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Preface to ”Advanced Process Monitoring for

Industry 4.0”

Since the seminal work of W.A. Shewhart in the mid 1920s, initiated at Western Electric Company

and continued afterwards at Bell Labs, process monitoring (PM) has become a cornerstone of modern

industry, embodying a coherent and systematic methodology to continuously assess process stability

and diagnose the origin of faults and process upsets. Having emerged during the 2nd industrial

revolution, PM greatly expanded during the 3rd technological wave, evolving and adapting its

body of knowledge to fulfill the same fundamental goals in increasingly diverse and challenging

scenarios. Its wide success has significantly contributed to pushing forward the performance and

effectiveness of plant operations, positively impacting process efficiency, safety, the environment, and

the companies’ bottom line results. Today, we are witnessing the dawn of a new industrial revolution,

already coined as Industry 4.0. Again, as before, new challenges arise that need to be handled in

order to perform PM in more complex multiscale processes, through the analysis of “extreme data”

(in terms of volume, velocity, variety, quality, etc.), in real time. In this Special Issue, a collection

of 12 contributions provide an updated overview of the challenges that PM is currently facing and

how they can be effectively addressed. Real case studies are cited and new solutions proposed and

discussed. We sincerely hope these works catalyze the efforts of the research community and inspire

more teams to join in and embrace the many PM challenges lying ahead.

Marco S. Reis, Furong Gao

Editors
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Industry 4.0 is continually and progressively changing the landscape of manufacturing
throughout the world and across different industrial sectors. This movement is catalyzed by
the concurrence of three key drivers that, synergistically combined, create the conditions to
push forward the performance and effectiveness of plant operations, positively impacting
process efficiency, safety, the environmental fingerprint, and the economic outcome through
faster and better decision-making processes. These drivers are: the facilitated access to
unprecedented amounts of data (both structured and unstructured), new technological
developments (smart sensors, IoT, cloud storage, and high-performance computing), and a
new wave of advanced analytical solutions (machine learning, artificial intelligence, free
programming platforms, and commercial software). As happens in other activities, the key
drivers are also impacting Process Monitoring, creating the capability to handle complex
processes that generate “extreme data”, i.e., data collected at high sampling rates, possibly
asynchronously, in large amounts with a variety of structures and variable quality, arising
from different places across the value chain.

This Special Issue aims to bring together recent advances in the broad field of Ad-
vanced Process Monitoring for Industry 4.0, including all the activities related to fault
detection, diagnosis, and prognosis.

All process monitoring activities are critically dependent upon the capability to collect
informative data about the state of plant operations and equipment condition. Therefore,
new sensors are developed and deployed, transforming quality monitoring from an offline
activity conducted in the plants laboratories to a real-time activity made online, in the
process, enabling fast product release and decision making, with all the consequent benefits
on productivity, quality, inner logistics, and plant economy. Reyes et al., used spectral data
in the visible–near infrared (VIS–NIR) range to monitor a combustion process [1], while
Hotait et al., reported the use of piezoelectric sensors together with an advanced feature ex-
traction methodology, called AOC-OPTICS [2], for fast and automatic condition monitoring.

Batch processes are always challenging scenarios for process monitoring given their
intrinsic non-stationarity and natural tensorial arrangement of data (batch × variables
× time). These processes become even more difficult to handle when batch operations
take place in multiple phases, as covered by Palací-Lopez et al. [3], and show multiple
normal operation modes, as addressed by Zhao et al. [4]. Both studies make use of Latent
Variable Models as the analytical backbone to address batch modeling. The extreme case of
a multistep process (semiconductors) is also covered by Espadinha-Cruz et al. [5], where
quality control, monitoring, and diagnosis and other critical tasks are revised under the
general umbrella of data mining.

On the other hand, machine learning (ML) and artificial intelligence (AI) method-
ologies have also been increasingly brought to the process monitoring arena. The papers
by Xing Wu et al. [6], Xin Wu et al. [7], and Yumin Liu et al. [8] report applications of
convolutional neural networks (CNN) and recurrent neural networks (RNN) for process

Processes 2021, 9, 1432. https://doi.org/10.3390/pr9081432 https://www.mdpi.com/journal/processes
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monitoring and diagnosis, exploring their ability to learn new data representations that
efficiently represent the normal operation conditions of the process.

The integration of existing knowledge about the processes for process monitoring and
diagnosis through digital twins, is also a current trend in Process Monitoring. Rato et al.,
present a framework where accurate models for the process common cause variation are
used to mitigate the scarcity of data for high-dimensional process monitoring, especially
during early monitoring periods, also enhancing the diagnosis activity once the fault is
detected [9]. On the other hand, de Menezes et al., use a steady-state model to perform
data reconciliation, an operation that is instrumental for the estimation of unmeasured
variables in the proposed online monitoring scheme, playing the role of a soft sensor, and
paving the way for the future adoption of an accurate digital twin [10].

The adaptation of Quality Engineering [11] and Six-Sigma [3] to the new types of
measurements, data structures, processes, and the growing analytical body of knowledge,
are opportunely covered in the contributions by Ramezani et al., and Palací-López et al.,
respectively. Similarly, Sader et al. [12] explored the use of modern methods of machine
learning to assist in the implementation of Failure Mode and Effect Analysis (FMEA), and
exemplify the proposed methodology in a dataset that includes a one-year historic of over
1500 failures with their respective description.

For all these valuable and insightful contributions, the Guest Editors are deeply
grateful to the authors and their teams. We hope this rich and diverse collection of
contributions fuel and inspire new developments on Statistical Process Monitoring and
related fields, keeping up with the accelerating pace of the technological progress, data
resources, and complexity of modern processes.

Finally, we would like to express our deepest gratitude and appreciation to the Section
Managing Editor, Ms. Shirley Wang, for all the continuous and diligent support throughout
all the phases of preparation of this Special Issue of Processes. We are also thankful to all the
reviewers for their unconditional generosity in the time and effort dedicated to improve all
the contributions with their knowledge, insights, and critical reasoning. The Special Issue
“Advanced Process Monitoring for Industry 4.0” is available at https://www.mdpi.com/
journal/processes/special_issues/Monitoring_Industry (accessed on 3 August 2021).

Funding: Marco Reis acknowledges support from the Chemical Process Engineering and Forest Prod-
ucts Research Centre (CIEPQPF), which is financed by national funds from FCT/MCTES (reference
UID/EQU/00102/2019).

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Modern industrial units collect large amounts of process data based on which advanced
process monitoring algorithms continuously assess the status of operations. As an integral part
of the development of such algorithms, a reference dataset representative of normal operating
conditions is required to evaluate the stability of the process and, after confirming that it is stable,
to calibrate a monitoring procedure, i.e., estimate the reference model and set the control limits for
the monitoring statistics. The basic assumption is that all relevant “common causes” of variation
appear well represented in this reference dataset (using the terminology adopted by the founding
father of process monitoring, Walter A. Shewhart). Otherwise, false alarms will inevitably occur
during the implementation of the monitoring scheme. However, we argue and demonstrate in this
article, that this assumption is often not met in modern industrial systems. Therefore, we introduce a
new approach based on the rigorous mechanistic modeling of the dominant modes of common cause
variation and the use of stochastic computational simulations to enrich the historical dataset with
augmented data representing a comprehensive coverage of the actual operational space. We show how
to compute the monitoring statistics and set their control limits, as well as to conduct fault diagnosis
when an abnormal event is declared. The proposed method, called AGV (Artificial Generation of
common cause Variability) is applied to a Surface Mount Technology (SMT) production line of Bosch
Car Multimedia, where more than 17 thousand product variables are simultaneously monitored.

Keywords: high-dimensional data; statistical process monitoring; artificial generation of variability;
data augmentation; Industry 4.0

1. Introduction

Industry 4.0 is taking its course and continuously raising new challenges to classical process
operation and management functions. One pillar of any production system is related to guaranteeing
the stability, consistency and predictability ofF industrial processes. This was and it will always
be a major concern for industry. Juran considered it as a fundamental function for implementing
any quality management systems (the Juran trilogy of Planning, Control and Improvement), and it
is an intrinsic part of every Quality standard, deeply embedded in the celebrated ISO 9000 series.
Traditionally, this function is operationalized in the shop floor using variation management and
reduction methodologies such as Statistical Process Monitoring (SPM), Engineering Process Control
(EPC), or combined versions of them [1–4], as well as other approaches like error-proof systems (Poka
Yoke). However, the way SPM is implemented in industry is changing, as a result of, among other
possible drivers: (i) increasing complexity of the processes/products under monitoring and (ii) the new
challenges imposed by data collected from them.

Processes 2020, 8, 1520; doi:10.3390/pr8111520 www.mdpi.com/journal/processes5
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Regarding the first category of drivers, current processes under monitoring can present
characteristics (almost) absent from the scenarios where, during over 80 years, most SPM technology was
developed, such as: they can present stationary dynamics (autocorrelation) [5–10] or non-stationary
dynamics (such as discontinuous or batch processes) [11–14]; multiple set-points and operations
modes [15–17]; processes have a complex network structure and are composed of many sub-process in
series or parallel [18–22]; processes are intrinsically multiscale in space and time [23–27].

The second category of drivers are connected to the new data-intensive environments industry is
currently immersed in. SPM is a data-driven methodology, as its implementation strongly relies on the
analysis of historical data (Phase 1 analysis) and data collected during operation (Phase 2 analysis) [28].
The vast majority of SPM methods were developed to handle scalar (0th order tensor) sensor like
data, either univariately [29–31] or multivariately [32–35]. More recently, profile monitoring emerged
as a new SPM branch dedicated to functional relationships [36–38] or higher-order tensorial data
structures such as: near-infrared (NIR) spectra [39–41], surface profilometry [37], grey-level images [42],
colour and hyperspectral images [43–47], hyphenated instruments [48] among others, expanding the
SPM domain to new processes/products.

The one aspect shared by all methods proposed in the past and the fundamental premise
established since the seminal work of Walter A. Shewhart [31], is that all common cause variation
must be present in the reference historical Normal Operating Conditions (NOC) dataset collected to
conduct Phase 1 analysis, i.e., in order to assess process stability and establish the control limits for the
monitoring statistics. However, this fundamental premise does not hold in many processes, such as
the assembling processes in the microelectronics industry using Surface Mount Technology (SMT),
which is the focus of our paper.

To make our presentation more objective and clearer, in the following sub-sections we will describe
our problem and provide and introductory sketch of the proposed solution.

1.1. Problem Statement: Process Monitoring of Surface Mount Technology (SMT) Production Lines

The assembly process of complex electronic devices involves placing, fixing and functionalizing
electronic components on Printed Circuit Boards (PCB). This is done through the preliminary deposition
of solder past deposits (SPD) in specific positions, with a well-defined target shape and volume. This part
of the process is critical for quality, as any defect or misplacement may result in the loss of function
of the module and eventually the entire device. Therefore, SPDs should be monitored immediately
after being placed, to avoid the well-known consequence of the accumulation of costs as any fault is
detected later on in the process (usually the cost rises by roughly a factor of 10 as one moves from
one stage to the next without detecting a potential problem, leading to the progression of $1:$10:$100:
. . . , in the costs due to poor quality of the assembly process). In the present case study, data arises
from a modern production line equipped with Surface Mount Technology (SMT) that performs 100%
inspection of all paste deposits for each PCB produced (more details about the process are provided in
Section 3), which implies the simultaneous analysis of several thousands of SPDs. Handling such a
large number of variables for process monitoring raises several important challenges to traditional
statistical process monitoring approaches, as addressed elsewhere [49], but the fundamental issue that
was not considered so far is indeed the poor coverage of common cause variation in the reference
dataset (even when composed of what is usually considered a sufficiently high number of samples).

For a better understanding of the problem under analysis, Figure 1a,b represent the scores for the
first three principal components (PC1, PC2 and PC3) for several datasets collected for the production
of the same product, all of them regarding NOC conditions. Given the large number of variables
involved, we opt to present just these three scores, that represent a significant portion of the overall
variability (from the properties of Principal Component Analysis, they are the three linear combinations
with maximum explanation power of the variability presented by the original variables; see [50,51])
and are enough to establish the picture we want to convey at this point. Each point concerns a PCB,
and these points, as stated above, arise from the reference dataset (CS1) and other two datasets collected

6
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afterwards at different periods, also regarding normal operating conditions. All observations should
therefore be considered “normal”, as confirmed by process experts. Conducting a Phase 1 analysis of the
reference NOC dataset (CS1) it is possible to conclude that the process is stable. This can be confirmed
by analyzing Figure 1c, where the two multivariate monitoring statistics fall in general within the
region limited by the Phase 1 control limits (more details on these monitoring statistics are presented
in Section 4). This historic reference dataset can therefore be used to setting up the multivariate control
limits from conducting the monitoring activity of future incoming PCBs. However, from the plot in
Figure 1a,b, it is clearly visible that many alarms are expected to be issued when applying these control
limits to data from future PCBs. This can actually be confirmed by analyzing Figure 1d, where the SPM
charts developed using CS1 were applied to dataset CS3, resulting in sustained alarms being issued
by the two control charts. Therefore, implementing any SPM methodology based on the information
strictly inferred from the historical dataset will inevitably result in frequently signaling as faulty PCBs
that are perfectly good, making this activity, as it is currently conducted, of very limited value.

(a) (b) 

 
(c) (d) 

Figure 1. Projection of data from several production periods (designated as CS1, CS2 and CS3) on
the principal components space estimated using CS1 as the reference dataset: (a) Scores plot of PC1
vs. PC2; (b) Scores plot of PC1 vs. PC3. The 99% confidence ellipses for the scores of CS1 are also
represented; (c) MSPM-PCA monitoring statistics (Hotelling’s T2 of the scores and the Q or SPE statistic
of the residuals; see Section 4) for CS1, using CS1 as the reference dataset; (d) MSPM-PCA monitoring
statistics for CS3, using CS1 as the reference dataset.

The fundamental reason causing the situation described above is the limited information
about process variability that can be extracted from a dataset representing a stable period of NOC

7
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operation—the reference dataset does not reflect the whole of common cause variation sources, but just
a small part of it.

Fortunately, the reference NOC dataset is not the only source of information about common cause
variation available.

In fact, the engineering team has been accumulating knowledge over time about the “common”
causes of variability that lead to such false alarms, by analyzing case by case what is causing them.
The root causes regard aspects that are very common and perfectly normal and expected in process
operations, such as slight changes in the settings from different lots, automatic corrections and
adjustments introduced by the assembly units, “normal” (or acceptable) tridimensional deformations
in the boards fed to the process, rigid body movements (rotations, translations) of the boards as they
move in the line, and other known specificities of the paste deposition tools. These aspects of variability
are known and expected to happen over a long time frame, but not all of them will be, for sure,
present in the initial stages of the process, or in any other single isolated period in the future.

Furthermore, the extensive process knowledge accumulated over time enables not only the
identification of which phenomena may cause the variation patterns presented in Figure 1, but also
to know their magnitudes. The detailed analysis of past production runs where they took place,
does provide information on the amount of variation associated with them. Therefore, besides the
reference dataset, there is also information available about the long term structural components of common
cause variability (at least for the dominant modes of common cause variability), and their stochastic
behavior (of which the reference dataset is a particular realization).

Bringing this extra engineering knowledge of common structural cause variation is fundamental
to address the present problem rooted in the unavoidable underrepresentation of common cause
variation in the reference dataset.

1.2. Proposed Methodology: Artificial Generation of (Common Cause) Variability (AGV)

In this work we introduce a Data Augmentation approach for enriching the reference dataset with
structural common cause variation sources. Data is generated by conducting stochastic computational
simulation of process behavior using rigorous mechanistic models for the dominant structural modes
of common cause variation, whose conditions and parameters are described probabilistically based
on data collected from industrial runs for other related assembly processes (dispersion) whereas the
targets and settings are those of the current process (central tendency). The simulations will generate
patterns of variation in the measurements respecting the physical constrains of the systems/products,
leading to the same natural long term and short term correlations patterns found in real process data.

Ultimately, the proposed methodology is even able to create a frame of reference for starting the
monitoring right from the onset of the production, using the variation patterns extracted from previous
runs with other products (as shown in Section 5). We call it conditionally expected common cause variation,
i.e., the expected variability under normal operating conditions, conditioned on all the past data and
knowledge extracted over the years from data regarding the production of related products.

Together with the solution for the unwelcomed false alarms, the proposed methodology also
brings new diagnostic tools: the variation from the different simulated phenomena is usually well
captured by specific principal components. Therefore, once a potential fault is detected the analysis of
the scores my reveal a possible mechanism underlying its origin (the one connected to the principal
component where the deviation is more noticeable). Other causes can be explored by other diagnostic
tools, such as residual analysis and contribution plots.

The aforementioned concept of conditionally expected common cause variation differs from Shewhart’s
original perspective, but is still inspired in it. It requires and builds up on extensive knowledge about
the process physics and accumulated data. As Industry 4.0 takes place, the evolution of Digital Twining
technology is likely to create similar opportunities to use accurate models of the process, namely for
process monitoring as proposed in this article.

8
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The present article is organized as follows. In Section 2, a brief description of the process and
datasets to be analyzed is provided. Then, in Section 3, we introduce in detail the proposed data
augmentation methodology (Artificial Generation of common cause Variability, AGV). The monitoring
scheme based on the augmented NOC dataset is described in Section 4. The results from the application
of the proposed data augmentation methodology for process monitoring to several real world industrial
dataset are presented and discussed in Section 5. Section 6 further extends the discussion of results
and their consequences. Finally, in Section 7 we provide a brief summary of the main advantages and
limitations of the proposed methodology and refer to future work to address these limitations and
make the approach more sensitive to localized faults affecting a relatively small number of elements.

2. Process Description

The process considered in this work regards a surface mount industrial unit (Bosch Car Multimedia
Portugal), composed by several lines where electronic components are attached to PCBs through
reflow soldering. In this process, SPDs are accurately placed in designated points of copper PCBs
that will be used to fix and functionalize electronic components further ahead in the assembly line,
through reflow soldering under a predefined temperature profile. Several thousands of SPDs are set in
place, with a cycle time that can achieve approximately 20s. The resulting PCBs with printed SPDs
are subject to 100% 3D Solder Past Inspection (3DSPI). This technology has been a pillar for process
monitoring and improvement in this plant, and will be further explored in this work. 3DSPI generates,
for each single SPD printed in the pad, a full 3D profile, retaining 5 features for analysis: area (a),
height (h), volume (v), offset in the X-direction (x) and offset in the Y-direction (y).

In this work, we consider the production of one specific product from which 3507 SPDs (we will
also use the designation of “pads” to refer to such SPDs) are monitored, totaling 3507 × 5 = 17,535
variables to be handled. Three datasets are available and will be used in this study to test the proposed
approach: CS1 contains information for 337 NOC PCBs and is used to validate the AGV methodology
and confirm/tune some of its parameters; CS2 and CS3, contain 2080 and 1330 PCBs, respectively,
mostly regarding good products, but also containing some PCBs with a few faulty pads. CS2 and CS3
will be used to further test the proposed methodology.

3. Artificial Generation of (Common Cause) Variability (AGV)

The proposed methodology for Artificial Generation of (common cause) Variability (AGV) aims
at completing the reference dataset with the long term dominant sources of common cause variability
that, from engineering knowledge, are known to exist. This is done by simulating the printing of
solder paste deposits in Printed Circuit Boards (PCB) under situations where the dominant sources of
common cause variation span their normal range (as extracted from the analysis of historic data from
production runs of related products). The simulations are based on accurate mechanistic/first principle
models and reproduce the effects of underlying common causes on the 3DSPI measurements of solder
paste deposits: area (a), height (h), volume (v), offset-X (x) and offset-Y (y). As part of the common
cause variation is introduced when different lots of the same product are produced while others are
active during the production of a given lot, the AGV module also accounts for both inter-lot, intra-lot
and pad specific variability.

During the process simulation, the AGV module generates data for L lots with B PCBs each,
where each PCB is composed by P pads (a pad is a small part of the PCB where SPD should be placed).
A more comprehensive description of the simulation settings for each of the variability sources are
provided in the following subsections. A schematic representation of the AGV module is presented in
Figure 2.
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Figure 2. Schematic representation of the AGV module.

The basic inputs of the AGV module are the nominal values and tolerance limits for the measured
parameters (a, h, v, x, y) and the geometrical coordinates of each pad (Table 1). Based on this information,
the allowed variability given the existing tolerance limits is estimated by,

σtol
{
parameter, pad

}
=

UTL
{
parameter, pad

}− LTL
{
parameter, pad

}
6

. (1)

This parameter is analogous to the standard deviation and is based on the fact that, for normally
distributed data, 99.73% of the data falls within the ±3 sigma interval.

Table 1. Tolerance specifications of the PCB (inputs to the AGV module).

Parameter Description

N
{
parameter, pad

}
Nominal value for {a, h, v, x, y} of each pad.

UTL
{
parameter, pad

}
Upper tolerance limit for {a, h, v, x, y} of each pad.

LTL
{
parameter, pad

}
Lower tolerance limit for {a, h, v, x, y} of each pad.

cx x-coordinate of each pad.
cy y-coordinate of each pad.

Along with the PCB’s tolerance specifications, the user can also define a set of tuning parameters
(Table 2) that allow for the full configuration of the simulated conditions of the printing process.
The relationship between the tuning parameters and the process phenomena is discussed in the
following subsections. It is expected that, in future applications for the same lines and for related
products, the settings for most of these parameters will not change. However, the need for some tuning
can be readily assessed after collecting the 3DSPI measurements from the first few products.

Table 2. Tuning parameters in the AGV module and the values used in this work.

Parameter Value (5) Description

α
(inter)
trans

(1) 0.1000 Scaling factor for the inter-lot component of the translation effect

α
(intra)
trans

(1) 0.0775 Scaling factor for the intra-lot component of the translation effect

α
(pad)
trans

(1) 0.9920 Scaling factor for the pad specific component of the translation effect

α
(inter)
rot

(2) 0.9487 Scaling factor for the inter-lot component of the rotation effect

α
(intra)
rot

(2) 0.3162 Scaling factor for the intra-lot component of the rotation effect
θ 1.57 × 10−4 rad Allowance angle of the rotation effect

10
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Table 2. Cont.

Parameter Value (5) Description

Δy 5 μm Allowance deviation in Offset-Y due to squeegee effect

α
(inter)
h

(3) 0.9695 Scaling factor for the inter-lot component of the solder mask effect on height

α
(intra)
h

(3) 0.2449 Scaling factor for the intra-lot component of the solder mask effect on height
Δh,sold 6 μm Allowance deviation in height due to solder mask effect
Δh,squee 7.5 μm Allowance deviation in height due to squeegee effect

α
(inter)
a

(4) 0 Scaling factor for the inter-lot component of area

α
(intra)
a

(4) 0 Scaling factor for the intra-lot component of area

α
(pad)
a

(4) 1 Scaling factor for the pad specific component of area

ϕx 0.80 Scaling factor for total variance of offset-X

ϕy 0.80 Scaling factor for total variance of offset-Y

ϕh 0.80 Scaling factor for total variance of height

ϕa 0.80 Scaling factor for total variance of area
(1), (2), (3), (4) These parameters are between 0 and 1 and the sum of their squares is equal to 1. (5) These values were
selected based on engineering knowledge and to achieve a realistic representation of the printing process discussed
in Section 5.

3.1. Common Cause Variation Affecting Offset-X and Offset-Y

The relative location of the pads can be affected by rigid body translations and rotations of the
PCB. Furthermore, offsets in the y-coordinate (offset-Y) can also be attributed to the printing direction
of the squeegee.

The translation effects are identical for both offset-X and offset-Y. For the sake of brevity, only the
case of offset-X is described. To simulate the rigid body translation effect (Figure 3), we considered that
it can be split into three components. These are relative to:

(i). An overall deviation that is common to all PCBs within a lot—inter-lot variation:

α
(inter)
trans z(inter)

x,l,:,: σtol
{
x, p
}
ϕx;

(ii). A local deviation that affects all pads in a PCB—intra-lot variation: α(intra)
trans z(intra)

x,l,b,: σtol
{
x, p
}
ϕx;

(iii). Unstructured deviations for each pad—pad specific variation: α(pad)
trans z(pad)

x,l,b,pσtol
{
x, p
}
ϕx.

In these simulations, z(inter)
x,l,:,: , z(intra)

x,l,b,: and z(pad)
x,l,b,p are generated by taking random draws from the

standard normal distribution. The fraction of total variation attributed to each component is determined

by the scaling factors α(inter)
trans , α(intra)

trans and α(pad)
trans . These scaling factors must fall between 0 and 1 and are

further restricted to comply with:

(
α
(inter)
trans

)2
+
(
α
(intra)
trans

)2
+
(
α
(pad)
trans

)2
= 1. (2)

Thus, the sum of all components amounts to one unit of allowed variance. Finally, the components
are scaled by the allowed variance σ2

tol
{
x, p
}
ϕ2

x, where σtol
{
x, p
}

is the allowed standard deviation for
the offset-X of the p-th pad and ϕx is a scaling factor.

Following the above definitions, the translation effect on the offset in the x-coordinate for the p-th
pad of the b-th PCB of the l-th lot (x(trans)

l,b,p ) is given by (Table 3):

x(trans)
l,b,p =

(
α
(inter)
trans z(inter)

x,l,:,: + α
(intra)
trans z(intra)

x,l,b,: + α
(pad)
trans z(pad)

x,l,b,p

)
σtol
{
x, p
}
ϕx. (3)
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Likewise, the translation effect on the offsets in the y-coordinate (y(trans)
l,b,p ) are simulated by (Table 3):

y(trans)
l,b,p =

(
α
(inter)
trans z(inter)

y,l,:,: + α
(intra)
trans z(intra)

y,l,b,: + α
(pad)
trans z(pad)

y,l,b,p

)
σtol
{
y, p
}
ϕy. (4)

Table 3. Pseudo-code for generating the translation effect on offset-X and offset-Y.

1. For each lot, l = 1, . . . , L:

1.1. Generate inter-lot variability: z(inter)
x,l,:,: ∼ N(0, 1), z(inter)

y,l,:,: ∼ N(0, 1);

1.2. For each PCB, b = 1, . . . , B:

1.2.1. Generate intra-lot variability: z(intra)
x,l,b,: ∼ N(0, 1), z(intra)

y,l,b,: ∼ N(0, 1);

1.2.2. For each pad, p = 1, . . . , P:

1.2.2.1.Generate random variability: z(pad)
x,l,b,p ∼ N(0, 1), z(pad)

y,l,b,p ∼ N(0, 1);

1.2.2.2.Compute translation effect on offset-X:

x(trans)
l,b,p =

(
α
(inter)
trans z(inter)

x,l,:,: + α
(intra)
trans z(intra)

x,l,b,: + α
(pad)
trans z(pad)

x,l,b,p

)
σtol
{
x, p
}
ϕx.

1.2.2.3.Compute translation effect on offset-Y:

y(trans)
l,b,p =

(
α
(inter)
trans z(inter)

y,l,:,: + α
(intra)
trans z(intra)

y,l,b,: + α
(pad)
trans z(pad)

y,l,b,p

)
σtol
{
y, p
}
ϕy.

 

Figure 3. Schematic representation of the inter-lot, intra-lot and pad specific components used to
generate the translation effect on offset-X.

The rigid body rotation effects (Figure 4), are taking into account by simulating rotations in the
PCB with different centers and magnitudes. This rotation can be further decomposed into:

(i) An inter-lot rotation angle that affects all PCBs within a lot - inter-lot variation: α(inter)
rot z(inter)

l,:,: θ/3;

(ii) An intra-lot rotation angle that adds specific variation to each PCB—intra-lot variation:

α
(intra)
rot z(intra)

l,b,: θ/3.

The z(inter)
l,:,: and z(intra)

l,b,: variables are generated from the standard normal distribution and scaled by
the allowance rotation angle θ, divided by 3 to ensure that the rotation angle falls, with high probability,
between

[
−θ θ

]
. Furthermore, the amount of variability attributed to the inter-lot and intra-lot

components is defined by the scale factors α(inter)
rot and α(intra)

rot , which are between 0 and 1 and comply
to the condition: (

α
(inter)
rot

)2
+
(
α
(intra)
rot

)2
= 1. (5)

Based on this, the rotation angle of the b-th PCB of the l-th lot (tl,b,:) is computed as,
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tl,b,: =
α
(inter)
rot z(inter)

l,:,: θ+ α
(intra)
rot z(intra)

l,b,: θ

3
. (6)

The rotation matrix is subsequently obtained by,

R
(
tl,b,:

)
=

⎡⎢⎢⎢⎢⎣ cos
(
tl,b,:

)
− sin

(
tl,b,:

)
sin
(
tl,b,:

)
cos
(
tl,b,:

)
⎤⎥⎥⎥⎥⎦. (7)

The center of rotation is randomly generated for each PCB using the uniform distribution.
More specifically, the x-coordinate for the center of rotation (rx) is taken from the uniform distribution
on the interval

[
min(cx) max(cx)

]
, where cx is a vector with the x-coordinates of each pad.

Similarly, the y-coordinate of the center of rotation (ry) is generated from the uniform distribution in
the interval

[
min(cy) max(cy)

]
, where cy is a vector with the y-coordinates of each pad.

Using the above information, the rotation effects on the offset-X, x(rot)
l,b,p , and offset-Y, y(rot)

l,b,p , for the
p-th pad of the b-th PCB of the l-th lot, are determined by (see Table 4.):

[
x(rot)

l,b,p y(rot)
l,b,p

]
=
([

cx
{
p
}

cy
{
p
} ]− [ rx ry

])
RT +

[
rx ry

]
−
[

cx
{
p
}

cy
{
p
} ]

. (8)

Table 4. Pseudo-code for generating the rotation effect on offset-X and offset-Y.

1. For each lot, l = 1, . . . , L:

1.1. Generate inter-lot rotation angle: z(inter)
l,:,: ∼ N(0, 1);

1.2. For each PCB, b = 1, . . . , B:

1.2.1. Generate intra-lot rotation angle: z(intra)
l,b,: ∼ N(0, 1);

1.2.2. Compute overall rotation angle: tl,b,: =
(
α
(inter)
rot z(inter)

l,:,: θ+ α
(intra)
rot z(intra)

l,b,: θ
)
/3;

1.2.3. Compute the rotation matrix: R
(
tl,b,:

)
1.2.4. Generate random center of rotation:

rx ∼ U(min(cx), max(cx)),

ry ∼ U
(
min(cy), max(cy)

)
;

1.2.4.1 For each pad, p = 1, . . . , P:
1.2.4.2.Compute rotation effect on offset-X and offset-Y:[

x(rot)
l,b,p y(rot)

l,b,p

]
=
([

cx
{
p
}

cy
{
p
} ]− [ rx ry

])
RT + . . .

+
[

rx ry
]
−
[

cx
{
p
}

cy
{
p
} ]

 

Figure 4. Schematic representation of the inter-lot and intra-lot components used to generate the
rotation effect on offset-X and offset-Y. The cross represents the specific center of rotation of each PCB.
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Along with the translation and rotation effects, the offset-Y is also affected by an additional
systematic bias caused by the printing direction of the squeegee (the squeegee is the device that pushes
the solder past deposits placed on the top side of the stencil towards the existing apertures in the stencil).
This phenomenon leads to a positive deviation in the offset-Y when the printing is performed in one
direction and a negative deviation when the printing direction is reversed. Without loss of generality
it is assumed that PCBs with an odd index b are printed in the direction of increasing y-coordinates.
Conversely, PCBs with an even index b are assumed to be printed in the opposite direction of decreasing

magnitude y-coordinates. To simulate the squeegee effect on offset-Y (y(sqee)
l,b,p ; Table 5), the allowance

deviation that can be caused by the squeegee is defined by Δy and its impact is alternated with the
PCB index. Furthermore, to account for local random variation, for each PCB, the allowance deviation
is multiplied by a random variable with uniform distribution in the interval [0,1].

Table 5. Pseudo-code for generating the squeegee effect on offset-Y.

1. For each lot: l = 1, . . . , L

1.1. For each PCB: b = 1, . . . , B:
1.1.1. Generate squeegee variability: ul,b,: ∼ U(0, 1);
1.1.2. For each pad: p = 1, . . . , P:
1.1.3. Compute squeegee effect on offset-Y:

y(sqee)
l,b,p = (−1)b+1Δyul,b,:.

Finally, the offset-X (x(agv)
l,b,p ) and offset-Y (y(agv)

l,b,p ) are determined by summing all effects:

x(agv)
l,b,p = N

{
x, p
}
+ x(trans)

l,b,p + x(rot)
l,b,p , (9)

y(agv)
l,b,p = N

{
y, p
}
+ y(trans)

l,b,p + y(rot)
l,b,p + y(sqee)

l,b,p , (10)

where N
{
x, p
}

and N
{
y, p
}

are the nominal value for the offset-X and offset-Y of the p-th pad.

3.2. Common Cause Variation Affecting Height

The height of solder paste in each pad is affected by the solder mask and the squeegee’s action.
The effect of the solder mask translates into systematic deviations across all PCBs in the same lot
(because the same mask is used in each production lot). The allowed deviation due to the solder mask
is here defined by Δh,sold. Furthermore, its impact on the height is simulated through (Figure 5):

(i) An overall component that affects all PCBs in a lot—inter-lot variation: α(inter)
h z(inter)

l,:,: Δh,sold;

(ii) A specific component for each PCB—intra-lot variation: α(intra)
h z(intra)

l,b,: Δh,sold.

For both cases, z(inter)
l,:,: and z(intra)

l,b,: are generated from the standard normal distribution. The α(inter)
h

and α(intra)
h factors scale the contribution of each component. These factors are between 0 and 1 and

conditioned to: (
α
(inter)
h

)2
+
(
α
(intra)
h

)2
= 1. (11)

As the total variability of the height is greater than that caused by the solder mask, the remaining

variability is added as a specific component for each pad, z(pad)
l,b,p

√
σ2

tol
{
h, p
}
ϕ2

h − Δ2
h,sold. Following these

considerations, the solder mark effect on the height of the p-th pad of the b-th PCB of the l-th lot (h(sold)
l,b,p )

is computed as follows (see also Table 6):

h(sold)
l,b,p =

(
α
(inter)
h z(inter)

l,:,: + α
(intra)
h z(intra)

l,b,:

)
Δh,sold + z(pad)

l,b,p

√
σ2

tol
{
h, p
}
ϕ2

h − Δ2
h,sold. (12)
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Table 6. Pseudo-code for generating the solder mask effect on height.

1. For each lot, l = 1, . . . , L:

1.1. Generate inter-lot variability: z(inter)
l,:,: ∼ N(0, 1);

1.2. For each PCB, b = 1, . . . , B:

1.2.1. Generate intra-lot variability: z(intra)
l,b,: ∼ N(0, 1);

1.2.2. For each pad, p = 1, . . . , P:
1.2.2.1.Compute solder mask effect on height:

h(sold)
l,b,p =

(
α
(inter)
h z(inter)

l,:,: + α
(intra)
h z(intra)

l,b,:

)
Δh,sold + z(pad)

l,b,p

√
σ2

tol
{
h, p
}
ϕ2

h − Δ2
h,sold.

 

Figure 5. Schematic representation of inter-lot, intra-lot and pad specific components used to generate
the solder mask effect on height.

As in the case of the offset-Y, the height is also affected by the printing direction of the squeegee.
This effect relates to a progressive increase in the pressure of the squeegee. At the beginning of the
printing process, the pressure is low and thus the heights are typically lower than intended. As the
printing progresses, the heights reach the intended nominal values. The same applies when the printing
direction is reversed, but now affecting the pads on the other extreme of the PCB (Figure 6). To be
consistent with the squeegee effect on the offset-Y (see Section 3.1), it is considered that PCBs with an
odd index b are printed in the direction of increasing y-coordinates, while PCBs with an even index are
printed in the reversed direction.

To systematically address both printing directions, the original y-coordinate of the pads is
transformed into an equivalent distance, related to the point where the printing beginnings, by:

d = (−1)b+1
(
cy
{
p
}− max(cy) + min(cy)

2

)
+

max(cy) −min(cy)

2
, (13)

where cy is a vector with the y-coordinates of each pad, p is the pad of interest and b is the PCB index.

Based on this, the influence of the squeegee in the height (h(squee)
l,b,p ) is modeled through an exponential

decay function (Table 7):

h(squee)
l,b,p = −Δh,squeeul,b,:e−

d
τ , (14)

where Δh,squee is the maximum allowance deviation, τ is a length constant and ul,b,: is a random variable

following U(0, 1). Process knowledge indicates that the deviation in h(squee)
l,b,p is more pronounced in the

first third of the PCB (i.e., until d =
(
max(cy) −min(cy)

)
/3). Thus, by considering that for d = 2τ the

deviation in h(squee)
l,b,p is reduced to 13.5% of the allowance deviation, the length constant is set to:

τ =
1
6

(
max(cy) −min(cy)

)
. (15)
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Table 7. Pseudo-code for generating the squeegee effect on height.

1. For each lot, l = 1, . . . , L:

1.1. For each PCB, b = 1, . . . , B:
1.1.1. Generate squeegee variability: ul,b,: ∼ U(0, 1);
1.1.2. For each pad, p = 1, . . . , P:

1.1.2.1.Compute squeegee effect on height:

h(squee)
l,b,p = −Δh,squeeul,b,:e−

d
τ , where

d = (−1)b+1
(
cy
{
p
}− max(cy)+min(cy)

2

)
+

max(cy)−min(cy)
2 .

 
Figure 6. Schematic representation of the squeegee effect on height. Dimensions are not to scale.

The final value for the height of each pad (h(agv)
l,b,p ) is determined by summing the solder mask and

squeegee effects:

h(agv)
l,b,p = N

{
h, p
}
+ h(sold)

l,b,p + h(squee)
l,b,p . (16)

3.3. Common Cause Variation Affecting Area

The area common cause variation can be conceptually subdivided into three components
representing (the structure of each component is analogous to Figure 3):

(i). Inter-lot deviation that impacts all pads of all PCBs in the same lot—inter-lot variation:

α
(inter)
a z(inter)

l,:,: σtol
{
a, p
}
ϕa;

(ii). Intra-lot deviation that affects all pads in each PCB—intra-lot variation: α(intra)
a z(intra)

l,b,: σtol
{
a, p
}
ϕa;

(iii). Local variability that affects each pad—pad specific variability: α(pad)
a z(pad)

l,b,p σtol
{
a, p
}
ϕa.

The random part of each component (z(inter)
l,:,: , z(intra)

l,b,: and z(pad)
l,b,p ) is drawn from the standard normal

distribution and scaled by the allowed standard deviation of each pad’s area (σtol
{
a, p
}
) using a scaling

factor for the total variance (ϕa). Furthermore, the contribution of each component is codified by the

scaling factors α(inter)
a , α(intra)

a and α(pad)
a , which are between 0 and 1 and are subject to:

(
α
(inter)
a

)2
+
(
α
(intra)
a

)2
+
(
α
(pad)
a

)2
= 1. (17)

Therefore, the final variance for the area of each pad is σ2
tol
{
a, p
}
ϕ2

a . Following these definitions,

the values for the area (a(agv)
l,b,p ) are obtained by (Table 8):

a(agv)
l,b,p = N

{
a, p
}
+
(
α
(inter)
a z(inter)

l,:,: + α
(intra)
a z(intra)

l,b,: + α
(pad)
a z(pad)

l,b,p

)
σtol
{
a, p
}
ϕa. (18)
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Table 8. Pseudo-code for generating the area.

1. For each lot, l = 1, . . . , L:

1.1. Generate inter-lot variability: z(inter)
l,:,: ∼ N(0, 1);

1.2. For each PCB, b = 1, . . . , B:

1.2.1. Generate intra-lot variability: z(intra)
l,b,: ∼ N(0, 1);

1.2.2. For each pad, p = 1, . . . , P:

1.2.2.1.Generate random variability: z(pad)
l,b,p ∼ N(0, 1);

1.2.2.2.Compute area:

a(agv)
l,b,p = N

{
a, p
}
+
(
α
(inter)
a z(inter)

l,:,: + α
(intra)
a z(intra)

l,b,: + α
(pad)
a z(pad)

l,b,p

)
σtol
{
a, p
}
ϕa.

3.4. Common Cause Variation Affecting Volume

The volume of solder paste deposit in each pad (v(agv)
l,b,p ) is considered to be proportional to the

product of area (a(agv)
l,b,p ) and height (h(agv)

l,b,p ):

v(agv)
l,b,p = a(agv)

l,b,p h(agv)
l,b,p f

{
p
}
, (19)

where f
{
p
}

is a correction constant (Table 9). For the case studies considered in this article, three different
values for f

{
p
}

were observed. However, it was not possible to establish a relationship between this
parameter and the pads’ location or geometry. Therefore, in the absence of further prior information,
it is suggested that f

{
p
}

is estimated using the nominal values for volume, area and height such that:

f
{
p
}
=

N
{
v, p
}

N
{
a, p
}
N
{
h, p
} . (20)

Table 9. Pseudo-code for generating the volume.

1. For each lot, l = 1, . . . , L:

1.1. For each PCB, b = 1, . . . , B:
1.1.1. For each pad, p = 1, . . . , P:

1.1.1.1.Compute volume:

v(agv)
l,b,p = a(agv)

l,b,p h(agv)
l,b,p

N{v,p}
N{a,p}N{h,p} .

4. Multivariate Statistical Process Monitoring Based on Principal Component
Analysis (MSPM-PCA)

In the previous section, details were given regarding the artificial generation of common cause
variability for the SPD printing process in a Surface Mount Technology (SMT) production line. This is
done in the AGV module, and the simulation outputs for area (a), height (h), volume (v), offset-X (x)
and offset-Y (y), are used to augment the reference NOC dataset, enriching it with a wide overage of
common cause variation modes. The augmented NOC dataset can then be used to set up a multivariate
statistical process monitoring scheme, which in the present case is based on principal component
analysis (PCA).

PCA is a latent variable methodology that decomposes the original data matrix, X, with n
observations and m variables, as:

X = TPT + E, (21)

where T is a (n × k) matrix of PCA scores, P is a (m × k) matrix with the PCA loadings, E is a
(n ×m) matrix of residuals and k is the number of retained principal components (PC). As PCA
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is scale-dependent, the data matrix X is usually standardized or “autoscaled” to zero mean and
unit variance.

The principal components of PCA are monitored by the Hotelling’s T2 as proposed by [52,53],

T2 =
k∑

i=1

t2
i
λi

= xTPΛ−1
k PTx, (22)

where x is a (m × 1) vector with the current observations, Λk is a diagonal matrix with the first k
eigenvalues in the main diagonal. If the process follows a multivariate normal distribution, then the
upper control limit (UCL) for T2 can be computed as [54,55]:

UCLT2 =
k(n− 1)(n + 1)

n2 − nk
Fα,k,n−k, (23)

where Fα,k,n−k is the upper α-percentile of the F distribution, with k and n− k degrees of freedom.
The complementary residuals’ subspace is monitored through the Q-statistic based on the squared

prediction error (SPE) of the residuals, e (m× 1) [53]:

Q = eTe =
(
x− ^

x
)T(

x− ^
x
)
= xT

(
I− PPT

)
x, (24)

where
^
x (m × 1) is the projection of x (m × 1) onto the PCA subspace. The UCL for this statistic is

usually determined by [53,56]:

UCLQ = θ1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
zα
√

2θ2h2
0

θ1
+ 1 +

θ2h0(h0 − 1)

θ2
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1/h0

, (25)

with,

θi =
m∑

j=k+1

λi
j, i = 1, 2, 3, (26)

h0 = 1− 2θ1θ3

3θ2
2

, (27)

where, zα is the upper 1− α percentile of the standard normal distribution.
Due to deviations in the model assumptions, the theoretical control limits for the PCA monitoring

statistics are often found to be inaccurate. Therefore, it is often preferable to set the control limits by
adjusting a scaled χ2 distribution to the empirical distributions of T2 and Q [57–59], leading to:

UCLT2 = gT2 · χ2
(
α, hT2

)
(28)

UCLQ = gQ · χ2
(
α, hQ

)
(29)

where g is a weighting factor and h is the effective number of degrees of freedom for the χ2 distribution.
Both values are obtained by matching the moments of the χ2 distribution with those of the empirical
distributions obtained from NOC data, leading to g = v/(2u) and h = 2u2/v, where v is the sample
variance and u the sample mean of the monitoring statistic.

Under the PCA framework, fault diagnosis can be performed by resort to contribution plots [60–63].
In this context, the contribution of the i-th variable for the T2 and Q statistics are computed as [62,64],

T2
i = ‖Λ−1/2Pi

Txi‖
2
, (30)
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Qi = ‖xi −
^
xi‖

2
, (31)

where Pi is the i-th row of P and xi is the i-th element of x. The theoretical control limits for each T2
i

and Qi can be found in Refs. [62,64]. Alternatively, the scaled χ2 approximation described before can
also be used.

5. Results for the Implementation of AGV in an Industrial SMT Process

The results presented next regard the printing of solder paste deposits in PCBs composed by 3517
pads. For each pad, measurements for five parameters are collected: (i) area; (ii) height; (iii) volume;
(iv) offset-X; (v) and offset-Y. For monitoring purposes, only 3507 pads are considered since the
remaining pads are associated with atypical shapes for which the accumulated historic data is not yet
enough to set up the AGV module parameters; they are also known to produce unusual offsets in
x- and y-coordinates even in NOC. Consequently, the total number of variables under monitoring is
m = 3507 pads × 5 parameters = 17,535 variables.

To analyze the characteristics of the proposed AGV module, three real datasets are considered
in this study. The first dataset (CS1; Section 5.1) corresponds to NOC data and is composed by
337 PCBs. The second dataset (CS2; Section 5.2) contains 2080 PCBs taken from a different production
run. Similarly, the third dataset (CS3; Section 5.3) has 1330 PCBs taken from a third production run.
The CS2 and CS3 datasets are mostly composed by normal PCBs, but also contain some faulty PCBs.
Furthermore, due to structured common cause variation in the process, the operational state of the
three case studies is typically distinct.

In this study, the PCA model is trained using only simulated data generated by the AGV module
with the values for the tuning parameters presented in Table 2. No data from the process was employed
for building the PCA model or setting up the monitoring charts (they can be also considered, for this
reason, pre-control charts). 20 lots with 300 PCBs in each lot were generated in the AGV module. Ten of
these lots were used to build the PCA model (training dataset). The other ten lots were used to set the
control limits by adjusting the empirical distributions of the monitoring statistics (validation dataset).
The control limits were set to a false alarm rate of 0.01. Although we only present here the results for
one set of the 20 lots, several replicates were analyzed leading to similar results.

From analysis of the scree plot in Figure 7, the number of retained principal components was set
to 5. By further inspection of the PCA loadings (Figure 8) it is verified that the first five components
have a close relationship with known phenomena. PC1 describes the relationship between heights and
volumes. This PC also shows that the variation in the SPD’s height and volume is related to the pads’
location in the PCB. PC2 and PC3 explain the rigid body translation effects in the PCBs, while PC4
describes the rotation effects. PC5 is related to the squeegee effect in the heights and its propagation to
the volumes. For this reason, PC5 is also related to the printing direction. As for the remaining PCs,
they are mostly associated with relationships between areas and volumes of different SPDs. However,
since the variation in the area is assumed to be independent from pad to pad, each one of them tend to
generates a different PC. Therefore, many PCs are generated by this effect (note that there are over
three thousands of pads involved in this mechanism). This justifies why the first 5 PCs explaining the
most relevant structured phenomena for process monitoring contain less than 5% of the total variance
in the simulated data. However, the monitoring procedure still comprises all the process variation:
both the variation captured by the first 5 PCs (through the Hotelling’s T2 statistic for the selected
PC scores) and the complementary residual variation (using the Q-statistic for the PCA residuals).
Therefore, this asymmetrical distribution of common cause variability is consistent with the physics of
the process and does not pose any problem or limitation for the monitoring scheme.

19



Processes 2020, 8, 1520

Figure 7. Scree plot of the first 20 eigenvalues of the PCA model.

Figure 8. Loadings of the first six principal components. Each block of loadings corresponds to (from
left to right) areas, heights, volumes, offset-X and offset-Y.

5.1. Analysis of Dataset CS1: NOC Data

The CS1 is composed by NOC data, and therefore it will be used to validate the AGV simulation
module. By applying the PCA model to this dataset the score plots in Figure 9 are obtained. The results
show that the scores from CS1 do not fully overlap the scores from the simulated lots. This is visible in
the plot of PC3 vs. PC4 (see Figure 9c), and is an expected behavior since the inter-lot variability causes
the lot to fall in a different region of the scores space. In this case, CS1 has lower scores in PC3 than the
simulated lots. PC3 is related to translation effects in the PCBs, which implies that the PCBs in CS1
have a systematic translation in a given direction. Note however that some of the simulated lots have
translations with similar magnitudes but on the opposite direction. As these inter-lot translations occur
randomly and in either direction, we consider that the simulated data is still representative of real
operation conditions. The different behavior across the lots is also visible for PC1 and PC4. Since both
PCs are related with changes in offset-X and offset-Y, this indicates that the alignment of the PCBs in
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each lot is a critical factor in the final quality of the products. This information will be further explored
in Sections 5.2 and 5.3 to identify possible problems in the different datasets under analysis. As for the
intra-lot variability, it is verified that the dispersion of the real data is similar to that obtained with the
AGV module.

 
(a) (b) 

 
(c) (d) 

Figure 9. Relation between the principal components of the simulated validation lots and the data
Figure 1. (a) first and second principal components; (b) first and fourth principal components; (c) third
and fourth principal components; (d) fourth and fifth principal components.

As for the control charts produced by the PCA model (Figure 10), it is noticeable that the monitoring
statistics are relatively low compared to the control limits. This happens because the PCA model was
built using multiple lots, while the monitored data respects to a single lot operating in a well-defined
and localized region, spanning only a small fraction of the operational NOC space.

One word of caution should be referred about the proposed approach, resulting from our
accumulated experience on its application to real data. Although the proposed methodology decreases
the chance of declaring a false alarm due to a change to another lot and solves the issue of false
alarms that render classical monitoring methods useless, it also decreases the sensitivity to detect small
deviations within a lot since a slightly deviating PCB may be treated as belonging to a different lot
rather than being abnormal. This is a consequence of incorporating inter-lot variability in the AGV
simulation scenarios.
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(a) (b) 

Figure 10. Control charts for the PCBs in CS1: (a) T2-statisctic; (b) Q-statistic.

Related to this issue, it was also noted that the Q-statistic is affected by the large number of
monitored variables (m). In this case, there are 17,535 variables, but only 5 PCs are retained in the PCA
model. These 5 PCs also explain a small fraction of the total variance (less than 5%), meaning that most
of the variability of the data is monitored by the Q-statistic. In other words, the Q-statistic cumulates a
large number of squared residuals with rather large variances. Thus, when a fault occurs, even with a
large magnitude, it can suffer from dilution effect from the contribution of all residuals.

From the analysis of the dataset CS1, we can confirm that real NOC data fall inside the expected
NOC envelop obtained from the AGV module. The dispersion characteristics of the CS1 lot in the PCA
subspace are also similar to the simulated lots, which occupy different regions in the PCA subspace
due to the expected (and simulated) inter-lot variability. These observations consubstantiate the rigor
placed on the model development process, and provide confidence to the analysis of the remaining
datasets using the PCA model developed in this section based on the simulated AGV data.

5.2. Analysis of Dataset CS2: Test Data (NOC and Faulty)

From analysis of the scores obtained for this case study (Figures 11 and 12) it is apparent that this
dataset is composed by at least five distinct operation periods. By comparison with the previously
simulated validation lots, it is verified that all periods still fall within the typical operation conditions
described by the PCA model applied to AGV data. It is also visible that each period resembles
individual lots with specific characteristics. In this case study, a clear distinction in the printing
direction is observed for some of the production periods. This phenomenon is more noticeable when
PC5 is plotted against PC2 (Figure 13).

By inspecting the control charts for this case study (Figure 14), it is verified that all PCBs are
marked as in-control. Nevertheless, it is noticeable that PCBs #159 and #1596 have atypical Q-statistics.
While for PCB #1596 most of the variables are within their tolerance specifications, PCB #159 present
significant deviations in 151 variables. Therefore, PCB #159 is clearly a false negative. The deviations
in the measurements of PCB #159 are passed to the residual subspace of PCA. However, since the
critical residuals are only a small part of the sum of squared residual over all variables, they are not
large enough to trigger an alarm. In spite of this, the contribution plots of PCA are able to identify the
abnormal pads and parameters (Figure 15). This result suggests that a monitoring statistic focused
solely on the relevant residuals (i.e., those with a significant contribution in the residual subspace)
could lead to a more sensitive fault detection.
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(a) 

(b) 

Figure 11. Principal components of CS2: (a) first principal component; (b) fourth principal component.

 
(a) (b) 

 
(c) (d) 

Figure 12. Relation between the principal components of the simulated validation lots and the data
from CS2: (a) first and second principal components; (b) first and fourth principal components; (c) third
and fourth principal components; (d) fourth and fifth principal components.
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(a) (b) 

Figure 13. Second and fifth principal components of CS2 stratified by printing direction: (a) PCBs #435
to #834. (b) PCBs #835 to #1595.

 
(a) (b) 

Figure 14. Control charts for the PCBs in CS2: (a) T2-statisctic; (b) Q-statistic.

(a) 

(b) 

Figure 15. Contribution of each pads’ parameter to the Q-statistic of PCB #159 of CS2: (a) contributions
for the pads’ area; (b) contributions for the pads’ height.
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5.3. Analysis of Dataset CS3: Test Data (NOC and Faulty)

This dataset comprises at least six distinct operation periods (Figure 16). Once again, these periods
are mostly identified by PC1 and PC4, meaning that they are related to lots with different characteristic
rotations in the PCBs during the SPD printing process. This result also highlights that the rotation
effects on the offsets is mostly driven by inter-lot variation. From Figure 17 it is also verified that
the selected values for the tuning parameters of the AGV module led to simulated lots resembling
real data.

Although the AGV module generates data with realistic features, the PCA-based monitoring
methodology presents limitations in its detection capabilities due to the incorporation of inter-lot
variability (Figure 18). For instance, from the Q-statistic, it is observed that PCBs #248, #401 and #1191
have larger deviations than the others. Nevertheless, these deviations are not large enough to overcome
the sum of squared residuals over a large number of variables. By inspecting the contribution plots for
these PCBs, it is verified that some of the pads have unusual heights (Figure 19) and therefore these
PCBs should have been signaled as potentially faulty. Once again, this issue may be solved in the
future if the squared residuals below a given threshold are not included in the Q-statistic, which will
cause the monitoring scheme to be more sensitive to critical deviations.

(a) 

(b) 

Figure 16. Principal components of CS3: (a) first principal component; (b) fourth principal component.
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(a) (b) 

 
(c) (d) 

Figure 17. Relation between the principal components of the simulated validation lots and the data
from CS3: (a) first and second principal components; (b) first and fourth principal components; (c) third
and fourth principal components; (d) fourth and fifth principal components.

 
(a) (b) 

Figure 18. Control charts for the PCBs in CS3: (a) T2-statisctic; (b) Q-statistic.
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Figure 19. Contribution of the pads’ height to the Q-statistic of PCB #248 of CS3.

6. Discussion

A suitable monitoring scheme requires an adequate model that describes the normal operations
conditions of the process. One way to construct such NOC model is through the use of data-driven
methods based on historical records of normal operation. However, when a new product enters the
production line, such past information is not available. To overcome this situation, one can simply run
the process without monitoring until sufficient data is acquired. However, this approach can lead to
inadequate models since the data collected in a short period of time might not represent the overall
variability of the process. This is particularly more relevant when the process has non-stationary
characteristics, such as those caused by distinct production lots. As an alternative to the current
data-driven modelling approaches, it is here proposed to generate artificial data based on accumulated
process knowledge and then build a monitoring scheme using the augmented NOC dataset, enriched
with information about inter-lot variation sources.

In this work, the proposed AGV module aims to simulate the structural components of common
cause variability of a solder past printing process, accounting for (i) translation and rotation effects
on offset-X and offset-Y, (ii) squeegee effects on offset-Y and height (iii) and solder mask effects on
height. Furthermore, these effects are structured into multiple components in order to accommodate
for inter-lot (common to all PCBs in a lot), intra-lot (common to all pads in a PCB) and pad specific
(unique to each pad) variability. The amount of variability attributed to each component, as well as the
magnitude of the effects is established by a set of tuning parameters handily defined by the user.

Throughout this work, it was observed that the tuning parameters can define a large variety of
operation conditions. While this gives a high degree of flexibility to the AGV module, it also implies
that selecting the best set of tuning parameters is a critical task in order to achieve realistic simulations.
In this case, we had accesses to historical data and the tuning parameters were chosen to resemble
the real data of the product under study. For a new product with distinct characteristics, the best
combination of tuning parameters might be different. We expect the tuning parameters to be related to
external factors such as operators and equipment operation and therefore they should not vary much
from product to product. Nevertheless, further analysis is required to confirm this conjecture and the
applicability of the similar tuning parameters to PCBs with different layouts.

By use of the PCA model built on the simulated data, it was verified that the simulated data was
distributed in clusters related to the simulated lots. This behavior was also observed for the real data.
Real data was dispersed over the same range of values as simulated data, which confirms the reliability
of the AGV module as a realistic data augmentation tool. The loadings of the PCA model trained
on the simulated data also showed to be related with known phenomena of the printing process.
Therefore, the PCA model can provide very useful insights on the operation conditions of each PCB,
as well as fault diagnosis. For instance, the PCA model can be used to identify distinct lots and the
printing direction.
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In this study the number of simulated lots was selected to have a reasonable representation
of the process variability while also allowing for an easy visualization of the results. For a more
accurate representation of the process the number of lots should be selected as the point where the
PCA parameters and control limits stabilize. Throughout this work several realizations of 20 lots were
simulated, and it was confirmed that they lead to consistent results of the PCA models and control
limits for the statistics.

