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Preface to ”Ion-exchange in Glasses and Crystals:
from Theory to Applications”

Ion-exchange (IEx) is a kind of diffusion process where the species in contact are charged

particles, such as ions. In such a case, the local electric field generated by the ions’movement

imposes some restrictions; thus, only coupled diffusion, namely, the interexchange of two or more

ions, is permitted. The IEx process is a natural event, which occurs in soil, minerals, and biological

systems. The origins of soil (and IEx) chemistry were in the observations of a few scientists in the

early 1800s (among them, the Florentine Giuseppe Gazzeri [1]) and in the detailed studies of the

Englishmen H.S. Thompson, in 1850 [2], and J.T. Way, in 1852 [3]. Way, in particular, performed

multiple experiments and found that the uptake of K, Ca, and Mg by soils was due to the presence of

complex silicates performing an ion-exchange function. The diffusion of Na+ ions in glass was first

studied in 1884 by E. Warburg [4]. The first practical industrial application of the IEx process occurred

at the beginning of 1900, and was related to water treatment. It followed up on the studies of two

groups of German chemists, namely, F. Harm and A. Rümpler [5] and R. Gans [6,7], who developed

synthetic sodium-aluminosilicate exchanger materials. Since then, IEx has become a fundamental

process in many applications involving the treatment and purification of water and, more generally,

in catalysis, chromatography, and the food and pharmaceutical industries.

A different area where IEx has been utilised for many centuries, even well before the associated

chemistry was understood, concerns glassy and ceramic materials. Luster ceramic pottery from

Mesopotamia in the 9th century AD and stained glass windows in Gothic churches created in the 14th

and 15th centuries in Europe are wonderful examples of ancient artworks produced through an IEx

process [8]. Luster decorations, widely used in Medieval and Renaissance pottery in Mediterranean

countries, substantially consist of a metal–glass nanocomposite (metal nanoparticles embodied in a

silica glassy matrix). This is obtained from the reaction of the pottery glaze with a paste constituting

a mixture of ingredients (e.g., copper and/or silver salts and oxides, vinegar, ochre, and clay) painted

on its surface. Heating at a temperature of around 500–600 °C in a reducing atmosphere induces an

ion exchange process between metals in the paste and alkali ions in the glaze; the Cu+ and/or Ag+

ions are then reduced to metal nanoparticles, aggregate, and remain trapped within the first layer of

the glaze, producing brilliant reflections of different colors and iridescence.

A similar process has been used since the early 1300s to create a yellow color on clear window

glass. The technique, known as silver stain or yellow stain, involves painting silver compounds

(e.g., silver oxide or nitrate, sulphate, and chloride) dispersed in a clay medium onto the glass and

then firing it in a kiln. During the heating, just above the glass transition temperature, the silver

ions are exchanged with the alkali ions present in the glass (mostly Na+ or K+). Then, due to the

presence of impurities in the glass, silver ions reduce to metallic silver nanoparticles, and the resulting

color depends on the size, shape and concentration of the nanoparticles. One of the first documents

describing this yellow stain dates back to around 1395–1396, when the glass painter Antonio da Pisa

wrote a brief treatise on the various steps of the process of making a painted window [9].

IEx in glass, however, found large-scale industrial applications only at the beginning of 20th

century, after the detailed studies of G. Schultze, who was the first, in 1913, to study the process using

silver nitrate salt (AgNO3) as an ion source and to outline the induced modifications of the surface of

the glass [10]. However, it took almost 50 years more to realise that such changes could be exploited

to make the glass more robust: the substitution of small ions such as Li+ or Na+ in an alkali-containing
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glass with larger ions, such as K+ from a molten KNO3 bath, induces bi-axial residual compressive

stress in the surface layers, which, in turn, strengthens the glassware [11]. K–Na exchange, similarly

to Ag–Na exchange, also induces an increase in the refractive index in the diffused layer.

The 1960s and 1970s saw an extraordinary breakthrough in physics and technology, with

the invention of laser and the development of low-loss optical fibers, making the design

and implementation of ultra-wide-band communication systems feasible. Optical miniaturised

components became necessary for the generation, modulation, coupling, switching and detection of

optical signals: the article by S.E. Miller, in 1969 [12], was published at the time of pioneering research

on planar optical waveguides and the starting point of a new R&D area, namely, integrated optics [13].

Glass has proven to be an excellent material for integrated optical circuits, thanks to its robustness,

low propagation losses and low cost; IEx provided a relatively simple and low-cost technology for the

fabrication of circuits. After early studies by T. Izawa in Japan [14] and T.G. Giallorenzi in the United

States [15], it became clear that ion exchange in glass offered effective solutions to many fabrication

problems.

At almost the same time, in 1965, A.A. Ballman at Bell Labs [16] and S.A. Fedulov and

collaborators in Russia [17] independently reported the successful growth by the Czochralski

technique of large and homogeneous single crystals of lithium niobate and lithium tantalate. These

crystals, together with potassium titanyl phosphate (KTP), have acquired great importance in

optoelectronics due to their excellent optical properties and their large piezoelectric, electro-optic

and nonlinear-optical effects. IEx has proven to be very effective in these crystals as well, for the

fabrication of integrated optical elements and devices (e.g., modulators, second-harmonic generators,

ring resonators, interferometers, lasers, etc.). The exchangeable ion in these crystals is Li+, and the

most efficient process is an exchange with H+ (proton exchange), even if Ag/Li exchange in lithium

niobate is possible [18].

Due to the relevance of ion-exchange technology for the development of advanced integrated

optical components and devices in glasses and crystals, we considered it worthwhile to compile a

Special Issue of Applied Sciences on this topic. The present volume collects articles published in 2021

[19]. Four papers are reviews and offer a broad overview of the field of IEx in glass, seen from

different points of view. Even if ion-exchanged glass waveguides have been already studied for

forty years, recently, some advances have been made in the theoretical modelling of the process.

Prieto Blanco and Montero Orille [20] present equations that describe the evolution of the cation

concentration rewritten in a more rigorous manner. Along with these equations, the boundary

conditions for the usual IEx from molten salts, silver and copper films and metallic cathodes were

established accordingly. Moreover, the modelling of some IEx processes that have attracted a great

deal of attention in recent years, including glass poling, the electro-diffusion of multivalent metals

and the formation/dissolution of silver nanoparticles, has been addressed.

The second review article, by Broquin and Honkanen [21], emphasises major breakthroughs in

the field of passive and active devices for telecommunication applications. The section dedicated to

sensors underlines the evolution of ion-exchange technology, which is developing from quite simple,

although extremely performant functions, to more complex integrated optical microsystems.

Berneschi et al. [22] aimed to clearly show how glass and ion-exchange are paired; far from

being an obsolete material/technology platform, this still plays a key role in various technological

fields with interesting applications and industrial developments that also have repercussions at

the level of everyday life. As an example, they underline the role that IEx, together with glass
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material engineering, can play in two areas: (a) the optimisation of substrates for the development

of high-performance surface-enhanced Raman scattering (SERS) devices; and (b) the creation

of increasingly high-performing flexible substrates towards the achievement of all-glass flexible

photonics as a valid alternative to those developed so far with polymeric materials. The fourth

review article, by Righini and Liñares [23], presents an introduction to some fundamental aspects

of integrated optical waveguides and devices, such as directional couplers, waveguide gratings,

integrated optical amplifiers and lasers, all fabricated by IEx in glass. Then, some promising research

activities on IEx glass-integrated photonic devices, and, in particular, quantum devices (quantum

circuits), are analysed. According to the increasing interest for passive and/or reconfigurable devices

for quantum cryptography or even for specific quantum processing tasks, the implementation of an

active integrated quantum state generator device for quantum cryptography and passive devices

with an IEx–glass platform is described, such as an integrated quantum projector.

Following these four review papers, the reader may find three original articles. The first, by

Montero-Orille et al. [24], proposes a simple polygonal model to describe the phase profile of

ion-exchanged gratings. This model enables the design of these gratings, and could also be useful to

design more complex diffractive elements. Several ion-exchanged gratings were fabricated to validate

the model and to characterise the processes involved in their fabrication; to show the practical utility

of this model, the design and fabrication of a grating that removes the zero order and of a three-way

splitter are reported, and their performance is analysed. In the study by Nikonorov et al. [25],

the influence of small additives on the spectral and optical properties of Na+–Ag+ ion-exchanged

silicate glass is presented. Polyvalent ions, e.g., cerium and antimony, are shown to reduce silver

ions to an atomic state and promote the growth of photoluminescent silver molecular clusters and

plasmonic silver nanoparticles. Na+–Ag+ ion-exchanged and heat-treated glasses doped with halogen

ions, such as chlorine or bromine, exhibit the formation of photo- and thermochromic AgCl or AgBr

nanocrystals. The presented results highlight the vital role of small additives to control the properties

of silver nanostructures in Na+–Ag+ ion-exchanged glasses. Possible applications of Na+–Ag+ IEx

glass ceramics include, but are not limited to, biochemical sensors based on SERS phenomena,

temperature and overheating sensors, white light-emitting diodes, and spectral converters. Finally,

Kip et al. [26] report an investigation of the ytterbium diffusion characteristics in lithium niobate.

Ytterbium-doped substrates were prepared by the in-diffusion of thin metallic layers coated onto x-

and z-cut congruent substrates at different temperatures. The ytterbium profiles were investigated in

detail by means of secondary neutral mass spectroscopy, optical microscopy, and optical spectroscopy.

Diffusion from an infinite source was used to determine the solubility limit of ytterbium in lithium

niobate as a function of temperature. The derived diffusion parameters are of importance for the

development of active waveguide devices in ytterbium-doped lithium niobate.

Overall, this volume represents an updated overview of several areas in the field of ion-exchange

in glasses and crystals for integrated optics applications. It certainly is not exhaustive, given the

high number of papers published on this topic in the forty-year history of integrated optics, but

the reader may find sufficient information, covering different topics, such as numerical modelling

and the fabrication of ion-exchanged passive waveguides, the design and fabrication of passive and

active components and devices, and prospects of applications in optical communications, optical

sensing, and quantum photonics. For these reasons, this book may be useful for a broad audience,

from MSc and PhD students to early-career researchers and teachers; we hope that it could trigger

newcomers’interest and stimulate research to overcome present limitations. A large number of
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references integrate the physico-chemical descriptions.

All authors are highly acknowledged for contributing to the realisation of this Special Issue; the

support from the Applied Sciences editorial staff has been greatly appreciated.
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[5] Harm, F. and Rümpler, V. Internationaler Kongress fur Angewandte Chemie, Berlin. 2.-8. Juni

1903 (Deutscher Verlag, Berlin, 1904).

[6] Gans, R. Zeolites and similar compounds: Their construction and significance for technology

and agriculture. Jahrb. Preuss. Geol. Landesanstalt 1905, 26, 179.

[7] Gans, R. Alumino-silicate or artificial zeolite, US. Patent No. 914,405; patented March 9, 1909.

[8] Mazzoldi, P.; Carturan, S.; Quaranta, A.; Sada, C.; Sglavo, V.M. Ion-exchange process: History,

evolution and applications. Riv. Nuovo Cim. 2013, 36, 397–460.

[9] Lautie, C.; Sandron, D. Antoine de Pise. L’art du vitrail vers 1400. Éditions du Comité des
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Model to Design and Fabricate Ion-Exchanged Diffraction Gratings. Appl. Sci. 2021, 11, 1500.

https://doi.org/10.3390/app11041500

[25] Sgibnev , Y.; Nikonorov, N.; Ignatiev, A. Governing Functionality of Silver Ion-Exchanged

Photo-Thermo-Refractive Glass Matrix by Small Additives. Appl. Sci. 2021, 11, 3891.

https://doi.org/10.3390/app11093891

[26] Ruter, C.E.; Bruske, D.; Suntsov, S.; Kip, D. Investigation of Ytterbium Incorporation

in Lithium Niobate for Active Waveguide Devices. Appl. Sci. 2020, 10, 2189.

https://doi.org/10.3390/app10062189
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Abstract: In the last few years, some advances have been made in the theoretical modelling of ion
exchange processes in glass. On the one hand, the equations that describe the evolution of the
cation concentration were rewritten in a more rigorous manner. This was made into two theoretical
frameworks. In the first one, the self-diffusion coefficients were assumed to be constant, whereas,
in the second one, a more realistic cation behaviour was considered by taking into account the
so-called mixed ion effect. Along with these equations, the boundary conditions for the usual ion
exchange processes from molten salts, silver and copper films and metallic cathodes were accordingly
established. On the other hand, the modelling of some ion exchange processes that have attracted a
great deal of attention in recent years, including glass poling, electro-diffusion of multivalent metals
and the formation/dissolution of silver nanoparticles, has been addressed. In such processes, the
usual approximations that are made in ion exchange modelling are not always valid. An overview
of the progress made and the remaining challenges in the modelling of these unique processes is
provided at the end of this review.

Keywords: ion exchange in glass; ion diffusion; glass waveguides; glass strengthening; glass poling;
metal nanoparticles

1. Introduction

Ion exchange in glass has been used for centuries for the purposes of decoration and
colouring. Glass lustre on ceramics with metallic nanoparticles from ion exchange has been
known from the early Islamic culture during the 10th Century [1]. However, the scientific
and industrial application of this technique dates back 60 years ago when potassium ion
exchange (IE) was first applied in the chemical surface tempering of glasses [2,3]. Next,
with the introduction of the concept of integrated optics in 1969 [4], ion exchange in glass
was proposed as a waveguide fabrication process. Just a few years after this proposal,
Izawa and Nakagome published the first work on ion exchange waveguides [5]. This kind
of waveguide presents several advantages: fibre compatibility, low propagation losses and
low cost. Moreover, ion exchange can be combined with other techniques, such as sol–gel,
for the fabrication of passive and active (rare-earth-doped) integrated optical devices [6].
Currently, the main applications of ion exchange are in glass strengthening [7–11] and in the
fabrication of photonic components for both guided-wave [12–18] and bulk optics [19–21].

In an IE process, cations (mostly Na+) close to the glass surface are replaced with
other monovalent cations such as K+, Li+, Rb+, Cs+, Tl+ or Ag+ [22]. Molten salts of
such cations are common sources of dopants, although a metallic film deposited on the
glass surface can be also a source of cations. The exchange takes place by a purely thermal
diffusion process or it can be assisted by an electric field. The new cations can change the
electrical permittivity, the stress and even the absorption of the glass, these being changes
proportional to the dopant cation concentration. By selective masking of the glass surface,
ion exchange can be locally prevented or allowed, giving rise to custom-made elements
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for specific purposes. The theoretical modelling of the IE processes ran parallel to the
development of the technologies. This modelling was fundamental to the design and
fabrication of most elements. For instance, in the field of integrated optics, some subjects as
fibre compatibility or coupling losses depend strongly on the permittivity distribution and,
hence, on the cation concentration. Therefore, the prediction of the cation concentration is
of great importance to design devices based on IE technologies.

Here, we present a review of the theoretical modelling of IE processes in glass made
up to now, as well as the last advances in this matter that have been reported in recent
years. Ion exchange within a glass network is governed by diffusion and drift processes as
a response to a concentration gradient and an electric field, respectively [23,24]. This gives
rise to a concentration profile of the exchanging ions, which depends on the processing
conditions of the substrate: temperature, exchange time, applied electric field, etc. The
Nernst–Planck drift-diffusion equation describes this process. It establishes the propor-
tionality among the flux density of each ion species and both the electric field and the
concentration gradient. On the other hand, Poisson’s equation and continuity equations for
each ion must be fulfilled. This gives rise, in general, to three second-order coupled partial
differential equations whose solution provides the evolution of both the cation concentra-
tions and the electric potential. In the derivation of these equations, the charge neutrality
approximation is usually assumed, which allows for some important simplifications with-
out a relevant loss of accuracy in the most common cases [25,26]. All of these subjects are
addressed in Section 2, where we present the basic model of ion exchange. This model
assumes that the self-diffusion coefficients of the exchanged cations are constant for a given
temperature. However, experimental measurements [27] showed that these coefficients de-
pend on the cation concentrations. Therefore, this basic model was generalized to non-ideal
cation behaviour and concentration-dependent self-diffusion coefficients by considering
the so-called mixed ion effect [28,29]. Later, both models were rigorously generalised,
and in the derivation of the equations, Faraday’s law was considered instead of Ohm’s
law [30]. This leads to a non-standard Laplace equation for an effective electric potential.
Accordingly, the boundary conditions for the most common IE processes were established.
These conditions, together with the aforementioned partial differential equations, complete
the theoretical modelling of the IE problem. On the other hand, some IE processes have
attracted a great deal of attention in the last few years due to their remarkable applications.
Among these, we must highlight: glass poling, electro-diffusion of multivalent metals
and the formation/dissolution of silver nanoparticles. Their modelling has only been
partially done so far [31–33], because the usual theoretical assumptions (mainly charge neu-
trality approximation and ideal cation behaviour) are not always valid in such processes.
In Section 4, we give an overview of the progress made and the challenges still to be faced
on this matter.

2. Basic Model

The simplest problem of ion exchange arise when two species of monovalent cations
(A and B) exchange with each other in the same glass region at a given temperature T.
Let us consider an infinite one-dimensional medium (x being the spatial coordinate) with
a homogeneous concentration C0 of fixed anions (typically -Si-O− radicals) and non-
homogeneous and variable cation concentrations CA(x, t) and CB(x, t), t being the time.
Moreover, we considered that each cation is initially near its anion, that is they are paired,
so CA(x, 0) + CB(x, 0)=C0. Consequently, space charge density is initially cancelled:

C0 = CA + CB , (1)

that is local charge neutrality is met. Our goal was to obtain the evolution of cation
concentrations given these initial conditions.
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2.1. Nernst–Planck and Poisson Equations

The initial non-homogeneity of cation concentrations, CA(x, t) and CB(x, t), and their
random motion make them diffuse along the glass until their concentrations are homoge-
neous. This diffusion process is described by Fick’s law:

Jdi f
i = −Di∇Ci i = A, B ; (2)

where Ji is the flux density and Di the diffusion coefficient of each cation. However,
the two interdiffusing cations have usually different diffusion coefficients and, therefore,
different mobilities, which produce charge imbalances. These imbalances generate a strong
internal electric field (E), which tends to balance the charges and restore charge neutrality
(Equation (1)). Therefore, Fick’s equation is no longer valid, and a drift term must be added
on its right-hand side to take into account the effect of this electric field on the cation
motion. This leads to the Nernst–Planck equation [34]:

Ji = −Di∇Ci + DiCi
eE
kT

i = A, B ; (3)

where e is the proton charge, T the absolute temperature and k Boltzmann’s constant. Note
that some authors included, in the drift term of this equation, the Haven ratio. However, as
we will see below, this parameter should not be incorporated into the model as a general
rule. The occurrence of the above-mentioned electric field can be seen from a quantitative
point of view by calculating the total flux density:

J0 = JA + JB = −DA∇CA − DB∇CB + (DACA + DBCB)
eE
kT

(4)

which depends on the electric field through mobility u:

u =
e

kTC0
(DACA + DBCB). (5)

However, J0 cancels in the current problem, that is,

J0 = 0, (6)

because there is no external field applied that generates a net current. This means that
the imbalance of the diffusion of the two cations (DA∇CA + DB∇CB) is compensated by
the internal field through the drift term uC0E. Note that Equation (4) is a generalization
of Ohm’s law. On the other hand, as long as there is no creation or destruction of cations
from/to a metallic state, the continuity equation must be fulfilled:

∂Ci
∂t

+∇Ji = 0 i = A, B. (7)

Now, by combining this equation and Equation (3) for, for instance, i=A and substituting,
in the resulting equation, the electric field from Equations (4) and (6), we obtained the
differential equation that gives the concentration evolution [23] of cation A:

∂cA
∂t

= ∇(D̄(cA)∇cA), (8)

where the charge neutrality (Equation (1)) was applied and a normalized concentration
(cA =CA/C0) was used, and we defined the following interdiffusion coefficient:

D̄(cA) =
DA

1− αcA
, (9)
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where α=1− DA/DB. The dependence of u and D̄ on cK predicted by this basic model,
for K+/Na+ IE, can be seen in Figure 1a.
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Figure 1. Self-diffusion and interdiffusion coefficients, as well as mobility, calculated from experimental data obtained by
radiative tracers [27], as a function of the normalized concentration for K+/Na+ IE. The Haven ratio was ignored. (a) Basic
model—Equations (5) and (9)—which assumes that the self-diffusion coefficients remain constant with the cation mole
fraction. (b) The same functions taking into account the MIE. Quadratic polynomials in cK were fitted to the logarithms of
the experimental self-diffusion coefficients and then used to calculate the rest of the functions through the definitions (35)
and (34). Note the difference between D̄ and Dmob, which are the expected interdiffusion coefficients when the interaction
among cations or the ideal mixture is assumed, respectively.

A more complex problem is the IE assisted by an external electric field. In such a case,
Equation (6) is not met. Therefore, additional equations are necessary to calculate the total
flux density (J0) or, alternatively, E, which now includes the external field. As for E, it must
fulfil Poisson’s equation and Faraday’s law of induction:

∇(εE) = e(CA + CB − C0) (10)

∇× E +
∂B
∂t

= 0 , (11)
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where ε is the glass electrical permittivity and B is the magnetic field, which will be
assumed as time independent since the total current changes very slowly. On the other
hand, we also assumed the charge neutrality approximation (Equation (1)). This cannot
be done in general, due to the existence of the aforementioned external field; however, in
most cases, this is a very good approximation (see the next subsection). Doing this, the
addition of continuity Equation (7) leads to:

∇J0 = 0. (12)

Now, by finding the electric field in Equation (4):

eE
kT

=
J0

DACA + DBCB
+

DA∇CA + DB∇CB
DACA + DBCB

, (13)

taking into account Equation (12) and doing the same steps as before, the following electro-
diffusion equation is obtained:

∂cA
∂t

+
J0
C0

1− α

(1− αcA)2∇cA = ∇(D̄(cA)∇cA), (14)

which is an extension of Equation (8). On the other hand, Equation (13) can be inserted
into (11), leading to:

∇×
(

J0
DBC0(1− αcA)

)
= 0, (15)

where we used Equation (9). This equation, Equation (12), and the boundary conditions,
which will be presented later, determinate the flux density J0. From this flux density,
Equation (14) will provide the evolution of the concentration of cations. Finally, once
J0 and cA are known, the charge neutrality approximation can be checked. This will be
analysed in the following subsection.

Alternatively, the last four equations can be expressed in terms of a scalar function.
Indeed, an irrotational vector field is the gradient of a potential function φ, so:

J0
DBC0(1− αcA)

= − e
kT
∇φ, (16)

where the factor −e/(kT) was included in order for φ to have the same units as the
electric potential. From this equation and Equation (12), we obtained a non-standard
Laplace equation:

∇((1− αcA)∇φ) = 0, (17)

which is more convenient for resolution purposes than vector Equations (12) and (15).
Note that this effective potential φ is not the electric potential V, whose minus gradient is
the electric field E given by Equation (13). However, a relationship between them can be
obtained [30] by inserting Equation (16) into Equation (13), that is:

φ = V +
kT
e

ln(1− αcA). (18)

Under typical IE conditions, the difference between V and φ is no greater than a
few tenths of a volt, which is negligible compared to the usual voltages (20–100 V) used
in field-assisted IE. Despite this, this difference must not be ignored in the modelling,
as significant errors in the calculation of the electric field could be made. Indeed, although
both potentials are similar, their gradient is not always.

On the other hand, it is worth mentioning that Equations (12) and (15) are trivially
solved in the one-dimensional case, that is J0 is constant. This constant will be established
from the experimental setup. If a constant current source is used, this value is set directly.
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Otherwise, when the external field is generated by a constant voltage source, the value of J0
can be calculated from the voltage applied to the sample and Equations (14) and (16)–(18).

2.2. Charge Neutrality Approximation in Field-Assisted Ion Exchange

In the previous subsection, the charge neutrality was assumed in the field-assisted
IE problem, as well as in the thermal-only case. However, this charge neutrality is not
always fulfilled, especially when strong external electric fields are used and/or very high
concentration gradients exist. In fact, some authors have modelled the silver concentration
in channel waveguides by considering explicitly the space charge distribution [35], albeit
at the cost of including other assumptions.

An estimation of the validity of the charge neutrality approximation can be made
from Equation (13), which can be expressed as:

eE
kT

= ∇ ln(CA + CB) +

J0
(CA+CB)DB

−∇cA

1− αcA
'

J0
C0DB

−∇cA

1− αcA
, (19)

where we used the charge neutrality approximation and the definition of α. Now, we
took divergences in this equation in order to compare it with Equation (10) and estimate
the error made by this approximation. This is an iterative procedure. First, we used
this approximated expression for the electric field. Next, we substituted it into Poisson’s
Equation (10) to obtain a more accurate value for CA + CB, which was introduced in the
previous equation, and so on. However, a unique iteration will be enough to obtain an
order of magnitude of the charge density [36]. Therefore, if we use Equation (12) and
assume that ε does not depend on CA and CB, we obtained:

e2

εkT
(CA + CB)−

e2C0

εkT
' αJ0∇cA

(1− αcA)2C0DB
−
(

α∇cA
1− αcA

)2
− ∇2cA

1− αcA
. (20)

Now, from this equation, we can obtain some conditions for the validity of the charge
neutrality approximation by comparing each term on the right-hand side of this equation
with the second term on the left-hand side. Therefore, for the second term on the right-hand
side, this comparison provides:

α∇cA
1− αcA

�
√

e2C0

ε0εrkT
' 1.1× 1010 m−1, (21)

for a BK7 glass with a density of 2.4 g/cm3 and 8.4% by weight of Na2O, which gives
C0 ' 3.9 × 1027 m−3; likewise, typical values for the temperature, T = 400 ◦C, and for
the relative permittivity, εr = 10, were considered. As for the ion exchange, we chose for
this assessment a Na+/K+ IE in a soda-lime glass with a diffusion coefficient ratio DK/DNa'
2.5× 10−2 [37], which leads to α = 0.975. Therefore,∇cA must fulfil the following condition:

∇cA � 0.28 nm−1 (22)

In the worst case, cA = 1. This condition means a change, in the normalized concentration,
from one to zero-point-nine at a distance much greater than 0.36 nm, which in practice is
met in almost any IE process. Indeed, most IE processes use glasses with a higher Na2O
content or their α values are less than the one of Na+/K+ IE. Therefore, this condition is
even less restrictive in those cases.

On the other hand, the third term on the right-hand side of Equation (20) is small
under the same conditions as the second one. Finally, the first one is small if the second
one is and, furthermore, if:

eJ0

1− αcA
� e2C3/2

0 DB√
ε0εrkT

∼ 412 A/cm2, (23)
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where we took into account [37] that DB ' 6× 10−13 m2/s, for T = 400 ◦C. That is, in the
worst case (cA = 1), the current density must fulfil:

eJ0 � 10 A/cm2. (24)

This condition is ensured in practice because the highest current densities that have
been used in field-assisted IE processes until now are much lower than this value. In fact,
Joule heating should be taken into account for currents higher than a few mA/cm2, due
to the strong dependence of diffusion coefficients on the temperature [38,39]. Therefore,
the charge neutrality approximation is valid in most IE process, even for Na+/Rb+ and
Na+/Cs+ ion exchanges, which give rise to very steep concentration profiles. In these kinds
of profiles, although ∇cA may be very high, the denominator of Equations (21) and (23)
is not close to zero, even for molar fractions close to one. Indeed, we assumed that
α = 1− DA/DB is constant, but actually, the diffusion coefficients depend on the molar
fractions, so that if a cation has a low concentration, it also has a lower diffusion coefficient.
In other words, if cA' 1, then α < 0, and 1− αcA is never close to zero. The basic model
that we present in this section cannot explain these dependencies on the concentration of
the diffusion coefficients, and therefore, this cannot be used to describe the whole range of
molar fractions.

2.3. Boundary Conditions

When an external medium is in contact with the glass surface, each type of cation
present in the glass and/or in the medium can either cross or not cross the glass/medium
interface. This depends on the nature of such a medium. If a cation crosses the interface,
a thermodynamic equilibrium is assumed between the crossing cations at both sides.
Otherwise, the normal component of its flux density cancels. Therefore, the different
boundary conditions for the Equations (14), (16) and (17) are obtained for a mask/air, a
silver or copper film and a molten salt mixture, when none, one or both cations, respectively,
cross the interface. Moreover, when the external medium is a conductor (metallic film
or fused salt), its electric potential can also be chosen and directly affects the boundary
condition of the potential φ through Equation (18).

In Tables 1 and 2, we summarize the boundary conditions for IE processes from
molten salt mixtures and films, as well as under a mask or in air. The equations that
govern these processes are also shown. Note that boundary conditions for other common
IE processes as annealing or secondary ion exchanges are included in these cases. Indeed,
boundary conditions for annealing processes are the same as for “mask/air”, and the ones
for secondary ion exchanges are included in the “salt” case, just using a different constant
“C”, which depends on the dopant concentration in the salt mixture and temperature
through an equilibrium equation [40–43]. Moreover, the final concentration of the first
process is the initial condition for the second one.

We show, in these tables, the two alternative forms presented in Section 2.1. In Table 1,
the problem is formalized in terms of the normalized concentration of dopant cations cA
and the total flux density J0. This is a more straightforward form, which makes it easier to
understand the physical problem of ion exchange. However, for resolution purposes, the
form given in Table 2 is simpler because it is written in terms of cA and a scalar function φ,
which can be seen as an effective electric potential [30].

The basic model of this section implicitly assumes an ideal cation behaviour in the
glass. Therefore, for the sake of consistency, the same assumption was made in the elec-
trochemical potentials to obtain the theoretical equations for the boundary conditions
of Tables 1 and 2. However, the corresponding condition for cA in a glass–salt interface,
as a function of the salt composition, must contain non-ideal terms on the glass side, as
we will show in the next section. Owing to the molten salt being homogeneous, cA|S is
constant along the surface. Hence, a mixed theory can be a pragmatic approach; similarly,
experimental values for cA|S can be used to feed the numerical algorithms that model the
ion exchange. On the other hand, the boundary conditions for φ are sometimes irrelevant
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(thermal diffusion) or they can be approximated to those of V (diffusion assisted with
strong fields). As a result, they were often ignored in models and experiments in the
context of waveguide fabrication.

Table 1. Complete formulation of the IE problem (equations and boundary conditions), for the most
common IE processes, in terms of the normalized concentration of dopant cations cA and the total
flux density J0; êS is a unit vector perpendicular to the sample surface, and C is a constant, which
mainly depends on the dopant concentration in the salt.

cA J0

Equations ∂cA
∂t + J0

C0
1−α

(1−αcA)2∇cA = ∇(D̄(cA)∇cA)




∇J0 = 0

∇×
(

J0
DBC0(1− αcA)

)
= 0

Salt cA|S = C

{ J0 × êS = 0∫

Ii

J0dS = Ii

Film ∇cA|S · êS =
( cA |S−1) J0|S ·êS

DAC0





J0 × êS = C0DB
∇cA×êS

cA∫

Ii

J0dS = Ii

Mask/Air ∇cA|S · êS = 0 J0 · êS = 0

with ∑i Ii = 0

Table 2. Complete formulation of the IE problem (equations and boundary conditions), for the most
common IE processes, in terms of the normalized concentration of dopant cations cA and an effective
electric potential φ; êS is a unit vector perpendicular to the sample surface, and C and F are constants.

cA φ

Equations ∂cA
∂t + J0

C0
1−α

(1−αcA)2∇cA = ∇(D̄(cA)∇cA) ∇((1− αcA)∇φ) = 0

Salt cA|S = C φ|S = F

Film ∇cA|S · êS =
( cA |S−1) J0|S ·êS

DAC0
φ|S = F + kT

e ln
(

1
cA |S
− α
)

Mask/Air ∇cA|S · êS = 0 ∇φ|S · êS = 0

with J0
DBC0

= − e
kT (1− αcA)∇φ

2.4. Some Particular Solutions

Two noticeable one-dimensional solutions are obtained for both specific thermal and
field-assisted IE processes. In the simplest thermal IE, a glass sheet is immersed in a molten
salt, which contains foreign cations. The boundary conditions for cA and φ are constant
over time and along the glass surface, then J0=0. The concentration profile of the dopants
scales in depth proportionally to the square root of the diffusion time, but it retains its
shape, that is c(x, t) = cA|S f (x/

√
4DAt), being the origin of the coordinates at the glass

surface [44]. The shape of f depends on cA|S and α. If either of them is small, the diffusion
Equation (14) becomes linear and f tends to a complementary error function (erfc), which
has an inflection point at the glass surface and decreases monotonically to zero inside the
glass. Otherwise, the diffusion is faster near the surface, where the dopant concentration is
high. This causes f to present a bump near the surface, being the inflection point displaced
into the glass. f is often approximated by a Gaussian function, although other functions
have been proposed [45–47].
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When a voltage is applied between both surfaces of the glass sheet, a current normal
to these surfaces appears. If J0 is kept constant, a stationary solution of Equation (14)
exists when the slow cations invade a region containing a higher concentration of fast
cations [24]. In that case, the mole fraction profile of the slow cations is a step-like function
that moves at a constant speed while maintaining its shape. Therefore, two regions with
different concentrations are formed with an abrupt transition between them. The higher
the step is, the sharper the front and the greater its velocity because the mobility of slow
cations increases with its concentration. The stability results from a competition between
diffusion and the non-linearity of the drift term. The former widens the profile, whereas
the latter sharpens it because the rear region of the profile moves faster. On the other hand,
if V is kept constant, J0 decreases slowly over time, since the resistivity of the sample
increases as the doped region becomes thicker. This effect may already be appreciable for
doped regions a few microns deep, because the mobility ratio can reach several orders of
magnitude [38,48]. In [38], the applied voltage V had to be corrected by 0.93 V to accurately
describe the experimental depths because these models did not include the potential φ.
Note that a combination of the boundary conditions of φ at both glass sides, as well as
the difference between φ and V given by Equation (18) explain such a potential. Finally, it
is worth noting that a stable profile is only formed if the slow cation chases the fast one.
Otherwise, the profile extends indefinitely.

