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Preface to ”Semiconductor Memory Devices for
Hardware-Driven Neuromorphic Systems”

Artificial intelligence (AI) is a technological area that has been under development for half

a century. It is a term familiar to many people. AI has been exquisitely shaped into machine

learning, and more recently, deep neural networks. As its evolution progresses, AI technology is

infiltrating our daily lives more profoundly. Although AI technology has predominantly grown in

computer and software engineering so far, further developments can be made in a hardware sense

for higher system energy efficiency and more portable end-user-friendly edge applications. In order

to more effectively mimic “our way of thinking” , mathematical analogy and the hardware-sense

realization should go together hand in hand. AI can be more specifically termed as neuromorphic

when the mathematical/algorithmic essences are realized by AI-oriented, specially designed

hardware components. Hardware-sense AI can appear in general-purpose processing units made

of conventional transistors. Integration of a large number of processing units can eventually mimic

our way of thinking and can perform better depending on area. However, a lack of real AI may be

perceived if volume and energy consumption are not considered. In order to address this deficiency,

renovations should be realized at the device level. More synapse-like electron devices in terms

of integration density, completeness in realizing biological synaptic behaviors, and energy-efficient

operations are considered to be central for next-generation neuromorphic chips. The most important

distinguishable feature between conventional AI chips and advanced neuromorphic systems is

energy efficiency. However, only recently has this revolutionary synaptic device technology been

implemented with semiconductor memory devices, materials, and processing technologies, with the

aim of device scaling, data storage and processing, and low-power operation capabilities. It is the

right time to investigate how the neuromorphic system and its building component technologies are

developing. It cannot be underestimated that neural networks representing mathematical frames,

energy-efficient memory-based synaptic devices, neurons and relevant circuits need to accompany

one-another in good balance and harmony for ultra-low-power and super-light neuromorphic

systems. This book will help the readership understand the evolutionary direction of neuromorphic

systems, which is made in more hardware-driven ways, and provides perspectives in the relevant

fields.

I deeply thank all the authors who have contributed the research articles with the best

recency and also would like to give my sincere gratitude to my colleages, collaborators, family

members, and my lifetime advisor, Prof. Byung-Gook Park. Also, the support for the research on

neuromorphic devices and systems by Nano Material Technology Development Program through

the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (MSIT)

(NRF-2016M3A7B4910348) is acknowledged.

Seongjae Cho

Editor
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Abstract: In order to resolve the issue of tremendous energy consumption in conventional artificial
intelligence, hardware-based neuromorphic system is being actively studied. Although various
synaptic devices for the system have been proposed, they have shown limits in terms of endurance,
reliability, energy efficiency, and Si processing compatibility. In this work, we design a synaptic
transistor with short-term and long-term plasticity, high density, high reliability and energy efficiency,
and Si processing compatibility. The synaptic characteristics of the device are closely examined and
validated through technology computer-aided design (TCAD) device simulation. Consequently, full
synaptic functions with high energy efficiency have been realized.

Keywords: energy consumption; hardware-based neuromorphic system; synaptic device; Si
processing compatibility; TCAD device simulation

1. Introduction

Conventional computer architectures are mostly based on von Neumann’s architecture since
modern computer systems have been represented by electronic delay storage automatic calculator
(EDSAC)—since 1949. The architecture consists of two main parts of processing and memory units
performing the processes in the series’ manner through single instruction and single data. Due to
the physically differentiated system architecture, memory bus has been considered to be a bottleneck
in determining the system processing speed, which is getting even worse in these days when big
data are more increasingly demanded. In order to overcome this limit in the von Neumann computer
architecture parallel processing capability of the artificial intelligent, of parallel processing with
tremendous amount of data, contributions have been dedicated by the software-based neural networks.
Although unimaginably many kinds of tasks have been accomplished by the software-driven technology
in the given hardware system, with great resemblance to the way the human brain works, there is much
room for enhancement of energy efficiency, which is the incomparable essence of biological system.

As a solution for the energy consumption issue, spiking neural network (SNN) is considered
as one of the powerful schemes inspired by the biological system, which requires fundamental
hardware innovation with synaptic transistors and neuron circuits [1,2]. Intellectual functions in
human brain are determined by the strength and accuracy in connectivity among neurons. In human
brain, there are a few tens of quadrillions of synapses and, through the synapses, humans become
able to recognize, calculate, memorize, and learn. Thus, for hardware-driven neuromorphic systems
to achieve more human-brain like computing efficiency, the synaptic device is required to have high
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scalability, multi-level weight adjustability, large inference margin, strong tolerance, and ultra-low
energy consumption. Moreover, in order to gain higher access to the chip-level production lowering
time and cost barriers, the SNN should be realized on the Si platform being helped by the mature Si
processing technology.

A number of synaptic devices have been proposed with memristors such as resistive-switching
random-access memory (ReRAM) and phase-change random-access memory (PcRAM). They are
considered to be good candidates for the electronic synapse owing to their high structure simplicity
and volume scalability, mainly by their great geometrical resemblance to the two-terminal structure of
the biological synapse and energy efficiency [3–6]. Although memristors have these advantages, there
is still room for further improving the rather low endurance and reproducibility and for enhancing the
completeness in realizing the biological synaptic functions. Moreover, some of the existing memristor
devices are not in consideration of Si processing compatibility. The simple structure requires functional
compensation by additional devices or circuits, which might cause increased overhead in the SNN
architecture [7–9]. In this work, a novel synaptic device has been designed, which has SiGe quantum
well (QW) and Si3N4 charge-trap layer to realize the short-term potentiation (STP) and long-term
potentiation (LTP), respectively, and its synaptic operations have been validated through technology
computer-aided design (TCAD) device simulation, Silvaco Atlas [10]. Although the designed synaptic
device is in a more complicated structure with a larger number of terminals compared with the
two-terminal synaptic devices, it is capable of complementing the aforementioned weak points of the
memristors, with an emphasis on higher energy efficiency and Si processing compatible materials.
While most of the memristor synaptic devices have shown energy consumption higher than 1 pJ [11],
the largest energy consumption required for a potentiation event has been demonstrated to be 1.51 fJ.

2. Device Structure and Design Strategies

More detailed explanations on the operation principles of the synaptic device and the models
used in the device simulation along with the related physics are provided as follows. Figure 1 shows
the schematic of the proposed synaptic device which has a p+ SiGe layer at the drain-side channel and
a charge-trap layer on the channel.
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Figure 1. Schematic of the proposed synaptic device having an embedded SiGe quantum well and
charge-storage layer for realizing the short-term and long-term plasticity, respectively.

As the number of potentiation pulses increases, the electrons in the SiGe valence band tunnel into
the drain conduction band and fill the empty energy states. As a result, the holes generated in the
SiGe layer are confined in the layer owing to a large valence-band offset (VBO) between Si and SiGe.

2
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The confined holes give an effect of elevating the hole potential energy and the probability of hole
tunneling into the nitride charge-trap layer, which realizes the LTP operation.

Designing a synaptic device with high reliability is paramount in building up a hardware
architecture for the neuromorphic system. In order to demonstrate the device operation more
accurately, multiple models are simultaneously activated. The mathematical and physical backgrounds
of the used models can be glanced as follows. One of the essential differential equations used in the
TCAD simulation is Poisson equation in Equation (1).

div(ε∇ψ) = −ρ (1)

Here, ε is the local electrical permittivity of the material, ψ is the electrostatic potential, and ρ is the
volume charge density.

∂n
∂t
− 1

q
div
→
Jn = Gn −Rn (2)

Continuity equation in Equation (2) can be applied for obtaining the electron and hole current densities.
n, Jn, Gn, and Rn are concentration of mobile electrons, areal electron current density, generation rate
of electron, and recombination rate of electron, respectively. n can be substituted with p for hole
description. q is the magnitude of electron charge. Based on the above equations, various models are
equipped for higher accuracy and reliable simulation results. For an inversion layer mobility model,
Lombardi model was used, which is suitable to non-planar devices, with dependences on both parallel
and vertical electric fields, doping concentration, and temperature. The underlying physics comes
from Matthiessen’s rule.

µ−1
T = µ−1

AC + µ−1
b + µ−1

sr (3)

Here, µT, µAC, µb, and µsr indicate the total mobility, the surface mobility limited by scattering with
acoustic phonons, the mobility limited by scattering with optical intervalley phonons, and the surface
roughness factor, respectively.

f (E) =
1

1 + exp
(

E
kTL

) (4)

For carrier statistics, Fermi–Dirac statistics was employed. In Equation (4), f (E) is the probability
that an available electron state with energy E is occupied by an electron, k is Boltzmann constant,
and TL is lattice temperature. Moreover, the model is useful for the proposed device to describe the
STP-to-LTP transition. The accumulated holes in the SiGe quantum well, which should be at the Fermi
distribution tail, have higher probabilities of injection into the charge-trap layer. Moreover, non-local
band-to-band tunneling calculation method was adopted, which has higher accuracy than the several
tunneling models given as default in the TCAD simulation. This is due to the fact that the proposed
device has the degenerately doped SiGe channel and drain, and the method calculates the tunneling
probabilities by considering not only both forward and reverse tunneling currents but also the spatial
variation of energy band and generation/recombination rates as shown in Equations (5) and (6).

J(E) =
q
π}

x
T(E)[ fl(E + ET) − fr(E + ET)]ρ(ET)dEdET (5)

T(E) = exp
(
−2

∫ xend

xstart

k(x)dx
)

(6)

Here, J(E) is the net current density for a carrier with longitudinal (E) and transverse energy
(ET) under the assumption that the tunneling current is the result of bidirectional transfers of carriers
across the junction. f l and f r are the Fermi–Dirac functions using the quasi-Fermi levels in the left-side
and right-side materials of the respective junctions. ρ(ET) and k(x) represent the density of states
corresponding to the transverse wavevector components and the wavevector at x. T(E) indicates
the tunneling probability for a carrier having an energy of E from the Wentzel–Kramers–Brilluoin
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(WKB) approximation. Moreover, Shockley–Read–Hall recombination model, impact-ionization model,
and bandgap narrowing model have been used. The aforementioned models are reflected for all
the regions, and the non-local band-to-band model was applied locally between SiGe and Si where
the tunneling events actually take place. In order to demonstrate the charge-trapping mechanism of
nitride, a macro model (DYNASONOS) was employed, which includes various transport mechanisms
such as thermionic emission, Poole–Frenkel emission, direct tunneling model, Fowler–Nordheim (FN)
tunneling, and hot carrier injection at the same time. These models for the gate current are automatically
applied for the Si3N4 layer and the regions in contact, which substantially affects the dynamics of the
carriers moving into and out of the charge-trap layer. Without just using the default values given in the
TCAD simulation package, the mobilities (µ) [12,13], saturation velocities (vsat) [14–19], bandgap energy
(Eg) [20], and electron affinity (χ) [21–27] of Si and SiGe have been fed into the device simulation [28].
This is because the SiGe layer, which stores holes, is considered as the important region for the synaptic
operation. The values of the parameters are tabulated in Table 1.

Table 1. Parameters used in this work for Si and SiGe.

µn [cm/V·s] µp [cm/V·s] vsat,n [cm/s] vsat,p [cm/s] χ [eV] Eg [eV]

Si 1590.0 570.00 1.02 × 107 7.33 × 106 4.050 1.10
Si0.7Ge0.3 170.02 178.81 6.08 × 106 5.17 × 106 3.975 0.965

The SiGe layer is 50 nm long in the vertical direction and 50 nm wide (channel thickness =

50 nm). The p-type Si region is 100 nm long and the physical gate length (Lg) is 100 nm. Thus,
whole SiGe region and the half of Si region are brought under the gate. In order to confine the holes
generated over the potentiation process in the SiGe quantum well (QW) effectively, Ge fraction should
be optimally controlled for a large valence-band offset (VBO) and the Si/SiGe interface status in the
epitaxy processing as well, which is fixed to 0.3 throughout the design work. The gate oxide thickness
for the gate 1 is 3 nm. The storage node is made up of oxide/nitride/oxide = 2/4/6 nm between the
channel and the gate 2. The doping concentrations of source and drain junctions are both n+-type 1020

cm−3, and those of p+ SiGe QW and p-type Si channel are 1018 cm−3 and 1016 cm−3, respectively.

3. Design Results and Discussion

3.1. Design of Synaptic Device

In designing the synaptic device, the focus was placed on successfully emulating biological neural
system with Si compatibility, high scalability, high reliability, and high energy efficiency. In order to
meet the requirements, various approaches were performed including embedding SiGe layer. There is
a large difference in Eg between Si and Ge and small difference in electron affinity (χ) so that most of
the difference in energy bandgaps is transferred to VBO, which forms a hole QW in the SiGe region.
Furthermore, SiGe is not only helpful in implementing potentiation mechanism but also in large current
ratio between different weight states because its smaller Eg has the effect of lowering the potentiation
voltage compared with the all-Si case. Employing these features of SiGe, the SiGe layer can be used as
short-term storage node, making the device more energy-efficient.

Figure 2a shows the block diagram schematically explaining the learning rule of human brain
by Hebbian’s law [29]. Hebbian’s law effectively dictates the correlation-based plasticity in the
biological nervous system where the connectivity between pre-neuron and post-neuron, i.e., the
synaptic conductance is strengthened by repeated firing events of the pre-neuron. An increased
number of pulses in a given time, or equivalently, an increased pulse frequency enhances the transition
probability of the synaptic device from short-term to long-term memory. Figure 2b,c shows the
energy-band diagrams in the channel direction and metal-oxide-semiconductor direction from gate 1
to gate 2, respectively. For the potentiation operation, BTBT is adopted as the primary mechanism
considering device reliability, scalability, and energy efficiency (Figure 2b). As shown in Figure 2b,

4
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for a potentiation pulse, the valence-band electrons in the SiGe QW can see the empty states of the
conduction band of the Si drain junction. As the result, holes are generated and effectively confined
in the SiGe layer due to the large VBO between SiGe and Si. The locally confined holes by QW VBO
give an effect of elevating the QW potential and increasing the channel conductance temporarily [30],
which corresponds to the STP. Then, if the potentiation pulses are repeatedly applied to the transistor
before the generated holes are annihilated by either recombination or diffusion, i.e., if the holes are
accumulated and their amount exceeds a certain threshold value in the SiGe QW, LTP is introduced.
The accumulated holes with the energies at the Fermi-Dirac distribution tail have higher probabilities
of injection into the nitride charge-trap layer. Once the holes are trapped in the nitride layer, they do not
vanish for long time, which establishes the LTP function. Moreover, work functions of those two gates
are optimally adjusted to locate the BTBT site not in the vicinity of the right-side channel in order to
prevent a soft potentiation and to store the generated holes at the right-side of the channel, which leads
to a stable and reproducible LTP operation as shown in Figure 2c. By reflecting the aforementioned
approaches, design of a synaptic device meeting the requirements is realized.
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Figure 2. Operation principles of the synaptic device. (a) Hebbian’s learning rule. (b) Energy-band
diagram in the channel direction under the potentiation condition. (c) Energy-band diagram at the
initial state and after potentiation state. The inset shows the band-to-band tunneling rate over a
potentiation event.

3.2. Validation of Short- and Long-Term Plasticities

The proposed device has strong advantages particularly in energy-efficiency. There are many
resources to make the device energy-efficient, such as introduction of SiGe QW, band-to-band tunneling
mechanism, and STP characteristics. STP helps the device discriminate less important signals.
Otherwise, when the weight of a synaptic device is changed at every input signal, the overall current
over the synaptic device array would increase and large energy consumption is resulted.
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Figure 3. Drain current and nitride-trapped charges vs. learning pulses. The training pulse has a 1-µs
width and a 1-µs interval.

Figure 3 indicates the timing diagram of drain current (ID) and the amount of nitride-trapped
charges as a function of time. The potentiation pulse is a set of (gate 1 voltage (VG1), gate 2 voltage
(VG2), drain voltage (VDS) = (−0.2 V, −0.7 V, 0.55 V), and the hold bias is (VG1, VG2, VDS) = (−0.3 V,
0 V, 0 V). When a potentiation pulse is applied, holes are generated by band-to-band tunneling and
confined in the SiGe layer. At the fourth pulse, ID rapidly increases since the number of holes in the
SiGe exceeds a certain threshold value and induces a drastic injection into the nitride charge-trap
layer as shown in Figure 3. The trapped holes lower the threshold voltage of the synaptic device and
increase the channel conductance.

Figure 4a shows the conduction-band edges obtained after different number of pulses are applied:
0, 1, 5, 10, 20, 30, 40, and 50 pulses. The insets depict the three-dimensional (3-D) contours of conduction
band edge surfaces at the initial state and at a state after 30 pulses are applied, respectively. The line
spectra representing the conduction band edges have been extracted from the channel vicinity of VG2

where the main current conduction path is formed. It is revealed that most of potential barrier lowering
takes place by the holes in the SiGe region. Figure 4b plots the electron current density contours at the
inference operations after different number of potentiation pulses: 1, 5, and 30 pulses. The inference
process in the biological nervous system is analogous to the read operation in the memory array, and
the electrical disturbance of the current data should be avoided. For the nondestructive inference, a
voltage scheme was found to be VGS1 = VDS = −0.1 V. As the number of pulses increases, more holes
are populated in the charge-trap layer, and the potential barrier seen by the source electrons is lowered.
Consequently, higher ID is read at the same inference voltage as can be confirmed by Figure 4b.

Figure 5a demonstrates the transient characteristics of the synaptic transistor after different
number of potentiation pulses. Through Figure 5a, it is confirmed that the proposed synaptic device is
capable of both STP and LTP functions. The STP increases the channel conductivity for a short time,
and the effect is diminished as time passes. As a result, ID is eventually converged to the initial-state
current level: The starting point can be varied but the final ID is the same in the STP operation. On the
other hand, ID higher than the initial low current is consistently retained for up to 104 sec or more

When the synaptic device is brought into the LTP states. Here, it is notable that a large current
difference takes place between states as the number of potentiation pulses increases. In Figure 5b,
the actual transfer curves of the synaptic device obtained after the corresponding different number
of pulses are applied in Figure 5a are depicted. In the STP operation, there is steady-state threshold
voltage (Vth) shift. Once the device is in the LTP condition, a larger number of pulses lead to lower
Vth without a temporal change. This is because the trapped holes in the nitride layer result in the
inversion layer under the gate 2 at the inference bias. In Figure 5b, the proposed device demonstrates
the large current ratio between high and low conductance states, which can be a beneficial aspect of a
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fully-Si electron device. The successfully suppressed leakage current stems from the high potential
barrier constructed by the large VBO. If there is only STP, there would be no Vth shift. Only in the LTP
condition, Vth begins the left-shifts due to the holes trapped in the nitride layer. It is shown that Vth of
the proposed synaptic device is shifted by 1.5 V after 40 potentiation pulses are applied.
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Figure 4. Analysis on potentiation operation. (a) Change in the conduction band surface with regard to
the number of potentiation pulses: initial (left) and after 30 pulses (right). Line traces of the conduction
band edges in the vicinity of gate 2. (b) Electron current densities after 1, 5, and 30 potentiation pulses
applied to the synaptic device.
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3.3. Interval Time Effects on STP and LTP Characteristics

Figure 6a–c shows how the transition from STP to LTP is made. As shown in Figure 6a, increasing
the interval time between potentiation pulses makes it difficult to get into the LTP state. The holes in
the SiGe layer temporarily generated by the pulses vanish by recombination and diffusion, which does
not provide the boosting effect in band-to-band tunneling into the charge-trap layer. With the interval
time of 1 ms, the synaptic device is not allowed to move to the LTP states as shown in Figure 6a and
confirmed by Figure 6b. Figure 6b demonstrates the transient and DC characteristics under different
interval time conditions for the same total number of potentiation pulses of 10. It is assured that a short
enough time interval allows the synaptic device to enter the LTP states and modulate the electrical
conductivity for learning.
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Figure 6. Operation characteristics depending on the number of pulse interval times. (a) Current
changes with different pulse interval times: 10 µs, 100 µs, and 1 ms. (b) Transient (left) and DC sweep
(right) characteristics with different interval times. For a shorter interval time at a given number of
potentiation pulses, the saturation current increases and the Vth shift gets wider.