Following the good results in terms of process modelling, the PCA model was used for process
monitoring. In this regard, the monitoring scheme showed to solve the excessive false alarms problem
of current methodologies, at the cost of presenting low sensitivity to fault detection when faults are
located on a relatively small number of SPDs. The reason for this is twofold. Firstly, the PCA model
was built to account for the variability across multiple lots. However, for a given lot, the PCBs are
likely to vary within a localized region of the principal components subspace. Furthermore, to detect
abnormal PCBs within a lot, their measurements must differ not only from the typical measurements
on their lot, but also typical measurements on other lots. Secondly, deviations from the PCA model can
be masked by the sum of squared residuals over a very large number of variables. To overcome this
limitation, in analogy to the cumulative sum (CUSUM) control chart [6,11], we propose to screen for the
relevant residuals (i.e., those above a given allowance threshold) and then build a truncated Q-statistic
using only the residuals that were found relevant. This approach is already under development and
preliminary results show that it reduces the number of variables/residuals included in the Q-statistic
and therefore puts more focus on the most critical deviations.

Although none of the case studies led to alarms, fault diagnosis was run for PCBs with
atypical monitoring statistics. For these cases, the contribution plots were able to identify abnormal
measurements as well as the affected pads. Therefore, the resort to simulated data can provide
useful information for fault diagnosis. These results also support the development of an alternative
monitoring statistic to enhance the detection of deviations in the residual subspace.

Finally, it is noted that real data can also be included in the PCA model as the process progresses.
Another improvement that can be made as soon as real data is available is to replace the correction
constants for the volume (f, Equation (20)) by those computed from real data. Consequently,
the relationships between volume and the product of area and height will be closer to reality.
Nevertheless, even without the use of real data, the current study already demonstrates the usefulness
of the AGV module for process monitoring when historical data is not available.

7. Conclusions

In this work, a data augmentation framework for Artificial Generation of common cause Variability
in SMT industrial assembling lines was proposed. The aim of the AGV module is to allow for a
prompt application of monitoring procedures in new products for which extensive historical data
is not available, without incurring in prohibitive rates of false alarms. The AGV module is based
on process knowledge and codifies the dominant modes of common cause variation due to known
physical phenomena. The proposed approach can be even implemented in the absence of an historical
dataset, as long as there is accumulated information from related processes. This particular aspect was
also covered in our analysis in this paper.

The data generated by the AGV module proved to reproduce well the long term variability of
real process data. The critical issue of high false alarm rates was solved. On the other hand, we also
report that the monitoring statistics show limited detection capabilities. This happens because the PCA
model accounts for inter-lot variation, while the process will typically operate in localized regions at a
given time. Furthermore, the sensitivity of the PCA monitoring scheme is also affected by the very
large number of variables under monitoring.

Future work should therefore consider the application of the AGV module to other case studies.
Furthermore, novel monitoring approaches should be development in order to account for the presence
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of different lots (improve the sensitivity of the T2-statistic) and reduce the impact of irrelevant residuals
when the number of monitored variables is very large (improve the sensitivity of the Q-statistic).
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Abstract: Quality prediction in the continuous casting process is of great significance to the quality
improvement of casting slabs. Due to the uncertainty and nonlinear relationship between the
quality of continuous casting slabs (CCSs) and various factors, reliable prediction of CCS quality
poses a challenge to the steel industry. However, traditional prediction models based on domain
knowledge and expertise are difficult to adapt to the changes in multiple operating conditions
and raw materials from various enterprises. To meet the challenge, we propose a framework
with a multiscale convolutional and recurrent neural network (MCRNN) for reliable CCS quality
prediction. The proposed framework outperforms conventional time series classification methods
with better feature representation since the input is transformed at different scales and frequencies,
which captures both long-term trends and short-term changes in time series. Moreover, we generate
different category distributions based on the random undersampling (RUS) method to mitigate the
impact of the skewed data distribution due to the natural imbalance of continuous casting data.
The experimental results and comprehensive comparison with the state-of-the-art methods show
the superiority of the proposed MCRNN framework, which has not only satisfactory prediction
performance but also good potential to improve continuous casting process understanding and
CCS quality.

Keywords: quality prediction; continuous casting; multiscale; convolutional neural network; time
series classification; imbalanced data

1. Introduction

At present, the steel industry is facing unprecedented challenges including resource
consumption, serious environmental pollution, substandard process and product stability,
and low productivity [1]. Steelmaking is a typical process industry, with long produc-
tion processes, complicated manufacturing processes, and many process control factors
involved [2]. The changes in product types and raw materials of different companies
will be different, and it is difficult for knowledge-based models to adapt to all changes,
which makes the migration and maintenance of models difficult. Therefore, the deep
integration of information technology and the steel manufacturing industry, as the entry
point for industrial upgrading, is of great significance to the realization of intelligent and
green steel production.

Continuous casting is the most critical part of steelmaking [3]. Stable and high-quality
continuous casting production is the top priority of iron and steel enterprises. Continuous
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casting is the process of solidifying molten metal into semifinished slabs and rolling them
in a finishing mill [4]. As shown in Figure 1, the molten metal is transferred from the
ladle to a tundish and slowly injected into the continuous caster. Then, the crystallizer
in the continuous caster shapes the casting and rapidly solidifies and crystallizes. In this
process, the mold level fluctuation will greatly affect the quality of continuous casting slabs
(CCSs). With the sharp fluctuation of the liquid level in the mold, the content of oxide
inclusions under the slabs will increase significantly [5]. However, mold level fluctuation
is likely to cause slag entrapment of molten steel, which further leads to the deterioration
of slab quality.

Figure 1. A schematic diagram of the continuous casting process.

Major steel producers are leveraging information technology such as the Internet of
Things (IoT) and embracing big data to change the current state of the steel industry [6].
The use of sensor-based data acquisition systems in factories and the explosive growth of
steel data make data modeling and analysis possible [7]. Furthermore, over the last decade,
intelligent technologies, represented by data mining [8] and neural networks [9], have been
developed from the theoretical research into their industrial applications. In the field of
steelmaking, numerous scholars focus on the classification of steel surface defects [10,11].
Although continuous casting is the main process phase affecting the final quality of the steel
products, the continuous casting system has a large number of complex input parameters;
thus it is well adapted for big data analysis. Lei et al. have used machine learning methods
to develop an offline system for continuous casting data collection and data mining [12],
a small amount of research work involves the classification and prediction of continuous
casting slabs quality. Nandkumar et al. [13] predicted and improved the quality of iron
casting with the Six Sigma approach. A two-layer feedforward backpropagation neural
network model was developed to predict the possibility of defects in foundry products [14].
The feedforward backpropagation neural net is out of practice currently, and the vanilla
recurrent neural net performs poorly in engineering. Artur et al. designed a specific
convolutional neural network (CNN) to detect stickers during continuous casting [15].
Although their method can reduce false alarms, when CNN is used alone for detection,
the effect is not respectable. Indeed, we have incorporated two neural net architectures
into our multiscale convolutional and recurrent neural network (MCRNN) to build one
more robust and better network.

In this work, based on the process data acquisition system, a real-time prediction
closed-loop control system was constructed to predict and improve the quality of CCS.
In the system, a framework composed of an MCRNN is proposed for real-time quality
prediction of CCS. Various conversions are made at different times and frequencies to
obtain time series data for fluctuations in the level of the original mold. The CNN can apply
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to time series analysis of sensor data well, and it can also be used to analyze signal data
with a fixed-length period. Feature extractors based on the fully convolutional network
(FCN) and long short-term memory (LSTM) are used to capture long-term dependencies
and extract local features of time series, respectively, and we use the advantages of CNN
to automatically learn features [16] in the downsampling transformation representation
and frequency domain, extracting features of different time scales and frequencies and
solving the limitations of many previous features that can only be extracted at a single
time scale [17,18]. As a result, the proposed MCRNN enhances feature representation
and improves the performance of quality prediction compared to traditional time series
classification models. Moreover, the number of normal samples is much larger than the
number of abnormal samples. Average production is 100 slabs, with production of only
5 abnormal slabs. We use the random undersampling (RUS) method to reduce the number
of majority classes to address the class imbalance. We introduced expert knowledge into
the system. When the predictive model detects an abnormal slab, the continuous casting
process adjusts in real-time based on expert knowledge, which improves steelmaking
efficiency and slab quality.

The organizational structure is as follows: In Section 2, we review the work related to
time series classification. In Section 3, we describe our proposed MCRNN and established
system in detail, which is the core section of the paper. In Section 4, we present the detailed
process and experimental results of the method. Finally, in Section 5, we draw the main
conclusions of this work.

2. Related Work

In our real world, time series data are ubiquitous; examples include temperature,
click volume, stock prices, and sensor data. They are sequential data of real value type
with a large amount of data, high data dimensions, and constant updating of data. In the
data-driven era, there is an increasing demand for information extracted from time series,
the main task of which is time series classification (TSC). It is a long-standing problem
involving a wide range of practical applications, such as the classification of financial time
series [19], the judgment of individual agricultural land-cover types [20], and early churn
detection [21].

Traditional time series classification methods are mostly based on distance measure-
ment. Lines and Bagnall [22] proposed nearest neighbor classifiers with elastic distance
measures to improve classification accuracy. In particular, the dynamic time warping
(DTW) distance combined with the nearest neighbor classifier has proved to be a strong
baseline [23]. Nevertheless, the performance could be rarely acceptable when it was applied
to the engineering field with big data. There are other methods of distance measurement
and spatial transformation for time series, such as information entropy [24], weighted dy-
namic time warping (WDTW) [25], and shapelet transformation [26]. Moreover, enhanced
weighted dynamic time warping [27] and distributed fast-shapelet transform [28] were
proposed to improve the performance of times series classification. Based on ensemble
schemes and data conversion, Bagnall et al. not only aggregated different classifiers on
the same transformation but also collected different classifiers in different time series
representations [29]. However, these methods only have linear separability.

In recent years, deep learning has developed rapidly and achieved excellent results
in classification tasks. Convolutional neural networks and recurrent neural networks are
widely used in image recognition [30], video classification [31], machine translation [32],
information extraction [33], and other fields. CNN can use convolutional layers to learn
complex feature representations automatically, with the advantage of absorbing a large
amount of data to learn feature representations. In recent years, many neural networks for
time series classification, such as multilayer perceptron (MLP), fully convolutional network
(FCN), and residual network (ResNet) [34], emerged. Convolutional neural networks
(CNN) have been applied to time series applications, though CNN is mainly for the image
field [35,36]. In the classification of high-dimensional time series, Zheng et al. proposed to
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use a multichannel convolutional neural network for modeling [37]. The echo state network
(ESN) is a time-warping invariant, limited to static patterns rather than temporal patterns,
and was applied to time series classification tasks [38]. Joan et al. studied the use of a time
series encoder and established a hybrid deep CNN with an attention mechanism [39]. For
the quality prediction system, however, these present methods cannot meet the demands
of overall continuous casting slab production pipelines.

3. Methodology

Given a series of mold level fluctuations, our goal is to predict the quality of the
continuous casting slab (CCS) in production. The quality of CCS will also change under dif-
ferent production conditions, such as different raw materials and technological parameters.
In addition, it is worth noting that the quality of CCS is normal in most cases, while only a
few are abnormal. Unbalanced time series classification is a challenging task when using
only FCN or LSTM to extract time series on a single scale. We consider that time series
should be represented comprehensively in multiscale and multifrequency dimensions
to improve the classification performance and obtain a robust model. To address these
problems for quality prediction of the CCS, we propose a new MCRNN architecture, where
the input is the time series of mold level fluctuation to be predicted and the output is
its quality label, as shown in Figure 2. The more details of layouts of each network are
tabulated in Table 1. We use the grid search to obtain hyperparameters and iteratively find
the best hyperparameters. This architecture mainly includes three sequential stages: the
input representation stage, the feature learning stage, and the classification stage.

Figure 2. The proposed multiscale convolutional and recurrent neural network (MCRNN) framework.
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Table 1. Details of the the MCRNN structure.

Layer Type Feature Maps Kernel Size Stride

Convolution 128 8 1
BN + ReLU 128 - -

Convolution 256 5 1
BN + ReLU 256 - -

Convolution 128 3 1
BN + ReLU 128 - -
AvgPooling 128 243 0

Concate 768 - -
Convolution 64 4 1
AvgPooling 64 765 0

Full-connected 2 - -

3.1. Class Imbalance

In the process of quality prediction, the number of abnormal and normal samples is
extremely unbalanced, and the imbalance ratio is about 20:1. Class imbalance can have a
negative impact on classification performance, because the classifier trained on unbalanced
data favor major classes. We utilize the RUS method to achieve a more balanced class
distribution, which improves the classification performance.

The RUS method is a form of data sampling that randomly selects major class in-
stances and removes them from the dataset until the desired class distribution is achieved.
Based on the original unbalanced dataset, RUS is used to generate the training dataset of
three sample ratios, which are 1:1, 1:2, and 1:3. The normal sample ratio is followed by the
abnormal sample ratio. We try to see how different sampling ratios affect the classification
performance of the trained neural network and select the best sampling dataset. How-
ever, the test set is generated from unbalanced raw data without RUS because of realistic
prediction requirements. As shown in Figure 3, in the original dataset of continuous casting
slabs, the number of abnormal continuous casting slabs is far less than the number of
normal continuous casting slabs. The desired class distribution is achieved by randomly
removing the normal CCS and retaining the entire abnormal CCS, which can cause the loss
of majority class information.

Abnormal CCS

Normal CCS

defect

Original Dataset Resampled dataset

Figure 3. The random undersampling process of continuous casting slabs (CCSs).

3.2. MCRNN Architecture
3.2.1. Input Representation

Consideration should be given to using multiscale time series to build an accurate and
reliable time series model. The long-term temporal pattern shows general trend changes,
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and the short-term temporal pattern reflects fine-grained fluctuations. Both patterns
are critical to the performance of TSC. In our research work, we transform the original
input space to obtain representation at different time scales and frequencies inspired by
Cui et al. [40]. The transformation includes two stages: downsampling transformation in
the time domain and smoothing transformation in the frequency domain. In the first stage,
we downsample from the sequence X = [x1, x2, ..., xT ] of mold level fluctuation and the
downsampling rate is r. Then, new time series Xr is generated from the original sequence
by retaining every rth data points.

Xr = {x1+r∗i}, i = 0, 1, ..., �T − 1
r

� (1)

Due to the influence of high-frequency disturbances and random noise, we carry out
the moving average of the time series in the second stage to solve the problem. Given an
original sequence X = [x1, x2, ..., xT ] of mold level fluctuation, a new time series can be
defined as Xw according to different degrees of smoothness.

Xw = { 1
w

jw

∑
i=(j−1)w+1

xi}, j = 1, 2, ...,
T
w

(2)

where w is the window size.
As shown in Figure 4, a sequence of the mold level fluctuation values in the production

time of one slab transforms in time and frequency dimensions. For different downsampling
rates and degrees of smoothness, we can get multiple time sequences, each of which corre-
sponds to different scale representations of original sequence input. With the multiscale
transformation of input, long-term temporal patterns and short-term temporal patterns
can be employed to build a robust model. At the same time, the new time series based
on the moving average of different windows reduces the noise of the original sequence.
After two stages of transformation, the input is divided into two modules and fed into
the neural network. For r and w, it is related to the sampling size. Sampling size is the
sample points for each slab. We compared the sampling size values when the sampling
rate is 1:2. As shown in Table 2, the model trained well when the sampling size was equal
to 256, so we use 256 in our model.

Figure 4. Illustration of the input transformations when r = 4 and w = 4.
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Table 2. Comparison of sampling size with sampling ratios = 1:2.

Sampling Size Accuracy

128 0.5176
256 0.6250
512 0.4778

3.2.2. Feature Learning

The feature extractor architecture is composed of the LSTM module and a fully
convolutional module. The goal of this phase is to learn effective time series features
in a parallel manner through multiple pairs of recurrent layers and convolutional layers
in advance.

1. LSTM module: This module contains an LSTM layer, followed by a dropout layer.
We employ an LSTM feature extractor to capture temporal patterns of CCS time
series with multiscale and multifrequency dimensions. Specifically, the mold level
fluctuation input X = [x1, x2, ..., xT ] and the hidden state Ht−1 of the previous time
step given for the time step t. The definition of input gate it, forget gate ft, and output
gate ot is as follows. The input gate controls the extent to which a new value flows
into the cell.

it = σ(XtWxi + Ht−1Whi + bi) (3)

The forget gate decides what information should be dropped.

ft = σ(XtWx f + Ht−1Wh f + b f ) (4)

The output gate determines which parts are useful.

ot = σ(XtWxo + Ht−1Who + bo) (5)

The candidate memory cells C̃t at time step t are calculated as

C̃t = tanh(XtWxc + Ht−1Whc + bc) (6)

The calculation of the current time step memory cell Ct combines the information
of the last time step memory cell and the current time step candidate memory cell,
and controls the flow of information through the forgetting gate and the input gate.

Ct = ft � Ct−1 + it � C̃t (7)

The output gate controls the flow of information from memory cells to the hidden
state Ht, which can be calculated as:

Ht = ot � tanh(Ct) (8)

We feed the raw or transformed mold level fluctuation to LSTM and get output vector
Ov = [H1, H2, ..., HT ] from the last layer of the LSTM. We use output at time step t as
feature OT

v = HT extracted by LSTM. To prevent overfitting, the output of the LSTM
layer is followed by the dropout layer with a dropout rate of 0.8 as shown in Figure 2.
With dropout, final feature vector Fv can denote as:

Fv=r ∗ OT
v (9)

ri ∼ Bernoulli(p) (10)

Here, ∗ denotes an element-wise product. For output vector at time step t, r is a
vector of independent Bernoulli random variables, each of which has probability p of
being 1.
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2. Fully convolutional module: The core component of fully convolutional module is a
convolutional block that contains:
• Convolutional layer with a filter size of 128 or 256, the kernel with a size of 8, 5,

3 and stride of 1.
• Batch normalization layer with a momentum of 0.99 and epsilon of 0.001.
• A ReLU activation at the end of the module.
In this module, we utilize convolution kernel w ∈ R

m to slide over the input sequence
and extract local features. The output ci of the i-node in the feature map is defined by

ci = σ(wT ∗ xi:i+m−1 + b) (11)

where xi:i+m−1 represents m-length subsequence from the ith time step to the (i + m − 1)th
time step of input sequence, ∗ denotes the convolution operator, b denotes the bias
term, and σ(.) is a nonlinear activation function.
Accordingly, the convolution kernel is slid from the beginning time step to the end
and we get the feature map of the jth kernel as

cj = [c1, c2, ..., cT−m+1] (12)

After convolution, batch normalization followed by a ReLU activation function acceler-
ates fast training speed and improves model generalization ability. The fully convolutional
module contains three convolutional blocks which are used as a feature extractor. Then, it
performs a one-dimensional global average pooling operation on the feature map of the
last block to obtain the vector, which reduces feature dimensions while increasing the
receptive field of the kernel. The vector obtained by global average pooling on the final
output channel can be expressed as

Fc = [a1, a2, ..., ak] (13)

aj =
1

T − m + 1 ∑ cj (14)

where k represents the filter size of the last convolutional block. We concatenate the
features extracted by LSTM with a fully convolutional module. As mentioned in the
previous section, the original input is transformed at different time scales and frequencies,
so we use feature extractors on different input expressions and feed the final features into
the next stage as input.

3.2.3. Classification

Finally, the concatenated feature vector obtained in the feature learning stage is directly
fed to the classification module, which is composed of a convolution and global average
pooling layer, a fully connected layer, and a softmax layer. As a result, it outputs conditional
probability for each class. The softmax function rescales the n-dimensional vector of the
FC layer output so that the output value is in the range [0, 1] and the sum is 1, which is
defined by the following:

s(vi) =
evi

∑n
j=1 evj

(15)

The full convolution module and LSTM module process the same time series input in
two different fields of view. The full convolution is a fixed-size perception field to extract
local features of time series. On the contrary, LSTM effectively captures time dependencies.
The method of combining with convolutional and recurrent neural networks is crucial to
enhance the performance of the proposed framework.

3.3. Quality Prediction System Based on MCRNN

Based on a large amount of process information collected by sensors, a quality predic-
tion and control system is established for intelligent decision-making and control. To elab-
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orate on the infrastructure of an established system, the framework of the system based
on MCRNN is described in Figure 5. It mainly consists of three parts: data acquisition,
quality prediction, and dynamic control. Data acquisition module based on various sensor
networks collects massive real-time production data about the continuous casting process,
such as temperature, water volume, and casting speed. The real-time collected process data
will be sent to the quality prediction module and stored as historical data for visualizing
the display and training of the model. Moreover, the quality information of each rolled
slab is collected to label continuous casting data.

LadleContinous Casting 
Process

Tundish Crystallizer Continuous 
casting slab

Process And Quality  Data
 Acquisition Cooling water EMS Argon

Quality 
Prediction

...

...

Label

Dynamic 
Control

Expert 
knowledge

Programmable 
logic controller

Raw Data Anomaly?
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Multi-Scale Multi-Frequency
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BN+Relu
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Global Pooling

Dropout
LSTM
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Figure 5. The framework of quality prediction system based on MCRNN.

With production process parameters and slab labels, a quality prediction model based
on the proposed MCRNN is built. In the real-time production process, the original time
series data are entered into the model and transformed with different time scales and
frequencies. The output of the model is the quality label of CCS. Once the slab in producing
is judged to be abnormal by the prediction model, the knowledge of domain experts will
be employed to dynamically adjust the production process. The dynamic control module
adjusts the process and equipment parameters in time through the programmable logic
controller to avoid affecting the next rolling process and causing waste. Abnormal CCS
produced will be sorted into the cleaning process of the machine to eliminate defects.
The workflow improves efficiency, reduces costs, and enhances yield greatly.

4. Experiments and Results

In this section, we first describe the dataset and the evaluation metrics. Then, the
effects of the RUS method and multiscale transformations are discussed in our studies.
Finally, the proposed MCRNN model compares with different baseline models.

4.1. Dataset

Based on the installed data collector, the mold level fluctuation of the continuous
casting production is recorded every 0.5 s in time series. In this way, we obtain a one-year
continuous casting real-time process (CCRP) dataset which is not labeled. The continuous
casting slab is rolled, and then the label information is generated by the inspection machine.
Therefore, we get slightly delayed slab quality information, called the slab label dataset,
from another system.

The slab label dataset contains abnormal reasons to be used as anomaly labels. We can-
not obtain the quality information of CCS in the production process immediately, and can
only get feedback results after hot rolling. The only connection to the CCRP dataset and the
slab label dataset is the time of continuous casting. We map the anomaly labels in the slab
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label dataset to the CCRP dataset through casting time. Each slab corresponds to a large
amount of real-time information during the continuous casting period. With the help of
the start and end times in the slab label dataset, we match quality labels to the time series
data during this period.

After marking the CCRP dataset with the slab label dataset, we obtained 9628 time
series of slabs with the label. Among them, 9073 time-series were labeled as normal
samples, and 555 time series were labeled as abnormal samples. In all experiments, we
used a leave-one-out approach to train and test the classifier, divided the sample into two,
70% of the samples for training and 30% of the samples for testing, and used k-fold cross-
validation to ensure the robustness of the model; cross-validation was repeated 5 times.
However, normal and abnormal samples were extremely unbalanced. We utilized the RUS
method described in Section 3.3 on the training set to ensure sample balance.

4.2. Evaluation Metrics

The confusion matrix is used to evaluate the quality of the algorithm in the classifi-
cation task. In particular, we focus on three important metrics, the average accuracy of
the classifier, the recall value for each class, and F1 score. Our goal is to find a balance
between false negatives and false positives, and find as many abnormal slabs as possible
for good judgment. Specifically, if our model does not detect a CCS with abnormal quality,
the abnormal slab will move on to the next process, and the final result is that the produced
steel plate cannot be sold. If a CCS of normal quality is predicted to be abnormal by the
model, it will undergo further processing attempts to change the quality status, which will
increase costs. The most important point is that the cost of sending defective products to
customers can be much higher than that of inspecting the products. Therefore, we want to
maximize recall rates of exception class and sacrifice as few normal samples as possible.

Recall =
TP

TP + FN
(16)

Precision =
TP

TP + FP
(17)

F1 = ∑
i

2 × wi
Precisioni × Recalli
Precisioni + Recalli

(18)

where i refers to class index and wi =
ni
N represents the proportion of samples of class

i, with ni being the number of samples of the ith class and N being the total number
of samples.

4.3. Effect of Random Undersampling

The training errors of different sampling rates (1:1, 1:2, 1:3) shows in the form of loss
curves in Figure 6. When the sampling rate is 1:2, the curve drops more smoothly, so the
sampling effect is better.

Tables 3–5 show the results of k-fold cross-validation of the proposed MCRNN method
at different sampling rates, k = 5. The result of the proposed MCRNN method at different
sampling ratios is shown in Table 6. From the results, we can see the effect of sampling on
the predictive performance of the model, and our model has a certain degree of robustness.
Without sampling, recall for abnormal class and normal class is 0 and 1, respectively.
Obviously, the trained models predicted all the slabs as normal to acquire the highest
accuracy, without any ability to detect abnormal slabs. As the proportion of abnormal
samples in the training sample increases, the recall of abnormal class increases. The SMOTE
sampling algorithm has a certain effect on solving the problem of imbalanced data [41].
We also compared the SMOTE sampling algorithm with RUS in Table 6, and it was obvious
that the RUS algorithm we proposed has a better effect on our data set. However, when the
sampling ratio is 1:1, although more than 50% of abnormal slabs can be identified, a large
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number of normal slabs are misjudged at the same time. It is reflected in the low F1 score
and accuracy.

(a) sampling ratios = 1:1 (b) sampling ratios = 1:2

(c) sampling ratios = 1:3

Figure 6. The MCRNN training loss curve with different sampling ratios.

Table 3. Results for sampling ratios = 1:1 with k = 5.

Accuracy F1 Recall-Abnormal Recall-Normal

1 0.3978 0.5164 0.6165 0.6071
2 0.4147 0.5338 0.5987 0.6122
3 0.4549 0.5724 0.5553 0.5714
4 0.4551 0.5747 0.5525 0.5663
5 0.4531 0.5737 0.4531 0.5306

Table 4. Results for sampling ratios = 1:2 with k = 5.

Accuracy F1 Recall-Abnormal Recall-Normal

1 0.6247 0.7206 0.3588 0.3827
2 0.6227 0.7190 0.3651 0.4439
3 0.6058 0.7062 0.3797 0.3929
4 0.6393 0.7315 0.3404 0.3418
5 0.6325 0.7264 0.3512 0.3929

Through the sampling of training samples, the prediction ability of the model for
abnormal slab can be improved, but the best proportion is one that is not completely
balanced. When the sampling ratio is 1:2 or 1:3, the trained model has a certain ability to
detect abnormal slabs without misjudging a large number of normal slabs. In the actual
quality prediction of CCS, we adopt the sampling strategy with a sampling ratio of 1:2
because sending defective slabs to customers based on prediction can be more expensive
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than misjudgment, and we want to detect as many abnormal slabs as possible to avoid
inferior products.

Table 5. Results for sampling ratios = 1:3 with k = 5.

Accuracy F1 Recall-Abnormal Recall-Normal

1 0.7142 0.7843 0.2590 0.3214
2 0.7292 0.7940 0.2406 0.2857
3 0.6875 0.7659 0.2876 0.3214
4 0.6940 0.7705 0.2816 0.3367
5 0.7181 0.7871 0.2563 0.3418

Table 6. Results for different sampling ratios.

Sampling Ratio Accuracy F1 Recall-Abnormal Recall-Normal

1:1 0.4351 0.5542 0.5552 0.5776
1:2 0.6250 0.7207 0.3590 0.3908
1:3 0.7086 0.7804 0.2650 0.3214

SMOTE 0.4566 0.5274 0.4942 0.5272
No sampling 0.9445 0.9277 0 1

4.4. Effect of Multiscale Transformations

In order to validate the effectiveness of multiscale input transformations, we per-
formed experiments with transformed and untransformed inputs. The results are shown in
Figure 7. We can see that the F1 score with input transformations is higher than that without
input transformations when the sampling ratio is 1:2 and 1:3. When the sampling ratio is
1:1, the F1 score of the two scenarios are almost identical. However, input transformations
have a positive effect on the recall for abnormal class. It can be concluded from the right
part of the figure that more abnormal slabs can be detected with input transformations.
In most cases, performing input transformations will help greatly improve classification
performance. The effectiveness of the multiscale transformations is demonstrated in the
recall rate of the abnormal class and F1 score.

(a) F1 score (b) Recall for abnormal class

Figure 7. Effects of multiscale transformation on classification performance.
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4.5. Comparison

We conducted experiments on our dataset using two baseline methods from the publi-
cation of Wang et al. [34] for comparison to our developed approach: fully convolutional
network (FCN) and residual network (ResNet), which have been proved to be useful as
standard benchmarks for end-to-end time series classification networks. The FCN basic
block is a convolutional layer, followed by a batch of normalization layer and a ReLU
activation layer, and the final output comes from the softmax layer. The convolution
operation is completed by three 1-D kernels of size 8, 5, 3. The final network is constructed
by stacking three convolution blocks. The filter size of each convolution block is 128, 256,
128. ResNet uses the convolution block in FCN to construct each residual block, and finally
stacks three residual blocks, followed by a global average pooling layer and a softmax
layer. The number of filters for each residual block is 64, 128, 128. Furthermore, long short-
term memory (LSTM) is used to compare with our proposed method, which has been
proved to apply to periodic time series data. We have optimized the parameters of all
networks participating in the comparison experiment to achieve the best results in this
problem domain.

Table 4 shows the recall rate for the abnormal class of the proposed model and the
other methods of baselines. Table 5 compares the F1 score of our proposed model with
other models. The results illustrate that our proposed model achieves the highest recall
for abnormal class at different sampling ratios. According to Tables 7 and 8, the proposed
model achieves the highest recall for abnormal class while maintaining a high F1 score.
When the sampling ratio is 1:2, the proposed model obtains the recall for an abnormal class
of 0.3590 and the F1 of 0.7207. It is best for our task. We hope that the model can detect
more abnormal slabs and minimize misjudgment, which is a cost consideration.

Table 7. Recall-Abnormal comparison between the proposed model and the other baseline methods.

Methods
Sampling Ratio

1:1 1:2 1:3

FCN 0.5303 0.3485 0.2576
ResNet 0.5455 0.3536 0.2272
LSTM 0.5303 0.0606 0.0151

MCRNN 0.5552 0.3590 0.2650

Table 8. F1 score comparison between the proposed model and the other baseline methods.

Methods
Sampling Ratio

1:1 1:2 1:3

FCN 0.5249 0.6778 0.8155
ResNet 0.5137 0.6751 0.8246
LSTM 0.6244 0.8962 0.9445

MCRNN 0.5542 0.7207 0.7804

By comparison of the three methods, LSTM is bad in comparison to ResNet and FCN
for Recall-Abnormal and MCRNN is not superior to ResNet and FCN in the F1 score. How-
ever, the MCRNN is superior to LSTM in the Recall-Abnormal score, though the MCRNN
shows inferior slightly to LSTM in the F1 score. Considering the engineering scenario of
steel production prediction, the Recall-Abnormal is more important than the F1 score to
prevent low-level steel slabs from escaping check. FCN and ResNet, though slightly inferior
to our model, also achieved good classification performance. However, LSTM performs
unsatisfactorily in most cases except for the 1:1 sampling ratio. LSTM can easily deal with
periodic time series data, but there are still some challenges with cluttered sensor data.
Compared with FCN and ResNet, the MCRNN extracts features at different time scales and
frequencies. Inputs of different transformations capture long-term trends and short-term
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changes, which is essential for classification. It can explain that the traditional methods
simply perform a large number of convolutions over the same time scale.

5. Conclusions

We proposed a novel MCRNN architecture for the quality prediction of CCS. The ma-
jor contributions of the new architecture are the transformations of time series input and
feature extraction with LSTM and FCN. The proposed architecture can automatically ex-
tract the long-term trend and short-term change of time series, which greatly enhances
feature learning ability and abnormal slab detecting performance. Extensive experimental
results show that traditional methods are more incapable when dealing with messy and
unbalanced data, and multiscale convolution and recurrent neural networks outperform
other state-of-the-art baseline methods in quality prediction. Accordingly, a real-time qual-
ity prediction system based on MCRNN architecture has also been developed. The mold
level fluctuation collected by the data module in the system is fed into the trained model.
The continuous casting process will be adjusted in real-time based on expert knowledge
if there is a high probability of prediction that it is an abnormal slab. The system greatly
enhances steelmaking efficiency, improves slab quality, and reduces costs. Due to class
imbalance caused by a few abnormal slabs, we use a random sampling method to generate
training sets with three different sampling ratios to help mitigate class imbalance. Experi-
mental results demonstrated that the proposed method can detect more abnormal slabs
and reduce the misjudgment of normal slabs when the sampling ratio is 1:2.

For future research, although the established quality system has achieved certain
results, it is still insufficient in several aspects such as interpretability of prediction and
root cause analysis, the sampling method of dealing with the problem of unbalanced data
is still worthy of our continued study. In recent years, the interpretability of deep learning
is an important research field. In the future, we will utilize the interpretable method and
root cause analysis to find out the cause of the abnormal slab, which will further improve
the performance of intelligent steelmaking.
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CCS Continuous Casting Slabs
MCRNN Multiscale Convolutional and Recurrent Neural Network
RUS Random Undersampling
IoT Internet of Things
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
TSC Time Series Classification
DTW Dynamic Time Warping
WDTW Weighted Dynamic Time Warping
FCN Fully Convolutional Network
MLP Multilayer Perceptron
ESNs Echo State Networks
CCRP Continuous Casting Real-time Process
ResNet Residual Network
SMOTE Synthetic Minority Oversampling Technique
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Abstract: Identifying abnormal process operation with spatial-temporal data remains an important
and challenging work in many practical situations. Although spatial-temporal data identification
has been extensively studied in some domains, such as public health, geological condition, and
environment pollution, the challenge associated with designing accurate and convenient recognition
schemes is very rarely addressed in modern manufacturing processes. This paper proposes a
general recognition framework for identifying abnormal process with spatial-temporal data by
employing a convolutional neural network (CNN) model. Firstly, motivated by the pasting case
study, the spatial-temporal data are transformed into process images for capturing spatial and
temporal interrelationship. Then, the CNN recognition model is presented for identifying different
types of these process images, leading to the identification of abnormal process with spatial-temporal
data. The specific architecture parameters of CNN are determined step by step. According to the
performance comparison with alternative methods, the proposed method is able to accurately identify
the abnormal process with spatial-temporal data.

Keywords: spatial-temporal data; pasting process; process image; convolutional neural network

1. Introduction

Advanced sensing technologies are being increasingly applied in data collection systems for the
areas including public health, geological condition, environment pollution, and manufacturing process.
If the output of sensors is represented by the data with space and time structure, it can be termed as
spatial-temporal data [1]. A lot of research focuses on the abnormality identification of abnormal-spatial
temporal data, such as identifying outliers of the hourly air quality [2], detecting abnormal ozone
measurements caused by air pollution or correlation among neighbor sensors [3], and diagnosing
whether a disease is randomly distributed over space and time [4]. With the development of
manufacturing technology, many sensors have been installed in the production lines, and a large
number of spatial-temporal data can be collected from such processes. In order to improve the quality
of manufacturing process, the abnormality identification of such spatial-temporal data has attracted
much attention. Wang et al. [5] proposed a spatial-temporal data modeling method to identify the
abnormality of a wafer production process. The identification scheme developed by Megahed et al. [6]
can quickly detect the emergence of a fault in the nonwoven textile production process. Yu et al. [1]
presented a rapid spatial-temporal quality control procedure for detecting systematic and random
outliers. Current research is being conducted on identifying whether the process with spatial-temporal
data is normal or not. Their common objective is to accurately detect the time and location of changes in
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the occurrence rate as soon as possible [7]. In other words, existing research only focuses on the process
monitoring of spatial-temporal data, but it is very rare to consider the root cause of abnormal data. In a
real process, however, both normal and abnormal data can be collected from the process, and process
monitoring and fault diagnosis can be applied simultaneously with spatial-temporal data. Normal and
abnormal data display different variation patterns, which can be observed in process. Hence, how to
identify such patterns precisely is the key problem in modern manufacturing process control.

Generally speaking, spatial-temporal data collected from the production process has many
observations over time and location, and the adjacent observations are highly correlated. Thus,
the high volume and their correlation of spatial-temporal data provide a considerable challenge for the
identification of abnormal process. Moreover, the curse of dimensionality and complex data structure
makes it difficult to build an identification model. Therefore, dimension reduction techniques are
required before using the identification model. To capture intrinsic spatial- and temporal- correlations
in an abnormal process state, principal component analysis (PCA), a widely used technique in
dimension reduction, can be applied to extract features from spatial-temporal data via unfolding
the original data set [8]. However, PCA cannot be directly applied to two or higher dimensional tensor
data, unless such data are reshaped into a vector. Because the vectorization operation breaks the
spatial and temporal correlation structure, it would lose potentially useful information contained in
original data [9]. It is known that analyzing spatial-temporal data is more challenging than analyzing
one-dimensional data. To overcome this issue, multilinear PCA (MPCA) and uncorrelated multilinear
PCA (UMPCA) are proposed as alternatives to PCA [10]. In these methods, the tensor structure
of spatial-temporal data are considered and more effective representation can be extracted [11,12].
Although these methods have desirable performance in processing spatial-temporal data, they focus
separately on how to extract useful features from raw data and construct an effective identification
model of an abnormal process [13]. If extracted features cannot interpret abnormal processes
sufficiently or the identification model does not understand the extracted features, the performance is
not robust. Hence, how to propose an effective approach integrating features self-learning and the
identification of abnormal process with spatial-temporal data are still a challenge to be overcome.

Convolutional neural networks (CNN), one of the most effective deep learning models for tensor
data processing, has been widely applied in natural language processing [14], image recognition [15],
electrocardiogram (ECG) analysis [16], and fault diagnosis [17]. Benefiting from the mechanism of
CNN in tensor data processing, the correlation structure of spatial-temporal data can be well-preserved
by CNN. Meanwhile, CNN does not need to extract abnormal features manually, as the features can be
learned from spatial-temporal data hierarchically and automatically. Taking the advantages of CNN,
a novel method for identifying abnormal production process with spatial-temporal data is proposed in
this paper. The case study considered is a pasting process, which is a critical process in lead-acid battery
production and the output of sensors constitute a typical example of spatial-temporal data. Motivated
by this process, a CNN-based identification approach for abnormal process with spatial-temporal data
are presented. In order to show the recognition accuracy and effect of this approach, UMPCA is used
as a benchmark in our study.

This paper is organized as follows. In Section 2, the pasting process as a motivating example is
introduced and its spatial-temporal data are acquired. Section 3 develops a general CNN framework
for identifying abnormal process with spatial-temporal data. We investigate the validation of the
CNN recognition model in Section 4. In Section 5, the CNN method is applied to online identify the
abnormal pasting process, and then the performance of the proposed method is evaluated. Suggestions
and directions for further research are discussed in conclusions.
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2. Case Study: Pasting Process

2.1. Spatial-Temporal Data Acquisition

A lead-acid battery consists of basic cell blocks, and each cell block contains several plates.
Plates are the basic components of lead-acid batteries, and unqualified plates will directly affect
the initial capacity and cycle life of batteries. In general, plate production includes five processes:
ball-milling, paste mixing, grid casting, pasting, and plate curing. Pasting is a critical process in
plate production [18,19], and most components of poor quality batteries can be traced back to this
process. The identification of abnormal pasting process is the key to ensure the quality of batteries.
In the pasting process, the lead oxide pastes are squeezed into the gap between two sides of the grid,
and then it is turned into a plate. The mechanism of the whole pasting process is shown in Figure 1.
The uniformity of the lead oxide paste in the plate surface is a critical quality characteristic, which can
be measured by plate thickness. Therefore, the change of uniformity will directly reflect the abnormal
state of the pasting process.

Figure 1. Pasting process.

To obtain plate thickness data, a laser sensor is installed at the end of pasting equipment to collect
the observations of the uniformity as shown in Figure 1. When a plate moves in the pasting process,
the laser sensor records its thickness values at different locations over time as shown in Figure 2. In the
pasting example, there are m locations to measure the uniformity of the plate. When a plate moves
through the sensor, the data observed over m locations can be collected at one time. In other words,
the uniformity of the plate can be described by the observations measured in the m locations, and the
uniformity of different plates can be observed over time to indicate the condition of the current process.
Actually, the observation of uniformity is represented as a vector, which can be collected at time t.
The vector will become a matrix over time, which can indicate the stability of the pasting process.
The matrix collected from the pasting process is bi-dimensional, including space and time dimension.
The matrix visualized by a surface is shown in Figure 2.
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Figure 2. Spatial-temporal data collection in the pasting process.

The abnormal changes of plate thickness in the pasting process often result from unexpected
causes, such as the failure of the pasting machine and unqualified grids, which are the root causes of
the abnormal process. Once these root causes are identified and removed, the pasting process will
return to normal. The plate thickness data change randomly in space and time when the pasting
process is running normally, which is referred to as a normal process pattern, F0, seen in Figure 3a.
In general, different causes will lead to various abnormal process patterns, which can be reflected by
the changes of plate thickness in space and time domains. For example, when the plate thicknesses
have an upward shift, it is usually caused by the wear of the parts in the pasting machine.

According to the changes of spatial-temporal data from pasting process and engineering
experience, we find out seven common abnormal process patterns. When the uniformity of lead
oxide paste becomes worse, the plate thickness data will change unevenly in time and space, which is
denoted by abnormal process pattern F1, seen in Figure 3b. This abnormal process pattern results
from the failure of the compression roller or acid spouting system, such as the blockage of the sprayer
in the acid spouting system and aging spring in a compression roller. When the plate thickness is
not uniform on both sides, that is, one side is thick and another is thin, the spatial-temporal data of
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plate thickness at different locations will gradually become steeper with time. This abnormal process
pattern is labeled as F2, and its corresponding causes are unusual clearance between the pasting
machine and conveyor belt. When the plate thickness becomes thicker gradually, there is a steady
rise over time in the spatial-temporal data, seen in Figure 3d. This pattern, denoted by abnormal
process pattern F3, is caused by the insufficiency of conveyor belt tension under the pasting machine.
When the thickness uniformity of plates becomes worse in a sudden way, the spatial-temporal data
will become nonuniform suddenly, which is denoted by abnormal process pattern F4, as seen in
Figure 3e. In general, this situation could be attributed to the low strength of the steel in a new
batch of grids. When the thickness between the two sides of plates becomes nonuniform suddenly,
the spatial-temporal data of plate thickness at one side will step up and become steep suddenly, which
can be seen in Figure 3f. This situation is denoted by abnormal process pattern F5 and its corresponding
cause is usually that the roller in the pasting machine slants to one side. When the plate thickness
becomes thicker suddenly, the overall upward step will be shown in the spatial-temporal data of
plate thickness, seen in Figure 3d. The abnormal process pattern F6 could be used as the label of
this situation, which results from the electromagnetic fault in the pressure machine of compressed
air. When the thickness of plates become thicker in a periodic manner, a periodical change will be
observed in spatial-temporal data, seen in Figure 3h. This type of situation is labeled as abnormal
process pattern F7, and the corrosion status of pasting conveyor belt is usually required to be checked
by engineers. All types of abnormal process patterns are shown in Figure 3.

(a) Normal process pattern F0 (b) Abnormal process pattern F1

(c) Abnormal process pattern F2 (d) Abnormal process pattern F3

(e) Abnormal process pattern F4 (f) Abnormal process pattern F5

Figure 3. Cont.
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(g) Abnormal process pattern F6 (h) Abnormal process pattern F7

Figure 3. Normal and abnormal process patterns in the pasting process.

From Figure 3, it can be observed that the obvious shape differences among the spatial-temporal
data of plate thicknesses show different abnormal process patterns. Therefore, the identification of
abnormal process with spatial-temporal data are converted into the problem of identifying these
abnormal process patterns. Once a certain abnormal process pattern is identified, its corresponding
root causes could be found out simultaneously.

2.2. Abnormal Process Image Collection

Although the abnormal process patterns describe the abnormal states of the process with
spatial-temporal data very well, high dimensionality, spatial-temporal correlation, and a high amount
of noise make it difficult to identify them directly. Grayscale image can visually capture important
abnormal patterns of observation data without any parameters predefined by users’ experiences [20].
In order to effectively distinguish normal and seven abnormal process patterns, spatial-temporal data
from the pasting process can be transformed into grayscale images, which is called process image.
Given a spatial-temporal data matrix X, xi,j refers to a measured value, where i and j represent the
location and time of the spatial-temporal data matrix, respectively. For generating the process image
of the spatial-temporal data, each grayscale can be calculated from data matrix X by normalizing,
multiplying 255 and taking integer. The transformation formula is given by:

y(0)i,j = rounding(
xi,j − Min(X)

Max(X)− Min(X)
× 255), (1)

where y(0)i,j is the grayscale value corresponding to xi,j, rounding is the function for taking integer,
and Min(X) and Max(X) are used for extracting maximum and minimal elements from matrix X.
Thus, the spatial-temporal data have been represented as a process image to visualizing the operation
status of the manufacturing process. Process images of normal and seven abnormal process patterns
discussed above are shown in Figure 4. For the convenience, they are still denoted as F0, F1, F2, F3, F4,
F5, F6, and F7.

In the grayscale image of a normal process pattern, the pixels are arranged randomly without
obvious change. Because the spatial and temporal data of plate thickness varies unevenly, in the
grayscale image F1, some pixels are white and some are dark. When the spatial-temporal data of
plate thickness becomes steeper gradually in F2, the pixels of the steep data gradually appear to be
white in the process image F2. The important features of other abnormal process patterns can be
directly represented in their process images, as shown in Figure 4. From the above discussion, it can be
observed that each process image can capture the trend and variation features of its corresponding
pattern shown in Figure 3. Therefore, the problem of identifying abnormal process patterns is converted
into detecting abnormal process images. How to use an effective recognition method of the abnormal
process image is a challenge in this paper.
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(a) F0 (b) F1 (c) F2 (d) F3

(e) F4 (f) F5 (g) F6 (h) F7

Figure 4. Normal and abnormal process images in the pasting process.

3. CNN Framework for Process Images Recognition

3.1. Architecture of the CNN Model

Convolutional neural network (CNN) is a kind of feed-forward artificial neural network (ANN),
which is inspired by biological vision from pixel to abstract feature [21]. Unlike the traditional
neural networks that need to concatenate raw data into a vector, CNN can directly deal with image
data. Taking this advantage of CNN, the recognition model for process image will be constructed in
this paper. A CNN recognition model is comprised of an input layer, several convolution layers
and pooling layers, fully-connected (FC) layers, and an output layer, as illustrated in Figure 5.
The input layer is to import process images for detection. The convolution layer and pooling layer are
used to extract abnormal information from process images. The fully-connected layer serves as the
integration of abnormal process information. The output layer is to provide the categories of abnormal
process images.

Figure 5. The general architecture of convolutional neural network (CNN) model for the process image.
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A CNN model usually consists of several convolution and pooling layers. For convenience,
suppose that there are R convolution and pool layers in CNN model and a process image is a square
with N × N size, seen in Figure 5. Convolution layer is a most important component in the CNN
model, which assigns weights to the grayscales of the input image by a convolution kernel, so as to
extract process abnormal features.

3.2. Underlying Mechanism of the CNN Model

In the first convolution layer, suppose that there are L1 convolution kernels. The (w(1)
k,i,j)M×M,

(k = 1, 2, . . . L1; i = 1, 2, . . . , M; j = 1, 2, . . . , M) is used to represent the kth convolution kernel with
M × M size (M < N), where w(1)

k,i,j means the weight value at row i and column j of the kth kernel.
In order to get the convolution results, a moving window with M × M size should be set up.
The window moves one stride at a time, where the area formed is called a receptive field. When
all pixels in the process image are covered by the moving window, (N − M + 1) × (N − M + 1)
receptive fields can be obtained. For all the receptive fields and convolution kernels in the first layer,
the convolution result can be obtained by the following:

y(1)k,i,j = f (
M

∑
s=1

M

∑
t=1

w(1)
k,s,t · y(0)i+s−1,j+t−1 + b(1)k ),

i and j = 1, . . . , (N − M + 1),

s and t = 1, . . . , M,

k = 1, . . . , L1,

(2)

where y(1)k,i,j is the convolution output of the current receptive field for the kth convolution kernel, w(1)
k,s,t

is the weight element at row s and column t of the kth convolution kernel, y(0)i+s−1,j+t−1 is the grayscale

in current receptive field, and b(1)k (k = 1, 2, . . . L1) represents the bias value. f () is RuLU activation

function [22]. For the kth convolution kernel, all of the y(1)k,i,j values from receptive fields formed a
matrix, which is called a feature map corresponding to the kth convolution kernel (k = 1, 2, . . . L1).
The feature maps of the first convolutional layer will be input to the pooling layer.

The pooling layer is mainly used to compress feature maps and obtain condensed feature maps via
pooling function. In the first pooling layer, L1 feature maps are entered respectively. Each feature map
is partitioned into several non-overlapping square areas, which is known as pooling fields. In general,
every pooling field with 2 × 2 size is preferred [23]. To get the pooling results, maximum pooling and
average pooling are widely used pooling functions [24]. For the kth feature map, the pooling results,
also known as condensed feature map, are obtained. The pooling value at row i and column j of the
kth condensed feature map, y(2)k,i,j, can be computed by following equation:

y(2)k,i,j = pooling(y(1)k,2i−1,2j−1, y(1)k,2i−1,2j, y(1)k,2i,2j−1, y(1)k,2i,2j),

i = 1, . . . ,
N − M + 1

2
, j = 1, . . . ,

N − M + 1
2

,
(3)

where y(1)k,2i−1,2j−1, y(1)k,2i−1,2j, y(1)k,2i,2j−1, y(1)k,2i,2j are four values in the current pooling field connecting to

y(2)k,i,j, and pooling refers to pooling function. After pooling operation, L1 condensed feature maps are
obtained, which will be input into the next convolution layer.

Similarly, the above work is repeated on several alternative convolution and pooling layers
until the last pool layer. The condensed feature maps of the last pooling layer will be unfolded and
imported to the Fully-connected (FC) layer. Before fully-connected operation, LR condensed feature
maps are unfolded to a vector, yFC

i , i = 1, . . . , LR × q × q . Suppose there are H nodes in the FC

56



Processes 2020, 8, 73

layer, and, for the hth node, the weights connected to the ith input nodes can be denoted as w(FC)
i,h

(i = 1, 2, . . . , LR × q × q, h = 1, 2, . . . , H). The value of the hth node in the FC layer can be computed
as follows:

yF
h = f (

LR×q×q

∑
i=1

y(FC)
i × w(FC)

i,h + b(F)
h ), h = 1, . . . , H, i = 1, . . . , LR × q × q, (4)

where yF
h is the output the hth node in FC layer, b(F)

h (h = 1, 2, . . . H) represents the bias of the hth node,
and f () is ReLU activation function. In the output layer, the connection between the hth FC node and
the jth output node is represented by w(O)

hj , (h = 1, 2, . . . H; j = 1, 2, ..T). To classify the input data,
the probability output of the jth output node is required to be computed as follows:

Pj = f (
H

∑
h=1

y(F)
h × w(O)

hj + bj), h = 1, . . . , H, j = 1, . . . , T, (5)

where T is the number of output nodes, Pj is the result of the jth node in the output layer, and bj is
the bias value of the jth output nodes. f () is the normalized exponential function, through which the
probability can be obtained:

f (yj) =
eyj

∑T
j=1 eyj

, j = 1, . . . , T. (6)

As discussed above, the weights and biases in each layer of the CNN model can directly affect the
final results of the output layer. If the difference between the actual output and the expected output
is too large to be accepted, the weights and biases are required to be updated. The difference can be
measured by the following loss function:

F = − 1
T

T

∑
j=1

[P∗
j ln(Pj) + (1 − P∗

j )ln(1 − Pj)], (7)

where T refers to the total number of trained categories, P∗
j and Pj are the expected output and the

actual output, respectively. A small loss value means an accurate probability output. To reduce the loss
value, The back-propagation (BP) algorithm [25] is utilized. For convenience, the weights and biases in
all layers are referred to as w and b, respectively. Thus, F is the loss function of w and b. The partial
derivatives of F for w and b can be expressed as follows:

wt = wt−1 − η
∂F
∂w

,

bt = bt−1 − η
∂F
∂b

,
(8)

where wt and bt represent the updated weights and biases after the tth iteration. η is the learning rate,
and η = 0.01 is a common selection [26]. The CNN architecture parameters consist of the numbers of
convolution layers and convolution kernels, the size of convolution kernels per layer, the selection of
pooling function, and the number of output nodes in the FC layer. These parameters are required to be
stepwise determined, which will be discussed in the next section.

3.3. CNN Identification Framework

A CNN framework for the identifying abnormal process with spatial-temporal data is presented
in this paper. This framework can be divided into two phases: offline learning and online identifying.
The offline learning phase aims to train a CNN model from offline collected process images and
establish an appropriate CNN recognition model. In the online identifying phase, this CNN
model trained in the offline phase can be applied to identify the abnormal process with real-time
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spatial-temporal data. The CNN identification framework is shown in Figure 6, and the details are
introduced in the following.

There are two main steps in offline learning: The first step is to obtain training samples,
which consists of process images and their corresponding categories. Process images are converted by
spatial-temporal data and their corresponding categories can be obtained according to engineering
experience. The second step is to determine the architecture parameters of CNN, and update the
weights and biases from the convolution, pooling, and FC layer of the CNN using the BP algorithm.
After offline learning, the CNN recognition model will be obtained.

Figure 6. The CNN identification framework.

After the offline learning phase, the CNN recognition model is established and applied to
online recognition of the abnormal process with spatial-temporal data. Two main steps in the online
identifying phase are as follows: The first step is to collect the real-time spatial-temporal data from a
process through the moving identification window. The size of the window should be determined by
the product processing time, so that the spatial-temporal data in the current window can be mapped
into a suitable process image. The second step is to identify the abnormal process images. The process
images in the current identification window will be recognized by the CNN recognition model. If the
decision result made by the CNN recognition model is a normal process image, the sliding window
will move forward to collect new observations until an abnormal process image is identified.

According to the above two phases, the abnormal process with spatial-temporal data can
be identified in a real-time way. It benefits from the powerful learning ability of the CNN
recognition model.

4. Validation Results

The validation of the proposed approach depends on the architecture parameters of the CNN
model, which will be investigated by the spatial-temporal data collected from the pasting process in this
section. To evaluate the ability of detecting process images under various architectures, the recognition
accuracy of test data (ATD) is used for the evaluation index, which is a ratio of the number of samples
recognized correctly and the total number of samples. When an abnormal pattern happens in the
process, the CNN model is expected to identify the abnormal type as precisely as possible. Meanwhile,
when the process is normal, the CNN model is required to recognize the normal pattern more accurately,
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so that the higher ATD indicates the better validity of the CNN model. The following validation
analysis consists of the determination of layer and node number, and selection of the kernel size and
pooling function. In addition, 700 process images with 50 × 50 size are collected from the pasting
process under each process pattern separately, where 200 and 500 process images are selected randomly
as the training and test samples, respectively. Training data are applied to learn the CNN recognition
model with different architectures, and test data are used to compare their recognition accuracy to find
the best one, which is conducted in Caffe, Ubuntu 16.04 with a Tesla K80 GPU.

4.1. Determination of Layer and Node Numbers

The number of layers and nodes discussed here contains the numbers of convolutional layers,
convolution kernels per layer, and FC nodes. To achieve the optimal performance of CNN model,
the number of convolution layers and kernels per layer are important parameters required to be
specified in advance [27]. Adding more convolutional layers and kernels to the network could capture
high-level features of input data at the price of making the model complex to train [28]. Thus, to obtain
an optimal network architecture, the numbers of convolutional layers and convolution kernels will be
determined layer by layer.

For the process image size of 50 × 50 size, the size of a condensed feature map will be 2 × 2 after
four convolution and pooling operations, which cannot be further convolved. Thus, here we consider
the CNN model with 4 convolution layers. Twenty scenarios for the numbers of convolution kernels
from 5 to 100 are tested via recognition accuracy. The average accuracy and standard deviation are
used to measure the performance of the proposed CNN model. To evaluate recognition accuracy,
all the results of proposed method are replicated at least 100 times, and the results are shown in
Table 1. By comparing different scenarios in the first convolution layer, the highest average recognition
accuracy can reach 95.18% when the number of convolution kernels is 65. Considering the same
scenarios in the second convolution layer, the number of convolution kernels is set to 70 because the
highest average accuracy is 96.36%. In a similar way, the optimal numbers of convolution kernels
can be determined layer by layer, shown in Table 1. It is expected that the recognition accuracy will
increase until the optimal number of convolution layer is found out.

Generally, the recognition accuracy will be improved with the increase of convolution layers.
However, we can see that the recognition accuracy begins to decrease from the third convolution layer
in Table 1. In this situation, it can be inferred that the optimal number of convolutional layer is 3,
and the corresponding number of convolution kernels is 65, 70, and 80 respectively, which is denoted
as 65-70-80.

Under the 65–70–80 structure of the convolutional layer, the number of nodes in the FC layer
needs to be determined. Ten scenarios for the numbers of FC nodes from 100 to 1000 are shown in
Figure 7. By comparing the average recognition accuracy and standard deviation in different scenarios,
we find that the accuracy increases to 98.08% at 800 nodes, and, after that, the accuracy does not exceed
98.08% by adding more nodes. Additionally, we observe that the variation of recognition accuracy
becomes lower as the number of nodes in FC layer increases. From Figure 7, it is noted that the
difference of recognition accuracy using various FC node numbers is not obvious enough, especially
using 600 and 800. In this research, the node number corresponding to higher recognition accuracy and
lower variation is preferred. Because the recognition accuracy using 800 nodes is slightly better than
using 600, and the optimal number of FC nodes is set to 800. For the above discussion, the optimal
architecture of CNN model is denoted as 65–70–80–800.
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Table 1. The recognition accuracy comparison among different number of layers and convolution
kernels. The boldface entries represent the highest average accuracy under the current layer. Numbers
in parentheses are standard deviation of recognition accuracy.