3. The Mixed Ion Effect

Constant diffusion coefficients were assumed in Section 2. However, they depend on
both the temperature T and the molar fraction cA. In monoalkaline glasses, the temperature
dependence follows the Arrhenius law:

D = D0 exp
(
− Q

kT

)
. (25)

This is due to each cation needing to surmount a potential barrier of height equal to
Q to move to another potential well. The diffusion coefficient is proportional to the
number of cations that overcome this energy in a given instant. This number follows a
Maxwell–Boltzmann statistic, which explains the above exponential law. According to the
Stuart–Anderson model [49], the potential barrier has both an electrostatic component, cor-
responding to the energy necessary to separate the cation from its anion, and a mechanical
component that describes the glass network distortion necessary for the cation to break
through another potential well. Therefore, when two species of cations are present in the
glass, it is natural that each one has its own diffusion coefficient. However, surprisingly, the
D0 and Q values of each species (D0A, QA and D0B, QB) largely depend on the cation mole
fraction, in such a way that each diffusion coefficient is reduced by up to several orders of
magnitude as its respective mole fraction is approaching zero [27,50,51]. This reduction
is mainly due to an increase of the activation energy of minority cations; furthermore,
it is stronger than the difference between the diffusion coefficients of both species in their
respective monoalkaline glasses (DAA≡DA|cA=1 and DBB≡DB|cA=0). Consequently, DA
and DB are equal for some intermediate mole fractions. We will show that this leads to a
maximum value of the interdiffusion coefficient and a minimum value of the direct current
(DC) conductivity for this intermediate mole fraction or its neighbourhood. Therefore,
the DC conductivity shows an excess of activation energy with respect to the monoalkali
glasses (this excess disappears with frequency in AC conductivity). This phenomenon,
among others, is included in the so-called double-alkali effect, mixed alkali effect or, later,
mixed mobile ion effect or mixed ion effect (MIE), since silver, thallium or copper cations
behave similarly to alkali ones in glass [37,52–54].

3.1. Brief Review of Theories

The origin of the MIE has been debated for a long time, but no theory has been uni-
versally accepted yet. Some theories focus on an interaction among neighbouring cations
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in such a way that mixed pairs are assumed to be more energetically stable than pairs of
cations of the same species [15,55–59]. This assumption is supported by several experi-
mental achievements. Namely, the interdiffusion coefficient presents a thermodynamic
term for alkali IE [60,61] and for Ag+/Na+ exchange [62]; we will show that this term
is missing if cations behave as an ideal gas. Furthermore, the surface mole fraction of
cations in ion exchanged glasses from molten salts (the salt boundary condition) must
be explained on the assumption that a non-ideal cation behaviour both for double-alkali
exchange [40,41] and for Ag+/Na+ exchange [42,43]. On the other hand, mixing enthalpy
experiments do not have a clear interpretation. A negative mixing enthalpy (net attraction
among dissimilar cations) was found [63–65], which correlates linearly with the excess
of activation energy for DC conduction. However, the former is about 20 times weaker
than the latter. Besides, mixed pairs of cations would be expected to be much more likely
than pairs of the same species in the presence of interaction, but nuclear magnetic reso-
nance experiments [66–68], as well as neutron and X-ray diffraction [69] show that they are
rather randomly distributed. Consequently, other authors attributed the MIE to relaxation
processes in the glass structure [70–73]. In particular, each cation is assumed to modify its
neighbourhood after a relaxation time to achieve an energetically favourable site. Therefore,
in a monoalkaline glass, all the sites are of the same type. Once a foreign cation enters this
glass and modifies a site, it is difficult for it to diffuse because all accessible sites are the
wrong type. Even if the cation gains access to one of them, most likely, it will return before
the new site relaxes. Moreover, diffusion is assumed to occur through conduction path-
ways, so a foreign cation can block several indigenous ones. This explanation is compatible
with the ideal behaviour of cations, that is with a random distribution.

The theory that we assumed is relevant because, depending on it, the resulting diffu-
sion equation is slightly different, as we will show below.

3.2. The Cation Flux Density

Let us consider the electrochemical potential (µ̃i) of each cation species that has a
chemical term depending on the thermodynamic activity (ai) of that species and an electric
term proportional to the cation charge (e) and the electric potential (V):

µ̃i = µ0
i + kT ln ai + eV i = A, B, (26)

The flux density of each cation species is proportional to both the gradient of its electro-
chemical potential and its concentration. This leads to the Nernst–Planck equation:

Ji = −DiCi∇µ̃i = −giDi∇Ci + DiCi
eE
kT

i = A, B, (27)

where the gi’s are the thermodynamic factors:

gi ≡
∂ ln ai
∂ ln ci

i = A, B.

As mentioned above, some authors include the Haven ratio in the drift term of
Equation (27). However, the Haven ratio should only be used to obtain Di from the exper-
imental values of the diffusion coefficient of radioactive tracers: D∗i [74]. The difference
between them arises, for example, if the diffusion mechanism is the indirect interstitial one.
In this case, a cation located in one interstice replaces a nearby regular site cation, which
jumps to another interstitial site. Consequently, the total mass (or charge) displacement
described by Di is different from that of a single cation, which is measured by the tracer.
Moreover, the tracer is also affected by the thermodynamic factor, then a comparison
between the mobility of a species and the corresponding tracer diffusion coefficient can
result in an apparent Haven ratio [61].

If the MIE is fully due to the relaxations of the glass structure, the cation behaviour
being ideal, the activity will be equal to the mole fraction, so gi = 1. On the contrary, if

10



Appl. Sci. 2021, 11, 5070

the cation interaction is the only thing responsible for the MIE, we will obtain Di =Diiγi,
γi being the thermodynamic activity coefficient (ai =γici). Let us deduce that result. We
divided all cations A into two sets, the ones that are hopping from one site to another
in a given instant (A↑) and the rest of them, which are fixed (A↓). Although the former
are much scarcer, both sets are in thermal equilibrium in any given small region in the
glass; therefore:

µ̃A = µ̃A↓ = µ̃A↑ (28)

Now, we made two assumptions. First, we supposed that mobile cations behave ideally
with respect to each other due their low concentration (CA↑ � CA↓ ):

µ̃A↑ = µ0
A↑ + kT ln

CA↑

C0
+ eV i = A, B. (29)

Note that this could fail in the case of cooperative movement, that is, when two or more
nearby cations change their site simultaneously. Second, we assumed that the reference
potential of mobile cations (µ0

A↑ ) is independent of cA; therefore, ∇µ0
A↑=0. In addition to

using Equation (27), the cation flux density can also be calculated from mobile cations, being
proportional to both the gradient of their electrochemical potential and their concentration:

JA = JA↑ = −
DA↑

kT
CA↑∇µ̃A↑ = −DA↑∇CA↑ +

eDA↑

kT
CA↑E, (30)

where DA↑ is a temperature-dependent multiplicative coefficient and the factor 1/kT
was introduced in order for DA↑ to have units of a diffusion coefficient. By combining
Equations (26), (28) and (29), we can find CA↑ as:

CA↑ = exp

(
−

µ0
A↑ − µ0

A

kT

)
γACA,

and replace it in Equation (30). The resulting flux density is:

JA = DA↑ exp

(
−

µ0
A↑ − µ0

A

kT

){
−
(

γA + CA
∂γA
∂CA

)
∇CA↑ +

e
kT

γACAE
}

which agrees with Equation (27) by identifying:

DA = DA↑ exp

(
−

µ0
A↑ − µ0

A

kT

)
γA = DAAγA.

Obviously, an identical derivation can be done for B cations to obtain DB =DBBγB.
Surprisingly, it was not necessary to make any assumptions about the particular de-

pendence of γi on the mole fraction. In short, under these cation interaction assumptions,
the dependence of the diffusion coefficient of each species on the mole fraction was directly
related to its thermodynamic activity coefficient. For the equations to remain valid, regard-
less of the MIE explanation, we will continue the derivation from Equation (27), without
any assumptions on the thermodynamic term gi, which can be done in the last step.

3.3. Generalized Equations and Boundary Conditions

By following the same procedure as in the previous section, we replaced E with J0 in
the expression of JA, and then, we applied the continuity condition to obtain:

∂cA
∂t

+
∂

∂cA

[
DAcA

DAcA + DBcB

]
J0
C0
∇cA = ∇

(
(gBcA + gAcB)DADB

DAcA + DBcB
∇cA

)
, (31)
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where the whole flux density J0 can be obtained from the scalar potential φ as:

J0 = −(DAcA + DBcB)
eC0

kT
∇φ, (32)

and φ in turn satisfies the following non-standard Laplace equation:

∇[(DAcA + DBcB)∇φ] = 0. (33)

In view of Equation (31), we can redefine the interdiffusion coefficient as:

D̄(cA) ≡
(gBcA + gAcB)DADB

DAcA + DBcB
≡ (gBcA + gAcB)Dmob. (34)

It can be split into a mobility term Dmob and a thermodynamic term (gBcA + gAcB), which
is not in the definition (9) of the basic model. If cations behave ideally, the latter becomes
equal to one, and the interdiffusion coefficient is reduced to the mobility term. If cation
interactions are relevant, the thermodynamic term enhances the maximum of D̄(cA) for
intermediate values of cA, as can be seen in Figure 1b. Similarly, Equation (32) shows that
the mobility is:

u ≡ e
kT

(DAcA + DBcB), (35)

which, in fact, is the same as Equation (5), but now, the Di’s are mole fraction dependent.
This results in a minimum conductivity value for a mole fraction close to that at which
the interdiffusion coefficient reaches its maximum. In contrast, the basic model leads to
monotonic u and D̄ functions.

In order to impose the boundary conditions on φ, we need to relate it with the electric
potential v. This can be done by the procedure followed in the above section, but the
resulting expression is not so simple:

φ = V +
kT
e

∫ cA

0

DAcA
d ln aA

dcA
+ DBcB

d ln aB
dcA

DAcA + DBcB
dcA. (36)

If the MIE is caused by cation interactions (Dici =Diiai), this expression can be integrated
for any particular dependency of the activities on the mole fraction:

φ = V +
kT
e

ln
DAcA + DBcB

DBB
.

On the contrary, if cations behave ideally and relaxation processes are responsible for the
MIE, then Equation (36) becomes:

φ = V +
kT
e

∫ cA

0

DA − DB
DAcA + DBcB

dcA,

and the integration can only be performed once the dependencies of the diffusion coeffi-
cients on the mole fraction are known.

The starting point to impose the boundary conditions are the same as in Section 2,
that is equal electrochemical potentials at both sides of the glass surface for cation species
that can cross it and zero flux through it otherwise. However, the particular functions for
the electrochemical potentials and flux densities must be chosen from the model of the
glass behaviour.

3.4. Changes in the Solutions with Respect to the Basic Model

The main difference, with respect to the basic model, which is observed after the
numerical solution of Equation (31), comes from the presence of a maximum in the interdif-
fusion coefficient for intermediate molar fractions (Figure 1b). Therefore, new qualitative
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shapes of the profiles are seen when almost all indigenous cations are replaced by the
foreign ones.

In Figure 2, we show a simulation of molar fraction profiles of potassium cations
in a K+/Na+ thermal exchange for several boundary conditions ( cK|S). The profile for
the lowest value of cK|S was similar to an erfc function. For intermediate values (0.4 and
0.6), the profiles showed a bump between the glass surface and the tail, near which there
was an inflection point. Both characteristics were similar to those predicted by the basic
model. Nevertheless, a second inflection point (or equivalently, a high slope at the surface)
appeared for the highest values of the boundary condition. Because the interdiffusion
was, in the present model, lower near the surface, the slope of the profile must increase
to provide cations at a sufficient rate for the intermediate regions, where they diffuse
faster. An approximate analytical profile was proposed to describe all of these cases [75].
In this work, the authors checked the quality of that profile through the measurement of
the effective indices of ion exchange waveguides. They obtained an average deviation
of 3 × 10−4 between measured and calculated effective indices, which corresponded to a
deviation of ≈0.3% between concentration profiles. Similar results have been obtained by
numerically solving the diffusion equation that governs the IE process [22]. Moreover, this
author even monitored such a process as a function of the diffusion time.

0
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1
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x (µm)

K+/Na+

350◦C

20 min

Figure 2. Simulation of molar fraction profiles as a function of depth for a thermal IE by taking into account the MIE.
Equation (31) was solved for J0 =0 and the boundary conditions cK|S = 0.2, 0.4, 0.6, 0.8 and 1. The interdiffusion coefficient
D̄(cK) of Figure 1b was used.

A simulation for field-assisted IE can be seen in Figure 3. For the lowest boundary
conditions ( cK|S = 0.1–0.3), the exchange was dominated by the diffusive term, and the
stable profile was not formed yet. For intermediate values of cK|S (0.4–0.8), the stable
profile was clearly formed, since the rear region of the profile was flat. Moreover, we can
see that the velocity of the front and its slope increased with the boundary condition. Again,
these characteristics agreed with the prediction of the basic model. Finally, for cK|S = 0.9–1,
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a new effect appeared. The speed and the slope of the front saturated, while its rear part
was no longer flat because the potassium cations were faster here than the sodium ones.
Both regimes can be observed in experimental studies [76,77].
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Figure 3. Simulation similar to that in Figure 2, but for a field-assisted IE with J0/C0 = 80 nm/s.

4. Future Challenges

Some of the previous assumptions in the modelling of ion exchange in glass are not
always valid. For example, the interdiffusion coefficient is reduced during the ion exchange
of dopants, which generates compressive stress. This is probably due to a constriction of
the interstitial sites [78–80]. Another issue is the generalization of the charge neutrality
approximation to processes involving the simultaneous diffusion of three species (for
example sodium, silver and potassium). Some of such processes were proposed in the
past to improve the shape of narrow-channel waveguides [81,82] or, more recently, to
obtain both antimicrobial and strengthening properties [10]. In [82], a simplified model
was presented by considering that potassium cations are immobile. Unfortunately, little
progress has been made in all of these issues in the last few years. Note that modelling of
these processes in the MIE framework would require considerable experimental studies
to obtain the interdiffusion coefficients. Nevertheless, there are some processes that also
require more complete models, but that have recently attracted a great deal of attention due
to their remarkable applications. Among them, we highlight: glass poling, electro-diffusion
of multivalent metals and the formation/dissolution of silver nanoparticles.

4.1. Glass Poling

Glass poling is the distribution of the electric charges of the glass. This may result
in a permanent electric field inside the glass, which can give rise to relevant non-linear
effects on light propagation. Applications of glass poling include grating fabrication [83],
second-harmonic generation [84] or the fabrication of optical waveguides with profiled
electrodes [85]. Glass poling was initially applied to silica glass [86], which contains
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residual amounts of cations (C0 ∼ 1023 m−3). It is realized by subjecting the sample to a
strong potential difference U (typically, a few kV) at a temperature of about 250–300 ◦C and,
usually, not allowing charged species to enter the glass (“blocking anode”) [87]. Therefore,
the field rearranges the cations until a new equilibrium is achieved when the original field
inside the glass is cancelled by charges located near the glass surface. That is, the applied
field creates a layer, under the anode, a few micrometers thick and depleted of cations.
Obviously, charge neutrality is not fulfilled here. Instead, the one-dimensional form of
Equations (3) and (10) of the basic model shows that the layer thickness d, in equilibrium,
is given by:

d =

√
2εU
eC0

. (37)

This layer is charged and has a high electrical resistivity since its anions are fixed
to the glass network. Furthermore, because the field is cancelled in the glass bulk, the
applied voltage drops across the depleted layer. Therefore, a very strong field arises,
which is independent of the thickness of the substrate. Besides, potentials above ∼1 kV
generate structural changes in the layer [88]. Then, if the sample is sharply cooled to
room temperature, the distribution of charges becomes frozen. Electric fields inside the
silica glass can reach∼107 V/m, which induces a non-linear coefficient χ(2) ∼ 1 pm/V [89].
However, this process is idealized. In practice, other cations are often involved due to
the high applied voltages. One of the possible cations is hydronium (H3O+) from air
water vapour that forms a naturally hydrated layer in the glass. In this situation, called
poling with a non-blocking anode, Equation (37) is no longer valid. Instead, a stable
profile, such as described in Section 2.4, is formed because hydronium moves slower
than sodium. In this case, a partially depleted region is still formed before the electric
field increases enough to move the hydronium cations significantly [90]. The charge and
the electric field are expected to be at their greatest values when the hydronium layer
begins to form. Subsequently, a part of the applied voltage U drops across the hydronium
layer [91]. In glasses with high alkali content, the situation is somewhat different, since
air cannot provide hydronium at a sufficient rate. Moreover, as C0 is large, d is small (see
Equation (37)), and the electric field can become high enough to move other cations such
as Ca+2 or Mg+2 [31,92]. Another situation of interest occurs when a BK7 glass, which
contains sodium and potassium, is poled. Initially, only sodium cations are removed
from the glass surface, as they move faster. Then, the field increases in the charged layer
until potassium cations start to move and accumulates behind the sodium ones, filling
the empty sites that the latter have just left. Simultaneously, a fully depleted surface
layer is formed [92]. Poling of double-alkali glasses, with a non-blocking anode, was
also simulated with similar conclusions [93]. One interesting result, which is obtained in
high-alkali glasses, is the formation of a waveguide next to the depleted layer, this having
non-linear properties. In all the previously cited works about the simulation of glass poling,
the authors assumed diffusion coefficients constant, which is only an approximation. The
diffusion coefficient in monoalkali glasses depends notably on the alkali content. Therefore,
it is expected that the diffusion coefficient in the depleted layer is also different from bulk
glass. Therefore, more experimental research on glass poling is still necessary to make
clear, on the one hand, the conditions under which the charge neutrality approximation is
valid and, on the other hand, whether the MIE or other effects are relevant enough to be
considered in the modelling.

4.2. Electro-Diffusion of Multivalent Metals

Monovalent cations as Ag+/Na+ and K+/Na+ are by far the most used cations in IE
processes in glass. However, some successful attempts at doping glass with multivalent
cations have also been realized, mainly with transition metals, but also with rare-earths.
For example, Gonella et al. obtained Co2+, Au3+ and Cr3+ diffusion profiles in silicate
glasses [94,95]; and Cattaruzza et al. introduced Er3+ cations inside soda-lime glasses [96].
These authors used field-assisted configurations with electric fields up to 400 V/mm,
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as thermal-assisted IE is not very effective with multivalent ion species. This allowed for
penetrations of cations of up to ∼1 µm from deposited films. The main utility of glass
doping with multivalent transition metals arises from the possibility of converting the
glass into an active media. Therefore, optical amplification or waveguide lasers have
been demonstrated in erbium-doped glasses [97], and Cr4+-doped materials have been
proposed as both laser gain materials and saturable absorbers for passive Q-switching in
IR lasers [98].

The ion exchange with multivalent cations gives rise to concentration-dependent
structural changes in the glass matrix. This is due to the local coordination rearrangements,
which are produced at the ion sites [99]. In addition, the amount of metal that penetrates
into the glass matrix, as well as the shape of the concentration profiles depend strongly on
the process parameters. Therefore, the model presented in Section 3, which includes the
MIE, should be used in the modelling of such processes. Likewise, when the multivalent
cations are introduced into the glass, a region depleted of cations, similar to that observed
in poled glasses, is formed. Therefore, the approaches used in the modelling of glass
poling could be applied to the present processes. However, little work has been done in
these directions, and a comprehensive model of electro-diffusion of multivalent metals is
still lacking.

4.3. Formation/Dissolution of Silver Nanoparticles

Metal nanocluster formation following ion exchange can arise if both suitable dopant
cations and post-exchange processing techniques are used. Among all dopants, silver
stands out for its great diffusivity in glass and its high tendency to form metal clusters [33].
As for the post-exchange techniques, heat treatments (annealing) under different atmo-
spheres [100,101] and (pulsed) laser irradiation [102] are commonly applied. The formation
of metal structures can be regarded as a drawback and an advantage. For example, in light
waveguiding, metal inhomogeneities must be avoided because they cause a high light
absorption. On the contrary, some investigations have found these structures useful for
sensing applications, through the surface enhancement of Raman scattering (SERS) [103],
for fabricating photonic crystals [104] or, in general, for plasmonic optics [105,106].

Modelling of the formation and dissolution of silver nanoparticles is a very chal-
lenging task because the two complex processes compete dynamically. On the one hand,
annealing or irradiation promotes silver aggregation and the formation of nanometre-sized
clusters while, at the same time, the diffusion and dissolution of silver cations are produced.
Therefore, at least three species must be included in the modelling: both exchanging cations
and metallic silver. Moreover, this process is often done in gaseous atmospheres, which
provide other cations that diffuse into the glass, increasing the number of species to be
included in the model. On the other hand, this kind of process is strongly dependent
on the cation concentration, so that the MIE should be considered. Finally, not enough
experimental studies have been realized until now to characterize the great variety of
mechanisms involved in these processes. Some theoretical descriptions of nanoparticle
formation under specific post-exchange processing techniques (purely thermal anneal-
ing [107] and annealing in hydrogen atmosphere [108]) have been given. Both authors
assumed the charge neutrality approximation that, under these processing techniques, is
probably fulfilled. However, they did not assess the introduction of the MIE in their models
and if that would lead to a better description of the cluster formation. Considerable work,
both theoretical and experimental, must be done before having a complete theoretical model
of this promising technique.

5. Conclusions

The improvements made in the last few years in the theoretical modelling of ion
exchange in glass have contributed to a better understanding of the physical and chemical
mechanisms involved in this process. The basic model that has been used for decades
only allows for the accurate description of ion exchange problems where the dopant
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concentration is low. If higher concentrations are present, a model based on the mixed
alkali effect must be considered. However, some aspects of this model are still open,
because the physics and chemistry involved are not fully understood. On the other hand,
a significant progress has been made in the modelling of some IE processes that have
attracted much attention in recent years. These processes include glass poling, electro-
diffusion of multivalent metals, and the formation/dissolution of silver nanoparticles. All
of them have remarkable applications, both scientific, as well as technological.
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13. Opilski, A.; Rogoziński, R.; Gut, K.; Błahut, M.; Opilski, Z. Present state and perspectives involving application of ion exchange

in glass. Opto-Electron. Rev. 2000, 8, 117–127.
14. Honkanen, S.; West, B.R.; Yliniemi, S.; Madasamy, P.; Morrell, M.; Auxier, J.; Schülzgen, A.; Peyghambarian, N.; Carriere, J.;

Frantz, J.; et al. Recent advances in ion exchanged glass waveguides and devices. Phys. Chem. Glas. Eur. J. Glass Sci. Andtechnol.
Part B 2006, 47, 110–120.

15. Quaranta, A.; Cattaruzza, E.; Gonella, F. Modelling the ion exchange process in glass: Phenomenological approaches and
perspectives. Mater. Sci. Eng. B 2008, 149, 133–139. [CrossRef]

16. Tervonen, A.; West, B.R.; Honkanen, S. Ion exchanged glass waveguide technology: A review. Opt. Eng. 2011, 50. [CrossRef]

17



Appl. Sci. 2021, 11, 5070

17. Brusberg, L.; Schröder, H.; Herbst, C.; Frey, C.; Fiebig, C.; Zakharian, A.; Kuchinsky, S.; Liu, X.; Fortusini, D.; Evans, A. High
performance ion exchanged integrated waveguides in thin glass for board-level multimode optical interconnects. In Proceedings
of the 2015 European Conference on Optical Communication (ECOC), Valencia, Spain, 27 September–1 October 2015; pp. 1–3.
[CrossRef]

18. Wang, F.; Chen, B.; Pun, E.Y.B.; Lin, H. Alkaline aluminum phosphate glasses for thermal ion exchanged optical waveguide.
Opt. Mater. 2015, 42, 484–490. [CrossRef]

19. Salmio, R.P.; Saarinen, J. Graded-Index Diffractive Elements by Thermal Ion Exchange in Glass. Appl. Phys. Lett. 1995, 66, 917–9.
[CrossRef]

20. Singer, W.; Dobler, B.; Schreiber, H.; Brenner, K.H.; Messerschmidt, B. Refractive-index measurement of gradient-index
microlenses by diffraction tomography. Appl. Opt. 1996, 35, 2167–2171. [CrossRef] [PubMed]

21. Montero-Orille, C.; Moreno, V.; Prieto-Blanco, X.; Mateo, E.F.; Ip, E.; Crespo, J.; Liñares, J. Ion exchanged glass binary phase
plates for mode-division multiplexing. Appl. Opt. 2013, 52, 2332–2339. [CrossRef] [PubMed]
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Featured Application: ion-exchange on glass has been extensively studied for the realization of
Planar Lightwave Circuits. Monolithically integrated on a single glass wafer, these devices have
been successfully employed in optical communication systems as well as in sensing.

Abstract: Ion-exchange on glass is one of the major technological platforms that are available to
manufacture low-cost, high performance Planar Lightwave Circuits (PLC). In this paper, the principle
of ion-exchanged waveguide realization is presented. Then a review of the main achievements ob-
served over the last 30 years will be given. The focus is first made on devices for telecommunications
(passive and active ones) before the application of ion-exchanged waveguides to sensors is addressed.

Keywords: integrated photonics; glass photonics; optical sensors; waveguides; lasers

1. Introduction

Unlike microelectronics where the CMOS technology emerged as the dominant plat-
form, integrated optics or, as it is called nowadays, integrated photonics, does not rely
on one single technological platform. Indeed, silicon photonics, III-V photonics, polymer
photonics, LiNbO3 photonics, and, last but not least, glass photonics co-exist in parallel,
each of them presenting their own drawbacks and advantages.

As for ion-exchange on glass, also called glass integrated optics, it is based on a mate-
rial that has been known and used for centuries. Glass is easily available and can be easily
recycled. The ion-exchange technique, although it is based on using microfabrication tools,
can be considered as a relatively low-cost approach, which allows realizing waveguides
with low propagation losses and a high compatibility with optical fibers. Glass photonics
is not a platform that has been developed for a specific application. Therefore, Planar
Lightwave Circuits (PLCs) realized by ion-exchange on glass are found in many fields with
a wide range of applications.

From its very beginning in 1972 [1], to products currently on the markets, thousands
of papers have been published on this vivid topic. For this reason, making an extensive
review of this technology is a cumbersome task. However, since excellent reviews have
already been published in the past years [2–9], we can skip the pioneering years when the
basis of the technology was set by testing several glasses and ions and making multimode
waveguides. In this paper, we will hence focus on devices made by ion-exchange on glass,
their performances, and their applications.

After a presentation of ion-exchanged waveguides, their realization process, their
modelling, and their main characteristics, we will review devices made for telecommu-
nication purpose. Then, we will review the use of ion-exchanged waveguides for the
fabrication of optical sensors since these types of applications are taking a growing place in
integrated photonics.
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2. Ion-Exchanged Waveguides
2.1. Principle and Technology

Typically, an optical glass is an amorphous material composed by several types of
oxides mixed together. According to Zachariasen [10], theses oxides can be sorted in three
main categories: network formers like SiO2, GeO2, or P2O5 that can create a glass on their
own; intermediate network formers (Al2O3, TiO2, . . . ) that can hardly create a glass alone
but can be combined with network formers; finally network modifier oxides like Na2O,
K2O, CaO, or BaO that can be inserted in a matrix made by glass formers but are weakly
linked to it because of a mismatch between their respective molecular binding structures.

The refractive index of a glass depends on its composition through an empirical
relation [11]:

n = 1 +∑
m

amNm

V0
= 1 +

R0

V0
, (1)

where am is the “refractivity constant” of the chemical element “m”, Nm the number of
chemical element “m” by atom of oxygen, V0 and R0 are the glass volume and refractivity
by atom of oxygen, respectively.

A replacement of a portion of one of the glass components by another one with the
same coordination can therefore entail a change of refractive index. Providing that this
exchange does not create strong mechanical stresses and does not strongly change the
nature of the glass, (1) can be used to link the induced variation of the refractive index to
the fraction c of substituting ions as follows:

∆n =
c

V0

(
∆R− ∆V R0

V0

)
, (2)

∆R and ∆V are the variation of R0 and V0, respectively, caused by the substitution. From
(2), it can easily be deduced that a local change of the glass composition is creating a
localized change of refractive index, which can be used to create a waveguide.

Since alkali ions are weakly linked to the glass matrix, they are natural candidates for
such a process. Indeed, when alkali ions react with silica to form a multicomponent glass,
the silica network is maintained because each silicon-oxygen tetrahedron remains linked to
at least three other tetrahedra [12]. Therefore, one can exchange one alkali ion to another
one without damaging the original glass. Throughout the years, several ion-exchanges
have been demonstrated [13,14] but the topic of this article being integrated glass photonics,
we will restrain ourselves on the few ones that have enabled realizing efficient devices. In
this case, the ion that is present in the glass is usually Na+ (sometimes K+). It is nowadays
mostly exchanged with silver (Ag+), more rarely with potassium (K+) or thallium (Tl+).

The ion source that allows creating the higher refractive index waveguide’s core can
be either liquid or solid. The simplest way of performing an ion-exchange is described on
Figure 1a. It consists in dipping the glass wafer in a molten salt containing a mixture of
both the doping ions B+ and the glass ones A+. The salt is usually a nitrate, but sulfates
are sometimes used when a temperature higher than 450 ◦C is required for the exchange.
Although the principle of the process is very simple, it must be kept in mind that ionic
diffusion is a process that strongly depends on the temperature; this parameter should
hence be homogeneous all other the wafer and consequently in the molten salt. In order to
define the parts of the wafer that will be ion-exchanged, a thin-film has previously been
deposited and patterned in a clean room environment to define the diffusion apertures.
Once the ion-exchange is completed, the masking layer is removed and diffused surface
waveguides are obtained. If a more step-like refractive index profile is required, an electric
field can be applied to push the doping ions inside the glass, as described in Figure 1b [1].
Nonetheless, this complicates the set-up and might also induce the reduction of the doping
ions into metallic clusters that dramatically increase the propagation losses (specifically
when silver is involved). The use of a silver thin film has also been employed successfully
for the creation of the waveguide’s core [15]. The thin film can be either deposited on an
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existing mask, as depicted on Figure 1c, or patterned directly on the glass substrate [16].
An applied electric field ensures an efficient electrolysis of Ag+ ions into the glass by
the consumption of the silver film anode. These three different processes allow realizing
waveguides whose core is placed at the surface of the glass wafer and whose shape is,
depending on the process parameters, semi-elliptical with a step refractive index change at
their surface and diffused interfaces inside the glass. Intrinsically, such waveguides are
supporting modes that are prone to interact with the elements present on the wafer surface.
Interesting and even maximized for the realization of sensors, this interaction is often a
drawback when dealing with telecom devices where the preservation of the quality of the
optical signal is a key factor. For this reason, ion-exchanged waveguide cores are usually
buried inside the glass.
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Figure 1. Three main processes used to realize surface waveguides by an ion-exchange on glass.
A+ and B+ represent the ions contained in the glass and the ones replacing them, respectively. (a)
the glass wafer is dipped into a molten salt containing B+ ions entailing a thermal diffusion on the
exchange ions through a diffusion aperture; (b) the diffusion process is assisted by an electric field;
(c) an electrolysis of a silver thin film is used to generate Ag+ ions that are migrating by diffusion and
conduction inside the glass.

Figure 2 depicts the two main processes that can be used: the first one consists of
plunging the wafer containing surface cores in a molten salt containing only the ions that
were originally present in the glass. A reverse ion-exchange is then occurring, removing
doping ions from the surface of the glass [17]. This process entails a quite important
decrease of the refractive index change and an increase of the waveguide’s dimension
because of thermal diffusion, which practically limits the depth of the burying to one to
two micrometers. In order to reach a deeper depth and ensure a good optical insulation of
the guided mode, the reverse ion-exchange is quite often assisted by an electric field that
forces the migration of the core inside the glass preventing hence a loss of refractive index
variation. Moreover, by a proper tuning of the process parameters, circular waveguide
cores can be obtained in order to maximize the coupling efficiency with optical fibers.
Nonetheless, it must be noticed that the applied voltage can be close to 1 kV, which requires
on one hand, a proper and well secured dedicated set-up, and on the other hand, an
excellent quality of the glass wafer in order to prevent percolation path formation and short
circuits. Figure 3 depicts an optical image of a buried optical waveguide realized on a Teem
Photonics GO14 glass by a silver-sodium ion-exchange. Burying depth as high as 47 µm
have been realized, as shown in Figure 4, but such extreme values are rarely required in
practical devices where the burying depth is of the order of 10 µm.
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Figure 2. (a) Thermal burying of a waveguide’s core; (b) electrically assisted burying of the
waveguide’s core. The competition between ionic diffusion and transport allows obtaining quasi
circular profiles.
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Figure 3. Image of a quasi-circular waveguide observed with an optical microscope, the glass is in
light blue, the core is in pink, air is in dark blue.
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Figure 4. Realization of deeply buried waveguides by an Ag+/Na+ ion-exchange on a GO14 Teem-
Photonics glass. The applied electric field during the burying process was 650 kV/m; (a) image of
the output of the waveguide observed with an InGaAs Camera at λ = 1.5 µm; (b) vertical cut of the
measured intensity showing the position of the mode with respect to the glass wafer substrate.

2.2. Modelling Ion-Exchanged Waveguides

Extensive work has been carried-out throughout the years to characterize and model
ion-exchanges processes [18–22]. In this article, we will focus on a relatively simple
description since it occurred to be reliable enough to allow us designing waveguides and
predicting their optical behavior efficiently. Ion-exchange can be seen as a two-step process:
first the exchange itself that occurs at the surface of the glass and creates a normalized
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concentration cs of doping ions. For thin film sources, this concentration is linked to the
applied current by the following relation:

∂cs

∂x
=

J0(cs − 1)
DAg

, (3)

where J0 is the ion flux created by the electrolysis, x is the direction normal to the surface,
and DAg is the diffusion coefficient of silver in the glass.

For liquid sources made of a mixture of molten salts containing B+ and A+ ions in
order to replace A+ ions of the glass, an equilibrium at the glass surface is usually rapidly
reached, according to the chemical reaction:

A+
salt + B+

glass ⇔ B+
salt + A+

glass, (4)

Considering that the amount of ions in the molten salt is much bigger than the one of
the glass, the ion concentrations in the liquid source can be considered as constant, which
allows deriving the relative concentration at the surface:

cs =
KxB

1 + xB(K− 1)
, (5)

K being the equilibrium constant of the chemical reaction (4) and xB = Csalt
B /

(
Csalt

B + Csalt
A
)

is the molar fraction of doping ions B+ in the molten salt.
Since the refractive index is proportional to the relative concentration, according to (2),

it is easy to fix the refractive index change at the glass surface by setting the ratio of B+ ions
in the liquid source. Figure 5 shows an experimental determination of this dependence for
a silver/sodium ion-exchange on a Schott-BF33 glass. These data have been obtained by
realizing highly multimode slab waveguides and retrieving their refractive index profile
through m-lines measurements [23] and the Inv-WKB procedure [24,25].
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Figure 5. Refractive index change measured at the surface of a Schott-BF33 glass for different
xBAgNO3 + (1− xB)NaNO3 molten salts at a temperature of 353 ◦C.