3.4. Spike-Timing-Difference Plasticity and Array Architecture

Table 2 summarizes the bias conditions for the synaptic operations and the required energy
consumption per the realizable synaptic event along with the calculated synaptic device density.
In order to exactly calculate the energy consumption, the current is integrated with time and multiplied
by voltage. In Table 2, the energy consumption was obtained in the case of maximum value to consider
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the worst case. There are approximately 1015 synapses in the brain, about 1% of them are activated at
the same time, and the frequency of neuron spike is about 10 Hz [31–33]. On this bases, human brain
consumes power of ~20 W, and 55% out of the total power is consumed by the action potential [34–37].
In other words, it is assumed that power of 11 W is consumed for the synaptic activities. The power
consumption per biological synaptic event is derived to be 1.1 × 10−12 W. Considering that each
synaptic event has a ~100 ms duration, the energy consumption per synaptic event is calculated to be
about 10 fJ. For the inference operation, 20 ns of rising and falling times and 10 ns of pulse duration are
schemed, and then, this time period is multiplied by the inference voltage of −0.1 V and the current
depending on weight for calculation of the energy consumption. The energies required for respective
synaptic operations are summarized in Table 2, and most of them are very close to those for the
biological synapse. Potentiation operation increases the conductance of the synaptic device so that a
relatively large energy consumption is required; however, the amount is still low. Owing to the low
operation voltage and tunneling-based injection mechanism, maximum energy consumption of only
0.52 pJ is needed for a potentiation event. For a depression event, the trapped holes tunnel back to
the channel, which necessitates a relatively high operation voltage on the gate 2. However, even in
the worst case, the required energy consumption is much lower than that for a potentiation event.
Although the energy consumption for individual potentiation or depression event can be higher than
that for an inference operation, the energy for an inference event can be spanned over a large range
depending on the conductance. With the help of low-power and high-speed operation capabilities, the
proposed synaptic transistor requires only a femto-joule energy even after 40 potentiation pulses are
applied. Assuming that a unit cell has a footprint of 158 nm by 150 nm, the density of synaptic device
array is calculated to be 9.09 × 109/cm2. Here, the critical dimensions of the designed device and the
metal pitches in one of the most recent memory technologies have been considered [38], where the
wordline (WL) and bitline (BL) pitches are 48 and 54 nm, respectively.

Table 2. Energy consumption per realizable synaptic event and the calculated synapse density.

VG1 VG2 VDS Time Energy

Potentiation −0.2 V −0.7 V 0.55 V 1 µs 0.52 fJ
Depression 0 V 6 V 0 V 1 µs 1.51 fJ

Inference −0.1 V 0 V −0.1 V 10 ns
Initial 6.42 × 10−24 J

20 pulsed 1.87 × 10−16 J
40 pulsed 5.24 × 10−16 J

Synapse density 9.09 × 109/cm2 (
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Furthermore, the spike-timing-dependent plasticity (STDP) characteristics have been obtained by
adjusting the pulse profile and time difference as demonstrated in Figure 7. The inset describes the
potentiation and depression pulse schemes in the STDP simulations. The spiking pulse has 950 ns
of rising time and 100 ns falling time, respectively, and the positive and negative voltage peak is
0.72 V in magnitude. The pre-neuron is connected with drain, and the post-neuron is with gate 1
and gate 2. When a pre-neuron spike comes earlier than a post-neuron one, the synaptic transistor is
potentiated since the holes generated by tunneling operation from channel to drain are stored in the
nitride charge-trap layer, which improves the conductance of the device. In the reversed order, the
device is depressed owing to ejection of the trapped holes out of the nitride layer. When the timing
difference between pre- and post-neuron spikes is larger than 900 ns, the conductance of the device is
not changed but left as the initial value, which indicates that two neurons are not so closely correlated,
and there is neither potentiation nor depression. It is noticeable that the synaptic transistor has a
large current difference for the different spike timing, which substantially reduces the complexity of
the sensing circuits and enhances the system reliability. Figure 8 demonstrates a presumable array
architecture with the designed synaptic transistor for a hardware-driven neuromorphic system.
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Figure 8. Array architecture with the proposed four-terminal synaptic transistor towards a high-density
and high-reliability hardware-driven neuromorphic system.

4. Conclusions

In this work, a synaptic transistor having SiGe quantum well and nitride charge-trap layer
was schemed and characterized by a series of rigorous simulation works. The synaptic device has
successfully demonstrated the synaptic operations including STP, LTP, and inference with high energy
efficiency not exceeding a two femto-joules in the worst case. Further, spike-timing-dependent plasticity
was verified through a properly adjusted pulse scheme. A presumable array architecture is also
conceived with the four-terminal synaptic device, and its density was calculated to be 9.09 × 109/cm2

based on the interconnect schemes in the 18-nm DRAM technology node.
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Abstract: Recently, bio-inspired neuromorphic systems have been attracting widespread interest
thanks to their energy-efficiency compared to conventional von Neumann architecture computing
systems. Previously, we reported a silicon synaptic transistor with an asymmetric dual-gate structure
for the direct connection between synaptic devices and neuron circuits. In this study, we study a
hardware-based spiking neural network for pattern recognition using a binary modified National
Institute of Standards and Technology (MNIST) dataset with a device model. A total of three systems
were compared with regard to learning methods, and it was confirmed that the feature extraction of
each pattern is the most crucial factor to avoiding overlapping pattern issues and obtaining a high
pattern classification ability.

Keywords: neuromorphic system; on-chip learning; overlapping pattern issue; pattern recognition;
synaptic device; spiking neural network

1. Introduction

Even though computing systems based on von Neumann architecture still dominate computer
architecture, this architecture is considered inefficient for dealing with big data in the training of
deep neural networks (DNNs) because of its serial signal processing [1]; therefore, a totally new
computing system is required for the next generation of artificial intelligence. Recently, a bio-inspired
neuromorphic system based on a spiking neural network (SNN) has been widely investigated because
of its power-efficiency and parallel signal processing properties [2–5]. With regard to its application, the
neuromorphic system, which is a hardware implementation of an artificial neural network, has been
utilized mostly for pattern recognition [6–10], but also as a denoising auto encoder [11], for color
image reconstruction [12], and for speech recognition [13]. In addition, various kinds of electronic
devices have been studied as an artificial synaptic device, a crucial building block for constructing
neuromorphic systems, including resistive switching materials [14–17], phase change materials [18–20],
ferroelectric materials [21,22], and transistors [23–25]. Among them, transistor-based synaptic devices
are considered as having better reliability characteristics and device variation for very-large-scale
integration (VLSI) implementation of neural networks compared to their counterparts.

In our previous works, we reported a synaptic transistor with an asymmetric dual-gate
structure as having short- and long-term memories and spike-timing dependent plasticity (STDP)
characteristics [26–28], and its fabrication method [29]. In this work, a system-level study of a SNN for
pattern recognition is presented with a binary modified National Institute of Standards and Technology
(MNIST) handwritten dataset. The necessity of an inhibitory synaptic component is analyzed in order
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to solve an overlapping pattern issue when it comes to pattern recognition for on-chip learning of
bio-inspired neuromorphic systems in the form of SNNs.

2. Device Model of Synaptic Transistor for System-Level Study

A schematic view of weight modulation in the synaptic transistor is illustrated in Figure 1a. As the
pre-synaptic spikes are applied to the first gate (G1) and the drain, excess holes are generated by impact
ionization and accumulate in the floating body region. The impact generation region expands as a
result of the positive feedback between impact generation rate and accumulated holes. Afterwards,
newly generated hot carriers near the second gate (G2) are injected into the nitride layer depending on
the second gate voltage (VG2). The device is potentiated and depressed when holes and electrons are
stored in the nitride layer because of the threshold voltage (VT) change. These weight modulation
characteristics of the synaptic transistor are incorporated into a device model with a voltage-controlled
current source (VCCS) [30] based on the gate current caused by hot carrier injection [31], as shown in
Figure 1b. The VCCS delivers the second gate current (IG2) to the nitride layer, which is modeled by
the gate current flowing by hot carrier injection as a function of VG2 as per the following equation:

IG2 represented by VCCS = α · (VG1 − VT)2 · VG2
2 · exp(−1/VG2) (1)

where α is a fitting coefficient. The type and number of injected carriers are determined depending
on VG2 so that the amount of VT change (∆VT) per each pre- and post-synaptic spike is calculated,
providing good agreement with the measured data [28].
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Figure 1. (a) Schematic view of weight modulation in the synaptic transistor with dual-gate structure.
(b) Device model of the synaptic transistor with a voltage-controlled current source (VCCS).

3. Results and Discussion

With the help of the developed device model, the performance of the SNN composed of the
synaptic transistors was studied with regard to pattern recognition. A 784 × 10 single-layer SNN was
constructed to train and test 28 × 28 binary MNIST images (60,000 training images and 10,000 testing
images). A total of 784 synaptic transistors were connected to each output node as shown in Figure 2.
Charges were integrated at a capacitor node while pre-synaptic spikes were applied to each synaptic
transistor, and a post-synaptic neuron circuit generated post-synaptic spikes at the output node when
the node voltage of the capacitor exceeded VT of the neuron circuit [32]. The spike generation rate
of each post-synaptic neuron circuit was considered as the intensity of the output node; therefore,
the system was considered successful in pattern recognition when the answer node fired most among
all the output nodes during test operation. The reason why recognition accuracy was calculated in
this manner is that the weight sum of transferred currents (IE) to the output node, which is the most
congruous to the testing sample, was expected to be the largest owing to the potentiated synaptic
transistors in the shape of the digit, leading to high current flows.
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Figure 2. Single-layer spiking neural network (SNN) for pattern recognition with synaptic transistors
and neuron circuit.

Figure 3a shows how the system was trained using the binary MNIST images and STDP
characteristics. The pre-synaptic spikes were applied to the corresponding synaptic transistors with
different timing depending on their colors: black with ∆t = 0.5 µs and white with ∆t = −0.5 µs,
compared to a teaching signal which was given to the output node matching to the digit of the training
sample. Therefore, VT was increased (depression) for the synaptic transistors representing black
pixels (background) and decreased (potentiation) for white pixels (handwritten digit). Figure 3b
shows the classification rate of the SNN with untrained testing samples as a function of the number of
trained samples.

Electronics 2019, 8, x FOR PEER REVIEW 3 of 8 

 

 
Figure 2. Single-layer spiking neural network (SNN) for pattern recognition with synaptic transistors 
and neuron circuit. 

Figure 3a shows how the system was trained using the binary MNIST images and STDP 
characteristics. The pre-synaptic spikes were applied to the corresponding synaptic transistors with 
different timing depending on their colors: black with ∆t = 0.5 µs and white with ∆t = −0.5 µs, 
compared to a teaching signal which was given to the output node matching to the digit of the 
training sample. Therefore, VT was increased (depression) for the synaptic transistors representing 
black pixels (background) and decreased (potentiation) for white pixels (handwritten digit). Figure 
3b shows the classification rate of the SNN with untrained testing samples as a function of the number 
of trained samples.  

The accuracy rate became rapidly saturated due to the nonlinear weight modulation 
characteristics coming from the hot carrier injection model. The more electrons or holes were trapped 
in the nitride layer, the less likely were additional electrons or holes to be injected due to the potential 
inhibition by the already stored ones. The saturated accuracy rate of over 3000 trained samples was 
about 60%, which is quite low compared to other SNN systems because of the overlapping pattern 
issue. Figure 3c describes how the overlapping pattern issue degrades the classification rate. The 
output nodes having more white pixels in their weight maps, such as eight or zero, have a higher 
probability to fire, even though they do not match the digits of test samples, leading to a low 
recognition rate of the ones that have less white pixels (such as digit 1).  

 
Figure 3. (a) Learning method using the spike-timing dependent plasticity (STDP) rule. (b) 
Classification rate depending on the number of trained samples. (c) Overlapping pattern issue. 

Vdd

Vout

Vin #1

…

Excitatory
Synapses

Integration

Post-
Synaptic 
Neuron 

Part

IE

Vin #784
Back Propagation

Figure 3. (a) Learning method using the spike-timing dependent plasticity (STDP) rule. (b) Classification
rate depending on the number of trained samples. (c) Overlapping pattern issue.

The accuracy rate became rapidly saturated due to the nonlinear weight modulation characteristics
coming from the hot carrier injection model. The more electrons or holes were trapped in the nitride
layer, the less likely were additional electrons or holes to be injected due to the potential inhibition
by the already stored ones. The saturated accuracy rate of over 3000 trained samples was about 60%,
which is quite low compared to other SNN systems because of the overlapping pattern issue. Figure 3c
describes how the overlapping pattern issue degrades the classification rate. The output nodes having
more white pixels in their weight maps, such as eight or zero, have a higher probability to fire, even
though they do not match the digits of test samples, leading to a low recognition rate of the ones that
have less white pixels (such as digit 1).
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Figure 4a compares two weight maps in the form of ∆VT at the same scale, which were learned
through the STDP rule and transferred from an artificial neural network (ANN) through off-chip
learning; here, the synaptic weights of the ANN were converted to the ones of the SNN to be
proportional to their square roots, so that the transferred IE can be in line with the weight sum of the
ANN with a rectified linear unit (ReLU), which is one of the most popular activation functions in
ANNs because of the lack of vanishing gradients problems compared to other ones, such as sigmoid or
a hyperbolic tangent [33–35]. The former looks like carving digits to the synaptic devices, whereas the
latter is well characterized by the features of each digit. That is why the hardware-based SNN has a
poor accuracy of 60% because its weight map does not reflect the characteristics of each digit. In the
case of the STDP method, the VT is modulated only according to whether a training sample is the
answer or not, and the amount of VT change is determined by the amount of already stored carriers in
the nitride layer. However, the amount of VT change is adjusted in the case of the ANN according to a
backpropagation algorithm. Illustrated in Figure 4b are the transformation processes of the weight
maps for digit 8 as the training progressed for the two cases. The carved pattern on the weight map by
the STDP method becomes clearer in the direction in which it can fire frequently by digit input samples;
however, the transferred weight map from the ANN exhibits its unique features in fine detail, so that
all the weight maps have higher classification accuracies, which means that even a narrower memory
window of the synaptic transistors can provide a higher accuracy when the weight map reflects the
unique characteristics of the training images which are supposed to be classified. Figure 4c plots the
classification rates for each digit depending on the methods. The poor accuracies, especially digit
1 and digit 9, have been highly improved by adopting the transferred synaptic weights, leading to
87.6% of the total accuracy. In addition, the most noteworthy thing is that the classification rates of the
transferring method and the ANN itself are almost the same for every single digit. It is believed that
the SNN using the transferred weight maps and the ANN with ReLU are equivalent in their operations
in the respect that the intensity of the output nodes can correspond to the firing rate [36].
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maps learned by the STDP method and transferred from an artificial neural network (ANN). (b) Training
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method, transferred synaptic weights method, and ANN.
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In order to reduce the classification error caused by the overlapping pattern issue discussed above,
the inhibitory synaptic devices with the same weight maps as the excitatory ones are added as shown
in Figure 5a. As in the previous method, the input signals are applied to the excitatory synapses
corresponding to their own pixels in the case of the white pixels; at the same time, the input signals
are applied to the inhibitory synapses in the case of the black pixels. This change in the manner of
classification leads to the result that if the testing samples cover not only their own digits but also
other digits, the remaining parts contribute to a subtraction of the weight sum by the current flows (II)
through the inhibitory synaptic transistors as shown in Figure 5b. The overlapping pattern issue can
be significantly solved in this way because it mainly comes from the contribution of the remaining
parts to undesired firings.
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Figure 6a shows the accuracies as a function of the number of training samples for various ratios
between the channel widths of the excitatory synaptic transistors (Wex) and the inhibitory ones (Win).
The accuracy is improved by 10% at Win/Wex = 0.1; however, it starts decreasing after that and reaches
the bottom (nearly 0% instead of 10%) when Win/Wex = 0.5. This is because the output nodes cannot fire
when Win is too wide. The number of black pixels is larger than that of white pixels and II is higher than
IE in most testing samples when Win/Wex exceeds 0.5. Figure 6b compares the classification rate of each
digit for those two SNN systems. It is noteworthy that the accuracies of the digits which have a small
number of white pixels, such as one, is significantly enhanced from 19 to 60%, while the accuracies of
other digits maintain similar values. It is confirmed that the addition of an inhibitory synapse part can
effectively solve the misclassified cases stemming from the overlapping pattern problem.
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4. Conclusions

In conclusion, we presented a system-level study regarding pattern recognition with the help of a
device model. The device model was developed with a VCCS based on measured data and gate current
by hot carrier injection. A total of three SNN systems were constructed and analyzed using binary
MNIST images. A SNN with only the excitatory synaptic transistors trained under the STDP rule
had a poor classification rate with 60% of the total accuracy because of the pattern overlapping issue.
This dramatically improved to 87.6% in the case of a SNN with transferred synaptic weights from an
ANN using ReLU. The difference between those two systems was whether the region representing
the unique features of each digit was potentiated or the handwritten digit region was just carved.
The addition of inhibitory synaptic transistors with the same weight maps improved the classification
accuracy by 10% by solving the overlapping pattern problem, which comes from the fact that the
output nodes having more white pixels tend to fire to unmatched training samples. These results lead
us to conclude that these SNN systems and learning methods provide a framework for future studies
about hardware-based neuromorphic systems using both excitatory and inhibitory synaptic devices
for pattern recognition applications.
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Abstract: In order to address a fundamental bottleneck of conventional digital computers, there is
recently a tremendous upsurge of investigations on hardware-based neuromorphic systems.
To emulate the functionalities of artificial neural networks, various synaptic devices and their
2-D cross-point array structures have been proposed. In our previous work, we proposed the 3-D
synapse array architecture based on a charge-trap flash (CTF) memory. It has the advantages of
high-density integration of 3-D stacking technology and excellent reliability characteristics of mature
CTF device technology. This paper examines some issues of the 3-D synapse array architecture.
Also, we propose an improved structure and programming method compared to the previous work.
The synaptic characteristics of the proposed method are closely examined and validated through a
technology computer-aided design (TCAD) device simulation and a system-level simulation for the
pattern recognition task. The proposed technology will be the promising solution for high-performance
and high-reliability of neuromorphic hardware systems.

