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Preface to ”Energy Data Analytics for Smart

Meter Data”

The roll-out of smart electricity meters is a cornerstone for the realization of next-generation

electrical power grids. In addition to measuring electrical consumption data at much greater

temporal and amplitude resolutions than offered by traditional metering devices, smart meters can

communicate collected data to external service providers and thus enable the creation of novel energy

data-based services that extend far beyond their usage for billing purposes. These include, but are

not limited to, the enablement of ambient-assisted living, generation, and demand forecasting, or the

provision of recommendations on how to save energy.

A fundamental research challenge, still unresolved today, is how to fully explore and exploit

the information content of smart meter data. This is a challenge pertaining not only to data

processing but equally to their collection, transmission, and ensuring the appropriate security and

privacy protection.

This book includes twelve research works and two review papers covering the entire lifecycle

of smart meter data. The first set of contributions is centered around providing new solutions

to the processing of smart meter data. These include innovative approaches for non-intrusive

load monitoring (NILM) and the identification of electricity theft, exploiting novel techniques, and

partially based on parameters beyond smart meter data alone. These contributions are followed

by novel approaches to other data-driven services, including the privacy-preserving collection and

synthetic generation of electricity consumption data. Two review papers cover the most up-to-date

research efforts in deep learning for NILM, as well as a survey of viable options to streamline the

provision of smart meter data applications from a consumer-centric perspective.

Andreas Reinhardt, Lucas Pereira

Editors
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Smart electricity meters are a cornerstone for the realization of next-generation elec-
trical power grids. In addition to measuring electrical consumption data at much greater
temporal and amplitude resolutions than offered by traditional metering devices, smart
meters can communicate collected data to external service providers and, thus, enable
the creation of novel energy data-based services. Such services include the enablement of
ambient-assisted living, generation and demand forecasting, or the provision of recom-
mendations on how to save energy. A fundamental research challenge, still unresolved
as of today, is how to fully explore and exploit the information content of smart meter
data—a challenge pertaining not only to data processing but equally to their collection,
transmission, and security and privacy protection. This Special Issue includes twelve
research works and two review papers covering the entire lifecycle of smart meter data.

The first paper in this Special Issue is a comprehensive survey of the state of the art
in non-intrusive load monitoring (NILM) by Huber et al. [1]. Disaggregating the power
consumption data captured by a metering device has seen a tremendous increase in research
interest over the last years. As such, the comprehensive overview of existing technologies,
including a comparison of their performance, is an excellent guide for researchers planning
to join this research field. Nevertheless, even experienced NILM researchers are likely to
discover new methods in this review paper, which may serve as baselines for comparative
performance evaluations in their present and future work.

The review paper is followed by a technical NILM contribution by Athanasiadis et al. [2],
which differs from existing work in that it is specifically designed to operate on real-
time data streams. This not only renders large-scale buffering of data unnecessary but
also shows remarkable results on the used dataset. Another interesting observation made
during their analysis is the fact that the usage of data sampled at 100 Hz yields a remarkable
performance improvement over methods using a baseline dataset, which was collected at
0.167 Hz.

Another technical NILM contribution, leveraging on the application of attention-based
mechanisms in deep-neural networks (DNNs), is provided by Piccialli and Sudoso [3]. The
proposed approach not only outperforms other DNN alternatives when applied to the
two employed datasets, but it is also shown how attention-based mechanisms improve
the underlying neural networks’ ability to extract and exploit information that would
otherwise be ignored (e.g., signal sections with high power consumption).

Although most of the proposed NILM algorithms attempt to disaggregate one load at
a time, some authors are also exploring the possibility of disaggregating multiple appli-
ances in parallel. This is the case of the work presented in Faustine and Pereira [4], where
a convolutional neural network-based multi-label learning approach is proposed. Exper-
imental results using one public dataset show that the proposed approach significantly
outperforms state-of-the-art alternatives to multi-label learning in NILM.

A different application that relies on smart meter data is the detection of electricity
theft. A corresponding contribution by Qu et al. [5] is presented next. Theft detection in
electrical power grids is often challenging due to the strong imbalance in training data.
Usually, only very few consumption traces that contain characteristic patterns of electricity
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theft are available. The authors have tackled the binary classification problem to discrimi-
nate between legitimate consumption patterns and electricity through a combination of
clustering and minority oversampling. The proposed method is shown to outperform two
existing methods in terms of its theft detection accuracy.

Following up next, a second work on theft detection is provided by Feng et al. [6].
By applying text convolutional neural networks, anomalies in power consumption data
can be located quickly and efficiently. By combining data augmentation techniques with
realistic datasets, both intraday characteristics and diurnal periodicities are considered in
the training process, and remarkable results are reported.

The identification of devices within a building is another exciting challenge that relies
on captured electrical voltage and current signals. Wójcik et al. [7] introduce a solution
that applies a pulsed voltage signal to attached electrical appliances in order to record their
transient responses. Through the creation of a dictionary of transients, their recognition
in aggregate electrical load data is facilitated, and the potentials and limitations of the
proposed method are discussed.

Another important application of smart meter data, particularly when disaggregated
by individual load, is the definition of optimal schedules to optimize energy consumption.
With this respect, in Ortiz et al. [8] the authors propose a satisfaction-based energy allocation
algorithm that leverages cooperative game theory concepts to determine in which hours
the energy should be allocated to maximize energy satisfaction while minimizing the
power consumption. Experimental results using a publicly available dataset show that
the proposed approach reduced energy consumption by 75%, while increasing the user
satisfaction by 40%.

The use of sensor modalities beyond electrical data alone has been investigated by
Huchtkoetter et al. [9]. A test bench, on which different electrical appliances-under-test
can be operated, has been instrumented with sensors to capture eight ambient parameters
in addition to measuring electrical voltage, current, and power. By analyzing the feature
importance levels for different categories of appliance types, guidelines for selecting sensor
types to increase appliance recognition accuracy were derived and confirmed to contribute
to the unambiguous identification of appliances.

Most research works in the domain of smart meter data analytics rely on the use of real-
world datasets to evaluate the performance of newly proposed methods and algorithms. A
limitation of most existing datasets, however, is the scarcity of annotations and metadata.
This limitation can sometimes be remedied through augmenting existing datasets with
manual annotations; in other cases, the required aspects must already be considered during
the data collection. Both aspects have been tackled by Völker et al. [10]: A new dataset with
plentiful annotations, called FIRED, is presented in this work. Moreover, a semi-automated
trace annotation tool is presented, which can be used to enrich the annotations of existing
datasets. Based on these contributions, more sophisticated evaluations of smart meter data
analytics methods become possible.

Another labeled electricity consumption dataset is presented in Renaux et al. [11].
Three different subsets of data comprise the LIT dataset: (1) synthetic, where a controller
is used to automatically switch appliances ON or OFF; (2) simulated, where appliance
models are used to generate artificial appliance consumption profiles; and (3) natural,
where the appliance consumption is monitored and recorded in a real-world environment.
In addition to extensive details of the data collection procedures, the manuscript also
thoroughly analyzes the consumption profiles in each of the LIT subsets.

Electric vehicle (EV) charging stations have become prominent in electricity grids in
the past few years. However, the availability of data regarding EV charging sessions is
currently very limited, which poses a significant hurdle to further research in the field. This
challenge was investigated by the authors in Lahariya et al. [12], who propose a synthetic
data generator to create samples of realistic EV session data, where each session is defined
by an arrival time, a departure time, and the required energy. The proposed data generator
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was trained using real-world EV sessions, and the generated synthetic samples were shown
to be statistically indistinguishable from real-world data.

Although electricity smart meters can promote the realization of several services,
they can also pose a significant intrusion into a household’s privacy. This issue has been
investigated by Zhang et al. [13], who propose a privacy-preserving smart metering system
that combines data aggregation and data down-sampling mechanisms. Of particular
interest is the fact that the proposed system can be adapted to provide different levels of
privacy, depending on the requirements and preferences.

The last paper in this Special Issue is a review by Völker et al. [14] that surveys a range
of end-user services that can be enabled through smart meter data analytics. The reviewed
services include, among others, end-user feedback, anomaly detection, and forecasting of
load demand and renewable energy generation. The paper moreover provides a review of
the technological foundations and open research challenges in this domain.

The contributed papers that are included in this Special Issue offer new and valuable
insights that can stimulate ongoing research activities in the field. As guest editors, we
would like to thank all authors who have submitted their contributions to this Special Issue.

Funding: This work was supported by the Portuguese Foundation for Science and Technology grants
CEECIND/01179/2017 and UIDB/50009/2020.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: This paper reviews non-intrusive load monitoring (NILM) approaches that employ
deep neural networks to disaggregate appliances from low frequency data, i.e., data with sampling
rates lower than the AC base frequency. The overall purpose of this review is, firstly, to gain an
overview on the state of the research up to November 2020, and secondly, to identify worthwhile
open research topics. Accordingly, we first review the many degrees of freedom of these approaches,
what has already been done in the literature, and compile the main characteristics of the reviewed
publications in an extensive overview table. The second part of the paper discusses selected aspects
of the literature and corresponding research gaps. In particular, we do a performance comparison
with respect to reported mean absolute error (MAE) and F1-scores and observe different recurring
elements in the best performing approaches, namely data sampling intervals below 10 s, a large
field of view, the usage of generative adversarial network (GAN) losses, multi-task learning, and
post-processing. Subsequently, multiple input features, multi-task learning, and related research
gaps are discussed, the need for comparative studies is highlighted, and finally, missing elements for
a successful deployment of NILM approaches based on deep neural networks are pointed out. We
conclude the review with an outlook on possible future scenarios.

Keywords: non-intrusive load monitoring; load disaggregation; NILM; review; deep learning; deep
neural networks; machine learning

1. Introduction

Non-Intrusive Load Monitoring (NILM)—equally referred to as load disaggregation—
aims to identify the individual power consumption or on/off state of electrical loads by
relying exclusively on the measurement of the aggregated consumption of these loads. The
term was coined by Hart in their seminal works [1,2], that initiated the NILM research field.
As the term non-intrusive suggests, NILM is motivated by applications where metering of
single appliances is necessary, but not feasible with conventional measurement devices,
e.g., because of cost considerations or obtrusiveness. Potential NILM applications include,
for example, user feedback for energy saving purposes, overseeing activities of daily living
for the health assessment of elderly people, or demand management (see, e.g., [3–6]).

Before proceeding, it is essential to clarify some nomenclature typical of the NILM
jargon and how this relates to the data used. Electric meters internally sample voltage
and current signals at frequencies significantly greater than the base frequency of alternate
current (AC). Meters can either output these raw data directly or averaged values such
as, e.g., root mean square (RMS) voltage, current, power, or total harmonic distortion
(THD) are calculated and output at lower frequencies. In the NILM literature, the following
terms are used (We are aware that the given definition is slightly diverging from the
conventionally used threshold of 1 Hz (e.g., [3]). However, we feel 1 Hz is somewhat
arbitrary, whereas the provided definition seems to be a natural splitting point.):

Energies 2021, 14, 2390. https://doi.org/10.3390/en14092390 https://www.mdpi.com/journal/energies
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• Low frequency approaches are those which use data (i.e., features) produced at rates
lower than the AC current base frequency;

• High frequency approaches are those which use raw data, sampled at rates higher
than the AC current base frequency.

The advantage of using high frequency data should be quite obvious, since these
preserve the entire signals and therefore allow us to extract the maximum information
content. This is confirmed by various works, e.g., ref. [7] showed that, using raw data
sampled at 1 MHz, it is even possible to distinguish between two appliances of the same
type. Nevertheless, the cost of gathering high frequency data constitutes a major obstacle:
Dedicated infrastructure is needed, and this is expensive both in terms of the hardware
itself and the extra installation effort. On the other hand, the loss in information intrinsic
in low frequency features is offset by the tremendous ease with which those data can be
collected. Indeed, around the year 2010, the European Union and the US started to mandate
and actually roll-out smart meters [8]. The advanced versions of these meters can export
low frequency data to the outside (e.g., the meter E450 from Landis+Gyr has this capability).
The pervasive roll-out of smart meters will therefore unlock all those applications which
can benefit from NILM and which can be tackled using low frequency approaches.

Since its inception, the NILM research field has become quite diverse. The classic
approach to low frequency NILM—as proposed in [1,2]—is event based. Simply stated,
this means that the aggregate power series is first analyzed to find raises or drops that
indicate device switching events, and these events are subsequently assigned to certain
appliances. Later, one major avenue of NILM research used different variants of Hidden
Markov Models, e.g., [9–12]. Over the years, the set of methods that have been applied to
NILM has become extremely rich. A comprehensive overview is given in [13]. With the
recent enormous success that deep learning has found in the vision and natural language
processing domains, it was only a matter of time until deep neural networks (DNN) were
also applied for the first time to NILM; this started in 2015 [14,15]. Since then, the number
of DNN approaches to solve the NILM problem increased rapidly, as can be seen in Table 1.

Table 1. Number of DNN-NILM publications based on low frequency data per year. Numbers are
compiled based on Table 2. That means the number for the year 2020 corresponds to the publications
until end of November, see Section 1.3.

Year 2015 2016 2017 2018 2019 2020

Count 2 6 4 21 36 30

Over the years, different publications have surveyed the NILM literature from various
angles: In [3], the authors focused on NILM feature types for low and high frequency data
and touched algorithms and evaluation metrics. The authors of [16] proposed a taxonomy
of appliance features and compared the reported performance of six classes of supervised
and unsupervised NILM approaches. The authors of [17] surveyed unsupervised NILM
algorithms and discussed the reported performance of eleven approaches. A very compre-
hensive review on inductive algorithms, employed feature sets, and the state of multi-label
NILM classification approaches has been compiled by [13]. More recently, the authors of [18]
discussed available public NILM datasets, and employed NILM performance metrics, tools,
and frameworks, and corresponding limitations and challenges. Ref. [19] touched on dataset
complexity and compared the reported performance of eight NILM approaches under this
viewpoint. Three of these approaches employed DNN approaches on low-frequency data.
Finally, the authors of [20] summarized advancements on HMM and DNN approaches. With
respect to DNN approaches, they summarized the work performed in [21,22]. While the
previously mentioned survey papers compared performance as it was reported by the original
authors, very recently, two works compared classical and DNN approaches under identical
conditions [23,24]. The authors of [23] presented an extension to the NILM tool kit (NILMTK)
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library [25,26], with the exact purpose of simplifying direct comparisons, and [24] used this
new functionality for an extensive comparison of eight available algorithms.

1.1. Contributions

Some of the mentioned review papers include DNN-based NILM approaches. How-
ever, what is missing so far is a comprehensive and structured overview on the ideas
and findings in the field of DNNs applied to low frequency NILM and, based on that, a
discussion on the usefulness of DNN architectural elements, input features or multi-task
learning as well as research gaps particularly for applied deep learning-based NILM. In
this paper, we intend to fill this gap. Therefore, the main contributions of this work are:

• A comprehensive review of NILM approaches based on low frequency data that
employ DNNs, see Section 3. In particular, within Section 3, we discuss various
options available for these approaches and provide a structured overview of the main
characteristics of all reviewed approaches in Table 2.

• A discussion of selected aspects and corresponding research gaps in Section 4. In
particular:

– We compare the performance of approaches and extract common features of best
performing approaches in Section 4.1;

– We discuss the possible role of multiple input features and multi-task learning
on NILM performance in Sections 4.2 and 4.3, respectively;

– We illustrate the importance of parameter studies in Section 4.4, and
– We outline major research gaps concerning the application of deep learning for

NILM in Section 4.5.

Thereby, we hope that the interested reader will quickly identify the relevant literature
for their own research and that our contributions will inspire new research activities, and
thus ultimately advance the entire research field.

1.2. Scope

The scope of this review are NILM approaches based on DNNs using low frequency
data. In the remainder of this text, we use the term DNN-NILM to designate the corre-
sponding approaches. The choice to focus on low frequency data in our review is motivated
by our strong belief that many applications could benefit from NILM, coupled with our
observation that low frequency data will most likely be the only one available at scale in
the near future. In our vision, all households equipped with smart meters will soon be
able to become fully energy aware, informing their inhabitants of which appliances are
being used, how they are being used, and even whether they are behaving abnormally or
about to fail. This latter point is known as predictive maintenance and is currently applied
in industrial settings, but being able to detect billions of appliances which consume an
abnormal amount of power would have a beneficial impact of our society and its carbon
footprint. With our review, we therefore try to make a contribution to push forward the
development and understanding of low frequency NILM.

The focus on DNNs is motivated firstly by their proven success in other domains, and
secondly by their good performance in the NILM domain: Recently, traditional and DNN-
NILM approaches have been compared under identical conditions in two works [23,24].
The authors found that each of the compared DNN approaches—with few exceptions—
performed better than each of the classical approaches. In particular for multi-state ap-
pliances, the performance gap was found to be “rather discernible” [24]. Publications
that use shallow neural networks with only a single hidden layer such as, e.g., [27–29],
are not included in our review. We restricted ourselves to approaches that train neural
networks with back-propagation, excluding alternative approaches such as, e.g., [30,31].
Since the scope involves DNNs and NILM, we assume that the reader is familiar with the
general concepts of the two fields, and we will merely introduce the basic NILM problem
formulation in Section 2.1. With respect to DNNs and deep learning, we will refer the
reader to comprehensive books on the topic in Section 2.2.
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As the DNN-NILM literature reviewed contains only three publications using data
from non-domestic settings (two commercial, one industrial), this distribution means that
our review concentrates mainly on domestic NILM.

1.3. Methodology

Publications in the scope of this work have been collected in the following ways:
Firstly, by systematically checking conference proceedings from the bi-annually ’Interna-
tional NILM Workshop’ 2020 to 2016 (nilmworkshop.org, accessed on 11 January 2021)
and from the ’ACM International Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation (BuildSys)’ 2020 to 2015 (buildsys.acm.org, accessed on 11 Jan-
uary 2021). The first conference is specifically dedicated to NILM, and the second in 2020
featured a dedicated NILM track. Secondly, by searching on Google Scholar and IEEE
Xplore® for keyword combinations of ’DNN’, ’deep learning’, ’NILM’, ’non-intrusive’,
’load monitoring’, and ’load disaggregation’. This search has been done on several occa-
sions and by different persons. Thirdly, we checked very thoroughly all the references
in identified papers for anything not yet on our list. While this approach might have
missed a few recent publications, we are fairly sure that the survey is quite complete for
the past years because of the systematic checking of references. The last iteration of our
search process has been performed at the end of November 2020. We resulted with the
DNN-NILM publications listed in Table 2, which reflects accordingly the body of work
this survey paper is based on. The literature review, discussion, and all conclusions are
deduced solely from these publications.

2. Fundamentals

As we assume that the reader is knowledgeable about both NILM and Deep Neural
Networks, the following sections only skim the corresponding subjects and the reader is
referred to relevant literature.

2.1. The Disaggregation Problem

The aggregate active power xa
t of a set of appliances measured at time t can be formally

defined as:

xa
t =

M

∑
m=1

ym
t +

K

∑
k=1

wk
t + εt︸ ︷︷ ︸

=et

(1)

where ym
t are the contributions of individual appliances m that have been metered at the

time of data acquisition, and M is their total number. The sum over k corresponds to
the contribution of K further appliances wk

t not sub-metered during the measurement
campaign. εt is a noise term originating from the measurement equipment. In the literature,
the NILM problem is typically stated such that the noise term et includes the sum over
non measured equipment. We explicitly separate the two contributions, as their nature
is quite different. We can assume that the measurement noise εt is well behaved, i.e., it
follows approximately a standard distribution and is small compared to the actual signal.
On the contrary, no such assumption can be made about the term ∑ wk

t . The contribution
from non sub-metered appliances wk

t typically amounts to a major part of xa
t and the power

distribution is non-Gaussian. From the point of view of disaggregation, the sum over
m denotes the appliances that are disaggregated, and the sum over k consists of all the
remaining appliances in the aggregate signal. If only a single appliance ym

t is disaggregated,
then M = 1.

One goal of energy disaggregation is to determine the individual ym
t only based on the

measurement of the aggregate signal. If machine learning or in particular deep learning is
used to solve the problem, this leads to a so-called regression problem. While many authors
work with the active power component xa

t only, other information from the aggregate signal
such as, e.g., apparent power, reactive power, or the current can also be used to solve the
disaggregation challenge. In the particular case of countries where the residential power
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supply is fed on three phases, features from the aggregate power can even be available on
all of these three phases.

A second, slightly less challenging goal of energy disaggregation is to find the on/off
state sm

t of appliance m at time t from the aggregate signal. If machine learning is used, this
leads to a so-called binary classification problem. In this problem formulation, only the
state of the machine will be output. After recognizing the on and off states, the run-time
of an appliance can be calculated. By multiplying the run-time by the average energy
consumption of a machine, one can still obtain an energy estimation. Such an estimate will
be more in line with use cases that require only the average consumption over a certain
time period.

2.2. Deep Neural Networks

Deep neural networks are a vast subject, and the focus of this review is merely their
application to NILM. In this text, we therefore refrain from giving an introduction on DNNs
and refer the reader to the following books:

• The book [124] (www.deeplearningbook.com accessed on 11 January 2021) is a very
comprehensive resource on the topic, covering the basics up to research topics.

• The book [125] has been written by the initial author of Keras [126], a high level deep
learning library. Accordingly, the book gives an applied introduction to deep learning.
A lot of emphasis is put on the intuition behind concepts, and the text is interwoven
with code examples based on the Keras library.

The references mentioned are the books we found useful in our work. The selection is
of course a small subset of the many excellent resources available on the topic.

3. Literature Review

When applying DNNs to NILM, many options are available: For example, what
data to use, what DNN architecture to employ, how to evaluate the results, and so on.
An illustration of these ’degrees of freedom’ is given in Figure 1. The subsections below
roughly follow the grouping done there. The aim of this section is to provide the reader
with an overview on what has already been done in the literature in the scope of this review.

Figure 1. Illustration of the main degrees of freedom for DNN-NILM research. Colors indicate a loose grouping and should
not be understood as a taxonomy.
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3.1. Datasets and Appliances

DATASETS: The number of NILM datasets has been increasing over the last years,
see [127,128] for recent overviews and [129–131] for the most recent published datasets
we are aware of. In Table 3, we characterize only the publicly available datasets that have
been used in the reviewed studies. The datasets at the beginning of the table are those
more frequently used: Both UK-DALE and REDD were employed in approximately 40 and
30 studies, respectively, followed by AMPds, REFIT, and dataport each employed around
10 times. The ECO dataset is used three times, and other datasets are only used once or
twice. The Industrial Machines Dataset (IMD) is to our knowledge the only available open
industrial dataset. All remaining open datasets were measured in a residential setting.
There are also a number of studies based on proprietary datasets measured in different
settings: Nine residential, two commercial, one industrial, and one with dc-appliances.
While not explicitly the scope of this review, the distribution of the employed datasets
means that our review concerns mostly domestic NILM. Table 2 lists the datasets employed
by each reviewed publication.

APPLIANCES: Appliances that have been disaggregated in the corresponding publi-
cations are listed in Table 2. The most investigated residential appliances in decreasing
order are: dishwasher, fridge, microwave, washing machine, kettle, stove/oven/cooker,
tumble dryer, HVAC, washer-dryer, heat pump, and light. Further electrical loads that
appear fewer than ten times in the literature are given in the column ’Further Appliances’
of Table 2. A few publications concentrated either on commercial or industrial applications
using mostly proprietary datasets. These publications are marked in the column ’Setting’
of Table 2.

Table 3. Main characteristics of the open datasets used in the reviewed DNN-NILM literature, see Table 2. Datasets closer
to the top have been employed in more studies. Type indicates the type of the dataset: R → residential, Rs → synthetic
residential, I → industrial. IMD is, to our knowledge, the only publicly available industrial dataset. ’#H’ and ’#A’ mean
number of houses and appliances, respectively. ’Agg’ and ’Appl’ stand for ’aggregate’ and ’appliance’, respectively. For the
IDEAL dataset, available information has been extracted from [98]. The authors plan to release the dataset.

Name
Country

Code
Year Type #H #A

Summed up
Duration [d]

Agg
Sampling

Appl
Sampling

UK-DALE [132] GBR 2017 R 5 109 2247 6 s, 16 kHz 6 s
REDD [133] USA 2011 R 6 92 119 1 Hz, 15 kHz 1

3 Hz
AMPds(2) [134–137] CAN 2016 R 1 20 730 1 min 1 min

REFIT [138] GBR 2016 R 20 177 14,600 8 s 8 s
dataport [139] USA 2015 R 1200+ 8598 1,376,120 1 Hz, 1 min 1 Hz, 1 min

ECO [140] CHE 2016 R 6 45 1227 1 Hz 1 Hz
DRED [141] NLD 2014 R 1 12 183 1 Hz 1 Hz

Enertalk [127] KOR 2019 R 22 75 1714 15 Hz 15 Hz
HES [142] GBR 2010 R 251 5860 15,976 2–10 min 2–10 min

IDEAL GBR - R - - - 1 Hz 1 or 5 Hz
IMD [143] BRA 2020 I 1 8 111 1 Hz 1 Hz

PLAID [144] USA 2014 R 65 1876 1–20 s - 30 kHz
SynD [130] AUT 2020 Rs 1 21 180 5 z 5 Hz

3.2. Data Processing

Raw datasets can be employed differently for training and evaluating DNN-NILM
approaches. Below, we review different aspects.

3.2.1. Training and Evaluation Scenarios

Training and evaluation of NILM algorithms can be done under different scenarios.
Typical scenarios appearing in the literature are defined in the following.

OBSERVED VS. SYNTHETIC: In a synthetic scenario, the term ∑ wk
t in Equation (1) is set

to zero.
Corresponding data are typically created by summing up the power consumption

from individual appliances. Only the measurement noise εt is therefore included in the
noise term et. In an observed scenario, the noise term et also includes further appliances
that have not been measured individually, i.e., ∑ wk

t �= 0. The synthetic scenario can be
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considered a laboratory setting for a basic assessment of algorithms. Data in a real scenario
will typically be observed.

We use here the terms observed and synthetic scenario equivalently to noised and denoised
scenario, as these scenarios are commonly referred to in the literature. We introduce this
new nomenclature because we believe that (i) the original terms are rather misleading for
readers with less experience in the field, and (ii) the proposed terms express the essential
difference between the two scenarios much more precisely.

SEEN VS. UNSEEN VS. CROSS-DOMAIN TRANSFER: The terms seen and unseen are
used in the context of the evaluation of NILM algorithms. In the seen case, an algorithm
is evaluated on new data from households that it has already been trained on. The
resulting score gives, therefore, an indication on how well the trained algorithm can detect
a particular appliance. Unseen means, that the algorithm is evaluated on data from a new
household that was not available in the training data. This scenario tests the capability
of algorithms to detect an appliance type [145]. Corresponding test results indicate the
performance of a pre-trained model that is deployed on data from houses previously
not seen during training. For the cross-domain transfer learning [91] scenario, the unseen
house is taken from a different dataset. This scenario tests the transferability of the tested
approach to an even more diverse setting as in the unseen case: Data could have been
metered by different electrical meters or could originate from a different country. To our
best knowledge, this scenario has only been investigated in [39,42,63,71,91]. The different
scenarios are illustrated in Figure 2. The column ’Evaluation Scenario’ in Table 2 lists the
scenarios employed for the reviewed references.

Figure 2. Different NILM evaluation scenarios: seen: the algorithm is evaluated on new data from a house that was already
available during training; unseen: the algorithm is evaluated on data from a house not seen during training; cross-domain
transfer learning: the algorithm is evaluated on data from a different dataset.

3.2.2. Preprocessing

Before data can be used by the DNNs, the raw data are transformed. Below we discuss
typical data transformation steps employed in the literature.

RESAMPLING, FORWARD-FILLING, AND CLIPPING: The sampling frequencies of the
published datasets are given in Table 3. As datasets exhibit missing values due to measure-
ment or transmission equipment failures and a jitter in the timestamps, resampling is used
to obtain evenly sampled data. While the range of sampling frequencies in the reviewed
literature extends from 1

3600 Hz [92,107] to 10 Hz [75], the large majority of the reviewed
works employ either 1

60 Hz or values between 1 and 1
10 Hz. It is noteworthy that in two

cases, data were upsampled to have a higher frequency than the original dataset [36,112].
Results on the influence of the sampling frequency on disaggregation results are presented
in different studies [51,58,75,77]. Most of these studies find a marked dependence on
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the device [51,58,75]. This can be attributed to certain devices exhibiting more frequent
fluctuations that get lost at lower resolution. Ref. [75] analyzes sampling rates from 10 Hz
down to 0.03 Hz for on/off classification and energy estimation for TV, washing machine,
rice cooker. They find that to prevent performance loss for the classification and regression
tasks, the sampling rates should be at least 1 Hz and 3 Hz, respectively. Ref. [58] compares
results obtained with 10 s and 1 min sampling intervals. The authors find “that the perfor-
mance for dishwashers remains comparable while the performance for washing machine
and washer dryer deteriorates dramatically”. The publication [51] focuses exclusively on
the influence of the sampling rate on the performance. The authors conclude that data
sampled at 1/30 Hz might be sufficient to run NILM at high accuracy. It is important to
note, that [51] did, contrary to [58,75], fix the number of inputs to the DNNs instead of
the temporal window. Consequently, the temporal window seen by the network differs in
this study depending on the sampling rate. Finally, [77] investigates the influence of the
sampling rate in case of appliance on-event detection.

Short spans of missing data attributed to WiFi connectivity problems are forward-
filled by many authors with the last available measurement. Typically, up to three minutes
of missing data are filled in this manner [14]. In case of measurements exceeding the rating
of the employed meter, values are clipped.

NORMALIZATION In the DNN-NILM literature, the input normalization for the DNNs
comes in two main flavors:

xstdScaled =
x − x̄
σ(x)

(2)

xminmaxScaled =
x − xmin

xmax − xmin
(3)

where x and xScaled are the input windows (see Section 3.3.1) before and after normalization.
x̄ corresponds to a mean value over the input. Different strategies have been employed:
Most approaches calculate the mean over the complete training set so that the training data
are centered. Other strategies center the data per house (see, e.g., [75]) or per input window
(see, e.g., [14,107]). σ(x) denotes the standard deviation, which is typically calculated on
the complete training set. Alternatively, each input window was divided by the standard
deviation from a random subset of the training data [14]. xmax and xmin correspond to
maximal and minimal values. These values can be maximal or minimal values of the
training dataset, parameters fixed by the authors [53], or quantile values [40]. In order
to make the statistics of the data less sensitive to outliers, [44] transformed them with an
arcsinh before normalizing. Some authors also normalized the target values for the training
of the DNNs. While some publications mention that different normalization strategies
were tried out, only two studies report on the influence of normalization strategies on
training efficiency and testing performance: [34] finds that instance normalization [146]
performs better than batch normalization [40,147] concludes that L2-normalization works
best.

3.2.3. Activation Balancing

In NILM literature, the time interval between an appliance being switched on and
off is referred to as an activation. Domestic appliances exhibit typically one, up to several
activations per day. Usually, the run-time of appliances is low compared to the time they
are switched off. For the training of machine learning algorithms, one is consequently
faced with a skewed dataset that contains only a few samples of the running appliance.
To compensate, several authors balance samples with and without a (partial) activation
during training [14,22,34,35,39,58,60,63,75,89,105,110,112,119,123]. The majority of works
nevertheless train the models using the available data, without taking care of the class
imbalance. In the scope of this review, we are only aware of [34], which investigates the
effect of the ratio between samples with and without an activation on training results. They
found that in case of batch normalization [147], the accuracy strongly decreased at a ratio
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of one to five, whereas for instance normalization [146], the performance increased slightly
up to the largest tested ratio of one to seven. In general, it remains unclear how exactly
activation balancing influences the disaggregation quality and model convergence speed.

3.2.4. Data Augmentation

A common strategy in deep learning to overcome few labeled data samples or under-
represented classes employs data augmentation. It describes the process of transforming
existing measured data or creating synthetic new data in order to achieve DNNs that
generalize better. Recent overviews for data augmentation in the domains of computer
vision and time series can be found in [148–150].

In the reviewed DNN-NILM literature, we see different data augmentation variants:
First, some approaches train in a synthetic scenario, see Section 3.2.1. Only synthetic data
consisting of the summed up loads from appliance sub-meters are used to train and test the
algorithms. Such publications are denoted with a ’dn’ in the column ’data augmentation’ of
Table 2. A second group of publications train on measured aggregate data but add synthetic
data—also created by summing up sub-metered load curves—to increase the size of the
training set. Four authors added individual activations from appliances to a measured
aggregate [6,58,66,115]. Finally, some authors employed specialized strategies: The authors
of [35] found that by adding varying offsets specifically to the on state of the fridge, they
were able to greatly enhance the corresponding disaggregation performance. So-called
’background filtering’ has been proposed by [69] to remove all windows in the aggregate
load curve that contain the target appliance. Activations from the target appliance are
then added randomly to the filtered aggregate to create synthetic data for training. The
authors of [44] use data obtained from SMACH [151], a tool that generates synthetic data
based on time of use surveys and real appliances signatures. They compare scenarios with
different amounts synthetic data and find good generalization performance for models
trained only on synthetic data. We are not aware of any study that compares different data
augmentation strategies.

3.3. Input
3.3.1. Shape

The vast majority of approaches take as a continuous regularly sampled window from
the time series of the aggregate measurement data input for the DNNs. The range of employed
window lengths extends from 90 s [75] to around 9 h [94,98] or even
24 h [66,107]. It is important to note that the number of input samples to the neural net-
works, i.e., the number of neurons in the first layer, depends on the sampling rate. Extreme
values for the size of the input layer are 5 [100], 7 [83], and 10800 [112]. The influence of the
window length on the disaggregation performance at a fixed sampling rate is investigated
in [52,62,97]. While the investigations have been done on different datasets and sampling
rates ([97] → UK-DALE, REDD at 3 and 6 Hz, [62] → REFIT at 10 Hz, and [52] → DRED at
1 Hz), all authors find that the optimal window length depends on the appliance.

Few authors transform the time series data into a two-dimensional representation before
feeding it into a DNN. Corresponding publications are marked with ’P2D’ in the column
’Input’ of Table 2: [38,71,123] use the Grammian Angular Field (GAF) [152] to transform a
continuous part of the aggregate measurement into a two-dimensional representation which
is then fed to a convolutional neural network (CNN). Ref. [38] additionally compares the
performance of the GAF with the Markov Transition Field [152] and a Recurrence Plot [153]
and finds that the GAF outperforms the other imaging techniques in the vast majority of
experiments. Ref. [92], on the other hand, arranged hourly consumption readings into two
dimensions by setting the hour of the day as the x-coordinate and the day as the y-coordinate.
The authors found that the optimal size of the first filter amounts to 7 × 7, allowing the filter
to learn weekly correlations.
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A minority of works use a DNN to classify events extracted by a previous detection
stage [77,80,114,116] or to classify the on–off status directly from a single time step [82].
These publications are marked with ’na’ in the column ’Input’ of Table 2.

3.3.2. Features

The active power from the aggregate measurement is the only input for most of the
reviewed works. There are, however, a number of papers that extended the input to further
features: Reactive and apparent power, current, first-order difference of the active power
signal, power factor, the variant power signature, and different time-based features have been
used additionally. A noteworthy case is the input of the aggregate power from multiple neigh-
boring buildings which, according to [107], lead to considerable performance improvements.
Input features of the reviewed publications are marked in the column ’Input’ of Table 2. See
also Section 4.2 for a discussion of the benefits of multiple input features.

3.4. Deep Neural Networks
3.4.1. Architectures Elements

In Table 2, column ’DNN Elements’, we summarize proposed DNN architectures
based on a set of DNN building blocks or elements. Naturally, this attempt can only be a
coarse approximation of the encountered diversity. It still provides a high-level view on
what has been tried out. We mention only original architectures proposed by the authors.
Models from earlier authors or baselines are not listed. As a consequence the column
is empty in several cases, e.g., where the authors compare previous works. Looking at
Table 2, we observe that starting with the year 2018, feedforward elements—in particular
convolutional elements—gained in popularity. These elements are used roughly twice
as much as recurrent elements. In the same time span, advanced DNN elements such as
generative adversarial networks (GAN) and attention were also adapted to NILM.

Below, we give a description of the DNN elements used in Table 2 to describe the
proposed models:

• FF → Feedforward network, see, e.g., [154]. We use the abbreviation in case a simple
multilayer feedforward network is a major component of the network. It is not used
for dAE, CNNs, or LSTM networks that contain, e.g., only a final feedforward layer
for classification.

• dAE → Denoising autoencoder [155]. We use the abbreviation for architectures made
up of encoder-decoder architectures. In the context of NILM, denoising AE are used
to separate the appliance’s signal from the rest of the aggregate signal.

• VAE → Variational autoencoder. Special variant of the AE that encodes the latent
variables as distributions [156,157].

• CNN → Convolutional neural network, see, e.g., [154]. We use the abbreviation
for networks that employ CNN layers. s2p, s2sub, s2s, and wn are more detailed
subclasses.

• s2s → The abbreviation is used for networks that map from an input sequence to an
output sequence with identical length. It is only used if the output of the network is
active power or the on/off state of an appliance.

• s2sub → The abbreviation is used for networks that map from an input sequence to an
output sub-sequence, i.e., the output length is smaller that the input length. It is only
used if the output of the network is active power or the on/off state of an appliance.

• s2p → The abbreviation is used for networks that map from an input sequence to a
single output value. It is only used if the output of the network is active power or the
on/off state of an appliance.

• wn → Wavenet [158] inspired architectures. In particular, dilated convolutions and
gating mechanisms are important elements of these architectures.

• att → This abbreviation subsumes different variants of attention mechanisms. Specif-
ically, ref. [55] used the mechanism defined in [159], ref. [35] employed attention
from [160], and [72] from [161].
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• RNN → The abbreviation is used for networks that employ vanilla recurrent neural
networks, see, e.g., [154].

• (bi)LSTM → The abbreviation is used for networks that employ (bidirectional) long
short-term memory cells [162,163].

• (bi)GRU → (bidirectional) gated recurrent unit [164].
• GAN → The abbreviation is used for networks that employ elements from generative

adversarial networks [165].
• RCNN → recurrent CNN [166].
• HMM-DNN → combination of Hidden Markov Model with a classic feed-forward

network [122].
• VRNN → recurrent variational neural network [167].

In case different elements have been combined, they are joined with a hyphen ’-’. That
means, e.g., CNN-dAE corresponds to a dAE that includes convolutional layers.

3.4.2. Training and Loss Functions

DNN gradient descent has its own set of hyperparameters such as the type of opti-
mizer, number of training epochs, or early stopping criterion. As these elements are not
specific to the NILM problem, we just mention a few specific points in this section. There
have been several authors that optimized (training) parameters of the proposed networks
by automatic means. For example, grid search [72,92], Hill Climbing [41], and Bayesian
optimization [42,75,90,102] have been employed. [118] investigated different variants of
curriculum learning [168]. In this type of learning, samples are not randomly presented
to the DNN, but organized in a meaningful order, the intuition being that humans learn
by mastering concepts with increasing difficulty. Contrary to this intuition, ref. [118] finds
that easy samples hinder training, and the author used synthetic training data composed
from sets of more than 7 appliance sub-meters.

A key element of DNN optimization is the loss function that guides the optimization
process. The vast majority of works employ either the mean absolute error (MAE) or the
mean squared error (MSE) in case of power disaggregation and the cross entropy loss for
on/off classification. Recent works also investigate alternative loss functions: Quantile
regression [169] was employed by [46,59]. The authors of [59] found that their proposed
loss increased the performance of two state-of-the-art models compared to the MSE loss.
Some works [34,35,39,43] employ GAN loss functions—called ’adversarial loss’ in [35]—
that classify if the output of the regression DNN is a real or fake appliance load curve. This
loss should make outputs more realistic and help especially in case of datasets of limited
size. Finally, ref. [55] introduced a loss composed from four different terms: In addition to
the MSE, a Kullback–Leibler divergence loss, a soft-margin loss, and the MAE are used. To
our knowledge, a systematic comparison of loss functions for DNN-NILM approaches has
not been published.

3.5. Output

With respect to their output, we observe four different dimensions along which
DNN-NILM approaches can be distinguished: A first dimension is the number of time
steps that are disaggregated by the DNN models in a single go, be it a sequence, sub-
sequence, or a single value. This information is available through the abbreviations s2s,
s2sub, and s2p in the column ’DNN Elements’ of Table 2, see also Section 3.4.1. The second
dimension concerns the type of inferred output. With the exception of [70], where location
data (location) are combined with the aggregated power consumption, and [95], where a
DNN infers state changes in the aggregate power (stateChange), the goal of DNN-NILM
approaches is either to infer the on/off state or the energy usage of an appliance. We
mark this information in column ’Output’ of Table 2 with the abbreviations on/off and P,
respectively. Naturally, this dimension is mostly coupled with the third distinction, whether
the learning problem is formulated as a classification or regression task. However, there
are four works [33,61,68,118] where power values are clustered into groups, and the power
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regression problem is recast into a classification task. These references are marked with
Pclass. Lastly, we can distinguish between approaches that learn on a single task and those
learning on multiple tasks simultaneously, i.e., perform multi-task learning. The majority
of approaches train one model for each appliance to be disaggregated. A sizable number of
approaches infer, however, the on/off state or power disaggregation of multiple appliances
simultaneously. These cases are marked with a subscript m in the ’Output’ column of
Table 2. Where multi-task learning is done on different modes, the corresponding outputs
are jointed with an ’&’ in Table 2: [35,63,97,106] trained networks on both on/off and active
power data. Ref. [117] used both active and reactive power of an appliance as target,
and [59] used three targets, i.e., the aggregate power (Ptotal), the appliance power (Papp),
and the difference between the two (Prest). Finally, ref. [46] took multi-task learning furthest
by simultaneously learning on both on/off states and active power of multiple appliances.

3.5.1. Post-Processing

Different variants to process the output from the DNN-NILM approaches have been
proposed in the literature. In cases where the DNN is of type s2s or s2sub and disaggregation
is done by moving the input window a single time step at a time, the network will deliver
n predictions for each time step, where n is the length of the output window. In order
to obtain a single prediction, many authors used the mean, e.g., [14,22,35,89,119] or the
median, e.g., [21,72]. In [21], the authors find that networks underestimate the power of
appliances if activations are only partially in the input window. As a consequence, the
mean also underestimates the ground truth and [21] proposes to use the median instead,
which is less impacted by this problem. As the authors of [39] use a GAN, they only use
the disaggregated signal for which the discriminator outputs the highest probability of
being a true sample.

Some authors note that the models produce noisy output, e.g., in the form of sporadic
activations either too short or too frequent for the target appliance. Ref. [37] filters out
such events with the same approach as for activation detection in the ground truth data.
Similarly, [36] removes all activations of an appliance that are shorter than those found in the
ground truth data. Depending on the metric, the reported improvement ranges from 28% to
54%. Refs. [58,89] go one step further and train a second DNN to suppress spurious activations.
According to [58], the additional DNN leads to “significant performance boosts”.

3.6. Evaluation Metrics

The performance of NILM algorithm is assessed in various ways. The interested
reader is referred to [18,145]: Ref. [18] provides a comprehensive review and discussion
of employed metrics, and ref. [145] proposes a set of metrics to assess the generalization
ability of NILM aglorithms. In the following, we only repeat the definition of the mean
absolute error (MAE) and the F1-score. In the reviewed literature, these were the most
encountered metrics to assess the estimated energy consumption and on/off status of an
appliance, and we use them for our comparison in Section 4.1.

MAE =
T

∑
t

|yt − ŷt|
T

(4)

where the sum goes over T time steps, and yt, ŷt correspond to the measured and estimated
power consumption, respectively. In this publication, we use Watts as the unit for the MAE.

F1 = 2 · P · R
P + R

(5)

where precision P = TP/(TP + FP) and recall R = TP/(TP + FN) with TP, FP, and FN
denoting true positives, false positives, and false negatives, respectively [18].
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4. Discussion and Current Research Gaps

The following sections discuss different aspects of the reviewed literature. Each section
concludes with a paragraph on current research gaps we see concerning the discussed topic.

4.1. Performance Comparison

One of the basic questions that accompanied us throughout this literature review was:
“What is the most promising approach or classes of approaches?” As the last section hints,
there is no straightforward answer to that. Too many degrees of freedom (see Figure 1)
make the approaches differ in so many ways that a comparison based solely on the results
presented in the publications can only give indications. For that purpose, the MAE and
F1 score were extracted from the reviewed publications wherever available. (The data is
available on our GitHub account. The link is provided in the ’Supplementary Materials’.)
These two metrics are the most applied performance measures in case of energy estimation
and on/off state classification, respectively. Figures 3 and 4 each display the best reported
results split up by dataset and appliance. Only results from the observed, unseen evaluation
scenario are given. This scenario was selected as it is closest to an actual application of
DNN-NILM algorithms, see Section 3.2.1. The graphs only include results from approaches
proposed in the corresponding publications: Results from baselines, or approaches from
earlier work that were used for comparison, are not included. Appliances with a single
result in the displayed range are excluded. We observe that the results for kettle and
microwave are overall better and not as distributed as those from the other displayed
appliances. We believe this is because of their simpler nature: Both kettle and microwave
are appliances with only two states whereas dishwasher, washing machine, and fridge (to
a certain degree) have a more diverse load signature.

0

5

10

15

20

25

M
A

E 
[W

]

dishwasher fridge kettle microwave washing m

D
at
aP
or
t

En
er
ta
lk

ID
EA
L

R
ED
D

R
EF
IT

U
K-
D
A
LE

Dataset

D
at
aP
or
t

En
er
ta
lk

ID
EA
L

R
ED
D

R
EF
IT

U
K-
D
A
LE

Dataset

D
at
aP
or
t

En
er
ta
lk

ID
EA
L

R
ED
D

R
EF
IT

U
K-
D
A
LE

Dataset

D
at
aP
or
t

En
er
ta
lk

ID
EA
L

R
ED
D

R
EF
IT

U
K-
D
A
LE

Dataset

D
at
aP
or
t

En
er
ta
lk

ID
EA
L

R
ED
D

R
EF
IT

U
K-
D
A
LE

Dataset

[104]
[111]
[119]
[121]
[123]
[14]
[33]
[34]
[35]
[36]
[37]
[48]
[49]
[55]
[62]
[63]
[65]
[75]
[91]
[97]
[98]

Publication

Figure 3. Minimal reported MAE for the corresponding dataset and appliance. Only results from the observed, unseen
evaluation scenario have been included. Only approaches proposed by the authors in the corresponding publications are
taken into consideration (i.e., no baselines or models from the state-of-the-art). Results have been split according to the
appliance and employed dataset. Please note that appliances with a single result in the selected range are not shown.
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We caution the reader not to interpret the displayed values as the result of a direct com-
parison under identical conditions. Results have been generated under broadly differing
settings, see Table 2. One key difference is that evaluation data varied strongly between
publications. While results in Figures 3 and 4 are not directly comparable, we try to identify
common elements of successful approaches. For that purpose, we sorted the results for
each appliance (irrespective of the dataset) and took the top quarter of the results. De-
pending on the appliance, a quarter consisted of four to six results in case of the MAE and
two to four in case of the F1-score. We then evaluated the number of times a publication
appears in these results. Those with more than one count are [34,35] (five times), [62] (four
times), and [36,63,97,98] (two times) in case of MAE, and [63] (six times), [118] (three times),
and [36,37,64] (two times) for the F1-score. These publications have been marked in column
’Best’ of Table 2.
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Figure 4. Maximal reported F1-score for the corresponding dataset and appliance. Only results from the observed, unseen
evaluation scenario have been included. Only approaches proposed by the authors in the corresponding publications are
taken into consideration (i.e., no baselines or models from the state-of-the-art). Results have been split according to the
appliance and employed dataset. Please note that appliances with a single result in the selected range are not shown.

Based on these publications, we make the following observations:

• With the exception of [37], who used 60 s intervals, the best results are based on data
with sampling intervals up to 10 s.

• The architectures of [34,35,37,62,98] contain all elements that allow an output neuron
to have a large field of view. Refs. [35,62,98] use dilated convolutions that allow
for an exponential increase in the field of view of deeper network layers, see, e.g.,
WaveNet [158] that served as template in case of [62]. The models from [35,37,62] all
concatenate and process at some stage in the network output from multiple layers
that each have widely varying fields of view. This is called ’scale-awareness’ by [35]
and ’temporal pooling’ by [37]. Ref. [34] adopts the U-net [170], an encoder–decoder
architecture originally proposed for image segmentation.
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• The approaches of [34,35] employ a GAN setup. This means that the network does
not (only) learn based on a static loss function, but it rather exploits the ’feedback’ of a
second network that classifies if the output of the first one is real or fake.

• Four approaches [35,37,63,97] use multi-task learning for network training: ref. [37]
trains the model to classify the on/off state of multiple appliances at the same time,
whereas [35,63,97] simultaneously train their networks to estimate the energy usage
and the on/off state of single appliances. In the latter three cases, this is done with
networks that have one branch for each objective. The final result is then obtained by
combining the branches.

• Refs. [36,37] use very similar post-processing schemes that remove sporadic activa-
tions, see Section 3.5.1. Ref. [36] reports improvements in the range of 28% to 54%
compared to results without post-processing.

We see the following limitations in the previously performed comparison of the MAE
and F1-scores: As already pointed out, results have been obtained through wildly different
procedures. It is also questionable if these metrics are the most relevant, they have simply
been chosen as the ones mostly provided in the reviewed literature. That means also that
publications reporting other metrics do not appear in the evaluation. With these words of
caution said, we still believe the previous observations provide some value.

With respect to the initial question “How does the performance of approaches com-
pare?” and the performed literature review, we identify several challenges worth ad-
dressing by the research community: We observe that the experiments performed in the
reviewed literature are not always well specified with respect to the ’degrees of freedom’
mentioned in Section 3. We hope future works profit from our listing of available options
and specify their decisions clearly. Besides, we see several additional steps at different
levels that could lead to a better comparability:

• Beside the metrics motivated by the intended use case, published approaches should
report a set of standard metrics. Simply based on their availability in the reviewed
literature, we propose to use the MAE and F1-score in case of energy estimation and
on/off state classification tasks, respectively.

• We see a great potential in defining a standard evaluation protocol that defines training
and testing folds for cross-validation of models per dataset. Of course it should respect
particularities of the NILM setting such as the evaluation scenarios, and it would
ideally be in a machine readable form such as proposed for the ExperimentAPI of
NILMTK [23].

• Authors would ideally publish the code for the employed models and experiments
as already done by several authors, see Table 2. Based on that code, retraining for
comparison with new approaches is greatly simplified.

• Beside the model specification as code, trained models could also be released as is
done in the vision community, see, e.g., [171]. We are only aware of the trained models
of [49] that have been publicly released.

• As has already been noted by other authors [19,140], a comparison of NILM ap-
proaches on the same terms is very beneficial for NILM practitioners. In case of
DNN-NILM approaches, we feel that this work can serve as a good basis for such
an undertaking providing a comprehensive overview on the relevant literature and
published code. A Python framework for comparison has already been published
in [23] and applied to the analysis of four DNN-NILM (beside classical) approaches
in [24]. A possible route to stimulate such comparisons would also be to organize
challenges like the one which took place in 2020 [172]. In the computer vision domain,
for example, the ImageNet challenge was a great driver for innovation.

4.2. Multiple Input Features

While the reactive power has already been used in the founding works of NILM [1,2],
most authors take the active power as the only input for disaggregation, see Section 3.3.2.
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Therefore, we raise the question: “Can we find evidence that multiple input features benefit
DNN-NILM performance?”

As can be seen in the overview Table 2, different authors employed alternative input
features. The following authors report results from a comparison of input
features [22,36,89,94,106,107,117]. Ref. [117] was the first DNN-NILM approach we are
aware of that used multiple input features. Unfortunately, these results do not allow
separation of the influence of input features from multi-task learning because the two are
always used in conjunction. Ref. [22] explicitly exploits reactive power (Q). The authors
evaluate the impact of Q on the F1-score within the AMPds and UK-DALE datasets. Over
the investigated appliances, they find an average improvement of around 12.5% in the seen
and 8% in the unseen evaluation scenario. (Average F1-scores for P in seen and unseen sce-
narios are 0.68 and 0.58, respectively.) Interestingly, the reported improvement is small or
negative for purely resistive loads, such as kettle and electric oven. We hypothesize that in
such cases, the reactive power provides no information, but purely noise. Refs. [89,94,106]
all worked with the AMPds dataset. This data set contains measurements from a single
house, thus all results stem from seen evaluation scenarios. Ref. [94] compares two feature
sets with the help of the estimation accuracy: For the combination P and Q versus P alone,
the authors find an improvement of 6%. For the combination P, Q, current (I), and apparent
power (S), the improvement is slightly higher at 7%. (The estimation accuracy in case of
P alone amounts to 0.83.) Ref. [89] investigates the same feature set P, Q, I, S versus P
based on three different performance measures, namely the MAE, root mean square error
(RMSE), and the normalized RMSE. In this work, the improvements with the additional
features are much larger: For all measures, the average improvement is around 40% to 50%.
(The MAE, RMSE, and normalized RMSE averaged over all investigated appliances and
models for P alone amount to 36.7 W, 122.8 W, and 0.75, respectively.) The temperature as a
supplementary feature has been used by [106]. The authors find that the disaggregation of
’heat pump’ and ’home office’ works 3% and 4% better based on the F1-score and estima-
tion accuracy, respectively. (The F1-score and estimation accuracy averaged over the two
appliances in case of P alone amount to 0.87 and 0.91, respectively.) The authors of [107]
find that providing the aggregate electrical consumption from neighbors as additional
features leads to performance improvements of 17% and 31% with and without multi-task
learning, respectively. (The symmetric mean absolute percentage error (SMAPE) for P alone
amounts to 23% and 38% in the respective cases.) Finally, ref. [36] calculates the mutual
information between P, Q, S, I, voltage, the power factor of the aggregate measurement,
and P of the appliance as a feature selection step. Voltage is the least informative feature,
and is therefore dropped for the subsequent evaluations.

Previously mentioned improvements have been calculated from the original values
reported by the authors according to the following formula

Improvement =
Per faddFeatures − Per fonlyP

Per fonlyP
. (6)

where Per fonlyP and Per faddFeatures correspond to the performance (measured in any mea-
sure) of the approach based only on P and additional features, respectively. In cases
where smaller values indicate better performance of a measure (e.g., MAE), we swapped
Per faddFeatures and Per fonlyP to always result with a positive value for improved results.

Based on the results presented, we conclude that features beside P can improve
disaggregation performance. No conclusions about the amount of improvement can,
however, be made, as the spread of the results is quite broad. For the time being, we
can only speculate about possible reasons. It might be a worthwhile investigation to
examine what kind of factors, e.g., architectures, can make the most out of the information
from features beside P. With the exception of those in [22], all results originate from seen
evaluation scenarios. That effectively means that additional features help to estimate the
power usage of a particular appliance. However, it is unclear how much they help to
disaggregate an appliance type, see Section 3.2.1. Non DNN-NILM approaches already
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employed a very broad feature set [13]. Compared to this breadth, DNN-NILM approaches
tested a very limited set of options. It would be interesting to see a systematic investigation
on a broader feature set.

4.3. Multi-Task Learning

If a machine learning model trains on separate but related tasks, this process is referred
to as multi-task learning. For a good introduction and overview on the topic with respect
to deep learning, the reader is referred to [173]. The NILM problem is suitable to be framed
as a multi-task learning problem: The column ’Output’ in Table 2 lists the different variants
that have been employed in the reviewed literature. We asked ourselves: “Can we find
evidence that multi-task learning leads to superior performance compared to single task
learning in the case of the DNN-NILM approaches?”

Based on the literature review, we found the following: Ref. [91] trains a CNN on
the washing machine, freezes the parameters of the convolutional layers, and retrains
afterwards only the final, fully connected layer for other appliances. The authors find that
the results of this approach are comparable to standard training. This finding suggests that
the learned features of different appliances are similar and can be shared between appli-
ances. Simultaneous learning on different appliances could therefore make features more
robust and lower the requirements on the amount of training data. A large improvement
from joint learning on multiple appliances is also reported by [107] and, as was already
mentioned in Section 4.1, four of the best approaches [35,37,63,97] use multi-task learning
for network training. Only the authors of [49] report a general decrease in performance of
multi-task learning models with respect to their single-task counterparts. They propose to
employ a different architecture or share less layers between appliances as a remedy. Due
to the presented observations and the general benefits of multi-task learning presented
in [173], we conclude that multi-task learning is beneficial for DNN-NILM approaches.
As has also been noted by [49], we see the additional benefit of multi-task learning in a
reduced computational burden for edge devices because a major amount of computations
for disaggregation can be shared between several applications.

4.4. Parameter Studies

As visualized in Figure 1, there are many degrees of freedom for DNN-NILM ap-
proaches. In Section 3, we listed the many options for the corresponding aspects that have
already been tried out. Looking at the literature, however, we see a lack of understanding
of the influence of the available options. Therefore, we want to stress the need and value of
parameter studies for future research activities in the DNN-NILM field.

For example, in case of the data sampling rate and window length, several authors looked
at the influence of these two parameters on the models performance, see
Sections 3.2.2 and 3.3.1. There exists, however, no study that jointly investigates these
two tightly connected parameters (maybe even on different datasets and based on dif-
ferent models). Similarly, we see potential in a systematic comparison between differ-
ent normalization (Section 3.2.2), activation balancing (Section 3.2.3), data augmentation
(Section 3.2.4), and post-processing (Section 3.5.1) strategies, as well as loss functions
(Section 3.4.2).

4.5. Applied DNN-NILM

The best results of current DNN-NILM approaches are very promising, see Section 4.1.
However, there are different aspects of relevance for an actual deployment of DNN-NILM
approaches that have not yet been well investigated in the literature. In the following
subsections, we motivate corresponding aspects and subsequently point out connected
research gaps.
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4.5.1. Data Scarcity

For a practical application of NILM, we see one of the main challenges in the scarcity of
labeled data. While this challenge is not specific to DNN approaches, we think that recent
developments in semi-supervised deep learning might be adaptable to NILM and could
then be a great opportunity to tackle the problem of data scarcity for practical applications.
In the following, we will first detail the challenge and subsequently formulate possible
future research directions.

Net2Grid is a company providing NILM services to utilities. In a presentation, they
stressed the point that “accurate NILM requires [...] a lot of high-quality data” [174]. Specif-
ically, the company bases their NILM service on data from hundreds of houses. They also
emphasized the point that machines with different programs or settings exhibit very variable
load patterns and therefore need many observed cycles. The authors of [75] investigate how
the disaggregation error of a DNN-NILM approach depends on the number of distinct houses
used for its training. In agreement with Net2Grid, they find that for the washing machine, an
appliance with a variety of programs, the disaggregation error steadily decreases with each
house added to the training dataset without any sign of saturation until 40 houses, which was
the maximum used for the investigation. Thus, both sources indicate that complex machines
require a large variability in the training data to successfully generalize on unseen data. This
observation is at the core of what we call ’data scarcity’.

These findings indicate that a company that wants to start a NILM service first has to
obtain data from hundreds of houses. A possible source are public NILM datasets including
aggregate and appliance consumption, see, e.g., [18,127] for an overview. While for some
simple appliances these public datasets are certainly sufficient, the data are too restricted
if we want to disaggregate appliances with variable load patterns [75,174]. Furthermore,
appliances such as heat pumps or charging stations for electric vehicles are almost absent
from public datasets. The only alternative is to engage in a measurement campaign
involving hundreds of houses. This is an expensive and time consuming undertaking, as the
metering, appliance-specific sub-metering, and the corresponding infrastructure has to be
installed and maintained. It is also worth noting that, even if large datasets covering a large
variety of appliances would be recorded, new devices come to the market continuously.
This means that the effort for data collection is actually a recurrent one.

As DNNs are particularly data hungry, the problem of a shortage of labeled data has
recently obtained a lot of attention by the research community in the computer vision and
natural language processing (NLP) domain. A promising remedy to the situation is semi-
supervised deep learning [175]. We see a lot of potential transferring these developments
to the NILM domain as unlabeled data—the data obtained from the smart meter—are
relatively easy to access compared to sub-metered ground truth data.

In the reviewed DNN-NILM literature, semi-supervised deep learning techniques have
so far been employed by the following authors: Ref. [103] used the ladder network [176].
The presented results give no clear indication that unsupervised data actually improved the
performance. These results might be caused by the relatively simple DNN. The authors of [66]
trained an autoencoder on unlabeled data to subsequently use the learned embedding in a
supervised training setting. This work was done on aggregate data with 15 min resolution that
naturally led to large estimation errors. Ref. [81] derived their classification approach from
the mean teacher approach [177], while ref. [67] adopted virtual adversarial training [178].
Both works present evidence that the disaggregation performance of the semi-supervised
approaches improves compared to a strictly supervised settings. However, experiments were
only conducted on data from houses already seen during training, and no conclusion can be
drawn about improved generalization on previously unseen houses.

There is an increasing field of newer semi-supervised DNN approaches from the vision
domain ready to be adapted to the NILM problem [175]. A particularly successful [179]
semi-supervised strain of research is called consistency learning [175]. The method’s main
assumption is that a small perturbation or realistic transformation applied to a data point
should not have an influence on the prediction. DNNs are then trained to provide a consistent
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output for an unlabeled data point and its perturbed version. Most recent publications
demonstrate that for image classification it is feasible to get close to the performance of a
supervised approach with one order of magnitude fewer labeled samples [180,181]. While
some of the consistency learning approaches seem to be well adaptable to NILM, there remain
many open questions—to name a few: What type of consistency loss should be used in case
of NILM? What types of data augmentation strategies should be employed? The last question
is of particular interest because [180] demonstrated that the ’quality’ of data transformations
is the key for significant performance gains. While data augmentation was used in various
DNN-NILM approaches, see Table 2, we are not aware of any work that did a detailed
investigation of this aspect.

In summary, we see in the application of semi-supervised DNN approaches many
worthwhile research questions and a great opportunity to tackle the problem of data
scarcity for practical NILM applications.

4.5.2. NILM on Embedded Systems

If one imagines a NILM deployment at scale, the amount of data to transfer, store,
and process becomes an important factor. In the reviewed DNN-NILM literature, different
aspects of such a deployment have been addressed. The work of [93] investigated data
reduction policies: Different sampling strategies for data compression ( 1

4 to 1
20 compression) in

combination with DNN inference are tested. The authors found that the best sub-sampling
policies outperform results with original sampling rates. Another option is to process the data
directly in or close to the electric meter and only relay disaggregated high level information.
That means that the DNN-NILM inference has to work on an embedded system, even though
that can be quite challenging in terms of computational, storage, and energy resources. This
direction has been investigated by [47–49,65,106]: Ref. [106] is to our knowledge the first to
publish the implementation of DNN-NILM inference on an embedded device. Both [106]
and later [65] used for that purpose a Raspberry Pi computer. Ref. [47] uses an efficient
MobileNet [182,183] inspired DNN for disaggregation and compresses it by lowering the
precision from32 to bit floating point (used for training) to 8-bit integer representation by
means of the TensorFlow Lite library. The resulting model was then evaluated with the
Android SDK. The authors report that “disaggregation accuracy deviates up to ≈9.4% from
original disaggregation model, but, on average, remains satisfactory”. Both refs. [48] and [49]
investigate different pruning methods based on the network from [119]. Pruning methods
aim at reducing neurons in the network that contribute little to the final output. The final goal
is to result with sparse networks that have lower storage and computational requirements,
but similar performance compared to the original networks. Both publications found that
networks can be heavily pruned with only a slight decrease in performance: Ref. [48] reports
a reduction of the number of network weights by 87% and [49] reports a 100-fold reduction
in model size and a 25-fold reduction in inference times. Ref. [49] additionally investigates
multi-task learning and vector decomposition as further paths towards efficient computations
in embedded systems.

While the DNN-NILM community has taken first steps towards an implementation
on embedded devices, the corresponding research field for DNNs in the vision and speech
domain is vast, see, e.g., [184]. There remain therefore a multitude of research questions
in this direction. From our perspective, an interesting question would be to see how best
performing approaches (see Section 4.1) could be adapted to embedded devices because
the architectures of these approaches are more elaborate than the ones used by [47–49,106].

4.5.3. 3-Phase Data

In some European countries, such as, e.g., Switzerland, residential power supply
arrives in three phases at the master distribution board (breaker panel) and is then split into
single phases. As a consequence, measurements from the electrical metering infrastructure
are in principle also available on three phases. With respect to a practical NILM application,
this additional information makes the problem at first glance easier to solve, as there are
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on average one third as many devices connected to each phase compared to households
attached to a single phase. However, the challenge comes in the form of multi-phase
appliances such as heat pumps, pool pumps, electrical heat storage radiators, or charging
stations for electrical vehicles. These appliances require NILM algorithm to combine
information from all three phases. When considering an approach that should perform
on any households, the main challenge is that multi-phase devices can be connected in
arbitrary permutations. Thus, the result of the DNN-NILM approach needs to be invariant
to these permutations.

We are not aware of any DNN-NILM publication that works on 3-phase data and
tackles the raised challenge (This might partially be because there are currently only
few datasets with 3-phase information. We are aware of iAWE [185], ECO [140], and
BLOND [186]). The desired permutation invariance is analog to the required rotational
invariance in computer vision: An object needs to be recognized as such independently of
its orientation in the image. This analogy points also to possible future research questions:
Could permutation invariance be obtained by training a DNN with augmented data?
Could the symmetry be directly anchored in the layer of the neural network via Group
Equivariant Convolutions, see, e.g., [187,188]? These are convolutional layers specially
designed to produce the same result for data subject to a group of symmetry operations.
How do these two solution approaches compare to each other with respect to performance
and complexity?

5. Outlook

Looking into the future, we can imagine different scenarios and directions for the
(DNN-)NILM field. With the rapid development of the Internet of Things, we can well
think of future appliances which are aware of their own current (and possibly future)
energy consumption and feature a communication interface to relay this information to
the outside world. In this scenario of energy-aware appliances, NILM would become
obsolete. As this scenario would require a business case for appliance manufacturers
and standards for interfaces and protocols, chances are good that this state will not be
reached in the near future. We believe that the rapid increase of computing power in
edge devices will have a much more immediate impact. Edge nodes will soon be able
to perform DNN-NILM close to the meter without the need to transfer data to a cloud
computing service. The culmination of this trend would be complex NILM algorithms
that run directly on meter hardware, maybe even on the raw high frequency measurement
data. Developing this scenario even further, one could imagine that NILM algorithms
learn and improve on local data. For this to work, the learning problem will first have
to be formulated in a way that the data available on the meter can be used for further
improvements. A standard supervised training approach does not seem to be feasible.
Furthermore, local improvements of the model will ideally also be made available to other
smart meters. This concept of local learning with global exchange of improvements is a
nascent research field called Federated Learning, see [189,190].

6. Conclusions

Summarizing, this publication presents a review on the DNN-NILM literature. The
scope of this review comprises publications that employ deep neural networks to disaggre-
gate appliances from low frequency data, i.e., data with sampling rates lower than the AC
base frequency. Our motivation for the scope is our conviction that plenty of applications
could benefit from NILM, coupled with the observation that low frequency data will most
likely be available at scale in the near future and the enormous success of DNNs in other
application domains. We systematically discuss the many degrees of freedom of these
approaches and what has already been tested and tried out in the literature along these
dimensions. One of the main contributions is Table 2, which gives a structured overview
of the main characteristics of all reviewed DNN-NILM approaches. The review part is
followed by a discussion of selected DNN-NILM aspects and corresponding research gaps.
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We present a performance comparisons with respect to reported MAE and F1-scores and
observed different recurring elements in the best performing approaches, namely data
sampling intervals below 10 s, a large field of view, the usage of GAN losses, multi-task
learning, and post-processing. Subsequently, the benefit of multiple input features and
multi-task learning and related research gaps has been discussed, the need for comparative
studies has been highlighted, and the missing elements for a successful deployment of
DNN-NILM approaches have been pointed out. Finally, we also outline potential future
scenarios for the NILM field. This contribution is currently missing in the literature, and can
therefore be of value. We conclude that there remain many worthwhile research questions
to be pursued.

Supplementary Materials: To facilitate future work based on the data collected for this publication,
we release Table 2 as a MS Excel file. We also provide data and code that was used to generate
Figures 3 and 4. All data and code is available at https://github.com/ihomelab/dnn4nilm_overview
accessed on 11 January 2021.
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Abstract: Smart-meter technology advancements have resulted in the generation of massive vol-
umes of information introducing new opportunities for energy services and data-driven business
models. One such service is non-intrusive load monitoring (NILM). NILM is a process to break
down the electricity consumption on an appliance level by analyzing the total aggregated data
measurements monitored from a single point. Most prominent existing solutions use deep learning
techniques resulting in models with millions of parameters and a high computational burden. Some
of these solutions use the turn-on transient response of the target appliance to calculate its energy
consumption, while others require the total operation cycle. In the latter case, disaggregation is
performed either with delay (in the order of minutes) or only for past events. In this paper, a real-time
NILM system is proposed. The scope of the proposed NILM algorithm is to detect the turning-on
of a target appliance by processing the measured active power transient response and estimate its
consumption in real-time. The proposed system consists of three main blocks, i.e., an event detection
algorithm, a convolutional neural network classifier and a power estimation algorithm. Experimental
results reveal that the proposed system can achieve promising results in real-time, presenting high
computational and memory efficiency.

Keywords: convolutional neural network; energy consumption; energy data analytics; energy
disaggregation; machine learning; non-intrusive load monitoring; real-time; smart meter data; smart
meters; transient load signature

1. Introduction

Nowadays, the amount of data that is generated almost continuously is enormous.
Once analyzed, they can reveal useful information in many different disciplines; economy,
healthcare, and e-commerce, to name a few. In this context, the energy sector could not
have been an exception. Traditionally, energy data was acquired at a few critical points
of the power grid, usually at the transmission level, but the landscape has changed due
to the advance in smart-metering technologies. Thousands of internet-of-things (IoT)
endpoints are placed within the smart grid, providing energy utilities access to valuable
data; thus, new opportunities have been created for energy services and data-driven
business models [1–5]. Energy disaggregation is an example of such a service.

Energy disaggregation is the process of consumption breakdown at appliance or activ-
ity level for residential or commercial-industrial (C&I) users; in other words, it estimates
the individual power consumption for all appliances contributing to the total mains power.
This process can help energy utilities reveal useful information to support load forecasting
and demand-side management programs. Regarding residential consumers, it can be used
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to provide accurate billing and meaningful feedback regarding their energy consumption
as well as to improve the appliance efficiency (e.g., by detecting old devices and replace
them with more efficient ones) [6].

There are two main possible energy disaggregation solutions: (a) Intrusive Load
Monitoring (ILM) and (b) Non-Intrusive Load Monitoring (NILM). In ILM, i.e., a hardware-
based approach, power meters are attached behind each target appliance. The large number
of hardware devices required for ILM makes the installation process difficult and cost-
inefficient but results in very accurate power estimates. On the other hand, NILM is a
software-based approach. It requires a single meter for the total aggregated power, thus
the installation process is simplified and the corresponding cost is reduced. However, since
there is no information about the aggregated power appliances, appropriate algorithms
should be created to perform energy decomposition.

The utilities should perform a large-scale deployment to support thousands of con-
sumers to benefit as much as possible from energy disaggregation services; only then it is
possible to extract useful information for business models. This large-scale deployment
makes NILM far more favorable than ILM due to the low cost, installation simplicity and
minimum hardware requirements. However, in many cases, NILM algorithms present
high computational complexity and significant memory requirements. In this sense, utili-
ties should either use high-end smart meters—or extra hardware attached to them—with
powerful central processing units (CPUs) and sufficient memory. Alternatively, energy
disaggregation must be performed in cloud services. In the latter case, the cost of cloud
services increases with the number of consumers. To this end, utilities must adopt scalable
solutions. Scalability can be more critical even than disaggregation accuracy. As it is
realized, low computational and memory requirements are necessary to run the service on
the edge with conventional microprocessors or minimize the cost of needed cloud services.
Furthermore, to improve user experience, minimum feedback must be required; thus,
the necessity for pre-trained generic appliance models is of utmost importance.

Several approaches have been proposed to cope with the NILM problem [7,8]. It was
first introduced by Hart [9]. Hart’s approach was based on monitoring power changes
(corresponding to the appliance turning-on/off events) of both active and reactive power
signals. These power changes are grouped into clusters, with each cluster representing
a state change of a target appliance. Since then, several works have investigated the
NILM problem utilizing different sampling rates and techniques. Earlier approaches
employed sampling rates lower than 1 Hz, where event detection (appliances turning-
on/off) is impractical and probabilistic models, such as variants of hidden Markov models
(HMM) were examined [10–17]. HMMs yield promising results but present disadvantages,
e.g., high computational complexity when the number of appliances increases and difficulty
in classifying appliances that present similar power consumption [18]. Due to these
disadvantages, researchers have turned to alternative methods, including machine learning
and deep learning techniques [18–38]. NILM approaches can be generally categorized as
event-based and state-based.

Event-based solutions [33–39] leverage the information-rich transient response of an
appliance turning-on. Specifically, they consist of two modules: (a) an event detection
algorithm for discovering power changes corresponding to an appliance turning-on and
(b) a classifier for identifying the appliance that caused the power change. This approach
is based on the fact that turn-on transient responses contain more information regarding
the operating device than steady states. However, in order to obtain this transient state
information, high-resolution data is vital [33–38]. One widespread event-based method is
the V-I trajectory, utilizing high-resolution voltage and current measurements. In [37,38],
useful features are extracted from the V-I trajectories and neural networks are trained for
classification. Other researchers depict the trajectories as binary images [34–36]. This visual
representation solves the appliance recognition problem by exploiting computer vision
techniques. Furthermore, transfer learning techniques have been investigated, as in [36]
where an image classifier has been implemented based on AlexNet [40]. An important
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advantage of event-based approaches is the low complexity; only a few time instants
corresponding to on/off events are processed. Furthermore, such approaches can detect
an appliance turn-on event in real-time since information only from the transient state is
required. However, high-resolution data of several kHz is essential, applying mainly to
detect appliance turn-on/off events, without calculating power consumption.

On the other hand, state-based approaches [19–27] mainly require lower frequency
data. These approaches do not detect state transitions. On the contrary, they parse all avail-
able data of a time-series, even if no events occur. In such approaches, the appliance must
operate for at least some minutes to determine if it is on [20,22]. There are even cases where
the appliance end-use has to be fully completed to estimate the power consumption [19,24].
In [19], three different neural network architectures were presented, i.e., (a) long short-term
memory (LSTM) networks, (b) stacked denoising autoencoders, and (c) a regression algo-
rithm to forecast the start time, stop time and average power demand of devices. In [21],
a bidirectional LSTM cell was used; in [26] a deep convolutional neural network (CNN)
that uses as input a time window of active power consumption and predicts the active
power in the center of the window. In [23], the authors feed their network with active,
reactive, and apparent power and current data. Furthermore, they use mainly CNN blocks
in order to create a recurrent property similar to LSTMs. Finally, in [24], an attention-based
deep neural network is introduced, inspired by deep learning techniques used in Natural
Language Processing (NLP). State-based approaches use low-resolution data and predict
the power consumption per appliance. However, they present higher computational com-
plexity since all available data are used, thus cannot detect in real-time an appliance being
turned-on/off.

The scope of this paper is to present a real-time event-based NILM methodology
to detect an appliance turn-on event and calculate its power consumption in real-time.
The proposed NILM design is built on top of three main blocks, i.e., an event detector,
a CNN classifier and a power estimation algorithm. The main strengths of the proposed
NILM system rely on the following:

• The proposed system can identify when an appliance is turned-on in real-time, based
on its active power transient response sampled at 100 Hz; processing data of the total
appliance operational duration is not required, as in [19,24].

• The proposed system is delay-free; once the appliance has been turned-on, the system
can calculate its power in real-time.

• The combination of a machine learning model to detect appliance turning-on and
a heuristic algorithm to estimate the power in real-time constitute a system light-
weight, presenting less memory and CPU requirements than end-to-end deep learning
models [19,23,24].

• The proposed NILM algorithm is automatic, thus, no feedback is required by the user.
• Data sampling rate of 100 Hz for active power measurements is used, contrary to

several kHz in relevant works [33–35,41,42].

Generally, as it can be suggested from the above analysis, the proposed system consti-
tutes a real-time scalable solution presenting minimum hardware requirements; thus, it
can be integrated into low-cost chip-sets and, consequently, run on the edge.

The paper is structured as follows: In Section 2, the proposed methodology is pre-
sented. In Section 3, the dataset and the metrics used for evaluation are described. In
Section 4, experimental validation results from real-life installations are analyzed and the
performance of the system is compared to other state-of-the-art approaches. In Section 5,
an industrial perspective regarding scalable real-time NILM services is discussed. Finally,
Section 6 concludes the paper.

2. Proposed System

The proposed methodology comprises of three main parts: (a) an event-detection
system to find active power changes corresponding to turn-on events, (b) a CNN binary
classifier to determine if the turn-on event was caused by a specific target appliance or
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not, and (c) a power estimation algorithm to calculate in real-time the appliance power per
second and consequently the energy consumption. An overview of the system in flowchart
form is illustrated in Figure 1.

Figure 1. Proposed system flowchart.

2.1. Event Detection

The event detection algorithm is used to identify the time instant (trigger time) when a
sudden increase of active power occurs, indicating a possible turn-on event. The advantages
of the proposed event detection algorithm are its simplicity and the fact that no pre-training
is required.

Let us assume that the aggregated active power time-series at 100 Hz is P. The original
signal P is down-sampled at 1 Hz by means of averaging, resulting into signal Pd. Down-
sampling is applied for two main reasons: (a) the event detection algorithm becomes
simpler, presenting less computational burden and (b) most of power changes are still
easily identifiable assuming an 1 Hz sampling frequency. However, if two or more events
occur almost simultaneously, e.g., in a period of less than a second, the algorithm detects
these events as a single one. Considering that the probability of this scenario is very low,
the frequency of 1 Hz has been selected. Next, the maximum power difference (MPD) for
each second n is calculated as:

MPD(n) = max(Pd(n + 1), Pd(n + 2), Pd(n + 3))− min(Pd(n − 3), Pd(n − 2), Pd(n − 1)). (1)

MPD shows the maximum difference in active power in a region around n, i.e., the
maximum power during the first three seconds after n, minus the minimum power of the
three first seconds before n. In this sense, the transient onset can be accurately determined
since the real power increase may not appear immediately, but some seconds after n.
To determine the trigger time candidates, MPD is compared with a threshold, Pth, which is
determined in terms of the appliance rating power. This means that, at time instant n an
event occurs if

MPD(n) > Pth. (2)

At this point, it should be mentioned that trigger time candidates close in time are
merged. For each trigger time, a 6 s window of the captured transient response, Ptr, is
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generated from P (100 × 6 = 600 samples). The pseudo-code for the process described is
presented in Algorithm 1.

Algorithm 1: Event detection.
Input: P, Pth
Output: list of captured transient responses
Pd = P down-sampled at 1 Hz;
Initialize an empty list L;
Initialize an empty list transients;
for each second n do

max_after = max(Pd(n + 1), Pd(n + 2), Pd(n + 3));
min_before = min(Pd(n−3), Pd(n−2), Pd(n−1));
MPD = max_after − min_before;
if MPD ≥ Pth then

Append n to L;
end

end
Merge consecutive seconds in L;
for t in L do

Ptr = P(t − 300:t + 299);
Append Ptr to transients;

end
return transients;

2.2. CNN Classifier

In the proposed methodology, the transient response generated by an appliance’s
turning-on is used as the load signature for appliance classification [7]. Whenever a target
appliance is turned on, a transient response can be detected in the aggregated active power
waveform. Besides appliance classification, this load signature presents two additional
advantages. Firstly, for a given appliance, the turn-on transient response pattern is unique
and relates only to the operational characteristics of the appliance [43]. Consequently,
the identification algorithm’s performance is independent of the simultaneous operation
of other types of appliances, even when a large number of devices is considered [7,44].
Secondly, the proposed algorithm can successfully treat various types of appliances, even
though presenting similar consumption levels at steady-state, since classification is per-
formed based on the unique appliance transient characteristics instead of calculating
steady-state features.