The ions exchanged at the glass surface entail a gradient of concentration inside the
glass. Hence, B+ ions migrate inside the glass while A+ ions are moving towards the
surface. Since the two species of ions have different mobilities, an internal electrical field
−→
Eint is created during the diffusion process. To this field an external applied field

−→
Eapp can
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be added, which results in ions fluxes
−→
JA and

−→
JB , for A+ and B+, respectively, which are

determined by the Nernst–Einstein equation:

−→
JA = −DA

[→
∇CA − e

H kBT CA
(−→
Eint +

−→
Eapp

)]

−→
JB = −DB

[→
∇CB − e

H kBT CB
(−→
Eint +

−→
Eapp

)] , (6)

where Di is the diffusion coefficient of the ion i, Ci its concentration, e is the electron charge,
kB the Boltzmann constant, T the temperature and H the Haven coefficient. Assuming that
all the sites left by ions A+ are filled by ions B+, it can be written that at any position in
the glass the relation CA + CB = CA0, where CA0 is the concentration of A+ ions before the
exchange, is always valid. With this relation and Equation (6), the total ionic flux can be
expressed as:

→
J =

−→
JA +

−→
JB = −DACA0

[
α
→
∇c− e

HkBT
(1− αc)

(−→
Eint +

−→
Eapp

)]
, (7)

where the Steward coefficient α = 1−DB/DA and the normalized concentration c = CB/CA0
have been introduced.

If no electric field is applied, then the total current is null, which allows determining

easily
−→
Eint:

−→
Eint = −

HkBT
e

α
→
∇c

1− αc
(8)

The second Fick’s law implies that:

∂CB
∂t

= −∇
−→
JB . (9)

Combining (6), (8) and (9), the equation that governs the evolution of the relative
concentration as a function of time is obtained:

∂c
∂t

=
→
∇
[

DB
1− αc

→
∇c− eDB

HkBT
c
−→
Eapp

]
. (10)

Equation (10) can be solved numerically by Finite Difference or Finite Element schemes
but for accurate modelling, the dependence of ionic mobility and diffusion on the concen-
tration should not be neglected. The so-called mixed alkali effect plays indeed a significant
role in ion-exchanges where a high doping concentration is required [26,27]. It must also
be noticed that ion-exchange modifies the conductivity of the glass, which in turn, modifies

the field distribution of
−→
Eapp. Therefore, solving Equation (10) is actually much less obvious

than it might appear and handling these problems has been the subject of a quite abundant
literature [28–31]. Figure 6 displays typical refractive index profiles that have been obtained
considering mixed alkali effect and the coupling between the ion-exchange and the applied
electric field. Simulations have been done with an in-house software based on a finite
difference scheme. It can be clearly seen how a proper choice of the experimental parame-
ters can lead to circular waveguides. However, the maximum refractive index change is
dropping from almost 0.1 to 10−2 during the burial process because of the spreading of
doping ions caused by thermal diffusion.
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2.3. Waveguide’s Performances

The main characteristics when dealing with integrated optics waveguides are their
spectral operation range, their losses that can be split between coupling and propagation
losses, and their behavior with respect to light polarization.

2.3.1. Passive Glasses

Since the first waveguides demonstrated by Izawa and Nakagome [1], huge efforts
have been made to reduce the losses of the waveguides. Historically, scattering represented
the main source of losses. Indeed, the quality of the photolithography used for the real-
ization of the masking layer before the ion-exchange was an issue as well as scratches or
dirt deposited on the glass surface or refractive index inhomogeneities, such as bubbles.
These problems are typical optical glass issues that are encountered when a custom-made
glass is realized for the first time in small volumes, but they are easily handled by glass
manufacturers when a higher volume of glass is produced. Therefore, state-of-the-art
ion-exchanged waveguides are nowadays based on glass wafers specifically developed for
this application or at least for microtechnologies. Among them, the more used are BF33
by Schott because of its compatibility with MEMS process, GO14 by TeemPhotonics SA
and BGG31 by Schott [32], which have both been developed specifically for silver-sodium
ion-exchanges. The interest of silver-sodium ion-exchange is that it allows the realization
of buried waveguides solving, hence the problem of scattering due to surface defects or
contaminations while dramatically improving the coupling efficiency with optical fibers.
Nonetheless, silver-based technologies present also challenges since Ag+ has a strong
tendency to reduce into metallic Ag creating metallic clusters that are absorbing the optical
signals. The glass composition should therefore be adapted not only to remove reducing
elements like Fe, As, or Sb, but also to create a glass matrix where Na+ ions are not linked
to non-bridging oxygens [33]. The choice of the material for the masking layer should also
be made with caution because the use of metallic mask can also induce the formation of
Ag nanoparticles at the vicinity of the diffusion apertures [34]. Therefore, the use of Al or
Ti mask is now often replaced by Al2O3 [35,36], SiO2, or SiN [37] ones.

Table 1 presents the main characteristics of single mode waveguides realized on GO14,
BGG31, and BF33, respectively. GO14 and BGG31 that have been optimized for telecom
applications and ion-exchange present very low propagation losses and birefringence that
are key characteristics for data transmission. BF33 is not a glass that has been designed for
ion-exchange but it is a relatively low-cost glass that presents a quite good refractive index
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change and that is specifically indicated by its manufacturer for MEMS and microtechnol-
ogy applications. Therefore, it is an excellent candidate for sensor realization and is mainly
used for that. The relatively high propagation losses observed in BF33 is mainly due to
the fact that this parameter is not very important in sensors and has, hence, neither been
optimized nor measured accurately.

Table 1. Main characteristics of single mode waveguides realized on three different glasses.

Glass Type GO14 BGG31 BF33

Losses <0.05 dB/cm [7] <0.1 dB/cm <1 dB/cm (@780 nm)
∆n max 8 × 10−2 [7] 3.2 × 10−2 [38] 1.8 × 10−2 [35]

Birefringence <5 × 10−4 [39] <2 × 10−5 [40] N.A.
Burying depth ~10 µm (50 µm max) ~10 µm [38] ~5 µm [35]

We deliberately did not mention Tl+/K+ ion-exchanged waveguides although the
process is indeed the first one that has been used and the first one to be tentatively imple-
mented in a production line. However, the advantages of a Tl+/K+ ion-exchange, namely
a high refractive index change and the absence of clustering and absorption, are strongly
counterbalanced by its toxicity, which implies dedicated safety procedures and waste
treatments. It is therefore very scarcely used.

2.3.2. Active Glasses

The possibility of performing ion-exchange on rare-earth doped glasses was identified
quite early. However, it was only in the 1990s with the development of WDM telecommu-
nication that a lot of work was carried-out on the realization of efficient optical amplifiers
and lasers. Because the solubility of rare earths into silicate glasses is quite low, which
entails quenching due to clustering and reduces the amplifier efficiency, phosphate glasses
rapidly emerged as the most efficient solution for obtaining high gain with compact devices.
Among phosphate glasses, two specific references set the state of the art: they were the
IOG 1 by Schott [41] and a proprietary glass referred as P1 by TeemPhotonics [42]. These
two glasses succeeded in obtaining a high doping level without rare-earth clustering while
being chemically resistant enough to withstand clean room processes and ion-exchange.
The competition in the field of rare earth doped waveguides having been very hard, the
characteristics of the different waveguides obtained in these glasses are difficult to find in
the literature since the emphasis was mostly put on the active device performances, as will
be detailed later.

2.3.3. Exotic Substrates

Some exotic glasses like fluoride glasses [43] or germanate glasses [44,45] have also
been used for the realization of ion-exchanged waveguides but the difficulty in making
sufficiently good wafers available at a reasonable cost, strongly limited the research in
these directions.

3. Telecom Devices
3.1. Context and Historical Overview

Optical Telecommunications was originally the reason why Miller introduced the
concept of integrated optics in 1969 [46]. Therefore, the pioneering work of integrated
photonics on glass has been mainly devoted to telecommunication devices pushing steadily
towards the development of not only ion-exchange processes but also of a full technology
starting from the wafer fabrication and ending with the packaging of the manufactured
Planar Lightwave Circuits. Figure 7 shows this evolution by displaying on one side one
of the first demonstrations of a 1 to 8 power splitter made by cascading multimode Y-
junctions [47] and, on the other side, its 2006 commercially available counterpart, single
mode and Telcordia 1209 and 1221 compliant [7,48].
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Add and drop multiplexing has been achieved by combining Bragg gratings with Mach–
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Figure 7. 1 to 8 power splitter made by ion-exchange on glass (a) early demonstration in 1986; (b) qualified pigtailed and
packaged commercially available product.

Once elementary functions, such as Y-junctions and directional couplers were demon-
strated, studies were oriented towards all the functions that could be required for op-
tical fiber communications like thermo-optic switches [49], Mach–Zehnder interferome-
ters [50,51] and Multimode Mode Interference (MMI) couplers [52–55]. These buildings
blocks have then been optimized and/or combined on a single chip to provide more func-
tionality. In the next sections, we will review some of them and put the emphasis on the
specificity brought by the use of ion-exchange on glass.

3.2. Wavelength Multiplexers

A five-channel wavelength demultiplexer-multiplexer has been demonstrated as early
as 1982 by Suhara et al. using silver multimode waveguides combined with a Bragg
grating [56]. More advanced devices using single mode waveguides include Arrayed-
Waveguide Grating (AWG) multiplexers, whose quite large footprint is compensated by
their low sensitivity to the light polarization thanks to the use of silver based buried
waveguides [38]. A good thermal stability provided by the thickness of the glass substrate
is also reported but a fine thermal tuning of the AWG’s response remained possible [57].
Add and drop multiplexing has been achieved by combining Bragg gratings with Mach–
Zehnder interferometers or more originally with a bimodal waveguide sandwiched by
two asymmetric Y-branches [58]. Bragg grating can be integrated on glass by etching [59],
wafer bonding [60], or photowriting [61–63].

Asymmetric Y-junctions are very interesting adiabatic devices that are well adapted to
the smooth transitions between waveguides obtained by ion-exchange processes. Therefore,
asymmetric Y-junctions have been used as stand-alone broadband wavelength multiplexers.
For this type of applications, the asymmetry of the branches is obtained by a difference of
the waveguide dimensions and a difference in their refractive index. Tailoring the refractive
index of ion-exchanged waveguides can be achieved by segmenting the waveguide as
demonstrated by Bucci et al. [64]. As can be seen on Figure 8, using vertical integration of
deeply buried waveguides with selectively buried waveguides allowed obtaining a very
broadband duplexing behavior while maintaining a relatively small surface footprint [36].
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tion of an amplifying four wavelength combiner [71] and the qualification of Erbium 
Doped Waveguide Amplifiers (EDWAs) in a 160 km-long WDM metro network [72]. This 
work has been completed by packaging and qualification developments in order to create 
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Meanwhile the phosphate glasses developed by Schott also gained a lot of attention. 
Patel et al. achieved a record high gain of 13.7 dB/cm in a 3 mm-long waveguide realized 
by a silver film ion-exchange [73]. Such a gain per length unit was made possible by a high 
doping level of the glass in Er (8 wt. %) and Yb (12 wt. %). 
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the first proof of concept of an ion-exchanged waveguide laser was obtained on a modi-
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(the insets display the observed device output’s mode at specific wavelengths). Top and bottom
branches are separated by 28 µm [36].

3.3. Waveguide Amplifiers and Lasers

Active devices have been linked to the development of ion-exchanged devices since
the beginning of this technology. Indeed, Saruwatari et al. demonstrated in 1973 a laser
made with an optical amplifier based on a buried multimode ion-exchanged waveguide
realized in a neodymium-doped borosilicate glass [65]. However, research on active devices
really became a major field of research with a strong competition at the beginning of the
1990s when a lot of studies were carried-out. Work was first concentrated on Nd-doped
amplifiers and lasers emitting at 1.06 µm since the four energy levels pumping scheme of
this transition made it easier to achieve a net gain with the 800 nm pumping diodes available
at the moment [66–70]. With the rise of Wavelength Division Multiplexing systems, optical
amplifiers and sources operating in the C+L band (from 1525 nm to 1610 nm) became
key devices and research on rare-earth doped integrated devices switched to the use of
erbium ions whose transitions from the 4 I13/2 level to the 4 I15/2 one is broad enough to
cover this wavelength range. Dealing with Er3+ active ions, the main issue was to realize
waveguides with low-losses and a good overlap of the pump and signal modes. Indeed,
the pumping scheme of this rare earth being a three levels one, the 4 I15/2 ground state
absorbs the optical signal when it is not sufficiently pumped. Barbier et al. managed to
solve this problem by developing a silver-sodium ion-exchange in their Er/Yb co-doped
P1 glass [42]. 41 mm-long buried waveguides achieved 7 dB of net gain in a double pass
configuration. This work has been followed by the demonstration of an amplifying four
wavelength combiner [71] and the qualification of Erbium Doped Waveguide Amplifiers
(EDWAs) in a 160 km-long WDM metro network [72]. This work has been completed by
packaging and qualification developments in order to create a product line commercialized
by TeemPhotonics.

Meanwhile the phosphate glasses developed by Schott also gained a lot of attention.
Patel et al. achieved a record high gain of 13.7 dB/cm in a 3 mm-long waveguide realized
by a silver film ion-exchange [73]. Such a gain per length unit was made possible by a high
doping level of the glass in Er (8 wt. %) and Yb (12 wt. %).

Er-doped waveguide amplifiers being available, Er-doped lasers followed. Actually,
the first proof of concept of an ion-exchanged waveguide laser was obtained on a modified
BK7-silicate glass containing 0.5 wt. % of Er, with a potassium ion-exchange and two thin-
film dielectric mirrors bonded to the waveguide’s facets forming a Fabry-Perot cavity [74].
Nonetheless, from a strict point of view, this device was not a fully integrated laser because
the mirrors were not integrated on the chip. Therefore, the next generation of Er-laser relied
on the use of Bragg gratings as mirrors. In Distributed FeedBack (DFB) or Distribute Bragg
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Reflectors configurations, these lasers presented a single frequency emission compatible
with their use as transmitters in WDM systems. Similar for waveguide amplifiers, the
use of phosphate glass entailed a major breakthrough in the performances. DBR lasers
were demonstrated by Veasey et al. using a potassium ion-exchange [41], while Madasamy
et al. manufactured similar devices with a silver thin film [75]. These approaches allowed
integrating several lasers on a single chip to provide arrays of multiwavelength sources
with one single grating, the wavelength selection being made by tuning the effective indices
of the waveguides through their dimensions. Thanks to the use of highly concentrated
molten salt of silver nitrate and a DFB configuration, Blaize et al. succeeded in creating a
comb of 15 lasers with one single Bragg grating [76]. The emitters’ wavelengths were spaced
by 25 GHz and 100 GHz and set to be on the Dense WDM International Telecommunication
Union (ITU) grid. The output power of these devices could be as high as 80 mW for a
350 mW coupled pump power [41], while a linewidth of only 3 kHz has been reported
by Bastard et al. on their DFB lasers [77]. Figure 9 displays a picture of such a DFB laser
pigtailed to HI1060 single mode fibers. The stability and purity of the emission of erbium
doped waveguide lasers has been recently used to generate a Radio Frequency signal and
successfully transmit data at a frequency of 60 GHz [78].
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Bragg gratings on phosphate glass can be made by photolithography steps and etching
like in [41,76,77] or by direct UV inscription like in [79,80] and on IOG1. The use of a hybrid
un-doped/doped IOG1 substrate allowed Yliniemi et al. [80] to realize UV-written Bragg
gratings with high reflectance and selectivity, demonstrating hence a single frequency
emission with an output power of 9 mW and a slope efficiency of 13.9%.

3.4. Hybrid Devices

Ion-exchanged waveguides being made inside the glass wafer, they leave its surface
plane and available for the integration of other materials or technologies. The realization of
deeply buried waveguides [81] and selectively buried waveguides [82] acting as optical
vias between two different layers increased furthermore the possibility of 3D integration.
In order to overcome the quite weak chemical durability of an Yb-Er doped phosphate
glass, Gardillou et al. [83] wafer bonded it on a silicate glass substrate containing surface
Tl ion-exchanged strips. The higher refractive index active glass was then thinned by an
appropriate polishing process to become a single mode planar waveguide. At the place
where the planar waveguide was in contact with the ion-exchanged strips, the variation of
refractive index provided the lateral confinement creating hence a hybrid waveguide. A
gain of 4.25 dB/cm has been measured with this device. This approach has been pursued
by Casale et al. [59] who realized a hybrid DFB laser combining a planar ion-exchanged
waveguide made on IOG1 with a passive ion-exchanged channel waveguide realized on
GO14. The Bragg grating was etched on the passive glass and encapsulated between the
two wafers.

Polymers have also been used to functionalize an ion-exchanged waveguide. As
an example, a thin film of BDN-doped cellulose acetate deposited on the surface of ion-
exchanged waveguide lasers allowed the realization of passively Q-switched lasers on
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Nd-doped [84] and Yb doped [85] IOG1 substrates. A peak power of 1 kW for pulses of
1.3 ns and a repetition rate of 28 kHz has been reported by Charlet et al. [86] and used
successfully to pump a photonic crystal fiber and generate a supercontinuum [87].

Recently, a proof of concept of LiNbO3 thin films hybridized on ion-exchanged waveg-
uides have been reported [88]. The combination of these two well-known technological
platforms for integrated photonics opens the route towards efficient low-loss non-linear
integrated devices including electro-optic modulators.

Hybrid integration of semiconductor devices on glass wafers containing ion-exchanged
waveguides have been reported for the first time in 1987, by MacDonald et al. [89] They
bonded GaAs photodiodes on a metallic layer previously deposited and patterned on the
glass wafer. Waveguides were done by a silver thin film dry process. Silicon [90] and
germanium [91] photodetectors have been produced on potassium waveguides, while
Yi-Yan et al. proposed a lift-off approach to bound thin III-V semiconductor membranes
on the surface of a glass wafer containing ion-exchanged waveguide and realize Metal–
Semiconductor–Metal (MSM) photodetectors [92].

4. Sensors

Integrated photonics is intrinsically interesting for the realization of optical sensors
because it provides compact and reliable self-aligned devices that can be easily deported
when pigtailed to optical fibers. Glass is a material that is chemically inert, bio-compatible,
and mechanically stable. Therefore, making optical sensors on glass wafers or integrating
optical glass chips into complex set-ups have encountered a huge interest. We will detail
here a selection of ion-exchanged based glass sensors as examples of possible applications.

Although AWGs used in telecom are actually integrated spectrometers, they are not
well adapted to the rapid measurement of full spectra. For this reason, a Stationary-Wave In-
tegrated Fourier-Transform Spectrometer (SWIFTS) has been proposed and developed [93].
It is a static Fourier Spectrometer that measures directly the intensity of a standing wave
with nanoprobe placed on a waveguide. In the instrument reported by Thomas et al. [94],
the waveguide is made by a silver ion-exchange on a silicate glass and the nanoprobes are
gold nanodots. The interaction of gold nano-antennas with an ion-exchanged waveguide
has been studied by Arnaud et al. [95]. This spectrometer has a spectral measurement
range that starts at 630 nm and ends at 1080 nm with a spectral resolution better than 14
pm. SWIFTS interferometers are currently integrated in the product line commercialized
by Resolution Spectra Systems [96].

Displacement sensors allow measuring accurately the change of position of an object
through interferometry. Helleso et al. [97] implemented a double Michelson interferometer
on a glass substrate using potassium ion-exchange; the device provided two de-phased
outputs in order to give access not only to the distance of the displacement but also its
direction. However, having only two interferometric signals is not sufficient to prevent
the measure from being affected by unexpected signal variations. For this reason, Lang
et al. [98] proposed a new design for the interferometric head that provided four quadrature
phase shifted outputs. The device made by potassium ion-exchange demonstrated a
measurement accuracy of 79 nm over a measurement range of several meters when used
with an HeNe laser as a source. After technological improvements and the use of a silver-
sodium ion-exchange on GO14 glass, an evolution of this sensor is now commercialized
by TeemPhotonics and presents a resolution of 10 pm for a 1530 nm–1560 nm operating
wavelength range [48].

Measuring speed is also something that can be of major importance, specifically in the
case of aircrafts where their True Air Speed (TAS), which is their speed with respect to the
air surrounding them, conditions their lift. Airborne LIDARs have hence been developed
as a backup to Pitot gauges in order to increase the safety of flight by providing a redundant
accurate measurement of the aircraft TAS. The operation principle of an airborne LIDAR
is based on the Doppler frequency shift measured on a laser signal reflected on the dust
particles of the atmosphere. This shift being quite low and presenting a low amplitude

32



Appl. Sci. 2021, 11, 4472

when compared to the emitted signal, a laser source that presents a narrow linewidth,
a low Relative Intensity Noise and that is resilient to mechanical vibrations is required.
Bastard et al. [99] realized such a laser source on an Er/Yb doped phosphate glass with
silver ion-exchanged waveguides and a DFB structure. This laser presented a fiber coupled
output power of 2.5 mW, a linewidth of 2.5 kHz, and a RIN that was 6 dB lower than the
specification limit. The device has then been successfully implemented in the LIDAR set-up
and validated in flight [100].

Astrophysical research programs rely on telescopes with always higher resolution to
detect exoplanets, young star accretion disks, etc. Optical long baseline instruments, which
interferometrically combine the signal collected by different telescope have been developed
for this purpose. Such complex interferometers are very sensitive to misalignment and
vibrations, therefore the use of integrated optics as telescope recombiners have been studied.
Haguenauer et al. [101] used a silver-sodium ion-exchange on a silicate glass to realize a
two telescope beam combiner operating on the H atmospheric band (from λ = 1.43 µm to
λ = 1.77 µm). Consisting of a proper arrangement of three Y-junctions, the device had two
photometric and one interferometric outputs. The fringe contrast obtained in the laboratory
was 92% and the device was included in the Integrated Optic Near infrared Interferometric
Camera (IONIC) put into a cryostat and successfully qualified on the sky [102]. Figure 10
shows the MAFL chip [103] that was developed for the interferometric combination of three
telescopes. The pigtailed instrument contained not only the science interferometers but
also three other ones dedicated to metrology, which permitted measuring of the different
optical paths. The functions multiplexing and demultiplexing the metrology signal and the
science ones were also implemented on the chip.
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silver sodium ion-exchange.

The chemical durability of silicate glasses is a major advantage when a use in harsh
environment is required. The opto-fluidic sensor developed by Allenet et al. [104] repre-
sents a quite extreme example of this. Indeed, the ion-exchange technology developed by
Schimpf et al. [35] on BF33 glass has been employed to realize a sensor for the detection of
plutonium in a nuclear plant environment. The fully pigtailed and packaged device that is
depicted on Figure 11, has been successfully tested in a nuclearized glove box, detecting
plutonium dissolved in 2 Mol nitric acid without a failure over a period of one month.
Such a reliability was achieved by co-integrating microfluidic channels fabricated by HF
wet etching on one BF33 wafer with silver ion-exchanged waveguides realized on another
wafer. The two wafers have been assembled by molecular adherence avoiding hence the
use of radiation sensitive epoxy glues.
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5. Conclusions

In this paper, we reviewed over thirty years of activities in glass photonics. The ion-
exchange realization process as well as its modelling has been exposed. Passive and active
devices for telecommunication applications have then been presented with the emphasis
on the major breakthroughs of this field. The section dedicated to sensors underlines the
evolution of the ion-exchange technology, which is moving from quite simple, though
extremely performant functions, to more complex integrated optical microsystems. The
authors hope that the picture of glass photonics that they presented will soon be outdated by
the new results that are currently being elaborated in the many laboratories of universities
and companies involved in this field throughout the world.
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Abstract: Glasses, in their different forms and compositions, have special properties that are not
found in other materials. The combination of transparency and hardness at room temperature,
combined with a suitable mechanical strength and excellent chemical durability, makes this material
indispensable for many applications in different technological fields (as, for instance, the optical
fibres which constitute the physical carrier for high-speed communication networks as well as the
transducer for a wide range of high-performance sensors). For its part, ion-exchange from molten
salts is a well-established, low-cost technology capable of modifying the chemical-physical properties
of glass. The synergy between ion-exchange and glass has always been a happy marriage, from its
ancient historical background for the realisation of wonderful artefacts, to the discovery of novel
and fascinating solutions for modern technology (e.g., integrated optics). Getting inspiration from
some hot topics related to the application context of this technique, the goal of this critical review is
to show how ion-exchange in glass, far from being an obsolete process, can still have an important
impact in everyday life, both at a merely commercial level as well as at that of frontier research.

Keywords: ion-exchange; optical glasses; glass strengthening; noble metal nanoparticles; rare earths;
luminescence enhancement; SERS; flexible photonics; whispering gallery mode microresonators;
photovoltaic cell

1. Introduction

To celebrate, over time, the wedding anniversary between ion-exchange and glass,
all noble metals (e.g., silver, gold, platinum, etc.) and gemstones (e.g., sapphire, emerald,
diamond, etc.) offered by our generous planet would not be enough! In fact, the origin of
this lucky marriage is lost in the dawn of time. The art of ancient glassmakers can be traced
back to the 3rd millennium BC among the peoples of Egypt and the Middle East where the
main raw material, the silica rich sand, was widely available. From there, this knowledge
was transferred to the peoples of the Mediterranean Sea, including the Greeks and the
Romans (see, for instance, the natron glass used during the Roman Empire period). Over
these three millennia, the colouring of glass was given directly during its manufacture
by introducing additive metal oxides, such as iron, copper, manganese, etc., to the raw
materials before firing the whole system in a kiln and then cooling it in order to obtain the
final product [1,2].

Only between the 6th and 7th centuries AD, the Egyptians began to use silver or
copper pigments—in the form of powders—to decorate and colour the surface of their
artefacts, such as dishes, vessels and pots, by means of a thermal annealing process in
a furnace. Through this technique, the pigment became part of the atomic structure of
the products, colouring them in correspondence of their surface. However, due to the
low temperature of the firing process and the difficulty of controlling it, the final artefacts
remained rather opaque [3,4]. Later, around the 9th century AD, this staining method—
improved in terms of technological process (i.e., higher operating temperature; better kiln
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performance) and now capable of giving glass lustre to ceramic artefacts—found great
diffusion among the Mesopotamian peoples before arriving in Spain, in the first centuries of
the millennium, following the expansion of Islamic culture [5,6]. In Europe, ion-exchange
experienced a notable application during the outbreak of Gothic architecture (between 12th
and 14th century) contributing to the realisation of the wonderful multi-coloured stained-
glass windows of the cathedrals of that period. A paste, composed of clay/ochre and silver
chloride/sulphide, was spread on the glass to be treated in order to produce a thin layer on
its surface. Subsequently, the whole system was fired in a reducing atmosphere—induced
in the furnace by introducing smoking substances—at a temperature close to the softening
point of the glass. In these conditions, the ion-exchange process was triggered: the silver
ions diffused inside the glass replacing the alkaline ions, such as sodium, widely present in
the pristine glass. Finally, the simultaneous presence of reducing elements, both external
(i.e., the smoking elements in the atmosphere) and internal to the glass (i.e., impurities,
such as iron or arsenic), favoured the formation of silver metal nanoparticles (NPs) inside
the ion-exchanged specimen, leading to a yellow-amber colour whose tonality and intensity
depending on the process parameters (i.e., time and temperature) and the size of the NPs
thus formed (from a few to one hundred nanometres), respectively. Other colours, such
as red or green, were obtained using iron and copper salts, respectively. In the following
renaissance period, this decorative technique became particularly popular in Italy in the
creation of polychrome and lustre pottery artefacts, among which those of Deruta stood
out par excellence [5,7].

It was only around the beginning of the 20th century that the foundations for a possible
application of the ion-exchange process in the technical-industrial field were laid. In 1913 G.
Schultze was the first to study the diffusion of silver ions into the glass using silver nitrate
salt (AgNO3) as ion source, starting a whole series of studies aimed to understand the
chemical-physical nature of the phenomenon and its effects on some physical properties of
the glass so treated. In particular, a few years later, in 1918 at the Schott Glass Laboratory,
it was demonstrated that ion-exchange produces an increase of the refractive index of the
layer of the glass involved in the diffusive process [4,8]. Only from the 1960s, however, the
ion-exchange technique became an industrial standard process.

Among all the possible applications, glass strengthening represented the first example
of glass modification by this standardized technique. The process was initially investigated
in 1962 by S. S. Kistler and P. Acloque (the latter in collaboration with J. Tochon) who, in
their works, demonstrated how the in-diffusion of ions having different atomic size in
the pristine glass matrix (i.e., larger potassium ions K+, originally present in the molten
salt KNO3, in place of smaller sodium ions Na+ in the glass) was able to prevent or heal
over the possible formation of micro/nano-cracks on the specimen surface, increasing its
mechanical strength [9,10]. Since then, many efforts have been carried out until our days
in this field both at research and industrial levels, and the development is still under way
with amazing perspectives [10–13].

Almost simultaneously to glass strengthening, another key application of ion-exchange
technique quickly began to establish itself. In fact, at the turn of ’60s and ’70s, the availability
of the first optical fibres by Corning Inc (Corning, NY, USA), joined with the revolutionary
vision of Bell Laboratories researchers J.E. Miller and colleagues, led to the aim of miniatur-
izing and integrating all necessary components for the generation, addressing, processing
and detection of an optical signal on a single chip by means of optical waveguides and
gave the decisive impulse for the development of integrated optics (IO). The ion-exchange
process in glass greatly contributed to achieving these results [14–17]. Pioneering works
in this field were given by T. Izawa and co-workers and T. G. Giallorenzi et al., at the
beginning of the 1970s, who demonstrated the feasibility to obtain planar glass waveguides
by thermal or field assisted ion-exchange using different molten salts, thus opening up the
way for further development of novel integrated devices in the optical communications
field [18,19]. Optical waveguides in glass by ion-exchange technique offered several ad-
vantages in comparison with other fabrication methods and materials: compatibility with
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optical fibres, low propagation and coupling losses, low birefringence, low cost in terms of
material and fabrication process, high stability and reliability. All these features contributed
in the following decades to the boom of IO devices with different functionalities, such as
passive (e.g., for signal addressing and processing), active (e.g., for signal generation or
amplification, thanks to rare earths doping), or even hybrid, when both functionalities
coexist in a same chip [20–39].

The third noteworthy application of ion-exchange was historically linked to the glass
staining technique by the introduction of metal ions inside the pristine amorphous ma-
trix during the process or, more frequently, by inducing their subsequent reduction into
metallic form through an ad-hoc thermal post-process [40,41]. However, this approach of
loading glass with metal ions or nanoparticles has been shown to go far beyond the mere
colouring of the material. In fact, around the last decade of the 20th century, the progress
in plasmonics—with the possibility to obtain both strong local field enhancement and
high absorption cross-section by means of the surface plasmon resonance phenomenon
in ion-exchanged dielectric substrates with embedded metal nanoparticles—has rapidly
increased the research interest for these nanostructured materials [42–47], broadening their
application horizon.

For instance, it was demonstrated that in ion-exchanged glasses the presence of
noble metal nanoparticles (e.g., Au, Ag, or Cu), with their large third-order nonlinear
susceptibility and ultrafast response, makes these materials suitable for applications also in
non-linear optics [48–53].

Moreover, these embedded noble metal ions and nanoparticles played—and still
do—an important role in the luminescence properties of the same ion-exchanged host
materials especially when these are doped with elements belonging to the rare earth
group, mitigating the limitation imposed on their concentration due to the occurrence of
quenching phenomena. From the early works of Malta et al. [54] and Hayakawa et al. [55],
the research literature on this topic has highlighted different reasons concerning the origin
of the rare earth luminescence enhancement in optical glasses chemically treated by ion-
exchange, depending on the nanostructure sizes so realized: (i) an energy transfer (ET)
process between the energy levels of the noble metal ions (such as isolated Ag+, Ag+ - Ag+

pairs or silver aggregates) and those belonging to rare earths ions; (ii) an ET mechanism
among non-plasmonic small metal nanoparticles (i.e., molecule-like nanoparticles having
few nanometres size) and the doping active elements; (iii) a local field enhancement
around the rare earth ions due to the surface plasmon resonance (SPR) phenomenon
induced in small metal nanoparticles [54–66]. In the technological field, the aforementioned
mechanisms—together with the down/up-conversion ones—have favoured the use of
these ion-exchange glass systems in the photovoltaic sector in order to increase the solar
cell efficiency through tailored cover-glasses and in the development of low cost and high
performance white/coloured solid-state light sources [67–81].

On the other hand, in sensing/biosensing applications, low-loss ion-exchanged planar
waveguides with embedded metal ions represented the core of integrated optical sen-
sors for the analytical determination of biomolecules at the interfaces by an evanescent
wave interrogation mechanism, exploiting different optical detection approaches such as
those based on fluorescence or absorption [82–90]. Furthermore, these ion-exchange optical
waveguides have been used as excitation systems for surface plasmon resonance (SPR) or lo-
calized surface plasmon resonance (LSPR) in noble metal thin films or NP arrays selectively
deposited on them. This approach replaced the more traditional Kretschmann configu-
ration based on prism coupling and contributed to the realisation of hybrid-plasmonic
label-free integrated optical biosensors with high performance [91–94]. Alternatively, the
same noble NPs can be directly grown in the guiding structure in order to obtain LSPR
optical waveguides for the detection of selected analytes by monitoring the changes in
absorption spectra as a result of the chemical reaction occurred at the interface [95]. Last
but not least, the possibility of making optical waveguides in one-dimensional (1D) or
two-dimensional (2D) geometry with embedded noble metal nanoparticles, starting from
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glass substrate by means of ion-exchange technique and an ad-hoc thermal post-process,
has contributed in the last decades to the strong development of planar platforms for
sensing/biosensing applications based on surface enhanced raman scattering (SERS) mech-
anism [96–104]. In comparison to the chemical procedures commonly adopted to bind
metal NPs to the surface of a sample, the ion-exchange technique followed by a suitable
thermal post-process represents a simpler and less expensive method for the manufacture
of SERS substrates and provides the not negligible advantage of long-term stability of the
metal nanoparticles thanks to their embedding within the same glass specimen [105–107].

From this wide range of scenarios, getting inspiration from some hot topics related to
the application context of this technique, the goal of this critical review is to show how ion-
exchange on glass, far from being an obsolete process, can still have an important impact in
the everyday life, both at a merely commercial level as well as at that of frontier research.