Keywords: 3-D neuromorphic system; 3-D stacked synapse array; charge-trap flash synapse

1. Introduction

Neuromorphic systems have been attracting much attention for next-generation computing
systems to overcome the von Neumann architecture [1–5]. The term “neuromorphic” refers to an
artificial neural system that mimics neurons and synapses of the biological nervous system [3]. A neuron
generates a spike when a membrane potential which is the result of the spatial and temporal summation
of the signal received from the pre-neuron exceeds a threshold, and the generated spike is transmitted
to the post-neuron. A synapse refers to the junction between neurons, and each synapse has its own
synaptic weight which is the connection strength between neurons [6]. In a neuromorphic system,
synaptic weight can be represented by the conductance of synapse device.

The requirements of a synapse device to implement a neuromorphic system are as follows:
small cell size, low-energy consumption, multi-level operations, symmetric and linear weight
change, high endurance and complementary metal-oxide semiconductor (CMOS) compatibility [5].
Various memory devices, such as static random-access memories (SRAM) [7], resistive random-access
memories (RRAM) [8], phase change memories (PCM) [9], floating gate- memories (FG-memory) [10]
and charge-trap flash memories [11] have been proposed to implement the synapse operation.
Among them, charge-trap flash (CTF) devices have good CMOS compatibility and excellent
reliability [12–15].

In our previous work, we proposed a 3-D stacked synapse array based on a charge trap flash (CTF)
device [11]. Three-dimensional stacking technology is currently used in the commercialized Not AND
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(NAND) flash memory products for ultra-high density [14]. Similarly, a 3-D stacked synapse array has
the advantage of chip-size reduction when implementing very-large-size artificial neural networks.
Consequently, it has the potential to be a promising technology for implementing neuromorphic
hardware systems. For the design of the 3-D stacked synapse array architecture, there are several
issues. At the full array level, how to operate each layer selectively and how to efficiently form the
metal interconnects with peripheral circuits are critical issues. At the device level, how to implement
accurate synaptic weight levels with low energy consumption is an important issue. Especially, linear
and symmetric synaptic weight (conductance) modulations are essential to improve the accuracy of
neuromorphic hardware systems [1–4].

In this paper, we examine these issues and suggest two improvements in terms of an architecture
design and a device operation method. The rest of the paper is structured as follows: Section 2 contains
design methods based on the viewpoint of a full-chip architecture. In this section, we review the 3-D
stacked synapse array structure developed in the previous work [11] and propose an improved version
of the 3-D stacked synapse array architecture to solve the unwanted problem of the previous version.
In Section 3, we propose an improved programming method to obtain linear and symmetric conductance
changes. Using a pattern recognition application with the Modified National Institute of Standards
and Technology (MNIST) database, we demonstrate the improvement of the proposed method.

2. Design Methods of 3-D Synapse Array Architecture

In general, a large-size artificial neural network that has a large number of synaptic weights
and neuron layers is required to obtain high performance artificial intelligence tasks. In the case
of the ImageNet classification challenge, state-of-the-art deep neural network (DNN) architectures
have 5~155M synaptic weight parameters [16]. In order to implement efficiently a large-size artificial
neural network on a limited-size hardware chip, we proposed the 3-D stacked synapse array structure
(Figure 1) in the previous work [11].

Figure 1. 3-D synapse array structure [11]. (a) 3-D stacked synapse device; (b) Unit synapse cell structure.

Unit synapse cell is composed of two CTF devices having two drain nodes (D(+), D(−)) and
common source node(S). The D(+) part is connected to the output neuron circuit to increase membrane
potential, acting as an excitatory synaptic behavior. The D(−) part is connected to the output neuron
circuit to decrease membrane potential, acting as an inhibitory synaptic behavior. By using this
configuration, it can be represented the negative and positive weight at the same time. As summarized
in Table 1, the CTF device has several advantages over other non-volatile memory devices. First, it does
not need an additional selector device because the three-terminal MOSFET-based unit cell has a built-in
selection operation. Second, it has perfect CMOS compatibility. Third, the linear and incremental
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modulation of the weight (conductance) can be more easily achieved because its conductance is
determined by the number of trapped charges. Fourth, it has good retention reliability characteristics.
On the other hand, the drawback of CTF is large power consumption during program operation.
Therefore, CTF devices are the best solution for off-chip learning-based neuromorphic systems where
frequent weight updates do not occur.

Table 1. Comparison between non-volatile memory devices for neuromorphic hardware systems.

RRAM PCM STT-MRAM CTF

Device Structure 2 terminals 2 terminals 2 terminals 3 terminals
Selector needed needed needed unneeded
Cell Size 4 ~ 12 F2 4 ~ 12 F2 6 ~ 20 F2 4 ~ 8 F2

CMOS Compatibility good good moderate very good
Multi-Level Operation good good moderate very good

Weight Change abrupt SET abrupt RESET stochastic change good symmetric
Write Latency 20 ~ 100 ns 40 ~ 150 ns 2 ~ 20 ns >1 µs
Write Energy low mid low mid~high

Retention moderate good good very good

The proposed 3-D stacked synapse array structure is based on the word-line stacking method
which is similar to the commercialized V-NAND flash memory. Therefore, it has the advantage of
utilizing the existing stable process methods used in V-NAND flash memory.

A key issue in the design of 3-D stacked synapse array architecture is the metal interconnection.
For example, a 4-layer stacked synapse array would have four times as many word lines as a 2-D
synapse array. If the word-line (WL) decoder is connected by a conventional metal interconnection
method, the vertical length of the WL decoder (HWL_Decoder) will increase as illustrated in Figure 2,
resulting in an enormous loss of area efficiency in terms of full-chip level architecture. To solve this
issue, we proposed the smart design of a layer select decoder with 3-D metal line connection in the
previous work [11]. As shown in Figure 3a, the area of WL decoder is not increased, and a layer select
decoder is added to selectively operate each stacked layer. A layer select decoder delivers the gate
voltages generated by the WL decoder to the WLs of the selected layer. It is important to note that the
vertical length of a layer select decoder is the same as that of the WL decode, and the horizontal length
is only 4 F×N where F is the minimum feature size and N is the number of staked layers. The specific
structure of the transistors and metal interconnects is depicted in our previous paper [11].

The top-view layout of the 3-D synapse array architecture is illustrated in Figure 4. The layer select
decoder is composed of pass transistors. The pass transistors are arranged next to each word line and
are connected one-to-one with each WL contact. The gate nodes of the pass transistors are vertically
connected to form a layer select line (LSL) that is controlled by LSL control circuit. Through this
configuration, each stacked layer can be selectively operated while maintaining compact full-chip
configuration efficiency. For example, if the turn-on voltage is applied to L4 and the turn-off voltages
are applied to L1~L3, pass transistors corresponding to L = 4 are activated. Consequently, the WL
voltages generated in the WL decoder are transferred to the forth-layer WLs (L = 4).
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Figure 2. Metal interconnection scheme of synapse array architecture. (a) 2-D neuromorphic system
architecture; (b) 3-D neuromorphic system architecture (a bad design example).

Figure 3. Schematic of the proposed 3-D synapse array architecture. (a) Metal interconnection of a
full-chip architecture; (b) Each synapse layer configuration to implement artificial neural network.

Figure 4. Top view image of the revised synapse array architecture.
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In this paper, we proposed an improved architecture design compared to the previous work,
adding the ground select decoder as shown in Figure 4. If there is only a layer select decoder, the WLs
of the unselected stacked layer are on a floating state because they are not connected to the WL decoder.
In this case, the potential of the WLs of the unselected layer varies due to the capacitive coupling
between the stacked WLs. In the worst case, the WLs of unselected layers located above or below
(L = n − 1 or L = n + 1) the selected layer (L = n) may be boosted together when a high voltage is
applied to the selected WLs. To solve this inherent risk of the architecture of the previous version,
a ground select decoder that applies a turn-off voltage (0 V) to the WLs of the unselected layer is added
to the right side of the main 3-D stacked synapse array as shown in Figure 4.

The detailed manufacturing process of the 3-D synapse array was described in our previous
paper [11]. The revised synapse array architecture can be made with the same process method. Since the
newly added ground select decoder structure has the same structure as the layer select decoder, it can
be made by just adding the same layout as the layer select decoder.

To validate the synaptic operations of the designed CTF-based synapse device, the technology
computer-aided design (TCAD) device simulation (Synopsys Sentaurus [17]) was used. The specific
device parameters are summarized in Table 2. Electrical characteristics of the designed synapse device
are discussed in the next chapter.

Table 2. Physical parameters of the device used for electrical simulation.

Value

LS = LD 50 nm
LCH 100 nm
TCH 10 nm

TO/N/O 3/6/6 nm
WWL = WS/D 100 nm

3. Results

3.1. Synapse Device Operation

In the proposed synapse array (Figure 3b), synaptic weight (wij) of the artificial neural network is
represented as follows:

wij = G+
ij − G−ij. (1)

As depicted in Figure 3b, G+
ij and G−ij are the conductances of the D(+) CTF device and D(−)

CTF device, respectively. Each conductance is determined by the amount of trapped charge in each
charge-trap layer (silicon nitride). For the conductance modulation, hot-electron injection (HEI) and
hot-hole injection (HHI) can be used as a charge injection mechanism. The potentiation process of
increasing the synaptic weight can be performed by increasing G+

ij and decreasing G−ij. On the other
hand, the depression process of decreasing the synaptic weight can be carried out by decreasing G+

ij
and increasing G−ij. Using a technology computer-aided design (TCAD) device simulation (Synopsys
Sentaurus), we verify two pulse schemes for the modulation of synaptic weight. A successive-pulse
programming scheme and the incremental-step-pulse programming (ISPP) scheme are illustrated in
Figure 5a,b, respectively.
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Figure 5. Programming schemes for synaptic weight (conductance). (a) Successive-pulse programming
scheme; (b) Incremental-step-pulse programming scheme.

A successive-pulse programming is a method of continuously applying drain pulses with the
same voltage as shown in Figure 5a. In this programming scheme, the amount of conductance change
is controlled by the number of applied drain pulses. When the drain pulse is applied, the sign of the
gate voltage determines whether HEI or HHI occurs. If the drain pulse is applied when the gate bias is
positive (6 V), HEI occurs. In this case, the threshold voltage increases by the trapped electron and
the conductance decreases. On the other hand, if the drain pulse is applied when the gate bias in
negative (−7 V), HHI occurs. In this case, the threshold voltage decreases by the trapped hole and the
conductance increases. The proposed unit synapse cell is composed of two CTF devices. Consequently,
the potentiation operation is conducted simultaneously by HHI in the D(+) CTF device and HEI in the
D(−) CTF device. The depression operation is conducted by HEI in the D(+) device and HHI in the
D(−) device.

The ISPP is used for the program scheme of NAND flash memory [18]. The program pulse is
increased by a constant value Vstep after each program step, as shown in Figure 5b. In our previous
paper, only successive-pulse programming was used. In this work, we applied the ISPP method
to the conductance modulation of our designed synapse device. Using a TCAD device simulation,
we compared the conductance modulation characteristics of successive-pulse programming and the
ISPP. As shown in Figure 6, the ISPP scheme shows better synaptic behavior than the successive-pulse
scheme. The ISPP scheme showed that the conductance changes linearly according to the number
of applied pulses. Also, the range of available synaptic weights (memory window) can be further
increased. Consequently, the ISPP scheme can adjust the synaptic weight more accurately than the
successive-pulse programming scheme during the learning process. However, the ISPP scheme also
has a drawback. In order to determine the start pulse voltage, a verify operation is required prior to
programming to check the current synaptic weight value. Therefore, the ISPP scheme can increase the
accuracy of the learning process, but also increases time and energy consumption.

Figure 6. Gradual changes of synaptic weights by successive-pulse programming and
incremental-step-pulse programming (ISPP).
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3.2. System-Level Simulation for Pattern Recognition

To validate the functionality of the proposed programming schemes, the single-layer artificial
neural network system for the Modified National Institute of Standards and Technology (MNIST)
pattern recognition was simulated. The MNIST database is a large database of handwritten digits,
which contains about 60,000 learning images and 10,000 test images [19]. A total of 784 input neurons
represent 28 × 28 pixels of each image and 10 output neurons represent 10 digits (0 ~ 9). We also
used a rectifier linear unit (ReLU) as an activation function of neuron, which is one of the popular
activation functions [20]. For the learning process, a supervised learning method was used. At first,
the error was calculated at the output neurons. Next, the target change in synaptic weight (the number
of programming pulses) was determined by the gradient descent method. After that, the synaptic
weight value is updated based on fitted equations for the conductance modulation characteristics of a
successive-pulse programming scheme and the ISPP scheme.

Figure 7a shows the system-level simulation result of the pattern recognition accuracy with
the 10,000 test image samples. Compared to our previous work [11], the ISPP scheme can increase
recognition accuracy by about 6% (a successive-pulse programming scheme in our previous work:
79.83% [11], and the ISPP scheme in this work: 85.9%). This result is in good agreement with the other
papers that the linear conductance modulation characteristic is essential for the better performance of
neuromorphic systems [5,21]. The synaptic weight maps after training 10,000 samples with the ISPP
scheme are illustrated in Figure 7b.

Figure 7. Modified National Institute of Standards and Technology (MNIST) pattern recognition
result. (a) Recognition accuracy comparison between a successive-pulse programming and the ISPP;
(b) Synaptic weight map after training 10,000 samples with the ISPP scheme.

In addition, we examined the synaptic weight modulation characteristics according to the various
values of Vstep in the ISPP scheme. As illustrated in Figure 8a, a smaller Vstep allows for fine
conductance modulation, which means that the number of the synaptic weight level can be increased.
As a result, the fine conductance modulation ability with a smaller Vstep can obtain more accurate
pattern recognition rate, as shown in Figure 8b. It should be noted, however, that the retention
characteristics (the ability to distinguish each level for a long time) can deteriorate when the interval
between each synaptic weight level becomes narrow. Therefore, the magnitude of Vstep should be
determined considering the trade-off relationship between the retention characteristic and the accuracy.
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Figure 8. MNIST pattern recognition result by using the ISPP scheme. (a) The gradual conductance
change by applying various Vstep; (b) Recognition accuracy as a function of the training samples for
the various Vstep. The number means the weight levels (maximum pulse number).

4. Discussion

Currently, numerous researches based on different types of nonvolatile memory devices have
been conducted to implement neuromorphic hardware systems. Table 3 summarizes some of the
research results.

Table 3. Comparison between several research results of neuromorphic applications.

This Work Previous Work [11] [22] [23] [24]

Synapse Device CTF CTF CTF RRAM PRAM
Array Architecture 3-D array 3-D array 2-D array 2-D array 2-D array

Neuron Layer single-layer single-layer single-layer single-layer multi-layer
Learning Type supervised supervised supervised supervised unsupervised

Recognition Rate 85.9% 79.8% 84% 87.9% 95.5%
Result Type simulation simulation measurement measurement simulation

Almost all previous studies are based on the 2-D synapse array structure, but for the first time we
proposed the 3-D stacked synapse array structure. This paper has addressed several issues associated
with the design of the 3-D synapse array architecture in terms of a full-chip level. This will be an
important guideline for designing a 3-D stacked synapse array. The approach of stacking CTF devices
is a mature technology that has been already used in commercialized 3-D NAND flash memories.
Consequently, the proposed 3-D synapse architecture is expected to have a high possibility of actual
mass production. Also, it can achieve excellent reliability by utilizing the various technologies used in
NAND flash memory. For example, we have demonstrated that the ISPP method can improve the
pattern recognition accuracy of a neuromorphic system.

For future work, we will demonstrate the superiority of the proposed 3-D synapse architecture
based on an actual fabricated array. In addition, application researches to various artificial neural
networks such as a convolutional neural network (CNN) and a recurrent neural network (RNN) will
be a crucial topic.

5. Conclusions

We proposed a 3-D synapse array architecture based on a CTF memory device. To resolve the
drawback of the previous version of the architecture, a ground select decoder was newly added.
Also, we introduced the ISPP scheme to improve the linearity of the conductance modulation.
The characteristics of synaptic weight modulation was characterized using a TCAD device simulation.
In addition, we demonstrated the feasibility of the proposed architecture for neuromorphic system
applications through a MATLAB simulation for the MNIST pattern recognition. The proposed 3-D
synapse array architecture that exhibits a compact chip configuration and a high-integration ability
will be a promising technology that can realize hardware-based neuromorphic systems.
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Abstract: The transport and synaptic characteristics of the two-terminal Au/Ti/ amorphous
Indium-Gallium-Zinc-Oxide (a-IGZO)/thin SiO2/p+-Si memristors based on the modulation of
the Schottky barrier (SB) between the resistive switching (RS) oxide layer and the metal electrodes are
investigated by modulating the oxygen content in the a-IGZO film with the emphasis on the mechanism
that determines the boundary of the abrupt/gradual RS. It is found that a bimodal distribution of
the effective SB height (ΦB) results from further reducing the top electrode voltage (VTE)-dependent
Fermi-level (EF) followed by the generation of ionized oxygen vacancies (VO

2+s). Based on the
proposed model, the influences of the readout voltage, the oxygen content, the number of consecutive
VTE sweeps on ΦB, and the memristor current are explained. In particular, the process of VO

2+

generation followed by the ΦB lowering is gradual because increasing the VTE-dependent EF lowering
followed by the VO

2+ generation is self-limited by increasing the electron concentration-dependent
EF heightening. Furthermore, we propose three operation regimes: the readout, the potentiation in
gradual RS, and the abrupt RS. Our results prove that the Au/Ti/a-IGZO/SiO2/p+-Si memristors are
promising for the monolithic integration of neuromorphic computing systems because the boundary
between the gradual and abrupt RS can be controlled by modulating the SiO2 thickness and IGZO
work function.

Keywords: a-IGZO memristor; Schottky barrier tunneling; non filamentary resistive switching;
gradual and abrupt modulation; bimodal distribution of effective Schottky barrier height; ionized
oxygen vacancy

1. Introduction

The electronic computing systems developed so far have been structured on the von Neumann
architecture in which the memory, the processor, and the controller exist separately, and the sequential
processing among them embodies specific functions within the programmed software. Most of
the digital and analog circuits included in the memory and processing units are composed of
complementary metal-oxide-semiconductor (CMOS) devices that have made a significant contribution
to the semiconductor industry. Improvements in the performance of modern computing and
information technology are based on the permanent scaling down of the CMOS devices, which provide
a cost-effective increase in the operating frequency and a reduction in the power consumption [1,2].
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Currently, the integration density of CMOS devices do not conform to Moore’s law [3], and the
scaling down is fast approaching the physical limit. However, an increase in the operating frequency
and the device density increases the power consumption and the operation temperature, which can
seriously degrade the system performance (von Neumann bottleneck), mainly because of the time
and energy spent in transporting data between the memory and the processor [4]. This is particularly
noticeable for data-centric applications, such as real-time image recognition and natural language
processing, where the state-of-the-art von Neumann systems cannot outperform an average human.