The same principle can detect specific operational states by identifying transient
responses caused by a state transition regarding multi-state appliances. For example, for a
washing machine or a dishwasher, the water heating process’s transient response can be
used to identify this specific state, being of primary interest as the most energy-intensive
process during an operation cycle.

In order to associate a given transient response, Ptr, with a specific target appliance
behavior, a CNN classifier is utilized. In this sense, for each target appliance, a dedicated
CNN classifier is used, identifying Ptr as positive when related to the target appliance or
negative otherwise.

Different types of appliances generate transient responses with distinct characteristics,
primarily when a high sampling frequency, e.g., at 100 Hz, is used. Suppose a user
was initially given an example of such a response corresponding to a specific appliance.
In that case, he/she could later recognize a new response of the same appliance by simple
visual inspection. However, the implementation of such a recognition algorithm is not an
easy task.

Inspired from the area of computer vision, where CNN models are used for image
recognition, and classification [45], a similar approach has been adopted in this paper.
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Convolutional layers can automatically extract useful features from the input data without
user supervision [45]. Thus, there is no need to implement specific algorithms; instead,
by training a CNN model, the classification problem can be successfully solved. A block
diagram of the proposed CNN architecture is depicted in Figure 2.

Initially, min-max normalization is applied to Ptr by means of (3); the resulting nor-
malized vector, Pnorm, is forwarded as input to the CNN model.

Pnorm =
Ptr − min(Ptr)

max(Ptr)− min(Ptr)
(3)

Figure 2. Convolutional neural network (CNN) block diagram.

Since the CNN input model is an one-dimensional signal, one-dimensional convo-
lutional layers are used to extract the useful features from Pnorm. In particular, three
consecutive 1-d convolutional layers are used in combination with an 1-d max-pooling
layer. All convolutional layer parameters have been set to 32 filters, kernel size equal to 3,
strides equal to 1, ’same’ padding, and rectified linear unit (ReLU) activation function. The
ReLU function is defined as

ReLU(x) = max(x, 0) (4)

for x ∈ R. For max-pooling layers, the pool size was set to 2. Generally, at each 1-d convo-
lutional layer, a number of filters is applied to the corresponding input, xconv. Assuming
that the size of xconv is Mconv × Nconv and a single filter, f, is of 3 × Nconv, the output of
the convolution between xconv and f will be a Mconv × 1 matrix. The resulting yconv is
calculated as

yconv(m) = max (
3

∑
t=1

Nconv

∑
n=1

xconv(m + t − 2, n) f(t, n), 0) (5)

for m ∈ [1, ..., Mconv], where xconv(0, n) and xconv(Mconv+1, n) are considered zero for any
n ∈ [1, ..., Nconv] as a result of zero-padding. In our case, where 32 filters are used in a
convolutional layer results yconv, are stacked as columns, forming a Mconv × 32 matrix.

Each layer is followed by a max-pooling layer to down-sample the extracted features
of the input signal. In this sense, a summarized version of the extracted features (half the
size) is created, maintaining the most important features and is further used as input to the
next layer. Assuming xpool, with size Mpool × Npool is the max-pooling layer input matrix,
the output, ypool, has a size of (Mpool/2)× Npool and is calculated as

ypool(m, n) = max (xpool(2m − 1, n), xpool(2m, n)) (6)

for m ∈ [1, ..., Mpool/2] and n ∈ [1, ..., Npool].
Following the three convolutional/pooling pairs, a flattening layer is applied, trans-

forming its input to a single vector by column-wise stacking. Finally, two dense layers are
used of 20 and 1 output nodes, respectively. For the first dense layer, the ReLU activation
function is applied; for the last layer, the sigmoid activation function defined in (7) for
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x ∈ R is used to compute the probability of the transient response to correspond to the
positive class.

S(x) =
1

1 + e−x (7)

Generally speaking, a dense layer with Mdense input nodes and K output nodes
includes two trainable parameters, i.e., a weight matrix, w, with size Mdense × K and a
bias vector, b, with size K. Given an input vector, xdense, with Mdense elements, the output
ydense of size K is calculated as

ydense(k) = F(
Mdense

∑
m=1

xdense(m)w(m, k) + b(k)) (8)

for k ∈ [1, ..., K], where F is the corresponding activation function. Before each dense layer,
a dropout layer [46] is used. Its value is set to 0.2 to prevent model over-fitting.

A standard backpropagation algorithm is used during training to optimize the binary
cross-entropy loss between the predicted probabilities and the actual labels. Assuming
that the predicted probabilities are p1, p2, ..., pB for B samples and the actual labels are
q1, q2, ..., qB, the binary cross-entropy loss is

L = − 1
B

B

∑
b=1

[qb log2 pb + (1 − qb) log2 (1 − pb)]. (9)

The CNN classifier is trained for a maximum of 50 iterations. The Adamax opti-
mizer [47] was selected assuming an initial learning rate of 0.01 and batch size 32. In order
to avoid over-fitting, early stopping with patience is used. The training process stops once
the validation accuracy does not improve after five consecutive iterations.

2.3. Consumed Energy Estimation Algorithm

The last module is related to the real-power estimation of the target appliance. The im-
plemented algorithm considers the appliance end-uses as pulses of constant power; this
approximation is well-suited for single-state appliances such as microwave oven, kettle
or toaster. In the case of appliances with operating cycles comprising of multiple pulses,
the algorithm considers each pulse as a new appliance end-use and not as a single end-
use event of several pulses. An example is the oven turning-on and off controlled by a
thermostat and the dishwasher, where several water heating pulses may occur depend-
ing on the selected program. In this sense, the proposed algorithm performance may
degrade for multi-state appliances. They are characterized by varying power consumption
and cannot be approximated with a constant power pulse. However, such appliances
present a predominant energy-intensive process during a full operating cycle while the
rest operating states are less critical regarding the total energy consumption. For example,
washing machine or dishwasher cycles include energy-intensive water heating processes
and low energy-consuming processes, e.g., water pumping. Therefore, regarding multi-
state appliances, the proposed power estimation algorithm focuses on the estimation of the
energy-intensive processes neglecting the effect of the minor consuming ones.

When the CNN classifies a transient response as positive, it is implied that the appli-
ance has been turned-on. The calculated power increase, Pinit is considered equal to the
appliance power consumption and assumed constant during the total time of operation
of the appliance. When a power decrease between two consecutive seconds in Pd inside
the interval [0.8 Pinit, 1.2 Pinit] is detected, the appliance is considered to be turned-off.
The pseudo-code of the energy consumption estimation algorithm is shown in Algorithm 2,
having as input the time (in seconds), t, when the target appliance is turned-on and Pd.
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Algorithm 2: Energy consumption estimation.
Input: t, Pd
Output: turn-off time, Pinit
Pinit = Pd(t + 2) − Pd(t−2);
for each second n ≥ t do

if 0.8 Pinit ≤ (Pd(n−1) − Pd(n)) ≤ 1.2 Pinit then
Assume target appliance is turned-off;
break;

else
Assume power consumption equal to Pinit;

end

end
return n, Pinit;

3. Evaluation Methodology

3.1. Dataset

The proposed NILM system is based on the fact that each household appliance
presents a transient response pattern with distinct characteristics, becoming more no-
ticeable as the sampling frequency increases. In this paper, the selected sampling frequency
is 100 Hz; at this frequency the transient characteristics are captured in contrast to lower
sampling rates where such information may be lost. In Figure 3, turn-on transient re-
sponses at 100 Hz and 1 Hz for five appliances are depicted. It is evident that the frequency
of 100 Hz reveals unique details that are lost when sampling at 1 Hz. More specifically,
Figure 3a presents the turn-on response of a high-power consumption (~1.2 kW) fridge
compressor with a duration of fewer than two seconds. Figure 3b visualizes the water
heating process of a washing machine, which corresponds to a steep power step-up. Next,
Figure 3c illustrates the transient response of a microwave oven as a high-power spike fol-
lowed by a smooth power increase. In Figure 3d, a stove turn-on presenting a smooth and
convex power increase is shown, and finally, in Figure 3e visualizes the transient response
from a heat pump dryer appliance, including a high-power spike at motor starting time.

An extensive set of transient responses for each target appliance is required to train
the CNN classifier. For this purpose, a private dataset that includes transient responses
of different household appliances sampled at 100 Hz from different installations is used.
The type of appliance and the number of samples for each case are summarized in Table 1.
Note that, the duration of the transient responses contained in the dataset ranges from 12 s
to 1 min.
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Figure 3. Comparison of the turn-on transient response with sampling frequency at 100 Hz and 1 Hz for (a) fridge, (b)
washing machine, (c) microwave oven, (d) stove and (e) heat pump dryer.
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Table 1. Private dataset: Number of transient responses for the appliances of interest.

Appliance Number of Transient Responses

Fridge 132

Dishwasher 171

Heat pump 202

Washing machine 135

Oven 82

Stove 148

Heat pump dryer (drum spinning) 54

Heat pump dryer (heating) 42

Microwave 290

In this study, three appliances are selected to test the proposed methodology’s perfor-
mance, i.e., fridge, washing machine, and microwave oven. Pulses can approximate the
end-use of these appliances without significant error in power estimation. Furthermore,
such appliances are considered typical for most households, corresponding to substantial
total energy consumption. The selected appliances represent a larger group of appli-
ances since both single-state and multi-state appliances are considered. Additionally,
detailed results regarding the analysis of such appliances can be found in several relevant
works [19,20,22,25–27]; thus, a comprehensive comparative analysis can be performed.
Finally, low energy-consuming appliances such as game consoles and phone chargers have
not been investigated, being of trivial importance and hard to be identified in terms of
NILM algorithm application [19].

For each target appliance, a binary classifier is implemented and trained. During train-
ing, the transient responses of the appliance under consideration are labeled positive; the
responses corresponding to a different appliance are labeled negative. Balancing of the
positive and negative classes is performed in order to prevent bias towards the class with
the most samples; the number of negative responses is the same as the number of positive
ones. A training/validation/testing split is used assuming a ratio of 60%/20%/20% to
avoid over-fitting for each class separately.

However, because the number of samples per appliance is small, augmentation tech-
niques are used. These techniques aim to increase the number as well as the diversity of
the training samples by artificially introducing variations in existing transient responses.
Specifically, for each transient response, 15 samples with the required length of 6 s are cre-
ated. Assuming that the time-series that contains a response is z, each one of the 15 samples
is generated by means of the following steps:

1. Considering that the transient response starts at index s of z, a random number u in
the interval [s − 500, s − 100] is selected, following uniform distribution. The selected
sample is equal to z from index u to index u + 599.

2. White Gaussian noise with mean value (μ) equal to 0 and standard deviation (σ) equal
to 1 is added to the sample; 10 W maximum power is considered.

The number of samples for training, validation and testing the sets per appliance is
shown in Table 2.
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Table 2. Number of positive samples per set.

Appliance Training Validation Testing

Fridge 2400 780 780

Washing machine 2430 810 810

Microwave 5220 1740 1740

3.2. Performance Metrics

The proposed methodology is evaluated in terms of the event detection algorithm,
the CNN classifiers as well as the overall system performance. For each case, different
metrics are used.

3.2.1. Metrics for Event Detection Evaluation

For the event detection algorithm the true positive rate (TPR = TP/(TP + FN)),
the false positive rate (FPR = FP/(FP+TN)) and false negative rate (FNR = FN/(TP + FN))
are calculated; TP, FN, FP and TN are the number of true positives, false negatives, false
positives and true negatives, respectively. Here, a sample (a time instant) is positive if it is
an actual event (there is an appliance turning-on or off) and negative if not.

3.2.2. Metrics for Classifier Evaluation

To evaluate the classifier, the most common metrics used in classification and NILM
problems are adopted [18,29,32,34,35]. Specifically, the accuracy, precision, recall and
F1-score, defined in (10)–(13), respectively, are calculated

accuracy =
TP + TN

TP + TN + FP + FN
(10)

precision =
TP

TP + FP
(11)

recall =
TP

TP + FN
(12)

F1 = 2 · precision · recall
precision + recall

. (13)

In this context, for a transient response classifier, a sample (i.e., transient response of
6 s) is positive if the transient response corresponds to the target appliance. Otherwise, it is
assumed negative.

3.2.3. Metrics for Overall NILM System Evaluation

The overall proposed NILM system is tested by using the same metrics as previously,
i.e., accuracy, precision, recall, and F1-score to evaluate the predicted status of the appliance
(ON or OFF). Thus, a sample (i.e., a time instant) is considered positive if the appliance is
ON and negative if not. It should be mentioned that an appliance is considered turned-on
if the measured active power is higher than 5 W. Additionally, for energy estimation,
the mean absolute error (MAE) and the root mean square error (RMSE) in (14) and (15),
respectively, are computed

MAE =
1
N

N

∑
n=1

|y[n]− ŷ[n]| (14)

RMSE =

√√√√ 1
N

N

∑
n=1

(y[n]− ŷ[n])2 (15)
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where y[n] and ŷ[n] is the original and the estimated power response with N samples.
Moreover, the relative error in total energy (RE), defined in (16), is calculated

RE =
|E − Ê|

max(E, Ê)
(16)

where E and Ê is the original and the estimated total energy consumption of the appliance.

4. Results

In this section, experimental validation results are analyzed considering data from real-
world installations. The Building-Level fully-labeled dataset for Electricity Disaggregation
(BLUED) [48] is used to test the applicability of the proposed event-detection algorithm.
Energy consumption data from three household installations are also used to evaluate the
performance of the proposed methodology; common metrics are employed and results
are compared with those obtained from other state-of-the-art methods proposed in the
literature. Finally, the computational and memory efficiency of the proposed system
is discussed.

4.1. Event Detection Evaluation

The BLUED dataset contains aggregate voltage/current and active power data, sam-
pled at 12 kHz and 60 Hz, respectively, from a 2-phase household in Pittsburgh, USA.
The recording duration is eight days. The time instants when a turn-on or turn-off event
occurred are also reported in the dataset. In particular, for testing the proposed event-
detection algorithm, the active power measurements of phase A, at 1 Hz, from 11:58:32
20 October 2011, to 09:29:55 21 October 2011, are used. In fact, during this period, 125 events
have occurred, including six pairs of simultaneous events. The proposed algorithm de-
tects the simultaneous events as well as two near-simultaneous turn-off events as single
events, respectively. Finally, one false event is detected; an appliance power drop, was
incorrectly identified as an appliance turning-off, while the appliance being still in opera-
tion. In summary, 118 out of the 125 events have been correctly detected by the proposed
event-detection algorithm. In Figure 4, the active power and the detected events for the
period from 18:30:00 to 20:30:00 are shown.

Figure 4. Event detection in a real household on a given day.
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The TPR, FPR and FNR metrics are calculated and compared to other more complex
solutions [32,49,50] in Table 3. It can be seen that the proposed algorithm can achieve good
results while being simple and computationally efficient.

Table 3. Event detection evaluation.

Reference TPR FPR FNR

Proposed 94.400% 0.003% 5.600%

[32] 94.000% 0.088% 6.000%

[49] 96.700% 0.810% 3.300%

[50] 94.130% 0.260% 5.870%

4.2. Classification Evaluation

To evaluate the classifiers performance regarding the three target appliances, the pri-
vate testing sets mentioned in Section 3.1 are used. The calculated accuracy, precision,
recall and F1-score results are summarized in Table 4.

Table 4. Classification results.

Appliance Accuracy Precision Recall F1-Score

Fridge 0.978 0.984 0.972 0.978

Washing machine 0.872 0.875 0.867 0.871

Microwave 0.992 0.986 0.999 0.992

It is evident that the proposed classification algorithm presents high performance
regarding the microwave and the fridge. These appliances are related to transient response
patterns presenting specific characteristics, thus can be identified with high confidence.
However, this is not the case for the washing machine, since the turn-on transient response
is a simple steep step-up waveform. Similar patterns are also related to the heating pro-
cesses of most of the household appliances, e.g., dishwasher, oven and generally appliances
that use resistive elements for heating as shown in Figure 5. This illustrates the relatively
lower scores obtained for the washing machine metrics compared to the other appliances.

Figure 5. Turn-on transient responses from different household appliances.
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4.3. Application on Residential Households

The overall performance of the proposed methodology is tested on a private dataset.
This dataset includes three 3-phase power supply households located in the Netherlands.
For each household, aggregated active power per phase was measured at 100 Hz along
with power consumption of selected appliances for 15 days. For evaluation purposes,
the proposed NILM system is applied only when the target appliance is connected.

Figure 6 presents the results for each target appliance, assuming an operational
duration of four hours. Specifically, the aggregated power is colored in blue. The actual
target appliance power measured with plugwise meters is colored in red. The target
appliance power, as estimated by the proposed methodology, is colored in green.

Figure 6. Power estimation for the selected appliances in real households. Time-series of (a) aggregated power, (b) actual
target appliance power, (c) estimated power for fridge; (d) aggregated power, (e) actual target appliance power, (f) estimated
power for washing machine; (g) aggregated power, (h) actual target appliance power, (i) estimated power for microwave.

The accuracy, precision, recall, F1-score, MAE, RMSE and RE are calculated as well as
their average considering the three households for 15 days. Results for the fridge, washing
machine and microwave oven are shown in Tables 5–7, respectively. It can be generally
observed that the proposed algorithm presents high accuracy regarding the power and en-
ergy estimates of the fridge and the microwave. On the contrary, the microwave oven recall
metric is low. This can be attributed to the fact that the proposed methodology considers
this appliance standby mode of operation as OFF. In fact, the power consumption during
this period is low, thus, of trivial importance regarding energy consumption calculations.
Regarding the washing machine results, the NILM system is designed to detect only the
most energy-intensive process during the washing machine operation cycle, i.e., water
heating mode of operation. For the rest of the operational cycles (non-detected), i.e., water
pumping, drum spinning, rinsing, the appliance status is assumed OFF. The partial detec-
tion of the washing machine appliance is evident in Figure 6, resulting into low recall scores.
Moreover, in the third household, the calculated low precision is due to the operation of
appliances presenting similar transient response patterns, being misclassified as washing
machine end-uses.
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Table 5. Results for fridge.

House Accuracy Precision Recall F1-Score MAE (W) RMSE (W) E (kWh) Ê (kWh) RE

1 0.86 0.94 0.77 0.85 12.97 38.67 14.26 11.74 0.18

2 0.89 0.96 0.74 0.84 7.05 17.14 6.19 4.24 0.32

3 0.98 1.00 0.90 0.95 3.68 12.89 4.74 5.05 0.06

Average 0.91 0.97 0.80 0.88 7.90 22.90 - - 0.19

Table 6. Results for washing machine.

House Accuracy Precision Recall F1-Score MAE (W) RMSE (W) E (kWh) Ê (kWh) RE

1 0.94 0.99 0.24 0.39 20.86 168.96 19.85 12.83 0.35

2 0.97 0.94 0.24 0.38 10.02 116.83 10.44 8.44 0.19

3 0.93 0.42 0.13 0.20 24.27 183.42 7.27 12.61 0.42

Average 0.95 0.78 0.20 0.32 18.38 156.40 - - 0.32

Table 7. Results for microwave.

House Accuracy Precision Recall F1-Score MAE (W) RMSE (W) E (kWh) Ê (kWh) RE

1 1.00 0.94 0.52 0.67 1.28 36.55 2.16 2.13 0.01

2 1.00 0.99 0.46 0.63 1.08 37.63 2.10 1.90 0.10

3 0.99 0.82 0.47 0.60 2.61 57.27 2.19 2.57 0.15

Average 1.00 0.92 0.48 0.63 1.66 43.82 - - 0.09

4.4. Comparison with Other Methods

The performance of the proposed methodology is compared to other NILM-based
energy consumption estimation systems. The average MAE, RE, precision, recall, F1-score
and accuracy calculations obtained by the proposed method are summarized in Tables 8–10
regarding the fridge, washing machine and microwave, respectively. The corresponding
results (where available) reported in the relevant literature are also presented as well as the
associated NILM technique, sampling frequency, and testing dataset. Note that, most of the
literature state-of-the-art methods have been tested by using the well-known UK Domestic
Appliance-Level Electricity (UK-DALE) [51] dataset. This dataset includes aggregated
active power and appliance measurements of 0.167 Hz for several months, recorded for a
small number of household installations. Moreover, the Reference Energy Disaggregation
Data Set (REDD) [52] has been used in [21] to evaluate the LSTM algorithm performance;
the sampling frequency is 1 Hz for mains and 0.333 Hz for the appliances. The proposed
NILM system is tested by using an 100-Hz private dataset, since high-frequency sampling
data are not provided in the above mentioned public datasets. It is important to stress out
that in order to conduct a fair comparison between the different approaches, all metrics
should be taken into consideration. However, this is not possible, since results for all
metrics calculations are not always provided in the corresponding literature. Therefore,
a direct comparison should be carried out with caution.
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Table 8. Comparison results among existing non-intrusive load monitoring (NILM) solutions for fridge identification and energy
consumption estimation.

Reference Method Sampling Frequency Dataset MAE RE Precision Recall F1-Score Accuracy

Proposed 100 Hz private 7.90 0.19 0.97 0.80 0.88 0.91

[19] Autoencoder 0.167 Hz UK-DALE 26.00 0.38 0.85 0.88 0.87 0.90

[19] CNN 0.167 Hz UK-DALE 18.00 0.13 0.79 0.86 0.82 0.87

[19] LSTM 0.167 Hz UK-DALE 36.00 0.25 0.72 0.77 0.74 0.81

[20] LSTM 0.167 Hz UK-DALE 51.00 0.21 0.45 0.51 0.47 0.60

[20] GRU 0.167 Hz UK-DALE 51.00 0.26 0.46 0.75 0.57 0.60

[20] seq2point 0.167 Hz UK-DALE 51.00 0.29 0.42 0.74 0.53 0.54

[21] LSTM 0.333 Hz REDD - - 0.91 0.96 0.93 -

[22] WGRU 0.167 Hz UK-DALE 28.46 0.13 - - 0.82 -

[22] SAEDdot 0.167 Hz UK-DALE 35.25 0.60 - - 0.62 -

[22] SAEDadd 0.167 Hz UK-DALE 32.31 0.65 - - 0.66 -

[25] PCNN AE 0.167 Hz UK-DALE 3.46 - - - - -

[25] PCNN LSTM 0.167 Hz UK-DALE 3.22 - - - - -

[26] seq2seq 0.167 Hz UK-DALE 24.49 - - - - -

[26] seq2point 0.167 Hz UK-DALE 20.89 - - - - -

[27] UNet 0.167 Hz UK-DALE 15.12 - - - - -

Note: GRU stands for gated recurrent units, seq2point/seq2seq for sequence-to-point/sequence-to-sequence, WGRU for window
GRU, SAEDdot/SAEDadd for self-attentive energy disaggregation with ‘additive’/‘dot’ attention mechanism, PCNN AE for
parallel CNN autoencoder.

Table 9. Comparison results among existing NILM solutions for washing machine identification and energy consumption estimation.

Reference Method Sampling Frequency Dataset MAE RE Precision Recall F1-score Accuracy

Proposed 100 Hz private 18.38 0.32 0.78 0.20 0.32 0.95

[19] Autoencoder 0.167 Hz UK-DALE 24.00 0.48 0.07 1.00 0.13 0.82

[19] CNN 0.167 Hz UK-DALE 11.00 0.74 0.29 0.24 0.27 0.98

[19] LSTM 0.167 Hz UK-DALE 109.00 0.91 0.01 0.73 0.03 0.23

[20] LSTM 0.167 Hz UK-DALE 25.00 0.35 0.16 0.56 0.24 0.95

[20] GRU 0.167 Hz UK-DALE 30.00 0.58 0.22 0.54 0.31 0.96

[20] seq2point 0.167 Hz UK-DALE 17.00 0.28 0.26 0.55 0.35 0.97

[22] WGRU 0.167 Hz UK-DALE 10.45 0.43 - - 0.34 -

[22] SAEDdot 0.167 Hz UK-DALE 13.10 0.34 - - 0.30 -

[22] SAEDadd 0.167 Hz UK-DALE 22.01 0.53 - - 0.30 -

[25] PCNN AE 0.167 Hz UK-DALE 83.40 - - - - -

[25] PCNN LSTM 0.167 Hz UK-DALE 73.16 - - - - -

[26] seq2seq 0.167 Hz UK-DALE 10.15 - - - - -

[26] seq2point 0.167 Hz UK-DALE 12.66 - - - - -

[27] UNet 0.167 Hz UK-DALE 11.51 - - - - -
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Table 10. Comparison results among existing NILM solutions for microwave identification and energy consumption estimation.

Reference Method Sampling Frequency Dataset MAE RE Precision Recall F1-Score Accuracy

Proposed 100 Hz private 1.66 0.09 0.92 0.48 0.63 1.00

[19] Autoencoder 0.167 Hz UK-DALE 9.00 0.73 0.15 0.94 0.26 0.99

[19] CNN 0.167 Hz UK-DALE 6.00 0.50 0.14 0.40 0.21 0.99

[19] LSTM 0.167 Hz UK-DALE 20.00 0.88 0.07 0.99 0.13 0.98

[20] LSTM 0.167 Hz UK-DALE 86.00 0.10 0.01 0.45 0.02 0.93

[20] GRU 0.167 Hz UK-DALE 97.00 0.07 0.02 0.75 0.04 0.93

[20] seq2point 0.167 Hz UK-DALE 103.00 0.16 0.01 0.79 0.03 0.91

[21] LSTM 0.333 Hz REDD - - 0.50 0.05 0.09 -

[22] WGRU 0.167 Hz UK-DALE 4.36 0.25 - - 0.44 -

[22] SAEDdot 0.167 Hz UK-DALE 5.97 0.19 - - 0.25 -

[22] SAEDadd 0.167 Hz UK-DALE 5.98 0.17 - - 0.26 -

[25] PCNN AE 0.167 Hz UK-DALE 27.50 - - - - -

[25] PCNN LSTM 0.167 Hz UK-DALE 9.42 - - - - -

[26] seq2seq 0.167 Hz UK-DALE 13.62 - - - - -

[26] seq2point 0.167 Hz UK-DALE 8.67 - - - - -

[27] UNet 0.167 Hz UK-DALE 6.48 - - - - -

From the results of Table 8 it can be seen that the proposed algorithm presents a high
performance on most metrics. In particular, the method presents the third-best MAE, being
inferior only to PCNN AE and PCNN LSTM. Regarding energy estimation, the RE metric is
low (equal to 0.19), thus the proposed method is outperformed only by the CNN [19] and
the WGRU [22] algorithms. Finally, the proposed solution presents the highest precision in
terms of status estimation. In particular, the fridge status has been falsely identified as ON
(real status was OFF) for the minimum of cases from all examined NILM solutions. On the
other hand, the proposed method presents moderate performance in terms of recall (0.80),
since the Autoencoder, CNN [19] and LSTM [21] algorithms achieve better results. This is
mainly attributed to the proposed power estimation algorithm design. The fridge status
may be falsely considered OFF prior to an actual turning-off, due to similar power step-
down recordings, caused by appliances different from the target one. A possible solution
is to determine the fridge duration pulse. However, this is practically infeasible since the
fridge duration pulse varies significantly due to temperature difference inside and outside
the appliance. Finally, by ranking all methods in terms of the F1-score and accuracy, it can
be realized that the proposed method is the second-best and first, respectively, among all
examined solutions (where the corresponding metrics were available).

By analysing the washing machine results in Table 9, it can be observed that the pro-
posed method presents relatively high MAE; seven out of the fourteen examined methods
perform better. Regarding energy estimation the proposed method can be considered as
the second-best in terms of RE, following the seq2point implementation [20]. Moreover,
the proposed method presents the highest precision and the lowest recall among the exam-
ined solutions. This is due to the fact that the proposed system is specifically designed to
detect the most energy-intensive and lower-duration process of the appliance, i.e., heating.
The rest of the washing machine operation cycles, e.g., drum-spinning and rinsing are
not taken into account as low energy-consumption longer-duration processes; thus, being
of less importance. This implies that the proposed NILM system can accurately estimate
the washing-machine energy consumption (low RE value) but predicts the appliance idle
status (no water heating process) as OFF, resulting into low recall and high MAE. Some of
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the current state-of-the-art NILM systems can indeed detect these low energy-intensive
processes. However, this results into an increased number of FP and consequently to
low precision. Note that, the low precision (although the highest among the examined
solutions) is attributed to the fact that the transient response of the heating process is
similar to that of other household appliances; thus, may lead to an increased number of
FP predictions. Finally, the F1-score and accuracy metrics set the proposed method as
the third- and fourth-best, respectively, among the examined solutions (where metrics
were available).

Finally, regarding the microwave oven (Table 10), the proposed method outperforms
the examined NILM methods presenting the lowest MAE and RE as well as the highest
precision, F1-score and accuracy. Better results by other methods are observed only in terms
of recall. This is due to the fact that the proposed system can not detect the microwave oven
standby mode of operation. However, the power consumption during this period can be
considered negligible. It is also important to note, that in NILM and from a user-experience
point of view, precision is considered more important than recall; missing an appliance
event is preferable than detecting an appliance event that has not actually occurred. In this
sense, missing standby modes is more favored than predicting false microwave end-uses.
The superiority of the proposed method for the analysis of the microwave oven is based
on the following: (a) the microwave transient response pattern is unique, thus, it can be
easily identified, and (b) the microwave oven end-use duration is short, varying from few
seconds to minutes; thus, the number of the possible turning-off events caused from other
appliances that may degrade the power estimation algorithm performance is very limited.

4.5. Computational and Memory Efficiency

The proposed methodology is designed to be memory and computationally efficient.
The first part, i.e., the event detector, calculates the power difference over time. The second
part, i.e., the classifier, is triggered only when a significant power step-up is detected. If the
classifier detects a target appliance, the power estimation algorithm is enabled. This event-
based approach can be considered computationally efficient compared to other solutions
operating continuously, i.e., even no turning-on event occurs. Furthermore, the transient
response classifier consists of 54,377 parameters. This is a small number compared to other
end-to-end deep learning models requiring a number of parameters in the order of millions,
e.g., the model parameters proposed in [19] range from 1 million to more than 150 million
parameters. Therefore, the proposed NILM system can be considered as memory efficient.

The only drawback is the use of 100 Hz active power data to recognize appliance
turning-on when a transient occurs. However, this feature is important to enable the
real-time application of the proposed NILM system, contrary to other approaches requir-
ing power data of more extended periods (minutes to hours) in order to identify which
appliance is operating. Moreover, it must be noted that the 100 Hz time-series is used only
when an event is detected, and only a 6 s window is extracted. Based on the above, it is
evident that the proposed system can operate on the edge without the need of high-end mi-
croprocessors.

5. Discussion—Towards Scalable Real-Time NILM Services

As already reported, the proposed methodology is implemented as a real-time scal-
able solution with minimum hardware requirements, thus allowing utilities to perform
a large-scale deployment. However, some criteria need to be met from an industry per-
spective before massively adopting such a service. Coming up with the correct blend of
characteristics is not a trivial issue. So, it is no surprise that no real-time NILM solution
based on sub-second energy data resolution has been rolled out in scale (>50 K end-users)
globally yet. In this section, four necessary criteria are investigated and we examine if the
proposed methodology meets them or not.

1. First of all, as expected, comes the accuracy metric. Accuracy usually refers to a
weights-based combination of (i) correctly detected events, (ii) precise energy con-
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sumption estimation for the detected appliance events and (iii) minimized FP. Energy
companies and electricity consumers usually trust a NILM service when its accuracy
exceeds 90% and when they are not receiving reports for appliances/activities never
actually occurred.

2. Second comes the data resolution and as a result the data volumes required for an
accurate NILM output. As mentioned above in Section 3, for real-time appliance
identification sub-second data granularity is needed. Note that, most of the solutions
presented in literature deal with kHz or even MHz of data. Considering as a rule of
thumb that 1-s resolution data from separate phases in a 3-phase installation result
in almost 1 GB of data being produced per year, we realize that moving into the
kHz resolution areas makes data parsing, storing and analysing a rather complicated,
costly and therefore non-scalable option.

3. Next in the list comes the computational/RAM efficiency of such a service. Al-
though the recent trend was to move everything to the cloud, now NILM vendors and
energy companies realise that such a decision is not always the most cost-effective;
the opposite actually. Running for example the whole service for ~100 k end users on
the cloud can increase cloud operation costs that much, that there is no business case
that can be built on top of a NILM layer, no matter how accurate that is. So, the key to
unlock scalability opportunities here is to built a system that is so efficient that can
run on the edge instead of the cloud.

4. Strictly connected to the hardware constraints of the previous point comes the hard-
ware cost. Traditionally sub-second data can be acquired only via a din meter hard-
ware installed in the metering cabinet (it’s only recently that a few smart-meter manu-
facturers make >1 Hz resolutions available through their S1 port [53]). On the other
hand, utilities and energy retail companies see NILM as a great customer engagement
tool on top of which they can build value-added services and they usually tend to
offer that as a freemium service. As a result, hardware cost has to be as low as possible
and ideally within the companies customer retention and acquisition budgets.

In Figure 7, three of the criteria mentioned above are analyzed for the proposed system,
i.e., accuracy, sampling frequency, and computational burden. As we can see, scalability-
related criteria #1 and #2 are met; the proposed system presents accuracy higher than 90%
in all examined cases by utilizing the sampling frequency of 100 Hz (see results in Section 4).
Although this frequency is high, it is still considerably lower than a resolution of several
kHz used in most state-of-the-art real-time implementations [33–35,39]. To that end, it is an
excellent “do a lot with a little” decision to take. Regarding criterion #3, i.e., computational
and memory efficiency, as demonstrated in Section 4.5, optimized design can efficiently
run on the edge and even on low-cost chip-sets. Specifically, in Figure 7, it is assumed that
the “High” value refers to expensive algorithms, incorporating several parameters that
cannot be easily integrated into a low-cost microprocessor. On the other hand, the “Very
Low” value refers to low computational complexity algorithms that can be integrated and
run in a low-cost microprocessor. The proposed system is between the “Low” and “Very
Low” area. Criterion #4 is expected to be met as a consequence of #3. However, such an
investigation falls out of the scope of this paper.
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Figure 7. Scalability evaluation of the proposed implementation.

6. Conclusions

In this paper, a novel real-time event-based energy disaggregation methodology is
introduced. Initially, a simple event-detection algorithm is proposed to find time instants
when an appliance is turned-on and extract transient responses at 100 Hz. Next, a convo-
lutional neural network classifier identifies if a transient response was caused by a target
appliance. Finally, a power estimation algorithm is implemented considering appliance
end-uses as pulses of constant power. Experimental results show a promising performance
for specific appliances.

Unlike most relevant papers in the literature, the proposed non-intrusive load mon-
itoring system can identify in real-time when an appliance is turned-on based on its
information-rich transient response sampled at 100 Hz. Furthermore, it is delay-free since,
once a target appliance has been turned-on, the active power can be directly calculated.
Moreover, the system is computational and memory-efficient and can be integrated into
smart meters.

The proposed approach can be used for a significant number of appliances with
negligible error. However, energy consumption of specific appliances, e.g., heat pump,
tumble dryer, including many states of operation, cannot be calculated by the proposed
methodology. For such cases, dedicated algorithms should be implemented. As future
steps, a more robust power estimation algorithm will be examined for multi-state appliance
uses. Additionally, the proposed methodology will be tested on more types of appliances.
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Abbreviations

The following abbreviations are used in this manuscript:

AE autoencoder
BLUED Building-Level fUlly-labeled dataset for Electricity Disaggregation
C&I commercial-industrial
CNN convolutional neural network
CPU central processing unit
FN false negative
FNR false negative rate
FP false positive
FPR false positive rate
GRU gated recurrent unit
HMM hidden Markov model
ILM intrusive load monitoring
IoT internet-of-things
LSTM long short-term memory
MAE mean absolute error
MPD maximum power difference
NILM non-intrusive load monitoring
NLP natural language processing
PCNN parallel CNN
RE relative error in total energy
REDD Reference Energy Disaggregation Data Set
ReLU rectified linear unit
RMSE root mean square error
SAEDadd self-attentive energy disaggregation with ‘dot’ attention mechanism
SAEDdot self-attentive energy disaggregation with ‘additive’ attention mechanism
seq2point sequence-to-point
seq2seq sequence-to-sequence
TN true negative
TP true positive
TPR true positive rate
UK-DALE UK Domestic Appliance-Level Electricity
WGRU window GRU
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Abstract: Energy disaggregation, known in the literature as Non-Intrusive Load Monitoring (NILM),
is the task of inferring the power demand of the individual appliances given the aggregate power
demand recorded by a single smart meter which monitors multiple appliances. In this paper,
we propose a deep neural network that combines a regression subnetwork with a classification
subnetwork for solving the NILM problem. Specifically, we improve the generalization capability of
the overall architecture by including an encoder–decoder with a tailored attention mechanism in the
regression subnetwork. The attention mechanism is inspired by the temporal attention that has been
successfully applied in neural machine translation, text summarization, and speech recognition. The
experiments conducted on two publicly available datasets—REDD and UK-DALE—show that our
proposed deep neural network outperforms the state-of-the-art in all the considered experimental
conditions. We also show that modeling attention translates into the network’s ability to correctly
detect the turning on or off an appliance and to locate signal sections with high power consumption,
which are of extreme interest in the field of energy disaggregation.

Keywords: attention mechanism; deep neural network; energy disaggregation; non-intrusive load
monitoring

1. Introduction

Non-Intrusive Load Monitoring (NILM) is the task of estimating the power demand
of each appliance given aggregate power demand signal recorded by a single electric meter
monitoring multiple appliances [1]. In the last years, machine learning and optimiza-
tion played a significant role in the research on NILM [2,3]. In the literature, solutions
based on k-Nearest Neighbor(k-NN), Support Vector Machine (SVM), Matrix Factoriza-
tion have been proposed [4,5]. A practical approach to NILM has to handle real power
measurements sampled at intervals of seconds or minutes. In this setting, one of the most
popular approaches is based on the Hidden Markov Model (HMM) [6], because of its
ability to model transitions in consumption levels of real energy consumption for target
appliances. Some successive papers focused on enhancing the expressive power of this
class of methods [7,8]. Recently, the energy disaggregation problem has been reformulated
as a multi-label classification problem [9]. In order to detect the active appliances at each
time step, the idea is to associate each value of the main power to a vector of labels of
length equal to the number of appliances, that are set to 1 if the appliance is active and 0
otherwise. The reformulated problem has been solved with different approaches [10–12].
However, there is no direct way to derive the power consumption for each appliance at
that time step. During the last years, approaches based on deep learning have received
particular attention as they exhibited noteworthy disaggregation performance. Deep Neu-
ral Networks (DNNs) have been successfully applied for the first time to NILM by Kelly
and Knottenbelt in [13], who coined the term “Neural NILM”. Neural NILM is a nonlinear
regression problem that consists of training a neural network for each appliance in order
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to predict a time window of the appliance load given the corresponding time window
of aggregated data. Kelly and Knottenbelt proposed three different neural networks to
perform NILM with high-frequency time series data: a recurrent neural network (RNN)
using Long Short-Term Memory units (LSTM); a Denoising Autoencoder (DAE); and a
regression model that predicts the start time, end time, and average power demand of each
appliance. The capability of LSTMs to successfully learn long-range temporal dependencies
of time series data makes it a suitable candidate for NILM. Their first approach is based on
stacked layers of LSTM units combined with a Convolutional Neural Network (CNN) at
the beginning of the network to automatically extract features from the raw data. In the
same paper, NILM is treated as a noise reduction problem, in which the disaggregated
load represents the clean signal, and the aggregated signal is considered corrupted by the
presence of the remaining appliances and by the measurement noise. For this purpose,
noise reduction is performed by means of a DAE composed of convolutional layers and
fully connected layers. In the experiments conducted by the authors, the DAE network
outperforms the LSTM-based architecture and the other approaches frequently employed
for this problem, such as HMMs and Combinatorial Optimization. In [14], an empiri-
cal investigation of deep learning methods is conducted by using two types of neural
network architectures for NILM. The first neural network solves a regression problem
which estimates the transient power demand of a single appliance given the whole series
of the aggregate power. The second type of network is a multi-layer RNN using LSTM
units, which is similar to the structure used in [13]. Zhang et al. [15] proposed instead a
sequence-to-point learning for energy disaggregation where the midpoint of an appliance
window is treated as classification output of a neural network with the aggregate window
being the input. Bonfigli et al. [16] proposed different algorithmic and architecture im-
provements to the DAE for NILM, showing that the Neural NILM approach improves on
the best known NILM approaches not based on DNNs like Additive Factorial Approximate
Maximum A Posteriori estimation (AFAMAP) by Kolter and Jaakkola [6]. Compared to the
work in [13], their DAE approach is improved by introducing pooling and upsampling
layers in the architecture and a median filter in the disaggregation phase to reconstruct the
output signal from the overlapped portions of the disaggregated signal. Shin et al. [17]
proposed a subtask gated network (SGN) that combines two CNNs, namely, a regression
subnetwork and a classification subnetwork. The building block of the two subnetworks is
the sequence-to-sequence CNN proposed in [15]. In their work, the regression subnetwork
is used to infer the initial power consumption, whereas the classification subnetwork
focuses on the binary classification of the appliance state (on/off). The final estimate of the
power consumption is obtained by multiplying the regression output with the probability
classification output. In the experiments conducted by the authors, the SGN outperforms
HHMs and state-of-the-art CNN architectures that have been proposed recently [13,15].
Chen et al. [18] adopted the structure of the SGN proposed in [17] and added to the SGN
backbone a Generative Adversarial Network (GAN). In their model, the disaggregator
for a given appliance is followed by a generator that produces the load pattern for that
appliance. They show that adding the adversarial loss can help the model to produce more
accurate result with respect to the basic SGN architecture. None of these state-of-the art
deep learning models use RNNs. In fact, in the NILM literature, CNNs have always shown
better performance than RNNs, even though RNNs are still widely employed for sequence
modeling tasks. In [19], a CNN-based DNN has been combined with data augmentation
and an effective postprocessing phase, improving its ability to correctly detect the activation
of each appliance with a small amount of data available. The attention mechanism applied
to NILM is a relatively new idea [20]. The DNN in [20] remarkably improves over Kelly’s
DAE when trained and tested on the same house. On the other hand, the generalization
capability on houses not seen during the training is modest. Moreover, training and testing
for the NILM task are time-consuming as they used the same architecture proposed in [21]
for machine translation which consists of RNN layers in both the encoder and the decoder.
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In this paper, we propose a RNN-based encoder–decoder model to extract appliance
specific power usage from the aggregated signal and we enhance it with a scalable and
lightweight attention mechanism designed for the energy disaggregation task. More in
detail, we substantially improve the generalization capability of the SGN by Shin et al.
by encapsulating our model in the regression subnetwork and by combining it with the
classification subnetwork. The implemented attention mechanism has the function to
strengthen the representational power of the neural network to locate the positions of
the input sequence where the relevant information is present. The intuition is that our
attention-based model could help the energy disaggregation task by assigning importance
to each position of the aggregated signal which corresponds to the position of a state
change of the target appliance. This feature is crucial for developing appliance models that
generalize well on buildings not seen during the training.

The proposed DNN is tested on two publicly available datasets—REDD and UK-
DALE—and the performance is evaluated using different metrics. The obtained results
show that our algorithm outperforms state-of-the-art DNNs in all the addressed experimen-
tal conditions. The paper is organized as follows. Section 2 describes the NILM problem.
Section 3 presents our DNN architecture. Section 4 describes the experimental procedure
and the obtained results. Finally, Section 5 concludes the paper.

2. NILM Problem

Given the aggregate power consumption (x1, . . . , xT) from N active appliances at the
entry point of the meter, the task of the NILM algorithm is to deduce the contribution
(yi

1, . . . , yi
T) of appliance i = 1, . . . , N, such that at time t = 1, . . . , T, the aggregate power

consumption is given by the sum of the power consumption of all the known appliances
plus a noise term. The energy disaggregation problem can be stated as

xt =
N

∑
i=1

yi
t + εt, (1)

where xt is the aggregated active power measured at time t, yi
t is the individual contribution

of appliance i, N is the number of appliances, and εt is a noise term. In a denoised scenario,
there is no noise term, whereas in a noised scenario, εt is given by the total contribution
from appliances not included and the measurement noise. Similarly to the work in [13], we
refer to the power over a complete cycle of an appliance as an appliance activation.

3. Encoder–Decoder with Attention Mechanism

In this section, we describe the adopted attention mechanism and DNN architecture
for solving the NILM problem.

3.1. Attention Mechanism

In the classical setting, a sequence-to-sequence network is a model consisting of two
components called the encoder and decoder [22]. The encoder is an RNN that takes an
input sequence of vectors (x1, . . . , xT), where T is the length of input sequence, and encodes
the information into fixed length vectors (h1, . . . , hT). This representation is expected to
be a good summary of the entire input sequence. The decoder is also an RNN which
is initialized with a single context vector c = hT as its inputs and generates an output
sequence (y1, . . . , yN) vector by vector, where N is the length of output sequence. At each
time step, ht and σt denote the hidden states of the encoder and decoder, respectively. There
are two well-known challenges with this traditional encoder–decoder framework. First,
a critical disadvantage of single context vector design is the incapability of the system to
remember long sequences: all the intermediate states of the encoder are eliminated and
only the final hidden state vector is used to initialize the decoder. This technique works
only for small sequences, however, as the length of the sequence increases, the vector
becomes a bottleneck and may lead to loss of information [23]. Second, it is unable to
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capture the need of alignment between input and output sequences, which is an essential
aspect of structured output tasks such as machine translation or text summarization [24].
The attention mechanism, first introduced for machine translation by Bahdanau et al. [21],
was born to address these problems. The novelty in their approach is the introduction
of an alignment function that finds for each output word significant input words. In this
way, the neural network learns to align and translate at the same time. The central idea
behind the attention is not to discard the intermediate encoder states but to combine and
utilize all the states in order to construct the context vectors required by the decoder to
generate the output sequence. This mechanism induces attention weights over the input
sequence to prioritize the set of positions where relevant information is present. Following
the definition from Bahdanau et al., attention-based models compute a context vector ct for
each time step as the weighted sum of all hidden states of the encoder. Their corresponding
attention weights are calculated as

etj = f (σt−1, hj), αtj =
exp(etj)

∑T
k=1 exp(etk)

, ct =
T

∑
j=1

αtjhj, (2)

where f is a learned function that computes a scalar importance value for hj given the value
of hj and the previous state σt−1 and each attention weight αtj determines the normalized
importance score for hj. As shown in Figure 1, the context vectors ct are then used to
compute the decoder hidden state sequence, where σt depends on σt−1, ct, and yt−1.
The attention weights can be learned by incorporating an additional feed-forward neural
network that is jointly trained with encoder–decoder components of the architecture.

Figure 1. Original graphical representation of the attention model by Bahdanau et al. in [21].

The intuition is that an attention-based model could help in the energy disaggregation
task by assigning importance to each position of the aggregated signal which corresponds
to the position of an activation, or more generally, to a state change of the target appliance.
This allows the neural network to focus its representational power on selected time steps
of the target appliance in the aggregated signal, rather than on the activations of non-
target appliances, hopefully yielding more accurate predictions. In fact, some events (e.g.,
turning on or off an appliance) or signal sections (e.g., high power consumption) are more
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important than other parts within the input signal. For this reason, being able to correctly
detect the corresponding time steps can play a key role in the disaggregation task. In neural
machine translation, languages are typically not aligned because of the word ordering
between the source and the target language. For the NILM problem, the aggregated power
consumption is perfectly aligned with the load of the corresponding appliance and the
alignment is known ahead of time. For this reason, to amplify the contribution of an
appliance activation in the aggregated signal, we use a simplified attention model inspired
by Raffel and Ellis [25], that combines all the hidden states of the encoder using their
relative importance. The attention mechanism can be formulated as

et = a(ht), αt =
exp(et)

∑T
j=1 exp(ej)

, c =
T

∑
t=1

αtht, (3)

where a is a learnable function the depends only on the hidden state vector of the encoder
ht. The function a can be implemented with a feed-forward network that learns a particular
attention weight αt that determines the normalized importance score for hj. This allows
the network to recognize the time steps that are more important to the desired output as
the ones having higher attention value.

3.2. Model Design

From a practical point of view, DNNs use partial sequences obtained with a sliding
window technique. The duration of an appliance activation is used to determine the
size of the window that selects the input and output sequences for the NILM modeling.
To be precise, let xt,L = (xt, . . . , xt+L−1) and yi

t,L = (yi
t, . . . yi

t+L−1) be, respectively, the
partial aggregate and appliance sequences of length L starting at time t. In addition,
we build the auxiliary state sequence (si

1, . . . , si
T), where si

t ∈ {0, 1} represent the on/off
state of the appliance i at time t. The state of an appliance is considered “on” when the
consumption is greater than some threshold and “off” when the consumption is less or
equal the same threshold. We use the notation si

t,L = (st, . . . , st+L−1) for the partial state
sequences of length L starting at time t. Our idea is to exploit the structure of the SGN
architecture proposed in [17] as the building block of the model. This general framework
uses an auxiliary sequence-to-sequence classification subnetwork that is jointly trained
with a standard sequence-to-sequence regression subnetwork. The difference here is
that we generate a more accurate estimate of the power consumption by performing the
regression subtask with a scalable RNN-based encoder–decoder with attention mechanism.
The intuition behind the proposed model is that the tailored attention mechanism allows
the regression subnetwork to implicitly detect and assign more importance to some events
(e.g., turning on or off of the appliance) and to specific signal sections (e.g., high power
consumption), whereas the classification subnetwork helps the disaggregation process by
enforcing explicitly the on/off states.

Differently from the DNN in [20], the scalability of the overall architecture is ensured
by the regression subnetwork where no RNN is needed in the decoder. In fact, the adopted
attention mechanism allows one to decouple the input representation from the output and
the structure of the encoder from the structure of the decoder. We exploit these benefits and
we design a hybrid encoder–decoder which is based on a combination of convolutional
layers and recurrent layers for the encoder and fully connected layers for the decoder.

3.3. Network Topology

Let f i
reg : RL

+ → R
L
+ be the appliance power estimation model, then the regression sub-

network learns the mapping p̂i
t,L = f i

reg(xt,L). The topology of the regression subnetwork
is as follows.
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Encoder: The encoder network is composed by a CNN with 4 one-dimensional
convolutional layers (Conv1D) with ReLU activation function that processes the input
aggregated signal and extracts the appliance-specific signature as a set of feature maps.
Finally, a RNN takes as input the set of feature maps and produces the sequence of
the hidden states summarizing all the information of the aggregated signal. We use
Bidirectional LSTM (BiLSTM) in order to get the hidden states ht that summarize the
information from both directions. A bidirectional LSTM is made up of a forward LSTM −→g
that reads the sequence from left to right and a backward LSTM ←−g that reads it from right
to left. The final sequence of the hidden states of the encoder is obtained by concatenating
the hidden state vectors from both directions, i.e., ht = [

−→
ht ;

←−
ht ]T .

Attention: The attention unit between the encoder and the decoder consists of a single
layer feed-forward neural network that computes the attention weights and returns the
context vector as a weighted average of the output of the encoder over time. Not all the
feature maps produced by the CNN have equal contribution in the identification of the ac-
tivation of the target appliance. Thus, the attention mechanism captures salient activations
of the appliance, extracting more valuable feature maps than others for the disaggregation.
The implemented attention unit is shown in Figure 2, and it is mathematically defined as

et = VT
a tanh(Waht + ba), (4)

αt = so f tmax(et), (5)

c =
T

∑
t=1

αtht, (6)

where Va, Wa, and ba are the attentions parameters jointly learned with the other compo-
nents of the architecture. The output of the attention unit is the context vector c that is used
as the input vector for the following decoder.

Figure 2. Graphical illustration of the implemented attention unit.

Decoder: The decoder network is composed by 2 fully connected layers (Dense).
The second layer has the same number of units of the sequence length L.

The exact configuration of regression subnetwork is as follows:
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1. Input (sequence length L determined by the appliance duration)
2. Conv1D (convolutional layer with F filters, kernel size K, stride 1, and ReLU activation

function)
3. Conv1D (convolutional layer with F filters, kernel size K, stride 1, and ReLU activation

function)
4. Conv1D (convolutional layer with F filters, kernel size K, stride 1, and ReLU activation

function)
5. Conv1D (convolutional layer with F filters, kernel size K, stride 1, and ReLU activation

function)
6. BiLSTM (bidirectional LSTM with H units, and tangent hyperbolic activation function)
7. Attention (single layer feed-forward neural network with H units, and tangent hyper-

bolic activation function)
8. Dense (fully connected layer with H units, and ReLU activation function)
9. Dense (fully connected layer with L units, and linear activation function)
10. Output (sequence length L)

Let f i
reg : RL

+ → [0, 1]L be the appliance state estimation model, then the classification
subnetwork learns the mapping ŝi

t,L = f i
cls(xt,L). We use the sequence-to-sequence CNN

proposed in [15] consisting of 6 convolutional layers followed by 2 fully connected layers.
The exact configuration of the classification subnetwork is the following:

1. Input (sequence length L determined by the appliance duration)
2. Conv1D (convolutional layer with 30 filters, kernel size 10, stride 1, and ReLU activa-

tion function)
3. Conv1D (convolutional layer with 30 filters, kernel size 8, stride 1, and ReLU activa-

tion function)
4. Conv1D (convolutional layer with 40 filters, kernel size 6, stride 1, and ReLU activa-

tion function)
5. Conv1D (convolutional layer with 50 filters, kernel size 5, stride 1, and ReLU activa-

tion function)
6. Conv1D (convolutional layer with 50 filters, kernel size 5, stride 1, and ReLU activa-

tion function)
7. Conv1D (convolutional layer with 50 filters, kernel size 5, stride 1, and ReLU activa-

tion function)
8. Dense (fully connected layer with 1024 units, and ReLU activation function)
9. Dense (fully connected layer with L units, and sigmoid activation function)
10. Output (sequence length L)

The final estimate of the power consumption is obtained by multiplying the regression
output with the probability classification output:

ŷi
t.L = f i

out(xt,L) = p̂t,L 
 ŝt,L, (7)

where 
 is the component-wise multiplication. The overall architecture is shown in
Figure 3, and we call it LDwA, that is, Load Disaggregation with Attention.
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Figure 3. Proposed Load Disaggregation with Attention (LDwA) architecture used in our experi-
ments.

4. Experiments

In this section, we show the experiments performed to evaluate our LDwA approach.
First, we describe the datasets, the performance metrics, and the experimental procedure
adopted. Then, we present and discuss the obtained results.

4.1. Datasets

In order to evaluate our algorithm and perform a fair comparison with state-of-the-
art methods, we choose two publicly available real-world datasets and adopt the same
partition into training and test sets of the previous studies [15,17,18]. The Reference Energy
Disaggregation Data Set (REDD) [26] contains data for six houses in the USA at 1 second
sampling period for the aggregate power consumption, and at 3 s for the appliance power
consumption. Following the previous studies, we consider the 3 top-consuming appliances:
dishwasher (DW), fridge (FR), and microwave (MW). We use the data of houses 2–6 to build
the training set, and house 1 as the test set. The preprocessed REDD dataset is provided by
the authors of [17]. The second dataset, the Domestic Appliance-Level Electricity dataset
UK-DALE [27], contains over two years of consumption profiles of five houses in UK, at a
6 s sampling period. Here, the experiments are conducted using the 5 top-consuming
appliances: dishwasher (DW), fridge (FR), kettle (KE), microwave (MW), and washing
machine (WM). For evaluation, we use houses 1, 3, 4, and 5 for training and house 2 for
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testing as in the previous works [15,17,18]. The UK-DALE dataset has been preprocessed by
the authors of [13]. We stress that for both datasets we consider the unseen setting in which
we train and test on different households. In fact, the best way to test the generalization
capability of a model is to use the model on a building not seen during the training. This is
a particularly desirable property for a NILM algorithm since the unseen scenario is more
likely in the real world application of the NILM service.

4.2. Metrics

In order to evaluate our NILM approach, we recall specific metrics that allow to capture
significant performance of the algorithm. Following the previous studies in [15,17,18], we
use the Mean Absolute Error (MAE) and the Signal Aggregate Error (SAE). Let yi(t) and
ŷi(t) be the true power and the estimated power at time t for the appliance i, respectively.
The MAE for the appliance i is defined as

MAEi =
1
T

T

∑
t=1

|yi(t)− ŷi(t)|. (8)

Give a predicted output sequence of length T, the SAE for the appliance i is defined as

SAEi =
1
N

N

∑
τ=1

1
K
|ri(τ)− r̂i(τ)|, (9)

where N is the number of disjoint time periods of length K, T = K · N, and ri(τ) and r̂i(τ)
represent the sum of the true power and the sum of the predicted power in the τth time
period, respectively . In our experiments, we set N = 1200 which corresponds to a time
period of approximately one hour for the REDD dataset and two hours for the UK-DALE
dataset. For both metrics, lower values indicate better disaggregation performance.

In order to measure how accurately each appliance is running in on/off states, we use
classification metrics such as the F1-score, that is, the harmonic mean of precision (P) and
recall (R):

F1 =
2P · R
P + R

, P =
TP

TP + FP
, R =

TP
TP + FN

, (10)

where TP, FP, and FP stand for true positive, false positive, and false negative, respectively.
An appliance is considered “on” when the active power is greater than some threshold and
“off” when it is less or equal the same threshold. The threshold is assumed to be the same
value used for extracting the activations [17,18]. In our experiments, we use a threshold of
15 Watt for labeling the disaggregated loads. Precision, recall, and F1-score return a value
between 0 and 1 where a higher number corresponds to better classification performance.

4.3. Network Setup

According to the Neural NILM approach, we train a network for each target appli-
ance. A mini-batch of 32 examples is fed to each neural network, and mean and variance
standardization is performed on the input sequences. For the target data, min-max normal-
ization is used where minimum and maximum power consumption values of the related
appliance are computed in the training set. The training phase is performed with a sliding
window technique over the aggregated signal, using overlapped windows of length L with
hop size equal to 1 sample. As stated in [13], the window size for the input and output pairs
has to be large enough to capture an entire appliance activation, but not too large to include
contributions of other appliances. In Table 1, we report the adopted window length L for
each appliance that is related to the dataset sampling rate. The state classification label is
generated by using a power consumption of 15 Watt as threshold. Each network is trained
with the Stochastic Gradient Descent (SGD) algorithm with Nesterov momentum [28] set
to 0.9. The loss function used for the joint optimization of the two subnetworks is given by
L = Lout +Lcls, where Lout is the Mean Squared Error (MSE) between the overall output of
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the network and the ground truth of a single appliance, and Lcls is the binary cross-entropy
(BCE) that measures the classification error of the on/off state for the classification subnet-
work. The maximum number of epochs is set to 100, the initial learning rate is set to 0.01,
and it is reduced by a decay factor equal to 10−6 as the training progresses. Early stopping
is employed as a form of regularization to avoid overfitting since it stops the training
when the error on the validation set starts to grow [29]. For the classification subnetwork,
we adopt the hyperparameters from in [17] as our focus is only the effectiveness of the
proposed components. The hyperparameter optimization of the regression subnetwork
regards the number of filters (F), the size of each kernel (K), and the number of neurons in
the recurrent layer (H). Grid search is used to perform the hyperparameter optimization,
which is simply an exhaustive search through a manually specified subset of points in the
hyperparameter space of the neural network where F = {16, 32, 64}, K = {4, 8, 16} and
H = {256, 512, 1024}. We evaluate the configuration of the hyperparameters on a held-out
validation set and we choose the architecture achieving the highest performance on it.
The disaggregation phase, also carried out with a sliding window over the aggregated
signal with hop size equal to 1 sample, generates overlapped windows of the disaggre-
gated signal. Differently from what proposed in [13], where the authors reconstruct the
overlapped windows by aggregating their mean value, we adopt the strategy proposed
in [16] in which the disaggregated signal is reconstructed by means of a median filter on
the overlapped portions. The neural networks are implemented in Python with PyTorch,
an open source machine learning framework [30] and the experiments are conducted on
a cluster of NVIDIA Tesla K80 GPUs. The training time requires several hours for each
architecture depending on the network dimension and on the granularity of the dataset.

Table 1. Sequence length (L) for the LDwA architecture.

Dataset DW FR KE MW WM

REDD 2304 496 - 128 -
UK-DALE 1536 512 128 288 1024

4.4. Results

We compare our approach with the HMM implemented in [31] and the DNNs recently
proposed: DAE, Seq2Point, S2SwA, SGN, and SCANet. We report the MAE, SAE, and F1-
score for the REDD and the UK-DALE datasets in Tables 2 and 3, respectively. The results
show that our approach turns out to be by far the best for both datasets. Apart from
us, the two most competitive methods are SGN and SCANet, which share the same
backbone we drew inspiration from. Results show that our network is better than both SGN
and SCANet, implying that the differences introduced in our approach are significantly
beneficial. In particular, our network outperforms SGN, showing that including our
regression network significantly improves both the estimate of the power consumption
and the load classification, and thus the overall disaggregation performance. More in
detail, for the dataset REDD the improvement in terms of MAE (SAE) with respect to
SGN ranges from a minimum of 24.13% (23.44%) on the fridge to a maximum of 45.15%
(54.4%) on the dishwasher, with an average improvement of 32.64% (39.33%). As for the
F1-score, the classification performance increase from a minimum of 6.67% on the fridge
to a maximum of 24.03% on the microwave, with an average increase of 15.45%. For
the UK-DALE dataset instead, the improvement in terms of MAE (SAE) with respect to
SGN ranges from a minimum of 18.62% (8.93%) on the fridge to a maximum of 39.78%
(50.25%) on the dishwasher, with an average improvement of 27.84% (30.65%). The F1-score
increases from a minimum of 2.49% on the kettle to a maximum of 10.82% on the washing
machine, with an average increment of the accuracy of 6.79%. Moreover, our method
outperforms the more recent SCANet getting better disaggregation performance on all the
appliances for both the datasets and both the metric. Looking at the tables, we see that
for the REDD dataset the improvement in terms of MAE (SAE) with respect to SCANet
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ranges from a minimum of 9% (5.84%) on the fridge to a maximum of 18.76% (28.59%)
on the microwave, with an average improvement of 13.21% (15.03%). The improvement
of the F1-score ranges from a minimum of 3.64% on the fridge to maximum of 11.58%
on the microwave, with an average increment of 6.81% of the accuracy. Finally, on the
UK-DALE dataset, the improvement in terms of MAE (SAE) with respect to SCANet ranges
from a minimum of 7.33% (7.2%) on the kettle to a maximum of 24.57% (19.55%) on the
dishwasher, with an average improvement of 15.69% (14%). The F1-score increases from a
minimum of 0.92% on the kettle to a maximum of 8.85% on the washing machine, with an
overall improvement of 4.41%.

In order to evaluate the computational burden of the proposed LDwA, we report in
Tables 4 and 5 the training time with respect to the most accurate DNNs. Clearly, LDwA is
less efficient than SGN as LSTM layers have larger number of trainable parameters than the
convolutional ones. However, the efficiency of our architecture with respect to the attention-
based S2SwA is remarkable. This is explained by the presence of the tailored attention
mechanism that does not require additional recurrent layers in the decoder. There is also
a huge improvement in the training time with respect to the SCANet. We achieve better
performance without the need to train a Generative Adversarial Network, that requires a
significant amount of computational resources and has notorious convergence issues.

The profiles related to the dishwasher, microwave, fridge, and kettle are shown in
Figures 4–7, respectively, where each appliance activation is successfully detected by the
LDwA in the disaggregated trace.

Table 2. Disaggregation performance for the REDD dataset. We report in boldface the best approach.

Model Metric DW FR MW Overall

FHMM [31]
MAE 101.30 98.67 87.00 95.66
SAE 93.64 46.73 65.03 68.47

F1 (%) 12.93 35.12 11.97 20.01

DAE [16]
MAE 26.18 29.11 23.26 26.18
SAE 21.46 20.97 19.14 20.52

F1 (%) 48.81 74.76 18.54 47.37

Seq2Point [15]
MAE 24.44 26.01 27.13 25.86
SAE 22.87 16.24 18.89 19.33

F1 (%) 47.66 75.12 17.43 46.74

S2SwA [20]
MAE 23.48 25.98 24.27 24.57
SAE 22.64 17.26 16.19 18.69

F1 (%) 49.32 76.98 19.31 48.57

SGN [17]
MAE 15.77 26.11 16.95 19.61
SAE 15.22 17.28 12.49 15.00

F1 (%) 58.78 80.09 44.98 61.28

SCANet [18]
MAE 10.14 21.77 13.75 15.22
SAE 8.12 14.05 9.97 10.71

F1 (%) 69.21 83.12 57.43 69.92

Proposed LDwA
MAE 8.65 19.81 11.17 13.21
SAE 6.94 13.23 7.12 9.10

F1 (%) 74.41 86.76 69.01 76.73
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Table 3. Disaggregation performance for the UK-DALE dataset. We report in boldface the best ap-
proach.

Model Metric DW FR KE MW WM Overall

FHMM [31]
MAE 48.25 60.93 38.02 43.63 67.91 51.75
SAE 46.04 51.90 35.41 41.52 64.15 47.80

F1 (%) 11.79 33.52 9.35 3.44 4.10 12.44

DAE [16]
MAE 22.18 17.72 10.87 12.87 13.64 15.46
SAE 18.24 8.74 7.95 9.99 10.67 11.12

F1 (%) 54.88 75.98 93.43 31.32 24.54 56.03

Seq2Point [15]
MAE 15.96 17.48 10.81 12.47 10.87 13.52
SAE 10.65 8.01 5.30 10.33 8.69 8.60

F1 (%) 50.92 80.32 94.88 45.41 49.11 64.13

S2SwA [20]
MAE 14.96 16.47 12.02 10.37 9.87 12.74
SAE 10.68 7.81 5.78 8.33 8.09 8.14

F1 (%) 53.67 79.04 94.62 47.99 45.79 64.22

SGN [17]
MAE 10.91 16.27 8.09 5.62 9.74 10.13
SAE 7.86 6.61 5.03 4.32 7.14 6.20

F1 (%) 60.02 84.43 96.32 58.55 61.12 72.09

SCANet [18]
MAE 8.71 15.16 6.14 4.82 8.48 8.67
SAE 4.86 6.54 4.03 3.81 5.77 5.00

F1 (%) 63.30 85.77 98.89 62.22 63.09 74.65

Proposed LDwA
MAE 6.57 13.24 5.69 3.79 7.26 7.31
SAE 3.91 6.02 3.74 2.98 4.87 4.30

F1 (%) 68.99 87.01 99.81 67.55 71.94 79.06

Table 4. Training time in hours for the REDD dataset.

Model DW FR MW

S2SwA [20] 8.91 5.75 3.93
SGN [17] 3.31 2.43 0.57

SCANet [18] 6.44 3.24 2.68
Proposed LDwA 5.37 3.07 1.88

Table 5. Training time in hours for the UK-DALE dataset.

Model DW FR KE MW WM

S2SwA [20] 14.53 9.42 5.02 6.21 6.12
SGN [17] 5.43 3.11 2.43 2.76 3.78

SCANet [18] 8.01 7.98 6.41 5.77 7.11
Proposed

LDwA 6.21 4.93 3.65 3.37 5.87

The tailored attention mechanism inserted into the regression branch of the network
allows us to correctly identify the relevant time steps in the signal and generalize well
in unseen houses. Furthermore, modeling attention is particularly interesting from the
perspective of the interpretability of deep learning models because it allows one to directly
inspect the internal working of the architecture. The hypothesis is that the magnitude of
the attention weights correlates with how relevant the specific region of the input sequence
is, for the prediction of the output sequence. As shown in Figures 4–7, our network is
effective at predicting the activation of an appliance and the attention weights present a
peak in correspondence of the state change of that appliance.
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Figure 4. REDD dishwasher load and the heatmap of the attention weights at 3 s resolution.

Figure 5. REDD microwave load and the heatmap of the attention weights at 3 s resolution.
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Figure 6. UK-DALE fridge load and the heatmap of the attention weights at 6 s resolution.

Figure 7. UK-DALE kettle load and the heatmap of the attention weights at 6 s resolution.

In conclusion, our approach does not only predict the correct disaggregation in terms
of scale, but is also successful at deciding if the target appliance is active in the aggregate
load at a given time step.

5. Conclusions

This paper proposes LDwA, a new deep neural network architecture for the NILM
problem that features a tailored attention mechanism with the encoder–decoder framework
to extract appliance specific power usage from the aggregated signal. The integration of
convolutional layers and recurrent layers in the regression subnetwork facilitates feature
extraction and allows to build better appliance models where the locations of relevant
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features are successfully identified by the attention mechanism. The use of the proposed
model for the regression subtask increases the network’s ability to extract and exploit
information dramatically. The proposed system is tested on two real-world datasets with
different granularity, REDD and UK-DALE. The experimental results demonstrate that the
proposed model significantly improves accuracy and generalization capability for load
recognition of all the appliances for both datasets compared to the deep learning state-of-
the-art.
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Abstract: The advance in energy-sensing and smart-meter technologies have motivated the use of
a Non-Intrusive Load Monitoring (NILM), a data-driven technique that recognizes active end-use
appliances by analyzing the data streams coming from these devices. NILM offers an electricity
consumption pattern of individual loads at consumer premises, which is crucial in the design of
energy efficiency and energy demand management strategies in buildings. Appliance classification,
also known as load identification is an essential sub-task for identifying the type and status of an
unknown load from appliance features extracted from the aggregate power signal. Most of the
existing work for appliance recognition in NILM uses a single-label learning strategy which, assumes
only one appliance is active at a time. This assumption ignores the fact that multiple devices can be
active simultaneously and requires a perfect event detector to recognize the appliance. In this paper
proposes the Convolutional Neural Network (CNN)-based multi-label learning approach, which links
multiple loads to an observed aggregate current signal. Our approach applies the Fryze power theory
to decompose the current features into active and non-active components and use the Euclidean
distance similarity function to transform the decomposed current into an image-like representation
which, is used as input to the CNN. Experimental results suggest that the proposed approach is
sufficient for recognizing multiple appliances from aggregated measurements.

Keywords: multi-label learning; Non-intrusive Load Monitoring; appliance recognition; fryze power
theory; V-I trajectory; Convolutional Neural Network; distance similarity matrix; activation current

1. Introduction

Recently, most of the world has witnessed a rapid increase in energy use in buildings (residential
and commercial). Residential and commercial buildings consume approximately 60% of the world’s
electricity (The United Nation’s Environment Programme’s Sustainable Building and Climate Initiative
(UNEP-SBCI)). Energy efficiency and conservation in buildings can be generally achieved through
replacing devices with more efficient ones, improving the efficiency of the building (for example,
using better insulation), or optimizing energy usage through behavior changes and application of
cost-effective technologies [1]. Unlike other strategies for building energy saving, optimizing energy
use through behavior changes is very fast and highly profitable. With the application of cost-effective
technologies, this strategy can also provide end-use appliances consumption to households that give
insight into what appliances are used, when they are used, how much power they consume, and why
such consumption [2]. The end-use appliances consumption is also useful for estimating the amount
of energy demand at consumer premises [3]. It further increases the awareness about the energy
consumption behavior of consumers.
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The recent advance in energy-sensing and smart-meter technologies has led to the rise of
Non-Intrusive Load Monitoring (NILM) [4,5]. NILM is a computational technique that uses aggregate
power data monitored from a single point source such as a smart meter or current or voltage
sensor-plug to infer the end-appliances running in the building and estimate their respective power
consumption [6]. It relies on signal processing and machine learning techniques that analyze appliance
patterns from aggregate power measurements. NILM provides households with cost-effective
monitoring of appliance-specific energy consumption, and it can be easily integrated into existing
buildings without causing any inconvenience to inhabitants. Several machine learning techniques
have been proposed to address the energy-disaggregation [7–12].

Recognizing appliances from aggregated power measurements is one of the vital sub-tasks of
NILM [11,13]. It uses machine learning techniques to analyze the pattern of the electrical features
vector extracted from aggregated measurements and classifies them into the respective appliance
category. Feature vectors are obtained after the state-transitions of appliances have been detected.
These features are extracted at different sampling rates (high-frequency or low-frequency) depending
on the measurements and electrical characteristics needed by the NILM algorithm [14]. The high
sampling frequency offers the possibility to consider fine-grained features such as voltage-current
(V-I) trajectory, harmonics, wavelet coefficients from steady-state, and transient behavior. As a result,
several techniques for appliance recognition applying high-frequency features such as V-I trajectory
have been proposed [15,16].

It has been demonstrated that transforming the V-I trajectory into image representation and
feeding it as the input to machine learning classifiers improves classification performance [11,14,17–21].
However, the presented works use single-label learning, thus assuming that only one appliance is
active at a time. This strategy ignores the fact that multiple devices can be active simultaneously as
well as dependencies between appliance usage. It further requires a perfect event detector to extract the
appliance features just after an event has been detected, particularly in aggregated measurements [19].
In contrast to single-label learning, multi-label learning links multiple appliances to an observed
aggregate power signal [22,23].

Several studies have demonstrated that multi-label learning represents a viable alternative to
conventional NILM approaches [23–27]. For example, the work by [25], investigated the possibility
of applying a temporal multi-label classification approach in non-event based NILM where a novel
set of meta-features was proposed. In [26] an extensive survey for the multi-label classification and
the multi-label meta-classification framework for low-sampling power measurements is presented.
Recent studies have explored deep neural networks for multi-label appliance recognition in NILM
[23,24], yet these approaches also rely on low-frequency data.

Instead, this paper presents a CNN-based multi-label appliance classification approach.
The proposed method uses the current waveform generated from the aggregated measurements,
taken in brief windows of time containing one or more than one event. The underlying assumption
of this method is that the extracted aggregated current will be the summation of active appliances.
Therefore, by training a classification model to learn the patterns of different combinations, it is possible
to successfully identify such appliances when these appear in a future time window.

To improve the discriminating power of our method, we apply the Fryze power theory,
which enables the decomposition of the current waveform into active and non-active components
in time-domain [20,28]. Our research hypothesis is that the sum of the active and non-active
components will exhibit unique and consistent characteristics based on the appliances that are running
simultaneously, hence providing a distinctive feature for multi-label classification.

The decomposed current is then transformed into an image representation using the
Euclidean-distance-similarity matrix [29] and fed into the CNN for multi-label classification.
The proposed approach is evaluated against the PLAID dataset [30], which consists of aggregated
voltage and current measurements at a 30 kHz sampling rate. The source code used in our experiments
is publicly available on a GitHub repository (https://github.com/sambaiga/MLCFCD).
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The main contribution of this paper is a multi-label learning strategy for appliance recognition
in NILM. The proposed approach associates multiple appliances to an observed aggregated current
signal. Overall, this contribution folds into four sub-contributions

1. We first demonstrate that for aggregated measurements, the use of activation current as an input
feature offers improved performance compared to the regularly used V-I binary image feature.

2. Second, we apply the Fryze power theory and Euclidean distance matrix as pre-processing steps
for the multi-label classifier. This pre-processing step improves the appliance feature’s uniqueness
and enhances the performance of the multi-label classifier.

3. Third, we propose a CNN multi-label classifier that uses softmax activation to capture the relations
between multiple appliances implicitly.

4. Fourth, we conduct an experimental evaluation of the proposed approach on an aggregated
public dataset and compare the general and per-appliance performances. We also provide an
in-depth error analysis and identified three types of errors for multi-label appliance recognition
in NILM. Finally, a complexity analysis of the proposed approach method is also presented.

The remainder of this paper is organized as follows: Section 2 summarizes related works
while Section 3 introduces the methods utilized in this work. Section 4 describes the experimental
design. Section 5 presents the results and discussion of the performed evaluations. Finally, Section 6
summarises the contributions of this paper and suggests future research direction.

2. Related Works

The concept of multi-label classification for NILM has gained momentum recently, as the
systematic review finds in [26]. Besides an extensive survey of the topic, the authors present the
multi-label meta-classification framework (RAkEL) and the bespoke multi-label classification algorithm
(MLkNN), where both employ time-domain and wavelet-domain feature sets. Other approaches to
multi-label NILM comprise restricted Boltzmann machines [31], and multi-target classification [32].

In [33], the authors present an algorithm that uses Sparse Representation based classification
for multi-label NILM. Furthermore, the authors compare their algorithm to other cutting edge
multi-label NILM approaches such as classification based on extreme learning machines (ELM) [34],
graph-based semi-supervised learning [35], and an approach based on deep dictionary learning and
deep transform learning [36]. Nalmpantis and Vrakas [37] present a multi-label NILM based on
the Signal2Vec algorithm that maps any time series into a vector space. A deep neural network
(DNN) based multi-label NILM applying active power features at low-sampling frequency is proposed
in [23,24]. In [23], the authors propose an approach that builds on Temporal Convolutional Networks
(TCNN). At the same time, Massidda et al. [24] applied Fully Convolutional Networks (FCNN) for
multi-label-learning in NILM, adopting some methods used in semantic segmentation.

Even though multi-label learning was found to be competitive with state-of-the-arts NILM
algorithms, none of the previous works have considered the V-I trajectory-based features for
multi-label-classification. Existing NILM methods that use V-I based features for appliance
classification uses single-label learning [11,14–21,38]. The use of V-I based features for appliance
classification was first introduced in [15], where shape-based features extracted from V-I (e.g., number
of self-interceptions) were used as input to a machine learning classifier. A review and performance
evaluation of the seven load wave-shape is presented in [39]. The shape-based feature was found to
have a direct correspondence to operating characteristics of appliances as contained in the current
wave-shape. Several other features such as asymmetry, mean line and self-intersection assessment
extracted from V-I waveforms were used to classify appliances in [16]. However, this approach
compresses the information in the V-I-trajectory into a limited amount of features extracted solely
based on deep engineering knowledge.

Against this background, other researchers demonstrated that transforming the V-I trajectory
into a binary image representation improves classification performance [17,18] by leveraging on

81



Energies 2020, 13, 4154

state-of-the-art deep-learning algorithms for image recognition. For example, De Baets et al. [14,19]
transforms the V-I trajectory into weighted pixelated V-I images and uses a CNN classifier. In another
work, a hardware implementation of the appliance recognition system based on V-I curves and a
CNN classifier is also proposed [21]. The work by [20,28] demonstrated that applying the Fryze
power theory to decompose the current into active and non-active components could enhance the
uniqueness of the V-I binary image and consequently improve classification performance. The work
by Teshome et al. [28] applied the non-active current and non-active voltage (V-I f ) for appliance
recognition. Liu et al. [20] further demonstrated that the visual representation of (V-I f ) is robust
enough to be used in Transfer learning. Recently it has been shown that transforming the V-I into
compressed distance similarity matrix consistently improves the appliance classification performance
compared to the commonly used V–I image representation [11,13].

Motivated by these two works, we apply decomposed currents as input features for recognizing
multiple running appliances. Still, unlike Liu et al. [20], and Teshome et al. [28], we transform the
decomposed current into a 2D Euclidean-distance similarity matrix, which is later used as the input to
the CNN model.

3. Proposed Methods

The goal of appliance recognition in NILM is to identify appliance states sm
t from the aggregate

measurements xt composed of individual appliance measurements ym
t such that m = 1, 2, . . . M,

where M indicates the number of appliances such that

xt =
M

∑
m=1

ym
t · sm

t + εt (1)

where εt represents both any contribution from appliances not accounted for and measurement
noise [40]. We refer to this as a multi-label NILM problem, where given observed aggregate
measurements, the unobserved appliance states st of electrical appliances are estimated.

