes equations started with the studies by Ladyženskaya [23], cf.
also Reference [24] for the role of this method in the analysis of Large Eddy Simulation
models. For the analysis also of related models, with general stress tensor given by
S(v) = S(Dv) = |Dv|p−2Dv, with various values of p, see References [18,25] and also the
more recent Reference [26].

Theorem 5. Let u0 ∈ H. Then, it holds that

1. For any fixed n ∈ N there exists a unique un ∈ C([0, T); L2(Ω)) solution of (45);
2. There exists a Leray-Hopf weak solution u and a possible sub-sequence of {un}n such that

un → u strongly in L2(0, T; L2(Ω)).

Proof. By using the theory of monotone operators (cf. References [8,18]) there exists a
unique un ∈ C(0, T; L2(Ω)) weak solution of (45) with un ∈ L∞(0, T; H) ∩ L2(0, T; V) and
Dun ∈ L3(0, T; L3(Ω)) such that it holds

‖un(t)‖2
2 + 2ν

∫ t

0
‖∇un(s)‖2

2 ds +
2
n

∫ t

0
‖Dun(s)‖3

3 ds ≤ ‖un
0‖2

2.

Observe that by Korn inequality ‖Dun‖3 ∼ ‖∇un‖3.
To prove the second part of Theorem 5 we show that {un}n satisfy the conditions in

Definition 2. Define the remainder Rn
φ(t) by

Rn
φ(t) := − 1

n

∫
Ω
|Dun(t)|Dun(t) · Dφ dx.

By means of the Hölder inequality we get

|Rn
φ(t)| ≤

1
n

∫
Ω
|Dun(t)|2|Dφ| dx ≤ 1

n
‖Dun‖2

3‖Dφ‖3.

Consequently, it also holds

∫ T

0
|Rn

φ(t)| dt ≤ T1/3

n1/3

(
1
n

∫ T

0
‖Dun‖3

3 dt
)2/3

‖Dφ‖3,
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showing that Rn
φ → 0 in L1(0, T). Since the other conditions in Definition 2 are trivially

satisfied, an application of Theorem 1 finally ends the proof.
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