Unlike with the von Neumann systems, the human brain creates a massively parallel architecture
by connecting a large number of low-power computing elements (neurons) and adaptive memory
elements (synapses). Thus, the brain can outperform modern processors on many tasks that involve
unstructured data classification and pattern recognition [5]. Furthermore, the ultra-dense crossbar
array consisting of memristors have been recognized as a potentially promising path to building
neuromorphic computing systems that can mimic the massive parallelism and extremely low-power
operations found in the human brain [6]. Representative types of neuromorphic computing schemes
are the biologically inspired spiking neural networks (SNNs) and deep neural networks, which are
vector matrix multipliers [7,8]. The SNNs are based on the local spike-timing-dependent plasticity
(STDP) learning rule [7], whereas the latter is based on the backpropagation learning rule [8].

The two-terminal binary metal-oxide-based resistive switching (RS) devices, such as HfOx, AlOx,
WOx, TaOx, and TiOx, have been widely studied as memristor devices that play the role of synapses
in the crossbar arrays because the underlying metal–insulator–metal structure is simple, compact,
CMOS-compatible, and highly scalable. Indeed, their energy consumptions per synaptic operation
and programming currents can be made ultralow (sub-pJ energies, <1 µA programming current) [9].
However, in most cases of these filamentary resistive switching random access memory (hereinafter
ReRAM) devices, the filament formation/completion process is inherently abrupt and difficult to
control. This problem is particularly acute in neuromorphic applications because a single highly
conductive device with a thick filament provides much more current to a vector-weighted sum or a
leaky integrate-and-fire than its neighbors [10]. Undoubtedly, the gradual RS characteristics (i.e., the
analog nonvolatile memory characteristics of the memristors) are most viable for either the weighted
sum operation of convolutional neural networks (CNNs) or the STDP as a learning rule for SNN.
In particular, the synapse device using the memristor requires excellent linearity according to the
consecutive potentiation/depression pulse for high data processing accuracy [11].

In the case of filamentary ReRAM devices, there is ambiguity at the boundary between the
application of the digital memory device using the abrupt RS operation and the application of the
synapse device using the gradual RS operation. Therefore, it is very difficult to optimize each of the
devices for both applications in terms of the process and the material. More noticeably, the efficiency and
linearity of the resistance modulations of the metal-oxide-based memristors are frequently contradictory
to one another when applying the potentiation/depression (P/D) pulses [12]. This is because when the
resistance changes of the filamentary ReRAM devices occur more efficiently (abruptly), the resistances
become more nonlinear in relation to the increase in the number of P/D pulses. After being triggered
by an electric field and/or a local temperature rise during the SET/potentiation pulse, the filament
formation/completion must be cut by an external circuit so that the filament is not too thick to be
removed with an accessible RESET/depression pulse. Despite using techniques such as incrementally
increasing the amplitude of the P/D voltage and/or increasing the duration of the P/D pulse [13],
the complicated scheme for self-adaptively varying either the amplitude or the duration of the P/D
pulse would be significantly compromised with the use of external controls and circuits. This results
in additional power consumption and design complexity and seriously dilutes the motivation of
neuromorphic computing systems.

However, non-filamentary RS two-terminal devices based on binary metal-oxides have
demonstrated more gradual (well-controlled, memristor-like) RS characteristics in comparison with
filamentary RS devices [14] because the non-filamentary devices are based on the modulation of
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the Schottky barrier (SB) between the RS oxide layer and the metal electrodes rather than the
formation/rupture of the filament in the oxide layer.

Regardless of the type of RS devices, for a systematic and robust design of a self-adaptive P/D
pulse scheme, it is important to have a complete understanding of the physical mechanism that controls
the boundary of an abrupt/gradual RS characteristic. Therefore, it is important to understand the
systematic design of the memristor devices for neuromorphic computing and precisely control the
mechanism on the boundary of the abrupt and the gradual RS operations.

Quaternary metal-oxides, such as amorphous indium-gallium-zinc-oxide (a-IGZO), have more
complicated compositions and they cannot be easily fabricated by low-temperature sputtering or the
solution process. The a-IGZO materials can be fabricated on a flexible substrate and can act as both the
RS and active films in memristors and thin-film transistors (TFTs), respectively [15–20]; this suggests
that it is possible to monolithically integrate not only the synapse array but also the peripheral
circuits including the neurons. In fact, two-terminal IGZO devices and their abrupt/gradual switching
characteristics using metal electrodes, such as Pt, Al, and Cu, have already been demonstrated [16–20].
Even unipolar/bipolar IGZO memristor devices have been developed [19,20]. However, there is no
known mechanism for determining the boundary of an abrupt/gradual RS in IGZO memristor devices.

In this study, we fabricated two-terminal Au/Ti/a-IGZO/thin SiO2/p+-Si memristors and analyzed
their transport and synaptic characteristics. Moreover, we investigated the mechanism determining
the boundary of the abrupt/gradual RS by modulating the oxygen content in an a-IGZO film. Related
to this mechanism, we also reported a bimodal distribution of effective Schottky barriers in a-IGZO
non-filamentary ReRAM-based memristors.

2. Fabrication Process and Conduction Mechanism

To implement the synapse devices in bio-inspired neuromorphic computing systems (Figure 1a),
we fabricated the two-terminal Au/Ti/IGZO/SiO2/p+-Si memristors as shown Figure 1b. The p+-Si
conductive substrate acts as a global bottom electrode (BE), and the 4-nm-thick SiO2 was formed on
the BE as the tunnel barrier in the interface between p+-Si and IGZO. Then, the 80-nm-thick a-IGZO
film was deposited on SiO2/p+-Si using radio frequency sputtering with a power of 150 W at room
temperature. We controlled the concentration of oxygen vacancies (VOs) during the IGZO sputtering
by modulating the oxygen flow rates (OFR) to 1.0, 1.15, and 1.3 sccm at a fixed Ar flow rate of 3 sccm
and at a constant gas pressure in the sputter chamber of 0.880 Pa. Subsequently, 10-nm-thick Ti was
deposited using e-beam evaporation to form an oxygen reservoir layer and act as the top electrode (TE)
of the memristor. Finally, the 40-nm-thick Au was deposited using e-beam evaporation to prevent the
oxidation of the Ti layer in air.

To analyze the electrical characteristics, the DC current–voltage (I−V) characteristics were measured
at room temperature and dark conditions using a Keithley-4200 semiconductor characterization system
(Tektronix, Seoul, South Korea). In all the measurements, a voltage was applied to the TE, and the BE
was always connected to the ground. The TE voltage was symbolized as VTE, and the current flowing
through the IGZO memristor was called Imem, as shown in Figure 1b.

Figure 1c–f shows the energy band diagrams under various conditions: before forming the
junction (Figure 1c), at the thermal equilibrium (Figure 1d), at a low VTE (Figure 1e), and at a high
VTE (Figure 1f). Here, we considered the lowering of the height of the effective SB and denoted it as
qΦB (eV). While SB lowering was insignificant at a thermal equilibrium, qΦB became low as the VTE

increased. At a low VTE, most of the VTE was applied across the thin SiO2 layer (Figure 1e), whereas the
increased VTE was used mainly to deplete the IGZO film (Figure 1f). Energy band diagrams suggested
the fabricated IGZO memristors operated as non-filamentary RS devices based on the SB modulation.
The two main concerns were whether the modulated qΦB was nonvolatile and whether its decrease
was inversely linear with the increase of VTE. These two concerns will be discussed later.
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Figure 1. Schematic illustration of (a) the implementation of the synapse devices in
bio-inspired neuromorphic computing systems and (b) the two-terminal Au/Ti/(amorphous
indium-gallium-zinc-oxide) a-IGZO/SiO2/p+-Si memristors. Energy band diagram (c) before forming
the junction, and under three conditions: (d) in a thermal equilibrium, (e) at a low (top electrode
voltage) VTE, and (f) at a high VTE.

We measured the OFR-dependent Imem while using a positive VTE sweep (SET process), that is,
0 V→ 6 V→ 0 V was repeated four times. Then, a negative VTE sweep (RESET process), that is, 0 V→
−2 V→ 0 V was repeated four times, as shown in Figure 2a. We observed that the current at a fixed VTE

increased as the OFR decreased. This was attributed to the increase of the VO concentration with the
decrease in the OFR because the VO is a well-known electron donor in the IGZO film [21,22]. Along with
the SB-modulated non-filamentary RS devices in Figure 1e,f, a gradual resistance modulation rather
than an abrupt RS was clearly observed during repeated I−V sweeps (Figure 2a).

Figure 2b also shows the Imem−VTE characteristic of the IGZO memristor with OFR = 1 sccm.
In Figure 2b, the positive VTE voltage sweep was repeated four consecutive times by changing the
stop voltage of the VTE sweep (VSS) from 2 to 6 V. When the VTE sweep was performed four times,
the readout current Imem at VTE = 1 V increased very slightly for VSS < 6 V, as seen in Figure 2c.
The continuous and hysteretic increase of current, which is a typical behavior of a memristor, is clearly
observed in Figure 2a,b. There was a significant increase in Imem only when VSS ≥ 6 V, which means
that the potentiation threshold voltage between the gradual/abrupt RS (VPT) was 6 V. Similarly, the
depression threshold voltage was found to be −2 V.

To determine the conduction mechanism, we investigated the relationship between Imem and VTE.
Figure 3a shows the OFR-dependent ln(Imem) versus (VTE)1/2 relationships, which were taken from the
I−V characteristics of the first sweep in Figure 2a. In Figure 3a, we observed that the ln(Imem) was
piecewise linear with (VTE)1/2, which was strongly reminiscent of the thermionic emission. Noticeably,
these linear relationships were clearly classified into two distinguishable values of the slopes A (at a
low VTE) and B (at a high VTE).
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Figure 2. (a) The (oxygen flow rate) OFR-dependent I−V characteristics repeated four times. (b) The
I−V characteristics with OFR = 1 sccm repeated four consecutive times with changes made to the (stop
voltage of the VTE sweep) VSS. (c) The VSS-dependent readout current Imem at VTE = 1 V.
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The current due to the thermionic emission through SB is given as:

Imem = AA∗T2 exp




q(
√

qE/4πε−ΦB)

kT


 = AA∗T2 exp




q(
√

qVTE/4πεXT −ΦB)

kT


 (1)

where A is the area of device, A* is the Richardson constant, T is the absolute temperature, k is
Boltzmann’s constant, E is the electric field; q is the electric charge, ε is the dielectric constant, XT is
the effective thickness of thermionic emission, and ΦB is the effective SB height. Then, Equation (1) is
used for extracting ΦB. By reformulating from Equation (1) to (2), ΦB can be extracted by using the
y-intercept of the linear relationship between kT

q · ln
(

Imem
AA∗T2

)
and

√
VTE:

kT
q
· ln

( Imem

AA∗T2

)
=

√
q/XT

4πε
×

√
VTE −ΦB (2)

Figure 3a,b suggests that at a specific OFR, there existed two ΦB values taken from the slopes A
and B, that is, a large value for a low VTE (<1 V) and a small value for a high VTE (1–5 V). Interestingly,
we observed this bimodal distribution of ΦB regardless of the OFR condition and suggest that the
SB lowering is nonvolatile and significantly nonlinear with the increase in VTE. In addition, ΦB at a
specific VTE was lower because the VO concentration increases (with decreasing OFR).

However, from Figure 2a, we can see that the ΦB modulation depended on the number of positive
VTE sweeps (see Figure 3c,d). At a specific VTE and OFR, ΦB gradually decreased when the number of
VSS sweeps increased.

3. Results and Discussion

In Figure 3, we can see that ΦB was modulated by not only the range of the VTE readout voltage,
but also by the number of consecutive VSS sweeps. Moreover, as shown in Figure 3b,c, ΦB depends
more strongly on OFR in the slope A case (low VTE) rather than in the slope B case (high VTE). Therefore,
the results in Figure 3 provide a clue toward the controllability of the competition between the gradual
and abrupt modulations of ΦB. To understand the mechanism for determining the boundary of an
abrupt/gradual RS in IGZO memristor devices, we used Figure 3 with the energy band diagram.

First, when VTE < VPT, the bimodal distribution of ΦB into A and B (Figure 3a) can be explained
as follows. As shown in Figure 4a, the doubly ionized VO (VO

2+) is the well-known metastable
state [21,22] and has been frequently pointed out as having a microscopic origin on the device instability
under photo-illumination or bias stress [22–26] and persistent photoconductivity [25,26]. From the
viewpoint of the subgap density of states (DOSs) in the a-IGZO (Figure 4b), the neutral VO states
(VO

0s) are transformed into VO (VO
2+s) when the process of VO

0→ VO
2+ + 2e− becomes energetically

favorable. These neutral states are very slowly recovered (nonvolatile) [23–26].
In the readout voltage VTE-dependent energy band diagrams, which are illustrated in Figure 4c,

as VTE increases, the Fermi-energy level (EF) in IGZO reduces far from the IGZO conduction band
minimum (EC), and moves closer to the VO

0 states above the IGZO valence band maximum
(EV). It makes the generation of VO

2+s more energetically favorable. When VO
2+s is generated,

the concentration of the carrier electrons in EC increases; the EF in IGZO again comes closer to EC.
This situation occurs in non-equilibrium; therefore, the generation of VO

2+s effectively makes ΦB lower.
Thus, if the VO ionization is nonvolatile, ΦB would gradually decrease as the readout voltage VTE

increases. In other words, ΦB has to be inversely linear to VTE. However, ΦB was classified into two
groups (A and B), as seen in Figure 3. Figure 1e,f shows that a large ΦB (in low VTE) taken from the
slope A corresponded to the voltage range where the maximum VTE was applied across a thin SiO2

layer (Figure 1e), whereas a small ΦB (in high VTE) taken from the slope B corresponded to the voltage
range where the maximum increase in VTE was mainly applied across the IGZO film (Figure 1f). Then,
there would be a significant generation of VO

2+s only in the latter range (Figure 4c). In Figure 2c,
Imem gradually increased only when VTE was in the latter range, that is, in the range 2 V ≤ VTE < VPT.
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Our discussion indicates that the bimodal distribution of ΦB in IGZO memristors originated from the
generation of metastable VO
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Next, we investigated the OFR-dependence of ΦB. Figure 5a–c illustrates the energy band
diagram of the device fabricated with a high OFR (O-rich device) under three conditions: at a thermal
equilibrium (Figure 5a), at a low VTE (Figure 5b), and at a high VTE (Figure 5c). Figure 5d–f illustrates
the energy band diagram of the device fabricated using a low OFR (O-poor device) in three states: at a
thermal equilibrium (Figure 5d), at a low VTE (Figure 5e), and at a high VTE (Figure 5f). As seen in
Figure 5a,d, a larger amount of VO

0s existed in the IGZO when the OFR decreased from 1.3 to 1.0 sccm.
Then, as the IGZO was O-poorer, the IGZO work function decreased, and ΦB became lower, which is
consistent with Figure 3b. In addition, as mentioned in Figure 3b,c, the OFR-dependence of ΦB was
larger in the slope A case (low VTE) rather than in the slope B case (high VTE). The ΦB before the VO

2+

generation (at a low VTE) was determined mainly by the OFR condition. After a significant amount
of VO

2+s were generated at a high VTE, the initial OFR-dependence of ΦB was combined with the
VTE-dependence of ΦB. Thus, the OFR-dependence of ΦB was diluted in the slope B case (high VTE).
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Finally, the evolution of ΦB with the increase in the number of consecutive positive VSS sweeps
is illustrated in the energy band diagrams in Figure 6. When the VSS sweeps were repeated four
times, ΦB gradually decreased because of the gradual increase in VO

2+s. However, the process of
VO

2+ generation followed by ΦB lowering was not abrupt; it was gradual because further lowering
of the VTE-dependent EF followed by the VO

2+ generation was self-limited due to the increasing of
the electron concentration–dependent EF. The results in Figure 3c,d explain this well. If VTE ≥ VPT,
the change of Imem becomes abrupt because EF is aligned with the level of the VO

0s peak in DOS
(Figure 4b).

Therefore, we can classify the operation regime in the two-terminal Au/Ti/a-IGZO/SiO2/p+-Si
memristors into three parts: (1) low VTE (VTE < 2 V), (2) high VTE (2 V ≤ VTE ≤ VPT), and (3) higher VTE

(VTE ≥ VPT). The boundary between (1) and (2) was approximately 2 V in our case; it was determined
by the process/structure details and was controllable using the SiO2 thickness and the IGZO work
function. The VTE in regime (1) was adequate for the readout voltage because ΦB and Imem were
determined mainly by the OFR condition. However, the VTE in regime (2) can be used as the amplitude
of the potential pulse because ΦB and Imem gradually change in a nonvolatile manner with the increase
in the number of consecutive VSS sweeps. When the VTE in regime (3) was applied to the devices,
they operated as abrupt RS switches rather than as gradual RS memristors.
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4. Conclusions

It is crucial to have good control over the mechanism on the boundary between the abrupt and
gradual RS operations for a systematic design of memristor devices for neuromorphic computing.
We investigated the transport and synaptic characteristics of two-terminal Au/Ti/a-IGZO/thin SiO2/p+-Si
memristors by varying the oxygen content in the a-IGZO film by emphasizing the mechanism
determining the boundary of the abrupt/gradual RS. A bimodal distribution of ΦB was produced to
further lower the VTE-dependent EF followed by the generation of VO

2+s. Based on the proposed
model, we explained the influence of the readout voltage, the oxygen content, and the number of
consecutive VSS sweeps on ΦB and Imem. Eventually, we proposed three operation regimes: the readout,
the potentiation in gradual RS, and the abrupt RS.

Our results prove that the Au/Ti/a-IGZO/SiO2/p+-Si memristors are promising for the monolithic
integration of neuromorphic computing systems because the boundary between the gradual and the
abrupt RS can be controlled by modulating the SiO2 thickness and the IGZO work function. Furthermore,
the memristors are expected to be potentially useful for the co-design and joint optimization of the
IGZO memristors and TFTs for neuromorphic energy-efficient wearable healthcare circuits and systems.
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Abstract: The bias-dependent signal transmission of flexible synaptic transistors is investigated.
The novel neuromorphic devices are fabricated on a thin and transparent plastic sheet, incorporating
a high-performance organic semiconductor, dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene, into the
active channel. Upon spike emulation at different synaptic voltages, the short-term plasticity feature of
the devices is substantially modulated. By adopting an iterative model for the synaptic output currents,
key physical parameters associated with the charge carrier dynamics are estimated. The correlative
extraction approach is found to yield the close fits to the experimental results, and the systematic
evolution of the timing constants is rationalized.