Specifically, the problem is formulated as follows: Let X ∈ R
T×d = {x1 . . . xT} denote a set of

input features derived from the aggregate measurements of M appliances and Y ∈ R
T×M indicates the

associated appliance measurements, where each appliance has k states denoted as sm = {sm
1 , . . . sm

k }
such that sm

k ∈ {0, 1}. The matrix S ∈ R
T×M indicates the associated multi-label states. Thus,

given D = {xt, st|t = 1, . . . , T} datasets, the goal is to learn a multi-label classifier that predicts
the state vector st = {sm

t , . . . sM
t } from the input aggregate power feature vector xt.

The proposed approach is summarized in Figure 1.

Feature Extraction Fryze-
Decomposition PAA Distance-similarity

function
CNN Multilabel

learning

Aggregate current and
voltage measurements

Predicted
appliances

Text

Figure 1. The block diagram of the proposed method. The dotted block is the pre-processing
block where PAA stand for Piecewise Aggregate Approximation, a dimension reduction method
for high-dimensional time series signal.

3.1. Feature Extraction from Aggregate Measurements

In this work, we consider the appliance feature extracted from high-frequency aggregate voltage
and current measurements in brief windows of time. This feature contains one or more than one event
and allows us to distinguish multiple appliances running simultaneously, as illustrated in Figure 2a.
We define an activation current i and voltage v to be a one-cycle steady-state signal extracted from the
aggregate current and voltage waveform.
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To obtain the activation waveforms from aggregate measurements we measure Nc = 20 cycles of
current and voltage {i(a), v(a)} after an event. As depicted in Figure 2b, the Nc circles correspond to
steady-state behavior and is equivalent to Ts × Ns samples where Ts =

fs
f , fs is sampling frequency

and f is mains frequency. These cycles are aligned at the zero-crossing of the voltage and there-after
one-cycle activation current i and voltage v with size Ts is extracted, as illustrated in Figure 2.
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Figure 2. (a) Aggregated current signal for different events. (b) Twenty cycles of current after an event.
(c) Extracted activation currents for different events. The activation current of the event at time i is the
summation of the activation current for the all running appliances.

3.2. Feature Pre-Processing

As discussed in the related work section, the V-I binary trajectory mapping has been one of the
favored features for appliance classification in single-label learning. However, in this work, we consider
the features derived from source current i(t) in recognizing multiple running appliances from aggregate
measurements. Through experimentation, it was found that the aggregated activation voltage v(t)
has an almost identical pattern for most of the events, as illustrated in Figure 3. This suggests that the
activation current i reflects the electrical properties of an appliance.
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Figure 3. Activation voltage v(t) for different appliances in the PLAID dataset. The voltage has an
almost identical pattern for all the appliances.

Therefore, we propose the decomposed current features obtained by applying the Fryze power
theory [41].
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The Fryze power theory decomposes activation current into orthogonal components related
to electrical energy in time-domain [41]. According to this theory, it is possible to decompose the
activation current i into active i(t)a and non-active components i(t) f , such that:

i(t) = i(t)a + i(t) f (2)

The active current i(t)a is the current of the resistive load, having the same active power at the
same activation voltage. In Fryze’s theory, the active power is calculated as the average value of
i(t) · v(t) over one fundamental cycle Ts defined as follows:

pa =
1
Ts

Ts

∑
t=1

i(t)v(t) (3)

The active current is therefore defined as

ia(t) =
pa

v2
rms

v(t) (4)

where vrms is the rms voltage, expressed as follows:

vrms =

√√√√ 1
Ts

Ts

∑
t=1

v(t)2 (5)

The current ia(t) represents the resistance information and is purely sinsoidal. The non-active
component is then equal to

i(t) f = i(t)− i(t)a (6)

Figure 4 presents the source currents and the corresponding active and non-active components for
the twelve appliances in the PLAID dataset. It can be observed from Figure 4 that the active component
approaches a pure sine wave even for non-periodic load currents like a Compact Fluorescent Lamp
(CFL) and Laptop.

Once the activation-current has been decomposed, the Piece-wise Aggregate Approximation
(PAA) is used to reduce the dimensional of the decomposed signal ia and i f from Ts to a predefined
size w. PAA is a dimension reduction method for high-dimensional time series signal [42]. This is a
crucial pre-processing step as it reduces the high-dimensionality of the extracted activation current
feature with minimal information loss.

To further enhance the uniqueness of the decomposed-current feature, a Euclidean distance
function du,v = ||i(t)u − i(t)v||2 that measures how similar or related two data points are is applied on
the active and non-active current. The distance similarity function is widely used as a pre-processing
step for many of the machine learning approaches such as K-means clustering and K-nearest neighbor
algorithms [29,43].The distance similarity matrix Dw,w for points i(t)1, i(t)2, . . . i(t)w is the a matrix
of squared euclidean distances representing the spacing of a set of w points in euclidean space [29]
such that

Dw,w =

⎡⎢⎢⎢⎢⎣
0 d1,2 · · · d1,w

d2,1 0 · · · d2,w
...

...
. . .

...
dw,1 dw,2 · · · 0

⎤⎥⎥⎥⎥⎦ (7)

Figure 5 depicts the activation current, its components and their corresponding distance similarity
matrix when a CFL and a laptop charger are active.
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Figure 4. Normalized source current i(t) and their respective active i(t)a and reactive components
i(t) f after applying Fryze power theory. The current is normalized for visualization purposes.
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Figure 5. Currents and distance matrix when Compact Fluorescent Lamp (CFL) and laptop charger are
active. (a) Source current i(t). (b) Active current ia(t). (c) Non-active current ia(t). (d) Distance matrix
for source current. (e) Distance matrix for active current (f) Distance matrix for non-active current.

3.3. Multi-Label Modeling

A common approach that extends neural networks to multi-label classification is to use one neural
network to learn the joint probability of multiple labels conditioned to the input features representation.
The final predicted multi-label is obtained by applying a sigmoid activation function [23]. This process
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requires an additional thresholding mechanism to transform the sigmoid probabilities to multi-label
outputs. However, building such a threshold function is very challenging. Therefore a default threshold
of 0.5 is often employed [44].

To address this challenge, we propose a CNN multi-label classifier that uses softmax to implicitly
capture the relations between multiple labels. As shown in Figure 6, the proposed CNN multi-label
classifier consists of a four-stage CNN layer each with 16, 32, 64, and 128 feature maps, 2 × 2 strides.

The first two CNN layers use a 5 × 5 filter size, while the last two layers use a 3 × 3 filter size.
The four CNN layers are followed by a batch normalization layer and the ReLU activation function.
The last CNN layer is followed by an adaptive average pooling layer with an output size of 1 × 1.
The CNN layer takes current-based features as inputs and produces a latent-feature vector zi.

4-stage 
CNN layers POOL Dropout FC1 BN ReLU FC2 BN ReLU Dropout FC3 Softmax

Inputs

Figure 6. Block diagram of the Convolutional Neural Network (CNN) multi-label classifier. It consists
of a CNN encoder to learn feature representation from the input feature, and the output layer to
produce the predicted labels.

The output layer consists of three FC layers with a hidden size of 502, 1024, and 2M, respectively.
The last layer is followed by an adaptive average pooling layer and three linear layers with a hidden
size of 5012, 1024, and M, respectively. M is the maximum number of appliances available. This layer
receives the output of the CNN layer to produce an output Os of size (2 × M). The final predicted
multi-label states, ŝt, is obtained by applying the softmax activation function ŝt = softmax(Os).
Thus, the proposed multi-label classifier learns the joint representation of multiple appliances states
conditioned on activation-based input features.

To learn the model parameters, a standard back propagation is used to optimize the cross-entropy
between the predicted softmax distribution and the multi-label target of each input feature.

L(ŝ, s) = − 1
N

N

∑
t=1

M

∑
i=1

sti · log
exp(ŝti)

∑2
j exp(ŝtj)

(8)

The joint cross-entropy loss implicitly captures the relations between labels.
The CNN multi-label classifier is trained for 500 iterations using the Adam optimizer with an

initial learning rate of 0.001, betas of (0.9, 0.98), and a batch size of 16. A factor of 0.1 reduces the
learning rate once the learning stagnates for 20 consecutive iterations. To avoid over-fitting, early
stopping with patience is used where the training model terminates once the validation performance
does not change after 50 iterations. The dropout is set to 0.25.

4. Evaluation Methodology

4.1. Dataset

The proposed method is evaluated on the PLAID dataset [30] that contains aggregate voltage
and current measurements. The PLAID aggregated measurement data include measurements of more
than one concurrently running appliances sampled at 30 kHz. It includes 1478 aggregated activations
and deactivations for 12 different appliances measured at one location. Since we are interested in
recognizing multiple active appliances, we only select activations and deactivations with at least one
running appliance in the background resulting in 1154 samples. The distribution of the number of
active appliances and appliances on the extracted 1154 activations is depicted in Figure 7.
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Figure 7. (a) Active appliances distributions. (b) Appliances distribution on the extracted 1154 activations.
The soldering iron has large number of activations because it has two start-up events.

4.2. Performance Metrics

We quantitatively evaluate the classification performance with label-based and instance-based
metrics. Label-based metrics work by evaluating each label separately and returning the average (micro
or macro) value across all appliances. In contrast, the instance-based metrics evaluate bi-partition
over all instances. To this end, two metrics, namely example-based F1 (F1-eb) and macro-averaged F1

(F1-macro) measures are used. Example-based F1 (F1-eb) is an instance-based metric that measures the
ratio of correctly predicted labels to the sum of the total true and predicted labels such that:

F1-eb =
∑M

i=1 2 · tp

∑M
i=1 yi + ∑M

i=1 ŷi
(9)

The F1-macro is derived from F1 score and measures the label-based F1 score averaged over all
labels and is defined as:

F1-macro =
1
M

M

∑
i=1

2 · tpi

2 · tpi + fpi + fpi
(10)

where tp is true positive, fp is false positive and fn is false negative. High F1-ma usually indicate high
performance on less frequent labels [45].

4.3. Experiment Description

To benchmark our approach, we adopt multi-label stratified 10-fold cross-validation with random
shuffle [46]. This evaluation approach provides stratified randomized folds for multi-label while
preserving the label’s percentage in each fold. We compare the performance of the proposed CNN
model against the commonly used multi-label k-nearest-neighbor (MLkNN) [47] and Binary relevance
k-nearest-neighbor (BRkNN) [48] model.

To evaluate the proposed activation current feature, we first establish a baseline in which the
V-I binary image is used as an appliance feature. The VI binary image of size w × w, is obtained by
meshing the V − I trajectory and assigning a binary value that denotes whether the trajectory traverses
it as described in [14]. This experiment setup helps us to answer an essential question on whether the
proposed approach is sufficient for recognizing multiple appliances from aggregated measurements.
We analyze this by altering the type input features and compare the obtained performance. To gain
more insight into the proposed approach, we further examine the individual appliance performance
and misclassification errors.

To analyze the computational complexity of the proposed approach, we also assess the training
and inference times as a function of the number of data samples. This was achieved by training the
MLkNN baseline and CNN-based multi-label classifier while varying the training and testing size.
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In each run, the model is trained on p samples of data for 100 iterations and tested on (1 − p) samples
data where p ∈ [0.1, 0.9].

Finally, we compare the appliance classification results with related state-of-art methods. However,
we should emphasize that due to the difficulty in producing fair comparisons as a result of different
experimental settings (e.g., sampling frequency, measurements, learning strategy, dataset, and the
metrics) these comparisons are merely illustrative of the potential of the proposed method.

5. Results and Discussion

5.1. Comparison with Baseline

The results of the comparisons between the baselines and the proposed CNN multi-label learning
for the V-I binary image and activation current feature are depicted in Figure 8a.
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Figure 8. maF1 score performance comparison between the proposed CNN model and the two baselines
for different inputs features: (a) Comparison between voltage-current (V-I) binary image and current
activation features; (b) Comparison between the activation current based features.

From Figure 8a, we see that the proposed CNN multi-label learning performs better than the
baselines in both feature types. We also observe that compared to the current activation feature, the V-I
binary feature representation yields low maF1 scores in both the proposed CNN model and the two
baseline algorithms. We see a slight increase in maF1 score (from 0.826 ± 0.024 to 0.849 ± 0.024 for the
CNN model and from 0.779 ± 0.028 to 0.827 ± 0.021 for the MLkNN model) when activation current
is used as input features. This result suggests that features derived from activation current could be
useful in recognizing appliances from total measurements.

We, therefore, analyzed three additional features derived from the activation current, namely
decomposed current, current distance similarity matrix, and decomposed distance similarities.
The results are presented in Figure 8b.

As it can be observed, the three current-based features significantly improve the classification
performance in the CNN model, while achieving nearly the same performance on the two
baselines. For the CNN model, the decomposed current feature attains an average 9.4% maF1 score
(from 0.849 ± 0.024 to 0.931 ± 0.015) increase over the activation current feature. This result is in
line with the one obtained in [20], which suggested that decomposing the activation current into its
active components enhances the uniqueness of the V-I trajectory. We also see about 10 percentage
points increase in maF1 (from 0.849 ± 0.024 to 0.94 ± 0.015) for the decomposed distance similarities.
The decomposed current and current distance matrix features achieve comparable performance.
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This result indicates that the decomposed current features could help increase the performance of
appliance recognition in NILM.

Figure 9 presents the predicted multiple appliances from the CNN based classifier with different
feature representation. We see that compared to the activation current in Figure 9a and the V-I image
Figure 9c, the proposed Fryze’s current-decomposition in Figure 9b,d is capable of detecting all
multiple running appliances. This shows that the Fryze current decomposition-based feature alone is
sufficient for the identification of multiple running appliances.
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Figure 9. Prediction comparison for different feature representations with the proposed CNN multilabel
classifier. (a) Action current. (b) Decomposed current. (c) V-I image. (d) Distance matrix.

To gain insights on the performance of individual appliances, we further analyze the per-appliance
ebF1 score for the MLkNN and the proposed CNN multi-label classifier, as depicted in Figure 10.
The CNN model with decomposed current distance matrix feature obtains over 90% ebF1 score for
each appliance except for AC, ILB, and LaptopCharger. We also see that the MLkNN baseline with the
same decomposed current distance matrix feature obtains over 90% ebF1 score for only four appliances,
namely FridgeDefroster, CoffeeMaker, Vacuum, and CFL. In both cases, we observe low scores for V-I
binary features except for FridgeDefroster, CoffeeMaker, and Vacuum, which score above 90% ebF1.
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Figure 10. Per-appliance ebF1 score on PLAID dataset. AC = air conditioning, CFL = compact
fluorescent lamp, ILB = incandescent light bulb. (a) Multi-label k-nearest-neighbor (MLkNN) (b) CNN.

5.2. Error Analysis

We also analyze the miss-classification errors for the proposed CNN model. To this end,
we identified three types of errors, namely zero-error, one-to-one, and many-to-many errors.

The zero-type mistake happens when a model predicts no appliance is running while there is at
least one active appliance. It can be observed from Figure 11 that the number of zero-type mistakes is
very low for the three feature types with decomposed-current distance making no such type of error.
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Figure 11. (a) Distributions of type errors the model makes. (b) Number of correct predictions for
single, double and triple activations.

On the other hand, the one-to-one is the type of error that the model makes when there is only
one active appliance running. We see from Figure 11 that the V-I binary image makes 45 one-type
errors while the current based features reduce this to seven for the decomposed current, and six for
the decomposed current distance feature. The low error rate when one appliance is running can be
attributed to the high number of single activations, over 50%, as presented in Figure 7a. It further shows
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the effectiveness of the proposed CNN multi-label learning in recognizing individually operating
appliances, with over 98% accuracy, as shown in Figure 11b.

The many-to-many errors are confusions that a model makes when several appliances are active.
Since the PLAID dataset used in our experiment consists of up to three simultaneous active appliances,
we further categorized many-to-many errors into single, double, or complete-error. A single error occurs
when a model confuses only one appliance when two or three appliances are active, whereas in double
fault, the model confuses two appliances when three appliances are active. The complete-error is the
case when the model produces incorrect predictions for all the active appliances. It can be inferred
from Figure 11 that the proposed CNN multi-label model makes a higher number of double errors for
the three input feature types used. This is likely to be caused by the fewer numbers of samples with
more than two appliances running simultaneously at about 5.8%, as depicted in Figure 7a.

5.3. Complexity Analysis

The results for the complexity analysis between the baseline and the proposed CNN multi-label
learning are presented in Figure 12. As expected, since the proposed method is an eager learner (i.e.,
a model is created in the training phase), it takes significantly longer to train than the MLKNN baseline
(Figure 12a). In contrast, the proposed method has a much shorter inference time since the model
was already created in the training phase. Furthermore, from Figure 12b it can be observed that the
proposed method achieves better performance even with less training data, which is positive if one
considers that labeled data is scarce and often hard to acquire.
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Figure 12. (a) Distributions of type errors the model makes. (b) Number of correct predictions for
single, double and triple activations.

5.4. Comparison with State-of-the-Art Methods

Table 1 provides an overview of the results obtained in other related works. As it can be
observed, there are many differences that make a fair and objective comparison impossible to achieve.
For instance, while our approach uses current waveforms extracted from high-frequency power
measurements, the results presented in [26] were obtained on low-frequency data, and on a different
dataset. Yet, they also used the MLkNN multi-label classifier, achieving considerably lower results.
Moreover, our results cannot be directly compared with the ones presented in [49], as these were
obtained from a private dataset, besides the very different experimental settings including a different
performance metric. In [23,37], the F1 macro score for TCNN and FCNN DNN based multi-label
classifiers are given; however, they use UK-DALE dataset making the comparison irrelevant.

An almost direct comparison is only possible between our method and the results from [19] who
have used the same dataset and performance metric. Still, it should be stressed that the performance
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evaluation method was different since their work targets single-label classification. Yet, the results
obtained with our approach are superior by six percentage points.

In short, for a fair comparison, we would have to re-implement all these approaches, which
unfortunately is not always possible. Nevertheless, to make this task easier for other authors,
we open-sourced the code necessary to replicate our experiments.

Table 1. Results comparison.

Approach
Learning
Strategy

Model Dataset
Sampling
Frequency

Results (Metric)

De Baets et al. [19] single CNN PLAID [30] High 88.0% (F1 macro)
Faustine et al. [13] single CNN PLAID [30] High 97.77% (F1 macro)
Tabatabaei et al. [26] multi MLkNN REDD-House1 [50] Low 61.90% (F1 macro)
Lai et al. [49] multi SVM/GMM Private - 90.72% (Accuracy)
Yang et al. [23] multi FCNN UK-DALE-house 1 [51] Low 93.8% (F1 score)
Nalmpantis and Vrakas [37] multi TCNN UK-DALE-house 1 [51] Low 92.5% (F1 score)
Proposed approach multi CNN PLAID [30] High 94.0% (F1 score)

6. Conclusions and Future Work Directions

In this work, we have approached appliance recognition in NILM as a multi-label learning problem
which links multiple appliances to an observed aggregate current signal. We first show that features
derived from activation current alone could be useful in recognizing devices from total measurements.
We later apply Fryze’s power theory, which decomposes the current waveform into active and
non-active components. The decomposed current signal was then transformed into an image-like
representation using the Euclidean-distance-similarity function and fed into the CNN multi-label
classifier. Experimental evaluation on the PLAID aggregated dataset shows that the proposed approach
is very successful at recognizing multiple appliances from aggregated measurements with an overall
0.94 F-score.

We further show the effectiveness of the proposed CNN multi-label learning in recognizing
a single running appliance with over 98% accuracy. We will investigate the use of Fryze’s current
decomposition and distance similarity matrix for single-label appliance recognition in future iterations
of this work. Finally, we presented a detailed error analysis and identified three types of errors:
zero-error, one-to-one, and many-to-many errors.

At this point, we acknowledge that the performance of the proposed approach is not yet
satisfactory in detecting triple running appliances. A possible explanation for this issue is the
small number of training samples with more than two running appliances. In the future, we would
like to test our approaches against datasets with more training data. However, this may imply
the development of such a dataset since the currently available ones are still scarce concerning
high-frequency measurements [52,53].

Finally, it should be mentioned that the proposed method assumes that the appliance state
transition (power event) is known in advance. However, in practice, this information has to be
provided by an event detection algorithm (e.g., [54–56]). Therefore, future work should investigate
how to integrate the proposed approach in the event-based NILM pipeline. Specifically, we plan
to explore the use of the proposed Fryze current decomposition for event detection in multi-label
appliance recognition.
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Abstract: Effective detection of electricity theft is essential to maintain power system reliability. With
the development of smart grids, traditional electricity theft detection technologies have become
ineffective to deal with the increasingly complex data on the users’ side. To improve the auditing
efficiency of grid enterprises, a new electricity theft detection method based on improved synthetic
minority oversampling technique (SMOTE) and improve random forest (RF) method is proposed in
this paper. The data of normal and electricity theft users were classified as positive data (PD) and
negative data (ND), respectively. In practice, the number of ND was far less than PD, which made the
dataset composed of these two types of data become unbalanced. An improved SOMTE based on
K-means clustering algorithm (K-SMOTE) was firstly presented to balance the dataset. The cluster
center of ND was determined by K-means method. Then, the ND were interpolated by SMOTE on
the basis of the cluster center to balance the entire data. Finally, the RF classifier was trained with
the balanced dataset, and the optimal number of decision trees in RF was decided according to the
convergence of out-of-bag data error (OOB error). Electricity theft behaviors on the user side were
detected by the trained RF classifier.

Keywords: smart grid; nontechnical losses; electricity theft detection; synthetic minority oversampling
technique; K-means cluster; random forest

1. Introduction

Power losses are usually divided into technical losses (TLs) and nontechnical losses (NTLs) [1].
NTLs refer to the power loss during the transformation, transmission, and distribution process and
are mainly caused by electricity theft on the user side [2]. In most countries, electricity theft losses
(ETLs) account for the predominant part of the overall electricity losses [3], and are mainly taking
place in the medium- and low-voltage power grids. ETLs can cause serious problems, such as loss
of revenue of power suppliers, reducing the stability, security, and reliability of power grids and
increasing unnecessary resources consumption. In India, ETLs were valued at about US$4.5 billion [4],
which is still rising year by year. ETLs are reported to reach up to 40% of the total electricity losses
in countries such as Brazil, Malaysia, and Lebanon [5]. ETLs of some provinces in China reached
about 200 million kWh, with an overall cost of 100 million yuan. As reported in [6], the losses due to
electricity theft reached about 100 million Canadian dollars every year with a power loss that could
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have supplied 77,000 families for one year. The annual income loss caused by electricity theft in the
United States accounted for 0.5% to 3.5% of the total income [7,8]. Therefore, the research on advancing
electricity theft detection techniques has become essential due to its significance for energy saving and
consumption reductions [9].

In the past an electric meter packaging, professional electric meters, and bidirectional metering
conventional methods were adopted to deal with electricity theft [10,11]. Today, electricity theft
detection methods rely on classifying the data collected by smart meter measurement system.
Classification of the electricity theft and normal behaviors is conducted through data analysis [12].

The modern methods for electricity theft detection mainly include state-based analysis, game
theory, and classification [13].

State-based detection schemes employ specific devices to provide high detection accuracy.
A novel hybrid intrusion detection system framework that incorporates power information and sensor
placement has been developed in [14] to detect malicious activities such as consumer attacks. In [15],
an integrated intrusion detection solution (AMIDS), was presented to identify malicious energy theft
attempts in advanced metering infrastructures. AMIDS makes use of different information sources
to gather a sufficient amount of evidence about an ongoing attack before marking an activity as
a malicious energy theft. In [16], state estimation was used to determine electricity theft users. When
there was a difference between the voltage of the state estimation and the voltage of the measured
node, the breadth-first search was conducted from the root node of the distribution network, and the
magnitude of the difference at the same depth was compared to locate electricity theft users. In [17],
in order to detect and localize the occurrence of theft in grid-tied microgrids, A Stochastic Petri Net
(SPN) with a low sampling rate was used to first detect the random occurrence of theft and then
localize it. The detection was based on determining the accurate line losses through (Singular Value
Decomposition) SVD, which led to the recognition of theft in grid-tied MGs. State-based detection
schemes will bring additional investment required for monitoring systems, including equipment costs,
system implementation costs, software costs, and operation/training costs. In [18], it investigated
energy theft detection in microgrids, considering a realistic model for the microgrid’s power system
and the protection of users’ privacy. It proposed two energy theft detection algorithms capable of
successfully identifying energy thieves. One algorithm, called centralized state estimation algorithm
based on the Kalman filter (SEK), employed a centralized Kalman filter. However, it could not protect
users’ privacy and did not have very good numerical stability in large systems with high measurement
errors. The other one, called privacy-preserving bias estimation algorithm (PPBE), was based on two
loosely coupled filters, and could preserve users’ privacy by hiding their energy measurements from
the system operator, other users, and eavesdroppers. However, state-based detection schemes employ
specific devices to provide high detection accuracy, which, however, come with the price of extra
investment required for the monitoring system including device cost, system implementation cost,
software cost, and operating/training cost.

Another approach for theft detection is based on game theory. Reference [19] formulated the
problem of theft detection as a game between an illegitimate user and a distributor. The distributor
wants to maximize the probability of theft detection while illegitimate users or thieves want to
minimize the likelihood of being caught by changing their Probability Density Functions (PDFs) of
electricity usage.

Classification-based methods include expert systems and machine learning. Expert systems are
based on computer models trained by human experts to deal with complex problems and draw the same
conclusions as experts [20]. The expert system of electricity theft detection based on specific decision
rules was initially used. With the rapid development of artificial intelligence technology, machine
learning enables computers to learn decision rules from training. Therefore, in recent years, machine
learning has become the main research direction of electricity theft detection [21]. In [22], it explored
the possibilities that exist in the implementation of Machine-Learning techniques for the detection
of nontechnical losses in customers. The analysis was based on the work done in collaboration
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with an international energy distribution company. It reported on how the success in detecting
nontechnical losses can help the company to better control the energy provided to their customers,
avoiding a misuse, and, hence, improving the sustainability of the service that the company provides.
Reference [23] provides a novel knowledge-embedded sample model and deep semi-supervised
learning algorithm to detect NTL by using the data in smart meter. It first analyzed the characteristic
of realistic NTL, and designed a knowledge-embedded sample model referring to the principle of
electricity measurement. Next, it proposed an autoencoder based semi-supervised learning model.

In [24], fuzzy logic and expert system were combined to integrate human expert knowledge
into the decision-making process to identify electricity theft behavior. A grid-based local outliers
algorithm was proposed in [25] to achieve unsupervised learning of abnormal behavior of power
users. This method mapped variables features into two-dimensional plane by factor analysis (FA)
and principal component analysis (PCA). The dimensionality of data and the operation cost of outlier
factor algorithm were reduced by grid technology. In [26], electricity theft detection method based on
probabilistic neural network was employed to detect two types of illegal consumption.

In [27], clustering analysis was carried out firstly to reduce the number of data to be analyzed,
then the suspected users were found through neural network. In [28], the extreme learning machine
(ELM) was used to identify the weight between the hidden and output layer, and electricity theft was
detected through the measured data of the meter. In [29], a five-joint neural network was trained with
power data comprising 20,000 customers and achieved considerable accuracy. SVM-FIS method was
proposed in [30], which could reduce the calculation complexity and improve the detection accuracy
by combining the fuzzy inference system with the SVM. In [31], a data-based method was proposed
to detect sources of electricity theft and other commercial losses. Prototypes of typical consumption
behavior were extracted through clustering the data collected from smart meters.

For an unbalanced dataset, intelligent algorithms tend to favor positive data (PD) in the training
process and ignore the important information contained in a few negative data (ND), which may reduce
the detection accuracy [32]. Therefore, optimizing the unbalance of the dataset plays an important role
for improving the efficiency and accuracy of the algorithm. Data-oriented methods mostly rely on
existing and validated cases of fraud either for training or validation. However, since frauds are scarce,
it is difficult to obtain these samples, unless another Fraud detection methods such as unsupervised
detection, or a manual inspection campaign are used [33].

The theory of unbalanced data processing has been widely used in the fields of network fraud
identification, network intrusion detection, medical diagnosis, and text classification. However, it is
still rarely used in electricity theft detection. Reference [34] introduced consumption pattern-based
energy theft detector (CPBETD), a new algorithm for detecting energy theft in advanced metering
infrastructure (AMI). CPBETD relies on the predictability of customers’ normal and malicious usage
patterns, and it addresses the problem of imbalanced data and zero-day attacks by generating a synthetic
attack dataset, benefiting from the fact that theft patterns are predictable. In [35], a methodology was
proposed to improve the performance and evaluation of supervised classification algorithms in the
context of NTL detection with imbalanced data. The main contributions of our work lie in two aspects:
(1) The strategies considered to counteract the effects of imbalanced classes, and (2) an extensive list of
performance metrics detailed and tested in the experiments.

A comprehensive detection method for NTLs of unbalanced power data was proposed in [36],
which contained three detection models (Boolean rule, fuzzy logic, and support vector machine).
Reference [37] proposed two undersampling methods for the classification of unbalanced data, easy
ensemble (EE) algorithm and balance cascade (BC) algorithm. The above two methods exhibited
high computation and implementation complexity. In [38], a one-sided selection (OSS) method was
proposed for dealing with unbalanced data. In [39], a KNN-near miss method based on the K-nearest
neighbor (KNN) undersampling method was proposed. In [40], an oversampling method, called
synthetic minority oversampling technique (SMOTE), was adopted, which achieved excellent results
in the processing of unbalanced data and effectively solved the problem of excessive random sampling.
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However, the algorithm had certain blindness in the selection of neighbors, did not consider the
distribution of data when generating new data, and had strong marginality.

Reference [41] reported that, compared with single strong decision tree, weak decision tree
had high computational efficiency. In addition, considering the weight sparsity of weak classifier,
the recognition rate of the cluster could be further improved [42]. In [43], decision trees were used for
NTL detecting and the algorithms were tested with real a database of Endesa Company. In addition,
random forest classifier (RF) can save resources and computational time because the multiple decision
trees run in parallel. Moreover, each decision tree can achieve random selection of data and attributes
without overfitting [44].

In summary, considering the shortcomings of existing electricity theft detection methods and
the unbalance of user data, a method for electricity theft behaviors detection was proposed based on
improved SMOTE and random forest classifier in this paper. The main contributions of this paper can
be listed as follows.

(1) Considering the high unbalance of power user-side dataset and the shortcomings of existing
methods, a new K-SMOTE method was proposed to deal with the unbalanced initial datasets.
The proposed method can reduce the impact of detection accuracy caused by unbalanced data.

(2) Combined with the unbalanced data, considering the limitation of setting decision tree in RF
algorithm, the improved random forest classifier was applied to detect electricity theft behaviors.
The efficiency of power theft detection could be greatly improved because multiple decision
trees were running in parallel. Then, the improved RF algorithm and K-SMOTE oversampling
algorithm were combined to establish the electricity theft detection system, which considered the
unbalance of the users’ electricity dataset.

(3) The detection method of this paper had higher detection accuracy and better stability compared
with the existing methods.

This paper is organized as follows: Section 2 proposes the K-SMOTE. Section 3 describes the
proposed detection method for electricity theft behaviors. In Section 4, simulation results are presented
to verify the feasibility and superiority of the proposed method. Section 5 summarizes the main
conclusion of this study. In addition, the nomenclature table is shown in Appendix A.

2. Proposed Algorithm

The detection of electricity theft behaviors is a binary classification problem which calls for
distinguishing of normal and electricity theft users. If the electricity data of the user side are directly
used by a classifier, unbalanced data may make the classifier more prone to PD and ignore the important
information contained in ND, which may degrade the performance of the classifier substantially.

As shown in Figure 1, the triangle and circle represent two kinds of datasets. Respectively, the solid
box represents the actual decision boundary of the two kinds of datasets, while the dotted box represents
the possible learning decision boundary of the classification algorithm. The number of triangle data
in Figure 1a is less than the circular data, so they represent an unbalanced dataset. From Figure 1a,b
that shows the normal dataset, it can be seen that the decision boundary of the classification algorithm
may be quite different from the real decision boundary if the dataset is unbalanced.
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(a)  (b) 

Figure 1. The schematic diagram of the impact of unbalanced data on the classification algorithm.
(a) Unbalanced data, (b) normal data.

In the actual power consumption environment, the number of users stealing electricity is far
less than normal users, so the users’ electricity dataset is an unbalanced dataset. Unbalanced user
data will make the classification algorithm more prone to normal user samples, thereby ignoring
the important information contained in a small number of electricity theft user samples, making the
decision boundary of the classifier and the actual decision boundary inconsistent, resulting in serious
performance degradation of the classifier. Therefore, it was necessary to use an appropriate method to
balance the dataset. The traditional SMOTE method was easy to cause data marginalization problems.
If there are more PD between some ND, the artificial data generated around these ND will cause the
problem of blurred boundaries of PD and ND.

In the field of the detection of electricity theft, the problem about the low detection accuracy
due to the unbalance of the power consumption dataset on the user side needs to be solved. Based
on a kind of unbalanced data processing method based on K-means clustering and SMOTE, named
K-SMOTE, the problem of low electricity theft detection accuracy caused by unbalance electricity data
is solved in this paper.

2.1. SMOTE

SMOTE is a classic oversampling algorithm normally used for solving data unbalance problems [45].
Compared to the random oversampling approach, SMOTE performance is better in preventing
overfitting [40] by adding ND to achieve balancing distribution with PD. The basic idea is to perform
linear interpolation between the existing ND and their neighbors. Specific steps of SMOTE are
as follows:

(1) For a sample xi in minority class samples set X, calculate the Euclidean distance from this sample
to all other samples in the set, and get its k nearest neighbor, denoted as yj (j = 1, 2, . . . , k).

(2) Sampling rate is set according to the data unbalance ratio to determine the sampling magnification.
For data xi, n numbers are randomly selected from their K-nearest neighbors, and new data can
be constructed as follows:

xnew = xi + rand(0, 1) × (yj − xi) (1)

where xj = 1, 2, . . . , n, rand(0,1) represents a random number between 0 and 1.

New data synthesized by SMOTE is shown in Figure 2.
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Figure 2. New data synthesized by SMOTE.

In Figure 2 x is the core data currently used to construct the new data: x1, x2, x3, x4 are the four
nearest neighbor data of x; r1, and r2, r3, r4 are synthetic new data.

2.2. K-Means Clustering Algorithm

K-means clustering is a widely used algorithm that takes the distance between data points
and cluster center as the optimization objective [46]. The algorithm would maximize the similarity
of elements in clusters while minimizing the similarity between clusters. The K-means selects the
desired cluster center, K, minimizes the variance of the whole cluster through continuous iteration and
recalculation of the cluster center, and takes the relatively compact and mutually independent clusters
as the ultimate goal.

The basic idea of the K-means is to determine the number of initial clusters centers, K, and randomly
select K data as the center of the initial cluster in the given dataset D. Then, for each remaining data in
D, calculate the Euclidean distance to each cluster center, divide it into the cluster class belonging to
the nearest cluster center, and repeat the calculation to generate new cluster centers. The clustering
process converges when cluster centers encountered no longer change or the number of iterations
reaches the preset threshold limit.

Specific steps are as follows:

(1) Dataset D, denoted as {x1, x2, x3, . . . , xn}, randomly select k initial cluster center as μ1, μ2, . . . , μk

∈ Dn.
(2) Calculate the Euclidean distance using Equation (2), that is, calculate the distance d(xi, μj) between

xi to each cluster center, find the minimum d, and divide xi into the same cluster as μi:

d(i, j) =
√
(xi1 − xj1)

2 + (xi2 − xj2)
2 + · · ·+ (xin − xjn)

2 (2)

where i = {xi1, xi2, xi3, . . . , xin} and j = {xj1, xj2, xj3, . . . , xjn} are n-dimensional dataset.
(3) After all data have been calculated, the new clustering center of each class can be recalculated by

Equation (3):

μ j+1 =
1

Nj

∑
xi∈Sj

xi (3)

where Nj represents the number of data in class j.
(4) If the cluster to which each data belongs does not change with the increase of iteration process,

go to Step 2. Otherwise, go to Step 5.
(5) Output clustering results.

2.3. K-SMOTE

This paper combined the K-means algorithm and SMOTE to balance the electricity data on the
user side. The specific steps are as follows:
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(1) Let M, O, P, and N represent the unbalanced electricity dataset on the user side, the PD, and the
ND. T is the training set in P, S is the majority training set, and T and S constitute the total training
set O. K is the number of the initial clusters, ui is the cluster center, and Xnew is the corresponding
new interpolated data point set.

(2) Determine the number of initial clusters K.
(3) For T, K-means algorithm was used to perform clustering and record cluster centers. T was

divided into K clusters, and the cluster center were {μ1, μ2, μ3, . . . , μk}.
(4) SMOTE was used in T to achieve data interpolation based on cluster centers {μ1, μ2, μ3, . . . , μk},

then the interpolated dataset Xnew was obtained
(5) T, S, and Xnew were combined to form new training set O’.

3. Random Forest Classification Based on K-SMOTE

RF, a statistical learning algorithm proposed by Breiman in 2001 [47], is essentially a combinatorial
classifier containing multiple decision trees [48]. It mainly uses bagging method to generate bootstrap
training datasets and classification and regression tree (CART) to generate pruning-free decision
trees. As a new machine learning classification and prediction algorithm, random forest features the
following advantages.

(1) Compared with existing classification algorithms, its average accuracy is at a high level [49].
(2) It can process input data with high dimensional characteristics without dimensionality

reduction [50].
(3) An unbiased estimate of the internal generation error can be obtained during the

generation process.
(4) It is robust to default value problems.
(5) Each decision tree in the random forest operates independently, realizing parallel operation of

multiple decision trees and saving resources and computational time.
(6) Randomness is reflected in the random selection of data and attributes, even if each tree is not

pruned, there will be no overfitting.

The electricity data of the grid user side includes various types, such as voltage, current, power
consumption, user classification, etc. So the electricity theft users need to be detected quickly and
accurately, so as to promptly notify the power department or relevant stakeholders to take timely and
proper action.

On the other hand, the RF classifier has poor processing ability for unbalanced datasets, so in this
paper it was combined with the K-SMOTE to detect electric power theft.

3.1. Decision Tree

Random forest is a single classifier composed of several decision trees. Decision trees can be
regarded as a tree model including three kinds of nodes: Root, intermediate, and leaf nodes. Each
node represents the attribute of the object, the bifurcation path from each node represents a possible
attribute value, and each leaf node corresponds to the value of the object represented by the path
from the root to the leaf node. The path, which starts from the root to the leaf node, represents a rule,
and the whole tree represents a set of rules determined by the training dataset. The decision tree has
only a single output, which starts from the root node, and only the unique leaf nodes can be reached.
In other words, the rule is unique essentially. The classification idea of decision tree is a data mining
process which is achieved by analyzing data with a series of generated rules.

Concept learning system (CLS), iterative dichotomiser 3 (ID3), classification 4.5 (C4.5), CART and
other node-splitting algorithms can be used to generate the decision trees [51]. This paper selected the
CART node-splitting algorithm because it can handle both continuous variables and discrete variables.

The principle of CART node-splitting algorithm is as follows.
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Information entropy (IE) is the most commonly used indicator to measure the purity of a sample
set. Assume that the proportion of the k-th samples in the set D is pk (k = 1, 2, . . . , r), then the
information entropy of D (Ent(D)) is defined as:

Ent(D) = −
r∑

k=1

pk log2 pk. (4)

The smaller the value of Ent(D), the higher is the purity of D.
CART decision tree uses the Gini-index to select the partitioning attributes. Using the same sign as

in Equation (9), the purity of the dataset D can be measured using the Gini value, calculated as below:

Gini(D) =
r∑

k=1

∑
k′�k

pk = 1−
r∑

k=1

p2
k . (5)

Intuitively, Gini(D) reflects the probability that two samples are randomly selected from the
dataset D, and their class labels are inconsistent. Therefore, the smaller the Gini(D), the higher is the
purity of the dataset D.

Assume that the discrete attribute a has V possible values {a1, a1, . . . , aV}. If property a is used to
partition the dataset D, there will be V branch nodes, in which the v node contains all the data with av

value on property a in D, and is denoted as Dv. We can calculate the IE of Dv according to Equation (4).
Considering that the number of samples contained in different branch nodes is different, then give
each branch node a weight |Dv|/|D|, that is, the more samples of branch nodes, the greater the influence
of branch nodes. Then, the Gini-index of the attribute a is defined as:

Gini(D, a) =
V∑

v=1

|Dv|
|D| Gini(Dv) (6)

In the candidate attribute set A, select the attribute that minimizes the Gini-index after division as
the optimal division attribute, and define the optimization attribute as a∗; then:

a∗ = min
a∈A

Gini_index(D, a) (7)

3.2. Discretization of Continuous Variable

The continuous attribute in the decision tree needs to be discretized. The dichotomy method
is used for node splitting of decision trees. The main idea of the method is to find the maximum
and minimum values of a continuous variable, and set multiple equal breakpoints between them.
These equal breakpoints divide the dataset into two small sets and calculate the information gain
rate generated by each breakpoint. In CART decision tree, the steps of discretization of continuous
variables are as follows.

(1) Sort the values of continuous variables to find the maximum (MAX) and minimum (MIN).
(2) If there are N values for continuous variables and each value is a breakpoint, the interval (MIN,

MAX) is divided into N-1 intervals.
(3) For each breakpoint Ai (i = 1, 2, . . . , N), Gini-index is calculated with A and B as intervals.
(4) Select a breakpoint Ai with the largest Gini-index coefficient as the best split point of the

continuous attribute.
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3.3. Random Forest

3.3.1. Bootstrap Random Sampling

Bootstrap random sampling algorithm is used to obtain different training datasets for training
base classifiers.

The mathematical model of bootstrap is as follows: Assuming that there are n different data {x1,
x2, x3, . . . , xn} in the dataset D, if any data is extracted from D and put back for n times to form a new
set D∗, then the probability that D∗ does not contain the xi (i = 1, 2, . . . , n) is (1-1/n)n. When n→∞, it
can be launched:

lim
n→∞

(
1− 1

n

)n
= e−1 ≈ 0.368. (8)

Equation (8) indicates that approximately 36.8% of the original data are not extracted in each
sampling. This part of the data are called out-of-bag (OOB) data.

3.3.2. OOB Error Estimate

OOB data are not fitted to the training set. However, OOB data can be used to test the generalization
capabilities of the model. It has been proven that the error calculated by OOB, called OBB error, is
an unbiased estimate of the true error of the random forest [52]. Therefore, OOB error can be used to
evaluate the accuracy of the random forest algorithm.

The performance of the generated random forest can be tested with OOB data. The principle of
OOB is shown in the Table 1, in the first column, where xi represents the input sample and yi represents
the classification label corresponding to xi. In the first row, Ti represents the decision tree constructed
by RF. Yes “Y” indicates that the current sample participates in the classification of the corresponding
decision tree, and No “N” indicates that the current sample does not participate in the classification of
the corresponding decision tree. Therefore, it can be seen from Table 1 that (x1, y1) was not used for
the construction of T1, T2, and T3, so (x1, y1) was the OOB data of the decision trees T1, T2, and T3.
After RF model is trained, its performance can be tested by OOB dataset, and the test result is the OOB
error. In addition, there is also a relationship between the number of decision trees and the OOB error;
therefore, for a certain dataset, this relationship can be used to solve the optimal number of decision
trees in RF.

Table 1. The schematic of OOB.

Data

Decision
Tree

T1 T2 T3 . . . Tn

(X1,Y1) N N N . . . Y
(X2,Y2) N N Y . . . Y
(X3,Y3) N N Y . . . N
. . . . . . . . . . . . . . . . . .

(X4,Y4) Y Y N . . . N

Suppose the random forest consists of k decision trees. The OOB dataset is O and the OOB data of
each decision tree are Oi (i = 1, 2, . . . , k), bringing the OOB data into the corresponding decision tree
for classification. The numbers of misclassifications of each decision tree are set to Xi (i = 1, 2, . . . , k),
and the error size of the OOB is calculated from:

OOB Error =
1
k

k∑
i=1

Xi
Oi

. (9)
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3.3.3. Random Forest

Random forest is a set of tree classifiers {h(x, θk), k = 1, 2, . . . , n)} and h(x, θk) is the meta-classifier,
which is a classification regression tree composed of CART algorithm. As an independent random
vector, h(x, θk) determines the growth of each decision tree and x is the input vector of the classifier.

A schematic diagram of the random forest algorithm is shown in Figure 3.
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Figure 3. Schematic diagram of random forest algorithm.

Combined with the proposed oversampling method, the specific electricity theft detection steps
are as follows:

(1) The unbalanced user-side dataset M is oversampled by K-SMOTE to obtain dataset M’.
(2) Divide the training set Tr and test set Te of random forest.
(3) Set the number of initial decision tree nTree.
(4) Use the bootstrap method to select training data for each decision tree. The total features in M

are K. Selecting n features randomly, n is calculated using Equation (15). Then, use the CART
algorithm to generate the unpruned decision trees.

n =
√

K (10)

(5) Input test set Te into each trained decision trees, and the classification result is determined
according to the voting result of each decision tree. The voting classification formula is as follows:

f (Tei) = MV{ht(Tei)}nTree
t=1 (11)

where Tei (i = 1, 2, . . . , k) represents each element in the test set, MV represents the majority vote,
and ht(Tei) represents the classification result of element Tei in decision tree T.
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(6) The current OOB error is calculated according to Equation (9). If the OOB error converges, then
go to Step 7. If the error does not converge, update the decision tree number nTree according to
Equation (11) and return to Step 4.

(7) Output classification result.

Based on the above theory and steps, the proposed electricity theft detection process was as shown
in Figure 4.
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Figure 4. The proposed process of electricity theft detection.

4. Simulation Results

In order to verify the accuracy and effectiveness of the proposed detection method, three models,
back-propagation neural network (BPN), support vector machine (SVM), and RF were established.
The parameters of models are as follows.

(1) The neurons’ number of input layer, hidden layer, and output layer in BPN were 20, 40 and 1,
respectively. Learning rate was 0.3, momentum term was 0.3, batch volume was 100, and the
maximum number of iterations was 50 [53].

(2) The kernel function of SVM qA radial basis function (RBF), the parameter coefficient of kernel
function penalty g WAS 0.07, and the penalty factor coefficient c of PD and ND were 1 and 0.01,
respectively [30].

This paper selected the short-term load data of 50 urban electricity users from 15 March 2018 to 16
May 2018 in Hebei province, China. The dataset included six data types (peak, flat, and valley active
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power; power factor; voltage; and current) and three user types (industrial, commercial, and residential).
Data were sampled at intervals of 30 min through smart meters. Among them, the unbalance ratio
was 16.47%.

4.1. Evaluation Indexes

After the classification of unbalanced data, all test sets were divided into four cases: TN (true
negative), TP (true positive), FP (false positive), and FN (false negative). These indicators constituted
a confusion matrix, as shown in Table 2. Confusion matrix is a way to evaluate the model performance,
where the row corresponds to the category to which the object actually belongs and the column
represents the category predicted by the model.

Table 2. Two-class confusion matrix.

Actual

Predicted
Predicted Positive Predicted Negative

True Positive TP FN
True Negative FP TN

FP is the first type of error and FN is the second type of error. Through confusion matrix, multiple
evaluation indexes can be extended.

(1) Accuracy (ACC): ACC is the ratio of the number of correct classifications to the total number of
samples. The higher the value of ACC, the better is the performance of the detection algorithm.
Mathematically ACC is defined as:

ACC =
TP + TN

TP + FP + TN + FN
. (12)

(2) True Positive Rate (TPR): TPR describes the sensitivity of the detection model to PD. The higher
the value of TPR, the better is the performance of the detection algorithm. TPR is defined as:

TPR =
TP

TP + FN
. (13)

(3) False Positive Rate (FPR): FPR refers to the proportion of data in ND, which actually belongs to
ND, and is wrongly judged as PD by the detection algorithm. FPR is defined as:

FPR =
FP

FP + TN
. (14)

(4) True Negative Rate (TNR): TNR describes the sensitivity of the detection model to ND, which is
defined as:

TNR =
TN

TN + FP
. (15)

(5) G-mean index: G-mean index is used for the evaluation of classifier performance [54]. Large
G-mean index reveals better classification performance. The value of G-mean depends on the
square root of the product of the accuracy of PD and ND. G-mean can reasonably evaluate the
overall classification performance of unbalanced dataset, and it can be expressed as:

G−mean =
√

TPR ∗ TNR. (16)

(6) Receiver operating characteristic (ROC) and area under the ROC curve (AUC): Receiver operator
characteristic chive (ROC) was originally created to test the performance of a radar [55]. ROC curve
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describes the relationship between the relative growth of FPR and TPR in the confusion matrix.
For values output by the binary classification model, the closer the ROC curve is to the point
(0, 1), the better the classification performance. Area under the ROC curve (AUC), is an index
to evaluate the performance of the detection algorithm in the ROC curve. The AUC value of
1 corresponds to an ideal detection algorithm.

4.2. Unbalanced Processing of User-Side Data

Random oversampling, SMOTE, and K-SMOTE were used to oversample the datasets, and the
results are shown in Figure 5, of which the black circle represents the normal users, the red asterisk
represents the electricity theft users, and the blue box represents the data generated after oversampling.

 
 (a) 

 
 (b) 

 
 (c) 

 
 (d) 

Figure 5. Schematic diagram of samples generated by different oversampling methods. (a) Raw data,
(b) random oversampling, (c) synthetic minority oversampling technique, (d) improved SOMTE based
on K-means. red: electricity theft users; Blue: data generated after oversampling; GREY: normal users.

In addition, Table 3 shows the repetition rate of artificial data and original data generated by
several oversampling algorithms.

Table 3. The schematic of OOB.

Algorithm Random Oversampling SMOTE K-SMOTE

Data Repetition Rate/% 95.02 30.50 15.84

It can be observed from Figure 5 that a large amount of duplicated data were included in the
result of random oversampling algorithm, and some data were never selected. From Table 3, the data
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repetition rate of random oversampling was 95.02%, which indicates that the oversampling effect was
not ideal. The data repetition rate of SMOTE was 30.5%, as can be seen from Figure 5. Data generated by
SMOTE were scattered with other data and introduced noise points. The problem of data overlap still
existed and could not be ignored. K-SMOTE can generate data near the center, and use representative
points to limit the boundaries of the generated data to avoid introducing noise. Data generated by
K-SMOTE generally follows the original distribution. Further, as shown in Table 3, the data repetition
rate was only 15.84%.

4.3. Electricity Theft Detection Based on Improved RF

4.3.1. Determination of the Number of Decision Trees

The number of decision trees is relevant to the accuracy of the algorithm.
In this paper, 80% of the user data were set to form a training set and 20% to form a test set.

The optimal number of decision trees can be determined by minimizing the OOB error. The relationship
between the OOB error and the number of decision trees, nTree, is shown in Figure 6.

Figure 6. Value of OOB error varies with the number of decision trees.

It can be observed that when the decision tree number was larger than 368, the OBB error almost
converged to a minimum level. If the number of decision trees was too small, the accuracy was low.
On the other hand, too many decision trees did not improve the accuracy further and the algorithm
burden was increasing. Therefore, the decision tree number was set to 368.

4.3.2. Detection Results of RF

The above-mentioned electricity users’ dataset processed by K-SMOTE and not processed by
K-SMOTE oversampling were, respectively, detected by RF. In order to make the simulation results
more convincing and avoid randomness, three independent tests were carried out for each detection.
ACC values of test data are listed in Table 4, and ROC curves are shown in Figures 7 and 8. In Figures 7
and 8, the three differently colored curves of red, green and blue represent the ROC curve of three
independent tests. According to these results, when K-SMOTE was not used for unbalanced data
processing, the mean value of ACC in RF was 85.53%, while the average value of ACC in RF after
K-SMOTE was 94.53%. In addition, it can be concluded that ROC curve detected by RF with K-SMOTE
was obviously closer to (0.1) than ROC curve detected RF algorithm without K-SMOTE. That is, the area
under the former ROC curve was larger.

Moreover, the AUC index of the former was obviously better than that of the latter, which shows
that it is necessary to use K-SMOTE to deal with unbalanced data before the detection of electricity
theft behaviors. In addition, the detection performance of RF was also ideal.

110



Energies 2020, 13, 2039

Table 4. Accuracy value of random forest.

Simulation Times K-SMOTE ACC/%

1
with 96.02

without 83.24

2
with 96.21

without 82.01

3
with 81.32

without 91.35

Mean
with 94.53

without 85.53
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Figure 7. Receiver operating characteristic curve detected by RF with K-SMOTE.
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Figure 8. ROC curve detected RF algorithm without K-SMOTE.

4.3.3. Comparison of Detection Performance of Different Algorithms

The electricity users’ data processed by K-SMOTE were tested by BPN and SVM. Again, in order
to make the simulation results more convincing, the same dataset was used and three independent
tests were performed. The testing results are shown in Table 5 and Figures 9 and 10. In Figures 9
and 10, the three differently colored curves of red, green and blue represent the ROC curve of three
independent tests.
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Table 5. Accuracy value of three algorithms.

Simulation Times Algorithm ACC/%

1
SVM 70.21

BPN 85.24

2
SVM 72.54

BPN 83.01

3
SVM 71.02

BPN 86.35

Mean
SVM 71.26

BPN 84.87
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Figure 9. ROC curve detected by support vector machines with K-SMOTE.
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Figure 10. ROC curve detected by back-propagation neural network with K-SMOTE.

It can be concluded from the above test results that:

(1) Without K-SMOTE, the ACC value and AUC of RF detection method were relatively low.
However, with K-SMOTE, the ACC and AUC value of three detection methods were obviously
improved, which was increased about 10%. This indicates that unbalanced datasets would affect
the accuracy of detection algorithm, and K-SMOTE plays an effective role in improving machine
learning accuracy.
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(2) The electricity user data processed by K-SMOTE were tested by BPN and SVM. The ACC mean
values of SVM and BPN were 71.26% and 84.87%, respectively, and the mean values of AUC in
SVM and BPN were 0.7236 and 0.8716, respectively. These indexes were lower than the ACC
and AUC of RF, which were 94.53% and 0.9513, respectively. Thus, the performance of RF was
superior to SVM and BPN.

5. Conclusions

In order to better adapt to the rapid development of the power grid, aiming at the unbalanced
dataset on the user side and improving the efficiency and accuracy of electricity theft detection
algorithms, this paper proposed a method based on K-SMOTE and RF classifier for detecting electricity
theft. The main conclusions can be summarized as below:

(1) K-SMOTE was proposed to avoid the influence of unbalanced data on the accuracy of the classifier.
(2) The RF classifier, which was suitable for the nature of the user-side dataset, was used to detect

electricity theft. The decision trees in RF classifier could work in parallel, which improved the
detection efficiency and reduced the computational time.

(3) Compared with the conventional detection methods, the proposed method featured higher
accuracy and stronger stability.

The method proposed in this paper can provide reliable targets for manual inspection, thereby
reducing nontechnical losses in power systems and, hence, improving system reliability and security.
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Appendix A

Table A1. Nomenclature.

Acronyms Full Name

SMOTE synthetic minority oversampling technique

RF random forest

PD positive data

ND negative data

OOB Error out-of-bag data error

TL Technical loss

NTL non-technical losses

PCA principal component analysis

FA factor analysis

ELM extreme learning machine

BC balance cascade
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Table A1. Cont.

Acronyms Full Name

KNN k-nearest neighbor

TN true negative

TP true positive

FP false positive

FN false negative

ACC Accuracy

TPR true positive rate

FPR false positive rate

TNR true negative rate

IE information entropy

OOB out of bag

SVM support vector machines

BPN back-propagation neural network
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Abstract: Electricity theft decreases electricity revenues and brings risks to power usage’s safety,
which has been increasingly challenging nowadays. As the mainstream in the relevant studies,
the state-of-the-art data-driven approaches mainly detect electricity theft events from the perspective
of the correlations between different daily or weekly loads, which is relatively inadequate to extract
features from hours or more of fine-grained temporal data. In view of the above deficiencies, we
propose a novel electricity theft detection scheme based on text convolutional neural networks
(TextCNN). Specifically, we convert electricity consumption measurements over a horizon of interest
into a two-dimensional time-series containing the intraday electricity features. Based on the data
structure, the proposed method can accurately capture various periodical features of electricity
consumption. Moreover, a data augmentation method is proposed to cope with the imbalance of
electricity theft data. Extensive experimental results based on realistic Chinese and Irish datasets
indicate that the proposed model achieves a better performance compared with other existing methods.

Keywords: data-driven approaches; electricity theft detection; smart meters; text convolutional
neural networks (TextCNN); time-series classification

1. Introduction

Electricity theft can be defined as the behavior of illegally altering an electric energy meter to avoid
billing. This illegal behavior not only severely disrupts the normal utilization of electricity, but also
causes huge economic losses to power systems. At the same time, the unauthorized modification of
lines or meters easily leads to accidents such as power failures and fires, and poses a serious threat to
the safety of the relevant power system [1,2]. According to the research released by an intelligence firm
northeast group, llc in January 2017, electricity theft and other non-technical losses have rendered over
$96 billion in losses per year globally [3]. State Grid Hunan Electric Power Company, China reported
that nearly 40% of electrical fires and 28% of electric shock casualties are caused by electricity theft [4].
Therefore, it is necessary to develop effective techniques for electricity theft detection and ensure the
security and economic operation of power system.

The electricity theft detection technologies can be divided into three categories: the network-oriented
method, the data-oriented method and a hybrid-oriented method that mixes the previous two
methods [5]. Network-oriented and hybrid-oriented approaches usually require the network
topology [6,7] and even the installation of additional devices [8]. It is difficult to implement these
approaches widely, because the network topology may be unattainable due to security concerns and

Energies 2020, 13, 5758; doi:10.3390/en13215758 www.mdpi.com/journal/energies117



Energies 2020, 13, 5758

the installation of addition devices is costly. Data-oriented approaches only focus on the data provided
by smart meters and have no requirements of the network topology or additional devices, which helps
with improving the cost-effectiveness for suspected electricity theft judgment and detection. Therefore,
data-oriented approaches have been widely applied to electricity theft detection in recent years [9,10].

At present, there are two typical data-oriented methods to detect electricity theft: support vector
machines (SVM) and neural networks. In [11], they proposed a SVM-based approach that uses customer
consumption data to expose abnormal behavior and identify suspected thieves. The authors in [12,13]
combined SVM and a fuzzy inference system to detect electricity theft. In [14], a comprehensive
top-down scheme based on decision trees and SVM was proposed. The two-level data processing
and analysis approach can detect and locate electricity theft at every level in power transmission and
distribution. The authors in [15] proposed an ensemble approach combining the adaptive boosting
algorithm and SVM.

More and more researchers are utilizing neural networks to detect electricity theft due to their
effectiveness. In [16], a long short-term memory (LSTM) and bat-based random under-sampling
boosting (RUSBoost) approach is proposed. The LSTM and bat-based RUSBoost are applied to detect
abnormal patterns and optimize parameters, respectively. In [17], a method based on the wide and deep
convolutional neural network (CNN) model is proposed. The deep CNN component can identify the
periodicity of electricity consumption and the wide component can capture the global characteristics
of electricity consumption data. The authors in [18] combined CNN and LSTM to detect electricity
theft from the power consumption signature in time-series data. In [10], an end-to-end hybrid neural
network is proposed, which can analyze daily energy consumption data and non-sequential data,
such as geographic information.

The above methods have paved the way for building the structures of networks and dedicate
to improving electricity theft detection’s accuracy. However, they mainly focus on the daily or
weekly electricity consumption patterns. As a result, if these methods are applied to hourly or more
frequent electricity consumption data, their accuracy will decrease. This is because they fail to capture
the intraday electricity consumption pattern, for example, the correlation between the electricity
consumption at the same time on different days. In practice, some illegal users commit electricity
theft for part of the day. Specifically, those who have precedent technology and large electricity
demands (such as industrial electricity thieves) prefer to commit the crime during some specific hours
after considering electricity prices, monitoring periods and the risk of being caught comprehensively.
Meanwhile, new kinds of attacks such as interception communication and false data injection [19,20]
make it easier to commit such crime. In a case of electricity theft caught by State Grid Shandong
Electric Power Company, China, the illegal user had normal daily electricity consumption. However,
he confused the metering time of his smart meter to avoid peak electricity tariffs [21]. In this way,
his abnormal electricity consumption pattern can only be reflected in the intraday data. In paper [22],
several possible attack models are proposed to confuse the metering time and commit electricity theft
targeting time-based pricing. Therefore, it is necessary to construct an electricity theft detection scheme
that can not only capture the daily features but the intraday features.

In order to better extract the periodical features from days and more frequent time periods,
we utilize a two-dimensional grid structure for the raw input data in this paper. Based on the
data structure, we propose a text convolutional neural network (TextCNN) to detect electricity theft.
The main contributions of the proposed model include:

(1) We analyze the electricity data structure and transform it into a two-dimensional time-series.
This structure carries the complete power consumption information of users, which means the
consumption patterns of various time scales, such as the electricity consumption at the same
period on different days and the daily consumption of different days.

(2) We propose a novel electricity theft detecting method based on TextCNN. The proposed method
can extract features of different time scales from two-dimensional time-series. To improve the
accuracy and efficiency of training and detection, we designed our detection network based on
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TextCNN. To test the performance, we implemented extensive experiments on the residential and
industrial datasets from a province in China and the public Irish residential dataset.

(3) We propose the data augmentation method to expand the training data in view of the shortage
of electricity theft samples. Experimental analysis indicates that the method can improve the
detection accuracy effectively with a proper augmentation process.

The remainder of this paper is organized as follows. The methodologies of data construction and
CNN construction for electricity consumption data are described in Section 2. Section 3 proposes the
neural network structure based on TextCNN and the data augmentation method. Then, the details of
experimental datasets and methods used for comparison and metrics are given in Section 4. Section 5
presents the performance and superiority of the proposed model, analyzes the parameters and discuss
the effectiveness of the data augmentation method. Finally, Section 6 concludes this paper.

2. Methodology

In this section, we introduce the characteristics of the electricity consumption data and then
compare several data structures regarding their advantages and disadvantages. Finally, we introduce
TextCNN and the reason why it is suitable for the two-dimensional time-series.

2.1. Data Structure Analysis

Smart meters can collect the electricity consumption data at a high frequency, such as once an
hour. The datasets can be expressed as:

Dn =
{
xd1

h1
, xd1

h2
, . . . , xd1

h24
, xd2

h1
, . . . , xdi

hj

}
(1)

where Dn represents the data of user n. xdi
hj

is the value recorded by smart meters during time hj on

day di.
Most studies focus on periodical features of daily or weekly consumption patterns to detect

electricity theft. Therefore, they merge the data of one day into one value and utilize the one-dimensional
data structure or its variant, as shown in Figure 1. The datasets can be further expressed as:

Dn =
{
xd1 , xd2 , . . . , xdi

}
(2)

where xdi represents the total amount of electricity consumption on day di.

Figure 1. One-dimensional data structure of electricity consumption data.

In this way, they neglect the intraday electricity change and fail to capture the intraday features.
In this paper, we construct the data into a two-dimensional grid, which is suitable for feature extraction
from not only different days but different time periods. The two-dimensional grid can be expressed as:
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Dn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xd1
h1

xd2
h1
· · · xdi

h1

xd1
h2

xd2
h2
· · · xdi

h2
...

...
. . .

...
xd1

h24
xd2

h24
· · · xdi

h24

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3)

The columns in Equation (3) represent the electricity consumption data of 24 h a day. In fact, smart
meters may collect data more frequently, and may collect varieties of information, such as three-phase
voltages and currents, power factors and so on. In this manner, in order to simplify the expression of
Equation (3), we utilize the following column vector to represent the amount of data on day di:

xdi =
{
x1, x2, . . . , xj, . . . , xF

}T
(4)

where F is the number of data from one day. So far, the dataset of one user can be expressed as:

Dn =
{
xd1 , xd2 , . . . , xdi

}
(5)

Further, we use Figure 2 to explain the above two-dimensional structure. In the left figure,
an individual curve represents the data xj on different days and the cluster of curves demonstrates the
daily electricity consumption. Then the expansion of the cluster is a grid, as shown in the right figure,
which is also formulated as Equation (5). The height of the grid represents the number of data points
from one day points. The length of the grid represents the number of days. In other words, the grid of
electricity consumption data is a two-dimensional time-series.

Figure 2. Two-dimensional data structure of electricity consumption data.

To extract the consumption patterns of different users, we utilize the same intercepted window to
consecutively intercept different users’ data. Then we can obtain a series of two-dimensional grids with
the same length and height. For user n, we use yn to label the intercepted window of the time-series
to judge whether it is electricity theft or not, as shown in Figure 2. Then, we build a nonlinear map
function from an input time-series to predict a class label yn formula:

yn = f (xdi , T) di ∈ T (6)

where T is the length of the intercepted window and f (·) is the key nonlinear function we aim to learn.
In order to conveniently express this data structure in CNN, we use D(N, F, T) to represent

the intercepted segments, where N is the number of samples. For an individual data D(F, T) in the
dataset D(N, F, T), the classification function f (·) needs learning. So far, we have constructed the
two-dimensional structure that maintains the full information of the raw data and transforms the
electricity theft detecting problem into the classification of time-series. Based on the two-dimensional
time-series structure, we utilize TextCNN to learn the classification function.
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2.2. CNN Structure Analysis

CNN specializes in processing data with a grid-like structure [23]. For different input data types,
the structure of CNN should be selected further to achieve effectiveness—TextCNN, RCNN, etc. [24–26].
Considering the above two-dimensional time-series, we focus on TextCNN in this research. TextCNN
is widely used in natural language processing (NLP) fields such as text classification, emotion analysis
and sensitivity analysis for its simple structure and effectiveness [27,28].

2.2.1. Basic Introduction to CNN

The normal multilayered neural networks, which are also called deep neural networks (DNN),
consist of input layers, hidden layers and output layers. CNN has an additional convolutional layer,
as shown in Figure 3a. The discrete convolution is the key operation in convolutional layers. As shown
in Figure 3b, we use a 2 × 2 kernel as an example to illustrate the discrete convolution. The input I has
a value in each grid. Then, a two-dimensional kernel function K ∈ R2×2 is used to extract features.
The output S of the convolution is:

S(i, j) =
1∑

ki=0

1∑
kj=0

I
(
i + ki, j + kj

)
K
(
ki, kj
)

(7)

Equation (7) and Figure 3b together illustrate that convolutional kernels map the neighboring
information of the input into the output. Therefore, compared with DNN, CNN has an advantage of
considering the information in the small neighborhoods, which is a crucial future in the classification of
two-dimensional data, as the neighboring grids usually carry related information [29,30]. For example,
if we regard I as a black and white picture, the kernels can efficiently extract features, such as edges,
angles and shapes from neighboring pixels.

(a) (b)

Figure 3. Diagrams of the CNN structure and the discrete convolution: (a) CNN structure;
(b) discrete convolutions.

2.2.2. Differences between CNN and TextCNN

The kernel size is the main difference between CNN and TextCNN. As shown in Figure 4a, we use
height and length to describe the size of a two-dimensional kernel. The commonly used kernel size in
CNN is 3 × 3 [31,32], while in TextCNN the height of kernels is always equal to that of input data [27].
This is because for text classification, the most significant thing is to efficiently capture the internal
features of an individual word and the correlations between multiple words. As shown in Figure 4a,
the convolutional kernels are sliding windows with the same height as a single world. The kernel will
only move in the length direction, so each time the kernel will slide over a complete word.
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(a) (b)

Figure 4. Characteristics of CNN: (a) feature schematic diagram of TextCNN’s kernels; (b) differences
between CNN and TextCNN.

The influences of different kernel sizes on the network are shown in Figure 4b. In order to capture
the association between the green grids and the yellow grids, TextCNN requires only one convolutional
layer, while CNN requires three convolutional layers. Therefore, TextCNN simplifies the structure
of the neural network and reduces the parameters that require manual intervention. In this manner,
the efficiency and effectiveness of capturing the internal features of a word and the correlations between
multiple words are guaranteed.

In electricity theft detection, we aim to capture the features from the data correlations of weeks,
days, hours and even more frequent time periods. Analogously, the intraday feature of electricity
consumption is similar to the association between the green grids and the yellow grids in Figure 4b,
and the multi-day correlations are extracted by different kernels, such as K1, K2 and K3 in Figure 4a.
Therefore, to efficiently extract features of electricity consumption data, we propose a neural network
based on TextCNN for the classification of two-dimensional time-series.

3. Proposed Approach

In this section, we propose our electricity theft detection scheme. We introduce the data preprocess
at first. Then, we propose a neural network structure based on TextCNN, which consists of convolutional
layers, pooling layers and fully-connected layers. Finally, we propose the data augmentation method to
increase the amount of electricity theft data for the balance of the training dataset. The total framework
of the proposed electricity theft detection is demonstrated in Figure 5.

Figure 5. Proposed electricity detection scheme.
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As shown in Figure 5, the raw data collected by smart meters gets through the data preprocess
at first. Then, we divide it into the training dataset and the test dataset. If the training dataset is
imbalanced, we utilize the proposed data augmentation method to balance it. Finally, we train the
proposed network on the training dataset and validate the effect on the test dataset. The metrics used
for training and testing are introduced in Section 4.3. It should be noted that the training process is
supervised learning which requires labeled datasets.

3.1. Data Preprocess

During data collection, missing data, duplications and errors of electricity consumption data
may occur. To avoid the adverse effects of faulty data on the electricity theft detection, reference [17]
proposes an electricity data preprocessing method to recover the missing and erroneous data. Equation
(8) represents the interpolation method to recover the mission data.

x∗d,t =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xd,t−1+xd,t+1
2 xd,t ∈ NaN, xd,t−1, xd,t+1 � NaN

0 xd,t ∈ NaN, xd,t−1 or xd,t+1 ∈ NaN

xd,t xd,t � NaN

(8)

where xd,t is the electricity consumption data during time period t on day d. Additionally, NaN
represents null and non-numeric character.

Moreover, the three-sigma rule of thumb [33] is used to recover the erroneous data as follows:

x∗d,t =

⎧⎪⎪⎨⎪⎪⎩
avg(xd) + 2 · std(xd) if xd,t > avg(xd) + 2 · std(xd)

xd,t otherwise
(9)

where xd is a vector composed of xd,t, avg(x) and std(x) stands for the average value and standard
deviation value of vector x.

3.2. Proposed Neural Network Structure Based on TextCNN

As shown in Figure 6, the proposed neural network structure based on TextCNN is mainly
composed of convolutional layers, pooling layers and fully-connected layers. The features of each
layer are demonstrated in detail below.

Figure 6. Proposed network structure for electricity theft detection.
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3.2.1. Convolutional Layer

The proposed model has multiple convolutional layers. A convolutional layer has H different sizes
of convolutional kernels. As mentioned in Section 2, in order to ensure the efficiency and effectiveness
of the classification for two-dimensional time-series, the height of kernels is the same as the number of
data points for one day. For convolution kernels of size Hi, Du = (F, T) denotes the uth data sample.
The corresponding kernel weight wu

j ∈ RF×K is used to extract features from the input data, where K is
the kernel length. For example, the feature map ou

j,i is calculated by:

ou
j,i = fa

(
wu

j ∗Du + bu
j

)
(10)

where ∗means the convolutional operation. bu
j ∈ R is a bias term and fa(·) is a nonlinear activation

function such as the rectified linear unit (ReLU) function. Without the activation function, the output of
the next layer is a linear function of the input of the previous layer. Additionally, it is easy to prove that
no matter how many convolutional layers there are, the output is a linear combination of inputs, which
means the network has no hidden layer. Therefore, activation functions can improve the effectiveness
of neural networks.

There are C kernels
{
wu

1, wu
2, · · · , wu

j , · · ·wu
C

}
of size Hi to produce C feature maps as follows:

ou
i =
[
ou

1,i, ou
2,i, · · · , ou

j,i, · · · , ou
C,i

]T
(11)

After first convolution, the feature maps of kernel size Hi are represented by Di(N, C, T −K + 1).
In order to extract the time features and compress the amount of data, the feature maps of the

first convolutional layer should be convoluted multiple times. Thus, there are multiple convolutional
layers in the proposed neural network. It is worth noting that the kernel size of the previous layer is
not necessarily equal to that of the next layer. For instance, the kernel size of Di in the upper layer is
Hi1, and in the next layer is Hi2. Hi1 and Hi2 are independent of each other. After passing through
these convolutional layers, the feature maps of kernel size {Hi1, Hi2, · · · , HiM} are expressed as:

Di(N, C, T −K1 −K2 − · · · −KM + M) (12)

where KM is the kernel length of convolutional layer M.

3.2.2. Pooling Layer

After multiple convolutional operations, the data come to the pooling layer. In this paper, a max
pooling layer is adopted. In the max pooling layers, only the maxima of extracted feature values are
retained and all others are discarded. The max pooling layer can extract the strongest feature and
discard the weaker ones. After the max pooling operation, the output is described as Di(N, C, 1).

3.2.3. Fully-Connected Layer

In the fully-connected layer, the input is the stack of the pooling layer’s output. Then, we use
a two-class classification, the softmax activation function, to calculate the classification result which
consists of two probabilities. When the probability of committing electricity theft is greater than that of
being normal, the input data are labeled as electricity theft. The final output of the entire model is
expressed as:

fSo f tmax

⎡⎢⎢⎢⎢⎢⎣D(N,
∑

i

C, 1)

⎤⎥⎥⎥⎥⎥⎦ = D(N, 2, 1) (13)
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3.2.4. Parameters of the Proposed Neural Network

The main parameters of the proposed neural network are as follows. We utilize two convolutional
layers to extract the features. The two convolutional layers are selected to make a balance between the
accuracy and computational time. In specific, the increase of convolutional layers may improve the
accuracy, but the computation burden also increases significantly with the increase of convolutional
layers. Therefore, we used two convolutional layers to balance the accuracy and the efficiency in the
experiments in this paper. Moreover, more layers typically means a larger number of parameters,
which makes the enlarged network more prone to overfitting [29].

Each convolutional layer has multiple kernels with different sizes. Considering the characteristics
of the TextCNN, the height of the kernels is same as the number of data points from one day and
the lengths of kernels are 2, 3, 5 and 7. Kernels with a length of 2 or 3 can capture features from
adjacent days. Additionally, kernels with lengths of 5 and 7 can capture features from the periodicity
of weekday and week, respectively. Besides, in order to reduce the risk of overfitting, the dropout rate
of the proposed neural network is set at 0.4.

3.3. Data Augmentation

When using CNN to cope with the classification problem, it requires a large amount of data
in various categories for training to obtain a more accurate classification result. Therefore, multiple
methods are used to increase the image samples in the image classification problem [34,35]. In realistic
datasets, since most users do not carry out electricity theft, there are less electricity theft data compared
with the normal data. The imbalance of the datasets would affect the classification result easily,
which could contribute to low accuracy or overfitting. Therefore, we propose a data augmentation
method to address the imbalance problem.

The data augmentation is illustrated in Figure 7. Assuming the date of electricity theft is found on
day DT, then [DT − T, DT] is an electricity theft sample. Due to the continuation of the theft behavior,
electricity theft also occurs during the time [DT − T − 1, DT − 1]. Therefore, [DT − T − 1, DT − 1] is also
an electricity theft sample. If the intercepted window slides AG times, one electricity user datum can
be transformed into AG + 1 samples. So far, the electricity theft samples can be increased effectively
through this method. It is noted that the value of AG needs to be chosen appropriately. If AG is too
large, it will classify the normal data into the theft samples and affect the classification result.

Figure 7. Diagram of the data augmentation method.

4. Experimental Settings

In this Section, we present the details of datasets. Then, we introduce several methods for
comparison and the metrics to evaluate the accuracy of the classification model.

4.1. Datasets

Datasets (a) and (b) are realistic datasets from a certain province of China, containing electricity
thieves and normal users. Dataset (c) is the public power data of Northern Ireland, which lacks the
electricity theft data, so the electricity theft data in dataset (c) is artificially constructed.
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(a) Residential user dataset

The amount of residential user data within 1277 days is quite large, so data filtering was required.
There were 1063 electricity thieves; all of them were retained. The number of normal users is particularly
large, reaching several million. In order to achieve a better classification effect, the ratio of electricity
theft data to normal user data should be around 1:3. Therefore, the amount of normal user data finally
obtained was 3564. The smart meters collected 5 data points per day, which means the number of data
points from one day F was 5.

(b) Industrial user dataset

The industrial user dataset contains the electricity data of 8144 users within 1277 days, and smart
meters also collected 5 data points per day, which means the number of data points from one day F
was 5. Compared with the residential user dataset, the number of electricity thieves in the industrial
user dataset is even smaller—only 92. The electricity thieves only occupy nearly 1% of all. Therefore,
the proposed data augmentation method was used to increase the amount of the electricity theft data.

(c) Ireland residential user dataset

The dataset contains the electricity data of 5000 users within 535 days in Ireland, and smart meters
collected 48 data per day (sampling every half hour), which means the number of data points from
one day F was 48. These users were all normal users, so the dataset lacks electricity theft samples.
As a result, we adopted a method introduced in [11] to produce electricity theft samples artificially.
Since the electricity theft samples in this dataset are completely artificially generated, their number can
be easily changed without using the data augmentation.

The details of each dataset are shown in Table 1.

Table 1. Datasets’ information.

Datasets (a) (b) (c)

Time 1 October 2015–31 March 2019 1 October 2015–31 March 2019 1 January 2009–31 December 2010
Total uses 4627 8144 5000

Normal uses 3564 8052 5000
Electricity thieves 1063 92 0

In dataset (a), the ratio of normal users to electricity thieves is 3.3:1, which satisfies the balance
between positive data and negative data for training. However, in dataset (b) and dataset (c), electricity
theft data needs to be augmented in order to satisfy the balance. In dataset (b), the proposed data
augmentation method increases the electricity theft data in the training set to 520, and the ratio of
normal data to electricity theft data in the training set is 2.2:1. In dataset (c), 1800 electricity theft
samples are artificially generated, and the ratio is 2.8:1.

4.2. Baselines

Other than our proposed model, four classical models in machine learning are given for comparison.
The basic parameters setting for baseline methods are summarized in Table 2.

• Logistic regression (LR). Logistic regression is a statistical model that models the probabilities for
classification problems with the dependent variable being binary. It uses maximum likelihood
estimation to estimate regression model coefficients that explain the relationship between input
and output.

• Support vector machine (SVM). A support vector machine is a supervised learning model and
can be used for classification. It uses a kernel trick to map the input into high-dimensional
feature spaces implicitly. Then, SVMs construct hyperplane in high-dimensional space, and the
hyperplane can be used for classification.
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• Deep neural network (DNN). A deep neural network is a feedforward neural network with
multilayered hidden layers. DNN can model complex non-linear relationships through the neurons
in the hidden layer, which can be used for classification problem. Moreover, backpropagation
algorithm is used to update the weight in DNN, because it can compute the gradient of the loss
function with respect to the weights of the network efficiently.

• One-dimensional CNN (1D-CNN). The 1D-CNN is a classifier model which is similar to the
proposed model. However, the user data are 1D electricity consumption data, and the dimensions
of input data would be D(N, 1, T). The structure of 1D CNN is the same as the proposed model
mentioned in Section 3.2.

The general process of the experiments for all methods is as follows:
At first, we divide one dataset into two parts, one for training and the other for effect evaluation.

The ratio of these two parts is called the training ratio. It is worth noting that positive samples and
negative samples are divided separately, so the ratio of positive and negative samples in the training
dataset is the same as that in the test dataset. At each training ratio, we implement ten experiments.
The division of the training dataset and the test dataset is random and independent in each experiment.
At last, we use the average result of these ten experiments to represent the final results.

Table 2. Parameter settings.