2. Glass Strengthening: The Ion-Exchange Contribution

Today, it has become a cliché to associate the idea of glass with that of brittleness,
so that, in the course of daily speaking, it is common to use the expression “fragile as
glass” whenever one refers to an object destined to easily break. In this regard, Tennessee
Williams, one of the most popular American playwrights, expresses himself in these
terms about glass: “When you look at a piece of delicately spun glass you think of two
things: how beautiful it is and how easily it can be broken” [108]. Moreover, the idea of
brittleness associated with glass is so rooted in our mind that it stands as symbol of the
uncertainty of life and the human condition as expressed by G. K. Chesterton in one of his
aphorisms: “I felt and feel that life itself is as bright as the diamond, but as brittle as the
window-pane” [109].

Yet, in spite of these beliefs, a pristine glass can tolerate high stresses, of the order of
GPa. This makes glass an extremely strong material in itself [11–13,110]. A classic example
is given by an optical fibre which, despite its size as thin as a hair, can achieve extraordinary
mechanical tensile strengths (~few GPa) [111].

So, what does determine glass brittleness? The answer lies in the presence on its
surface of microscale flaws occurring during the different steps of its manufacturing, pro-
cessing and handling. Consequently, glass strength is drastically reduced by several orders
of magnitude, down to only a few tens of MPa before reaching breaking point, once a me-
chanical stress is applied to its surface. If fused silica glass, thanks to its intrinsic structure,
presents the best characteristics in terms of hardness and mechanical strength, multicom-
ponent oxide glasses, such as soda-lime or float ones, are among the most produced due to
their low cost and easier fabrication. However, due to their highly heterogeneous composi-
tion, they are more liable to the formation of surface defects during their processing and,
therefore, more prone to breakage once they are subjected to mechanical stress. Unlike
crystals which have a well-ordered internal atomic structure, glasses are characterized by a
disordered and chaotic molecular configuration typical of the amorphous materials. The
absence of a crystal lattice leads to the formation of shear bands in the material. From the
observation of these bands that occurred in a metallic glass following their manufacturing
process, A. Wisitsorasak and P. Wolynes developed a general theory capable of explaining
how the breaking phenomenon occurs in these materials [112]. The model provides a
mapping of all the possible configurations of the molecules in the solid, in order to describe
how the mechanical stress changes the atomic rearrangement rate in the glassy material,
with the consequent formation of the shear bands. The observation of these bands allows
to identify the crystallisation points where the glass is structurally weaker and, therefore,
could be more subject to breakage when exposed to external stress. The model can be
extended and generalised for any other glass formulation. In this way it is possible to
produce glass with better mechanical characteristics, which respond to different needs
depending on their use. In addition to this promising theoretical model, currently, the
main practical techniques for strengthening glass involve the use of thermal treatments or
chemical tempering of the material [11–13].
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2.1. Thermal Strengthening

Annealed, heat strengthened and chemically strengthened (or tempered) glass are
the three main types of glass for general use. Annealed glass is the “regular” glass, as it
comes from industrial glass manufacturing (float glass). Thermal strengthening involves a
rapid cooling in air of the annealed glass surface after it has been heated to a temperature
above the glass transition temperature Tg and close to the melting point of the material. At
the beginning of this cooling process the glass surface cools down and contracts quickly,
while its internal core remains hot in order to compensate dimensional changes with small
relaxation stress. In this condition, the inner region of the glass is subject to compression
while the external one is in tension. When the glass interior cools and contracts, the
surfaces are already rigid and therefore residual tensile stresses are created inside the
glass while compressive stresses occur at the surface. In comparison to a simple annealed
glass, this thermal tempering process increases the strength of the pristine material because
the applied stresses must overcome the residual compressive ones on the surface, thus
preventing the breaking event [13,113,114]. This allows to increase the mechanical strength
of the glass by about 4–5 times (up to a few hundred of MPa) and, at the same time,
guarantees a better behaviour of the material in terms of safety when it is subject to a
breakage [115]. In fact, when this event occurs, this kind of glass generally shatters into
many small non-sharp and quite harmless fragments unlike what happens for annealed
glasses which break in larger pieces, with a dangerous dagger-like profile. This particular
response of tempered glass to a breakage event can be explained by the high strain energy
present within these materials. The main limitation of the thermal strengthening process
is linked to the minimum thickness obtainable for a tempered glass, which cannot reach
values lower than a few millimetres (around 2–3 mm, typically) due to the rapid cooling
process and the substantial difference in cooling rate from the glass core to its surface. This
inevitably imposes further limits on the geometry and shape of the final products made
with this type of glass, which must be simple and not very elaborate [11–13,67]. For all
these reasons, thermally tempered glass finds its widest use in all those applications where
human safety becomes an issue, such as in the automotive sector, for the development
of side and rear windows in the vehicles, in the architectural one for the realisation of
safety glass doors in private and public buildings, in the domestic environment (see, for
instance, the glass for showers or microwave ovens), and the military/civil sector for the
development of bulletproof glass where tempered glass is an essential component.

2.2. Chemical Strengthening

Another method to increase the strength of a multicomponent oxide glass involves
modifying its chemical composition, replacing one of its constituent elements with another
one that is different in terms of atomic dimensions and electronic polarizability and, at
the same time, without significantly changing the network structure of the pristine glass.
In particular, the replacement of small ions (originally present in the glass matrix) by
larger ones (coming from an external ion source) produces a compressive stress at the
surface of the glass for a “stuffing” or “crowding” effect, which can improve the glass
strength by counteracting the surface flaws. This compressive stress at the surface is
compensated by a tensile one in the internal region of the glass [7,11–13,110]. Generally,
this method is applied at a temperature lower than the glass transition temperature Tg
and involves the use of a mixture of molten salts as an ion source. For this reason, the
“chemical strengthening” method is also referred to as “ion-exchange strengthening”. This
technique prevents any risk of surface deformation and geometrical distortion due to the
temperature parameter if compared to the thermal strengthening method. The resulting
compressive stress so generated is generally higher than that achievable with the thermal
tempering approach and it is confined in a thinner region of the glass, immediately below
its surface, for low process temperature. In this case, the maximum compressive stress
obtainable with this technique ranges from several hundreds of MPa to around 1 GPa in
proximity of the glass surface [110,116]. Conversely, for a high process temperature (i.e.,

43



Appl. Sci. 2021, 11, 4610

close to the glass Tg or above), the position of this maximum is located several microns
below the glass surface and the magnitude of the stress rate decreases for the occurrence
of surface stress relaxation due to viscous flow of the glass [13]. On the other hand, for a
same process temperature, the maximum of the surface compressive stress decreases when
the ion-exchange time increases: the depth at which the residual stress equals zero (i.e., the
depth of layer, DoL) becomes deeper and, consequently, the flaws that can be involved in
the process are larger [110,117,118]. On the other hand, the maximum for the tensile stress is
not so easy to identify but, in some cases, it is located immediately below the compressive
zone and its value is an order of magnitude lower than that of the compressive stress
(~few tens of MPa), depending on the process duration and sample thickness [13]. Figure 1
compares the residual stress profile in the case of thermally and chemically toughened glass,
respectively. Due to the stuffing effect of the incoming ions at the glass surface, the chemical
strengthening method presents both large surface compression and internal tensile stress.
The transition from the compression zone to the tension one is quite sharp. Conversely,
the residual stress distribution in a thermal tempered glass takes on a parabolic profile
depending on the temperature distribution achieved during the cooling step of the thermal
tempering process. In this case, the compressive stress at the surface is approximatively
twice the value of the tensile stress inside the specimen [11–13].

Figure 1. Residual stress profile through the glass thickness for: (a) thermally tempered glass; (b) chemically toughened
glass. d is the glass thickness; DoL is the depth of layer. Figure reprinted from [67] under the terms of the Creative Commons
Attribution 4.0 International License.

Several approaches have been proposed for stress evaluation in chemically toughened
glasses. Generally, they are based on Cooper’s method which provides the determination
of the stress in the glass starting from the knowledge of the concentration gradient for the
ions participating in the exchange process [7,119]. In this context, R. Dugnani developed an
analytical solution to the problem assuming a generalised function for the stress relaxation,
a constant ionic inter-diffusion coefficient and, simultaneously, taking into account an
analytical approximation for the composition-dependent stress relaxation behaviour of the
glass [120]. On the other hand, A. K. Varshneya, G. Macrelli, and others in their studies
modified the Cooper’s analysis introducing a new term in the model, related to different
relaxation contributions (i.e., the viscoelastic and structural one) together with the network
hydrostatic yield strength in order to evaluate the subsurface maximum compressive stress
when the process temperature is higher and/or close to the glass transition temperature
Tg [121–124]. Also noteworthy is the method, recently proposed by R. Rogoziński, which
allows to control in real time the stresses generated in a glass as a result of the ion-exchange
process from the knowledge of some parameters such as the elasto-optical coefficients,
the dependence of the diffusion coefficients on the temperature and, finally, the function
describing the time relaxation of stresses at the glass surface [118]. Differently from the
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numerical and analytical approaches mentioned above, N. Terakado and co-workers have
developed a very original method for evaluating the compressive stress in a chemically
strengthened glass, connecting it directly to the glass structure on an atomic scale. The non-
contact and non-destructive method is based on the “stuffing” effect and the knowledge
of three structural parameters, represented by specific boson peaks in the micro-Raman
spectra of the sample [125].

At the end of this brief overview on the main concepts underlying the chemical
strengthening of a glass, it should be remembered that in addition to the two most important
process parameters, time and temperature, two other factors influence the formation of
stress in a chemically strengthened glass: the composition of the pristine glass and that of
the molten salt solution in which it is immersed. In fact, the larger the difference between
the atomic dimensions of the two ionic species involved in the exchange, the greater is the
magnitude of the compressive stress near the surface. In this sense, sodium-potassium
(Na+ ↔ K+), lithium-sodium (Li+ ↔ Na+), or lithium-potassium (Li+ ↔ K+) exchanges are
able to produce high compressive stresses with values that, practically, are close to 1 GPa
in the best cases [11–13]. On the other hand, the composition of the pristine glass plays an
important role on the diffusion rate of the ions and stress relaxation of the material during
the exchange process. The common soda-lime glass has excellent diffusivity values for
the incoming ions but a rapid relaxation process which makes difficult the achievement
of a good glass strengthening despite its high alkali content [126]. However, the most
promising glass formulation is the one that refers to aluminosilicates which have the
highest diffusivity values while ensuring the achievement of compressive stresses well
above the possible relaxation effects of the glass matrix [127,128]. In particular, the closer
the alumina content is to that of the alkaline oxides, the higher the attainable strength of the
glass following the exchange process [129]. For more details on the different characteristics
of glass formulations, molten salt compositions, and ion-exchange typologies in glass
strengthening, the reader is referred to the exhaustive reviews on the subject [11–13]. The
main features of the two glass strengthening processes described above are compared in
Table 1 below.

Table 1. A comparison between thermal and chemical glass strengthening methods.

Parameter Thermal Strengthening Chemical Strengthening

Strength (max. value range) ~(200–400) MPa ~(800–1000) MPa
Surface compression layer Thick Thin
Stress distribution profile Parabolic More flat & square

Minimum sample thickness 2–3 mm <1 mm
Process Time Short (mins) Long (hours)
Process Cost Cheap Expensive

Glass Composition No relevant Alkaline glass (i.e., soda-lime
or aluminosilicate)

Product Shape Simple geometries Unusual shape

2.3. Chemical Strengthening: Applications

Although the chemical toughening process of glass presents expensive production
costs due to its high time consuming if compared with a simple thermal tempering process,
the possibility of obtaining greater mechanical strengthening in large glass surfaces with
small thicknesses makes this process particularly suitable for many technological applica-
tions, ranging from the architectural (e.g., windows for buildings and palaces), automotive
and transport sectors (e.g., windshield for airplanes and vehicles) up to the electronics and
military ones (e.g., panels for displays in many electronic devices; air-to-ground missile
launch tube protective covers). Figure 2 shows some outstanding applications related to
chemical strengthened glasses.
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Figure 2. Some relevant application fields of glass chemical strengthening.

In daily life, storing and sharing of data, from those personal to public ones, is almost
delegated to electronic devices, such as smartphones, tablets, and lap-tops. The safety of
these data does not only concern their protection at software level from any external attacks
or a sudden failure of the operating system, but also requires the physical protection of the
same devices, with particular reference to some of their most vulnerable elements such as
monitor and/or display.

For this reason, CORNING® Inc., Asahi Glass Corporation (AGC), and SCHOTT AG,
three world leaders in glass manufacturing, have developed in the recent years different
high ion-exchange (HIE) tempered aluminosilicate glasses (for instance, the Gorilla® series
from CORNING®, the Dragontrail™ from AGC, and the Xensation series from SCHOTT
AG, respectively) with outstanding resistance to breakage and scratches in order to increase
the protection for cover and touch screens, greatly reducing the risk of damage due to
potential impact or fall and, consequently, avoiding any repair costs associated with this
unpleasant event [130–133].

In all these cases, the characteristics of high surface resistance (>900 MPa in the best
cases), flexibility (>700 MPa as a bending stress) and lightness (glass thickness < 1 mm,
generally) are conferred to the pristine aluminosilicate glasses by the special chemical
tempering treatment based on Na+ ↔ K+ ion-exchange, where the large K+ ions, substitut-
ing the host Na+ ions, force the generation of surface compression stress, supporting the
closure of the cracks, thereby increasing the strength of the material and preventing the
formation of others.

In this context, Apple, although employing Corning Gorilla glass technology to protect
the displays of its smart devices, in recent years made a strong effort in the search of alterna-
tive solutions to further increase the conventional method of glass strengthening. Different
strategies have been investigated, such as the implementation of a patterned asymmet-
ric method based on double ion-exchange process in order to increase the compression
depth over at least one localized region, with particular reference to the bend zones of the
glass cover, as highlighted in some Apple patents recently published by the US Patent &
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Trademark Office [134–136]. Regarding the bulk material, the choice of the manufacturing
company fell on a lithium aluminosilicate glass for its excellent chemical durability and
mechanical resistance. The whole toughening process consists of two ion-exchange steps.
In the first one, the specimen is immersed in a sodium nitrate NaNO3 salt (concentration
range: 30–100% mol.) at a temperature lower than the Tg of the glass (process temperature
range: 350–450 ◦C) for 4–5 h. In this case, the sodium ions, originally present in the melted
salt, may exchange for smaller lithium ions in the glass matrix. This contributes to a first
glass strengthening, allowing a build-up of sodium ions at the specimen surface. The
second ion-exchange step, carried out in a potassium nitrate KNO3 salt (concentration
range: 30–100% mol.) at a temperature lower than the glass Tg (process temperature range:
300–500 ◦C) for a process duration of 6–20 h, contributes to the definitive toughening of
the glass. This double ion-exchange process was adopted by Apple both for the realisa-
tion of the front and rear glass cover of the iPhone11 smartphone generation. Moreover,
the rear glass cover is also loaded with metal elements—through diffusion or deposition
processes—in order to guarantee wireless charging operation for the final device.

Corning response to Apple arrived quickly with its Gorilla® Glass VictusTM, a chemi-
cally treated aluminosilicate glass capable of guarantee the best performance in terms of
drop (up to 2 m) and scratch resistance among all the glasses belonging to the Gorilla®

family. The Gorilla® Glass VictusTM presents a minimum thickness of about 0.4 mm and a
shear modulus equal to 31.4 GPa, fully responding to the need for high mechanical strength
in small thicknesses [137]. Due to these remarkable features, this cover glass was adopted
by Samsung in some of its products such as, for instance, the Galaxy Note 20 Ultra.

Finally, it should be mentioned that the race for increasingly resistant materials is
moving towards the use of glass-ceramics, characterized by the presence of nanocrystals
within the amorphous glass matrix. In fact, a glass-ceramic is born like glass and then
turns into an almost completely crystalline substrate by an ad-hoc thermal treatment able
to induce the nanoparticle formation from additional nucleating agents, such as silver or
titanium, previously introduced in the glass matrix. The dimensions of these nanostructures
are generally of the order of a few nanometres, thus allowing an excellent transparency of
the material. Moreover, glass-ceramics are tough, lightweight and present high temperature
stability, high resistivity and excellent isolation capabilities. All these features are well
suited to the role that these materials must assume in terms of safety of smart electronic
systems. It is therefore no coincidence that, at the release of the new iPhone12 series in
October 2020, Apple declared that it had realized—in collaboration with Corning—a new
extremely resistant glass-ceramic product, the Ceramic Shield, four times better in terms
of drop performance than Gorilla® Glass VictusTM [138]. Although Apple is not the first
to have used glass-ceramic materials for the protection of its smart electronic devices (see,
for instance, the Samsung with its smartphone Samsung Galaxy S10), the company from
Cupertino is however the first to use such materials for the display protection while other
manufacturing companies, such as Samsung, have used this material for back panel or
camera-lens safety.

The chemical strengthening process of glass has recently found its application also
in the automotive sector. In 2017, the American automotive manufacturer Ford was the
first to equip its flagship automobile, the Ford GT supercar, using Gorilla glass for the
windshield, rear window and engine cover of the vehicle, replacing the use of more
traditional tempered glass. The new Gorilla hybrid glass, designed in strict collaboration
with Corning, allowed a lightening of the overall weight of the automobile by well over
5 kg, increasing its manoeuvrability and reducing fuel consumption as well as the risk
of glass breaking. Instead of using two thermally tempered sheets, joined together by
a transparent thermoplastic adhesive in order to form the classic windshield glass, the
new solution uses the co-presence of three layers: an external tempered glass joined to
an internal one, highly resistant and chemically toughened, by a transparent and sound-
absorbing thermoplastic. The presence of the ion-exchanged glass contributed to reduce
the overall thickness of the new hybrid glass by approximately 50% compared to a common
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windscreen made with thermally tempered glass. Given the advantages of this strategy,
it is likely that in the future the same technology will be extended to the production of
series cars [139,140].

As a third significant example of ion-exchange application for glass strengthening,
the case of photovoltaic and space solar cells deserves consideration. In fact, the cover
glass represents one of the fundamental components of each of these devices and plays
a key role in the final cost and efficiency of the cells. In terms of cost, the contribution
relating to the protective glass is not negligible because it alone represents about 25% of the
total cost of the whole device. Moreover, regarding the cell efficiency, the protective glass
can influence the device performance depending on the transparency level of its material
to solar radiation. Therefore, the optimisation of the cell cover glass becomes extremely
important in order to minimize costs and maintain high performance for the final product.

In principle, glasses for photovoltaic and space solar cells should be as lightweight
as possible in order to reduce material thickness and waste, so decreasing the overall
cost of the device. Usually, commercial, thermally toughened float or soda-lime glasses,
with a thickness of around 3 mm, are adopted on-board of the photovoltaic cells while
they appear quite bulky and heavy for space solar cells. As a direct consequence of using
a thin cover glass, comes the need for greater strength of the material. Moreover, the
glass composition should be engineered for low losses and small UV photon absorption
in order to guarantee better cell efficiency and service lifetime, respectively [67]. The
use of chemically strengthened glasses may represent a valid solution, as reported by H.
Wang et al. [141]. In that work, the authors demonstrated how an ion-exchange process,
performed in a bath of pure KNO3 molten salt at a temperature comprised between 400 ◦C
and 460 ◦C for a process time from 20 to 90 min, was able to confer suitable toughening
to experimental silicate glasses having a thickness of only 120 µm. In particular, the
maximum achievable flexural strength was measured to be around 632 MPa, four times
higher than that of the un-treated samples. Moreover, the selected ionic process did not
significantly modify the transparency characteristic of the pristine glasses in a wide range of
the wavelength, while, at the same time, it was able to increase the durability of the material
when exposed to the ion radiation. Hence, the obtained results were in full agreement with
the possibility to reduce the cost and improve the performance of the space solar cell in
terms of efficiency and service lifetime.

With the aim to release on the market a lighter glass, the researchers of the Asahi Glass
Corporation (AGC) made a novel chemically-strengthened industrial glass, Leoflex™, an
ultra-thin, flexible and extremely resistant material. Leoflex™ glass, with its lower sodium
concentration at the surface, exhibits better electrical resistivity and higher mechanical
strength caused by the chemical toughening process and strongly reduces the risk of poten-
tial induced degradation (PID), which represents one of the main reasons for the failure of
photovoltaic and space solar cells. All these features made this material an ideal candidate
as a cover glass for the development of highly performing photovoltaic application [142].
Additionally, the ion-exchange process also plays a key role in the efficiency of the same
cell by introducing noble metal ions/nanoparticles capable of triggering particular energy
transfer mechanisms (i.e., down-conversion from ultraviolet (UV) to visible wavelengths or
up-conversion from infrared (IR) to visible range), especially when the glasses are doped
with elements belonging to the rare earth group. This subject, together with other ones
which involve the use of metal aggregates for different application fields, will be addressed
in the next section.

3. Noble Metal Ions/Nanoparticles by Ion-Exchange in Glass Substrates:
Novel Platform for Photonic & Sensing Applications
3.1. Ion-Exchanged Noble Metal Ions/Nanoparticles in Rare-Earth—Doped Glasses for Enhanced
Light Sources and Photovoltaic Cells

The development of solid-state light sources by using glasses doped with different
combinations of rare earths has driven the attempts to further improve their efficiency by
using sensitisers added to the glass matrix. Their function is to increase the absorption of
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the excitation light, also at wavelengths where more efficient, reliable, and less expensive
pump sources are available, and efficiently transfer the collected energy to the emitting
rare earths.

The same materials can also be tested to be used to enhance the efficiency of photo-
voltaic (PV) cells.

In fact, a large portion of solar radiation in the UV spectrum cannot be absorbed or
efficiently converted in electricity by silicon-based PV systems. In case the solar light in
the spectral windows where PV cells are less efficient could be converted entirely inside
the working wavelength interval of the cells, their theoretical efficiency would increase
from 29% to 38%. It is therefore apparent that even a more realistic partial result could be a
crucial improvement.

Many approaches have been pursued, but, as we will describe in the following,
usually metallic silver nanoparticles have been used as sensitizer. Their advantage is a
strong broadband absorption band, joined to the possibility of introducing them in the glass
by means of ion-exchange and subsequent thermal processes, which makes this mature
technological approach fairly convenient and economical.

Malta et al. reported, in 1985, the enhancement of Eu3+ luminescence in melted calcium
boron oxy-fluoride glass, which they related to the local field enhancement produced by
the surface plasmon resonance of the Ag particles [54]. In this case, silver was introduced
directly in the glass melting process. This result was confirmed by Hayakawa et al. in sol-
gel glasses where reduction of the silver ions to metallic form was obtained by annealing
the glass in H2/N2 atmosphere [55]. Similarly, Li et al. demonstrated for the first time non
resonant energy transfer from Ag+ ions (hence, non-metallic) to Dy3+, Sm3+ and Tb3+ [143].

These are only few of many examples of rare earth doped glasses where ion-exchange
was not used as a means for introducing silver nanoparticles in the glass and that showed
the potential of using silver as sensitiser. In the following, we will focus on and limit to
examples where ion-exchange was applied.

Jiao et al. investigated the effects of silver introduced by ion-exchange in sodium
borate glasses on Eu2+ and Eu3+ ions fluorescence [144]. The authors stressed the differ-
ent role that few Ag atom/ion complexes, up to full grown nanoparticles, may play in
influencing fluorescence emission. Actually, after introducing silver in the glass, typical
emission of both Eu2+ and Eu3+ ions increased, but excitation would switch from the 270
nm band of Ag+ ions to the 350 nm ascribed to Ag clusters, which get formed at expense of
Ag+ isolated ions and smaller aggregations by increasing ion-exchange time. Using 350
nm excitation, an otherwise weak band assigned to the 4f6 5d→ 4f7 transition of Eu2+ ions
was also enhanced. Therefore, it is evident how in this case both the optimal excitation and
the emission depend on the valence and aggregation of silver, which can be controlled by
the ion-exchange process parameters.

Similarly, Li et al. studied the effects of silver doping by ion-exchange on the photolu-
minescence emission in Eu3+ sodium-aluminosilicate glass [60]. As shown in Figure 3, the
inclusion of silver aggregates produced a broad emission band in the 400-700 nm interval
overlapping the Eu2+ 5d-4f emission, and a substantial increase of the 615 nm line of Eu3+

when excited at 350 nm as the silver content was increased.
The effect was ascribed by the authors solely to energy transfer from silver ions to

Eu3+ ions. The combined emission by silver, when suitable ion-exchange parameters
were chosen, and Eu3+ ions produced white light. Therefore, silver contributed both by
enhancing Eu3+ emission in the red and by its own emission in the blue-green region. The
same group of authors has obtained very similar results with Sm3+ and Tb3+ in the same
glass [59,145] and in borosilicate glass [64].

Strohhöfer and Polman demonstrated energy transfer from silver ions/dymers to
erbium ions implanted in BK7 after Ag+/K+ ion-exchange [56].
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Figure 3. Photoluminescence emission of Eu3+ doped sodium-aluminosilicate glass as a function of
the silver ions density. Reprinted with permission from [60] © The Optical Society.

Our research group has characterised very thin wafers of Er3+-doped silicate glasses
entirely ion-exchanged in an Ag/NaNO3 melt. [57,58]. We tested several post-exchange
annealing processes evidencing the effect on absorption and emission spectra. In particular,
since Er3+ resonant excitation was not affected by the silver presence, whereas non-resonant
was enhanced (up to 100 times), we concluded that the effect should be ascribed to energy
transfer from the silver nanoparticles to the Er3+ ions, rather than local field enhancement.

Similar results have been demonstrated in different Er3+/Yb3+ glass formulations,
such as silicate and titanoniobophosphate glasses, where planar waveguides have been
fabricated by Ag+/Na+ ion-exchange [62,146].

Photoluminescence enhancement of Dy3+/Eu3+ co-doped tellurite glasses was re-
ported by Yu and co-workers [78]. In this case, the quantum efficiency improvement
(several % units, depending on excitation wavelength, ion-exchange conditions and glass
doping) was attributed mainly to the local plasmon resonance field enhancement produced
by the silver nanoparticles. Also in this case, different ion-exchange parameters produce
glasses capable of emitting with different CIE (Commission Internationale de l’Éclairage)
coordinates, and therefore emission tailoring is readily possible.

Recently, the Yb3+/Ho3+ doping system, interesting for the fabrication of laser sources
for medical applications operating at 2 µm, has been studied by Vařák et al. in zinc-
silicate glasses [147]. In this case, Ag+/Na+ and Cu2+/Na+ ion-exchanges have been
tested, in order to introduce either silver or copper nanoparticles inside the glass. In both
cases, planar waveguides were obtained and characterised. Regarding photoluminescence,
unfortunately the effect of copper was, even if only slightly, negative, since the emission
decreased after ion-exchange, and a subsequent annealing step did not improve it. The
effect of silver was however better, and a 20% photoluminescence intensity increase,
assigned to energy transfer from silver clusters to Ho3+ ions, was measured.

Silver ion-exchange has been reported to enhance NIR emission also when not using
rare earths, as with Bi-doped silicogermanate glasses [148]. In fact, lower valence Bi ions
are responsible for NIR fluorescence, so that increasing their presence can improve the
low efficiency of fibre amplifiers based on this element. In this case, the effect of silver
ions introduced in the glass by ion-exchange followed by thermal annealing is not linked
to energy transfer processes, but rather to the valence reduction effect on the Bi3+ ions.
This can be efficiently achieved only by introducing silver ions by ion-exchange, since the
required valence state of silver is given by the process itself. The authors showed that Bi
emission in the visible range was reduced and NIR emission increased by about twofold
this process.
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However, the presence of silver does not always enhance photoluminescence emission.
In fact, as described for Ce-doped soda-lime silicate glasses by Paje et al. [149], silver causes
the reaction:

Ce3+ + Ag+ → Ce4+ + Ag0.

This in turn not only changes the emission photoluminescence spectrum but also
its intensity, since Ce4+ ions do not emit and even absorb both the UV excitation and the
photoluminescence produced by Ce3+ ions.

In the case of photo-thermo-refractive (PTR) glasses, however, the same type of
reaction has been exploited by Sgybnev et al. [74] to test the potential of these sodium-zinc-
aluminosilicate glasses co-doped with Ce and Sb to serve as wavelength converters for
enhancing the efficiency of PV cells. The authors tested the possibility of producing neutral
silver molecular clusters in PTR glasses both by irradiating with UV radiation samples
already doped with silver in bulk or by Ag+/Na+ ion-exchange. In both cases an annealing
step followed the first phase of the process.

As a result, in all cases, silver molecular crystals were obtained, but their efficiency was
different depending on the process. The PV cells placed behind the best sample obtained by
ion-exchange reduced their overall efficiency, even if only slightly, whereas the sample with
silver atoms dispersed at the time of initial melting showed a slight efficiency improvement
respect to the as-synthesised cover glass.

3.2. Ion-Exchanged Noble Metal Nanoparticles in Glasses for Sers Applications

The interaction between light and noble metal nanoparticles (NP) at the material
interface is the key point for the employment of one of the best performing optical investi-
gation methods: the surface-enhanced Raman scattering (SERS) technique. These metallic
nanostructures work as “hot spots” for the electric field of an interacting lightwave by
means of the localised surface plasmon resonance (LSPR) effect [150]. When a molecule is
close to one of these “hot spot”, its Raman signal increases by several order of magnitude
under the action of the enhanced field. This confers to the sensors/biosensors based on this
optical technique ultra-sensitive detection limits, combined with the structural information
content typical of the Raman spectroscopy [151].

For the development of high-performance SERS devices, the optimisation of the sub-
strates is mandatory. Ideal SERS platforms should ensure high efficiency (in terms of signal
enhancement), reproducibility in response, reusability, long-term stability for the metal
nanoparticles, low cost, and simplicity of the fabrication method [97,152]. Furthermore,
considering that silver NPs—which offer the best SERS activity among all noble metal
nanostructures—are prone to oxidation and sulfidation phenomena, it is easy to understand
how obtaining SERS substrates adhering to ideal requirements is still a challenging task.

Among all the materials and manufacturing methods for SERS substrates [153], ion-
exchange in glass may represent an effective route towards the realisation of performing
and reliable SERS platforms thanks to the following features: (i) efficient SERS activity of
these substrates (from 105 to 107 signal enhancement); (ii) intrinsically low material and
processing costs; (iii) adequate sample reproducibility by opportunely tailoring the process
and post-process parameters; (iv) long-term stability for the metal nanoparticles by their
embedding within the glass matrix (typically, tens/hundreds nanometres under the glass
surface) during a suitable post-process treatment; (v) actual sample reusability by partial
exposure of noble metal nanostructures at the surface and their further refresh through
suitable chemical and/or thermal steps [105,154].

3.2.1. Glasses for SERS Substrate by Ion-Exchange Technique

Soda-lime and float glasses with their large commercial availability, high transparency,
good chemical durability, high sodium content, and ion inter-diffusion coefficients are
the most popular material for the realisation of SERS substrates by ion-exchange process.
The presence in trace of some impurities, such as iron or arsenic, within these glasses
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promotes the reduction of the exchanged noble metal ions into metallic clusters during the
subsequent sample treatment [100,155–158].

Not to be forgotten are the commercial borosilicate glasses (e.g., Schott BK7 or Corning
0211 glasses) which, with their higher purity, are the most common substrates for the
realisation of integrated optical devices by ion-exchange process. Although the almost total
absence of impurities does not make them suitable for the formation of metal nanoparticles
by chemical reduction processes, recent studies have shown the possibility of obtaining
efficient SERS substrates also by using these highly pure glasses [159].

Finally, it should also be mentioned that, together with these widely used glass
systems, phosphate or fluorophosphate glasses are recently gaining ever-increasing interest
due to their lower processing temperature, higher diffusion coefficient for noble metal ions,
and better reducing properties thanks to the large concentration of non-bridging oxygens
generated during the glass synthesis [99,160].

Having incorporated the metal ions in the glass matrix by the ion-exchange pro-
cess, one can promote their precipitation into metal nanoparticles by adopting different
strategies, as described below.

3.2.2. Thermal Annealing in Air (O2 Atmosphere)

The most common and simple strategy is represented by a thermal annealing treat-
ment, carried out in air (O2) in a suitable furnace, at a temperature close to the transition
temperature Tg of the glass. The mechanism that regulates the formation of silver NPs
inside an ion-exchanged soda-lime glass by means of this thermal post-process is well
explained in the work of A. Simo et al. and outlined in Figure 4 below [106].

Figure 4. Outline of the mechanism regulating the formation of silver clusters and particle growth in soda-lime ion-
exchanged glass under thermal annealing in air at different time and temperature. Reprinted with permission from [106].
Copyright © 2012, American Chemical Society.

After the ion-exchange process, only Ag+ ions are present within the glass. By increas-
ing the annealing time and temperature (providing that the temperature remains below the
critical threshold of about 400 ◦C), there is an increasingly large formation of silver clusters,
which occur in the status of dimers Ag2 (diameter size d < 1 nm). These small clusters
are stable at elevated temperatures and remain within the glass matrix. The presence of
these non-plasmonic nanostructures is the first responsible for the photoluminescence
enhancement of the ion-exchanged sample. Thermal treatment performed beyond the
aforementioned threshold temperature, which corresponds to the decomposition tempera-
ture of silver oxide, leads to the formation and the further growth of metallic silver NPs as
the exchange time increases and the process temperature approaches Tg. In fact, in this
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temperature range, the number of reducing agents—the non-bridging oxygens (NBOs)—
increases inside the glass matrix while the number of silver clusters remains unchanged.
Consequently, the existing clusters begin to grow through the progressive addition of silver
atoms Ag0 (monomers) towards the formation of ever larger plasmonic metal NPs, while
the overall concentration of the particles remains constant.

Therefore, for a given temperature, the final size of these metal nanostructures is
determined by the concentration of the dimers Ag2 and the duration of the heat treatment.
Typically, the formation of these particles is limited to the layers immediately below the
glass surface, at a depth of a few tens/hundreds of nanometres, due to temperature-induced
diffusion effects. Differently from the silver cluster case, the presence of these plasmonic
metal nanoparticles produces a quenching effect on the photoluminescence intensity of the
ion-exchanged specimen, especially when their size reaches several tens of nanometres or,
at most, a few hundred nanometres [106].