The Number of
Convolution

Kernels

Accuracy of Test Data (%)

1st Convolution
Layer

2nd Convolution
Layer

3rd Convolution
Layer

4th Convolution
Layer

5
94.16

(0.232)
95.56

(0.253)
96.45

(0.225)
96.32

(0.336)

10
94.37

(0.145)
95.90

(0.238)
96.96

(0.169)
96.68

(0.278)

15
94.67

(0.117)
96.01

(0.146)
97.12

(0.187)
96.70

(0.168)

20
94.76

(0.156)
96.21

(0.154)
97.18

(0.119)
96.83

(0.165)

25
94.78

(0.110)
96.12

(0.162)
97.21

(0.172)
96.97

(0.157)

30
94.86

(0.118)
96.12

(0.102)
97.28

(0.123)
97.03

(0.146)

35
94.80

(0.114)
96.23

(0.162)
97.31

(0.168)
97.08

(0.137)

40
94.92

(0.147)
96.25

(0.166)
97.35

(0.158)
97.25

(0.148)

45
94.98

(0.120)
96.22

(0.116)
97.40

(0.162)
97.10

(0.151)

50
94.97

(0.116)
96.24

(0.168)
97.01

(0.128)
97.02

(0.139)

55
95.05

(0.100)
96.25

(0.081)
97.42

(0.144)
96.89

(0.155)

60
95.10

(0.115)
96.30

(0.104)
97.66

(0.201)
96.82

(0.187)

65
95.18

(0.112)
96.28

(0.336)
97.61

(0.159)
96.82

(0.103)

70
95.12

(0.126)
96.36

(0.120)
97.83

(0.173)
96.69

(0.098)

75
95.09

(0.098)
96.14

(0.064)
97.91

(0.139)
96.64

(0.111)

80
95.10

(0.102)
96.32

(0.149)
98.00

(0.106)
96.69

(0.132)

85
95.11

(0.121)
96.33

(0.105)
97.78

(0.092)
96.76

(0.139)

90
95.14

(0.133)
96.30

(0.071)
97.43

(0.094)
96.53

(0.167)

95
95.16

(0.075)
96.33

(0.090)
97.39

(0.122)
96.50

(0.143)

100
95.14

(0.116)
96.34

(0.110)
97.36

(0.118)
96.31

(0.121)
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Figure 7. The accuracy comparison among fully-connected (FC) node numbers.

4.2. Selection of Kernel Size and Pooling Function

The sizes of convolution kernels and pooling function are also important architecture parameters
of a CNN model. The size of convolution kernels will be first discussed. In general, a convolution
kernel with a small size can capture details of abnormal information from process images. Thus,
under the optimal architecture, 65–70–80–800, the CNN recognition models with kernel sizes 3 × 3,
5 × 5, and 7 × 7 are considered respectively, seen in Table 2. The results of the CNN model with three
kernel sizes are obtained and the optimal kernel size can be determined as 3 × 3. Then, the optimal
pooling function will be selected in the following.

Table 2. The recognition accuracy comparison for kernel sizes. The boldface entries represent the
highest accuracy.

Architecture Kernel Size Average Accuracy of Test Data (%)

65-70-80-800 3 × 3 98.08
65-70-80-800 5 × 5 97.27
65-70-80-800 7 × 7 96.58

Like the above discussion, the max-pooling and average-pooling shown as Equations (4) and
(5) are widely used pooling functions. The comparison of recognition accuracy for two pooling
functions is shown in Table 3. The max-pooling function is the best one, which can be used in the CNN
recognition model.

Table 3. The recognition accuracy comparison for pooling functions. The boldface entries represent the
highest accuracy.

Architecture Kernel Size Pooling Function Accuracy of Test Data (%)

65-70-80-800 3 × 3 Max pooling function 98.08
65-70-80-800 3 × 3 Average pooling function 92.29

To summarize, the CNN recognition model for abnormal pasting process images shown in Table 4
has been constructed, and its validation has been proved.
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Table 4. The architecture parameters of the proposed convolutional neural network (CNN) recognition
model for the pasting process.

The Number of
Convolution Layers

The Number of Kernels Kernel Size Pooling Function
The Number of

Nodes in FC Layer

3 65-70-80 3 × 3 Max pooling function 800

5. Performance Comparison

In order to demonstrate the performance of the proposed method, the abnormal pasting process
with spatial-temporal data will be identified in this section. The plate thickness data used for
performance comparison are obtained from the pasting machine. After data cleaning and clustering
analysis, the data of normal pattern and abnormal patterns is extracted and converted to process
images. Each type of process patterns includes 200 and 500 process images with 50 × 50 size for
training and testing respectively.

The abnormal pasting process images are online recognized using the constructed CNN
recognition model. In the real pasting process, because the processing time of a plate is 0.5 s, the plate
thickness observations at 50 locations in 25 s can be mapped to a process image with 50 × 50. Thus, the
size of the moving identification window is set to 50 × 50. Taking 0.5 s as a stride length, once a new
observation is obtained, the sliding window will move one step. As the window slides, the process
images formed by the first 64 observations change smoothly and steadily, in which the output results
of the CNN model are normal process images, shown in Figure 8. When the window moves to
observation 115, the probability output is (0, 0, 0.005, 0.012, 0.003, 0.007, 0.973, 0), which indicates
that the abnormal process pattern F6 happens in the pasting process. The corresponding cause is
insufficient conveyor belt tension caused by the electromagnetic fault of the air pressure machine.
When the root cause is removed, the plate thickness comes back to the target value nearby. When
the identification window moves to the 199th observation, the probability output of CNN model is
(0.011, 0.027, 0.02, 0, 0.934, 0.008, 0, 0), which means that the abnormal pattern F4 is detected.
After checking the current process, we find that the plate flatness changes suddenly, which results
from the low steel strength of new grids. After replacing this batch of grids with other qualified grids,
the process returns to normal. When observation 281 enters the moving window, the probability
output is (0.002, 0.008, 0, 0.9825, 0, 0.003, 0.0045, 0). Adjusting the levelness of the pasting machine
makes the process go back to normal.

From the above application, we can conclude that the proposed method has practicality to
the online identification of abnormal process with spatial-temporal data. To further evaluate the
performance of proposed CNN recognition model, the UMPCA based recognition method [11] as a
benchmark method is considered for comparison. In this UMPCA based method, Bayes Classifier
(BC) is utilized to achieve identification, which is denoted as UMPCA-BC. After 100 experiments,
the comparison results are obtained and shown in Figure 9.
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Figure 8. Online identification for the pasting process.

(a) F0 (p-value: 3.298 × 10−15) (b) F1 (p-value: 0.03158)

(c) F2 (p-value: 1.088 × 10−6) (d) F3 (p-value: 1.256 × 10−7)

Figure 9. Cont.
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(e) F4 (p-value: 5.073 × 10−16) (f) F5 (p-value: 2.2 × 10−16)

(g) F6 (p-value: 2.17 × 10−16) (h) F7 (p-value: 6.793 × 10−6)

Figure 9. Performance comparison. Numbers in parentheses are the p-values of the Mann–Whitney
U test.

From Figure 9, in all process patterns, the proposed method is better than UMPCA-BC, though only
slightly better at F1. To further test whether the proposed method outperforms the alternative method
significantly in all process patterns, Mann–Whitney U tests are conducted, and their p-values are also
presented in Figure 9. If the 1% level of significance is taken, the superiority of the proposed model is
significant except F1. There are two reasons for this situation. Firstly, the rounding operation of the
grayscale image makes the F1 process lose detail information, which further makes our model not
sensitive to a small shift in abnormal process pattern F1. Secondly, in practical production, the failure
of the acid spouting system does have a great impact on the thickness uniformity of plates in a short
time. In other words, the variation of thickness uniformity in F1 is usually small in a limited size of
identification window, which increases the similarity between normal pattern and F1 pattern. As a
result, the performance of the proposed method has a limited improvement at F1. However, in general,
the CNN method proposed in this paper can identify the abnormal process with spatial-temporal data
more accurately than the UMPCA-BC method.

To further verify the reliability of the proposed model, sensitivity analysis is carried out and the
effect of noise on performance is studied. The white Gaussian noise is generated and added to the
original test data as follows:

xnoise
i,j = xi,j + g, g ∼ N(0, σ2), (9)

where xi,j is the value at row i and column j of original data matrix, and g refers to the noise that
obeys normal distribution with a mean of zero and a standard deviation of σ. In this example,
the specification limits of plate thickness are 1.75 ± 0.02, and only the values of σ at 0 to 0.02 are
considered. For convenience, five scenarios, including 0, 0.005, 0.01, 0.015, and 0.002 are implemented,
shown in Table 5.
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Table 5. The performance comparison for various noise levels.

Noise Level (σ)

Average Recognition of Test Data (%)

Proposed Method
Uncorrelated Multilinear Principal Component Analysis

and Bayes Classifier (UMPCA-BC)

0 98.08 97.41
0.005 97.17 95.98
0.01 96.01 95.13
0.015 94.24 93.46
0.02 93.44 92.73

The recognition accuracy of the proposed method and UMPCA-BC is inevitably decreased with
an increase of σ. However, from Table 5, the proposed method still outperforms UMPCA-BC with an
increasing noise level. Therefore, the CNN method proposed in this paper can identify the abnormal
process with spatial-temporal data with better results.

6. Limitations of the Proposed Methodology

Some aspects may limit the application and assessment of the proposed framework, such as the
following ones:

• All the process images are generated by normalizing, multiplying by 255, and rounding,
which may result in some information loss. How to measure the impact of missing information
on CNN model performance is worthy of attention.

• In this study, the recognition accuracy as an evaluation criterion of performance is not very
comprehensive. In practice, there are other metrics and representations used to evaluate the
performance of CNN model, such as training time and test data loss. It is an interesting topic to
evaluate and optimize CNN model based on other metrics.

• Generally, the operation state of manufacturing process is also affected by other unexpected
factors, such as the new abnormal mode caused by an unknown fault. This situation will affect
the performance of the current recognition model. Therefore, it is necessary to update the current
data and build the recognition model again to consider the new pattern.

7. Conclusions and Further Work

This paper develops a general framework based on the CNN model to detect the abnormal
pattern and diagnose the causes in the pasting process with spatial-temporal data. Different from
traditional schemes, the main contribution of our proposed framework makes full use of both normal
and abnormal information from historical data, and it overcomes the dilemma of multiple data types
in real applications. The proposed model is tested on the example of the pasting process and achieved
a better recognition performance than the alternative method. Experimental results demonstrated
that better performance can be achieved at all abnormal process patterns in the pasting process. In
addition, the sensitivity analysis of noise is also provided to verify the superiority of the proposed
method. In addition, the procedure for constructing the recognition model is convenient. Our
proposed CNN recognition model shows the good potential of online monitoring and tracing the root
cause simultaneously. Benefiting from the CNN model, the spatial and temporal interrelationship
of abnormal information can be captured and all the historical information can be utilized by the
proposed CNN model.

However, there are two outstanding issues on this topic. First, although this paper focuses
on the pasting process, the CNN recognition framework we proposed could be applied to any
other abnormal process monitoring and diagnosis, where the observations are spatial-temporal data.
In order to improve the performance of the CNN recognition model, the CNN model should be
investigated further to make the proposed framework more suitable for other general situations.
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Second, the parameter optimization of the CNN model is a challenging work in the deep learning
domain. However, it is not our concern in current work, thus the parameters of the CNN model
only for the pasting process are determined in our paper. In fact, the architecture parameters are
related to the data type, shape of the abnormal patterns, and the number of the data sample, thus
more suggestions for determining proper parameters are needed. Some other advanced parameter
optimization techniques should be added to the CNN framework to improve the recognition accuracy
further. Therefore, future improvements can be conducted in the following ways. First, this framework
can be modified to identify the process of other general situations by using the transfer learning method.
Second, other advanced techniques for hyper-parameters optimization can be studied further to replace
the manual method, such as heuristic search algorithms and design of experiments’ techniques.
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Abstract: Non-intrusive load monitoring (NILM) is an effective way to achieve demand-side
measurement and energy efficiency optimization. This paper studies a method of non-intrusive
on-line load monitoring under a high-frequency mode of electric data acquisition, which enables
the NILM to be automated and in real-time, including the short-term construction of a dynamic
signature library and continuous on-line load identification. Firstly, in the short initial operation
phase, load separation and category determination are carried out to construct the load waveform
library of the monitoring user. Then, the continuous load monitoring phase begins. Based on the data
of each user’s signature library, the decomposition waveforms are classified by convolutional neural
network models that are constructed to be suitable for each signature library in order to realize load
identification. The real-time power consumption status of the load can be obtained continuously.
In this paper, the electricity data of actual users are collected and used to perform the experiments,
which show that the proposed method can construct the load signature library adaptively for different
users. Meanwhile, the classification of the convolutional neural network model based on a library
constructed in actual operation ensures the real-time and accuracy of load monitoring.

Keywords: non-intrusive load monitoring; load identification; convolutional neural network

1. Introduction

The study of demand side management (DSM) is significant for the rational allocation of power
resources and the improvement of terminal power efficiency [1]. As an important means to solve the
shortage of power supply and support energy development strategies, the long-term and effective
implementation of power DSM can reduce environment pollution and enterprise costs, becoming an
effective way to promote the sustainable development of society and the economy.

DSM focuses on improving the efficiency of terminal power consumption and adjusting the mode
of power consumption to reduce the dependence on power supply. Recently, intelligent DSM has
attracted the attention of people [2]. The effective monitoring of load of users can provide data support
for intelligent DSM, grasp the power consumption situation and users’ behavior in real-time, and
guide users to arrange the usage of power consumption reasonably, so as to improve the efficiency of
energy utilization [3].

Traditional load monitoring adopts an intrusive method via the installation of an
information-collecting device to each user’s electrical equipment. Although the collected data are
accurate and reliable, the intrusive method has poor achievability due to the high-cost hardware,
complicated installation in the early stage and low acceptance of users. In order to overcome this
issue, non-intrusive load monitoring (NILM) [4] technology was proposed by Professor Hart in the
1980s. The non-intrusive way monitors the electrical signal only at the power supply point of the
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user, and analyzes the categories of loads and corresponding operations of the user. The method not
only reduces the economic cost of the device, but facilitates the installation for the user. However,
monitoring in the non-intrusive way requires high accuracy of load identification.

Lin et al. [5] propose a transient signature extraction scheme under multi-resolution based on the
S-transform, and use a 0–1 multi-dimensional knapsack algorithm for load identification. Hong et al. [6]
extract seven kinds of load steady-state characteristics and their different combinations to realize load
identification. Liang et al. [7,8] use current waveforms, active and reactive power, other steady-state
signatures and active transient waveforms for load identification. Adopting two-stage identification,
He et al. [9] determine the type of electrical appliances by the steady-state characteristics in the first
layer, and then distinguish the type of electrical appliances by the signatures of steady state and
transient and user behavior mode in the second layer. This identification structure can divide complex
problems into several simple problems and improve the efficiency of the method.

Developing rapidly in recent years, intelligent learning provides a data-driven method to solve
problems. Compared with the method of extracting signatures manually, the intelligent learning
method can learn complex separable information from multiple dimensions automatically.

Tsai et al. [10] develop a new adaptive NILM system. It uses the k-nearest neighbor rule (k-NNR)
and a back propagation artificial neural network (BP-ANN) recognizer to determine the type of each
device based on transient signatures. Two low-complexity solutions based on combining k-means
and a support vector machine are presented in [11]. Wu et al. [12] adopt the multi-label classification
model, and the mixed current signals of multiple loads can be identified without energy decomposition.
Chang et al. [13] extract the energy distribution signature of a single event’s turn-on/-off transient
signal based on Wavelet Multiresolution Analysis (WMRA) technology and Parseval’s theorem, and
then construct an artificial neural network through a back-propagation classification system. Finally,
it classifies the load types according to the detailed energy distribution. Ruzzelli et al. [14] propose
that the neural network is trained by signature library data and that online identification is realized
by extracting load signatures in real-time. Lin et al. [15] present an IoT-oriented smart Home Energy
Management Systems (HEMS) utilizing a novel hybrid Artificial Neural Network-Particle Swarm
Optimization (ANN-PSO)-integrated NILM approach. Chang et al. [16–18] train the neural network
by the characteristics of active power, reactive power and open transient energy. The method performs
well, especially in the identification for loads with similar active and reactive power. Chao et al. [19]
propose a semi-supervised NILM system that includes three steps. The transient characteristics of
the load are extracted by a constructed one-dimensional convolutional neural network. The load
identification can be effectively realized by linear programming boosting and an online process of
parameter adjustment.

Existing NILM identification algorithms depend on the signature data, which need to be collected
in advance. The monitoring process has a human interference, resulting in the interruption of the
monitoring process in the actual operation process. Moreover, a pre-constructed library of load
signature templates is fixed and single, meaning it has limitations to be used as a standard library for
load signature comparison in different users, affecting the accuracy of identification. Thus, there is an
emerging need to achieve automatic monitoring of NILM algorithms and improve the universality of
signature libraries to ensure accurate load identification.

Besides, the one-dimensional signatures of loads are more used in load identification algorithms.
However, in the actual process of data acquisition, disturbances such as noise and harmonics on the
grid side cannot be eliminated, which will affect the one-dimensional signatures of the load. Therefore,
it is necessary to consider a more stable signature for identification, which can further improve the
accuracy of identification.

In response to the mentioned problems, this paper proposes a new idea to solve the problem of
NILM. It mainly includes two stages. Firstly, a dynamic load signature library is constructed adaptively
for an independent user after the separation of mixed signals in the actual monitoring process. Then,
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the load identification is realized by the neural network based on the two-dimensional current data of
the load in the library.

In addition, to further focus these problems in regard to NILM research, the contributions of the
proposed method are as follows:

• Automatic execution of the monitoring process. After constructing the load signature library
for individual users in the early short running phase, the user-specific neural network model
is trained based on the data in the library belonging to each user, and then the method of
load online identification for each user is realized, which provides a feasible scheme for the
automatic implementation of NILM. Moreover, it can solve the problems of weak universality
and unsatisfactory identification accuracy of a pre-constructed signature library.

• More stable signatures. The convolutional neural network is used to extract the two-dimensional
signatures of a load current, so as to reduce the influence of noise and harmonics on the
one-dimensional signature data of a load, strengthen the stability of the extracted signatures, and
further improve the accuracy of load identification.

2. Implementation Principle

2.1. Principle and Implementation Structure of Non-Intrusive Load Monitoring

Non-intrusive load monitoring collects a user’s power consumption data at the residential power
entrance outside the user. All power consumption information of the user is concentrated in the
obtained mixed signal data, so the load identification is very important to acquire the detailed power
consumption of each load. The signal of each switching load should be separated from the collected
mixed signal, and then the load identification is implemented supported by the information in the
signature library.

The signature library is the premise of effective identification. In the actual monitoring process, it is
difficult to get the independent information data of the load directly, because it is impossible to make
the load run independently without disturbing the user. Furthermore, there are various brands of loads
and different circuit environments, which may cause a variety of changes on load waveforms, as shown
in Figure 1. It is impossible to realize load identification by a priori signature library containing all
varied waveforms of different users. Moreover, the classification of separated loads will seriously affect
monitoring efficiency. Therefore, the construction method of a library should be universal for the users
with different loads. At the same time, complex pre-collection and intervention should be avoided to
make the process of NILM automatic and effective.

Figure 1. Current waveforms of different categories of electrical appliances with the same load.

The identification accuracy of the unsupervised-based algorithm is unsatisfactory, while the
supervised-based depends on the labeled training data. In the existing study of NILM, as the prior
knowledge (which is used as the training data) of the load is required in advance, the methods are
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feasible for a specific user and lack universality for the changes of load data in different users. Thus,
a method that can adapt to these changes is required.

Sampling with a high frequency, waveform-based identification method is recommended due
to the high accuracy and processing efficiency. Complete waveform and signature information can
be obtained in the high-frequency acquisition mode. However, in actual acquisition processes, large
amount of data is difficult to store, and the noise and harmonics on the grid side have an impact on
the load waveform and signature information, which degenerates the accuracy of identification using
one-dimensional data. Considering the limitation of communication capability and economic cost,
the identification process is suitable for online execution and, thus, the identification accuracy depends
on the real-time processing.

In response to the abovementioned problems in NILM, this paper studies a method that includes
two stages: The first step is to analyze the collected mixed signals, classify and determine unknown
loads without supervision, and build the load signature library specifically for users adaptively during
the short-term process; the second step is to train the convolutional neural network model based on
the data of users’ libraries constructed in the first step to form the identification model suitable for
each independent user, so as to realize load identification. The implementation structure of this paper
is shown in Figure 2.

Figure 2. Non-intrusive load identification implementation structure.

2.2. Principle of Electrical Signal Separation

The collected current signal is summed by the current signals on each load branch in operation.
It is assumed that the collected current data are denoted by I(t). When M loads operate simultaneously,
the mixed current in non-intrusive mode can be shown as Formula (1).

I(t) =
M∑

i=1

Ii(t) + n(t) (1)
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where Ii(t) is the current signal when the load i operates separately at the time t; n(t) is the noise in the
circuit of the user.

The waveform separation is carried out for the electric data which are collected from the power
entrance of the independent user. The collected data include the signal of loads of only one user.
Two runs of the load switching action cannot be completed simultaneously as there would be a certain
time difference between them; thus, the current separation model can be established as the sum of the
current signals at two different moments (i.e., before and after the moment of load switching). At the
last moment, the load current in the circuit is recorded as I(t). When the load k is switched, the mixed
current Inew(t) is superimposed by I(t) and the current Ik(t) when the load k runs alone, as shown in
Formula (2).

Inew(t) = I(t) + Ik(t) (2)

where Ik(t) represents the current when the latest switching load k runs independently. I(t) can be
treated as if there are only two signals in the circuit at this time. They are the circuit signal I(t) before
the moment of load switching, and the circuit signal Inew(t) after the moment of load switching.

2.3. Construction Principle of Load Signature Library

After load separation, the independent waveforms Ik(t) and Uk(t) can be obtained for load k,
but the categories of the waveforms are unknown. The information in the library should include
waveform value and the corresponding category label. It is inevitable to judge the load categories of
load k, and then a dynamic load signature library can be constructed. There are no prior available
data if the library is constructed automatically without interference of users. Moreover, for loads of
the same type, the change of model, brand, and even operation environment will cause the variation
in load waveform. The load waveform has an infinite variety of forms theoretically, so the problem
of load label attachment is attributed to the classification with infinite classes under unsupervised
conditions. However, when the label category is infinite, it is very difficult to classify.

Although the waveforms of appliances are variable, the common appliances categories are
enumerable. If the loads have the same category, the changing waveforms will share some common
signatures. For an independent user, the physical model and waveform of the same load type are
fixed, and the operating environment and habits of loads are relatively stable, so the infinite category
classification problem is transformed into a limited category problem. It is suitable for each independent
user to construct a signature library, which is focused on in this paper. To ensure that the method of
library construction is universal for users, the signatures extracted from the unknown load are used as
the criteria for load category labeling, so as to realize the classification. The load labeling problem
becomes a supervised classification.

The independent load waveforms and signatures of unknown categories in users can be obtained
through the proposed method in Section 2.2. The load classifier determines the category of unknown
loads by the separated waveform and extracted signatures only. Thus, without prior knowledge,
the problem of category classification is transformed into the posteriori knowledge-solving problem,
in which the load category under the condition that the load waveform and signatures are known
needs to be determined. Here, the Bayesian classification model is a suitable method. On the premise of
known sample characteristics, the Bayesian classification model can quantify the probability of samples
from each category, and then select the category with the largest posterior probability as the classification
result. In addition, due to the variety of independent load waveforms and signatures extracted from
different users, the generalization is very important for the classification model. Considering the limited
load categories and quantities in one user, the data scale can be limited. With strong generalization,
the Bayesian model performs well for limited scale data. Therefore, the Bayesian classification model
is established for loads classification in [20]. As for the posteriori knowledge, the signatures are used
to calculate the prior probability of the load category. It is assumed that Fk is the signature calculated
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from the signal Uk and Ik. The probability of load k that belongs to the category ωn can be obtained by
Formula (3).

P(ωn|Fk) = P(Fk|ωn)P(ωn)/P(Fk)n = 1, 2, . . . , N (3)

where N is the category number of the user. Formula (3) shows that the prior probability P(ωn) is
converted to the posterior probability P(ωn | Fk) by the obtained stable signature vector Fk, that is,
when the class of load k under the known condition of Fk belongs to the probability of ωi, the most
probable category is the label of load k, as shown in Formula (4).

Lk = argmaxP(ωn|Fk) (4)

where Lk represents the classification result, which is the category label of load k. In this way, unknown
category loads separated in succession can be labeled. Then, the waveforms, signatures and categories
can be recorded in the library to complete the adaptive library construction of an independent user.

2.4. Convolutional Neural Network Identification Model

After forming the user’s library, the independent load waveform of a user is continuously
identified based on the data in the library, so as to determine the user’s load operation status at the
current moment. Stored in the library, the N kind of loads and the corresponding record information
are expressed as follows. ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{Û1, Î1, L1}
{Û2, Î2, L2}
...

...
...

{ÛN, ÎN, LN}
(5)

where the information includes the separated signals of voltage Û, current Î, and label L.
The library has been constructed completely at this time. Real-time identification belongs to a

supervised classification problem. The data in the library are suitable for the unique independent
users, and the load to be classified is the load in the library. Thus, as the training data, the information
in the library enables the classification model for supervised training, which can greatly reduce the
invalid sample data for training, build a useful classification model specifically for the independent
user, and cut down the impact of over-fitting on the identification results.

Due to the existence of noise and harmonics on the power grid side, extracted from the
one-dimensional data of the load waveform, the signature information fluctuates greatly, subsequently
affecting the identification process. However, as the load circuit is composed of non-linear components
such as diodes, thyristors, transistors, motors and so on, it will also cause the distortion of load current
waveform. The harmonic and distortion of the current influenced by the non-linear components in the
circuit can also be regarded as the typical signatures of load identification [6–9,20,21]. Direct filtering
may destroy the original load signatures useful for identification. Therefore, it is difficult to determine
whether the distortion in the current is caused by noise or harmonics accurately and filter it directly.
Considering that the waveform of the same independent load is not only relatively stable in a steady
state under the high frequency acquisition mode, but is less disturbed by noise and grid side harmonics,
the one-dimensional waveform data of a load current stored in the dynamic library are transformed
into two-dimensional image data. The image can keep the basic shape and outline of the original
current waveform. The amplitude values of current waveform are transformed into the pixel values
in the image. The waveform distortion caused by noise or harmonic alters only the position of the
pixel points in the original waveform locally and slightly (i.e., changes a few local pixel values of the
image), rather than the shape and outline of the current waveform. In the image recognition process,
the two-dimensional data can be recognized mainly based on the image features, including contour,
shape, contrast and relative position of the marked features. Therefore, the dimensional converting of
the waveform for recognition will reduce the influence of noise or harmonics on the recognition results.
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Since the one-dimensional current data are transformed into two-dimensional image data, the
load identification problem is transformed into the identification problem of the two-dimensional
image data. Convolutional neural networks have outstanding performance on two-dimensional
image data processing. Images can be input into the network directly to avoid the complexity of
data reconstruction in the signature extraction and classification processes. Convolutional neural
networks automatically extract multiple image signatures through multiple convolution kernels,
approximate complex mapping functions through multi-layer non-linear transformation, and then
classify current waveform images to realize real-time load identification. Besides, the distortion of the
current waveform caused by noise or harmonic only alters the position of the pixels in the original
waveform, resulting in the local translation, rotation and scaling of the waveform position. However,
these influences can be weakened by the convolutional neural network with the characteristic of
translation invariance. (Invariance means that when the input data are changed locally and slightly,
most of the outputs after the pooling function will be not changed. It is extremely significant when we
focus on whether a feature appears in two-dimensional data rather than at its location.) As an important
layer of the convolutional neural network, the function of the pooling layer is that the output of the
network at a certain location in image is replaced by the statistical characteristic output of the pixel
value in the surrounding area of that location. Contrastingly, in the constructed convolutional neural
network, the average value of the surrounding pixel is extracted by the pooling layer, which weakens
the influence of the pixel points affected by the noise and harmonics in the image. Furthermore,
multiple pooling layers in the convolutional neural network gradually reduce the influence caused
by noise and harmonics. Moreover, in convolution operation, parameter sharing ensures that it is
unnecessary to learn a set of parameters for each position in the two-dimensional data, which reduces
the computational complexity, training time and storage space of the parameters.

In this paper, the one-dimensional data in a labeled library are converted into the two-dimensional
waveform image as a training set, and the convolutional neural network model is trained by
supervised learning. The test data consist of the two-dimensional waveform image converted
from the one-dimensional data of the separated current signal which is obtained from the mixed signal
in real-time. Finally, the load can be identified online by the convolutional neural network, of which
the model structure includes convolutional, pooling, a fully connected layer and non-linear function,
as shown in Figure 3.

Figure 3. Convolutional neural network model structure.

3. Methodology

In order to achieve the above idea, this paper will introduce the following two stages. In the first
stage, switching events are detected and load signals are separated from the collected mixed data. Then
the categories of separated loads are judged to form a load signature library. Then, the convolutional
neural network is trained by the data in the library. After short-term model training, the classification
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model suitable for the load signature library is automatically formed, so that the separated load signals
separated can be identified in real-time.

3.1. Adaptive Construction of a Load Signature Library

3.1.1. Event Detection and Load Separation

The constructed signature library needs to include the waveform information of each load.
However, in the non-intrusive mode, the collected electrical signal of a user is summed by multiple
signals of different electrical appliances which are simultaneously in the open state. Thus, the mixed
signal requires signal separation. The load switching events can be measured by the current intensity.
In [20], if there is an obvious difference in the current intensity of a period compared with that of the
previous one, the load switching event can be considered to be increasing.

Then, considering the difference of the load phase when the loads are switched into the user
circuit, direct extraction of a switching load signal may result in an error regarding the information
of the independent load. The method in [20] extracts the mixed signal on the sample points of the
same voltage value in different electrical periods—before and after the switching events. Using the
one-dimensional data processing method, signal separation can be realized. The load signal separation
method is simple and effective. Therefore, this paper adopts the method in [20] to separate the load
electrical signal quickly.

3.1.2. Category Determination of Unknown Load Waveform

After obtaining the separated waveform of load k, the load waveforms require pre-classification.
All the unknown loads separated from the mixed signal of independent users are clustered rapidly by
load signatures. The process can not only avoid the load waveforms detected and separated repeatedly
due to the actual multiple switching by users, but also narrow the range of load categories, so as to
reduce the operation burden of subsequent load category determination.

In the initial stage of library construction, the number of load categories and operation modes in
each user are unknown. Correspondingly, the number of different categories of waveforms is also
unknown. However, for the same user, the waveform of the same load is relatively fixed, and the
difference of signatures extracted from the waveform of the same load in each switching is small, while
the difference between the waveform of different loads is relatively large. Thus, the unknown load
is clustered quickly by the inherent signatures extracted from the separated waveforms, which can
greatly reduce the repeatability of the extracted load waveform.

After load signature normalization, the cluster can be achieved by discriminant function, as shown
in Formula (6).

Dk,ω = ‖Fk
∗ − δω∗‖ (6)

where Fk* is the normalized signature and δω* is the signature of the ω-th load stored in the current
time signature library. Dk,ω is the discriminant distance of the signature between load k and category
ω. If the minimum value of Dk,ω is less than δ, the type of load k has already been stored in the library.
If the minimum value of Dk,ω is greater than δ, the new load is found and its waveform and signatures
are recorded in the library.

The method can ensure that the load information in the library has no repeatability. At this
time, the category of unknown load waveforms needs to be determined, so as to complete the load
information in the signature library. In practice, there are abundant load brands and models among the
actual users. Various waveforms cause a signature value fluctuation in different degrees. The method
in [20] considers the fluctuated load signatures and calculates the probability of different load signatures.
Then, using the Bayesian model and the multiple signatures, the category probability of loads belonging
to different load categories is obtained. Eventually, by Formula (4), the most possible load category is
selected to solve the problem of category determination for unknown load waveforms.
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3.2. Load Identification of the Convolutional Neural Network Based on the Signature Library

After the first stage of the short-term adaptive library building process, the second stage of
the sustainable load monitoring begins. Based on the data in the library, this paper transforms a
one-dimensional load current signal into two-dimensional image data of periodic current, and the
detailed process is divided into the four following steps, where the load current vector Îk in one period
of steady state is taken as the basic data:

• The sampling point serial number and the current amplitude are taken as abscissa and ordinate,
respectively. Connect each data point in turn and draw the binary image of load current waveform;

• A unified range of coordinate axes is selected for binary image, ensuring that the waveform
images of different loads are displayed in the same range;

• Hide the axis in the binary image;
• An appropriate image resolution is selected to display the image clearly. The resolution of the

binary image is adjusted to adapt to the input of the convolutional neural network.

Then, the input sample of the convolutional neural network can be obtained. In this way,
one-dimensional current waveforms can be transformed into two-dimensional image data. Meanwhile,
the contour and shape of the waveform can be preserved completely, meaning that they can be directly
input into the constructed convolutional neural network for identification.

The training process of the convolution neural network includes forward and backward
propagation, in which forward propagation completes signature extraction and sample classification,
and backward propagation completes classification error calculation and weight updating.

In forward propagation, signature extraction is realized by convolution and pooling. The upper
output is taken as the input of the layer. After calculating in the convolution kernel, the output of the
layer is obtained by further calculation with the non-linear activation function, as shown in Formula
(7).

Xj
l = f (

∑
i∈Mj

Xj
l−1 ∗ κi j

l+bj
l) (7)

where Xj
l−1 represents the j-th signature graph of layer l − 1, κij

l represents the convolutional kernel
function of the j-th signature graph mapped from the (l − 1)-th to the l-th layer, f () is the activation
function, bj

l is the bias parameter, and * represents the convolution. Pooling layer calculation is shown
in Formula (8).

Hj
l = f(wj

lsample(Xj
l−1) + bj

l) (8)

where Xj
l represents the j-th signature graph of layer l. wj

l and bj
l are the parameters of weight and bias,

sample is pooling function and f is activation function. The pooling layer aims to map the signatures to
a smaller range and reduce the dimension of the convolutional signature map. Signature information
of load signals with relatively weak power is susceptible to noise and harmonic interference from the
power grid. In this case, the maximum pooling will result in only extracting the affected signatures
while ignoring the actual signature information of the signal, which in turn will impact the identification
effect. Therefore, this effect is weakened by replacing the maximum pooling layer with the average
pooling layer.

Softmax layers are usually used as output layers in multi-classification problems, which can
output classification results directly in the form of probability vectors. The calculation formula is
shown in Formula (9).

Sj = eaj /
N∑

k=1

eak (9)

where j represents the result of class j classification and N represents the category of load.
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Back propagation depends on the error between the classification result of forward propagation
and the given sample label. According to the chain rule, the weight and the error in each layer are
updated, as shown in Formulas (10) and (11).

∂Etotal/∂w = (∂Etotal/∂out)(∂out/∂net)(∂net/∂w) (10)

wnew = w− ξ(∂Etotal/∂w) (11)

where ∂Etotal/∂w represents the partial derivative of the loss function Etotal to the parameter w, which
is updated in each iteration, and ξ represents the learning rate of the convolutional neural network,
which determines the magnitude of each adjustment.

The model is trained iteratively with the labeled data in the library, and the connection weights of
each layer and the parameter matrices are fully adjusted until the data in the database are exhausted.
When the model is trained completely, the load identification can be realized in real-time. The separated
waveforms of independent loads will be successively acquired in real-time according to the load
separation method in the Section 3.1.1. The waveform data will be converted into two-dimensional
images and identified online by the convolution neural network as test data.

The implementation process of the steps in this chapter is shown in Figure 4.

Figure 4. Overall algorithm flow chart.

4. Experiment and Analysis

Actual user data are collected and used for validity verification in this paper. Figure 5 shows the
schematic diagram of the experimental system, which is designed for non-intrusive data acquisition
from the actual user. By the proposed method in Section 3, the collected data are processed to realize
the effective load monitoring.
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Figure 5. Schematic diagram of the experimental system.

The specific experimental parameters are as follows: the access voltage of the acquisition device is
220 V, and the sampling frequency is 10 kHz. Identification objects include a rice cooker (EC); an electric
kettle (EK); a water heater (WH); a water dispenser (WD); a laptop computer (LA); a television
(TV); air-conditioning systems A (AC-A), B (AC-B), C (AC-C); a vacuum cleaner (VC); a refrigerator
(RE); a microwave oven (MO). Table 1 lists the detailed value of the related threshold involved in
the experiment.

Table 1. Threshold parameters.

Experimental Parameters Value Experimental Parameters Value

η 0.1 υ 0.75
σ 0.01 ε 0.05
α 0.1 λ 0.025

4.1. Effectiveness Verification of Library Construction

Figure 6 shows the current separation signal of the load in the experimental environment, and
gives the template current for comparison. Blue lines denote the current separation signals which are
the periodic current waveforms operating in a stable state separated by the method in Section 3.1.1.
Red lines denote the standard currents which are obtained by only switching on a single electrical
appliance in the experiment. The high coincidence between the separated signal and the standard
current indicates that the load separation has high accuracy. Since the categories of separated load
waveforms are unknown before the load labeling, a-l is used to represent the waveforms of loads in
this paper.

Figure 6. (a–l) shows comparison diagram of the separated load current and the template current.
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After effective load separation and clustering of independent load waveforms, the categories of
loads are judged, and the library of independent users is constructed. Table 2 shows the categories,
numbers and actual pre-classification of electrical appliances involved in this paper. The load number
is used to represent the category discrimination label of the load.

Table 2. Electrical appliances classification label and pre-classification.

Load
Category
Number

Type Load
Category
Number

Type

Electric cooker 1 I Set top box 12 III
Electric kettle 2 I Range hood 13 III
Water heater 3 I Air purifier 14 III
Electric oven 4 I Air conditioner 15 III

Disinfection cabinet 5 I Vacuum cleaner 16 III
Water dispenser 6 I Dehumidifier 17 III
Electromagnetic

furnace 7 II Refrigerator 18 IV

Electric hair dryer 8 III Microwave oven 19 IV
Laptop 9 III Washing machine 20 V

Electric fan 10 III Other loads 21 VI
TV 11 III

The probability distribution of the several unknown loads separated from load separation parts is
shown in Figure 7. It shows the label probability of one load belonging to each category of electrical
appliances in the experiment, and quantifies the possibility of the load category by the label probability.
The label corresponding to the maximum probability is determined as the category label of the load.
The threshold ν of unknown class is denoted by the red straight line. If the maximum label probability
is still lower than the threshold line, the load will directly be placed in the “unknown load” category.

Figure 7. Labeling probability of load.

The probability of possible load labels under their pre-classification is shown in Figure 7.
The probability outside their pre-classification is 0. In this paper, the label with the highest probability
in the pre-classification of unknown loads is regarded as the result of its category. The waveforms
and label probability results are shown in Figure 8. It compares the labels and their probabilities for
unknown loads with their real labels. It can be seen that the waveforms are labeled correctly.

4.2. Effectiveness Verification of Load Identification Based on the Convolutional Neural Network

Before the real-time load identification, the convolutional neural network model is trained by
the category-labeled data from the established library. After being obtained, the one-dimensional
current data (as shown in Section 4.1) are transformed into two-dimensional image data through
the data dimension conversion method described in Section 3.2. Because the maximum current of
most common household inserts is limited to 10 A, the maximum operating current of most electrical
appliances is usually less than or close to 10 A. Therefore, the vertical axis range of the coordinate axis
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selected in this paper is from −11 A to +11 A, and the horizontal axis range is the sampling point of
one current period when the load is in steady-state operation. The maximum current of a few electrical
appliances exceeding 10 A applies the same operation, and the identification result is not affected.

 

Figure 8. Labeling results of individual appliances.

The labeled appliances in the library are re-numbered to represent the categories of the load
in the process of convolutional neural network identification. The load re-numbering of the library
established in Section 4.2 is shown in the Table 3.

Table 3. Label number of load image identification.

Load Identification Number Load Identification Number

Laptop 0 Air conditioner 2 6
Refrigerator 1 Air conditioner 3 7

Electric cooker 2 Water heater 8
Electric kettle 3 Microwave oven 9

TV 4 Vacuum cleaner 10
Air conditioner 1 5 Water dispenser 11

The numbers of convolutional layers and pooling layers are extremely important for the
classification accuracy of the model. Figure 9 shows the classification accuracy under different
numbers of convolutional and pooling layers. When the number of convolutional and pooling layers
is less, the parameters are insufficient for the accurate classification of the sample. With an increasing
number of layers, the effectiveness of the model’s classification process is clearly improved. However,
when the layers continue to increase, the increased training parameters raise the difficulty and time
of model training. Limited by the current training methods, the increase in layers is more likely to
make the classification results fall into the local optimum, leading to over-fitting and other problems.
As shown in the figure, when the convolution and the pooling layer are both set as 3, the model is most
effective, and the classification accuracy of the test sample can reach 96.73%. Therefore, considering
the accuracy and training time of the model, the number of both the convolutional and pooling layers
in the convolutional neural network model is determined as 3. In addition, under this optimal layer
structure, the kernels 1, 2, and 3 are set as convolutional layers 1, 2, and 3 respectively, as shown
in Table 4.
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Figure 9. Classification accuracy of the model under different numbers of convolutional and
pooling layers.

Table 4. Kernel sizes and numbers in this paper.

Kernel Sizes Numbers

1 3 × 3 20
2 5 × 5 20
3 12 × 12 100

In general, 3 × 3 is the popular choice of kernel size in the convolutional neural network, which is
determined by the empirical value in the experiment. Specifically, the kernel size of the convolutional
kernel is set to be larger than 1 × 1 to enhance the receptive field. A kernel with an even size cannot
ensure the same size of the feature map in the input and output. In the case of the same receptive field,
the required parameters and computation are increased with the size expansion of the convolutional
kernel. Thus, the kernel size of 3 × 3 is used for the first convolutional layer. In order to extract the
output image feature of the previous convolutional layer further, the kernel size of the convolutional
layer increases gradually, so the second convolutional layer size is set as 5 × 5. In addition, the third
layer is the last convolutional layer, followed by the fully connected layer. The input of the fully
connected layer needs to be one-dimensional data, which have the same dimension with the output of
the third convolutional layer. However, the output dimension of the convolutional layer depends on
the input data dimension and kernel size. Considering that the input data dimension of the third layer
is 12 × 12, the kernel size of the third convolutional layer is set as 12 × 12. Besides, the size of 12 × 12 is
set to reduce the parameter numbers of the fully connected layer significantly. As for kernel numbers,
if there are less numbers in the convolutional layers, the extracted image features are not enough for
identification, and the model struggles to achieve the desired performance. On the contrary, if the
kernel number is set to be oversized, it will incur the problem of model parameters and training speed
increasing significantly, as well serious over-fitting problems. Thus, the kernel numbers are empirical
values obtained by repeated experiments.

After the determination of the model structure, the model parameters become significant factors
in the training process. The parameters of learning rate and epoch are related to the convergence and
training speed of the model. The learning rate μ represents the amount of weight updating in each
time. If the set value of learning rate is too high, the loss function and model will struggle to converge.
On the contrary, if the learning rate is too small, the updating of weights and the change to the model
cost will be very small each time, resulting in significantly more epoch times. Epoch times are the
training times of all sample data. Figure 10 shows the cost value of the convolutional neural network
model training under different learning rates. It can be seen that the identification model tends to
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converge and the convergence speed is faster at a learning rate of 0.05. When the number of epoch is
500 (i.e., epoch = 500), the loss values in the model are all below 0.003.

Figure 10. The convergence process of cost under different learning rates.

Figure 11 illustrates the parameters of the convergence process in the model. Six parameters are
selected for display. The parameters kernel_c1 and bias_c1 are one of the weights and one of the biases in
the second convolution layer, respectively. The parameters kernel_f1 and bias_f1 are one of the weights
and one of the biases in the third convolution layer, respectively. Besides, weight_f1 is one of the weight
parameters between the third convolution layer and the fully connected layer. The parameter of weight
output is one of the weights between the fully connected layer and the softmax layer. The detailed
values of the above six parameters under different epoch times are shown in Table 5.

Figure 11. Convergence process of the convolutional neural network model parameter.

Table 5. Parameter values under different epoch times.

Parameter
Epoch Times

100 200 300 400 500

bias_c1 −0.188066 −0.182839 −0.180615 −0.178961 −0.178071
bias_f1 0.046807 0.046743 0.045898 0.044920 0.044646

kernel_f1 −0.384234 −0.384602 −0.386321 −0.388277 −0.388930
kernel_c1 17.850862 20.656326 22.131949 23.217981 23.901392
weight_f1 −0.331889 −0.344194 −0.348489 −0.350513 −0.352352

weight output 0.089298 0.099996 0.105751 0.109533 0.111763

It can be seen that the parameters show a gradual increasing trend as the epoch time increases.
There is no significant change in the above parameters when the epoch value is greater than 500. It can
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be considered that the model is trained to converge when the epoch reaches 500. Thus, this paper
chooses the number of epoch as 500 to ensure the training efficiency of the model.

In order to display the model identification results, 12 separated current waveforms in Figure 6
are identified by the convolutional neural network model. Figure 12 shows the model input data after
dimension conversion by the method proposed in Section 3.2.

Figure 12. Input image of 12 separated current waveforms.

In the process of identification using the convolutional neural network model, the signature maps
extracted from the input data after the first convolutional operation are shown in Figure 13. It can
be seen from the figure that the contour edge and other features of each load current waveform in
Figure 12 are strengthened and extracted by the kernel in the convolutional layer.

Figure 13. Feature image after the first convolution operation.

After processing of pooling and activation further, the signature maps are shown in Figure 14.
It reduces the feature dimensions of the images in Figure 13, and makes non-linear mapping on the
feature image, so as to extract the advanced features for identification.

Table 6 gives the classification confusion matrix of the algorithm. The column of the confusion
matrix represents the identification label of each load category, the row represents the real label, and the
diagonal value represents the accuracy of the correct classification of the load. The identification
accuracy increases with the background color deepening.
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Figure 14. Feature image after pooling and non-linear operation.

Table 6. Load image classification confusion matrix.

0 1 2 3 4 5 6 7 8 9 10 11

0 0.9985 0.0005 0.0003 0.0000 0.0004 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000
1 0.0125 0.7754 0.0743 0.0013 0.1231 0.0002 0.0002 0.0003 0.0018 0.0009 0.0021 0.0079
2 0.0003 0.0017 0.9949 0.0000 0.0009 0.0010 0.0000 0.0002 0.0000 0.0001 0.0000 0.0010
3 0.0002 0.0000 0.0000 0.9914 0.0001 0.0000 0.0023 0.0000 0.0019 0.0000 0.0039 0.0001
4 0.0023 0.1265 0.0059 0.0003 0.8620 0.0001 0.0003 0.0004 0.0007 0.0003 0.0005 0.0008
5 0.0000 0.0000 0.0004 0.0000 0.0000 0.9974 0.0003 0.0010 0.0001 0.0005 0.0000 0.0002
6 0.0000 0.0000 0.0000 0.0003 0.0000 0.0001 0.9977 0.0001 0.0002 0.0000 0.0014 0.0000
7 0.0002 0.0001 0.0001 0.0000 0.0000 0.0005 0.0000 0.9984 0.0002 0.0002 0.0001 0.0001
8 0.0005 0.0001 0.0002 0.0062 0.0003 0.0003 0.0009 0.0005 0.9867 0.0000 0.0039 0.0004
9 0.0000 0.0002 0.0001 0.0005 0.0000 0.0000 0.0012 0.0000 0.0000 0.9977 0.0001 0.0006

10 0.0006 0.0003 0.0007 0.0095 0.0010 0.0005 0.0301 0.0005 0.0071 0.0040 0.9435 0.0023
11 0.0000 0.0001 0.0005 0.0000 0.0020 0.0001 0.0000 0.0000 0.0001 0.0003 0.0001 0.9967

In order to present the accuracy of results of the proposed method, the collected data of day1–day3
are identified by the proposed method, and the power consumption ratio of different loads is presented
in Figure 15. As a comparison, smart sockets are installed to the monitoring appliances to obtain
the true power consumption, which is shown in the right part of the figure. It can be seen that
the total consumption difference between the calculated one and the true one is less than 0.3 kW.
The consumption ratio of each load is nearly the same as the true value given by the socket, and the
load has the correct label.

Figure 15. Comparison chart between identification load and actual power consumption results
of day1–day3.
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In addition, the algorithms proposed by Chao et al. [19], Srinivasan et al. [21], Ahmadi et al. [22]
and the genetic algorithm are selected to compare against the proposed method. The above typical
algorithm shows good performance on NILM and the feasibility of the proposed method is proved
by a comparison of the algorithms. In reference [21], the neural network is also applied to NILM
in [21] as proposed by Srinivasan. A typical neural network is used to verify the effectiveness of load
identification through the model training of neural networks. Different from our work, the neural
networks are trained to extract harmonic signatures from the current for load identification. Then,
Ahmadi et al. [22] propose a graph signal processing (GSP) approach for NILM. The graph is also formed
by steady-state signatures of loads. It poses the load disaggregation problem as a single-channel blind
source separation problem to perform low-complexity classification for load identification. It proves
that the load can be identified by processing the signal of a load graph, but it is different from the
transformation method of the graph signal in the proposed method. Similarly, with our method,
the convolutional neural network is also applied to NILM to form a three-step non-intrusive load
monitoring system (TNILM) in Chao’ work [19]. Due to the purpose, dimension, structure, input
and output data of the convolutional neural network, the proposed algorithm outperforms that in
Chao’ work. In addition, the traditional intelligent algorithm is widely used in non-intrusive load
identification. Genetic algorithm optimization is a conventional intelligence algorithm. Thus, as a
supplement, genetic algorithm optimization is used as another method of load identification after the
library construction to replace the convolutional neural network in this paper for comparison.

Figure 16 shows the performance comparison curves with the above mentioned method.
The comparison of the algorithms’ accuracy of load identification is shown in Figure 16a. The increasing
load categories have less influence on the algorithm in this paper. The operational efficiency curves
are shown in Figure 16b. In the actual stage of load identification, the proposed method has higher
operational efficiency and a stable time of load identification. Represented by the violet line, the TNILM
in Chao’ work [19] includes the convolutional neural network and a multi-label classifier, so it has a
relatively long operation time. Denoted by the blue line, the running time of the algorithm in Srinivasan’
work [21] increases rapidly with a rising load number. Represented by the green and orange lines,
respectively, the GSP algorithm and the genetic algorithm optimization have more stable operational
efficiency, but are overall slower than the algorithm in this paper.

 
(a) (b) 

Figure 16. Performance comparison of algorithms. (a) Load identification accuracy comparison of
different algorithm under different category numbers; (b) Operation efficiency comparison of different
algorithm under different load numbers.

5. Conclusions

Considering the accuracy and real-time of NILM during actual operation, this paper studies an
effective identification method based on the convolutional neural network. Under the high frequency
data acquisition mode, this paper adopts the load separation model to obtain the current and
voltage waveforms of independent loads and records the corresponding label information using the
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Bayesian classification model. Then, the convolutional neural network model is briefly trained by the
two-dimensional load data in the library to form a classification model suitable for each signature
library, realizing long-term load identification in real-time.

In this paper, the two-dimensional image load data are used for identification. This type of data
can preserve the contour and shape signature of a waveform completely and avoid the complexity of
data reconstruction as in signature extraction and classification. Furthermore, the contour and shape
signatures extracted by the convolutional neural network reduce the influence of noise or harmonics
on the identification results. The measured data are used to verify the algorithm proposed in our work.
The method performs better than the other compared algorithms. With the increase in load categories
and number of users, the advantages of the proposed algorithm are clear. The overall accuracy is
higher than 92% and the operation time is less than 1.25 s. Thus, the proposed method can identify the
switching load effectively using the convolutional neural network and the obtained corresponding
power consumption of each load can be calculated accurately. The whole process provides a complete
implementation idea for NILM, which can be automatically executed without intervention.

In future work, the dynamic loads with various transients should be considered. Additionally,
the influence of load phase information requires further research, and required the resolution and
accuracy for measurement may be another research point.
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Abstract: The complex data characteristics collected in Industry 4.0 cannot be efficiently handled by
classical Six Sigma statistical toolkit based mainly in least squares techniques. This may refrain people
from using Six Sigma in these contexts. The incorporation of latent variables-based multivariate
statistical techniques such as principal component analysis and partial least squares into the Six Sigma
statistical toolkit can help to overcome this problem yielding the Multivariate Six Sigma: a powerful
process improvement methodology for Industry 4.0. A multivariate Six Sigma case study based on
the batch production of one of the star products at a chemical plant is presented.
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1. Introduction

Six Sigma is a strategy for process improvement widely used in various sectors such as
manufacturing, finance, healthcare, and so on. It is defined by Linderman et al. [1] as “an organized
and systematic method for strategic process improvement and new product and service development
that relies on statistical methods and the scientific method to make dramatic reductions in customer
defined defect rates”. Besides, Six Sigma, as a quality tool, has fostered a never-ending improvement
culture based on a strong and professionalized organization for improvement, a clear and well
thought methodology (DMAIC), and also powerful tools and statistical techniques to carry out the
improvement projects within the DMAIC framework that has proved highly effective in a large variety
of situations [2].

The DMAIC methodology in Six Sigma is a five-step improvement cycle, i.e., Define, Measure,
Analyze, Improve, and Control. Reliable data and objective measurements are critical at each step of the
method and, hence the statistical techniques are incorporated into the structured method as needed [1].
Traditionally, classical statistical techniques (e.g., multiple linear regression (MLR)) have been used
within the DMAIC framework in a data-scarce context mainly from experimental designs. However,
with the emergence of Industry 4.0 and the Big Data movement gaining momentum, data abounds
now more than ever, and the speed at which they accumulate is accelerating [3]. Besides, due to the
increasing availability of sensors and data acquisition systems collecting information from process
units and streams, univariate or low-dimensional data matrices evolve to high-dimensional data
matrices. In addition, these data often exhibit high correlation, rank deficiency, low signal-to-noise
ratio, and missing values [4].

For all this, the Six Sigma statistical toolkit traditionally focused in classical statistical techniques
must incorporate new approaches being able to handle complex data characteristics from this current
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Industry 4.0 context. In such context, latent variable-based multivariate statistical techniques are
widely recommended.

In the literature there are some examples of this integration of multivariate statistical tools into
the Six Sigma toolkit. For example, Peruchi et al. [5] integrated principal component analysis (PCA)
into a Six Sigma DMAIC project for assessing the measurement system, analyzing process stability and
capability, as well as modeling and optimizing multivariate manufacturing processes in a hardened
steel turning case involving two critical-to-quality (CTQ) characteristics. In [6], discriminant analysis
and PCA were integrated into the DMAIC Six Sigma framework in order to improve the quality of oil
type classification from oil spills chromatographic data.

In addition to that, latent variable regression models (LVRM) have also very attractive features,
not only for their ability to build models when good predictions, process monitoring, fault detection,
and diagnosis are desired (passive use), but also for being able to use this kind of Industry 4.0 data for
process understanding, trouble-shooting, and optimization (active use) [4,7]. Note that for an active
use causal models are required and, in contrast to machine learning (ML) and MLR models that can
only yield causal models if data come from experimental designs, latent variable regression models
(such as partial least squares (PLS) [8,9]) do provide causality in the reduced dimensional space of the
latent variables even when using historical data corresponding to the daily production of the processes
(happenstance data) [10].

This paper reinforces conclusions from previous works in the literature on how Six Sigma’s
DMAIC methodology can be used to achieve competitive advantages, efficient decision-making,
and problem-solving capabilities within the Industry 4.0 context, by incorporating latent variable-based
techniques such as PCA into the statistical toolkit leading to the Multivariate Six Sigma. An important
contribution of this paper to past literature is that we advocate the use of more advanced techniques via
LVRM such as PLS, and illustrate their successful integration into the DMAIC problem solving strategy
of a batch production process, one of the most iconic Industry 4.0 scenarios. This type of process,
although it shares many of the characteristics represented by the four V’s (volume, variety, velocity,
and veracity), may not really be Big Data in comparison to other sectors such as social networks, sales,
marketing, and finance. However, the complexity of the questions we are trying to answer is really high,
and the information that we wish to extract from them is often subtle. This info needs to be analyzed
and presented in a way that is easily interpreted and that is useful to process engineers. Not only
do we want to find and interpret patterns in the data and use them for predictive purposes, but we
also want to extract meaningful relationships that can be used to improve and optimize a process [11]
(García-Muñoz and MacGregor 2016), thus making latent variable-based techniques especially relevant,
as they permit making proper use of all the data available. More specifically, this paper addresses
a case study based on the batch production of one of the star products at a chemical plant.

2. Methods and Materials

2.1. Six Sigma’s DMAIC Methodology

In studying Six Sigma’s DMAIC methodology, De Mast and Lokkerbol [12] already commented
that there are essentially two options: to study the method as it is prescribed in courses and textbooks
(prescriptive accounts), or to study it as it is factually applied by practitioners in improvement Six
Sigma projects (descriptive accounts). Here, this work is focused on the second option. However, it is
crucial to prescribe initially the main functions of each step. Thus, a rational reconstruction of the
DMAIC methodology is shown below [12]:

• Define: problem selection and benefit analysis.
• Measure: translation of the problem into a measurable form, and measurement of the current

situation; refined definition of objectives.
• Analyze: identification of influence factors and causes that determine the critical to quality

characteristics’ (CQCs) behavior.
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• Improve: design and implementation of adjustments to the process to improve the performance
of the CQCs.

• Control: empirical verification of the project’s results and adjustment of the process management
and control system in order that improvements are sustainable.

As commented above, due to the Industry 4.0 context of the case study, we propose to incorporate
latent variable-based techniques within DMAIC usual framework. To aid the reader’s understanding,
such techniques are described below.

2.2. Latent Variable Models

Latent variable models (LVMs) are statistical models specifically designed to analyze massive
amounts of correlated data. The basic idea behind LVMs is that the number of underlying factors acting
on a process is much smaller than the number of measurements taken on the system. Indeed, the factors
that drive the process leave a similar signature on different measurable variables, which therefore
appear correlated. By combining the measured variables, LVMs find new variables (called latent
variables (LVs)) that optimally describe the variability in the data and can be useful in the identification
of the driving forces acting on the system and responsible for the data variability [13].