Baselines Data Dimension Parameters

LR 1-D
Penalty: L1

Solver: Liblinear
Inverse of regularization strength: 1

SVM 1-D Regularization parameter: 1.0
Kernel: RBF

DNN 1-D Hidden layer: 3
Neurons in the hidden layer: 100, 60, 60

1D-CNN 1-D Same as parameters of the proposed method
Proposed Method 2-D Introduced in Section 3.2.4

4.3. Metrics

There are many ways to evaluate the classification accuracy. The evaluation metrics used in this
paper are accuracy rate, precision rate, recall rate and F1.

The above four metrics were calculated based on the confusion matrix shown in Table 3.

Table 3. Confusion matrix.

Confusion Matrix
Actual

Negative (Normal) Positive (Theft)

Classified
Negative (normal) True Negative (TN) False Negative (FN)

Positive (theft) False Positive (FP) True Positive (TP)

In this paper, our purpose is to detect electricity theft. Therefore, we define electricity theft
samples as positive samples, and normal samples as negative samples. Furthermore, metrics true
positive (TP), true negative (TN), false positive (FP) and false negative (FN) can be obtained from
the confusion matrix. TP and TN indicate that the actual attribute of the sample is the same as the
classified one, which means the classification result is accurate. FP indicates that the sample is actually
negative, but the classified result is positive. FN indicates that the sample is actually positive, while the
classified result is negative. The contrast between actual and classified results reflects the inaccuracy of
the classification model.
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Accuracy rate (AR) is the proportion of correctly classified samples in all samples. It is the most
intuitive and commonly used criterion to measure the classification effect of the model. The formula is
as follows:

AR =
TP + TN

TP + TN + FP + FN
× 100% (14)

However, most samples in the training set are normal, and only a few of them committed electricity
theft, which means that there are far more actual negative samples than actual positive samples. If the
model classifies all actual positive samples into negative, the accuracy rate of the model will still be
very high. Therefore, only using the AR criterion to evaluate the accuracy is not comprehensive.

Precision rate (PR) refers to the proportion of actual positive results in the classified positive
samples, which indicates the classification accuracy in the classified positive samples. The formula is
as follows:

PR =
TP

TP + FP
× 100% (15)

Recall rate (RR) is defined as the proportion of classified positive results in the actual positive
samples, which means the classification accuracy in the actual positive samples. The formula is as
follows:

RR =
TP

TP + FN
× 100% (16)

F_score is the harmonic mean of the precision rate and the recall rate, so it is more comprehensive
to evaluate the accuracy. The formula is as follows:

F_score =

(
α2 + 1

)
× PR×RR

α2 × (PR + RR)
× 100% (17)

where α is a parameter greater than 0. In particular, when α equals one, the F_score is expressed as F1,
which is the most representative criterion in common use. The formula is as follows:

F1 =
2× PR×RR

PR + RR
× 100% (18)

All in all, we construct a confusion matrix and four indicators AR, PR, RR and F1 to comprehensively
consider the accuracy of the classification model. In the next section, we will analyze different models
in different datasets based on the proposed metrics.

5. Results and Analysis

In this Section, we present the experimental results and analysis. We compare the performances of
the proposed model with those of other methods first. Then, we study the influences of the parameters
on the results. Last, we discuss the effectiveness of the proposed data augmentation method.

5.1. Performance Comparison

The performance comparison between the proposed model and other models in three datasets is
demonstrated in Table 4.

The proposed model performs better than other models in different training ratios, as shown in
Table 4. Take the result of a 70% training ratio as an example. The proposed model has the highest
PR and RR for each dataset. However, other models had better ARs in some dataset. For example,
the AR of the 1D-CNN model was the highest for dataset (a)—4.3% higher than that of the proposed
model. However, F1 (which is the most comprehensive indicator of the classification performance)
of the proposed model was the highest in each dataset and reached 0.757, 0.850 and 0.904 in dataset
(a), dataset (b) and dataset (c), which is 20.1%, 15.2% and 8.9% higher than the second-place model
respectively. Meanwhile, the proposed model performed better with the increase in the training ratio.
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For example, in dataset (c), the F1 increased from 0.759 to 0. 896 as the training ratio increased from 50
to 80%.

Table 4. Results on different datasets with different models.

Training = 50%

Model
Dataset (a) Dataset (b) Dataset (c)

AR PR RR F1 AR PR RR F1 AR PR RR F1

LR 0.851 0.623 0.488 0.547 0.577 0.487 0.442 0.463 0.867 0.706 0.827 0.762
SVM 0.694 0.733 0.022 0.042 0.523 1.000 0.023 0.045 0.793 0.886 0.223 0.356
DNN 0.843 0.596 0.429 0.487 0.514 0.384 0.349 0.366 0.844 0.655 0.543 0.575

1D-CNN 0.871 0.689 0.439 0.536 0.714 0.913 0.488 0.636 0.843 0.682 0.677 0.787
Proposed CNN 0.830 0.956 0.601 0.738 0.795 0.945 0.634 0.759 0.870 0.719 0.803 0.835

Training = 60%

Model
Dataset (a) Dataset (b) Dataset (c)

AR PR RR F1 AR PR RR F1 AR PR RR F1

LR 0.851 0.614 0.519 0.562 0.654 0.586 0.531 0.557 0.898 0.748 0.888 0.812
SVM 0.700 0.917 0.027 0.052 0.676 0.727 0.094 0.167 0.810 0.838 0.290 0.431
DNN 0.851 0.618 0.429 0.497 0.732 0.375 0.562 0.450 0.863 0.683 0.600 0.635

1D-CNN 0.890 0.730 0.500 0.594 0.719 0.944 0.531 0.680 0.812 0.610 0.615 0.744
Proposed CNN 0.846 0.931 0.669 0.779 0.834 0.952 0.720 0.819 0.919 0.825 0.876 0.897

Training = 70%

Model
Dataset (a) Dataset (b) Dataset (c)

AR PR RR F1 AR PR RR F1 AR PR RR F1

LR 0.852 0.633 0.496 0.556 0.678 0.714 0.400 0.513 0.907 0.725 0.930 0.815
SVM 0.700 0.833 0.030 0.058 0.660 0.500 0.094 0.158 0.833 0.793 0.324 0.460
DNN 0.855 0.636 0.411 0.494 0.833 0.692 0.360 0.474 0.856 0.660 0.624 0.636

1D-CNN 0.875 0.778 0.398 0.527 0.735 0.833 0.600 0.698 0.840 0.750 0.500 0.750
Proposed CNN 0.893 0.839 0.690 0.757 0.844 0.952 0.756 0.850 0.920 0.785 0.966 0.904

Training = 80%

Model
Dataset (a) Dataset (b) Dataset (c)

AR PR RR F1 AR PR RR F1 AR PR RR F1

LR 0.837 0.610 0.472 0.532 0.652 0.529 0.529 0.529 0.917 0.712 0.977 0.824
SVM 0.695 0.778 0.035 0.066 0.660 0.615 0.094 0.163 0.833 0.684 0.302 0.419
DNN 0.856 0.630 0.434 0.511 0.784 0.522 0.706 0.600 0.857 0.653 0.630 0.635

1D-CNN 0.859 0.800 0.359 0.496 0.714 0.909 0.588 0.741 0.833 0.705 0.574 0.762
Proposed CNN 0.723 0.908 0.742 0.816 0.901 0.958 0.841 0.896 0.958 0.857 1.000 0.947

It is also worth noting that the proposed model had better universality and performance in the
realistic dataset. Comparing dataset (c) with the realistic dataset (a) and dataset (b), the F1 of the
proposed model with dataset (c) reached about 0.95, but 0.816 for dataset (a) and 0.896 for dataset (b)
when the training ratio was 80%. This is mainly because that the electricity theft data in dataset (c)
were artificially generated, of which the data features can be identified and extracted easily by machine
learning models. However, realistic electricity theft data are more complicated and lack regularity.
Therefore, the results in realistic datasets are relatively worse than those in dataset (c). However,
compared with other models, the performance of the proposed model was still the highest.

The comparing results show that the proposed model has better performance overall, which implies
that the proposed model has higher accuracy in electricity theft detection.

5.2. Parameter Study

To study the effect of the length of the intercepted window T on the proposed model, we conducted
an experiment on dataset (a) and dataset (b) by changing the value of T from 10 to 500 with a step size
of 10. Figure 8a,b shows the experiment results of dataset (a) and dataset (b), respectively.
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(a) (b) 

Figure 8. Performances of different T. (a) Trends of indicators in dataset (a); (b) trends of indicators in
dataset (b).

The length of the intercepted window has an important impact on the performance, as shown in
Figure 8. Four indicators all increased with the increasing of T at first. Then they no longer increased
and began to fluctuate when T exceeded a certain value and continued to increase. In Figure 8a, PR,
RR and F1 achieved their maxima when T was about 270. In Figure 8b, four indicators achieved their
maxima when T was about 200. This is mainly because that the features of electricity theft data are
easier to be extracted with more electricity consumption information when T increases, which leads to
the improvement of the performance.

Therefore, to achieve the best performance of the proposed model, it is necessary to investigate an
appropriate length of the intercepted window T for electricity theft detection.

5.3. Data Augmentation Analysis

The proposed data augmentation method was used to augment the electricity theft data in
dataset (b). To study the effectiveness of the proposed data augmentation method, we varied the
value of AG, which represents the repeated times, from 0 to 20 with a step of 1. At the same time,
other parameters were fixed.

The comparison results of different AG in training ratios of 50% and 80% are given in Figure 9a,b
respectively. The four indicators all increased at first as AG increased, while the classification accuracy
decreased after AG exceeded a value. The indicators had a positive relationship with AG in the early
stage because the increase in the amount of electricity theft data during the training was of great help
to the classification accuracy, which can effectively increase the number of TP (true positives) in the
classification result. Therefore, all four indicators had an upward trend.

 
(a) (b) 

Figure 9. Performances of different AG. (a) Trends of indicators with a 50% training ratio; (b) trends of
indicators with an 80% training ratio.
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When AG continued to increase, AR, RR and F1 dropped, while PR fluctuated. The main reason is
that the normal data were labeled as electricity theft during the data preprocessing when the repeated
time was too large, so the training model tended to classify the normal users into abnormal users. As a
result, the numbers of FP (false positives) and FN (false negatives) increased, while the numbers of
TP and TN (true negative) declined in the classification result. Therefore, the classification accuracy
dropped and most indicators decreased, especially the most important indicator F1.

All in all, the data augmentation which increases the number of electricity theft data points for
CNN training can improve the classification accuracy effectively. It is also important to choose an
appropriate AG to achieve better classification results, because the indicators for accuracy may fluctuate
with inappropriate AG.

6. Conclusions

In this paper, we propose a novel electricity theft detection scheme based on TextCNN.
We innovatively formulated the electricity data into two-dimensional time-series in order to capture
the intraday and daily correlations of electricity consumption data. Then, we discussed the relationship
between DNN, CNN and TextCNN, and explained why TextCNN is the most suitable classifier for
our purposes, considering both the efficiency and effectiveness. Additionally, in order to balance the
electricity consumption dataset, we proposed a data augmentation method. We conducted extensive
experiments on different realistic datasets to prove the effectiveness of the proposed scheme, including
the residential and industrial datasets from a province in China and the public Irish residential
dataset. The experimental results show that the proposed method outperforms other methods, such
as LR, SVM, DNN and 1D CNN. At the same time, we analyzed the importance and effectiveness of
data augmentation.
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Abstract: The paper presents the novel HF-GEN method for determining the characteristics of Elec-
trical Appliance (EA) operating in the end-user environment. The method includes a measurement
system that uses a pulse signal generator to improve the quality of EA identification. Its structure
and the principles of operation are presented. A method for determining the characteristics of the
current signals’ transients using the cross-correlation is described. Its result is the appliance signature
with a set of features characterizing its state of operation. The quality of the obtained signature is
evaluated in the standard classification task with the aim of identifying the particular appliance’s
state based on the analysis of features by three independent algorithms. Experimental results for
15 EAs categories show the usefulness of the proposed approach.

Keywords: NILM; signature; load disaggregation; transients; pulse generator

1. Introduction

The Non-Intrusive Appliance Load Monitoring (NIALM or NILM) [1] is a solution for
the problem of collecting electrical energy consumption data more accurately than using
only typical electricity meters. The methodology (also known as energy disaggregation [2])
is used for power systems analysis, in which demand for energy continuously increases.
The purpose of the appliances’ load identification is to provide information about the
energy consumption of individual devices. This may lead to a decrease in electricity
consumption and suppressing environmental pollution [3]. According to [4] the application
of NIALM approaches might lead to a reduction of household energy consumption by
at least 12%. Another potential application is the diagnostics of electrical appliances [5],
like monitoring device degradation or detecting supply network’s state in the presence of
external disturbances, like voltage spikes, insulation decrease, etc. In the NILM architecture,
measurements are done close to the energy meter, in contrast to intrusive systems where
every socket or device is equipped with a suitable sensor [6]. When new appliances are
plugged into such systems, the measurement hardware is not expanded. Acquired values
are typically aggregated currents and voltages [7]. Characteristic features allowing for the
identification of a particular Electrical Appliance (EA) are obtained individually during
training in the specific deployment location.

Over the past 20 years, the topic was widely explored [7–11]. Public databases were
prepared to allow for the verification of new approaches [12–14]. The main achievements
are summarized, for instance, in [15].

The taxonomy of NILM methods considers multiple criteria. Firstly, they can be
classified based on the frequency of the measured signals [7,8]. In [16] four types of
frequency-based methods were identified: LF (Low Frequency), MF (Medium Frequency),
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HF (High Frequency), and EHF (Extra-High Frequency). The first one exploits the RMS
of the current and voltage waveform or the amplitude of its first harmonic collected with
the sampling frequency from below one to several Hz. The MF approach processes signal
samples collected with a frequency from 1 kHz to dozens of kHz. The HF method operates
on transients collected with a sampling frequency from dozens of kHz to several dozens of
MHz. Finally, EHF methods operate on sampling frequencies above a dozen of MHz. The
latter group was not investigated so far.

The second taxonomy criterion [10,11], is the moment of the appliance analysis. These
can be steady-state (SS) or transient state (TS), depending on whether the waveforms are
sampled during the state change or after it is already done and no transients are present
in the signals. The SS-LF methods are currently the most popular because of the low cost
of sensors [17] and the simple mathematical apparatus required to process data with low
computational power requirements [18].

The frequency of the measured signals determines features characterizing the ana-
lyzed devices. For SS-LF methods the most commonly used parameters are the average
power [19–24], reactive power [25,26], and power factor [19]. The SS-MF methods work
with the amplitude [27] and phase [28] of the subsequent current harmonics. Power charac-
teristics may be considered as well [3]. The real and imaginary parts of the current odd
harmonics were used in [29]. In SS-HF approaches, disturbances not being harmonics of
the fundamental component of the power grid (i.e., 50 Hz or 60 Hz) are analyzed. For
example, it can be EMI noise specific for different electronic appliances [30].

Some electrical devices, when turned on, generate a short-term current pulse with
an amplitude significantly exceeding their nominal supply current [31]. These transients
can be used to identify the EA state [32]. Approaches using such features belong to the
TS-HF group. In [32], the fundamental voltage component was filtered, from which the
frequency components of the disturbances appearing at the moment of switching on the
device were extracted. In [33], voltage harmonics were eliminated using Notch filters, and
then the signal was analyzed using Wavelet Transform (WT). In [34] the current of devices
in the transient states was recorded with the 100 kHz sampling frequency. The model of the
transient state was created on the basis of the currents collected when turning the EA on.
The energy spectra calculated using WT were used in [34]. Next, the energy distribution in
the subbands was used to identify appliances.

The areas of HF and EHF methods, although more challenging, especially from the
data acquisition point of view, rely on phenomena that cannot be observed at lower
sampling rates. These give possibilities of distinguishing between different appliances, as
is shown in this paper.

During our previous research [35], it was discovered that parameters of electrical
signals related to the operation of a particular EA depend on other devices operating in
the network at the same time. As a result, the set of devices working in the background
determines features extracted from the waveforms. Such a phenomenon can be used to
identify states of individual EAs.

To verify the practical application of the presented phenomenon, the HF-GEN method
was developed. It includes a measurement system acquiring the supply current signal,
complemented by the known impulse signal generator. To detect changes in the impulse
parameters it is necessary to use the time-frequency analysis, which allows for comparing
impulse signals generated when different loads are switched on. The paper also presents
the data processing method used for EAs identification, based on cross-correlation of the
reference signal with the analyzed signal.

The outline of the paper is as follows. Section 2 presents the method of determining
the characteristics of EA. Section 3 contains the quality assessment method. Section 4
covers experimental results, while Section 5 holds conclusions and future prospects.
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2. HF-GEN Method for Determining the Characteristics of EA

Known methods exploiting the analysis of the transient currents and voltages during
the appliance’s state change are still a minority. Most EA identification algorithms rely on
the characteristic features determined in steady states of operation. The transient signal
is a result of changing the state of the device (for instance, by turning it on). Electrical
signals recorded at the moment of the transient state change must be analyzed. The key
to detecting the EA state change is to find proper features of the impulse signal. They
should clearly distinguish impulse signals appearing as a result of changes in the states
of various EAs. Two problems emerge that significantly limit the applicability of such
approaches. First, EAs are switched on with a random voltage phase, so the transient states
of the examined EAs also have the random voltage phase. Secondly, EAs in the background
influence parameters of the transient signals. Both factors affect the shape of the analyzed
impulse and make assigning the specific transient to a device difficult.

In the HF-GEN method, the generated current pulse signal is introduced into the
tested power network circuit. The analyzed impulse is therefore the effect of a deliberately
created transition state, not related to any EA. The pulse is generated many times at
regular intervals. When the EA state changes, the pulse shape also changes, because it is
characteristic of the particular EA. Detection of the EA state change consists of observing
corresponding changes in the pulse features, which form the EA signature. The latter
should unequivocally identify the specific EA. The principle of the HF-GEN method is
illustrated in Figure 1. The pulse shape changes between the appliance’s “on” and “off”
states.

Figure 1. Illustration of the HF-GEN method.

The following were the experiments’ assumptions:

• the analysis covers impulse signals generated by the same source,
• the source of transients is a pulse signal generator connected to the tested power

network,
• the pulse signal appears in a specific phase of the supply voltage,
• a pulse signal is produced at regular intervals,
• the maximum frequency of measured signals is 15 MHz.

The purpose is to find changes in the pulse signal caused by the load change in the
supply circuit. The load on the power circuit depends on the set of EAs connected to
it. Characteristics of the impulse signal are related to the specific EA, therefore enabling
identification of the moment when the particular device is turned on. The block diagram
of the HF-GEN method is shown in Figure 2. The first step is the generation of the impulse
signal. The generator detects the supply voltage phase and then inputs the pulse signal
to the LV (Low-Voltage) circuit. In the second step, the pulse current is measured with
the sampling frequency of 30 MS/s. The acquired samples are processed to select their
subset acquired during 4 ms after the pulse detection. Next, cross-correlations between the
samples’ vector and transients patterns stored in the dictionary are calculated. A signature
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characterizing the pulse signal is then prepared. Finally, the signature quality is determined.
Subsequent steps are presented in detail in the sections below.

Impulse signal generation

The current samples selection

Cross-correlation calculation

Signature preparation

Signature evaluation

The current measurement

Transients dictionary

 

Figure 2. Block diagram of the HF-GEN method.

2.1. Pulse Signal Generation

The block diagram of the pulse signal generator with two connectors/ports is shown
in Figure 3. The first one, the input and output port (I/O), is connected to the tested circuit
of the power network with a voltage of 230 V and a frequency of 50 Hz. This port is marked
as input (I) because it is used to supply the generator with voltage. It is also treated as the
output port (O), because of providing the impulse current signal to the power network. The
O-SYN port is used to get the synchronization signal outside the generator. It determines
time instances of the pulse signal generation. The synchronization output is used to control
the acquisition system. When designing the generator, the following parameters were
assumed:

• the maximum value of the current pulse signal is 10 A,
• the rise time of the pulse is 60μs,
• total pulse duration is less than 1 ms,
• interval between successive impulse triggers is less than 1 s.

The pulse signal generator consists of a matching circuit (MC-GEN), an Analog-to-
Digital converter (AD-GEN), a Digital Output (DO), a Relay (RE), and an Attached Load
(AL). The measurement and generation system is connected to a computer (PC-GEN) on
which the Control Software (CS) is running.

The pulse amplitude depends primarily on the voltage phase in which the Attached
Load (AL) is connected to the power grid. The pulse amplitude is proportional to the
voltage value at the moment of turning the AL on. Setting the constant voltage phase
(the same each time) is the biggest challenge. The time instant must be synchronized
with the phase of the supply voltage. The process is as follows: the main voltageu(t)
is applied to the MC-GEN, which converts the voltageu(t) into the voltageuAD−GEN(t)
whose amplitude matches the dynamic range of the AD-GEN input. The AD-GEN converts
voltageuAD−GEN(t) to samplesun with a speed of 250 kS/s. Based on the voltage samplesun,
the CS detects the supply voltage phase. As a result of its operation, the logic signalon is
given to the input of DO, assuming a high value when the impulse signal is generated. DO
converts the logic signalon to the voltageuSYN(t). The O-SYN synchronization output is
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triggered at the right moment by a high voltage level. The main function of the RE is to
apply the supply voltage to AL when a high voltage level appears atuSYN(t).

Attached 
Load 
(AL)

Power System
230V AC

50 Hz

NL1

Control 
Software

(CS) Digital 
Output
(DO)

(AD-GEN)

Matching 
Circuit

(MC-GEN)

    A
        D

Relay
(RE)O-SYN

I/O

Computer
(PC-GEN)

Figure 3. Block diagram of the pulse signal generator.

The pulse shape parameters are determined by the AL. The rise time of the pulse
and its total duration depends on the AL impedance. Contrary to the tested EA, AL is a
known load with a specific transmittance, temporarily connected to the supply network to
change the parameters of the network. In practice, any appliance approved for use in the
LV grid, for example, an energy-saving light bulb, can be used as AL. In such a situation,
the pulse generator is no different than other appliances in the network. It is a typical load,
connected to the network at specified intervals (e.g., 1 s) for a specific time (e.g., 40 ms).

2.2. Measurement Method

In the HF-GEN method, the measured signal is the impulse in the current introduced
to the tested circuit by the signal generator. The parameters of the signal change with the
load of the tested network after introducing the specific EA. This fact is used to detect the
change in the EA state.

The measurement system from Figure 4 consists of a transient generator (GEN), an
electrical appliance energy receiver (EA), a Current-Voltage Converter (CVC), an Acquisi-
tion Card (AC), a computer (PC), software (SW), and memory (MM). The tested EA and
GEN are powered from the network with an RMS voltage of 230 V and frequency of 50 Hz.

The supply network voltageu(t) is provided to GEN through the I/O terminals
connected to the phase conductor L1 and the neutral conductor N. The synchronization
voltageuSYN(t) is supplied from the synchronization output O-SYN of GEN to the synchro-
nization input of the Analog-to-Digital Converter. High levels ofuSYN(t) determine time
instants for pulse generation. The currenti(t) is converted by the CVC intouAD(t) voltage
with a level adjusted to the dynamic range of the analog input of the acquisition card (AC)
converter, providing samplesin.

The voltageuSYN(t) also triggers the acquisition of current samples when a pulse is
generated. The SW running on PC controls the AC operation and collects the current
samplesin storing them in MM for further analysis. Due to triggering the AC converter
acquisition, the amount of data for processing is significantly reduced.
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Figure 4. Diagram of the measuring system of the HF-GEN method.

2.3. Selection of Current Samples

The result of data acquisition is the current vectori = [i1 . . . iN ] (see Figure 5). It
contains current samples recorded around (before and after) the pulse manifestation.

Figure 5. The sampled current vector i.

Due to the effectiveness of further calculations, only a selected fragment of the current
vector is analyzed. This is because some fragments of the obtained current data do not
contain useful information. Specifically, the current vector contains data measured prior to
generating the current pulse (e.g., current vector samples from 1 to 125,000 in Figure 5).
The data in this fragment of the current vector bear no information characteristic for the
tested EA.

The most relevant is the fragment of the current vector near the largest pulse peak.
Therefore only part of the original vector (i.e.,iSEL) is extracted for analysis. The vectori is
filtered by the high-pass filter with a cut-off frequency of 1 kHz, which enables effective
suppression of the 50 Hz component and its harmonics (100 Hz, 150 Hz, and so on).
Then, the maximum of the high-frequency components (i.e., above 10 kHz) is found. The
vectoriSEL contains 2700 selected samples around the maximum of the high-frequency
components. Figure 6 shows example of theiSEL vector.
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Figure 6. Current vectoriSEL for sample measurement data.

2.4. Preparation of a Dictionary of Transients

The dictionary of transients D is a set of selected fragments of the current vectors
containing pulses for various appliances:

D =
{

i(1)DIC, i(2)DIC, . . . , i(lD)DIC, . . . i(LDIC)
DIC

}
, (1)

wherei(lD)DIC are the most interesting fragments of vectors i describing the pulse andLDIC is
the number of examples. Figure 7 shows the method of preparing the dictionary. Samples
from vectori are selected as in Section 2.3. Then, the initial and terminal indexes of the
transition are marked, leading to the structure presented below.

The current measurement

The current samples selection

Marking the beginning 
and the end of transient 

Transients dictionary

 
Figure 7. Preparation of dictionary of transients.

The marking process is performed by specifying the initialnSTART and terminalnSTOP
indexes. The fragmentiDIC is then extracted as follows:

iDIC =
[
iDIC,1 . . . iDIC,NDIC

]
=
{

iSEL,nSTART , iSEL,nSTART+1, . . . , iSEL,nSTOP−1, iSEL,nSTOP

}
, (2)

whereNDIC = nSTOP − nSTART + 1 denotes the number of samples iniDIC.
Figure 8 shows the example ofiSEL with the marked indicesnSTART andnSTOP (a) and

the extractediDIC (b).
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(a) (b) 

Figure 8. Current vectors for the sample measurement data:iSEL (a) andiDIC (b).

For each considered EA, 10 examples of transition states were added to the dictionary.
They differ in amplitude and shape. The selected number is the compromise between the
variety of stored data and the computational effort required to obtain examples. An exam-
ple is a current vector and corresponding category from the setDCAT (which cardinality
determines the number of identified appliances NEA). Therefore, the number of vectorsiDIC
in the dictionary isLDIC = 10·NEA.

2.5. Determining the Cross-Correlation

In this stage, the maximum correlation between the measured signaliSEL and sub-
sequent dictionary entriesiDIC is found. The vectoriSEL is longer than the current vector
from the dictionaryiDIC, so the correlation is calculated for all possible shifts betweeniDIC
andiSEL.

The vectoriSEL hasNSEL = 120, 000 samples (representing the duration of 4 ms for
sampling frequency fS = 30 MHz). The correlation will be determined many times for
each transition state. Therefore, the method of determining the cross-correlation should be
computationally efficient. The determination of the cross-correlation without normaliza-
tion was considered due to the simplicity and efficiency of calculations. In the discussed
problem, the cross-correlation without normalization cannot be used, because the elements
of current vectors mainly contain a fundamental component of the current signal with a
frequency of 50 Hz. On the other hand, pattern vectors only contain components with fre-
quencies at least 200 times greater than the fundamental component. The 50 Hz frequency
component significantly changes the average value of the current vector, and as a result,
significantly affects the value of cross-correlation without the normalization. The measure
of similarity between sample vectors based on the Pearson correlation coefficient was used.
The mean and standard deviation for each fragment of the vectoriSEL was calculated, which
requires significant computational effort. Therefore, the optimized calculation method [36]
was used.

As a result, vectors of correlations r and shiftsc were obtained. Figures 9–11 illustrate
the procedure.
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Figure 9. Determining the correlation for sample measurement data, delay c = 18,000.

Figure 10. Determining the correlation for sample measurement data, delay c = 21,160.

Figure 11. Determining the correlation for sample measurement data, delay c = 22,000.

Figure 12a shows the cross-correlation vectorr as a function of delayc for the example
of measurement data. Figure 12b shows the same relationship for the vector fragmentr
with the highest correlation values.
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(a) 

(b) 

Figure 12. Cross-correlation as a function of delay for an example of the measurement data; the whole correlation vector (a);
the fragment of the vectorr that contains the highest correlation values (b).

2.6. Signature Calculation

The signature parameters are the maximum cross-correlation determined between the
current vectoriSEL and all current vectorsi(lD)DIC from the dictionary of transients. Correlation

vectors for successive current vectorsi(lD)DIC are denoted asrlD. The set of categoriesDCAT
from the dictionary of transitions is used to name successive signature features. The idea is
presented in Figure 13.

The EA signature contains maximum values of the cross-correlation between the
analyzed current vector and the individual dictionary elements. Signature features are de-
termined as the maximum absolute value of the cross-correlationrlD between the analyzed

current vectoriSEL and the stored current vectori(lD)DIC:

COR_x_y = max
∣∣rlD

∣∣, (3)

wherex ∈ {1, . . . , NEA}, y ∈ {A, B, C, D, E, F, G, H, I, J}.
The computed cross-correlation with the marked maximum value for sample mea-

surement data are presented in Figure 14.
A signaturesl consists ofPHF−COR = 10·NEA features, arranged in a specific order.

Names of features and their acronyms are listed in Table 1.

sl =
[
sl,1 . . . sl,p . . . sl,PHF−COR

]T
. (4)
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Figure 13. Signature determination algorithm for the HF-COR method.

Figure 14. The absolute value of cross-correlation with the maximum value marked for example
measurement data.

Table 1. Signature features in the HF-COR method.

p Full Name Acronym

1 The highest value of the correlation module with example A of the
EA dictionary with the category number 1 COR_1_A

2 The highest value of the correlation module with example B of the
EA dictionary with the category number 1 COR_ 1_B

3 The highest value of the correlation module with example C of the
EA dictionary with the category number 1 COR_ 1_C

...
.

...
.

...
.

PHF−COR
The highest value of the correlation module with the example J of

the EA dictionary with the category numberNEA
COR_NEA_J

Signature vectors for individual transient states constitute successive columns of the
signature arrayS:

S = [s1 . . . sl . . . sLSP], (5)

whereLSP is the total number of transients processed.
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3. Signature Quality Assessment Method

The signature well describes devices if its features allow for distinguishing between
them. Feature vectors for the same appliance should be similar to each other. The purpose
of the signatures quality assessment is to verify if they can be used to identify appliances.

The process is presented in Figure 15. Division of available data into training and
testing sets is important. The K-fold Cross-Validation (CV) withK = 10 was used here. The
data set is split K times into training and testing subsets (with the ratio of 9:1) in such a
way that each EA is represented by the single signature in the testing set. The training sets
were used to extract knowledge for the intelligent classifier, while the testing ones were
applied to verify their generalization abilities. The classification accuracy was averaged on
all trials.

K-fold Cross Validation

Classifier training 

Signature matrix

Confustion matrix

Combining all K analyzes

Division into training and testing sets

Prediction

Classifier training 

Prediction

...

...

...

 
Figure 15. Block diagram of the signature quality assessment method.

The classifier processes signaturesS(k)
test to predict appliance identifiers (represented by

category estimatesŷ(k)
test). The latter are compared to actual categoriesy(k)

test so sample errors
can be calculated. Among many types of candidates for classifiers, the following were
selected:

• Decision Tree (DT) representing rule-based decision systems,
• Artificial Neural Network (ANN) representing numerical decision-making systems,
• the k-Nearest Neighbors (kNN) classifier representing distance-based systems.

For each round of the CV, each classifier is trained and tested separately (see Figure 16).
This way all approaches can be compared. Also, their fusion may be applied if necessary.
Each algorithm has specific advantages and hyperparameters. For instance, DT during
training selects features based on which rules are constructed. This is the problem for kNN,
where the subset of signature values must be manually selected or weighted. Also, the
number of neighbors influences diagnostic accuracy. One CV round produces four vectors:

• actual appliances identifiers in the testing set—y(k)
test,

• category estimates based on ANN prediction—ŷ(k)
NN,

• category estimates based on DT prediction—ŷ(k)
DT,

• category estimates based on kNN prediction—ŷ(k)
kNN.
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Figure 16. Detailed diagram of one cross-validation attempt.

3.1. Decision Tree

The DT is a tool storing knowledge in the form of a tree (Figure 17). Nodes indicated by
circles represent tests on the selected feature (in our case, one of the signature parameters)
and its threshold value (like x1 > 15). The result of the test redirects the analyzed vector of
features to the node one level below until the terminal node (leaf) is reached. The leaves
(rectangles) represent appliance categories. Classification of the example is then based on
exploring the tree from the root (yellow node) to one of the leaves. Tests performed at
each node indicate which way to take next. Generation of the DT is done using one of the
machine learning algorithms like C4.5 or CART, which differ in the method of selecting
tests for nodes.

Figure 17. Decision tree example.

3.2. Neural Network

The ANN is widely used in classification. The feed-forward structures, like multilay-
ered perceptrons or RBF networks, are the most popular. Their hyperparameters include
the number of hidden layers or the number of neurons in themsHL. Also, the output layer
category coding is important, depending on the activation functions (like sigmoidal ones
or softmax). The optimal structure of ANN is then found to maximize the classification
accuracy for the minimum number of neurons. Knowledge extraction is performed using
gradient-based algorithms.
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3.3. K-Nearest Neighbors

The kNN classifier is one of the simplest non-parametric classification methods. Using
the distance measure, k examples from the dictionary closest to the classified feature
vector are found. The analyzed example is assigned to the categories supported by the
majority of k voting vectors. The hyperparameters include the value of k, voting strategy,
and the distance measure selection. This is the only one of the applied classifiers not
extracting knowledge from data during the machine learning process. The problem here is
determining the significance of available features, for example, by using the information
capacity or correlation methods. In the presented research the DT was used to preselect
them for the Euclidean measure calculation between each pair of examplesl1 andl2:

dEUCLID,l1,l2 =

√(
Sl1,pDT

− Sl2,pDT

)(
Sl1,pDT

− Sl2,pDT

)T
, (6)

whereS denotes the signature array andpDT is the number of the signature features selected
by DT.

3.4. Classification Accuracy

The standard method of evaluating the classifier in the multi-category identification
problem is the confusion matrix. To determine the overall quality, the accuracy should be
calculated as the number of correctly identified examples from the testing set. This can be
done for each categorynEA separately:

ηnEA =
|LSPEA : y = ŷ|

|LSPEA| (7)

or on the whole set (ofNEA categories):

ηALL =
1

NEA
· |LSP : y = ŷ|

|LSP| (8)

4. Experimental Results

The following section discusses details of experiments, including the laboratory test
stand, collected data, and classification results.

The HF-GEN method was tested in the laboratory conditions on a fixed set of 15
appliances. For each of them, 150 current pulses were recorded. From the vectori in the
transient statel a signature vectorsl was obtained. The signature setS contains allLSP
signature vectors.

The used EAs included a vacuum cleaner, a slow juicer, an “Osram” light bulb, the
“Philips” light bulb, an “Omega” light bulb, a “Lexman” lamp with four bulbs, a laptop,
irons, sharpeners, grinders, kettle, jigsaw, coffee machine, air conditioner and planer.

4.1. Laboratory Test Stand

The measurement system consists of the single analyzed electrical appliance (EA), a
current-voltage converter of the SCT-013-020 (CVC) type, the Advantech PCIE-1744 data
acquisition card (AC), signal generator (GEN), and computer (PC) with the LabVIEW-based
virtual instrument (SW) installed. The EA was connected to the power network. The CVC
was installed on the L1 cable supplying EA through the resistorR = 47 Ω. The GEN
input-output (I/O) connectors were connected to L1 and N power cables. The AC was
configured in such a way that the high level of the sync voltageuSYN(t) applied to the
synchronization input would trigger the acquisition of the signaluAD(t) fed to an analog
input. The signaluAC(t) was recorded for 10 ms since the occurrence of the high level of
synchronization voltageuSYN(t). The AC sampling rate was 30 MS/s. The data streamin
containing the samples was captured by a SW running on a PC and saved in the *.tdms file
format.
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The pulse signal generator consisted of AL, i.e., a lamp with an “Osram” LED bulb,
(type AB30526) and a “Relpol” relay (type RM699V-3011-85-1005-RE), voltage transformer
(MC-GEN), Advantech PCIE-1816H acquisition card containing an analog-to-digital con-
verter (AD-GEN) and digital output (DO) and a computer (PC-GEN) running the virtual
instrument (CS). AL was connected to the supply network via the RE relay, while MC-GEN—
to the supply network via the L1 and N conductors. The CVC of the type SCT-013-020 type
converts voltageu(t) touAD−GEN(t). Its measuring range is about 120A. Laboratory tests
proved that SCT-013-020 allows for accurate measurements of signals with frequency up to
400 kHz which is enough for the presented HF-GEN method. The voltageuAD−GEN(t) was
fed to the analog input no 0 (AD-GEN) of the acquisition card.

AD-GEN samples voltageuAD−GEN(t) at 250 kS/s. Based on them, CS detects the
voltage phase by actuating a logic signalon. The AL is switched on when the voltageu(t)
reaches the value of300 V. DO converts logic signalon to voltageuSYN(t). The RE becomes
closed when the high state appears onuSYN(t).

4.2. Measurement Procedure

During experiments, the following measurement procedure was implemented:

1. Connecting to the power grid and switching on EA under test;
2. Setting CS so that the GEN generates a pulse signal 150 times (in the case of its

acquisition for quality evaluation) or at least 10 times (for the transients’ dictionary);
3. Setting the SW to acquire all current pulses;
4. Starting the impulse generation and acquisition process;
5. Switching off the tested device.

These steps are performed for each tested EA. A separate series of measurements is
carried out with no EA connected (only steps 2–4 are then taken).

4.3. Analysis of Measured Current Vectors

As a result of measurements for 16 categories (15 types of EA and no-EA),150 × 16 =
2400 vectors of current samples were collected. Details of the recorded vectors are in
Table 2. Each current vectori has 300,000 samples (representing duration of 10 ms).

Table 2. Information on recorded current vectors.

Category Number nEA EA Name Type Nominal Power
Indexes of Current

Vectors l

0 no EA - - 1 . . . 150
1 vacuum cleaner Zelmer ZVC425HT 1000 W 151 . . . 300
2 slow juicer Eldom PJ400 400 W 301 . . . 450

3 lamp with LED bulb
“Osram” Osram AB42758 11.5 W 451 . . . 600

4 lamp with LED bulb
“Philips” Philips 9290012345C 13 W 601 . . . 750

5 lamp with LED bulb
“Omega” no data 11 W 751 . . . 900

6 wall lamp with four
LED bulbs “Lexman” no data 5 W 901 . . . 1050

7 laptop Dell PP36L 100–240 V ~1.6 A 1051 . . . 1200
8 iron Philips GC 4410 2000–2400 W 1201 . . . 1350
9 sharpener SilverCrest SEAS 20 B1 20 W 1351 . . . 1500
10 grinder Makita GB801 550 W 1501 . . . 1650
11 kettle Zelmer CK1004 1850–2200 W 1651 . . . 1800
12 jigsaw Bosch GST 90 BE 650 W 1801 . . . 1950
13 coffee machine Saeco HD8917 1850 W 1951 . . . 2100

14 air conditioner Cooper&Hunter
CH-S09RX4 2700–2850 W 2101 . . . 2250

15 planer Makita 2012NB 1650 W 2251 . . . 2400
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The current vectors were selected according to Section 2.3. The result were current
vectorsiSEL which length ofNSEL = 120,000 (duration of 4 ms). The vectorsi(l)SEL for selected
examplesl are in Figures 18 and 19.

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

 
(g) (h) 

Figure 18. Current vectori(l)SEL for selected examplesl belonging to categories 0–7.l = 1: No EA (a),l = 151: vacuum cleaner
(b),l = 301: slow juicer (c),l = 451: lamp with bulb “Osram“ (d),l = 601: lamp with bulb “Philips“ (e),l = 751: lamp with
bulb “Omega” (f),l = 901: wall lamp with four bulbs “Lexman” (g),l = 1051: laptop (h).
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

 
(g) (h) 

Figure 19. Current vectori(l)SEL for selected examplesl belonging to categories 8–15.l = 1201: iron (a),l = 1351: sharpener
(b),l = 1501: grinder (c),l = 1651: kettle (d),l = 1801: jigsaw (e),l = 1951: coffee machine (f),l = 2101: air conditioner
(g),l = 2251: planer (h).
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The average current valuei(l)SEL depends on the analyzed EA. For instance, examplesl ∈
{151, 1201, 1651, 2251} representing vacuum cleaner, iron, kettle, and planer are character-
ized by relatively high power. The pulses are generated for the voltageu = 300 V when
the instantaneous current levels of EAs are close to the maximum value. Therefore, a high
average current value is observed here.

The direction of the pulse current is always the same. It results from forcing the
voltage phase at the moment of generating the pulse.

All waveforms presented in Figures 18 and 19 are characterized by a rise in the average
current value starting approx. atnSEL = 30,000. In turn, for thenSEL = 34,000 . . . 50,000
current values drop until reaching the level as before the pulse appearance.

For examplesl ∈ {1, 1201, 1501}, the multiple contact of the RE is visible in the form
of many similar oscillations which quickly converge to the average current valuei(l)SEL. For
category 0 (no EA), this oscillation is visible for thenSEL = 29, 400, while for category 8
(iron) it is fornSEL = 30,000, and for category 10 (grinder), 4 such oscillations are visible
fornSEL ∈ { 28,800, 29,500, 30,000, 30,500 }.

The starting point for further analysis is the current vector obtained for category
0 when no EA is connected. The shape of the pulse for the examplel = 1 (Figure 18a)
is the impulse response of AL after switching on the supply voltage. All other current
vectors are the impulse response of the system in which two electricity receivers are
simultaneously connected to the power supply: AL and the tested EA. The change in the
shape of the current waveformi(l)SEL is proportional to the influence of the tested EA on the
total impedance of these two parallelly connected loads in the supply network.

Examplesl ∈ {751, 901, 1051}, i.e., lamp with bulb “Omega”, wall lamp with four
bulbs ”Lexman” and kettle are similar to the examplel = 1. Examplesl = 451 (lamp with
bulb ”Osram”) andl = 601 (lamp with bulb ”Philips”) are distinguished by the lack of the
minimum of the 2A-amplitude instantaneous current fornSEL = 30,300.

The examplel = 1951 recorded for the coffee machine has a characteristic shape,
especially in the areanSEL = 30, 000 . . . 31, 000, where rapid changes in the instantaneous
current values are visible, and the characteristic for many other examples of quasi-periodic
oscillations cannot be found.

A vacuum cleaner(l = 151), slow juicer(l = 301), jigsaw(l = 1801), and planer(l = 2251)
reduce the frequency of current oscillations, and increase the number of visible oscilla-
tions, which is unique for each EA. Specifically, for examplel = 151, five oscillations have
period of approximately 940 samples corresponding to a frequency of 31.9 kHz. For the
examplel = 301(slow juicer), four periods exist (923 samples each) which corresponds to
a frequency of 32.5 kHz. For the examplel = 1801 (jigsaw), five periods of 500 samples
correspond to a frequency of 60 kHz. For the examplel = 2251 (planer), there are six
periods, each 610 samples long, which corresponds to a frequency of 49.2 kHz. All these
categories have motors, which may shape the current pulse.

4.4. Dictionary of Transients

The measurement data for the transient dictionary does not coincide with the mea-
surement data used to train and test the classification algorithms. The set of measurement
data used in the transient state dictionary was prepared independently of the data set
described in Section 4.3. Selection of current vectors for the dictionary does not disturb the
obtained classification results.

To prepare the dictionary of transients, the procedure presented in Section 2.4 was
used. For each of sixteen categories, 10 examples of transient currenti were collected, from
which current vectorsiSEL were obtained. The resulting dictionary of transients is presented
in Table 3. The most important fragments of current vectorsi(lD)DIC for selected categories are
in Figures 20–23.
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Table 3. Information about the transient dictionary.

Category
Numberx Device Name Indexes of Current Vectors lD

Signature Features
Related to the Dictionary Examples

0 no EA 1 . . . 10 COR_0_A . . . COR_0_J
1 vacuum cleaner 11 . . . 20 COR_1_A . . . COR_1_J
2 slow juicer 21 . . . 30 COR_2_A . . . COR_2_J
3 lamp with bulb “Osram” 31 . . . 40 COR_3_A . . . COR_3_J
4 lamp with bulb “Philips” 41 . . . 50 COR_4_A . . . COR_4_J
5 lamp with bulb “Omega” 51 . . . 60 COR_5_A . . . COR_5_J

6 wall lamp with five “Lexman”
bulbs 61 . . . 70 COR_6_A . . . COR_6_J

7 Laptop 71 . . . 80 COR_7_A . . . COR_7_J
8 Iron 81 . . . 90 COR_8_A . . . COR_8_J
9 Sharpener 91 . . . 100 COR_9_A . . . COR_9_J
10 Grinder 101 . . . 110 COR_10_A . . . COR_10_J
11 Kettle 111 . . . 120 COR_11_A . . . COR_11_J
12 Jigsaw 121 . . . 130 COR_12_A . . . COR_12_J
13 coffee machine 131 . . . 140 COR_13_A . . . COR_13_J
14 air conditioner 141 . . . 150 COR_14_A . . . COR_14_J
15 Planer 151 . . . 160 COR_15_A . . . COR_15_J

    

    

Figure 20. Current vectorsiDIC for dictionary elements for the category no EA(x = 0).

    

    

Figure 21. Current vectorsiDIC for the vacuum cleaner(x = 1).
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Figure 22. Current vectorsiDIC for the dictionary elements for the category lamp with a bulb “Osram”(x = 3).

    

    

Figure 23. Current vectorsiDIC for dictionary elements for the planer category (x = 15).

Despite ensuring similar conditions for generating impulses, the current vectorsiDIC
for the no-EA category (Figure 20) differ from each other. The first difference between
examples is the multiple contact phenomenon described in Section 4.3, visible for the
exampleslD ∈ {5, 6, 10}.

In all waveforms, a quasi-periodic oscillation is present, disappearing after about
three periods. A characteristic of these vectors is a rising edge on which the oscillation is
located. In the examplelD = 7, the slope is visible fornDIC = 1 . . . 2000. The rising edge is a
characteristic feature of applied AL.

For dictionary examples representing the vacuum cleaner (Figure 21), three types of
waveforms can be distinguished. They differ mainly in the shape of the initial part of the
vectoriDIC (nDIC = 1 . . . 1000). The first type is present in exampleslD = 11 andlD = 19. The
second type is visible in exampleslD ∈ {14, 15, 18}, while the third one—in exampleslD ∈
{12, 13, 16, 17, 20}. The oscillation frequency in the second part of the vectoriDIC is lower
than in the no EA case (category 0 in Figure 20). Duration of the oscillation between
samplesnDIC = 1000 andnDIC = 4000 is the same for all vectors in this category with period
of about 940 samples, which corresponds to a frequency of 31.9 kHz.
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Waveforms in Figure 22 represent lamps with the “Osram” bulb. Here, the multiple-
contact phenomenon of the relay is visible, especially for the examplelD = 40, where four
similar oscillations are present in the first part of the current vector.

Vectors for the planer (Figure 23) are different from other appliances, and at the same
time, they are similar to each other. Their distinguishing feature is the shape of the first
part of the vectoriDIC(nDIC = 1 . . . 300). Here exampleslD ∈ {151, 153, 154, 155} have one
maximum above the slope of the oscillation. It is present around the samplenDIC = 100.
ExampleslD ∈ {152, 156, 157, 158, 159, 160} have two visible maxima, one fornDIC = 90 and
the other one atnDIC = 190. In all examples for the planer, at least five periods of oscillation
with a period of about 610 samples are present, corresponding to a frequency of about 49.2
kHz.

4.5. Signature Parameters

Based on the determined correlation vectors for each pair of the transition (forl =
1 . . . 2400) and the dictionary examplelD = 1 . . . 160, the values of features in the signatureS
were determined. For each examplel, the signature contains 160 features. Values of two
characteristic features for each category are presented in Figures 24 and 25.

Figure 24. Box plot of feature COR_1_A.

Figure 25. Box plot of feature COR_9_F.

The COR_1_A feature (Figure 24) can be used to distinguish between three categories:
1 (vacuum cleaner), 2 (slow juicer), and 13 (coffee machine). A majority of examples
belonging to these categories have the value of the COR_1_A in the range between 0.97
and 1.0. Almost all observations of the remaining categories assume values of this feature
in the range 0.85–0.97, so it is not suitable for distinguishing between them.

The COR_9_F (Figure 25) feature is characterized by high values for almost all exam-
ples. Only three vectors from category 3 (lamp with the “Osram” bulb) have COR_9_F
values below 0.85. Observations for all other categories assume values of this feature in
the range 0.85–1. Even though the COR_9_F feature was determined for the dictionary
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examples belonging to the grinder category, the value distribution of this feature is similar
for each category. Therefore it is not useful in most cases.

4.6. Classification Results

This section presents results of three classifiers’ operation for the available data parti-
tioned using the K-fold cross validation (where K = 10).

4.6.1. Neural Network

The application of ANN required selecting the optimal number of neurons in the
hidden layer. For that purpose, the network was trained many times, with the number of
neurons in the hidden layer ranging from 1 to 24. The classification error as a function of
the number of neurons in the hidden layer is in Figure 26.

Figure 26. Classification error as a function of the number of neurons in the hidden layer.

The total classification error is minimal for 15 neurons in the hidden layer. Further
increase of this parameter does not significantly affect the classification error.

The confusion matrixCNN and the classification accuracyηnEA, NN for 16 examined
categories in the optimal ANN structure are presented in Table 4.

The overall classification accuracy was as follows:

ηALL, NN =
1
16

15

∑
nEA=0

ηnEA,NN = 78.6%. (9)

The accuracy of at least 95% was obtained for nine appliances: 1 (vacuum cleaner),
2 (slow juicer), 7 (laptop), 8 (iron), 11 (kettle), 12 (jigsaw), 13 (coffee machine), 14 (air
conditioner), and 15 (planer). Signatures for EAs 11–15 significantly differ from all oth-
ers, which makes them easily identifiable (see columns 11–15). The lowest classification
accuracy (24%) was achieved for category 9 (sharpener) and for category 3 (lamp with the
“Osram” bulb) at the level of 28%. Total 56 (37%) examples of category 9 were incorrectly
assigned to category 10. More than a half (51%) of examples of category 4 (lamp with the
“Philips” bulb) were incorrectly assigned to category 5 (lamp with the “Omega” bulb). This
is because categories 4 and 5 have similar signatures.

4.6.2. Decision Tree

None of the categories was faultlessly identified by DT (see Table 5). The best score of
97% was obtained for appliances 12 (jigsaw), 13 (coffee machine), 14 (air conditioner), and
15 (planer). For category 1 (vacuum cleaner), the accuracy was 95%. Categories 12 and 15
have very few examples from other incorrectly assigned categories. The worst classification
result (29%) was obtained for category 3 (lamp with “Osram” bulb). There are also two
groups of indistinguishable appliances. The first one consists of categories 0 (no EA), 3
(lamp with the “Osram” bulb), 6 (wall lamp with four “Lexman” bulbs), 9 (sharpener), and
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10 (grinder). The second group consists of category 4 (lamp with bulb “Philips”) and 5
(lamp with bulb “Omega”). The overall classification efficiency was as follows:

ηALL, DT =
1

16

15

∑
nEA=0

ηnEA, DT = 76.2%. (10)

Table 4. Confusion matrix and the classification accuracy of the neural network for 15 neurons in the hidden layer.

Assigned Category
ηnEA, NN

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
ru

e
C

a
te

g
o

ry

0 89 0 0 14 0 0 15 0 2 20 9 0 0 0 1 0 59%

1 0 147 3 0 0 0 0 0 0 0 0 0 0 0 0 0 98%

2 0 3 146 0 0 0 0 0 0 0 0 0 0 0 0 1 97%

3 40 0 0 42 0 0 6 1 0 30 31 0 0 0 0 0 28%

4 0 0 0 0 73 76 0 0 1 0 0 0 0 0 0 0 49%

5 0 0 0 0 32 117 0 0 0 0 0 1 0 0 0 0 78%

6 31 0 0 8 0 1 106 0 0 3 1 0 0 0 0 0 71%

7 0 0 0 0 0 1 0 148 1 0 0 0 0 0 0 0 99%

8 0 0 0 0 4 2 0 0 142 1 1 0 0 0 0 0 95%

9 21 0 0 30 0 0 5 1 1 36 56 0 0 0 0 0 24%

10 11 0 0 13 0 0 2 0 0 31 93 0 0 0 0 0 62%

11 0 0 0 0 0 1 0 0 0 0 0 149 0 0 0 0 99%

12 0 0 0 0 0 0 0 0 0 0 0 0 150 0 0 0 100%

13 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0 0 100%

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0 100%

15 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 149 99%

Table 5. Confusion matrix and classification accuracy for the decision tree algorithm.

Assigned Category ηnEA, DT
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
ru

e
C

a
te

g
o

ry

0 60 0 0 25 3 1 28 1 3 25 4 0 0 0 0 0 40%
1 0 143 3 0 0 0 0 0 0 0 0 0 0 4 0 0 95%
2 0 5 140 0 0 0 0 3 0 0 0 1 0 1 0 0 93%
3 29 0 0 44 0 0 14 1 0 36 26 0 0 0 0 0 29%
4 0 0 0 0 111 33 2 2 1 0 0 0 0 0 1 0 74%
5 1 0 0 0 39 105 2 0 1 0 0 0 0 0 2 0 70%
6 23 0 0 11 2 1 100 2 0 9 2 0 0 0 0 0 67%
7 2 0 2 0 0 0 1 136 3 2 3 0 0 1 0 0 91%
8 2 0 2 1 4 1 0 0 134 1 0 3 0 0 2 0 89%
9 25 0 0 33 1 1 7 2 2 57 22 0 0 0 0 0 38%

10 8 0 0 30 0 0 6 0 0 28 78 0 0 0 0 0 52%
11 0 0 2 0 0 0 0 3 5 0 0 139 1 0 0 0 93%
12 0 0 0 0 0 1 0 0 1 0 0 0 145 0 2 1 97%
13 0 3 0 0 0 0 0 1 0 0 0 0 0 146 0 0 97%
14 1 0 0 0 0 0 0 0 3 1 0 0 0 0 145 0 97%
15 0 0 0 0 1 2 0 0 0 0 0 1 0 0 0 146 97%

4.6.3. The kNN Algorithm

To identify the most significant predictors, the DT was first trained for all 2400 exam-
ples of transients. In the DT training process, 82 signature features were selected as the

157



Energies 2021, 14, 673

most significant ones. Using selected features, a classification was made for each of the 10
cross-validation attempts. The confusion matrixCkNN for all cross-validation trials and the
classification accuracyηnEA, kNN is presented in Table 6.

Table 6. Confusion matrix and classification accuracy for the k-nearest neighbors algorithm.

Assigned Category
ηnEA, kNN

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
ru

e
C

a
te

g
o

ry

0 70 0 0 38 0 1 14 2 1 17 7 0 0 0 0 0 47%

1 0 149 1 0 0 0 0 0 0 0 0 0 0 0 0 0 99%

2 0 3 147 0 0 0 0 0 0 0 0 0 0 0 0 0 98%

3 38 0 0 65 0 0 3 0 1 21 22 0 0 0 0 0 43%

4 1 0 0 0 120 29 0 0 0 0 0 0 0 0 0 0 80%

5 3 0 0 0 31 113 2 0 0 0 0 0 0 0 1 0 75%

6 19 0 0 11 1 0 107 1 0 7 4 0 0 0 0 0 71%

7 1 0 0 1 0 0 0 145 1 2 0 0 0 0 0 0 97%

8 0 0 0 1 0 2 0 0 145 1 0 0 0 0 1 0 97%

9 25 0 0 26 0 0 6 0 3 59 31 0 0 0 0 0 39%

10 10 0 0 29 0 0 1 0 0 25 85 0 0 0 0 0 57%

11 0 0 0 0 0 1 0 0 0 0 0 149 0 0 0 0 99%

12 0 0 0 0 0 0 0 0 0 0 0 0 150 0 0 0 100%

13 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0 0 100%

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0 100%

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 100%

The k-nearest neighbors algorithm classified nine categories with an accuracy of at
least 95%. These are: 1 (vacuum cleaner), 2 (slow juicer), 7 (laptop), 8 (iron), 11 (grinder),
12 (jigsaw), 13 (coffee machine), 14 (air conditioner), and 15 (planer). Categories 11, 12, 13,
and 15 have been identified flawlessly. The worst classification result (39%) was obtained
for category 10 (grinder). There are two groups of similar categories: (0, 3, 6, 9, 10) and (4,
5). The overall classification efficiency is as follows:

ηALL, kNN =
1

16

15

∑
nEA=0

ηnEA, kNN = 81.4%. (11)

5. Summary

The paper presented the system for NILM task based on the transient features of the
generated pulse analysis. It exploits mutual influence between devices operating in the
same power circuit to identify the moment of introducing the new one.

The pulse signal generator was designed. Its task is to generate current pulses at
predetermined time intervals in a fixed phase of the supply voltage. The measurement
system acquires current pulses and stores them as sample vectors. A method for processing
current signals was designed to determine their characteristic features based on the cross-
correlation calculated for each pair of EAs. The method uses information about the phase
and amplitude of all (periodic and non-periodic) components of the current pulse appearing
in the transient state of the device turned on. The processing result is a signature with
features characterizing the EA. The signature quality was verified using three different
classifiers.

The presented experiments show that devices connected to one circuit of the supply
network influence each other. A significant impact of a background device in the steady
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state on the current pulse on another device being turned on was observed. When a known
load is switched on under repeated conditions, the change in the shape of this pulse may
be characteristic for a device operating in the background. Results of the classification
show that in the best case, 9 out of 15 EAs are recognizable with an accuracy of at least
97%. Satisfying results were obtained for majority of tested EAs. There are types of EA
for which this method fails. Therefore multiple different identification methods should be
implemented simultaneously.

In practical application of NILM system the changing set of devices operating at the
same time must be considered. This makes the task difficult, as the change of the pulse
shape will be a certain superposition of all working EA. Therefore additional research are
required to approach this challenge. Results of presented experiments show that in the
highly controlled environment (especially when only a single appliance is operating) the
proposed approach provides high identification accuracy Its applicability should be further
investigated in the future.
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Abstract: There has been an effort for a few decades to keep energy consumption at a minimum
or at least within a low-level range. This effort is more meaningful and complex by including a
customer’s satisfaction variable to ensure that customers can achieve the best quality of life that could
be derived from how energy is used by different devices. We use the concept of Shapley Value from
cooperative game theory to solve the multi-objective optimization problem (MOO) to responsibly
fulfill user’s satisfaction by maximizing satisfaction while minimizing the power consumption, with
energy constrains since highly limited resources scenarios are studied. The novel method uses the
concept of a quantifiable user satisfaction, along the concepts of power satisfaction (PS) and energy
satisfaction (ES). The model is being validated by representing a single house (with a small PV
system) that is connected to the utility grid. The main objectives are to (i) present the innovative
energy satisfaction model based on responsible wellbeing, (ii) demonstrate its implementation using
a Shapley-value-based algorithm, and (iii) include the impact of a solar photovoltaic (PV) system in
the energy satisfaction model. The proposed technique determines in which hours the energy should
be allocated to maximize the ES for each scenario, and then it is compared to cases in which devices
are usually operated. Through the proposed technique, the energy consumption was reduced 75%
and the ES increased 40% under the energy constraints.

Keywords: electrical energy; load scheduling; satisfaction; Shapley Value; smart meter; solar
photovoltaics

1. Introduction

Energy is the backbone of modern society. It provides the means to support everyday
infrastructure, such as hospitals, schools, and homes. In the case of homes, for most of the
90 percent of the global population with access, it is difficult to imagine living without
electric energy [1]; it powers our essential needs, such as water pumping, lighting, cooling,
and very often also cooking, among others. Additionally, electric energy provides comfort
and entertainment, and although these are not essential needs, they can also improve
quality of life.

Throughout the years, with an increasing energy demand, managing energy consump-
tion has become important. Demand Side Management (DSM) encapsulates those strategies
that change the main power consumption to better match the power supply. Through DSM
methodologies, one of the purposes is to create an energy demand scheduling to benefit
a household.

Many DSM studies focus on minimizing energy cost, achieving utility stability, and
shifting peak demand. Wu et al. [2] proposed a mixed-integer linear programming (MILP)
model for the energy system optimization to reduce the annual cost in a building distributed
heating network. Similarly, Tang et al. [3] proposed a game theoretic method to maximize
net profit and reduced demand fluctuation using real data of building on a campus in
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Hong Kong. Conversely, Lokeshgupta et al. [4] proposed a mathematical model of an
intelligent multi-objective home energy management (HEM) to simultaneously minimize
the consumer’s bill and system peak demand.

Some authors have aimed at the time of device usage instead of the costs while en-
suring a level of satisfaction. Yang et al. [5] implemented a Nash-based game theoretic
approach to optimize time-of-use (ToU) pricing strategies considering the costs of fluc-
tuating demands to the utility company and the satisfactions costs of user. Additonally,
Marzband et al. [6] introduced a satisfaction function in a bi-level model to maximize
and allocate the profit. The authors included a satisfaction function as part of the payoff
function. The function is calculated at the end of each time slot and depends on the amount
of energy generation.

Among the studies that include satisfaction as part of the objectives, it is defined in
terms on how much their expectations are met [7,8]. The aforementioned methodologies
tackle the comfort/satisfaction/welfare part as an indirect measure. It is derived from
another variable taking this into account. Ogunjuyigbe et al. [8], on the other hand,
developed a cost per unit satisfaction index. Their model considered individual devices at
each time of the day. The index was maximized by using a genetic algorithm.

Game theory approaches have become one of the tools adopted for modeling and
analyzing energy consumption, due to its effectiveness to capture complex interactions
between multiple players. The Stackelberg game is one of the most used game strategies
for demand response problems [3,9–12]. Another largely used non-cooperative approach,
as a solution for DSM, is the Nash equilibrium strategy [3,13–16].

Summarizing the aforementioned studies, even though research efforts are starting to
emerge in the point of confluence of analyzing energy systems while considering quality of
life, they are still less prevalent. Two knowledge gaps in these studies are that satisfaction
is not computed directly, neither is satisfaction considered in most cases from the point as
time dependent. This study provides a motivation for such a granular level of smart meter
data with distinct energy uses. The proposed study explores more ways to harness smart
meters data to improve people’s wellbeing. Detailed and granular information on energy
consumption is expected to be broadly available in most households in the near future.
This study is centered on the specific power usages at the household level. The benefits
they bring to the household, as captured by human satisfaction, is also studied. The user
satisfaction is not studied as a posteriori parameter to test the model but as a key part of
the problem.

DSM requires the processing of a high amount of data to coherently use consumption
patterns and manage demand. Smart metering infrastructure (SMI) provides the means
to gather this high amount of electrical consumption information. However, it is still a
challenge to consider people´s wellbeing while using smart meter data. Buchanan et al. [17]
studied how smart meters can affect consumer’s wellbeing. Under the ‘five ways to well-
being framework’ [18], they explored other areas that may be found with the consumer
acceptance and engagement with smart meter enabled services (SMES). To address this
gap, this work is also contributing to a new platform to insert smart meter research directly
into the exploration of wellbeing and the human impact of energy socio-technical systems.
The present research offers a Shapley Value (SV) game-theory approach to solve the multi-
objective optimization problem (MOO) to optimize energy consumption. The hours of the
day for which energy should be allocated are found. Quantifiable user satisfaction metric
is used through the concepts of power satisfaction (PS) and energy satisfaction (ES). PS
and ES were recently developed by the authors [19]. PS and ES were computed hourly
and incorporated the detrimental impact that excess consumption can have in the quality
of life. Although the state of art may offer other traditional [20] and metaheuristics [21]
multi-objective based approaches, the present novel SV-based game-theoretic approach, as
seen in mentioned research, offers a simpler and more intuitive way to tackle the problem.

Chambers [22] proposed responsible wellbeing to combine the concept of wellbeing
with personal responsibility. Castro-Sitiriche and Ozik [23] delved into the matter when
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considering responsible wellbeing in terms of energy consumption. The energy threshold
hypothesis is defined. It was previously presented by Max-Neef [24] in terms of economic
growth and quality of life. The proposed MOO consists of responsibly fulfilling user’s needs
by maximizing satisfaction while minimizing the power consumption. A novel model is
proposed to include customer’s satisfaction in an optimization problem to minimize the
energy consumption. To summarize, the contributions of this paper can be highlighted
as follows:

• Energy satisfaction (ES) is proposed to capture the benefit of energy uses and to model
the optimization problem.

• The Shapley Value algorithm is implemented to maximize ES and minimize
energy consumption.

• The proposed model also integrated solar-based renewable-energy resources (RESs).
Real data from [25] was used for validation.

2. Cooperative Game Theory

2.1. Overview of Game Theory

Game theory provides a series of analytical tools, which allows us to understand what
is observed in decision-making interactions. The foundation of the theory is formed by two
basic assumptions: decision-makers are rational, and reason strategically by considering
the expectations of other decision-makers’ behaviors. Real-life situations are modeled by
game theory through highly abstract representations, thus, allowing their use to study
problems in many fields [26].

2.2. Types of Games

There are noncooperative games and cooperative (or coalitional) games. In the former,
each action is taken by a single player in response to the other players [27]. In cooperative
games, the model consists of the set of joint actions that each group of players (or coalition)
can take in response to the other players. Cooperative games are concerned with the
interactions among players, the value of each coalition and how the value can be distributed
to the participating players.

2.3. Shapley Value

The Shapley Value [28] is a solution concept for coalitional games along with the core,
nucleolus and Pareto optimal, among others. Given a coalitional game (N , v), there is a
unique feasible payoff division x(v) = ϕ (N , v) that divides the full payoff of the grand
coalition. The Shapley Value can be defined as [29],

ϕi(N , v) =
1

N!

N!

∑
R=1

[v(Pi(R) ∪ i)− v(Pi(R))] (1)

where R is the set of all N! orderings of N , Pi(R) is the set of players preceding i in the
ordering R and ϕi(N , v) is the expected marginal contribution over all orders of player i to
the set of players who are preceding it [26].

The Shapley Value also satisfies the following axioms [30]:

• Symmetry: The symmetry axiom states that interchangeable players i and j should
receive the same payments: ϕi(N , v) = ϕj(N , v). Two agents are interchangeable if
they contribute the same amount to every coalition with the other agents.

• Dummy Axiom: The dummy player i contributes to any coalition the same amount
that i can achieve alone. Thus, for any v, if i is a dummy player, then ϕi(N , v) = v(i).

• Additivity: The additivity axiom states that for any two coalitional game problems, de-
fined by v1 and v2, we have for any player i that ϕi(N , v1 + v2) = ϕi(N , v1) + ϕi(N , v2),
where the game ϕi(N , v1 + v2) is defined by (v1 + v2)(S) = v1(S) + v2(S) for every
coalition S.

163



Energies 2021, 14, 1485

• Efficiency: The efficiency axioms states that the entire payoff is divided among the
players, so ∑N

1 ϕi = v(N ), where ϕi is the Shapley Value of player i.

3. Satisfaction Model

3.1. Satisfaction Concept

The human experience is complex to describe since it depends on the reality of each
person. Satisfaction, on the other hand, is a more general concept and describes the user’s
perception and how its expectation can be fulfilled [7]. This research proposes a model
to quantify satisfaction in the context of a household with different devices. The use of
each device provides different levels of satisfaction at different times of the day. Daily
moments are captured and summed up to build the energy satisfaction concept. As part of
this model, we also consider excessive and poor consumption.

3.2. User Input Satisfaction

The proposed algorithm will be finding the hours of the day for which energy should
be allocated to achieve the maximum satisfaction at a minimum energy consumption. For
the user satisfaction, it is assumed:

• Satisfaction among devices can be compared at two levels: time-based, satisfaction Ω,
and device-based satisfaction Δ, as defined by Ogunjuyigbe [8]. The former implies
that if there is a device no. 1, then the satisfaction it is providing at time t1, (Ω1 (t1)),
can be compared with the satisfaction the same device is providing at different time t2,
(Ω1(t2)). For the latter, if the two devices need to be used at the same time, then there
is a satisfaction derived from using device no. 1 (Δ1(t1)), which can be compared with
the satisfaction derived from using device no. 2 (Δ2(t1)) at that hour.

• Time-based satisfaction Ω has an integer numerical value from zero (0) to six (6), where
six (6) means completely satisfied, three (3) means neutral, and small satisfaction
values, such zero (0), one (1) and two (2) will denote dissatisfaction.

• Three (3) levels of time-based satisfaction are identified according with these seven (7)
scores, see Table 1.

Table 1. Levels of Satisfaction.

Level Respondent’s Answer

Satisfied 4, 5, 6
Neutral 3

Unsatisfied 0, 1, 2

3.3. Power Satisfaction

The power satisfaction will not only depend on the user input satisfaction set by the
household’s head. PS also depends on the energy consumption patterns at each hour of
the day. Thus, PS depends on the number of hours of continuous usage (CLoU) and the
total length of use in a day (LoU). To find the PS at time t, we need to analyze the previous
24 h, i.e., from time t − 24 until time t − 1. It is suggested that PS cannot be tested based on
how satisfied a person is at t but it will be affected by its perception of the last 24 h.

3.4. Equation of Power Satisfaction

Power satisfaction at a given time/hour can be expressed as the function in
Equation (2) below:

PSi[t] =
(
αi [t]− βi[t]

∣∣t̂ui [t]− tui

∣∣ −γ[t]
∣∣ t̂t i[t]− tti

∣∣) ui[t] (2)

where,

βi [t] = γi[t] =
αi[t] + 3

48 − tui − tti

(3)
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where, α is related to the customer’s answer, β is related to CLoU and γ is the related to
LoU. The main idea is to penalize the initial satisfaction, α according to an excess or poor
consumption. Variables β and γ depends on α and convert t̂u and t̂t, respectively, into a
value that can be deducted from α and,

αi [t] =
Ωi [t]

tti

, (4)

where Ωi is the time-based input satisfaction for device i and it is divided by the responsible
LoU, tti , hence α will reach its maximum if it used the expected time tti hours during a
24-h period. To find PS, 24 h of experiment is needed. For each device i, the array
ui = {un : n = 1, 2, . . . 24} where un is 0 or 1. It is the input vector for each device with
the operational status of the devices, it will be one (1) when ‘ON’ and (0) if it is ‘OFF’. For
further details, see previous work reference [19].

3.5. Energy Satisfaction

Each user has a subset {i : i = 1, 2, . . . , N} of N participant devices. Following the
well-known concept of electric energy, to find the energy satisfaction, ES, in time t, the
previous 24 values of PS are required, i.e., {PSi[t − 24], . . . , PSi[t − 1]}. To compute the
first PS, PSi[t − 24], the past 24 h before this time are also required. Hence, to compute ES,
48 h of experiment are required. ES is defined as in Equation (5).

ES[t] =
1
N ∑

i∈ N
∑
n=k

PSi,n , (5)

where N is the number of participant devices, k is the initial time of the experiment,
t = k + 23 and Δi,t is the device-based satisfaction.

Equation (5) is modified to include the concept of device-based satisfaction Δ. ES
becomes a weighted summation and reflects the specific needs at that current time t.
Subsequently, the average is computed to obtain the ES value at time t,

ES′[t] =
1
N

(
∑

i∈ N
Δi,tPSi,t +

(
t−1

∑
n=k

PSi,n

))
, (6)

4. Problem Formulation

4.1. Electric Energy Function

The energy consumption in an hour from time t until time t + 1 is defined as in
Equation (7),

L[t] = ∑
i∈ N

ei,tui[t] , (7)

where ei,t represents an usual energy consumption of device i in one hour and ui is the
input vector for each device i with its operational status. It will be one (1) when ‘ON’ and
zero (0) if it is ‘OFF’.

4.2. Optimization Problem

The problem of jointly maximizing the satisfaction while minimizing the power
consumption f2(u) can be formulated as a multi-objective (MOO) problem:

min[ f1(u, t),− f2(u, t)], (8)

s.t. L[t] ≤ Econ, (9)

where,
f1(t, u) = L[t], (10)

f2(t, u) = ES′[t], (11)
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t ∈ {k, k + 1, . . . , k + 23} (12)

4.3. Constraint

The algorithm is subjected to the constraint that the total energy consumption of the
user is less or equal to a pre-defined energy budget, Econ,

s.t. L[t] ≤ Econ , (13)

4.4. Cooperative Game Model Implementation

A mathematical model based on cooperative game theory is developed to capture
the complex interactions among the different devices. The Shapley Value algorithm based
on the cooperative game implementation is applied to all participating devices to obtain
the ui vector. Such that energy can be allocated to simultaneously maximize the ES′ and
minimize the energy consumption L for a corresponding energy reference. The flow chart
for the proposed algorithm is shown in Figure 1. Time-based and device-based satisfaction
tables and power consumption for each device are established. The proposed approach is
to design a consumption scheduling for a selected number of hours n. Additionally, we
should decide time t to start the experiment and the number N of participating devices.
Considering the experiment should collect energy data for the 48 h before this time t, then
the status matrix is of size 48 × N. The number of possible action profiles A, is found
(2N). Since each possible action profile contains the possible devices´ status, each of these
possible profiles are multiplied for the correspondent Device-based satisfaction Δ according
to the time of the day and the device. PS and ES are computed using Equations (2) and (6)
at each time slot, respectively. Next, the worth of the coalition v(Sk) can be found for each
time slot for each profile. Lastly, the group of actions with maximum SV can be selected.

To implement this algorithm the following considerations are followed:

• Players:

Devices-agents i = 1, 2, . . . , N are considered the players.

• Actions:

Devices can be ON or OFF, so the actions would be turning ON or OFF the participant
devices (players.) The ui array will be zeros or one depending on the device status.

• Payoffs:

Consumption and ES are combined and modeled as optimization function using the
characteristic function.

• Value of coalition:

Agents form coalitions and every coalition and corresponding actions have different
value. For K ⊆ N, SK is the group of K devices that agreed to make a coalition to maximize
the total expected payoff v(SK) that they can achieve together. The value of a coalition for
this cooperative game is,

v(SK)t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, |L[t] > Ere f ∩ ES′[t] < 4[
1 − f

∣∣∣ L[t]−PPV [t]
max(L[t],PPV [t])

∣∣∣][ ES[t]
6

]
, PPV [t] < L[t] < Ere f[

1 −
∣∣∣ L[t]−PPV [t]

max(L[t],PPV [t])

∣∣∣][ ES[t]
6

]
otherwise

, (14)

where f is a factor to penalize level of consumption among the energy reference
and solar energy less than cases when less then solar energy and PPV [t] is the min-
imum among the set of power output of generation(Ppv[t]) and the power inverter
(Pinv[t]), i.e., PPV [t] = min

(
Ppv[t], Pinv[t]

)
, for the cases with just utility and

PPV [t] = min
(

Ppv[t] + Pbat, Pinv[t]
)

for the cases with batteries and utility, where Pbat is
the set of power output from batteries.

166



Energies 2021, 14, 1485

There are three levels of consumption: L ≤ PPV , PPV < L ≤ Ere f and L > Ere f .
Where Ere f would be a consumption that is acceptable, there will be penalty if it is less than
PPV or greater than Ere f .

Figure 1. Flowchart for cooperative game implementation.
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5. Experimental Results and Discussion

5.1. Case Study: House with Photovolatic System (PV) and Utility or House with PV, Batteries
and Utility

The proposed model is being validated by representing a single rural residential
house that may contain a small photovoltaic (PV) system that is composed of one or more
solar panels combined, a DC/AC inverter, and it is grid-connected. Figure 2 describes a
generalized version of the system. Energy data to simulate the case study is obtained in
two ways:

• Reference Energy Disaggregation Data Set (REDD) [31] for power ratings and status
vector (ui) for refrigerator, microwave, lighting, stove, and water heater.

• Power ratings for TV, AC, Radio and phone, are obtained from Ogunjuyigbe [8]. Status
vectors for these four devices are randomly generated.

Figure 2. Photovoltaic (PV) system.

5.2. Data Characterization for the Algorithm Calibration
5.2.1. Household’s Load

For the load data, a single house’s devices (four of them) are analyzed, the REDD
data [31] is used to represent a part of house’s loads. Data that is shown in Table 2 contains
average power reading for the individual circuits of the house. The REDD data was
sampled every three seconds. Hence, there are 20 data points per minute. The ui array is
an hourly vector. For this vector, it needs to be decided how much time within an hour a
certain device must be ON to assign a one (1) in that time slot.
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Table 2. Load Description.

Device Rating (W) tu tt

Lightings 240 4 8
Refrigerator 170 24 24

Stove 2 3 9
Microwave (Oven) 1200 1 4

5.2.2. House Head’s Satisfaction

Satisfaction matrices were generated according to author’s personal experience and
they are described in Tables 3 and 4. This first stage of results is simply used as a sanity
check. In the Section 5.3, actual load description (see Table 5) is used for each device
based on REDD database and Ogunjuyigbe et al.’s [8] work. Besides, actual values of
satisfaction were used to generate Tables 6 and 7. The authors´ personal experience
reflects and summarizes how devices were prioritized by most of the population in extreme
conditions such as those experienced after hurricane Maria in 2017 in Puerto Rico. However,
future work will include field data to build the time-based satisfaction and device-based
satisfaction tables.

5.2.3. Results

Figure 3 depicts the amount of energy used by each of the four devices under the
proposed SV allocation algorithm and the actual energy usage according to the REDD
database [31]. The proposed optimization problem has been constrained. Thus, show-
ing how with the same amount or less energy than in the actual REDD scenario. ES
(see Figure 4) is higher at each time slot.

 
Figure 3. Power usage with the proposed Shapley Value (SV) load allocation algorithm vs. real usage
according with the REDD [31] database.

Figure 4. Energy satisfaction (ES) with the proposed SV load allocation using the same or less energy
than real REDD [31] database vs. ES satisfaction using REDD [31] database.
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Table 5. Load description.

Device Rating (W) tu tt

Lightings 135 4 8
Microwave (Oven) 1200 1 4

TV 200 2 4
AC 800 6 8

Radio 50 5 12
Water Heater 2000 1 2

Laptop 100 8 12
Phone 10 1 3

Figure 5 depicts how power is used in both scenarios. Figure 6 shows the resulting
ES from that energy usage. Lighting is suggested to be on early in the morning and in the
afternoon when the satisfaction derived from them is the highest. Therefore, the refrigerator
needs to be off for one hour because it is a priority (see Table 4 to have lighting on since its
contribution to the total ES is higher. However, analyzing ES brought by refrigerator in
Figure 6 is slightly lower for the proposed algorithm since it was turned off. According to
the REDD database [31], the stove is in on status during one hour but it is on at a time that
is not bringing any satisfaction, hence the proposed algorithm recommends to not turn it
on under the energy restrictions. For the microwave, in the REDD database [31], it is on
at different times of the day however it is not on when the satisfaction is the highest. For
example, in the morning it is preferable to have lighting on instead of the microwave, since
the energy usage of lighting is less than the energy usage of the microwave.

Figure 5. Power usage by each device with the proposed SV load allocations vs. real usage according
with the REDD [31] database.
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Figure 6. ES derived from each device with the proposed SV load allocation algorithm vs. real usage
according to the REDD [31] database.

For the calibration part, we made sure the algorithm was suggesting those profiles
where the Energy Satisfaction was highest at a minimum energy usage. In the following
section, we will be testing the algorithm for a different set of devices.

5.3. Data Characterization for the Algorithm Testing.

Eight devices were selected according to the ones used in Ogunjuyigbe et al. [8]
for testing purposes. For the algorithm simplicity, all lights were considered as a single
appliance. Ogunjuyigbe et al. [8] used some loads for which there are not data available
in the REDD database [31], such as TV, AC, Radio, and phone. Hence, for these ones,
Unit Wattage data from [8] was used. Additionally, ui was randomly generated for those
devices, such that a comparison can be made with the proposed algorithm’s ui output.
Table 5 describes the electrical appliances used by a user, their rating, their optimum CLoU,
tu and their optimum LoU, tt for a responsible consumption.