3.2.3. Thermal Annealing in H2 Controlled Atmosphere

Another thermal post-processing strategy for a glass exchanged with noble metal ions
involves the heating of the sample in a controlled hydrogen (H2) atmosphere. Although
this technique requires larger precautions for the operator safety in comparison with that
performed in air (O2), this thermal post-process favours the formation of both glass-metal
nanocomposite (GMN) species within the glass and metal island film (MIF) on the glass
surface due to the out-diffusion mechanism of the noble metal atoms as a result of the
hydrogen penetration into the glass [161]. However, under particular conditions relating
to hydrogen processing, it is possible to favour the formation of MIF species on the glass
surface by minimizing that of GMN within the host material, as well reported in the works
of A. Lipovskii and collaborators, to which we refer for more details [162–164]. In brief,
the authors employed a thermal poling technique, through the use of a suitably shaped
anodic electrode applied to the ion-exchanged silicate glass sample, in order to modify
the distribution of noble metal ions (e.g., Ag+) and thus control the formation of the metal
nanoislands by means of a soft thermal annealing step in a hydrogen atmosphere. Figure 5
explains this approach together with an atomic force microscopy (AFM) image of the
nanoislands so formed. Depending on the electrode periodicity, arrays of nanoislands can
be obtained on the surface of the glass sample.

Figure 5. (a) A sketch of the mechanism of silver nanoislands growth by poling treatment following
by a thermal annealing treatment in H2 controlled atmosphere; (b) an AFM image of a nanoisland
group in a not poled region after annealing treatment in H2. Figure adapted from paper [164] under
the terms of the Creative Commons Attribution 4.0 International License.

During the poling step, the simultaneous presence of electrostatic repulsion effects
generated by the applied DC electric field and those linked to the process temperature
favours the migration of the silver ions towards deeper layers of the glass in correspondence
of the poled region. Nevertheless, the low poling temperature (Tp ~250 ◦C) and the lack
of impurities in the pristine silicate glass do not favour the formation of silver atoms and
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metal nanoparticles in this area. Therefore, if the process parameters (i.e., duration and
temperature) of the following thermal annealing in hydrogen are selected in such a way
that the hydrogen penetration depth is not enough to reach the diffused silver ions, then
any possibility of their reduction is precluded, and the poled zone remains almost empty
of silver atoms and nanoparticles. On the contrary, in correspondence with the non-poled
zone, the hydrogen in-diffusion is accompanied by an out-diffusion of the silver ions with
their consequent reduction and formation of metal nanoislands on the glass surface [163].
A similar result was found by E. Kolobkva et al. in fluorophosphate glasses [99]. The
possibility of drawing 2D-patterned nanoisland structures on the glass surface makes these
substrates ready for their use in SERS applications.

3.2.4. Laser Irradiation Techniques

Besides the aforementioned thermal post-processes, other annealing techniques in-
volve the use of continuous [102,165–167] and/or pulsed lasers [98,101,168–171] working
at different wavelengths of the spectrum (from X-ray to ultraviolet (UV) and visible (VIS)
regions up to infrared (IR) ones) and able to effectively reduce the noble metal ions in
metal NPs. In this case, the mechanism of nanoparticle formation depends on the power
of the laser source at the surface of the ion-exchanged specimen. In fact, in many cases
the interaction between the laser beam and the sample is of thermal nature, as occurs
for silver-ion-doped glasses when the working wavelength of the light source falls in the
sample absorption region (i.e., from the UV to visible band, depending on the electronic
status of silver). If the power level of the laser is relatively low, so as to ensure that the
temperature of the irradiated area remains close to the glass transition temperature Tg
during the whole process, then the reduction in silver atoms follows a trend almost similar
to that of the thermal annealing mentioned above (in O2 environment): laser irradiation
produces free electrons from the non-bridging oxygens (NBOs) which are captured by the
Ag+ ions to form neutral Ag0 atoms (metal silver atoms), starting their following growth
process in metal NPs. As in the previous case, the nanoparticles thus formed are completely
embedded within the glass matrix and a further etching step is required to make them
partially exposed on the surface. This makes them available for SERS applications.

Conversely, at higher laser power levels, the temperature of the glass surface becomes
greater than the glass Tg and the sample, in the irradiated region, behaves as a molten glass.
In this liquid state, some of the silver nanoparticles are formed in a deeper region of the
irradiated area while others may migrate to the glass surface where they are constrained to
remain under the effect of the surface tension. Here, following the temperature distribution,
they move towards the edges of the laser beam where they continue to aggregate forming
larger structures. Once the laser is turned off, these nanoparticles remain frozen and
partially exposed to the air [102,165,167]. In this way, these metal nanostructures are ready
for SERS sensing and no further etching step is required. If compared with the standard
thermal annealing process in air, the one induced by laser irradiation is faster in terms
of nanoparticle formation and offers the non-negligible advantage of being able to draw
ordered structures of nanoparticles—equally spaced from each other—so that the SERS
response of the substrate is enhanced [102,166]. Figure 6 sketches the mechanism of metal
nanostructure formation by high power laser beam in the case of silver ion-exchanged
glass (Figure 6a). Figure 6b reports a SEM image of the edge region between irradiated and
not-irradiated area. The lack of visible nanostructures on the surface of the exposed region
suggests the possibility to obtain silver nanoparticles buried beneath the glass surface.
Conversely, densely packed spherical silver NPs, whose size distribution ranges from a
few to several tens of nanometres, are clearly visible on the ion-exchanged glass surface
at the border of the irradiated area. Figure 6c shows a SEM image of a quasi-periodic
arrangement of silver NPs obtained with this technique. Finally, Figure 6d represents
a zoom image of an array of silver nanoparticles. The alignment of the nanostructures
appears quite regular.
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Figure 6. (a) Growth process of metal silver nanoparticles on the ion-exchanged sample surface at the
edge of an exposed zone by high power laser irradiation; (b) a comparison between the distribution
of silver nanoparticles in the exposed and not-exposed region, respectively (adapted with permission
from [165] © The Optical Society); (c) a SEM image of a quasi-periodic arrangement between silver
NPs; (d) an ordered silver nanoparticle array, with its surface profile plot, obtained by laser beam
irradiation technique (reprinted with permission from [166] © The Optical Society).

Obviously, once exposed, these silver NPs can undergo oxidation effects that affect
their performance in terms of SERS response. A possible solution to the problem could be
to carry out a low temperature thermal annealing in air (Tann ~ 200 ◦ C) in order to reduce
to metallic state the thin layer of silver oxide (Ag2O) thus formed on the nanoparticles
surface, which is mainly responsible for the deterioration of the SERS enhancement [102].
Another approach to prevent the aging of silver nanoparticles concerns the deposition of a
thin film of transparent dielectric material (e.g., SiO2, TiO2, Si3N4, Al2O3, etc.), provided
that the thickness of the deposited layer is such as not to excessively weaken the plasmon
resonance and the consequent field enhancement effect. For this purpose, tight thickness
control deposition techniques, such as atomic layer deposition (ALD) and plasma-enhanced
chemical vapour deposition (PECVD), are preferable [172,173].

3.2.5. Metal Thin Film Deposition for Noble Metal Ions Reduction in Ion Exchange Process

The possibility of realizing SERS active metal nanostructures on high quality, free
from impurities, commercial glasses (such as, Corning 0211 borosilicate glass) by means
of ion-exchange process can be favoured by applying on the sample surface a metal thin
film working as a mask or electrode. In both cases, the presence of the film plays the role of
reducing element for the silver ions introduced into the glass following the ion-exchange,
as well investigated in the works of Y. Chen and co-workers [103,104,159].

In the masked ion-exchange process in silver molten salts, the reduction mechanism
of silver ions in metallic form is strictly related to the presence of electrical potential
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differences among the molten salt, the glass and the metal mask. This produces an ionic
current flow: the silver ions migrate from the molten salt into the glass through the mask
openings, concentrating in the region under the mask edges. Here, by capturing an electron
made available by the metal mask, the silver ions are progressively reduced to metallic
state [103,104]. Figure 7 shows the effect of a metal mask on the reduction of silver ions
following the ion-exchange process.

Figure 7. Deposition of silver nanoparticles under the mask edge by masked ion-exchange process
(cross-sectional view). In inset, the reduction mechanism of silver ions in metal nanoparticles under
an aluminium mask.

The main advantage of this photolithographic approach is to provide the formation of
well-defined patterns of silver nanoparticles, aligned with ion-exchange channel waveg-
uides, without any thermal post-processing of the sample. Furthermore, this method
represents a valid alternative to that of laser irradiation to realize integrated sensors, based
on optical waveguides and SERS.

In the second approach, the deposed metal thin film works as an electrode in a double
ion-exchange process. The glass sample is loaded with silver ions through a simple ion-
exchange in molten salt. Subsequently, a thin metal film of aluminium is deposited on
one of the two sample faces. The sample is then immersed in a potassium molten salt
bath. In this way, the overall system represented by the metal thin film, the ion-exchanged
glass and the molten salt acts as a real galvanic cell. In fact, two electric potentials are
soon established on the two faces of the glass. The first, positive type, is located near the
glass-salt interface and takes place from the different inter-diffusivity of the ionic species
involved in the process. In this region, the Ag+ and Na+ ions diffuse faster in the molten
salt than the K+ ions in the glass. The second, negative type, is generated near the other
thin film-molten-salt interface. Here the thin aluminium film tends to release electrons
to the Ag+ ions in the glass while Al3+ ions migrate to the molten potassium salt. This
electrical potential difference produces an ionic current inside the glass which forces the
silver ions to move to the surface of the specimen, in an area immediately below the metal
electrode. In this region, the silver ions are reduced in metallic form through the acquisition
of an electron coming from the metallic film. The formation of silver nanoparticles is also
promoted by the continuous flow of silver ions coming from the deeper regions of the glass
towards the interface with the aluminium thin film [159]. Figure 8 describes the mechanism
mentioned above (Figure 8a), reporting a scanning electron microscope (SEM) cross-section
image of the silver nanoparticles distribution under the sample surface (Figure 8b).
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Figure 8. (a) Mechanism for the formation of silver nanoparticles in a double ion-exchange using an aluminium thin film as
electrode; (b) distribution of silver nanoparticles, under the sample surface, following the process (SEM image of the sample
cross section near to the surface). Reprinted with permission from [159] © The Optical Society.

The main feature of this method is to offer a simple and low-cost solution for the
production of homogeneous and large-scale SERS substrates.

In both approaches described above, the formed silver nanoparticles are embedded
within the glass. Therefore, a subsequent soft etching step in HF acid is necessary to expose
them at the surface level and make these substrates functional for SERS applications.

We would also like to mention the work of P.L. Inacio et al. for its simplicity. Their
investigation, using optical and AFM (atomic force microscopy) measurements, showed
a migration of silver Ag+ cations from inside of the waveguide to its surface at room
temperature. Once exposed to air at room temperature, the cations undergo an oxidation
process changing the SERS response of the substrate [174]. The advantage of this approach
is that it does not require any additional process other than that represented by the aging
over time of the exchanged sample. On the other hand, the main drawbacks lie in the rather
long aging times, the instability of the SERS substrate over time, and the poor adhesion of
the metal nanoparticles formed on the glass surface, which makes them easily removable
under the minimum mechanical action or event.

SERS platforms created by ion-exchange are still in their early state, since the main
scientific contributions reported so far in the literature demonstrate only proof of concepts
of their operation through the use of aromatic molecules (e.g., rhodamine, etc.). However,
thanks to their interesting performances both in terms of signal enhancement and detection
limit [154], it is likely that soon these substrates will actually be used for the detection of
biological targets, such as DNA sequences, proteins, bacteria, etc., as is happening for SERS
substrates obtained with different technological approaches [97,151].

4. Perspectives & Future Insights

The high versatility of the ion-exchange process in glass finds new and fascinating
perspectives of application in the field of photonics, some of them in progress while others
still deserve to be investigated.

4.1. All-Glass Flexible Photonics

As happened for electronics, flexibility is also becoming a fundamental paradigm in
photonics, favouring the integration of the respective devices in flexible and stretchable
substrates and contributing to expand their application scope, from the field of optical
interconnections to that of new systems for the continuous monitoring of patient health, or
that of implantable devices for minimally invasive medicine, up to the development of a
new class of optical sensors and sources [175–179].
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Polymers are certainly the main substrates for the development of this novel technol-
ogy thanks to their intrinsic mechanical flexibility. In order to give some examples, it is
worth listing the possibility of making silicon photonic devices on plastic substrates by
means of low temperature approaches (e.g., transfer-and-bond technique, direct fabrication
process flow) [180,181]; the deposition of glass-based 1D photonic crystals and erbium
activated planar waveguides by radio frequency (RF) sputtering on flexible polymeric
substrates [182]; the realisation of stretchable platforms in which single-mode photonic
devices, made from high-index chalcogenide glasses and low-index epoxy polymers, are
monolithically integrated on polydimethylsiloxane (PDMS) elastomer substrate. In the
latter case, local substrate stiffening and spiral based waveguides provide protection to
functional photonic components and interconnections with very low radiative optical
losses, respectively [183,184]. Polymeric materials, however, exhibit various drawbacks
such as a limited range of refractive indices, not negligible optical absorption in the near-
infrared region, low process temperature and poor chemical stability. All these factors
generally represent serious side effects against their integration and processing with other
materials.

Conversely, glass, with a wide range of refractive indices, high transparency from
visible to infrared, excellent chemical and thermal stability, as well as low permeation rates
for ambient gases and water, may represent a valid alternative as flexible platforms for the
realisation of photonic devices provided that their brittleness is somehow mitigated [185].
In this context, J. Lapointe et al. demonstrated the possibility to obtain single mode,
low-loss (<0.15 dB/cm), laser-written channel waveguides in flexible chalcogenide glass
tape [186]. Nevertheless, among all the glass formulations that can be used for the purpose
of flexible photonics, borosilicate glass represents the most widely used material due to
its intrinsic characteristics of mechanical strength. In particular, alkali-free commercial
borosilicate glasses with extremely thin thicknesses (<100 µm) are currently made available
by major glass producers in the format of sheets or rolls. This is the case of Willow® glass
from Corning and AF32® from Schott just to mention a few [187,188]. The flexibility of these
glasses is conferred through particular manufacturing processes—such as down-draw or
roll-to-roll (R2R) techniques—capable of guaranteeing ultra-thin thicknesses to the finished
product with an extremely high surface quality, similar to that of a pristine glass [189,190].

As a white sheet of paper waiting to receive the characters from the pen of an inspired
writer, so Willow glass with different thickness can be used as a substrate for the realisation
of photonic circuits as demonstrated by S. Huang and co-workers. In this case, the writing
instrument is represented by a femtosecond laser capable of locally modifying, in the
irradiated area, the refractive index of the pristine glass [191]. Figure 9 shows photos
of bent waveguides fabricated in Willow glass with different thickness. The scattered
green light, coming from a laser source working at 532 nm and injected inside the guiding
structures by a butt-coupled optical fibre, visually highlights the actual presence of these
channel waveguides.

By optimising the laser processing parameters in terms of speed and energy pulse, it is
possible to obtain single-mode channel waveguides at the working wavelength of 1550 nm
with propagation loss as low as 0.11 dB/cm in all flexible Willow glass formulations. In
particular, for the selected refractive index change (∆n ~ 5 × 10−3), the bending losses of
the waveguides are practically negligible for a curvature radius ≥1.5 cm. Furthermore, the
high thermal stability of these optical devices (up to 400 ◦C), together with the possibility of
writing Bragg grating waveguides, opens up new potential scenarios for the realisation of
more complex photonic circuits on these commercial flexible glasses. Due to their alkaline-
free content, these glasses find one of their main uses in the development of flat panel
displays for high-tech applications [192].
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Figure 9. Photos of bent waveguides written by femtosecond laser in Willow glass strips with
different thickness and bending radius (a) 100 µm thickness and bending radius 13.5 cm; (b) 50 µm
thickness and bending radius 2.1 cm; (c) 25 µm thickness and bending radius 1.0 cm; (d) the same
sample reported in (c) compared with the size of a small coin. Reprinted with permission from [191]
© The Optical Society.

The possibility of further strengthening these ultra-thin glasses could prevent the
formation of any surface flaws making the customary handling and processing (e.g., glass
cleaning, cutting, and lamination) procedures of these products less critical. Nevertheless,
thermal tempering does not represent a suitable solution for strengthening these display
glasses due to their thinness and low thermal expansion coefficient. On the other hand,
the total absence of alkaline ions (e.g., sodium ions, Na+) in these products would seem to
preclude the use of any chemical treatment aimed at further strengthening them. In this
context, the interesting work by Mauro et al. would seem to offer an elegant solution to
the problem, bypassing this impasse through the use of a particular ion-exchange process
in alkali-free boroaluminosilicate glass [193]. The idea behind this original method is to
replace ions such as Ca2+ and B3+ present inside the pristine glass matrix with Ba2+ ions
coming from an ion source where the sample is immersed. Unfortunately, the kinetics of
this kind of ion-exchange would be decidedly limited due to the considerable difference
in inter-diffusivity between the two ionic species involved in the process, the alkaline
and alkali ones, respectively. Moreover, these alkaline salts present high melting point
and chemical corrosiveness that could irreversibly damage the glass surface during the
exchange process, making their use as ion sources in a standard ion-exchange practically
unfeasible. For all these reasons, the new chemical strengthening treatment is carried out
in aqueous solutions of alkaline salts at a relative low temperature and under pressure in
order to keep the water stable in its liquid state [194]. Proceeding in this way, the authors
demonstrated the possibility to reach surface compressive stresses (CS) of the order of
200 MPa and a depth of layer (DoL) of only a few microns (i.e.,: <2 µm for barium nitrate).
This technique can be applied to a wide range of alkali-free glasses, such as ultra-thin
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Willow glass, contributing to improve mechanical performance and thus helping to make
all-glass flexible photonics more feasible.

A second promising approach towards the development of all-glass flexible photonics
is the one that involves the use of alkali-based glass formulations (i.e., sodium aluminosil-
icate glass). In fact, recent analytical studies conducted by G. Macrelli and co-workers
shed new light on the effects induced by the bending stresses on both the mechanical
strength and optical properties (e.g., in terms of refractive index) in the two main silicate
glass formulations considered here, the alkali-free and the alkali-based ones [195,196]. In
general, the thinner the glass, the lower the surface stress resulting from a bending action.
This allows to reach ever smaller bending radii, within the limits given by the mechanical
strength of the material related to the presence of surface flaws. When subjected to extreme
curvature, the glass develops high tension stresses that can lead either to its immediate
breakage or to the progressive growth over time of micro-cracks, generated both by the
effect of the continuous applied tension and by the action of water vapour on surface
flaws, resulting in consequent definitive damage of the material. To overcome this problem,
the strategy based on alkali-free glasses dictates a complete sealing of their surface, to
make it resistant to the deteriorating action of water vapours on any surface flaws. On the
other hand, the strategy based on alkali-silicate glasses involves the use of ion-exchange,
capable of strengthening the glass by means of a residual tension profile induced on the
surface of the sample following the same process. This suggests that the achievement of the
surface flaws stability in extreme bending conditions for the glass represents a key factor to
be considered.

From the mechanical analysis carried out on the two types of samples mentioned
above it emerges that, under the same extreme bending conditions, the alkali-based silicate
glasses strengthened by ion-exchange generally allow larger thickness, overcoming the
limitations imposed on not chemically treated alkali-free or alkali-based glasses. Moreover,
from an optical point of view, the response of the two types of glass formulation under
the same bending stress appears very different in terms of refractive index. In particular,
for glasses strengthened by ion-exchange, the presence of residual surface tensions is
associated to a local volume change of the material. This induces a further birefringence
phenomenon that well overcomes that coming from the bending action of the glass sample.
As a result, a strong refractive index gradient occurs at the surface of these exchanged
ultra-thin glasses. This effect must be taken into account when designing all-glass photonic
devices on this kind of flexible substrates.

From what has been reported up to now it is clear the key role that ion-exchange,
together with the glass material engineering, can play in the creation of increasingly
performing flexible substrates towards the achievement of an all-glass flexible photonics as
valid alternative to that developed on polymeric materials [178].

4.2. New Insight towards the Development of Optical Devices Loaded with Noble Metal
Ions/Nanoparticles by Ion-Exchange

Another intriguing prospect of the ion-exchange process that deserves further inves-
tigation in the near future is linked to the possibility of realizing new low-cost photonic
systems with potentially improved characteristics for a wide application range.

Let consider, for instance, the case of whispering gallery mode (WGM) optical mi-
crocavities, which continue to gain a growing interest in the field of photonics for their
unique and extraordinary properties. In these microstructures, the light, suitably injected
into the cavity, propagates grazing the surface of the resonator (few microns in depth)
through subsequent total internal reflections along an equatorial plane. Due to their low
material losses and high surface quality, these optical microcavities present an extremely
high value of their quality factor Q defined as the ratio between the wavelength λ at which
a resonance occurs and the linewidth ∆λ of the resonant wavelength. Moreover, their
small mode volumes and long storage lifetimes for the photons guarantee high energy
density levels and very narrow linewidths for the resonant modes sustained by these
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resonant microstructures. All these properties make such optical devices of great interest
for applications in lasing, non-linear optics, optical communications and sensing [197–199].

If fused silica represents one of the basic materials for the realisation of WGM mi-
croresonators with extremely high Q factor thanks to its excellent chemical durability and
transparency in a wide range of wavelengths [200], soft glasses are now gaining an increas-
ing interest as a bulk material for these WGM microcavities due to their better versatility in
terms of material properties, low phonon energy, and high rare earth solubility [201–205].

Based on this promising background in terms of materials for WGM microresonators,
the basic idea could be to apply ion-exchange process to load the soft glass material
constituting these microresonators with noble metal ions and/or nanoparticles in order to
create hybrid devices, able to make the most of the intrinsic characteristics of the WGMs
joined with those of the ion-exchanged material.

For example, let’s consider the case of a lasing emission by up-conversion phenomenon
in WGM glass microspheres doped with rare earth ions [206–210]. The possibility to nucle-
ate and grow noble metal nanostructures (i.e.: in the form of dimer clusters and/or metal
nanoparticles with few nanometre sizes) within the active medium of the cavity following
ion-exchange and thermal post-process may enhance the luminescent efficiency of the rare
earth element and its emission by surface plasmon resonance (SPR) and/or energy transfer
(ET) mechanisms, as observed for the planar substrates [211–213]. Moreover, an increase
in the up-conversion signal comes from the same WGM microcavity which, supporting
high recirculating light energy densities, allows the photons to interact several times both
with the rare earth ions and metal nanostructures generally located at a distance of few
tens/hundreds of nanometres below the cavity surface within the WGMs action field.
In particular, if these nanostructures are represented by small plasmonic NPs (e.g., few
nanometres in size), then a combination between the two resonant phenomena—the one
linked to the host WGM microcavity and the plasmonic one of the nanoparticles—may
occur generating a further significant signal enhancement.

Obviously, the ion-exchange process with the consequent presence of noble metal
nanostructures may increase the losses in the cavity reducing its Q factor value. In this
regard, it should be noted that the thermal annealing process in air may offer a double
advantage: formation of noble metal nanoparticles embedded in the glass and smoothening
of the WGM microcavity surface as a result of temperature and surface tension. As proof
of this statement, K. Milenko and co-workers recently demonstrated how the quality factor
Q of a silver iodide phosphate glass microsphere remains almost unchanged (~104) before
and after the formation of silver nanoparticles following a thermal annealing treatment in
air. The size of silver nanoclusters so obtained was around 350 nm [214]. This encouraging
result suggests that the achievement of hybrid WGM microcavities, both in passive and in
active glasses, by means of the ion-exchange technique may not be such a distant possibility.

Currently, one of the most promising glass formulations for the realisation of active
WGM microresonators is represented by phosphate glasses able to guarantee high Q factor
values, above 106, for these optical devices both in bulk and coated configuration [201,215].
Hence, these host materials may represent good candidates for the realisation of hybrid
active WGM microresonators by ion-exchange process. In this context, it will be mandatory
to tailor both the ion-exchange parameters and those of the subsequent post-processing
treatment to optimize the size of the noble metal nanostructures (e.g., few nanometres in
diameter), minimizing losses in the cavity and keeping the quality factor Q for the resulting
hybrid active WGM microcavities as high as possible.

The considerations made above for bulk microspheres continue to be valid also for
coated ones such as, for instance, a silica microsphere with a sol-gel thin film coating of
compound glass. Applications in the development of visible laser sources for displays
should be expected.

The availability of noble metal nanoparticles embedded in a WGM cavity of compound
glass could also favour non-linear optical response of the medium that should be further
increased by the presence of plasmonic effects. For instance, silver NPs with their large
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third order nonlinear properties and optical absorption transitions with high oscillator
strengths are the main candidates for the development of all-optical signal processing
devices such as efficient optical limiters, which require high nonlinear refractive index n2
materials [216–218]. Also in this case, the general considerations made previously in terms
of the optimisation of both process parameters and quality factor Q are still valid.

It is important to note that, although the plasmonic absorption peak is generally
located in the visible region of the spectrum, the absorption band of glasses with em-
bedded silver NPs presents a tail extending to the near infrared region. This suggests
how the local field effect induced by SPR phenomenon would have an impact also in this
region of the spectrum [159,219]. This would allow to enhance the visible up-conversion
emission in erbium doped glasses with embedded silver NPs. The enhancement in the
up-conversion intensity may be also attributed to the local field effect induced by the
presence of silver NPs [220].

Figure 10 shows a potential up-conversion emission enhancement in the particular case
of an Er3+-doped WGM microsphere with embedded silver plasmonic small nanoparticles.

Figure 10. (a) Scheme of the up-conversion lasing emission in a Er3+-doped WGM microsphere with embedded silver
nanoparticles. (b) Potential emission enhancement process in presence of Ag NPs. In the inset, the expected qualitative
trend of the erbium up-conversion signal with (continuous line) or without (dashed line) plasmonic silver nanoparticles.

It should also be mentioned here that a further important contribution for the achieve-
ment of hybrid WGM microcavities should be offered by the research effort towards the
development of novel and efficient glass formulations, suitable for ion-exchange process,
with the aim to reduce material absorption losses and scattering effects.

Another noteworthy application of the ion-exchange technique joined with glass WGM
microcavity could be represented by growing noble metal NPs (e.g., metal nanoislands or
an array of few ordered and equidistant nanoparticles, working as hot spots and based on
localized surface plasmon resonance (LSPR) phenomenon), directly on the surface of an
ion-exchanged microresonator—in correspondence with its equatorial plane—by means of
a thermal post-process performed with laser irradiation. This methodology could represent
a valid alternative to the widely used one, which implies the chemical immobilisation of
plasmonic nanoparticles on the surface of the resonant microcavity. In comparison to this
technique, the strategy based on laser irradiation reduces the processing times and allows
to have nanoparticles partially exposed on the surface, therefore more resistant to the
various washing steps generally required in biosensing applications. Figure 11 shows the
growth mechanism of plasmonic silver nanoparticles on the surface of an ion-exchanged
WGM microsphere by laser beam irradiation technique.
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Figure 11. A sketch of the formation mechanism of silver nanoparticles on the WGM microsphere
surface by means of a laser beam irradiation. The nanoparticles (NPs) result partially exposed as
reported in detail in the inset.

Another strategy to partially expose the noble metal NPs on the surface of a WGM
resonant glass microcavity could be represented by a chemical etching step in an extremely
dilute solution of hydrofluoric acid (HF), in order to preserve as much as possible a low
value of surface roughness for the microresonator.

In recent years, with the improvement of manufacturing techniques, there has been
a continuous and growing interest in the realisation of new hybrid optical fibres (HOFs),
in which the co-presence within a silica host fibre of multi-materials (e.g., glasses, crys-
tals, semiconductors, etc.) and different guiding structures (e.g., non-linear waveguides,
photonic crystals, semiconductor junction, optoelectronic elements, etc.) contributes to
broaden their application horizon towards the achievement of an all-fibre photonic plat-
form [221–226]. In this context, ion-exchange in molten salts of noble metals with subse-
quent thermal post-process may induce the nucleation and growth of plasmon nanopar-
ticles at the end of a possible HOF, whose core is made up of a compound glass suitable
for ion-exchange (e.g., silicate, phosphate, tellurite, etc.). Alternatively, the end of a multi-
mode silica optical fibre loaded with a thin layer of soft glass could be used for the same
purpose. In the near future, these strategies could represent an effective low-cost solution
towards the realisation of optical fibre probes for SERS applications in comparison with
current lithographic techniques, such as electron beam lithography (EBL) or nanoimprint-
ing lithography (NIL), surely more effective but definitely complicated and expensive
technologies [227,228]. Figure 12 represents some configurations for the development of
novel fibre probes for SERS applications. In particular, Figure 12a reports the concept of
multimaterial HOF while Figure 12b,c show two possible schemes, one based on HOF and
the other on a multimode optical fibre (MOF).

Finally, another application that deserves to be investigated concerns the fabrication
of compound glass nanotips [229] with embedded noble metal nanoparticles—following
ion-exchange and thermal annealing processes—for SERS and tip enhanced Raman spec-
troscopy (TERS) applications [230,231].
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Figure 12. (a) The concept of multimaterial hybrid optical fibre (HOF) (figure reprinted from pa-
per [222] under the terms of the Creative Commons Attribution 4.0 International License); (b) a
possible scheme for a SERS fibre probe based on HOF; (c) a possible scheme for SERS fibre probe
based on multimode optical fibre (MOF).

5. Conclusions

In this review paper, we have shown how the glass and ion-exchange pair, far from
being an obsolete technology, still plays a key role in various technological fields with
interesting applications and industrial developments that also have repercussions at the
level of everyday life. Moreover, this ancient and indissoluble synergy between material
and manufacturing process may lead in the near future to the realisation of new and
intriguing photonic devices with further interesting applications in optical communications,
non-linear optics, and sensing.
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Abstract: Ion exchange in glass has a long history as a simple and effective technology to produce
gradient-index structures and has been largely exploited in industry and in research laboratories. In
particular, ion-exchanged waveguide technology has served as an excellent platform for theoretical
and experimental studies on integrated optical circuits, with successful applications in optical
communications, optical processing and optical sensing. It should not be forgotten that the ion-
exchange process can be exploited in crystalline materials, too, and several crucial devices, such as
optical modulators and frequency doublers, have been fabricated by ion exchange in lithium niobate.
Here, however, we are concerned only with glass material, and a brief review is presented of the
main aspects of optical waveguides and passive and active integrated optical elements, as directional
couplers, waveguide gratings, integrated optical amplifiers and lasers, all fabricated by ion exchange
in glass. Then, some promising research activities on ion-exchanged glass integrated photonic devices,
and in particular quantum devices (quantum circuits), are analyzed. An emerging type of passive
and/or reconfigurable devices for quantum cryptography or even for specific quantum processing
tasks are presently gaining an increasing interest in integrated photonics; accordingly, we propose
their implementation by using ion-exchanged glass waveguides, also foreseeing their integration
with ion-exchanged glass lasers.

Keywords: ion-exchanged glass; active optical waveguides; quantum integrated optics; integrated
photonics

1. Introduction

Ion exchange in glass has been exploited since the early Middle Ages to color (stain)
glasses: marvelous stained glass windows, obtained by ion exchange from a silver paste,
are still visible in many European cathedrals. The technique of staining glass yellow by
painting it with silver salts was already in use in the 14th century: the glass painter Antonio
da Pisa, besides creating, in 1395, a superb window in the south door of Florence Cathedral
(Figure 1), was the author of a treatise on glass painting, where he shortly described how to
produce the yellow color [1]. The glass surface is coated with a silver compound dispersed
in a clay medium; during the heating just above the glass transition temperature the silver
ions are exchanged with the alkali ions present in the glass (mostly Na+ or K+), which
then diffuse into it. Subsequently, due to the presence of impurities in the glass, silver ions
reduce to metallic silver nanoparticles; the resulting color depends on the size, shape and
concentration of the nanoparticles.

For large-scale industrial applications, however, the ion-exchange technology had to
wait until the beginning of 20th century, when the chemical surface tempering of glass
started to be used [2]. The process (sometimes also called ion stuffing or just chemical
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strengthening) became a standard in the industry in the 1960s, when, for instance, Corning
developed Chemcor® glass, a chemically strengthened glass that was intended to be used
in phone booths, prison windows, eyeglasses and automobile windshields. In parallel to
these events, there were interesting advances in the optical field, too: in the 1910s it was
observed that the ion-exchange process was also inducing a change in the refractive index
of the glass, and in the 1960s integrated optics moved its first steps, with waveguiding
structures that required materials having slightly different refractive indices [3].

Figure 1. Image of a part of a two-lancet stained window in the Florence Cathedral, representing San
Miniato (St Minias) on the left and San Paolo (St Paul) on the right. The artwork was made in 1395 by
Antonio da Pisa and is recorded in the Italian Stained Glass Windows Database (BIVI). Reproduced
with permission of Opera di Santa Maria del Fiore, Firenze.

Since then, ion exchange has been proven to provide an excellent technological plat-
form for optical integration. Optical waveguides in glass by ion exchange were first
fabricated in 1972 using electrically induced migration of thallium ions into a borosilicate
crown glass that contained K20 and Na2O [4], but soon waveguides were also produced
by thermal ion exchange from thallium, potassium or silver nitrate, with Ag+ giving the
best results (besides also being much safer than Tl+) [5]. Quite obviously, there was also
a growing industrial interest, as testified by several patents; for instance, the US Patent
3,857,689 by K. Koizumi et al., filed in 1972 and published in 1974, concerned the “Ion
exchange process for manufacturing integrated optical circuits” [6]. Figure 2 shows a
schematic view of the process, where the glass plate (11) with the Ti mask (12) is immersed
in a molten salt bath (13); as an example, the patent indicated that for a Schott F2 lead
silicate glass the process produces a surface refractive index difference ∆n = 0.005 when
immersing the glass for about 3 h in a molten salt bath heated at 450 ◦C and containing
Tl2SO4 and ZnSO4 at an equal mole ratio [6].

Almost at the same time, the US Patent 3,836,348A by T. Sumimoto et al., filed again
by Nippon Selfoc Co. Ltd. in 1973 and published in 1974, presented a “Method for
manufacturing optical integrated circuits utilizing an external electric field” [7]. They
claimed that, by using Tl+ ions and an electrical field to drive the ion diffusion, a refractive
index profile close to a rectangular one can be achieved.

In the following years, the fabrication technology of glass waveguides employing sev-
eral ion exchangers (K+, Cs+, Rb+, Cu+, Li+ and so on) experienced a great development,
and commercial devices were designed and tested (see, for instance, Reference [8]). In
parallel, ion-exchange technology was also exploited to create gradient index (GRIN) glass
rods [9] and rod lenses with parabolic index profile, suitable for photographic systems [10]
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and also in conventional optical systems [11] but mostly for laser-to-fiber or fiber-to-fiber
coupling [12]. Recently, it was shown that the use of GRIN lens cascades is opening up
many surprising applications, spanning from quantum optics to clinical diagnostics [13].