2.2.1. Principal Component Analysis

Principal component analysis (PCA) [14–16] is a latent variable-based technique very useful
to apply to a data matrix X (N × K), where N is the number of observations and K the variables
measured. The goal of PCA is to extract the most important information from X by compressing
the K measured variables into new A latent variables that summarize such important information.
This allows simplifying the description of the data matrix and easing the analysis of the correlation
structure of the observations and the variables. Thus, PCA can be used not only to reduce the dimension
of the original space but also to identify patterns on data, trends, clusters, and outliers. In machine
learning terminology PCA is an unsupervised method.

In order to achieve these goals PCA projects X into orthogonal directions obtaining new variables
of maximum variance (i.e., principal components (PCs) also called LVs) which are obtained as linear
combinations of the original variables. The decomposition carried out by PCA can be expressed as:

X = T·PT + E (1)

where P (K × A) is the orthogonal loadings matrix, A being the number of LVs, T (N × A) is the scores
matrix composed of the score vectors (columns of T), and E (N × K) is the residuals matrix. Score vectors
are orthogonal to each other and explain most of the variance of X. Besides, due to the orthogonality
in P, the A LVs have independent contributions to the overall explained variation. To calculate the
parameters in a sequential manner, the non-linear iterative partial least squares (NIPALS) algorithm
can be used [17].

2.2.2. Partial Least Squares Regression

LVMs can be also used to relate data from different datasets: an input data matrix X (N × K) and
an output data matrix Y (N × L), where L is the number of output variables measured. This is done by
means of latent variable regression models (LVRMs), such as partial least squares (PLS) regression.
Thus, LVRMs find the main driving forces acting on the input space that are more related to the output
space by projecting the input (X) and the output variables (Y) onto a common latent space. The number
of LVs corresponds to the dimension of the latent space and can be interpreted, from a physical point
of view, as the number of driving forces acting on a system [18].

In contrast to classical MLR or ML techniques, PLS regression [8,9] not only model the inner
relationships between the matrix of inputs X and the matrix of output variables Y, but also provide
a model for both. Thus, both X and Y are assumed to be simultaneously modelled by the same LVs
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providing unique and causal models, which is why PLS yields causal models even with data from
daily production (i.e. happenstance data not coming from an experimental design). The PLS regression
model structure can be expressed as follows:

T = X·W∗ (2)

X = T·PT + E (3)

Y = T·QT + F (4)

where the columns of the matrix T (N × A) are the PLS scores vectors, consisting of the first A LVs
from PLS These score vectors explain most of the covariance of X and Y, and each one of them is
estimated as a linear combination of the original variables with the corresponding “weight” vector
(Equation (2)). These weights vectors are the columns of the weighting matrix W∗ (K × A). Besides,
the PLS scores vectors are, at the same time, good “summaries” of X according to the X-loadings (P)
(Equation (3)) and good predictors of Y according to Y-loadings (Q) (Equation (4)), where F and E
are residual matrices. In a predictive use, the sum of squares of F is the indicator of how good the
predictive model is, and the sum of squares of E is an indicator of how well the model explains the
X-space.

To evaluate the model performance when projecting the n-th observation xn onto it, the Hotelling-T2

in the latent space, T2
n, and the Squared Prediction Error (SPE), SPExn , are calculated [19]:

τn = W∗T·xn (5)

T2
n = τT

n ·Λ−1·τn (6)

SPExn = (xn −P·τn)
T·(xn −P·τn) = eT

nen (7)

where en is the residual vector associated to the n-th observation, Λ−1 the (A × A) diagonal matrix
containing the inverse of the A variances of the scores associated to the LVs, and τn the vector of
scores corresponding to the projection of the n-th observation xn onto the latent subspace of the PLS
model. T2

n is the estimated squared Mahalanobis distance from the center of the latent subspace to the
projection of the n-th observation onto this subspace, and the SPExn statistic gives a measure of how
close (in an Euclidean way) such observation is from the A-dimensional latent space.

PLS model can also be expressed as a function of the input variables (as in a classical regression
model) by substituting Equation (2) into Equation (4):

Y = X·W∗·QT + F = X·B + F (8)

where B (K × L) is the PLS regression coefficient matrix. To calculate the parameters of the model in
a sequential manner, NIPALS algorithm can be used [20]. In both PCA and PLS regression, NIPALS
algorithm has two main advantages: it easily handles missing data and calculates the LVs sequentially
(an important property from a practical point of view).

Although PLS was not inherently designed for classification or discrimination, it can be used for
both purposes in the form of PLS discriminant analysis (PLS-DA) [21]. Thus, by means of PLS-DA one
can explain differences between overall class properties and classify new observations. In machine
learning terminology PLS and PLS-DA are supervised methods.

2.3. LVMs in Batch Processes

Batch processes operate for a finite period with a defined starting and ending point, and a
time-varying behavior over the operating period. Thus, the data available on batch processes fall into
three categories: summary variables (XSV) characteristics of each batch such as initial conditions, charge
of ingredients, shift, operator, or features from the trajectories of the process variables throughout batch
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evolution; time-varying process variables throughout the batch evolution (trajectory variables—XTV;
and the CQCs of final product (Y)). The nature of these data is represented in Figure 1.

Figure 1. Nature of the batch data set.

The presence of very large arrays, missing data, and the fact that there is temporal and
contemporaneous correlation among all variables, provide a strong motivation for using latent
variable-based techniques in such data. However, these techniques are based on bilinear modeling
approaches and, therefore, a priori they are not able to handle that three-dimensional (3D) XTV arrays.
For that, several approaches for analyzing batch data have been proposed where the differences mainly
revolve around how to treat XTV [22]. For example, the simplest approach is to extract meaningful
landmark features from the trajectories and recording the values of such features for each batch run in
a 2D data matrix.

More sophisticated approaches are based on unfolding the 3D XTV in a 2D matrix. One approach
is the batchwise unfolding (BWU) [23], that is, to unfold XTV such that all the information for
each batch is contained in one row. The data are then mean centered and scaled for each column.
Mean centering removes the mean trajectories of each variable, eliminating the main nonlinearity due
to the dynamic behavior of the process, and focusing on the variation of all the variables about their
mean trajectories. This approach allows exploiting the complex auto and lagged cross correlation
structure (i.e., dynamics) of the batch process. Performing any subsequent PCA or PLS analysis on
this matrix then summarizes the major sources of variation among the different batches and allows
efficient batch-to-batch comparison. This approach also allows for incorporating summary variables
(XSV) and final product quality variables (Y) associated with each batch when performing either a PCA
or a PLS analysis [19].

Another approach is to unfold the data observation-wise (OWU) [24] with each row corresponding
to an observation at some time in each batch, and each column corresponding to the variables measured.
Mean centering by column (variable) then simply centers the origin of each variable about zero, but
does not remove the average trajectories. The variation remaining is the total trajectory variation
for each variable. Performing PCA or PLS (using local batch time or a maturity variable as y) on
these OWU data finds a smaller number of components that summarize the major behavior of the
complete trajectories of the original variables. It does not initially focus directly on the differences
among batches as BWU does, but on summarizing the variable trajectories [22]. The latter can be
overcome by carrying out a second model, being similar to the single model BWU, except that it is
based on the unfolded score matrix T of the OWU (i.e., OWU-TBWU). The main motivation of the
OWU-TBWU approach is dimensionality reduction before BWU stage, which is required when the
number of trajectory variables is very large (e.g., when online analytical sensors such as Mass or NIR
spectrometers are used). However, the modeling of the OWU data by a single PLS model works
well if there is no important dynamics in the process and the instantaneous correlation structure (i.e.,
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the correlation structure or the variables at the same time) remains stable throughout the whole batch
evolution. Nevertheless, such assumption does not seem to be realistic at the chemical batch processes
analyzed in this case study and, hence, BWU approach is used in this work.

Moreover, batch trajectories are dependent on time (more specifically on the pace the batch is run)
and they are rarely synchronized (i.e., the key process events do not overlap at the same time in all
batches) [25]. To compare these batch histories and apply statistical analysis one needs to reconcile the
timing differences and the key process events among these trajectories [26]. This can be achieved using
the dynamic time warping (DTW) method with only a minimal amount of process knowledge [27].
This method nonlinearly warps all batch trajectories to match as closely as possible that of a reference
batch. Figure 2 illustrates the BWU approach followed by DTW synchronization.

Figure 2. (a) Batchwise unfolding (BWU) approach and (b) dynamic time warping (DTW)
synchronization of the 3D XTV .

Note that, once XTV is unfolded and synchronized as seen in Figure 2, it is concatenated with XSV ,
resulting in the matrix X to be used in the PCA or PLS model.

2.4. Software

The software packages used are as follows:

• Multivariate Exploratory Data Analysis (MEDA) Toolbox (for Matlab) [28] for variable and batch
screening, and imputation of missing data within a batch.

• MVBatch Toolbox (for Matlab) [29] for batch synchronization.
• Aspen ProMV for calibration by using synchronized batch data, and data analysis.
• Minitab for control chart plotting.

3. Results

In this section, the results from applying each of the DMAIC steps (Define, Measure, Analyze,
Improve, and Control) to the process are shown, each in their own subsection. Note that latent
variable-based methods such as PCA or PLS are used, instead of more classical ones such as MLR or
even ML. Therefore, the tools implemented in some of the steps of the DMAIC cycle differ from more
traditional approaches, but the original purpose of each stage remains.
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3.1. Define

The aim of this stage is to identify opportunities for improvement that lead to e.g., an increase
in benefits, reduced costs or losses, a mitigation of the environmental impact, etc. This requires
pinpointing observed problems, framing them within the context of the corresponding processes,
evaluating the costs and benefits of addressing them, and locating the most appropriate people to do it
given the existing constraints on time and resources.

In this Six Sigma project, the focus was set on the purity (before separation) and volume of
production (after purification) of one of the star products at the chemical plant where the continuous
improvement program was implemented. This came as a result of an observed increase in the variability
of this product’s purity, due mostly to significantly lower values (compared to previous operations)
being obtained once every four batches, approximately. This also meant a decrease in its average
value of around 1%, starting on September of 2014, with an estimated monetary loss of more than
100,000 €/year with respect to previous years.

Figure 3a illustrates the ‘Suppliers, Inputs, Process, Outputs, Customers’ (SIPOC) diagram
identifying the supplier (reaction 1) and inputs (one of the outputs from reaction 1) for the specific
process under study (reaction 2), as well as its outputs (with primary focus on the composition of the
so-called subproduct 2) and the customer (reaction 3). Figure 3b corresponds to a simplified process
block diagram for reaction 2, in which four numbers have been included to indicate the points of the
process where the process variables and critical to quality characteristics (CQC) relevant to this work
are routinely measured.

 

Figure 3. (a) ‘Suppliers, Inputs, Process, Outputs, Customers’ (SIPOC) diagram; (b) simplified process
block diagram for reaction 2.

Due to confidentiality reasons, the name of the reactants, products, and subproducts cannot be
disclosed. However, it must be noted that both ‘Reactants (1)’ and ‘Fresh Reactant (1)’ come from
reaction 1. Likewise, Premix 1 and Premix 2 are blends constituted by the same chemical species, these
being freshly produced raw materials for Premix 1, and one of them (Rec. reactant (2)) having been
recovered after the washing and separation following reaction 2. For each batch, each reactor was
fed Premix 1 or Premix 2, but never a blend of both. A quick look at already available data revealed
that the main concern that motivated this Six Sigma project was related to a loss of purity (in terms of
the desired chemical species) of the Crude, (i.e., unrefined product) and therefore a lower amount of
Product arriving to reaction 3 per batch of reaction 2.

The project team was constituted by the authors of this paper (Six Sigma Black Belts), championed
by two high-profile members from the company and supported by three experts in the process from
the technical team. Regarding the planning, the project was estimated to require over six months to
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be completed. Experimenting in a laboratory or at pilot-plant level was not recommended, since no
proper scaling could be done. Additionally, altering or interrupting the production of this process was
not allowed to any extent, and therefore experimenting on the plant itself was not an option either.
Due to this, only historical data from past production could be used.

3.2. Measure

During this stage, as much available data as possible was collected, and their validity assessed.
With these data, an evaluation of the initial situation was done, and potential causes were looked at for
the issue that motivated the project.

3.2.1. Available Data

Data from a total of 17,147 batches produced in two different reactors during a nine years period
was available, containing information about:

• the averaged values for three process variables (x1 to x3) for each batch, measured at point (1) in
Figure 3 (i.e., the corresponding reactor);

• amounts (x4 to x7) and proportions (x8 to x11) of some of the most relevant reactants involved in
the reaction, measured at point (2) in Figure 3 (i.e., before being introduced into the reactor);

• four categorical variables indicating whether a batch was produced in the first or second reactor
(x12) and the use or not of an auxiliary piece of equipment (x13), registered at point (1) in Figure 3;
and whether an excess of accumulated reactant had been recovered or not (x14), and whether
Premix 1 or Premix 2 had been fed to the reactor for the corresponding batch (x15), registered at
point (2) in Figure 3;

• the evolution along the complete duration of each batch for 11 process variables (x16 to x26),
measured at point (1) in Figure 3, and;

• information on 10 CQC (y1 to y10), including the purity of the product of interest (y8), measured at
point (4) in Figure 3; and the measure of the total amount of crude coming out of the process (y4),
and its estimation through mass balance (y6), measured/registered at point (3) in Figure 3.

The first three groups of variables will be referred to as ‘summary variables’, since they provide
summarized information of each batch (e.g., average observed values or setpoint values), disregarding
their variation during the evolution of the chemical reaction until completion and discharge of the
reactor. The fourth group, on the contrary, is comprises ‘trajectory variables’ that may show differences
in the evolution of the corresponding process conditions among batches even when their average or
target values coincide.

Although further experimentation may be suggested during this step to enrich the database used
in following stages, such experimentation is not possible in this case, as previously stated, and therefore
no such approach will be addressed in this section.

3.2.2. Validation of the Data

In order to detect potential outliers, a PCA model with two latent variables (LVs) was fitted using
all available data for the ‘summary variables’ as provided, resulting in a model that explained 17% of
the variability of these data. Adding any more LVs provides no additional information that is useful
at this stage, and instead results in PCA models with lower explanatory and predictive capabilities,
and less ability for the detection of outliers. A representation of the SPE of all observations in the
database resulted in Figure 4.
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Figure 4. SPE for all observations in the dataset with the summary variables and critical to
quality characteristics (CQCs) for a principal component analysis (PCA) model fitted with two
LVs [R2(X) = 17%], SPE 95% (dotted red line) and 99% (continuous red line) confidence limits, and the
four observations with highest SPE values highlighted.

This plot allows quickly detecting observations that do not abide by the correlation structure
found by the PCA model in the dataset for the ‘summary variables’. A contribution plot, such as the
one in Figure 5, provides additional information regarding which variables are responsible for the high
SPE value for the corresponding observation. In this case, variable x4 presents an abnormally high
value for observation 1080, not following the correlation structure found in the data by the PCA model.

Figure 5. Contribution plot for observation 1080, seen in Figure 4 to have a SPE value significantly
above the 99% confidence limit for a PCA model fitted with two LVs [R2(X) = 17%]. Variable x4 is seen
to be the biggest contributor to the SPE value.
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An in-depth analysis of the factors that contribute to the high SPE values of all observed outliers
allowed curating the database to either correct wrongly registered data or to eliminate outliers before
continuing with the analysis. Consequently, the dataset was reduced from 17,147 original batches
to 16,813.

The same procedure was followed for the dataset containing the ‘trajectory variables’, but no
outliers were found among these data other than the ones already identified with the ‘summary
variables’. As a consequence, these observations were discarded before continuing.

On the other hand, process variable x5 was found to present almost no variability in the dataset
and was also discarded before going on. Additionally, variables ‘day’, ‘month’, and ‘year’ were
included only as labels with which observations could be colored, in order to identify possible patterns,
stationary effects or changes with time without artificially biasing the model to account for these
variables. However, no clustering or displacement of the observations was detected this way, and the
presence of outliers was not found to be correlated to these time-related variables.

3.2.3. Quantified Initial Situation and Potential Causes of the Observed Problem

Once outliers were eliminated from the dataset, the starting point of the project was determined
according to the remaining information. Figure 6 shows the evolution of the purity of the product of
interest (y8) with time for both reactors. The superimposed dashed blue lines mark the separation
between batches produced before and after September 2014.

Figure 6. Evolution of the purity of the product of interest (y8) with time for the first (black) and second
(orange) reactors; the dashed blue lines separate batches produced before (left side) and after (right
side) September 2014.

The average value for y8 after September 2014, compared to before, was around 0.1% lower, while its
standard deviation had increased to 1.008% (1.47 times that of past batches). Both changes (in average
value and variability) were found to be statistically significant (p-value < 0.05), which corroborated,
at least partially, the concerns expressed by the technicians at the start of the project. When asked,
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they mentioned that several changes had taken place at some point during 2014, such as the addition of
an auxiliary refrigerating system to one of the reactors, the way the reactants were fed or the recovery
of some amount of unreacted raw materials after each reaction.

3.3. Analyze

The main goal of this stage was to identify which process parameters have a significant effect on
the product’s purity, evaluate the nature of their effect (antagonistic or synergic), and how they relate
to each other. In order to achieve it, a PCA model was fitted, and presented in Section 3.3.1, with all
summary variables and CQC to explore the correlation structure among them in the database, and to
detect clusters of batches that operated in similar way in the past. Afterwards, a PLS-regression model
permits predicting the CQCs from the summary variables, and was used to determine which of these
factors have a significant effect on the purity of the product of interest (y8), as seen in Section 3.3.2.
Once these variables are identified, a PLS-DA was performed considering the trajectory variables,
to assess which of them are responsible for the observed differences between batches with higher and
lower performance, as illustrated in Section 3.3.3.

3.3.1. Principal Component Analysis of the Summary Variables and CQCs

This first exploratory analysis was aimed at providing relevant information regarding the existing
correlation structure among summary variables and CQCs, and detecting clusters of batches operating
in similar conditions and/or providing similar results. Given that outliers were already eliminated from
the dataset, a PCA model with five LVs [R2(X) = 76%] could be directly fit. Additional LVs beyond the
fifth corresponded to either variation of individual variables independently of others, or variations not
related to the CQCs, and were therefore not considered relevant to the goal of the project.

The Hotelling-T2 values for the observations used to fit this model can be seen in Figure 7a.
Here, batches were colored by variable x13 (black: 0; orange: 1). In Figure 7b, the scores plot of LV2
(explaining 20% of the variability of the data) versus LV1 (explaining 22% of the variability) is shown,
such that the left red cluster corresponds to the observations in orange in Figure 7a, and the rest
correspond to observations in black in Figure 7a. Figure 7c, where the loadings for the variables in the
two first latent variables are represented, allows the interpretation of this clustering. In it, variables x6

and x10, and x13 = 1, can be seen on the left side, with values close to zero in the second component,
while variables x4 and x8, and x13 = 0, are found in the opposite side. This provides two valuable
pieces of information (which Figure 7d illustrates, too):

- Variables x4 and x8 present higher values for the batches in the blue cluster in Figure 7b, and lower
values for the batches in both red clusters, while the opposite is true for variables x6 and x10.
Variable x13 takes the value 0 for batches in the blue cluster and in the rightmost red cluster, and 1
for the leftmost red cluster.

- Variables x4 and x8 are positively correlated, as are variables x6 and x10, and the former couple is
negatively correlated with the later.
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Figure 7. (a) Hotelling-T2 plot of the observations in the dataset with the summary variables and CQCs
for a PCA model fitted with five LVs [R2(X) = 76%], T2 95% (dotted red line) and 99% (continuous
red line) confidence limits, colored by x13 (black: 0; orange: 1); (b) scores plot for the two first LVs
(t2 vs. t1) showing three clusters of observations: red circled orange dots associated to x13 = 1, above
average values for x6 and x10 and below average values for x4 and x8; red circled black dots associated
to x13 = 0, above average values for x6 and x10 and below average values for x4 and x8, and; blue circled
black dots associated to x13 = 0, below average values for x6 and x10 and above average values for x4

and x8; (c) loadings plot for the two first LVs (p2 vs. p1) with CQCs in red, continuous process variables
in black, and binary process variables in cyan; (d) scatterplot for x10 vs. x8, using the same color code
as in Figure 7b.

Note that, more generally, the relationships among all process variables and CQCs in the dataset
used to fit the PCA model can also be assessed by looking at the loading plots. In this plot, if the
corresponding LVs explain a relevant percentage of the model variability, variables lying close to each
other (and far away from the center) will tend to show positive correlation; while if they lay at the
opposite site in the plot they will tend to show negative correlation. Figure 7d can be resorted to for
carrying out such analysis (latent variables three to five do not, in this case, alter this interpretation).
This way, in addition to the aforementioned correlations, positive correlations were found between
variables y4, y6, y8, and y10, and variables x1, x2, and x15 = 0, as well as between x3 and variables y5, y7,
and y9. On the other hand, negative correlations were found between y2, and all other CQCs except
for y1 and y3, as well as between x3 and variables x1 and x2, and between x9 and variables x7 and
x11. More importantly, no clear correlation was found between y8 and variables x8 to x11. Bivariate
dispersion plots for each pair of variables were used to visualize each of these relationships (or lack
thereof), and also allowed detecting that not only was x15 = 0 positively correlated with y8, but that the
intensity of the positive/negative correlations between y8 and other process variables and CQCs varied
when x15 = 1 (Premix 2 fed to the reactor) with respect to x15 = 0 (Premix 1 fed to the reactor). As an
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example, the positive correlation between x2 and y8, as well as the relationship between x15 and y8,
and the interaction effect between x2 and x15, are shown in Figure 8.

 
Figure 8. Scatter plot for y8 vs. x2, for (a) x15 = 1, and the approximate direction of maximum variability
indicated by a green arrow, and (b) x15 = 0, and the direction of maximum variability indicated by
a yellow arrow.

From Figure 8a,b, the positive correlation between x2 and y8 can be immediately confirmed.
Furthermore, the cluster of batches for which x15 = 0 presents higher values (on average) than those for
which x15 = 1. This is coherent with the conclusions extracted from Figure 7c Additionally, however,
the slopes of the green arrow in Figure 8a and the yellow one in Figure 8b differ, pointing to a stronger,
more positive correlation between x2 and y8 when x15 = 1, compared to their weaker, but still positive,
relationship when x15 = 0. Therefore, it can be suspected that an interaction exists between x2 and x15.

3.3.2. Partial Least Squares Regression to Predict the CQCs from the Summary Variables

This analysis was performed in order to identify the sources of variability of the process most
related to the product’s purity (i.e., variables y4, y6, and y8). This required confirming previous results
and quantifying the relationship between the summary variables and the CQCs. For the sake of brevity,
only the results regarding the established predictive model for y8 will be shown in this section, as those
to predict y4 and y6 provide the same overall conclusions. The potential effects of time related variables
(‘month’ and ‘year’) and interaction effects between the categorical variables x12 to x15 and other
summary variables were also considered initially. However, no statistically significant differences in the
CQCs were found between reactors, and the effect of variables ‘month’ and ‘year’ was not statistically
significant either. Furthermore, all interaction effects were discarded for the same reason, except for
the interactions of both levels of x15 with variables x1 and x2. Figure 9 presents the coefficients of the
resulting PLS-regression model fitted with two LVs [R2(Y) = 25.86%; Q2(Y) = 25.81%] to predict y8.

One important consideration in this analysis is that variable x3, which is known to be critical in
the process, did not appear to have a significant effect on the most relevant CQCs. This is partially
because this is a very strictly controlled variable. On the other hand, variables x1 and x2, with which x3

is negatively correlated, are found to apparently have a significant positive effect on y8. From this,
and according to the technicians’ knowledge of the process, one may conclude that it is x3 that has
a statistically significant, negative effect on y8, but one should be cautious given that x1, x2, and x3

do not vary independently. This is illustrated in Figure 10, where batches with higher values for x1

also present higher values of y8, on average (i.e., for lower values of x1, batches with similar and
smaller values of y8 are observed), which points to the positive correlation between x1 and y8. On the
other hand, batches with the highest values of x1 only operated at values of x3 close to its historical
minimum, which also illustrates the negative correlation between x1 and x3. This could also be seen in
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the loadings plot of the PCA in Figure 7c. To disentangle this potential aliasing some experimentation
should be run in the future, when/if possible.

 
Figure 9. Regression coefficients of the partial least squares (PLS)-regression model fitted with two
LVs [R2(Y) = 25.86%; Q2(Y) = 25.81%] to predict y8 from the summary variables and their interactions
with x15.

 

Figure 10. Scatter plot for y8 vs. x1, with the observations colored according x3.
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Nevertheless, the negative relationship between x15 = 1 (using Premix 2) and y8, already seen in
Figure 8, was confirmed once more, as seen in Figure 9, and so finding what is being done differently
in such case becomes relevant.

3.3.3. PLS-Discriminant Analysis to Identify Differences in Batches Using Premix 1 and Premix 2

Since x15 seems to be one of most important variables affecting the purity of the product, y8,
conclusions obtained by previous analysis were confirmed by means of a PLS-DA model, which was
resorted to for finding which variables are responsible for the differences in how batches operated when
Premix 2 (x15 = 1) was fed into the reactor, compared to when Premix 1 (x15 = 0) was used. This analysis
was carried out considering both the summary and trajectory variables, but only the results with the
trajectory variables (x16 to x26) are illustrated here, for the sake of both brevity and clarity. Figure 11
shows the separation between both clusters of batches in the latent space, while Figure 12 presents
the model coefficients associated to each process variable, included the ‘warping profile’ that results
from aligning the trajectories, for a PLS-DA regression model to predict x15 = 1. This model was
fitted with eight LVs, as this number of LVs provided the model with the most discriminant power
[R2(Y) = 79.80%; Q2(Y) = 71.90].

 

Figure 11. Scores plot for the two first LVs (t2 vs. t1) for the PLS-discriminant analysis (DA) regression
model fitted with eight LVs [R2(Y) = 79.80%; Q2(Y) = 71.90%], showing the separation between batches
with x15 = 0 (orange; right side of the red straight line) and x15 = 1 (black; left side of the red straight line).
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Figure 12. Model coefficients (blue bars) and the confidence interval for a 95% confidence level (grey
intervals) associated to each variable for the PLS-DA regression model to predict x15 = 1 from variables
‘warping profile’ and x16 to x26, fitted with eight LVs [R2(Y) = 79.80%; Q2(Y) = 71.90]. Positive values
indicate that higher values for the corresponding variable at that point in the batch are expected,
on average, for batches with x15 = 1 (Premix 2 used).

From Figure 12 it is concluded that batches where Premix 2 was fed to the reactor (x15 = 1):

• Proceeded, at the latest stages of the batch, faster than those where Premix 1 was fed instead
(x15 = 0), as seen by the negative values for variable ‘warping’ near the end of the batch duration.

• Presented lower (and decreasing) values for variable x22 (ingredient flow) at the end of the batch.
• Operated at higher values for variable x23 (ingredient temperature) at the start of the batch, but

lower during the middle part of the batch.

It is worth noting that, although the technicians at the plant were not surprised by the discrepancy
in the values observed for variable x23 at the start of the batch for the two clusters, the values during
the middle part was, according to them, opposite to their expectations.

3.4. Improve

As a result of the analyses performed and summarized in the previous section, the team responsible
for this process was able to pinpoint a specific behavior in the process potentially related to the loss
of purity/production volume of the desired product (y4, y6, and y8) when Premix 2 was fed into the
reactor. When compared to one another, the average value for y8 for x15 = 1 was found to be 1.9332%
lower than for x15 = 0, and the standard deviation for y8 for x15 = 1 was also 1.12 times that for x15 = 0,
with both differences being statistically significant (p-values < 0.05). A preliminary confirmation of
this was provided by the historical data itself, according to which Premix 2 was fed to the reactor for
the first time on September 2014, matching the increase in variability and drop in average value for
y8. While the technicians at the plant knew about this operational change (which they themselves
implemented), they initially argued that such modification did not justify the change in the process
outputs, but the unexpected behavior of variable x23 (see Figure 11) pointed to either a contamination
issue with Premix 2, or to other, not registered process variables as potential causes. Consequently,
they decided to further investigate them and, once detected, to correct the actual issue (the details on
how this was done is not disclosed for confidentiality issues) and standardize the treatment of both
Premix 1 and Premix 2 to make them equal. The solution was validated during the next two months,
and remains a success to this day, with estimated benefits/savings above 140,000 €/year (40,000€ higher
that the initial estimation in the ‘Define’ step).

3.5. Control

Once the causes of the loss in productivity were detected and addressed, an instrumental
monitoring scheme was implemented in the plant to detect possible deviations in the process variables,
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and specially with regards to Premix 1 and Premix 2. This monitoring system was designed in a way
that avoids expensive and time-consuming tests (details not disclosed to the project team), the lack of
which allowed the actual cause of the issue to go unnoticed before the Six Sigma project was carried
out. Currently, the use of multivariate statistical analysis techniques for monitoring purposes supports
this instrumental monitoring scheme by quickly signaling out-of-specification batches and delimiting
the range of potential causes for such events.

As an example of the achieved improvement, as well as an appropriate Individual-Moving
Range (I-MR) control chart to be used for monitoring y8 after the project goal was achieved, Figure 13
illustrates the evolution of variable y8 before and after improvement, for batches where Premix 2 was
fed to the reactor.

 

Figure 13. Individual-Moving Range (I-MR) control chart for variable y8, for batches where Premix 2
was fed into the reactor, before (1) and after (2) improvement in accordance to the conclusions of the Six
Sigma project.

4. Discussion

While the success of the Six Sigma methodology has already been documented in the past
in numerous industrial case studies, the tools used (mainly based on linear regression and simple
graphical displays) are usually those suitable for scenarios where not much information is available
yet, a relatively limited number of factors are involved or relevant, and/or experimentation can be
carried out to a minimum yet significant extent. In the problem addressed in this project, related to
a batch production process, due to the nature of the data registered, typical of Industry 4.0, none of
these apply and, therefore, alternative methods had to be resorted to.

In particular, latent variable-based methods such as PCA, PLS, and PLS-DA, applied to historical
(i.e., not from DOE) data of both summary variables and trajectory variables (usually just referred to
as batch data) were able to extract valuable information to pinpoint the actual causes of the loss of
productivity in a real case study. These tools were also implemented for troubleshooting purposes in
the future.
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In contrast with these latent variable-based methods, data from DOE would have been required
to use tools such as linear regression or machine learning tools to infer causality, which is needed for
process understanding and optimization purposes. However, as it is typical in Industry 4.0 no data
from DOE were available. As an example, when linear regression was applied to the available historical
data, due to the highly correlated regressors (process variables), different models using different
regressors and having different weights or coefficients on them gave nearly identical predictions and
similar to PLS model, but failed to properly identify the relationships between x1, x2, x3, and y8, as well
as the existing interaction effect between the use of Premix 1 (x15 = 0)or Premix 2 (x15 = 1) and other
process variables, such as the ones shown in Figure 8. Had any of such linear regression models been
used in the ‘Improve’ step of the DMAIC for process improvement, a different set of process operating
conditions would have been advised with a high probability of not being feasible in practice, as a result
of e.g., the actual relationships between x1, x2, and x3 going unnoticed. Furthermore, a lesser degree of
improvement would have been achieved, presumably, if the interaction between e.g., x2 and x15 had
not been discovered. Therefore, this constitutes a clear example of the dangers of resorting to more
basic linear regression (and also machine learning) techniques for process optimization in scenarios
they are not suitable for (i.e., where causality cannot be inferred directly from the raw data), as in this
case study, analyzing historical data.

In summary, the use of latent variable-based methods allowed the efficient use of the Six Sigma
methodology in a batch production process where this could not have been done using a traditional Six
Sigma toolkit, which lead to significant short- and long-term savings, in addition to the implementation
of a more robust monitoring system.

5. Conclusions

Traditional Six Sigma statistical toolkit, mainly focused on classical statistical techniques (such
as scatterplots, correlation coefficients, and linear regression models from experimental designs),
is seriously handicapped for problem solving using process data coming from Industry 4.0. In this
context, abundant historical process data involving hundreds/thousands of variables highly correlated
with missing values are registered from daily production.

PCA can be used in this context as an exploratory tool not only to reduce the dimension of the
original space and visualize the complex variables relationship but also to deal with missing data,
identify patterns on data, trends, clusters, and outliers.

As data do not come from a DOE, input-output correlation does not mean necessarily causation,
and classical predictive models (such as MLR and ML), proven to be very powerful in passive
applications (i.e., predictions, process monitoring, fault detection, and diagnosis), cannot be
used for extracting interpretable or causal models from historical data for process understanding,
trouble-shooting, and optimization (active use), key goals of any Six Sigma project. This is the essence
of the Box et al. (2005) warning [30]: predictive models based on correlated inputs must not be used
for process optimization if they are built from observational data (i.e., data not coming from a DOE).

In contrast to classical MLR or ML techniques, PLS regression provides unique and causal models
in the latent space even if data come from daily production process. These properties make PLS
suitable for process optimization no matter where the data come from.

Therefore, Six Sigma’s DMAIC methodology can achieve competitive advantages, efficient
decision-making and problem-solving capabilities within the Industry 4.0 context by incorporating
latent variable-based techniques, such as principal component analysis and partial least squares
regression, into the statistical toolkit leading to Multivariate Six Sigma.
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Abstract: In batch processing, not only the characteristics of different phases are different, but also
there may be different characteristics between batches. These characteristics of different phases and
batches will have different effects on the final product quality. In order to enhance the safety of batch
processes, it is necessary to establish an appropriate monitoring system to monitor the production
process based on quality-related information. In this work, based on multi-phase and multi-mode
quality prediction, a new quality-analysis-based process-monitoring strategy is developed for batch
processes. Firstly, the time-slice models are established to determine the critical-to-quality phases.
Secondly, a multi-phase residual recursive model is established using each quality residual of the
phase mean models. Subsequently, a new process-monitoring strategy based on quality analysis
is proposed for a single mode. After that, multi-mode quality analysis is carried out to judge the
relevance between the historical modes and the new mode. Further, online quality prediction is
achieved applying the selected model based on multi-mode quality analysis, and an according
process-monitoring strategy is developed. The simulation results show the availability of this method
for multi-phase multi-mode batch processes.

Keywords: multi-phase residual recursive model; multi-mode model; quality prediction; pro-
cess monitoring

1. Introduction

Batch process products play an increasingly important role in modern human life. In
order to meet the ever-changing market demand of modern society, the safe and reliable
operation of batch processes and continuous and stable product quality have gradually
become the focus of attention in the processing industry [1,2]. The characteristics of batch
operation processes are more complex than that of continuous industrial processes and
have more abundant statistical characteristics. In order to enhance the safety of the batch
production process and its control system, it is urgent to establish a suitable process-
monitoring system to monitor the production process.

Currently, data-driven methods [3–5] of extracting information from process data
and modeling monitoring have become a hotspot in process-monitoring research. With
the advancement of sensor technology, almost all industrial objects are equipped with
different types of sensing devices. This results in a large amount of data being obtained
in an industrial process. The data-driven methods extract information hidden in data by
analyzing and mining collected industrial data, which may help reveal the operation mode
of the industrial process and trace the fault reasons. In recent years, data-driven methods
are continuously developed and perfected, batch process monitoring and fault diagnosis
technologies based on data-driven methods have increasingly become research hotspots of
people, and theories of the batch process monitoring and fault diagnosis technologies are
continuously and deeply developed.

Multivariate statistical analysis methods do not require the acquisition of process
mechanism knowledge; they only require the use of historical data to build models. These
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methods can effectively extract key information in data, eliminate redundancy and remark-
ably reduce data dimensionality so that the process running state can be directly displayed
in a two-dimensional statistical monitoring graph. Before the 1990s, researchers have gen-
erally simply treated batch processes as special continuous processes of limited duration,
with no theoretical system of research specifically directed to batch process monitoring.
Due to the essential difference of the characteristics of the batch process and the continuous
process, a satisfactory effect is difficult to obtain in the batch process.

Aiming at the three-dimensional data characteristics of the batch process, a trilinear
decomposition model can be established to directly investigate the three-dimensional
data structure [6]. The data are stored and analyzed by using a trilinear decomposition
model, and structural information of the data can be retained. In summary, there are six
different two-dimensional matrix unfolding modes [7], which mainly reflect the different
arrangement modes inside the data.

Nomikos [8–10] proposed multi-way principal components analysis (MPCA) and
multi-way partial least squares (MPLS) methods, innovatively extending the successful
application of multivariate statistical analysis methods to batch processes. Different in-
ternationally academic institutions and teams, including Wold professor [11] of Umea
University, English Martin professor [12] of Newcastle University, proposed their own
methodology, which facilitates the study of batch process monitoring. Corresponding
models for monitoring have been established based on the model under normal conditions.
When influenced by abnormal disturbances, the process variable correlations are changed,
thereby deviating from the laws and characteristics under normal conditions. Correspond-
ing multivariate statistics are calculated and compared with the monitoring control limits
defined in advance, and the occurrence of abnormal working conditions can be detected.

In the batch process, the multi-phase nature is another important nature. In recent
years, many scholars have conducted considerable research into process monitoring and
quality analysis of batch processes [13–15]. Most researches were carried out by establishing
different models to obtain different characteristics and dividing a cycle of a batch into
phases, due to the cognition that the correlation of variables in the same phase is similar,
and the correlation of variables in different phases is very different. Some scholars study the
characteristics of the phases, e.g., the problem of transitions between adjacent phases [16]
and the problem of non-uniform durations [17]. In addition, the scholars suggested that
phases contribute to the final quality together, and individual phase models should be
connected in some way during the modeling process. Therefore, a recursive quality
regression method aiming at the multi-phase characteristics of the batch process was
proposed [18], where the regression on the process variables in the current phase and the
residual quality obtained in the previous phase was carried out to extract important quality
information between the phase.

In addition, due to the influence of various factors, there are multi-mode characteristics
in the batch process. In the whole operation process, process changes in batch direction lead
to different process states and different process characteristics. In this way, monitoring and
quality prediction for only one process state may lead to inaccurate analysis and monitoring
results. In order to solve this problem, some scholars proposed to build an integrated
model that can include both the common model and the specific model [19]. However,
these methods barely evaluate the changes along the batch direction, in which models are
in general updated arbitrarily, decreasing the efficiency of the monitoring system, as well
as increasing the chance of introducing disturbances into the process model. Some scholars
have proposed a specific modeling method for a specific process state [20]. However, the
process variation along the batch direction may be too slow to be divided into several
states. In addition, in the batch production process, when a new mode is generated, the
corresponding model is built in the mode library and saved in the mode library. However,
the relationship between these modes is not analyzed and judged. As new modes are
generated one after another, all new modes must be saved, which makes the mode library
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larger and larger. Therefore, a quality prediction method based on the relationship between
modes is proposed to extract information from historical modes [21].

In recent years, monitoring of multiple characteristics of batch processes has also
been the direction of many scholars. A process-monitoring method based on multi-mode
Fisher discriminant analysis to solve the problem of multi-mode monitoring of batch
process was proposed [22], which overcomes the limitation of the single operation mode
assumption. Taking the whole batch trajectory as the research object, based on the dynamic
time warping method, the obtained data are automatically classified from the perspective
of data distribution to reflect the differences in batch direction. For the batch process with
multi-phase characteristics, a two-phase PLS regression model based on phase analysis
and different statistical analyses was proposed [23]. At the first level, multiple PLS models
are used to monitor a single point in time. At the second level, the final quality is predicted.
Through these two different levels of models, real-time monitoring and accurate quality
prediction are organically combined. Due to the calibration and modeling problems caused
by operation switching (or moving to different phases), a new evolutionary PLS method is
proposed, which can be used to predict intermediate quality measurement and to detect
process faults avoiding false positives [24].

In this work, both multi-phase quality analysis and multi-mode quality analysis are
conducted at the same time to develop a comprehensive process-monitoring strategy
based on the quality prediction of batch processes. The multi-phase and multi-mode batch
process concerned here involves variety in two directions. One is the multi-phase direction,
the other is the multi-mode direction, and the processing methods of the two directions
are different due to different process characteristics. In the multi-phase direction, the
phase residual recursive model is unitized to connect the contributions of the successive
phases on the final quality together, while in the multi-mode direction, the relationship
between the current mode and the historical mode is analyzed and extracted to obtain
more quality-related information for quality prediction. Firstly, the time-slice modeling
method and the goodness-of-fit index are used to analyze the influence of different phases
on the final quality and identify the critical-to-quality phases. Then, the phase mean model
is introduced to analyze the phase characteristics and monitor the phase based on quality
information. After that, single modes are analyzed, where the residual regression model of
each phase is established with the quality variables of the current phase and the quality
residual of the previous phase, and the current mode is predicted and monitored. In
addition, for the quality prediction and monitoring of multiple modes, it is emphasized
to extract the relationship between historical mode and new mode by between-mode
modeling. This model contains more modal quality-related information and can better
predict and monitor multiple modes. Finally, the strategy is applied to an injection molding
process to illustrate the effectiveness of the strategy.

The rest of this paper includes four parts: the proposed method is presented in
Section 2, including critical-to-quality phase identification, phase mean model, multi-phase
residual recursive modeling for a single mode, between-mode modeling for multiple modes
and model comparison and selection. In Section 3, the injection molding process is briefly
introduced, and the method used is illustrated through an example to obtain the results
and make a comparative analysis. At last, the conclusion is drawn.

2. Methodology

2.1. Critical-to-Quality Phase Identification Based on Time-Slice Model

In the batch process, there will be different process requirements in the whole opera-
tion process, causing obvious phase characteristics. The batch process can be divided into
several phases according to process variable relevance. Due to the phase characteristic,
there is no significant change in the correlation between process variables and quality
variables at different sampling times in the same phase; that is to say, the effect of process
operation behavior on quality is similar in the same phase. However, in different phases,
the influences of process variables on quality are different, and they show different statisti-
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cal relationships. Because of the above characteristics of batch processes, a phase that has a
significant contribution to the final quality is defined as the critical-to-quality phase. There
may be several critical-to-quality phases in the batch process. If production has multiple
quality variables, the critical-to-quality phases may be different or the same for different
quality variables, depending on the characteristics of the process. Therefore, it is important
to find out the critical-to-quality phases that contribute the most to the quality change.

Batch process data are generally represented by X(I × Jx × K), where I is the number
of batches, Jx is the number of process variables, and K is the sample times. The quality
data is generally represented by Y(I × Jy), where Jy is the number of measurement values.
The measurement values of all Jx variables at the sampling interval k (k = 1, . . . ,K) are
stored in Xk(I × Jx), which is called the kth time slice of Xk. The relationship between
process variables and quality variables at time interval k can be collected from matrices Xk
and Y. By applying PLS, the kth time-slice PLS model is realized.

Xk = TkPT
k + Ek

Y = UkQT
k + Fk

(1)

The previous model can be expressed by the regression model as:

^
Yk = XkBk (2)

Where Tk and Uk are the score matrices, Pk and Qk are the loading matrices, Ek and Fk

are the residual matrices, Bk is the regression parameter matrix, k = 1,2, . . . ,K, and
^
Yk is

the predicted quality. When considering a single quality variable y(I × 1), the regression
model can be simply expressed as:

^
yk = Xkβk (3)

βk is the regression parameter and
^
yk is the predicted quality at the current time.

In the regression model, the number of latent variables needs to be determined, and the
four-fold cross-validation method is used in this work [25,26].

In this paper, the index R2, which is used to describe the goodness of fit of the
regression model in the field of multivariable linear regression, is used to measure the
influence of each time slice on the final quality. Those time slices with high R2 are identified
to be critical to quality, and the phases with these time slices are identified as critical-to-
quality phases. The kth sampling time is defined. The prediction accuracy R2

k of the quality
prediction model for the quality index y is as follows:

R2
k =

I
∑

i=1
(ŷi,k − y)2

I
∑

i=1
(yi − y)2

(4)

where yi is the quality variable measurement value of the ith batch operation in the test
batch, ŷi,k is the model prediction value of the ith batch operation quality variable of the
predicted kth time slice, and y is the average value of the quality variable measurement
value of the test batch. The value range of R2

k is 0–1. When R2
k approaches 1, it indicates

that the accuracy of the quality prediction model is high, which indicates that the bigger
impact on the quality variables is in this phase. On the contrary, the smaller the R2

k is, the
smaller the impact on quality variables is. Therefore, by observing the R2

k size of different
phases, the critical-to-quality phases in the batch process can be determined.

2.2. Phase Mean Model

According to the characteristics of batch processes, the whole process can be divided
into several phases. There are obvious differences in the process variables in different
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phases, and the same phase can be almost considered to have similar process variables.
In this work, for the multi-phase and multi-mode quality analysis, it is supposed that
the characteristics along the time direction in each phase are constant. It is considered to
establish such a model that can represent the process variable relationships of the entire
phase. The phase mean model is achieved as follows.

First, the average variable matrix is calculated in phase c,

Xc =
Kc

∑
k=1

Xk,c/Kc (5)

where Kc is the data length of phase c. Xk,c is the data matrix of the process variables at the
k moment in phase c. Thus, Xc is the average variable matrix of phase c.

Within phase c, phase regression models can be built using the PLS method,

Xc = TcPT
c + Ec

Y = UcQT
c + Fc

(6)

The previous model can be expressed by the regression form as:

^
Yc = XcBc (7)

where the concepts of Tc, Uc, Pc, Ec, Fc, and Bc are the same as those of the time-slice model,

except that each matrix is with the meaning of the phase mean.
^
Yc is the predicted quality

of the cth phase mean model. When a single quality variable y(I × 1) is considered, the
regression model can be simply expressed as:

^
yc = Xcβc (8)

where βc is the regression parameter, and at present Tc is a matrix of the dimension I × H,
Uc is a matrix of the dimension I × 1.

For process monitoring, Hotelling-T2 and SPE statistics are calculated in systematic
and residual subspaces, respectively [8,27].

Tc
2 = xc

TRc(
Tc

TTc

I − 1
)
−1

Rc
Txc (9)

SPEc = ‖x̃c‖2 = ‖(IJx − PcRc
T)xc‖2

(10)

where x̃c is the residual vector; Rc = Wc(Pc
TWc)

−1; Wc is the weight matrix; δTc2(α) is the
control limit with α confidence of Tc

2; and SPEc(α) is the α confidence limit of SPE. The
detailed properties and calculations can be found in reference [28].

The corresponding control limits are:

δTc2(α) =
H(I2 − 1)
I(I − H)

Fcα(H, I − H) (11)

SPEc(α) = gcχ2
h,α (12)

where Fcα(H, I − H) is the F distribution with α confidence and H and I − H degrees of
freedom, and H is the number of retained latent variables; gcχ2

h,α is the χ2 distribution with
the same confidence level of α and the proportional coefficient of gc = s/2μ; h = 2μ2/s;
and μ is the mean value of SPE; s is the variance of SPE.
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2.3. Multi-Phase Residual Recursive Modeling for Single Mode

In the phase-based PLS method, a phase regression model is established between
the process variables and the final quality variables in each phase. It is assumed that in
each phase, the model can capture the relationship between process variables and final
quality variables. However, these individual models are not related to each other, and
each phase seems to contribute to the final quality individually. This is in contradiction
with the nature of the multi-phase batch process; that is, multi-phase acts on the final
quality together in sequence. In addition, it should be noted that in the multi-phase batch
process, the former phase may affect the later phase and the final process quality. In the
current phase of quality regression modeling, the influence of the previous phases should
be considered. Therefore, a recursive quality regression method for the multi-phase batch
process is proposed, which uses the quality residuals of the previous phase model to
establish the current phase regression model. All phases that are critical to quality are
correlated by phase-based recursive regression residuals so that they together contribute to
the final quality.

The establishment of a multi-phase residual recursive model is shown in Figure 1.

δ

X 1f

X f

C

CX Cf

y

y

Cy

− f

− f

f

f

Cf

C −Δf

Δf

Δf

Figure 1. Illustration of multi-phase residual recursive modeling.

For a single phase, each phase is modeled by the regression between the average
variable matrix Xc and the current quality residual fc, then the regression parameter βc and

the residual prediction quantity
^
fc are obtained,

fc = Xcβc + f∗
^
fc = Xcβc

(13)

The quality residual in the first phase f1 is the quality measurement itself. The residual
of the second phase is the deviation between the prediction quality of the first phase and
the residual of the first phase, and so on.

The current phase quality prediction results are the sum of the completed phase and
the current phase quality residual prediction,

^
yc =

c

∑
i=1

^
fi, c = 1, 2, . . . , C (14)
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The final online quality prediction results are as follows:

^
yk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Xk,c1β1 k ∈ c1
^
f1 + Xk ,c2β2 k ∈ c2
^
f1 +

^
f2 + Xk ,c3β3 k ∈ c3

^
f1 +

^
f2 +

^
f3 + Xk ,c4β4 k ∈ c4

(15)

where c1, . . . , c4 are four phases, respectively, and Xk,c1 , . . . , Xk,c4 are the phase mean
variable matrices.

The Hotelling-T2 and SPE statistics for the current time k are:

Tk
2 = xk

TRk(
Tk

TTk
I − 1

)
−1

Rk
Txk (16)

SPEk = ‖x̃k‖2 = ‖(IJx − PkRk
T)xk‖2

(17)

where x̃k is the residual vector at the current time.
The corresponding control limits are:

δTk
2(α) =

H(I2 − 1)
I(I − H)

Fkα(H, I − H) (18)

SPEk(α) = gkχ2
h,α (19)

where Fkα(H, I − H) is the F distribution with α confidence and H and I − H degrees of
freedom, and H is the number of retained latent variables; gkχ2

h,α is the χ2 distribution with
the same confidence level of α and the proportional coefficient of gk = s/2μ; h = 2μ2/s;
and μ is the mean value of SPE; s is the variance of SPE.

2.4. Between-Mode Modeling for Multiple Modes

The multi-phase problem has been addressed in the previous part; thus, in this part,
the multi-mode problem is the key interesting issue. While it does not mean the multi-phase
problem is not considered any longer and without a special statement, the methodology
below is proposed based on the above multi-phase analysis.

To solve the multi-mode problem, the main idea is to extract the relationship between
the historical modes and the new mode. This proposed model contains more modal
information and can better predict and monitor multiple modes. The framework of this
section is shown in Figure 2. The model is established not only based on the new mode but
also on the historical modes in the modal library. Firstly, the process variables and quality
variables in historical modes are regressed and analyzed using the single-mode model.
Secondly, the new mode process variables are applied to those single-mode models of
historical modes, and the assumed predicted qualities of the new mode are obtained. Then,
the regression analysis is carried out on the assumed predicted qualities and the final actual
quality, obtaining the between-mode model. Finally, by applying the between-mode model,
the final prediction quality is obtained. The details of between-mode quality regression
modeling are introduced as follows.
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Figure 2. Illustration of between-mode quality regression modeling.

Within phase c, for the new mode with the normalized time-slice process variables,
Xt,k(It × Jx), and the quality variable yt, process variables are first applied to the regression
models obtained from the historical modes to obtain the assumed quality predictions,

^
yt,m,k=Xt,kβm,c (20)

where m is the number of the historical modes, m = 1,2, . . . ,M, and t represents the new

mode.
^
yt,m,k are the assumed prediction quality. βm,c are the regression parameters of

mode m of phase c for the historical modes. By obtaining the assumed quality predictions,
the quality information of historical modes is shared by the new mode. Further, the quality
information of historical modes will be judged and extracted by the next regression.

Then, the assumed quality predictions will be regressed with the quality data of
the new mode. All these assumed predictions of the historical modes can comprise a

new matrix Zt,k(It × M), Zt,k =

[
^
yt,1,k, . . . ,

^
yt,m,k, . . . ,

^
yt,M,k

]
. Then, the kth time-slice PLS

regression model is built between Zt,k and yt as follows [29]:

Zt,k = Tt,kPT
t,k + Et,k

yt = Ut,kQT
t,k + Ft,k

(21)

where Tt,k and Ut,k are the score matrices of the new mode, Pt,k and Qt,k are the loading
matrices of the new mode, and Et,k and Ft,k are the residual matrices of the new mode.
Novel predictions are obtained,

^
y
∗
t,k=Zt,kαt,k (22)

where
^
y
∗
t,k shows this new regression relationship of the between-mode relationship analy-

sis, k = 1,2, . . . ,Kc, and αt,k is the regression parameter of the kth time-slice model.
The regression parameters of phase c can be obtained from the regression parameters

of the time-slice model,

αt,c =
1

Kc

Kc

∑
k=1

αt,k (23)

where Kc is the number of the time intervals within phase c. Then the predictions,
^
y
∗
t,c,k,

based on the regression parameter of the whole phase, αt,c, are obtained,

^
y
∗
t,c,k=Zt,kαt,c (24)
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Then for phase c, corresponding coefficients can be obtained:

Zt,c =
1

Kc

Kc

∑
k=1

Zt,k (25)

Tt,c =
1

Kc

Kc

∑
k=1

Tt,k (26)

Pt,c =
1

Kc

Kc

∑
k=1

Pt,k (27)

Wt,c =
1

Kc

Kc

∑
k=1

Wt,k (28)

Rt,c = Wt,c(Pt,cWt,c)
−1 (29)

where Kc is the number of time intervals in phase c, k = 1,2, . . . ,Kc.
In online monitoring, the score matrix Tt,c, the load matrix Pt,c, and the weight matrix

Wt,c are obtained according to the offline model. The online T2 statistics and online SPE
statistics are calculated:

Online T2 statistics:

Tk
2 = zk

TRt,c(
Tt,c

TTt,c

I − 1
)
−1

Rt,c
Tzk (30)

Online SPE statistics:

SPEk = ‖z̃k‖2 = ‖(IM − Pt,cRt,c
T)zk‖2

(31)

where Tk
2 and SPEk are the T2 and SPE statistics calculated at the kth time interval,

respectively, and z̃k is the residual vector of the kth time interval.
The corresponding control limits are:

δTk
2(α) =

H(I2 − 1)
I(I − H)

Fkα(H, I − H) (32)

SPEk(α) = gkχ2
h,α (33)

where Fkα(H, I − H) is the F distribution with α confidence and H and I − H degrees of
freedom, and H is the number of retained latent variables; gkχ2

h,α is the χ2 distribution with
the same confidence level of α and the proportional coefficient of gk = s/2μ; h = 2μ2/s;μ
is the mean value of SPE; and s is the variance of SPE.

2.5. Model Comparison and Selection

In this section, two models are compared, which are the single-mode model and the
between-mode model. To be clear, the single-mode model is introduced in Section 2.3. This
model only considers one mode, and the quality is forecasted and monitored in its own
mode on the basis of the critical-to-quality phase residual recursive analysis. The other
model is developed in Section 2.4, and the between-mode model, which is established
based on the historical modes and the new mode to obtain the assumed quality predictions
and involve the quality information of the historical modes in the regression model for the
new mode. It should be noticed that in both models, the multi-phase issue is addressed
in the same way, by the residual recursive modeling, for the fair comparison as well as
strategy consistency.

117



Processes 2021, 9, 1321

First, for the new batches Xnew(Inew × Jx), the single-mode quality predictions
^
ynew,t,m,k

are gained at kth time. The multi-mode quality predictions
^
y
∗
new,t,c,k are gained at kth time.

^
ynew,t,c,k=Xnewβt,c

^
ynew,t,m,k=Xnewβm,c

(34)

Znew,t,k = [
^
ynew,t,1,k, . . . ,

^
ynew,t,m,k, . . . ,

^
ynew,t,M,k]

^
y
∗
new,t,c,k = Znew,t,kαt,c

(35)

Then, the root-mean-square error (RMSE) values are obtained,

RMSE =

√√√√ 1
Inew

Inew

∑
i=1

(ynew,t,i −
^
ynew,t,i,k)

2
(36)

RMSE =

√√√√ 1
Inew

Inew

∑
i=1

(ynew,t,i −
^
y
∗
new,t,i,k)

2
(37)

The RMSE values can well reflect the precision of prediction. The smaller the RMSE
values, the higher the prediction accuracy.

3. Illustration and Discussions

3.1. Process Description

Injection molding technology is one of the important means of plastic processing, and
it is also a typical batch process. In order to accurately predict the quality of products, it
is necessary to know enough about the injection molding process. A complete injection
molding process is mainly composed of mold closing, injection, packing-holding, plasti-
cizing, cooling, mold opening, part ejection, and other processes. There are four phases
that are the most important operation phases to determine the quality of parts: the first
one is the injection phase, which injects the molten plastic into the mold; secondly, in the
packing-holding phase, the packaging materials are used under a certain pressure; then,
in the plasticizing phase, the material is transported forward, plasticized and melted, and
then transferred to viscous fluid for storage; the final phase is the cooling phase, where
the plastic is cooled in the mold until the part becomes sufficiently rigid for ejection. The
process variables that have an important influence on the final quality can be read online
by high-precision sensors.

In this work, high-density polyethylene (HDPE) was used as the injection material.
The quality index analyzed in this experiment is the weight of injection molded parts.
According to the different settings of packing pressure (PP) and barrel temperature (BT),
the experimental batches can be divided into five different modes. The experimental
conditions are shown in Table 1. The process data of each mode is stored in X (23 × 11 ×
525). The quality data of each mode is stored in y (23 × 1). The data used in the modeling
process are all real data obtained from experiments.

Table 1. Different operation modes.

Modes PP/Bar BT/◦C

Mode 1 25 180
Mode 2 35 180
Mode 3 25 200
Mode 4 30 200
Mode 5 35 200
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3.2. Critical-to-Quality Phase Identification

In the injection molding process, different phases have different effects on the quality
of products. For example, in the injection phase, the main variables affecting the final
product weight are the injection speed and the barrel temperature. In general, the higher
the barrel temperature is, the lower the product weight is. The faster the injection rate
increases, the more melt injection and the greater the product weight. In addition, the
pressure variables (such as the nozzle pressure, the cylinder pressure), the screw stroke, the
injection speed, and the barrel temperature are positively correlated with the sputtering
quality of injection products. That is to say, the faster the injection speed, the higher the
pressure and the temperature are, and the more likely the sputtering phenomenon will
appear in the intermittent operation. In the packing-holding phase, the weight of the
injection molded part is mainly determined by the nozzle pressure, the cylinder pressure,
and the cavity pressure. Two temperature variables, the cavity temperature and the barrel
temperature, also affect the weight of the product. The lower the temperature, the greater
the weight.