5.3.1. House Head’s Satisfaction

The algorithm also needs practical input data for satisfaction to create the model.
Data from Ogunjuyigbe et al. [8] (σt and σd) are being used for this purpose. Data from
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time-based satisfaction was mapped into satisfaction levels described in Table 1 in the
following fashion,

Ωt =

⎧⎪⎪⎨⎪⎪⎩
0, i f σt = 0.5

6 − 2(1−σt [t])
0.5 , i f σt ≥ 0.5

6σt[t]− 3, i f σt < 0.5

, (15)

Dissatisfaction and ‘indifference’ values (0, 1, 2 and 3) are mapped into negative values
and zero (−3, −2, −1 and 0, respectively). The proposed model introduced negative values
when low satisfaction, thus making it preferable to have them ‘OFF’, representing by itself,
before the optimization problem, a more accurate satisfaction model, which allows making
decisions not only for energy and economic savings but also responsibly fulfilling the
customer’s satisfaction. Table 6 shows complete resulting time-based satisfaction table
and Table 7 shows device-based satisfaction after mapping d-domain satisfaction found in
Ogunjuyigbe et al. [8] (σd) by using Equation (16).

Δ [t] = 10σd[t], (16)

5.3.2. Results

One of the main results to report is that the implementation of the SV optimization
provided a consumption pattern that represents an energy consumption less or equal than
the initial actual use and a higher energy satisfaction for almost all hours in all devices.
Figure 7 provides the graphical comparison of the power consumption at each hour for
the actual based case and the case with the SV optimization. Figure 8 presents the energy
satisfaction at each hour showing how the SV optimization outperforms the base case,
particularly increasing its advantage in the early morning hours and the late evening hours.

 
Figure 7. Power usage by each device with the proposed SV load allocations vs. real usage according
to the REDD [31] database.

Figure 8. ES Satisfaction with the proposed SV load allocation using the same or less energy than
real REDD [31] database vs. real usage according to the REDD [31] database.
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Figure 9 depicts a comparison of the hourly power consumption of all devices between
the proposed SV allocation algorithm and the actual power consumption. In Figure 9 (left
side), the algorithm attempts to meet desired time-based and device-based satisfaction
tables (See Tables 6 and 7) while consuming equal or less hourly power than the one
shown in 9 (right side). The energy reduction was of approximately 75%, from 32.6 KWh
to 7.35 KWh. Equally important is the energy satisfaction increase of 40% with the SV
algorithm, from 5500 to 7825. A consumption plan is scheduled for the user by managing
devices based on the SV game theory approach. Next, a reliability signal or economic signal
will be sent to a Human-Machine Interface (HMI). A reliability signal will ensure that the
electric system keeps operating when a house is not connected to the grid, while an eco-
nomic signal ensures the same purpose when connected to the grid. This way, the customer
is aware of the situation and can make a final decision based on the available information.

Figure 9. Power usage by each device with the proposed SV load allocations (left side) vs. real usage
according to the REDD (right side) [31] database.

Figure 10 includes the ES for each device and it seems that the better SV performance
is due mainly to the microwave use in the morning and the TV at night. Since operational
status vectors, u for TV, AC, Radio, and phone, were randomly generated, Figure 9 shows
an atypical consumption pattern. Figure 10 shows a comparison between the hourly
ES obtained through the SV allocation algorithm and the ES obtained in the actual case
representation, for each of the devices. When attempting to meet the energy constraints
imposed by the actual case scenario, with the proposed SV algorithm, the ES obtained at
each hour is equal or higher for almost each of the hours for every device. This is one of
the most important results of this study. Only in the case of the laptop, the ES is higher at
the last hour of the day in the actual case scenario.

Similarly, Ogunjuyigbe et al. [8] presented their results in 24 h plots for three different
daily budget constraints to provide a maximum satisfaction at those predefined budgets.
On the other hand, the present research used energy constraints rather than budget,
and thus including a key component of the research when penalizing excessive and low
consumption, because of its detrimental impact in the quality of life. He compared a
‘desired satisfaction’ with an ‘achieved satisfaction’. The ‘achieved satisfaction’ was the
output of their load-satisfaction algorithm, which is analogous to the present ‘SV load
allocation’ algorithm. We did not choose to compare the output results with the ‘desired
satisfaction’ (as Seen in Tables 6 and 7). Instead, we compare it with an ‘actual’ scenario
represented by using the REDD database. Ogunjuyigbe et al. [8] implemented a genetic
algorithm (GA) approach. While the GA approach may have a good convergence speed
and good efficiency, the present approach does not have to deal with convergence times
and offers a more intuitive optimization framework.
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Figure 10. ES derived from each device with the proposed SV load allocation algorithm vs. real
usage according to the REDD [31] database.
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6. Conclusions

A novel model to include customer’s satisfaction in an optimization problem was
introduced. A quantifiable user satisfaction was developed. The satisfaction concept
through the novel concepts of power satisfaction (PS) and energy satisfaction (ES) included
the detrimental impact that excess consumption could have in the quality of life. The
algorithm provided the hours of the day for which the energy should be allocated to achieve
maximum satisfaction at an energy constraint imposed by the energy consumption in
actual case scenarios. Actual case scenarios were represented by using the REDD database.
The Shapley Value (SV) concept from the game theory framework was implemented to
obtain a recommendation on how energy should be allocated. The results showed how
the algorithm maximized user´s ES at a minimum energy consumption. The proposed
approach reduced energy consumption 75%, while increasing ES 40%.

SV-based optimization successfully achieved to maximize satisfaction at a minimum
energy consumption although it also has high computational complexity. Further work
can be done to decrease computational complexity and thus the required reduction pro-
cessing times. This could be achieved by using more powerful computers or through the
derivation recursive and/or parallel implementation of the proposed algorithm. The pro-
posed methodology is validated by simulating a rural single house with limited resources
connected to the grid. It should be pointed out that the satisfaction model can be readily
applied in a real case scenario of rural communities.
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Abstract: Smart spaces are characterized by their ability to capture a holistic picture of their
contextual situation. This often includes the detection of the operative states of electrical appliances,
which in turn allows for the recognition of user activities and intentions. For electrical appliances
with largely different power consumption characteristics, their types and operational times can be
easily inferred from data collected at a single metering point (typically, a smart meter). However, a
disambiguation between consumers of the same type and model, yet located in different areas of a
smart building, is not possible this way. Likewise, small consumers (e.g., wall chargers) are often
indiscernible from measurement noise and spurious power consumption events of other appliances.
As a consequence thereof, we investigate how additional sensing modalities, i.e., data beyond
electrical signals, can be leveraged to improve the appliance detection accuracy. Through a set of
practical experiments, recording ambient influences in eight dimensions and testing their effects on
21 appliance types, we evaluate the importance of such added features in the context of appliance
recognition. Our results show that electrical power measurements already yield a high appliance
recognition accuracy, yet further accuracy improvements are possible when considering ambient
parameters as well.

Keywords: appliance load signatures; ambient influences; device classification accuracy

1. Introduction

The number of different electrical appliances in households keeps rising. As such,
it is becoming increasingly important to recognize the potentials for energy savings and
demand side management, i.e., the possibility to defer power consumption in order to
improve the stability of the power grid. For these purposes, it is not only vital to have
complete knowledge about the appliances present in a building, but also their individual
energy demands and operational times. Monthly electricity bills only provide insufficient
information to accomplish this task, however, as the required information can only be
estimated from the household total. Even current-generation smart meters are incapable of
providing a detailed and unambiguous itemization of energy consumption, so more fine-
grained means for load monitoring in a home are needed to provide enhanced consumption
feedback and accomplish energy savings (which were documented to reach up to 12%
in [1]).

Two fundamentally different approaches exist for the collection of the required data at
appliance level. One the one hand, Intrusive Load Monitoring relies on the installation of
power sensing devices for each appliance under consideration (or at least every electrical
circuit in the home). The advantages of being able to attribute power consumption to
individual devices, however, come at a high cost for instrumenting the environment with
sensors, and maintaining their operability during their lifetime. On the other hand, Non-
Intrusive Load Monitoring (NILM) methods collect the electrical information of a whole
building or apartment and use algorithms to disaggregate the total power demand into
the contributions of individual devices. The non-intrusive approach is often preferred due
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to lower costs and installation efforts. However, current NILM methods do not always
succeed in accurately and unambiguously disaggregating power data from households [2].

Most current methods for appliance recognition and load disaggregation consider
electrical consumption data (e.g., active power) [2,3]. When data are available at a sufficient
resolution, however, more complex features like spectral components can be computed and
used supplementally. Using more, especially more complex, features has been shown to
improve the rate of correct device recognitions [4]. Confusion may still exist between certain
appliance types, and some appliances have been reported to be “hard to disaggregate” [5,6]
based on their electricity consumption alone. One potential candidate to alleviate the
current limitations of NILM is the additional use of contextual information, as documented
in [7–9]. For example, the distributions of On- and Off-durations as well as dependencies
between device usages are modeled into a Factorial Hidden Markov Model (FHMM) in [7].
The resulting performance shows a marked improvement, even for a larger number of
active appliances, and reaches improvements of up to 25%.

A similar approach based on user presence and time constraints was presented in [3].
The application of time constraints alone was shown to achieve a small improvement
of about 3 %. However, as soon as indicators of the user presence were included in
combination with time constraints, improvements of about 14% were reported.

But there are more parameters besides the aforementioned attributes. It is well-known
that many electrical devices generate acoustic, magnetic, or optical emissions, or dissipate
the consumed energy as heat during their activity. The potentials of using such information
in the appliance recognition task have been investigated in [5,10,11] and further studies
presented in Section 2. We, however, believe that our work is first to present a holistic and
comprehensive study that determines the information gain of a range of additional sensing
modalities. A thorough understanding of the importance of ambient sensing features is
vital to optimally support appliance recognition (e.g., by lowering the number of candidate
devices for the classification task). We strongly expect monitoring systems to profit from a
deeper understanding of the features that characterize the operation of electrical appliances.
System operators could then decide to specifically collect data based on the importance
of certain sensor types, i.e., their usefulness, to better evaluate if costs outweigh possible
benefits. Costs typically arise from hardware purchases and the device deployment in their
optimum locations (e.g., luminosity sensors need to be mounted next to the light-emitting
parts). However, non-monetary costs may also play a role, e.g., when sensors have the
potential to compromise on user security or privacy. Understanding the importance of
ambient sensing features will thus ease the considerations which sensor types to deploy.
Accordingly, our work seeks to establish the foundation to enable further work in this
context by providing an answer to the following question: Which ambient sensors can lead
to improved appliance recognition results, and what are the most useful sensor types to
facilitate the categorization of electrical consumers by their types?

In order to answer this question, we design a study to be conducted in two sequential
steps. The first step, the design and implementation of a comprehensive data acquisition
setup, is essential due to the unavailability of publicly released data that contains informa-
tion beyond electrical power consumption data. In our second step, data analysis, we assess
the contribution of each sensing modality to the overall appliance recognition task. Beyond
the recognition of specific appliances, we also determine the set of features to facilitate the
detection of appliance classes (i.e., the distinction between devices of different categories).
Ultimately, the analyses presented in this work allow us to derive recommendations for
future data collection campaigns, similar to the set of guidelines for electrical datasets
presented in [12].

Our manuscript is organized as follows. In Section 2 we provide an overview of
further studies which considered additional ambient sensing and illustrate how these
works were considered for the design of our study. In Section 3 we present our system
design to collect data from eight ambient parameters, both during appliance operation
and inactivity. The concept for our subsequent evaluation and its parameter choices are
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detailed in Section 4. We evaluate to what extent devices could be recognized and what
ambient sensors carried the most information in Section 5, and we summarize the insights
gained in our study in Section 6.

2. Related Work

A number of studies have considered further data besides electrical information
sources to improve the device identification and accordingly improve the disaggregation
process: Acoustic sensors, light, temperature, vibration, electro-magnetic fields, or ac-
celeration data [5,10,11,13–16]. Remarkedly, however, the aforementioned works have
considered these parameters largely in isolation, as shown in Table 1. Opposed to this, we
present a comprehensive study that relies on all sensor types in this work.

Table 1. Types of Ambient Sensors Used in Related Work.

Reference Sound Light Temperature
Electro-Magnetic

Fields
Acceleration Vibration

[5] �
[15] � � �
[16] � � � � �
[10] � � � �
[14] �

this paper � � � � � �

The sensor deployment methodologies differ as well. The authors of [5,11,13,14] use a
small number of sensors, which are not fixed to the appliances under consideration, but
rather monitor the ambient conditions in general. As such, they can collect information
from appliances that are operating simultaneously. In contrast to this, the collection setups
presented in [10,15,16] use separate sensors for each appliance, thus recorded values can
be unambiguously attributed. These sensor placements are mostly related to the different
concepts of the respective studies. The authors of [11,13,17] present different sensing
platforms and concepts, but only briefly evaluate the possibility to identify electrical
devices. In [14] the authors introduce a system which solely includes ambient audio
information, collected on a per-room granularity. The system is considered as a load
monitoring system and uses different collected audio features as a first disaggregation
layer. Only if the audio features do not allow for disaggregation, the electrical features are
evaluated and can overwrite the decision. The authors of [18] follow a similar approach,
albeit they implement a smartphone-based system to detect household activities. Through
the annotation of activities with corresponding energy consumption data, the authors
enable basic load monitoring based on audio information. Lastly, the authors of [10]
present the appliance-agnostic usage of “multi-modal signatures” through the common
evaluation of all sensor data and their changes that allow for device identification. They
recognize the potential of closely correlated environmental data as trusted sources of
appliance activations, allowing NILM systems to validate or re-train themselves. While the
general usefulness of multimodal signatures is proven in [10], the used sensor types are not
evaluated concerning their individual usefulness. Aligned with these insights, the authors
of [19] have also remarked the potential of environmental sensors in disaggregation tasks.

Bearing these related findings in mind, we present our data acquisition concept and
its evaluation in the following sections. As the related studies did use approaches with
and without consideration of electrical data for the recognition process, our study will
accordingly include evaluations for both approaches.

3. Data Acquisition Concept

A number of datasets are widely used in related research on energy data analytics
so far (e.g., [20–24]). Collecting such datasets, however, is often motivated by the desire
to capture a large continuous stream of electrical energy consumption readings for data
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processing tasks like pattern recognition or forecasting. Ambient features or user-specific
details (e.g., presence) are not part of most datasets, and there is no dataset available that
comprises electrical signals as well as the full set of ambient conditions we consider in this
work. As a result of this shortcoming of published datasets, it was necessary to run our
own data collection campaign. We have decided to design a collection system for both
electrical and ambient sensor data and use it to collect a dataset for the data analysis we
conduct in Section 4. We describe our rationales behind the design of the system as well as
the data preprocessing steps we apply in the following subsections.

3.1. Selection of Appliances

As we aim for a generalizable evaluation of device types and their emissions of non-
electrical signals, the first decision to make is the selection of the set of appliances under
consideration. Our goal is to determine a representative set of electrical devices, that
will be operated in a controlled environment in order to collect the input dataset for all
further analyses. To make an informed choice of devices, we have consulted studies on
electrical appliance ownership worldwide [25–27]. Through considering the appliance
types reportedly owned by at least 2/3 of the households, we have been able to identify a
set of 13 appliances that are present in many households in developed countries. Minor
household devices are typically not part of the aforementioned surveys due to their large
diversity and the negligible contributions to the monthly energy bill. Still, several use
cases for their recognition in load data are conceivable, e.g., the identification of user
activities that are tightly bound to the use of these devices. Accordingly, we have chosen
eight additional devices related to cooking (e.g., a mini oven), personal hygiene (such as
a hair dryer), and office activities (e.g., a printer). The full set of all 21 appliances under
consideration is provided in Section 4.

3.2. Selection of Monitored Parameters

Having selected the appliances under consideration, their (expected) ambient influ-
ences need to be determined, in order to derive the sensors required to capture these
parameters. For the evaluation of possible ambient influences we have extracted possible
emissions from the devices’ data sheets, the general construction of devices (thus implicitly
considering the laws of physics), and moreover inspected the devices under test manually
during their operation. The complete list of all eight captured sensor parameters is given
in Table 2.

3.3. Data Collection System Design

Based on the derived set of requirements pertaining to the parameters to monitor, a
collection system was prototypically designed and implemented. As it was our intention
to collect the sensor measurements as close to the Device under Test (DuT) as possible,
most of the ambient sensors were wired up to an embedded microcontroller system, based
on the PJRC Teensy 3.2 board. Its compact size offered the possibility to be mounted very
close to the DuT. Sensors for the parameters of interest were interfaced to the board either
via a digital two-wire (I2C) interface, or through analog signals that were converted into
the digital domain by the microcontroller’s integrated 16-bit Analog-to-Digital Converter
(ADC). The microcontroller system was programmed to use a periodic sampling schedule,
and capture the considered parameters as synchronously as possible. Retrieved sensors
values (e.g., digitized temperature readings) are scaled in order to report their data in SI
units (e.g., °C). The data sampling rates are shown alongside the sensor types in Table 2.
They were selected such that the microcontroller system could perform data processing
and transmit them (across its USB-serial connection) in real-time. The choice of 400 Hz for
vibration measurements aligns well with typical rotational speeds of the evaluated internal
motors (e.g., internal motors of DVD and CD players typically spin at 200 rpm to 570 rpm).
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Table 2. Summary of the Used Sensing Devices and the Properties of the Data They Collect.

Symbol Sensing Device Interface
Collected Information

[Unit]
Sampling Frequency

T temperature sensor I2C ambient temperature [°C] 1/5 Hz
H humidity sensor I2C relative humidity [%] 1/5 Hz

UV UV radiation sensor I2C UV steps from the sensor 400 Hz

IR IR radiation sensor ADC ADC steps 400 Hz
LDR visible light sensor ADC ADC steps 400 Hz

B magnetic flux density
sensor ADC magnetic flux density [mT] 400 Hz

Vib vibration sensor ADC ADC steps 400 Hz

Aud microphone USB dominant audio frequency
[Hz] 44.1 kHz

U oscilloscope USB mains voltage [V] 10 kHz
I oscilloscope USB appliance current [A] 10 kHz
P oscilloscope USB appliance power [W] 10 kHz

The sensor platform was connected to a personal computer in charge of centrally
collecting all sampled data, to which two more sensors were attached. First, electrical
signals for both voltage and current are collected at 10 kHz through a USB-interfaced
PicoScope 4444 oscilloscope, equipped with a Hall effect current probe and a passive
differential measurement voltage probe. Second, the collection of audio information and
the determination of the most dominant frequency was accomplished through a connected
USB microphone, sampling audio at 44.1 kHz. Temporal synchronization between the
data recorded from the heterogeneous sensing modalities is ensured through inter-process
signaling on the data collecting system. The raw data is collected into a file containing
electrical information, an audio file, and a CSV file containing the ambient measurements.

3.4. Measurement Environment

With the exception of large and immobile appliances (washing machine, dryer, re-
frigerator), measurements were collected in the same ambient conditions of an office
environment. The remaining measurements were collected in-situ, i.e., a kitchen (for the
fridge) and the laundry room (for washing machine and dryer). The ambient sensors were
placed directly on the DuT, oriented according to the expected maximum emission strength
for each captured feature. As such, e.g., light sensors were placed in front of light emitting
devices and magnetic flux density sensors were placed close to motors wherever possible.
While such a placement may not be realistic for real-world deployments, note that the
intention of our approach is to determine importance of such features in the first place, for
which as detailed information as possible are required. An example of the sensor placement
for the mini oven is shown in Figure 1. Unless practically impossible, measurements were
collected for full working cycles of devices. Each measurement was succeeded by a phase
of appliance inactivity, in order to allow for sensor offset calibration. Data from devices
with continuously variable power demand or without deterministic operation durations
(e.g., computer monitors, lamps) were collected for two to five minutes. The only device
measured for shorter duration was the food hand mixer, as it could only be operated for
up to one minute before requiring a cool-off period, according to its user manual.
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Vibration UV Radiation Visible Light Infrared Light Magnetic Flux Density Humidity and Temperature

Figure 1. Practical Setup of the Data Collection Test Bench. The Microphone is not Pictured, due to its Positioning Outside
of the Image Boundaries.

At least two operational cycles were recorded for each DuT in order to permit cross-
checking the recorded sensor data. All measurements were manually checked for correct-
ness before storage, in order to ensure consistency regarding the collected data. In the rare
occasion of obviously inconsistent data, the data collection was repeated, and the faulty
data trace discarded. For devices that could be operated in different states (such as the hair
dryer or fan), measurements were collected for each of the states individually, and treated
as the same device during the evaluations.

3.5. Data Postprocessing and Dataset Creation

For the feature evaluation presented in Section 4, we only consider a simplified feature
subset, consisting of either the maximum changes or a binary activation indication for the
ambient features under evaluation. These simplified features were chosen because they
could easily be determined locally on the low-power sensing device. Besides their fast
computation, omitting raw data from collection also caters to user privacy protection [28].
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Additionally, findings based on such simple features are also reproducible on systems
using higher sampling rates. All three points were vital to allow the results of this study to
be used as a guideline for a wide range of practical systems, some of which are expected to
only provide low data resolutions.

To compute these features, each data collection period Tcoll was succeeded by an
offset calibration phase Tcal . Both were designed to have approximately the same duration
(i.e., 2–5 min, cf. Section 3.4). A clear delineation between both phases was easily possible
due to the corresponding changes in electrical current consumption. Changes to the
ambient humidity and temperature values were detected using additional temperature
and humidity values, collected through a secondary measurement device in the room.
During the manual evaluation of each trace, the steady-state value of each ambient sensor
readings was determined for Tcal , and used as the baseline value for the uninfluenced
ambient readings. For each of the used sensor types, the difference between both values in
Tcoll and the baseline is used as a feature in our analysis. In addition to the use of absolute
values by which each parameter has changed, we also consider them in a binary form,
according to the following rule set:

• T, H, Ultraviolet (UV): A change was reported when the values recorded during Tcoll
differed by at least 1 (°C, %, or UV step) from the values recorded during Tcal .

• Infrared (IR): We observed the IR sensor’s readings to oscillate by a maximum of ± 5
ADC steps during Tcal . A change of the IR signal was thus logged when the average
of the IR samples recorded during Tcoll differed by at least 1 step from the highest
non-singular value in Tcal .

• Visible light (LDR): Readings collected from the Light Dependent Resistor (LDR) were
determined to fluctuate by ± 15 ADC steps. A change was thus logged when collected
measurements differed by at least 50 ADC steps from the average value during Tcal .

• Magnetic flux density (B): To account for naturally occurring variations, a change in
the magnetic flux density was detected if the mean values during the steady phase of
Tcal and Tcoll differed by at least 0.2 mT.

• Vibration (Vib): To minimize the impact of spurious vibration signals, the mean value
seen during Tcoll was required to differ by at least ± 15 ADC steps from readings seen
during Tcal .

• Audio information (Aud): The recorded audio files were checked manually to ensure
that no undesired ambient noise would affect the evaluations. During this check it
was furthermore verified that the device actually produced sound emissions. This
approach was chosen because an algorithmic threshold solution would not have
accounted for possible undesired sound collections from the collection environment.

We would like to note that supplementally collected electrical features (voltage, cur-
rent, power) were not translated into a binary form, given that voltage readings remained
constant and current samples always showed variations during a device’s operation. In-
stead, the electrical features used in this paper were chosen such that they represent
electrical information already used during load monitoring, at a complexity similar to the
considered ambient features. This enables a comparison between use cases only using
ambient data and use cases combining ambient data with the already present electrical
data. All electrical features are calculated during a 40 ms (i.e., two mains periods) long
section of the measurement, selected such that the appliance’s current consumption is
maximal, and requiring that its value is identical in both successive mains periods. Based
on the data from this excerpt, the RMS voltage (U) and current (I) as well as the active
power (P) are calculated.

Based on the collected and post-processed data, we have generated four variations of
the dataset to serve as the foundation for our evaluations. All datasets contain a total of
144 traces. Their details are given as follows.

• Ambient Parameters; binarized (Abin): Changes in the sensor measurements were
evaluated in a binary way in order to evaluate if the corresponding ambient character-
istic is influenced by the device’s activation. The resulting data consisted of a binary

185



Energies 2021, 14, 188

value for each sensor, which we use in our evaluation as indicators whether the DuT’s
operation had an impact on the corresponding characteristic.

• Ambient and Electrical Parameters; binarized (AEbin) is an extension to Abin that
makes the (numerical) electrical readings (U, I, P) available to the evaluation system
in addition to the (binary) indicators of changes in the ambient data.

• Ambient Parameters; differences (AΔ): In contrast to the previously described Abin
dataset, the maximum change is used now, i.e., the difference between the maximum
sensor value during Tcoll and the average of the values collected during Tcal . While
most sensor values could be evaluated on the raw data, the vibration and audio
measurements where evaluated in the frequency spectrum. As such the measured time
sequence was transformed into the frequency spectrum and the strongest frequency
was chosen.

• Ambient and Electrical Parameters; differences (AEΔ): Analogous to AEbin, the
AEΔ dataset is comprised of the (numerical) values from AΔ in conjunction with the
(numerical) values for the three electrical features.

Let us consider an example of the data collection and processing sequence for the mini
oven appliance as follows. The mini oven was equipped with the sensors according to
Figure 1. Sensor data was collected during the mini oven’s operation twice, with sufficient
time between measurements to allow for a cooling down. Raw environment sensor data for
one of the measurement run are plotted in Figure 2. The average sensor values during Tcal
and from ambient measurements are then postprocessed to create the four aforementioned
variants of the dataset. In the figure, the first 20 min of the sample, during which an
electrical current flow was recorded, constitute Tcoll . The remaining about 20 min of the
collected trace constitute Tcal . The postprocessing is applied as described, a visualization
of the process is included in Figure 3. The resulting entries for the four datasets introduced
above are computed. They are shown for reference in Table 3.

Figure 2. Data Collection Example , Displaying the Environmental Sensor Traces. Units According to
Table 2, the End of Tcoll is Marked as a Dotted Grey Line.
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Figure 3. Feature Extraction Processing Flow, Applied to Collected Raw Data .

Table 3. Sample Data Collected from a Mini Oven, Following the Processing Flow Depicted in Figure 3.

Dataset T H UV IR LDR B Vib Aud I P U

Abin TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE
AΔ +9 °C −8 % 0 +74 0 +0.59 mT 37.2 Hz 7838 Hz

AEbin TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE 4.39 A 995 W 226.8 V
AEΔ +9 °C −8 % 0 +74 0 +0.59 mT 37.2 Hz 7838 Hz 4.39 A 995 W 226.8 V

4. Data Evaluation Concept

Our research objective is to assess how knowledge of the ambient conditions in an
appliance’s environment can support the recognition of electrical appliances. A total of
eleven attributes are available for analysis (cf. Section 3): Eight ambient sensor attributes
and three electrical quantities (voltage, current, and power). Instrumenting residential
environments with sensing devices to capture all of these parameters, however, has several
drawbacks. Besides the monetary costs for purchasing and installing sensors as well as
ensuring their continuous operability, the continuous collection of data may be perceived
as an intrusion into user privacy.

We hence conduct a methodological evaluation how each of the sensed attributes
impact the appliance recognition rate, in order to determine the most information-rich
subset of features.

We begin our evaluations with a determination of the importance of the contributions
of each of the collected features when used to distinguish between the 21 appliance types
listed in Table 4. In subsequent evaluations, however, we also present three evaluations

187



Energies 2021, 14, 188

considering the categorization of appliances into classes, as well as appliance recogni-
tion results when the appliance class is known a priori. Through this set of evaluations,
guidelines on the best-suited feature subsets for different appliance recognition scenarios
are derived.

Table 4. List of Considered Appliances and Associated Categories.

Device Type
Classification By

Operation State Energy Consumption Load Curve

DVD player Single-State small inductive
Fan Multi-State small ohmic

Coffee machine Single-State large ohmic
Fridge Single-State large inductive
Lamps Single-State small ohmic/SMPS

Laptop computer Infinite-State small SMPS
Personal computer Infinite-State small SMPS

Microwave Single-State large inductive
Monitor Infinite-State small SMPS

Vacuum cleaner Single-State large inductive
Washing machine Multi-State large ohmic

Dryer Multi-State large ohmic
Printer Infinite-State small ohmic/SMPS

Hand mixer Multi-State small inductive
Mini oven Single-State large ohmic

Toaster Single-State large ohmic
Mouth wash Multi-State small inductive
Hair dryer Multi-State large ohmic

Clothes iron Single-State large ohmic
FM radio Infinite-State small inductive

Kettle Single-State large ohmic

4.1. Determining the Feature Importance for Appliance Recognition and Classification

Determining the usefulness of features for classification purposes is a task that occurs
across many research domains [29]. Considering the appliance recognition and classifica-
tion case of this study, the usefulness of features is considered to allow cost-efficient data
collection through the exclusion of features that carry little or no information. Additionally,
feature selection methods allow for the comparison of the usefulness of features or subsets
of features for different use cases. Note that the usefulness of a feature is highly specific
to a given use case. For our contribution, we have chosen appliance recognition as a use
case, i.e., the classification of appliances by their types, depending on the values of the
available feature set. Appliance recognition is a typical classification use case from the field
of energy data analysis: Based on a set of features, the single most likely appliance type
should be returned. As follows, we assess the importance of the features we have described
in Section 3.5 for the task at hand. Instead of conducting a single study on the general
feature importance, however, we proceed in a more fine-grained fashion by considering
several subsets of appliances (cf. Table 4). This way, we seek to provide a more detailed
picture of the feature relevance for different use cases.

4.2. Methodology for Determining the Distinctiveness of Features

For the evaluations we conduct below, two pieces of information are of primary interest:

1. A score to describe the importance of each feature, and
2. the most expressive subset of features, referred to as the optimal subset.

While the individual determination of a feature’s importance helps in assessing to
what extent each feature can reduce the chance of misclassification, it generally cannot
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identify the feature combination that leads to the best classification result overall. In order
to find such combinations, the determination of an optimal subset is required. This feature
subset considers which features work best together, indicating an ideal set of features to
be used for the considered use cases [29]. When combined, both methods (individual
feature relevance and best feature subset) allow for the development of better appliance
monitoring systems.

4.2.1. Feature Importance

The usefulness of each feature is determined through the usage of a Random Forest of
Trees. A decision tree is a structure which continuously divides the whole input data into
subsets, such that the new subsets become more pure, i.e., features that lead to different
output values become divisive elements [30]. In other words, the features that enable
the cleanest division of input data into categories are considered the most important. In
contrast to a simple decision tree, the Random Forest of Trees generates multiple trees for
randomly selected subspaces of the total feature space. Only a subset of the input sets of
the feature values is evaluated in each tree, and the resulting trees are then combined by
averaging the determined probabilities. This ultimately allows for greater classification
accuracy improvements as compared to a singular decision tree [30].

The Gini Impurity is defined as the rate of misclassification when an additional
decision element is added to an existing decision tree [31]. It is widely used for the feature
selection in Random Forests of Trees in order to annotate each division of input data into
new subsets with an importance score. Only the decision that yields the greatest reduction
of the Gini impurity is maintained, which corresponds to a decrease in the probability of
misclassification. The averaged Gini impurity scores are used as feature importance scores
in our present study.

4.2.2. Optimal Feature Subset

To confirm that attained results can be generalized and allow to determine an optimal
feature subset, we rely on the Recursive Feature Elimination [29]. The algorithm starts
with the full set of features and greedily excludes the least informative feature after each
evaluation iteration. A ranking criterion is calculated for all features, and the feature with
the lowest ranking criterion is eliminated. This process is repeated until the desired size of
the feature subset is reached [32]. If the size of the optimal subset is unknown in advance,
a performance rating for the trained classifier results can be introduced. For this study, the
accuracy was chosen as a performance rating for the trained classifier, such that the subset
with the greatest overall accuracy result is chosen as the optimal feature subset.

4.2.3. Avoiding Overfitting

Small subsets of data can be prone to overfitting their input data, i.e., adapting to their
characteristics too well. Cross-validation is a methodology which allows to counteract
overfitting, as the available data of input features and known correct output classifications
is not simply divided into disjunct subsets of training and testing data, but broken down
into multiple smaller sets, so-called folds. The classifier is then trained in a leave-one-out
manner: Each fold is once used as the test subset, while all other folds are used for training.
The results of these training phases are averaged and given as the Cross-Validation Score
(CVS) [29,32].

4.2.4. Implementation

All aforementioned feature selection methods were implemented in Python using
the scikit-learn library [33]. The Recursive Feature Elimination is implemented using a
Support Vector Classification and uses the accuracy as its performance rating. We specify
the average accuracy in percent, with an accuracy of 100 % indicating that all input samples
could be correctly categorized. As the collected datasets are rather small, only a 2-fold
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cross-validation is conducted. The 2-fold validation is stratified to ensure that the class
distributions between the test and training sets remain comparable to the full set of data.

4.3. Device Categorization

Let us next introduce the device categorization used during our evaluation studies.
A complete overview of the appliances under consideration and their corresponding
classes according to the three categorization approaches are given in Table 4. Categorizing
appliances by their classes allows us to not only run analyses on the entire dataset, but
also on subsets of the data in which all devices share a commonality (e.g., an inductive
load curve). For example, the device of type mini oven is a member of the Single-State
devices class, belongs to the large consumers (classified by its power consumption), and is
an ohmic appliance (due to the load type of its heating rods).

4.3.1. Categorization by Number of Operational States

Classifications by an appliance’s number of operational states can be found in works
considering load monitoring [2,34,35]. The typical device classes listed in the context of
Non-Intrusive Load Monitoring (NILM), based on the complexity of their consumption
patterns, are given as follows.

• Single-State Devices: Also known as On/Off appliances, such devices exhibit one
steady electrical power consumption value during their activity.

• Multi-State Devices: These devices have multiple states of usually different power
consumption levels, that occur in defined (usually sequential) patterns.

• Infinite-State and/or Continuously Variable Devices: This class of devices exhibits
constantly variable power consumption values.

We included this categorization for two reasons: First, different works in load monitor-
ing have reported that Single-State appliances are often easier to disaggregate [2]. Second,
we expect greater differences in the importance of ambient features when appliances exhibit
multiple operational states.

4.3.2. Categorization by Power and Energy Consumption

We wish to note at this point that NILM is not the only use case for energy data
analysis. For example, applications like demand side management favor the availability of
loads with a large energy consumption. As large energy consumers typically emit more
excess heat and generate stronger magnetic fields, differences in the feature importance
are likely to occur. Finding the optimal feature subset for such application cases is thus a
prerequisite for the realization of such services. Hence, we classify the appliances under
consideration by their power consumption, which we define as follows:

• Large Consumer: Devices surpassing 1 kW of consumption or 10 kWh per year con-
sumption, which was determined based on the data sheet information concerning
expected annual consumption.

• Small Consumer: All electrical devices that do not count as large consumers.

4.3.3. Categorization by Load Type

Finally, we consider device classification according to their load type, according to
the classification scheme proposed in [34]. The load type is determined by the phase shift
between mains voltage and an appliance’s current consumption as well as the presence
of non-linear loads within devices. To allow to determine the load type for the devices in
our evaluation, we followed the definition and examples given in [34], and evaluated the
devices’ data sheets.

• Ohmic Consumers: Devices that have neither recognizable reactive power nor exhibit
harmonics beyond the fundamental mains frequency

• Inductive Consumers: Devices whose inductive component dominates their current
intake (e.g., transformers).
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• Switched-Mode Power Supplies (SMPS): Devices with a large amount of harmonic con-
tent, whose characteristics may moreover vary depending on the currently exhibited
power demand.

It needs to be noted that we excluded the “composite load” class proposed in [34],
as for our test only the washing machine and dryer could have fit the corresponding
definition. Furthermore, the proposed “Capacitive Consumers” presented in [34] do not
have a representation in our set of devices, as they are not typically found in residential
spaces.

4.4. Conducted Evaluations

We evaluate the ambient features with respect to three general use cases:

1. First and foremost, we assess how well the feature set allows for correctly determining
the type of the appliance. This appliance recognition test is conducted for each of the
datasets Abin, AΔ, AEbin, and AEΔ. The available features are provided at the input,
and the system trained to correctly categorized them into the corresponding (known)
output, i.e., the device type, reporting an overall accuracy score eventually.

2. We assess the correct recognition of an appliance’s device class. This evaluation
group considers the usage of features calculated from ambient sensor data for the
classification of devices according to their operation state, energy consumption, and
load curve (as introduced in Table 4).

3. We assess how well the system can distinguish between device type that are confirmed
to belong to the same class. To this end, we train the system with data from all
appliances of a single class only, and verify which features allow to distinguish
between the remaining electrical devices best. Using the evaluations in this scenario,
we seek to find out if and to which degree ambient information is informative if a
device class is already known, but the devices inside the class are supposed to be
distinguished.

5. Evaluation of the Feature Importance

As follows, we present the results of the different evaluation settings introduced in
Section 4.4. Unless noted otherwise, we present the Cross-Validation Score (CVS) and
optimal feature subset for each of the four sets of input data (cf. Section 3.5). The symbol
notations for the sensed modalities introduced in Table 2 are used in the results.

5.1. Evaluation Results for the Distinction between Devices on the Full Dataset

Our first evaluation was conducted on the whole generated datasets and considered
the device types as output. The results for the Random Forest of Trees method are displayed
in Figure 4, whereas the results for the Recursive Feature Elimination are documented
in Table 5. The bar graphs indicate the calculated feature importances, wherein the y-
axis denominates the feature, while the x-axis denominates the corresponding feature
importance in percent.

Figure 4. Feature Importances for the Appliance Recognition Across the Whole Dataset.
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Table 5. Cross-Validation Score (CVS) Values for the Evaluated Appliance Recognition Scenarios.

Features in the Best Feature Subset

CVS [%] T H UV IR LDR B Vib Aud U I P

Abin 68.8 � � � � � � � n/a n/a n/a
AEbin 70.8 � � � � � � �

AΔ 70.8 � � � � � � n/a n/a n/a
AEΔ 76.4 � � � � � � �

The Random Forest of Trees method indicates a high usefulness for the vibrations
and sound measurements. For the case of using binary change indicators, the magnetic
flux density is deemed similarly important. The inclusion of electrical parameters slightly
equalizes the importance levels, yet the addition of electrical parameters only leads to slight
improvements of the results when compared to the use of ambient sensors alone. This result
is confirmed through the Feature Elimination, which shows that the inclusion of electrical
parameters allows for slightly improved Cross-Validation Scores, but the best feature subset
does still require nearly all features. The UV and visible light emissions are only useful for
a very small number of devices; the UV readings exclusively for lamps. While this indicates
that the sensor type is not of interest for most evaluations, it furthermore shows that there is
potential to improve lamp recognition by means of only a single sensor type. Furthermore,
audio frequency features can be considered to be highly informative, as they are not only
present for most devices, but distinctly different between them. The maximally observed
sensor changes, as collected in AΔ and AEΔ, enable more fine-grained assessments of the
impact of observed signal changes. While the subsequent measurements on a device did
generally not exhibit strong variations, variations did exist between different devices of the
same type. The differences in ambient influences between two devices of the same type
can, however, be high. For example measurements from two different microwaves resulted
in consistent dominant audio frequencies for each of the devices across measurements.
Nonetheless, one microwave exhibited a dominant frequency of 172 Hz, whereas the other
had a dominant frequency of 344 Hz. This indicates that setups evaluating ambient data
need to consider the similarity of devices of the same type and if multiple devices of the
same type are present. Such findings must be considered during training, as they indicate
that training done on one household may not be transferable to other environments.

5.2. Evaluation Results for Device Categories

The following evaluations were conducted such that, based on the ambient mea-
surements, each DuT was classified into its corresponding class for each categorization
presented in Section 4.3. Each presented evaluation provides the feature importance
considering the Random Forest of Trees method and the optimal feature subset deter-
mined through the Recursive Feature Elimination, as well as the CVS achieved with the
optimal subset.

5.2.1. Classification According to the Number of States

In this evaluation each measurement was classified as belonging to either a Single-
State, Multi-State or Infinite-State appliance. The results are listed in Figure 5. Both
evaluated algorithms show a high importance of audio and vibration features for the classi-
fication into Single-State, Multi-State and Infinite-State Appliances. The binary evaluation
achieves a better Cross-Validation Score, indicating that the simple presence of sound or
vibrations could provide relevant contextual information for this classification. However,
both CVS values are low, such that a classification based on the ambient features alone may
not be fruitful.
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Figure 5. Feature Importances [%] and Best Feature Subset for the Classification into Single-State,
Multi-State and Infinite-State Devices—Considering Only Ambient Features.

5.2.2. Classification According to Electrical Power Consumption

This evaluation considers the feature usefulness to determine if a set of ambient
measurements belongs to a large consumer or small consumer appliance. Its results are
given in Figure 6. The evaluation according to consumption ranks the temperature and
humidity sensors as most relevant for this distinction. This is unsurprising, as appliances
designed to significantly heat or cool the environment generally exhibit a high power
consumption. However, the Feature Elimination furthermore reveals that the UV radiation
is a relevant feature for this distinction, which is reasonable considering that only the light
installations under evaluation emitted UV radiation, all of which belong to the class of
small consumers.

Figure 6. Feature Importances (%) and Best Feature Subset for the Classification into Small Consumers
and Large Consumes—Considering Only Ambient Features.

5.2.3. Classification According to Load Curves

The evaluation considering load types evaluates feature usefulness to determine if
measurements were taken from an ohmic, inductive or SMPS appliance. The results are
contained in Figure 7. To classify devices according to their load curves, the Feature
Elimination indicates that maximum changes are more effective. However, the results
for the two applied methods differ considerably. This indicates that the combination of
features is a lot more informative than singular features. The similar usefulness of most
features determined through the Random Forest of Trees matches this finding. However, it
needs to be remarked that the CVS for the binary evaluation is very low, indicating that
this evaluation is not well-suited for a classification into load types.

Figure 7. Feature Importances (%) and Best Feature Subset for the Classification into Ohmic, Induc-
tive, and Switched-Mode Power Supplies Devices—Considering Only Ambient Features.
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5.3. Device Type Distinction within Different Device Catgetories

The following evaluations consider if and to which degree ambient information is
informative if a device class is already known, but the instances of the device type within
the given class shall be distinguished. Such an evaluation allows us to identify the device
classes whose instances can be distinguished algorithmically. In contrast to the classification
task considered in the previous section, the evaluations were not run on the full datasets
with a target output from the set of device classes. Instead, we have run them on subsets of
the full data, divided such that only one class of devices is part of the subset. The results
are recorded in Tables 6 and 7 and presented in the following subsections.

Table 6. CVS Values for the Evaluated Appliance Destinction Scenarios—Binary Features.

Abin Best Feature Subset AEbin Best Feature Subset

CVS [%] T H UV IR LDR B Vib Aud CVS [%] T H UV IR LDR B Vib Aud U I P

Single-State 83.3 � � � � � � � � 97.2 �
Multi-State 53.6 � � � � 60.7 � � � �
Infinite-State 100 � � � � � 100 �
Large 42.0 � � � � 75.3 � � � � �
Small 61.9 � � � � � � 71.6 � � � �
Ohmic 48.8 � � � � 78.8 � � � � �
Inductive 57.4 � � � � � � � 59.5 �
SMPS 100 � � � � 100 � �

Table 7. CVS Values for the Evaluated Appliance Destinction Scenarios—Maximum Feature Changes.

AΔ Best Feature Subset AEΔ Best Feature Subset

CVS [%] T H UV IR LDR B Vib Aud CVS [%] T H UV IR LDR B Vib Aud U I P

Single-state 88.9 � � � � � � 90.3 �
Multi-state 62.5 � � � � � � 75 � � � � � � �
Infinite-state 100 � � � 100 �
Large 77.8 � � � � � � 69.2 � � � �
Small 90.4 � � � � � 84.2 � � � � �
Ohmic 76.3 � � � � � � � 77.5 � � � � � �
Inductive 87.1 � � � � 87.2 � � �
SMPS 100 � � 100 � �

5.3.1. Distinguishing between Devices Sharing the Same Number of States

Recall that the device classes categorization used in this paper divides the set of
considered appliances into Single-State, Multi-State and Infinite-State appliances. Again,
we have computed the best feature subset within each of these categories, as well as ranking
the feature importances. The Feature Elimination results can be found in Tables 6 and 7,
in the first to third row, while the results for the Random Forest of Trees are depicted in
Figure 8.

194



Energies 2021, 14, 188

Figure 8. Feature Importances (%) for Recognition of Appliances of a Single Class—Appliance
Categorization By: Number of State.

Concerning the recognition of device types from measurements of either only Single-
State or only Multi-State Appliances, a rather large set of ambient measurements is required
for best results. None of the features are particularly indicative of a specific appliance
when considered on its own. However, the visible light and UV radiation are not present
in Multi-State appliances, as none of the considered Multi-State devices emitted light.
The distinction of Infinite-State devices differs as their distinction reaches the maximal
Cross-Validation Score, in the case of maximum change evaluations, with a small dataset
which only contains changes in temperature, humidity, and vibration. Sound emissions
were identified as similarly important through the Random Forest of Trees method. The
inclusion of electrical features was found to be useful for all three intra-category distinctions
(as visible in the columns on the right-hand side of the tables).

5.3.2. Distinguishing between Devices of the Same Consumption Class

For the following evaluations, the datasets of ambient features were divided, such as to
create datasets that only contain measurements from either large or small consumers. The
resulting datasets were evaluated to assess to what extent the device type of a measurement
can be determined based on the data. The Feature Elimination results are documented in
Tables 6 and 7 in the fourth and fifth row, and the results for the Random Forest of Trees
are visualized in Figure 9.
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Figure 9. Feature Importances (%) for Recognition of Appliances of a Single Class—Appliance
Categorization By: Power Consumption.

Considering the large consumers (see Table 4), most appliances include a heating or
cooling element, and multiple of them a motor, all of which can be expected to generate
magnetic fields, vibrations, and sounds. Accordingly, both feature selection methods
identify the magnetic flux density, vibrations, and audio features as important. The
presence of IR radiation is furthermore shown to be distinctive. Small consumers do show
low Cross-Validation Scores when only considering the presence of emissions, however
maximum change evaluation scores indicate adequate results. Two findings are of special
interest: First, the maximum change evaluation reaches better Cross-Validation Scores for
feature subsets only including ambient features. Additionally, the feature subsets are quite
large, but the majority of sensors is present for the recognition of only small and for the
recognition of only large consumers.

5.3.3. Distinguishing between Devices of the Same Load Type

To allow to evaluate the usefulness of ambient feature information for appliance
recognition for appliances belonging to a certain load type, the whole datasets were split
to only contain measurements of devices belonging to one load type and than evaluated
such that for each measurement the device type should be distinguished. The Feature
Elimination results are documented in Tables 6 and 7 in the sixth to ninth row, whereas the
results for the Random Forest of Trees are depicted in Figure 10.

While the intra-class distinction for inductive and SMPS devices generates small opti-
mal feature subsets for AEΔ with three or less features, the distinction of ohmic appliances
always requires bigger subsets. While acknowledge that our results for SMPS might be
potentially biased, given that many of these devices were emitting light and thus the great
importance of the LDR is not surprising. Still, the differences between ohmic and inductive
appliances indicate that systems using features best-suited for ohmic devices could gain
additional information to ease the distinction of inductive devices with low additional
data requirements.
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Figure 10. Feature Importances (%) for Recognition of Appliances of a Single Class—Appliance
Categorization By: Load Curve.

5.4. Interpretation and Discussion

We evaluated a set of features calculated from ambient sensor readings considering
their usefulness and importances for different decision scenarios. All selected and evaluated
features were shown to be relevant for at least one of the considered evaluations. However,
the UV radiation was found to ease the distinction of different lamps, but could not be
detected for any other appliance. Accordingly, its usefulness is restricted to scenarios
involving such appliances.

To enable further consideration of the usefulness of individual features, we have
accumulated how often each feature was part of an optimal feature subset. The sums
are displayed in Table 8 and reconfirm the restricted usage potentials for the UV mea-
surements. It can be furthermore seen that the audio and vibration data have an overall
high importance, and were marked especially useful if only binary ambient information is
available (i.e., if operating devices leads to the presence of acoustic signals or vibrations).
A comparably high usefulness can be attributed to the temperature, magnetic flux density,
and humidity measurements; they are included in more than half of the optimal feature
subsets. Their importance is even higher when only ambient features are available for
evaluation. This evaluation of emissions and feature selection methods illustrates that
multiple ambient features might be necessary to properly distinguish electrical devices.
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Table 8. Number of Times each Feature was included in the Optimal Feature Subset.

Best Feature Subset

Dataset # of Evaluations T H UV IR LDR B Vib Aud U I P

Abin 12 8 8 3 5 8 9 10 11 n/a n/a n/a
AΔ 12 10 10 1 8 5 9 9 9 n/a n/a n/a
AEbin 9 1 3 0 5 1 5 4 4 1 2 3
AEΔ 9 5 6 0 6 3 3 5 3 1 0 1

Considering the usage of electrical and ambient features, our results show that the
inclusion of electrical features allows to achieve distinction with less ambient sensors and
generally achieves higher Cross-Validation Scores. This indicates that systems integrating
ambient information in the decision process should consider electrical and ambient feature
at the same time and not within different decision mechanisms.

During the evaluation of the usefulness for different scenarios, this work also con-
sidered the possibility to use ambient sensor data to assign device classes. While the
classifications specific to the appliance’s internal workings, based on the number of ap-
pliance states (Single-State, Multi-State, or Infinite-State appliances) or based on the load
curves (ohmic, inductive, or Switching Power Supplies), achieved low Cross-Validation
Scores, the distinction between smaller and larger consumers could be shown to be feasible
based on the easy-to-calculate features evaluated in this study from a small set of ambient
sensors. Considering the classification according to load types or number of states, the
use of binary features (indicating the change of an ambient parameter) is outperformed by
the use of amplitude information from the audio and vibration sensors. As other studies
have shown the feasible usage of more complex audio features (e.g., [5,14]), the additional
information gain through such features could be investigated in future work to improve
the results for the usage of ambient data for appliance classification even further.

Lastly, we conducted evaluations on two kinds of features: A binary change evaluation,
and the evaluation of the maximum changes of sensor values. Considering the results,
we have observed that binary features of ambient influences typically yield lower Cross-
Validation Scores and often contain more features in the resulting optimal feature subsets.
The usage of maximum change information resulted in a rise of 15.3 percentage points
in the CVS, with a maximum improvement of nearly 30 percentage points for appliance
recognition scenarios using only ambient information. A further 5.1 percentage points
increase in CVS could be observed when including electrical information in appliance
recognition scenarios.

We expect the results of this work to be a useful guideline for the creation of future
energy data collection systems. Our careful analysis of the information gains of sensor
types beyond the traditionally used electrical signals showcases the great potentials of
using ambient information in conjunction with electrical data. We are convinced that
the analyzed scenarios regarding certain classes of devices and the usefulness of ambient
sensor types can help developers to advance and improve existing systems and algorithms
based on our findings.

6. Conclusions and Outlook

In this work, we have conducted an evaluation of ambient sensor data and its possible
uses in the context of electrical appliance recognition and load signature analysis in general.
Based on two feature selection and ranking methods, we have demonstrated that sensor
data for temperature, humidity, audio, vibrations, the magnetic flux density and IR radia-
tion are useful for nearly any load monitoring use case. It could additionally be shown that
a single measure for the change of ambient features during an appliance’s operation is often
sufficient to reach decent Cross-Validation Scores, indicating that such a data collection
with low resource usage can already improve load monitoring systems. By considering
different evaluation scenarios, we were able to show that the combination of both electrical
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and ambient sensor data has been proven to provide the best benefits. We would like to
reiterate at this point that our work is not primarily contributing to the field of NILM, i.e.,
the disaggregation of aggregate load data. Rather than that, we have methodologically
determined the most information-rich sensor parameters that can improve energy data
analysis methods (such as NILM) in a more general and algorithm-independent way.
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AΔ Ambient Parameters; differences
AEΔ Ambient and Electrical Parameters; differences
ADC Analog-to-Digital Converter
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CVS Cross-Validation Score
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IR Infrared
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NILM Non-Intrusive Load Monitoring
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Abstract: In order to reduce the electricity consumption in our homes, a first step is to make the user
aware of it. Raising such awareness, however, demands to pinpoint users of specific appliances that
unnecessarily consume electricity. A retrofittable and scalable way to provide appliance-specific
consumption is provided by Non-Intrusive Load Monitoring methods. These methods use a single
electricity meter to record the aggregated consumption of all appliances and disaggregate it into the
consumption of each individual appliance using advanced algorithms usually utilizing machine-
learning approaches. Since these approaches are often supervised, labelled ground-truth data need
to be collected in advance. Labeling on-phases of devices is already a tedious process, but, if further
information about internal device states is required (e.g., intensity of an HVAC), manual post-
processing quickly becomes infeasible. We propose a novel data collection and labeling framework
for Non-Intrusive Load Monitoring. The framework is comprised of the hardware and software
required to record and (semi-automatically) label the data. The hardware setup includes a smart-
meter device to record aggregated consumption data and multiple socket meters to record appliance
level data. Labeling is performed in a semi-automatic post-processing step guided by a graphical user
interface, which reduced the labeling effort by 72% compared to a manual approach. We evaluated
our framework and present the FIRED dataset. The dataset features uninterrupted, time synced
aggregated, and individual device voltage and current waveforms with distinct state transition labels
for a total of 101 days.

Keywords: data annotation; non-intrusive load monitoring; semi-automatic labeling; smart meter

1. Introduction

The United Nations has outlined 17 Sustainable Development Goals [1] for 2030.
Related to the production and consumption of electric energy are three of them: stop global
warming by clean energy in sustainable cities.

One important step to achieve these goals is to reduce the electricity consumption in
our homes. In the residential domain, energy monitoring and ’eco-feedback’ techniques
have proven to help by raising the awareness of an unnecessary electricity consumption
of a particular device. In addition, these techniques can be combined with demand-side
flexibility to schedule their usage, so that mostly renewable energy is used. Ehrhardt-
Martinez et al. [2] found that per device consumption feedback can achieve high energy
savings when provided frequently. More specifically, according to this meta-study, real-
time aggregated electricity consumption feedback can preserve around 8.6 % of electricity
on average. If the feedback is provided appliance-wise, they spotted that the savings are up
to an average of 13.7 %. These savings are achieved by simply raising the user awareness.
The actual savings might even be increased, if the feedback system is combined with a
smart home agent. Smart home agents can learn user behavior, adapt knowledge of other
agents, and can either directly control smart appliances to save electricity or recommend
specific energy saving strategies to the user.
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There are mainly two possibilities to obtain the device specific electricity consumption
of certain devices in a home. (1) Each device is equipped with a dedicated electricity meter—
known as Intrusive Load Monitoring (ILM). (2) A single electricity meter is installed that
measures the composite load of all appliances. Specially designed and often individually
trained algorithms disaggregate this aggregated load into the load of each individual
consumer. This approach is known as Non-Intrusive Load Monitoring (NILM) and is said
to be more feasible (compared to ILM) as it only requires a single smart electricity meter.

In many countries, the standard electricity meter (Ferrari meter) has already been
exchanged by a smart electricity meter. For instance, the roll-out of smart meters in
Germany began with heavy consumers (>6000 kW h per year) by the beginning of 2020 [3].
Smart meters are promoted to bring features like device level electricity feedback to our
homes by using NILM.

NILM research already started in 1992 when a first NILM prototype was introduced
by G.W. Hart [4,5]. Recent promotion of smart meters, associated research fundings
(e.g., SINTEG [6]), and emerging machine learning algorithms accelerated research in
this field. Even if the concept is already known for 35 years, Armel et al. [7] stated that
”disaggregation may be the lynch-pin to realizing large-scale, cost-effective energy savings
in residential and commercial buildings.” Over the last three decades, various NILM
algorithms have been developed by researchers. These can be roughly categorized into (1)
event-based algorithms which relate signal state changes to appliance state changes (such
as [4] or [8]) and (2) event-less algorithms which estimate an overall system state using
techniques such as Factorial Hidden Markov Models [9,10].

To train, evaluate, and compare these algorithms, public available datasets are used.
Even though a lot of datasets have been published such as REDD [9], UK-Dale [11],
BLOND [12], and many more (see [10] for a comprehensive overview), they can only
hardly be used to compare different disaggregation techniques because of a low sampling
frequency which does not allow to test event-based approaches or because of missing or
incorrect ground truth information. Besides these, no datasets—except BLUED [13] to some
extent—includes labels of internal appliance state changes (e.g., changing the channel of a
television). Unfortunately, such information is of particular interest for event-based NILM
approaches and electricity-based human activity recognition systems such as [14,15].

Retrospectively generating fine grain labels is not possible for datasets that have
already been recorded years ago and hardly possible while generating new datasets. It
would require the residents to manually log every action in the home (e.g., every key-press
of the television remote) with precise timestamps. In other domains such as activity recog-
nition, the problem of generating ground truth data is typically addressed by recording a
video contemporaneous to e.g., accelerometer signals. The labeling step is then performed
manually afterwards by going through the video on a frame by frame basis. This technique
could hardly be applied to electricity datasets as: (1) electricity datasets typically cover a
long time period of several weeks or months, (2) privacy concerns if all rooms or residents
are equipped with a camera, and (3) internal or automatic state changes of appliances (like
the cooling cycle of the fridge) can not be identified via video.

Therefore, we propose a hardware and software framework to generate and label data
for NILM that feature fine-grained labels based on intrusive meters, additional sensors,
and a smart labeling tool. The system allows to record time synced data of a home’s
electrical input (aggregated data) and nearly all individual consumers. Furthermore,
smart appliances are incorporated to log their states. For devices that do not expose their
states (e.g., old TVs), custom logging devices are used such as infrared sniffers. A post-
conducted, semi-automatic algorithm identifies appliance steady states and state changes
in the individual appliance data and applies preliminary labels to the data. Therewith,
the overall labeling effort is reduced significantly to a human supervision step.

This report summarizes two publications [16,17] and extends them by (1) including
more related work, (2) an in depth explanation of the used hardware and software compo-
nents bundled into the proposed expandable framework, and (3) a deeper evaluation of
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the FIRED dataset that has also been extended to include more recording days and high
quality event labels.

The remainder of the paper is structured as follows: Section 1.1 describes how others
have recorded and labeled NILM datasets. In Section 2, we identify remaining challenges to
record NILM datasets and describe the hardware and software of our proposed framework.
We successfully utilized the framework to generate and label the FIRED [17] dataset which
we present in Section 3. Finally, a discussion of the FIRED dataset and our observations
with our framework concludes the paper in Sections 4 and 5.

1.1. Related Work

As interest in evaluating and comparing electricity related algorithms has increased
over the recent decade, several datasets and the hardware used to record them have
been published. Some of these datasets which have been recorded either in residential or
industrial environments are briefly discussed in the following.

The Reference Energy Disaggregation Dataset (REDD) was introduced by Kolter et al.
in 2011 [9]. The authors used a custom-built meter to record the whole house electricity
consumption of six different homes in the US. NI-9239 (National Instruments) analog to
digital converters were used to measure the mains’ voltage and SCT-013 (YHDC) split core
current transformers to measure current in a secure and non-intrusive way. The readings
were acquired by a recording laptop at 16.5 kHz with an ADC resolution of 24 bit. High
frequency mains’ data of the complete recording duration is, however, only available as
compressed files generated with a custom lossy compression. Socket and sub-circuit-level
data are only available as unevenly sampled low frequency data of approximately 1/3 Hz.
Furthermore, these data show gaps of several days.

The UK Domestic Appliance-Level Electricity dataset (UK-DALE) introduced by
Kelly et al. in 2015 [11] covers the whole house electricity demand of five homes in the
UK. In particular, three of the houses (1, 2, and 5) have been recorded at a sampling rate of
16 kHz. The aggregated power consumption was recorded with off-the-shelf USB sound
cards with stereo line input. AC-AC transformers were used to scale down the voltage,
while split core current transformers were used to measure current. The recording duration
of house 1 was up to 1629 days resulting in the longest whole house recording known
to us. Appliance level data was sampled using off-the-shelf 433 MHz electricity meter
plugs (Eco Manager Transmitter Plugs developed by Current Cost) paired with a custom
self-developed base station. Devices directly connected to the mains are metered using
current clamp meters (Current Cost transmitter) that are sampled using the same custom
base station. The data of these devices were sampled with a low sampling rate of around
1/6 Hz and contains several gaps too.

The Electricity Consumption and Occupancy (ECO) dataset was introduced by Beckel
et al. in 2014 [18]. The authors leverage the communication interface of an off-the-shelf
smart electricity meter (E750 from Landis + Gyr) to read out the aggregated consumption
of six homes in Switzerland. The consumption data include different electricity related
metrics such as active power, RMS voltage, and current as well as the phase shifts of
all three supply legs. Furthermore, 6–10 Plugwise smart plugs have been deployed per
house to record individual appliance active power measurements of selected appliances
at around 1 Hz (the actual sampling rate varied due to a sequential readout, but the data
have been resampled to 1 Hz). Home occupancy information is also available recorded
by tablet computers and passive infrared sensors. The low sampling rate, dropouts, and
low individual appliance coverage makes it difficult to use the dataset to evaluate event-
based NILM and activity recognition approaches, as multiple events may happen between
two samples.

The Almanac of Minutely Power dataset (AMPds) was introduced by Makonin et al. [19]
in 2013. It features electricity, water, and gas readings at one minute resolution of a residen-
tial building in Canada. They used an off-the-shelf Powerscout18 meter (DENT Instruments)
to record the whole house consumption and the consumption of individual circuits over a
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time period of two years. Data from the same house is also available at 1 Hz resolution in
the Rainforest Automation Energy (RAE) Dataset [20] introduced by the same authors in
2018. The RAE dataset covers 72 days of electricity data without any power events marked.

In the non-residential domain, Kriechbaumer et al. proposed the Building-Level Office
eNvironment Dataset (BLOND) in 2018 [12]. They recorded aggregated and device level
data of an office building in Germany over a time period of around 260 days. The authors
used custom-built hardware for both aggregated and individual appliance readings. At an
aggregated level, they used Hall effect current transformers and AC-AC transformers
to record the 3-phase power grid with up to 250 kHz. Individual appliances have been
recorded using the same principle (AC-AC transformer + Hall effect current transformers)
embedded into off the shelf power strips with up to 50 kHz. Their dataset is split into two
measurement series. BLOND-50 features 50 kHz aggregated and 6.4 kHz device level data
over 213 days and BLOND-250 features 250 kHz aggregated and 50 kHz device level data
over 50 days. For both sets, the 1 Hz apparent power has been derived from the voltage
and current waveforms. However, downloading the dataset requires storing ≈40 TB of
data. Moreover, the authors have not used their recording system to generate a residential
dataset yet.

These datasets have successfully been used to evaluate different event-less NILM
algorithms (e.g., in [10,18]). Event-based NILM methods, however, require information
about all appliance events in order to evaluate the detection and classification of these
events. Such information is not available in the presented datasets. The lack of datasets
for event-based NILM algorithms has already been explored by Pareira et al. in [21]. They
proposed a post-conducted labelling approach which can be applied to the individual
device data of a dataset. Their method uses an automatic event detector based on the log
likelihood ratio to recognize events in the power signal. They evaluated the detector using
the REDD [9] and AMPds [19] datasets. It achieved F1 scores of 84.52 % for REDD and
94.87 % for AMPds. The detector results highly depend on the quality of the data and set
parameters. Therefore, a supervision is still required.

The Building-Level fUlly-labeled dataset for Electricity Disaggregation (BLUED) in-
troduced by Anderson et al. [13] in 2012 was specifically recorded with event-detection in
mind. The authors recorded voltage and current measurements with a resolution of 16 bit
and a sampling rate of 12 kHz. Significant appliance transients were labeled manually
and using additional sensors and switchable sockets. However, no individual appliance
electricity measurements are available in this dataset.

We identified different shortcomings of existing datasets: (1) Larger time periods in
which no data or only a part of the data are available (REDD, ECO, UK-DALE). (2) Rela-
tive low sampling rate for appliance level data (REDD, UK-DALE, ECO, AMPds) or no
appliance level data at all (BLUED). (3) Missing information about the time and type of
appliance events (REDD, ECO, UK-DALE, BLOND, AMPds). (4) Unknown number and
type of devices which are not monitored individually (ECO, UK-DALE, BLUED, AMPds).
(5) No standard procedure to load the data or explore the dataset.

2. Materials and Methods

The shortcomings of existing datasets have been expressed in Section 1.1. In order
to overcome these shortcomings, we define a set of challenges that need to be addressed
when recording datasets to evaluate load monitoring or other electricity related algorithms
in the residential domain. In particular, event-based NILM algorithms and event detection
algorithms cannot be evaluated using the existing datasets, as they lack ground truth
information (time and type) of events. The challenges have been summarized in Table 1.
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Table 1. Challenges that need to be addressed when recording datasets for Non-Intrusive Load Monitoring.

ID Challenge

C1 Simultaneous recordings of a home’s aggregated electricity consumption and the consumption of the individual
appliances. The individual data can be used to validate the appliance estimates of NILM algorithms. Furthermore, it can
be explored how semi-supervised hybrid NILM algorithms such as [22] can benefit from individual appliance data.

C2 High sampling rates of the aggregated and individual appliance data. This allows for the extraction of high frequency fea-
tures from the individual waveforms which might further improve traditional NILM algorithms. Kriechbaumer et al. [12]
focused on recording a dataset with a very high sampling rate but, therefore, require to download ≈75 GB of data per
day. To not sacrifice usability, a trade-off between high sampling rates and file size needs to be examined.

C3 Continuous data recording for multiple days is crucial to understand and explore different consumption behavior based
on the time-of-day or day-of-week.

C4 High quality dataset labels to evaluate event-based NILM and event detection algorithms. These labels should consist
of a timestamp describing when the event occurred, the device responsible for the event and a textual description of the
event.

C5 High temporal accuracy of the data and its labels is required. Labels should always reflect the associated change in the
signal. This requires that the data streams are in sync and do not drift apart.

C6 Usability is one of the most underrated factors of a dataset. However, researchers should be able to explore and utilize a
dataset in a quick and easy way.

Based on the stated challenges, we have developed a framework to record and label
NILM datasets. The overall flow of this framework is shown in Figure 1. It consists of an ag-
gregated electricity meter (Smart Meter) which records high frequency voltage and current
waveforms at the aggregated level, and multiple distributed meters which record voltage
and current waveforms of individual appliances. Further sensors can be added to measure
other quantities (e.g., temperature or movement). The current and voltage waveforms as
well as the sensor data are collected by a recording PC and stored in multimedia containers.
Other electricity related metrics such as active and reactive power are derived from the raw
current and voltage waveforms. These power data is stored with different sampling rates
and is used to generate data labels semi-automatically. A post-processing step extracts
events and assigns labels to these events. Both events and labels are refined by a human
using a graphic user interface (GUI) resulting in a final set of label files. Each part of the
framework is explained in more detail in the remainder of this section.

open fridgedge

Extract Events Refinement

.mkv.mkvmk.mkv.mkv

Raw Data

Extract Power

.mkv.mkvmk.mkv.mkv
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Figure 1. Overall flow of the presented framework to record advanced NILM datasets.

2.1. Smart Meter

Aggregated data are recorded using a custom-built measurement system referenced
as the SmartMeter from now on. The system was introduced by Völker et al. in [23,24].
A schematic wiring diagram of the smart meter can be seen in Figure 2. It shows the
required connections to the power grid. As the analog to digital converter (ADC) requires
input voltage levels of 2 V maximum, we use a voltage dividers with a ratio of 1:1000 to
scale down the mains voltage levels. Likewise, we use current transformers (YHDC SCT-013
with a ratio of 1:2000) to convert the home’s current consumption into a voltage signal that
can be measured by the ADC. Using the split-core variant of the current transformer allows
us to measure current in the most non-intrusive way. The home’s scaled voltage levels and
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current consumptions are sampled at up to 32 kHz using the ADE9000 ADC from Analog
Devices [25]. The ADC can handle seven input signals at a resolution of 24 bit and a signal-
to-noise ratio of 96 dB. It further has an internal Digital Signal Processor (DSP) to calculate
attributes like active or apparent power as well as electrical energy. The sampled data is
retrieved by an ESP32 microcontroller (Espressif Systems) over an isolated SPI interface.
The microcontroller converts the raw fixed point data to 32 bit float values representing the
actual voltage and current measurements (in Volt and Milliampere, respectively). The data
can be sent to a sink via either a USB Serial, a TCP or a UDP connection. An external flash
memory allows for buffering the data on short network disconnections. We used 8 MB
in the installed system which can hold up to ≈ 41 s of data at a sampling rate of 8 kHz.
Furthermore, a Real Time Clock (RTC) is used to sync the sampling rate of the installed
ADC (see Section 3.3.4). An Ethernet connection adds a reliable cable connection to the
measurement system using the LAN8720 chip (Microchip Technology) with an ordinary RJ-
45 connector. It is also possible to use WiFi communication, as the ESP32 comes with WiFi
on-board. However, in our findings, Ethernet is more reliable in a fuse box environment
and should be preferred.

kWh

4 pol 
RCD
4 pol 
RCD

Figure 2. Schematic of the SmartMeter wiring for a three-phase power supply inside the fuse box.

The measurement system is encapsulated in a fire proof DIN housing. This allows
the system to be installed at a DIN rail inside the fuse box (as shown on the left side
of Figure 6).

2.2. Distributed Meters

Individual appliances can be recorded using a set of PowerMeters (see right side of
Figure 6). PowerMeters are custom-built smart plugs designed to measure current and
voltage waveforms of individual appliances. The plugs were introduced by Völker et al.
in [22,23]. Their general system architecture is nearly identical to the architecture of the
SmartMeter. A PowerMeter scales down the power outlet’s voltage by a factor of 1:580
using a voltage divider and the current drawn by the connected appliance using a 3 mΩ

shunt resistor. The analog signals are sampled using a STPM32 ADC from STMicroelectron-
ics [26]. The ADC can sample at up to 7.875 kHz with 24 bit resolution and has an internal
DSP. The DSP again allows for calculating other electricity metrics directly inside the smart
plug. Data from the ADC is collected by the same ESP32 microcontroller used inside the
SmartMeter. 4 MB external flash storage allows for being resilient against ≈ 250 s network
dropouts at a sampling rate of 2 kHz. Each distributed meter also includes an RTC for
clock synchronization. Data is sent over WiFi, as a wireless solution should be preferred
over a wired interface in such a distributed setup. The cost of a single PowerMeter is
comparatively low with approximately e35.

The power consumption of each PowerMeter itself is quite low (0.56 W) and compares
to the smart plugs used to record other NILM datasets e.g., Plugwise as used in [11] (0.5 W).
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2.3. Additional Sensors

The framework allows for recording arbitrary sensor values or additional appliance
information together with the electricity measurements using an MQTT-API. MQTT [27]
provides a standardized publish–subscribe messaging system and has emerged to one of
the standard protocols in the world of IoT. If an instance wants to share some information,
it can send a message for a given topic. If other instances are interested in this information,
they can subscribe to the specific topic. Each new message published under a certain topic is
relayed by the MQTT broker to all instances subscribed to this topic. MQTT builds on top
of the TCP network protocol which guarantees the successful transmission of data.

The recording PC (see Figure 1) hosts a central MQTT broker. A small Python script
listens for incoming messages under a general topic recording and will handle storing the
incoming data into CSV files. If a sensor should be added to the recording infrastructure,
it simply needs to connect to the broker and send its data on a unique sub-topic (e.g.,
recording/livingroom_temp). Data must follow the JSON format. Each JSON key corresponds
to a header entry in the resulting CSV file. A timestamp is added by the Python script for
each entry if the key ”ts” is not present in the data. An example for a valid message of a
temperature sensor is recording/livingroom_temp {”value”: 20.5}.

We further highlight three examples of how additional appliance states or sensors can
be added:

• Smart lighting:

Many light bulbs are nowadays substituted with smart light bulbs. Most of these
can be controlled via a ZigBee gateway. Such a gateway can be incorporated to
pass information if a light bulb changes its state, dimm state, or color. We have
implemented a Python script which interfaces with such a gateway to log the state
changes of all light bulbs connected to the gateway using our MQTT-API. This allows
for deriving power consumption estimates without intrusively metering each light
individually and provides further room occupancy information.

• Sensors:

We show an example flow of how a custom sensor can be developed using the
provided MQTT-API in Figure 3. The ESP32 has WiFi built-in and provides certain
inter-system interfaces such as SPI, I2C, or UART. This allows for rapid prototyping
different sensors like temperature or occupancy.

• Bridges:

The same system overview as shown in Figure 3 can be used to develop different
gateways. As an example, we developed a 433 MHz gateway that logs state changes
of switchable sockets, wall switches, or remote button presses of devices that are
equipped with 433 MHz. We further implemented an infrared sniffer that logs all
commands received from off-the-shelf remotes to MQTT. This helps to capture inter-
actions with televisions, HiFi systems, and air conditioners.

MQTT-APIExample System Architecture

ESP32 MQTT 
Broker

Sensor Interface 
e.g. SPI, I2C (data preprocessing)

sub-
topic 
.csv

python 
mqttLogger.py

Parsed  
Data

Topic: 
recording/
subtopic 
Payload:

JSON

{;}

Figure 3. Example of extending the recording system by logging additional sensor data using the MQTT-API.

The Python script further publishes recording information each 600 s under the topic
recordingInfo. The information includes the current recording state, the number of meters
active, and the average power of each meter since the last message.
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2.4. Extracting Events

Evaluating event-based NILM algorithms requires having ground truth data for all
events in the dataset. The authors of the UK-Dale [11] dataset therefore recorded appliance
turn on/off events for house 1 using switchable sockets. If the user pressed the button on
such a switchable socket. The current timestamp, device, and state of the socket is logged.
We particularly see three drawbacks of such an approach: (1) Devices that are hardwired
to the mains like the stove or lighting cannot be equipped with such a socket. (2) Only
on/off events can be logged. Most of our household appliances are multi state devices that
have more than just a binary state on or off. (3) Devices that change their state without user
interactions can not be labeled (e.g., a kettle turns off automatically if the water is boiling).

We build on the idea of a post-conducted labelling approach introduced by Pereira et al.
in [21] and developed a semi-automatic labeling algorithm that consists of three steps:
event detection, unique event identification, and high variance filtering.

2.4.1. Event Detection

The event detector utilizes the Log-Likelihood Ratio (LLR) test introduced by
Pereira et al. in [21]. It has been enhanced by adaptive thresholding by Völker et al.
in [23]. The detector calculates the likelihood (L(i)) that an event has happened at sample i
by using a detection window over the power signal (S(i)). The detection window splits
into two sub-windows, the pre-event window [a, i[, and the post-event window [i, b]. L(i)
calculates as

L(i) = ln

(
σ[a,i[

σ[i,b]

)
+

(
S(i)− μ[a,i[

)2

2 · σ2
[a,i[

−
(

S(i)− μ[i,b]

)2

2 · σ2
[i,b]

, (1)

where σ[a,i[, σ[i,b], μ[a,i[ and μ[i,b] are the standard deviations and means of the pre-event
and post-event window, respectively. This signal is cleaned using an adaptive threshold
(thresi). If the change of the mean value between the pre- and post-event drops below this
threshold, L(i) is forced to zero using

L(i) =

{
L(i), if

∣∣∣μ[a,i[ − μ[i,b]

∣∣∣ > thresi

0, otherwise
. (2)

thresi is defined as

thresi = thresmin + m · μ[a,i[, (3)

with thresmin being the minimum power change of interest and m a linear coefficient.
This coefficient causes a linear increase of thresi with the current power drawn (power

of the pre-event window). Typically, the variance in the power signal is proportional to
the amount of power drawn. This effect is caused by increasing noise in the appliance or
the analog frontend of the electricity meter. If a fixed small threshold thresi is set, a large
number of false events may occur at regions where more power is drawn. If a fixed high
threshold is set, low power events may be missed. Pereira et al. used a relative large
threshold of 30 W [28] which does not allow for detecting state changes of low power
devices such as battery chargers or lights. We use the linearly increasing threshold as it
adapts to possible larger fluctuations, preventing false events and missed events.

If an event is detected at sample i, the likelihood will also be non-zero around that
sample as a mean change is still observable in close proximity to the event depending on
pre-event and post-event window sizes. The exact sample at which the event occurred is
identified using a voting window. This window is applied to the signal L. Inside the window,
only the maximum of the absolute value of L is kept. We further restrict the minimum
distance between two events with an additional parameter l.
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This algorithm has six adjustable parameters: the duration of pre-event, post-event,
and voting window, the minimum detection threshold thresmin, the linear coefficient m,
and the minimum distance between two events l. A user should specifically adjust the
parameters thresmin and l according to prior knowledge of the data: a low threshold
thresmin is required if events with small mean changes are expected, and a short l should
be chosen if events can happen close in time. Values that seem to work quite well across
different devices are: pre-event window = 1 s, post-event window = 1.5 s, voting window =
2 s, thresmin = 3 W, m = 0.005 and l = 1 s.

2.4.2. Unique Event Identification

To further simplify the labeling effort, we try to identify similar events of the appliance
to label them accordingly. We therefore utilize the fact that most of our home appliances
draw different but constant power before and after an event (e.g., the kettle after switched
on) which represent constant states of the home appliance (e.g., off and on for the kettle).
Depending on its complexity, an appliance can easily have more than ten unique states
(e.g., a dishwasher).

The data is split at each event and the mean power demand between these splits is
calculated. Unique mean values (representing unique appliance states) are then identified
using hierarchical clustering with a distance threshold determined by thresmin. Each cluster
is given a textual ID which is used to assign labels to each event (S0, S1, . . ., as shown in
Figure 11). As some appliances show a higher rush-in power followed by a power settling
due to moving parts in the appliance, we remove the 10 % of the highest and lowest values
before calculating the mean value.

2.4.3. High Variance Filtering

Appliances such as PCs or televisions draw variable power depending on the current
context (i.e., calculations of the PC, content of a television). This causes a large number
of false events using the LLR test. To filter these false events, we first identify regions
in the signal that show such high variance and afterwards remove all events found in
those regions. We therefore calculate the mean (μ(i)) and variance (σ(i)) of a sliding
window. If σ(i) is larger than n · μ(i), the window is marked. If the length of consecutively
marked windows exceeds a certain length (w), all events in these windows are removed.
The parameters n and w can be adjusted. Values which show good results were found
empirically as w = 4 s and n = 0.005.

By using the event extraction algorithm, an appliance power signal can be pre-labeled.
Each found event is marked and a unique label is assigned. The extensive task of labeling
can therewith be reduced to supervision and inspection: Remaining falsely classified events
(FP) need to be removed, events not found (FN) need to be added, and each unique state
label should be changed to a meaningful label representing the state of the appliance.

2.5. Human Supervision

To combine the presented automatic event labeling (Section 2.4) with a simple graphic
based human supervision, we have developed the Annoticity inspection and labeling tool.
The tool is introduced by Völker et al. in [16]. Annoticity is implemented as an interactive
web application. Its workflow is depicted in Figure 4. The tool allows for uploading
your own data in the Matroska multimedia (MKV) [29] or CSV format. A user can further
select data form several existing datasets such as REDD [9], ECO [18], BLOND [12], UK-
DALE [11], or FIRED [17].