Figure 2. Schematic view of the ion-exchange process to fabricate a gradient-index channel waveguide
in a glass substrate [6].

Further theoretical and experimental advances completed the foundations of what
is now a fully mature technology for integrated optics and photonics; with time, several
very interesting review papers appeared, showing the gradual progresses of this R&D
field, up to the use of femtosecond lasers to drive the ion diffusion in glasses [14–21].
Moreover, as ion exchange in glass allows producing either surface or buried waveguides,
this technology is promising for 3D integration, too [22,23].

A sketch of the K+/Na+ exchange process, which is exploited quite often because it
guarantees waveguides with low propagation loss, is shown in Figure 3 [24]. The K+ ions
from the molten salt enter the glass, whereas Na+ ions from the glass move to the melt,
in order to keep the electrical neutrality. This type of exchange has two drawbacks: the
induced refractive index variation ∆n is lower than 10−

2
(so, only a weak guide confinement

is possible), and it introduces some birifringence, due to the compressive stress induced
by the difference in ionic radius between Na+ and K+ ions. On the other hand, as already
mentioned, this stress may also be exploited to increase the mechanical resistance of the
glass itself (chemical strengthening).

The Ag+/Na+ ion exchange, instead, thanks to the similar size and the difference of
polarizability of the two ions, allows a higher ∆n (10−1) without birefringence and also
the burial of waveguides in a two-step process, as sketched in Figure 4. Unfortunately,
silver, too, has some limits: in the presence of humidity, surface waveguides (which are
used in sensing devices, interacting with external medium) suffer higher losses, due to
chemical reduction to metal silver. An approach useful to overcome this limitation is to use
the Tl/Na process [25]: in this case, a drawback is due to the toxicity of thallium. Thus,
we must conclude that the choice of the ion pair to be used in the waveguide fabrication
by ion exchange is dictated by the characteristic (optical, mechanical, safety) one wants
to privilege.

In this paper, the focus is on glass ion-exchanged integrated optical devices: their
applications cover broad areas, where optical sensing and optical communications are
at the forefront. Thus, in the field of optical sensing, many integrated optical sensors
are based on the properties of the evanescent modal optical field, and ion-exchanged
waveguides offer the advantage of the proximity between the glass index (n = 1.5) and the
index of frequently used organic compounds (around 1.4–1.6) and of aqueous solutions
(index close to 1.33). These guided-wave structures lead to large evanescent fields, which
maximize the optical sensitivity function. A large amount of optical integrated sensors
and biosensors based on ion-exchanged glass waveguides have been proposed [18–20,26]
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and keep being implemented in the last years [27–30]. An interesting example may be
represented by a 32-analyte integrated optical fluorescence-based multi-channel sensor
and its integration to an automated biosensing system [31]. Figure 5 shows the layout of
the fiber-pigtailed sensing chip consisting of a single-mode channel waveguide circuit that
distributes the light to 32 separate sensing patches on the chip surface. The use of this
waveguide immunosensor, based on a K+-exchanged BK7 glass, was demonstrated for the
detection of Microcystin-LR cyanotoxin in two real lake water samples taken from Fuhai
lake and Beihai lake in Beijing [31].

Figure 3. Depiction of the K+/Na+ ion-exchange process using KNO3 molten salt as the source of
K+ ions. The glass considered here is an aluminosilicate glass with an alkali oxide (Na2O) as glass
modifier. The kinetics of the process is described by diffusion equations. Reproduced from [24] with
permission by John Wiley and Sons.

Figure 4. Outline of two different ion-exchange processes involving two ions A and B (e.g., K+ and
Na+, respectively): the upper drawing refers to a purely thermal diffusion, that produces a surface
waveguide. The bottom drawing indicates a field-assisted diffusion, that leads to a buried waveguide.
Reproduced with modifications from [25] with permission by Elsevier.
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Figure 5. (a) Integrated optical sensor’s layout; (b) cross-sectional view, showing waveguide, isolation
layer and location of the surface chemistry; (c) photo of light propagation along the waveguide chip
(Photo credit: Lanhua Liu). Reproduced from [31] under a Creative Commons CCL4.

In the field of optical communications, the high optical compatibility between glass
integrated devices and optical fibers clearly offers an important advantage with respect to
other materials. Again, ion-exchanged glass waveguides have constituted a fundamental
component of several devices based on modal coupling, such as directional couplers (e.g.,
for power dividers), gratings (e.g., for contradirectional coupling in integrated lasers),
multimode interferometers (MMI), 1 × N and 2 × N splitters, array waveguide gratings
(e.g., for wavelength division multiplexing), and so on [19,32,33]. Section 2 summarizes
the fundamentals of ion-exchanged channel waveguides and circuits. By using suitable
glass substrates, such as rare-earth doped oxide glasses, active integrated optical devices
may also be fabricated through ion exchange; this topic is discussed in more detail in
Section 3 of this paper. Other interesting aspects concern the manufacturing of nonlin-
ear optical (NLO) integrated devices: Jackel et al. [34], in 1990, designed two glasses,
containing Ti and Nb to increase the nonlinear index coefficient and an alkali ion (Na+

or K+), so to have a large optical nonlinearity and to be compatible with ion exchange.
Spatial soliton propagation in these waveguides was demonstrated, which proved the
possibility of implementing an all-optical switch. Almost at the same time, tests were
also performed on commercial semiconductor-doped glasses, which had been proven to
possess nonlinear optical properties [35,36]: optical waveguides were fabricated by using a
Cs+ - K+ exchange [37]. Ion-exchanged waveguides may also be capable of handling high
laser powers, e.g., from an integrated Q-switched laser [38], and are therefore suitable, due
their intrinsic light confinement properties, for nonlinear applications [39]. In that area,
however, hybrid structures may be more efficient and the coupling of a lithium niobate
film with a ion-exchanged glass waveguides can lead to the manufacturing of electro-optic
modulators or second harmonic generators [40].

Many other applications are possible, also linked to the new topics emerged in the
last years, as for example integrated quantum photonics (IQP) for the implementation
of tasks in quantum information, particularly, in quantum communications. It has been
underlined that in IQP ’the big challenge is how to realize a scalable, convenient platform
for practical deployment and commercialization’ [41]. Indeed, the growth of this area
requires the design and fabrication of passive and active integrated devices to be used,
for example, in quantum photonic simulation, quantum cryptography, quantum photonic
sensors and so on. It is well known that, since the early experiments on silica-on-silicon
structures [42], different platforms have been proposed for the implementation of IQP,
including those ones silicon-based, III-V semiconductors and lithium niobate [43–46]. It
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is very difficult, however, for a single material to meet the stringent demands of most
quantum applications, so that hybrid platforms combining different technologies in a single
functional unit may have greater success [47]. Silica-based platforms have been considered,
too, but only with reference to femtosecond laser written circuits [44,48]. To our knowledge,
despite the suggestion, several years ago, by the group of one of the present authors [49],
a platform based on ion-exchanged glass (IExG) circuits has not been considered so far
as an effective integration technology for quantum photonics. This topic is discussed in
more detail in Section 4, where we present a brief review of the most incipient proposals
and results in the field of quantum circuits based on an IExG platform. Likewise, it is
shown that with hybrid glasses active and quantum integrated devices can be combined
in an efficient way by using IExG platform, in particular, IQP devices for generating and
detecting quantum states are presented; hybrid integration with lithium niobate films
may also permit the realization of efficient nonlinear integrated devices [40]. Finally, we
present in Section 4 the design, fabrication and preliminary experimental results of a
quantum projector for detecting quantum states by projective measurements, for example
for quantum cryptography through multicore optical fibers (MCF) [50,51] or even few-
mode optical fibers (FMF) [52]; the primary aim is to make clear the potentiality of the
IExG platform for integrated quantum photonics.

2. Fundamentals of Ion-Exchanged Glass Waveguide Circuits

There are excellents works on ion-exchanged glass waveguide circuits, but here we
focus our attention on circuits formed by elements as channel waveguides, directional
couplers and optical gratings (contradirectional couplers), and intended for classical and
quantum optical sensing and communications. Channel waveguides are the pillar of
integrated optics [17–19,53,54] and optical integrated gratings are also fundamental for
the implementation of many devices, including integrated amplifiers and lasers in rare-
earth doped glasses [19,55]. Directional couplers and 1 × N splitters, too, are based on
channel waveguides and have been mainly intended for power derivation in optical fiber
communication networks, but they also play an important role in optical sensing and in
interferometry [31,56], including applications to optical astronomy [57]. The fabrication of
these devices in a glass substrate usually requires a lithographic process [18,19] in order
to allow a spatially selective ion-exchange. Let us refer to thermal ion exchange: first, a
metallic film (Al or Ti) is deposited on the glass substrate, followed by the deposition of
a photoresist film. After UV exposure through a given mask and a subsequent chemical
etching, the mask pattern is transferred to the metal film, so that, when immersing the
substrate in a molten salt, the ion exchange occurs only in the volume under the designed
opening. This process produces surface channel guides, which can be slightly buried by a
second thermal diffusion process or strongly buried by using an electrical field.

In Figure 6, the design is shown of an integrated optical device of arbitrary dimension
N, that is, N optical paths (channel waveguides) coupled by concatenated directional cou-
plers (DC) and phase shifters (PS). It represents a generic optical device able to implement
different passive quantum operations. Active functions, such as optical generation and
amplification, may also be added if hybrid glasses, with a portion doped by rare earth
elements (on the left in Figure 6), are used.

We must stress that hybrid glasses can be obtained by joining a block of a passive glass
with a block of an active glass by a low temperature bonding technique [58,59]; alternatively,
the hybrid glass can be also implemented by bonding an active glass superstrate to a passive
glass substrate [60]. Consequently, integrated lasers having optical gratings (OG) resonators
can also be included in the integrated circuit, as sketched in Figure 6; they are pumped
by an external signal Pj (j = 1, . . . , N), which can generate classical and/or quantum
light states [61]. The optical gratings can be fabricated by laser writing or by the same
photolithographic procedure described above [17–19]. In short, Figure 6 shows a general
ion-exchanged hybrid glass integrated optical circuit highly intended for classical/quantum
communications (or even classical/quantum optical sensing) and that can be adapted for
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implementing different devices as wavelength multiplexers, quantum states generators,
quantum states projectors and so on, as is shown in some detail in Sections 3 and 4.
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Figure 6. A general device formed with N paths (channel waveguides) in active (left) and passive
(right) sections of a hybrid glass substrate. An optical grating (OG) in the rare-earth-doped glass
section (the left part of the substrate) is used to implement a laser structure which, pumped by beams
Pj, (j = 1, . . . , N), generates N laser signals; several directional couplers (DC) and phase shifters (PS)
in the passive section perform linear optical transformations. N detectors Dj are also shown.

The total refractive index profile of the above ion-exchanged hybrid glass integrated
optical circuit can be represented, in a good approximation, as follows

n(x, y, z) = ns + ∑
j

∆nj(x, y, z; pj1, . . . , pjq) (1)

where ns is the substrate index, and ∆nj(x, y, z; pj1, . . . , pjq), j = 1, . . . , N are functions
describing the refractive index profile obtained in each ion-exchanged channel waveg-
uide with parameters pj1, . . . , pjq, that is, ion-exchanged parameters as effective depth d,
maximum refractive index change ∆n, . . . , geometrical lithographic parameters as width
w of a channel guide, separation s between channel guides, . . . and so on. The centers of
the channel guides (usually the position of the maximum refractive index) follow paths
described by functions f j(z), that is, z-functions representing translations of a refractive
index profile. A typical case is a channel guide j, which is bent along S-shaped transitions to
couple it with other parallel channel guide j + 1. These transitions may follow, for example,
the path described by Minford et al. (Minford curve) for obtaining low losses [62]. An
example of a refractive index profile representation for an arbitrary channel guide j is the
following (from here and for the sake of simplicity we omit subscript j)

∆n(x, y, z) = ∆n Erfc
( x

dox

)
exp{− (y− f (z))2

d2
oy

} (2)

where Erfc is the complementary error function, which is a typical solution for linear ion
exchange, although more general solutions can be chosen [17,63–65], f (z) is the curve
(path) profile, ∆n is the maximum refractive index change and dox and doy are effective
depths along x and y direction. Note that we have assumed a factorizable index profile,
∆n(x, y, z) = ∆n E(x)G(y, z), that is, a product between an index profile in depth (x-
direction) and a Gaussian index profile along y and z directions describing quite well the
lateral diffusion. In many cases such a factorization is a good approximation, or even it can
be forced for the sake of design simplicity [66]. Moreover, it is well known that there are
different approximate methods to be used in order to obtain manageable mode solutions
such as, for example, the effective index method (EIM) [16,66], perturbative and variational
methods [16] and so on. On the other hand, this kind of function can also describe the
change of index or geometry for other integrated optical elements as phase shifters, for
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example, those based on an adiabatic approximation that could be represented by the
following function

∆n(x, y, z) = ∆n Erfc(x/dox) exp{− y2

d2
y(z)
} (3)

Note that in this case we have a rectilinear channel waveguide ( f (z) = 0) with dy(z)
an adiabatic z-function and therefore the effective index changes slowly on z and thus a
well defined phase shifting can be obtained.

We must recall that the cornerstone of the ion-exchange method is that these functions
are, in a good approximation, proportional to the concentration Cj(x, y, z) of exchanged
ions. In fact, the q parameters p1, . . . , pq such as maximum refractive index change ∆n,
effective depth dox, lateral effective depth doy and so on, can be expressed in an empiric
way as functions of both the fabrication physical parameters, such as temperature T, ionic
concentration [C] of the molten salt (or ionic concentrations [C1, C2, . . .], as in the case
of molten salts eutectic mixtures), ion-exchange time t and also geometrical parameters,
as width of the channel guide mask w, separation between channel guides s and so on.
We must also underline that, although an empiric approach can be sufficient in many
cases to determine the fabrication parameters, a great amount of research work has been
devoted to a rigorous physical modeling and numerical simulation of ion exchange in
glass, which in turn, is related to the development of different theories on ion exchange in
glass [15,67–71]. These physical/numerical approaches can be required when the refractive
index profile must be known with a great accuracy. In any case, one of the main aims in
integrated optical circuits is to obtain single-mode channel guides (paths) that are coupled
in certain regions by directional coupling and with phase shifters suitably located, as
shown in Figure 6 to achieve an integrated optical circuit with a specific purpose. Finally,
it is also worth indicating that sometimes two-mode or even few-mode waveguides can
be considered. The modes can be considered in plane yz or also in depth x. In the latter
case, it can be considered as a type of three-dimensional integration [27,72]. On the other
hand, two-mode guides in the yz plane have also been considered, for example, for spatial
multiplexing [73].

3. Ion-Exchanged Active Integrated Photonic Devices

As already briefly mentioned in the previous sections, ion exchange may occur in a
variety of substrates and using many different ions. The process, however, can be easily
performed especially when using univalent ions and glasses whose composition includes
alkali ions as glass modifiers. Similarly, in crystalline materials such as lithium niobate,
only Li+ ions are effective and they exchange with H+ ions. These limitations, however,
are not very critical, as testified by the large number of photonic devices that have been
successfully implemented. Among those devices, a very important class is constituted by
the active ones, i.e., integrated optical frequency converters, amplifiers and lasers. Let us
here briefly overview some of the excellent results already achieved, limiting ourselves to
devices produced by ion exchange in rare-earth-doped (RED) glasses.

It has already been mentioned that RED glasses constitute an excellent physical
medium for generating and amplifying light. Indeed, oxide glasses are well-known as
excellent hosts for rare-earth ions: not by chance, one of the very first solid-state lasers
was demonstrated in 1961 by Snitzer in American Optical Company using a Nd3+ -doped
glass [74]. In that same year Snitzer and colleagues constructed and operated the world’s
first optical fiber laser and three years later the first optical fiber amplifier [75]. Even the
first thin-film waveguide glass amplifier, in 1972 [76], and the first integrated optical glass
laser, in 1974 [77] were implemented in the same material, Nd3+ -doped glass and operated
at ~1.06 µm wavelength. It has to be noted that, whereas the amplifier was fabricated
by RF-sputtering deposition of the doped guiding film, the waveguide laser was indeed
realized in a Nd-doped borosilicate glass by using the double-diffusion process with an
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electric field already reported by Izawa and Nagakome [4]. The channel waveguides had
an almost circular profile, and the pump threshold was around 18 µJ, namely about one
half of the threshold of the corresponding bulk laser [77].

The excellent properties of ion-exchanged waveguide lasers had therefore been demon-
strated, but a strong interest in these devices emerged only much later, after the imple-
mentation, around 1985, of the second generation of fiber communication systems, which
used single-mode fibers. Thus, for instance, in 1989 Najafi et al. studied the fabrication
of optical waveguides in commercial Kigre Nd-doped lithium-silicate glass by means of
Ag-Li exchange and verified that the process did not influence the emission properties of
Nd [78]. In 1990, a waveguide laser emitting at 1054 nm was reported by Aoki et al. [79];
the laser, end-fire pumped by a diode-laser operating at 802 nm, was capable of a maximum
output power higher than 150 mW. It was fabricated in a Nd3+ -doped glass (Hoya LHG-5
phosphate glass, 3.3 wt% Nd) by using field-enhanced silver ion exchange. The same group
also demonstrated a gain of 3.4 dB at 1.054 µm and an efficiency of 0.027 dB/mW in a
10 mm long waveguide amplifier pumped with an argon-ion laser [80]. Several other works
were performed in the early 1990s concerning Nd-doped waveguide lasers and amplifiers,
still using ion-exchange fabrication technology [81–85]; it was also proven that distributed
Bragg reflector (DBR) integrated lasers could be fabricated by realizing holographically
an OG in photoresist and then etching it into the channel guide by argon ion milling [83].
By using ion exchange in a semiconductor microcrystallite-doped glass second harmonic
generation of Nd:YAG laser radiation was also achieved [36].

In the meantime, the evolution of fiber communication systems continued and saw the
introduction of 1.5 µm laser diode sources, owing to the fact that silica fibers have the lowest
propagation losses in that wavelength window. Fiber lasers and amplifiers had therefore to
use another rare earth than Nd, with photoluminescence emission in the near infrared band:
this was Erbium, which is characterized by a strong emission at 1.532 µm. Er-doped fiber
amplifiers (EDFAs) soon became a very important component of fiber transmission systems,
that needed regeneration and re-amplification of the guided light after a certain distance, of
the order of tens of kilometers. Most of the pioneering research on EDFAs was performed at
Southampton University by the David Payne’s group and at AT&T Bell Labs by Emmanuel
Desurvire and colleagues: the two groups published the first successful results almost at
the same time, in 1987 [86,87]. A strong limitation to the practical use of these early fiber
amplifiers was related to the pump signal: Payne’s group was using pump wavelengths in
the range 655–675 nm, whereas Desurvire used a pump at 514.5 nm. In both cases, bulk
pump lasers were necessary. A substantial step forward market diffusion of EDFAs was
made with the availability of powerful laser diodes. Then, the demand of ever increasing
system transmission capacity and of a mechanism for creating multipoint networks led
to the use of the wavelength division multiplexing (WDM) technology. As integrated
optical devices could offer a cheap and small-footprint approach to the fabrication of
WDM devices, a renewed R&D interest was focused on Er-doped glass devices and to the
integration of passive and active functions on a same glass substrate. An issue, however,
was related to material requirements, much more stringent for integrated optics than for
fibers, due to the different fabrication technologies and to the much higher rare-earth
concentration required in short-length planar devices. An interesting effort to assess the
relative merits of different compositions of the host glass was published by Miniscalco in
1991 [88]. He concluded that ’in most situations’ Al-doped silica was the preferred glass for
Er3+ -doped fiber amplifiers at 1500 nm. In planar short-length devices, silicate glasses may
suffer even more from the lower solubility of rare-earth-ions with respect to phosphate
glasses, since it may lead to clustering and reducing the conversion efficiency. In spite
of this, the first ion-exchanged waveguide laser emitting at 1540 nm used a silicate BK7
glass containing 0.5 wt% Er2O3 [89]. The laser cavity was formed by bonding dielectric
mirrors to the chip end facets, and a thermal ion exchange in a KNO3 bath was employed
in waveguide fabrication. In the same year 1992, an Er-doped waveguide amplifier with
0.65 dB/cm net gain with 100 mW pump power was demonstrated [90]. This device was

81



Appl. Sci. 2021, 11, 5222

constituted by a phosphorus-doped silica core doped with 0.55% wt Er and silica cladding,
deposited by flame hydrolysis on a silicon substrate. Quite obviously, owing to the appeal
of erbium-doped waveguide amplifiers (EDWAs), various technological approaches to
waveguide fabrication were pursued, with deposition techniques of doped glass films (e.g.,
RF-sputtering, sol–gel, PECVD, flame hydrolysis) competing with diffusion techniques
(ion exchange, ion implantation) in bulk doped glasses [20]. As an example of RF-sputtered
amplifying waveguides, a net optical gain of 4.1 dB/cm at 1.535 µm was achieved by
Polman et al. by depositing Er-doped multicomponent phosphate glass films [91]; the
same group also reported about the possibility of using MeV ion implantation to introduce
erbium in a variety of thin films, from oxide glasses to ceramics and to amorphous and
crystalline silicon [92].

A commercial interest was also emerging. Among the glass suppliers, the Corning
company was particularly interested in the development of ion-exchangeable Er-doped
glasses and of amplifiers, as testified also by two patents [93,94]; in the latter one, an
optimized composition of a boron-free silicate glass that could be doped with up to 5%
wt erbium oxide and ion exchanged with thallium is described [94]. More waveguides
and devices based on Er-doped glass substrates and ion-exchange technology were re-
ported in the following years [90,95–107]; besides waveguide lasers and amplifiers, optical
upconversion devices were investigated, too [101]. At a certain point, phosphate glasses
seemed to allow higher performances to ion-exchanged EDWAs, as they could be doped
with larger amounts of rare-earth ions than silicates. Even in phosphate glasses, however,
high erbium concentrations may produce quenching of the luminescence; moreover, the
absorption cross section of Er+ ions at ~980 nm is small. Thus, the solution was to add
another rare-earth ion as a sensitizer for erbium. Glass co-doping with ytterbium ions has
proven to be a very efficient solution: it allows the transfer of energy from excited Yb3+

ions to close Er3+ ions through a cooperative cross-relaxation process, with the result of
significantly enhancing system absorption at 980 nm and making the pumping mechanism
more efficient. Moreover, in the case of high concentration, the Er3+ ions are closer together,
so that deleterious non-radiative energy exchanges between neighboring ions can take
place; the presence of Yb3+ ions is also effective in reducing such unwanted Er3+ - Er3+

ion energy transfer interactions by increasing the mean inter-atomic distance. A useful
spectroscopic investigation of an extensive series of Er3+ -doped and Er3+ -Yb3+ -co-doped
soda–lime–silicate (SL) and aluminosilicate (AS) glasses was also presented in a paper by
Hehlen et al. [108]. AS glasses showed higher oscillator strengths and larger inhomoge-
neous broadening of 4f transitions than SL glasses; it was also suggested that a minimum
molar concentration ratio 2:1 of Yb oxide to Er oxide is required to achieve efficient sensiti-
zation of Er3+ . In 1995, an integrated laser was produced by K+/Na+ ion exchange in an
alkali-rich barium silicate glass containing 17% wt Y2O3 and 1.5% wt Er2O3 [109]. Later,
commercial Er-Yb co-doped phosphate glasses became available, too, where single-mode
channel waveguides could be produced by K+/Na+ ion exchange; a net gain of 7.3 dB in a
6 mm long waveguide amplifier was claimed [110].

EDWA devices with excellent characteristics were obtained in both silicate and phos-
phate glasses co-doped with Er and Yb; as an example, a lossless 1 × 2 splitter was
demonstrated in a buried thallium-exchanged waveguide in a borosilicate glass co-doped
with 5% wt Yb2O3 and 3% wt Er2O3 [111]. They measured 2.3 dB/cm gain and 0.07 dB/mW
gain efficiency in a 3.9 cm long straight waveguide amplifier with a pump of 130 mW.
Almost at the same time, Barbier et al. achieved a 7 dB net gain in a 41 mm long amplifier
with double-pass configuration (≈1.7 dB/cm) using a buried waveguide produced by
two-step ion exchange in a phosphate glass doped with 2.5 % by weight of erbium and
3% by weight of ytterbium [112]. Shortly thereafter, however, the same group reported
several impressive advances in EDWA’s implementation, including: an amplifying four-
wavelength combiner, consisting of an all-connectorized 4 × 1 glass splitter followed by
a 4.5-cm-long Er/Yb-doped waveguide amplifier (≈2.6 dB/cm) [98]; a planar amplifier
capable of 3.1 dB/cm net gain [113]; a multiplexer/amplifier gain-block constituted by
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an amplifying section realized in phosphate glass as a 5.5 cm straight waveguide planar
waveguide amplifier and a 980/1550 nm multiplexer realized as a 3 cm long directional
coupler in a silicate glass [114]. The amplifier and the multiplexer were assembled together
via active alignment followed by bonding with UV curing glue; the module had a fiber-to-
fiber gain of 15.7 dB and a noise figure of 4.7 dB at 1535 nm. In all these cases, the amplifier
was realized in a phosphate glass co-doped with 2 wt.% erbium and 4 wt.% ytterbium.

In the 2000s, the literature was enriched by several publications in this area, which
can be classified into three groups:

(a) Papers dealing with the synthesis and characterization of rare-earth doped glasses
suitable for ion-exchange fabrication of active devices [17,115–144].

(b) Demonstration and characterization of rare-earth doped ion-exchanged waveguide
amplifiers and frequency converters [140,145–165].

(c) Demonstration and characterization of rare-earth doped ion-exchanged waveguide
lasers [60,61,147,166–169].

An example of a laser device is shown in Figure 7: it is a 3D hybrid structure, with a
channel core waveguide and a slab core waveguide which, in a certain volume, interact
with each other and with the Bragg grating that provides the optical feedback necessary for
laser action. Figure 8 shows the longitudinal and cross sections of the device. The passive
glass is a GO14 silicate by Teem Photonics, whereas the active glass is a IOG-1 phosphate
by Schott, doped with 2.2 wt% Er2O3 and 3.6 wt% Yb2O3. In both glasses, the waveguides
are produced by Ag+-Na+ ion exchange.

Figure 7. Sketch of a hybrid distributed feedback (DFB) laser constituted by a channel core waveguide,
buried in the silicate substrate by and loaded by a slab core waveguide in an Er/Yb-co-doped glass.
Both waveguides are made by ion exchange. Reproduced with permission of Elsevier from [60].

Figure 8. Longitudinal (top) and cross (bottom) sections of the hybrid DFB laser structure. Repro-
duced with permission of Elsevier from [60].

An example of a packaged Er-Yb doped waveguide amplifier (EYDWA) is shown in
Figure 9 [155]. The substrates were commercially available Schott IOG-1 phosphate glasses
co-doped with 2 wt% Er2O3 and 5 wt% Yb2O3. Channel waveguides were fabricated by
ion exchange using an Al thin film mask and were buried by using a two-step process,
namely, a K+-Na+ thermal exchange (T = 385 ◦C , t = 60 min), followed by a field-assisted
annealing (T = 380 ◦C , t = 30 min, electric field 120 V/mm) [123]. The figure shows a photo
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of an EYDWA device packaged by using fiber silicon V-groove arrays and a UV curing
glue. In a pigtailed 4.0 cm long EYDWA, a net gain of 8.0 dB and an average noise figure of
5.1 dB were obtained in the 1530–1560 nm band.

Figure 9. Photo of a packaged EYDWA device. Standard single mode fibers are pigtailed to both the
input and output ends of the channel waveguide. The glass chip is then mounted to a metal box to
provide mechanical stability and easy handling. Reproduced from [155] with permission by Elsevier.

New research topics have appeared in those years; some attention, for instance,
was focused on the possibility of using ion-exchange technology in rare-earth doped
tellurite glasses [121,131–133,136,170–172]. Tellurite glasses, i.e., glasses based on tellurium
oxide, doped with rare earth have been long studied since they have the lowest phonon
energy (about 780 cm

−1
) among oxide glass formers and, as a consequence, their radiative

quantum efficiency is high. Furthermore, they offer good stability, chemical durability,
high solubility of rare-earth ions and exhibit high refractive index and a wide transmission
range (0.35–6 µm); these properties make them an excellent host material for amplifiers
and lasers to be used in a wider wavelength range, e.g., in S + C + L (1460–1615 nm) or C +
L + U (1530–1675 nm) bands of the optical communication systems. As already mentioned,
other fabrication technologies were also developed, and sol–gel, for instance, has been
a very convenient platform for the fabrication of high quality thin glass films, optical
planar waveguides and photonic bandgap structures [173–176]. An interesting research
concerned the possibility of integrating the sol–gel and ion-exchange techniques for the
fabrication of passive and active channel waveguides in rare-earth doped integrated optic
devices [115,177].

Among the various research lines aiming at improving the characteristics of waveg-
uide optical amplifiers, it is worth mentioning the article by Donzella et al. [160], where
another 3D hybrid structure is designed with the goal of making possible the use of a
low-cost high-power broad area laser diode, instead of an expensive single-mode 980 nm
laser, for the amplifier’s pumping. Their design, sketched in Figure 10 includes direct
butt-coupling of the pump light into a multimode passive waveguide (in silicate glass): an
Er-Yb doped single mode waveguide (in phosphate glass) is placed on top of the passive
one, and light is progressively coupled from bottom to top waveguide, being captured by
Yb ions acting as sensitizers for Er ions. Experimental tests with ion-exchanged waveguides
fabricated in the two glasses allowed to measure amplified spontaneous emission (ASE);
Figure 11 shows the upconversion green light in the upper single mode waveguide, a proof
of the effectiveness of the pumping scheme. According to their numerical simulation, gain
values of over 3 dB/cm should be achievable.

As already mentioned in Section 2, too, another way of fabricating hybrid active/passive
glass structures is to butt join two glass pieces, an undoped one and a rare-earth-doped
one, in order to optimize the optical characteristics and minimizing losses. Such a structure
was used especially to fabricate lossless splitters and combiners, widely used in telecom
systems; to mention some examples, Jaouen et al. separately designed and optimized a
passive section in silicate glass and an active section in phosphate glass before joining
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them by using a UV curing glue, so to produce a lossless 1x8 splitter/combiner [178].
Conzone et al. showed that it was possible to join two aluminophosphate glasses (undoped
and doped, respectively) by sandwiching an aqueous phosphate solution between the
polished and accurately cleaned surfaces of the two blocks. A rigid joint is formed in 24 h
at room temperature. A thermal treatment for 5 h at 375 ◦C provides a greater chemical and
mechanical robustness [58]. Further, Chen et al. reported a low-cost technique for industrial
mass production, which was based on vacuum hot press assisted direct bonding applied to
custom made multicomponent silicate glasses [179]. A thermal treatment at 605 ± 20 ◦C
for 240 min under a pressure of 28 kPa was sufficient to achieve a very good bonding.
Figure 12 shows the first bonded sample. The two glasses were germanoborosilicates with
sodium oxide for the ion-exchange process; the doped glass contained 0.5 mol% Er2O3 and
1.3 mol% Yb2O3.

Figure 10. Longitudinal view of the hybrid waveguide amplifier test structure, constituted by a
multimode passive waveguide (bottom) and a single mode active Er/Yb doped waveguide (top). A
large area laser diode pump is coupled to the multimode waveguide, and the propagating beam is
progressively coupled to the active layer. Energy is absorbed by Yb ions and then transferred to Er
ions. Reproduced from [160] with permission by Optical Society of America.

Figure 11. Photo of the green light propagating in the single mode (upper) waveguide in the structure
of Figure 11. Pump wavelength is around 980 nm, and the green color, due to upconversion emission
from excited Er+ ions, proves that the transfer from the pump to the active layer is effective.

Figure 12. Photograph of the bonded glass sample, with the active (pink) and passive (transparent)
parts. Reproduced from [179] with permission by Elsevier.

A broad review on Er-Yb laser and amplifiers, covering both the photoluminescence
issues and the various materials and technologies, was published in 2011 by Bradley and
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Pollnau [180]. In the last years, owing to the fact that Er-Yb co-doped ion-exchanged waveg-
uides and devices in silicate and phosphate glasses constitute a mature technology, only
very few papers have been published, including some ones related to up–down frequency
conversion with application to lighting and solar cells [164,181–184]. The main research
focus has been shifted toward technological platforms that could allow integration with sil-
icon and compatibility with CMOS technology; thus, rare-earth doped aluminum oxide has
emerged as a new excellent material. Al2O3 can be deposited by atomic layer deposition or
reactive magnetron sputtering, is transparent from the UV to mid IR and exhibits very low
propagation losses; the high solubility for rare-earth ions allows it to provide active func-
tions, amplification and lasing, to silicon and silicon nitride platforms. High-gain erbium
amplifiers and erbium, thulium and holmium integrated lasers (with emission around 1.5
µm, 1.8 µm and beyond 2.0 µm, respectively) have been demonstrated [185–187].

4. Quantum Integrated Photonic Devices

As indicated in the Introduction section, different platforms have been proposed
for implementing IQP devices. The main platforms are based on III-IV semiconductor,
such as gallium arsenide and indium phosphide, lithium niobate and those ones based
on silica such as silica-on-silicon, silicon-on-insulator and silicon nitride, as reviewed,
for instance, in References [44–46]. IExG platform is not usually included as a possible
quantum integrated photonics platform, despite the fact that it is present in many classical
optical communications systems and optical sensors. We must indicate that the closest
platform to the IExG one is obviously, silica-on-silicon; however, in our opinion, IExG
presents a lower technological complexity and retains all the classical advantages of this
platform, that is, low-cost, low propagation losses and high compatibility with optical
fibers, together with a slightly better modal transverse coupling due to the graded-index
profile unlike the strictly step profile of silica-on-silicon waveguides. We must stress
that the main limitation, shared with silica-on-silicon, is the low contrast index (therefore
low curvature radii and consequently limited device densities). The main consequence
is that IExG platform becomes remarkably efficient when quantum applications require
only a few qubits. This requirement is fulfilled in most devices for optical quantum
communications, optical quantum sensors and even optical quantum simulators. On the
other hand, IExG is a passive platform, that is, it has not electro-optical properties and
presents a low nonlinearity, although efforts based on glass poling [188] and/or hybrid
integration [189] have been made to achieve significant nonlinear effects. Therefore, in a
monolithic version, IExG platform would perform only passive functions, but, as shown
in Section 3, doping with rare-earth ions adds active functionality [60] and opens new
possibilities for integrated quantum photonics. We must also underline that thermo-optic
reconfiguration would also be possible in suitable glasses, so providing an additional
capability. Accordingly, while applications to quantum computing, as for example the
implementation of complex quantum processors for specific or universal purpose, are
reserved for other platforms (as lithium niobate, silicon-on-insulator, . . . ), applications
requiring a less amount of qubits, as quantum cryptography, quantum optical sensing and
even quantum optical simulating, could be implemented by using the IExG platform. A
few examples have already appeared in the scientific literature, and the primary aim of
this section is to justify such possible applications.