Keywords: flexible electronics; neuromorphic engineering; organic field-effect transistors; synaptic
devices; short-term plasticity

1. Introduction

Neuromorphic engineering is an emerging technological area, which aims at mimicking the
biological functionalities of neurons, synapses, or a whole brain by various electronic materials and
devices [1–6]. Recently, the use of organic electronics in neuromorphic systems has gained tremendous
attention, thanks to its capacity to expand the technological scope of such systems by creating
unconventional interfaces such as direct neuroprotheses and robotic sensory bridges [7–10]. There are
many possible routes to organic-based neuromorphic architecture, including electrochemical [11,12],
memristive [13], and field-effect approaches [14–16]. Among them, organic field-effect transistor
(OFET)-based synaptic devices are a particularly promising element, considering the possibility of a
fully solid-state, flexible neuromorphic chip that leverages the versatility of OFETs in constructing
various circuit building blocks [17–20]. Despite the rapidly growing technological viability of
OFET synapses, there is still a lack of understanding on fundamental phenomena prevailing at the
single-device level, which acts as a current bottleneck for the development of organic-based complex
neuromorphic hardware systems. We recognize this issue, and present here a detailed analysis of
one specific neuromorphic functionality, namely the short-term plasticity (STP) in flexible OFET
synaptic devices. By combining experimental measurements and numerical modeling, systematic
understanding of the voltage-dependent transmission behavior at the synaptic junction is obtained.
By increasing the input-spike voltage magnitude, slowing down of both charging and discharging
is observed, as the floating carrier reservoir turns electrostatically populated. The detailed analysis
from this study builds a solid foundation for advanced models and the realization of flexible organic
neuromorphic circuitries.

2. Experimental Methods

The organic synaptic transistors based on a floating-gate OFET architecture were fabricated with
dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) semiconductor (Figure 1a), according to the
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bottom-gate, top-contact structure depicted in Figure 1b. A key to this device is the utilization of the
ultra-thin, flat Al nanolayer, which is surface-oxidized to form an Al/AlOx stack [16]. The device
fabrication processes are summarized as follows. The gate substrate is prepared as a flexible and
transparent polyethylene terephthalate (PET) sheet, which has a predeposited conducting indium
tin oxide (ITO) film (130 nm) (surface resistivity 60 Ω/sq, Sigma-Aldrich). The ITO surface was
planarized by a 40-nm thick poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS,
Clevios™, Heraeus) buffer layer to reduce the gate leakage. Then, insulating poly(methyl methacrylate)
(PMMA, M.W. = 120,000, Sigma-Aldrich) was spin-coated from a toluene solution to serve as a
blocking dielectric (410 nm). The Al functional layer with a nominal thickness of 3 nm was thermally
evaporated and exposed to ambient air for oxidation. DNTT (sublimed grade, 99%, Sigma-Aldrich) was
vacuum-evaporated for a hole-transporting molecular channel (50 nm). Finally, the Au source/drain
electrodes (30 nm) were evaporated through a shadow mask.
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Figure 1. (a) Chemical structure of dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT), used as an
active molecular material in organic synaptic transistors. (b) Cross-sectional illustration of the device
structure. (c) Circuit diagram employed for the measurement of voltage-dependent synaptic plasticity.
(d) Model illustration: Biological processes relevant to the neuronal signal transmission through release
and re-uptake of neurotransmitters and the electronic processes that mimic such properties through
trapping-mediated hole transport at the semiconductor channel.

For emulating the STP behavior, we used the quasi-two-terminal electrical configuration shown
in Figure 1c. Here, the gate and drain electrodes were externally wired and connected to a common
computer controlled source-measure unit (Keithely 2400). The synaptic voltage (Vsyn) pulses were
generated by using a LabVIEW code, for them to have a specific number of sharp spike-like electrical
stimulation stages with varying frequencies. The synaptic current (Isyn) was measured as a function of
time as the output signal.

3. Results and Discussion

Materials characterization including atomic force microscopy (AFM) and transmission electron
microscopy (TEM) as well as the basic transistor characterization such as transfer, output, mobility
measurements has been reported in our previous paper [16]. Here, we introduce a numerical model
that is applied to analyze the experimental STP. It is based on the functional model initially developed
for nanoparticle organic memory field-effect transistors (NOMFET), by Bichler and co-workers [21].
In this study, we modify the notations and introduce the correlative parametrization approach, so that
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it can better describe our synaptic devices. Let’s first recapitulate the physical meaning of such a model,
by drawing a parallel between a biological synapse and a synaptic transistor channel. As shown in
Figure 1d, the communication through a biological synapse is signaled by the action potential of the
presynaptic neuron, which in turn activates the release of neurotransmitters toward the postsynaptic
neuron. Part of these chemical messengers are eventually pulled back into the presynaptic neuron
through re-uptake. Therefore, a specific time-domain pattern of neural signals conditions the dynamic
variation of synaptic strength. Similarly, in our OFETs, holes accumulated at the DNTT channel serve
as electronic signal carriers. Since the Vsyn is bound to drain and gate, part of the transporting holes are
trapped into the Al floating gate when a spike arrives. These trapped carriers can be easily detrapped
into the channel, which is a key feature of our transistors with an ultra-thin tunnel oxide. Therefore,
the STP behavior can be emulated by adjusting the input Vsyn pulses.

For the square-type input Vsyn waveform consisting of varying frequency and duty cycles, the
direct relationship between the nth synaptic current In and the (n + 1)th one In+1 can be iteratively
established. As an intermediate, the current In+ is the value at the falling edge of each synaptic spike
and is dictated by how much the floating gate is charged during that pulse, which is written as

In+ = In exp
(
−W
τt

)
+ I0

[
exp

(
−∆EF

kT

){
1− exp

(
−W
τt

)}]
(1)

where W is the activation pulse width, τt is the trapping time constant, I0 is the initial current, ∆EF is
the semiconductor Fermi-level shift at the fully charged state of the floating gate, k is the Boltzmann
constant, and T is the absolute temperature. Between two pulses (while Vsyn = 0 V), the carriers now
leave the floating gate by natural detrapping, partially recovering the channel current, expressed as

In+1 = In+ exp
(
−Tp −W

τd

)
+ I0

[
1− exp

(
−Tp −W

τd

)]
(2)

where Tp is the pulse time period and τd is the detrapping time constant. Merging Equations (1) and
(2) gives the final model

In+1 = In exp
(
−W
τt

)
exp

(
−Tp−W

τd

)
+ I0

[
exp

(
−∆EF

kT

){
1− exp

(
−W
τt

)}
exp

(
−Tp−W

τd

)
+

{
1− exp

(
−Tp−W

τd

)}]
. (3)

To gain insights into the voltage-dependent signal transmission properties, we experimentally
recorded the STP behavior of the same transistor, at four different magnitudes of Vsyn as −4, −6, −8,
and −10 V. The composition of the input signals (i.e., the frequency sequence and the number of
spikes at each stage) was kept the same except for the voltage magnitude. Our test input waveforms
consisted of six stages with the frequencies of 5, 1, 0.2, 2, 4, and 0.5 Hz. These frequencies determine
the value of Tp, and W was fixed as 20 ms. Therefore, the remaining task in modeling is to fit the
experimental Isyn data by determining four parameters, which are I0, ∆EF, τt, and τd. Instead of setting
all these fitting parameters free, we employed a correlative extraction approach for more physically
reliable results. The main idea is that the asymptotic final current I0exp(−∆EF/kT) should reflect the
same amount of trapped carriers, and therefore have a quadratic dependence on the Vsyn magnitude
considering the forced saturation-regime transistor operation. To systematically apply this method,
we first extracted the four fitting parameters from the data set at the lowest value of Vsyn = −4 V.
Then, we calculated the I0exp(−∆EF/kT) value for Vsyn = −4 V, and then let this base asymptotic limit
quadratically increase with increasing Vsyn. Therefore, for the three other data sets (Vsyn = −6, −8, and
−10 V), the apparent initial I0 value together with the prefixed I0exp(−∆EF/kT) value allowed for the
unambiguous calculation of ∆EF for each Vsyn.

Figure 2a shows that I0 monotonously increases in magnitude with increasing Vsyn values, which
is accounted for by the channel current flow enhanced by both gate (free carrier density) and drain
voltages (lateral electric field) [18]. Interestingly, the ∆EF follows a similar trend before experiencing a
small drop at a high Vsyn. This evidences that gate-induced trapping (decreasing the free carriers) and
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gate-enhanced hole accumulation act together to set the right balance for the Fermi level approachable
at the fully charged state [22]. The inset of Figure 2a confirms that the magnitude of Vsyn and
the asymptotic synaptic current follows the quadratic dependence, evidenced by slope 2 on this
log-log representation.
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Having determined the values of I0 and ∆EF, the two timing constants were estimated by
performing global fitting to the experimental results. Figure 2b shows that despite the ultra-thin nature
of our AlOx favoring spontaneous relaxation, the detrapping time constant τd is greater than the
trapping counterpart τt at all voltage biases considered. Another important finding here is that the
magnitude of Vsyn can substantially influence the ratio between τd and τt values, implying a direct
impact on the STP modulation.

Figure 3 shows the direct comparison between the experimental STP results and the model
currents reproduced by inserting the parameters in Figure 2 into Equation (3). Similar STP behaviors
have been observed in several field-effect synaptic transistors [14–16]. In brief, we can notice that
even with the constant magnitude of Vsyn, the produced Isyn quite significantly changes its magnitude
responding to the spiking frequency. At a high Vsyn frequency, a monotonous decrease in current is
monitored because the negative gate pulse traps holes from the channel into the floating gate. When
this frequency decreases, the amount of holes escaping the traps (per time) can exceed that of the
holes being trapped into the floating gate, so that the Isyn gradually recovers its strength. In Figure 3,
the model-calculated values are in a broad agreement with the measurements, and showed a similar
trend in STP modulation. With increasing Vsyn, the overall magnitude of output current Isyn went
up, and it was necessary to introduce different timing parameters at each test voltage to fully explain
the voltage-dependent transmission behavior. As shown in Figure 2b, the evolution of τd was more
dramatic than that of τt, which is reflected in Figure 3 as the suppressed potentiation at Vsyn = −8 or
−10 V. This result also indicates that further optimization in synaptic voltages or structural engineering
of nanoscale trapping media [23] may enable a switchable short-term and long-term neuromorphic
behavior out of the same base architecture.
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Abstract: In this paper, we present an electrical circuit of a leaky integrate-and-fire neuron with
one VO2 switch, which models the properties of biological neurons. Based on VO2 neurons, a two-
layer spiking neural network consisting of nine input and three output neurons is modeled in
the SPICE simulator. The network contains excitatory and inhibitory couplings, and implements
the winner-takes-all principle in pattern recognition. Using a supervised Spike-Timing-Dependent
Plasticity training method and a timing method of information coding, the network was trained to
recognize three patterns with dimensions of 3 × 3 pixels. The neural network is able to recognize up
to 105 images per second, and has the potential to increase the recognition speed further.

Keywords: leaky integrate-and-fire neuron; vanadium dioxide; neural network; pattern recognition

1. Introduction

Artificial neural networks (ANNs), created by analogy with biological neural systems, are used to
resolve various tasks, such as classification, clustering, and pattern recognition [1–4]. The main element
of ANN is a neuron that may have several inputs and one output, and neurons can be connected in
different ways, depending on the network architecture [5,6]. The main task of a neuron is to convert
input signals to output signal using an activation function [5]. In the history of ANN, three generations
of the networks are usually distinguished. The first generation includes simple forward and backward
connection networks that operate with binary data and stepwise activation functions [7]. The second
generation includes multilayer networks of direct and reverse distribution, operating with rational
numbers with continuous activation functions [7]. The third generation of ANN (spiking neural
networks (SNN)) uses biosimilar models of neurons that take into account not only the magnitude of
the signals arriving at the input, but also the signals’ temporal distribution [7,8].

There is a large number of SNNs, which are used to solve practical tasks and are based on
mathematical models of neurons (Integrate-and-Fire, Izhikevich, Hodgkin-Huxley) [9–12]. Such SNNs
use the resources of computers, video cards, and field-programmable gate arrays to emulate
the network operation [9–13]. Although such SNNs currently provide impressive performance
results [14], any emulation loses hardware implementation in performance and energy efficiency [15,16].
Therefore, the development of SNNs based on microelectronic elements attracts the active attention of
researchers [16–22]. One of the most frequently used functional elements of SNN is a memristor [16],
which is used for implementing customizable weights and as a functional element of a neuron.
The weights are adjusted during the network training, and, in electric networks, it is implemented by
changing the impedance of the lines connecting the outputs and inputs of neurons. A multi-stable
resistive memory cell is an ideal object for implementing a wide SNN functionality, due to the
possibility of changing the resistance over a wide range of values. However, the application of a
resistive memory cell as a bi-stable element with an off state (inactive neuron) and on state (active

49



Electronics 2019, 8, 1065

neuron) is not an optimal solution because of the high probability of its resistance modification during
the operation [23,24].

In the current study, for the manufacturing of artificial neurons, we propose to use elements
with a stable S-shaped I – V characteristic, such as switches based on transition metal oxides with a
metal-insulator transition [25–27]. Implementations of neuron models on the VO2 switch are described
in References [28–34]. However, a few SNN implementations using such neurons have been proposed
so far. Models of VO2 neurons can be divided into two groups. The first group is an integrate-and-fire
model of a neuron [32,33,35], which has three main states: the accumulation of action potential state
due to charging the capacitor, the spike generation state, when the capacitor is discharged, and the
VO2 switch goes into a highly conductive state, and the inactivity state of a neuron. The discharge
time of the capacitor is treated as a post firing refractory period [30,32], and the initiation of the second
pulse is impossible at that time due to shunting of the low resistance of the switch. The second group
of models covers neuron circuits that include inductance, and the possibility of generating a burst
mode, which is similar to the FitzHugh-Nagumo and FitzHugh-Rinzel models [34,35].

We propose a leaky integrate-and-fire (LIF) circuit for a neuron based on a VO2 switch that
can implement excitatory and inhibitory couplings. Based on VO2 neurons, in the SPICE simulator,
the operation of a two-layer SNN network consisting of nine input and three output neurons was
modeled. An image in the form of a 3 × 3 matrix is fed to the network input, and, at the output, one of
the three neurons is activated with a certain input pattern, and this neuron suppresses the remaining
output neurons according to the winner-take-all (WTA) principle [36]. The coding of information in
the proposed network is performed by setting the delay time of the spikes in the input layer relative to
the zero time moment (time to the first spike) [37]. Network training is performed according to the
spike time-dependent plasticity (STDP) scheme [14,16,19–21,38]. As a result, a model SNN, based on
VO2 neurons, which allows pattern recognition, is presented and investigated in this study.

2. SNN Modeling Method

2.1. VO2 Neuron Model

The VO2-neuron model is created on the basis of the LIF neuron model, which is widely used due
to the simplicity of implementation and the possibility of generating biosimilar spikes [39]. Its main
element is a bi-stable two-electrode VO2 switch [25–27]. The operation principle of the switch is based
on the metal-insulator phase transition in VO2 films, which happens near the transition temperature
Tth ~ 340 K. The critical temperature Tth in the film is achieved due to the Joule heating effect when
passing a current, which leads to a sharp abrupt change in the resistance [27]. In addition to the thermal
effect, when modeling electric switching, the effect of the electric field on the concentration of charge
carriers is taken into account [40,41]. The model I – V characteristic of the VO2 switch corresponds to
the experimental I – V characteristic (Figure 1), measured in our previous work [25], on a planar switch
with a channel size of 2.5–3 µm, and a VO2 film thickness of ~ 250 nm, with a current limiting resistor
of 250 Ω connected in series.
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Figure 1. Experimental I–V characteristic of a planar VO2 switch.

Figure 1 demonstrates the dependence of the switch current Isw on the voltage Vsw supplied to
the switch. Reaching the threshold switching voltages Vth = 5.6 V and holding voltage Vh = 2.2 V,
the switch passes from a high-resistance state to a low-resistance state and vice versa. The high-resistance
and low-resistance branches of the I – V characteristic are approximated by linear dependencies on the
voltage Vsw with resistance values Roff ~ 14 kΩ and Ron ~ 300 Ω, respectively.

To conduct SPICE simulations of the VO2 neuron, a standard voltage-controlled switch was used
with parameters corresponding to the experimental I – V characteristics (Roff, Ron, Vth, and Vh).

The electrical circuit of the VO2 neuron is shown in Figure 2. The neuron model has n inputs,
and one output Vout. Resistances R1

w . . .Rn
w play the role of a synaptic weights between neurons.

The smaller the resistance, the more the signal from the i-th input affects the neuron. The spikes coming
from the inputs through the resistances are accumulated on the Csum capacitance, by charging it with
the cumulative charge. The charge from the Csum capacitor gradually flows through the resistance
Rin. Csum capacitance voltage is an effective input signal that affects the current state of a neuron.
The supply voltage Vdd is selected so that the VO2 switch stays in the off state in the absence of input
signals. The most clear way to achieve this condition is to set the voltage Vdd less than the switching
voltage Vth. In this model, the inactive state of the neuron corresponds to the switched off VO2 switch
when it is in the subthreshold mode (Vsw <Vth). To activate the neuron, the switch should be turned
on by setting the voltage on the switch to Vsw≥Vth. To achieve this, the supply voltage Vdd must have
negative values, and the spikes supplied to the input must have a positive polarity.

To activate a neuron, the voltage across the capacitance Csum should increase to a threshold value
Vc_th, which depends on Vdd, the resistance of the switch in the off state Roff, and the values of the
resistors Rs and Rin. After the switch is turned on, its resistance decreases to Ron, which leads to the
discharge of the capacitance Cc through the resistances Rin and Rout. The capacitance Cc serves as a
reservoir of charge, which is necessary for generating a spike when a neuron is activated. When Cc is
discharged, a spike of positive polarity is generated at the output Vout of the neuron. By connecting
the outputs of some neurons with the inputs of other neurons, SNNs with excitatory coupling can be
obtained. The resistance Rs is load resistance and sets the operating current through the switch. Rs is
selected in a way that the VO2 switch turns off after discharging the capacitance Cc. In fact, the neuron
circuit is tuned to generate a single current spike through the VO2 switch, i.e., generate a single spike
at the output.
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Figure 2. Electrical circuit of a VO2 neuron.

Figure 3a presents the electrical circuit of a VO2 neuron. The pulses from the voltage generator are
supplied to the input of the neuron, and the output is connected to the input stage of the subsequent
neuron (to simulate the output load of the neuron). The circuit modeling was performed in the LTspice
XVII simulation software. Resistance and capacitance values: Rw_1 = 500 Ω, Rw_2 = 1 kΩ, Rs = 700 Ω,
Rin = 1 kΩ, Rout = 10 kΩ, Csum = 1 nF, and Cc = 10 nF. Supply voltage Vdd = −5.75 V. A pulse of positive
polarity with an amplitude of 2 V and a duration of 0.3 µs is supplied from the generator. Figure 3b
depicts the oscillograms of the input Vin and output Vout voltages, as well as the voltages Vc at the
capacitance Csum, which demonstrates the spikes’ dynamics.
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Figure 3. (a) An example of an electrical circuit of a VO2 neuron activated by a voltage generator,
and (b) oscillograms of voltages Vin, Vout, and Vc illustrating the spikes’ dynamics.