Annoticity is split into a server backend and client frontend. The backend loads the
data and prepares it for visualisation. Data is down-sampled to a reasonable sampling
rate according to the current time-span selected by the user. Furthermore, the automatic
labeling algorithm presented in Section 2.4 can be performed, and file downloads (labels or
data) are provided.
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The graphical user interface of the client frontend is shown in Figure 5. After either
uploading a file or selecting a device of an available dataset, the user can visually inspect
the data. All available measures (e.g., active and reactive power) can be selected. Zooming
into the data reveals more information as it leads to a data download at a higher sampling
rate. The user can further execute the automatic labeling algorithm resulting in an initial set
of labels. Each label consists of a start time and a textual description representing the event
or the state after the event. The initial set can be adjusted by the user. Labels can be added,
removed, or its text can be modified. If the user is only interested in the events’ timestamps,
all text can be removed. Furthermore, it is possible to modify all labels with the same text
in one step. The frontend also allows for adjusting the parameters of the automatic labeling
algorithm explained in Section 2.4. The final set of labels can be stored either as plain CSV,
ASS, or SRT files or embedded into a MKV container with the original data.

Server SideClient Side

open fridge

User Annotation and Inspection
Parameter

Datasets

D
ata

Labels + Format
Data Download

Store Request

Automatic Labeling
Labels

File Creator

Label Upload
Labels

Label Preprocessing

Data (+ Labels)
Data Fetching

Data Selection/ 
Upload

REDD

BLOND

FIRED

ECO

UK-DALE

Figure 4. Flow of the Annoticity labeling tool. Data fetching, automatic labeling, and file creation are performed on the server
side, while labeling and user interaction is performed on the client side (modified from [16]).
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use dataset or upload data

select available data 
(house, meter, day)

available measures

add, remove or change labels

zoom day

change parameter of automatic labelling 

download labels and data

Figure 5. The graphical user interface of the Annoticity inspection and labeling tool. The fridge events were generated and
clustered automatically. Each text description (off, compressor on, and door open) was only set once by the user. All other
occurrences were labeled accordingly (modified from [16]).

3. Results

We utilized the framework explained in Section 2 to record and label the Fully-labeled
hIgh-fRequency Electricity Disaggregation (FIRED) dataset which was first introduced by
Völker et al. in [17]. Version 2 of the FIRED dataset extends its time period to 101 days.
The data includes aggregated three phase current and voltage measurements sampled at
8 kHz as well as 21 time synced individual appliance measurements sampled at 2 kHz from
a residential apartment in Germany. Furthermore, it includes sensor readings such as room
temperatures and additional state information of certain appliances and each light bulb in
the apartment. Annoticity has been used to fully label all state changes of the sub-metered
appliances over a time period of two weeks.

The FIRED dataset was collected at an apartment building constructed in 2017 with
seven apartments on four floors. Data was collected from a three-room apartment with
79 m2 of space (open combined kitchen and living room, bedroom, child’s room partly used
as office, hallway, bathroom, and storage room). The apartment is inhabited by two adults
and one child. The building is heated via a district heating and most rooms are equipped
with air filters with built-in recuperators. According to the building’s energy certificate, it
requires a primary energy consumption of 12 kWh/(m2a). The apartment’s power grid
is a three-phase 50 Hz system consisting of L1, L2, L3, and neutral (N) wires. L1–L3 has a
phase shift of 120°. Access to the apartment’s electrical system is given through a fuse box
located in the hallway. All lights installed in the apartment are off-the-shelf smart light
bulbs with a built-in ZigBee module. This allows the lights to be turned on or off via a
smartphone application, voice assistant, or regular wall-light-switch. It further allowed to
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log all state changes during the recording of the dataset as explained in Section 2.3. The
washing machine, dryer, and freezer are located in the basement of the building and are
not part of the recording.

A SmartMeter (see Section 2.1) was installed in the apartment’s fuse box. Split core
current transformers were attached to the three incoming supply legs. For voltage measure-
ments, L1, L2, L3, and N were connected in parallel. The meter is supplied with power by
an additional L1 leg that is secured by a separate 16 A fuse. The final installation is shown
in Figure 6 (left).

We further deployed 21 PowerMeters (see Section 2.2) in the apartment and connected
them to WiFi. We further checked that the WiFi signal quality (RSSI) of each PowerMeter
exceeded −60 dBm to be certain that data could be sent flawlessly. Some devices like the
oven and the exhaust hood were directly connected to the mains. To measure those appli-
ances, we connected a special version of our PowerMeters with screw terminals. Figure 6
(right) shows two PowerMeters connected to the espresso machine and coffee grinder.

Modern households can easily include more than 40 appliances (68 in the FIRED
household). Many of these devices are only plugged in occasionally and sometimes at
a different socket than before. Therefore, connecting a continuously sensing meter to
each appliance is infeasible. Instead, we connected devices of the same category (e.g.,
routers) or devices which are only used simultaneously (e.g., monitor and PC) to the same
PowerMeter. Devices which are only plugged in occasionally and typically not at the same
time (e.g., mixer or vacuum cleaner) were connected to a dedicated PowerMeter (pm11).
If an appliance was connected or disconnected, a corresponding entry was manually
added to a log file. This means that, even if the socket was continuously sampling data,
the appliance connected to it changed.

Moreover, temperature and humidity sensors were installed in most of the rooms,
a ZigBee logger was set up, and both a 433 MHz and an infrared bridge were installed (as
described in Section 2.3).

To properly connect all individual sensors to a central recording PC, the apartment
was equipped with four WiFi access points. The power consumption of the recording
PC and access points were recorded individually and also contribute to the apartment’s
aggregated consumption. The recording PC gathered the data of all electricity meters
and sensors, stored these into files frequently, and pushed the files to a cloud server for
persistent storage.

■SmartMeter
■Current Transformer
■L1,L2,L3 Voltage
■Power Supply
■Network Cable

■PowerMeter13
■PowerMeter15

Figure 6. (Left) SmartMeter installed in the apartment’s fuse box. (Right) PowerMeters with ID 13
and 15 connected to the coffee grinder and the espresso machine.

214



Energies 2021, 14, 75

3.1. Data Records

The provided data include voltage and current measurements at high sampling rates
taken from the aggregated mains’ signal and 21 individual sockets. Furthermore, FIRED
contains per day and device summary files with derived power measurements to get a
quick insight into the data. The root directory of the dataset contains folders with the raw
and summary data. The data are stored as multiple MKV container into sub-folders named
powermeter<ID> and smartmeter001, respectively. We used multimedia containers to store
the data, as we previously explored their benefits in [30]. While being optimized for audio
or video streams, these containers allow for storing regularly sampled sensor data as time
synced audio streams. Text based labels can further be stored as subtitle streams in the
same file. The FIRED data of each metering device are stored as a single WavPack [31]
encoded audio stream inside the multimedia container. Each stream has multiple channels
for the voltage and current signals. As stated in [30], WavPack allows for a lossless
compression while maintaining high compression rates for time series data. In particular,
we achieved a compression ratio of 1.46 for the voltage and current measurements using
WavPack (only 1.42 could be achieved with hdf5 [32], which has been used e.g., for UK-
DALE [11] and BLOND [12]). We also store different Metadata for each of the streams
including the start timestamp (with microseconds resolution), the particular meter used,
the sampling frequency, codec information, the name of the measured attributes, and the
stream’s duration. Therewith, each file is self descriptive and can be used without prior
knowledge. File size and, therewith, file loading times are kept reasonable by splitting
all files at regular time intervals. The local time of the first sample is appended to each
filename as <year>_<month>_<day>__<hour>_<min>_<sec>.

Table 2 shows the mapping of the recorded appliance to the used PowerMeter (ID).
For more information about the appliance, its brand and model are shown with its power
rating (P) according to the device manufacturer as well as the average P and maximum
power Pmax observed during recording. Φ shows the live wire (L1, L2 or L3) to which the
PowerMeter was connected. A complete list of all appliances in the apartment is part of
the dataset. It contains additional information and website links for each appliance.

3.1.1. Voltage and Current Data

All PowerMeters sampled the current and voltage waveforms at a rate of 2 kHz.
While in theory data can be sampled and sent at up to ≈8 kHz using our PowerMeters,
the available WiFi bandwidth limits the amount of data that can be sent simultaneously by
all meters. Therefore, we chose a sampling rate of 2 kHz as a trade-off between reliability
and temporal data resolution (see Section 3.3.3 for more information). The SmartMeter
recorded voltage and current waveforms of L1, L2, and L3 with a sampling rate of 8 kHz.
The ADC installed in the SmartMeter allows for sampling these waveforms with a rate of
up to 32 kHz, but, again, we preferred a higher reliability over a better time resolution. This
is in line with Armel et al. [7] who stated that sampling rates between 15 kHz to 40 kHz will
not improve the performance of NILM algorithms as higher frequency signal components
are distracted by noise in real buildings.

Each file contains 600 s of data stored into a single audio stream inside the multimedia
container. For the aggregated data, each audio stream has six channels (v_l1, i_l1, v_l2,
i_l2, v_l3, i_l3) representing the current and voltage waveforms for the three supply legs.
The audio streams for the individual appliance data contain two channels (v,i). The number
of samples in each file should match the time distance to the next file. If this is not the case,
no data is available for this particular meter during this time period. This occurred during
a reliability reset each day at midnight and rarely for single meters due to occasional data
loss as depicted in Section 3.3.3.

Data pre-processing is typically not required, as both the SmartMeter and all Pow-
erMeters calculate the physical quantities (Volt for voltage and Milliampere for current
measurements) from the raw ADC samples.
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Table 2. Appliances recorded via PowerMeters. ID represents the identifier of the PowerMeter used
for recording. For PowerMeter11, the connected appliance changed during recording. P is the power
according to the device manufacturer, Φ is the Live Wire the device is connected to (L1, L2 or L3), Pmax

is the maximum average power drawn for the duration of one second and P is the per day average
power seen during the recording. The unit of all power measurements is Watts.

ID Connected Appliance Brand Model P Φ Pmax P

08 Baby Heat Lamp Reer FeelWell 600 2 611.93 0.30

09 Fridge IKEA HUTTRA 1000 3 1138.79 18.02

10 Smartphone Charger #1 - 2 Port USB 10 3 12.74 1.68

11 Changing Device 3 1898.71 3.10

12 Smartphone Charger #2 - 4 Port USB 25 1 27.86 2.77

13 Coffee Grinder Graef Cm800 128 3 206.89 0.17

14 Smart Speaker Apple HomePod 15 3 3.60 0.23

15 Espresso Machine Rocket Appartamento 1200 3 1230.62 29.82

16 Kettle Aigostar Adam 30GOM 2200 3 1958.76 2.89

17 Hairdryer Remington D3190 2200 1 1934.85 1.00

18

Router #1 Apple Airport Extreme A1521 10.3

1 27.97 19.34Router #2 Telekom Speedport Smart 1 10

Telephone Gigaset A400 1

19 Printer EPSON Stylus SX435W 15 1 21.45 0.16

20

Office PC Apple Mac Mini A1993 85

2 236.08 59.49

27” Display Apple Thunderbolt display 200

Speaker Logitech Z2300 240

Smartphone Charger #3 Apple MD813ZM/A 5

Access Point #2 Apple Airport Express A1264 8

21 Media PC Apple Mac Mini A1347 85 3 45.38 12.98

22
HiFi System Onkyo TX-SR507 160

3 85.86 15.27
Subwoofer Onkyo SKW-501E 105

23 Television Samsung UE48JU6450 64 3 150.96 12.31

24 Light+Driver IKEA - 40 3 36.56 1.75

25 Oven IKEA MIRAKULÖS 3480 3 2491.03 9.69

26 Access Point #3 Apple Airport Express A1392 2.2 3 2.67 2.21

27
Router #3 Netgear R6250 30

1 56.91 15.74
Recording PC Intel NUC8v5PNK 60

28 Fume Extractor IKEA WINDIG 250 3 249.26 1.11

The provided voltage and current data without any pre-processing can be seen in
Figure 7. Plots 1–3 show data of the SmartMeter while plots 4 and 5 show the simultaneous
measurements of two additional PowerMeters. The figure does not only highlight the high
temporal resolution of the data but also the achieved clock synchronization. The rush-in
current shown in the PowerMeter data (Figure 7 plot 4) matches the rush-in current seen in
L3 of the SmartMeter (Figure 7 plot 3). A time shift between the measurement devices of
around 10 ms can be observed. Even after 16 h of continuous recording, the offset between
the SmartMeter and PowerMeters is below one mains cycle, highlighting the effectiveness
of the realized clock synchronization (see Section 3.3.4).
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Figure 7. Voltage (red) and current (blue) waveforms of the SmartMeter, powermeter15 and power-
meter27. The recording was taken on 9 June 2020 at around 4:00 p.m. The same appliance switch-on
event of the espresso machine is visible in the recording of L3 of the smartmeter and of powermeter15.

3.1.2. Power Data

The power data was derived from the voltage (V) and current (I) waveforms. We
calculated active, reactive, and apparent power from the raw voltage and current data
of all recording devices. The data is stored as a single file for each day of the recording.
The formulas used to calculate the individual powers based on the mains frequency
fl = 50 Hz are shown in (4), (5), and (6), respectively:

P(n) = 1
N · ∑N−1

i=0 V(i) · I(i) (4)

S(n) = IRMS(n) · VRMS(n) (5)

Q(n) =
√

S(n)2 − P(n)2 (6)

P, Q, and S are calculated for each non-overlapping window n. The length of the window
is N = fs

fl
. fs is the sampling rate of the voltage and current measurements. For the 8 kHz,

SmartMeter data N is 8000 Hz
50 Hz = 160. IRMS and VRMS are calculated as follows:

IRMS(n) =
√

1
N · ∑N−1

i=0 I(i)2 (7)

VRMS(n) =
√

1
N · ∑N−1

i=0 V(i)2 (8)

Since data of commercial smart meters have a sampling frequency of 1 Hz to 0.01 Hz,
an additional 1 Hz version of the power data is provided.

The 50 Hz and 1 Hz power are stored for each meter individually and contain one day
of data. Times for which the power could not be calculated as no voltage and current data
being available are marked with a power of constant zero to maintain an equidistant time
period between samples.

Figure 8 shows the single day apparent power consumption of the apartment. The
contribution of the six appliances which consumed the most power on this day is shown
as individual colored blocks. All other appliances are summed and plotted as Others.
The aggregated power consumption of the SmartMeter is shown as mains. Ideally, the su-
perposition of the apparent power of all individual meters should match the aggregated
apparent power. Nevertheless, a small margin can be observed in Figure 8. This gap is
caused by hard-wired appliances such as lights and the ventilation system, which are not
individually monitored (see Section 3.3.2 for more information).
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3.1.3. Logs

The annotation folder contains 33 tab-separated CSV files. The first column of each file
represents the timestamp associated with the event or sensor reading. We divide these files
into three categories:

• Smart lights:

State changes of each light in the apartment is logged. The filenames of these logs
have the form:

light__<room>__<deviceName>__<deviceModel>.csv
room is the room the light is installed in, deviceName represents how this light is used
(e.g., ceiling light) and deviceModel matches the light model name. The file’s second
column represents the state of the light (on or off ), the third column is the light’s
intensity (0 % to 100 %) while the last column represents the light’s hex color. If setting
different colors is not supported by the light, the column only shows None values.
As individual measurements of the apartment’s lighting have shown, the installed
smart lights consume constant apparent power linearly increasing with the light’s
intensity (dimm setting). As information of the lights’ state and dimm setting is
available for the complete recording duration, this information can be used to estimate
the power consumption of each light.
The smart light logs of two days are shown in Figure 9. The hallway ceiling light
consists of three light bulbs and is triggered by a passive infrared sensor. Hence, all
three light bulbs are turned on if a resident walks through the hallway, which can be
seen in Figure 9 throughout the days.

• Sensor readings:

The readings of temperature and humidity sensors are stored in files following the
name scheme:

sensor__<room>__<sensorType>.csv
sensorType is either hum or temp for humidity or temperature readings. Each file’s
second column represents the sensor reading. Temperature readings are stored in
degrees Celsius and humidity readings in %, respectively. All values have floating
point precision. Samples are not acquired equidistantly, as the sensors only send new
values if they have changed.

• Device info:

Certain smart devices or bridges as explained in Section 2.3 allow for capturing events
of devices in the apartment, e.g., pressing a certain key of the television remote. These
events are logged in files with the following name format:

device__<room>__<deviceName>__<deviceModel>.csv
Each file’s second column gives information about the current device state or hap-
pened event. The file of the HiFi system, for instance, includes key-presses such as
power or vol_up. Figure 10 shows the logs for the television, the HiFi system, and the
espresso machine.
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Figure 8. The power consumption of the apartment over one full day (2nd July 2020). The power is
down-sampled to one sample every 3 s. The black line indicates the power consumption recorded by
the SmartMeter. The contribution of the six top-most consumers is shown as stacked colored blocks.
The consumption of the remaining individually metered appliances are aggregated and shown as
the blue block Others. A slight offset between the SmartMeter and the accumulated power of all
PowerMeters can be seen.

Figure 9. Two days of light usage information (16th–17th June 2020). The time of day is shown on
the x-axis while the particular light is shown on the y-axis. If a light was used, a black box is shown
during this period. The box is filled with the set color value and dimm setting.

Figure 10. Three days of device logs (19th–22nd June 2020). The data of the espresso machine shows
the numbers of espressos made, while the data of the HiFi system and television show key-presses
on the remote. The television content is provided by a connected media PC.

219



Energies 2021, 14, 75

3.1.4. Data Labeling

We used the Annoticity labeling tool to fully label all events that happened within two
weeks of the FIRED data (22nd July 2020–4th August 2020). The automatic labeling tool
was used to generate an initial set of labels. This set was modified by visually inspecting
the data. We removed false events, added missing events, and assigned a distinct and
descriptive label to each appliance state. The labels were stored as CSV files and are part
of the dataset. During labeling, we also stored the initial set of labels obtained by the
automatic labeling algorithm to evaluate the algorithm’s performance. Figure 11 shows
both the initial set of labels and the final labeled data of the ’espresso machine’.

Figure 11. The fully labeled data of the espresso machine (30th of July at 9:50 a.m.). The bottom
plot shows the initial labeling of the automatic labeling algorithm, while the top plot shows the final
labeling after human supervision. (The rightmost event has been missed by the algorithm.)

To evaluate the performance of the labeling tool (see Section 2.4), we compared its
result with the final set of manually labeled events. Evaluation was done in terms of True
Positives (TP) i.e., true events, False Positives (FP), i.e., falsely classified events and False
Negatives (FN), i.e., events not found by the tool. A TP is defined as a classified event
which is reflected within 2 s in the manually labeled data. According to that, a FN is an
event in the manually labeled data not found within 2 s during detection. An FP is a
classified event which is not present in the manually labeled data. The F1 score was used
to summarize these metrics into a single score. We fixed the algorithm’s parameters for all
appliances to simplify the evaluation: pre-event window length = 1 s, post-event window
length = 1.5 s, voting window length = 2 s, thresmin = 3 W, m = 0.005, and l = 2 s.

We experienced that the labeling algorithm is performing fairly well for devices which
show distinct states in the power signal (such as the oven, kettle, or the espresso machine
shown in Figure 11). For devices that draw variable power in between states (such as a PC
or a coffee grinder), a large number of false events were triggered.

To put this into perspective, Section 3.1.4 shows the evaluation results split into two
groups: #1 represents appliances that show distinct states and #2 represents appliances which
draw variable power. Appliances for which no distinct events were labeled manually (e.g.,
network equipment) are omitted.

Section 3.1.4 indicates that most of the appliances present in residential homes (group
#1) can be labeled in a semi-automatic way. The Coffee Grinder and the HiFi System show
a comparable low performance with a high number of FP. This is due to higher variance
if the motor is active or music is playing and could have been avoided by using a higher
linear factor m or a higher threshold thresmin.

To get an overall estimate of how much the labeling effort can be reduced by using
the automatic labeling, we compared the raw number of clicks required to label the data
from scratch with the number of clicks required to supervise and modify the pre-labeled
set generated by the automatic labeling algorithm for group #1. In total, 4379 events were
labeled manually. If we omit the task of applying textual labels, labeling events would
still have required at least 4379 clicks. As shown in Table 3, for devices in group #1, the
labeling algorithm automatically placed 3232 events at the correct position. With 159 falsely
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classified events, 377 missing events, and the 770 missing labels of group #2 (which
would require manual labeling), 1306 clicks were required to remove false events and add
missing events. Therewith, the sheer amount of clicks was already reduced by 70.18% not
accounting for the support provided by the Annoticity tool while applying textual labels:

Reduction = 1 − tadd · MissedEvents + tdel · FalseEvents
tAdd · AllEvents

(9)

If we also accommodate the fact that it typically takes less time to remove a falsely
placed label (tdel) compared to manually adding a label from scratch (tadd), we can apply
Equation (9). Using tadd = 10 s and tdel = 5 s as a reasonable guess of this difference,
the reduction in labeling effort is actually 71.99% compared to a fully manual approach.
Considering that the parameters could have been manually adjusted and optimized for
each appliance, the actual reduction might be even higher.

Table 3. Results for the automatic labeling algorithm split into two appliance groups. In #1, appliances
are grouped which show distinct states in the power signal in which nearly constant power is drawn.
#2 groups appliances that draw variable power. Events marks the number of ground truth events
labeled manually.

Group Appliance Events TP FP FN F1

#1 Baby Heat Lamp 6 6 0 0 100.00
Fridge 1006 863 2 143 92.25
Coffee Grinder 348 250 114 98 70.22
Espresso Machine 1880 1760 0 120 96.70
Kettle 30 30 0 0 100.00
Hairdryer 18 17 0 1 97.14
Hifi System, Subwoofer 45 44 37 1 69.84
Television 79 65 4 14 87.84
Kitchen Spot Light 12 12 0 0 100.00
Oven 138 138 1 0 99.64
Fume Extractor 47 47 1 0 98.95

Sum 3609 3232 159 377 92.34

#2 Smartphone Charger #1 96 83 1491 13 9.94
Smartphone Charger #2 63 45 7999 18 1.11
Office Pc 583 410 85,367 173 0.95
Media Pc 28 10 26,632 18 0.07

Sum 770 548 121,489 222 0.89

3.2. Data Statistics

Overall, we collected 53,328 h of raw current and voltage waveforms using the pro-
posed framework. Figure 7 highlights the richness of the captured data for the SmartMeter
and the PowerMeter units. Figure 8 shows the apparent power extracted for each individ-
ual appliance. It further emphasizes the contribution of each appliance to the total power
consumption on this day.

According to [33], the average consumption of a comparable three person household
in Germany is 7.12 kW h per day. Evaluating the SmartMeter data of the FIRED dataset
results in an average electricity consumption of 6.06 kW h per day, which is slightly lower
compared to the average, but this is expected as the data does not contain the electricity
consumed by the washing machine, dryer, and freezer.
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Figure 12a shows the consumption of six appliances at the hour of day averaged
over the whole recording duration. This delivers a good indication for usage patterns.
For example, the ’espresso machine’ shows two distinct peaks, one in the morning at
around 9:00 a.m. (morning coffee) and one in the afternoon at 3:00 p.m. (coffee break).
In comparison, the ’router’ does not show any significant peak. It can also be seen that the
’office PC’ has a high standby consumption of around 35 W and is used mainly between
9:00 a.m. and 6:00 p.m. Figure 12b shows the distribution of power demand for the same
appliances. Some state information can already be derived from these plots. The ’hairdryer’
shows two distinct states representing two different temperature settings. The ’office PC’
shows three peaks. The peak around 35 W represents the already mentioned standby
consumption, the peak around 50 W represents the PC in its On state, and the 140 W peak
includes the On state of the 27-inch monitor connected to the same meter. The ’espresso
machine’ consumes a huge amount of power (1200 W) during its heating cycles but is
mostly idle (5 W) in between.
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Figure 12. Appliance usage over the complete recording duration. (a) shows the daily usage patterns
of the devices as the average power for each hour-of-day; (b) shows the histogram of the power
demands. A 2 W threshold was set to omit data in which no power is drawn.

3.3. Technical Validation

Measurements of the FIRED dataset are provided without applying any pre-processing
or filtering rather than the conversion to physical quantities. The recording framework
is equipped with different mechanisms to cope with real world effects such as network
dropouts or clock drifts, and the data integrity was analyzed in detail.

3.3.1. Calibration

We calibrated each meter in advance using an ENERGY-LOGGER 4000 [34] (with a
stated accuracy of 1%) as a reference. We used ten loads with different power consumption
ranging from 5 W to 2000 W and applied a linear calibration. The calibration parameters
of each meter were stored permanently in their non-volatile memory. We repeated the
calibration after the recording duration to see if aging affects have already occurred. Such
effects could not be identified.

3.3.2. Residual Power

The sum of all PowerMeters’ apparent power matches the apparent power recorded
by the SmartMeter with a slight offset (residual power). The residual power is the portion
of the total consumed power which is not metered by an individual meter, i.e., the portion
for which no ground truth data is available. Our goal was to minimize this portion in order
to provide reliable ground truth data that can be used by supervised machine learning
algorithms.

The residual power observed in the FIRED dataset (see Figure 8) is mainly due to non-
monitored, hard-wired devices in the apartment such as the lighting and the ventilation
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system but also due to the power consumption of the distributed meters. The individual
consumption of each light-bulb can be estimated with the log files which we provide
with our dataset. To show that this is feasible, we generated apparent power estimates
using these log files and the provided individual light recordings. The consumption of the
remaining unmonitored appliances (including the consumption of 21 PowerMeters) is the
base power consumption of the apartment. It can be estimated at times when lights are
turned off and the majority of appliances do not consume any power which is typically
during the night or in the case of owner absence. We calculated the base power PbaseLx for
each individual supply leg x ∈ [1, 2, 3] as

PMLx := { pm ∈ PM | phase of pm is x }, (10)

LLx := { l ∈ Lights | phase of l is x }, (11)

PbaseLx = P(SMLx)− ∑
pm∈PMLx

P(pm)− ∑
l∈LLx

P(l). (12)

SMLx is the SmartMeter data of live wire Lx, PM is the set of all PowerMeters, PMLx is the
set of PowerMeters that are connected to live wire Lx, Lights is the set of all lights, LLx is
the set of lights connected to Lx and P(X) is the extracted power trace of a meter or light X.
We assume that the base power is normally distributed and therewith remove all points in
PbaseLx that are further away than σ from the mean value and calculate PbaseLx as the mean
from the cleaned signal.

Figure 13 shows the apparent power consumption including the lighting and the
estimated base power with a remaining Root-Mean-Square Error (RMSE) of 17 V A.

Figure 13. The power consumption of the apartment over one full day (2nd July 2020). The power is
down-sampled to one sample every 3 s. The black line indicates the power consumption recorded by
the SmartMeter. The contribution of the six top-most consumers is shown as stacked colored blocks.
The consumption of all remaining appliances and the reconstructed consumption of the apartment’s
lighting are aggregated and shown as the blue block others. The black base block represents the
apartment’s base power estimated as 26.66 V A on average for this day.

3.3.3. Availability

The data availability over the complete recording duration was 99.96 %. The missing
data amounts to 1405 min and is mainly due to a reliability reset which we perform each
day at 12:00 a.m. accounting for approximately 20 s of missing data per meter and day.
Figure 14 shows the availability of each metering device over the complete recording
period. The reset each day at midnight can be clearly seen in the plot. Occasionally, due
to WiFi connection outages and an erroneous implementation of the TCP/IP stack on the
ESP micro-controller, some data packets can be lost. However, a packet only accounts
for less than 20 ms of data. Once detected, we replace missing samples with zeros to
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maintain the correct timestamps for all remaining samples. It is still possible to identify
these time periods as voltage, and current zero plateaus cannot occur in other situations.
PowerMeter14 and PowerMeter22 show this behavior more frequently compared to all other
meters. The reason might be an unstable WiFi condition as the RSSI values reported by
both meters were the lowest of all.

Figure 14. Time periods when measurement data are available. Each individual meter is shown on
the y-axis (ID 08-28) while the time period of the complete recording is shown on the x-axis. Red
areas indicate gaps in the dataset. Please note that gaps are plotted with at least one pixel width for
better visibility and therewith appear significantly larger.

3.3.4. Clock Synchronization

In Section 2, we defined one challenge as “simultaneous recordings with high temporal
accuracy”. Our framework is comprised of numerous meters and sensors distributed across
the home. To maintain precise timestamps for the measured data and the event labels,
precise clock synchronization techniques are required.

We also observed non-negligible clock drifts in initial experiments originating from
clock inaccuracies of the used ADC and microcontroller which vary depending on the
meter and also over time for the same meter due to temperature and aging effects. To
remove these drifts, we equipped each metering device (aggregated meter and distributed
meters) with an RTC to synchronize the internal ADC clock. A NTP server in the recording
network is utilized to sync each microcontroller’s system time every 120 s. We calculate
the system time as the NTP response plus half the time it takes for the NTP request to be
answered by the server. Therewith, we can obtain the time from a NTP request which took
e.g., 10 ms with an accuracy of ±5 ms. Hence, the accuracy of each device’s system time
depends on the network latency, which is typically below 10 ms. As we can measure the
NTP response time, which is a good indication for the network latency, we only utilize
NTP requests with response times better than ±10 ms to sync the system time. If we detect
a time drift after an NTP synchronization, it is slowly reduced by removing or adding
samples. The used technique adds only a minor jitter to the data (1/samplingrate seconds
or 125 μs for 8 kHz data).

Figure 7 highlights the achieved clock synchronization. The figure shows the voltage
and current traces of PowerMeter15 and the SmartMeter. PowerMeter15 shows a rapid rise
in the current consumption due to a heating element in the connected espresso machine.
The corresponding increase can be also observed in the data of L3 of the SmartMeter. Both
signals are shifted by around 10 ms highlighting the achieved clock synchronization. Such
a time shift allows for syncing the voltage and current waveforms with sub-cycle precision.
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3.4. Data and Code Availability

The FIRED dataset is available under the creative common license from our servers.
The code which has been used to generate all plots in this work is provided as open source.
The code and further information on how to download the data can be found at: https:
//github.com/voelkerb/FIRED_dataset_helper.

4. Discussion

In this work, we proposed a set of challenges which need to be addressed to record
datasets which can be used to evaluate a wide variety of electricity related algorithms
(especially event-based NILM). These challenges are summarized in Table 1. We further
proposed a framework to record and label datasets which meet the defined challenges.
It is comprised of the required hardware and software components to record the data,
an algorithm to automatically find and label events in the recorded data and a tool to
visually inspect the data and adjust the labels.

Using the framework, we recorded and labeled the FIRED dataset which features
101 days of electricity measurements (C3) of a residential apartment in Germany. This is
significantly longer than most existing high frequency datasets such as REDD or BLUED.
Aggregated level data are available as 8 kHz voltage and current waveforms while individ-
ual appliance data are available at 2 kHz for 21 appliances (C1, C2). While the aggregated
sampling rate is matched or even exceeded by other datasets, we are currently unaware of
any other residential dataset which features high frequency individual appliance record-
ings. The data is further time synced with an accuracy of around 10 ms (C5) and shows a
coverage of 99.96 % over the complete recording time period (C3). Other datasets such as
REDD or UK-DALE show a significant amount of missing samples due to bad wireless com-
munication. Our framework also provides a 1 Hz and 50 Hz summary with derived active,
reactive, and apparent power measurements. All data is stored in Matroska multimedia
containers (C6) with included metadata information such as timestamps and measurands.
Additional CSV files are included in the dataset which provide information about the
apartments lighting states, room temperature, and device operation states (C4). Event
positions and state labels have been added for two weeks of the data in a semi-automatic
way using the presented Annoticity labeling tool (C4). No other dataset known to us
includes such information. The dataset itself and the tools to process it are provided as
open source (C6).

5. Conclusions

In summary, this work offers three main contributions to the community of smart
meter data analytics:

1. We defined a set of challenges that an electricity dataset needs to address so that it
can be used to evaluate a large set of electricity and smart meter related algorithms
such as event-based and event-less Non-Intrusive Load Monitoring.

2. We proposed an expandable framework comprised of the hardware and software
components required to record datasets that meet these challenges.

3. We introduced and evaluated a novel dataset to the community, which, compared to
other residential electricity datasets such as BLUED, REDD or UK-DALE, features
simultaneous high frequency recordings of the aggregated mains’ signal and of
individual household appliances as well as two weeks of fully labeled appliance
events.

The high sampling rates, the achieved clock synchronization, and the marked events
allow for using datasets that have been recorded using our framework (like FIRED) to
evaluate event-based and event-less NILM algorithms. Additional data like detailed textual
labels and additional sensor readings allow for developing disaggregation algorithms that
utilize multi-modal information. Offering simultaneous, high frequency aggregated and
individual appliance recordings will allow researchers to develop hybrid load monitoring
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systems which use individual appliance recordings in a semi-supervised fashion to aid the
laborious training process of supervised NILM systems.

Besides the mentioned advantages, the framework is currently optimized for use
in the residential domain as, e.g., plug level meters and WiFi are being used. While it
should be possible to move the overall concepts to the commercial or industrial domain,
such specialized environments may require additional adaption. Besides temperature and
humidity readings, other environmental information such as occupancy or light sensors
may be of interest and are theoretically supported by the framework but have not been
installed while generating the FIRED dataset. Further increasing the sampling rate of the
meters or the sheer number of meters is theoretically possible; however, in our findings,
it reduced the reliability of our framework mainly due to bandwidth problems. One
suggestion to overcome such a limitation in the future is to compress the data before it is
sent over the bandwidth limited WiFi channel.

We provide electricity datasets and the software and hardware to record these so that
researchers can set their focus on improving load monitoring and eco-feedback techniques.
These have shown tremendous potential in saving our earth’s energy resources.
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The following abbreviations are used in this manuscript:

ILM Intrusive Load Monitoring
NILM Non-Intrusive Load Monitoring
RTC Real Time Clock
FIRED Fully-labeled hIgh-fRequency Electricity Disaggregation
CSV Comma-Separated Values
SRT SubRip Text
RMSE Root-Mean-Square Error
TP True Positives
FP False Positives
FN False Negatives
NTP Network Time Protocol
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Abstract: A NILM dataset is a valuable tool in the development of Non-Intrusive Load Monitoring
techniques, as it provides a means of evaluation of novel techniques and algorithms, as well as for
benchmarking. The figure of merit of a NILM dataset includes characteristics such as the sampling
frequency of the voltage, current, or power, the availability of indications (ground-truth) of load events
during recording, the variety and representativeness of the loads, and the variety of situations these
loads are subject to. Considering such aspects, the proposed LIT-Dataset was designed, populated,
evaluated, and made publicly available to support NILM development. Among the distinct features
of the LIT-Dataset is the labeling of the load events at sample level resolution and with an accuracy
and precision better than 5 ms. The availability of such precise timing information, which also
includes the identification of the load and the sort of power event, is an essential requirement both
for the evaluation of NILM algorithms and techniques, as well as for the training of NILM systems,
particularly those based on Machine Learning.

Keywords: Non-Intrusive Load Monitoring (NILM); NILM datasets; power signature; electric
load simulation

1. Introduction

Non-Intrusive Load Monitoring (NILM) techniques are under development, globally, as part
of the effort to improve Electrical Energy Efficiency. To support this development, specific datasets
have been elaborated, particularly during the last decade. A NILM dataset consists of a collection
of samples taken over time; these may include voltage, current, active power, and reactive power.
As NILM techniques concern disaggregation of loads, typically, the samples in a NILM dataset
comprise aggregated current and power.

Energies 2020, 13, 5371; doi:10.3390/en13205371 www.mdpi.com/journal/energies229
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According to the International Energy Agency [1], the worldwide electricity demand is currently
29,000 TWh and will increase to 42,000 TWh in 2040 at about 2.1% per year. Under current Stated
Policies, less than 50% of this energy will come from renewable sources: mainly solar, wind, and hydro.
Improvements in this scenario may be attainable by reducing waste and improper use, as well as
reducing the electrical energy needs, mainly by improving the efficiency of electrical devices. Hence,
the importance of Electrical Energy Efficiency, which aims at the reduction in power and energy
demands of electrical systems without affecting their functionality. Most importantly, reducing energy
needs has a significant effect on the environment by reducing the world’s carbon emissions.

NILM techniques are based on a centralized measurement of electrical energy consumption and,
through a disaggregation process, determination of the individual consumption of each electrical load.
Typically, NILM uses a database of known power signatures of devices to analyze the aggregated power
consumption and identify the contribution of each load. Therefore, NILM is a low-cost, easily deployed,
flexible, and, therefore, viable solution that provides consumers with detailed information about their
energy consumption [2]. NILM provides essential information for use in Smart Grids, in Energy
Management Systems, and for Energy Efficiency initiatives.

The rationale for a NILM dataset is fivefold:

1. A dataset provides a stable set of input data that can be used to compare the performance of
different solutions. As such, research under development by different groups can be compared
over the same conditions.

2. Collecting data for a dataset requires a significant amount of effort and time. Making a dataset
publicly available is a means of supporting researchers globally and accelerating results.

3. The development of new NILM techniques requires a thorough understanding of the problem
domain. A comprehensive NILM dataset provides support for such an understanding.

4. As new NILM techniques and algorithms evolve, performance must be compared incrementally.
A dataset provides a framework for consistent comparisons as well as for debugging.

5. NILM datasets can be used for training, i.e., to feed event identification and load classification
methods to build an initial signature database that is key to many NILM techniques.

To support our ongoing research on a NILM solution [3] a dataset with particular requirements
was needed. Since the available NILM datasets did not match these requirements, we decided to
pursue the development of a new dataset [4], named after our laboratory, by using an engineering
development process starting with requirements elicitation. During this development, a testing jig was
constructed to allow recording in a framework where up to eight loads could be individually controlled
(turned on or off) and register their waveforms (samples of voltage and current) in a controlled load
shaping scenario, named Synthetic load shaping subset. Power detection devices were also built and
connected to each load, in a residential or research lab environment, to provide precise event records
in a scenario of recording in a real (thus, not-controlled) environment (this subset was named Natural
load shaping). To these two subsets, a third one was added, consisting of Simulated loads. In this case,
scenarios that are hard to obtain in the real world, such as short circuits, can be included.

The taxonomy of NILM datasets may be organized by (1) sample frequency with low-frequency
being up to 1 Hz and high-frequency when above that [5]; (2) the event-aware datasets being those that
register the occurrence of each load event, while the event-free datasets do not; and (3) the presence
(or not) of ground-truth information, either by indicating which loads caused each event or by
registering the individual consumption of each load over time. The LIT-Dataset samples voltage
and aggregated current at 15 kHz (256 samples per 60 Hz-mains cycle); records single and multiple
concurrent loads and registers each load event to provide ground truth.

The organization of the following sections is as follows: Section 2 describes the publicly available
datasets; Section 3 lists the requirements for the proposed dataset; Section 4 describes the three subsets
that compose the LIT-Dataset: synthetic load shaping, simulated loads, and natural load shaping;
Section 5 presents and analyses the results obtained, and Section 6 presents the conclusions to the work
presented here.
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Previous Research Contributions

The LIT-Dataset has been developed under an ongoing research project, funded by COPEL and
ANEEL. Previous publications and patent requests, resulting from this research project, are listed
in Table 1.

Table 1. Related publications from the same research project.

Ref. Year Pub. Description

– 2017 INPI Patent application for NILM system
[6] 2018 PEAC Initial proposal of HCApP and

multi-agent architecture
[7] 2018 EECS Initial Prony-based method proposal.
[8] 2018 EECS Improved Multi-agent architecture.
[9] 2018 SBESC Synthetic subset proposal.
[10] 2019 ISAP Simulated subset proposal.
[11] 2019 ISAP Prony-based proposal and comparisons.
[12] 2019 ISGT-LA Steady-state and

transient V-I features proposal.
[13] 2019 SBESC Natural dataset proposal.
[3] 2020 Energies (MDPI) Validated multi-agent architecture.

Three of the publications listed in Table 1 concern the LIT-Dataset, presenting preliminary results.
In [9], the dataset proposal, jig’s design, and initial results for the Synthetic Subset were presented,
emphasizing the control mechanism for load switching and the acquisition circuit with its respective
instrumentation. In [10], subsequently, the initial results with Simulated Subset were discussed,
demonstrating the validation of load models and the automation procedure for generating waveforms.
Finally, in [13], the architecture for a Natural Subset was presented, with a focus on the low-cost
proposal of a time synchronization mechanism among nodes.

The other publications [3,6–8,11,12] detail the power signature analysis methods proposed in
the same research project, using the LIT-Dataset and other recent datasets presented in the literature.
Particularly in [3], a multi-agent architecture was presented and validated for event detection, feature
extraction, and load classification, using different publicly available datasets. Some of the results were
only possible due to the original features of the proposed LIT-Dataset. For instance, agents trained in a
single load scenario and tested in another scenario with multiple concurrent loads were only possible
because the LIT-Dataset includes such waveforms with single loads and different load combinations.
A sample-level comparison for event detection was also only feasible due to the accurate labeling of
the LIT-Dataset. This precise annotation of occurrence of each event is also primordial to allow the
extraction of transient features from waveforms during the training stage, and, consequently, make
use of the different feature extraction agents proposed in that work.

2. Related Work

The subject of the NILM dataset can be placed in the broader area of energy-related datasets
and the associated means of data sensing and recording. Concerning data acquisition technologies,
according to [14], there are five technologies classes employed to gather data and associated
modeling methodologies: (1) energy consumption quantification, based on electricity meters;
(2) indoor environmental measurements, based on ambient sensors, e.g., temperature, humidity,
CO2 concentration, among others; (3) occupant behavior statistics that are estimated using cameras,
Passive InfraRed (PIR) sensing, and similar sensors; (4) status sensors, including doors and windows
status readers; (5) others, combining different elements, as Radio Frequency IDentification (RFID) or
Ultra Wide Band (UWB) sensors.

Concerning NILM datasets and NILM systems, electrical energy data is usually collected directly
by low-cost voltage and current sensors. In [15], voltage AC sensors, Hall-effect based current sensors,

231



Energies 2020, 13, 5371

and analog-to-digital converters were employed for load monitoring purposes. With respect to the
communications infrastructure, [15] employed Ethernet, while [16] used a 433 MHz wireless sensor
network gathering AC voltages and currents from individual devices.

A taxonomy for datasets of power consumption in buildings is presented in [17]. On a first
level, datasets are classified as Appliance Level versus Aggregated Level. An Appliance Level dataset
contains individualized information of energy consumption of every appliance, while an Aggregated
Level dataset contains aggregated power consumption data of a whole residence or building. On a
second level, seven application purposes are listed: energy savings, appliance recognition, occupancy
detection, preference detection, energy disaggregation, demand prediction, and anomaly detection.
A survey with 32 datasets is presented, comparing their characteristics and application purposes.

In the following sections, NILM datasets described in the literature are presented in two classes:
(1) low-frequency datasets (sampling frequency up to 1 Hz); (2) high-frequency datasets.

2.1. Low-Frequency Datasets

The following low-frequency datasets were analyzed and compared: Smart [18], HES [19],
Tracebase [20], DataPort [21], AMPds [22], iAWE [23], GREEND [24], REFIT [25], and RAE [26].

The relevance of these datasets is due to the characteristics of the installed measuring devices.
However, many of the possible strategies for feature extraction, that can be used for NILM classification,
are restricted due to low sampling frequency.

A comparison between some characteristics of the different types of low-frequency NILM
datasets can be seen in Table 2. Where fs represents the sampling frequency; DCD stands for Data
Collection Duration; NoC corresponds to Number of Appliance Classes; NoA represents the Number
of Appliances; and Res., Lab., Com. and Ind. are short forms for: Residential, Laboratory, Commercial
and Industrial installations, respectively. Since the sampling occurs at very low rates (once a minute to
once a second) the recordings can take place for very long times (weeks to years).

Table 2. Comparison between low-frequency Non-Intrusive Load Monitoring (NILM) datasets.

Dataset Date Environment fs DCD NoC NoA

Smart 2012 Res. 1 Hz 3 Months 25 25
HES 2012 Res. 8.33 mHz 1 year/1 Month ∼20 251

Tracebase 2014 Res. 1 Hz 1 day 43 158
Dataport 2013 Res. + Com. + Ind. 16.67 mHz–1 Hz 4 years ∼70 >1200

iAWE 2013 Res. 1 Hz 73 days 33 -
GREEND 2014 Res. 1 Hz 3–6 months - -
AMPds 2015 Res. 16.67 mHz 2 years 19 -
REFIT 2017 Res. 125 mHz 2 years 9 20
RAE 2018 Res. 1 Hz 72 days 24 -

2.2. High-Frequency Datasets

The following high-frequency datasets were analyzed and compared (Table 3): REDD (Reference
Energy Disaggregation dataset), BLUED (Building-Level fUlly-labeled dataset for Electricity
Disaggregation), PLAID (Plug Load Appliance Identification Dataset), HFED (High-Frequency
Energy Data), UK-DALE (United Kingdom recording Domestic Appliance-Level Electricity),
COOLL (Controlled On/Off Loads Library), SusDataED (Sustainable Data for Energy Disaggregation),
WHITED (Worldwide Household and Industry Transient Energy Dataset), BLOND (Building-Level
Office enviroNment Dataset), and SynD (Synthetic energy Dataset).

REDD [27] is a residential dataset intended for research on disaggregation methods.
REDD contains measurements from 6 different houses obtained over several months. The house input
AC mains voltage and aggregated current are monitored at a sample rate of 15 kHz. Furthermore,
the voltages and currents at individual circuits are monitored at a sample rate of 0.5 Hz, and plug-level
monitors at a sample rate of 1 Hz. Similar to several of the datasets analyzed here, REDD provides
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ground truth data by presenting energy samples of individual appliances (monitored at plug-level)
and of subsets (monitored at circuit level) of the total load.

Similarly, BLUED [28] is a dataset obtained from a single-family residence. This dataset registers
the AC mains voltage and aggregated current. The sampling rate is 12 kHz, and the measurements
were performed for 1 week. Every state transition of the 43 appliances is labeled and time-stamped,
providing ground truth for event detection algorithms.

PLAID [29] is a public and crowd-sourced dataset consisting of one-second voltage and current
waveforms for different residential appliances. The goal of this dataset is to provide a public library
for high-frequency (30 kHz) measurements that can be integrated into existing or novel appliance
identification algorithms. PLAID currently contains measurements for more than 200 different
appliances, grouped into 11 appliance classes, and totaling over a thousand records.

UK-DALE [16] is a publicly available dataset comprising records from 5 different houses.
It contains AC mains voltage and aggregated current, as well as voltage and current of individual
loads, hence, providing ground-truth for testing disaggregation and training algorithms. The sampling
rate is 16 kHz for the house input, while the individual sensors are sampled every 6 s. There are more
than 4 years of data in this dataset and it is continuously updated.

HFED [30] is a high-frequency Electromagnetic Interference (EMI) dataset comprising
high-frequency measurements of EMI, emanated from electronic appliances, propagated through
the power infrastructure, and measured at a single point. HFED includes 24 appliances connected over
four different test setups (in lab settings and one test setup in home settings). EMI measurements are
taken over a frequency range of 10 kHz to 5 MHz.

COOLL [31] is a publicly available home appliance dataset containing 42 appliances grouped
into 12 classes. The AC mains voltage and current are monitored for each appliance at a sample rate
of 100 kHz for 6 s, which includes turn-ON and turn-OFF transients. For each appliance, there are
20 measurements on different power-on angles of the mains cycle. Each appliance is measured
individually; hence, there is no aggregated current data registered in the dataset.

SusDataED [32] is an extended version of the dataset SusData [33]. This dataset is composed of
measurements taken from a single-family residence in Portugal. Samples of 17 distinct appliances
were taken at a sampling rate of 12.8 kHz for ten days.

WHITED [34] is a dataset of appliance measurements from several locations (households and
small industries) around the world. The voltage and current waveforms are recorded with the first
5 s of the appliance start-ups for 110 different appliances, amounting to 47 different appliance types.
This dataset aims to provide a broad spectrum of different appliance types in different regions around
the world.

BLOND [15] is a dataset with waveforms collected at a typical office building in Germany. It is a
fully-labeled ground truth dataset, with 53 appliances distributed in 16 classes of devices, sampled at
50 kHz during 213 days.

SynD [35] is a synthetic dataset composed of residential loads. This dataset is the result of a
180 days custom simulation of a residential environment that relies on power traces of real household
appliances. SynD is composed of measurements taken from 21 appliances in Austria, with a sampling
rate of 5 Hz, during 180 days.

Table 3 shows a comparison between these high-frequency NILM datasets. It includes information
on the environment (if data was collected in a Residential, Commercial, or Industrial environment);
the Duration of the period of Data Collection (DCD); if the dataset includes scenarios of Multiple
Simultaneous Loads (MSL); the sampling frequency ( fs); if Ground Truth is recorded, either as the
recordings of current/power of individual loads or as recordings of events (at a given Load Event
Resolution—LER); the Number of Appliance Classes (NoC); and the Number of Appliances (NoA).

233



Energies 2020, 13, 5371

Table 3. Comparison between high-frequency NILM Datasets.

Dataset Date Nature DCD MSL fs
Ground Truth

NoC NoA
Resolution (LER)

REDD 2011 Res. 119 days yes 15 kHz 3 s 8 24(10 houses)

BLUED 2012 Res. 8 days yes 12 kHz 640 ms 9 43(1 house)

PLAID 2014 Res. 1094 waveforms no 30 kHz >1 cycle 12 235(of 1 s each)

HFED 2015 Res. + lab. - yes 10 kHz–5 MHz - - 24

UK-DALE 2015 Res. 655 days yes 16 kHz 6 s 16 54

COOLL 2016 Res. 840 waveforms no 100 kHz 20 ms 12 42(of 6 s each)

SustDataED 2016 Res. 10 days yes 12.8 kHz 2 s - 17

WHIETED 2016 Res. + Ind. 5123 waveforms no 44.1 kHz - 47 110(of 5 s each)

BLOND 2018 Res. 50–213 days yes 50–250 kHz - 16 53

SynD 2020 Res. 180 days yes 5 Hz 0.2 s - 21

2.3. Evaluation of Datasets

The analysis of the datasets, both high-frequency and low-frequency, presented above indicates
that: (1) the majority of NILM datasets contains data collected in a residential environment;
(2) the majority of high-frequency datasets register 200 or more samples per mains cycle, a notable
exception being SynD whose sampling frequency is 5 Hz; (3) the majority of the datasets register
multiple simultaneous loads. Concerning the unique characteristics of each dataset it can be observed
that: (1) the‘highest sampling frequency is used by COOLL (100 kHz); (2) while most low-frequency
datasets do not provide ground-truth information, the high-frequency datasets provide ground truth
by recording at a much lower rate (typically bellow 1 Hz) samples for individual loads.

2.4. Tools for NILM Datasets

The NILM Toolkit (NILMTK) [36] is an open-source toolkit designed to allow the comparison
between NILM algorithms. It provides a Python API that operates on input and output binary files,
therefore facilitating compatibility with data from NILM datasets. The input files used by NILMTK
must be converted to the NILMTK-DF (data format), which is a data structure inspired on the dataset
REDD comprising disaggregated power data (i.e., separate sample sets for each of the loads in a
dataset) as well as metadata annotations about the sample set.

3. The Design of a Novel Dataset

Since none of the evaluated datasets had all the required characteristics for our research project,
a new dataset development took place, with the first activity being requirements elicitation.

The LIT-Dataset is composed of three subsets: Synthetic, Simulated, and Natural. The Synthetic
subset is obtained by a programmable power sequencing to a given set of loads in a controllable
laboratory setup, so that repeatable scenarios can be obtained. In the Simulated subset, data is collected
by simulating a circuit operation, allowing to test different scenarios and to control parameters that
otherwise would not be possible or would be unsafe. The Natural subset is composed of voltage and
current samples collected in a real-world uncontrolled environment; furthermore, apart from recording
the aggregated current and the AC mains voltage, power sensors monitoring each load identify and
record when each load event occurs.
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Concerning the taxonomy presented in [17], the LIT-Dataset is an Aggregated Level dataset
whose main application is Energy Disaggregation but is also applicable to energy saving, appliance
recognition, and anomaly detection.

One of the requirements of the LIT-Dataset is that it includes multiple loads, as a NILM system
must identify the loads that compose an aggregated current signal. Another requirement is that it
must include precise indications of every load event (load on and load off), with a resolution better
than one mains cycle, and have a high sample rate.

The Stakeholder requirements of the LIT-Dataset are based on the needs of the authors’ NILM
project, as well as on the requirements common to other NILM datasets. The LIT-Dataset Stakeholder
requirements are listed below, as well as the rationale for each requirement:

DSReq 1. Data collection from loads connected to a single-phase 127 V, 60 Hz mains (the Brazilian
power grid standard).
R: Due to power grid availability in our lab. Considering that 127 V, 60 Hz, is a standard
used in many countries around the world, such a requirement does not restrict the usage of
the LIT-Dataset elsewhere.

DSReq 2. Comprised of residential, commercial, and low-voltage industrial loads.
R: A NILM dataset should include a variety of loads related to these environments so that
NILM systems can be evaluated and compared to distinct scenarios.

DSReq 3. Include loads of five types: LT1 to LT5, defined below.
R: A NILM dataset should include a variety of loads types so that NILM systems can be
evaluated and compared over the range of loads available in the real-world.

DSReq 4. Waveform recordings of voltage and aggregated current of multiple simultaneous loads.
R: The purpose of a NILM system is to disaggregate the individual loads from an aggregated
signal (current/power/. . . ); hence, a NILM dataset should provide data of aggregated
acquisitions representing actual scenarios where NILM is used.

DSReq 5. Accurate indication of load events (accuracy better than 5 ms).
R: A high-frequency NILM dataset can be used by NILM algorithms that evaluate the
waveform of the current in each mains cycle to determine accurately the occurrence of load
events. Ground-truth indications of such events with an accuracy better than one mains
semicycle provide information to validate such algorithms. 5 ms is a typical switching time
for relays used to energize the loads of a dataset.
Remark: concerning this requirement, accuracy is the measure of the error between the
instant were the actual load event occurred, and when the event is reported (labeled).

DSReq 6. The minimum sampling rate is 15,360 Hz, corresponding to 256 samples along one
mains cycle.
R: In high-frequency datasets, there is a trade-off between sampling frequency and storage
requirements. Based on the analysis of datasets with sampling frequencies up to 100 kHz,
the spectral densities of frequencies above 5 kHz in the aggregated signal, and the waveforms
reconstructed from samples at 256 samples per cycle, this sampling rate was determined as
an adequate trade-off selection.

DSReq 7. Recordings over a mix of loads so that low-power load-events (<5 W) occur while high
power (>800 W) are energized.
R: Switching a low-power load when high-power loads are energized poses a challenging
scenario for NILM systems; hence, the LIT-Dataset should include such scenarios for
evaluation of these systems.

For the Synthetic subset:

DSReqSy 1. Synthetic load shaping of up to eight concurrent loads.
R: As a NILM system must disaggregate loads, a dataset should have aggregated
data collected from loads energized concurrently. As there is a trade-off between
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cost/complexity of the data collecting infra-structure and the number of concurrent
loads, eight loads were selected as an adequate trade-off.

DSReqSy 2. The duration of each recording must be longer than 10 seconds and must include at least
one power-ON and one power-OFF event.
R: By examining the data from other datasets, 10 s was determined as a sufficient
duration so that the stable periods occur between transient periods due to power-ON
and power-OFF.

For the Simulated subset:

DSReqSim 1. Recording at multiple power levels for each type of simulated load.
R: To explore the flexibility due to simulation allowing multiple loads to be employed by
just changing the component values.

DSReqSim 2. Different scenarios of the AC Mains must include wiring stray inductance, as well as
harmonics and white noise added to the mains voltage.
R: To simulate multiple actual environments considering wiring stray inductance,
harmonics, and noise.

For the LIT Natural subset:

DSReqN 1. Minimum monitoring time for naturally shaped loads (for each monitoring file): 1 day.
R: Considering the daily seasonality typically present in the load shaping of the Natural
subset, a day-long acquisition records such seasonality.

The taxonomy presented by Hart [37], from the perspective of power switching, was extended,
resulting in these types of loads:

LT 1. On/Off. Such as a resistive load.
LT 2. State-Machine based. Such as electronic equipment (e.g., printer).
LT 3. Asymmetric. A load whose positive and negative semi-cycles are distinct, such as a drill in

which the lower velocity employs a half-wave rectifier.
LT 4. Continuously variable. Such as a motor with speed control.
LT 5. Random. Loads in which the power consumption varies randomly.

As per requirement DSReq 3, all these types of loads are required in the LIT-Dataset.
In [38], the authors present 17 suggestions to dataset providers to improve dataset interoperability

and comparability. Since these suggestions were published after the LIT-Dataset requirements were
specified, we present in Table 4, the coverage of the LIT-Dataset requirements with respect to the
presented suggestions.

Table 4. Coverage of Klemenjak’s [38] suggestions.

Sugg. Cov. Comment Sugg. Cov. Comment

1 Yes Contains raw samples of V and I 10 Yes Individualized labeling

2 Yes Microscopic data is collected 11 No Not in our requirements

3 Yes Can calculate power from samples 12 Yes Metadata and scripts made available

4 Yes Sampled at 15,360 Hz 13 No Not in our requirements

5 Yes Data was validated 14 Yes Documented data formats

6 Yes Transducers accuracy checked 15 Yes University’s cloud

7 Yes Some long term recording is planned
where applicable 16 Yes Publicly available

8 Yes Individualized labeling 17 N.A.

9 Partial Photos on web site
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4. Proposed Dataset

In this section, the three subsets that compose the LIT-Dataset are presented.

4.1. Synthetic Subset

The Synthetic subset is named in relation to its load shaping being defined by a controller that
switches the loads ON or OFF in a programmed pattern. To collect data for the synthetic subset,
a single-phase 1 kW jig was designed and built according to the requirements of Section 3.

4.1.1. Data Collecting Jig Hardware Design

The Jig block diagram is presented in Figure 1. The protection block consists of an emergency
stop button, a circuit breaker, and a fast fuse. The current sensors, for the operator’s protection sake,
are connected in the neutral line, while the loads are switched in the phase line. Two current sensors,
shunt, and hall, are used to compare the hall performance to the shunt, in loads with high derivatives
of current as well as asymmetrical loads. To sense the AC mains voltage, a resistor divider is used.
An oscilloscope provides a performance benchmark for the current and voltage sensors.

Figure 1. Block diagram of data collecting jig. adapted from [9].

The control module senses the AC mains zero crossing; therefore, a precise timing is achieved in
every power ON or OFF event. The load power control is provided by a relay in parallel to a TRIAC,
each with its independent driver module. The TRIAC provides precise power switching at a giving
point of the AC mains cycle while the relay operates as a conventional switch. As the relay presents a
delay between the relay driver signal and the actual opening/closing of the relay contacts, a power
sensor provides a precise indication of when a load is actually powered. It is possible to trigger a load
only with the relay or the TRIAC, as well as with both simultaneously. Triggering only the TRIAC
makes it possible to obtain a dimmer effect on the load(s).
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The signal conditioning module has low pass filters and differential amplifiers so that the sensors’
signals are adequate to the embedded module analog to digital converter. The embedded module
uses a National Instruments MyRio [39] board with the following functionalities: A/D conversion,
load event registering obtained by the trigger signal sent by the control module, and dataset storage in
a non-volatile storage device (such as a USB flash disk).

Figure 2 shows the synthetic LIT-Dataset Jig. An aluminum structure and an acrylic panel
were used to support the jig’s components. The wiring is inside PVC ducts. On the left are the
power connection, auxiliary power supplies, and the sockets for the jig’s equipment power supplies.
The protection board is on the left side. The eight sockets for the monitored loads are on the top right,
and below are the relays and TRIACs, and the control and driver boards. In the center of the board
are the voltage and current sensors. On the bottom right are the conditioning boards and the MyRio
Embedded Module.

Figure 2. Data collecting jig.

4.1.2. Data Collecting Jig Software Architecture

The embedded module block diagram is presented in Figure 3. The signal conditioning board
delivers the conditioned signals from the voltage and current sensors to the MyRio module. The MyRio
FPGA implements an acquisition loop that operates at 15,360 Hz, as per DSReq 6 s. On every cycle
of this loop, a set of three 12-bit samples is obtained, corresponding to the A/D conversions. A GPS
receiver sends a Pulse Per Second (PPS) signal, which is grouped in a data tuple with the sample
signals, indicating precise 1 s periods, typically less than 100 ns jitter. An 8-bit ID and an event
notification signal are also grouped in this data tuple to indicate the samples when the control module
commands a load event.
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The real-time application runs into the CORTEX A9 processor, composed of three NI LabView
timed loops, which act as independent periodic threads. The tuple is sent by the FPGA to the real-time
application via DMA. An external GPS receiver sends the NMEA strings to the GPS Parsing Timed
Loop. The absolute time fields are decoded from a specific NMEA message (GPRMC) and converted
to a 32-bit time-stamp value. The Sample Processing Timed Loop uses this 32-bit time-stamp, together
with the event information contained in the tuple received from the FPGA, to store the time-stamped
events into the event annotation file. This loop also shifts each 12-bit sample of the tuple one bit to
the left and adds the PPS signal as its least significant bit, thus, allowing a precise identification of
the samples during which the 1 s transitions occurred. The resulting 13-bit sample data is sent to
the Storage Timed Loop via an internal FIFO, which stores the data for each of the sample inputs as
a separate field of a NI Technical Data Management Streaming (TDMS) file into the USB flash disk
attached to the MyRIO. The TDMS file may be processed by a PC application, to add its collected data
to the LIT-Dataset.

Hall Current Sensor (-10V to + 10V)

Shunt Current Sensor (-10V to + 10V)

Voltage Sensor (0 to + 5V)

NMEA 
serial 
port

PPS signal

Control Module

Event trigger

Event ID

Figure 3. Block diagram of data acquisition using the MyRio device. Adapted from [9].

4.1.3. Collected Data

For the synthetic subset, 26 different load configurations, divided into 16 load classes (Table 5),
were used, as well as their combinations (2, 3, and 8 loads). “Load configurations” means that one
load may have more than one power level and/or that more than one equipment of the same class
was used (e.g., two appliances of class LED lamp).

Linear and non-linear loads, ranging in power from 4 W up to 1.5 kW. The loads are powered on
at different angles of the mains cycle, as per Table 6. Different turn-on trigger angles affect the loads
inrush current, resulting in distinct waveform acquired at each angle. Each acquisition is commanded
by the control board and consists of 16 voltage/current waveforms at the specified angles. The number
of individual and multiple-loads acquisitions are presented in Table 7, in a total of 104 acquisitions,
corresponding to 1664 waveforms. The number of acquisitions for multiple loads were limited by the
jig’s maximum power (1 kW).
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Table 5. Characteristics of the synthetic subset of the LIT-dataset.

Class Class Description Power
(W)

Num. of
Appliances

Num. of Load
Configurations

Num. of Waveforms
in LIT-SYN-1

1 Microwave Oven (standby and on) 4.5/950 1 2 32

2 Hairdryer (two fan speed levels) 365/500 2 4 64600/885

3 Hairdryer (two power levels) 660/1120 1 2 32

4 LED Lamp 6 2 2 32

5 Incandescent Lamp 100 1 1 16

6 CRT Monitor 10 1 1 16

7 LED Monitor 26 1 1 16

8 Fume Extractor 23 1 1 16

9 Phone Charger 38 2 2 3250

10 Laptop Charger 70 2 2 3290

11 Drill (two speed levels) 165/350 1 2 32

12 Resistor 80 1 1 16

13 Fan 80 1 1 16

14 Oil Heater (two power levels) 520/750 1 2 32

15 Soldering Station 40 1 1 16

16 Air Heater 1500 1 1 16

Total 20 26 416

Table 6. Turn-on trigger angles.

ID Trigger Angle (◦) ID Trigger Angle (◦)

0 0 8 180
1 22.5 9 202.5
2 45 10 225
3 67.5 11 247.5
4 90 12 270
5 112.5 13 292.5
6 135 14 315
7 157.5 15 337.5

Table 7. Loads combination.

Loads Combined (Sets of 16 Waveforms) Acquisitions

Single 26
2 42
3 30
8 6

The sequence of events (ON and OFF) for the single and multiple loads are presented in Figure 4.
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Figure 4. Data collecting jig: single, two, three, and eight loads ON and OFF events.

4.1.4. Accuracy of the Jig

The jig’s hardware initially went through a calibration process, and then its accuracy was
evaluated based on a comparison with laboratory-grade measurement equipment.

The calibration process consisted of collecting data from resistive loads that were measured with
an HP bench multimeter with a 5-digit-resolution and a precision better than 0.1 %. Since the voltage
and current waveforms are bipolar (positive and negative values) but the 12-bit measurements of the
A/D converters from the MyRio are unipolar (0 to 4095), an offset value corresponding to inputs at
zero must be determined; as well as the gain factor to convert a binary value produced by the ADC to
a voltage or current value (in Volts or Amperes). This calibration process is performed before every
acquisition on the Jig, and the calibration values (Ki, Kv, ZeroOffsetI, ZeroOffsetV) are reported in the
file config_processed available in every acquisition folder of the LIT-Dataset.

The determination of the jig’s accuracy was performed by connecting an oscilloscope (Agilent
Infiniium 54830D) and a current probe (Tektronix A6302) during the acquisitions. A total of
28 acquisitions with different loads were performed while data were simultaneously acquired by
the Jig and by the scope. Data from both sources were stored as spreadsheets and imported into
MATLAB for comparison. Over the 28 acquired voltage and current waveforms, the maximum error
was 3.2 % with a mean value of 2.1 %. This value of accuracy was considered as acceptable for a NILM
dataset. Most datasets do not provide an accuracy evaluation for comparison.

4.2. Simulated Subset

The simulated subset consists of data collected from twenty-eight different simulated loads
grouped into seven kinds of electrical models, each one containing up to four power variations.
The loads, waveform generation, and simulated subset settings are detailed as follows.

4.2.1. Loads

In this subset of LIT-Dataset, the electrical circuits are: (a) resistor; (b) resistor and inductor;
(c) diode rectifier with a resistor; (d) diode full-wave bridge rectifier with resistor and capacitor;
(e) thyristor rectifier with resistor; (f) thyristor rectifier with resistor and inductor; and (g) universal
motor. The load templates were chosen according to the load profile of electrical appliances commonly
found in consumer units [40], such as drill (universal motor), mobile phone charger (different types of
rectifiers), fan (universal motor), hairdryer (universal motor), LED lamp (different types of rectifiers),
incandescent lamp (resistor), router (different types of rectifiers), and vacuum cleaner (simplified by
resistor and inductor).

The diagram of the simulated subset is shown in Figure 5, in which each block represents
a different load. The switching control of each load is automated, and the trigger time can be
previously adjusted.
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Figure 5. General diagram of the simulated subset.

To implement each set of loads with different electrical power from circuits (a)–(f), the Power
Eletronics Library from Matlab/Simulink was used, as shown in Figure 6: (a) resistor, (b) resistor
and inductor, (c) diode rectifier with resistor, (d) diode bridge with resistor and capacitor, (e) thyristor
rectifier with resistor, (f) thyristor rectifier with resistor and inductor.

ANGLE 
CONTROL

ANGLE 
CONTROL

R
R

RL

RC

R
R

L

DIODE

THYRISTOR THYRISTOR

(a) (b) (c)

(d)

(e) (f)

Figure 6. Diagrams of simulated loads, being (a) resistor, (b) resistor and inductor, (c) diode rectifier
with resistor, (d) diode bridge with resistor and capacitor, (e) thyristor rectifier with resistor, (f) thyristor
rectifier with resistor and inductor.

For the implementation of the universal motor (g), a mathematical model based on [41] was
used. Figure 7 shows the diagram that represents this model, in which the following parameters
are included: rated power, rated terminal voltage, rated speed, armature winding inductance (Laq),
series field winding inductance (Lse), rated frequency of supply voltage, armature winding resistance
(Ra), series field winding resistance (Rse), rotor inertia (J), speed at which magnetization curve data
was taken (ωmo). To connect the math model with other circuits, the generated signal was connected
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to a current source generator and sent to other blocks, i.e., electrical—mathematical interface in
MATLAB-Simulink.

1/s

x

_
+_

x
+
+

Mechanical
Torque

1/s

Trigger

Current 
Measurement

R

Current
Injection

Out+ Out-

Rse+Ra

1/(Laq+Lse)

1/wmo
1/J

Magnetization
Curve

Figure 7. MATLAB-Simulink block diagram of Universal Motor Model.

4.2.2. Waveform Generation

To automate the waveform generation, an automatic parameter variation method was
implemented. With that method, it is possible to vary: up to seven different load combinations
for each waveform; up to four different values of the electrical components for each circuit; the total
time of the simulation; the load combination; and the trigger time of the circuits, with three different
options of switching (turn-ON and turn-OFF) angles: 0, 45, and 90 degrees. The four parameters
variations, resulting in four different rated power levels for each set of loads, are detailed in Table 8,
where: (a) resistor; (b) resistor and inductor; (c) diode rectifier with a resistor; (d) diode full-wave
bridge rectifier with resistor and capacitor; (e) thyristor rectifier with resistor; (f) thyristor rectifier with
resistor and inductor; (g) universal motor.

Table 8. Load parameters.

(a) R1 = 2.5 Ω (e) R1 = 10 Ω
R2 = 5 Ω R2 = 12 Ω
R3 = 8 Ω R3 = 15 Ω
R4 = 10 Ω R4 = 20 Ω

(b) R1 = 10 Ω (f) R1 = 10 Ω
R2 = 20 Ω R2 = 5 Ω
R3 = 30 Ω R3 = 30 Ω
R4 = 30 Ω R4 = 105 Ω

L1 = 10 mH L1 = 1 mH
L2 = 10 mH L2 = 1 mH
L3 = 10 mH L3 = 1 mH

L4 = 100 mH L4 = 1 mH

(c) R1 = 5 Ω (g) w1 = 1500 rev/min
R2 = 10 Ω w2 = 1200 rev/min
R3 = 20 Ω w3 = 1000 rev/min
R4 = 50 Ω w4 = 800 rev/min

(d) R1 = 2 kΩ C1 = 100 μ

R2 = 1 kΩ C2 = 100 μ

R3 = 500 Ω C3 = 200 μ

R4 = 300 Ω C4 = 330 μ

4.2.3. Configuration of Simulation Scenarios

To create different simulation scenarios, six configuration settings can be used, as follows:
ideal (DB-1); with stray inductance, representing the equivalent of the electrical network (DB-2);
with stray inductance and harmonics (DB-3); and with stray inductance, harmonics, and additive
white gaussian noise (AWGN), with 60 dB, 30 dB, and 10 dB of SNR (DB-4, DB-5, and DB-6), as shown
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in Table 9. Each of the six configurations are applied to all the loads, resulting in 4824 waveforms,
being 804 for each configuration. Therefore, it is possible to evaluate the impact of harmonics and
noise (with different intensities) and to compare to an ideal scenario, to the performance of detection,
feature extraction, and classification methods. This type of analysis can support the proposal of more
robust and applicable methods in different NILM scenarios.

Table 9. Simulated subset settings.

Settings Parameters

Setting (DB-1) ideal

Setting (DB-2) stray inductance

Setting (DB-3) stray inductance
and harmonics

Setting (DB-4)
stray inductance
harmonics and

AWGN with SRN 60 dB

Setting (DB-5)
stray inductance
harmonics and

AWGN with SRN 30 dB

Setting (DB-6)
stray inductance
harmonics and

AWGN with SRN 10 dB

The first scenario (DB-1), was an ideal setting, without stray inductance and harmonic content
in the voltage waveform. The second one (DB-2), include stray inductance. The characteristics of
the electrical network in our laboratory were used to select the values of the inductor and resistor,
resulting in L = 1 μH and R = 2 mΩ. The third scenario (DB-3), includes stray inductance and a voltage
source with harmonics, based on the voltage acquisition in our laboratory. The last three include a
voltage source with harmonics, stray inductance, and different levels of AWGN.

4.3. Natural Subset

The Natural subset of the LIT-Dataset consists of recording where a natural load shaping occurs,
in the sense that waveforms are registered in a real-world environment (residential, research lab,
commercial, industrial) over longer periods of time. To precisely detect and record the load events,
sensors that detect power-ON, power-OFF, and power-level-changes are attached to each load,
therefore, while the aggregated current and voltage are recorded, so are the individual load events.

4.3.1. Natural Subset—Data Collection Architecture and Implementation

Accurate time synchronization is an important requirement in this scenario, in which
time-stamped data should be provided by distributed nodes and then correlated with a limited jitter
among them. Concerning specifically the development of the Natural subset of the LIT-Dataset,
an infrastructure composed of a centralized acquisition device and a large number (50+ units)
of networked wireless sensors is required. These nodes are attached to each load to detect load
events, such as ON-OFF transient, change of state and power variations, and send the event data to the
centralized acquisition element so that they can be later consolidated and correlated with the acquired
voltage and current data.

This infrastructure, from this point on referred to as Natural Subset Acquisition System (NSAS),
depends on time synchronization with accuracy and precision of at least 1 ms, to facilitate the
correlation between the events obtained by the distributed event detection modules and the voltage
and current samples obtained by the centralized acquisition element. Additionally, considering the
large number of modules to be installed and their distributed characteristic, they are required to be
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built with low-cost components. In this sense, even though there are several techniques and protocols
that address the precise time synchronization issue, most of them rely on specialized hardware and/or
software solutions, thus incurring a relatively high cost to deploy the synchronization network [42,43].

An overview of the architecture used to collect a dataset of traces with natural load shaping is
presented in Figure 8. It is important to notice that the voltage and current traces for the aggregate of
the loads are collected at a single point, namely at the sensors next to the fuse box. The distributed
nodes only detect power events (ON, OFF, and power changes) and record the occurrence of such
events locally. It is this recording that requires a millisecond timing accuracy, achieved through the
synchronization mechanism implemented by the NSAS.

Figure 8. Overview of the architecture for collecting a natural load shaping subset.

The principle of operation of this low-cost synchronization network is to have a time base master,
with a GPS based real-time clock, to periodically broadcast a two-byte synchronization packet to all
nodes in the synchronization network.

To avoid delays imposed by complex packet-based protocols, an approach that implements the
synchronization task right before the PHY is used. This is performed using a low-cost, byte-based RF
433 MHz transmitter-receiver pair [44], similar to the one used in [45] for an application with similar
requirements. The typical reception delay for this solution is about 300 μs, which meets NSAS timing
requirements of 1 ms.

Furthermore, the main contribution of this proposed architecture is its low cost (about one dollar
for the receiver), in a way that its impact on the cost of the whole NSAS is minimized. The block
diagram of the Natural Subset Acquisition System is presented in Figure 9.

The Synchronization Master and Acquisition Node (SMAN), on the top of the block diagram,
is implemented by using a National Instruments MyRIO module [39] attached to a GPS module and
the 433 MHz RF transmitter [44]. The MyRIO module is connected to the other NSAS modules via
a WLAN and is programmed, via LabView, to perform the SMAN main tasks. The RF transmitter
receives a digital timing synchronization signal as input and broadcasts it in the 433 MHz band at a rate
of up to 2400 bps. The EDNs (Event Detection Nodes) consist of ESP32 Heltec WiFi modules, as well as
433 MHz RF receivers. The ESP32 Heltec kit is a low-cost development board, which is programmable
using the Arduino IDE and corresponding libraries to perform the EDN tasks. It connects to the other
NSAS modules via a WiFi-based WLAN. The RF receivers are responsible for receiving the signal
that is broadcast by the RF transmitter of the SMAN. Each EDN is physically connected to a Power
circuit connection element (interrupter, outlet, etc.), so it can perform the sampling of current to detect
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variations that indicate a load switch event (ON, OFF, or other state change such as changing from
standby to active mode).

Figure 9. Block diagram of the Natural Subset Acquisition System (NSAS).

The SMAN is responsible for acquiring the voltage and current samples at a frequency of 15,384 Hz,
which is slightly above the minimum 15,360 Hz frequency specified for the LIT-Dataset due to the
MyRio-timer configuration options. The SMAN is also responsible for collecting and storing the event
data sent by the EDNs via the WLAN. The GPS module provides the SMAN with an absolute time
reference on every second employing the PPS (pulse per second) signal, whose typical jitter is of
hundreds of nanoseconds. This time reference is used to ensure that the millisecond data used by the
SMAN to synchronize the EDNs is synchronized to an absolute reference, regardless of potential clock
drifts presented by the SMAN itself (typically 10 ppm).

Upon detection of an event on a load connected to a monitored power circuit connection
element, the corresponding EDN sends the event data to the SMAN via the WLAN and waits for
the event acknowledgment. If the acknowledgment times out, the event is sent again. The EDNs
also communicate with the SMAN by means of “abs time req” messages, which are sent during
EDN initialization. The SMAN responds with an “abs time resp” message containing the absolute
time and date, with a resolution of one second, obtained from the GPS receiver. This transaction is
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responsible for performing a relatively coarse synchronization (i.e., with an accuracy of one second)
between the SMAN and the EDNs. The synchronization between EDNs and SMAN is improved
to millisecond-accuracy upon reception of an RF message, broadcast by the SMAN, which consists
of a 16-bit synchronization code. The SMAN sends the code at a rate of 1000 bps (i.e., one bit per
millisecond) on every second boundary (1 Hz). Hence, upon completion of the reception and validation
of the code, every EDN shall (re)adjust the millisecond’s field of its current time to 16, corresponding
to the 16 ms that have passed from the latest second boundary to the end of reception of the last bit of
the synchronization code.

As the typical clock drift for the EDN hardware is 10 ppm, a drift of 0.5 ms would occur every
50 s; therefore the resynchronization rate of 1 Hz is, theoretically, widely sufficient to ensure that the
EDNs remain synchronized with the SMAN even if 98% (49 of 50) of the RF synch messages are lost.
Additionally, the typical jitter of the RF link (300 μs) is small enough not to introduce indeterminism
on the millisecond value to be adjusted into the EDNs.

However, it is observed that some EDNs present much higher drift rates than the typical case;
in some cases, more than 1000 ppm have been observed under operating conditions, which would
compromise the millisecond precision required by the system. Therefore, it is necessary to implement
an extra strategy to prevent desynchronization between the several EDNs and the SMAN that compose
the NSAS.

The drift correction strategy consists of the algorithm shown in Figure 10a. Initially, the timer
tick is set to 1000 μs (1 ms), which is the default period for time-stamp updates. Upon reception of
a synch word (i.e., on every second), the EDN compares the millisecond on which the synch word
has been effectively received with the millisecond on which it should have been completely received
(16, because of the 16-bit synch word sent at 1000 bps starting from 0 ms at the SMAN) (line 6).
The more positive the difference between the former and the latter, the more this EDN´s specific tick is
being advanced in relation to the nominal tick frequency (1 kHz) because of its clock drift; the same
happens when the difference is negative, meaning that the clock drift is causing the EDN tick to be
delayed. Next, the EDN timer period is proportionally adjusted (lines 9 and 10), so the next ticks can
compensate the clock drift by an increase (or decrease) of the programmed tick frequency.

(a) (b)

Figure 10. Algorithms used in Event Detection Nodes (EDNs). (a) Drift correction algorithm.
(b) Spurious synch management algorithm.

Another algorithm, shown in Figure 10b, is implemented to take into account possible spurious
synchronization words that can be received due to noise at the RF link. This is a real concern,
as the 433 MHz radios used for the NSAS are very susceptible to such noise, and the implemented
synchronization algorithm, which is supposed to be simple and deterministic, does not make use of
any software checking mechanisms to improve data reception reliability.

The spurious sync management algorithm analyzes the calculated drift obtained from the
algorithm of Figure 10a. If this is the first synchronization, the calculated drift is probably correct,
as there is no previous synchronization between the SMAN and this EDN. If this is not the first
synchronization, and the absolute calculated drift value is greater than a specified limit of 5,
corresponding to 5000 ppm. Since 5000 ppm is significantly larger than the typical 10 ppm drift,
or even the 1000 ppm drift occasionally detected, a spurious sync word has likely been received on a
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random time, leading to a drift miscalculation; in this case, the EDN ignores the spurious sync unless
it has already been received more than three times in sequence (as tested in line 6). If that happens,
the first received sync was probably spurious, and thus, the new sync is assumed to be the correct one.