Taking mode 3 as an example, the critical-to-quality phase analysis is carried out.
There are 23 batches in mode 3. A total of 18 train batches are selected as the prediction
batches to analyze the phase characteristics. The R2

k and the phase mean of R2
k are shown

in Figure 3. It can be seen from the figure that the R2
k values of the injection phase and the

packing-holding phase are larger, which means these two phases have greater impacts on
the final prediction quality than other phases.

Figure 3. R2
k contribution rate of the different batches in mode 3.

The phase mean value of R2
k of the four phases under three different modes is shown

in Table 2.

Table 2. Phase mean value R2
k of the different modes and different phases.

Phases Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mean

Injection phase 0.4567 0.7867 0.7161 0.8219 0.7643 0.7091
Packing-holding phase 0.4013 0.7500 0.6836 0.8234 0.7801 0.6877

Plasticizing phase 0.3893 0.7175 0.6214 0.8058 0.7839 0.6636
Cooling phase 0.3407 0.6415 0.5510 0.8002 0.8075 0.6282

According to the data in the above table, for mode 1, mode 2, mode 3, and mode 4, the
phase mean values of R2

k of the injection phase and the packing-holding phase are greater
than the phase mean values of R2

k of the plasticizing phase and the cooling phase. For
mode 5, the phase mean value of R2

k of the cooling phase is the largest. Based on the mean
R2

k , the injection phase and the packing-holding phase are selected as the critical-to-quality
phases for subsequent monitoring and analysis.
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3.3. Multi-Phase Monitoring for Single Mode

In this part, the single-mode model is adopted for quality prediction and process
monitoring. The first 18 batches of mode 3 are selected for modeling, and the last 5 batches
of mode 3 are tested. According to the four-fold cross-validation method, in the modeling
of the injection molding phase, the number of reserved latent variables of the traditional
method and the proposed method is four. In the packing-holding phase, the number of
latent variables of the traditional method is three, while the number of latent variables
of the proposed method is two. The confidence level of α is set to 0.99. The simulation
result of the predicted quality of one test batch is shown in Figure 4 and compared with
the traditional partial multi-phase least squares method [30], in which for each phase, one
single model is built for quality prediction. The mean RMSE predicted for the five test
batches under different prediction methods are shown in Table 3. It can be seen from
Table 3 that the mean RMSE predicted by the traditional method is 0.0702, while the mean
RMSE predicted by the proposed method is 0.0632, which indicates that the proposed
recursive method of phase residuals shows a more accurate prediction effect. The results
of monitoring of the first test batch are shown in Figures 5 and 6. Because the traditional
method also divides the batch process into four phases, in each phase, the quality is directly
predicted and monitored, and in the first phase the proposed method regards the actual
quality as the residual of the first phase, so the prediction and monitoring effects of the
first phase, namely the injection phase, of the traditional method and proposed method
is the same. The monitoring results of the injection phase are shown in Figure 5. It can
be seen that T2 and SPE are not beyond the control limits. In Figure 6, the monitoring
results of the packing-holding phase are shown. It can be seen that T2 and SPE of both the
traditional method and the proposed method are not beyond their respective control limits.
This shows that the proposed modeling method based on a single mode can monitor the
corresponding test batches.

Figure 4. Single-mode online prediction of mode 3.

Table 3. RMSE of the different prediction modes in single-mode prediction.

Prediction Modes Mode 3 Mode 1

Traditional method 0.0702 0.1398
Proposed method 0.0632 0.1154
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(a) T2 statistics monitoring  (b) SPE statistics monitoring 

Figure 5. Single-mode online monitoring of injection phase of mode 3.

 
(a) T2 statistics monitoring  (b) SPE statistics monitoring 

Figure 6. Single-mode online monitoring of packing-holding phase of mode 3.

In addition, batches from mode 1 are tested using the monitoring model built based
on mode 3; that is, the first 18 batches of mode 3 are selected for modeling, and 5 batches of
mode 1 are tested. The results of each phase of one batch of five test batches in mode 1 are
displayed. The quality prediction result is shown in Figure 7 and compared with that of the
traditional partial least squares method. The mean RMSE predicted for the five test batches
under different prediction methods are shown in Table 3. The mean RMSE predicted by
the traditional method is 0.1398, while the mean RMSE predicted by the proposed method
is 0.1154, which indicates that the proposed recursive method of phase residuals shows a
more accurate prediction effect. The monitoring results of the injection phase of mode 1 are
shown in Figure 8. It can be seen that T2 statistics do not exceed the control limit, but SPE
statistics have exceeded the limit. The monitoring results of mode 1 in the packing-holding
phase are shown in Figure 9. It can be seen that SPE statistics of the proposed method have
exceeded the control limits in the beginning part. However, SPE statistics of the traditional
method do not exceed the control limit. So the proposed method can distinguish this batch
of mode 1 and is better than the traditional method. Thus, when a single mode is used for
modeling, the other modes can be distinguished by the proposed method.

In order to compare the prediction effect of different modes and different methods
under the single-mode modeling, RMSE of prediction results of five test batches of mode 3
and mode 1 are calculated respectively on the basis of the model of mode 3, as shown in
Table 3.
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Figure 7. Single-mode online prediction of mode 1.

 
(a) T2 statistics monitoring  (b) SPE statistics monitoring 

Figure 8. Single-mode online monitoring of injection phase of mode 1.

 
(a) T2 statistics monitoring  (b) SPE statistics monitoring 

Figure 9. Single-mode online monitoring of packing-holding phase of mode 1.

It can be seen from the above table that in the single-mode modeling and prediction,
the prediction effect of the test mode, which is the same as the modeling mode, is better
than that of other test modes. In addition, according to the comparison of different methods,
it can be concluded that the prediction effect of the proposed method is more accurate than
that of the traditional method.

In the injection molding process, there are two main faults. One is material disturbance.
A small amount of polypropylene (PP) is mixed into the original material HDPE. Because
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the viscosity of PP is higher than that of HDPE, higher heat will be generated in the
operation process, resulting in the melt temperature in the nozzle being higher than the
normal state. The second is the sensor fault. Due to the sensor fault, no data can be detected,
resulting in a fault in the process.

First, a faulty batch caused by material disturbance is selected for monitoring, where
the temperature variable is increased by 5 ◦C at the 60th sampling point. Therefore,
according to the actual process situation, a batch is selected in the test batch of mode
3, and the temperature variable is increased by 5 ◦C at the 60th sampling point. The
monitoring effects of the traditional method and the proposed method are shown in
Figure 10. Compared with the traditional method, the monitoring effect of the proposed
method is better since the statistics will rise rapidly when the fault occurs, especially for
the T2 statistics.

 
(a) T2 statistics monitoring  (b) SPE statistics monitoring 

Figure 10. Single-mode online monitoring of material disturbance fault.

For the sensor fault, a test batch with the pressure variable removed after the 150th
sampling point is monitored. The T2 and SPE monitoring effects of the traditional method
and the proposed method of the single-mode model are shown in Figure 11. Compared
with the traditional method, the statistics of the proposed method rise more rapidly, and
the amplitudes are relatively large.

 
(a) T2 statistics monitoring  (b) SPE statistics monitoring 

Figure 11. Single-mode online monitoring of sensor fault.

3.4. Multi-Mode Monitoring

For the between-mode modeling analysis, 18 batches in mode 1, mode 2, mode 4, and
mode 5 are selected respectively as historical modes. Mode 3 with 18 batches is used as the
new mode for modeling. The test data are constructed by the five test batches of mode 3.
According to the four-fold cross-validation method, in each phase of modeling, the number
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of reserved latent variables of the traditional method and the proposed method is two. The
confidence level of α is set to 0.99.

In order to illustrate the advantages of the method proposed in this paper, it is
compared with the traditional multi-mode and multi-phase methods, in which individual
models are built for a single phase within a single mode. One batch of five test batches
in mode 3 is selected to show the results. The simulation results of the prediction are
shown in Figure 12. The mean RMSE predicted for the five test batches under different
prediction methods are shown in Table 4. The mean RMSE predicted of mode 3 by the
traditional method is 0.0496, while the mean RMSE predicted by the proposed method is
0.0458, which indicates that the proposed method shows a more accurate prediction effect.
The monitoring results of the injection phase and the packing-holding phase of the first
test batch of mode 3 are shown in Figures 13 and 14, respectively. In Figure 13, it can be
seen that T2 and SPE do not exceed the control limits in the injection phase. In Figure 14,
in the packing-holding phase, T2 and SPE do not exceed their respective control limits.

Figure 12. Multi-mode online prediction of mode 3.

Table 4. RMSE of different prediction method.

Prediction Model Prediction Method Mode 3 Mode 1

Single-mode model Traditional method 0.0702 0.1398
Proposed method 0.0632 0.1154

Between-mode model
Traditional method 0.0496 0.1010
Proposed method 0.0458 0.0876

 
(a) T2 statistics monitoring  (b) SPE statistics monitoring 

Figure 13. Multi-mode online monitoring of injection phase of mode 3.
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(a) T2 statistics monitoring  (b)SPE statistics monitoring 

Figure 14. Multi-mode online monitoring of packing-holding phase of mode 3.

In addition, in order to illustrate the monitoring of new test modes by the multi-
phase multi-mode model, 18 batches of mode 2, mode 3, mode 4, and mode 5 are selected
respectively as the historical modes for each phase, and the historical regression parameters
are obtained. Mode 3 with 18 batches is used as the new mode for modeling to predict
and monitor the new test batches of mode 1. The results of each phase of one batch of
five test batches in mode 1 are displayed. The simulation results of quality prediction
are shown in Figure 15. The mean RMSE predicted of mode 1 for the five test batches
under different prediction methods are shown in Table 4. The mean RMSE predicted by
the traditional method is 0.1010, while the mean RMSE predicted by the proposed method
is 0.0876, which indicates that the proposed method shows a more accurate prediction
effect. Figures 16 and 17, respectively, show the monitoring results of the injection phase
and the packing-holding phase of one test batch of mode 1. Because the historical mode
and training data do not contain the information of mode 1, when monitoring, T2 and SPE
in the injection phase exceed the control limit, which will lead to an alarm.

Figure 15. Multi-mode online prediction of mode 1.

125



Processes 2021, 9, 1321

 
(a) T2 statistics monitoring  (b) SPE statistics monitoring 

Figure 16. Multi-mode online monitoring of injection phase of mode 1.

 
(a)T2 statistics monitoring  (b) SPE statistics monitoring 

Figure 17. Multi-mode online monitoring of packing-holding phase of mode 1.

In order to compare the prediction results of the single-mode model and the between-
mode model of different prediction methods, RMSE values of five test batches in mode 3
and mode 1 are used for judgment, as shown in Table 4.

According to the simulation results, it can be concluded that the between-mode model
extracts the related information in the historical modes, so it contains more necessary
information. It can be seen from Table 4 that the prediction results of the between-mode
model are better than those of the single-mode model. Comparing the RMSE of the
traditional method and the proposed method, it can be seen that the proposed method
is more accurate for quality prediction. From the monitoring figures, it can be seen that
if part of the mode information has been included in the modeling process, the statistics
do not exceed the control limit, leading to a suitable monitoring effect. In contrast, if
the modeling process does not contain the mode information, the statistics will exceed
the control limits. To sum up, compared with single-mode modeling, the between-mode
modeling contains more historical modal information, leading to better prediction, and
can achieve the purpose of information selecting for monitoring. Therefore, for the current
modes modeling, the between-mode modeling method can be selected.

For faulty batch monitoring using the between-mode modeling, the faulty batch data
is consistent with the single-mode modeling faulty batch data. First, the faulty batch caused
by material disturbance is monitored. The monitoring results of the traditional method
and the proposed method are shown in Figure 18. Both the proposed method and the
traditional method can detect the fault.
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(a) T2 statistics monitoring  (b) SPE statistics monitoring 

Figure 18. Multi-mode online monitoring of material disturbance fault.

Secondly, the monitoring effects of the traditional method and the proposed method
for the sensor fault are shown in Figure 19. Compared with the traditional method, the
statistics of the proposed method rise more sharply, and the amplitudes are relatively large.

 
(a) T2 statistics monitoring  (b) SPE statistics monitoring 

Figure 19. Multi-mode online monitoring of sensor fault.

4. Conclusions

In this work, based on the analysis of multi-phase multi-mode batch processes, a
combination of the multi-phase quality residual recursion model for multiple phases
and the between-mode model for multiple modes is proposed, and according process-
monitoring strategies based on quality analysis are developed. Firstly, the critical-to-quality
phases are identified and selected based on the influence of different phases on the final
quality of the batch process. Then, the phase mean model is established, and based on the
multi-phase quality residual recursive model, the quality predictions of critical-to-quality
phases are obtained, and those phases are monitored. On the other hand, the between-
mode model is used to analyzes the regression relationship between the process variables
and the quality of the new mode through the historical modes, and online monitoring is
carried out on this basis. Through the simulation of the experimental data of an injection
molding process, it is proved that due to better quality predictions, the proposed strategy
can provide better process-monitoring results for multi-phase multi-mode batch processes.

However, the experimental data used in this paper are all processed so that the
length of the same phase of different batches is equal, which is often difficult to achieve
in the actual industry due to various reasons, such as the influence of climate, the quality
difference of raw materials, the data acquisition system based on a non-time coordinate, etc.
In order to solve this problem, the effect of this method on the data of the batch process with
unequal data lengths should be considered. For this, further research will be conducted in
the future.
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Abstract: Industry 4.0 (I4.0) represents the Fourth Industrial Revolution in manufacturing, expressing
the digital transformation of industrial companies employing emerging technologies. Factories of the
future will enjoy hybrid solutions, while quality is the heart of all manufacturing systems regardless
of the type of production and products. Quality 4.0 is a branch of I4.0 with the aim of boosting quality
by employing smart solutions and intelligent algorithms. There are many conceptual frameworks
and models, while the main challenge is to have the experience of Quality 4.0 in action at the
workshop level. In this paper, a hybrid model based on a neural network (NN) and expert system
(ES) is proposed for dealing with control chart patterns (CCPs). The idea is to have, instead of a
passive descriptive model, a smart predictive model to recommend corrective actions. A construction
plaster-producing company was used to present and evaluate the advantages of this novel approach,
while the result shows the competency and eligibility of Quality 4.0 in action.

Keywords: statistical process control; control chart pattern; disruptions; disruption management;
fault diagnosis; Industry 4.0; construction industry; plaster production; neural networks; decision
support systems; expert systems; failure mode and effects analysis (FMEA); discriminant analysis

1. Introduction, Background, and Problem Statement

1.1. Introduction

In today’s globally complex and competitive business environments, quality is one of the crucial
issues for ensuring the success of enterprises [1]. In order to produce with the desired quality and
meet the customer’s expectations, production processes need to be monitored to avoid any defect
and deviation [2]. Traditionally, statistical process control (SPC) was used as a powerful approach for
monitoring and identifying variations manually [1,2]. Developments in manufacturing and information
technology enabled SPC to move from merely statistical control to real-time diagnosis purposes with
minimum human intervention [3]. Control charts, invented by Shewhart in the 1920s, are essential
tools in SPC to assist in controlling the behavior of the process. These tools are used to decide if the
process is behaving as intended or in the presence of some unnatural causes of variations. X-bar and R
charts are basic Shewhart control charts for drawing a series of process measured data with control
limits [3,4]. Process variation emerges from either common causes (natural variations) or specific causes
(assignable reasons). Specific causes are those that cause changes and short-term fluctuations, and,
if they occur, they destroy the stability of the process, which ought to be known and eliminated as
quickly as time permits. Common causes are because of the inherent characteristics of the process,
and, if they exist, deviations (background noise) are in control [5,6]. However, the most crucial ability
of control charts is detecting various types of patterns consisting of a series of consecutive points
that are observed on these charts, which reflects fluctuations in the process [7]. The control chart
patterns (CCPs) are generally divided into natural and unnatural patterns. Natural patterns usually
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exist in the manufacturing process and indicate that the process is statistically stable. As long as the
measured data are inside the control limits or only natural random patterns exist, the process is under
control. When some measurements fall out of the control limits or the measured data within the
control limits signify a non-random pattern, the process is deemed out of control. Unnatural patterns
displayed in control charts can be of various types, and each class can be related to specific causes
unfavorably influencing the process stability. For example, “Shift” patterns may be related to variations
in raw material, supplier, or machine, whereas “Trend” patterns may occur due to gauge wear or
environmental changes [1,8]. Different common patterns that regularly emerge in control charts can
be found in Figure 1. Over time, various further decision rules such as “zone tests” and “run rules”,
including “Western Electric,” “Nelson”, etc., were developed to assist quality control engineers and
operators in detecting unnatural CCPs and circumstances leading to a change in the process [9]. Table 1
shows the most recommended rules for the Shewhart control charts to identify abnormal patterns and
interpret their characteristic signs in the control chart. In general, the use of run rules can result in
quickly signaling a shift in the process. However, the application of all these rules, when no particular
cause exists, increases the risk of false alarms (Type I errors) to an unacceptable extent. In addition,
run rules do not provide valuable pattern-related information because of a lack of sufficient pattern
discrimination capability. Furthermore, control charts do not consider prior knowledge or adequate
historical data. Therefore, these decision rules are not particularly useful for CCP recognition [10,11].
Since the analysis of control charts is complicated, because it relies on considerable statistical knowledge,
skill, and experience of the practitioners (quality control personnel), developing an efficient automated
pattern recognition system that can ensure steady and unbiased analysis of CCPs can compensate for
this gap [12].

Figure 1. Typical patterns in control charts.
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Table 1. Mostly recommended rules for detecting typical unnatural patterns.

No. Unnatural Pattern Characteristic Signs in Control Chart

1 Over-control Single point beyond control limits (above +3σ or below −3σ).
2 Shift Sudden change (series of 9 points) above or below the central line.
3 Trend Continuous movement (rise or fall) of 6 consecutive points.
4 Systematic A point-to-point fluctuation (14 consecutive points alternating up and down).
5 Cycle Periodic peaks and troughs (4 out of 5 points above +2σ or below −2σ).

6 Mixtures A run of consecutive points on both sides of the central line, all far from the
central line (8 points in a row more than +1σ from centerline).

1.2. Background and Problem Statement

With the development in manufacturing and computing technology, several approaches were
proposed using artificial intelligence technologies such as artificial neural networks (ANNs), expert
systems (ESs), and fuzzy sets to automatically and intelligently CCP recognition [13]. In the domain
of SPC, fast and accurate control, as well as observing the variation of quality characteristics and,
consequently, recognition of unnatural patterns, is the primary purpose of each fault detection and
diagnosis system. There are numerous studies in this field on CCP recognition that used different
machine learning algorithms and other intelligent approaches, namely, K-nearest neighbors (KNN),
decision trees (DT), NN-based models, ES-based models, support vector machine (SVM), wavelet-based
models, and fuzzy logic [14–16]. These approaches aim at extracting meaningful information from a
large amount of data to detect instabilities in the process with minimal time and cost and maximum
accuracy [17]. To sum up, the most significant approaches are explained briefly in Table 2 by highlighting
their advantages and disadvantages.

Table 2. Related works.

Model Advantage Disadvantage Related Works

KNN

- Very fast training (instance-based
learning).

- Very easy to implement.

- Weakness in working with
large dataset.

- Memory limitation.
- Sensitive to noisy data.

[15,18]

DT
- Simple to understand, interpret,

and generate rules.
- May suffer from overfitting.
- Unstable classifier. [15,16]

NN

- Does not need precise knowledge
of interactions between
the parameters.

- Learns to recognize patterns during
the training phase.

- Able to handle noisy data.
- High performance.

- NN’s topology cannot be
systematically determined.

- Training of the network is
prolonged, and processing for
large NNs is difficult.

- Needs a large amount of useful
training samples.

- Problem of overfitting.

[3,4,7,10–15,19–21]

ES

- Availability, consistency,
extensibility, and testability of
the information.

- Rules can be updated easily.

- Problems of incorrect recognition
for similar statistical properties
(features overlapping).

[9,12,14,19,22,23]

SVM

- Easily handles nonlinear,
un/semi-structured, and
high-dimensional data.

- Overfitting problem is not as much
as other methods.

- With an appropriate kernel
function, complex problems can
be solved.

- Computationally expensive.
- Difficult understanding and

interpreting the final model.
- Long training time for

large datasets.

[2,14,24–26]

Fuzzy - High precision.
- Low speed and the long run time

of the system. [5,14,21,26]
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The literature review shows that ANNs and ESs are the most widely used approaches, being easier
to understand and implement and having higher performance in comparison to other CCP recognition
approaches mentioned above. NNs are suitable for SPC as they are good at classification and pattern
recognition, and they are able to handle the noisy measurements with no requirement for the provision of
explicit rules regarding the monitored data [20]. Notably, ESs are useful for quality control applications
due to their potential for identifying causes of deviations and recommending preventive and corrective
actions [23]. There are two approaches to applying ANNs to CCP recognition: (1) using neural networks
(NNs) to detect variation in X-bar and/or R charts, and (2) using NNs to identify unnatural patterns [19].
In this regard, NNs can be classified into two main categories: supervised NNs, involving multilayer
perceptron (MLP) and radial basis function (RBF), and unsupervised NNs, including learning vector
quantization (LVQ) and adaptive resonance theory (ART) [10]. Among the ANNs, the multilayer
perceptron (MLP) was successfully exploited by many researchers in order to address the unnatural
CCP recognition problem. Learning vector quantization (LVQ) is a well-applied alternative method to
solve the problem of slowness in training the MLP network [4,12,20,27].

The fault diagnosis is an essential issue in SPC, to reduce downtime and disruption cascades that
can ensue [24]. In recent years, various diagnostic systems were developed to automate fault diagnosis,
but none of them fit our problem in the plaster production process discussed here. Most fault diagnosis
approaches in the literature only considered a particular control chart, often X-bar or R (range) chart,
to examine the process changes (mean or variance). However, in practice, in many processes, it is
required to combine the two charts as multiple assignable causes may occur [28]. On the other hand,
identification of unnatural patterns combined with specific knowledge of the process results in a more
targeted diagnosis. Unfortunately, none of the CCP recognition models in the literature provide this
combination automatically, which can be valuable for diagnostic purposes. Moreover, the performance
of the model was not evaluated when developing these approaches in a real case study.

Yet, the common problem reported in these studies is the inability to recognize various single and
concurrent CCPs, as well as a high rate of false recognition [4,29]. On the other hand, most applications
of NNs and ESs to CCP recognition do not obtain more detailed information about the patterns and
their change point (when these patterns are observed on control charts). This information is essential
for practical assignable cause analysis and, in turn, accelerates the accomplishment of proper remedial
activities [21].

Therefore, in this paper, designing a hybrid fault diagnosis system is proposed using NNs and a
rule-based ES to help the quality control personnel in recognizing the roots of deviations, and in taking
needed predictive or corrective actions. In the design process, for the structure of the NN, a modular
approach comprising an LVQ network and seven multilayer perceptrons (MLPs) is used. Therefore,
our work provides a neural expert system in intelligent real-time monitoring and predictive, corrective,
and remedial diagnosis of process control in plaster production. To develop the proposed neural expert
system (Figure 2), we address the following notable features of the model:

• Ability to detect various natural and unnatural (single and concurrent) CCPs.
• Monitoring and analyzing X-bar and R charts abnormalities simultaneously.
• Capability to estimate nonrandom patterns’ corresponding parameters, different directions, and change

points (starting point) in control charts.
• Identifying the responsible variables on the occurrence of unnatural patterns.
• Recognizing causes of process instability.
• Recommending predictive and/or corrective actions in a time of crisis.

The idea is to have, instead of a passive descriptive model, a smart predictive model to assist
quality control engineers for the fault diagnosis of the process, particularly from a practical perspective
regarding a Quality 4.0 era.
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Figure 2. Combination of NN and ES: A neural expert system.

1.3. Contribution to Industry 4.0

Quality “4.0” is a branch of the Industry 4.0 (I4.0) movement associated with the digital transformation
process connected with emerging technologies. Quality 4.0 could be defined as the application of
Industry 4.0 technologies to quality management methods and tools [30]. According to Reference [31],
“Quality 4.0 does not replace traditional quality methods, but rather builds and improves upon them”.
This concept covers all issues of advanced quality management in the digital era [32]. For quality
(technology, processes, and people), Industry 4.0 enables the transformation of existing capabilities
(culture, management, collaboration, and competencies) to drive value [31].

The impact of I4.0 on manufacturing is beyond just the physical production of goods, involving
targeting all processes and functions to achieve flexibility, smartness, cost-effectiveness, and resilience.
Artificial intelligence and machine learning are among the aforementioned technologies that can be
utilized to enhance the quality as the heart of smart manufacturing [12,33,34].

On the other hand, construction projects face different sources of disruptions, as they are time-limited,
expert-dependent, and highly influenced by process fluctuations caused by weather conditions,
material quality, etc., which leads to a high level of complexity and uncertainty in the construction
ecosystem [35]. Industry 4.0 challenged the construction industry ecosystem by demonstrating the
construction digitalization potential for real-time data collecting, processing, and sharing tools to
enhance alignment between demand and supply [35,36].

SPC is an essential tool to monitor process disruptions, safety assurance, and reliability analysis
in construction projects [37]. Industry 4.0, with its automation, connectivity, and digital access capacity,
is anticipated to be capable of increasing the efficiency and productivity of SPC. This could happen
through enabling intelligent monitoring and diagnosis, automatic tracking of equipment and material,
and real-time decision-making, especially in situations where the process is becoming more volatile
and complex (Figure 3) [12,30].

Figure 3. Quality 4.0: integration of traditional statistical process control (SPC) with Industry 4.0.

Digitalization and automation are the two pillars of smart manufacturing [38]. In this work,
our effort was to develop a model based on traditional quality systems driven by disruptive technology.
In this paper, artificial intelligence in the form of ANN and ES is employed. This proposes new values
for the value chain of the manufacturing system on the factory floor level.
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In fact, the innovation associated with digitalization, automation, communication, optimization,
and customization of Industry 4.0 concepts and trends allows for real-time analysis and interpretation
of production, industries, and service processes to improve quality by detecting failures and justifying
possible causes while staying competitive in volatile business environments [30,39]. This work provides
just a step to move forward and make the dream of “smart manufacturing” happen under the light of
Industry 4.0.

The remainder of this paper is organized as follows: Section 2 concisely outlines the methodology
of the research; Section 3 presents the proposed model; Section 4 describes the detailed structure of
the model; Section 5 presents a comparative analysis and shows some results from a real case study;
finally, Section 6 concludes the paper.

2. Materials and Methods

The methodology of this research is descriptive–experimental research, which is a systematic
mapping study based on Reference [40] and an implemented case study in a plaster production
plant. Figure 4 represents the schematic diagram depicting the proposed procedure. Using the review
of the literature and benchmarking on the extraction of intelligent models used in process control,
the structure of a hybrid fault diagnosis system using ANN and ES in the process control of plaster
production is presented in this research. Mapping is used to present structuring to synthesize the three
main research areas that include statistical process control, neural networks, and expert systems in this
research. The case study, based on experiences from model implementation and validation in a plaster
production plant, is reflected in Section 4. The plaster production process, which was selected as a
case study, is a fluctuating process that has many influencing parameters. On the other hand, because
the final production, i.e., construction plaster or so-called “plaster of Paris (PoP)”, is mixed in a silo,
the monitoring and modification processes in a short period can prevent the entire silo storage product
from crashing. On the contrary, if the process is not monitored with statistical process control over an
extended period, non-compliance of part of the product with the standard can crash the entire stored
production. For example, in the case of filling more than 10% of the silo from a mismatched product,
the whole product in the silo will crash. In order to improve the process quality, a survey was done of
experts using a questionnaire and interviews to identify critical control parameters. The “initial setting
time” of plaster was detected as the critical parameter of the production process. The initial setting
time is dependent on the “crystal water” of baked plaster and ought to last between 7 and 15 min in
the intended case study. The acceptance range in our case study was between low (LSL = 5.0) and
upper (USL = 5.08) specification limits. The process was deemed in control with the lower and upper
control limits of LCL = 5.26 and UCL = 5.56. Then, based on existing records, causes of process failures
and defects in construction plaster, which were connected with the plaster’s qualitative characteristics,
were examined using a “cause and effect” diagram” [41]. Finally, parameters that could improve
customer satisfaction after identifying and prioritizing the foreseeable failure modes were determined
and analyzed applying failure mode and effects analysis (FMEA) [42]. The statistical population of
this research comprised “PoP”, which is baked at a particular time in the “low burn” kiln and moved
from baking salon to storage silo. The sampling method was a stratified random sampling method.
Because of the characteristics of the plaster production process and consistent with the background
studies, 25 subgroups of n = 125 samples were taken from multiple samples from different shifts.
In this research, data were analyzed using three approaches of FMEA, ANN, and discriminant analysis
(DA) [1]. To perform discriminant analysis, an understandable database for “SAS” software using Excel
software was provided, and discriminant analysis was performed using programming (“Proc Discrim”)
in SAS software. For the case study of the present study, the data related to the critical parameter of the
process were firstly collected, and the causes of product failure were identified and prioritized. Then,
given that the proposed model is an intelligent hybrid model that can learn the patterns from input
data (samples) using the power of learning neural networks, data were detected. Finally, the error
of identifying training and test datasets was compared with the statistical method of discriminant
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analysis. In this research, in order to monitor and troubleshoot the process, a model for combining SPC
and artificial intelligence was designed using “MATLAB” software. The program codified in MATLAB
is able to produce, present, and quickly encode neural network input data, as well as execute expert
system rules. The program itself can also perform traditional SPC operations.

 

Figure 4. The flow diagram of the study procedure.

3. The Proposed Hybrid Fault Diagnosis Model

Based on what was said earlier, this research is based on the integration of NNs and ESs to
provide analysis and interpretation for CCPs. The main focus of this study is to introduce a neural
expert system-based pattern identifier, which will allow identifying abnormal patterns in order to
correct their assignable causes. The operator will be warned if an abnormal pattern occurs in the
process. By replacing human skills with a detection algorithm, human intervention is greatly reduced,
and an intelligent manufacturing environment could be achieved. In this study, NNs are used to
recognize control chart patterns, and an expert system is also used to interpret the identified pattern
and determine the causes of the abnormal pattern. The general model of the research is depicted in
Figure 5. As Figure 6 indicates, the proposed system consists of three subsystems:

• The SPC subsystem controls the traditional statistical process and, using statistical formulas,
draws mean and variance for the sampled data of the process. It also sets control limits and
determines the capability of the process and, in cases where any point on the charts is out of
control, alerts “out of control” mode.

• The pattern recognition subsystem is accountable for detecting abnormal CCPs. Here, unnatural
patterns in the X-bar chart are detected using neural networks, and abnormal patterns in the R
chart are identified using “Western Electric” with the rule-based expert system.

• The reasoning subsystem is responsible for interpreting the purpose of process variations and
proposing corrective or preventive actions. In this subsystem, using process-specific knowledge
provided as if–then rules in the knowledge base, the cause of the abnormal patterns in the X-bar
chart is interpreted. On the other hand, the cause of the unnatural patterns in the R chart is
interpreted using general process knowledge, presented as if–then rules in the knowledge base
(Figure 6).

Overall, the model design structure can be divided into three stages of neural network creation,
expert system development, and integration of neural network and expert system, as explained below.
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Figure 5. The structure of the neural expert system.

 
(a) 

 

(b) 

 

(c) 

Figure 6. (a) SPC subsystem; (b) pattern recognition subsystem; (c) reasoning subsystem.

4. Experimental Results

This section describes the detailed characteristics of the structure of the proposed model and
provides the results of their performances.

4.1. Developing the Neural Network Model

In the subsections below, the procedure for simulating normal and abnormal patterns in this
research is firstly described. Then, the steps of creating a neural network, including neural network
model structure design, neural network training, and neural network model validation, are presented.

4.1.1. Simulation of Unnatural CCPs and Their Corresponding Parameters

In the present research, because of the lack of a large number of useful samples to investigate
abnormal CCPs, simulation of the models for training and testing networks was required; however,
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it was attempted to simulate the data in line with the underlying process data. In the statistical issues,
there is a probability distribution function for every random variable based on which the relevant
parameters are also determined. Therefore, any natural deviations could be determined according to the
probability distribution function of the corresponding random variable [12]. With these explanations,
the parameters and functions employed to simulate control chart patterns are presented in Table 3. In this
table, the parameters, on the one hand, represent the number of non-random disturbances. Furthermore,
they reflect the process improvement during the implementation of recovery programs. In designing
the proposed model, it is intended to identify the X-bar chart patterns using NN. The simulator function
for the natural variation of the X-bar chart includes normal distribution: x(t) = n(t), and the parameters
of this distribution in our case are μ = 5.4 and σ = 0.1. Given these values, the corresponding parameters
of the other abnormal patterns in this chart were calculated, as shown in Table 3.

Table 3. Simulator functions of CCPs and the range of corresponding parameters’ changes.

Pattern Type Simulator Functions Parameter Change Range

Natural x(t) = n(t) -

Shift (Sh.) x(t) = n(t) + u × b 1 b = [1σ~3σ] ⇒ [0.1,0.3]
b = [−3σ~−1σ] ⇒ [−0.3, −0.1]

Trend (Tr.) x(t) = n(t) + s × t 2 s = [0.1σ~0.3σ] ⇒ [0.01, 0.03]
s = [−0.3σ~−0.1σ] ⇒ [−0.03, −0.01]

Cycles (Cyc.) x(t) = n(t) + l 3 × sin((2πt)/T 4)
l = [1σ~3σ] ⇒ [0.1,0.3]
T = 8,12, . . .

Systematic (Sys.) x(t) = n(t) + g 5 × cos (πt) g = [1σ~3σ] ⇒ [0.1,0.3]

Shift + Trend (Sh. + Tr.) x(t) = n(t) + u × b + s × t

b = [1σ~3σ] ⇒ [0.1,0.3]
s = [0.1σ~0.3σ] ⇒ [0.01, 0.03]
b = [−3σ~−1σ] ⇒ [−0.3, −0.1]
s = [−0.3σ~−0.1σ] ⇒ [−0.03, −0.01]

Shift + Cycle (Sh. + Cyc.) x(t) = n(t) + u × b + l × sin((2πt)/T)
b = [1σ~3σ] ⇒ [0.1,0.3]
l = [1σ~3σ] ⇒ [0.1,0.3]
T = 8, 12 . . .

Trend + Cycle (Tr. + Cyc.) x(t) = n(t) + s × t + l × sin((2πt)/T)
s = [0.1σ~0.3σ] ⇒ [0.01, 0.03]
l = [1σ~3σ] ⇒ [0.1,0.3]
T = 8, 12 . . .

1 Shift magnitude. 2 Trend slope (s). 3 Amplitude. 4 Period (T). 5 Magnitude of variations (g).

4.1.2. Designing the Structure of the Neural Network Model

In designing the general structure of the NN model, a modular approach was used. The overall
model structure consisted of two separate sets of Module I and Module II. In the modular approach,
the inputs and outputs of each network can be better managed, and the results of each network
performance can be traced.

• Module I

Module I was developed to diagnose the behavior of the plaster production process. To this end,
the classification power of competing algorithms was used, and a learning vector quantization (LVQ)
network was designed to classify input patterns.

o Topology of LVQ Network

In the LVQ network (Figure 7), the connection type between layers is semi-connected, and the
input vector, according to the process requirements, includes 25 neurons (25 samples taken from the
process). The first layer contains 175 neurons, and the second layer includes eight neurons, while there
was no need to consider the term bias. Each of the second-layer neurons represents one of the simulated
patterns. Accordingly, neurons # 1 of the natural patterns and other neurons detect abnormal patterns
of shift, trend, cycle, systematic, shift + trend, shift + cycle, and trend + cycle, respectively. Due to
minimizing the number of outputs, there are patterns in this network, such as “upward shift” and
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“downward shift”, which represent a pattern with the same equations but values of different parameters.
The main criterion for determining the number of subgroups required per class was reducing the
incorrect identification of patterns. On the other hand, we attempted to assign almost identical neurons
to patterns with the same number of parameters (Table 4).

 

Figure 7. Learning vector quantization (LVQ) network.

Table 4. Number of inputs, hidden, and output layer neurons.

Neuron

Input 25

Hidden Layer

Natural (Network 1) 1
Upward Shift (Network 2)
Downward Shift (Network 2)

12
12

Upward Trend (Network 3) 18
Downward Trend (Network 3) 18
Cycles (Network 4) 20
Systematic (Network 5) 4
Upward Shift + Upward Trend (Network 6) 18
Downward Shift + Downward Trend (Network 6) 18
Shift + Cycles (Network 7) 27
Trend + Cycles (Network 8) 27
Total 175

Output 8

o Learning Algorithm Used in Module I

The LVQ network in module I was trained by “enabling competition to take a place among the
“Kohonen” neurons. The competition is based on the Euclidean distances (di) between the weight
vectors (Wi) of these neurons (i) and the input vector (x).

di =‖Wi −X ‖=
√(

Wij −Xj
)2

. (1)

The neuron which has the least distance is the winner in the competition and is allowed to change
its connection weights. The weights of the other neurons remain unchanged. The new weights can be
obtained from

Wnew =Wold + λ(X − Wold), (2)

if the winner neuron is in the correct output category, or

Wnew =Wold − λ(X − Wold), (3)
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if the winner is in the wrong category [18,27].
In the above equations, λ is the learning rate, which decreases monotonically with the number of

iterations. In this research, λ = 0.01 was considered. Appendix A provides the Matlab code.

• Module II

Module II in the proposed model was formulated to estimate the parameters of unnatural patterns
of process control diagrams and estimation of the change point of the unnatural patterns.

o Topology of MLP Networks

In Module II, seven multilayer perceptron networks or MLPs do basic (single) and concurrent
(mixture) pattern analysis. In this module, each of the networks in this set performs only the interpretation
of one of the abnormal patterns. In these networks, the main parameters are estimated based on the
definitions set out in Table 3. Moreover, in Module II, conditions for estimating the change point of
abnormal behaviors in control charts are provided. In MLP networks (Figure 8), the type of layer
connection is fully connected, and the number of inputs to all MLP networks is 26, 25 of which are the
number of input neurons and one of which is the network bias which is equivalent to 1 for all simulated
data. The number of hidden-layer neurons is optimized such that, for a certain amount of error for
MLP on all network networks, the number of iterations required to achieve the error desired was
calculated. Then, the number of neurons with the least number of repetitions until the desired error
is chosen as the number of optimal neurons (Table 5). In each output layer, the neuron is embedded
considering the number of related parameters of every pattern. In order to approximate different
orientations of process changes, for example (upward or downward) given the outputs in the interval
[−1, 1], a bipolar sigmoid function with the A = 0.1 constant is used. The relationship of the desired
transfer function can be seen below.

g(x) =
1− e−x

1 + e−x x = A.net. (4)

 

Figure 8. MLP network for shift pattern.

Table 5. Number of input, hidden, and output layer neurons.

Network Name Input Hidden Layer Output

Shift

25 + 1 (bias) = 26

14 2
Trend 15 2
Cycles 22 3

Systematic 17 2
Shift + Trend 25 3
Shift + Cycle 23 4

Trend + Cycle 21 4
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o Learning Algorithm Used in Module II

The training method in MLP networks is “backpropagation with an adaptive learning rate,
where the weight of each layer, by the output and output derivative, is corrected until the network is
fully trained”. In this study, the training dataset is applied to corresponding networks in a category
form, and errors are calculated at each step until the learning process is performed. Learning rate (λ)
also changes according to the following command, so that the E(t) is the network error at the time
step t:

λ=
{
0.99λ(t− 1) i f E(t) ≤ E(t− 1)0.01λ(t− 1) i f E(t) > E(t− 1). (5)

There is a condition of training stop on the network error, which tries to minimize the error square
between network outputs and the objective function using the gradient descent method. The network
error, which is a cumulative error, is defined below in which p stands for pattern number, o represents
the output neurons, dij is desired value for the j output of i pattern, and o_ij is the actual output of the
network for the i pattern [43]. Appendix B provides the source code written in Matlab.

E =
1
2

p∑
i=1

o∑
j=1

(
dij − oij

)2
. (6)

o Change Point of Unnatural Patterns

Estimation of the change point (starting point) and subsequent length of the unnatural pattern
sequence expressed when the problem started and how long it lasted can help discover the causes
of disorders. Since the neural network gives the change point of the abnormal patterns as a Module
II output (MLP network) when generating training data, the change point is randomly generated
between one and 10, and it is trained on the network to estimate its value as the network output.
It should be noted that, in Module I, a fixed number is assumed to be the starting point for each pattern.
In opting for the assumed fixed number as the change point, the conditions for pattern formation are
considered with regard to its parameters. For example, since the cycle pattern has a period parameter
(T = 8–12), the starting point should be earlier.

4.1.3. Neural Network Training

Training examples were introduced randomly to the NN. Before training, connection weights
were generated with small random values. Weights were adjusted by training and presenting each
pattern to the network. A maximum of 200,000 repetitions was considered as the stopping criterion
for training. During the training phase, a series of vectors are provided to the network. The training
vector consists of two sub-vectors: An input pattern and a target pattern. There are a total of 33 values
for each training vector. A series of 25 coded observations, called the input pattern, is presented to the
input layer, and the target pattern, which has an integer output of its inputs, is presented to the output
layer (Table 6). Since each pattern has two orientations of changes (e.g., positive and negative shift),
the desired output is set to 1 or −1. An output of 1 corresponds to a positive change, and an output of
−1 corresponds to a negative change. For example, the output vectors of the “natural” pattern would
be [10000000] and downward shift [0–1000000].

• Training dataset

In this study, the simulated data for the neural network model were divided into two subsets of
training data and test data. Since there was no prior knowledge of the relative importance of unnatural
patterns here, the training set contained approximately an equal number of training data for each
type of pattern. In total, there were 11,000 training samples in the study set. The total number of
training data in the LVQ network was 4000 samples, which equally considered 500 for each pattern.
The total number of training samples for MLP networks was 7000, in which the same amount of
1000 samples was generated and applied for each of the seven MLP networks. In order to produce
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the training dataset with the specifications mentioned above, a program was codified, which was
capable of producing an unlimited number of natural and unnatural patterns with different parameters
(for example, with different mean and standard deviations).

Table 6. Scaling range for outputs of MLPs.

Pattern Type Shift Trend Cycle Systematic Shift-Trend Shift-Cycle Trend-Cycle

Output 1
min −0.4 −0.04 0.01 0.01 −0.4 0.01 0.001
max 0.4 0.04 0.4 0.4 0.4 0.4 0.04

Output 2
min 0 0 6 0 −0.04 0.01 0.01
max 12 12 14 12 0.04 0.4 0.4

Output 3
min - - 0 - 0 6 6
max - - 12 - 12 14 14

Output 4
min - - - - - 0 0
max - - - - - 12 12

o Dataset scaling

In order to scale the dataset, the upper and lower boundaries of the input data were firstly
specified by matching the maximum and minimum values of the input parameters. Then, the desired
data were scaled and expanded into fitting values according to the type of the used transfer functions.
Using the scaling method, all of the above operations were performed with the program written in
Matlab. In the given formula, A is the “original value”, Ascale is the “normalized value”, Amin is the
“minimum observable value”, and Amax is the “maximum observable value”. Amin and Amax might
be estimated depending on the nature of data.

Ascale = min +
max−min

Amax−Amin
(A−Amin). (7)

In the current application, the intervals used to scale the inputs of MLPs, considering the maximum
and minimum ranges for the parameters of the unnatural patterns (±σ3) and given the mean (μ = 5.4)
and standard deviation (σ = 0.1), were [5.1, 5.7], which were scaled with confidence intervals of
[3.4, 7.4]. In the LVQ network, the data scaling range (training and testing) was [−5, +5]. In this study,
all input and output data of MLP networks were scaled in a [−1, +1] interval; however, before the
output values were scaled in the [−1, +1] interval, each parameter was scaled to the separate maximum
and minimum values. The different scaling values corresponding to the outputs of the MLPs are
visible in Table 6. The maximum cumulative error (MCE) for training the LVQ was 0.047 (188 in
4000 training data), and that for testing was 0.0525. Table 7 shows the MCE and training iteration of
each MLP network.

Table 7. Module I, evaluation results.

Pattern Type
Direct

Identification
Identification

(Incomplete/Indirect)
Wrong

Identification
Type I Error Type II Error

Shift 41 6/50 = 0.12 3/50 = 0.06 0.00 -
Trend 48 2/50 = 0.04 0.00 0.00 1/50 = 0.02
Cycle 48 1/50 = 0.02 1/50 = 0.02 0.00 1/50 = 0.02

Systematic 50 0.00 0.00 0.00 0.00
Shift + Trend 50 0.00 0.00 0.00 0.00
Shift + Cycle 50 0.00 0.00 0.00 0.00
Trend + Cycle 44 0.00 6/50 = 0.06 0.00 0.00

Total Error 21/400 = 0.052 9/400 = 0.022 10/400 = 0.025 0.00 2/400 = 0.005

4.1.4. Neural Network Test

After training the network with the training dataset, the network was evaluated by the test dataset.
In the training phase, network efficiency was increased by minimizing errors between actual outputs.
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In the test phase, solely the input vector was given to the network, where, in this case, the network was
validated by predicting the response values for input and output.

• Module I, Evaluation of LVQ Network

For each input vector, the LVQ network decides about the production process situation. Therefore,
a chance of errors in decision-making issues will arise. In case the network incorrectly recognizes
the natural variation of the process abnormally, it commits a type I error. If it does not recognize the
abnormal pattern in the process, a type II error takes place. An incorrect identification error occurs
when random deviations cause the basic patterns in the early parts of the formation to have similar
behavioral characteristics. The same will apply to concurrent patterns. As each random pattern warns
of a particular disturbance in the process, incorrect pattern recognition has different costs. Moreover,
if a basic abnormal pattern is identified in the form of a concurrent pattern comprising a basic pattern,
it is considered indirect identification. On the other hand, if only one of the unnatural patterns is
identified during the simultaneous occurrence of two abnormal patterns, the identification is putatively
incomplete. The performance of Module I was measured according to the instructions and definitions
performed by 400 test vectors, where each of them represents 25 samples of the plaster production
process, which represents one of the eight patterns identified by the neural network. We applied each of
the samples as input to the network and then compared the network response with the target response
and calculated the network error rate. Table 7 presents the merged results for the 400 test vectors.
As can be seen in the table below, the maximum LVQ network error in pattern recognition was 0.052
(21 in 400 data), which demonstrates that the proposed model was successful and effective due to the
variety of trained patterns in the identification problem.

• Module II, Evaluation the MLP Networks

One of the important issues in neural network training is the overfitting problem of the training
data. To put it bluntly, the network learns data very well, and it even remembers the noise in the data
(disturbances)—excessive compliance—but it has serious problems identifying and generalizing new
data [26]. To solve the problem, when the test data error increases while maintaining or decreasing
errors related to training data, the training is stopped, and the final parameters are considered with the
minimum error of the test data. The performance of the MLP networks in Module II was examined with
numerous examples, and the results were satisfactory. As seen in Table 8, the calculated cumulative
error of each MLP network was less than 0.02, which indicates that Module II was successful in
identifying the parameters.

Table 8. Module II, evaluation results.

Network
Name

Maximum
Cumulative
Error (MCE)

Training
Iteration

Minimum Number
in Each Training

Hidden Layer
Neurons

Output
Neurons

Error of
MLPs

Shift 10 10 10,537 14 2 0.01
Trend 18 13 16,423 15 2 0.018
Cycle 25 10 35,360 22 2 0.016

Systematic 12 10 48,343 17 2 0.012
Shift + Trend 18 10 48,343 25 3 0.012
Shift + Cycle 25 11 46,703 23 4 0.012

Trend + Cycle 28 10 37,298 21 4 0.014

4.2. Expert Systems

In designing the general framework for the proposed expert system, a rule-based approach was
used. ES assists quality control engineers, and it can be used for training operators as well. Therefore,
the proposed system runs in three modes: A tutorial mode that offers explanation and training if
requested by the user, a status mode that concludes from the evidence and responses provided
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by the user, and a diagnosis mode that provides inference or reasoning with the rules within the
knowledge base.

4.2.1. Knowledge Acquisition

“The knowledge acquisition process includes extracting, transforming, and validating expertise
from different information sources for developing a knowledge base repository” [23]. The knowledge
used in this research consists of “general knowledge” and “process-specific knowledge”. In this study,
to assist the fault diagnosis process, “Western Electric” [44] tests were utilized as general knowledge,
and, to gather process-specific knowledge, “cause and effect (Ishikawa diagram)” [41] diagrams were
prepared to investigate the root-cause. Using cause and effect diagrams, the most problematic reasons
in the plaster production process were systematically determined (Figure 9). Next, failure modes and
effects analysis (FMEA) (Table 9) was applied as an analytical method that incorporates the technology
and experts’ knowledge in identifying and prioritizing foreseeable failure modes of the process in
order to eliminate or reduce their occurrence [42]. Finally, FMEA analysis results were collected in
the knowledge base with the aim of making a complete reference for future issues. As can be seen in
Table 9, FMEA uses the risk priority number (RPN) to evaluate the risk level of the process. RPN is
calculated by multiplying the scores of three risk factors named occurrence (O), which is the frequency
of the failure, severity (S), which is related to the effect of disruption on the system, and detection (D),
which refers to the probability of detecting the failure. FMEA uses five scales or scores (1–5) to measure
these factors.

 

(a) 

(b) 

Figure 9. Cause and effect diagram: (a) for increase of crystal water; (b) for decrease of crystal water.
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Table 9. Failure modes and effects analysis (FMEA) form for the critical parameter (crystal water).

Failure Modes and Effects Analysis (FMEA)

Failure Mode Index Cause Effect Corrective Actions O S D RPN 1

1

Increase of
Crystal Water

Decrease of middle
temperature in the

kiln body.

Clogged fuel nozzle.
Cleaning of nozzle,

establishment of PM
for burner, and

installation of filter.
3 5 5 75

2
Failure to adjust fuel

pressure and inlet
burner air.

Adjustment of fuel and
air regulator in a
defined period.

3 4 4 48

3 Pre-kiln breakage.
Chang or patching of
pre-kiln and thickness

monitoring.
2 5 1 10

4
Decrease of kiln

temperature according to
fuel pressure.

Installation of a
shutdown sensor for

fuel pressure.
2 3 1 6

5 Increase of Kiln RPM. Adjustment of RPM
via frequency. 1 5 4 20

6 Sharp decrease in
temperature. - 1 2 1 2

7 Erosion in kiln blades
Change of runner

blade and periodically
monitoring.

1 5 5 25

8 Becoming dirty or clogging
of the burner’s air nozzle.

Cleaning the air
nozzles and instating a

multilayer filter.
4 2 3 24

9

Heat transition between
kiln and environment
because of the lake of

refractory.

Establishment of PM
and thickness
monitoring of

refractory.
5 5 5 125

10 Increase of negative
pressure of kiln (filter).

Installation of
ΔPMeter. 5 5 1 25

11
Decrease of

Crystal Water

Increase of middle
temperature in the

kiln body.

Fuel pressure rise. - 1 2 1 2
12 Decreasing of negative

pressure of exhaust fan. - 5 5 3 75
13 Reduction of kiln RPM. - 1 5 4 20
14 Sharp Increase in

temperature. - 1 2 1 2

15
Variation in

Crystal Water
- Change of trend in raw

material because of mine. - 4 5 4 80

16 Increased
Crystal Water

- High level of raw
material moisture. - 3 5 1 15

17
Variation in

Crystal Water
- Changing of raw

material spec. - 3 5 1 15

1 RPN = O × S × D.

4.2.2. Knowledge Representation

In this study, a rule-based approach was considered to codify experts’ problem-solving knowledge
through inference rules: IF <a condition or premise>, THEN <an action or conclusion> rules. In total,
60 rules were used using technical documentation, operations procedures, and interviews with experts,
for interpreting control charts (X-bar and R) and providing diagnostic expertise.

4.2.3. Implementation

In this study, the desired expert system was designed using three principal modules. The first
module is related to knowledge base development, the second module is relevant to interface design
and required questions to reach the answer, and the third module is associated with system run
and dialogue to the user. Figure 10 shows a schematic of the proposed neural expert system and its
components. Below is a brief description of each system component.

• A knowledge base uses the knowledge of experts and other sources acquired by knowledge
engineers to support reliable, complete, and consistent decision-making in a time-critical situation.
The knowledge base of the proposed model is an organized collection of facts and heuristics about
the plaster production domain, as described briefly below.

o “Facts” refers to a set of facts relating to the current process state extracted by a knowledge
engineer (KE) from the records of the quality management system, preventive maintenance,
calibration, brainstorming sessions, and interviews with experts.
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o “Procedures” focuses on manuals, standards, and procedures. Some examples include
technical operation instructions, plaster production standards, and intelligent statistical
process control (ISPC) tutorials.

 

Figure 10. The proposed hybrid fault diagnosis system scheme or ISPC.

“Rules” relate to production rules that represent inferential knowledge learned from experts.
In the knowledge base of the proposed model, 60 rules were employed that were extracted from
interview with the experts, documents including “Western Electric” tests (general knowledge of the
process), and the NN’s response (case-specific data) extracted by KE and presented in the form if–then.
Below is an example of a typical rule, based on specific knowledge of a process.

IF “diagnosis” is “upward trend”,
AND “failure mode” is “increase of crystal water”,
AND “process index” is “decrease of kiln’s temperature”,
THEN “specific cause” can be “clogged fuel nozzle”,
AND “corrective actions” can be either “cleaning the fuel nozzle, the establishment of preventive

maintenance (PM) for the burner, or installing fuel filter”.

• The inference engine contains the inference strategies and matches the condition part of rules
against facts of a specific case to reach a decision or conclusion. A backward chaining inference
engine was used, as it is best suited for diagnosis-type systems, in which the codified program
is executed with two groups of rules. The first group defines goals (assumed conclusions) for
the properties and checks if their values are supported by the existing data. The second group
updates the rules and transmits satisfying goals.

• The working memory acts as a repository for all data including the initial facts of the given
case, the user’s responses to system queries, and generated facts (e.g., type, change point,
and parameters) derived by the inference engine.

• The user interface facilitates communication between the user and the proposed expert system
through various input methods including dialog boxes and command prompts.

5. Comparative Analysis and Case Study

5.1. Comparison Study

To decisive the accuracy, consistency, and repeatability of test results, neural network model
verification was done. The NN model was verified by comparing the error of the NN algorithm and
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the error rate of the discriminant analysis (DA) method—a classification counterpart in the statistical
approach [1]. The method of DA is to find a rule to separate two or more groups of observations from
one another. The most important application of DA is classification. The output of the DA for the test
dataset is presented in Table 10.

Table 10. Output of discriminant analysis (DA) for test dataset.

The SAS System (DISCRIM Procedure)
Classification Summary for Test Data Set Using Linear Discriminant Function

Number of Observations and the Percentage of Correctly Classified into the Target Classes

Target 1 2 3 4 5 6 7 8 Total

1
17 15 8 0 0 8 0 0 48

35.42 31.25 16.67 0.00 0.00 16.67 0.00 0.00 100.00

2
9 25 14 0 0 7 4 0 59

15.25 42.37 23.73 0.00 0.00 11.86 6.78 0.00 100.00

3
10 12 23 1 0 6 0 0 52

19.23 23.08 44.23 1.92 0.00 11.54 0.00 0.00 100.00

4
2 3 0 48 0 0 0 0 53

3.77 5.66 0.00 90.57 0.00 0.00 0.00 0.00 100.00

5
0 0 0 0 50 0 0 0 50

0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00

6
7 11 9 0 0 19 0 0 46

15.22 23.91 19.57 0.00 0.00 41.30 0.00 0.00 100.00

7
0 0 0 0 0 0 39 0 39

0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 100.00

8
0 3 0 0 0 0 4 46 53

0.00 5.66 0.00 0.00 0.00 0.00 7.55 86.79 100.00

Total
45 69 54 49 50 40 47 46 400

11.25 17.25 13.50 12.25 12.50 10.00 11.75 11.50 100.00
Priors 0.12 0.1475 0.13 0.1325 0.125 0.115 0.0975 0.1325

For example, in Table 10, the number 0 in the first row and the eighth column indicates that no
“natural” pattern was mistakenly placed in the systematic patterns class. In the first row and the first
column, the number 17 represents the number of patterns correctly assigned to the “natural” type.
Furthermore, the value of 35.42 is the percentage correctly assigned to the “natural” class. In the first
row and second column, 15 is the number of “natural” patterns that were mistakenly classified as
“shift”. The value of 31.25 is also the percentage of the “shift” pattern error in the “natural” class.
The value of 31.25 is also the percentage of the “shift” pattern error in the “natural” class. Table 11
shows the errors for each class. This table lists the errors for each category in the “rate” line and the
weight for each type in the “priors” row, while “total” (0.3325) indicates the total error of DA method
for the test dataset. Tables 12 and 13 provide the output for the training dataset. As shown in the
diagrams below (Figures 11 and 12), the NN outperformed the DA method in terms of performance
and accuracy.

Table 11. DA error in the test dataset classification.

Error Estimation for Target Classes

1 2 3 4 5 6 7 8 Total
Rate 0.6458 0.5763 0.5577 0.0943 0.0000 0.5870 0.0000 0.1321 0.3325

Priors 0.1200 0.1475 0.1300 0.1325 0.1250 0.1150 0.0975 0.1325
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Table 12. Output of discriminant analysis (DA) for training dataset.