The threshold voltage at the Csum capacitance, required to initiate the output spike, is Vc_th ~ 0.33 V
(dashed line in Figure 3b). After turning on the VO2 switch, the capacitance Cc starts to discharge, and it
leads to the appearance of a leading edge and a spike with a voltage amplitude of ~ 3.2 V. After turning
on the switch, a decrease in the voltage Vc to negative values is associated with active recharging of
the Csum capacitor through an open switch due to the negative voltage on Cc capacity and Vdd power
supply. The spike duration is ~ 170 ns, which is determined by the discharge time of the capacitance
Cc until the moment, when the voltage at the switch Vsw is not less than Vh. The trailing edge of the
pulse appears when the switch goes off. The duration of the output spike can be significantly longer
than the duration of the initiating pulse.

The VO2-neuron model is able to demonstrate various properties of real neurons, such as
spike latency, subthreshold oscillations, refractory period, threshold behavior, and spike frequency
adaptation [28,39].

For example, Figure 4a demonstrates that the higher the amplitude of the input pulse exists,
the smaller the time delay between the leading edges of the input and output pulses remains, called spike
latency. With a pulse amplitude of 2 V, the latency between the input and output signals is 140 ns,
and with a pulse amplitude of 1 V, the latency reaches 440 ns. Therefore, the amplitude and duration
of the input pulse, required to initiate the spike, can lie in a wide range. However, when the amplitude
of the input pulse is less than Vc_th, the initiation of the output pulse does not occur.

If the input pulse is sufficiently long, several spikes can be obtained at the output of the circuit.
Figure 4b demonstrates the response of a VO2 neuron to a pulse with an amplitude of 1 V and a
duration of 3.6 µs, which forms five spikes at the output. The latter mode resembles the occurrence of
oscillations when an excitation signal is applied (subthreshold oscillations). The delay between the
spikes Tr, called the refractory period, is approximately 630 ns and is determined by the charging time
of the capacitor Csum to voltage Vc_th. The refractory period depends on the amplitude of the pulse.
For example, at a pulse amplitude of 2 V, the period Tr is 300 ns. In addition, the refractory period Tr is
slightly increasing (see the values indicated in Figure 4b), because of the small increase in Vc_th from
spike to spike, since the capacitance Cc does not have time to charge to its original values. This increase
in the time period between the spikes under constant exposure is similar to biological neurons (spike
frequency adaptation) [28,39].
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Figure 4. (a) Oscillograms of Vin, Vc, and Vout, applying to the VO2-neuron input pulses of different
duration and amplitude, (b) one long pulse, and (c) two pulses with a small delay between them.

If the delay between the spikes is less than the refractory period, the neuron generates only one
spike. Figure 4c demonstrates two input pulses with an amplitude of 1 V and a delay of 300 ns, and the
neuron generates a spike only for the first input pulse.

To implement the wide functionality of neural networks, in addition to excitation connections,
the possibility to add inhibitory connections is required. Inhibitory connections are widely used in
the SNN output layer to implement the WTA rule. Such connections allow the first spike-generated
neuron to deactivate all other related neurons using the inhibitory connections. As a result, only
one neuron, which is associated with a recognized class, is activated. Figure 5a demonstrates
a diagram of two neurons interconnected via capacitances Cinh = 10 nF, which act as inhibitory
connections. The capacitance and resistance values correspond to the single neuron circuit shown in
Figure 3a, with the exception of Rin = 200 Ω and Rout = 200 Ω. Due to the presence of Cinh capacities,
upon activation of one of the neurons and the discharge of its capacitance Cc, the voltage on the
capacitance Cc of an inactive neuron decreases. In this case, the first (in time) activated neuron will
suppress all other neurons connected to it by inhibitory connections. Namely, in such a group of
neurons, the WTA rule is implemented. In order to trace the activation of neurons in this circuit, it
is convenient to monitor the current Isw and voltage Vsw on two switches (Figure 5b). The delay
between the supplied pulses Vin_1 and Vin_2 is 2 µs. When the first pulse Vin_1 arrives at the first
switch (Figure 5b), the switch turns on, the current Isw_1 increases sharply, and the on mode lasts for
~ 4.2 µs. Switching on occurs because the voltage Vsw_1 reaches the threshold value Vth (Figure 5b).
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After turning on the first switch, the voltage Vsw_1 drops sharply and it leads to a decrease in voltage
Vsw_2 on the second switch, as the signal is transmitted through the capacitors Cinh. The second pulse
arriving at the input of the second neuron (Vin_2) does not activate it, because the voltage Vsw_2 does
not reach the threshold value (Vsw_2 <Vth). The activation of the first neuron inhibits the activation of
the second neuron. If an excitation pulse is applied to the second neuron after deactivation of the first
neuron, then the second neuron will go into an active mode.
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Figure 5. (a) Connection diagram of two oscillators with inhibitory connections. (b) Oscillograms
of the input signals Vin_1, Vin_2, voltages Vsw_1, Vsw_2 and currents Isw_1, Isw_2 on the switches,
and (c) oscillograms of the input signals Vin_1, Vin_2 and voltages on the integrating capacitors Vc_1,
Vc_2, when applying two voltage pulses with a delay of 2 µs.
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To determine the activity of neurons in the output layer, the most appropriate solution would be
to convert the Isw current pulses into output voltage pulses. However, this solution requires additional
external circuits. As neurons are connected by Cinh capacities, voltages, taken from Rout resistors,
are correlated, and it is not advisable to use them. Schematically, as activity markers, the voltages Vc_1

and Vc_2 can be used, and their dynamics are shown in Figure 5c. When the first neuron is activated,
the voltage Vc_1 drops sharply due to the recharging of the capacitor Csum, which forms a strong pulse
of negative polarity, and the positive pulse Vc_2 is weakly expressed on the inactive neuron.

2.2. SNN Architecture

For pattern recognition problems, various SNN architectures are used, which differ in the number
of layers and in the way neurons are connected [14,16]. One of the simplest SNN architectures is a
two-layer network (Figure 6a), where image information is supplied to the input (first layer), and one
of the neurons associated with a certain class of images is activated at the output (second layer) [42–44].
Each of the first layer neurons is connected to each neuron of the second layer through excitatory
connections. The connection strength between each pair of neurons is specified through synaptic
weights, which can vary among themselves. All neurons of the output layer are interconnected by
inhibitory connections. When applying signals to the first layer neurons, they are activated and
transmit an excitation effect to the second layer. The neuron of the output layer, which is activated
first, sends an inhibitory signal on all other output neurons. This prevents their activation. In this way,
the WTA rule is implemented, when data is classified by defining the only active neuron in the output
layer. The activation speed of the output layer neurons depends on the input signals and synaptic
weights between the particular output neuron and each neuron from the input layer. For the correct
pattern recognition, during the network training, it is necessary to correctly set the synaptic weights
for each group of the output neuron on the input neurons.
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Figure 6. (a) Architecture of a two-layer neural network for pattern recognition and (b) circuit
implementation of neurons in the input and output layers.

Figure 6b presents a coupling diagram of neurons of the input and output layers of a pulsed
neural network for image classification. Each element of the input layer corresponds to one pixel of the
image. Therefore, to solve the problem of classifying images with a size of 3 × 3 pixels, nine neurons in
the input layer are required. The number of output neurons depends on the number of patterns that
the network is supposed to recognize. In this study, we will demonstrate the classification of images
using three patterns, so the number of neurons in the output layer will be three. The input and output
layers of the SNN are connected using synaptic weights, implemented through the resistances Rw_i, j,
where i is the number of the input neuron and j is the number of the output neuron. The resistance
values Rw_i, j will change during training. Memristors [16], where resistance can be adjusted, are often
used as resistances in the circuits. In this study, we do not consider a circuit implementation that
allows the change of resistances Rw_i, j during the training process. Instead, we assume to have control
over the elements’ resistances. The range of resistance values Rw_i, j varies from 1.5 kΩ to 2.5 kΩ.

A signal from the generator, which encodes information about the color of the pixel, is supplied to
the input of each input layer neuron. In this study, we use eight-bit grayscale images, so the information
encoded by the generator reflects a gray scale, where the black pixel corresponds to the number 0 and
the white pixel corresponds to the number 255. The generator is connected to the input layer neuron
using an excitation connection. Then, all nine neurons of the input layer are connected by excitation
connections to the three neurons of the output layer, which forms 9 × 3 = 27 connections.

All output neurons are interconnected by inhibitory connections, which are implemented by
connecting to the inhibitory bus using the capacitance Cinh = 10 nF.

The remaining elements, depicted in Figure 6b, have the following ratings: Rw = 500 Ω, Rs = 700 Ω,
Rin_i = 1 kΩ, Rin_j = 200 Ω, Rout_i = 10 kΩ, Rout_j = 200 Ω, Csum = 1 nF, and Cc = 10 nF. The supply
voltage of all neurons is Vdd = −5.75 V.

2.3. SNN Training

Before considering the network training algorithm, it is necessary to determine the method of
information coding. A large number of information coding methods for SNN has been defined:
rate coding, rank coding, time to first spike, latency coding, phase coding, population coding, and
others [37]. Typically, two-layer neural networks, used to classify images, apply the rate coding
method [43,45,46]. However, in the current study, we use the time to the first spike method [37].
This coding method requires fewer spikes for a single recognition act, and, as a result, less energy is
spent on the circuit operation, as most of the energy is spent on generating spikes.

The information coding is performed as follows. The signals from the generators arrive on the
first layer of the neural network with a delay ∆t relative to the start time of the circuit t = 0, and the
delay ∆t determines the brightness of the image pixel. The value ∆t = 0 corresponds to brightness
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0 (black color), and the maximum delay ∆tmax = 2 µs corresponds to brightness 255 (white color).
The signal from the generator is a rectangular pulse with an amplitude of 2 V and a duration of 0.3 µs.
The delay time is counted relative to the leading edge of the pulse.

The network training process is based on the standard STDP mechanism [14,16,19–21,38].
This mechanism is an implementation of the Hebbian learning rule and causes a change in
synaptic weight depending on the delay ∆tin-out between pre-synaptic and post-synaptic spikes [45].
The traditional rule is an exponential function [45], which depends on ∆tin-out. However, various
studies use the simplified versions [42,47], which significantly facilitate the calculations, while maintain
the main ideas of the SPDT method. In this study, we use the function presented in Figure 7, where the
form is given in the SNN training papers [42,45,47]. Since an increase in synaptic weight corresponds to
a decrease in resistance Rw_i, j, the function is inverted in relation to the axes of an ordinate. Resistance
decreases, if the post-synaptic spike (from the neuron in the output layer) arrives with a delay in the
range of 0 to 0.5 µs after the pre-synaptic spike (from the neuron in the input layer). In other cases,
the resistance Rw_i, j increases.
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Figure 7. The function of the resistance change the between the input and output neuron ∆Rw_i, j

depending on the delay between the pre-synaptic and post-synaptic spikes ∆tin-out.

Typically, the STDP-based training procedure is used in SNN with unsupervised learning [19–21,
42,44]. In this case, when training input data is supplied, the output neurons are randomly associated
with input data patterns. Nevertheless, there are studies on SNN training mechanisms that implement
supervised learning [48–50]. In these studies, the input pattern is forcibly assigned to a specific output
neuron using back error propagation algorithms. In our study, we tried to implement a simplified
approach that allows us to implement supervised learning. During the training, the supply voltage
Vdd was set to be non-zero only at one of the three output neurons (see Table 1). The remaining neurons
are forcibly electrically deactivated. They do not emit spikes, and it causes all the associated weights
Rw_i, j to increase. During network training (Table 1), power at the output neuron No. 1 is present
(Vdd , 0) only when “Pattern 1” images are inputted. When “Pattern 2” and “Pattern 3” images are
supplied, the voltage Vdd is zero.

Table 1. An example of the supply voltage setting Vdd of the output layer, using the supervised learning
method in SNN training.

The Class of the Image,
Fed to the SNN Input

The Voltage Vdd of the
Output Neuron No. 1, V

The Voltage Vdd of the
Output Neuron No. 2, V

The Voltage Vdd of the
Output Neuron No. 3, V

Pattern 1 −5.75 0 0
Pattern 2 0 −5.75 0
Pattern 3 0 0 −5.75
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The SNN training algorithm consists of the steps listed in Figure 8. First, arbitrary resistances
Rw_i, j are set in the range from 1.5 kΩ to 2.5 kΩ. Second, the iterative process of changing the
resistances Rw_i, j begins. Initially, one of the patterns, that the network should be trained to express,
is arbitrarily selected (the number of patterns should be equal to the number of the output layer
neurons). In accordance with the pattern and the information coding scheme, the pulse delays are set to
be supplied from the generators to the input layer neurons. Then, in accordance with Table 1, the Vdd

values of the output neurons are set. Next, the circuit modelling starts in the SPICE simulator. Based on
the simulation results, delays between pre-synaptic and post-synaptic spikes ∆tin-out are calculated,
and ∆Rw_i, j are calculated using the resistance change function (Figure 7). After that, the new values
of Rw_i, j are set, and, if the values are outside the range of 1.5 kΩ – 2.5 kΩ, Rw_i, j is set equal to the
nearest border value. The training cycle is repeated, until all the Rw_i, j values stop changing.
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3. Results

Three patterns for training with a dimension of 3 × 3 pixels are presented in Figure 9. The patterns
have the same number of black and white pixels. If the number of black pixels is different,
then normalization by color intensity can be applied to obtain more accurate results [51].
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Figure 10 illustrates the resistance values Rw_i, 1, Rw_i, 2, and Rw_i, 3 between all input neurons and
three output neurons before and after network training. Resistance values are grouped by nine pieces
according to the number of output neurons.
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Figure 10. Distribution of resistances Rw_i, 1, Rw_i, 2, and Rw_i, 3 before and after training.

Before training, the resistances Rw_i, j were randomly generated in the range from 1.5 kΩ to 2.5 kΩ.
Then, the SNN training procedure was performed for ~100 cycles, described in detail in Chapter 2.3,
using the input patterns in Figure 9. As a result, the distribution of resistances for each output neuron
began to correspond to the pattern assigned to each output neuron. This distribution is an expected
result for two-layer networks operating, according to the WTA mechanism [44]. If the training patterns
were a set of images distributed by classes (for example, numbers written in different handwriting),
then the distribution of weights would be averaging all patterns belonging to the same class. Such a
training outcome is observed in the studies using the MNIST database [42].

Analysis of the trained network reveals the following results. If patterns from the training set
were input, then, as expected, the neurons corresponding to the associated pattern were activated at
the SNN output.

Furthermore, images corresponding to distorted patterns in which pixel color intensities were
randomly changed were inputted. The results of the SNN operation with the number of the activated
output neuron are presented in Figure 11. The first three images corresponding to the distorted patterns
from the training set were correctly classified by SNN. The first image corresponds to “Pattern 3,”
the second image corresponds to “Pattern 1,” and the third image corresponds to “Pattern 2.”
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Figure 11. Examples of image classification of distorted patterns indicating activated output neurons.

When inputting the fourth image, which is a highly distorted template from the training set
(“Pattern 3”), none of the output neurons were activated, and it could be interpreted as an undefined
result. Inactivity of the output neurons reflects that the voltage on the capacitors Csum of the output
neurons never reaches the threshold values Vc < Vc_th.

This uncertainty could be avoided by reducing the time range for spikes coding ∆tmax

(see Section 2.3). For example, if ∆tmax = 2 µs is reduced by half to ∆tmax = 1 µs, then the fourth image
in Figure 11 is correctly identified as “Pattern 3.” The pulses have shorter time intervals, and the
voltage on the integrating capacitance Csum is more likely to increase to the threshold value Vc_th.

4. Discussion

When modelling neurons, on the one hand, we could strive for greater bio-similarity of a neuron,
as implemented in some models (FitzHugh-Nagumo, Izhikevich, Hodgkin-Huxley) [35,39], or, on the
other hand, we could try to minimize the number of electrical components in the circuit to contribute
to its miniaturization in practical implementation. The integrate-and-fire neuron model, which we
propose, permits, on the one hand, to obtain a number of properties observed in biological systems
(Section 2.1), and, on the other hand, it contains only one switching element and a power source,
in contrast to more complex models [28]. In a number of studies of neurons based on VO2, silicon
semiconductor devices (field effect transistor, diode) are used as additional circuit elements [22,29].
This imposes certain restrictions on the compatibility of technological processes for manufacturing the
silicon and non-silicon parts of the circuit. This drawback is avoided in the presented neuron model,
where all circuit elements (switch, resistors, and capacitors) are manufactured using vanadium oxides
of various stoichiometry (VO, VO2, V2O3, and V2O5).

All the results presented in the current study were obtained by modeling the VO2 neuron using
numerical methods in the LTspice simulator. However, the I–V characteristic of the VO2 switch
corresponding to the experimental data was used in the model (see Section 2.1). Therefore, a discussion
of the physical mechanisms that affect the I–V characteristics is of great importance for predicting the
areas of practical application and comparing the characteristics of neuron models.

An increase in the ambient temperature T0 leads to a decrease in the threshold voltage Vth, and at
T0~ Tth, the effect of electrical switching will be suppressed, because the VO2 channel will achieve
a highly conductive state [41,52,53]. It imposes a limitation on the use of a VO2 neuron, where the
operability will be limited at T0 > Tth. The value of Tth is not high, and reaches Tth ~ 340 K (67 ◦C) and
creates the question - how to increase Tth? A good overview of the Tth modulation methods by doping
with various elements is presented in Reference [54]. For example, Cr doping can increase Tth by
10 ◦C [55]. An alternative way to increase Tth is to use other materials with an S-type I–V characteristic.
NbO2–based structures, having Tth ~ 1070 K, demonstrate electrical switching up to temperatures of
T0 ~ 300 ◦C [56], and can be used in the presented neuron model. The model is invariant to the use of
other materials with the effect of electrical switching, and the main requirement is the presence of an
S-type I–V characteristic. VO2-based structures are a good model object and are often used in neural
circuits. Nevertheless, the task of finding switching structures with a wide temperature range is a
promising endeavour.
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Another problem is the variation of Vth with the temperature. Therefore, if it is necessary to stabilize
the operation of a neuron, it is necessary to come up with additional thermal compensation schemes.

To optimize the circuit presented in Figure 2, we propose to exclude the capacitor Csum from
the circuit. When switching a VO2 switch by rectangular pulses, there is an effect of a time delay
of switching on the switch. An inverse dependence of the time delay on the pulse amplitude is
associated with the thermal heating of the switching channel to the phase transition temperature of the
metal insulator. The physics of the electrical switching process is described in detail in Reference [27].
If pulse durations and coding time intervals ∆tmax are used within the delay times of the switching,
the pulse integration effect can be implemented without Csum capacity, and will be caused by the heat
accumulation in the region of the switching channel. A similar idea to use heat storage in the switch
region to accumulate action in a neuron was proposed in Reference [31]. The role of capacitors in the
oscillator circuit is discussed in a number of sources [25,57,58], and the oscillations can be obtained
without an integrating capacitor, while being only due to the effects of heat storage. The study of the
effect of temperature integration of input pulses could be the subject of future research.