Indeed, recently, theoretical and experimental studies of the IExG platform for im-
plementing different integrated quantum devices has begun to be reported. Thus, nu-
merical modeling of ion exchange in glass for quantum computations tasks has been
discussed [190,191]; nanoemitters (nanodiamond) coupled to ion-exchanged glass waveg-
uides for quantum photonics have been realized [192,193]; ion-exchanged glass directional
couplers for implementing quantum projectors have been proposed [194]. On the other
hand, ion-exchanged waveguides in thin glass substrates, suitable for photonic system
integration and EOCB (electro-optical circuit board) panel size integration [195], can open
new possibilities in IQP. Likewise, other proposed quantum systems could be implemented,
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as, for example, quantum simulators of geometrical phases [72] and boson sampling [196],
quantum random walk devices [197] and so on. As commented, these implementations
will be efficient as long as a few qubits are considered, a limit which is in turn related to the
present scalability difficulty of quantum integrated photonics. Thus, ion-exchanged glass
devices can provide optimal solutions in quantum optical communications, in particular
integrated quantum devices for quantum cryptography [49,51,198] as for example genera-
tors of quantum states, quantum projectors and Bell states measurement devices. Likewise,
experimental results of these devices fabricated by ion exchange in glass provide proofs of
concept about the use of ion-exchanged glass integrated optics in quantum information;
but as it will be shown these devices would use well-known ion-exchanged glass integrated
optical elements as directional couplers (see, for instance, References [199–201]), integrated
optical gratings (see, for instance, references [17–19]) and so on. Therefore, we have many
of the basic ingredients to develop IQP in a IExG platform and we only need to design such
quantum devices (quantum circuits), fabricate them and optimize their performance. For
example, preliminary results of a quantum projector fabricated by Na+/K+ ion exchange
in soda-lime glass has been recently proposed [194].

In all cases, the quantum circuits consist mainly of N channel waveguides or paths
(N-dimensional device) formed by a set of concatenated integrated optical elements as
directional couplers and phase shifters [49] performing quantum operations. As mentioned
passive integrated optical elements allow the implementation of devices to be mainly used
in quantum communications through different kinds of optical fibers as multicore optical
fibers [50] and few-mode optical fibers [52]. On the other hand, it may be useful to recall
that space multiplexing is one of the most promising method for increasing the transmission
capacity of optical fiber systems [202,203] and that spatial multiplexing can be used for
implementing high-dimensional quantum cryptography. At this regard, ion-exchanged
glass modal converters have been already successfully used for spatial multiplexing in
few-mode optical fibers [52,204–209]. These components are located at the emitter and
receiver, where one can already place the ion-exchanged glass IQP devices to generate or
measure quantum light states excited in the optical modes of a few-mode optical fiber.

Regarding the manufacturing of these devices, we must stress, as commented, that
generation and measurement of quantum states in quantum communications can be
made with devices formed by the same integrated optical elements fabricated on IExG
platform and used in classical optical communications (directional couplers, 1×N splitters,
optical gratings and so on). Therefore, from an industrial point of view, the existing
manufacturers of photonic devices on IExG platform can easily enlarge their production
to devices designed for quantum optical communications, or even other applications as
optical quantum sensors and optical quantum simulators. These applications are well
considered by many companies, and governments all over the world invest in quantum
technologies that have a disruptive potential. For example, the European Commission has
launched in 2018 an ambitious flagship initiative for quantum technologies [210] where,
for example, quantum communications play a central role [211,212] for both increasing
commercialization of research results and the interest of large industrial players. On the
market side, a recent report by Allied Market Research estimated that the market size of
integrated quantum optical circuits could grow from a value of 426.0 million USD in 2017
up to 1460.2 million USD by 2025 [213].

In order to make clear the above considerations, and after describing, for the sake
of completeness, the fundamental aspects of quantum integrated optical elements in
Section 4.1, we present, in Section 4.2, an integrated generator of quantum light states |L〉
based on the use of integrated optical lasers and directional couplers and mainly intended
for quantum cryptography. Such a quantum states generator device is designed for the
BB84 quantum key distribution scheme [214] and with two-dimensional quantum states,
although it can be extended to N-dimensional quantum states [51]. In this device, we
propose to use a rare-earth-doped glass, as discussed in Section 3, for generating four
weak laser signals obtained by pumping beams, that is, to use a hybrid glass. On the
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other hand, the passive part of the above device can in turn be used as an integrated
quantum projector, of a high interest in quantum devices, particularly and once again, in
quantum cryptography [215,216]. Moreover, another device for measuring Bell states is
also described, which is of a great importance in MDI (measurement device independent)
protocol [217], which is based on the use of two-photon states unlike the BB84 protocol that
uses a single photon. Experimental results on a single photon two-dimensional quantum
projector is presented in Section 4.3.

4.1. Fundamental Aspects of Quantum Integrated Optical Components

The use of quantum light states in integrated optical devices allows to develop differ-
ent on-chip applications in quantum optical communications and in other fields such as
quantum photonic simulations [196] and quantum photonic sensing [218]. Rigorous theo-
ries of linear and nonlinear quantum spatial propagation states in integrated waveguides
can be used [219–222], which allows us to study and design linear and nonlinear quantum
integrated optical elements. Moreover, we consider three types of quantum states of a great
interest for proofs of concept as the coherent states, the single photon states and the bipho-
ton states. Single photon states, and in particular 1-qubits and 1-ququart states (dimension
d = 4), have a high interest, for instance, in quantum cryptography; 1-ququart are the
states giving rise to the beginning of the so called high dimension quantum cryptography
with 1-qudits (d = N > 2), that is,

|Ls〉 =
N

∑
j=1

cj|0 . . . 1j . . . 0〉 ≡
N

∑
j=1

cj|1j〉 (4)

where subscript s stands for single-mode photon. This single photon state |Ls〉 shows that
the photon is in a quantum superposition in the N channel waveguides. Moreover, by
using 1-qudits states we can form quantum bases of orthogonal states. These bases have to
be in turn mutually unbiased bases (MUBs), which requires |c1| = . . . = |cN | [198]. On the
other hand, lasers emit coherent states |α〉, with α ∈ C, then by using, for instance, a 1xN
splitter or a cascade of directional couplers [51] a multimode coherent state |α1 . . . αN〉 is
obtained. It is well known, however, that for weak coherent (wc) states regime, |αi| � 1,
an approximated multimode single photon state is achieved, that is, |Lwc〉 ≈ |0 . . . 0〉+
∑N

j=1 αj|0 . . . 1j . . . 0〉. These states are less efficient because there is a single photon state
with a small probability, but it is enough for quantum cryptography.

Next, it is worth describing the quantum mechanical treatment of the basic passive
integrated optical elements of our integrated circuits, that is, the directional couplers 2 × 2
and phase shifters. We must stress that these 2 × 2 integrated optical elements (couplers
and phase shifters) are enough to generate unitary transformations of dimension N, that is,
SU(N) transformations, by concatening properly such optical elements [216]. Let us start
by considering a two-dimensional quantum problem (N = 2), that is, the single photon
quantum states are 1-qubits, namely, |Ls〉 = co1|11〉+ co2|12〉, with 1 and 2 denoting two
single mode channel waveguides. Synchronous directional couplers can be represented by
the following matrix

Xθ =

(
cos θ i sin θ
i sin θ cos θ

)
(5)

where θ = κL, with κ the coupling coefficient and L the coupling (real or effective) length
of the coupler. For single photon states, the standard algebra for a two-dimensional
complex space can be applied, therefore the output state (or output 1-qubit) is given by
the expression

|L′〉 = (co1 cos θ + ico2 sin θ)|11〉+ (ico1 sin θ + co2 cos θ)|12〉 ≡ c1|11〉+ c2|12〉 (6)
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For quantum information applications the usually required couplers are Xπ/4, that is,
3 dB (or 1:1) couplers, which correlate to the logic gate Hc =

√
−iX, (circular Hadamard

logic gate) and Xπ/2 corresponding to the usual Pauli’s logic gate X. On the other hand,
phase shifters are also required. Their implementation can be obtained by using different
strategies (change in refractive index, change in length or width of a single-mode chan-
nel guide and so on) and they can even be reconfigurable by using glass thermo-optic
modulation. In any case, the matrix representation of a phase shifter is given by

ZΦ =

(
e−iΦ/2 0

0 eiΦ/2

)
(7)

Phase shifters such as Zπ/2 and Zπ are usually required. In short, with several optical
integrated elements Xθ and ZΦ concatenated, along with active components, it is possible
to implement different integrated optical circuits for use in quantum (and classical) optical
communications with arbitary dimension N.

Finally, there are biphoton states, which can be obtained from an SPDC (spontaneous
parametric down-conversion) quantum source. This source can emit twin photons or
entangled photons. In a compact form, we can write a biphoton state as follows

|Lb〉 = cjj′ |1j1j′〉+ cll′ |1l1l′〉 (8)

where j, l, j′, l′ indicate four different single-mode channel guides. If cll′ = 0 then cjj′ = 1
and twin photons states are obtained. Likewise, if cjj′ = ±cll′ = 1/

√
2, the Bell states |Φ±〉

are obtained. If we perform the change j′ ↔ l′ and cjl′ = ±cl j′ = 1/
√

2 then the Bell states
|Ψ±〉 are obtained. Note that we obtain quantum states by using excitations in the modes
of several single-mode channel waveguides, which can also be denominated as path modes
or codirectional modes.

4.2. Integrated Quantum Circuits for Quantum Cryptography

In this subsection we present two examples of integrated quantum circuits. The
first one is a generator of quantum states intended for quantum cryptography by using
the so-called BB84 protocol [214]. It is made on a hybrid glass as the ones described in
Sections 2 and 3. Moroever, we show that the passive part of this integrated optical circuit
can be also used as a quantum projector. The circuit is made with four paths but can be
generalized to an arbitrary number of channel guides. The second integrated circuit is
a Bell states measurement device of interest for the so-called MDI (measurement device
independent) protocol [217] or in general for measuring the Bell states Ψ±.

4.2.1. Quantum States Generator and Quantum Projectors On-Chip for BB84

Figure 13 shows a device to generate four quantum states, which are required in the
Alice system of the BB84 protocol. It consists of four paths, that is, four ion-exchanged
channel guides fabricated in a hybrid glass substrate. Moreover, an OG in the rare-earth-
doped glass section (DBR lasers) generates four weak laser signals (weak coherent states)
obtained with pumping beams Pj, (j = 1, 2, 3, 4), whereas in the passive glass section four
directional couplers Xπ/4 and one coupler Xπ/2 along with a phase shifter Zπ/2 generate
the four states required for BB84 protocol at the outputs 2 and 3, namely, the 1-qubits
(1/
√

2)(|12〉+ eiδ|13〉), with δ = ±π/2, π, 0. The pumping beams Pj are activated in a
random way, and moreover, as shown later, the device (Alice device) emits each of the four
states through the outputs of paths 2 and 3 with a probability equal to 50%.

For example, if a weak coherent state is excited in channel waveguide 1 with pumping
beam P1, then it is obtained |L〉 ≈ |11〉. Next, the concatenated couplers Xπ/4 and Xπ/2
along with the shifter Zπ/2 (see Figure 13) perform a linear transformation, therefore, by
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taking into account Equation (5) for θ = π/4 and θ = π/2 and Equation (7) for Φ = π/2,
the following output state is obtained

|L1〉 =
1
2
(|11〉 − i|14〉) +

i
2
(|12〉+ i|13〉) (9)

Note that in channel guides 2 and 3 we have one of the states of the BB84 protocol, that
is, in a vector form we have the state (1/

√
2)(1, i)t, with t indicating transposed. The other

three states are obtained by using the other pumping beams. All of them are produced
with a 50% of probability what is reasonable for quantum key distributions.
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Figure 13. An integrated device with 4 paths (single-mode channel guides) on a hybrid glass
substrate is shown. An optical grating (OG) in the active glass section generates four laser weak
signals obtained with pumping beams Pj, (j = 1, 2, 3, 4); in the passive glass section, four directional
couplers Xπ/4 and one coupler Xπ/2 along with a phase shifter Zπ/2 generate the four states required
for BB84 protocol at the outputs 2 and 3 coupled, for example, to two single-mode cores of a MCF.

On the other hand, the passive part of this device (the blue section, that is, without the
active section where the OG is placed) is a quantum projector for the above states. Indeed,
by considering that the inputs are the channel guides 1 and 3, then the first two couplers
Xπ/4 and the coupler Xπ/2 make a state division. The next upper coupler Xπ/4 projects the
states (1/

√
2)(1,±1)t, whereas the phase shifter and the bottom coupler Xπ/4Zπ/2 project

the states (1/
√

2)(1,±i)t. This means that the device (Bob device) produces a random
choice of bases. For example, let us consider the state (1/

√
2)(|11〉+ |13〉) ≡ (1/

√
2)(1, 1)t,

then, the final state is

|L1〉 =
1√
2
|12〉+

1
2

e−iπ/4|13〉+
1
2

eiπ/4|14〉 (10)

Note that if the state chooses the channel 1 and 2, then it is projected on the output 2
(|12〉). If the input state is (1/

√
2)(|11〉 − |13〉) ≡ (1/

√
2)(1,−1)t, then we obtain

|L1〉 =
i√
2
|11〉 −

1
2

e−iπ/4|13〉+
1
2

eiπ/4|14〉 (11)

namely, the state is projected on the output 1 (|11〉). The same procedure can be followed
for the states (1/

√
2)(|11〉 ± i|13〉) ≡ (1/

√
2)(1,±i)t which are projected on the outputs 3

and 4.

4.2.2. Bell States Measurement Integrated Device for MDI

Another interesting quantum passive device is a Bell states measurement device,
which can be required in many optical quantum systems, e.g., in a MDI quantum cryptog-
raphy system [217] in multicore optical fibers or few-mode optical fibers. This device can
be implemented with integrated channel guides as shown next.

In Figure 14 a sketch of this device is given for the case of two multicore optical fibers
Fa and Fb, where only two cores are shown. We must recall that multicore optical fibers
and few-mode optical fibers allow for the increase of the optical transmission capability,
therefore the use of these optical fibers for quantum communications is highly likely.
Accordingly, the study of quantum operations with this kind of fiber also has a major
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potential interest. The Bell projector can be implemented by a Xπ/2 coupler and two Xπ/4
couplers. Indeed, let us consider the following biphoton (or 2-qubit) Bell states, according
to the notation used in Figure 14,

Ψ± =
1√
2
(|1ao11bo2〉 ± |1ao21bo1〉) (12)

By applying the optical transformations produced by Xπ/2 and Xπ/4 couplers for
single-photon states given by Equations (5) and (6) one obtains

Ψ+ → i√
2
(|1a11b1〉+ |1a21b2〉), Ψ− → 1√

2
(|1a11b2〉+ |1a21b1〉) (13)

Thus, when photons are registered in detectors Da1, Db1 or Da2, Db2 (photon coinci-
dences) we have the Bell state Ψ+, and when photons are registered in detectors Da1, Db2
or Da2, Db1 we have the Bell state Ψ−. In short, an integrated Bell projector device has been
obtained for Bell states Ψ±.
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Figure 14. Integrated Bell projector for entangled quantum states excited in four cores ao j, j = 1, 2, 3, 4
of two-core optical fibers Fa and Fb. Detectors Daj are used for measuring photon coincidences.

On the other hand, this result has also an important impact in cryptography, in
particular in a MDI quantum cryptography system. Indeed, let us consider the biphoton
state |1ao11bo2〉 launched by Alice and Bob, then the output state is given by

|L〉 = 1
2
{(|1a11b2〉 − (|1a21b1〉) + i(|1a11b1〉+ |1a21b2〉)} ≡

1√
2
(Ψ− + iΦ+) (14)

that is, Bell states are again detected by photon concidences (Charlie device). Now, if
the state launched by Alice and Bob is |1ao21bo1〉, the result is the same, except the sign:
(1/
√

2)(−Ψ− + iΦ+); therefore, a quantum key distribution is possible because Eve is not
able to know which state has been sent, that is, |1ao11bo2〉 or |1ao21bo1〉.

The above examples (quantum states generator and quantum projectors for BB84 and
a Bell states measurement device) have made clear the potential of the integrated optical
devices for the implementation of quantum operations. Next, we show how the practical
implementation of these devices in a ion-exchanged glass platform is possible because only
a few qubits (or qudits) are required.

4.3. Fabrication and Characterization of a Quantum Projector

We present the fabrication of the basic units Xπ/4 and Xπ/2, that is, 2 × 2 direc-
tional couplers in glass, by using two consecutive purely thermal K+/Na+ ion-exchange
processes in glass. The first process is a selective ion exchange, that is, it is produced
only in non-masked regions that corresponds to the channel waveguides defining the
integrated optical component, while the second one is only a burial process through the
same mask [194]. We must underline that this two-step process is different from the one
proposed in Reference [199] where two consecutive K+/Na+ ion exchanges are made, but
the second is a planar ion exchange. Rigorously, the second step (burial process) would not
be necessary but presents two important advantages. On the one hand, the modal field is lo-
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cated further from the glass surface, which can present irregularities, and therefore surface
losses are reduced, and, on the other hand, it decreases the typical anisotropy in K+/Na+

waveguides produced by mechanical stress due to the size difference of the two ions, one of
the main drawback of these integrated guides. Of course there are many other strategies for
fabricating directional couplers by K+/Na+ ion exchange (see, for example [16,200,201]),
which could also be suitable for this kind of applications. Another approach would be to
use ion-exchanged MMI couplers based on multimode interference [223,224], which would
have less stringent lithographic requirements. There are also proposals of reconfigurable
integrated elements as directional couplers by thermo-optic modulation [225], a strategy
that can be oriented to reconfigure quantum operations. In another work, an interesting
design of asymmetric Y-branch waveguides for bidirectional transmission on PCB (printed
circuit board) was described [226], which would allow us to join IQP and microelectronics.

The fabrication strategy presented here has given excellent experimental results for
Xπ/4 and Xπ/2 directional couplers with both low losses and anisotropic effects (coupling
between TE and TM guided modes, one of the drawbacks of K+/Na+ ion exchange) thanks
to the burial process. The starting point has been to use previous results [54,64,201,207,227],
which have allowed us to establish a fixed temperature T = 400 ◦C for both the first and the
second (burial) ion exchange in a soda-lime glass with index ns = 1.5104 at λo = 633 nm.
Several tests of planar thermal ion exchange in the same type of glass substrate were made,
and the effective indices of the different guided modes were measured by prism coupling
method in an automated system (Metricon, Model 2010/M). From this empiric calibration
and taking into account numerical results by using the EIM for channel guides, a diffusion
time for the first exchange equal to t1 = 30 min and a time t2 = 10 min for the burial
process were fixed in order to achieve single-mode channel waveguides.

In order to design and fabricate integrated quantum optical projectors, a prior optical
characterization of the full fabrication process of the basic elements (the directional couplers
as Xπ/4 and Xπ/2) was needed. A series of masks on the same substrate for different
directional couplers have been made by changing the separation s between channel guides
and the coupling length l of the couplers (a sketch of the directional coupler is shown
in Figure 15), while keeping the width of the channel guides constant (w = 3µm). The
connection between channel guides have been made through curves following the profile
used by Minford et al. (MC curve) [62]. The separations and the coupling lengths chosen,
after the photo-reduction process, are found in the interval s ∈ [3, 6]µm and l ∈ [0.5, 2]mm,
respectively. We must indicate that under the ion-exchange process, the lateral diffusion
increases the width of the channel guides up to 4µm with respect to the designed mask
width of 3µm.
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Figure 15. Sketch of a directional coupler belonging to the series of directional couplers fabricated.
The main parameters are indicated: separation s between channel guides and length l of the guides
from after and up to before the Minford curves (MC).

An optical characterization of the directional couplers was then made. We denote as
co1 and co2, respectively, the input complex amplitudes at the two guides of the coupler
and as c1 and c2 the corresponding output complex amplitudes, so that the output powers
are Pi = |ci|2, i = 1, 2. In the tests, light was coupled to one of the branches of the coupler
and the power at each output was measured. Experimental results are shown in Table 1.
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Some important conclusions can be obtained from the results shown in Table 1: the coupler
(s, l) = (3.0, 2.0) is very close to a Xπ/2 coupler, and the coupler (s, l) = (6.0, 1.5) is very
close to a Xπ/4 coupler.

Table 1. Normalized powers P1|P2 at coupler’s outputs 1 and 2, respectively.

Series of Couplers l (mm)

0.5 1.0 1.5 2.0

s (µm)
3.0 (17.8|82.2) (93.6|06.4) (54.9|45.1) (02.5|97.5)
4.5 (35.9|64.1) (05.9|94.1) (07.4|92.6) (40.9|59.1)
6.0 (80.7|19.3) (63.8|36.2) (49.3|50.7) (26.8|73.2)

Alternatively, one can use a numerical linear fitting to obtain the optimal values of (s, l)
for fabricating a particular coupler Xθ ; thus, Figure 16 shows the linear fit θ(l) = a l + b for
the three separations s considered. The term θ(0) is the coupling introduced by the Minford
curves and it is different from zero because l is the distance between the curved sections.
Note that the above fit allows us to define an effective length leff such that θ(leff) = κleff,
where κ is the coupling coefficient (a ≡ κ), and thus we can write the following relationship

θ(l) = κ l + θ(0) (15)

By deriving κ and θ(0) from the linear fit of the experimental coupling results we
obtain the effective length leff = l + θ(0)/κ. In short, we have found the empiric parameters
for fabricating simultaneously Xπ/2 and Xπ/2 couplers and thus to fabricate the three IQP
devices described in the above subsection. The phase shifter π/2 could be implemented by
changing in an adiabatic way the length or the width of a channel guide.

The experimental results for the directional coupler (s, l) = (6.0, 1.5) (Xπ/4 coupler) as
a quantum projector can now be shown. The test was made by using a He-Ne laser source,
so that we made a semi-classical optical characterization with coherent states, which is
sufficient to characterize the directional coupler; we must stress, however, that with single-
photon states the same results would be obtained. We excited different states at the input of
the directional coupler by using an optical grating [194]. Indeed, let us consider an external
optical grating with a periodic structure along the y axis (see, for instance, Figure 15).
When it is normally illuminated by a Gaussian beam propagating along z direction, and the
diffracted light is collected by a lens, then the diffraction orders ±1 can be coupled to the
inputs co1 and co2 of the directional coupler shown in Figure 15. Next, by translating the
optical grating along y axis, different relative phases δ between the amplitudes are obtained;
in other words, the following input vector of amplitudes is obtained at the directional
coupler: vt

o = (co1, eiδco2)
t, where superscript t stands for transposed. It is worth writing

the corresponding input quantum state, i.e., the bimode coherent state |co1 eiδco2〉. Next, we
choose the directional coupler (s, l) = (6.0, 1.5), which is very close to a Xπ/4 coupler and
therefore is a projector of quantum states (1/

√
2)(|11〉 ± i|12〉). Alternatively, the device

formed by an optical grating introducing a π/2 phase plus a directional coupler Xπ/4 can
be formally regarded as a projector for states (1/

√
2)(|11〉 ± |12〉). Note that if we use an

active optical grating implemented by a spatial light modulator introducing 0 or π/2 in a
random way we have a quantum states detection system (Bob) of random bases.

In Figure 17, the experimental results (image of waveguide outputs) for these pro-
jections are shown, with the corresponding input coherent states. Note that the bimode
coherent states |α/

√
2 ± iα/

√
2〉 are projected in states |α0〉 and |0α〉, therefore single pho-

ton states (1/
√

2)(|11〉 ± i|12〉), will be projected in states |11〉 and |12〉, respectively. On
the other hand, the following two-mode coherent states |α/

√
2 ± α/

√
2〉 do not undergo

transformations, therefore the single photon states (1/
√

2)(|11〉 ± |12〉) also do not, and
consequently it is also experimentally proved that they are eigenstates. This last case is
highly interesting to implement a quantum random number generator.
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θ

l (mm)

Figure 16. Linear fits of the coupling θ(l) for the three separations s between channel guides of
twelve directional couplers.

Figure 17. Experimental outputs for different input states to a coupler Xπ/4. (a) Input state:
|α/
√

2 − iα/
√

2〉; output state: |α 0〉; (b) input and output states: |α/
√

2 ± α/
√

2〉; (c) input state:
|α/
√

2 iα/
√

2〉; output state: |0 α〉.

In short, the experimental results achieved with the directional coupler confirm that a
Xπ/4 transformation is implemented, and therefore a projection operation can be made. A
similar experimental study has been made with the Xπ/2 coupler. Therefore, when several
couplers Xπ/4 and Xπ/2 are combined, that is, couplers (s, l) = {(6.0, 1.5), (3.0, 2.0)}
fabricated simultaneously, the devices described in Section 4.2 can be fabricated and also
more general projectors (high-dimensional projectors, Bell states projectors, . . . ) by using
ion exchange in glass.

5. Conclusions

In this work we have presented a review on active and quantum integrated photonic
elements fabricated by ion exchange in glass, which have a remarkable impact in different
fields such as classical and quantum optical communications, optical processing and
optical sensing. Ion-exchanged components in rare-earth-doped glasses provide an optimal
solution to implement integrated optical lasers and amplifiers; erbium-doped waveguide
amplifiers represent a very important element in optical transmission systems. Likewise,
a growing interest has emerged for the use of the ion-exchanged waveguide technology
as an effective platform for integrated quantum photonics. We have reported theoretical
and experimental results showing the high potentiality of this platform for developing
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active and integrated quantum devices, with particular reference to the combination of
active and passive ion-exchanged glass elements in hybrid glasses. Thus, we have shown
how to implement, for example, an active integrated quantum states generator device
for quantum cryptography (Alice device) and passive devices such as, for example, an
integrated quantum projector, suitable also for the BB84 protocol in quantum cryptography
(Bob device), which allows us to detect quantum states by projective measurements, and
a Bell states measurement device for MDI protocol in quantum cryptography (Charlie
device). As an overall, we have shown that ion exchange in glass, even if being a very
ancient technology, is still crucial for today’s (and future) photonic and quantum integration
technology.
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Abbreviations
The following abbreviations are used in this manuscript:

AS Aluminosilicate
ASE Amplified Spontaneous Emission
BB84 Bennett and Brassard 1984
CMOS Complementary Meta Oxide Semiconductor
DC Directional Coupler
EDFA Er-Doped Fiber Amplifier
EDWA Erbium-Doped Waveguide Amplifier
EYDWA Erbium-Ytterbium-Doped Waveguide Amplifier
EOCB Electro-Optical Circuit Board
FMF Few-Mode Optical Fiber
IExG Ion-Exchanged Glass
IQP Integrated Quantum Photonics
MC Minford et al. Curve
MCF Multicore Optical Fiber
MDI Measurement Device Independent
MMI Multi-Mode Interference
MUBs Mutually Unbiased Bases
NLO Nonlinear optics
OG Optical Grating
PCB Printed Circuit Board
PECVD Plasma-Enhanced Chemical Vapor Deposition
RED Rare-Earth Doped
SPDC Spontaneous Parametric Down-Conversion)
SL Soda–Lima–silicate
WDM Wavelength Division Multiplexing
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11. Liñares, J.; Montero, C.; Prieto, X. Graded-index bifocal spectacle lenses produced by ion-exchange in glass: Paraxial designing.

Pure Appl. Opt. 1995, 4, 695–699. [CrossRef]
12. Gomez-Reino, C.; Perez, M.; Bao, C.; Flores-Arias, M. Design of GRIN optical components for coupling and interconnects. Laser

Photonics Rev. 2008, 2, 203–215. [CrossRef]
13. Graydon, O. Graded lens surprise. Nat. Photonics 2019, 13, 732. [CrossRef]
14. Findakly, T. Glass waveguides by ion-exchange: A review. Opt. Engin. 1985, 24, 244–250. [CrossRef]
15. Ramaswamy, R.V.; Srivastava, R. Ion-exchanged glass waveguides: A review. J. Light. Technol. 1988, 6, 984–1000. [CrossRef]
16. Najafi, S.I. Introduction to Glass Integrated Optics; Artech House: Boston, MA, USA, 1986.
17. Righini, G.C.; Pelli, S. Ion exchange in glass: A mature technology for photonic devices. In Materials and Devices for Photonic

Circuits II; Armenise, M.N., Ed.; SPIE: Bellingham, WA, USA, 2001; Volume 4453, pp. 93–99. [CrossRef]
18. Honkanen, S.; West, B.R.; Yliniemi, S.; Madasamy, P.; Morrell, M.; Auxier, J.; Schulzgen, A.; Peyghambarian, N.; Carriere, J.;

Frantz, J.; et al. Recent advances in ion exchanged glass waveguides and devices. Phys. Chem. Glas. 2006, 47, 110–120.
19. Tervonen, A.; Honkanen, S.K.; West, B.R. Ion-exchanged glass waveguide technology: A review. Opt. Eng. 2011, 50, 1–16.

[CrossRef]
20. Righini, G.C.; Chiappini, A. Glass optical waveguides: A review of fabrication techniques. Opt. Eng. 2014, 53, 071819. [CrossRef]
21. Fernandez, T.; Sakakura, M.; Eaton, S.; Sotillo, B.; Siegel, J.; Solis, J.; Shimotsuma, Y.; Miura, K. Bespoke photonic devices using

ultrafast laser driven ion migration in glasses. Prog. Mater. Sci. 2018, 94, 68–113. [CrossRef]
22. Grelin, J.; Ghibaudo, E.; Broquin, J.E. Study of deeply buried waveguides: A way towards 3D integration. Mater. Sci. Eng. B 2008,

149, 185–189. [CrossRef]
23. Pei, C.; Wang, G.; Yang, B.; Yang, L.; Hao, Y.; Jiang, X.; Yang, J. Study of selectively buried ion-exchange glass waveguides using

backside masking. Chin. Opt. Lett. 2015, 13, 021301.
24. Zhang, L.; Guo, X. Thermal history and its implications: A case study for ion exchange. J. Am. Ceram. Soc. 2020, 103, 3971–3977.

[CrossRef]
25. Jordan, E.; Geoffray, F.; Bouchard, A.; Ghibaudo, E.; Broquin, J.E. Development of Tl+/Na+ ion-exchanged single-mode

waveguides on silicate glass for visible-blue wavelengths applications. Ceram. Int. 2015, 41, 7996–8001. [CrossRef]
26. Liñares, J.; Montero, C.; Sotelo, D. Theory and design of an integrated optical sensor based on planar waveguiding lenses. Opt.

Commun. 2000, 180, 29–36. [CrossRef]
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Abstract: We propose a simple polygonal model to describe the phase profile of ion-exchanged
gratings. This model enables the design of these gratings, as well as the characterization of the
ion-exchange process itself. Several ion-exchanged gratings were fabricated to validate the model
and to characterize the process involved in their fabrication. From this characterization, we show
the practical utility of the model by designing and fabricating both a grating that removes the zero
order and a three splitter. The performance of these two elements was good, although the first one
stood out especially because only 0.5% of the power remained in the zero order after diffraction. This
polygonal model could be useful to design more complex diffractive elements.

Keywords: ion-exchange; phase gratings; diffractive optics

1. Introduction

Diffractive Optical Elements (DOEs) are widely used in different fields such as holog-
raphy [1], spectroscopy [2], astronomy [3], and so on. Among DOEs, diffraction gratings
stand out for their versatility, being a common part of devices for wavelength division
multiplexing, optical pulse compression, or laser tuning. Gratings modulate the ampli-
tude or the phase of the light incident on them. As a result, light is diffracted into the
so-called diffraction orders. In applications where the diffraction efficiency is important,
phase modulation is preferred to amplitude modulation. The most investigated phase
gratings are those with sinusoidal profiles. The gratings with this kind of profile have
significant advantages. First, they can be mathematically analyzed by closed-form ex-
pressions. Secondly, these profiles can give rise to many interesting diffraction patterns
including the cancellation of the zero order, splitting in several orders, and so on. Lastly,
sinusoidal gratings can be fabricated by interference of two plane waves on photosensitive
substrates. However, gratings fabricated in this way are delicate, and specific phase profiles
are difficult to obtain. Here, we use the ion-exchange technique to fabricate robust and
precise sinusoidal-like phase gratings by taking advantage of its simplicity, low cost, and
easy control of the fabrication parameters [4]. Moreover, the flat surface of the elements
fabricated by this technique permits straightforward cleaning and antireflection coating,
as well as integration in stacked optical systems [5]. As is known, ion-exchange changes
the refractive index of suitable substrates, typically in a region of some micrometers under
its surface. This change can be made selectively in only some regions of the substrate,
provided that a mask for the ions is used. In particular, by designing appropriate masks,
as well as the ion-exchange process itself, different kinds of phase gratings have been
fabricated [6,7]. In these works, the authors successfully designed and fabricated grating
beam splitters by using a numerical approach for both the ion-exchange process and the
diffraction calculations. However, the design of such elements using numerical methods
is not easy when trying to make complex elements. In the present work, we propose a
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simple polygonal model for the phase profile achieved following thermal ion-exchange
processes. This model enables the design and fabrication of grating elements in a simple
way. After characterization of the ion-exchange process by using such a model, different
grating elements can be designed and fabricated easily. As examples, we design and
fabricate a diffraction grating with suppressed zero order and a three splitter. Cancellation
of the zero order of diffraction is desirable in many applications of diffractive elements,
such as digital holography [8], spatial light modulation [9], and grating fabrication [10],
among others. On the other hand, light splitting is useful, in general, for power division
tasks [11], and in particular, it has been used, combined with other phase functions, in the
fabrication of vortex gratings [12].

In Section 2, we explain the characteristics of the model and obtain expressions for
the transmission function of gratings with such a phase profile. Next, we describe the
characterization procedure of the two-dimensional ion-exchange process by using this
model. This characterization provides the characteristic parameters of the model as a
function of the ion-exchange time. Finally, in Section 4, we check the potential of the model
by designing and fabricating a grating with suppressed zero order and a three splitter.