The SAS System (DISCRIM Procedure)
Classification Summary for Training Data Set Using Linear Discriminant Function

Number of Observations and the Percentage of Correctly Classified into the Target Classes

Target 1 2 3 4 5 6 7 8 Total

1
218 175 124 1 0 0 0 0 518

42.08 33.78 23.94 0.19 0.00 0.00 0.00 0.00 100.00

2
162 227 116 3 0 21 8 2 539

30.06 42.12 21.52 0.56 0.00 3.90 1.48 0.37 100.00

3
158 158 163 1 0 21 0 0 501

31.54 31.54 32.53 0.20 0.00 4.19 0.00 0.00 100.00

4
5 24 6 471 0 0 11 1 518

0.97 4.63 1.16 90.93 0.00 0.00 2.12 0.19 100.00

5
4 1 0 0 489 0 0 0 499

0.80 0.20 0.00 0.00 98.00 0.00 0.00 0.00 100.00

6
49 25 42 0 0 314 0 0 430

11.40 5.81 9.77 0.00 0.00 73.02 0.00 0.00 100.00

7
0 1 0 13 0 1 399 1 415

0.00 0.24 0.00 3.13 0.00 0.24 69.14 0.24 100.00

8
0 0 0 5 0 56 42 477 580

0.00 0.00 0.00 0.86 0.00 9.66 7.24 82.24 100.00

Total
596 616 451 494 489 413 460 481 4000

14.90 15.40 11.28 12.35 12.23 10.33 11.50 12.03 100.00
Priors 0.1295 0.13475 0.12525 0.1295 0.12475 0.1075 0.10375 0.145

Table 13. DA error in the training dataset classification.

Error Estimation for Target Classes

1 2 3 4 5 6 7 8 Total
Rate 0.5792 0.5788 0.6747 0.0907 0.0200 0.2698 0.0386 0.1776 0.3105

Priors 0.1295 0.1348 0.1253 0.1295 0.1248 0.1075 0.1038 0.1450

 

Figure 11. Comparison of DA and neural network (NN) error for each pattern in in test dataset.
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(a) (b) 

Figure 12. (a) Comparison of DA and NN error in test dataset; (b) comparison of DA and NN error in
training dataset.

5.2. Case Study

In this section, to demonstrate the applicability and capability of the proposed model, a case
study in a plaster-producing company is presented. In a traditional statistical process control system,
after gathering the data, the following steps are done:

• Plotting the sequence of process measurements (observations).
• Setting UCL and LCL.
• Determining the process capability (Cpk).
• Performing the “normality test” on the data.
• Interpreting both R and X-bar chart for statistical control.

The proposed ISPC model, designed in Matlab, can adequately perform the above operations
(Figure 13). Here, pursuant to the plaster-producing experts’ opinion, if “Cpk > 1”, the chart is
considered as the baseline for interpreting the process. As can be seen in the ISPC implementation flow
chart, after collecting the process data, the baseline chart should be set by eliminating and replacing
points beyond the control limits of new data. As shown in Figure 14, the normality test was done,
where the normality assumption was valid, and “Cpk > 1” in control mode. After drawing the baseline
chart, the actual data of the process were inserted and checked and analyzed by the desired control
charts. As illustrated in Figure 15, although there is no “out of control” mode within the “R-chart”,
the process was unable to meet specifications due to “Cpk < 1”, being equal to 0.81 (Figure 16). On the
other hand, by choosing the “X-bar chart” (Figure 17), the user receives the following error message:
“X-bar chart is out of control” (Figure 18). Then, the ES using “Western Electric tests” announces that
“out of control” modes may have the following reasons: “carelessness in the measurement, machinery
stop, or off-spec materials”. Later, the user receives a suggestion message from ES to check the unnatural
patterns identified by NN (Figure 19). As can be seen in Figure 20, not only was the “downward shift
pattern” in the “X-bar chart” identified by the NN, but the “starting point” of the unnatural pattern was
estimated (point 6). The “shift magnitude parameter” (−0.161) was also determined. In this scenario,
because of the appearance of a “downward shift pattern” and based on user observation, which was
“kiln body scarlet”, the reason for the deviation was recognized as the “temperature exchange of kiln
with the environment due to the loss of refractory and thickness”. “Establishment of maintenance
and inspection of refractory” was also recommended as corrective or preventive activities. In this
scenario, by making corrective actions and following re-sampling the process (Figure 21), “out of
control” modes did not appear in the control charts anymore (Figure 22) and, furthermore, “process
capability” increased from Cpk = 0.81 to Cpk = 1.15 (Figure 23). The experimental results show that
corrective actions could significantly contribute to process recovery. Thus, the proposed fault diagnosis
system could be used to support decision-makers of the plaster production.
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Figure 13. ISPC implementation flow chart.

 

Figure 14. Normality test and process capability calculation.
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Figure 15. X-bar chart in “out of control” mode.

 

Figure 16. Process capability calculation.

 

Figure 17. Request for analyzing the X-bar chart.
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Figure 18. X-bar chart reasoning by Western Electric tests.

 

Figure 19. Pattern recognition in X-bar chart by NN.

 

Figure 20. Determining Cpk, unnatural pattern, parameters, and recovery actions.
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Figure 21. Inserting new dataset.

 

Figure 22. X-bar and R charts in control mode.

 

Figure 23. Capability of the process after performing corrective actions.
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6. Conclusions

This paper aimed to target one of the most challenging subjects in smart manufacturing, which is
the quality control at the shop floor level considering emerging technologies. There are many conceptual
models and general recommendations when discussing a new paradigm of quality associated with
I4.0, but there are relatively few works in action. The hybrid model proposed in this work supports the
troubleshooting of the plaster production process, which is a complex manufacturing system. To have
both descriptive and prescriptive approaches, NN and ES were integrated where NN deals with the
determination of fault areas, and ES provides the recommendation of corrective actions.

The main achievements and contributions of this work are as follows:

1. Successful implementation of Quality 4.0 to blend traditional quality control models based on
CCPs with an intelligent system at the shop floor level.

2. According to Tables 3 and 5, the diagnosis of behavioral patterns coming from Module I is
acceptable, and parameters of corresponding patterns estimated by Module II are effective
and reliable.

3. It was a multitask project including production, delivery, and encryption of neural network input.
4. Using a wide range of data in training the NNs to assure stable behavior in performance.
5. Using the integrated system, most SPC requirements, such as drawing of basis chart, checking

X-bar and R charts for being under control, and calculating Cpks, were achieved.
6. Using LVQ for pattern classification and MLP in parallel. This helps in simultaneously enjoying the

competitive power of the LVQ network and the interoperability of multilayer perceptron networks.
7. The result of the case study shows the improvement of process capability, while control charts

did not show any out of control mode after following the corrective actions; thus, the capability
of the proposed model to serve as a reliable decision support system (DSS) was confirmed.

This paper shows the capability of I4.0 to change the quality paradigm in factories of the future.
The key element is the level of intelligence of the system, which leads to smart manufacturing. There is
no doubt that emerging technologies will shift quality processes to a different level, while monitoring,
fault detection, cause, root analysis, and even corrective actions and strategies would be autonomous.

For further research, there are many potential areas of working, as outlined below.

1. Developing and comparing the result of new models based on adaptive neuro-fuzzy inference
systems (ANFIS).

2. Using the particle swarm optimization (PSO) to improve the performance.
3. Using some techniques and algorithms such as deep learning to increase the efficiency of

the model.
4. Using collective sensor networks and Internet of things (IoT) platforms to develop a real-time

smart quality control system.
5. Connecting smart quality to new services such as predictive maintenance to achieve smart,

collaborative devices and support new product and production lines based on information from
intelligent quality information.

The models proposed in this paper were independent of software; thus, free software and modern
scripting languages such as Python, Ruby, etc. could be utilized for the same purpose.

This paper was a real case of Quality4.0 in action to show the capabilities and applicability of
emerging technologies and intelligent algorithms to shift control quality to the new stage, and it
represents the initial step of a long journey.
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Appendix A

for l = 1:Ntraining;
for i = 1:Nhidden
for j = 1:Ninput
D(i,j) = (Data(l,j)-W(j,i))ˆ2;
end
Distance(i,:) = [sqrt(sum(D(i,:),2)),i];
end
MinDis =min(Distance(:,1));
ONN = find(Distance(:,1) ==MinDis);
for i = 1:Nhidden
if i == ONN
HiddenOut(i) = 1;
else
HiddenOut(i) = 0;
end
end
NetOut(l,:) = HiddenOut*V;
if NetOut(l,:) == RealOut(l,:)
W(:,ONN) =W(:,ONN) + Lambda*(transpose(Data(l,:))-W(:,ONN));
else
W(:,ONN) =W(:,ONN)-Lambda*(transpose(Data(l,:))-W(:,ONN));
end
Er(l) = sum(abs(RealOut(l,:)-NetOut(l,:)),2);
end
t = t + 1;
Error(t) = sum(Er,2)
if Error(t) < 500
Lambda = 0.99*Lambda;
End

Appendix B

while Error(l) > Emax
l = l + 1;
Epoch(l) = l;
HO = V0*transpose(InData);
HiddenOut = (1-exp(-A*HO))./(1 + exp(-A*HO));
DiffHiddenOut = (A/2)*(1-HiddenOut.*HiddenOut
HiddenOut(Nshifthidden,:) = 1;
DiffHiddenOut(Nshifthidden,:) = (A/2)*(1-HiddenOut(Nshifthidden,:).*HiddenOut(Nshifthidden,:));
OO =W0*HiddenOut;
Output = (1-exp(-A*OO))./(1 + exp(-A*OO));
DiffOutput = (A/2)*(1-Output.*Output);
DeltaO = (transpose(OutData)-Output).*DiffOutput;
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DeltaH = DiffHiddenOut.*transpose(transpose(DeltaO)*W0);
E = (OutData-transpose(Output)).*(OutData-transpose(Output));
for i = 1:Nshifthidden
for j = 1:Nshiftinput
V(i,j) = V0(i,j) + Lambda*DeltaH(i,:)*InData(:,j);
end
end
for i = 1:Nshiftoutput
for j = 1:Nshifthidden
W(i,j) =W0(i,j) + Lambda*DeltaO(i,:)*HiddenOut(j,:)’;
end
end
V0 = V;W0 =W;
Error(l) = 0.5*sum(sum(E,1),2);
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Abstract: The present work presents a methodology based on data reconciliation to monitor
membrane separation processes reliably, online and in real time for the first time. The proposed
methodology was implemented in accordance with the following steps: data acquisition;
data pre-treatment; data characterization; data reconciliation; gross error detection; and critical
evaluation of measured data with a soft sensor. The acquisition of data constituted the slowest
stage of the monitoring process, as expected in real-time applications. The pre-treatment stage was
fundamental to assure the robustness of the code and the initial characterization of collected data
was carried out offline. The characterization of the data showed that steady-state modeling of the
process would be appropriate, also allowing the implementation of faster numerical procedures for
the data reconciliation step. The data reconciliation step performed well, quickly and consistently.
Thus, data reconciliation allowed the estimation of unmeasured variables, playing the role of a soft
sensor and allowing the future installation of a digital twin. Additionally, monitoring of measurement
bias constituted a tool for measurement diagnosis. As shown in the manuscript, the proposed
methodology can be successfully implemented online and in real time for monitoring of membrane
separation processes, as shown through a real dashboard web application developed for monitoring
of an actual industrial site.

Keywords: membrane; data reconciliation; real-time; online; monitoring

1. Introduction

A common problem in oil production is the excess of CO2 gas present in natural gas streams.
The first and most notorious issue is related to the emission of this gas into the environment.
However, in addition to the possible environmental problems, the excess of CO2 in oil streams can
cause problems in the process plant, such as freezing due to pressure drop in compression and cooling
sections of the plant and corrosion of metal pipelines [1]. According to an ANP (Brazilian National
Agency of Petroleum, Natural Gas and Biofuels) resolution, commercial natural gas must contain
a maximum of 3% (mol) of CO2 [2]. Therefore, a possible solution to deal with the produced CO2 is
the reinjection of CO2 into the oil well, which may also allow the increase of the productivity of the
well. This can certainly minimize environmental impacts and problems in natural gas process plants.
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Therefore, the CO2 separation constitutes a fundamental step during the treatment of natural gas in oil
production fields.

Different physical/chemical processes can be used to separate CO2 from natural gas,
such as cryogenic distillation, absorption, or membrane reverse osmosis processes [1,3].
Particularly, the removal of CO2 from natural gas with help of membrane separation processes has
been used since 1981 [4]. However, applications were initially limited because of intrinsic economic
risks associated with the oil production activity and operation constraints related to membrane
separations. Nevertheless, the scenario has been changing due to advantages related to the lower
energy consumption, low capital investment, low operating costs, and more compact nature of these
pieces of equipment [5–7].

Given the increase of the industrial importance of membrane separation processes, demands for
development of mathematical modeling, simulation, optimization, control, statistical data treatment,
and online monitoring procedures have also increased, as these techniques are fundamental for design
and monitoring of chemical processes. As a consequence, the performance of the analyzed process can
be evaluated more precisely and monitored, allowing the detection of failures in line and in real time.
Based on these technologies, risks and time required for decision-making can be minimized [8].

Based on the previous paragraphs, the main objective of the present work is to develop and
implement a web application that makes possible the online and real-time monitoring of membrane
CO2 separation processes on an industrial scale for the first time, based on rigorous numerical and
statistical procedures. The application can also be used to provide information about unmeasured
variables (soft sensor) and to diagnose the occurrence of gross error measurements and instrument
malfunctioning. The proposed methodology comprises the following stages: (i) pre-treatment and
characterization of process data; (ii) data reconciliation of process data to minimize measurement
uncertainties, with the aid of mass balance equations; (iii) detection of systematic deviations for
identification of process malfunctions; and (iv) observation of unmeasured variables (soft sensor or
digital twin). Finally, the proposed data acquisition and visualization system is implemented online for
successful monitoring of an actual industrial membrane separation site in real time for the first time.

1.1. Data Rectification

Technological and computer advancement have allowed the wide, easy, and fast access to process
data of industrial plants. As a matter of fact, access to actual data are extremely important for real-time
monitoring and optimization of production units [9]. The dynamic monitoring of a plant, unit or
industrial equipment is increasingly necessary to improve product quality, enhance process safety,
and reduce energy costs and waste; however, the acquired information must be reliable and validated
with physical process constraints, as the reliability of the data are of paramount importance for any
decision-making related to the analyzed process [10]. Nevertheless, process measurements are subject
to errors and fluctuations due to intrinsic imprecision, degradation, malfunction, improper installation,
poor calibration, and failure of measurement instruments. Additionally, human errors associated
with operation and calibration, or gross errors related to the operation of the process, can result in
data that do not represent the process reliably. Consequently, measured data are not expected to
satisfy physical constraints precisely and are not expected to comply with conservation laws (mass,
momentum, and energy balances) [11]. For these reasons, process controllers and data acquisition
systems, if not treated properly, can cause the plant to operate at sub-optimal or unsafe operation
conditions. In addition, decision-making based on unreliable data can lead to the occurrence of
industrial accidents, reduction of product quality, and financial losses [12]. Therefore, the use of data
rectification procedures can be essential to improve the quality of the information contained in the
data, and consequently provide a margin of reliability for the control and optimization of the process
in real time.
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Data rectification procedures usually comprise three steps: variable classification; gross error
detection (GED); and data reconciliation (DR). Among these three steps, DR and GED are the ones
studied most often and applied more frequently in data rectification schemes [13].

1.1.1. Data Reconciliation and Gross Error Detection

The variable classification step determines whether the available information is sufficient to
solve the DR problem and identify the sets of observable variables (measured and unmeasured
variables, which can be estimated using the other measured variables and the process constraints)
and unobservable variables (unmeasured variables that cannot be estimated). This way, the variable
classification step makes possible data set size reduction in order to include only the relevant variables
that can be observed and used to build the mathematical model of the process, reducing the size of the
process database [14].

The GED step is performed to identify and/or eliminate/compensate for the occurrence of
deviations that do not follow the admitted statistical distribution of errors. Gross errors can be
caused by poor calibration of the measuring instruments, deterioration of the sensors, power surges,
among other causes described previously. However, in order to obtain accurate estimates of parameters
and variables, the negative influence of gross errors must be minimized or eliminated. The use
of robust estimators has been frequently suggested to eliminate the negative effect of gross errors,
often implemented simultaneously with DR to avoid the use of iterative and computationally intensive
numerical procedures [11].

In the DR stage, measured data are adjusted in a statistically coherent manner by an estimator,
which frequently is based on the maximum likelihood principle, with the support of a statistical
distribution admitted a priori for measurement fluctuations. According to the DR technique,
adjusted data must satisfy the conservation laws and other constraints imposed on the system,
maximizing the probability of occurrence of that particular measurement and, simultaneously,
respecting the mathematical model of the process. Thus, more reliable estimates can be obtained for
the variables and parameters of the process [13,15]. Traditionally, the normal distribution is assumed
to be valid, which results in the Weighted Least Squares (WLS) estimator [16]. For illustrative purposes,
data rectification applications in the industry can be implemented as shown in Figure 1.
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Figure 1. Illustrative representation of industrial data rectification applications [12,17].
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Kuehn and Davidson [18] were the pioneers in using DR procedures in chemical engineering
processes. Since then, many works have proposed the use of DR procedures for monitoring of industrial
processes, although the vast majority of the published material investigates simulated processes that
operate at steady-state conditions. Investigations of actual dynamic processes in real time and using
actual data are scarce and have never been performed for industrial membrane separations [14,19].
Therefore, the present work contributes to the development of DR procedures through the successful
implementation of an original application in an actual industrial environment and using real data
in real time to perform the proposed analyses. In addition, the present work shows that similar DR
applications can be implemented in many industrial membrane separation environments using simple
computational resources in real time.

1.2. Membrane Separation Process

Membranes constitute excellent alternatives for gas separations due to their low installation and
maintenance costs. In the industrial environment, membranes are usually organized in modules
with spiral-wound or hollow fiber geometries. Hollow fiber separation units are normally applied to
relatively smaller fluxes when compared to spiral-wound modules. On the other hand, spiral-wound
modules are cheaper, capable of handling higher operating pressures, and are more resistant to scaling,
as particles present in the feed gas stream can block the fine membrane fibers [20,21]. Because of that,
the spiral-wound units are largely used in industrial gas separation processes. In a previous work of
our group, a mathematical model based on a phenomenological approach for a leaf of a spiral-wound
membrane was developed. The model was validated in four case studies of common gas separations,
with very good performance and robustness. Furthermore, it allowed the prediction of flow rates
and concentrations along the membrane leaf, which are important features for the understanding of
membrane operation processes. In addition, a discretization method was proposed to solve the model,
which proved to be faster and more efficient than the shooting method [22]. It is also important to
emphasize that industrial spiral-wound membrane separation units for CO2 applications are formed
by several leaves, which are wounded onto a central perforated collecting tube, forming one modular
separation element. These elements can be arranged in series to build a membrane separation tube.
Then, tubes can be organized in parallel to form a bank. Finally, the banks can be aligned in parallel to
compose a membrane separation train, while the trains can be arranged in parallel to form a stage [21].
Figure 2 shows an example of this kind of unit.
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Figure 2. Schematic representation of a spiral-wound membrane unit.
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1.2.1. Data Reconciliation in the Membrane Separation Process

Currently, very few papers are somehow involved with Data Reconciliation in Membrane
Separation Processes. However, the work developed by Lashkari and Kruczek [23] showed that
it is possible to reconcile the properties of the membrane separation process, using data related to
the process dead time, which is affected by the resistance that the membrane offers to the gas flow.
In fact, this work developed procedures to estimate effective permeabilities and diffusion coefficients,
allowing the modeling of position-dependent resistance effects, using a lab-scale unit as an example.

Crivellari [19] proposed a model to simulate the separation of CO2 from natural gas through
a counter-current spiral wound polymer membrane. The model was used to analyze the influence
of distinct variables on process operation conditions and was based on phenomenological balance
equations. The model was validated with data collected from the literature and some industrial sites.
Moreover, a DR procedure was used to treat the available data and estimate the model parameters;
however, the study was implemented offline and did not allow any sort of real-time monitoring of the
process operation.

Based on the previous discussions, the present work pioneers the use of DR procedures to monitor
membrane separation processes reliably, online and in real time. For this purpose, a membrane plant
located in one of the Petrobras Offshore Units was used during this paper. Finally, it is worth noting that,
for reasons of industrial confidentiality, numerical results are presented in normalized form.

2. Methods

The methodology implemented in the present work comprises six stages: data acquisition;
data pre-treatment; data characterization; data reconciliation; gross error detection, and process
monitoring (soft sensor or digital twin). The first stages of the implemented procedure involved
pre-treatment and characterization of the data. As a matter of fact, proper understanding of some
characteristics of the data are fundamental for adequate implementation of the data reconciliation
stage [24]. The initial characterization of the data was performed offline and using historical data
available in the data acquisition system of the industrial site. The available data were used to determine
appropriate sampling periods (based on process response times) and calculate measurement variances
(used to formulate the estimation problem) and variable correlations (to characterize independence of
measuring devices). Variable classification was also performed to determine the sets of observable and
unobservable variables (with the help of the proposed model, as described below) [25].

Using the available data and the model equations, the DR procedure (as described in the following
paragraphs) was solved offline to validate the proposed procedure and determine some performance
indexes. Particularly, a statistical metrics was used to describe the magnitudes of the deviations
between measured and reconciled variables. Then, the model was used offline for calculation of
unmeasured variables, providing the soft sensor (or digital twin) response. Finally, the proposed
procedures were implemented online and in real time.

The numerical procedures and codes were developed and implemented in Python 3.7.6
(Python Software Foundation, Beaverton, OR, USA) and the details of the proposed methodology are
explained in the following sections.

2.1. Data Acquisition

Data acquisition was performed through direct access to an industrial database, using standard
Plant Information (PI) resources. After performing the numerical operations, a file was saved with the
measured, reconciled, estimated, and calculated variables. Storage was performed during monitoring,
to avoid accumulation of data in the computer memory and save the relevant information in real time.

The “pandaspi” library was utilized to provide communication between Python and PI,
transferring the information directly to a data frame [26,27]. By using these resources, the data
acquisition process became very simple and practical, as access to the data depended only on the login,
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password, tags of the desired variables, the size of the sample window, and the sampling frequency.
The time interval selected for offline analyses was equivalent to two weeks with a sampling frequency
of 5 min, which provided a sufficiently high number of points for the execution of the pre-treatment
step. An additional number of data points did not provide any significant improvement of the
preliminary analyses in the considered case so that this should not be regarded as a drawback of the
proposed analysis.

2.2. Data Pre-Treatment

Data pre-treatment comprised the following steps: reading the Excel Workbookfiles in UTF-8
encoding; pre-treatment of raw data spreadsheets; and data storage in Hierarchy Data Format version
5 (HDF5).

During real-time monitoring, the data reading step was performed as described in the previous
section. Data storage in HDF5 format was also performed as described previously. When the file is
saved in HDF5 format, reading presents better performance, since reading data directly from the Excel
spreadsheet can be too slow for real-time applications [28,29].

The pre-treatment stage organized the raw data from the PI into data frames (Pandas library) [26,27].
The treatment followed the following steps: standardize the indices (day/hour/minute of the samples);
variables that contain some string must be replaced (such as on/off by 0/1 and error notices by NaN,
not a number); chronologically sort the data and replace missing data (NaN) with neighbors (back and
forward fill). This last step is crucial to assure that the acquired data window does not contain missing
data, which can make the calculation of variances difficult in the acquisition window. Unit conversions,
normalization of concentrations and calculation of standard deviations and variances completed
this step.

Data storage must be carried out after data reconciliation and energy balance calculations. The file
was saved with the measured, reconciled, estimated, and calculated variables. As already explained,
storage was performed during monitoring, to avoid accumulation of data in the computer memory
and save the relevant information in real time.

2.3. Data Characterization

During this step, the procedures that must precede the data reconciliation task, such as the
visualization and statistical characterization of the data, must be carried out. The characterization of
the data was performed in accordance with the following steps:

• Visualization of variables;
• Selection of variables of interest;
• Quantification and visualization of missing data (NaN);
• Construction of the boxplots of the variables of interest [30];
• Analysis of the variance spectra [31];
• Calculation of variances and correlations.

The main pursued objectives during this stage were the proper characterization of the data
quality, the analysis of the operation dynamics, and the characterization of the stationarity of the
phenomenological process model. The analyses of missing data and boxplot properties can indicate
the quality of collected data during the selected time period and the number of gross errors in the
data base.

The boxplot is a graph used to assess the empirical distribution of data. The boxplot is
a non-parametric analytical technique, which shows the measurement variations within a statistical
population without making any assumption about the underlying statistical distribution. The box
is usually built with the first (Q1) and third (Q3) quartiles (50% of the data) and the median (Q2).
The lower and upper lines extend, respectively, from the lower quartile to the lowest value not lower
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than the lower limit (LL), and from the upper quartile to the highest value not higher than the upper
limit (UL). The limits can be calculated according to Equations (1) and (2):

LL =max [min(data), Q1 − 1.5(Q3 − Q1)] (1)

UL =min [max(data), Q1 − 1.5(Q3 − Q1)] (2)

The value 1.5 is tuned to capture 99.7% of the data between the lower and upper limits, assuming
the normal distribution [30]. In summary, the boxplot identifies the regions in the variable domain
where 50% and 99.7% of the data are located. The points outside these limits are tagged as outliers.
Boxplots were plotted using the Seaborn library available for Python [32].

The analysis of the variance spectra shows how the process variance depends on the size of
the sampling window. This type of spectrum provides information about the various sources that
contribute to the signal of a variable, including noise/measurement errors (short window sizes) and
intrinsic process variations (large window sizes). The variance spectrum can be defined as a set of
variances calculated while some variable related to them evolves [31]. The spectrum of variances
for short sampling windows are controlled by the variances of the measuring instrument. This way,
the best estimate for the variance of the measuring device can be calculated using the variance spectrum
with short sampling windows. However, the use of very short sampling windows may not reveal
the actual variability of the data, due to poor measurement quality. The spectrum for sufficiently
large sampling windows captures the variability of the entire process, including operational changes.
More details about the usefulness of this technique for characterization of process data are provided
by Feital and Pinto [31].

Analyzing the correlations, autocorrelations, and cross-correlations between pairs of variables
of interest allows the characterization of stationarity, seasonality, and regions of operation of the
process [33,34]. Observing correlations between input and output flows can indicate process
stationarity. The absence of correlation can indicate the occurrence of significant nonlinearity
or dynamics in the process response [35]. For dynamic responses, cross-correlation can capture
the lags between the actions on the input variables and the steady-state of the output variables.
Obviously, the identification of dynamic correlations among the many variables of the system may
indicate the necessity to build and implement dynamic models for more accurate representation of
the available data. For this reason, proper characterization of stationarity can be important for more
successful implementations of monitoring procedures [36].

2.4. Data Reconciliation

The DR procedure consists of solving an optimization problem characterized by an Objective
Function (OF) that must be minimized while respecting certain restrictions (model). The OF of the
DR is often proposed as the maximum likelihood estimator resulting from a statistical distribution
of measurement errors, which is commonly adopted as the normal distribution. After application of
the principle of maximum likelihood, the normal distribution results in the WLS estimator. This way,
the problem originally formulated by Kuehn and Davidson [18] can be written in accordance with
Equations (3)–(7) [17]:

ẑ = min
ẑ

1
2
[z − ẑ]T V−1 [z − ẑ] (3)
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subject to:

h(ẑ, u) = 0 (4)

g(ẑ, u) ≥ 0 (5)

ẑL ≤ ẑ ≤ ẑU (6)

uL ≤ u ≤ uU (7)

where ẑ is the vector of the reconciled variables; z is the vector of the measured variables; V is the
matrix of variances for measurement errors; u is the vector of the unmeasured variables (observable);
h() is the vector of linear or nonlinear algebraic constraint equations; g() is the vector of the inequalities
of linear or nonlinear algebraic restrictions; ẑL and ẑU are the upper and lower parameter vectors of
the ẑ vector and uL and uU are the upper and lower parameter vectors of the u vector.

For DR problems where the model constraints are linear and all variables are measured,
the analytical resolution of the problem can be obtained with help of Lagrange Multipliers [37].
However, the set of individual mass balance equations generate a nonlinear system of equations
that involve unmeasured variables, as described below. For this reason, a successive linearization
procedure was used to solve this problem [38].

The observability analysis of the system can also be performed during the successive linearization
procedure, using QR factorization. The procedure consists of describing the nonlinear model in
terms of two matrices: a matrix related to the measured variables and a second matrix related to the
unmeasured variables. Therefore, the system is observable if the rank of the matrix of unmeasured
variables is equal to the number of unmeasured variables [39].

The following points were considered during the implementation of the proposed model in the
industrial site, illustrated in Figure 3:

• Period for preliminary characterization of database: two weeks with sample frequency of 5 min;
• Measured variables (z):

◦ Flowrates: Total Feed (F), Total Retentate (R), Train Retentate A, B and C (RA, RB and RC)
[kNm3/h];

◦ Components: C1(methane), C2(ethane), C3(propane), C6(hexane), C7(heptane), C8(octane),
CO2(carbon dioxide), iC4(i-butane), iC5(i-pentane), N2(nitrogen), nC4(n-butane) and
nC5(n-pentane) in the 3 streams.

• Unmeasured variables (u):

◦ Flowrate: Total permeate (P) [kNm3/h].

Model (Component Mass Balance—Steady-State):

h(ẑ, u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 = Fy
F
− Ry

R
− Py

P
0 = R − RA − RB − RC

0 = 1 − ∑nc
i=1 y

F,i
0 = 1 − ∑nc

i=1 y
R,i

0 = 1 − ∑nc
i=1 y

P,i

(8)

• Number of points in the study phase (nt) = 3457
• Number of components (nc) = 12
• Number of measured variables at each sampling point (Nm) = 3nc + 5 = 41
• Number of unmeasured variables at each sampling point (Nu) = 1
• Number of total equations at each sampling point (Nv): Nm + Nu = 42
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• Number of constraint equations (Nce) = nc + 4 = 16
• Number of optimization variables at each sampling point (Nopt): Nv − Nce = 26
• Degrees of freedom at each sampling point (DF): Nm − Nopt = Nm − (Nm + Nu − Nce) = 15
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Figure 3. Individual mass balances in the envelope around the process.

2.5. Gross Error Detection

Gross errors are those originating from non-random events, having little or no connection with
the measured value. They may be related to measurements (such as malfunctioning of instruments) or
process (such as leaks). Consequently, gross errors invalidate the classic statistical basis of traditional
DR methods and undermine the systematic analysis of the data, demanding the implementation of
Gross Error Detection procedures for compensation or elimination of gross errors, which may precede
the DR step. Gross errors can be further classified as bias, outliers, and drifts [40].

The metrics applied in this step to identify the occurrence of gross errors is related to the statistical
test of standard hypotheses for GED [12]. This test is widely used and simple, and also forms the
basis for all other classic GED procedures. The test is applied to the data set to determine whether the
measurements follow a symmetrical distribution of the measurement errors.

Reilly and Carpani [41] were the first to study the detection of gross errors in process engineering.
The authors proposed the use of a statistical test of the type χ2 (chi-square) based on the residues of
the process model, which was called the Global Test (GT).

In the present work, GED was based on the GT, using the sampling window to observe samples
and identify the occurrence of gross measurement errors. According to this procedure, the data in
the moving window are used to compare the errors of the Weighted Least Squares estimator with the
deviations from median values within the window and using the χ2 function to characterize significant
deviations between these computed variances [42].

The outlier effect during DR is removed through compensation. After identification of a possible
outlier, the variable value was manipulated to adjust the expected variance. Thus, a moving variance
window was implemented to monitor changes in operation, measurement errors, and failures.
The statistical test was performed in sampling windows containing at least 20 samples. With this,
the median and the standard deviation were calculated and compared with the value of the variable
at the current point. Therefore, if the value was more than seven standard deviations apart from
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the median, the measurement would be regarded as an outlier and the variance adjustment would
be performed.

To monitor the possible occurrence of bias, a dynamic bar graph illustrating the magnitude of
errors for each variable was implemented, using the following metrics:

Biasi,t =
med(|zi,t − ẑi,t|)

dpi,t
(9)

dpi,t =NMAD(|zi,t − ẑi,t|) (10)

where NMAD is Normalized Median Absolute Deviation.

2.6. Monitoring

Instrumenting the whole process can be very costly and may lead to acquisition of unnecessary
and obsolete information. In addition, in some cases, it can be impossible to measure the desired
variable. For this reason, some information that is essential for process monitoring can be assessed
through models. Therefore, a soft sensor can estimate variables with a mathematical model, in real
time, using available plant data, as measured by existing instrumentation. Particularly, the use of plant
variables can provide opportunities to improve the performance of a plant [43].

In the analyzed process, the permeate flow was not measured. It must be emphasized that this
is not unusual at real industrial sites. However, through DR, this information can be obtained with
the help of the model, after the application of the DR procedure. The complete set of temperature
and pressure was not available either, which is not unusual at the plant site. In the analyzed case,
the pressure of the feed stream and the temperature of the permeate stream were not measured.
Therefore, the full implementation of the energy balance in the proposed DR procedure was not viable
due to the lack of observability. For this reason, the pressure of the feed stream was evaluated through
calculation of the pressure loss in the separation stage, based on design data and the pressure data of
the retained stream. In this case, after characterization of the pressure loss, the energy balance equation
can be used to estimate the permeate stream temperature, with the aid of Equation (11), calculating the
enthalpies of the process streams with the Peng–Robinson equation of state [44]:

0 =F.H(TF, PF, y
F
)− R.H(TR, PR, y

R
)− P.H(TP, PP, y

P
) (11)

It must be noted that the execution of the numerical procedure in this analyzed case was extremely
fast (order of milliseconds), so that the computer hardware exerted little influence on the application.
The slowest step of the numerical procedure was data acquisition (and the bottleneck was data transfer
and connection speed), so that instrumentation hardware and data handling software constituted the
most sensitive parts for this particular real-time application. Despite that, it took only few seconds for
data downloading to be complete; consequently, the online and real-time implementation could be
performed in a standard notebook equipped with an Intel Core i7 8th gen processor (Intel Corporation,
Santa Clara, CA, USA).

3. Results and Discussion

3.1. Data Characterization

The Missingno library was used to analyze the missing data [45]. In Figure 4, one can observe the
data density, visualizing completely the pattern of missing data in the whole set, with the columns
representing the variables and lines representing data points of the time series. In addition, a frequency
bar that indicates the number of variables measured at each particular timeline can be seen on the
right side of the graph.
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Figure 4. Missing data analysis.

The analysis of Figure 4 illustrates how one can select the best data period for the execution of the
initial data processing stage. The period with the highest data density allows the analysis of the plant
operation with better reliability, avoiding blind periods of instrumentation or shutdown of operation.
Therefore, the selection of the period is fundamental for the data characterization stage.

Figure 5 illustrates the boxplot of chromatographic analyses associated with the four main
components of the feed stream. This analysis allows the preliminary evaluation of the precision of
the instrumentation and/or the variability of the operation. A process with distinct operating points
generates multimodal distributions, which requires more involving analysis to qualify the precision
of the measurement, such as violin plot (a combination of boxplot and kernel density estimate) [46].
However, during stationary operation periods, the boxplot analysis showed that chromatographic
measurements presented good precision, which is also illustrated by the small number of outliers with
respect to the total number of 3673 samples.

Figure 6 shows that the “gross errors” followed a downward trend, with highest concentration
below the modal value. This is because a drop in the process flowrate was observed during this
period. Therefore, in this case, the analysis interprets that the operating changes are “gross error”,
when they are not. On the other hand, the good behavior of the data indicates that the flowrate was
measured with good precision. Instrumentation accuracy was also analyzed after DR, with help of the
bias analysis.
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Figure 5. Analysis of boxplots for compositions C1, C2, C3, and CO2 in the feed stream.

Figure 6. Boxplot analysis of flowrates.

Figure 7 illustrates the time series for the compositions of C1, C2, C3, and CO2 in the feed stream,
while Figure 8 shows the feed and retentate flowrates, for the same time ranges analyzed in the boxplot.
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Therefore, it becomes evident in the case of flowrates that the supposed gross errors actually indicated
a change in operation and not a failure of the sensor. In the case of composition, outliers can possibly
be assigned to gross errors, although only the DR can allow the proposition of reliable statements
about the alleged gross errors.

Figure 7. C1, C2, C3, and CO2 compositions in the feed stream.

Figure 8. Measured flowrates.
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An important analysis is related to the observation of the correlations between pairs of variables.
Correlations can indicate absence or presence of process stationarity. Figure 9 shows a strong linear
correlation between feed, retentate, and permeate flowrates. Strong linear correlation between inlet
and outlet flowrates can be an indication of process stationarity [47].

Figure 9. Correlation analysis for feed and retentate flowrates.

Figure 10 illustrates the Autocorrelation Function (ACF) and Partial Autocorrelation Functions
(PACF) for feed and residue streams. This analysis provides the diagnosis of temporal dependence
between the lags of individual variables, which in this case were evaluated for lags ranging from 0 to
50 lags. As shown in Figure 10, the ACF decayed continuously and just one lag caused the appearance
of strong correlation (close to 1) in the PACF. Therefore, the process presents very short dynamic
memory, indicating the quasi steady-state behavior and constituting an auto-regressive process of
order 1 [33].

Figure 11 illustrates the Cross-Correlations Function (CCF) between feed and retentate flowrates
up to 50 lag. Cross-correlations decayed slowly for different pairs of variables, indicating that
the process operated at quasi steady-state conditions and that responses were much faster than
the characteristic sampling times. Therefore, the analyzed membrane separation process could be
considered to operate at steady-state. This validated the use of the steady-state mass and energy
balance equations in the DR problem. Given the small volumes of most membrane separation modules
and the large flowrates of typical industrial plants, this conclusion can probably be extended to other
industrial sites, allowing the more general use of the analysed procedures in other industrial facilities.
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Figure 10. ACF (Autocorrelation Function) and PACF analyses (Partial Autocorrelation Functions) for
feed and retentate flowrates.

Figure 11. CCF analyses between feed and retentate flowrates.
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3.2. Data Reconciliation

Before starting the DR procedure, the system was analyzed with the help of Variable Classification
techniques and the system was classified as observable, indicating that the measured variables can be
reconciled and that unmeasured variables (permeate flowrate) can be estimated.

The first DR results were obtained through offline simulations, using a sampling period of two
weeks with a sampling interval of 5 min. The data reconciliation performed very well and the problem
was solved at average computational speed of 1.7 ms/sample. This result clearly showed that the
application could be implemented online and in real time due to the sampling interval of 5 min.

Figure 12 illustrates, as an example, the measured and reconciled data for chromatographic
measurements of the four main components in the feed stream. One of the advantages of DR is to
restore the resolution of the amplitude signal of the measured value, which can be seen in Figure 12,
especially for samplings of the C2 component.

Figure 12. Offline data reconciliation for compositions C1, C2, C3, and CO2 in the feed stream.

Figure 13 illustrates the measured, reconciled, and estimated data for the flowrates. Another major
advantage of DR is to identify the occurrence of systematic deviations in measurements, often caused
by miscalibrated instruments. Figure 13 shows the occurrence of bias for the feed and residue flowrates.

Figure 14 shows the sum of residuals with respect to the mathematical model. The total squared
residual is a measure of corrections that were needed in order to reconciled variables to satisfy the
mass and energy balance equations.

Based on the previous results, it could be concluded that the DR procedure presented good
performance and advantageous aspects for monitoring of the process. Monitoring processes
with statistically treated information, detection of measurement bias, and identification of poor
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instrumentation performances constitute good tools for diagnosing the states of the analyzed process
and respective instrumentation.

Figure 13. Offline data reconciliation of flowrates.
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Figure 14. Sum of squares of model deviations (residuals) during offline data reconciliation.

3.3. Gross Error Detection

Procedures for removal of gross errors were implemented for online and real-time DR.
These procedures were based on statistical tests using a moving variance window. Figures 15–20
illustrate a case of gross errors in which the procedure proved to be robust. However, it is possible to
observe that the gross errors that affected the compositions of the retentate flowrate influenced the
reconciliation of the feed flowrate. This occurred because of the well-known “smearing effect” when the
DR procedure was performed with the WLS estimator (non-robust), even when variance adjustment
was performed [48]. As gross error measurements were observed for a short period of time, it was not
possible to detect the main source of the problem in the analyzed data set. Nevertheless, the occurrence
of the problem was reported for maintenance teams for evaluation of measurement consistency.

Figure 15. “Smearing” effect during the DR of feed flowrates.
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Figure 16. Gross Error Detection—CO2 in the feed stream.

Figure 17. Gross Error Detection—C1 in the feed stream.
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Figure 18. Gross Error Detection—C2 in the feed stream.

Figure 19. Gross Error Detection—C3 in the feed stream.
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Figure 20. Gross Error Detection—DR performance analysis.

It is important to note that the statistical tests were implemented only for the compositions.
The fact is that operational changes hindered the test because in many cases the test interpreted
operational changes as outliers. Figure 21 illustrates that data reconciliation was effective and
performed well after several operational changes.

Figure 21. Monitoring through data reconciliation.

An important advantage of the moving variance window was to avoid the interruption of the
online DR procedure due to measurement problems. These failures occur more frequently with
compositions measured online through gas chromatography. These measurement failures cause
missing data and, consequently, occurrence of series of constant values. As a result, the signal loses
variability, preventing the realization of DR. Figures 22 and 23 illustrate cases of variable freezing
caused by missing data.
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Figure 22. Measurement failures: missing data and frozen values of feed flowrate.

Figure 23. Measurement failures: missing data and frozen values of residue flowrate.

The analysis of bias can be performed through dynamic bar graph monitoring, illustrating the
magnitude of the errors of each variable. Figure 24 informs the magnitudes of the systematic deviations
from the median, that is, how many times the reconciled variable deviated from the measured median
value. Systematic deviations that are larger than three times the value of the standard deviation
can be regarded as a bias. Therefore, analyzing Figure 24, five variables with measurement biases
could be observed: N2 (feed); N2 (residue); C8 (permeate); feed flowrate; and residue flowrate.
Generally, biases can indicate the occurrence of unbalanced measurements, calibration problems,
and instrument malfunctioning. For this reason, the obtained results were relayed to maintenance
teams for evaluation of the instrumentation performances.

Figure 25 analyzes the performance of the DR, presenting the value of the OF, which represents
the degree of correction of the reconciliation. The two green dotted lines represent the region where
a normal distribution is expected for the errors of all measured variables. The region above the red
dotted line indicates the samples that were subject to large corrections during the reconciliation step.
Therefore, it is reasonable to consider the possible occurrence of outliers when the obtained value of
OF deviated more than three standard deviations from the median value.

A test to observe the influences of biases on the analysis and performance of DR was performed.
Figures 26 and 27 illustrate the same analyses performed for the same time window, as presented in
Figures 24 and 25, but after identification and compensation of outliers. It can be observed that outliers
significantly affected the average OF value. Based on Figures 24–27, it can be said that the analysis
of bias and outliers performed very well. Figure 27 also illustrates the benefits of bias and outlier
adjustments, as objective function values were reduced significantly and shed light on the existence of
persistent outlier measurements. This reinforces the importance of bias and gross error diagnosing
and the necessity to involve maintenance teams for evaluation of the instrumentation performances.
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Figure 24. DR analysis without bias compensation.

Figure 25. DR performance analysis without bias compensation.
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Figure 26. DR analysis with bias compensation.

Figure 27. DR performance analysis with bias compensation.
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3.4. Monitoring

In each new cycle of data acquisition, the code runs in sequence the pre-treatment, statistical tests
and outlier compensation, data reconciliation with the permeate flowrate estimation, and finally the
energy balance to calculate the temperature of the permeate flowrate. The first inferred variable was
the permeate flowrate, estimated within the data reconciliation procedure. Figure 28 illustrates the
real-time monitoring of the inferred variable.

Figure 28. Real-time soft sensor—permeate flowrate.

The second inferred variable was the temperature of the permeate. At this stage, it was not
possible to reconcile data due to the lack of redundancy of measured variables. Thus, this variable was
inferred without the proper statistical treatment by the DR stage. Figure 29 illustrates part of the web
application (web-app) where the user interacts with the interface. The variables can be selected through
a dropdown menu. In addition, the application provides graphs of gross error analysis (Figure 30),
visualization of inferred variables, and a button to start and stop monitoring. Figure 31 illustrates the
three temperatures of each stream, during the testing period of the web-app. The permeate temperature
was calculated with help of the energy balance and the regions without data are the days when the
web-app was paused. All monitoring data are saved and can be read and analyzed offline, as in the
case of Figure 31.
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Figure 29. Part of the web-app: variables measured and reconciled.

Figure 30. Part of the web-app: data reconciliation analysis.
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Figure 31. Offline data analysis: Temperatures in the testing period.

Therefore, the temperature inferred by the calculation of the energy balance showed good accuracy
in relation to reported offline measurements, which demonstrates the importance of DR for the
treatment of the variables used in the soft sensor.

4. Conclusions

A methodology was developed and implemented for the first time in the form of a web application
to allow the monitoring of membrane separation processes online and in real time, making use of
statistical techniques for treatment of process data. The proposed methodology comprises the following
stages: (i) pre-treatment and characterization of process data; (ii) data reconciliation of process data
to minimize measurement uncertainties, with the aid of mass balance equations; (iii) detection of
systematic deviations for identification of process malfunctions; and (iv) observation of unmeasured
variables (working as a soft sensor or digital twin). The pre-treatment and data characterization steps
were fundamental for the understanding and correct formulation of the problem. The characterization
step can find wide application, as this procedure can be applied in any chemical process. This step
is essential for the appropriate selection of data reconciliation techniques and gross error detection
procedures. After that, the proposed data reconciliation and gross error detection steps showed
robustness, good performance, and speed. The proposed scheme was based on detailed steady-state
balance equations, validated after proper characterization of actual operation data. The numerical
procedures were validated offline and then implemented online and in real time for the first time,
allowing the successful identification of measurement biases and outliers and providing estimates for
unmeasured data. The developed procedures can be used for online and real-time detection of process
faults and process diagnosing. In addition, the procedure provides reliable data for future stages of
simulations and parameter estimation, allowing the implementation of digital twins, as the model
proposed in part I of this research project. Production Management System and Enterprise Resource
Planning steps can also benefit from availability of more reliable data, and variables inferred by a soft
sensor. Therefore, the main advantages of the procedure are reliable data handling, diagnosis of gross
errors/failures, and real-time monitoring of the process.
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Abbreviations

The following abbreviations are used in this manuscript:

GED Gross error detection
DR Data reconciliation
WLS Weighted least squares
PI Plant information
HDF5 Hierarchy Data Format version 5
NaN Not a number
LL Lower limit
UL Upper limit
OF Objective function
GT Global test
NMAD Normalized median absolute deviation
ACF Autocorrelation functions
PACF Partial autocorrelation functions
CCF Cross-Correlations Function
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Abstract: In this research, the spectral detection of copper oxide is reported from different combustion
tests of chalcopyrite particles and copper concentrates. Combustion experiments were performed in
a bench reactor. In all the tests, the radiation emitted from the sulfide particle reactions was captured
in the VIS–NIR range. The obtained spectral data were processed by using the airPLS (adaptive
iteratively reweighted penalized least squares) algorithm to remove their baseline, and principal
component analysis (PCA) and the multivariate curve resolution method alternate least squares
(MCR-ALS) methods were applied to identify the emission lines or spectral bands of copper oxides.
The extracted spectral pattern is directly correlated with the emission profile reported in the literature,
evidencing the potential of using spectral analysis techniques on copper sulfide combustion spectra.

Keywords: combustion; optical sensors; spectroscopy measurements; signal detection; digital pro-
cessing; principal component analysis; multivariate data analysis; curve resolution

1. Introduction

The need for better process monitoring, control, and optimization of industrial reactors,
and to secure environmental sustainability, has driven the development of new technologies
in metallurgical processes. For example, many conventional reactors in the metallurgical
industry have undergone improvements and optimization in their design and operation.
Advanced sensing techniques, such as those presented in this work, increase understanding
of the physical chemistry phenomena that take place in the process, facilitating these process
improvements.

Flash smelting technology produces over 50% of the primary copper in the world [1]
and it is widely used by the top producers of primary copper, such as China, Japan,
Chile, and Russia, who represent more than 60% of the copper production through the
pyrometallurgy processes. The flash furnace used in this type of process originated in
Finland at the end of World War II and presented an excellent alternative to the energy
shortage that existed in post-war Europe since, at that time, the intensive demand for
thermal energy was mainly supplied by the combustion of hydrocarbons [2]. Over the
years, flash smelting furnaces have become the most widely used technology in new
smelting companies due to their ability to take advantage of the heat released through
combustion reactions.

At present, new processes and technologies have emerged as competitors to flash
combustion [3,4]. The flash furnace continues to be widely used for both its energy
efficiency and its environmental performance. Since these furnaces appeared on the market,
numerous studies have been reported to improve the understanding of physicochemical
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phenomena and thus optimize their performance. One example is the work of Jorgensen in
1981 [5], who measured the temperature of pyrite particles reacting inside a laminar flow
reactor, all of which was facilitated by optical pyrometry techniques and particularly by
the two-color pyrometry method.

Over the years, it led to the improvement of measurement techniques as can be seen
in the work of Tuffrey et al. [6], who also measured the temperature of pyrite, registering
much higher values (maximum 3127 ◦C) than those reported by Jorgensen. The latter was
attributed to the higher speed of the pyrometer data acquisition system used by Tuffrey.
Subsequently, many studies on combustion kinetics, reaction mechanisms, and particle
size measurement, among others, have applied two-color pyrometry as a support in their
experiences [7–10].

The latest works reported on spectral measurements of sulfide combustion in labo-
ratory tests have been carried out by a group of researchers from the Metallurgical and
Electrical Engineering Departments of the Universidad de Concepción, Chile. This group
has made use of optical pyrometry techniques to retrieve the flame temperature of con-
centrates and pure mineral species under combustion conditions. In these investigations,
different spectral ranges of all the captured radiation were used and a cooled optical fiber
was specially designed for high-temperature applications [11,12].

The application of spectroscopy at an industrial level is scarce, and one of the few
examples is the mentioned by Sun et al. [13], who measured a coal-fired flame in a boiler,
while the only reported measurements in an industrial flash furnace were performed at
the Chagres smelter, Anglo American [12]. These tests were carried out by introducing a
cooled optical probe inside the furnace through a sight glass positioned on the roof of the
reaction tower, which allowed this optical system to capture flame combustion similarly to
those found in laboratory experiments [14,15].

2. Spectral Emissions of Iron and Copper Oxides

In the last 50 years, different researchers in the field of emission spectroscopy have
found the ranges of wavelengths in which certain chemical elements and molecules emit
radiation, thus determining their spectral profiles. Among them are the emission spectra
profiles of iron oxide and copper oxide. Although in these investigations, these emission
profiles have not been obtained from sulfide combustion tests, they can be used as a
reference when determining the presence of these oxides in a copper and iron sulfide
emission spectrum, as Toro et al. did in their research on high-grade pyrite combustion
spectra [16].

2.1. Spectral Emission of Iron Oxide

In the case of iron oxide (FeO), West and Broida [17] conducted a study in the visible
spectral range (VIS). In their work, they reported that the FeO molecule emits a continuous
spectrum between 500 and 700 nm. The emission profile contains wide spectral bands
centered at 570, 590, and 620 nm. In the case of the wavelength of 590 nm, it is usually
not perceived due to the interference of the sodium emission [18]. Toro et al. applied
multivariate techniques on high-grade pyrite emission spectra. Through principal com-
ponent analysis (PCA) and multivariate curve resolution method alternate least squares
(MCR-ALS) analysis, the combustion spectrum was deconvolved obtaining pure emission
profiles of Na, FeO, and Fe3O4 [16].

2.2. Spectral Emission of CuOx

The study presented by Gole in the early 1990s was the first to report the emission
profile of copper oxide, with spectral bands located in the range of 580 to 720 nm [19]. For
their part, Knapp et al. proposed a spectral profile of copper oxide and aluminum oxide
in their study of the emission spectroscopy of the termite combustion flame [20]. In this
study, they presented four peaks located at 606, 616, 629 and 640 nm, which represent
CuOx emissions.
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This research shows the application of an optoelectronic technique to measure the
combustion flame produced by copper concentrates. The obtained spectral information
was related to the physicochemical processes. The industrial process control could be
performed with the application of this optoelectronic technique, allowing the operators to
visualize important indicators of the processes online and in real-time.

The objective of this research is to study the emission spectra of chalcopyrite and
a real copper concentrate when it is exposed to combustion conditions using an optical
measurement system.

3. Methodology

The combustion tests were performed to detect spectral characteristics of interest
associated with copper oxides. The emission spectrum of a flame represented by I (λ, T)
= Ic (λ, T) + Id (λ, T) + Imol (λ, T) + n, where λ is a wavelength sample, T is the flame
temperature, Ic is the baseline, Imol and Id are components associated with molecular and
elementals emissions (discontinuous), respectively [21], and n is a noise component related
to the electronics and detectors themselves. The spectral range and the number of sampled
wavelengths were defined by the spectrometer. Research methods and considerations are
represented below.

Experimental Setup and Sample Characteristic

Briefly, the combustion experiments were performed in a bench-scale setup consisting
of a drop-tube reactor under laminar flow conditions and heated by a controlled electrical
furnace at 1273 K (Figure 1). The spectral data acquisition was composed of cooled optical
fiber (Avantes®) and a VIS–NIR spectrometer (Ocean Optics USB4000®) which is sensitive
in the spectral range between 344 and 1034 nm and can deliver 3648 wavelengths samples
in such a range.

 
 

(b) (a) 

Figure 1. (a) Experimental setup [15] and (b) schematic diagram.

The measurement and interpretation of the emitted radiation from the cloud of par-
ticles in the reactor is a difficult task, especially for copper concentrates, since it involves
many chemical and physical processes and interactions between the particles and the parti-
cles with their surroundings. In Figure 2, a sample of the incandescent cloud generated
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during combustion is depicted. This figure also summarizes the spectral data acquisition
and the implemented methodologies to process and analyze the spectral information.

 

Figure 2. Data acquisition and analysis pipeline. (a) Spectral data acquisition and preprocessing.
(b) Principal component analysis (PCA) features extraction. (c) Multivariate curve resolution method
alternate least squares (MCR-ALS) application for separation of pure spectral signals. Note that the
depicted combustion image is only for visualization purposes, and the optical fiber is located at the
central centered position.

In this research, spectral data processing with multivariate data analysis methods were
implemented to extract important characteristics related to the formation of copper oxides.
PCA was used for an exploratory analysis on the data matrix containing all the spectral
information, whilst MCR-ALS was used to deconvolve the original emission spectrum
based on its pure spectral components. The airPLS (adaptive iteratively reweighted penal-
ized least squares) algorithm baseline correction [16,22] was used to unmix the continuous
and discontinuous spectral components to ensure that the analysis was on the chemical
behavior of the combustion and not on its energy. The data analysis was carried out in
MATLAB™ (MathWorks, Inc., Natick, MA, USA) with the PLS Toolbox 8.9 (Eigenvector
Research, Inc., Manson, WA, USA) and MCR-ALS GUI 2.0.

The chalcopyrite sample was purchased from Ward’s Science® (Rochester, NY, USA),
while the concentrate was donated by a Chilean mining company. The predominant
mineralogical composition of the concentrates is detailed in Table 1.

Table 1. Copper concentrate mineralogical composition.

Mineral Conc. A (wt %) Conc. B (wt %)

CuFeS2 32.71 66.7
FeS2 45.52 16.52

Cu5FeS4 3.23 8.35
CuS 0.85 0.45

Others 17.69 7.98

In this research, eight sets of tests were carried out. Six of them consisted of the
combustion of chalcopyrite at different particle sizes, corresponding to 105 to 149, 74 to
105, 53 to 74, 44 to 53, 37 to 44, and <37 μm. From now on, these samples will be referred
to as CpyA, CpyB, CpyC, CpyD, CpyE, and CpyF respective to the previous order. The
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concentrates used had a granulometric distribution with a p80 of ~36 μm for sample Conc.
A and ~47 μm for sample Conc. B. A Sympatec Helos-Succel™ particle size analyzer based
on a diffraction laser was used for the particle size analysis. All the laboratory experiments
were carried out under similar conditions. In addition, we worked with oxygen supply
three times over the stoichiometric quantity to ensure the total oxidation of the chalcopyrite
and the sulfurized species in the concentrates to form copper oxides. The calcines obtained
in each test were analyzed using scanning electronic technology. For more details about
the methodology and special considerations, see Toro et al. [16].

4. Results

4.1. Spectral Measurement from Chalcopyrite

The first step was to calculate the average spectra obtained in each test, which are
depicted in Figure 3. The average calibrated spectrum of chalcopyrite combustion for each
size is shown in Figure 3. It is observed that the behavior of the spectral irradiance was
different for each size of chalcopyrite analyzed. It is possible to observe that for the finer
sizes, the intensity of the spectrum is greater; this is because finer particles are completely
oxidized, releasing more energy. A cloud of fine particles represents a greater surface area
compared to a cloud of “coarse” particles, which also has a higher oxygen consumption
which in turn translates into greater heat generation. For their part, the larger particles
take time to burn in the reaction zone, resulting in a lower intensity emission spectrum.
Even so, this behavior is not possible to observe in the smallest sample size (CpyF), which
may be related to an agglomeration problem. The smallest size tends to form clumps in the
cloud combustion, increasing its particle size and thus behaving as coarse particles.

 
Figure 3. Average emission spectrum of chalcopyrite combustion at different sizes.

It is not possible to observe emission peaks in the chalcopyrite spectra compared to
those reported by Toro et al. [16] in their combustion experiments with pyrite. This is likely
because chalcopyrite in an oxidizing environment releases less energy than pyrite under
the same conditions, which results in a lower temperature combustion flame, making it
more difficult to identify discontinuities. Some of the reactions that occurred during the
oxidation of chalcopyrite and pyrite are shown in Table 2, a value of ΔH < 0 indicates that
the reaction is exothermic (releases thermal energy), while a value of ΔH > 0 indicates a
reaction is endothermic (absorbs thermal energy).
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Table 2. Typical reactions during chalcopyrite and pyrite combustion 1.

Reactions ΔHo
1000 ◦C [Kcal/mol]

CuFeS2(s) → 1
2 Cu2S(s) + FeS(s) +

1
4 S2(g) 12.19

FeS2(s) → FeS(s) +
1
2 S2(g) 34.79

FeS(s) +
1
2 O2(g) → FeO(s) +

1
2 S2(g) −26.36

FeS(s) +
5
3 O2(g) → 1

3 Fe3O4(s) + SO2(g) −136.46
Cu2S(s) + O2(g) → 2CuO(s) +

1
2 S2(g) −40.82

S2(g) + 2O2(g) → 2SO2(g) −172.52
1 Values are calculated with HSC Chemistry®.