The coupling between the switches in the network can be implemented not only by electrical
coupling through resistors Rw_i, j, but, as described in our previous studies, can be organized through
the thermal coupling of the switches [59,60]. The development of spike neural networks with thermal
coupling could be the subject of further research.

The reduction of SNN classification uncertainty, when applying a highly distorted template
(the right image in Figure 11), by reducing the time interval for coding spikes ∆tmax, has its own
limitations. The current SNN model does not take into account the effect of the turn-on and turn-off

delay of the switch described above. For example, the turn-on time of the VO2 switch, using our input
signal amplitudes, does not exceed 10 ns [25], while the turn-off time can be much longer (hundreds
of nanoseconds). In the time scale of the current SNN model, operating in microsecond intervals,
by taking into account the effect of the turn-on delay, does not affect the results of the SNN operation.
However, the turn-on and turn-off times can vary significantly, when using other switches, resistors,
and resistances. It should be taken into account when designing SNN.

An important characteristic of the network is the pattern recognition time [61]. The SNN
architecture, which we propose, provides recognition time of the coding interval order, corresponding
to 2–3 µs. After the recognition is completed, the system requires ~ 7–8 µs to reach the initial state,
caused by the recharging of the capacities. Therefore, the current SNN is able to recognize up to
105 images per second, and its performance can be increased by reducing the capacitance rating and
scaling the VO2 switches [25]. The implemented method of information coding allows the use of single
spikes. It does not only reduce the power consumption compared to the networks using rate coding,
but minimizes the time to perform one image recognition operation.

At the end of this section, we present a comparison table of neurons with other proposed neuron
devices. The neurons in Table 2 are divided into two groups: neurons based on silicon (CMOS)
technology and neurons based on VO2 switches. The main parameters of the neurons are the size of
the active element and the energy consumption. Although the silicon neurons have an advantage in
these parameters, in our study, the spikes duration is of the least importance. Another advantage of the
VO2 neuron compared to the CMOS neuron is, apparently, the high noise level of the current channel
that leads to the stochastic behavior of the neuron described in References [33,34]. This property allows
the network to escape local minima and reach the global minimum of the error surface.
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Table 2. Comparison of neurons with other proposed neuron devices.

Device Neuron Type
Material/Platform

Active
Element Size

(a) and Neuron
Area (Sneuron)

Spike Amplitude
(Vspike), Peak Power

(Pmax), Duration,
(∆tspike) and Energy

per Spike (Espike)

Integration and
Threshold

Mechanism,
Threshold Voltage

of the Active
Element V th

SNN with
Object

Recognition,
Coding

Mechanism

VO2
(current study)

Leaky Integrate
and Fire

Vanadium
Dioxide (VO2)

a ~ 3 µm

Vspike = 3.2 V
∆tspike~500 ns
Pmax~37 mW
Espike~ 18 nJ

Capacitor charging,
Switching effect

when reaching Vth,
Vth(VO2)~5.6 V

Time to first
spike

Oxide neuron
[35]

Piecewise linear
FitzHugh-Nagumo,
FitzHugh–Rinzel

Vanadium
Dioxide (VO2),
Niobium oxide

(NbO)

a ~ 3 µm
Vspike~3.5V

∆tspike~100 µs
Pmax~72 mW
Espike~ 7 µJ

Capacitor charging
and energy of

inductance magnetic
field,

switching effect
when reaching Vth,

Vth(VO2)~ 5.6 V
Vth(NbO2)~ 0.9 V

-

Stochastic VO2
neuron

[33]

Integrate and fire
Vanadium

Dioxide (VO2)
a ~ 100 nm

Vspike~0.5 V
∆tspike~4 µs
Pmax~12 µW
Espike~50 pJ

Capacitor charging,
switching effect

when reaching Vth,
Vth(VO2)~ 1.7 V

Rate coding

CMOS neuron
[62]

Leaky Integrate
and fire
CMOS

a ~ 90nm
Sneuron= 442

µm2

Vspike = 0.6 V
∆tspike~3 ms

Espike = 0.4 pJ

Capacitor charging.
Reset using
comparator,
Vth~ 0.6 V

-

CMOS neuron
[63]

Simplified Morris
- Lecar model

CMOS

a ~ 65 nm
Sneuron = 35

µm2

Vspike = 112 mV
∆tspike~18 µs
Espike = 4 fJ

Capacitor charging
and discharging

through transistors,
Vth~ 112mV

-

The spike amplitude, power, and energy consumption of the VO2 neuron depend on the threshold
switching voltage Vth, if only the energy release on the VO2 switch is taken into account. The main
technological parameters affecting the Vth value are the resistivity in the insulator phase ρoff and the
contact geometry [25,32]. In Reference [25], we obtained an equation for approximating Vth.

Vth =

√
λ · ρo f f · (Tth − T0)

√
d

· aβ (1)

where d is the thickness of the VO2 film, a is the inter-electrode distance, λ is the heat-transfer
coefficient, and β is the exponential coefficient that determines the effective area of the heated zone in
the inter-electrode gap (β < 1).

By decreasing the value of a, the structures with reduced Vth can be obtained. Using Equation (1)
and the current value when the structure is turned on, estimated as Ion = Vth/Ron (where Ron = ρon/d),
we can propose an equation for the maximum power per spike (λ = 35 W/m · K, ρoff = 4 · 10−2 Ω ·m,
ρon = 4 · 10−4 Ω ·m, β = 0.56, Tth = 340 K, T0 = 300 K [25]):

Pmax = Vth · Ion = λ · ρoff

ρon
· (Tth − T0) · a2β (2)

By reducing the size of the inter-electrode distance a and the ratio (ρoff/ρon), we would significantly
reduce the value of Pmax. For example, at a = 1 µm, the maximum power Pmax is ~ 26 mW, while at
a = 100 nm, the maximum power Pmax drops to 2 mW.

Espike can be estimated by multiplying the spike duration by the maximum power, Espike~
Pmax·∆tspike. In Reference [25], we modelled the switch on and switch off durations of switches,
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which determine the minimum ∆tspike values. We demonstrated that the durations decrease with
decreasing a. Therefore, it is possible to predict a significant decrease in Espike with a decrease in the
size of switching elements. The estimates are the following: Espike ~ 6.4 nJ at a = 1 µm (∆tspike = 240 ns),
and Espike ~ 105 pJ at a = 100 nm (∆tspike = 52 ns).

The last column in Table 2 demonstrates that the majority of the previous studies gives only
the model of VO2 neuron itself. In the current study, we present the simple neural network that is
capable of pattern recognition, using the timing method of information coding, which has a clear
energy advantage over the firing rates coding method [33].

5. Conclusions

In the current study, we present the new model of an LIF neuron based on one switching VO2

element. The neuron circuit was modeled in the LTspice program, and, for the component emulating the
switch, a voltage-controlled key was used, which the I – V characteristic corresponded to experimental
data. During the simulation, the VO2-neuron model demonstrates biosimilar properties, such as
spike latency, subthreshold oscillations, refractory period, threshold behavior, and spike frequency
adaptation. A two-layer SNN was designed to allow pattern recognition. The coupling between the
neurons of the input and output layers was implemented using excitatory connections, and, inside the
output layer, the coupling used inhibitory connections. This architecture led to the activation of only
one output neuron associated with the most similar pattern, according to the WTA principle. As an
example, we studied the network that had nine input and threeoutput neurons, which was trained to
recognize three patterns (3 × 3 pixels). A timing method of information coding was used, where the
color intensity of the pixel was determined by the time delay between the spikes. The training was
conducted using the supervised SPDT method, taking into account the time delay of pre-synaptic and
post-synaptic spikes. To analyze the operation of the trained network, the images of distorted patterns
from the training set were sent to the network input, and the images were correctly recognized in
most cases. The network is capable of recognizing up to 105 images per second, and the classification
process is highly dependent on the time parameters of the network and the effect of electrical switching.
Network architecture has the potential for further scaling, which increases the speed of recognition and
miniaturization of the components. In the future, we plan to continue the work toward optimization
of both the neuron circuit and the network architecture for classifying images from standardized
databases [64].
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Abstract: SpiNNaker is a neuromorphic globally asynchronous locally synchronous (GALS) multi-core
architecture designed for simulating a spiking neural network (SNN) in real-time. Several studies
have shown that neuromorphic platforms allow flexible and efficient simulations of SNN by exploiting
the efficient communication infrastructure optimised for transmitting small packets across the many
cores of the platform. However, the effectiveness of neuromorphic platforms in executing massively
parallel general-purpose algorithms, while promising, is still to be explored. In this paper, we present
an implementation of a parallel DNA sequence matching algorithm implemented by using the
MPI programming paradigm ported to the SpiNNaker platform. In our implementation, all cores
available in the board are configured for executing in parallel an optimised version of the Boyer-Moore
(BM) algorithm. Exploiting this application, we benchmarked the SpiNNaker platform in terms of
scalability and synchronisation latency. Experimental results indicate that the SpiNNaker parallel
architecture allows a linear performance increase with the number of used cores and shows better
scalability compared to a general-purpose multi-core computing platform.

Keywords: benchmarking neuromorphic HW; neuromorphic platform; spiNNaker; spinMPI; MPI
for neuromorphic HW; Boyer-Moore; DNA matching algorithm

1. Introduction

A neuromorphic system is a massively multi-core system composed of simple processing units
and memory elements communicating by message exchanging [1]. This type of approach strives
to simulate the behaviour of the brain using design principles based on biological nervous systems.
Neuromorphic systems differ from traditional multi-core systems in the way in which memory and
processing are organised. Indeed, in this case, memory is distributed with processing units rather
than centralised and physically separated from the cores. Using this strategy, it is possible to avoid
the traditional bottleneck of memory access time, present in the classical Von-Neumann architectures.
The main idea behind this kind of system is to process information using an event-driven protocol
that lets the cores work in an asynchronous way [2]. The processing units remain in an idle state until
an event is presented, triggering a reaction; after that, the units return to the idle state. Using this
feature, neuromorphic systems are much more energy-efficient than traditional multi-core systems.
This idea is inspired by biology; indeed, the human brain is composed of billions of neurons connected
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by synapses, working asynchronously, with a power consumption lower than that of a light-bulb [3].
Another peculiarity of neuromorphic systems is the high number of interconnections between the
processing units, which speeds up and simplifies communication between the cores.

Neuromorphic HW platforms are attracting the interest of many research groups, mainly for the
simulation of neural network structures observed in the brain and modelled through the simulation
of Spiking Neural Networks (SNN). Although initially intended for brain simulations, the adoption
of emerging neuromorphic HW architectures is also appealing in fields such as high-performance
computing and robotics [4]. It has been proved that neuromorphic platforms provide better scalability
than traditional multi-core architectures and are well suitable for classes of problems which require
massive parallelism as well as the exchange of small messages, for which neuromorphic HW has
a native optimised support [5]. However, the tools currently available in this field are still weak
and miss many useful features required to support the spreading of a new neuromorphic-based
computational paradigm.

In this paper, we analyse and benchmark the scaling capability of the SpiNNaker neuromorphic
architecture. The SpiNNaker Machine is a multi-chip, globally asynchronous locally synchronous
(GALS) neuromorphic architecture that connects general purpose ARM cores in a toroidal-shaped
triangular mesh. It is efficient when used to solve problems modelled as a directed graph with an
important communication component.

Other works have used this platform to execute parallel general purpose computation,
with positive outcomes both for scaling performances and energy efficiency. In Blin et al. [5], authors
have customised the neural model of an SNN configured for reproducing the connection graph of a
page rank problem, showing that the scalability rate of the neuromorphic platform outperforms the
general purpose architectures; whereas Sugiarto et al. [6] have implemented on SpiNNaker an energy
efficient image processing algorithm, using a task graph representation to describe the mechanism and
behavior of the method. However, none of these two approaches has tested synchronous applications,
since both of them used an adapted SNN simulated with the standard asynchronous framework.

In previous work [7], authors have used a minimal Message Passing Interface (MPI) framework
to implement a synchronization strategy that allows configuration of the cores of the board with a
distributed application implementing the N-Body problem. The authors benchmarked the performance
of the board in the execution of an MPI parallel application that simulates 2 k particles on 240 processors
with a speed-up of 194× and an efficiency of 80% when compared to the serial version running on a
single CPU.

In this paper, we compared the scaling performance of the SpiNNaker system with that offered by
a many-core general purpose architecture. We implemented a parallel processing approach for a pattern
matching algorithm able to identify the similarity of DNA sequences. In our implementation, we used
the Message Passing Interface (MPI), a distributed parallel programming paradigm, to synchronise
the communication of the computing cores on the two architectures. By using the MPI framework,
we can port on the SpiNNaker platform an algorithm normally executed on a standard architecture
without any need to re-shape the algorithm in the form of a Spiking Neural Network. The focus of the
research presented in this paper is threefold.

• To benchmark the performances of the SpiNNaker board in computing pattern matching tasks by
running synchronous data-stream algorithms.

• To explore the potential of the custom shape mesh, implemented on the SpiNNaker board, in a
supporting parallel application that adopts a one-to-many communication system.

• To demonstrate how it is easy to port synchronous applications, implemented for the
general-purpose computer, on the SpiNNaker board by using our software component that
supports MPI for SpiNNaker.

The rest of the manuscript is organized as follows: Section 2 provides background information on
existing neuromorphic architectures, with a detailed focus on the SpiNNaker board and on the DNA
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search algorithm. Section 3 describes the materials and methods used to carry out the study, whereas
Section 4 examines experimental results. Finally, Section 5 closes with the conclusions.

2. Background

In the following, we provide a background on neuromorphic hardware in general and SpiNNaker
in particular. Then we discuss the variant of the Boyer-Moore algorithm that we implemented with the
MPI framework in order to benchmark the scaling capability of the SpiNNaker platform.

There are two main approaches to neuromorphic computing—VLSI architectures where
neurons are modelled at transistor-level and communications are handled with connection crossbar
array and custom architectures where general-purpose cores are connected to form a mesh of
processors optimised for the transmission of small packets [8–10]. In the following, we report four
representative architectures.

BrainScaleS is a VLSI platform developed at the University of Heidelberg [11]. The main idea
behind this project is to use above-threshold analogue circuits to physically model neuronal processes,
exploiting analogy between electronic circuits and the ionic circuits in biological neurons. Analogue
neurons are delivered using wafer-scale integration.

Dynap-SEL is a VLSI chip called Dynamic Asynchronous Processor Scalable and Learning that
is produced with four neural processing cores which implement 256 analog Adaptive Exponential
Integrate and Fire neurons placed in a 16 × 16 grid with 64 programmable synapses for each neuron.
In the Dynap-SEL architecture, it is available also a supplementary core 64 analog neurons and 8192
plastic synapses with on-chip learning and 4096 programmable synapses [12].

Loihi is a neuromorphic processor produced by Intel [13]. It features a many-core mesh comprising
128 neuromorphic cores, three embedded x 86 processor cores and off-chip communication interfaces
that extend the mesh in 4-planar directions to other chips. All logic in the chip is digital and
implemented as an asynchronous bundled-data design.

The Spiking Neural Network Architecture (SpiNNaker) [14] is a real-time neural network simulator
following an event-driven computational approach [15]. This architecture is able to emulate neural
populations and to simulate an entire Spiking Neural Network (SNN) in real-time. What sets
SpiNNaker apart from all the above platforms is the fact that its architecture does not implement
neurons via custom VLSI designed circuits, but it consists of a mesh of general-purpose ARM cores
with a neuromorphic connectivity scheme. While the platform is designed to run SNN simulations
and a software stack is provided to facilitate this purpose, in principle, the general-purpose cores can
run any sort of C program compiled for ARM.

2.1. SpiNNaker Architecture

The base element of the SpiNNaker architecture is the SpiNNaker chip Figure 1, an SoC composed
by 18 ARM-968 cores running at 200 MHz without a floating point unit but equipped with a custom
router. Each processor has 32 kB of ITCM, 64 kB of DTCM, and shares through a system NoC 128 MB
of SDRAM with the other processors in the chip. All the cores in the SoC (Application Processors) can
run user applications, except one core for each chip, which is designated to be the Monitor Processor.
This particular processor always executes the SC&MP program, which is a sort of operating system
performing operations of memory management and acting as a packet manager, able to receive and
transmit packet traffic from/to the cores. SpiNNaker chips (nodes) are connected to six neighbours and
assembled on a PCB board made of 48 SpiNNaker chips (Spin5). The host computer can communicate
with and configure a Spin5 via the Monitor Processor of the chip (0,0), the only one that is physically
connected to an 100 Mbit Ethernet interface.
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Figure 1. The SpiNNaker chip architecture.

2.2. SpiNNaker Network

The kernel of the interconnection among all cores of all chips of the simulator is the router,
specifically designed to deliver packets as fast as possible (0.1 µs per hop) [16]. The particular design of
the router, despite limitations on the synchronous transmission of packets [17,18], allows transmission
of two operative packet types—Multicast (MC) and Point to Point (P2P). The length of these packets
can be up to 72 bits and can carry a 32 bits long payload.

Multicast (MC) packets can reach many cores across the board. In neural simulations, they are
widely used in order to spread neural potentials to multiple destinations. Point-to-Point (P2P) packets
can be used for chip-to-chip transmissions. Each chip is uniquely identified by its coordinates (x, y),
which define the chip’s position in the chip mesh. P2P packets are always delivered to a chip’s
monitor processors.

The APIs of the SpiNNaker system provide a higher level of abstraction that simplifies the usage of
chip interconnection. The SpiNNaker Datagram Protocol (SDP) can be used to manage communication
between processors up to 256 Bytes [14]. The Monitor Processors act as a middleware between the
SDP protocol and the on-board network. A Monitor Processor that receives an SDP packet splits the
whole frame into 32-bit fragments to be delivered in the internal network through the P2P packets.

2.3. SpiNNaker Software

The software used to run a simulation managing the boards involves board-side code developed
in C and Assembly [19] and host-side code mostly written in Python [20].

In this work we used the software stack provided by the SpinMPI library—a partial
implementation of MPI on SpiNNaker [7] able to fully exploit the communication potential provided by
the architecture, using the Application Command Framework (ACF) and the Multicast Communication
Middleware (MCM) to manage communications.

The ACF uses the Application Command Protocol (ACP) to implement a Remote Procedure Call
(RPC) capability in SpiNNaker at the application level [21]. Moreover, this library implements the
memory entity concept. A memory entity is a managed memory space (DTCM, SysRAM, SDRAM),
identified by an integer number, on which it is possible to perform CRUD operations (Create, Read,
Update, Delete) locally or remotely. A memory entity can be created with a size limit of 256 Byte, that
is, the ACP payload limit. The MCM instead implements unicast and broadcast communications,
exploiting the multicast network capabilities of SpiNNaker.
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2.4. The DNA Pattern Matching Algorithm

One of the most recurrent and widely studied problems in computer science is pattern
matching—this problem has several real-world applications such as fast sub-string searching for
network intrusion detection, mail spam filters, protein motif search and DNA/RNA sequence
alignments [22]. Given a text string T of length n and a pattern string P of length m ≤ n, the pattern
matching problem can be stated as retrieving all positions i where pattern P occurs in text T, such that
0 ≤ i ≤ n−m.