4.3.2. Natural Subset—Collected Data

For the natural subset, 14 different load configurations, divided into 11 load classes (Table 10),
were used, as well as their combinations. The 3-load combination has 30 s of duration and 6 events.
The 7-load combinations have 2 h of duration and 20 events or more. The load configurations mean
either that one load has more than one state or that more than one device of the same class was used.

Table 10. Characteristics of the natural subset of the LIT-dataset.

Class Class Description Power
(W)

Num. of
Appliances

Num. of Load
Configurations

Num. of Waveforms
in LIT-NAT

1 Aquarium Digital Thermostat 380 1 1 4
2 Aquarium Light Fish Lamp 1 100 1 1 4
3 Aquarium Light Fish Lamp 2 170 1 1 4
4 Hot-air hand tool 1400 1 1 4
5 LED Lamp 25 1 1 2
6 Incandescent Lamp 100 1 1 2
7 Oil Heater 600/900 1 2 4
8 Fan 140 1 1 2
9 Laptop Charger 140 1 1 2
10 Drill 160/680 2 2 4
11 Hairdryer (two power levels) 150/300 1 2 4

Total 12 14 36

4.4. LIT-Dataset Integration to NILMTK

As NILMTK uses an internal data format (NILMTK-DF), a data format conversion function must
be implemented such as those already available for REDD, Smart, and UK-Dale [36]. Such a function
was implemented for the LIT-Dataset; hence, its waveforms can be processed in NILMTK. Figure 11a,b
presents one of the LIT-Dataset waveforms, an incandescent light bulb that is also presented in
Section 5.

(a) (b)

Figure 11. A LIT-Dataset waveform of an incandescent lamp presented in NILMTK. (a) Complete
waveform. (b) Image zoomed into power-ON event.

5. Results and Analysis

The results of data collection for each subset and the corresponding analysis are detailed
as follows.
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5.1. Synthetic Subset

The original aspects of the Synthetic subset include multiple concurrent loads of distinct classes,
with precise turn-ON and turn-OFF control and annotations of these events with an accuracy better
than 5 ms. These annotations (labels) can later be used to validate event detection, transient feature
extraction, and load classification methods.

The synthetic subset is composed of 1664 acquisition for single, double, threefold, and eight-fold
concurrent loads. For every load or load combinations, acquisitions are made for 16 distinct turn-on
trigger angles.

In Figure 12a, the acquisition of an incandescent lamp with a turn-on trigger angle of 90 degrees
is shown, while Figure 12b,c present a detailed (zoomed-in) view of the turn-ON and turn-OFF events,
respectively. The high inrush current is due to the variation of the filament resistance of the lamp,
as its temperature rises. The inrush current is also dependent on the turn-on trigger angle. This unique
transient response may be beneficial to the detection as well as the classification methods. In these
figures, the up-arrow indicates a turn-ON event while the down-arrow indicates a turn-OFF event.

(a)

(b) (c)

Figure 12. Jig acquisition of a single load: incandescent lamp—trigger angle of 90 degrees. (a) Complete
acquisition—AC mains voltage and current. (b) Turn-ON event. (c) Turn-OFF event.

A single load acquisition of a laptop power supply is presented in Figure 13a, for a turn-on
trigger angle of 45 degrees. A detail of the turn-ON and turn-OFF events are presented in Figure 13b,c.
Typically a power supply first stage consists of a diode rectifier followed by a capacitor. The inrush
current depends on the capacitance and the turn-on trigger angle and is very high compared to the
steady-state peak current. This transient response is very rich in detecting an event and classify
the load. The steady-state low power may be challenging to detect and classification steady-state
based methods.
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(a)

(b) (c)

Figure 13. Jig acquisition of a single load: laptop power supply—trigger angle of 45 degrees.
(a) Complete acquisition—AC mains voltage and current. (b) Turn-ON event. (c) Turn-OFF event.

An example of a double load acquisition is presented in Figure 14. An oil heater (520 W)
is turned-on (trigger angle of 135 degrees), and then a LED lamp (6 W) is turned on, also at trigger
angle of 135 degrees. Later, the heater is turned off, and finally, the lamp is turned off. This is an
interesting combination of linear and non-linear loads of significantly different power levels. Details
of the turn-ON and turn-OFF events are presented in Figure 15a–d. As the oil heater has a higher
power, the turn-ON event of the LED lamp may be challenging to detect, as Figure 15b shows, likewise,
the turn-OFF event of the LED lamp, as shows Figure 15d.

Figure 14. Jig acquisition of two loads: oil heater and LED lamp—trigger angle of 135 degrees.
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(a) (b)

(c) (d)

Figure 15. Jig acquisition of two loads: oil heater and LED lamp—trigger angle of 135 degrees.
(a) Turn-ON event section A: heater turned on. (b) Turn-ON event section B: LED lamp turned on.
(c) Turn-OFF event section C: heater turned off. (d) Turn-OFF event section D: LED lamp turned off.

A three loads combination composed of a hairdryer, a LED lamp, and a drill is presented in
Figure 16, with a turn-on trigger angle of 225 degrees. The hairdryer, at the low power level setting,
has a half-wave diode rectifier, hence, an asymmetrical load. The drill high inrush current may also
be observed.

Figure 16. Jig acquisition of three loads: hairdryer at low power level, LED lamp, and drill—trigger
angle of 225 degrees. AC mains voltage and current.

Finally, Figure 17 shows an example of eight loads combination: a LED lamp, a laptop power
supply, a microwave, a cell phone charger, a soldering station, an incandescent lamp, an oil heater,
and a smoke extractor with turn-on events triggered at 270 degrees. The combination of eight loads
with different power levels, linear and non-linear characteristics, is important to evaluate detection
and classification methods.
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Figure 17. Jig acquisition of eight loads: LED lamp, laptop power supply, microwave, cell phone
charger, soldering station, incandescent lamp, oil heater, smoke extractor—trigger angle of 270 degrees.
AC mains voltage and current.

5.2. Simulated Subset

The circuits with (a) resistor; (b) resistor and inductor: (c) diode rectifier with resistor; (d) diode
full-wave bridge rectifier with resistor and capacitor; (e) thyristor rectifier with resistor; and (f) thyristor
rectifier with resistor and inductor were evaluated with a test bench. The load current and mains
voltage were acquired using voltage and current probes and an oscilloscope, with the simulated loads
configured as presented in Table 11.

Table 11. Parameters of real components in the test bench.

Circuit Values

(a) R = 50 Ω
(b) R = 100 Ω L = 1 H
(c) R = 100
(d) R = 300 Ω C = 600 μF
(e) R = 100
(f) R = 100 Ω L = 1 H

In addition to the voltage and current measurements using the test bench, the amplitude and phase
of each harmonic of the waveform of the voltage of the power network was measured. These values,
presented in Table 12, were included in the voltage source block in the simulator and used in all
simulations that included harmonic contents (configurations DB-3 to DB-6 in Table 9). The amplitude
is presented with respect to the fundamental component: 60 Hz and peak voltage of 179 V).

The parameters presented in Tables 11 and 12 were used in the simulation framework developed
in Matlab/Simulink. Then, the measured and the simulated waveforms were compared, as exemplified
in Figure 18.

One way to validate the simulation is by comparing the waveform’s electrical parameters, such as
transient and steady-state current and voltage peaks, power factor (PF), and mean squared error
(MSE) of the samples of the measured and simulated waveforms, as suggested in [46]. Therefore,
Tables 13 and 14 present such comparisons for the simulations proposed in this work. The results
presented in these tables validate the presented simulation approach for circuits (a) to (f).
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Table 12. Measurement of voltage and phase of harmonics in the power network.

Harm. Amplitude (%) Phase (Radians)

3◦ 2.0 0.3
5◦ 3.0 0.4
7◦ 1.0 3.1
9◦ 1.0 −2.5

11◦ 0.1 −1.0
13◦ 0.3 −1.9
15◦ 0.4 1.3
17◦ 0.1 −0.2
19◦ 0.1 2.2
21◦ 0.1 −1.4
23◦ 0.1 1.5
25◦ 0.1 1.0
27◦ 0.1 3.0
29◦ 0.1 2.6
31◦ 0.1 −1.6
33◦ 0.1 0.7
35◦ 0.1 0.3
37◦ 0.1 1.5
39◦ 0.1 1.6

Figure 18. Measured and simulated current of the full-wave bridge rectifier load. Adapted from [10].

Table 13. Validation parameters (absolute current and voltage peak differences).

Circuit
Absolute Voltage Absolute Current

Peak Difference (V) Peak Difference (A)

Load (a) 0.1 0.001
Load (b)—Transient 1.5 0.01

Load (b)—Steady-State 1.5 0.004
Load (c) 1.9 0.01

Load (d)—Transient 0.8 0.1
Load (d)—Steady-State 0.8 0.05

Load (e) 4.9 0.001
Load (f) 2.5 0.01
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Table 14. Validation parameters (power factor (PF) and mean squared error (MSE)).

PF
Sim

MSE
Current

Real Voltage

(a) 1 1 2.46 × 10−4 1.80 × 10−4

(b) 0.34 0.32 4.26 × 10−4 0.0042
(c) 1 0.999 3.35 × 10−4 1.01 × 10−4

(d) 0.848 0.887 1.49 × 10−4 0.0074
(e) 0.54 0.4756 3.64 × 10−4 0.0041
(f) 0.18 0.16 0.0025 0.0041

Finally, the validation of the last circuit (g), the universal motor, was performed using an electric
drill of 750 Wpeak as a reference, with two-speed selection. The procedure was conducted in two stages.
Firstly, the current and voltage signals of the electric drill were acquired in different scenarios,
i.e., switching angle and load conditions. Then, the acquired signals were used to obtain the field and
rotor resistances and inductances of the model presented in Figure 6. The final obtained values used in
this model were:

• Rated power = 325 W;
• Rated terminal voltage = 120 Vrms;
• Rated speed = 2800 rev/min;
• Armature winding inductance, Laq = 10 mH;
• Series field winding inductance, Lse = 26 mH;
• Rated frequency of supply voltage = 60 Hz;
• Armature winding resistance, Ra = 0.6 Ω;
• Series field winding resistance, Rse = 0.1 Ω;
• Rotor inertia, J = 0.0015 kg · m2;
• Speed at which mag. curve data was taken ωmo = 2 πω/60, with w = 1500 rev/min.

Secondly, with these parameters, the comparison of the real and simulated current of a universal
motor is presented in Figure 19. As can be observed, the waveforms present similar values in transient
and steady-state. The MSE between these waveforms is 0.03 A2.

Figure 19. Comparison of the measured and simulated waveforms of a drill. Adapted from [10].
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Concerning the generation of the waveforms that compose the Simulated subset, Figure 20
presents an example of the current waveform generated in the proposed subset (DB-5), in a double
load scenario where the first load is a resistor and inductor circuit (section A, Figure 21a and section C,
Figure 21c) and the second load is the universal motor (section B, Figure 21b and section D, Figure 21d).

Figure 20. Simulated subset complete acquisition: RL and universal motor. AC mains voltage and current.

(a) Section A: RL turned ON. (b) Section B: universal motor turned ON.

(c) Section C: RL turned OFF. (d) Section D: universal motor turned OFF.

Figure 21. Sections (a–d): RL and universal motor.
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The sampling frequency for the Simulated subset is also 15,360 Hz and switching instants (ON or
OFF) are precisely controlled at the sample level. For each switching-event, the load is also properly
labeled, allowing the correct use of supervised classifiers and transient feature extraction methods.

The simulator’s functionality allows for the generation of single-load waveforms as well as the
combination of two, three, four, five, six, and seven loads. Such combinations can be accomplished
using a MATLAB script that automates the waveform generation, using pre-defined trigger instants and
types of loads that are selected in each simulation (The MATLAB-Simulink template to generate this
dataset is made publicly available at https://github.com/hellenancelmo/Simulated-LIT-dataset).
Hence, this subset can be extended to other types of residential, commercial, and low-voltage
industrial loads.

5.3. Natural Subset

To illustrate the validation of the data collection system of the Natural subset (NSAS—Figure 9)
a 3-load combination recording is presented. In this case, the EDNs are identified by a code transmitted
in the data package to the Synchronization Master and Acquisition Node (SMAN). Table 15 presents
the three loads used, the number of the respective EDN, and the corresponding identification code for
power-ON and power-OFF events.

Table 15. Natural subset Devices (Acquisition Example).

EDN Load ON Code Id OFF Code Id

8 Incandescent Lamp 35 32
2 LED Lamp 11 08
5 Drill 23 20

The following sequence of load switching occurred: (i) turn-ON incandescent lamp; (ii) turn-OFF
incandescent lamp; (iii) turn-ON LED lamp; (iv) turn-OFF LED lamp; (v) turn-ON drill; (vi) turn-OFF
drill, generating the voltage and current curves represented in Figure 22a.

Table 16 presents all six events. The actual instant of the power-ON/power-OFF events can
be obtained by analyzing the waveforms, as represented in Figure 22b, where the turn-ON Event 1
at sample 194,266 is shown. These values are presented in column “Event observed in waveform
(in samples)” and represent the ground truth. The EDN data packet contains the time stamp and event
code in the format YYYY : MM : DD : HH : MM : SS, sample_number_a f ter_SS, Code_Id. From the
data packet, the reported time of the event (in samples) is obtained using the time-stamp of the first
sample in the waveform. The corresponding error, measured in the number of samples, corresponds
to the distance (in samples) between ground-truth and the detected event. The sampling frequency is
15,360 Hz; hence, each sample corresponds to 65.1 μs.

Table 16. Events representations file.

EDN Data
Packet

Event
Description

Event Reported by

EDN (in Samples)
Event Observed in

Waveform (in Samples)
Error

(in Samples)

2020:04:16:15:12:06, 1631, 35 turn-ON incandescent lamp 193,899 194,266 367
2020:04:16:15:12:14, 2892, 32 turn-OFF incandescent lamp 318,232 318,294 62
2020:04:16:15:12:19, 9815, 11 turn-ON LED lamp 402,075 402,425 350
2020:04:16:15:12:27, 2538, 08 turn-OFF LED lamp 517,870 518,092 222
2020:04:16:15:12:33, 1261 ,23 turn-ON drill 608,897 609,303 406
2020:04:16:15:12:40, 2892, 20 turn-OFF drill 718,216 718,564 348
Time-stamp of first sample 1,587,049,915
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(a) Complete acquisition—AC mains voltage and current.

(b) Event 1: Incandescent lamp turned ON.

Figure 22. Natural subset: incandescent lamp, LED lamp, and drill.

5.4. Analysis of the Results

In this section, the analysis of the three subsets is presented. Table 17 illustrates the high-frequency
datasets (initially presented in Section 2.2, Table 3), now including the three LIT-Dataset subsets.

From the results presented previously in this section and by the comparative analysis summarized
in Table 17, the distinct features of the LIT-Dataset are:

• It consists of three subsets, each one with multiple concurrent loads of distinct types, including
those found in residential, commercial, and low-voltage industrial environments.

• The Synthetic subset contains waveforms that were collected on a jig, with precise control of
turn-ON and turn-OFF of up to eight loads (thus, synthetic load shaping).

• The Simulated subset contains waveforms that were collected by simulation; hence, the simulated
circuits can be easily modified to match several distinct real-world scenarios.

• The Natural subset contains waveforms that were collected in a real-world environment; hence,
representing what a NILM system would actually monitor and analyze.

• Ground Truth, an essential requirement for the evaluation of NILM algorithms and techniques,
is achieved by labeling, at sample level, the load events, i.e., when each load has a change in power,
due to power-ON, power-OFF of power-level-change. For each load event, the corresponding
load and event type is recorded in the label.

• The resolution of the load event labeling is better than 5 ms; hence, identifying the mains
semi-cycle where the load event occurs.
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Table 17. Comparison of high-frequency NILM datasets.

Dataset Date Nature DCD MSL fs

Ground

NoC NoA
Truth

Resolution
(LER)

REDD 2011 Res. 119 days yes 15 kHz 3 s 8 24(10 houses)

BLUED 2012 Res. 7 days yes 12 kHz 640 ms 9 43(1 house)

PLAID 2014 Res.
1094

no 30 kHz >1 cycle 12 235waveforms
(of 1 s each)

HFED 2015 Res. + lab. - yes 10 kHz–5 MHz - - 24

UK-DALE 2015 Res. 655 days yes 16 kHz 6 s 16 54

COOLL 2016 Res.
840

no 100 kHz 20 ms 12 42waveforms
(of 6 s each)

SustDataED 2016 Res. 10 days yes 12.8 kHz 2 s - 17

WHIETED 2016 Res.+ Ind.
5123

no 44.1 kHz - 47 110waveforms
(of 5 s each)

BLOND. 2018 Res. 50–213 days yes 50–250 kHz - 16 53

SynD 2020 Res. 180 days yes 5 Hz 0.2 s - 22(21 households)

LIT 2020 Res. + Com.
1664

yes 15.36 kHz <5 ms 16 * 19 *SYNTHETIC + Ind.
waveforms

(30 s to
40 s each)

LIT 2020 Res. + Com.
4824

yes 15.36 kHz <65 μs 7 * 28 *SIMULATED + Ind.
waveforms

(dec. from 1 MHz)(2.5 s to
16 s each)

LIT 2020 Res. + Com. 2 h * yes 15.36 kHz <5 ms 11 * 12 *NATURAL + Ind.

(*)—The LIT-Dataset is still in the process of data collection, particularly for the Natural subset that is currently in
the early phases of data collection.

5.5. Considerations on the Design Process

The LIT-Dataset, composed of three subsets, is the result of a design process that started with
Requirements Engineering, including requirements harvesting of the Stakeholders Requirements,
identification of the source and derived requirements, data format design, development process of
the Enabling Systems (Jig, Simulator, and network of NSAS), validation of the enabling systems,
data collection, data validation, and publication of the dataset files and user support documentation.

Following such a well-defined design process was beneficial to keep the project on track and
according to established project planning. Even so, as with most engineering projects, some difficulties
presented themselves during the process. The most relevant and time-consuming were:

• Due to cost restrictions of each NSAS module, an ESP32 processor was selected that we had no
previous experience on. It turned out that the particular model selected had a design fault that
causes the interference of the WiFi and ADCs. Some extra effort on the project was required until
this problem was identified and solved (by disabling the WiFi and reconfiguration of the ADC
before every A/D conversion).

• The low-cost transmitter-receiver 433 MHz RF synchronization network resulted in a relatively
high packet loss rate. Again, an extra effort was required to identify the problem and design an
algorithm to cope with such high packet losses.
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• Certainly, the most unexpected difficulty was to finish the project, on-time, during the COVID-19
Pandemic. Significant changes in the work environment, basically moving all activities to home
office, required an unexpected amount of extra work.

As the initial planning included very little slack time to cope with such difficulties, the solution to
keep the original schedule of the project was to increase the weekly work effort of the participants.
The collection of data for the Natural subset is somewhat delayed. The aim is to continue data collection
for all subsets.

6. Conclusions

The LIT-Dataset was presented chronologically. Its rationale in supporting our own NILM
development as well as making it publicly available. Its conception; its requirements elicitation and
specification, based on an evaluation of available NILM datasets and the additional needs. Its design,
structuring the LIT-Dataset into three subsets, each exploring a different load-set context. The design
and implementation of the supporting systems for each of the subsets: jig, simulator, and NSAS.
Its evaluation and validation, based on the comparison of simulated loads to real-world loads as well
as its usage in NILM techniques. Finally, its publication (the LIT-Dataset is publicly available, upon free
registration, at http://dainf.ct.utfpr.edu.br/~douglas/LIT_Dataset), with detailed documentation and
usage scripts.

The three subsets consider the scenarios of (1) a set of up to eight loads that are controlled (on and
off switching) individually during the recording of aggregated current and load events; (2) a set of
simulated loads that are recorded under conditions that would be difficult in real-world situations,
either because they are uncommon or due to hazardous scenarios such as short-circuits; and (3) a set
of loads monitored during their daily use. The first subset is the named Synthetic load shaping, as the
“on” and “off” events are controlled, the second is named Simulated, and the third is named Natural
load shaping as there is no influence on the loads during the recording period.

Among the distinct features of the LIT-Dataset, as described in Section 5.4, is the labeling of the
load events at sample level resolution and with an accuracy better than 5 ms; the availability of such
precise timing information that also includes the identification of the load and of the sort of power
event is an essential requirement both for the evaluation of NILM algorithms and techniques, as well
as, for training of NILM systems, particularly those based on Machine Learning.

Our contribution is to make publicly available a new dataset whose combination of features
makes it unique. These features are: (1) the availability of load-event labels, with an accuracy better
than 5 ms, providing ground-truth information of the load events, (2) the availability of three subsets
(as described above), (3) recording scenarios with up to eight concurrent loads, (4) combination
of residential, commercial and low-voltage industrial loads, and (5) load shaping scenarios with
low-power loads being switched when high-power loads are energized.

To summarize the benefits of these contributions, concerning the availability of load-event
labels, the LIT-Dataset achieved the best accuracy among the datasets that were analyzed (Table 17).
This is an important characteristic for those using a dataset to validate event detection and load
classification algorithms. Having loads recorded individually and concurrently also provides the
required information for training as well as for evaluating the performance of NILM algorithms.
Furthermore, scenarios where low-power loads switching when higher-power loads are powered-on,
provides challenging test cases for these NILM algorithms.

The LIT-Dataset was presented here, from its conception to implementation, analysis of results,
and publication. However, data collection is in progress as new loads, and new scenarios are frequently
recorded and added to the dataset.
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Abstract: Electric vehicle (EV) charging stations have become prominent in electricity grids in the past
few years. Their increased penetration introduces both challenges and opportunities; they contribute
to increased load, but also offer flexibility potential, e.g., in deferring the load in time. To analyze
such scenarios, realistic EV data are required, which are hard to come by. Therefore, in this article
we define a synthetic data generator (SDG) for EV charging sessions based on a large real-world
dataset. Arrival times of EVs are modeled assuming that the inter-arrival times of EVs follow an
exponential distribution. Connection time for EVs is dependent on the arrival time of EV, and can be
described using a conditional probability distribution. This distribution is estimated using Gaussian
mixture models, and departure times can calculated by sampling connection times for EV arrivals
from this distribution. Our SDG is based on a novel method for the temporal modeling of EV sessions,
and jointly models the arrival and departure times of EVs for a large number of charging stations.
Our SDG was trained using real-world EV sessions, and used to generate synthetic samples of session
data, which were statistically indistinguishable from the real-world data. We provide both (i) source
code to train SDG models from new data, and (ii) trained models that reflect real-world datasets.

Keywords: smart grid; electric vehicle; synthetic data; exponential distribution; Poisson distribution;
Gaussian mixture models; mathematical modeling; machine learning; simulation

1. Introduction

The growth of electric vehicles (EVs) in the past decade has induced significant modifications
in city-wide electric grids. More than one million plug-in EVs were registered in Europe in 2018,
and multiple charging stations have been installed to facilitate this growth. This rise provides
opportunities to collect EV session data and use it to exploit flexibility, balance load and create
responsive grids. Companies can use the data generated from charging stations to understand
consumer behavior, provide incentives and make pricing decisions.

Session data collected from city-wide EV charging stations can be used for both academic
and industrial purposes: the increased inflow of data has huge impacts on the energy informatics
field [1]. Previous studies of different EV datasets include (i) statistical analyses of data collected in
the Netherlands by ElaadNL [2,3], (ii) analysis of energy consumption of EVs on data collected by
the US department of energy [4] and (iii) multiple studies on the socioeconomic effects of switching
to EVs in day to day use [5,6]. However, studies require reliable session data for understanding
behaviors and exploring flexibility. The scarcity of reliable data has been discussed previously [7],
and its necessity has been pointed out for further research purposes. Where data are available, they
may still be protected under confidentiality by private data collectors, and not freely available for
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academic or public use. The lack of availability and difficulty in accessibility of EV charging session
data poses a significant hurdle to further research in the field.

1.1. Related Work

EV session data contains the session duration and charging requirements of each EV. Previous
studies studying the flexibility provided in the power grid [8], and in individual sessions [9], offer
a statistical modeling methodology with which to understand EV sessions. Arrivals of EVs can be
considered as events on a time scale, where session duration and charging load are dependent on each
EV arrival event.

A probabilistic time series model using a generative adversarial network (GAN) has been used
previously to generate synthetic samples in [10]; they modeled energy consumption for users. However,
consumption can be represented as a continuous time series, which is not the case when we consider
EV arrivals as discrete events in time. Another method used to model data was implemented and
validated in [11]; they used a Markov chain model to generate load profiles only in individual
charging stations, based on a Swedish dataset. This does not satisfy the need to model EV arrivals
jointly for a set of charging stations. Statistical characterization of the session plug in times was also
explored: Flammini et al. [12] used beta mixture models to represent the multi-modal distributions.
They analyzed the distribution of arrival times during the day, but did not provide a synthetic
sample generation process that includes a temporal component. Statistical representation of EV
arrivals throughout the day using GMMs can also be used to randomly sample arrivals, e.g., in [3],
for which they took data for 221 EVs to create day long profiles. Other methods include using a
stochastic simulation methodology to generate a schedule of EVs for a population [13]. Aforementioned
works only implemented temporal modeling on continuous time series collected from smart grids,
which is not the case with arrival times of EVs. Arrival times of EVs are discrete events in time,
and hence difficult to model.

The departure time of EV is dependent on the arrival time, so the connection times become
conditional on arrivals. Departure time modeling has been explored exhaustively in [14], for both
uni-modal and multi-modal data distributions. The underlying assumption is that in the 24 h duration,
the probability of the event occurring is a time-varying function. A mixture of multiple distributions can
be used to estimate this function. For EV connection times, these conditional probability distributions
have been modeled using Abe–Lay mixtures [15], and a cylindrical WeiSSVM distribution [16].
Both Abe–Ley mixtures and the WeiSSVM distribution offer good alternatives for initializing the
number of mixtures and their properties. Beta mixture models have also been used; an estimation
method was suggested in [12] to estimate the departure profiles. However, generation and evaluation
of samples from these mixtures were not included. The dependency of connection times on arrival
times introduces a complexity that has not been addressed so far.

For predicting charging demand, a k-nearest neighbors algorithm was evaluated in [17], to predict
the charging requirements of EVs at individual charging stations. However, it did not include the
effect of EV session durations. Other methods including auto-regressive models [18] have also been
explored for smart grids datasets, which can be used to synthetically generate smart meter data.
A combination of arrival times, departure times and charging requirements of EVs have not been
studied, and modeling them together provides an opportunity to generate synthetic samples of EV
session data.

1.2. Contribution

In this paper, we present a state of the art model for generating samples of EV session data that will
generate synthetic samples of (i) arrival times, (ii) connection times and (iii) charging load, for each
EV. We describe this model as synthetic data generator (SDG), as defined in our previous work [19].
This includes temporal statistical modeling of arrivals and modeling of conditional distributions
for departures and the energy required for charging the EV. This differs from [3], in the sense that
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we generate data on each session level, whereas they have only studied charging matrices. Herein,
we also define and release trained parametric SDG models that can be used to generate session data,
which were not provided in [3]. In comparison to [11], wherein load profiles were modeled using a
spatial Markov chain model for five charging stations, our study includes temporal modeling of EV
sessions arrivals for the joint set of multiple charging stations, derived from a large-scale real-world
dataset comprising about 2000 charging stations. Along with this, we also include methods to jointly
model the arrival and departure times of EVs for a large number of charging stations. Compared
to [12], where the arrivals of EVs were characterized for weekends and weekdays, we propose a
modeling method that can be used for any set of days that have similar properties, and adopt different
statistical models. Our approach also gives us further insights into consumer behavior, by providing
us the rates of EV arrivals for different hours, days and months. These generated arrivals will be used
to generate the departures and required energy for each session. Our main contributions from this
paper include:

• A novel approach to generating synthetic data for EV sessions over a group of charging stations
defined as the SDG (Section 2).

• Training of the SDG using a real-world dataset. An analysis of statistical properties of real-world
data is also included (Sections 3 and 4).

• Generation of synthetic samples, and evaluation of similarity with the real-world data.
We compare results from different models that can be used in SDG (Sections 5–7).

• Trained models and code are provided in GitHub (https://github.com/mlahariya/EV-SDG).
Python was used for the models developed in this article (see Appendix A);

2. Modeling Methodology

We define the synthetic data generator (SDG) in this section. We define a parametric model (SDG)
that can be used to generate synthetic samples of EV session data, and its inputs. We assume that
each session can be described using three parameters: (i) arrival time (ta), (ii) connection time (tc)

and (iii) required energy (E). The departure time can be calculated using td = ta + tc. E represents
the charging load that an EV has requested (based on measured charging power throughout the full
session). Session parameters for date d can be generated using Equations (1)–(3).

ta = AM(d) (1)

tc = MMc(ta, d) (2)

E = MMe(ta, d) (3)

In what follows, we define (i) the arrival model (AM), (ii) the mixture model for connection times
(MMc) and (iii) the mixture model for required energy (MMe). Trained SDG models can be used to
generate a sample of data. Data generation is a two step process.

Step 1. Arrivals: We generate the arrival of EVs (ta) for all dates in the input horizon. This horizon is
the period of time for which the data needs to be generated, and can be defined using the first
date (starting date) and the last date (ending date) of this period.

Step 2. Connected time and energy required: Once we have the arrivals of EVs, we generate the
connected time (tc) and energy required (E) for that particular EV arrival.

AM, MMc, MMe is trained for a set of dates (S). Dates present in S will have similar daily properties
(e.g., arrival profiles), and we can define S by assuming a grouping criteria for days, e.g., we can
assume that each month will have similar arrival profiles, i.e., the grouping criteria for dates is months
m. For each month m, all dates of that month will be the elements of set S. Details about defining S in
practice, in particular for a real-world dataset, are included in Section 4.
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2.1. Arrival Models

Arrivals of EVs in a group of charging stations (poles) can be considered as events over time.
For a large number of poles, we can assume that the inter-arrival times (IATs,Δt) of EVs follow an
exponential distribution (which we validate in Section 4.2). Based on this assumption, one method to
model arrival times of EVs is to model the time in between arrivals (Δt). A second method is to model
the total number of EV arrivals in a time interval. Both these methods are defined below.

2.1.1. Inter-Arrival Time Models

To model inter-arrival times (Δt) we use the exponential distribution, which is characterized by a
rate parameter λ (rate of EV arrivals). Inter-arrival time (IAT) models are defined as follows:

ti = ti−1 + Δt (4)

PDF(Δt) = λi−1e−λi−1Δt (5)

λ = fS(t) (6)

where the ith EV arrives at time ti, PDF represents the probability distribution function and t is
time of day. The rate parameter λ is dependent on time, and fS defines the profile of λ with respect
to t for the type of days present in S. We can use different methods to fit fS: The mean model is
based on average values of λ for given timeslot ts. This results in a discontinuous mapping between
λ and t, with a sudden change in λ at the boundaries of each timeslot ts. To have continuous λ

throughout the day, we use regression-based methods: either a polynomial model using polynomial
regression, or a localized regression model. Training these models is explained in detail in Section 4.1.1.
In Algorithm 1, we outline the pseudocode to generate arrivals over a given horizon. We use the
date (d) to retrieve the appropriate fS, and predict λ. The IAT between the current and new arrival is
generated as a random sample from the exponential distribution with rate λ. Arrivals are generated
throughout the horizon for each date.

Algorithm 1: Inter-arrival time (IAT) model.
Input : H (Horizon, initial to final date)
Output : T (List of EV arrival times in H)
for d ∈ H do

fS = get arrival rate model for d;
t = 0;
while t < 24 do

λ = fS(t);
Δt = sample from exponential distribution with rate λ;
t = t + Δt;
append t to list T;

2.1.2. Arrival Count Models

Instead of generating the next arrival of EV, here we focus on generating the number of arrivals in
a given ts (timeslot, e.g., slots of 60 min). The number of arrivals N in ts can be generated as a random
sample from a discrete probability distribution Equation (7). This distribution can be characterized
using parameters P, and Equation (6) can be modified to Equation (8), wherein we model these
parameters. We distribute N arrivals uniformly over the duration of timeslot ts. Arrival count (AC)
models can be defined as follows:

PDF(N) = f (P) (7)
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P = fS(ts) (8)

We model the parameters P of the discrete distribution for each ts using the function fS.
Our underlying assumption that the IATs of EVs follow an exponential distribution amounts to
assuming a Poisson distribution for the number of arrivals N in such a timeslot. Yet, for the Poisson
distribution, the variance is equal to the mean of the distribution, while the number of arrivals may
have a larger variance. In such case we need to include other discrete probability distributions that
describe counts data [20]: we propose using the negative binomial model. In summary, we have two
options to model the arrival counts (AC):

(1) Poisson model: Assuming that N follows a Poisson distribution (characterized by rate parameter
λ; i.e., P is λ).

(2) Negative binomial model: Assuming that the N follows a negative binomial distribution (P
is (μ, α)).

Pseudocode for generation of arrivals of EVs using the Poisson model is given in Algorithm 2
(adaptation to the negative binomial model for sampling N is straightforward).

Algorithm 2: Arrival count (AC) model.
Input :H (Horizon, initial to final date)
Output : T (List of EV arrival times in H)
for d ∈ H do

fS = get arrival rate model for d;
for ts = 1, 2, . . . 24 do

λ = fS(ts);
N = sample from Poisson distribution with rate λ;
A = evenly space N points in ts;
append all t ∈ A to list T;

2.2. Mixture Models (MMc, MMe)

The connection time of each plugged-in EV depends on what time the EV arrived, i.e., its arrival
time. We can model the probability distribution, PDFta(tc) using gaussian mixture models (GMM),
where tc can be generated as a random sample from the probability distribution, Equation (9), once we
know the value of ta. We can group dates of a month (or daytype) into the same type of day, for which
we use the same model. These dates then form a set S (set of dates). Similarly to the connected times,
GMMs can be fitted for required energy (charging load).

MMc : PDFta ,S(tc) (9)

MMe : PDFta ,S(E) (10)

The steps for data generation using SDG are summarized in Figure 1b. We used a trained SDG
model and horizon as inputs. As seen in Figure 1a, we provided the methodology to train the models
from a raw dataset. In Section 3 we describe the data cleaning and prepossessing, and session clustering
steps. Then come the details of training and evaluation in Section 4.
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Figure 1. Modeling methodology for (a) training SDG models, and (b) generating synthetic samples.

In this section we define and outline the inputs of SDG, by defining AM for EV arrivals, and MMc

and MMe for connection times and required energy. Inputs are simply the dates d (and arrival times
ta in case of MMc and MMe). We also summarize the parameters of SDG) by characterizing models
using the parameters of the underlying probability distributions.

3. Dataset

The data used here were collected from ELaadNL (https://www.elaad.nl/), which is the
knowledge and innovation center mutually associated with providers of charging infrastructure for
the grid, to prepare for a future with electric mobility and sustainable charging. Operating since 2009,
it has established a network of approximately 2000 public charging stations across The Netherlands.
The EV session data collected by ELaadNL are not publicly available, and we obtained them based on
an agreement. Furthermore, ElaadNL was not involved in the study, and acted only as a data provider.
People interested in the dataset are encouraged to contact us. In this section, we provide the details of
the data cleaning and processing, and session clustering steps (Figure 1a).

3.1. SDG Training Data

The EV sessions’ time series data were prepared for training the SDG (the training process is
detailed in Section 4). These data contain: the date d, month m, type of day dt, arrival time tarr, arrival
timeslot ts, connection time tc and required energy E, as shown in Table 1.

Timeslots have values ranging from 1 to 24, where 1 indicates the timespan 00:00–00:59, 2 indicates
01:00–01:59, etc. Further, ta and tc are real numbers (∈ [0, 24)); e.g., 1.5 means 01:30 A.M. More than
98% of the sessions have tc under 24 h, so we safely assumed that the maximum connection time was
24 h (and removed data points with tc > 24). In the real world, we will have sessions where the EV
departs before it is fully charged. However, the collected data do not include the charging load that
was unmet before the EV departed. Lacking such information, we resorted to assuming the measured
charging load represents fully charging the EV. We represent this charging load, or energy required by
E in kWh.

Further, the training data were properly cleaned, which included removing impractical or incorrect
sessions parameters (where E < 0 or ta = td).
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Table 1. Processed session data. Each row corresponds to an EV session.

d m dt ta ts tc E
Date Month Day Type Arrival Time Arrival Time Slot Connection Time Required Energy

(h) (h) (kWh)

01/01/2015 1 0 0.15 1 4.3 3
. . . . . . . . . . . . . . . . . . . . .

3.2. Charging Stations Analysis

The full ELaadNL dataset contains 1.8 million sessions from January 2012 till June 2018.
The infrastructure consists of charging stations of 10 different types, divided by manufacturer type,
charging speed and other factors. In 2016 the EVnetNL (the infrastructure provider associated with
ELaadNL) stations were transformed to integrate smart charging capability. Hardware and software
of the charging stations (poles) were updated based on the station type. In 2017, more than 50% of
EVnetNL stations were taken over by other charging station operators. Due to those two factors,
we observed a sudden drop in the number of daily active charging stations in 2016 and 2017 (Figure 2).
The years prior to 2014 have a very steep growth curve in terms of active poles, while from 2016
onwards, the active poles become unpredictable because of market factors. As we wanted our model
to reflect charging behavior, and not be influenced by infrastructure changes, we selected the training
data from the reasonably stable year 2015. The data used for training our SDG were from January
to December 2015 of the ElaadNL dataset. This data contains 365,000 sessions. In 2015, the number
of used poles amounted to 1677, out of which 1645 poles were active before and after 2015. We used
the data from these 1645 poles for our analysis. Thus, we considered a constant number of poles to
construct our SDG model, and avoided the effects of a changing number of EV charging stations.

Figure 2. Number of used poles per day, from 2012 to 2018. Each boxplot represents data for 1 month.
The y-axis represents the number of daily active poles.
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3.3. Clustering

We used the expectation maximization (EM) algorithm for training the GMM used in MMc

(defined in Section 2.2). EM algorithm can be initialized with a realistic number of mixtures (along
with mean and variance for each mixture) for it to converge to a practical solution. To achieve this
practical solution, we initialized each GMM with session clusters. EV sessions were clustered based on
arrival and connection times, and here we outline the different types of sessions that are observed in
the real-world data.

Sessions clusters: In our previous work [2], on the same data, we discussed three types of
sessions. Namely, (i) Park to charge: arrivals throughout the day; (ii) Charge near home: arrivals
during evenings, and staying till late at night; (iii) Charge near work: arrivals during early morning,
and staying till evenings. The largest cluster was the park to charge cluster (60% of sessions), followed
by the charge near home (29% of sessions) and the charge near work clusters (11% of sessions).
The DBSCAN algorithm was used to determine these clusters, which is a density based clustering
algorithm. We could see a similar distribution of sessions in the 2015 dataset, after clustering the
sessions. The resulting session clusters are shown in Figure 3. These clusters are only based on 2015
data, contrary to the previous work, which combined the full data for 2012–2016. Please refer to [2] for
further details.

Figure 3. Session clusters for 2015. We used DBScan to cluster EV sessions on a monthly basis,
and combine the data for all months.
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4. Training Additionally, Evaluation

4.1. Training

We used the training data of 2015, as described in Section 3.1, for training and evaluating our
models. Aggregating EV sessions on a monthly basis reveals a higher number of sessions during the
winter months, compared to the summer months. In the case of daily EV sessions, it has been noticed
that all weekdays have similar profiles, which are different from weekends [12]. Thus, we could
assume that days belonging to the same month (m) and daytype (dt, weekday vs. weekend) have
similar profiles, and defined a set of dates (S) as pairs (m, dt) (e.g., for m = January and dt = weekday,
S will have all dates that are weekdays from January). Training data for the model for a (m, dt)

combination comprises the session data for dates present in the respective S. We trained 24 individual
models, one for each of the (m, dt) combination.

4.1.1. Arrival Model

Inter-arrival time models: For IAT models, we modeled the daily profiles of λ, which can be fitted
using (i) a mean model, (ii) a polynomial regression model or (iii) a localized regression model (outlined
in Section 2.1.1). We can rewrite Equation (6) in terms of (m, dt) as in Equation (11). We calculated the
EV arrival rates (λ) for each day and ts (24 timeslots of 60 min each), by fitting the inter-arrival time to
an exponential distribution.

λm,dt = fm,dt(t) (11)

For the mean model, the fitted value for each ts is the average λ (across all days). Accordingly,
each ts has a single value of λ. This results in a discontinuous mapping between λ and t, for which the
function in Equation (11) becomes discontinuous at the boundaries of ts and we see a sudden change
in λ.

For regression methods, we transform λ by taking the logarithm and applying min-max
normalization for each day. This transformation is necessary to correctly fit the peak hours, during
which inter-arrival times are very low (high λ). We take the logarithm in order to more accurately model
the values of λ during the night hours (00:00–06:00), which have few arrivals (low λ). Normalization is
used to scale the arrival rates of all days in S to the same levels. We represent this transformed λ using
λt, and we use s to represent the re-scaling parameter for predicted values. Equation (13) can be used
to get the fitted λ from the regression models fm,dt(t).

(λt)m,dt = fm,dt(t) , 0 < λt ≤ 1 (12)

λm,dt = es fm,dt (t) (13)

For the polynomial regression model we modeled the relationship in Equation (12) using a grid
search for the best polynomial degree (∈ {1, . . . , 50}). Mean squared error (MSE) was used as the error
metric during grid searching. It provides a strong penalty for large errors, which was necessary to fit
the sharp morning peaks during weekdays. This resulted in a continuous and differentiable function
of λ in terms of t.

For the localized regression model, polynomials of degree 1 and 2 with α ∈ {0.125, 0.25, 0.5} were
tested. We noticed that the best results sdfd generated for degree 1 and α = 0.125. This resulted in a
piecewise, continuous and differentiable profile of λ throughout the day.

Scale treatment and randomization: For regression based methods, for which we model λt,
we may encounter a situation wherein f (t) < 0. In this case, λ becomes very low, which can cause
the sampled inter-arrival time (Δt) of EVs to be very large. Since the next EV arrival is calculated
relative to the past arrival Equation (4), such high Δt may cause the next arrival to be very late, thereby
skipping a large period of time. This becomes problematic when this period covers times with high
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values of λ (hence a high number of EV arrivals, which however will not be generated). For practical
purposes, we impose a lower limit of 1 on λ (meaning we have at least 1 arrival in each ts).

When we transformed λ, we appiedy a min-max normalization on ln(λ) for each day (where the
minimum value of ln(λ) is 0, because λ ≥ 1). Each day in the training data has its own maximum
value of ln(λ). These values can be saved as an array of re-scaling parameters (represented by s in
Equation (13)). When generating session arrivals, we randomly selected a value from this array to
re-scale the predicted values. This helped in introducing variance in to the otherwise smooth profiles
of the predicted λ.

Arrival count models: We mapped each ts to the parameters P that characterize the discrete
distribution of the number of arrivals in that timeslot. Similarly to the IAT models, we have a model
for each (m, dt) combination. Our training data for each model are the numbers of EV arrivals at ts for
each of the days of the respective combination (m, dt).

fm,dt : ts → Pm,dt

{1, . . . , 24} → {Pm,dt ,1, . . . , Pm,dt ,24}
(14)

For the Poisson model, the average number of EV arrivals λ was calculated per ts. In the
Poisson distribution, the mean is equal to its variance, a restriction that is not present in the negative
binomial distribution.

In case of the negative binomial model (with parameters P = {μ, α}), μ is the average number
of EV arrivals per timeslot (=λ), and α is the dispersion parameter, which can be used to define the
variance of the distribution (var = μ + αμ2). A negative binomial distribution model thus allows one
to introduce more variability in the generated number of EV arrivals, compared to a Poisson model.
Both α and μ were fitted for each individual (m, dt) combination. It is possible that the estimated α for
an (m, dt) combination is extremely low, in which case the underlying distribution is more likely to be
Poisson. It is also possible that during night hours (low EV arrivals), the estimation process of α might
result in impractical values (less than 0). To adjust for this, we can use a Poisson distribution wherein
the estimated values of α are negative, or set a lower limit on α (e.g., α ≥ 0.1).

In IAT models, the time of the next EV arrival is the sum of the time of previous EV arrival and
randomly sampled Δt. As previously stated, this dependency becomes troublesome if Δt is very large
(due to the low λ, the next EV arrival may be very late, skipping a large time interval) or very low
(high λ, large number of EV arrivals in a small amount of time). Due to that, fitting λ as a function of t
requires caution in IAT models. However, we do not face this problem when using the AC modeling
approach, wherein the number of arrivals are generated separately for each ts. Indeed, a low/high
λ in the previous ts will not affect the number of arrivals in next ts. For practical uses, we can also
assume that night hours with low numbers of EV arrivals are similar, and combine ts = 1–6 into a
single timeslot. The fitted value of λ is then associated with the time from 00:00 to 06:00.

4.1.2. Mixture Models (MMc, MMe)

Similarly to the arrival models, we verified that days belonging to a (month, daytype) combination
have similar distributions in terms of departure times and charging loads, and thus fit models for each
(m, dt) combination. For each ts we fit a Gaussian mixture model to the real-world data, and modified
Equation (9) as follows.

Pta=ts ,m,dt(tc) = GMMm,dt ,ts

=

(
∑K

k=1 φkN (μk, σ2
k )

)
m,dt ,ts

(15)

This resulted in a GMM fitted for each (m, dt, ts) combination, with trained values for (i) mixing
probabilities (φk), (ii) mixture means (μk) and (iii) mixture variances (σ2

k ), for each mixture. We used
expectation minimization to fit the GMM.
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Expectation maximization for fitting GMM requires initialization of mixtures (μk, σ2
k ). The number

of mixtures also needs to be chosen for each model (representing a m, dt, ts combination). We initialized
each GMM based on session clusters (see Section 3.3). We grouped the sessions observed in m, dt, ts,
into their respective session clusters. We used the number of clusters obtained to initialize the K for
the GMM, and calculated the μk, σ2

k from the EV sessions in the respective groups.

4.2. Evaluation

Exponential distribution: We performed a Kolmogorov–Smirnov (KS) goodness-of-fit test to
validate the assumption that inter-arrival times of EV sessions follow the exponential distribution.

Arrival models: Once the AM was trained using the 2015 EV session data, a synthetic sample for
2015 could be generated. This sample was to generate EV arrivals from January 1, 2015 to December
31, 2015. We generate 10 samples for each modeling method (three IAT models and two AC models).
EV arrivals were aggregated on an hourly and daily basis. Since the aggregated values represent count
data, we used a non-parametric Wilcoxon test to assess similarity between the generated samples and
the actual data. We performed the test on a monthly basis for the daily aggregated data and on an
hourly basis for hourly aggregated data. We provide plots for visual comparison.

Mixture models: Connection times were sampled from the fitted GMMs, for the actual EV arrivals.
Density plots were created to evaluate whether the peaks of the conditional probability distributions
were modeled correctly. A similar evaluation was preformed for required energy.

SDG: Final generated data (and actual data) were 3-dimensional, with each session defined by
(ta, tc, E). The actual data comprised 350,000 sessions, and the numbers of sessions in the generated
samples were of the same order. Since two-sample similarity tests for high dimensional data become
unreliable as the data size increases, we used a kernel density estimation (KDE) test [21] and a
multidimensional version of the KS test [22,23]. We did those tests for (ta, tc) and (ta, E) combinations.

In this section we defined different methods for fitting the parameters of SDG. Depending on the
modeling method, the parameters of SDG will also change (λ in case of the exponential distribution,
and (μ , α) in case of the negative binomial distribution).

5. Results

5.1. Assumptions

KS test p-values are greater than 0.05 for each hour of the day, as plotted in Figure 4. This validates
that the inter-arrival times of EV sessions are exponentially distributed (Section 2.1), and thus supports
our chosen models AM of the arrival times.

5.2. Distribution of Arrival Rates λ

To understand how the SDG parameters change with inputs, we have plotted the profiles of λ for
weekend and weekdays for 2015 in Figure 5. We see a similar pattern for all months. Arrival models
were fitted to approximate this behavior of λ. On weekdays, we see two peaks in the profile of λ that
represent high frequencies of EV arrivals.
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Figure 4. KS test p-values: For each (m, dt) combination, 24 KS tests were performed for each timeslot
(ts). High p-values indicate that null hypotheses (IATs are exponentially distributed) could not
be rejected.

Figure 5. Daily λ profiles for 2015: For each (m, dt) combination, we calculated the average arrival
rate λ. The dotted line represents the average over those 12 months; the shaded areas indicate the
percentile range.
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5.3. Arrival Models (AM)

We generated 10 samples of arrivals of EVs for 2015 for both inter-arrival time (IAT) and arrival
count (AC) models. The total number of arrivals per day was calculated and plotted in Figure 6.
Similarly, Figure 7 shows the aggregated hourly EV arrivals. Both these plots are for weekdays,
and similar results were observed in case of weekends. We can clearly see that the generated data are
very similar to the actual data. We further quantitatively compared the values of the actual EV arrivals
with the generated EV arrivals using a Wilcoxon test. The null hypothesis was that the means of these
are equal. High p-values (> 0.05) indicate that the daily generated arrivals are statistically similar to
the actual data. This is represented by ns in the figure, implying that the difference between the two
samples is not significant. The results presented are for comparisons between one month of actual
data to 10 samples of the same month of generated data. We got similar results when we compare the
real-world data to a single sample.

Figure 6. Daily aggregated EV arrivals (2015, weekdays). Significance was calculated based on
Wilcoxon tests (ns: not significant, p-value > 0.05; * p-value ≤ 0.05; ** p-value ≤ 0.01; *** p-value ≤ 0.001;
**** p-value ≤ 0.0001).

Figure 7. Hourly aggregated EV arrivals (2015, weekdays). Significance was calculated based on
Wilcoxon tests (ns: not significant, p-value > 0.05; * p-value ≤ 0.05; ** p-value ≤ 0.01; *** p-value ≤ 0.001;
**** p-value ≤ 0.0001).
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5.4. Mixture Models (MMc, MMe)

Conditional distributions for connection times (hours) and energy required (kWh) are plotted
in Figures 8 and 9 respectively. The plots on the left were created from the real-world data, and those
on the right were created from the data generated from mixture models (MMc, MMe). These figures
are for weekdays, and similar plots were generated for weekends. Connection times (and energy
required) were generated using GMM and real-world EV arrivals. Vertical divisions in the generated
data for each times slot can be seen, because we use one GMM per {m, dt, ts} combination.

Figure 8. Density plots for connection times (2015, weekdays). Generated data represent sampled
connection times for real-world EV arrivals. Each point represents a bin (10 min by 10 min), and is
colored based on the number of EV sessions in the bin (bins with less than 5 arrivals were not plotted
to keep the graph readable).

Figure 9. Density plots for required energy (2015, weekdays). Generated data represent sampled
energy requirements for real-world EV arrivals. Each point represents a bin (10 min by 0.16 kWh),
and is colored based the number of EV sessions in the bin (bins with less than 5 arrivals were not
plotted to keep the graph readable).

5.5. Synthetic Data Generator (SDG)

We generated full session samples including generated arrival times, connection times and
required energy for all the models. These generated samples were compared with the real-world
session data for 2015. To compare the models’ synthetic samples with real-world data, 2-sample KDE

278



Energies 2020, 13, 4211

tests were performed. In Figure 10a, we show the KDE test for (ta, tc), and Figure 10b shows the
KDE test results on (ta, E). As we can see, the mean model for the IAT, and both models for AC have
average p-values > 0.05, indicating that the generated data are similar to the real-world EV session
data. We observed similar results in the multidimensional KS test. These results conclude that the
generated samples are statistically similar to real-world data.

Figure 10. KDE test p-values: Daily 2 sample 2 dimensional KDE tests to compare real-world and
generated data. Total of 365 tests performed for each model. p-value > 0.05 means datasets are similar.
(a) Results for (arrival times ta, connection times tc). (b) Results for (arrival times ta, energy required E).

6. Discussion

In this paper, we proposed a synthetic data generator (SDG) to create samples of realistic EV
session data. Each session is defined by arrival time, departure time and required energy. We described
two modeling methodologies to generate arrivals, assuming that inter-arrival times follow exponential
distribution. Different methods for modeling the daily profiles of the parameter λ were tested.
For connection times and required energy, mixture models were trained to estimate the probability
distributions. Our real-world dataset was used to train the SDG, and multiple samples of session data
were generated.

Inter-arrival times followed an exponential distribution, which was validated by KS test results.
Wilcoxon tests were used to compare daily and hourly EV arrivals from the generated samples and
real-world data (Figure 4).

Arrival count (AC) models performed better compared to inter-arrival time (IAT) models.
The negative binomial model from the AC models outperformed all the other models for generating
EV arrivals. Samples generated by the IAT model exhibited high variance, which was introduced
during the scale treatment and randomization step (Section 4.1.1). In the IAT models, we note that
regression methods failed to capture the morning peak in the hourly arrivals. This occurred because
the regression curves failed to capture the sharp increase in the number of arrivals. We indeed see
that the polynomial model (IAT:poly) and localized regression model (IAT:loess) generated very low
numbers of samples during morning peaks (ts = 7, 8). In contrast, the AC models were able to capture
both morning and evening peaks, as can be seen in Figure 7. The AC models also captured the variance
in number of arrivals throughout all ts. During night hours, we noticed a difference between the
generated and real-world data. However, for practical purposes, this difference can be neglected as the
average number of arrivals is very low. We can see that the negative binomial model performs best for
both daily and hourly generation. This makes it ideal for both short and long-term data generation.

In our mixture models, Gaussian mixture models (GMM) were able to properly capture peaks
of the conditional probability distributions. We clustered EV sessions based on arrival times and
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connection times, and each peak in the conditional probability distribution corresponds to one session
cluster. Two peaks in required energy distribution represent the morning and evening demand. For the
connection times, we can see that after generating the data, all three session cluster peaks were captured
(Figure 8). In case of required energy, both morning and evening peaks were captured (Figure 9). Since
we were able to capture the probability distributions of tc and E, GMM-based mixture models could
be used for fitting the conditional distributions.

In case of weekdays, during some spring and summer months we observed a very high variance
in the number of daily arrivals in actual data (in Figure 6). The reason is that there are multiple holidays
during May, July and August that have very low numbers of arrivals. In retrospect, we found that
many of these holidays (on weekdays) have arrival profiles similar to weekends. Due to that, arrival
models trained for weekdays are unable to capture this variance. Introducing holidays as another
daytype (dt) or modeling holidays as weekends should help to overcome this limitation.

We modeled the data under the assumption that the number of active charging stations would
remain constant during the time in which the EV session data are collected. Furthermore, the generated
sample is representative of EV sessions that might occur on this constant number of active charging
stations. Hence, the proposed methodology does not model the effect of changing the number of
charging stations, where future research is possible.

7. Conclusions

EV session data collected from charging stations on a electricity gird can be used for flexibility
analysis, making pricing decisions, etc., and are essential for advancement in the field of smart grids.

We defined a synthetic data generator (SDG) to generate samples of EV session data collected
on charging stations. We modeled arrival times of EVs using inter-arrival time (IAT) and arrival
counts (AC) methods. For generating the connection times and required energy, we used mixture
models based on GMM. The generated sample of session data is statistically indistinguishable from
the real-world data, as seen from the KDE test results. We can conclude that our proposed SDG is
suited for generating a synthetic sample of EV session data.

This generated data sample will have the properties of a real-world EV sessions, and can be
used for purposes such as flexibility analysis. We will release the trained SDG models that can
be used to generate new samples of EV session data. Complete code for training and evaluating
the SDG models is open source, and can be used to fit the models on a new EV session data (see
Appendix A). These models can be shared without violating the privacy concerns of the real data
collection companies.

For future work, further exploration is required in studying reduced variance in daily arrivals in
AC models. IAT models for arrival times misses the first peak of weekdays, wherein improvements are
possible. A deeper dive into the mixture models for estimating the conditional distribution of required
energy can also provide an improvement to results.
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Appendix A. Code

Code for training SDG models is open source, and can be accessed on GitHub: https://
github.com/mlahariya/EV-SDG. SDG models trained with a real-world dataset are also included
with the code. These can be used to generate a random sample of EV session data using script
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SDG_sample_generate.py. Trained models that can be used as default models to generate samples with
are located at modeling/default_models, and include:

• SDG Model (IAT,mean): IAT model based on mean model.
• SDG Model (IAT,poly): IAT model based on polynomial regression model.
• SDG Model (IAT,loess): IAT model based on localized regression model.
• SDG Model (AC,poisson_fit): AC model based on Poisson distribution.
• SDG Model (AC,neg_bio_reg): AC model based on negative binomial distribution.

Users can also employ our code to fit AM, MMc, and MMe to their own datasets. For training
a SDG model from scratch, this process will be followed: (i) Clean real-world EV session data
(preprocess). (ii) Generate session and pole clusters (preprocess). (iii) Prepare data for SDG training
(preprocess). (iv) Train AM, MMc and MMe models (modeling). (v) Save the model along with a log
file in the ‘res/’ folder. A command line callable script SDG_fit.py can be used to fit the models.

Please visit the repository for further details.
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Abstract: While smart meters can provide households with more autonomy regarding their energy
consumption, they can also be a significant intrusion into the household’s privacy. There is
abundant research implementing protection methods for different aspects (e.g., noise-adding and data
aggregation, data down-sampling); while the private data are protected as sensitive information is
hidden, some of the compulsory functions such as Time-of-use (TOU) billing or value-added services
are sacrificed. Moreover, some methods, such as rechargeable batteries and homomorphic encryption,
require an expensive energy storage system or central processor with high computation ability,
which is unrealistic for mass roll-out. In this paper, we propose a privacy-preserving smart metering
system which is a combination of existing data aggregation and data down-sampling mechanisms.
The system takes an angle based on the ethical concerns about privacy and it implements a hybrid
privacy-utility trade-off strategy, without sacrificing functionality. In the proposed system, the smart
meter plays the role of assistant processor rather than information sender/receiver, and it enables
three communication channels to transmit different temporal resolution data to protect privacy
and allow freedom of choice: high frequency feed-level/substation-level data are adopted for grid
operation and management purposes, low frequency household-level data are used for billing, and a
privacy-preserving valued-add service channel to provide third party (TP) services. In the end of the
paper, the privacy performance is evaluated to examine whether the proposed system satisfies the
privacy and functionality requirements.

Keywords: smart grids; smart energy system; smart meter; GDPR; data privacy; ethics

1. Introduction

The smart grid is a worldwide modernization of electrical power systems in the 21st century.
Two-way communication networks enable smart grids to collect real-time data from both the electricity
supply (i.e., power stations) and demand (i.e., households) sides, and further boost the power system’s
reliability, availability, and efficiency.

As an essential enabler and prerequisite of the smart grid, smart meters are being installed country-
and world-wide at single houses to collect real-time data on energy consumption. Smart meters offer
an opportunity to consumers to play an active role in household energy consumption management.
Based on these advantages, the UK government is working to ensure 80% of households install smart
meters by 2020, paving the way for future smart grid construction [1].

However, with the EU’s mandate to install smart meters, worries about privacy intrusions caused
by smart meters are rising. Researchers point out that private household information can be revealed
by smart meters [2–4]. Through continuously monitoring the real-time smart meter data, third parties
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(TP) could have an inside view of household activities and behaviours (e.g., how many residents live
in the house, when people leave the home, what the residents are doing at particular times, such as
sleeping, bathing, watching TV, washing clothes, etc.). Although data collection may be justified on
ethical grounds of utilitarianism (i.e., ensuring the greater, collective good of energy efficiencies in
smart grids), the intrusion into privacy could also have negative ethical social consequences, including
the conditional shaping of freedom and behaviour of individuals and households [5,6].

It is urgently expected that a more reliable smart metering system should be proposed to improve
privacy and security. To do this, there could be three operational methods to protect households’ privacy:
(a) user demand shaping, (b) data manipulation, and (c) encryption techniques. User demand shaping
approaches modify electricity data using methods such as energy storage systems or rechargeable
batteries in households [7]. This requires the installation of extra devices, which is expensive.
Data manipulation approaches modify energy data before sending it to TP (i.e., utility companies) by
employing strategies like data obfuscation, data aggregation [8], data down-sampling, encryption
protocols [3], or data anonymization. However, these methods sacrifice functionalities to protect
privacy. Encryption techniques include homomorphic encryption (HE) and multi-party computation
(MPC); these techniques encrypt the input data and can still implement essential operations with
encrypted data, but techniques such as HE also cause computing overhead, increasing the budget.

At a legal level, the General Data Protection Regulation (GDPR) has been in force since 25 May 2018 [9].
Covering all European countries, the purpose of GDPR is to protect all EU citizens from privacy and
data violation, providing more power to individuals to control their personal information. With these
operational and legal operational possibilities, it is also important to consider ‘soft’ ethical strategies that
use them to contribute to protect household privacy, potentially enabling households to be more in control
of their digital data [10]. One such strategies is that of considering different stakeholders involved or
affected by digital data gathering [11].

In this paper, we extend the approach from [8,12,13] to the combined use of existing data
aggregation and data down-sampling techniques to design a privacy-preserving smart metering
system. The system follows an operational and ethically (consequentialist) driven trade-off strategy
and model which could contribute to increase functionalities of current smart metering devices in smart
grids whilst ensuring that digital privacy intrusion is minimised and protected if not appropriately
governed. In addition, the system provides three different communication channels for data collection
to enable diverse data granularity transmission to TP, with each channel also providing required
functionalities (time-of-use billing, grid operation and management, and TP services). We present our
system and discuss the results of testing it with implications for the future design or management of
smart meters by TP and households.

The paper is organized as follows: A presentation of smart grids and smart metering systems
with ethical concerns about privacy intrusion is offered in Section 2. A review of current operational
strategies to deal with privacy intrusion is presented in Section 3. In Section 4 our main contribution
is proposed: a trade -off strategy is discussed with a proposed new smart metering system model to
support it. A simulation work to quantify the privacy boundary is given in Section 5. The conclusion,
implications, and future work are drawn in the last sections of the paper.

2. Background

2.1. Smart Grids

Smart grids are physical networks that use cutting-edge technologies and equipment, enabling
the interconnection of different components through two-way networks that could achieve real-time
optimizations to deliver electricity more reliably and efficiently. Smart grids contain not only electricity
interfaces, but also communication interfaces. With these, other stakeholders (utility companies) or
domains (electricity markets) can be included for analysis and management. Future smart grids
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can enable better operation and control, better network planning and maintenance, advanced smart
metering infrastructure (AMI), and overall energy efficiency for countries [14].

2.2. Advanced Smart (Metering) Infrastructures

Within smart grids, AMI systems are integrations of smart meters, communication networks, and data
management systems [14,15]. With the adaptation of narrowband(NB) powerline communication (PLC)
technologies (e.g., Powerline Intelligent Metering Evolution (PRIME) and G3-PLC standards adopted in
Europe), AMI enable real-time bidirectional communication between the TP (suppliers) and electricity
consumers [16–18]. Smart meters are the most vital components within AMI. As smart energy sensors are
installed in consumers’ residences (households), smart meters can gather and transmit data including
power consumption and electricity/gas bills on a real-time basis.

As illustrated in Figure 1, stakeholders of the smart metering system can include the consumers,
energy suppliers, network operators, and data and communications companies (DCC) and TP.
With smart meters, consumers can obtain near real-time and more accurate power usage data and bills,
which helps them manage their energy usage. Energy suppliers (ES) are the utility companies that buy
electricity from the wholesale market, then sell it to consumers. For instance, large British ES include
British Gas, E-On, and SSE. Network operators (NO) (i.e., transmission system operators or TSOs,
distribution system operators, etc.) construct, maintain, and operate the energy network, ensuring
normal operation. These latter stakeholders can also benefit from smart meters: firstly, with the near
real-time communication networks, utility companies can save money initially used for manual billing;
secondly, network operators can implement demand-based management responses, in particular under
peak load times; and finally, operators and companies can detect fraud or electricity theft and thus
improve their efficiencies.

 

Figure 1. The structure of the current smart metering system.

The DCC collect energy consumers’ data through the wide area network (WAN). Processed data are
then sent to energy suppliers and network operators. DCC are responsible for ensuring compliance with
the GDPR directive [19]. However, there is a lack of clarity about other stakeholders’ responsibilities,
making smart meters potentially fragile to a few privacy risks and concerns. These need to be identified
and further explored if improvements in smart metering systems are to be made by or affecting several
or all the stakeholders presented in the above figure. Before doing so, basic functions of smart meters
are presented as following subsections.
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2.3. Functions of the Smart Metering System

The European Commission identifies the 13 main functions of a smart meter and classifies them
into five categories [20]. The most significant functions are listed in [21], which are billing correctness,
grid operation and management, and additional consumer services. In addition, an emerging function
is that of time-of-use (TOU) tariff.

2.3.1. Billing

The most vital function of the smart meter is providing accurate billing for consumers. Any data
protection method which influences the accuracy of billing is useless. The current sample interval of
the smart meter is 15 min up to a few seconds; however, consumers do not need such high-frequency
billings, weekly or monthly basis billing is enough [21].

2.3.2. Grid Operation and Management

The smart meter contributes to the smart grid by improving the efficiency and stability of the
whole power system. The real-time two-way communication networks provided by the smart metering
system can measure, analyse, and control the energy consumption data, and further support the smart
grid to implement demand side response services and power system estimation. For grid operators,
the measurement of every individual household smart meter is not compulsory. Instead, they have
more interest in high aggregated level data, such as measurement at feeder level or substation level [22].

2.3.3. Value-Added Services

The consumers can order additional services provided by the utility or TP. The additional consumer
services could be awareness, (e.g., sending a warning for exceeding power), or scheduling and control
(scheduling for controllable appliances, peak shaving) [23]. Demand-side response and non-intrusive
load monitoring (NILM) have received the most attention. Demand-side response [21,24,25] optimizes
the strength of the grid and enhances the power quality by utilizing power plants, distributed
generators, and loads and energy storages. In demand-side response, consumers can also participate
in the response process by accepting the bids provided by grid operators. By turning off appliances
such as air conditioners and heaters, the load would be shed during peak time. NILM is a technique to
disaggregate consumers’ power consumption curve into individual appliance usage. The consumer
can have an insight into how electricity is consumed and can better manage their home appliances
to save energy and reduce carbon dioxide emissions [26]. Normally, value-added services require
consumers to submit their energy data to a server; the server would use a pre-trained model to evaluate
the data and send the results back to consumers. The difficulty exists in how to share personal data
with TP while guaranteeing privacy at the same time.

In [21], two privacy-preserving value-added schemes are proposed. The naive scheme down-samples
the original data into multiple interval resolution data, referring to the requirement of different services.
Then the different resolution data are sent to different TPs with a key [13]. The second solution is to enable
services at consumers’ own devices (personal computer, mobile phone) via a home area network (HAN),
however, TPs have the risk of revealing their models/algorithms [21].

2.3.4. Time-of-Use Tariff

The TOU tariff determines the electricity price during different periods. Consumers benefit
from the TOU tariff by shifting their electricity usage habits to enjoy a cheaper bill, while the energy
suppliers can also reduce the power plant capacity as a result [14], so TOU is becoming the mainstream
method for billing in the UK. With the installation of the smart meter, the TOU moves closer to the
real-time pricing tariff, allowing it to better represent the true conditions [27]. Although TOU tariff
needs high-frequency data, the price volatility is determined by the aggregated power usage of the
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whole area rather than individuals. So, consumers do not have to send high-frequency data to realize
the TOU tariff.

2.4. Privacy Intrusion Issues

Currently, smart metering systems could easily suffer from internal [28] and external attacks [29]
and be subject to privacy intrusion [2]. All privacy intrusion issues related to the smart meters fall into
two categories:

Category (i) Data sensitivity. Personal energy data that cannot be measured by a conventional
electricity meter. While the traditional electricity meter measures the power consumption with a
low resolution (e.g., one month) and can only provide the energy consumption information in kWh,
the smart meter measures the power consumption with a high frequency (ranging from every second to
every half hour, and normally every 15 min [21]), and more parameters are recorded, such as real-time
active/reactive power, voltage, current, TOU tariff, etc. The high granularity data provide adversaries
enough information to intrude on personal information.

Category (ii) Algorithm sensitivity. Advanced algorithms/mechanisms to intrude on privacy-sensitive
features that could not be extracted from raw data using traditional data processing mechanisms. With the
implementation of smart meters in smart grids to meet the above functions, and the increasing development
of new services and applications by TP based on big data and artificial intelligence (AI) (e.g., Machine
Learning (ML), Deep Neural Network (DNN), cloud computing), more and more sophisticated data could
become available [30]. New services to better understand and monitor household behaviour include
NILM [26], short-term load forecasting (STLF), distributed data mining, and others [14,30]. These advanced
techniques are a double-edged sword to the consumers. The benefits espoused to consumers described
above (e.g., managing their own energy consumption) and the adoption of a utilitarian ethic (i.e., ensuring
the greater, collective good of energy efficiencies in smart grids) need to be weighed against potential
privacy intrusion risks. Privacy intrusion would mean that not only individual but also collective freedom
is compromised, given that household behaviour would be shaped and constrained by the perceived
presence of digital surveillance [10,11,31].

Moreover, referring to the US National Institute of Standards and Technology (NIST) guideline
NIST IR 7628v2 [32], the above two categories can be divided into four aspects as follows:

2.4.1. Behaviour Patterns Identification

Behaviour patterns identification belongs to category i; it aims to identify the appliances used.
The smart meter and AMI communication network enables the utility and TP to access individual
energy data continuously [15]. The high granularity data can reveal information about specific
appliances at certain times and locations inside the home. Based on this information, operators can
further infer the activities inside the house [32]. Potential usage of the appliance information may
include that the retailers would adjust the warranty policy or use the information for advertising and
marketing purposes.

2.4.2. Real-Time Surveillance

Real-time surveillance means that by regularly accessing energy data via smart meters, power
system operators/TPs can have an overall picture of the activities inside a house, and even the entire
life cycles of all residents (waking/sleeping pattern, number of residents, when people leave their
home). This privacy concern belongs to category ii; the surveillance relies on advanced techniques
such as data mining, machine learning/deep learning algorithms [26,30,32]. This information could be
abused by hackers and stolen for criminal purpose [33].

2.4.3. Fraud

Fraud represents the potential risks of personal energy data being modified without authority,
either to increase/decrease energy consumption or attribute the energy consumption to another

287



Energies 2020, 13, 3221

house [32]. This risk belongs to category ii; the AMI enables more opportunities for adversaries to
implement fraud than conventional meters since the vulnerabilities of the real-time communication
network would be abused.

2.4.4. Non-Grid Commercial Uses of Data

This privacy risk falls into category ii. The smart meter data may be used by TP to make a profit
from the data; activities include advertising and insurance that are not welcomed by consumers [32].
Companies would sell their products to residents according to the personal preference information
revealed by the energy data. Even sensitive information, such as employment information [30],
can be inferred from energy data with machine learning algorithms. This information can be used by
adversaries to estimate the income of the target family.

3. Related Work for Privacy Intrusion Protection

The state-of-the-art methods dealing with the above smart meter privacy issues can be divided
into two categories: user demand shaping and data manipulation. Both these techniques try to reduce
the privacy loss by decreasing the probability to infer individual appliance signatures from the overall
power data [34].

3.1. Demand Shaping

User demand shaping uses external energy storage devices (such as a large rechargeable battery
(RB) [7,35–42], renewable energy system (RES) [43–46]), or load shifting [47–49] to distort the real power
consumption curves. The RB and RES method can be treated as a noise-adding approach at the physical
layer, as the original power demand is distorted, the utility cannot infer sensitive information from the
smart meter data. An RB system contains a smart meter, a battery, and an energy management unit
(EMU), the EMU controls battery to implement optimal energy management policy (EMP), with the
injection of power from the RB Bt, the mismatching between the power supplied by the grid Yt and
consumers’ power demand Xt provide privacy guarantee to consumers. The works conclude that
the larger the battery capacity size, the better privacy can be guaranteed. However, the RB is a finite
capacity energy storage device with capacity ranges from 2 kWh to 20 kWh [50], therefore there
exists a lower and upper bound (P̂c and P̂d) to limit the performance of the mechanism. The optimal
EMP, such as best-effort (BE) algorithm [7], water -filling algorithm [51], Q -Learning algorithm [1],
non-intrusive load-leveling (NILL) algorithm [52] are introduced to optimize the charging/discharging
process, these algorithms control the battery either hide, smooth, or obfuscate the load signature [7].
NILL algorithms are designed to blind the NILM [52], instead of only one target load, the NILL
has two states, a steady-state and recovery state if the battery capacity cannot enable the load to
maintain steady-state, the load is switched to the recovery state. A privacy-versus-cost trade-off
strategy considering the TOU tariff is proposed by Giaconi et.al in 2017 [53]. Instead of a constant load
target, a piecewise load target referring to the current TOU price is generated, the cost of the electricity
is minimized, and the consumers can also sell extra energy to the grid to reduce the cost further.

RES utilizes rooftop PV, small wind turbine, and even Electric Vehicle (EV) [54] to replace
the conventional battery. To overcome the difficulty to roll -out expensive RES and RB facilities,
Reference [55] proposed a multiuser shared RSE strategy that enables serval users to share one RES
and one EMU. The EMU control the RES to allocate the energy from the RES to each user. In this case,
the target of the system is to minimize the overall privacy loss of all users rather than an individual
user. EV is another scheme to reduce the reliance of the RB [54] since the charging period is almost
overlapping with the peak load, it can mask other appliance signatures. However, the EV can only be
used when the consumers are at home, the consumers are still under real-time surveillance since the
adversary would obtain information when the residents leave their home.

To summarize, in RB/RES methods, researchers view the identification information of the load
curve as the variation of the load measurements of two neighboring measure points Yt −Yt−1. The ideal
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situation for the grid curve is a constant value Ct which will not reveal any sensitive features of the
demand, the modified load curve Yt is then compared to Ct, the more similarities between these two
curves, better privacy can be guaranteed. To quantify the privacy loss, Mean Squared-Error (MSE) [53],
Mutual Information (MI), Fisher Information (FI) [35], KL divergence [7], Empirical MI [37] are adopted
in related works. However, user demand shaping also has drawbacks: Firstly, extra energy storage
systems and renewable energy sources are required to implement the demand shaping strategy; these
devices are prohibitively expensive and can be difficult to roll-out, the batteries need to be renewed
frequently. Secondly, the energy storage system blinds demand response, which is one of the most
important functions of the smart grid.

As the drawbacks of RB/RES methods are obvious, another demand shaping method named
load shifting is proposed to replace the RB/RES techniques. This method hides sensitive information
by shifting the controllable loads [47–49]. The loads can be divided into uncontrollable loads (e.g.,
lighting, microvan, kettle) and controllable loads (e.g., heating, ventilation, and air conditioning
(HVAC) systems, EV, dishwasher, washing machine). The operation time and model of the controllable
loads can be scheduled by consumers to prevent occupancy detection. In [49], combined heat and
privacy (CHPr) are proposed, thermal energy storage such as electric water heater is adopted to
mask occupancy. Compared with the RB approach, CHPr neither requires expensive devices nor
increase electricity cost. There are several limitations of the load shifting technique, firstly, some of
the controllable loads have limited operation modes and cannot be interrupted; secondly, there are
restrictions for the thermal loads to store energy.

3.2. Data Manipulation

Different from the demand shaping approach, data manipulation aims to modify the smart
meter data before sending it to the utility. Data aggregation, data obfuscation, data down-sampling,
and anonymization all belong to this category.

Data obfuscation, which is also called data distortion, tries to add noise to the original smart meter
data to cover the real power consumption [56–60]. Like demand shaping technique, data obfuscation
also reduces the privacy loss by distorting the smart meter data, but on the network layer. Noises such
as Gaussian noise [56,60], Laplace noise [56], gamma noise [57] are added into the original smart meter
data to distort the load curve. These noise-adding mechanisms follow normal distributions with
mean μ equals to zero, hence the noise would cancel out if enough readings are added up together,
P. Barbosa, et al. [59] conclude that these probability distributions would not influence the relationship
between the utility and privacy, so all distributions can achieve similar performance in protecting
privacy. Moreover, to guarantee the billing correctness, serval schemes are proposed: Reference [56]
proposes a power consumption distribution reconstruction methods by adding another Gaussian
distribution into the data, but the method does not quantify how much noise should be added to
recover the original curve; Reference [59] sends a filtered profile to the utility rather than masked profile,
then result shows that the error of the overall power consumption is reduced in this way. However,
they also find that the error during different periods (peak period, off-peak period) is significantly
different, which provides new challenge. In summary, although the data distortion scheme shows
efficient performance in reducing privacy loss, there are serval problems which should be discussed in
future studies: (1) The TOU tariff is unavailable. Although the noise would be zero-mean, but the
multiplier for TOU pricing is not. Hence the sum of TOU bills would be influenced. (2) Although from
the signal processing and information-theoretic viewpoint that a zero-mean noise would not influence
the result, we should notice that the power system is operating on a real-time basis. The power system
operator manages the grid with the real-time data sent from the smart meter, even a minor error
between the ground truth with the distorted data could result in serious faults, even the collapse of the
whole system.

Data aggregation reduces the privacy loss by constructing aggregators to collecting the data
from a few smart meters together, so the utility is unable to detect the electricity events in a single
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house [8,22,60–62]. The data aggregation technique is divided into aggregation with trusted third
parties (TTP) [60] and aggregation without TTP [8,22]. J.-M Bohli, et al. [60] propose data aggregation
with TTP, the data aggregator (DA) operated by the TTP is responsible for gathering the data from
neighbouring smart meters and then sending the aggregated data to ES. At the end of every month,
the DA also generates energy consumption of individual consumer for billing purpose. However, there
are several concerns about involving TTP. Above all, a TTP could try to infer the personal information,
so the TTP itself may bring extra privacy risks to the system. Secondly, with the increasing numbers of
smart meters being installed, it is unrealistic for the TTP to build enough DA to satisfy the demand,
and the maintenance and development budget would be unaffordable to EP and NO.

References [8,22,61–63] introduces data aggregation mechanisms without TTP. Instead, encryption
techniques such as HE, MPC [8,22,62,63] are employed. Both HE and MPC encrypt personal smart meter
data before sending it to the utility/TP. However, differently from conventional encryption techniques,
HE and MPC enable TPs to manipulate the data without knowing the detail of it. F. Li, et al. [8] and
R. Lu, et al. [22] independently proposed an aggregation method with HE separately. By encrypting
smart meter data, the DA can implement aggregation without knowing the data details. In this way,
there are no concerns that the TTP may infer sensitive information without permission. However,
the drawbacks of data aggregation technology are twofold. Firstly, after aggregating, it is impossible
for the utility to obtain the power usage information of an individual consumer. Secondly, complex
encryption would cause high computational overhead. MPC requires low computing ability but
involves several servers to deal with the data [63]. In MPC, each server holds a part of the input data
and they cannot infer the whole information. MPC has been successfully adopted in smart metering
services such as TOU billing. However, complex value-added services, such as load forecasting and
online energy disaggregation, require an advanced cloud server to implement these algorithms. So,
the availability of MPC in these services should be discussed. The privacy boundary of aggregation size
is also investigated in T.N. Buescher, et al. work [61]. They investigated the aggregation size referring
to a privacy metric named ‘privacy game’. Referring to the data-driven evaluation, a conclusion is
made that even a DA with over 100 houses can still reveal private information. But the privacy measure
they adopt is abstract and just simply measures the difference between the individual load curve
and the aggregated curve, a more detailed privacy measure should be proposed to reflect whether
advanced algorithms (such as NILM) can infer personal information from the aggregated data.