In this work, multivariate techniques were implemented to detect weak spectral
emission profiles. The application of PCA and the analysis of loadings of the combustion
spectra of chalcopyrite, allowed us to find peaks at 606 and 616 nm, which are associated
with copper oxides [19,20]. These peaks were observed slightly from the loading of the
PC3 of the CpyD sample, being more visible in the CpyF sample (Figure 4d–f). Moreover,
the peaks associated with Na and K emissions were observed, around 589 and 767 nm,
respectively.

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4. Cont.
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(e) 

 

(f) 

Figure 4. PCA analysis on the combustion spectrum of chalcopyrite of different sizes. (a) CpyA, (b) CpyB, (c) CpyC,
(d) CpyD, (e) CpyE, (f) CpyF.

4.2. Spectral Measurement from Copper Concentrates

In Figure 5, the average spectral signals of the combustion of copper concentrates
are represented. It can be noted that the signal associated with the sample Conc. A
presents greater intensity of irradiance compared to the spectral signals of the samples
of chalcopyrite and Conc. B. In addition, the spectral lines of emission of Na and K are
presented with greater intensity.

 
Figure 5. Average emission spectrum from the combustion of copper concentrates.

Through exploratory analysis with PCA to each set of spectral data of the concentrates
and the subsequent graphic representation of the first three loadings (Figure 6a,b), it is
revealed that the emission spectral lines of Conc. A are more intense than those of Conc. B
and, in addition, there are certain characteristics at ~606 and ~616 nm that are associated
with copper oxides, while close to the potassium emission, two spectral emissions appear
at 779.1 and 793.9 nm, the same ones that appear in the pyrite combustion spectral signals
reported by Toro et al. [16].
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(a) 

 

(b) 

Figure 6. PCA loadings of the (a) Conc. A and (b) Conc. B average emission spectrum.

4.3. MCR-ALS Application

From the PCA analysis of the spectral data of chalcopyrite and copper concentrates,
the spectral data of CpyF and Conc. A were selected, which have discontinuous sections
in which the spectral characteristics are related to copper oxides. The intensity of these
spectral characteristics is the result of the temperature reached by the combustion cloud
of each sample. Table 3 indicates the average combustion temperatures estimated by
two-color pyrometry, and according to [23], a good selection of the sampling wavelengths
to apply this method are 650 and 750 nm.

Table 3. Average estimated temperatures of the combustion flames.

Sample Temperature (◦C)

CpyA 1002.5
CpyB 1047.2
CpyC 1061.5
CpyD 1109.5
CpyE 1160.2
CpyF 1310.9

Conc. A 1485.2
Conc. B 1316.8

Continuing with the analysis, the airPLS baseline extraction algorithm was applied
to the two selected datasets, thereby separating the dataset to extract the continuous and
discontinuous emissions. Since the spectral evidence of copper presence is associated with
wavelengths of ~606 and ~616 nm, we proceeded to limit the discontinuous section in the
spectral range between 540 and 650 nm, while the noise was reduced through the algorithm
of Savitzky–Golay (SG) [24]. Figure 7 summarizes the discontinuities profile of CpyF and
Conc. A.

Thus, to obtain a spectral profile associated with copper oxides, the spectra of the
sample Conc. A were selected because they present greater irradiance intensity.
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Figure 7. Discontinuities profile of Conc. A (orange) and CpyF (blue).

MCR-ALS can perform multiset analysis of data organized in a single matrix [25] and,
therefore, for this study, we proceeded to create a matrix in the range of 540 to 650 nm
that contains the discontinuous samples of the Conc. A sample and the spectral signals of
sodium (Na), FeO, and Fe3O4 were those obtained by Toro et al. [16] (Figure 8). The aim of
this was to make the MCR-ALS algorithm separate the signals of the known species (FeO,
Fe3O4, and sodium) from those that are not, including the copper oxide profile.

 

(a) 

 

(b) 

Figure 8. Spectral profiles (a) associated with sodium and (b) associated with FeO and Fe3O4 [16].

The MCR-ALS method was applied to the new matrix, as detailed in Figure 9, with
10 components and a “non-negativity” restriction on spectral profiles and concentrations.

With these settings on the MCR-ALS GUI, 92.5244% of the data variance and an error
of fit (PCA) of 3.0201% were achieved with 70 iterations [25]. As expected, within the
10 obtained profiles were those associated with emissions of sodium (Na), FeO, and Fe3O4,
in addition to a profile whose characteristics resemble the profile reported by Knapp, as
seen in Figure 10.
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Figure 9. Data processing schemes using MCR-ALS.

Figure 10. Spectral emission measurements obtained via MCR-ALS and reference spectral character-
istics.

On the other hand, the phase analysis of the calcine of the sample Conc. A is presented
in Table 4, a majority composition of Fe and Cu oxides was observed according to what
was expected, which was a product of the working conditions. The mineralogical compo-
sition of the Conc. A calcine was determined using an integrated automated mineralogy
solution, QEMSCAN system (quantitative evaluation of minerals by scanning electron
microscopy), produced by the Fei Company (Hillsboro, OR, USA). The Cu2S generated
by the decomposition of species such as bornite or chalcopyrite can be oxidized to form
CuO or Cu2O. The formation of these copper oxides in the flame follows the following
transition Cu2S → Cu2O → CuO, this can be corroborated with the analysis of the stability
diagram Cu-S-O in Figure 11.

Table 4. Calcine of the sample Conc. A mineralogical composition.

Minerals wt %

Fe2O3/Fe3O4 29.87
FeS2 1.09
CuS 0.84

CuO/Cu2O 39.30
CuFeS2 0.11

FeS 0.79
Cu2S 2.30

Cu5FeS4 0.95
SiO2 4.32
FeO 6.96
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Figure 11. Cu-O-S stability diagram at 1500 ◦C constructed with HSC® software.

This small thermodynamic analysis ensures the formation of CuO within the working
conditions, so the depicted CuOx emission profile in the combustion spectra of a copper
concentrate is effectively the emission profile of copper oxides. The detection of these
oxides in the process is important because it will allow having control over copper oxidation
in the flame, allowing the operator to adjust process variables preventively. This would
avoid greater copper losses in the slag.

5. Conclusions

In this work, a series of multivariate analysis techniques were applied to spectral data
obtained during the combustion of chalcopyrite and copper concentrates. The results show
that the intensity of the combustion and the spectral characteristics present in the signal
depend on the temperature reached by the combustion cloud. The copper concentrates,
according to their pyrite content, can reach an intensity such that it allows visualizing some
spectral lines, such as those associated with sodium and potassium in the visible range and,
even so, the spectral data of all the combustion tests required an exploratory analysis to
reveal the presence of spectral lines that are not visible in the average spectrum. The sample
that provided the most information on the possible oxidized phases that were generated
in the combustion cloud was a high pyrite concentrate sample. The spectral information
provided was not only limited to copper oxide emission lines at ~606 and ~616 nm but,
instead, there are two emission lines at 779.1 and 793.9 nm that may be associated with iron
species, according to some authors. Finally, the application of the MCR-ALS method to a
spectral dataset measured from the combustion of a high pyrite concentrate and previous
knowledge of spectral bands of Na, FeO, and Fe3O4 patterns allowed us to find a spectral
profile associated with copper oxides in the range of 540 and 650 nm.

This research shows that the use of spectral measurement techniques is a powerful
tool to relate the spectral emission with physicochemical processes in a combustion flame
of copper concentrates. The online and real-time identification of copper oxide formation
in a flash furnace flame could be a great advance for the non-ferrous mineral in the
pyrometallurgical industry, improving process control by measuring a few process variables
such as copper content in mate or slag.
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Abstract: Bearings are essential components in rotating machines. They ensure the rotation and
power transmission. So, these components are essential elements for industrial machines. Thus,
real-time monitoring is required to detect a possible anomaly, diagnose the failure of rolling bearing
and follow its evolution. This paper presents a methodology for automatic online implementation
of fault diagnosis of rolling bearings, by AOC-OPTICS (automatic online classification monitoring
based on ordering points to identify clustering structure, OPTICS). The algorithm consists of three
phases namely: initialization, detection and follow-up. These phases use the combination of features
extraction methods, smart ranking, features weighting and classification by the OPTICS method. Two
methods have been integrated in the dimension reduction step to improve the efficiency of detection
and the followed of the defect (relief method and t-distributed stochastic neighbor embedding
method). Thus, the determination of the internal parameters of the OPTICS method is improved.
A regression model and exponential model are used to track the fault. The analytical simulations
discuss the influence of parameters automation. Experimental validation shows detection with 100%
accuracy and regression models of monitoring reaching R2 = 0.992.

Keywords: rolling bearing; condition monitoring; classification; OPTICS

1. Introduction

The automation of techniques takes place around the world in the manufacturing and processing
of industrial sectors [1,2]. In the industrial and rotary machines, the main idea of automation is
the monitoring without input parameters. The error is human, and the limitation of inexact input
parameters affects the accuracy of monitoring, so it was interesting to make an autonomous method.
There is a growing demand for real-time monitoring in the rotary machines to facilitate advanced
maintenance programs [3]. Rotary machines are most often made of a significant and critical component:
the rolling bearings [4].

The monitoring of rolling bearings gets the scientist’s attention; so many methods applied to
detect defects such as support vector machine [5], Bayesian network [6] and clustering [7]. Numerous
literature reviews are available on monitoring methods [8,9]. From all these used methods, clustering
analysis is one of the most remarkable approaches [10–12]. The density-based method is one of them,
the clusters of dense regions of data separated from the less dense [11]. The method OPTICS (ordering
points to identify clustering structure), subdivided from density-based, has the basic idea to separate
clusters by density [13]. In addition, it has the advantage to attain clusters with varied data density.
Clustering by OPTICS methods is an unsupervised learning method directly implemented to vibration
data. Being thus can be applied directly in the industrial environments without trained by data
measured on a machine under a fault condition [7]. Further advantages of the method are its ease
of programming and the accomplishment of a good trade-off and achieved the best performances.
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In addition, it is fast for small data, used with different density to detect and attain arbitrary and
sphere-shaped clusters [14].

Within the framework of bearing monitoring, the OPTICS method integrated dynamic classification
processes for real-time monitoring [15]. The algorithm proposes to make a detection of faults from
two time features (rms and kurtosis). The monitoring is then carried out using three geometric values,
the contour, the distance and the density. However, the process was incomplete and not completely
automated, which required an expert.

The extracted features play an essential role in the classification, for that many methods used to
eliminate unwanted and unimportant features. The relief method is used to select features for the
classification of biomedical data. It eliminates the irrelevant features and to prepare data of rolling
bearings for the classification [16]. The Chi-square is another method that has the same aim of the
relief to reduce and rank features, this method used ranking features to detect the defect in the rolling
bearing [17]. After selecting features and reducing them by eliminating the uncorrelated ones, the
importance of dimension reduction comes before starting the classification. In the literature, many
methods have applied for dimension reduction, principal component analysis (PCA) [18] and kernel
principal component analysis (KPCA) [19], to detect the defect in rolling bearings. A recently developed
nonlinear dimensionality reduction technique shows its efficiency in the detection of a fault in rotary
based on t-distributed stochastic neighbor embedding (t-SNE) [20].

The parameters specific to OPTICS are also subject to automation. The lack of automation concerns
the choice of features according to a library and the internal parameters of OPTICS: ε (cluster radius),
MinPts (the minimum number of data points needed to cluster) and the distance metric used to
calculate instances between arrays [15]. The determination of the parameter values of the OPTICS
algorithm can be a challenging task because the parameter values affect the accuracy and precision of
the clustering. Many researchers have discussed this topic, and they were looking for ways to solve it.
An automated algorithm AE-DBSCAN, proposed by [21], defines ε like the K-nearest neighbor for
this MinPts. Regarding the choice of distance, [22] show the hardness approximation of data with
Euclidean distance in k-means clustering. Manhattan outperforms the Euclidean distance with the
k-means method. The aim is to automate calculation of all the parameters and to offer a complete
real-time monitoring solution dedicated to the bearings.

This paper proposes an Online One Class Monitoring based on OPTICS Classification for Rolling
Bearing, automatic online classification monitoring based on ordering points to identify clustering
structure (AOC-OPTICS). The input parameters are limited to the initialization time of the method and
the number of signals collected at a monitoring time t. It integrates the detection and monitoring of the
evolution of a fault. After an initialization phase, the detection is carried out by a multidimensional
analysis with extraction, ranking (relief method) selection (t-SNE) and classification (OPTICS) of one
class clustering type. The follow-up is carried out when creating a new class. In this phase, geometric
parameters from this class are proposed and discussed due to regressions models.

This paper is organized as follows. Section 1 introduces the context of the monitoring of the
rotating elements and presents the bibliographical review on the contributions and the limits of the
classification methods. Section 2 describes the OPTICS method and highlights the parameters to be
automated. Section 3 presents the general methodology for automatic monitoring and follow-up of the
healthy state of a bearing. Section 4 assesses the relevance of the methodology on data simulating the
initiation and growth of a defect on the outer ring of a bearing. The automated parameters and their
influences are discussed. Tracking parameters are defined, and mathematical laws are established.
Section 5 corresponds to an experimental validation on a test bench. Section 6 concludes this study.

2. Classification Method OPTICS

OPTICS (ordering points to identify clustering structure) is a hierarchical clustering algorithm
that relies on a density notion [13]. The application of this method is not limited to one field. It used in
many fields and areas of biology, astronomy, topology, and recently for the detection of the defect in
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rolling bearings in rotary machines [15]. This method is capable of regrouping the base of data into an
order of points with different parameter settings, and then detecting a meaningful difference of data
with varied density by producing a request of data that is spatially closed to each other and can become
a neighbor. It can separate considerable objects from noise and identify all possible levels of clusters.
The main idea for the OPTICS algorithm is that for each point of a cluster the neighborhood of a given
radius (ε) has to contain at least a minimum number of points (MinPts), where ε and MinPts are input
parameters. The concept of OPTICS algorithm starts by adding points to the clustered data in arbitrary
shape and then to continue by adding points iteratively for developing the final cluster. The addition
of points close to each other respecting the ε-neighbor order continues until getting the entire group.

The two-components of OPTICS are the core distance, Cd, and the reachability distance, Rd,
Equations (1) and (2). If the number of points in the vicinity of an object, Nε(p), is less than MinPts, Cd
is the distance from p to its Minptsth neighbour, MinPtsdistance(p). In this case, p is a core-object. The
reachability distance of an object o, Rd, is the maximum of the Core Distance of p and the Euclidean
distance between o and p. Figure 1a is a representation of the reachability distance and the core
distance objects.

Cd(ε, MinPts(p)) =
{

Unde f ined i f Nε(p) <MinPts
MinPtsdistance(p) else

(1)

Rd(ε, MinPts(p, o)) =
{

Unde f ined i f Nε(p) <MinPts
max(Cd; distance(o, p)) else

(2)

 

(a) (b) 

Figure 1. (a) Representation of the core distance and reachability distance for MinPts = 4. (b) Reachability
plot.

The number of classes is determined from the reachability plot, Figure 1b. It corresponds to the
number of valleys of the graphic representation Rd as a function of the points o ordered.

3. Method

3.1. Global Architecture

The AOC-OPTICS method is developed for monitoring the state of health of a bearing throughout
its entire life. It is based on the physical manifestations involved in the deterioration of a bearing. Thus
3 automated phases were proposed, Figure 2. Phase 1 considers that when a bearing is fitted, it is
healthy during an interval Th. This phase allows the initialization of the method. Phase 2 corresponds
to the failure detection phase. It is effective if the failure is not detected. Data agglomeration is used
for early and reliable fault detection. The third phase corresponds to the follow-up of the evolution of
the fault. In view of the evolutionary nature of the fault, the third phase is a follow-up loop of this
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state by second class geometrical values. It runs until the bearing fails. Each phase is described in the
following sections and Table 1 shows the associated pseudo code.

 

Figure 2. Flowchart of AOC-OPTICS.

Table 1. Pseudocode for automatic online classification monitoring based on ordering points to identify
clustering structure (AOC-OPTICS).

Inputs

Th, n, Δt
Δt is the interval time between two data collection

n is the number of signals collected at time kΔt
Th is the time of initialization monitoring

Outputs
nc, Plot GV = f (kΔt)

GV are the geometric values
nc is the number of class (=1 for a healthy condition, =2 for a healthy and faulty conditions)

Phase 1
Initialization

k = 0, nc = 1
While kΔt < Th

Collection of n signals
Computation of p features [HI]p,(k+1)n

k ← k + 1
End While

Normalization [HI]norm
p,(k+1)nwith[HI]norm

i,(k+1)n =
(
HIi −HIi

)
/std(HIi)

Ranking features
Application of t-SNE: tSNE

(
[HI]norm

p,(k+1)n

)
= [FI]3,(k+1)n

Compute ε

Phase 2
Detection

While nc = 1
Collection of n signals

Computation of p features [HI]p,(k+1)n

Normalization [HI]norm
p,(k+1)nwith[HI]norm

i,(k+1)n =
(
HIi −HIi

)
/std(HIi)

Ranking features
Application of t-SNE: tSNE

(
[HI]norm

p,(k+1)n

)
= [FI]3,(k+1)n on a basis B

Application of OPTICS -> nc = 1ou2
k ← k + 1
EndWhile
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Table 1. Cont.

Phase 3
Follow

While kΔt < Tend where Tend is the failure time.
Collection of n signals

Computation of p features [HI]p,(k+1)n

Normalization [HI]norm
p,(k+1)nwith[HI]norm

i,(k+1)n =
(
HIi −HIi

)
/std(HIi)

Projection on basis B -> [FI]3,(k+1)n
Computation of geometrics values GV

Curve GV = f (kΔt)
k ← k + 1
EndWhile

3.2. Phase 1, Initialization

The first phase is executed for a duration Th, which is assumed to be a healthy phase of the bearing.
For every iteration k, n signals were collected. p = 17 features were extracted in the time, spectral
and/or time-frequency domains. The use of a multidomain feature in the detection of defect bearing
can offer an efficacy diagnosis for different defects of rolling bearings, with variated speed and load.
The time domain provides nine characteristic features as descriptive statistics. The statistical indicators
are widely used to their relations with significant bearing damages [23]. The frequency-domain allows
one to localize and detect the nature of the bearing defect [24]. Six indicators are computed. The time
scale domain uses the wavelet method to extract two features [25], Table 2. These indicators are stored
in a matrix [HI] where each column corresponds to a signal and each row to an indicator.

Table 2. Computed features. x is the sequence of samples obtained after digitizing the time domain
signals, xi is a signals series for i = 1, 2..., N. WS( fk) corresponds to the spectral density of the max
coefficients of the continuous wavelet transform. s(k) is a spectrum for k = 1, 2 . . .K, K is the number of
spectrum lines, fK is the frequency value of the kth spectrum value.

TIME DOMAIN
Root mean square

RMS =
(

1
N
∑N

i=1

(
x2

i

)) 1
2 ;

Kurtosis
Ku = 1

N
∑N

i=1

(
xi−x
σ

)4
;

Peak to Peak
xPEAK = max(xi) −min(xi)

Crest factor
xCF = XPEAK

XRMS
;

Skewness

Ske = 1
N
∑N

i=1
(xi−x)
(N−1)σ3

3
;

Impulse Factor

(IF) = Max(|xi |)
1
N
∑N

i=1 |xi |
Standard deviation

(Std) = 1
N
∑N

i=1(xi − x)
1
2 ;

Talaf = log (Ku + RMS/RMS(1));
Tikhat = log ((Ku) ˆ xCF+RMS

/RMS(1)) ˆ xPEAK);

FREQUENCY DOMAIN
Frequency Root mean square

frms =
(∑K

k=1

(
s(k)

K

)) 1
2
;

Weighted Frequency Root mean
square

frmsb =

(∑K
k=1 f 2

k s(k)∑K
k=1 s(k)

) 1
2

Frequency Center

fc =
∑K

k=1 fks(k)∑K
k=1 s(k)

;

Weighted Standard deviation
frequency

fstdb ==
(∑K

k=1( fk− fc)
2s(k)∑K

k=1 s(k)

) 1
2

Mean

frms f =
1
K

K∑
k=1

s(k)

Power envelope

PW = 1
K

K∑
k=1

s2(k)

TIME SCALE DOMAIN
Effective value of the frequencies

xWRMS =

(∑K
j=1 fkWS( fk)∑K
k=1 WS( fk)

) 1
2

;

Average value of the envelope
Amplitudes

xPCWT =

∑K
j=1 WS( fk)

K−1 ;

At the time Th, the indicator matrix [HI]i is normalized [HI]norm
i , Equation (3). Normalization aims

to transform the computed to be on a similar scale.

[HI]norm
i,(k+1)n =

HIi −HIi

std(HIi)
(3)
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A ranking step is applied. The ranking features are a significant method for eliminating the
unimportant features before reduction the dimension. The massive amount of data calculates features
take a long time. To reduce this long process, the method of ranking features is implemented to
minimize the number of features, which can make the calculation faster, without touching the accuracy
of detecting the defect. For the AOC-OPTICS, two methods are compared in Section 4.3 to eliminate
the unnecessary features, with the different amounts of features: the relief method and the chi-square
method [26].

Although the nuisance of dimensionality poses serious problems, processing data with high
dimensions has an advantage that the data can give more information. The reduction method
t-distributed stochastic neighbor embedding (t-SNE) is a powerful dimensional reduction tool, which
can reduce functionality dimensions and increase the recognition rate to an overwhelming majority.
The dimension reduced to be in three components, which will give more accuracy than two dimensions.
The difference accuracy between the dimensions noticed in the representation of amplitude. Due to the
use of the three-component in this paper, figures are shown in three dimensions.

Finally, the calculation of ε is done after a reduction in dimension. ε corresponds to the maximum
distance between the center of the class, ch and the MinPtsth neighbor, Equation (4).

ε = distance
(
ch, MinPtsth neighbor

)
(4)

The resulting class is a so-called healthy class, noted Ch, with center ch. This class corresponds to
a reference state.

3.3. Phase 2, Detection

The second phase is a step to detect the mechanical failure. The objective of this phase is to detect
a new state called the defective class, noted C f . At each new iteration k, the indicators are extracted,
normalized, sorted and reduced as in the previous phase. These features [FI]3,(k+1)n are tested by the
OPTICS method to detect or not a second class. If only one class is obtained, which corresponds to
the reference state, the algorithm remains in the detection phase, this new data feeds the reference
state. If two classes are detected, this new class C f , is obtained in a plan B, which will be kept for the
follow-up phase.

3.4. Phase 3, Follow-up

The third step is carried out in plan B, which is determined in the previous phase. It is important
to keep the same plan in order to visualize the evolution of the characteristics. This plan is the best
plan to follow the evolution of the bearing failure. With each new series of data, the indicators were
extracted, standardized and projected in plan B. From these features, [FI]3,(k+1)n , five geometrical
parameters GVi were calculated to monitor over time.

The Calinski-Harabasz index, GV1, is based on the density and the separated clusters, Equation
(5). p is the features number. c f , ch are the center of the class C f , Ch respectively. nc is the number of
clusters. d is the Euclidean distance between x, ci .

GV1 =

∑
i pd2
(
c f , ch

)
/(nc − 1)

∑
xεCh

d2(x,ch )

p−nc
+

∑
xεC f

d2(x,c f )
p−nc

(5)

The Davies–Bouldin index, GV2, measures the average of similarity between each cluster. The
lower index means a better cluster configuration. Rij is the similarity measure of two clusters i and j.
nc is the number of clusters.

GV2=
1
nc

nc∑
i=1

Ri with Ri = max
j=1....nc, i� j

(
Rij
)
, i = 1 . . . nc (6)
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This third parameter, GV3, calculates the distance between the center cluster of the initial phase
Ch with the centre of the fault cluster C f , where dM is the Manhattan distance.

GV3 = dM
(
c f , ch

)
(7)

Finally, the contour, GV4, of the cluster is calculated from a convex hull, which is the smallest
convex set that contains the points. The density, GV5, is the number of points of the cluster, C f for a
volume V f .

4. Numerical Investigation

4.1. Simulated Model

A mathematical model verifies the methodology. It is corresponding to the bearing vibratory
signature, with an outer race defect (xBPFO). Equations (8)–(10) [27] describes the used model to present
the effect of a rolling element at each passage in the faulty outer race according to time t. The passage
of balls in the defect of the outer race creates impacts at the frequency fBPFO. This impact generates
an impulse response of the structure with a natural frequency f0 and a damping μ. Frequency fBPFO
depends on the rotation speed of the motor, fr, and bearing’s geometry, Equation (10).

Thus, the model is defined by four-parameters: amplitude A, damping factor μ, rotational speed
fr, the amplitude of the noise signal b(t). The exponential formula implanted in place of amplitude
A. Roller bearing simulated is a type SKF 6206 whose characteristics listed in Table 3. Every signal
contains 16384 samples (N) with a sampling rate of 51.2 kHz.

xBPFO(t) =
N∑

k=1

A.exp
(
−2πμ f0

(
t− k

fBPFO

))
·sin
(
2π f0

(
t− k

fBPFO

))
+ b(t) (8)

A =
e4ω − 1

e4
(9)

fBPFO =
nb
2

fr

(
1 +

dball
Dm

· cos(α)
)

(10)

Table 3. Bearing dimensions SKF6206.

D Outer diameter 62 mm
Dm Pitch diameter 46 mm
nb Number of balls 9

dball Ball diameter 9.525 mm
α Angle 0◦

To simulate the appearance and evolution of the defect, the database was made of created fifty-one
different values of the amplitude A, noted Ai with i = 1 . . . 51. For each value, twenty signals were
generated with a Gaussian variability of ±5% for the three parameters fr, μ and fo, Table 4. Thus, the
database was made on 51 signals × 20 signals ordered by increasing values. The amplitude for Ai=1−10

was constantly equal to zero, which had no variation for amplitude A. The deviation started from
eleven to fifty-one, introducing Equation (9) in Equation (8), to create signals, Table 4.
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Table 4. Simulation characteristics.

Ai=1−10 Ai=11−51

A 0
(
e4ω − 1

)
/e4

ω 0 0:0.025:1
fr (rpm) 1000 ± 5% 1000 ± 5%
μ 0.05 ± 5% 0.05 ± 5%

fo (kHz) 10 ± 5% 10 ± 5%
b(t) 0.1:0.2:0.5 0.1:0.2:0.5

4.2. Effect of Internal Parameters of The OPTICS Method

OPTICS uses two parameters ε and MinPts. ε was calculated in the initialization phase, after
collecting all the data. ε depends on the MinPts value. For simulation, ε had a value in a range
(0.909–0.920) for a range MinPts =(2–20). Thus, this value varied only slightly during the initialization
phase. Its value for the MinPtsth neighbour was kept for the rest of the algorithm. Figure 3 confirms
the value of ε. After the initialization phase, ε increased abruptly.

Figure 3. ε as a function of MinPts for 0.1b(t) level noise.

Minpts was related to the number of signals for an instant. Table 5 shows the effects of MinPts for
three levels of noise. This table aimed to represent the effectiveness of the automatized ε and MinPts,
with the initial state that is the Euclidean distance that exists in the OPTICS algorithm, and all the
features (seventeen). From this table, the optimal value of MinPts was n/2. This value of MinPts made
it possible to detect the fault before the others.

Table 5. Effect of Minpts on detection time, with Euclidian distance, 17 features, ε = 0.094.

Minpts 0.1b (t) 0.3b (t) 0.5b (t)

n/8 A12 A13 A14
n/4 A11 A13 A14
n/2 A11 A12 A12

The selection of the distance measure affects the results of clustering algorithms. In this section,
the advantages and disadvantages of every distance method used are shown in Table 6. The Euclidean
distance used in the OPTICS algorithm in clustering, to calculate the distance between two vectors, was
significantly difficult to iterate even an approximate of the precise values of data. Table 7 below shows
the effect of distance implanted in the AOC-OPTICS method for three noise levels. The Manhattan
distance could lead to the detection of the defect with global accuracy for the different signal to noise
ratio equal to 96.7%, and then the second one was the Mahalanobis distance that detected at 88.2%, for
the other distances the accuracy equaled 85.5%.
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Table 6. Advantages and disadvantages of different uses distance. x and y are features vectors.

Distance Formula Comments

Euclidean
(∑

(xi − yi)
2
) 1

2

Advantage
(1) Accessible to counting and suitable for datasets with

separated clusters [28].
(2) Fast for small data [28].

Disadvantage
(1) Susceptible to outliers [28].

(2) Results greatly influenced by variables [29].
(3) Failure in classification massive data.

Mahalanobis

(
(x− y)′C−1(x− y)

) 1
2

C is the covariance
matrix.

Advantage

(1) Suitable for correlated data.
(2) Provide curved and linear boundaries.

(3) The distance is a distortion caused by a linear combination
of attributes.

(4) Takes account of the shape of the clusters by employing
within-group correlation [30].

Disadvantage

(1) If the noise has a high effect, it can lead to covers of the
data provided and misclassification [31].

(2) It is not able to calculate the inverse of the correlation
matrix when the variables highly correlated [32].

(3) When the dimension is proportional, eigenvalues of
covariance equal zero, then distance cannot be calculated [33].

Cityblock
Or Manhattan

∑∣∣∣xi − yi
∣∣∣ Advantage

(1) Shows better performance with the datasets in terms of
less computation time.

(2) Easily generalized to higher dimensions.
(3) Having triangular inequality and offering better data

contrast than Euclidean distance [30].
(4) Relatively good data contrast in high dimensions.

Disadvantage (1) Sensitive to outliers [34].

Minkowski
Order q

( p∑
i=1

∣∣∣xi − yi
∣∣∣q
) 1

q Advantage (1) Useful in high dimensions of data [34].
(2) Useful for datasets with compact or isolated clusters.

Disadvantage (1) The terms of computation is expensive [35].

Chebychev maxi
(∣∣∣xi − yi

∣∣∣)
Advantage (1) It takes less time to count distances between data sets [36].

Disadvantage
(1) More sensitive to the scales of the feature magnitude, the
inherent weakness can be resolved by normalization of all

features before the classification task [37].

Table 7. Effect of distances, with MinPts = n/2, 17 features, ε = 0.094.

0.1 b(t) 0.3 b(t) 0.5 b(t) Global Accuracy

Euclidean A11 A12 A12 85.5%
Mahalanobis A11 A12 A13 88.2%
Manhattan A10 A10 A11 96.7%
Minkowski A11 A12 A12 85.5%
Chebychev A11 A12 A12 85.5%

4.3. Effect of Ranking Features

Usually ranking features is used in preprocessing data as a feature subdivision. The concept
for use is to count the random instance, then calculate their nearest neighbors and set the vector of
weighting features, which can distinguish the features from neighbors of various classes.

Two methods chi-square and relief were compared. Table 8 represents the result of the ranking
features. The comparative study presents the effectiveness of the relief method that could detect the
defect in the high accuracy from features number ten to the end. The chi-square start to recognize the
highest efficiency with twelve features. From the results of Table 8 could conclude that the method of
relief ranking features was the best with just ten features that was enough to obtain the highest accuracy.

Table 8. Global accuracy. Effect of ranking features with Manhattan distance, MinPts = n/2, ε = 0.094.

# Features 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Chi-square% 83 83 83 83 83 83 85.7 93.7 96.7 96.7 96.7 96.7 96.7 96.7
Relief % 85.7 85.7 85.7 85.7 85.7 85.7 96.7 96.7 96.7 96.7 96.7 96.7 96.7 96.7
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4.4. Results

In this section, the results were obtained for the following parameters: relief method, distance
from Manhattan, MinPts = n / 2 and ε = 0.094. A 3D visualization was chosen (three principal
components). In fact, the 3D results gave a detection accuracy of 96.7% and the 2D results covered an
accuracy of less than 93.7%. The results of the BPFO (ball pass frequency outer) simulation showed the
fault detected from signal A11, for noise levels 0.1b (t), 0.3 b(t) and A12 for 0.5b (t) (Figures 4–6).

  

(a) (b) (c) 

Figure 4. Effect of amplitude 0.1b (t): (a) A10, (b) A11 and (c) A51.

  

(a) (b) (c) 

Figure 5. Effect of amplitude 0.3b (t): (a) A10, (b) A11 and (c) A51.

  

(a) (b) (c) 

Figure 6. Effect of amplitude 0.5b (t): (a) A11, (b) A12 and (c) A51.

The follow-up starting after the end of the detection phase. GV monitors the growth of the fault
with the varied amplitude of signals. The evolution of GV was studied for the three noise levels 0.1b
(t), 0.3b (t) and 0.5b (t), Figure 7.
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Figure 7a represents the Calinski index calculated between the two clusters. The curve values
increased with increasing amplitude values. The Calinski index value for the 0.1b (t) was more
significant and the curve was above the others. For a high noise level, the evolution was linear
GV1 = 0.438k + 7.245

(
R2 = 0.980

)
, while for the other two noise levels the evolution was exponential

(R2 = 0.977 and R2 = 0.742).
Figure 7b represents the Davies–Bouldin index, the curve was the opposite of the Calinski-Harabasz

index, which decreased with the increasing amplitude of signals. The results observed here showed a
curve of 0.1b (t), which was above the other curves, and started near to one and ended near-zero. For the
three noise levels, the regression was linear. The mathematical model was similar: GV2 = −0.0236k +
0.954

(
R2 = 0.999

)
, GV2 = −0.0239k + 0.997

(
R2 = 0.997

)
and GV2 = −0.0252k+ 1.064

(
R2 = 0.994

)
respectively for 0.1b (t), 0.3b (t) and 0.5b (t).

Figure 7c represents the density of the defected cluster or the second class. The density decreases
over the amplitude of signals until it became constantly equal to zero, contrary to the Davies–Bouldin
index decrease, to attend near zero at the end of class. The comparison between the curves showed
that the density of 0.1b (t), bigger than the other noise to signal ratios. The evolution was exponential
with the mathematical model: GV3 = 1169e−193k

(
R2 = 0.975

)
, GV3 = 777e−O.147k

(
R2 = 0.950

)
and GV3 = 809e−0.151k

(
R2 = 0.720

)
, 0.1b (t), 0.3b (t) and 0.5b (t). The correlation was poor for a low

noise level.
Figure 7d represents the distance between two clusters, the distance values growing with amplitude.

However, the curvy curve had an increasing trajectory form for the three scenarios 0.1b (t), 0.3b (t) and
0.5b (t). Additionally, the distance parameter could observe the trajectory of 0.1b (t), was above the
other curves at the end, but initially, the three curves were conjoined, then started to separate from
an amplitude equal to k = 31. A linear model mathematic measurement could be done from k = 31,
GV4 = 0.300k − 0.714

(
R2 = 0.963

)
, GV4 = 0.146k − 0.434

(
R2 = 0.769

)
and GV4 = 0.097k − 0.297(

R2 = 0.698
)
.

Figure 7e represents the contour of the second cluster, showing the increase of contour with the
amplitude of signals. The comparison of the contour with the Calinski index shows, the Calinski index
remained increasing with the number of amplitudes. However, the contour values were similar for
noise levels at low amplitudes. The contour was relevant for a certain amplitude level, k = 31 for
low noise levels and k = 41 for higher noise levels. The regression models starting from k = 31 were
GV5 = 0.373e−0.154k

(
R2 = 0.948

)
, GV5 = 0.059e0.240k

(
R2 = 0.986

)
and GV5 = 0.034e0.215k

(
R2 = 0.924

)
.

In summary, the Calinski index differentiates noise levels for all amplitudes. However, the
mathematical regression model was different. For low noise levels, a linear model was interesting,
while for high noise levels, the exponential model was preferred. On the contrary, the Calinski
index was little influenced by the noise level, thus the linear regression model was relevant and
similar. That could show the importance of the Calinski index, which could separate the curves of
different scenarios, the value started with zero and grew directly with the amplitude, while the contour
parameter increased slowly with the amplitude. The parameters, density and distance, had values
close to 0 either for low amplitudes or high amplitudes. The evolutions were only visible for ranges of
amplitudes. According to these simulations the Calinski and Davies–Bouldin indexes were preferred.

This numerical investigation made it possible to fix the internal parameters OPTICS, ε = 0.094
(Equation (4)), MinPts (= n/2) and to optimize the methods involved in the AOC-OPTICS process
(relief method, t-SNE and Manhattan distance).
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(a) (b) 

(c) (d) (e) 

Figure 7. (a) Calinski index, (b) Davies–Bouldin index, (c) density, (d) distance and (e) contour.

5. Experimental Validation

5.1. Test Bench

The experimental bench consists of a crankcase connected with the electric motor of 10 KW
maximum power through a shaft and two rolling bearings: healthy (6206 ball bearing) and degraded
(N.206.E. G15 roller bearing), Figure 8. A hydraulic jack via steel cable was used to vary loads
on the shaft (Figure 8a). The motor has rotational speed controlled by variable speed drive. The
whole device was built to a concrete structure to isolate it from the low frequencies generated by the
external environment. A piezoelectric sensor was placed radially on the bearing, considered as the
best measuring point. The data were collected with a sampling frequency of 51,200 Hz. Eight defects
on the outer ring of the roller bearing were created with an electro pen. The defects were measured
using a paste mark "plastiform", Table 9. The resulting profile was characterized as roughness, with a
Taylor-Hobson subtronic 3P profilometer (Figure 8b). For the nine states of the defect (one healthy and
eight defect sizes), 10 randomly operating conditions were applied among 5 loads ranging from 100 to
220 daN, with a 30 daN step, and 5 rotation speed varies ranging from 1405 to 1560 rpm with a 50 rpm
step. The number of combinations was 90 (k = 90). For each combination 8 signals were collected
(n = 8) with 12,800 samples. The total database was made of 720 signals.
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a b

Figure 8. (a) Test bench (b) profilometer with PlastiformTM paste.

Table 9. Dimensions of the defects: width (W), arithmetic roughness (Ra) and total roughness (Rt).

Faults# Rt (μm) Ra (μm) W (mm) Faults # Rt (μm) Ra (μm) W (mm)

0 - - - 5 10.55 1.52 1.09
1 2.42 0.33 0.16 6 18.17 1.82 1.78
2 3.00 0.41 0.73 7 18.67 2.36 2.03
3 8.25 0.73 0.45 8 21.42 2.97 2.32
4 10.50 1.32 0.74

AOC-OPTICS method was applied. The inputs were Δt = 1 (de f ault value), Tini = 10 and
n = 8. Thus, at each iteration k, 8 new signals integrated the algorithm. Eighty signals initiated the
monitoring process.

5.2. Results

After the initialization phase (Tini = 10), the detection phase operated during the detection of
a second class. This detection was made for the iteration k = 11. The inputs parameters were
Minpts = n/2 = 4 and ε = 0.12. Results of AOC-OPTICS method are represented in Figure 9. The
cluster number 2 appeared at iteration 11 and was confirmed by the following iterations. Despite the
variation of loads and speed the accuracy was 100%. The results of our methodology could detect a
tiny variation in the state of the bearing. All these results could demonstrate the robustness of the
used methodology.

  

(a) (b) (c) 

Figure 9. Experimental validation (a) Iteration 10, (b) Iteration 11 and (c) Iteration 90.
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5.3. Follow-Up

The follow-up starts at iteration 11 to iteration 90 for the 5 GV, Calinski and Davies–Bouldin
index, density, contour and distance, Figure 10. The behavior of these variables was different and
remained similar to the behaviors established during the simulation. The Calinski index increased with
the size of defects. At iteration 65, the index had an exponential evolution in the mathematical form
GV1 = 161.13e0.084k

(
R2 = 0.982

)
, Figure 10a. The Davies–Bouldin index decreased proportionally

with the fault, Figure 10b. In this case, a linear regression GV2 = −0.0107k + 0.947
(
R2 = 0.994

)
was

proposed. The density decreased with the increasing amplitude values to attend around zero from
signal number sixty to ninety, the mathematical model was GV3 = 197.15. exp(−0.095k)

(
R2 = 0.940

)
.

The distance curve was increasing with the increasing of the amplitude values. The evolution
was exponential GV4 = 0.225e0.039k

(
R2 = 0.828

)
. However the monotony was not relevant. There

was a lot of variability around the average trend, Figure 10d. The contour shows two trends,
Figure 10e. The contour evolved proportionally for the first 60 iterations with a low slope, GV5 =

0.014k − 0.0697
(
R2 = 0.934

)
. From the 60th iteration onwards, the evolution remained linear but

increased sharply, GV5 = 0.4791k− 3.518
(
R2 = 0.904

)
.

  

(a) (b) 

(c) (d) (e) 

Figure 10. Follow-up of the detected cluster: evolution of (a) Calinski index, (b) Davies–Bouldin index.
(c) Density, (d) distance and (e) contour.

By comparing the evolution of these indicators, the Calinski index and the contour showed some
singularities in the evolution at iteration 60 corresponding to defect 5. These parameters indicate
the severity degradation stage in the rolling bearing. The Davies-Bouldin index was the index most
correlated to the number of iteration (R2 = 0.994). In general, these indicators allowed us to make a
prognosis on the evolution of these parameters with the iterations.
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6. Conclusions

This paper proposed an automatic online methodology for monitoring ball bearings by optimizing
the internal parameters of the OPTICS method and the dimension reduction step. The dynamic
monitoring AOC-OPTICS was divided into three phases: the initialization, the detection and following
the defect. The methodology was confronted with a simulated fault evolution and then with
experimental data. The detection reached an accuracy of 100%. The follow-up was assured by
geometrical values whose trend followed linear or exponential mathematical models with correlation
coefficients up to 0.994. This methodology brings many improvements: (I) This automated methodology
used the best parameters for the detection and following the defects with high accuracy. (II) The
variation of speed and load cannot lead to discovering the fault in the rolling bearing. Only the
amplitude leads to detecting the faulty state. (III) The relief method is efficient compared to chi-square,
which is used to delete unnecessary features, which can make the iteration to be calculated speedily.
(IV) The characteristics parameters related to the defect facilitate monitoring of the evolution with the
times. (V) The density and Calinski and Davies–Bouldin index represent efficacy more than the other
parameters, for monitoring the defect growth trajectory. The major perspective is to add the diagnostic
part in the methodology to increase the prognosis. This part must be based on previous knowledge
provided by a digital twin or an expert.
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Abstract: For decades, industrial companies have been collecting and storing high amounts of data
with the aim of better controlling and managing their processes. However, this vast amount of
information and hidden knowledge implicit in all of this data could be utilized more efficiently. With
the help of data mining techniques unknown relationships can be systematically discovered. The
production of semiconductors is a highly complex process, which entails several subprocesses that
employ a diverse array of equipment. The size of the semiconductors signifies a high number of units
can be produced, which require huge amounts of data in order to be able to control and improve the
semiconductor manufacturing process. Therefore, in this paper a structured review is made through
a sample of 137 papers of the published articles in the scientific community regarding data mining
applications in semiconductor manufacturing. A detailed bibliometric analysis is also made. All data
mining applications are classified in function of the application area. The results are then analyzed
and conclusions are drawn.

Keywords: data mining; semiconductor manufacturing; quality control; yield improvement; fault
detection; process control

1. Introduction

The last few decades have seen the birth of a great diversity of products and ser-
vices associated with electrical and electronic equipment, and witnessed the presence of
electronic and electrical equipment in a large number of products and services, which
are subject to constant change [1]. During the last few years, since semiconductor man-
ufacturing processes have gradually diminished in size, the number of transistors that
can be fabricated on a sole silicon wafer can amount to a billion units [2]. In order to
account for the dynamic evolution of production and distribution and the changes caused
by technological advances and inventions, companies that operate in this field need to be
flexible and to be able to adapt quickly to a constantly changing environment [3].

Semiconductor production is the process that creates integrated circuits, such as tran-
sistors, LEDs, or diodes that can be found in electrical devices and consumer electronics.
During the front-end process, the crystalline silicon ingot is produced and the wafers are
cut, the electrical circuits are created by photolithography and other chemical processes
and, finally, they are electronically tested. In the back-end process, the chunks are cut
from the wafer, wired (glued), encapsulated, and tested [4]. The semiconductor manu-
facturing industrial units (known also as fabs) are one of the highest capital-intensive
and entirely automated production systems, in which agnate processes and equipment
are utilized to manufacture integrated circuits through a wide range of extensive and
complex processes with firmly controlled manufacturing processes, reentering process
flows, advanced and complex equipment, and demanding deadlines for complying with
constantly unpredictable demands of a constantly increasing product mix [5].
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The concept Industry 4.0 involves employing artificial intelligence technologies, data
mining techniques, big data and deep learning analysis to the current industrial infras-
tructure for the purpose of developing innovations that are disruptive [6]. The objective
is to strive to put into practice this concept, which will allow flexible decision-making
and smart manufacturing systems, as anticipated by the Industry 4.0 concept. Therefore,
by turning Industry 4.0 a reality, the role of the Internet of Things (IoT) and additional
emergent technologies will have a central role [7]. So far, the tendency to have unmanned
operations and increasing automation in semiconductor production systems, as in other
production technologies, is constantly growing [8].

Conventionally, semiconductor production systems are known for having a highly
complex and lengthy manufacturing process. Typically, semiconductor wafers require a
number of process steps that could easily surmount half of a thousand to be produced [9,10].
The level of complexity of every step is frequently equated to that of a medium-sized indus-
trial unit, particularly in such areas such as logistics, planning, control, and data volume,
among other steps. Consequently, growing requirements and pressure to perform with a
high plant productivity pose a difficult challenge for companies operating in semiconductor
manufacturing [1].

The ever-growing demand for integrated circuits that are able to deliver higher per-
formances at lower costs is something semiconductor companies are well familiar with.
Therefore, wafer metrology tools are employed for designing and producing semiconduc-
tors, cautiously monitoring line widths, film properties, and possible defects in order to
improve the production process. Data mining techniques together with metrology tools
and wafer verification abilities guarantee a close desired result of the electrical and physical
properties of produced semiconductors. Data mining with wafer metrology can accurately
and quickly recognize surface pattern defects, particles, and additional conditions that are
capable of causing adverse effects on semiconductor performance [11].

Data mining is one of the areas of the knowledge data discovery process and is
capable of providing innovative avenues for interpreting data. Data mining comprises
the extraction of significant and implicit, previously unidentified, and possibly valuable
information from data. Data mining offers the ability to detect patterns that are hidden
amid a set of data. Data mining is the process of sorting and classifying data, then finding
anomalies, patterns, and correlations in large data sets to predict outcomes. Employing
a wide variety of techniques, companies can use this information for problem detection,
quality control, increase revenue, cut costs, improve customer relationships, and reduce
risk, among others [12]. Since modern semiconductor manufacturing processes suffer from
a great degree of complexity, and the amount of data is overwhelming, it is still challenging
to reach fast yield improvement by discovering manually useful patterns in raw data [11].

Throughout wafer manufacturing, equipment data, process data, and the historic
data will be semiautomatically or automatically collected and grouped in a database in
order to be able to diagnose faults, to monitor the process, and to effectively manage
the production process. Nevertheless, in such advanced manufacturing units such as
semiconductor production, numerous aspects and details are interconnected and have
an effect on the yield of the produced wafers [13]. Therefore, data mining techniques are
a solution for a significant amount of challenges that the semiconductor manufacturing
faces, such as yield improvement [5,11], quality control [14], fault detection [15], predictive
maintenance [16], virtual metrology [17], scheduling [18], business improvement [19], and
market forecasting [20], among others.

Despite the existence of a high number of studies regarding data mining applications
in semiconductor manufacturing, a gap was identified in the literature, in which the
necessity to compile and analyze in a more comprehensive way through the compilation in
a single paper every published study arose, and expressly perform it without restrictions
on location or characteristics. With the intention of filling the identified gap in the research,
the aim of this paper is to compile all the existing publications on this topic on Scopus
and WoS and to classify and compare them. Therefore, one of the goals of this study is to
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understand the state of the art regarding data mining solution to existing challenges in
semiconductor manufacturing. A bibliometric study is presented, in which are analyzed
the number of publications over time, the co-occurrence network, the most cited authors,
the distribution of keywords by observed frequency, among other bibliometric metrics.
This analysis, besides analyzing bibliometric indicators and making a comparison between
distinct features, it also has the purpose to frame these indicators in distinct categories and
highlighting every case, not only to seek and detect future research pathways, but also to
have a better comprehension of data mining applications in semiconductor industry and to
endorse it in order to disseminate its use.

This paper is organized as follows. In Section 2, a brief overview of the semiconductor
manufacturing process is given. In Section 3, a structured bibliometric analysis is made.
In Section 4, a qualitative organization and analysis data mining application studies in
semiconductor manufacturing can be found. In Section 5, a brief result analysis and
discussion is made. Finally, in Section 6, overall conclusions are given.

2. Bibliometric Analysis

According to the literature, a systematic literature review neutralizes the perceived
weaknesses of a narrative review [21]. A systematic literature review usually has distinct
stages of preparation, direction-finding and publishing, and diffusion. Every stage might
comprise numerous steps of the review process by being part of a method or system
that is created to precisely and objectively focus on the overall question the review is
bound to answer. In this study, the research design applied in [21–24] was followed, as
seen in Figure 1, by comprising five steps: problem conception; literature search; research
evaluation; research analysis; and finally result summarizing.

 

Figure 1. Literature review approach.

The objective of this bibliometric analysis is to know the state-of-the-art of data mining
application in the semiconductor manufacturing. In a scenario where companies store
large amounts of data, data mining approaches are used to extract useful information and
knowledge automatically [25]. To achieve that, data mining approaches use a combina-
tion of algorithms and concepts from artificial intelligence, statistics, machine learning,
and data management [26]. Accordingly, in this bibliometric analysis we look for data
mining applications in semiconductors where authors attempt to extract information and
knowledge in semiconductor manufacturing from large datasets.

After the topic of data mining data mining applications in semiconductor manufac-
turing was selected as an object of intensive study in this literature review, an extensive
bibliographic research was carried out on the subject and its surroundings. The purpose
of this analysis is to identify and evaluate the adopted methodologies of data mining
applications in semiconductor manufacturing, by taking into account all the scientific
studies found.

The research methodology was carefully developed in order to allow the identification
of relevant patterns and areas for the study under analysis. The literature research process
comprises such characteristics as the collected qualitative and quantitative information
being well defined and delimited, a detailed analysis being made based on the evidence
and characteristics recognized in the subject of the study, the analyzed papers are organized
by application areas, all contents are analyzed in a qualitative manner, which favors the
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identification of important subthemes and the successful interpretation of results. We
considered papers that address the application of data mining to exploit data stored during
semiconductor manufacturing processes. So, in the first step, the usefulness of each article
was verified by reading its summary and introduction, so that those who seemed to be
out of the review due to imprecision and a lack of details were excluded. Additionally,
despite that some of the data mining algorithms and techniques may be applied by semi-
conductor manufacturing authors, we excluded any papers that do not approach its use for
information and knowledge extraction. After defining the aforementioned delimitations,
a more detailed analysis was made on the articles that effectively added value in their
incorporation in the review article. The purpose of data mining application has been
carefully revised. This more detailed analysis includes: a selective reading and choice of
material that suits the objectives and proposed theme; an analytical reading of the texts
grouping them by application areas; and concludes with the interpretative reading and
writing of the literature review body.

After the main elements of the research process have been well established, it becomes
essential to adopt some essential assumptions for the accomplishment of this analysis.
First, following the guidelines from [27], only indexed and peer-reviewed articles were
taken into account, and the indexing databases considered were Scopus and Web of Science
(WoS). The keywords utilized were “Data Mining” and “Semiconductor Manufacturing”,
which garnered the highest number of results. However, also, all the possible variants,
such as “Semiconductor Fabrication”, “Semiconductor Production”, and “Semiconductor
Packaging” were utilized in order to cover all the possible published papers through this
combination. Table 1 shows the results from different combinations of keywords in the
database.

Table 1. Results from different combinations of keywords in the database.

Search Stream
Results

Scopus WoS

“Data Mining” AND “Semiconductor Manufacturing” 142 87
“Data Mining” AND “Semiconductor Fabrication” 11 9
“Data Mining” AND “Semiconductor Production” 8 5
“Data Mining” AND “Semiconductor Packaging” 2 2

The publications considered for this study were publications in English and the type
of articles were journal research articles, journal review articles, conference articles, book
chapters, and editorials. A few papers were found in Chinese and Polish, but were excluded
from this study. In Figure 2 the flowchart of the paper selection process can be observed.
In the end, a final sample of 137 papers was used for the article analysis. This sample
comprises almost all papers found with the keywords used.

All the selected studies were classified by year and the result can be seen in Figure 3.
Three waves can be seen, the first wave that comprises paper from 2004 to 2007 peaked
in 2006 with 10 publications and then the interest waned. The second wave peaked in
2014 and comprises the years 2011 until 2015. Finally, the last wave of interest in this topic
can be seen, peaking in 2019, with 12 publications. This wave is still ongoing. However,
if divided by decades, one can notice that the decade 2010–2020 comprises 64% of all
publications, while the previous decade comprises only 33.5%. This interest reveals the
growing scientific interest in this topic. This increase coincides with the overall interest in
data mining applications for other industries [28,29].
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Figure 2. Flowchart of the paper selection process.

 

Figure 3. Publications by year of data mining applications in semiconductor manufacturing.

A particular importance has to be given to the papers that garner the highest interest
in the community, which is measured by the number of citations that a study has. Figure 4
shows the most cited studies of data mining applications in semiconductor manufacturing,
according to Scopus. It can be observed that the first four articles are much more cited than
the remaining ones. The most cited paper is proposed by [30] and deals with maintenance.
It addresses a multiple classifier machine learning technique for predictive maintenance in
the ion implantation process, and, at the time of the writing of this study, it is only 5 years
old. The second most cited article is an overview data preprocessing with two examples,
with one in semiconductor manufacturing [31]. This study has more than two decades and
it is one of the main reasons why it has 185 citations. The third most cited study deals with
quality issues and proposes a framework that combines traditional statistical methods and
data mining techniques for fault diagnosis and low yield product for the process of wafer
acceptance testing and probing [13]. Finally, the fourth most cited study, with 168 citations,
addresses a rule-structuring algorithm based on rough set theory to make predictions for
the semiconductor industry [32]. This study is focused on decision support systems and
has almost two decades. Still, these four studies, which address data mining applications
in different contexts and areas of semiconductor manufacturing and distinct subprocesses,
are an example of how vast the applications of data mining techniques in this process
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are. The interest that these studies attracted is a staple in their respective subcategories of
semiconductor manufacturing. Lotka’s Law states that the large number of small paper
producers bring together about as much as the small number of large paper producers [33].
The frequency distribution of scientific productivity according to Lotka’s law is shown
in Figure 5, Chen-Fu Chien being the most productive author. This can also be observed
in Figure 4, in which Chen-Fu Chien is the author of nine of the most cited papers, since
Chen-Fu Chien is also a coauthor of the fifth [34] and last [5] most cited papers from this
figure.

 

Figure 4. The most cited studies of data mining applications in semiconductor manufacturing.

 
Figure 5. The frequency distribution of scientific productivity according to Lotka’s law.
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Keyword Analysis

A bibliometric keyword analysis was performed. This analysis was made with the help
of VOSViewer software [35] and biblioshiny, which is a web application for Bibliometrix,
and R Package [36]. Both have similar but distinct applications. First, the intention was to
identify which were the most employed keywords. Therefore, a keyword analysis with
VOSViewer software was performed with the main goal to evaluate the specifics of the
discussion on how data mining applications in semiconductor manufacturing.

For the goal of this paper, the Keywords Plus function has been employed with the
purpose of harmonizing the keywords that other authors have employed in the Abstract
and Keyword section of their respective publications. This analysis shows that 2845 key-
words were employed in the selected studies. However, only 51 of these terms appear at
least 12 times. The six keywords with the highest occurrences are “data” (which appears
264 times), process (which appears 134 times), system (appearing 117 times), approach
(appearing 109 times), and, finally, terms “model” and “semiconductor manufacturing”
(both appearing 94 times). The network of co-occurrence links between these keywords is
also shown in this paper with the intention of complementing the analysis of keywords
co-occurrence. The generated keywords co-occurrence network map can be observed in
Figure 6. Three different clusters can be observed.

 

Figure 6. The generated keywords co-occurrence network map by VOSViewer software.

However, another analysis was made with biblioshiny of the Bibliometrix, from the R
Package. With this application it is possible to go more in-depth regarding keyword analy-
sis. Here, only keywords inserted by the authors of their respective papers were considered.
The top five keywords that are inserted more often are “data mining”, “semiconductor
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manufacturing”, “machine learning”, “feature selection”, and “yield enhancement”. How-
ever, by making just this simplified analysis not enough can be deduced. In Figure 7 the
obtained frequency chart with biblioshiny can be observed with the distribution of the
47 most often found keywords in the selected sample of papers. A total of 349 keywords
were found through the simplified technique employed in [37] to represent Zipf’s law. This
law stated that certain terms occur much more frequently than others and the distribution
is similar to a hyperbole 1/n. As the authors from [37], however, the occurrence of the
keywords is stratified in decreasing order of frequency and categorized into three areas
of analysis. First, the most important zone represents the basic or trivial information area,
which shows the most essential terms on the subject. The second zone comprises the
terms considered “interesting information”. This zone can comprise potentially innovative
information and fringe themes. Finally, the last area is the noise zone. This area could
represent concepts not yet emerging or even simply, noise.

 

Zone 1: Trivial Information

Zone 2: Interesting Information Zone 3: Noise

Figure 7. Distribution of keywords by observed frequency.

3. Semiconductor Manufacturing Process

The term “semiconductor” refers to a critical component in millions of electronic
devices employed in current daily lives in education, research, communications, healthcare,
transportation, energy, and other industries. Smartphones, mobile, wearable devices rely
on semiconductors for both core operations and advanced functions and are driving global
demand for semiconductors and printed circuit boards (PCBs).

The line width of semiconductors has undergone a drastic reduction, passing from the
micrometer to the nanometer scale, while, in parallel, the process power and memory have
been increased. Integrated circuits, made of a semiconductor material (such as silicon),
are an important part of modern electronic devices in both commercial and consumer
industries. These circuits must have the ability to act as an electrically controlled on/off
switch (transistor) in order to perform basic arithmetic operations in a computer. To
achieve this almost instantaneous switching capability, the circuits must be made of a
semiconductor material, a substance with electrical resistance that lies between a conductor
and an insulator.