A straightforward solution for the pattern matching problem consists of looking for the pattern
sequence in the text position by position until every occurrence is found. Unfortunately, such an
approach leads to a O(m · n) asymptotic complexity, which is not acceptable for large sets of data.

Given the practical relevance of this problem, many approaches were proposed in the literature
for improving the naïve way. One of these is the Boyer-Moore algorithm [23,24], which trades space
usage for time efficiency, defining rules for pruning the search space avoiding the exploration of all
text positions. A C++ implementation is available in Reference [25].

Figure 2 provides an intuition for this approach; given the text in the picture, the first attempt
looks for pattern “GTA” in position 0 , which is not correct.

Figure 2. Intuition of the Boyer-Moore search procedure.

The naïve approach would perform the next search from position 1 , but this is not ideal since the
first instance of the letter “G” in the pattern occurs at position 3 in the text, meaning that searching
any position in the middle is useless. Implementing this optimization requires pre-processing of the
pattern to be matched; a shift table is computed, storing the number of text positions that can be safely
skipped for each symbol in the target alphabet. Whenever a mismatch is found, given the next symbol
to be searched, the shift table is accessed and the next position to be considered is computed.

We used a refined version of the Boyer-Moore algorithm, also known as Fast string matching method
for Encoded DNA sequences (FED) [26], which takes advantage of the low-cardinality of the DNA
alphabet. In the FED version, each of the four symbols composing the DNA alphabet is assigned a
unique 2-bit code, packing four elements into a single byte, padding last bits with zeros in the case of
sequences where the length is not a multiple of 4. Additionally, a bit-mask is used to distinguish valid
bits from padding in the last encoded byte.

The procedure consists of two successive steps:

• Pre-processing, where texts and patterns are encoded and a shift table is computed for every pattern
to be matched.

• Matching, where the actual search procedure is performed, is implemented as a byte-by-byte
comparison between the text and pattern encoded sequences. If every byte of the pattern is
sequentially found in the text, then the current position is registered as a match. Otherwise,
the shift table is accessed to compute how many positions the pattern is allowed to skip before
performing the next check.

Figure 3 summarizes the string matching procedure flow. As long as the customised Boyer-Moore
procedure can perform a matching operation on encoded sequences, the encoding step can be
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considered not part of the algorithm as it can be done offline by storing the encoded sequences
in custom binary files which constitute the actual source of data for the pattern matching engine.

Figure 3. Flowchart of the string matching algorithm.

3. Materials and Methods

3.1. Implementation of DNA Sequence Matching with MPI

Pattern matching over DNA sequences can be considered an embarrassingly parallel application,
because the average use case consists in matching millions of patterns against multiple text sequences,
independently [27].

The inputs for the benchmark application are two binary files, storing the encoded texts and
patterns to be analyzed. From an algorithmic point of view, running FED on already encoded sequences
is equivalent to loading plain sequences and encoding them online. For the sake of benchmarking
the communication effort in the target platforms, we decided to encode sequences off-line. Moreover,
we split text sequences into a set of chunks with a given fixed size. This step is required because in
bioinformatics applications, generally, the text represents one or more genomes and its size is not
suitable to be sent in a single shot as it is.

Our parallel implementation of the search algorithm identifies two main roles among the MPI
processes—the MPI control process, which is the role adopted by the MPI process with rank 0, and the
MPI worker, which is the role adopted by all remaining MPI processes.

The algorithm works in two distinct steps, outlined in Figure 4: configuration A and match
B . During configuration step A , the MPI control process accesses the file system, loads the FED

encoded patterns and distributes them among the MPI workers so that each working process handles
approximately the same workload. Pattern distribution is implemented as a set of point-to-point
communications, using MPI_Send/MPI_Recv primitives. Once an MPI worker receives its patterns it
computes the shift table for them, completing the pre-processing phase shown in Figure 4. This strategy
allows both to reduce the amount of data sent over the communication network, as the patterns are
already encoded and to distribute the pre-processing efforts equally among all available working
nodes, as long as any MPI worker finalizes the pre-processing step on its patterns only.
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During the matching step B , the MPI control process loads the encoded chunks of text and
broadcasts them one at a time to all the MPI workers, which are in charge of performing the actual
pattern matching procedure by calling the search primitives. As shown in Figure 4, once a match is
found, it is saved into a buffer local to the MPI instance that discovered it. Once every chunk has been
analysed, all the MPI instances synchronize to produce two report files containing information about
the matches found and the run-time needed for accomplishing their tasks.

Figure 4. Flowchart of the implementation of MPI-FED on a general purpose architecture and
on SpiNNaker. The step A performs the configuration, the step B execute the matching, whereas
during the step P our implementation implement a preliminary phase for transferring the data to the
SpiNNaker board.

3.2. Adaptation of FED with MPI for SpiNNaker

The implementation of FED with MPI for SpiNNaker retains the configuration A and match B
phases from the previous section, as depicted in Figure 4. However, an additional preliminary phase
P is required in order to transfer the problem data to the board. The configuration step A will then

be performed by one of the SpiNNaker cores, taking up the role of MPI control process.
Using the SpinMPI Python library, the host launches the MPI Runtime and creates an MPI Context

declaring the number of chips and cores that will be used by the application on the Spin5 board. The
MPI Runtime is also in charge of loading and starting the application binary on the board.

In the preliminary phase P , the communication between the computer host and the on-board
application is performed through the use of ACP memory entities (MEs). First, the binary files
containing the genome and the search patterns are read by the MPI Runtime. In this phase, the host
will write into a ME belonging to processor (0, 0, 1) (the MPI control process) two integers indicating the
number of chunks (nchunks) and patterns (npatterns) which will be loaded into SpiNNaker. The MPI
control process allocates in SDRAM the memory necessary to contain all chunks and patterns. After
allocation is performed, the addresses of these memory blocks are read by the MPI Runtime, again
using ACP. The MPI Runtime can proceed to fill the MPI control process memory with the genome and
the search patterns previously read.
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An MPI Barrier forces all MPI workers to wait until the MPI control process has received all data
from the MPI Runtime. Once the problem data has been transferred (phase P ), phase A can begin.
The MPI control process distributes the patterns among all worker cores through MPI_Send/MPI_Recv
primitives and the MPI workers store the pattern data in their DTCM and compute the shift tables.

The phase B begins after all patterns have been distributed. The MPI control process sends a text
chunk to all MPI workers executing a broadcast communication. The SpiNNaker implementation of the
MPI_Bcast function is a blocking call, as the memory limitations of the platform do not allow for large
communication buffers; hence, the MPI control process will proceed to send the next chunk only after all
workers have processed the current chunk. On the worker side, only one text buffer is allocated into
DTCM, since the text chunks will be processed sequentially and a chunk can be replaced whenever
a new one is obtained. When a MPI worker executing the FED algorithm finds a match position, it is
stored into a linked list together with the chunk and matching pattern identifiers. Thus the position in
the reference sequence can be retrieved.

After all the text chunks have been processed, the application is finalised, and the MPI Runtime
can download the results directly from the memory of SpiNNaker cores.

4. Results and Discussion

In this section we report the results of tests designed to characterise the performance
of the SpiNNaker system running a pattern matching algorithm implemented with the MPI
programming paradigm.

As a preliminary evaluation, we measured the execution time and memory usage of the MPI
primitives implemented on SpiNNaker that we will use for implementing the parallel FED algorithm.
MPI_BARRIER, MPI_SEND/MPI_RECV, and MPI_BROADCAST primitives will be tested and the
results are reported in Section 4.1. Next, we performed an evaluation of the performance of FED
algorithm implemented with MPI and executed on the SpiNNaker and on the CPU-based architectures.
This last analysis aims to evaluate the scalability and power efficiency of the SpiNNaker platform
when compared with a standard architecture. The results are detailed in Section 4.2.

4.1. Performance of MPI on SpiNNaker

In Tables 1 and 2 and Figure 5 we report the performance of the MPI primitives on SpiNNaker.
Table 1 shows the average execution time for 2000 iterations of the MPI_BARRIER synchronization
primitive; the growth of the execution time is bounded with respect to the size of the context (i.e., the
number of cores being used). The amount of memory necessary to store information about the context
also grows slowly with respect to the number of cores.

Table 1. Table profiling the performance of 2000 iterations of MPI_BARRIER on SpiNNaker.

Cores Time (ms) Memory Usage

2 4.0 0.128
192 18.0 0.165
384 20.0 0.204
576 21.0 0.242
768 22.79 0.280

Table 2 shows the average execution time for the MPI_SEND/MPI_RECV unicast primitive.
The average execution time grows linearly with the amount of data sent.

Finally, in Figure 5 we describe the average execution time for 2000 iterations of the
MPI_BROADCAST primitive with respect to the amount of data sent and the context size. Once
again the execution time grows linearly with the data sent, with overhead corresponding to the
context-wide synchronization. The execution time also has a bounded growth in relation to the number
of cores.
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Table 2. Table profiling the performance of the MPI_SEND/MPI_RECV unicast primitive for different
amounts of data sent on SpiNNaker.

Data Size Time (ms)

1 kB 2.07
2 kB 4.12
4 kB 8.24

Figure 5. Graph profiling the performance of the MPI_BROADCAST primitive on SpiNNaker.

4.2. Evaluation of Boyer-Moore MPI Implementation Running on SpiNNaker

In the following, we analyse the efficiency and scalability of our optimised Boyer-Moore (FED)
implementation on SpiNNaker. We compare it with the scalability on a traditional multi-core CPU
using a server configuration with two Intel Silver Xeon 4114 processors, each with 10 cores and
20 threads. The FED algorithm is implemented in C and used to benchmark both Server and SpiNNaker
architectures. The benchmark running on the general purpose Server architecture is written in C++ and
compiled with g++ 7.4.0 and MPICH 3.3 parallel environment. The benchmark running on SpiNNaker
architecture is written in C and compiled with gcc-arm-none-eabi 5.4.1 and SpinMPI 19w19. At this
point, it is important to note that, by using the SpinMPI library, we ported the FED code written for
a standard PC to the SpiNNaker hardware without applying any adaptation or transformation of
the code.

The text used for the sake of testing is the Escherichia coli genome, which is about 4 million symbols
long, leading to an encoded text of about 1 MB size, which is then split into a set of about 4000 chunks,
each 256 Bytes long.

There exist two types of strategies to evaluate the scalability of a problem in a parallel environment:

• Strong-scaling [28] keeps the size of the problem fixed and evaluates the application runtime when
multiple processes are used. This strategy is suitable for CPU-bounded problems.

• Weak-scaling [29] is used to test the scalability of memory-bounded problems, as it keeps constant
the ratio between the problem size and the number of working processes used.

The SpiNNaker platform provides a fast, core-local data memory (DTCM) of 64 kB. This memory
constraint allows to store at most 100 FED patterns per node, totalling 40 kB in size. Given this memory
constraint, we decided to use a weak-scaling benchmarking strategy to scale our benchmark up to
the 768 nodes available on SpiNNaker. The problem size must be calibrated in order to claim a
condition of equivalence and perform a fair comparison between different architectures; in our case,
a condition of equivalence is met whenever the same FED execution time tFED is observed using a
single FED worker. When SpinMPI is requested to match 1000 FED chunks against 100 FED patterns on
a single node, a run-time of 26,970 ms is measured; the same run-time, for the MPICH implementation
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with 1000 FED chunks, is obtained when the single FED worker used is in charge of 12,500 FED
patterns. This preliminary assessment is needed to evaluate only the scalability features of the two
architectures, without considering the difference in computing power of the single working node for
the two architectures. The reason for this comparison is to put the performance of MPI on SpiNNaker
in a familiar perspective, as the CPU-DualSocket server is a widespread general purpose machine
that allows to use MPI; however, the communication on the Xeon is networkless message passing
happening entirely in RAM, while the message passing on SpiNNaker makes efficient use of the
board’s interconnection scheme.

A general strategy for evaluating the parallel scaling of an MPI application is computing the
scaling efficiency, which measures how good the application is at using every node the parallel
environment has. Given an environment with N workers and a problem that requires tFED,i units of
time to be solved with i workers, the weak-scaling efficiency EN can be measured as in Equation (1).
The speed-up SN can be easily inferred from the efficiency and computed with Equation (2).

EN =
tFED,1

tFED,N
(1)

SN = EN · N (2)

Figures 6 and 7 report the speed-up and efficiency of the FED with MPI algorithm on the Server
and SpiNNaker architectures. The horizontal axis represents the number of MPI workers used; both
systems were tested until saturation, with the Server reaching 40 parallel workers through Intel
hyper-threading and the Spin5 board utilizing all 768 available physical cores. Tests were performed
for genomes of 500, 1000 and 2000 chunks.

Figure 6. Comparison of Weak-scaling speed-up for MPI-FED on a general purpose architecture and
on SpiNNaker.

In Figure 6 we can see how the massively parallel architecture of SpiNNaker influences the
speed-up. The high number of physical cores on the machine lets the speed increase linearly, avoiding
the discontinuities that a general-purpose processor has at critical points when hyperthreading is
activated to provide the required number of workers (note, in the graph, the inflection point at 20 MPI
workers for the PC version, i.e., the point at which the maximum number of physical threads on the
Xeon is reached).

In Figure 7 SpiNNaker demonstrates excellent scalability, with efficiency values close to 95%
for up to 200 workers. Additionally, we can see that the performance markedly improves for longer
text sequences; the efficiency for 768 workers processing 2000 chunks is 87.83%. The reason for
this happening is that as the size of the data to be processed increases, the ratio of processing time
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to communication time in the overall algorithm increases, since the data are only sent once at the
beginning of processing and then gathered at the end. The bottleneck due to the communication
overhead thus becomes less prevalent, and the efficiency improvement due to massive parallelism is
more evident.

Figure 7. Comparison of Weak-scaling Efficiency for MPI-FED on a general purpose architecture and
on SpiNNaker.

By contrast, the efficiency of the Server dips much faster, dropping below 90% as soon as
the requested MPI workers outnumber the physical cores. It also remains fairly constant when
changing the number of chunks. This appears reasonable as, for the high-speed CPU used in the
test, the computation time is very small, but it suggests that other phases of the computation such as
inter-process communication and thread management have a significant impact on the efficiency of
the algorithm.

As a side-experiment, we evaluated the impact of the size of the FED buffer distributing data
among the MPI workers on the measured scaling efficiency. Figure 8 shows the scaling efficiency of two
experiments—the former distributes the FED chunks to be analyzed as 1000 256-Byte packets. The latter
broadcasts the same amount of data, formatted as 125 2-kB packets. Figure 8 highlights that the two
scaling efficiency tracks are comparable, meaning that the size of packets used to distribute FED chunks
among the MPI workers does not impact the benchmark results for the general purpose architecture.

Figure 8. Efficiency of the general purpose architecture for different FED buffer sizes.
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Finally, we can make a comparison of the power efficiency on the two architectures by using
estimated consumption based on the nominal values from the CPU [30] and SpiNNaker [31] data-sheets.
For the Intel Xeon, we consider the peak and idle powers at the values of Ppeak = 11, 030 mW and
Pidle = 6320 mW, and we hypothesize that the number of active physical cores (out of the available 20),
f (x), can be expressed as a function of the active MPI workers x as f (x) = ceil( x+1

2 ). The appearance
of the term x + 1 rather than x is because there is one Controller process that has the task of distributing
the data and patterns to the MPI workers. Based on this assumption, we assign a power consumption
of Ppeak to the active cores and of Pidle to every other core; thus the estimated power consumption with
respect to the number of MPI workers x is P(x) = Ppeak · f (x) + Pidle · (20− f (x)).

On the other hand, for SpiNNaker we consider the values of Idle Power per Chip Cidle = 360 mW,
Idle Power per Core Pidle = 20 mW, Peak Power per Core Ppeak = 55.56 mW, and the Off-Chip-Link
power, Plink = 6.3 mW. The power estimation for SpiNNaker depends on the MPI execution context,
which can be described by a pair of values (p, k) where p ∈ [1, 16] is the number of active processors
per chip and k ∈ [1, 48] is the number of active chips. The power estimation formula can be expressed
as a function of the number of active processors and chips as P(p, k) = k · (Cidle + (Ppeak − Pidle) · (p +

1) + Plink) + (48− k) · Cidle. Counting p + 1 processors to include the Monitor Processor on each core.
Then, the estimated power given the number of MPI workers x is P(x) = P(p, k)|mink[p · k = x + 1]
As in the CPU case, we count x + 1 processes to include the Controller process.

Given the architectural difference between the SpiNNaker and CPU machines, it is necessary
to outline a fair method to evaluate the efficiency of the algorithm’s implementation. We define
power efficiency as the energy consumed to align a single pattern to the reference, measured in
units of mJ/pattern, as a function of the parallelisation effort of the given system, expressed as a
percentage of the total resources. The maximum energy efficiency is obtained when all resources are
in use, corresponding to a parallelisation effort of 100%. For SpiNNaker it is easy to assume that
100% utilisation occurs when all 768 cores are busy (i.e., at 767 MPI workers), corresponding to an
average energy consumption of 37.3 mJ/pattern. For the CPU utilisation, we can either consider
100% utilisation to be the situation where all physical cores are active, or the one where all the virtual
cores are active (20 physical + 20 virtual, providing 39 MPI workers). In the first case, the estimated
average energy consumption is of 51 mJ/pattern, with an estimated power saving of 27% in favour of
SpiNNaker. In the second case, the energy is 43 mJ/pattern, with SpiNNaker consuming 13% less.

5. Conclusions

In this work, we presented an implementation of an MPI-based DNA sequence matching
algorithm for evaluating two critical aspects of using one of the more promising neuromorphic
emerging technology. As the first point, we benchmarking the SpiNNaker many-core neuromorphic
platform and its MPI support, showing that the scaling performances are kept linear when an increasing
number of cores is used during the computation. As the second point, we demonstrated that by using
the spinMPI library, which provides MPI support for SpiNNaker, we could easily port algorithm
implemented for standard computers on the many-core neuromorphic platform.

The MPI standard exposes a programming model for the development of parallel applications in a
distributed memory environment without knowledge of the interconnections between the computing
units of the underlying architecture. The implementation of MPI for a specific architecture is therefore
expected to implement the most suitable features in order to exploit the available resources and to
synchronise the computing flow.

In the case of SpiNNaker, the implementation of MPI must deal with a resource limit both in terms
of memory and computing power. However, it can take advantage of the technology offered by on-chip
routers, obtaining efficient communication. SpinMPI is also in charge of managing communication
between the MPI Runtime running on the host computer and the SpiNNaker cores; this is done by
using the ACP protocol and memory entities. This software stack creates a simple working framework
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offering a universally known programming model capable of making the SpiNNaker architecture
available for a wide range of applications.

We have succeeded in performing a benchmark of the SpiNNaker board by using a highly-parallel
implementation of a DNA matching algorithm. Results show that the scalability of the SpiNNaker
board reaches an ideal profile (98% of efficiency) when using more than 100 processors, a 90% efficiency
using 600 processors, reaching 88% efficiency when all 767 application processors are used.
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