References [56–58] combines data aggregation with noise-adding technique together, to enable
differential privacy to the aggregated data. Differential privacy is employed as privacy guarantee,
the concept of differential privacy is through adding noise to a largescale dataset, any two neighboring
datasets (only one data in these two datasets is different) should be indistinguishable [64]. In other
aggregation mechanisms, N smart meters are aggregated at first, then a distributed Laplacian
Perturbation Algorithm (DLPA) is applied to the aggregated data. By adjusting the parameters ε and
δ, then we can say (ε, δ)-differential privacy is achieved (ε is the parameter to show the strength of
privacy guarantee, and the δ is the failure probability, the closer ε and δ to 0, the better privacy can
guarantee). The security and privacy performance are analysed in [56], two denoising filter attacks,
the linear mean (LM) filter, and the non-local mean (NLM) filter are employed to evaluate the original.
The results convince that attackers cannot infer the original load curve from the distorted one.

Data Anonymization mechanism [12,65,66] reduces privacy loss by replacing the real smart meter
identification with pseudonyms. C. Efthymiou and G. Kalogridis proposed a data anonymization
method with a TTP escrow in 2010 [12]. They suggested that two IDs are attached to each smart meter,
LFID for sending attributable low frequency and HFID for sending anonymous high-frequency data,
while the HFIDs are kept by a TTP, making it unknown to the utility. The low-frequency data are
used for billing purposes while the high-frequency information is for network management. However,
the workload of the TTP is high, and the development costs increase since all anonymous IDs are
processed here. Moreover, with the introduction of the TTP escrow, the privacy risks are not eliminated
but just shift from the utility to TTP.
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The down-sampling method is a naive approach that aims to reduce sensitive information by
reducing the interval resolution of the metered data [13,33,66]. However, like other methods, functions
such as demand response and TOU billing would be sacrificed. Moreover, value-add services that
require high-resolution data are unavailable as well. To quantify the privacy loss with different interval
data, G. Eibl and D. Engel adopt NILM as adversary to the extract of personal information. They apply
an edge detection NILM to smart meter data and examine the performance of 15 appliances via F-score
values and the proportion of appliances. They conclude that 15-min interval data already protect
most appliances. We would like to have an in-depth research based on the research by implanting
more powerful NILM algorithm (such as deep learning based NILM) since deep learning has shown
distinctive ability to extract features than conventional approaches.

To sum up, solutions either require the installation of expensive devices (rechargeable battery
or RES) or employ complex and high computing algorithms (data distortion and data aggregation).
Moreover, some schemes introduce TTP into the smart metering system, which just moves the
privacy risk from one party (ES) to another one (TTP). Most importantly, unlike other communication
networks, the physical connections of the electricity grid already aggregate load consumptions at
feeder level or substation level without privacy concerns, the construction of the data aggregator is
superfluous. And no existing solution emphasizes the availability of value-added services, which is
the vital functionality the smart meter brings to consumers. Comparing the two solutions listed above,
the proposed scheme is simpler and more efficient: The proposed scheme is based on existing physical
facilities (the smart meter, private platform, distribution substation) and does not require any extra RES
or high computation encryption. In the proposed scheme, the smart meter only communicates with the
private platform (PC or smartphone) inside the house via Home Area Network (HAN). A multi-channel
smart metering system enables the private platform to communicate with other stakeholders (e.g., ES,
TP) with different data granularity, which takes the advantages of both data aggregation mechanism to
enable grid operation and management and data down sampling mechanism to provide accurate TOU
bills. Furthermore, a privacy preserving NILM algorithm is designed to enable value-added services.

4. A Proposed Privacy-Functionality Trade-off Strategy and Model

Given the scale of smart meter roll-out processes in countries and worldwide, the above
risks and operational strategies could be dismissed or subordinated to utilitarian market logic,
with the responsibility for their implementation and subsequent privacy protection of consumers (i.e.,
households) delegated to third parties, many of whom might not have privacy protection as a priority
in their agendas. Moreover, and as stated before, there is a lack of clarity about such responsibilities.
Furthermore, whilst smart grids could be conceived as necessary technologies to regulate the conduct
of individuals in our societies [67], what could be more concerning is that privacy intrusion could also
generate negative social consequences [31]. Consumers can be left powerless or socially isolated to
devise their own strategies to counteract intrusion to their privacy, becoming mere means rather than
ends [5].

It might be possible, however, for stakeholders to exert their creativity even in the face of privacy
intrusion and existing regulations (i.e., GDPR directive) [5,10,68]. This would help households comply
with the functionalities that digital technologies establish for them [68] whilst socially protecting or
enhancing their sense of authentic household ‘hood’ [6].

To meet this, we thus propose a trade-off strategy that attends to both the operational and ethical
concerns for smart meters and smart grids raised in this paper. The strategy adopts these principles:

I. Ensuring the compulsory functions of smart meters as previously described and complemented.
II. Data minimization.
III. Protection from inner or outer attacks (to be explained in Section 5).
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The operation of the strategy is shown in the proposed model, Figure 2, as follows. The model
components are consumers, DCC, energy supplier (ES), a network operator (NO), third parties (TP),
and the distribution-level substations (Sub) which supply electricity to households.

Figure 2. Proposed smart metering system.

4.1. Compulsory Functions

The interval resolution and categories of data of compulsory functions are listed in Table 1 below.
For billing purposes, the frequent transmission of the power consumption data would put consumers
under the monitoring of the utility. For grid operation and management, although the utility requires
high interval resolution data (seconds to 100 Hz), it is unnecessary to access every individual’s power
consumption; aggregated data of a defined area is more desirable. Most additional services provided
by TP only require a specific part of the power consumption data (a certain period, a specific appliance
power consumption, etc.), so, all TPs are to obey the data minimization principle (explained below),
and only collect the minimum data required to complete the service.

Table 1. Summary of data granularity of different functionalities.

Functionalities Sample Frequency Required Data Required

Billing Low (weekly or monthly) Usage of every single
household smart meter

Grid Operation and Management Very High (sometimes more
than 50 Hz)

Active/Reactive power,
voltage of selected area

Value-added Services Depending on specific services Depending on specific services

TOU tariff High (15 min–1 h) The TOU price from the
electricity market

In the proposed strategy and model, it is not considered appropriate to authorize TTP (described
earlier) to be responsible for data aggregation, since as a potential inner adversary TTP can still
acquire valuable information during the aggregating process. Rather, substations could be a better
choice for data aggregation. In countries such as the US and China, there is already an installation
of substation-level supervisory control and data acquisition (SCADA) systems [69]. This provides
evidence that substation-level smart metering or intelligent substation data would be a trend of the
future smart grid system.

Moreover, in contrast to conventional smart metering systems that can only transmit a single
temporal resolution trace, this novel scheme contains three communication channels to support
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multi-temporal resolutions data. These three channels are a high-frequency aggregated data channel,
to transmit 100 Hz aggregated data measured at the distribution level substation; a TOU billing channel,
to send dynamic TOU price information to smart meters and send bills to the ES monthly; and an
additional service channel, to transmit selected data to support additional services. The smart meter in
the scheme plays the role of the assistant processor rather than the information sender and receiver;
it has basic computation ability to calculate billing inside the house rather than sending individual
power consumption near real-time.

4.2. Data Minimisation and Protection

As one of the most vital principles of data protection, data minimization is mentioned in five
separate sections in GDPR (Article 5 (Chapter II), Article 25 (Chapter IV), Article 47 (Chapter V),
Article 89 (Chapter IX)) [9]. It highlights that limitations should be set on the measurement of personal
data implemented by organizations; only the minimized information necessary to complete specific
required purposes can be collected. More specifically, the data minimization principle for the smart
grid is recommended in the US National Institute of Standards and Technology (NIST) Guidelines [32].
To deal with privacy risks caused by smart meters, strict limitations need to be set; only the data which
are essential for smart grid operation should be collected (e.g., billing, demand-side management, grid
planning). Data minimization is strongly related to protection from inner and outer attacks, as will be
presented in the following section of the paper.

4.3. Mathematical Model

4.3.1. The Smart Meter

The smart meter in the proposed system does not communicate with the energy supplier directly,
the measurements of the smart meter will be uploaded to a private platform (PC or smartphone) via
HAN. The private platform has basic storage and computation ability to save power consumption and
calculate the bills. Assume the area involves a smart meter group SM = {sm1, . . . smi, . . . smN}(i ∈ [1, N]).
The smart meter can measure power consumption with interval T (normally 15 min), marked as PT,i.
The smart meter data are encrypted to prevent consumers from modifying the power consumption data.
There is no backdoor when the smart meter is manufactured, so manufacturers or energy suppliers
cannot illegally access the smart meter data, and all data transmission between consumers and the
utility is monitored by the DCC. In the proposed system, the smart meter reports the monthly energy
consumption Emonth and monthly bills Bmonth.

4.3.2. Protection from Inner and Outer Attacks—Adversary Element

Using a consequentialist perspective to ensure that stakeholders are held to identification and
account [11], in our model all stakeholders could adopt an “honest-but-curious” ethic [21]. They follow
functional protocols properly and provide expected services to consumers (“honest”), but at the same
time, they keep inferring sensitive information from the consumers (“curious”). In the proposed
system, household adversaries could access aggregated power consumption PAGG (kW) and monthly
energy consumption of smart meter i Emonth (kW·h). Their purpose would be to obtain data. They could
have a high computational ability to disaggregate the obtained data into individual appliance power
consumption data by applying methods like the NILM algorithm, leading them to potentially use data
for unethical or illegal purposes.

4.4. High-Frequency Aggregated Data Channel

The high-frequency aggregated data channel transmits the aggregated power consumption
data to the DCC. We install a substation-level smart meter inside the distribution-level substation.
The substation contains all consumers’ power consumption in the local area without requiring every
individual smart meter to send data to it, so it plays the role of an “aggregator,” but without collecting
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the power consumption data from every single house. The measurement frequency of substations in
our research is selected as fh f = 100 Hz, which is twice the British power system frequency. The high
interval resolution data is used for grid operation and management since near real-time data is vital
for demand-side management to deal with unexpected incidents such as a blackout.

The reason that the distribution-level substation can play the role of “aggregator” is twofold.
Firstly, substations already exist. No extra facilities like data aggregators need to be constructed, so the
development investment can be saved. Secondly, no TTP or homomorphic encryption is involved in
this scheme, so the concerns of inner attacks from TTP and computation overhead raised by complex
encryption are eliminated. Table 2 shows three typical feeder models summarized by GridLAB-D’s
feeder taxonomy [70], these three models represents feeders at light rural area, heavy suburban,
and moderate urban respectively. The house units under each feeder can be estimated by adding up
household-level data to match the feeder model [71]. From the table, the light rural area consists around
408 houses. In Section 5, an evaluation is implemented whether feeder/substation level measurement
at light rural area satisfies the privacy requirement.

Table 2. House units under different feeder models [70,71].

Feeder Model Active Power/kW Description Units under the Feeder

R4-25.00-1 948 Light rural 408
R1-12.47-4 5334 Heavy suburban 2299
R2-25.00-1 17,021 Moderate urban 7336

4.5. Time-of-Use Billing Channel

The TOU channel enables the dynamic TOU tariff, see Figure 3. In the conventional smart metering
system, the smart meter should report the energy consumption at each charging point to obtain TOU
bills. The more charging points the utility sets, the more detailed information about an individual is
obtained by the utility, and the more it is possible that privacy is breached.

In our TOU billing channel, the direction of information transmission is the opposite. The algorithm
of calculating the TOU billing is shown in Algorithm 1.

Figure 3. Time-of-use billing channel and billing correctness verification.
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Algorithm 1 Dynamic TOU billing program.

Input: Half-Hourly Energy Consumption Ed,t, Half-Hourly TOU tariff πd,t;
For d = 1; d ≤ 30 (d is the day of month) do

for t = 1; t ≤ 48 (t is the time of the day) do
Record and storage Ed,t and πt during t.

End
End
While d ≥ 30 do:

Calculate Emonth =
∑30

d=1
∑48

t=1 Ed,t.
Calculate Bmonth =

∑30
d=1
∑48

t=1 πd,tEd,t.
End
Return Emonth, Bmonth.

Output: Monthly Energy Consumption Emonth, Monthly Bills Bmonth.

• Step 1: Data storage. The ES sends the TOU price π to the smart meter every 30 min. The smart
meter stores the energy consumption of the past half-hour with the current TOU price in pairs

• Step 2: Bills calculation. The total TOU bills in £ are calculated at the end of each month, then
sends the bill data to the ES, the ES then assigns a bill to the consumers.

• Step 3. Billing correctness verification. A zero-knowledge proof [72] is utilized to verify the billing
correctness. A detailed description is shown in Appendix A.

4.6. Additional Service Channel

The additional service channel is designed for TP to provide additional services to the consumers.
The “third party” refers to non-licensed energy service companies. They bring profits and innovation to
the smart grid industry. The consumers have the freedom of choice to select wanted services. Currently,
services include a warning for exceeding power thresholds, monitoring for seniors/children, monitoring
the operating condition of selected appliances. From the consultation documents of Department of
Energy & Climate Change (DECC) [19], there are strict limitations on TPs’ access to data, an agreement
is required among TP, DCC, and consumers, and the TP can only access the consumers’ smart meter
data when they have consumer consent.

Referring to the privacy-functionality trade-off strategy mentioned in Section 4, the value-added
service channel follows a data minimization principle, preventing personal data “leaving” consumer’s
house. Rather than sending personal data to the server of TPs, TPs send algorithms and models
to consumers’ private platforms, including their personal computers and mobile phone, then the
consumer can use the model to obtain the result on these platforms. However, there are two concerns
related to this method referring to [21]:

• By sending algorithms/model parameters to consumers, the model’s parameters and training
dataset would be stolen by users, while these models and datasets are confidential.

• It is difficult to implement a privacy-preserving algorithm to complex models such as machine
learning/deep learning-based services.

To settle the above two concerns, particularly relevant to our work [73], a value-added service
channel utilizing a privacy-preserving deep learning algorithm is proposed. The algorithm adds
noise into gradient descents of deep neural network parameters to reduce the sensitivity of single
training data, and further preserve the privacy of both neural network model and training dataset [74].
The privacy-preserving deep learning combines two advanced techniques, differential privacy, and deep
learning together.

As shown in Figure 4, the process of the value-added service channel consists of the following
steps, and all steps can be divided into two categories depending on the network (WAN or HAN):

Operations via WAN:
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• Step 1: the model owner trains the service model with a private database using a noisy algorithm.
• Step 2: the trained model is sent to consumers’ private platform (personal computer, mobile

phone).

Operations via HAN:

• Step 3: the smart meter uploads the measurements to the private platforms.
• Step 4: the consumer starts a query to the platform; then the platform returns a result to the consumer.

The data flow in Figure 4 shows that the consumer’s energy data are shared inside HAN and
are never sent to the utility, but the services are enabled. The enabled services include NILM, STLF,
and demand response. The detail of the privacy-preserving deep learning NILM algorithm is shown
in our paper [73].

Figure 4. Privacy-preserving valued-added services.

5. Evaluation

In this section, an evaluation is implemented to discuss whether the proposed scheme satisfies the
requirements in Section 2 considering both functionality and privacy.

5.1. Privacy Measure

The privacy measures are adopted to the smart meter data shared with stakeholders
(high-frequency aggregated data and down-sampled individual data). Referring to privacy intrusion
categories highlighted in Section 2.4, all privacy intrusion issues belong to two categories: data
sensitivity and algorithm sensitivity. In many previous works, researchers view the sensitive
information from the smart meter as the variation of the power consumption curve, a constantly
changing curve would reveal more private information than a flattening curve. While the advanced
NILM algorithms are used to infer individual appliance signatures, state-of-the-art algorithms such as
DNN, ML, Hidden Markov Model (HMM) are proposed.

Hence, in this paper, both above two privacy intrusion issues are studied, Mutual Information and
Mean Squared Error (MSE) is utilized to quantify the sensitivity of the data, and a NILM adversary,
named NILMTK, is adopted to examine whether the proposed scheme can blind the algorithms.

Moreover, since a noise-adding deep learning approach is applied to the value-added services,
privacy performance is evaluated to determine whether the system can provide differential
privacy guarantees.
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5.1.1. Mean Square Error (MSE) as a Privacy Measure

Mean squared error (MSE) is a naïve metric to evaluate the error between two groups of data.
In this paper, MSE is adopted to quantify the difference between original consumption data and the
modified data:

MSE =

∑N
i=1(ŷ− y)2

N
(1)

5.1.2. Mutual Information (MI) as a Privacy Measure

Mutual information (MI) is employed as a privacy measure to quantify privacy loss in [44,46,51,53,75].
MI I(Xn; Yn) measures the dependence between two random variable sequences Xn and Yn [76]. In other
word, MI can explain the reduction of the original load sequence Xn given knowledge of the modified
sequence Yn:

I(Xn; Yn) = H(Xn) −H(Xn|Yn)

= H(Xn) + H(Yn) −H(Xn, Yn)

≈ − 1
n logp(Yn) − 1

n logp(Xn) + 1
n logp(Xn, Yn)

(2)

where H(Xn) and H(Yn) are the marginal entropies, which measures the uncertainty about the
random variable; H(Xn|Yn) is the conditional entropies, and (Xn, Yn) is the joint entropy of H(Xn)

and H(Yn). In this paper, a variant MI named Normalized Mutual Information (NMI) is adopted to
show the normalized results between 0 and 1 (0 represents no mutual information, 1 represents perfect
correlation).

5.1.3. NILM Performance as a Privacy Measure

NILM is used as a privacy measure in previous works [33,35,56,61], the NILM plays the role
of a powerful adversary to evaluate the privacy loss of the smart metering system. The adversary
can adopt a state of the art NILM algorithms to obtains individual appliance signatures from the
measured demand, hence the NILM is a desirable privacy measure to quantify the privacy loss. In this
paper, the NILMTK toolbox [77] in Python is used to implement the NILM algorithm, we utilize the
deep neural network model proposed in [78]. Five appliances, Air conditioner (Air), EV, refrigerator,
stove, and dryer are investigated in this paper. Confusion matrix and F-score are used to evaluate the
performance of the adversary, see Table 3.

F−measure =
1

1 + (FN + FP)/(2TP)
(3)

Table 3. Confusion matrix.

Actual Positive Actual Negative

Predicted Positive True Positive (TP) False Positive (FP)
Predicted Negative False Negative (FN) True Negative (TN)

5.1.4. Differential Privacy as Privacy Guarantee

As a state of the art notion of privacy, differential privacy is proposed by Dwork in 2006 [64],
the adversary cannot distinguish two neighboring datasets with only one pair of data that are different.
Normally, differential privacy is achieved by adding noise into the data (e.g., Laplacian noise [64],
Gaussian noise [79], exponential noise). A (ε, δ) differential privacy is obtained, while ε denotes the
amount of noise added to the data, and δ represents the threshold to break the privacy.

Definition 1. (ε-Differential Privacy) A randomized function � satisfies (ε, δ) privacy PR for any two
neighboring datasets β and β′

PR[�(β) ∈ ξ] ≤ eεPR[�(β′) ∈ ξ] + δ (4)
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where ξ denotes all possible outcomes in range R, and δ is the possibility that the differential privacy is broken,
in this paper, we select 10−5 as δ.

Definition 2. (Global Sensitivity) For a random function f , the global sensitivity, S f , is the maximum
difference between the outputs of two neighboring datasets β and β′. S f also determines the overall noise to be
added into the DP mechanism:

Δ f = max
d(β,β′)=1

|| f (β) − f (β′)|| (5)

5.2. Dataset Description and Data Preprocessing

We adopted the Dataport [80] as the dataset. As the world’s largest residential electricity consumption
dataset, the dataset contains electricity data from 722 houses in the US. The interval resolution of the data
is 1 min. We delete the data from 11 pm to 6 am since fewer electricity activities occur during this period.

5.3. The High-Frequency Aggregated Channel Satisfies Privacy Requirement

In this case study, the privacy performance of the high-frequency aggregated data is evaluated.
As shown in Figure 5, with the increasing aggregation level, the curve of power consumption becomes
smoother, and the details of individual appliance signature become difficult to extract. The dataset
used for simulation is the Dataport [80] during 2018, the dataset contains both total power consumption
as well as the details of each appliance. Different aggregation sizes are investigated (1 house, 2 houses,
5 houses, 10 houses, and 50 houses, respectively). The following will evaluate the privacy loss from
both data sensitivity and algorithm sensitivity aspects.

Figure 5. Single house power consumption versus different aggregation sizes of power consumption.

5.3.1. Influence of Aggregation Size on Data Sensitivity

The data sensitivity of the aggregated smart meter is evaluated in this subsection. In this scenario,
we wanted to find out whether the adversary can still infer the individual’s power usage data Preal
from the high-frequency aggregated data PAGG. Figure 6 shows the value of MI and MSE with different
aggregation sizes. A reduction of the MI value is observed, from 1 at a single house to 0 at 10 houses,
and the MI value would remain 0. The MSE value increases from 0 to 104 kW2 when the aggregation
size changes from a single house to 100 houses. The result shows that when aggregation size AGG is
larger than 10 houses, Preal and PAGG are totally independent, and no knowledge about the Preal would
be revealed from PAGG.
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Figure 6. Mutual information and MSE of different aggregation sizes.

5.3.2. Influence of Aggregation Size on Algorithm Sensitivity

The algorithm sensitivity of the aggregated data PAGG is evaluated via NILMTK tool, the target
of the algorithm is inferring the appliance signature inside house i given aggregated load PAGG.
From Figure 7, when implementing NILMTK to a single house, the adversary can infer the appliance
signatures with F-score between 80–100%, presenting that the NILMTK has perfect performance.
When the aggregation size AGG reaches 2, the performance of NILMTK on most appliances such as EV,
fridge, stove, and dryer has been influenced greatly, especially the F-score of EV reduces from 100% to 0.
By continuously increasing AGG to 50 houses, the F-score of all appliances decreases to zero. From the
result, it is concluded that at least 50 houses need to be aggregated to blind the NILM adversary.

To summarize, when AGG is larger than 50, both privacy intrusion issues can be prevented.

Figure 7. F-score of the NILMTK performance on appliances from different aggregation sizes.

5.4. The TOU Tariff Channel Satisfies Privacy Requirement

The temporal resolution level is another vital parameter that influences the privacy loss. In this
case study, we take the data with 1 min interval as the Preal, and then downsample Preal to the lower
interval T by taking the average values of all sampling points of Preal duration interval T (in this study,
T ranges from 5 min to 1 month).
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5.4.1. Privacy Measure of Data Sensitivity

This scenario tries to find out whether the adversary can still infer the individual’s power usage
data Preal from the downsampled data, PT. Figure 8 shows the value of MI and MSE with the increase
of interval resolution T. A dramatic reduction in MI is observed when T increases from 1 min to
180 min (3 h), the reduction of MI then becomes gentle when T continuously increases. The F-score
drops to 0 when T reaches 1440 min (24 h) when only one data is recorded each day under this interval
resolution. In contrast to MI, the value of MSE increases from 0 to 12.8, showing that the increase of T
would reduce the knowledge of the original load curve.

Figure 8. F-score of the NILMTK performance on appliances from different interval resolution.

5.4.2. Privacy Measure of Algorithm Sensitivity

The algorithm sensitivity on smart meter data different interval resolution is evaluated in this
subsection, as shown in Figure 9. The F-score shows how the NILMTK adversary infers appliance
information from the overall power consumption. While the NILMTK has a good performance with
1-min interval resolution data (achieving an F-score of 80–100%), the F-score drops gradually when the
interval resolution increases. Taking air conditioner as an example, the NILMTK adversary achieves
an F-score with 83%, representing that most of the operation duration of the air conditioner is detected.
When interval resolution T increases to 1 h, the F-score drops to 42%. Furthermore, the F-score
decreases to 0 when T equals to 24 h, meaning that the NILMTK is blinded totally. Most importantly,
it is observed that even with 6-h interval resolution, the NILMTK achieves an estimation with 36%,
21%, and 20% F-score in EV, fridge, and dryer respectively, showing that a large interval (such as 6 h)
still cannot guarantee the privacy.

Based on the above two discussions, to completely reduce the privacy loss, a 24 h smart meter
data is required.
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Figure 9. F-score of the NILMTK performance on appliances from different interval resolution.

5.4.3. ES Can Verify Billing Correctness

A detailed proof is given in Appendix A. The private platform generates a bill to ES monthly
according to the stored TOU tariff and energy consumption, then the private platform sends a series
of commitments to ES. Given TOU record and bill, ES can open commitments and verify if the
commitments match the received bill.

5.5. Value-Added Service Channel Satsifies Privacy Requirements and Provides Differential Privacy to ES

Referring to the Demonstration in Appendix B, the value-added service channel provides a
(2 L

Nε
√

T, δ)-differential privacy guarantee to ES, hence the model parameters and training dataset for
the service is protected. As for consumer, since the service is implemented inside HAN and completed
by private platform, the private information never be shared with other parties.

5.6. Comparison of the Proposed System with Related Schemes

In this Subsection, a comprehensive comparison is made between the proposed smart metering
system and other related operational strategies (e.g., rechargeable battery, data aggregation, data
down-sampling) from the aspects of both functionalities and privacy protection. Referring to
Sections 2.3 and 2.4, the four compulsory functionalities: billings, TOU tariff, grid management
and operation, and value-added services. While the four privacy intrusion risks cover data sensitivity
and algorithm sensitivity, and can be further divided into fraud, real-time surveillance, behaviour
patterns identification, non-grid commercial uses of data four categories. These strategies cover
the private information by modifying the load curves or encrypting the consumer’s energy data.
And privacy evaluations employed in these would either assess the performance of data sensitivity (MI,
FI, KL-Divergence, etc.) or the performance of algorithm sensitivity (NILM as adversary). As shown in
Table 4, it is observed that most strategies settle both privacy intrusion problems, but some strategies
sacrifice conclusory functionalities: data distortion adds noise to the original data making the modified
data different from the real energy consumption, as a consequence the TOU billing is unavailable;
the data aggregation method adds dozens of smart meters’ data together and then sends it to the
utility, which also prevents the utility from obtaining individual bills’ information; and the data
down-sampling technique reduces the sampling interval of the smart meter, which would influence
grid management and value-added services. Moreover, HE and rechargeable battery approaches
require either extra expensive energy storage systems or extremely high computation ability, which is
unrealistic to roll-out. The proposed system enables different granularity data to be transmitted between
the smart meter and the utility/TP, depending on the required functionalities. What the adversaries
can obtain is high-frequency but aggregated data (substation/feeder level) and household-level but
down-sampled data, both these two information streams would not reveal useful personal information
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(see Section 6 for demonstration). In addition, instead of adopting a TTP, the proposed method installs
smart meter besides feeders or substations directly, so the worries about the privacy risks brought by
TTP are solved.

Especially, a Distribution Network Operator (DNO) would benefit from the proposed smart
metering system from both economic and technical aspects. As for economic benefits, the proposed
smart metering system provides a more cost-effective network for DNO. By monitoring the real-time
substation/feeder level demand, DNO has an insight view about the operation condition of the
distributed network. The improvement of the visibility help DNO implements better and prioritized
management to feeder voltage, and the energy loss is reduced as a result. Moreover, substation/feeder
level smart meters help DNO understand peak demand patterns of the local area, the DNO takes
advantages of these patterns when designing and planning networks. In this case, DNO can save the
unnecessary cost of networks and enable the network to operate just above the maximum peak load.
As for the technical aspect, the proposed smart metering system provide high-resolution electricity
data to DNO, DNO can utilize the collected data for following technical tasks: (1) Load forecasting
and feeder-level energy disaggregation. With feeder/substation level historical and real-time smart
meter data, DNO can forecast the variation of load demand accurately, and the load components
under the substation can be evaluated via ML or DNN algorithms, paving way for demand-side
management; (2) Batter manage distributed generation. The continuously increasing of the distributed
generation (such as solar panel and wind turbine) bring high reserve power flow to the low-voltage
(LV) network, which causes stability issues such as voltage spikes. The proposed smart metering
system help DNO identify the reserve power flow, and DNO can employ operation to maintain the
stability of the power system.

As for the cost of the proposed system, the system is mostly constructed based on existing
smart metering infrastructure, except for the installation of feeder/substation-level smart meters and
utilization of the private platform to store the historic energy data. The rechargeable battery/energy
storage system method requires each house to install a mini energy storage system or EV to flatten
the power consumption curve [7] and that they should change the battery frequently, while the cost
of each battery can reach thousands of pounds [81]. When we are comparing the cost at substation
scale (each substation contains hundreds of houses), the cost of rechargeable batteries is much higher
than the proposed system. As for encryption techniques, traditional encryption techniques such as
symmetric encryption can only guarantee the security of data transmission from the consumer side
to energy suppliers/third parties’ side. However, energy suppliers and third parties are potential
adversaries as well, the privacy of consumer’s data cannot be ensured. As for encryption methods
such as HE, they enable TP to process/manipulate data without knowing the detail of the data.
However, the disadvantages of HE is also obvious, HE requires extremely high computation ability
to encrypt/decrypt the data. Considering memory usage, 1 Mb of data results in more than 10 Gb of
encrypted data [82]. As far as computation, multiplication takes over 5 s per multiplication. The above
is just the cost of one smart meter when we move to the whole smart metering system it contains
millions of smart meters, the cost would be an astronomical figure.
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6. Conclusions and Future Work

6.1. Conclusions

In this paper, we have presented a smart metering scheme (strategy and model) to prevent privacy
risks (operational and ethical) raised by the smart meter. The proposed scheme has three communication
channels to enables power system management and operation, TOU billing, and value-added services
three functionalities. The different channel transmits different interval resolution data. As for privacy
aspects, we divide all privacy issues related to the smart meter into two categories, data sensitivity,
and algorithm sensitivity.

There are two main contributions of this paper to existing operational methods to deal with
privacy intrusion. Firstly, in the high-frequency aggregation channel, we adopt the distribution-level
substation as “aggregator”, the substation supplies power to over 400 houses in a light rural area
and over 7000 houses in a moderate urban area. In this way, we eliminate the risk of an inner attack
from the TTP. Secondly, we use the private platform as a data processor, only reporting billing details
monthly without frequently sending individual energy consumption data to the utility. Thirdly, privacy
preserving NILM algorithm is employed to the value-added services to protect both consumers and
ES’s privacy. Finally, an evaluation is implemented to the system which demonstrates the proposed
system satisfies all privacy requirements. From the evaluation, the conclusion is made a dataset with
aggregation size over 50, and interval resolution larger than 24 h can overcome both data sensitivity
and algorithm sensitivity.

6.2. Implications for Policy

Current smart metering systems always share the real-time household-level smart meter data with
the utility. Smart metering system policymakers (e.g., the Department for Business, Energy & Industrial
Strategy (BEIS) in the UK) should be aware of the trade-off between functionalities and privacy when
operating the system and should have a clear idea about the data granularity required by different
stakeholders. [83] suggests that the policymaker should classify the smart meter data into different
openness categories, ranging from open data (the data can be totally open to the public) to closed data
(private data that is confidential). In this case, the operators can maximize the value of data and minimize
the privacy and security issues. Different stakeholders (e.g., NO, ES, TP) should access different granularity
of smart meter data, while the granularity of the data includes the interval resolution, the aggregation
size, etc.

Policymakers could also find it difficult to sacrifice functionalities to protect individual consumers’
(i.e., households’) privacy. The importance of the smart metering system is to provide accurate real-time
reading and further reduce energy costs. Policymakers could carefully implement methods such as
noise-adding or load curve distortion. Although these methods would reduce the sensitivity of personal
information and thus risks of privacy intrusion, the usability and the value of the data would decrease
as well, potentially undermining the achievement of benefits for stakeholders. The proposed strategy
and model suggest that it might be possible to balance demands and benefits without compromising
household privacy; rather other opportunities could emerge if policy considers freedom from digital
surveillance and analysis as a creative situation. In this regard, and through the inclusion of adversaries
and aggregators as potentially valuable ‘stakeholders’ of smart meters, it might be possible to help
households comply with societal functionalities whilst retaining their sense of freedom and using it
creatively for other purposes than energy efficiencies.

6.3. Future Work

In this paper, only the overall smart metering system is proposed. However, the efficient of the
proposed smart metering system should be evaluated in practice, a pilot network with small groups of
residence to be built to validation the availability of proposed system. Secondly, the functionality for
grid management and operation in the proposed system should be verified via simulation. Thirdly,
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since we adopt multi-frequency communication channels in the proposed system, the noise would be
generated in data transmission; we would propose a further study to investigate the influence on the
quality of data. Finally, we could also devise participative methods to continue exploring the ethical
consequences of smart meters for different (digital and non-digital) stakeholders.
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Abbreviations and Notations

The following abbreviations are used in this manuscript:

TOU Time-of-use
HE Homomorphic Encryption
TP Third party
MPC Multi-party computation
GDPR General Data Protection Regulation
PRIME Powerline Intelligent Metering Evolution
PLC Powerline communication
NILM Non-intrusive Load Monitoring
ES Energy suppliers
NO Network operators
DCC Data and communications companies
DNN Deep Neural Network
MI Mutual Information
SCADA Supervisory control and data acquisition
HAN Home Area Network
WAN Wide Area Network
TTP Trusted third parties
Preal Active power of individual house
PAGG High frequency aggregated active power
PT Down sampled power consumption data
Emonth Monthly energy consumption of smart meter
Bmonth Monthly bills
Ed,t Half-Hourly Energy Consumption
πd,t Half-Hourly TOU tariff

Appendix A. Billing Verification with Zero-Knowledge Proof

After the bill is generated by the private platform, the ES should verify the correctness of the
bill. Zero-knowledge proof (ZKP) is a proof approach that can verify the correctness of the provided
information without revealing the details of the information [72,84]. ZKP protocol involves two
parties, provider (P) and verifier (V), P interacts with V to convince that a secret is true, but V has no
knowledge about the secret P wants to prove. Pedersen Commitment is employed in this verification
process [85]. A commitment with secret x is generated as c = Commit(x, r), and x is difficult to infer
from c, the commitment can be opened with c, x, r, marked as Open(c, x, y). The Open(c, x, y) would
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return True if c is the commitment of secret x, otherwise False is returned. They have homomorphic
features of commitments are important to verify the billing correctness:

Commit(x, y) ×Commit(m, n) = Commit(x + m, y + n) (A1)

Commit(x, y)n = Commit(x× n, y× n) (A2)

In the proposed TOU billing channel, the private platform is P, and the ES is V, Public Key
Infrastructure (PKI) assigns a series of commitments COM with the power consumption sequence
E = E1,1, E1,2, . . .Ed,t . . .E30,48, and random value sequences R = r1,1, r1,2 . . . rd,t . . .E30,48 to the
private platform:

Commitd,t = Commit
(
Ed,t, rd,t

)
(A3)

COM =
(
Commit1,1, Commit1,2 . . .Commitd,t . . .Commit30,48

)
(A4)

The private platform will receive the commitment c and energy consumption sequence E from
the smart meter, and the TOU tariff sequence TARIFF = π1,1,π1,2 . . . πd,t . . . π30,48 from the ES. So,
the private platform can calculate monthly price:

Bmonth =
30∑

d=1

48∑
t=1

πd,tEd,t (A5)

referring to (A1) and (A2), the ES multiplies COM with TARIFF to obtain the commitment of monthly bill:

CommitBill =
30×48∏

d=1,t=1

Commit
(
Ed,t, rd,t

)πd,t (A6)

By opening the commitment of monthly bill, ES can verify the correctness of the bill:

OpenBill = (CommitBill, Bmonth, rBill) (A7)

If CommitBill is really the commitment of Bmonth, ES accepts the generated bill, otherwise, ES reject
the bill.

Appendix B. Privacy-Preserving Deep Learning-Based NILM Algorithm

Deep learning is an important branch of machine learning, it is based on an artificial neural
network (ANN) with multi-layers (normally one input layer, one output layer, and several hidden
layers between the input and output), each layer contains a number of neurons. A neuron is a
mathematic function that computes the sum of weighted input and obtain nonlinear output via an
activation function (e.g., ReLU, Sigmoid, Tanh). Compared with a shallow ANN, a deep neural
network (DNN) contains several hidden layers, which enables much more complex computation tasks.
The expression for a typical N-layer DNN with input x is shown in (A8):

aN(x; θ1,...,N) = fN( fN−1(. . . f1(x,θ1),θN−1),θN) (A8)

where fi is the activation function of ith layer, and θi is the weight of ith layer.
A loss functionL is adopted to calculate the mismatch between ground truth y and aN. The purpose

of the DNN is to find the optimal parameters of the model θ∗ that minimize the L throughout the
whole training process:

L(θ) = 1
N

∑
(x,y)∈(X,Y)

L(y, aN(x;θ1,...,N)) (A9)

θ∗ ← argminθL(θ) (A10)
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Differential privacy-stochastic gradient descent (DP-SGD) provides ε-differential privacy to the
DNN model by adding noise to the SGD [74]. The hyperparameters of the model are shown in Table A1.
Different from conventional SGD, at each time to calculate the gradient, the gradient is clipped and
then a random Gaussian noise is added to the gradient. By adding the noise, a (ε, δ)-differential privacy
is enabled each step. Since the number of training steps are large (range from hundreds to thousands),
referring to the Composition Theorem stated as follow, the overall privacy guarantee is extremely large.

Theorem A1. (Composition Theorem) If f is (ε1, δ1)-differential privacy and g is (ε2, δ2)-differential privacy, then

f (D), g(D) is (ε1 + ε2, δ1 + δ2) −Di f f erential Privacy (A11)

To minimize the value of εtotal = Tε, δtotal = Tδ (T is the total training steps), a Moments
Accountant Theorem is proposed by M. Abadi, et al. [74]:

Theorem A2. The privacy preserving NILM algorithm provides a (2 L
Nε
√

T, δ)-differential privacy guarantee
to ES.

Proof of Theorem 1. A detailed proof is given in [74]. �

Algorithm A1. Privacy-preserving Deep Neural Network Algorithm

Input: Model input X = {x1x2 . . . xN}.
Initialisation of weights θ0;

For training time step t ≤ total training time T:
Computing Loss function L(θ) = 1

N
∑

(x,y)∈(X,Y)L
(
y, aN

(
x;θ1,...,N

))
Calculating Gradient gB = 1

B
∑

x∈B ∇θL(θ, x);
Clipping Gradient g(xi) =

g(xi)

max(1, ||g(xi)||2/C) ;

Adding Random Noise to the Gradient g̃(xi) =
1
L (
∑

x∈L g(xi) +N
(
0, Δ f 2σ2

)
);

Update Parameters after each training step t θt+1 = θt − αg̃t(xi).
End
Output: Output Result Model weights θ and privacy cost (ε, δ).

As shown in Figure A1, the target of the NILM services is to evaluate the individual appliance
consumption (output) from overall power consumption measured by the smart meter (input). Three
hidden layers are linked between input layer and output layer to extract features. DP-SGD algorithm
is applied in the neural network to calculate the gradient of each training step.

Figure A1. Privacy-preserving deep learning NILM model.
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Figure A2 shows the relation between the performance of NILM algorithm and privacy level
ε [73], the smaller the value ε, the better privacy it provides. It is found that without using DP-SGD,
the accuracy of NILM is near 90%. By increasing the noise scale σ (a decrease of ε), and the accuracy of
the algorithm decreases. So, the TPs should carful choose a noise scale that follows privacy-utility
trade-off to settle both services and privacy.

Table A1. Hyperparameters of the Model [74,86].

Hyperparameters Value Description

Learning rate α 0.05–0.3 The steps to adjust θ according to errors.

Hidden layers number 3 The total number of hidden layers.

Lot size L
√

N The group size for computing gradient.

Batch size B � L The number of training examples utilized in
one iteration.

Activation function f ReLU fReLU = max[0, z].

Gradient clipping norm C 1–10 Control the range of each gradient value, ensure
that no gradient is much different with others.

Noise Scale σ
√

2log1/δ
ε

The amount of noise added.

Figure A2. Privacy–accuracy curve of privacy-preserving NILM (Data from [73]).
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Abstract: The key advantage of smart meters over traditional metering devices is their ability to
transfer consumption information to remote data processing systems. Besides enabling the automated
collection of a customer’s electricity consumption for billing purposes, the data collected by these
devices makes the realization of many novel use cases possible. However, the large majority of
such services are tailored to improve the power grid’s operation as a whole. For example, forecasts
of household energy consumption or photovoltaic production allow for improved power plant
generation scheduling. Similarly, the detection of anomalous consumption patterns can indicate
electricity theft and serve as a trigger for corresponding investigations. Even though customers can
directly influence their electrical energy consumption, the range of use cases to the users’ benefit
remains much smaller than those that benefit the grid in general. In this work, we thus review the
range of services tailored to the needs of end-customers. By briefly discussing their technological
foundations and their potential impact on future developments, we highlight the great potentials
of utilizing smart meter data from a user-centric perspective. Several open research challenges in
this domain, arising from the shortcomings of state-of-the-art data communication and processing
methods, are furthermore given. We expect their investigation to lead to significant advancements in
data processing services and ultimately raise the customer experience of operating smart meters.

Keywords: smart metering; smart power grids; power consumption data; energy data processing;
user-centric applications of energy data

1. Introduction

After the invention of electricity meters over a century ago, billions of such devices
have been installed worldwide [1]. They are found in private households, commercial
buildings, industrial sites, and all other domains that require electrical energy consumption
to be tracked. Initially realized as rotating-disc meters (also known as Ferraris meters)
with mechanical displays, transferring the actual energy consumption data used to be
a labor-intensive manual process. However, with the rise of digital metering devices,
so-called smart meters, the collection of electrical power consumption at much more fine-
grained spatial and temporal resolutions has become possible. The digital communication
interface to report the collected data represents a major advancement over rotating-disc
meters in particular. As a result, meter data have started to become available at previously
unimaginable temporal resolutions on the order of seconds to minutes, on building- or
even apartment-level. Moreover, the resultant digital data can be easily transmitted to
online data centers for storage and further data processing. This opens up unprecedented
opportunities to analyze, compare, and combine such data and provide novel energy-based
services to customers and grid operators alike [2].
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Numerous research activities have accompanied the global roll-out of smart meters [3],
seeking to exploit the information content of the collected data to its fullest extent. By
leveraging and combining signal processing techniques from a wide range of domains
(digital signal processing, stochastic analysis, artificial intelligence, and many others),
various indicators and identifying features can be detected and extracted from smart meter
data. They allow for the realization of plentiful use cases that benefit consumers, utility
companies, or other stakeholders. It is noteworthy, however, that existing works have
focused mainly on smart meter data analytics methods to the benefit of the power grid
as a whole [4,5]. In contrast to this application domain, equally great potential lies in the
provision of user-centric services based on electrical consumption data. We dedicatedly
survey such use cases in this work, not least because we anticipate many more services
that provide direct benefits to electricity consumers to be developed in the near future.

This review of the state of the art in smart meter data analytics applications is targeted
to be a concise introduction that seeks to provide an overview of the range of user-centric
applications for smart meter data as well as highlighting promising future research avenues
in this domain. It is organized as follows. Section 2 sets the definition of smart meter
data used in this paper and highlights frequently used data (pre)processing steps. We
survey consumer-centric applications based on smart meter data in Section 3 including the
provision of electricity related user feedback, the recognition of patterns or anomalies, the
recognition of flexible loads, vital improvements in single home demand forecasting, and
finally the comparison and correlation of consumers based on their load profiles. Section 4
discusses the most widely encountered obstacles in developing customer-centric smart
meter data services such as missing standardization, mediocre-performing algorithms, and
privacy concerns. To surmount these obstacles, we formulate the corresponding research
challenges and finally conclude this review paper in Section 5.

2. Smart Meter Data Collection and Preprocessing

Metering the consumption of primary energy is commonplace and an everyday
experience for most people. When refueling the storage tanks of oil- or gas-powered central
heating systems or vehicles powered by combustion engines, measuring fuel quantities
is ubiquitous to be billed only for the amount added. Consumption metering has also
manifested itself for commodities beyond fuels, such as running water, district heating, or
pressurized air. However, none of these fields has seen the same enormous increase in data
analytics research as the field of electrical power consumption monitoring. In fact, besides a
single work on interpreting natural gas consumption [6], only the evaluation of water flows
has seen scientific consideration in related works [7–11], primarily seeking to infer user
activities based on the corresponding water demands. The reason for the surge of electrical
consumption analytics is simple: With the rise of smart meters, electrical consumption
data have become available in unprecedented temporal and spatial resolutions. This not
only makes longitudinal analyses much easier to conduct, but the high penetration of the
building stock with smart meters has also created the foundation to run data analytics
at scale. The large variety of electrical consumers [12,13], coupled with their frequent
use in everyday activities and the ensuing potentials to save energy, makes them viable
candidates for analysis. Before surveying possible use cases and their practical implications
in the following section, however, let us first revisit the definition of smart meter data and
delineate them from other ways of consumption measurements in electrical power grids.

As shown in Figure 1, smart meters are located at the entry-point of a building’s elec-
trical grid connection. All power flows between the (smart) power grid and the appliances
in the (smart) home can be captured at this point, thus smart meters can effectively lead
to benefits on both sides. Their primary use case lies in billing consumers for the exact
amount of electrical energy taken from the power grid or balancing between consumption
and generation of prosumers, i.e., grid-connected entities with local generation facilities,
respectively. Smart meters are thus distinct from both customer-side monitoring systems,
such as circuit-level or even plug-level power monitors, which rarely exhibit the same
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accuracy as smart meters but rather serve as data sources for smart home installations or
Building Management Systems (BMS). Likewise, monitoring devices exist in transmission
and distribution grids, yet their data can generally not be unambiguously attributed to
a single customer. Coupled with their generally smaller number when compared to the
scale at which smart meters have been rolled out, we also exclude such grid-level monitors
(such as phasor measurement units) from our analysis in this paper. We specifically wish to
highlight, however, that the presented data processing mechanisms and correspondingly
enabled use cases can likely also find application on such devices or smart meters for
quantities beyond electrical energy.

Generation Transmission Distribution Building-level Appliance-level

Smart meter

(Smart) power grid (Smart) home

Figure 1. Location of smart meters within the electrical power grid (icons by Icon Fonts; CC BY 3.0).

Smart electricity meters represent the state-of-the-art solution to collect, process, and
forward load information to all stakeholders involved. Through direct connections to the
Internet, or indirect connection using smart meter gateways [14], access to metered data is
ubiquitously possible. Incentive schemes and policymakers in many countries furthermore
contribute to the increasing market penetration of smart meters. This enables numerous
user-centric use cases beyond billing, which we survey and categorize in Section 3. Before
documenting how the full potential of smart meter data can be unleashed, we would
like to note that the enablement of these use cases frequently relies on data preprocessing
steps to isolate characteristic features from the stream of raw measurements provided by
smart meters.

2.1. Data (Pre-)Processing

Data collected by smart meters are not always directly usable for the provision of
user-centric services. At least some preprocessing steps are generally needed to create a
uniform and error-free foundation for data analytics. On the one hand, many services rely
on processed input data, such as a building’s energy consumption during a specific period,
rather than raw readings of electrical voltage levels and current flows. On the other hand,
errors introduced during the sampling process, the analog-to-digital conversion step, and
the transmission over communication channels raise the possibility of errors and signal
falsifications that need to be eliminated. Proper preprocessing thus serves to transform the
collected data into a unified and interpretable format, based on which user-centric services
can be provided reliably. To establish the foundation for the data preprocessing steps
required to realize the use cases surveyed in Section 3, we list typical data preprocessing
steps preceding the actual data analysis as follows.

First, obviously erroneous values are generally eliminated. These primarily occur
due to faulty storage devices, unreliable communication channels, or buffer overflows
on the transmitting or receiving devices. Readings that do not represent valid number
representations and infeasible values (e.g., current flows exceeding the nominal circuit
breaker limits by a large factor) are thus removed. Unless a long sequence of wrong data is
being reported, the imputation of values and the interpolation of gaps in the sampled data
(e.g., by using the impyute library [15]) is an effective means to prepare the data for further
processing.

The fundamental mode of operation of smart meters is to measure raw voltage (V) and
current (I) waveforms at sampling rates that allow for the computation of Root Mean Square
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(RMS) values, VRMS =

√√√√ 1
T

t0+T∫
t0

V(t)2dt and IRMS =

√√√√ 1
T

t0+T∫
t0

I(t)2dt, with T denoting the

duration of one or more mains periods and V(t) and I(t) being the voltage and current
waveform signals, respectively. However, raw data are rarely communicated beyond the
local system boundary due to their sheer size and their highly redundant information
content [16]. Instead, smart meters typically process the raw samples locally and return
one or multiple of the following parameters: RMS voltage (VRMS), RMS current (IRMS),
phase angle between voltage and current (cos Φ), active power (P), reactive power (Q),
apparent power (S), and/or the consumed electrical energy (E). In multi-phase electrical
installations, parameters are either returned individually for all phases or merely available
in an aggregated fashion. If a particular parameter is required but not directly provided by
the smart meter, it may still be possible to calculate it from the provided parameters; this is,
again, a part of the preprocessing step.

To demonstrate the variability of data reported by practical smart meter deployment,
Table 1 provides a brief overview of the attributes, sampling rate, and communication
interface of smart meters and custom-built meters, which have been used to record publicly
released electrical consumption datasets. The diversity of the provided data highlights
why general data preprocessing is required to create a uniform data representation to
realize consumer-centric use cases independently of the specific underlying smart meter
hardware.

Table 1. Metering devices used and parameters provided in a selection of electricity datasets.

Dataset Smart Meter Model Captured Parameters Sampling Rate Interface

Dataport [17] EG3000 + EG201X a VRMS, IRMS, P, Q, S, cos Φ 1 Hz Modbus
iAWE [18] EM6400 b VRMS, IRMS, P, cos Φ 1 Hz Modbus
AMPds [19] Powerscout18 c VRMS, IRMS, P, Q, S, E, cos Φ 1/60 Hz Modbus
RAE [20] Powerscout24 c VRMS, IRMS, P, Q, S, E, cos Φ 1 Hz Modbus
ECO [21] E750 d VRMS, IRMS, P 1 Hz SyM2

REDD [22] custom design V, I 16.5 kHz USB
SustDataED [23] custom design V, I 12.8 kHz USB
BLOND [24] custom design V, I 250 kHz TCP

a eGauge. b Schneider Electric. c DENT Instruments. d Landis + Gyr.

Table 1 highlights one more aspect of heterogeneity in smart meter data, which is also
confirmed in [25]: the temporal resolution at which the parameters are being reported.
Reducing the rate at which values are being made available, i.e., downsampling smart meter
data, is usually trivial and computationally lightweight, as long as the original data have
undergone low-pass filtering to avoid aliasing artifacts. Commonly used methods to
downsample data include subsampling, averaging, and interpolation [26,27]. Conversely,
increasing the temporal resolution of data is not as trivial, but it may be required for
smart meter data reported at very low sampling rates. Interpolation techniques such as
super-resolution [28] have been shown to achieve good performance during preliminary
tests on the Dataport [17] dataset. As the sampling rate is frequently limited by the smart
meter’s communication channel and processing power, finding the optimal sampling rates
for various electricity load analysis algorithms has been investigated in numerous works
(e.g., [29–32]. Similarly, lossy compression mechanisms [33,34]), and pattern recognition
methods [16] have been investigated as candidates to maintain high temporal resolutions
while reducing the extent of exchanged data.

2.2. Extracting Higher-Level Information

While inspecting conditioned smart meter data may be of interest for tech-savvy
users or grid operators, it has been shown to provide little benefit to the average con-
sumer, according to Serrenho et al. [35]. Consumer relevant information such as provided
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in Section 3 must first be inferred from the consumption data by extracting higher level
information. This includes signal features, transient events, or individual appliance con-
sumption data. Calculating these features from the consumption data is a widely used
preprocessing step that goes beyond the data cleansing and adaptation steps described
in Section 2.1. Instead, it is used to eliminate redundant information and only retain the
most informative features about the consumption data. Besides this, it also generally
leads to implicit data compression, e.g., to utilize the available communication channels
optimally or to reduce the input size for machine learning algorithms. Domain experts
have introduced and compared numerous features in related works [36–38]. For example,
Kahl et al. [36] evaluated 36 features such as the voltage and current trajectory or the harmonic
energy distribution for their suitability to serve as distinctive higher-level features for the
enablement of user-centric services. Because of their virtually ubiquitous usage, we survey
a selection of methods to extract higher-level features from smart meter data as follows.

Many user-centric use cases for smart meter data rely on the analysis of user-induced
events, e.g., when electrical appliances are being switched on or off, or their mode of
operation is changed. In Table 2, we summarize the number of such power events found in
a selection of publicly available electricity datasets. The average of the tabulated values is
approximately 275 events per day, i.e., approximately one event every 6 min. As such, the
Switch Continuity Principle (SCP), first introduced by Hart [39] and confirmed to hold by
Makonin [40], states that the total number of events is small compared to the number of
samples in the overall signal. In other words, events can be assumed to be anomalies in the
signal, which makes it possible to utilize a range of known methods for their detection [41].

Table 2. Summary of the number of events detected in publicly released electricity datasets.

Dataset # Events Timespan Source of Event Count

UK-DALE [42] 5440 7 days Pereira and Nunes [43]
REDD [22] 1944 8 days Völker et al. [44]
REDD [22] 1258 7 days Pereira and Nunes [45]
BLUED [46] 2335 8 days Anderson et al. [46]
FIRED [47] 4379 14 days Völker et al. [47]
BLOND-50 [24] 3310 30 days Kahl et al. [48]
AMPds [19] 651 7 days Pereira and Nunes [45]
SustDataED [23] 2196 11 days Pereira et al. [49]

In practice, event detection algorithms span the range from computationally lightweight
solutions (e.g., using thresholds between successive power samples [39,50,51]) to the appli-
cation of probabilistic models and voting methods [52–54]. More recently, the application
of even more complex filters to electrical signals was proposed in order to suppress minor
fluctuations while emphasizing actual events. Trung et al. [55] used a CUmulative SUM
(CUSUM) filter to clean the power signal, while Wild et al. [56] applied a Kernel Fisher
Discriminant Analysis (KFDA) on harmonics of the current signal. De Baets et al. [57] used
spectral components of the current signal which have been smoothed using an inverse
Hann window in the Cepstral domain, and the method of Cox et al. [58] solely uses the
voltage signal and extracts the spectral envelope of the first and third harmonics.

Data collection from smart meters implies that data are only available on the scale
of buildings or apartments (cf. Figure 1). Consequently, the energy consumption of in-
dividual electrical consumers is not directly identifiable within the reported (aggregate)
data. The concept of Non-Intrusive Load Monitoring (NILM) thus refers to the process
of disaggregating a composite electrical load into the contributions of all individual con-
sumers. NILM methods frequently utilize machine learning techniques or neural networks
to this end [59–69]. This makes their execution on current-generation smart meters largely
impossible. However, it is generally possible to send collected data to external entities that
offer the required storage and processing capabilities to perform NILM and thus provide
appliance-level consumption values. As will become apparent in Section 3, several use
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cases can benefit from the availability of appliance-level data. The use of NILM, which
comes at the advantage of requiring no additional metering devices to be deployed, is thus
a widely usable data preparation method to enable additional user-centric use cases when
smart meter data is available.

3. Consumer-Centric Use Cases of Smart Meter Data

While it is crucial for the operators of electrical power grids to understand the load
and generation characteristics [5] in order to ensure grid stability and avoid power outages,
electrical parameters can also be used to provide services to the benefit of the customers.
Figure 2 depicts the primary services that can be realized when smart meter data and the
corresponding higher-level information are available. We provide more details about the
enabled use cases as follows.

Event detectionNILM

Load pro lingLoad forecastingUser feedback
Demand-side 

exibility
Pattern and 

anomaly detection

Smart meter
data

Electricity production
data

ng …

…

Data 
(pre-)processing

Figure 2. Overview of consumer-centric services enabled by smart meter data and their proper data
(pre-)processing. Dashed lines indicate the possible existence of other potential (pre-)processing steps
or use cases beyond those covered in this work.

3.1. Providing User Feedback

One of the vital value propositions of smart meter deployments is providing near
real-time and historical information on electricity consumption to the customers. Having
access to such information is expected to result in the adoption of more sustainable con-
sumption behavior, and thus to ultimately lead to energy savings [70–72]. Feedback on
electricity consumption has been provided in numerous ways, including In-Home Displays
(IHDs) [73,74], ambient displays [75,76], web and mobile applications [77–79], and public
displays [80,81]. While the majority of the works focused on providing information only to
the home residents, other studies also looked at the potential of social pressure by enabling
direct comparisons between individual consumers or consumer groups [82,83].

A meta-review of 118 studies that involved providing feedback on electricity con-
sumption is presented in [35]. In general, the surveyed studies report that feedback can
reduce a household’s energy consumption from 5 % to 10 %, particularly in cases where the
deployed systems are able to provide consumption information of individual appliances.
The potential of feedback to energy savings was also confirmed in [84], where 12 studies on
the efficacy of disaggregated feedback were examined. Again, an average energy reduction
of 4.5 % was reported across the surveyed studies. Even though there are no reports of
long-term results on how to sustain the accomplished energy savings, many works have
identified that, without proper engagement strategies, once habituation sets in (after as little
as four weeks), there is a considerable loss of interest from the end-users in the feedback
devices (e.g., [85–88]). However, it is evident from the literature that, through visualizing
smart meter data in a timely and intuitive way, consumers become increasingly literate in
understanding their domestic energy consumption, and in particular on how unintentional
behavior can lead to unnecessary consumption [89,90].

With increasing distributed Renewable Energy Sources (RES), such as rooftop Photo-
voltaic (PV) installations, it also becomes increasingly important to aid users in aligning

318



Energies 2021, 14, 719

their consumption habits to their local generation [91,92]. As a result of this trend, en-
ergy feedback has received renewed interest to enable prosumers, i.e., consumers with
local production facilities, to interact with the power grid optimally. Even at larger scales
(e.g., smart microgrids [93]), the emergence of Peer-to-Peer (P2P) energy markets requires
prosumers to have an understanding of the saving potentials and the consequences of
their actions, both of which can be conveyed through feedback systems [94–96]. One
such use case is practically studied in [97], confirming that user feedback was consistently
utilized throughout the entire duration of the study (4.5 months) in order to make or defer
consumption decisions.

3.2. Recognizing Patterns and Anomalies

Finding patterns that do not conform to the expected behavior indicated through
abnormal electrical energy consumption is another consumer-centric use case for smart
meter data. Even though detecting anomalies in smart meter data is challenging, signal
processing and machine learning techniques can efficiently be utilized for this purpose.
For example, detecting anomalies in smart meter data can be used to enable Ambient
Assisted Living (AAL), where consumption patterns are indicative of the Activities of
Daily Livings (ADLs) executed by the residents [98–101]. Detecting unusually short or long
ADLs, or unexpected ADLs sequences, in general, are often suitable indicators of unusual
user behavior. Knowledge of such situations can help to alert relatives early and thus
contribute to safety and well-being [102]. Several different algorithmic approaches have
been used to accomplish the recognition of patterns and anomalies. Clement et al. [98]
presented a semi-Markov model that describes the daily use of appliances to detect human
activity/behavior from smart meter data. In [99], smart meter data are analyzed to identify
the behavioral patterns of the occupants, and Bousbiat et al. [100] proposed a framework
for detecting abnormal ADLs from smart meter data.

Further use cases based on the application of machine learning for anomaly detection
in smart meter data have emerged and manifested themselves in areas such as energy
theft detection [103,104], detecting inaccurate smart meters [105], and detecting abnor-
mal consumption behavior in general [106]. In [104], two anomaly detection schemes
for detecting energy theft attacks and locating metering defects in smart meter data are
presented. The work by Sial et al. [106] investigates heuristic approaches for identifying
abnormal energy consumption from smart meter data, based on a combination of four
distinct power-, energy-, and time-related features used in conjunction to detect anomalies.
An even more sophisticated approach was presented by Liu et al. [105], who applied a deep
neural network in detecting inaccurate meters to prevent the unnecessary replacement of
smart meters, thus increasing their service life span. Lastly, the detection and quantifica-
tion of anomalies in smart meter energy data play a crucial role in assessing the energy
quality, which is essential for detecting faulty appliances, malfunctioning appliances, and
non-technical losses [107–110].

3.3. Enabling Demand-Side Flexibility

Demand-side flexibility (DSF) refers to the portion of electricity demand that can be
reduced, increased, or shifted within a specific time window. DSF plays a crucial role in
the smart grid by facilitating the integration of RES and reducing peak load demand [111].
Traditionally provided by industrial consumers (e.g., refrigerated warehouses and steel
mills [112]), flexibility can also be provided to operators by domestic and commercial
consumers through controllable appliances and Electric Vehicles (EVs), e.g., by triggering
them to change their consumption profiles [111]. While each consumer is only able to
supply a limited amount of flexibility, once controllable consumers (and RES) of multiple
dwellings are aggregated, their flexibility can add a significant volume of DSF to the grid.
Ultimately, this leads to direct and indirect benefits to a larger group of consumers. On the
one hand, it enables an additional revenue source by offering controllable loads to help
make demand and supply meet. On the other hand, balanced power grids have a more
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favorable eco-footprint and an overall lower cost of generation, resulting in cheaper energy
tariffs. Nevertheless, this flexibility is highly dependent on consumer behaviors, which
correspondingly affects their willingness to provide flexible loads [113]. In this context,
smart meter data are crucial to understand the potential of device-level flexibility on the
consumer’s premises [114–116].

In [114], the authors presented one of the first works that analyzed appliance-level
consumption data in order to determine the device’s flexibility and its relation to device
operations and usage patterns. The work shows that a significant percentage (50 % on
average) of the total energy demand for a house can be considered to provide flexibility.
The results of a pilot study in Belgian households are reported in [115]. Five types of
appliances available within residential premises were considered (washing machines,
tumble dryers, dishwashers, domestic hot water buffers, and EVs) and assessed concerning
their availability for DSF. The authors concluded that, except for EVs, the DSF potential
is highly asymmetrical among appliances, possibly associated with user routines. The
authors also estimated that EVs and water heaters have a flexibility potential that is
much greater than that of wet appliances. In [116], the authors proposed and evaluated a
data-driven approach to quantify the potential of flexible loads for participation in DSF
programs. Their approach considered EVs, wet appliances (dryer, washing machine, and
dishwasher), and Air Conditioning Unit (AC) loads and was evaluated on data from
over 300 households from the Pecan Street project [117]. Analogous to previous works’
results, the study confirms that variations in providing flexibility are considerable among
households. Besides this, the results show that EVs and ACs provide higher levels of
flexibility compared to wet appliances. As can be observed, in the context of DSF, EVs
are of particular interest to the end-users since beyond sustainable transportation, they
provide additional benefits like charging flexibility and a non-stationary energy storage
solution [118,119].

While these and other works (e.g., [119–121]) assume that individual appliance
consumption profiles are readily available, other researchers tried to assess the flexi-
bility of domestic loads relying on NILM (cf. Section 2.2) to extract their individual
consumption [122–124]. The main motivations for this approach are twofold: (1) avoid the
costs of instrumenting the household with sensors in the individual appliances; and (2)
protect the consumer privacy by not directly revealing data about individual appliances
consumption (see Section 4.3). Ultimately, the obtained results show that it is possible
to estimate and predict device-level flexibility from NILM outputs, even though a high
disaggregation performance is necessary to reduce the uncertainty of the DSF estimation.

3.4. Forecasting Power Demand and Generation

The level of detail made available by smart meters opens several opportunities for
load forecasting at the individual building level. Forecasting the electricity consumption
using smart meter data plays a significant role in energy management for end-customers
by enabling the possibility of linking current usage behaviors to future energy costs [125].
Similarly, anomaly detection (as discussed in Section 3.2) is often closely related to the
comparison of actual and predicted consumption (or generation) behavior; as such, effi-
cient and accurate forecasting techniques are required. Forecasting individual household
demands is particularly challenging, however, due to many contributing factors. These
include, but are not limited to, user behavior, appliance ownership, the considered time
period(s), and/or external factors such as the prevailing weather conditions.

Against this background, researchers have proposed many forecasting approaches.
For example, in [126], four of the most widely used machine learning methods, namely
Multi-Layer Perceptron (MLP), Support Vector Machine (SVM), Classification and Regres-
sion Tree (CART), and Long Short-Term Memory (LSTM), are used to provide forecasts of
both the daily consumption peak and the hourly energy consumption of domestic buildings
using historical consumption data. It was found that MLPs and especially LSTM-based
approaches can significantly improve the short term (24 h) demand forecasting as these
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models can capture the underlying non-linear relationships best. Several authors have tried
to incorporate information from external factors into the forecasting algorithms. For in-
stance, Amin et al. [127] proposed three different models Piecewise Linear Regression
(PLR), Auto-Regressive Integrated Moving Average (ARIMA), and LSTM to forecast the
electricity demand of a building leveraging smart meter data and weather information.
A similar approach was followed by Gajowniczek and Ząbkowski [125]. However, in-
stead of considering the effect of weather details, the authors focused on enhancing the
forecasting algorithms by considering the impact of the residents’ behavior patterns. The
general consensus is that the combination of historical usage data and external features
such as weather and household behavior can provide significant improvements to the
forecasting results. Furthermore, these authors also confirm the suitability of LSTM models
for short-term (24–48 h) forecasting. The work by Dinesh et al. [128] demonstrates a novel
method to forecast the power consumption of a single house based on NILM and affinity
aggregation spectral clustering. The presented work incorporates human behavior and
environmental influence in terms of calendar and seasonal contexts to improve individual
appliances’ forecasting performance. The house-level forecast is thus obtained by the
aggregation of the individual appliance-level forecasts.

Prosumers in general, but mainly when they own micro-production units (e.g., PV or
wind generators) and Energy Storage Systems (ESS), can use forecasting to optimize and
manage these resources. On the one hand, consumption forecasting techniques can help
users to anticipate their future energy needs, so they can plan their local generation and
optimize the operation of their ESS accordingly. On the other hand, users can also support
the operation of the electricity grid by taking control actions to balance the electricity supply
and demand while maximizing self-consumption and profiting from energy arbitrage (i.e.,
trading electricity by purchasing energy at times the price is low and selling it when it is
expensive) [129,130]. For example, Hashmi et al. [129] proposed an algorithm to control
the ESS in the presence of dynamic pricing, whereas Hashmi et al. [130] optimized the ESS
to maximize the PV self-consumption in a scenario where there is no reward for feeding
energy into the power grid. In either case, forecasting the future demand is necessary
to decide when to charge or discharge the ESS. Particularly, if feeding surplus power
into the power grid is not rewarded [130], an understanding of the residual load (i.e.,
the difference between consumption and production) is necessary, generally based on
forecasts of the local production and demand, in order to avoid unintended grid injection
or PV curtailment. Intuitively, these optimizations are sensitive to forecasting errors.
For example, Kiedanski et al. [131] showed that when the optimizations are performed at
higher sampling rates (every 15 min in this work), the negative implications of forecasting
errors are limited. In contrast, the authors stated that lower sampling rates (e.g., a 12 h
forecasting horizon) require almost perfect forecasts to unleash their full potential to
optimize ESS operations.

With the increasing number of EVs sales and their high power consumption during
charging, it is also necessary to forecast their charging needs, as this will allow for better
scheduling and capacity planning [132,133]. Ai et al. [133] attempted to forecast house-
hold day-ahead charging needs using machine learning ensembles. Such forecasts gain
particular importance if the EV owners are also prosumers, since in these cases their EVs
also function as an ESS. The ability to increase self-consumption and reduce peak demand
using EVs was studied by Fachrizal and Munkhammar [134], who showed that, in a single
(Swedish) household, the self-consumption could be increased up to 8.7 %. However, this
result was obtained in the presence of perfect load demand and PV production forecasts,
which again raises the question of sensitivity to forecasting errors. In sum, as more research
works indicate that in general EV owners favor domestic over public charging infras-
tructures (e.g., [135–137]), it becomes evident that accurate load demand and production
forecasts will gain increasing importance in the near future.
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3.5. Load Profiling

Standard load profiles [138], i.e., averaged models of customer energy consumption
over time, have traditionally found their application in power grid capacity planning.
However, standard load profiles are only accurate when considering many connected
customers in conjunction and generally do not adequately reflect individual consumers’
consumption characteristics. Smart meters can mitigate this situation and allow for cap-
turing load profiles available in an unprecedented resolution. The enabled understanding
of energy consumption profiles empowers users not only to better recognize how much
energy they consume but also to compare their consumption profiles to the profiles of
other dwellings [139]. This gives households greater control of their energy consumption
and enables the adoption of more energy-efficient, and responsible behaviors [139–142].
Instead of considering the load profiles of buildings individually, it is often sufficient to
know the category that better describes the dwelling. In other words, by categorizing the
electrical power consumption, it is possible to approximate the load profile of a house-
hold sufficiently. It is therefore not unexpected that most of the existing load profiling
techniques rely on clustering algorithms, such as k-means [143–145], fuzzy k-means [143],
hierarchical clustering [143,146], Self-Organizing Maps (SOM) [143], neural networks-
based clustering [147–149], Gaussian Mixture Models (GMM) [150,151], Density-Based
Spatial Clustering (DBSCAN) [152], and agglomerative clustering [153]. Due to the high
stochasticity and irregularity of household-level consumption, clustering techniques that
analyze the variability and uncertainty of smart meter data have also been considered in the
literature [150,151]. For example, the work by Lee et al. [143] proposes a two-stage (feature
extraction and load pattern identification) k-means clustering for customers segmentation
in residential demand response programs.

Load profiling results have been documented to find use in supporting and enhancing
continuous energy audits in buildings that currently require multiple measurements [61,154].
Furthermore, the insights generated from load profiling can be used to enhance many
other use cases of smart meter data. Eco-feedback techniques often utilize load profiles,
e.g., to compare the consumption of individual days or different homes (see Section 3.1).
For instance, in [141], an algorithm for computing the carbon footprint derived from load
curves is presented. Likewise, load profiles can be used along with load demand forecasts
(see Section 3.4) to generate optimal schedules of home appliance usage. This is presented
in [155], in which a NILM-based energy management system was developed to schedule
controllable loads taking into account customers’ preferences and overall satisfaction.

In summary, load profiling at the end-user level enables and potentiates consumer-
centric services. Furthermore, as load profiling can play an essential role in assisting the
smart grid, it will become even more relevant to the individual consumer when Distributed
Energy Resources (DERs) and local energy communities become ubiquitous and require
the active participation of citizens [156].

4. Open Research Challenges

The range of customer-centric use cases for smart meter data contributes to numerous
areas of daily living. Besides allowing for monetary savings, grid-friendly appliance
scheduling, and the detection of atypical and anomalous appliance operations, it has been
shown to serve as the enabling technology for AAL as well as the integration of RES, ESS,
and EVs. Many of the underlying research challenges have been solved to a satisfactory
degree to date, and corresponding commercial solutions are already on the market. During
our survey of user-centric applications in Section 3, however, we identified obstacles to the
enablement of the services, which potentially impact their widespread acceptance. We thus
summarize the most important observed challenges as follows.

4.1. Standardized Hardware and Data Formats

As stated in Section 2, there are no universally acknowledged definitions of: (1) the
parameters to be reported by smart meters; (2) the temporal resolutions at which they are
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being made available; and (3) the interface using which service providers can access these
data. As such, delivering the use cases to customers generally requires non-negligible
adaptation efforts. A widespread approach to achieve compatibility nowadays is when
the same company that rolls out and operates the smart meters also acts as the service
provider. This “vendor lock-in”, however, severely hampers the scale of services that can
be provided, as well as their interoperability with other external services. Thus, creating an
open ecosystem in which different stakeholders can synergistically combine their (often
complementary) components to create an environment that leverages the full potential
of smart meter data is currently not possible from a technological point of view. As one
first step towards overcoming this obstacle, the International Electrotechnical Commission
(IEC) has established a dedicated technical committee (TC 85) for the standardization of
equipment, systems, and methods for the analysis of steady-state and transient electrical
quantities. One of the committee’s publications, DIN IEC/TS 63297, is a project report on
“Sensing Devices for Non-Intrusive Load Monitoring” [157], seeking to unify the access
to the required data from smart metering devices. Despite the ongoing standardization
efforts, however, solutions that cater to the needs of metering and consumer-centric service
providers alike remain to be found and widely adopted.

Besides the limited access to the electrical parameters measured by a smart meter, a
second major impediment to the roll-out of services is the unavailability of a local execution
environment for data processing code. This is particularly relevant to address privacy
considerations, as detailed in Section 4.3. Most smart meters do not offer possibilities to
run code apart from the device’s (metering) firmware. While this is generally intentional,
to prevent tampering with the reported data (e.g., to avoid electricity theft, cf. Section 3.2),
it does not allow any of the user-centric services to be executed directly on the smart meter.
As technology advances and embedded devices are gradually becoming more and more
potent in processing power and the ability to run user code in dedicated sandboxes, the
provision of an execution environment on smart metering devices appears as a promising
and potentially groundbreaking approach. Retrofitting existing and coming smart meter
generations will represent a challenge, given the expected operational life of smart meters
(often more than a decade) and, more importantly, the expected evolution of software
frameworks in the same period. One viable solution is to offload these services to dedicated
data processing devices, such as local set-top boxes, edge-clouds, and Multi-access Edge
Computing (MEC), or cloud computing in general. The widespread adoption of 5G
networks (and more recent developments, such as 6G) will allow sending data of even finer
temporal resolution to external processing devices. It can be expected that communication
will no longer be the bottleneck, thus the execution of services can be distributed across
the aforementioned range of possible processing devices in order to optimize consumer-
specific expectations to reliability, privacy, and real-time needs. However, this requires
standardized interfaces, (real-time) transport protocols, and data formats aligned with our
above observations.

4.2. Innovative Consumer-Centric Data Processing Algorithms

Smart meter data analytics services are frequently based on the combination of data
preprocessing with novel methods to find correlations, patterns, and outliers in the available
input data. Although the concept of electrical load signature analysis has been investi-
gated since 1985 [158], the underlying preprocessing methods (e.g., event detection and
NILM) are still not perfect and yield mediocre disaggregation performances in certain
settings [159]. Sometimes this limitation can be circumvented by enriching electrical data
with other sensed parameters (e.g., ambient conditions) and combining the data collected
from different dwellings. However, only when the full amount of information can be
extracted from smart meter data, the complete spectrum of user-centric services can be
realized. Increasing the data processing methods’ reliability and accuracy is crucial for
widespread user acceptance and remains a significant future research challenge.
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However, the sole availability of a range of data processing services does not nec-
essarily lead to their ubiquitous adoption. Rather, the selection of useful and necessary
services is expected to differ significantly between users. Fitting all smart meters with the
same processing methods will thus not only incur the excessive and unnecessary use of
computational power but still not serve all customers’ needs equally well. Ultimately, we
expect customers to utilize services depending on their situations. This implies that they
need to selectively decide which of the services are of relevance to them. Thus, helping
users identify the required services and understand the privacy implications when sharing
data with the service providers (cf. Section 4.3) is crucial. This is also well-aligned with
Section 4.1, confirming that a more flexible configuration of services and corresponding
data sources are needed.

Lastly, we would like to recall our statement from Section 2, in which we emphasize
the enormous potential of analyzing electrical signals for the provision of user-centric
services. In fact, smart meter data are primarily related to electrical quantities, for whose
interpretation an in-depth understanding of electrical engineering and power engineering
is required. Many of the use cases surveyed in Section 3 rely on the interpretation of
time-series data (i.e., sequences of measurements), which, in turn, calls on the expertise
of mathematicians and signal processing experts. Simultaneously, experts in artificial
intelligence and machine learning (e.g., computer scientists) can contribute yet different
data analytics methods, especially when the volume of data to process is enormous. Smart
meter data analytics is thus not only a cross-domain challenge, but also transdisciplinary
research communities are inevitable to apply the state-of-the-art methods on smart meter
data and thus enable accurate service provision. Finally, we expect that the same methods
that apply to smart meter data can also find their application to other metered commodities,
such as water or natural gas.

4.3. User Privacy Protection

The collection of smart meter data at high temporal resolutions bears the enormous
potential to provide services to the electricity customers’ benefit. Simultaneously, however,
the appropriate protection of collected data against unauthorized third parties’ access
is strongly needed. The reason is straightforward: Any processing method applicable
to captured data (cf. Section 3) can be equally well applied by an attacker, seeking to
profile a building’s inhabitants (see Section 3.5) or learn about their habits. Often, this
includes learning about usual sequences of household activities from consumption profile
(as discussed in Section 3.2). Solutions to ensure the secure transmission of smart meter
data and adequate user privacy preservation are thus indispensable.

One method to circumvent security and privacy implications from the transmission of
smart meter data to centralized processing systems (e.g., cloud computing) is their purely
local processing. Due to the high resource requirements of many (pre-)processing methods
and services (see, e.g., Section 2.2), however, this approach cannot always be applied.
Particularly, when the data processing methods depend on parameters unavailable locally,
corresponding computations must be executed on remote systems. Collaborative data
processing approaches, i.e., the local extraction of features and their forwarding (devoid
of most sensitive information) to remote data processing centers, represent an important
future research direction. As a side effect, this also increases the services’ adherence to the
“data minimization” and “purpose limitation” requirements of data protection laws (such
as the European Union’s General Data Protection Regulation (GDPR) [160]).

When users cannot exert full control over the data their smart meters report, cover-
ing up characteristics in smart meter traces to hide user actions/intentions may also be
necessary to protect their privacy. Current approaches mostly realize this functionality
employing operating controllable generators or consumers to obfuscate the operation of
sensitive appliances (e.g., [161,162]) or by intentionally falsifying reported data [27]. The
potentially negative impact on the achievable services based on smart meter data, however,
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needs to be weighed up individually by clients and their willingness to pay the “cost of
privacy” [163].

5. Conclusions

The operation of smart electrical power grids has become unimaginable without
the opportunity to capture the status of grid-connected consumers in real-time and at
fine resolution. Processing smart meter data has traditionally been centered around use
cases that benefit the operations of electricity providers and the stability of the power
grid [5]. The range of services that are tailored to the needs of end-customers is still
comparably small. In this review paper, we present and discuss the range of use cases that
are enabled through the collection of smart meter data but primarily benefit the consumers
of electrical energy. We believe that three major preconditions are crucial for the long-term
establishment of user-centric service provision. First, smart meters and the corresponding
data processing mechanisms must be capable of reporting accurate information. They must
undergo continuous improvements in order to extract the information content to the fullest
extent possible. Second, adequate measures must be provided to protect user privacy.
Established methods to provide secure networking must be combined with meaningful
local preprocessing steps to remove sensitive features before data leave the customers’
premises. Third, not all services apply to all users in the same way. A dedicated ecosystem,
such as an “app store” for energy-based services (similar to the proposition in [164]), thus
represents a viable option to allow consumers to individually subscribe to their desired
services and understand the ensuing privacy implications. The range of user-centric data
analysis methods, as surveyed in this work, can then be executed either locally or with the
help of remote execution environments. A corresponding ecosystem will ultimately make
it possible for both developers and providers of smart meter data processing methods to
easily offer novel services, and simultaneously lower the barrier for customers to consume
these services and avail of their benefits.
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Abbreviations

The following abbreviations are used in this manuscript:

AAL Ambient Assisted Living
ADL Activities of Daily Living
AC Air Conditioning Unit
ARIMA Auto-Regressive Integrated Moving Average
BMS Building Management System
CART Classification and Regression Tree
CUSUM CUmulative SUM
DBSCAN Density-Based Spatial Clustering
DER Distributed Energy Resource
DSF Demand-side flexibility
ESS Energy Storage System
EV Electric Vehicle
GDPR General Data Protection Regulation
GMM Gaussian Mixture Model
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IEC International Electrotechnical Commission
IHD In-Home Display
KFDA Kernel Fisher Discriminant Analysis
LSTM Long Short-Term Memory
MEC Multi-access Edge Computing
MLP Multi-Layer Perceptron
NILM Non-Intrusive Load Monitoring
P2P Peer-to-Peer
PLR Piecewise Linear Regression
PV Photovoltaic
RES Renewable Energy Source
RMS Root Mean Square
SCP Switch Continuity Principle
SOM Self-Organizing Map
SVM Support Vector Machine
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