The manufacturing process for semiconductor devices requires several steps that take
place in highly specialized facilities. Semiconductor production is a considerably complex
process with long lead times that are necessary to deliver the capabilities expected from
everyday use of our devices. The semiconductor production times vary depending on the
complexity; however, on average, it can take three to five years from initial research to final
product.

Highly pure silicon is the most important raw material for the production of micro-
electronic components such as ICs, microprocessors, and memory chips. Figure 8 shows
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a summarized version of the manufacturing process. The first step in manufacturing a
semiconductor device is to obtain semiconductor materials, such as germanium, gallium
arsenide, and silicon, of the desired level of impurities [38,39]. Impurity levels of less
than one part in a billion are required for most semiconductor manufacturing [40,41].
Due to the microscopic size of semiconductors, even the slightest hint of contamination
can compromise their performance. The partly aggressive liquids required in the further
manufacturing process of the microchips for metallizing, developing, etching, and cleaning
should be safely conveyed, circulated, and processed [42].

 

Figure 8. A simplified representation of the semiconductor manufacturing process.

The second main step is the crystal growth of monocrystalline silicon and growth
of multicrystalline ingots [43]. Then, from these ingots, wafers are cut, and then shaped,
polished, and cleaned with the purpose of being ready for further processing or for device
manufacturing [44]. To achieve a functional device with predetermined specifications as a
final result, it is necessary to carry out a prior design process for each of the manufacturing
steps and a mask design, especially, for the masks used in the photolithographic processes
that makes semiconductor manufacturing possible. The mask comprises the master copy
of the pattern that will be printed on the wafer [45].
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The next important step consists of chemical mechanical planarization or chemical
mechanical polishing (CMP) is a process in which topographical irregularities can be re-
moved from wafers with a combination of chemical and mechanical (or abrasive) polishing
in order to obtain the smoothest surface possible [46,47]. The process is usually used to
planarize oxide, polysilicon, or metal layers in order to prepare them for the subsequent
lithographic step [48,49]. During ion implantation, high-energy ions are shot onto the
substrate to be doped by the doping agent. The distribution of the implanted atoms in the
semiconductor can be specifically influenced by the energy, the entry angle, and the use
of masks. With multiple implants carried out one after the other, even complex doping
profiles can be produced with good accuracy and replicability [50,51].

As seen in Figure 8, one of the most important steps in semiconductor manufacturing
is extreme ultraviolet (EUV) lithography a process that allows carving more electrical
circuits in semiconductor silicon wafers. In a lithographic system, images are transferred to
silicon with light [52,53]. EUV lithography is considered to be essential to semiconductor
manufacturing since it is able to produce a shorter wavelength that allows a greater quantity
of electrical circuits to enter a chip [54]. Then, an important step is etching, which is utilized
in microfabrication to chemically eradicate layers of a material from the surface of a wafer
in order to create a pattern of that material on the substrate [55].

The following step is wafer probing, which is the procedure of electrically verifying
each die on a wafer. This is accomplished by utilizing an automatic wafer probing sys-
tem, which is actively searching for functional defects through by employing special test
patterns [56–58]. The next step, semiconductor packaging and assembly process, involves
enclosing ICs and encompasses from die-attach adhesives to liquid and film-shaped encap-
sulation compounds, sealing, lead forming/trimming, deflash, wirebonding, lead finish
to heat-conducting materials, and conductive and non-conductive adhesives for sensors,
among others. The encapsulation technology protects the sensitive layers from external
influences and maintains their efficiency [59,60]. Finally, the final component is carefully
tested in order to verify if it meets the requirements of standard specifications. The testing
process is employed to test semiconductors in the context of design verification, specialized
production, and quality assurance [61].

4. Data Mining Applications in Semiconductor Manufacturing

Data mining techniques can have a vast array of applications in the semiconductor
industry. The obtained articles were classified accordingly to areas of application. Five
major areas for data mining applications in semiconductor manufacturing emerged: quality
control, maintenance, production, decision support systems, and finally, categorized as
a whole, measurement, metrology, and instrumentation. However, other applications
also exist, such as for human resources and talent recruitment and retainment [62], patent
analysis [63], supply chain and inventory management [64], and stock market analysis [20],
proving that data mining techniques can truly be employed for a wide range of applications.

Figure 9 shows the schematic representation of these applications. In some cases, only
one article exists, and as such the direct reference is provided. In other cases, the identified
five major areas are divided by subsections, in which a more detailed analysis is made.
Additionally, this section is also useful for practicing engineers, since they can quickly find
the semiconductor process step or data mining model they are looking for. They can also
find the study that has been implemented and validated in industrial setting and through
corresponding references, access to it.
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Figure 9. Schematic representation of several data mining applications in semiconductor manufacturing and localization
according to categorized areas of application.

4.1. Data Mining Applications for Quality Control

Misaligned image processing can cause thousands of auxiliary operations and dam-
aged wafers during a machine’s life during the photolithography process, wafer scrutiny
and inspection, or wafer mounting and cutting [65]. Inefficient image processing systems
cost semiconductor companies market share and contribute significantly to their overall
costs [66]. Data mining techniques are able to provide robust, precise, and fast wafer and
chip pattern location for wafer inspection, probing, assembly, cutting, and test equipment
to avoid such types of problems. These techniques allow manufacturers to control the
quality of wafers and chips with high precision and accuracy, ensuring reliable equipment
performance during the semiconductor manufacturing process.

The main purpose of quality prediction tools is to forecast the behavior of the product
and then to be able to also forecast the trends of values of its critical parameters, typically
accomplished by employ learning functions that have the capacity to stem knowledge from
the preceding information. Forecasting quality with the help of data mining techniques
normally starts by creating a model based on previous data, for instance labeling samples,
and then assess and verify the unidentified samples, or to evaluate, from a given sample,
the attributes’ value ranges [67].

Table 2 shows the categorized papers by data mining applications for quality control in
distinct steps of semiconductor manufacturing. These steps are identified, when possible,
and can be found in the summary proposal. The table is subdivided into eight major
columns and in a few can be observed the year of publication, reference, and the overall
summarized description of the study. One of the remaining columns describes the proposed
and/or used data mining algorithm, which can be helpful by quickly identifying a specific
algorithm. The next column shows which DM technique is used. The remaining columns
show if the sample data is collected from a real production site or if it was simulated, and
if it is real, it is identified, when possible, by company and country of origin. Additionally,
if experimental validation studies were performed on site, it is also highlighted.
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This topic is the most popular one, with 47 publications. By observing Table 2, it
can be seen that several applications are made in distinct subprocesses such as wafer
probing and testing process, etching process, and photolithography, among others. A
high and varied number of algorithms are employed. The majority of articles address
challenges of correctly identifying defective patterns in order to improve production
yield [68]. Yield is a quantitative measure of the quality of a semiconductor process. It
is measured as the number of functioning dies or chips on a wafer and can also be seen
as the fraction of dies on the yielding wafers that are not rejected during the production
process [107]. However, other applications in quality control can also be found, such as a
study addressing a design-of-experiment (DOE) data mining for yield-loss diagnosis for
semiconductor manufacturing by detecting high-order interactions, for subprocesses such
as lithography and etching, among others [85]. These data mining technique are also used
with statistical process control. Cumulative sum control charts, known as CUSUM, are
a special type of statistical process control tool that is used in [89] as part of and unified
outlier detection framework, which takes advantages of data complexity reduction by
employing entropy and sudden change detection through the use of CUSUM charts.

4.2. Data Mining Applications for Maintenance

Only a few articles were published addressing maintenance management and predic-
tion, but are important nonetheless. Only five papers were classified and can be observed in
Table 3. This table is organized as Table 2. As it can be noticed, these studies are sparse and
the majority were published in the last 8 years. However, the most cited article is a study in
this area of application. In this study a multiple classifier machine learning methodology
for predictive maintenance in the ion implantation subprocess is proposed [30] and a
similar study is proposed in [16]. In another study, hidden Markov model-based predictive
maintenance for semiconductor wafer production equipment and documented over one
year was proposed in [108]. A data mining technique that is able to deliver early warning
by identifying tool excursion in real time for advanced equipment control in order to di-
minish atypical yield loss is proposed in [109] and was validated by practical applications
in the field. Finally, the last study addresses spatial pattern recognition in order to improve
the resolution and identification of defective and malfunctioning tools in semiconductor
manufacturing developed and implemented at Advanced Micro Devices, Inc. (AMD) [110].

Table 3. Data mining applications for maintenance prediction and management in semiconductor manufacturing.

Year Study Proposal
Proposed/Used

Algorithm
DM

Techniques
Real World

Dataset
Real World
Validation

Location of
Dataset or
Company

Ref.

2017

Hidden Markov model-based
predictive maintenance for

semiconductor wafer
production equipment,
recorded over one year

Preliminary fitting of a
hidden Markov model

(HMM)
Genetic, genetic

algorithm

Yes No - [108]

2016

Predictive Maintenance with
time-series data based on

Machine Learning tools in Ion
implantation

Supervised Aggregative
Feature Extraction

(SAFE)
Yes No - [16]

2015

A multiple classifier machine
learning technique used for

predictive maintenance in Ion
implantation process

Support Vector Machines
k-Nearest Neighbors

Classification
Clustering Yes No - [30]

2012

Data mining technique that is
able to deliver early warning
by identifying tool excursion

in real time for advanced
equipment control in order to
diminish abnormal yield loss

Decision trees,
Chi-Squared Automatic

Interaction Detector,
Rough set theory

Classification Yes Yes Taiwan [109]

2008

Spatial pattern recognition to
improve the identification

and resolution of rogue and
possibly malfunctioning tools

in semiconductor
manufacturing

Spatial pattern
recognition

(+)Feature
selection Yes Yes AMD (USA) [110]
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4.3. Data Mining Applications for Metrology, Measurement, and Instrumentation

The high necessity for always striving to make progress regarding the yield of current
semiconductor production processes and decrease the time-to-market for more advanced,
innovative, and gradually elaborate designs and processes demands for process tools and
wafers to be examined and verified with up-to-date measurement systems and equipment.
Several papers, namely 19, are categorized in this topic, as depicted in Table 4. This table is
organized as Table 2. The topics addressed in this section range from models comprising a
precise semiconductor photolithography process control method through virtual metrology
by employing significant correlations between focus measurement data encountered by
data mining and tool data [111].

In fact, virtual metrology is a recurring topic, and is defined as a set of methods that
allow predicting the properties of a wafer through sensor data and machine parameters in
the manufacturing equipment, thus avoiding the highly expensive physical measurement
of the wafer properties [112–114]. Since machine data is typically sampled much more
often when compared to metrology data, and since machine data becomes immediately
available when compared to the delays that frequently occur with metrology tools, an
accurate virtual metrology is capable of meaningfully developing the process control and
monitoring performance through a constantly supply of real-time forecasted metrology
data. A few feature extraction methods for virtual metrology with multisensor data are
proposed in [17,115,116].

However, other measurement and instrumentation were also proposed and classified.
For instance, in [117] a real-time data mining solution with the segmentation, detection,
and cluster-extraction (SDC) algorithm that can automatically and accurately extract defect
clusters from raw wafer probe test production data is proposed. Additionally, a data
mining that employs machine learning methods with the purpose of modeling unknown
functional interrelations and to predict the thickness of dielectric layers deposited onto a
metallization layer of the manufactured wafers is proposed in [118]. Finally, at IBM, a data
mining technique with the purpose of automatically identifying and exploring correlations
between inline measurements and final test outcomes in analog and/or radio frequency
(RF) devices and by integrating domain expert feedback into the algorithm in order to
identify and remove bogus autocorrelations [119]. Practical application and validation of
this technique is made.
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4.4. Decision Support Systems

Another trend in semiconductor manufacturing is the use of decision support systems
(DSS). A DSS is a system designed to support in solving unstructured and semistructured
managerial problems, throughout all the decision process’ stages [132]. The DSS use in this
area is not novel. Earliest publications in this area date to the 1990s (e.g., [133,134]). DSSs
are used to support decision-making in activities like production scheduling, simulation,
prediction, material selection, fault detection, quality, etc. DSSs may, sometimes, have a
knowledge base, which requires artificial intelligence to provide knowledge to support
the decision process. However, the earliest uses of DSS required knowledge modeling by
knowledge engineers from documented and expert knowledge. Knowledge extraction
from unprocessed data allowed one to discover hidden knowledge in large amounts of
data. The use of data mining techniques to uncover knowledge to be modeled in DSS is a
trend also present in semiconductor literature. Researchers apply data mining techniques
to find patterns and hidden relations that may help in semiconductor decision making.
Usually, the goal is to determine links between control parameters and product quality,
essentially in the form of decision rules [135].

In Table 5 the literature where data mining is used to support the decision-making pro-
cess in semiconductors’ manufacturing is presented. Analyzing this table, one can see that
most contributions address yield management and failure detection issues (see [135–145]).
The authors from [146] aim at the same problem, but focus on the development of a com-
puter integrated manufacturing (CIM) system to improve product yield. Other articles
provide isolated contributions. In [147], the authors propose the application of data min-
ing techniques to support decision-making in HR management of high-tech companies.
In [148], the authors suggest the integration of data mining in semiconductor manufactur-
ing execution systems (MES). Last, in [32] provides a multi-purpose data mining application
for predictions in semiconductor manufacturing.
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4.5. Data Mining Applications for Production and Production Scheduling

Traditional methods for production planning often require complex calculations and
do not always allow a prompt reaction to changes or short-term adjustments that may
arise. Given the size of the semiconductor production lines in a factory, sensors within
production equipment are capable of delivering enormous amounts of data. This data can
be, in turn, used not only for machine control, but also for production analysis purposes,
especially real-time production planning. This has the potential to bring great advantages,
especially in those industrial units in which the production is affected by frequent dynamic
changes in the orders to be processed or technical specifications. Additionally, machine
learning processes are able to recognize patterns and automatically learn and operationalize
practical forecast models from a wide variety of data sources and large amounts of data.
Therefore, in the context of semiconductor manufacturing with its complex and numerous
subprocesses, numerous data mining applications are proposed for the production and
production planning environment.

Table 6 depicts the articles addressing data mining applications for production in
semiconductor manufacturing. A total of 16 papers were found in this category. This table
is structured as Table 2. It can be noticed that from 2009 until 2015 is when the bulk of these
studies were published, then a four-year hiatus was observed. From 2019 can be noticed
some interest in the topic.

Many of the studies concerning production planning are focused on reducing cycle
time. In [155], a new approach that is capable of integrating data mining that intends to
forecast arrival rates and determining the allocation of interchangeable tool sets in order
to reduce the work in process (WIP) bubbles for cycle time reduction is proposed. While
in another study [64], a cycle time forecasting model is developed by employing knowl-
edge discovery in databases by following cross industry standards for data mining. A
data-mining approach for estimating the interval cycle time of each job in a semiconductor
manufacturing system is proposed in [156] and a data mining methodology, which identi-
fies key factors of the cycle time in a semiconductor manufacturing plant, which intends to
predict its value is addressed in [157].

Scheduling is another concern in semiconductor manufacturing due to its vast number
of steps and jobs [158–160], confirmed by the majority of the identified studies in Table 6.
Efficient order scheduling structures are required for balancing the production load and
capacity throughout all the production stages [161]. A data mining dynamic scheduling
strategy selection model that is able to respond to a constantly altering system status
for a semiconductor manufacturing system is proposed in [18]. In [162] a data-driven
scheduling knowledge life-cycle management for an intelligent shop floor is proposed
and validated through a simulation model of the semiconductor production line. As early
as in 2004 scheduling challenges were a concern, evidenced by a study proposing an
hierarchical clustering method in [163] that is able to discriminate groups according to
the similarity of the objects and used to schedule semiconductor manufacturing processes.
In [164] a dynamic scheduling model, which is able to optimize the production features
subset is proposed, and this model is capable of creating a SVM-based dynamic scheduling
strategy classification model for semiconductor manufacturing. A data-based scheduling
framework and adaptive dispatching rule for semiconductor manufacturing is addressed
in [165] by employing backward propagation neuronetworks (BPNNs). Finally, a shop
floor control system in semiconductor production by self-organizing map-based smart
multicontroller is given in [166]. This study, as all the scheduling studies, showed a better
system performance than the typical fixed decision scheduling rules.
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5. Discussion

After analyzing all the studies collected in the sample, a few trends begin to be noticed.
First, that studies regarding data mining applications in subprocesses such as ICs and mask
design are very scarce. The same occurs with studies addressing wafer cutting, cleaning
drying, and polishing, while edge rounding and lapping subprocess has no dedicated study.
This is better illustrated by Figure 10 in which a representation of several studies depicting
data mining applications in several subprocesses of semiconductor manufacturing can be
seen. It is noticeable that the majority of studies are concentrated in 5–6 major steps. A few
studies do not specify in which subprocess data mining techniques are applied, and these
are not represented in Figure 10.

 

Figure 10. Representation of several studies depicting data mining applications in several subprocesses of semiconductor
manufacturing.

Another trend visible in the analyzed literature is the diverse use of data mining
techniques. The application of data mining in semiconductor manufacturing has a different
focus depending on the subject areas concerning the manufacturing processes. However,
most articles address mainly the issues of quality control, maintenance, and production.
Predictive techniques, using algorithms as regression or decision trees, are often used in
semiconductor literature to estimate wafer quality [81], fault detection [121,136], or cycle-
time [170]. Classification techniques in quality control arise as a way to classify defects [83],
failures in bin maps [91], or production lots [131]. The exploration of yield loss causes [84]

250



Processes 2021, 9, 305

or failure diagnostics [98] is performed using techniques as rule induction, decision trees,
and association rules.

Many opportunities and improvements can still be made. For example, the semicon-
ductor companies could employ the internet of things and sensors to empower industrial
units with the capability of interpreting data and transmitting analytics, in real time, to
an application that could provide insights and alerts to whom it may concern [174]. This
will allow these players to gather a high amount of data. However, even though internet
of things and data mining applications represent a key opportunity for semiconductor
manufacturing companies—one that they should start to pursue as soon as possible, while
the use of data mining in the sector is still developing under the current upgrading envi-
ronment. Nevertheless, the effectiveness and scale of the internet of things implementation,
and with it a comprehensive use of data mining techniques, could depend on how fast
industry players can overcome some challenges [175]. In order to persevere and being
able to accompany the change speed and challenges, semiconductor companies are re-
quired to adapt rapidly. Taking into account this dynamic, industrial units should embrace
digitalization in an agile manner as well [176].

Limitations and Challenges

Even though employing data mining techniques has been very beneficial for this
industry, as shown by all the studies used in this review, several disadvantages of data
mining still exist and are as follows:

• Data mining systems can violate privacy. Absence of safety and security can be very
detrimental to its users and it can create miscommunication between employees, thus
leading to genuine privacy concerns [177].

• Security is an important factor related to every data-oriented technology, and semicon-
ductor manufacturing is not an exception. Data that is very critical might be a target
of malicious attacks [178].

• Too much and redundant information collection can be disadvantageous as irrelevant
collected information is a challenge [179,180].

• There is a possibility of information misuse through the mining process. Data mining
system have to evolve in order to diminish the misuse of the information ratio [181].

• Accuracy of data mining techniques is another limitation [182]. Accuracy is an evalua-
tion system of measurement on how well a data mining model can perform. Many
common accuracy and error scores for regression and classification can occur. There-
fore, improving accuracy becomes paramount.

• Several challenges of data integration and interoperability in data mining can occur.
Data interoperability and data integration affect the performance of an organization.
A comprehensive approach has to be made in order to address the challenges in
interoperability and integration [183,184].

• Missing and imbalanced data is a challenge in this industry. In cases in which data
is imbalanced, the majority of classification algorithms have as a consequence a
weak performance. Since wafer yield enhancement is a crucial performance index in
semiconductor wafer manufacturing, key process steps must be cautiously selected
and managed [9].

• Data processing time is another limitation that has a significant impact on the available
time since data preprocessing very often involves more than 50% of time and effort of
the entire data analysis process [185].

This evolution of semiconductor manufacturing relies heavily on the big data ex-
plosion in order to cope with the abovementioned data limitations and challenges of the
semiconductor industry. Especially, supporting greater volumes and lengthier archives
of data has allowed many solutions to correctly portray system dynamics, significantly
simplify intricate multivariate interactions of parameters, eliminate disturbances, and clean
and overcome data quality challenges. Data mining algorithms in such types of solutions
must be rewritten in order to benefit from the parallel computation allowed by the high
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processing capacity and storage power with the purpose of processing data without con-
suming too much time. However, an enormous amount of data and a wide range of data
mining techniques does not mean necessarily more predictive capability and insights [186].
Researchers and practitioners have to adapt data mining techniques in a manner so that
these will be customized to specific applications in terms of data quality available data and
objective, among others.

Overall, through this review, some light was shed over the possible applications of
data mining techniques in semiconductor manufacturing. Yet, given the sheer number of
steps that this production process has, and due to its complexity, the number of studies
already made is still scarce. Big data and data mining allowed for original and innovative
insights through the analysis of large amounts of data and presenting correlations and
opportunities that were not previously noticed. However, decision makers must decide and
which data should be collected and employed and which questions must be answered [149].
This signifies that the potential to apply these techniques in other subprocesses is enormous
and is still left largely unexplored. Finally, by suffering constant and quick evolution, the
need to adapt these techniques to the newer processes in semiconductor manufacturing is
another opportunity to explore.

6. Conclusions

The production of semiconductors is a highly complex process, which entails several
subprocesses that employ a diverse array of equipment. The size of the semiconductors
signifies a high number of units can be produced, which require huge amounts of data
in order to be able to control and improve the semiconductor manufacturing process.
Therefore, in this paper a structured review was made through a sample of 137 papers
of the published articles in the scientific community regarding data mining applications
in semiconductor manufacturing. A detailed bibliometric analysis was made. All data
mining applications were classified in function of the application area. Five distinct areas
were identified: quality control, maintenance, production, decision support systems, and
finally, categorized as a whole, measurement, metrology, and instrumentation. Results
showed that quality was the most popular one, with 47 publications, making 34.3% of all
publications. Maintenance was an area in which only a few studies were made, highlighting
the gap and the opportunity for more studies to be made in this area.

The work performed in this study concerning data mining applications in semi-
conductor manufacturing can have theoretical implications. The characterization and
categorization of several useful and successful cases can positively contribute to future re-
search efforts of employing such a wide range of techniques with the purpose of increasing
the application and diffusion of data mining applications in semiconductor manufacturing.
Knowledge of different models and algorithms could have positive implications for the
development of theory, for understanding all the possible applications in different areas of
semiconductor production, but also for the development of practice, since many of these
were implemented and validated on the shop floor. However, as the literature review has
shown, many applications can still be made since several studies address only a specific
step of semiconductor manufacturing and documentation of real-life application are scarce.
Additionally, recent data mining techniques and models have a great opportunity to be
used since only a few studies exist. Finally, since the semiconductor manufacturing process
is always evolving, the need to adapt these techniques to the newer process is another
challenge and opportunity to explore.

Overall, as seen from all the comprised studies from distinct steps of semiconductor
production, the scope and functions of data mining techniques can be enhanced and
disseminated throughout the entire semiconductor manufacturing process in order to
provide, in real time, a proactive adjustment and advanced control decisions for the whole
process and the smart facilities. Therefore, more research should be made to employ and
facilitate smart production for Industry 4.0 in several industries for digital transformation
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and for upgrading existing manufacturing units. This will allow for an improving capability
for optimizing interrelated decisions and improving decision flexibility.
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Abstract: In this paper, multiclass classification is used to develop a novel approach to enhance failure
mode and effects analysis and the generation of risk priority number. This is done by developing
four machine learning models using auto machine learning. Failure mode and effects analysis is
a technique that is used in industry to identify possible failures that may occur and the effects of
these failures on the system. Meanwhile, risk priority number is a numeric value that is calculated by
multiplying three associated parameters namely severity, occurrence and detectability. The value
of risk priority number determines the next actions to be made. A dataset that includes a one-year
registry of 1532 failures with their description, severity, occurrence, and detectability is used to
develop four models to predict the values of severity, occurrence, and detectability. Meanwhile,
the resulted models are evaluated using 10% of the dataset. Evaluation results show that the proposed
models have high accuracy whereas the average value of precision, recall, and F1 score are in the
range of 86.6–93.2%, 67.9–87.9%, 0.892–0.765% respectively. The proposed work helps in carrying out
failure mode and effects analysis in a more efficient way as compared to the conventional techniques.

Keywords: Industry 4.0; auto machine learning; failure mode effects analysis; risk priority number

1. Introduction

Failure modes and effects analysis (FMEA) is a proactive analytical technique for identifying,
tracking and mitigating product and process potential failures in a systematic way by determining its
potential occurrence, root causes, consequences, and impact [1]. FMEA provides a quantitative score
to evaluate failures where every failure is transformed into a numerical value that is called risk priority
number (RPN). RPN is the result of multiplying three parameters namely severity, occurrence, and
detectability. Severity is the risk or damage that may affect the machine, product, next operator or the
end-user. On the other hand, occurrence is the likelihood of this failure that may occur again. Finally,
detectability is the degree to which this failure could be detected [2–4]. Higher RPN value represents
a higher priority of risk [5]. Appropriate corrective actions are usually determined based on RPN
threshold value. If this threshold is reached, a risk mitigation procedure is applied accordingly [6].
Moreover, RPN value is used as a tool for optimal resource allocation by giving focus on risks that
have the highest RPN or the most critical issues [3,7].

FMEA was firstly developed by NASA in 1963 to enhance the performance of the devices that are
used in the aerospace industry [8]. Later, FMEA was adopted and promoted by Ford Motors in 1977 [3].
Currently, FMEA is being used in the automotive industry to ensure the quality and reliability of
production systems [9]. Daimler Chrysler, Ford, and General Motors have developed an international
standard called SAE J1739_200006 as general guidance for implementing FMEA techniques to avoid
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failures and enhance system reliability and safety [10]. FMEA documents are classified into two types
namely design FMEA, and process FMEA [11]. Design FMEA is constructed during product design
to define product weaknesses, critical components and their respective potential failure modes, root
causes, and effects [1]. Meanwhile, process FMEA focuses on potential failures that may occur during
the manufacturing process and incurred risks at each process step [3].

FMEA is a robust tool for quality improvement in both manufacturing and services industries.
It can be used at the design stage of the product and during its implementation [9]. The aim of this
is to avoid the end-user from experiencing unfavorable defects that may affect the reputation of the
company negatively [3]. FMEA is also used as a process improvement technique to ensure consistency,
reliability and avoid deviations. Moreover, it is also used to define and mitigate risks [12]. On the other
hand, FMEA is used to improve maintenance management by analyzing the maintenance requirements
of the product and developing the maintenance plans that would be used to ensure that the system
is doing what it is meant to do when it was created. Finally, FMEA is used to improve safety by
conducting hazards analysis of components that have critical hazards on lives, property, or other losses
that are identified and mitigated [7].

However, FMEA is criticized for many conceptual aspects. The most popular disadvantage of this
method is the narrative and qualitative nature of its structure. For every product or process, FEMA
documents are developed by engineers and experts using linguistic terms that are based on the personal
evaluation. The RPN parameters’ values are determined by engineers and experts which may include
uncertainty and vagueness [12]. Moreover, the parameters that are used in FMEA are represented by
(1–10) crisp scale which is an unreliable representation of real-application cases [5,13]. Additionally,
Chang, et al. in [3] have criticized the RPN estimation by the inhomogeneous morphologic correlations
between the three parameters. This criticism is based on the fact that each of these parameters is
obtained and linearly multiplied by the other with an identical scale. This process is done despite the
actual impact of every independent parameter and the different qualitative interpretation of the scale.
For example, high severity value should result an extremely high RPN value due to the critical hazard
on the operator or the machine. In other words, once there is a risk on human, the other parameters
shouldn’t downgrade the overall value of RPN even if they are low.

Thus, in order to overcome this ambiguity, researchers proposed several approaches to improve the
application of FMEA and the development of RPN. Several fuzzy techniques were examined to develop
a new risk assessment approach to overcome the weaknesses of FMEA. Haktanır and Kahraman
in [13] have summarized several fuzzy techniques and grey theory and proposed interval-valued
neutrosophic (IVN) sets-based FMEA to eliminate the inaccuracy of human decisions and evaluations.
Ayber and Erginel in [12] have proposed single-valued neutrosophic (SVN) Fuzzy FMEA as a new
risk analysis tool to overcome the ambiguity of the linguistic terms. Al-Khafaji, et.al in [14] have
proposed a fuzzy multicriteria decision-making model aligned with FMEA principles to obtain an
efficient criterion for maintenance management. Liu et al. in [5] have used cloud model theory and
hierarchical TOPSIS method to enhance FMEA effectiveness, overcoming bias probability of human
judgment, and to facilitate the transformation of qualitative terms to quantitative values. Yang et al.
in [2] have utilized a data mining-based method for isolating faults based on FMEA parameters in
order to enhance predictive maintenance by using historical big-data to create data-driven models,
by which future failure can be predicted efficiently and accordingly avoid failures at a very critical
operational item. Keskin and Özkan in [6] have applied a fuzzy adaptive resonance theory (ART)
method for FMEA modeling in order to improve the classical methodology of calculating the RPN,
which in total minimized cost and efforts needed to respond to corrective actions alerts.

In the aforementioned research, the interpretation of FMEA documents was well addressed and
resolved. However, the weakness of FMEA and RPN is not limited to the ambiguity of the FMEA
textual description nor its quantitative representation, but it also extends to the importance of being
proactive and responsive to failures. The flow of information once a failure is detected until the time it
is ranked and resolved is important as well to guarantee minimum impact and limited implications.

262



Processes 2020, 8, 224

Another shortcoming of the conventional FMEA technique comes from the fact that its documents are
prepared during the product or process design stages, which makes these documents obsolete after
production starts ahead. Therefore, these documents need to be dynamically validated and updated
on a continuous basis. Hence, utilizing new technologies is very vital to overcome these weaknesses
and keep these documents updated and responsive [2].

In the era of Industry 4.0, connectivity offered instant communication and collaboration among
the value chain. Artificial intelligence (AI), the internet of things (IoT), big-data, and cyber-physical
systems (CPS) made a great leap in automation and optimization at all levels of manufacturing.
Here, automation is not limited to machines and processes, but also to management information
systems such as enterprise resources planning (ERP), customer relationship management (CRM) and
quality management systems (QMS) [15]. Additionally, the real-time flow of data among the value
chain, which is instantly analyzed and transformed to user-friendly information, thanks here to the
advanced supercomputing and analyzing power [16], resulted new paradigms of manufacturing
systems which are being called nowadays by smart factory, smart machine, smart product and
augmented operator [17]. These pillars changed the production systems from being reactive to be
proactive and levered the human intervention from doing the work to supervise it while it is being
done. Sensors, 3D cameras, radio frequency identifier (RFID), and Wi-Fi made monitoring processes
more precise and accurate. Unseen defects or deviation of products or processes can be detected as
soon as it is occurring. Defect elimination and processes re-adjustment are made autonomously at
the micro and macro levels [15,18,19]. All these technologies, alongside the increased complexity
of products and their manufacturing systems, generated a large volume of data, at a high velocity,
veracity, and variety. The analysis of such big data requires advanced resources and techniques to
classify data and detect patterns that cannot be detected using traditional analytical tools.

Automated machine learning (AutoML) are tools that automate the process of a machine learning
workflow, offering the same capabilities of regular machine learning, without explicit knowledge
of programming [20]. AutoML aims at reducing the human intervention in data preprocessing,
feature selection and algorithm selection so as to make machine learning automated [21]. Google
AutoML is a cloud machine learning platform that automates supervised machine learning in a very
efficient way. It handles the tasks of data preprocessing, feature extraction, feature engineering, feature
selection, algorithm selection, and hyperparameter optimization [22]. Google AutoML automatically
develops models based on neural architecture search (NAS). It follows the try and error strategy by
developing the model based on a random set of hyperparameters, then evaluates the performance
of the model which is resulted by using this set of hyperparameters and finally concludes the most
accurate model [22,23].

AutoML is increasingly used in scientific research areas. Faes et al. in [24] have evaluated the
performance of AutoML hosted by google cloud platform against other machine learning methods
and algorithms. It is claimed that AutoML has higher accuracy in medical image classification and can
be used by people who are less experienced in coding and algorithms. Similarly, Hayashi et.al. in [25]
utilized Google AutoML to identify pest aphid species and improving crop protection effectiveness.
The authors concluded that such a tool provided an accuracy of 0.96 which allowed them to consider
the AutoML as a useful and effective tool. Additionally, Li et al. in [26] have used AutoML to
automate customer service activities by analyzing different customers’ information and respond to
their inquiries based on historical frequent inquiries. According to the authors, the solution provided
improved responsiveness and minimized the cost of customer service management. Moreover,
Galitsky et.al in [27] proposed a novel approach to automate customer complaints processing and
classification by training a machine learning algorithm for analyzing dialogues recorded between
customers and company-agents.

Based on that, the aim of this paper is to examine a novel optimization approach applied to
FMEA and RPN by classifying failures according to updated FMEA documents and generating the
RPN automatically without human intervention. A successful FMEA is gained through optimized

263



Processes 2020, 8, 224

consistency, responsiveness, and accumulated experience. The suggested approach aims at solving
the above-mentioned FMEA weaknesses by two steps: first, reviewing and re-evaluating a dataset
containing reported failures manually by experts to ensure accuracy. Secondly, conducting supervised
machine learning techniques on the updated data and develop machine learning models that can be
deployed to evaluate and classify newly reported failures automatically with minimum processing
time and enhanced consistency.

2. Study Background

In this research, CLAAS Hungária Kft (CLH) is adapted as a case study. CLH was established
in 1997 in Hungary as a subsidiary company of CLAAS Group. CLAAS group is an international
German family-owned business company based in Germany and owns many manufacturing plants
worldwide. CLAAS is a world-leading manufacturer of agricultural equipment and machinery such as
tractors and combine harvesters. Since establishment, CLH expanded from 350 workers and 8 hectares
plant to more than 700 workers working on a 14-hectare plant and became a center of excellence for
combine harvester tables and trolley carts production. CLH manufactures supplementary devices such
as combine harvester tables, cutting heads, and trolley carts, as shown in Figure 1. These devices are
shipped from Hungary either to the mother company that is located in Germany or directly to the
end-customers for final assembly with the machine which can be a combine harvester or a tractor. The
cost of a single failure is tremendously high, not only due to the machine cost itself but also due to the
entailed logistics and the re-work cost.

 
Figure 1. Sample of devices manufactured at the subsidiary company subject of this study.

CLH’s staff has developed “Quality Checklists” for every product, process or manufacturing
phase. These quality checklists are developed based on the FMEA documents and are being used at the
quality gates in the shop floor in order to ensure that common failure causes are avoided. Moreover,
this process aims to make sure that critical device components are installed and configured at the
optimal conformance to design. However, as mentioned earlier, FMEA documents are prepared during
the product design phase and can be changed once the serial production is initiated. Meanwhile,
further failure modes can be detected at the final assembly phase. Therefore, these quality checklists
are demanded to be dynamic, updatable and responsive to real quality issues reported during or
after production.

This research activity is focusing on a single device that consists of the combine harvester feeder
house as shown in Figure 2. Feeder house is a device that is attached to the combine harvester to
facilitate the control of the cutting head and the flow of crops from the cutting head to the combine
harvester. The device consists of several complex systems such as mechanical, hydraulic, electrical,
and electronic systems. This device is wholly manufactured in the subsidiary company in Hungary
and dispatched to be assembled to the combine harvester at the mother company in Germany.

Failures or defects which are observed during assembly or reported by end-users are gathered
on a daily basis through the global ERP system of the company. After that, this information is
extracted and manually and reviewed by an experienced quality management team. This evaluation
process aims at analyzing root cause and consequently taking the needed correction actions in order
to maintain profitability and high-quality production. The company uses an internally customized
FMEA technique to evaluate reported claims by obtaining RPN for every claim according to FMEA
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documents. The method which is used here aims at generating an RPN value for every claim on a
scale from 1 to 300 points, where 300 is the highest priority number.

 
Figure 2. Feeding house attached to the combine harvester body and ready to be attached with a
cutting head.

RPN in this CLH is obtained based on three major factors: (severity, occurrence, and impact).
Severity, or gravity as named by the company’s internal manuals, represents the risk consequences of
the claim from customer and company perspectives. It also includes the cost of resolving this issue
and the safety impact on the operator. The weight of this factor ranges between 1 to 10 points, where
1 is the lowest severity and 10 is the highest. In the meanwhile, occurrence represents the number of
incidents a specific claim has been witnessed in a specific period. The weighting scale of this factor
is also 1–10, where 10 is the highest. Impact is weighted by a scale of 3 points from 1 to 3. Impact
represents the repair efforts, time, repetition of the same work, and the overall impact of the claim on
the reputation and image of the company. The meaning of every scale value from 1 to 10 is elaborated
in detail in [3,9]. The evaluation process is summarized in Figure 3 below.

Figure 3. Factors affecting claim ranking and the weight of every factor.

Equation (1) shows the multiplication of the three factors values that results an RPN value between
1 and 300 points. An RPN value above 160 points is classified at a very high priority, while, a value
between 100 and 160 points is classified as a high priority. Medium priority is noted if the RPN value
is in the range of 35–100, while low priority is noted if the RPN value is less than 35:

RPN = Severity × Occurrence × Impact (1)
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According to the RPN value of every claim, the quality team decides the next handling steps.
Further steps could be tracing root cause(s) and ensuring the elimination of such cause(s) and/or
updating the quality checklists to ensure further failures will not repeat in the future. Time and
experience play a crucial role in this regime. It is important to improve the process of evaluating claims
and lever the current experience.

The evaluation and ranking process requires highly experienced people who are fully aware of
the FMEA documents and its applications. The volume, velocity, and veracity of claims reported,
and their processing time is very critical from a quality management perspective. It is essential in
such a high-value industry to resolve issues as soon as they are reported. Early and fast processing of
quality issues is translated to a lower quality cost and will positively enhance the general business
performance. Moreover, standardization of the evaluation process and consistency of the process is
vital to guarantee consistent RPN results every time.

The accumulated experience, time of processing, consistency of the evaluation process can be
attained through the proposed solution in this paper; utilizing automated machine learning to classify
and analyze claims data. Machine learning capabilities provide the capacity to analyze several input
features (columns) at one dimension, aligned with a large volume of data (rows) at the other dimension.
This helps in discovering and analyzing unseen factors, considering that the best quality practices focus
on the claim root cause analysis. Additionally, utilizing technology whenever possible is very promising
in the industry, because of its availability at any time (24/7) under any conditions and its ability to
go deeper in analysis beyond human capacity. Delegating such tasks to machines will let human
intelligence focus on higher strategic issues and to reach a higher level of efficiency and effectiveness.

3. The Proposed FMEA Analysis Method

In this section, it is suggested to utilize supervised machine learning technology to replace human
intervention in processing, evaluating, and categorizing claims. The current flow of claims from
involved parties is illustrated in Figure 4. Claims from internal company quality product audit (product
audit claims) and issues that were detected during assembly (cross-company claims) are pipelined
in the company’s ERP system and human intervention is important at one point to evaluate claims
manually. Based on the evaluation results, quality management decides how to deal with every single
claim to find the root cause of the problem. This is done either by following the eight disciplines of
problem-solving (8D) methodology for critical or high-ranking issues or by just updating the shop floor
quality checklists in order to ensure the quality of next produced devices. Otherwise, this reported
issue is just as it is an accidental incident and occupies a very low RPN value.

Accordingly, a dataset that contains one-year data of claims is extracted from the ERP system of the
company. This data is concerning the selected device only (the feeder house shown in Figure 2). Firstly,
to ensure the accuracy of the developed models, the data was re-evaluated and validated manually by
experienced quality engineers to obtain the three RPN elements (severity, occurrence, and detectability)
and to define the root cause and the source manufacturing process (such as cutting, bending, welding,
painting, assembly, etc.) of every claim. The evaluation process depends on the experience of the
quality team and based on the internal FMEA procedure for every failure mode. The resulted updated
dataset is used for training and develop an ML model that is deployed to predict an RPN value for
future failures claims and classify its root cause instantly without further human intervention.
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Figure 4. The flow of internal quality audit and cross-company claims to quality management.

In this research, Google AutoML is selected for three reasons: first, its effectiveness, as Google
AutoML is free to try and utilizes the latest ML technology developed by Google brain team. Second,
its ease of use, which is very important to ensure the sustainability of the project results after the
research cooperation ends, keeping in mind that people who are working at the partner company
are less experienced with coding and modeling. Therefore, such a friendly system will ensure that
the partner company can deal with the work after the end of the project with the least knowledge of
coding and data processing. Third, its ability to integrate. It is agreed with the partner company to
integrate the developed models in the company’s ERP system. Google AutoML offers the ability to
deploy and integrate the resulted models by application programming interface (API).

Supervised machine learning is used to improve the failure claims processing process. Claims
are reported by engineers at the assembly location in Germany or from service centers to the quality
management office through the company’s ERP system. Claims are analyzed, categorized and ranked
by the quality management team based on FMEA documents. Accordingly, failures are ranked and
prioritized based on their importance and critical impact.

The proposed solution aims at developing an automatic claim ranking system to replace human
intervention based on developing four machine learning models that can read, analyze, evaluate,
and assign relevant ranking values for every processed claim. In order to do so, a dataset of already
evaluated claims is used to train the model. Afterward, the model will be deployed to evaluate new
claims based on the experience gained by the training data. Figure 5 below elaborates on the process of
models’ development, its inputs, and outputs. The first step in models’ training is to preprocess the
input data, feature selection, and data types. The auto machine learning tool results four models that
will be able to predict four independent values by which three of them will be multiplied to calculate
an RPN value. The fourth decides the source manufacturing process of the same claim.
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Figure 5. Development of machine learning model.

3.1. Data Pre-Processing

A dataset that contains 1532 rows of failure incidents has been received from the industrial partner
of this research project. The data was extracted from the ERP system of the company, it was recorded
over one year, and related only to the selected product in Figure 2. Every row in the dataset contains
the details of a single incident and described by 23 different input features (columns) that help the
quality engineers to recognize the failure mode and therefore, refer to the FMEA documents to assign
the proper RPN value that fits this failure mode. For example, a failure is claimed from the assembly
line in Germany where the engineers reported an incident of “an insufficiently tightened screws at
one component in the device”, along with this reported failure, further information are provided
such as the serial number of the device, the code number of the component as in the design, further
description written in textual format by the labor who solved the issue including his opinion on the
issue and its criticality, the damage code as picked from the list of options in the input screen, the
expected root cause of the problem is explained in text, the time consumed to fix the problem, and cost
involved for rework, and the final conclusion. Table 1 summarizes the input features types and roles in
the models. Whereas this dataset is used to develop the machine learning models. The first step is
to prepare the data for the AutoML platform. This includes ensuring that all features of the dataset
are organized, and data types are well defined. Additionally, the claims are validated manually by
the quality management team at the partner company using a specially programmed interface that
facilitates the manual validation process. This manual validation of data was made in order to ensure
the quality of the input data and therefore ensure the quality of the output models.

Table 1. Dataset input features for the machine learning model.

Data Type Number of Inputs Labels Brief Summary

Textual Text 3
Claim description, Root
cause, and remediation

action made

• This data is written in natural language by
the labors or engineers at the German
company, explains the failure, its root cause,
and the remediation action made

• It will help to recognize the failure mode,
its root cause, and its technical solution

Categorial Data 10

Machine code and name,
damage name and code,

initial criticality assessment,
component type, and
reporter information

• Contains data about the device affected, the
damage category, and its criticality

• It will help to identify reoccurrence of
similar failure, evaluate its importance, and
define the location at which it was detected

Numeric Data 10 Different costs data, number
of affected devices

• This data will help to evaluate the
consequences of this failure in terms of
labor cost, transportation, material cost,
and any extra costs
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Furthermore, 46 rows are excluded from the training process because of missing critical details
such as claim textual description and the root cause input. Moreover, scales (8–10) in severity and
(7–10) in occurrence had an insufficient number of claims (lower than 50 rows) for every element, these
records are excluded too, as shown in Table 2a. The reason behind that, AutoML platform cannot start
training with less than 50 readings per class. Therefore, the dataset is copied three times, and classes
with less than 50 readings are eliminated. Finally, 1484, 1425, and 1486 claims are used for models
training of severity, occurrence, and impact respectively. The data plot is shown in Figure 6 where the
distribution of the data is illustrated.

Table 2. Summary of dataset included in the modeling.

a. FMEA Elements

Scale
Number of Records

Severity Occurrence Impact

1 182 267 866
2 454 199 511
3 167 424 109
4 291 204
5 218 128
6 81 203
7 91 28
8 0 10
9 2 0
10 0 23

Total 1486 1486 1486
Dataset rows 1484 1425 1486
Training rows 1343 1269 1355

Evaluation rows 141 156 131

b. Category of Claim

Process Category Number of Records

Category A 89
Category B 104
Category C 464
Category D 123
Category E 206
Category F 86
Category G 303
Category H 68

Others 43
Total 1486

Dataset rows 1443
Training rows 1309

Evaluation rows 134

In addition to RPN evaluation, the research work includes classification of claims according to
the respective manufacturing process which is described to be the root cause process of the defect.
The names of processes are masked in Table 2b where the process could be any of the known machining
processes such as cutting, bending, welding, assembly, etc. Processes with less than 50 records are
excluded as well.
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Figure 6. Dataset plot of all claims based on RPN value.

3.2. Data Modeling

The AutoML platform analyzes the dataset and constructs the models automatically. Such analysis
includes text processing is made by the Google AutoML in addition to the other categorical and
numeric data.

Multiclass classification technique is applied to develop four Machine Learning models, while
the suitable algorithm is automatically developed by Google AutoML. Google AutoML is developed
to help researchers in handling large data and building high accuracy models with the least coding
experience and resource consumption. The datasets are uploaded, the input features are defined,
and targeted elements are selected. The prepared datasets are analyzed to obtain three independent
models that can evaluate every claim to predict three independent values for severity, occurrence, and
impact, from which an RPN can be calculated by applying Equation (1). Additionally, a fourth model
(for category) is obtained to identify the manufacturing process which caused this failure to occur.
The manufacturing process could be cutting, bending, welding, painting, assembly, packaging, and
transportation. The aim of the fourth model could be extended in the future to include more specific
processes such as welding machine 1, assembly line 2 and so on. Figure 7 illustrates the four models
obtained after training. As the AutoML platform is a cloud system, then the consumption processing
can be measured by node hour. The training process consumed 0.944, 1.105, 0.86, and 1.111 node hours
for severity, occurrence, impact, and category respectively. Every node hour includes the use of 92
n1-standard-4 equivalent machines in parallel, where a single n1-standard-4 machine operates four
virtual CPUs and 16 GB of RAM memory.

Figure 7. RPN evaluation and Category Classification models.
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3.3. Models Evaluation

The models’ evaluation is done by three evaluation metrics namely precision, recall, and F1 score.
Further evaluation metrics are adopted here such as area under curve (AUC) and the confusion matrices.

Precision is the percentage of true positive predictions to all positive predictions (true positive
and false positive). Recall is the percentage of true positive predictions among all actual values (true
positive and false negative). While F1 score is a balanced evaluation between precision and recall, and
it is used especially when the data in the datasets are not equally distributed over classes.

The area under the precision-recall curve (AUC-PR) and the area under the receiver operating
characteristic curve (AUC-ROC) are used to visualize the performance of the models. AUC-PR shows
the trade-off between precision and recall for the model. AUC-ROC shows the trade-off between true
positive rate and false-positive rate.

The confusion matrices are used here to elaborate on the prediction accuracy and accepted
tolerance of every class. For example, higher prediction resulted by any of the RPN elements models
(MS, MO, and MI) can be accepted because assigning higher ranking value to an incident increases its
priority. The limitation here is the degree of tolerance accepted by the company. To elaborate more,
when an incident is evaluated for a severity class of three, it is accepted if the model predicts a value
that is higher than the actual value by one step. However, it could be inefficient if the model predicts
two or higher steps than the incident deserves.

Finally, the accuracy of the models is affected by the type of every element, the number of rows
that are used for training, the accuracy of details provided per row, and the scale of every element (or
number of classes per element). It is important here to recall the objective of this work which is to
provide a proof-of-concept that machine learning is an effective technique to enhance FMEA and the
development of RPN value.

4. Results and Discussion

In this research, four machine learning models are trained and evaluated successfully in this
research. Table 3 summarizes the training evaluation results and accuracy metrics for four models
of severity (MS), occurrence (MO), impact (MI), and category (MC). The evaluation sample was
automatically split and tested by the AutoML platform.

The performance metrics in Table 3 shows relatively high-quality models, with different levels
of precision for each model. The area under the precision-recall curve (AUC-PR) and the area under
the receiver operating characteristic curve (AUC-ROC) are close to 1, which indicates high-quality
classification models. Moreover, the models’ precision rates are 93.2%, 87.6%, 89.9%, and 86.6% for MS,
MO, MI, and MC respectively, which indicates that the models predicted correctly the classes of the
validation sample for every model.

Table 3. Models Evaluation.

Dataset Targeted
Value

Validation
Sample

Score
Threshold

Precision
TPR

(Recall)
F1 Score AUC (PR) AUC (ROC)

Severity (MS) 141 test rows 0.5 93.2%
(96/103)

68.1%
(96/141) 0.787 0.895 0.970

Occurrence (MO) 156 test rows 0.5 87.6%
(106/121)

67.9%
(106/156) 0.765 0.871 0.955

Impact (MI) 131 test rows 0.5 89.9%
(116/129)

88.5%
(116/131) 0.892 0.954 0.973

Category (MC) 134 test rows 0.5 86.6%
(103/119)

76.9%
(103/134) 0.814 0.877 0.972

The highest F1 score is recorded for MI, where the full dataset is used for training, and the
classification was only among three classes (1, 2 or 3) while the training dataset for MI contains 866,
511, 109 readings for every class from 1 to 3, respectively.
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The confusion matrices shown in Tables 4–7 below show that the concentration of the true
predictions is at the diagonal cells of all models. However, both models MS and MO show higher
confusion for predicted labels against true labels, in contrast to MI and MC models where higher
concentration is shown at the diagonal cells. This is highly connected with the data volume and will be
improved when a larger volume of data is used for model upgrading.

However, predicting a higher value than the true one (negative true predictions in the confusion
matrices) for the three models (MS, MO, and MI) could be accepted, as higher prediction value for
severity will increase the RPN value and therefore, the priority to resolve the failure is increased.
However, this tolerance is not acceptable for MC as it deals with a totally different interpretation,
it describes the manufacturing process where the root cause of the failure is coming from. The model
shouldn’t predict a false manufacturing process instead of predicting a true one. In other words,
a wrong prediction that a failure is caused by a process (X) is totally rejected if it is actually caused by
another different process. However, such a disadvantage can be improved during the transition stage
where the process of automatic claims evaluation is running in parallel with the manual traditional
one so as to improve the next trained model after a larger dataset size is accumulated.

Table 4. Confusion matrix for the model of severity (MS).

Predicted Labels

T
ru

e
L

a
b

e
ls

Class 1 2 3 4 5 6 7

1 95% 5% - - - - -
2 - 89% 7% - 4% - -
3 - 7% 60% 13% 13% - 7%
4 - 17% 3% 67% 3% 7% 3%
5 - 20% 13% - 60% 7% -
6 - - - - 12% 88% -
7 - - 22% - 11% - 67%

Table 5. Confusion matrix for the model of occurrence (MO).

Predicted Labels

T
ru

e
L

a
b

e
ls

Class 1 2 3 4 5 6

1 81% 6% 3% 9% - -
2 14% 48% 14% 10% 10% 5%
3 - 7% 87% 4% 2% -
4 - 9% 9% 78% 4% -
5 - - 13% - 73% 13%
6 - - 5% - 5% 90%

Table 6. Confusion matrix for the model of impact (MI).

Predicted Labels

T
ru

e
L

a
b

e
ls Class 1 2 3

1 97% 3% -
2 18% 80% 2%
3 - 33% 67%

272



Processes 2020, 8, 224

Table 7. Confusion matrix for the model of category prediction (MC).

Predicted Labels

T
ru

e
L

a
b

e
ls

Class A B C D E F G H

A 95% - - - - - 5% -
B 14% 86% - - - - - -
C - - 71% - - 8% 13% 8%
D - - - 83% - - 17% -
E - - - - 86% - 14% -
F - - 25% - - 63% 13% -
G 5% 10% - - - 2% 83% -
H - - - - - - - 100%

Another approach to evaluate the developed models is to examine the RPN in the original dataset
(actual RPN) against the resulted RPN from applying Equation (1) to the three predicted elements,
call it (predicted RPN). The frequency histogram in Figure 8 compares the two readings (actual vs.
predicted) for the overall dataset. The histogram shows a high overlapping of results between the
two RPN values. Applying statistical accuracy measurements between actual and predicted values,
resulted in a mean absolute error of 3.86 and a root mean squared error of 12.76 which both represent
acceptable accuracy of predicted against actual. Therefore, this is another approach to evaluate the
models developed and showing that these models are effective and efficient.

In contrast, this histogram in Figure 8 shows a shortage in predicting higher RPN values when the
multiplication result is higher than 80 (the values larger than 140 in the histogram is a clear example).
The reason behind this weakness is due to a lack of data at high classes for severity and occurrence
in the training dataset. Enhanced accuracy can be reached by enlarging the training dataset and this
could be fulfilled when more data is accumulated over time. Given that the dataset used in this activity
contained 1532 claims for a single product in one year only. Further improvement can be achieved by
reviewing the predictions of the models after a testing period, where an expert engineer can compare
both the proposed AutoML approach with the traditional approach and conclude an enhanced and
extended dataset that can be used for models retraining. Another approach to improve the models
is to minimize the scale of classification for severity and occurrence from 1–10 to become 1–5 scale,
such change will improve the model precision and accuracy. Hint, the accuracy for MI is higher than
the others.

Figure 8. Originally evaluated RPN values frequency Vs Obtained RPN from the predicted Severity,
Occurrence and Impact Classes.
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Since the results of the proposed method are showing acceptable accuracy, given the dataset
volume and used method, the models can be deployed at the partner company. The advantage of the
proposed approach as compared to the traditional one is that it replaces the human intervention in
the process and automates the decision-making process. In the traditional approach, once a claim is
received from the mother company in Germany, a quality engineer in the quality management office
in Hungary reviews the claim, decides the failure mode type and then assigns values to the three
elements to calculate the RPN. Based on this judgment, further actions are decided. These actions can
be by transferring the issue to critical issue resolution by using strategies such as the eight disciplines
methodology (8D) if the RPN is above 160 points, or by updating the quality checklists at the production
shop floor or could be both. However, this human intervention may imply some implementation error
as it depends on the evaluator’s experience. For example, assume a claim was evaluated by a quality
engineer to be 160 points, while another engineer may underestimate the claim by ranking it to be
140 points based on his experience and memory. In the first situation, the engineer will transferee the
claim to a more sophisticated process (8D strategy) which entails using more resources by forming a
team to follow up and resolving the issue. On the other hand, the claim is highlighted to the production
management (the second case). This is because such a process depends mainly on individual judgment
and experience of the staffmembers who may give inaccurate estimation. Meanwhile, if such a process
is done by a machine that makes decision-based on the accumulated leaning process, such uncertainty
in decision making can be avoided. Thus, the proposed solution replaces this human intervention with
a machine learning algorithm that evaluates claims based on the accumulated and none individualized
experience and avoids the uncertainty in the experience of quality engineers. Moreover, the proposed
approach can automatically analyze the new claims and construct correlations between incidents and
therefore get a better ability for future prediction. Such process saves time, efforts, and improves
responsiveness to failures either by alarming the quality management team instantly to serious issues
or by automatically updating the quality checklists in the production shop floor by notifying labor and
production staff of this issue in a real-time manner. From a business perspective, the proposed solution
can be operated at any time and provides higher efficiency and effectiveness.

5. Conclusions

In this research, auto-machine learning was utilized to optimize failure modes handling by
automatically identifying the failure mode, obtain its RPN and identify the manufacturing process
related to the root cause of the issue. Three multiclass-classification machine learning models were
developed to predict values for the RPN three elements namely severity, occurrence and impact.
A fourth multiclass-classification model was developed to classify failures to their root cause process.
The models’ evaluation indicated relatively high accuracy models that can be deployed and integrated
to enhance the company’s ERP system. One of the features of the selected AutoML platform is its simple
integration through the API, which is offered on the cloud. Such technology performs efficiently for
large applications at the macro level of the factory. Utilizing such a solution enhanced the capabilities
of the quality management team to handle any volume of claims data under high flow velocity. Such a
solution will allow the quality team to focus on other strategic issues which will enhance the team’s
performance and results. The benefits of such technology do not end by this, but also could be furtherly
extended to link claims and defects to the relevant manufacturing machine and operator. Once a claim
is reported to the quality management it will be processed by the deployed model and instantly will
be communicated to the relevant operators or managers and deeper to the shop floor in the factory.
One more result for this research is that the manufacturing quality checklists for the selected product
can be dynamically updated to include the top ten issues which are updated continuously according
to their RPN. Such improvement enhanced the quality of processes and products. The factory in
this study uses large screens on the shop floor to display quality checklists at every manufacturing
process. These are used to review the quality issues while manufacturing processes are in place. A final
check is being made at the quality gate of every process. The operators can watch the screens which
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are updated every while and learn instantly about recently reported issues and making immediate
correction actions. Finally, it is important to highlight the factors that impact the quality and accuracy
of the developed models. For example, the accuracy of the model is strongly dependent on the quality
of the data originated at the first point where the failure or defect was initially detected. Empty data
rows, ambiguous information, or mistyping could forfeit important features and therefore, result in
inaccurate prediction and reduce the system credibility. Therefore, a recommendation was suggested
to the company to develop the data gathering platform (ERP system) in order to ensure higher quality
prediction in the future. Furthermore, it is also essential to keep updating and maintaining the model
by conducting periodical review sessions for the predicted RPN values and correct them when needed.
Retraining the model using a larger volume of data will accumulate the model experience and improve
model accuracy.
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