2. Polygonal Model for the Phase Profile of Ion-Exchanged Gratings

The phase profile of a grating is conditioned by its fabrication process. In particular,
in the fabrication of gratings by thermal ion-exchange through a mask, the phase profile
generated is determined not only by the shape of the mask, but also by the ion-exchange
process itself. As a first approach, the phase profile of a grating fabricated by this technique
would be a square profile. However, when a thermal ion-exchange takes place through
a mask opening, ions diffuse beneath the masked part generating a transition region (s),
which extends beyond the opening (w) (see Figure 1).

Figure 1. Scheme of the fabrication of an ion-exchanged grating. s and Λ indicate the transition
region (or side diffusion) and the period of the grating, respectively.

Then, the phase profile of an ion-exchanged grating, ∆ϕ(x), would be more like a
trapezoid. Moreover, the openings are usually similar in size to the transition region. This
makes the ions spread deeper in the middle of the openings than close to their edges. As a
result, the phase profile should be rounded in the region corresponding to the opening,
just as predicted by the diffusion equation that governs the ion-exchange process [7] and
confirmed experimentally [13]. In a first approximation, we can assume, for this region,
a triangular phase profile and a linear profile for the transition region or side diffusion.
Therefore, all the phase profile can be modeled by using straight lines giving place to the
so-called polygonal model (see Figure 2).

In order to gain more insight into this shape of the phase profile, we plot, in Figure 3,
typical profiles of in-depth refractive index changes of a substrate, ∆n(z), for three side
positions: at the middle of the opening, at the edge of the mask, and at the middle of
the transition region. As is known, this change of the refractive index is proportional
to the concentration C(x,z) of in-diffused ions, which can be calculated by solving a two-
dimensional non-linear diffusion equation [7]. From ∆n(x, z), the phase profile is calculated
by [14]:
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∆ϕ(x) =
2π

λ

∫ ∞

0
∆n(x, z)dz, (1)

where λ is the wavelength. From this equation, it can be easily checked that the shape of
the polygonal phase profile is compatible with the curves shown in Figure 3. On the other
hand, the third dimension (y-axis) has little effect on the phase profile, and hence on the
grating behavior, because the diffusion length of ions is very short compared to the length
of this grating dimension. In other words, the ion-diffusion is not limited in the y-direction.

Figure 2. Modeling of the phase profile of an ion-exchanged grating by the polygonal model.

Figure 3. Typical in-depth refractive index changes after an ion-exchange process through an opening
for three side positions: middle of the opening (green curve), the edge of the mask (blue line), and the
middle of the transition region (red line).

According to Figure 2, the phase profile can be expressed as follows:

∆ϕ(x) =





−2∆ϕ0 (1 + v/s + x/s) −(v + s) ≤ x ≤ −(v + s/2)
−∆ϕ0 −(v + s/2) ≤ x ≤ −s/2

2∆ϕ0 x/s −s/2 ≤ x ≤ s/2
∆ϕ0 + δ(−s/w + 2x/w) s/2 ≤ x ≤ (w + s)/2

∆ϕ0 + δ(2 + s/w− 2x/w) (w + s)/2 ≤ x ≤ w + s/2
2∆ϕ0 (1 + w/s− x/s) w + s/2 ≤ x ≤ w + s

(2)

where all the variables are defined in that figure. This model allows the characterization
of the two-dimensional ion-exchange process, which takes place in the fabrication of
the grating through the determination of the parameters of the model (s, δ, and ∆ϕ0).
In Section 3, we will explain the procedure that we used. It is based on the comparison
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between the theoretical and experimental efficiencies of the gratings fabricated and will
show the utility of this simple model.

For more complex periodic structures, the phase profile would be given by the follow-
ing general polygonal function:

∆ϕ(x) = {aj + bjx, xj−1 ≤ x ≤ xj, j = 1, ..., M, x0 = −Λ
2

, xM =
Λ
2
}, (3)

where Λ is the period of the grating, M the number of segments, and aj, bj would be
determined by the specific shape of the profile. The substitution of this expression in the
equation for the transmission of the order m of a grating, in the thin-grating approximation,

tm =
1
Λ

∫ Λ/2

−Λ/2
exp(i∆ϕ(x)) exp(−im

2π

Λ
x)dx, (4)

leads to a general expression for the diffraction coefficients of such a grating:

tm = ∑
j

exp(iaj)

i (Λbj − 2πm)
{exp[i(bj −

2πm
Λ

)xj]− exp[i(bj −
2πm

Λ
)xj−1]}. (5)

We must stress that in a standard selective ion-exchange process, the parameters aj and
bj will be functions of ion-exchange time t. As shown later, a linear dependence between
these parameters and

√
t is found in a first approximation, that is,

aj(t) = aj1 + aj2
√

t and bj(t) = bj1 + bj2
√

t, (6)

where aj1, aj2, bj1, and bj2 would be obtained after characterization of the ion-exchange
process. In general, different cases are possible: aj1 = aj2 = 0; aj1 = 0, aj2 6= 0; aj1 6= 0,
aj2 = 0; and the same cases for bj1 and bj2. This allows us to analyze the temporal
evolution of diffraction coefficients, tm(t), so that an energy transfer is observed between
diffraction orders m, giving rise to different optical transformations. As for the profile
given by Equation (2), it corresponds to the particular case M = 6 with b2 = 0, where
the period Λ equals w + v + 2s. In this case, by introducing Equation (2) into Equation (4)
and integrating, we obtain, after a long but straightforward calculation, the following
expression for the diffraction coefficient of order m:

tm =
s
Λ

sin(∆ϕ0 − πms/Λ)

∆ϕ0 − πms/Λ
+

s
Λ

exp(i
πm
Λ

(v− w))
sin(∆ϕ0 + πms/Λ−mπ)

∆ϕ0 + πms/Λ

− exp(i
πm
Λ

(v− w))
sin(∆ϕ0 + πms/Λ−mπ)

mπ
+

sin(∆ϕ0 − πms/Λ)

mπ

+
w
Λ

exp(i∆ϕ0) exp(−i
πm
Λ

(s + w))

(
exp(i(

πmw
2Λ

+
δ

2
))

sin((πmw/Λ− δ)/2)
πmw/Λ− δ

)

+
w
Λ

exp(i∆ϕ0) exp(−i
πm
Λ

(s + w))

(
exp(−i(

πmw
2Λ

− δ

2
))

sin((πmw/Λ + δ)/2)
πmw/Λ + δ

)

− w
Λ

exp(i∆ϕ0) exp(−i
πm
Λ

(s + w))
sin(πmw/Λ)

πmw/Λ
. (7)

The first two lines are the transmission for δ = 0 and the last ones the correction to take
into account the triangle defined in the interval [s/2, w + s/2]. Note that the diffraction
efficiency of the order m can be easily calculated as:

ηm = |tm|2. (8)
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3. Characterization of the Two Dimensional Ion-Exchange Process by the
Polygonal Model

The polygonal model presented in the previous section enables the characterization
of the ion-exchange process, which takes place during the grating fabrication. From this
characterization, specific grating elements can be designed and fabricated. The detailed
procedure is described here, and it consists of three steps.

First, a raw characterization of the one-dimensional ion-exchange process is made
through the fabrication of some planar waveguides in suitable substrates. In our case, we
fabricated these waveguides by using thermal ion-exchange in soda-lime glasses and a
mixture 5% mole AgNO3/NaNO3, at 340 ◦C, as the ion source. Next, the ion-exchange
modification produced by this salt in this particular glass is analyzed by the inverse
Wentzel–Kramers–Brillouin (IWKB) method. As is known, the IWKB method facilitates
the determination of the in-depth refractive index profile resulting from the ion-exchange
process. From this refractive index profile, the phase step and the penetration depth of the
ions, for a given ion-exchange time, can be calculated [14]. In particular, we needed an
ion-exchange time t = 13 min to get an in-depth penetration of about 7.5 µm and a phase
step around π for a wavelength λ0 = 632.8 nm.

Second, the geometric characteristics of the gratings are chosen. In particular, their
period is usually selected from diffraction needs. We chose a period Λ = 30 µm and an
opening width w = 10 µm. The size of the opening was chosen to obtain a grating with the
two sides of its phase profile similar in size, that is a quasi-antisymmetric phase profile.
Note that most interesting phase profiles are of this kind. This opening width leads to v ≈
10 µm and s ≈ 5 µm for a phase step π, because the side diffusion of the ions is somewhat
smaller than the in-depth diffusion. Next, the grating must be patterned on the substrate.
We used for it a two-step photolithographic process. In the first step, a binary grating
pattern with the aforementioned dimensions was plotted on a sheet of heavy paper and
then reduced −1/13.5 by using a lens Schneider XENON Sapphire 4.5/95. This led to a
chromium master on a glass substrate that was then reduced by a Carl Zeiss S-planar lens
working at magnification M = −1/5 and f /# = 1.3. The final result was an aluminum
binary grating on the soda-lime glass chosen for the ion-exchange.

The third step is the characterization of the two-dimensional ion-exchange process
that takes place during the grating fabrication. For that, as we will see, it is enough to use
three gratings with approximate phase steps π/2, π, and 3π/2. These phase steps cover
the range of phases [0–2π], which almost any interesting phase grating element will have.
Then, from the characterization realized in the first step, we calculated the ion-exchange
times (3.5 min, 14.5 min, and 32 min) needed to achieve, approximately, these phase steps.
Next, after the fabrication of these three gratings, their diffraction efficiencies (ηexp

m ) were
measured and compared to those provided by the polygonal model (Equations (7) and (8)).
This is done by calculating the RMS of the differences between measured and calculated
efficiencies, that is:

RMS(w, s, δ, ∆ϕ0) =

√√√√
(N−1)/2

∑
m=−(N−1)/2

(η
exp
m − η

Equation(7)
m )2/N, (9)

where N is the number of the diffraction orders measured. The minimization of this RMS
permitted us to fit the polygonal model to the exact phase profile of each grating. Note that
in addition to the intrinsic parameters of the model, we also considered the width of the
opening as a free parameter. This was done to take into account the fabrication tolerances
and/or to allow the approximate model to fit better to the real profile.

We did the minimization task by using the function fmincon of the software Oc-
tave [15]. This minimization was made in two passes. In the first one, we let the four
parameters vary freely, except for w, which we constrained to values close to the real
opening width (w = 10 ±1.5µm). After this, several findings can be highlighted. First, all
three minima of the RMSs were under 0.05%, which confirms the validity of the model.
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Second, w varied approximately between 8.5 and 10 µm. Third, a good linear relation-
ship was observed between s and ∆ϕ0 and

√
t. This behavior was expected because the

penetration depth in ion-exchange processes, as well as the phase steps that ion-exchange
yields depend linearly on the square root of time [14]. Finally, the dependence between
δ and

√
t was not clearly linear. However, it is reasonable to guess a linear dependence

between these two magnitudes because δ is a part of the maximum phase step (2∆ϕ0 + δ),
and this should depend linearly on

√
t, at least for short times. Moreover, we checked that

the minima of the RMSs were not too sensitive to changes in δ. With this in mind, we did
a second minimization pass where the values of δ were constrained to the best linear fit
obtained in the first pass±10%, and w was fixed to the average of the three values resulting
from this first fit, that is 9.1 µm. Note that this value of the opening width is remarkably
different from the real value (10 µm) of the fabricated mask. This is a consequence of the
coarse approximation of the phase profile that we obtained with the polygonal model.
After the second minimization pass, the three minima of the RMSs were under 0.08%, and
we obtained the linear dependencies shown in Figure 4.

Figure 4. Data points of the polygonal model that best predicted the experimental efficiencies of the
three gratings fabricated to characterize the ion-exchange process; the lines of the best fit as functions
of the square root of the ion-exchange time are also plotted. The parameter w was fixed to 9.1 µm.

This figure confirms the linear dependencies already observed in the first pass. How-
ever, a closer examination reveals a slight departure from the linearity of ∆ϕ0 and δ. This is
a consequence of the saturation of the in-depth diffusion of ions for long times. Anyway,
as we will see in the next section, it did not have any apparent impact on the design and
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fabrication of, at least, the two elements that we made. On the other hand, we checked that
the inclusion of more than three gratings in the above characterization did not change the
quality of the fits or the predictions. Now, if we insert in Equation (7) the linear equations
shown in this figure, only the ion-exchange time remains as the independent variable.
Therefore, we can represent the efficiencies of the diffraction orders (Equation (8)) as func-
tions of

√
t (see Figure 5). This figure includes the efficiencies of the three gratings used in

the characterization process, as well as those of the two grating elements that we designed
and fabricated using such a characterization, as we will see in the next section.

Figure 5. Plot of the efficiencies of the orders 0 (blue line), ±1 (red line), ±2 (green line), and
±3 (magenta line) with the square root of the ion-exchange time according to Equations (7) and (8)
and Figure 4. The experimental efficiencies of the five gratings used in this work are also plotted.

4. Design and Fabrication of a Grating with Suppressed Zero Order and a
Three Splitter

Now, we show the practical utility of the model introduced in Section 2 by designing
and fabricating two diffractive elements: a grating that suppresses its zero order and a
three splitter. The procedure that we used for this was the same in both cases. First, we
calculated the ion-exchange time necessary to obtain each element through Equations (7)
and (8), as well as the characterization presented in Section 3 (Figures 4 and 5). Next, we
fabricated such an element following the same fabrication process explained in Section 3,
but using the previous calculated time. Finally, we measured the diffraction efficiencies
for λ0 = 632.8 nm to check the quality of the element. Along these measurements, we also
checked that these gratings had negligible absorption losses at this wavelength and no
sensitivity to polarization of the beam. Moreover, we quantified their noise by measuring
the stray light between 0–1 orders and 1–2 orders. We obtained a signal-to-noise ratio
higher than 35 dB. The experimental setup to measure the diffraction efficiency of these
grating elements is shown in Figure 6, and a close up photo of one of the fabricated gratings
can be seen in Figure 7.

Of course, the design of these elements was restricted to the parameters of the gratings
used to characterize the ion-exchange process, that is a period Λ = 30 µm and an opening
width w = 10 µm. However, other periods and openings could be used provided that a
previous characterization is done. In particular, by using this polygonal model, the period
and the opening of the gratings could be optimized for a specific element on the basis of,
for instance, a large fabrication tolerance or another merit function. On the other hand,
this model provides the minimum period that can be achieved using this technique of
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grating fabrication. From Figures 1 and 2, it is clear that the limit is found for v = 0, that
is Λmin = w + 2s. The particular value will depend on s, which will be determined by
the particular element to be fabricated. For example, for a grating with suppressed zero
order (see Section 4.1), Λmin ≈ 15 µm, and for a three splitter (see Section 4.2), Λmin ≈ 9 µm.
In both cases, an opening width of w ≈ 1 µm is assumed.

Figure 6. Long exposure photography of the experimental setup. On the right side, a polarizer,
before one of the fabricated gratings, was placed to modify the intensity of the beam. On the left side,
you can see the detector head, with a diaphragm on its front. The stabilized He-Ne laser used in the
measurements is not shown in the picture.

Figure 7. Close-up photography of one of the fabricated gratings (in the middle of the picture).
Behind, you can see a periodic object to better observe the dimensions of the grating with respect to
the glass substrate. The grating grooves are arranged horizontally.

4.1. Design and Fabrication of a Grating with Suppressed Zero-Order

The cancellation of the zero order implies η0 = 0. According to the blue curve (efficiency
of the zero order) of Figure 5, this condition is fulfilled for t ≈ 26 min. Therefore, we
fabricated a new grating using this ion-exchange time. After fabrication, we measured the
diffraction efficiencies and obtained the results shown in Table 1.
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Table 1. Experimental and predicted diffraction efficiencies for λ0 = 632.8 nm of the grating designed
to suppress its zero order.

m |t2
m|exp |t2

m|Equation(7)

0 0.5% 0.35%
±1 32.55% 31.4%
±2 12.2 % 13.6%
±3 3.25 % 3.0%
±4 1.3% 1.3%
±5 0.2% 0.3%
±6 0.05% 0.05%

The result was very good. The efficiency of the zero order did not reach the theoretical
minimum, but was very close, and the efficiency of the first orders (±1) was higher than
expected. This closeness between the predicted and obtained values was not surprising
because of the low sensitivity of the diffraction efficiency η0, at its minimum, with the
ion-exchange time (see Figure 5). Furthermore, the efficiency obtained at the first orders
was slightly higher than the value (27%) that a sinusoidal phase grating provides. If higher
efficiencies were necessary, we could stack a second grating with half the period to obtain a
non-symmetrical phase profile. A proper design of these two phase elements would result
in an improved efficiency for the +1 order at the expense of the−1 order. On the other hand,
the small discrepancy between the experimental and theoretical values of the efficiencies
can be attributed to the polygonal model, which does not perfectly reproduce the real phase
profile. Anyway, the small values η0 that we obtained validate this ion-exchange technique
to fabricate this kind of gratings and the polygonal model to represent its phase profile.

4.2. Design and Fabrication of a Three Splitter

The procedure that we used to fabricate a three splitter was the same as described
in the previous paragraphs, but now the condition η0 = η1 or η0 = η−1 must be fulfilled.
Therefore, from Figure 5, we must calculate the intersection between the blue curve (effi-
ciency of the zero order) and the red curve (efficiency of the first order). This intersection is
at t ≈ 8.1 min; however, we finally rounded this time to t = 8 min because of the experi-
mental uncertainties of the fabrication process. Indeed, for such a short time, the transient
regimes are relevant, and we observed that they gave rise to uncertainties of about 3% in
the ion-exchange time. After fabrication, we measured the diffraction efficiencies of the
first three orders. They were η0 = 25.5% and η±1 = 31.0%. It is clear from these values
that our goal was not achieved. Three reasons can be given to explain such a discrepancy.
First, is the inaccuracy of the polygonal model; second is the error in the opening width
resulting from the photolithographic process; and third is the high sensitivity, in this region,
of the efficiencies of the first two orders with the duration of the ion-exchange process,
which along with the aforementioned uncertainties made the prediction very difficult.
Both the second and third reasons can be minimized by using a thorough lithography and
lower temperatures for the ion-exchange process, respectively. Despite the differences
obtained between the efficiencies, note that the model gave a result close to the desired
one, as well as clues to find a better solution. Indeed, according to Figure 5, the time was
overestimated because the efficiencies obtained were on the right side of the intersection,
at t ≈ 9 min. Therefore, we considered a new ion-exchange time t = 7.5 min, expecting
to achieve a better result. The diffraction efficiencies of this last grating are shown in
Table 2. The values were not yet optimal, but there was no point in doing more trails due
to the reasons given before. Anyway, this result can be considered good: the difference
between the efficiencies of the first three orders was small (3%), and their sum (87.3%) was
near the theoretical maximum (92.5%). This last fact was a consequence of the similarity
between the phase profile resulting from this fabrication process and the profile necessary
to have an optimal three splitter [16]. It is true that the difference between the experimental
and predicted efficiencies was a little high (about 6% for the zero order). However, this
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polygonal model was not conceived of to predict exactly the shape of the phase profile and
hence the efficiencies of the gratings. Our goal was to provide a simple model to design
optical elements made of ion-exchanged gratings.

Table 2. Experimental and predicted diffraction efficiencies for λ0 = 632.8 nm of the grating designed
to be a three splitter.

m |t2
m|exp |t2

m|Equation(7)

0 27.1% 33.3%
±1 30.1% 28.65%
±2 3.5% 2.15%
±3 1.6% 1.55%
±4 0.7% 0.5%
±5 0.3% 0.25%
±6 0.1% 0.1%

Finally, we show in Figure 8 the image of a red pencil (left) through the grating with
suppressed zero order (middle) and the three splitter (right). Of course, this result agreed
with the data given in the previous tables. With regard to the grating that suppressed its
zero order, only the blue component of the pencil remained at this order because the red
component was completely removed. Moreover, the ±1 orders were the most relevant
ones. As for the three splitter, the three first orders were approximately equal in brightness,
and the rest of the orders almost vanished.

Figure 8. Images of a red pencil (left) through the grating with suppressed zero order (middle) and
the three splitter (right).

5. Conclusions

We present a simple polygonal model to describe the phase profile of ion-exchanged
gratings. Its simplicity makes it easy to calculate the transmission function of gratings with
such a phase profile. From this transmission function and the experimental efficiencies
of three gratings with approximate phase steps π/2, π, and 3π/2, we characterized the
ion-exchange process through simple functions for the intrinsic parameters of the model.
In order to show the potential of this model, we designed and fabricated a diffraction
grating with suppressed zero order and a three splitter. The cancellation of the zero order
was very good: only 0.5% of the power remains at this order after diffraction. As for
the three splitter, its phase profile is close to the optimal one, and the difference between
the efficiencies of its first orders is 3%. Moreover, this value can be further improved
by lowering the temperature of the ion-exchange process. Finally, this polygonal model
could be useful to design more complex diffractive elements by increasing the number of
segments. It could also be generalized to the two-dimensional case.
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Abstract: In this study, the influence of small additives on the spectral and optical properties of Na+–
Ag+ ion-exchanged silicate glass is presented. Polyvalent ions, for example, cerium and antimony,
are shown to reduce silver ions to atomic state and promote the growth of photoluminescent silver
molecular clusters and plasmonic silver nanoparticles. Na+–Ag+ ion-exchanged and heat-treated
glasses doped with halogen ions, such as chlorine or bromine, exhibit formation of photo- and
thermochromic AgCl or AgBr nanocrystals. Growth of a silver nanoisland film on the glass surface
was observed in the case of undoped sample. The presented results highlight the vital role of
small additives to control properties of the silver nanostructures in Na+–Ag+ ion-exchanged glasses.
Possible applications of Na+–Ag+ ion-exchanged glass ceramics include but are not limited to
biochemical sensors based on surface-enhanced Raman scattering phenomena, temperature and
overheating sensors, white light-emitting diodes, and spectral converters.

Keywords: ion exchange; silver; photo-thermo-refractive glass; silver nanoparticles; silver molecular
clusters; silver bromide nanocrystals

1. Introduction

Over time, glasses have occupied a particular place among various optical materials
due to their wide range of transparency, easily tuned properties, and workability. Recently,
research has focused more on the development of new composite glassy materials, e.g.,
including materials doped with nanoparticles and/or nanocrystals. Today, functional
glasses that actively interact with light are required. An example of functional optical
material is photo-thermo-refractive (PTR) glass based on a sodium–zinc–aluminosilicate
matrix containing halogens (fluorine and bromine) and doped with silver, antimony, and
cerium oxides [1,2]. The refractive index of PTR glass is changed after exposure to UV light
and the subsequent thermal treatment in the vicinity of the glass transition temperature.
The latter step leads to the formation of silver nanoparticles (SNPs) playing the role of
nucleation centers for NaF nanocrystals in the glass host, causing variations in the refractive
index. Mechanisms of photo-thermo-induced crystallization in PTR glass were studied in
detail and reported in [3,4]. Currently, phase holograms recorded in PTR glass are used as
line-narrowing and stabilizing filters, spectral and spatial filters, compressors for femto-
and picoseconds laser beams, spectral beam combiners, high-power beam splitters, etc.
Although PTR glass was developed as a photosensitive medium for recording volume
Bragg gratings, recent studies showed that it is a polyfunctional material that can combine
the properties of holographic, laser, and photoetchable media [1,2,5–8]. In this work, we
demonstrate that the functionality of PTR glass matrix can be substantially extended via
the formation of silver nanostructures inside the glass or on its surface.

Silver can be introduced in a silicate glass matrix by adding silver-containing chemicals
into the glass batch, via ion implantation or via ion exchange (IE). Due to the low solubility
of silver in a silicate matrix, the first approach allows embedding up to 0.2 mol.% Ag2O.
Ion implantation requires special sophisticated equipment, and only very thin layers can
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be modified with the method, whereby the typical thickness of the silver-enriched region
is below 2 µm [9,10]. The IE technique, on the other hand, is characterized by simplicity,
flexibility, and applicability for mass production. For example, Na+–K+ IE is used for
glass strengthening on an industrial scale for producing cover glass for smartphones [11].
The method is based on the substitution of alkali (Na+, K+, Rb+, Cs+) or transition (Ag+,
Cu+, Tl+) metal ions from glass by another one from the salt melt, metal film, or another
source [12–14]. A comparison of ion implantation and ion exchange technologies for
modification of glass is shown in Table 1.

Table 1. Comparison of the ion implantation and ion exchange technologies.

Parameter Ion Exchange Ion Implantation

Simplicity/complication Very simple and flexible technology Requires sophisticated equipment

Applications of modified glass Optical waveguides; glass strengthening;
nanostructuring

Optical waveguides; glass hardening;
nanostructuring

Variety of metal nanostructures

Limited to copper and silver
nanostructures due to possibility of ions
to effectively exchange with alkali ions
from a glass substrate

Depends on ion source: Ag, Cu, Ni, Co,
Ti, Cr, and Zn nanoparticles were
obtained and studied in glasses

Requirements for glass substrate
High chemical durability to salt melt;
limited to
alkali-containing glasses

No requirements

Thickness of the glass modified region
The range is very wide and depends on
particular application, typically in the
range from few to tens of microns

Typically, below 2 µm

Temperature during modification
Should be at least above melting
temperature of salt melt; in most cases,
temperature is in the range 250–450 ◦C.

Low-temperature processing

Reproducibility Excellent Excellent
Allows overcoming solubility of dopant Yes Yes
High-scale production capability Already used for mass production Already used for mass production
Allows overcoming solubility of dopant
in glass matrix Yes Yes

It must be noted that most research papers devoted to the study of silver nanos-
tructures formed in ion-exchanged glasses focused on the influence of the ion exchange
(concentration of silver in salt melt, temperature, and duration) and subsequent heat treat-
ment (temperature and duration) parameters, while glass composition and influence of
the glass additives have not received much attention. As it is shown further, these un-
characterized factors play a key role in determining the properties of silver nanostructures
and, consequently, the functionality of the glass doped with them. This research deals
with the influence of typical additives of PTR glass on the spectral and optical properties
of Na+–Ag+ ion-exchanged layers. However, as PTR glass is based on the well-known
and widely used sodium–aluminosilicate matrix, our results can be extended to other
silicate glasses.

2. Materials and Methods

Glass blocks of samples based on the 14Na2O–3Al2O3–5ZnO–71.5SiO2–6.5F (mol.%)
composition were synthesized in a furnace at 1500 ◦C in air atmosphere using a platinum
crucible and mechanical stirrer. The glass transition temperature of the samples was deter-
mined using an STA 449F1 Jupiter (Netzsch, Germany) differential scanning calorimeter at
a heating rate of 10 K/min. For the optical study, planar polished samples with a thickness
of 0.9–1.0 mm were prepared. Na+–Ag+ IE was conducted by immersing glass samples in
a bath with a melt of silver and sodium nitrates (5 mol.% AgNO3/95 mol.% NaNO3) at
320 ◦C. Absorbance spectra were recorded with a double-beam spectrophotometer Lambda
650 (Perkin-Elmer). The emission spectra were measured inside an integrated sphere using
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a photonic multichannel analyzer (PMA-12, Hamamatsu, Japan) at room temperature.
XRD characterization was performed using a Rigaku Ultima IV X-ray diffractometer.

3. Results and Discussion
3.1. Spontaneous Growth of Silver Nanoparticles on the Surface of Ion-Exchanged
Photo-Thermo-Refractive Glass Heat-Treated in Air Atmosphere

Plasmonic metal nanoparticles have attracted significant interest in photonics due to
their unique optical properties. Potential applications of metal nanoparticles include but
are not limited to biosensing [15], surface-enhanced Raman spectroscopy (SERS) [16], solar
cells [17], targeted drug delivery [18], saturable absorbers [19], and photocatalysis [20].
SERS is one of the most widely studied applications of the metal nanoparticles. The
phenomenon was firstly observed from pyridine molecules adsorbed on roughened silver
electrodes by Fleischmann et al. in 1974 [21]. Despite SERS mechanisms still being under
discussion, it has become a powerful and ultrasensitive tool due to the possibility of
enhancing Raman scattering magnitude by 10–14 orders. This allows one to detect even a
single molecule [22,23].

Roughened metal surfaces can be obtained in different ways, including thermal,
electron beam, chemical, and plasma deposition methods. Recently, it was shown that a
SERS-active silver nanoisland film (SNIF) can be easily formed on the surface of Na+–Ag+

ion-exchanged glasses. Two different approaches were developed to grow SERS-active
SNIF on a glass surface (Figure 1). The first is based on the growth of SNPs in the ion-
exchanged glass layers with subsequent chemical etching to obtain SNPs directly on the
glass surface [24,25]. The concentration of NPs on glass surface can be controlled by silver
content in a salt melt during the IE process and by the thickness of the etched glass layer.
The second approach involves thermal treatment of Na+–Ag+ ion-exchanged glass in a
reducing atmosphere, for example, hydrogen atmosphere or water vapor [26,27]. Growth
of SNPs in the subsurface glass region can be suppressed by low temperature of the
treatment (at least 100 ◦C below the glass transition temperature). Moreover, the poling
technique can be applied to Na+–Ag+ ion-exchanged glasses to obtain single NPs on the
glass surface [28,29]. It should be noted that the considered approaches show similar
performance as SERS-active substrates.
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Figure 1. Schemes of two processes of formation of SNIF at the surface of Na+–Ag+ ion-exchanged glass.

Our preliminary research revealed the spontaneous growth of SNIF at the surface of
Na+–Ag+ ion-exchanged undoped matrix-based PTR glasses. To our best knowledge, this
is the first observation of growth of SNIF at the surface of ion-exchanged glass after heat
treatment in air. Figure 2 shows photos of BK-7 optical glass and PTR matrix-based glass
with no dopants (hereafter denoted as PTR-M; see Table 2) after the Na+–Ag+ IE and heat
treatment at a temperature of 50 ◦C above corresponding Tg values. BK-7 exhibited the
yellowish coloration typical for most silver ion-exchanged and heat-treated glasses, which
results from absorption of the SNPs formed in silver-enriched glass layers [30,31]. PTR-M
glass, on the contrary, possessed no coloration, due to the absence of electrons for reducing
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silver ions inside the glass [32]. Moreover, a gray semitransparent film was observed on
the PTR-M glass surface.
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Figure 2. Photo of the PTR-M glass sample (left) after Na+–Ag+ IE and heat treatment at 500 ◦C
for 3 h (the resulting surface film was partially removed) and of BK-7 glass ion-exchanged and
heat-treated at 600 ◦C for 3 h (right).

Table 2. Batch concentration of additives in the studied PTR glass samples.

Glass Sb2O5, mol.% Br, mol.%

PTR-M 0 0
PTR-Br 0 1.4

PTR-Sb2 0.002 0
PTR-Sb4 0.004 0

PTR-Sb10 0.01 0

For further detailed research, PTR-M glass with no dopants was studied. Silver ions
were introduced by immersing the PTR glass samples into the bath containing a mixture of
5AgNO3/95NaNO3 (mol.%) at 320 ◦C for 15 min. Ion-exchanged PTR glass samples were
then heat-treated in air at temperatures in the range 350–500 ◦C, with a treatment duration
of up to 7 h. An Na+–Ag+ ion-exchanged glass layer was mechanically removed from one
side of the samples prior the heat treatment. Glass samples were placed in a muffle furnace
with the silver-containing side facing upward.

Figure 3 shows absorbance spectra of the ion-exchanged PTR-M glass samples heat-
treated in different conditions. The absorption band peak at 445 nm, related to the growth
of SNIF on the ion-exchanged PTR-M glass surface, was observed already after the heat
treatment for 15 min at 350 ◦C (Figure 3a). The increase in absorption amplitude, red
shift of the absorption peak, and emergence of the second band around 355 nm occurred
with a longer heat treatment duration. An analogous dependence of the absorbance
spectra on the heat treatment time was obtained for the samples heat-treated at 400 and
450 ◦C (Figure 3b,c). Similar changes in the absorbance spectra of SNPs dispersed in water
solution were observed as a function of increasing size from 46 to 287 nm by Kinnan and
Chumanov [33]. The authors assigned the observed changes to quadrupolar, octupolar,
and hexadecapolar plasmon modes in SNPs with a size of 128–287 nm. As heat treatment
temperature governs the kinetics of redox reactions and diffusion process of SNPs growth,
it also influences the mean size and size distribution of SNPs. The heat treatment at 500 ◦C,
i.e., above the glass transition temperature (464 ◦C for PTR-M glass), resulted in almost
structureless absorbance spectra due to very broad and overlapped bands.

To confirm that neither silver molecular clusters (SMCs) nor SNPs were formed in
the ion-exchanged PTR-M glass during the heat treatment, the following experiment was
conducted: a sample of the Na+–Ag+ ion-exchanged PTR-M glass was repeatedly heat-
treated at 500 ◦C. The SNIF formed on the PTR glass surface was removed mechanically by
polishing the sample for 3–5 s, and absorption spectra were recorded after each cycle. The
absorbance spectra obtained during this experiment are shown in Figure 4a. Na+–Ag+ IE in
PTR glass is known to induce a long-wavelength shift of the UV absorption edge [34]. The
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reason for the shift is strong absorption of the introduced silver ions that are characterized
by the absorption envelope peak at 225 nm [35]. Thus, in contrast to the IE effect on
absorbance spectra, a short-wavelength shift of the UV absorption edge was observed
in the heat-treated samples. The spectra of the ion-exchanged and heat-treated PTR-M
sample after removing SNIF showed no absorbance in the range above 300 nm, where
the absorption bands of SMCs and SNPs in PTR glass are located [36]. This result also
proved that all the features observed in the spectra presented in Figure 3 are related to SNIF
formed on the PTR-M glass surface. Location of the UV absorption edge of the Na+–Ag+

ion-exchanged PTR-M glass is determined by the absorption of Ag+ ions [37]. Thus, it is
possible to roughly estimate the integral silver concentration in the heat-treated samples
compared to nontreated ones using the Beer–Lambert law. The differential absorbance
spectra obtained by subtracting the spectrum of the as-synthesized sample from the others
are shown on Figure 4b. The differential absorbance decreased more than eightfold at
255 nm, from ~2.6 to ~0.3 after 1 h of heat treatment at 500 ◦C. Further treatment led to a
slower decrease in differential absorbance, down to ~0.1. Thus, heat treatment at 500 ◦C
induced out-diffusion of silver ions to the glass surface with formation of SNIF, resulting
in a 95% reduction in the total number of silver ions in the PTR-M glass sample compared
to the nontreated ion-exchanged sample.
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XRD analysis of the PTR glass samples heat-treated at different temperatures for 3 h
revealed characteristic peaks for metallic silver (Figure 5), confirming that the observed
SNIF consisted of silver nanoparticles. SEM analysis of the of the ion-exchanged and heat-
treated PTR-M glass surface revealed the presence of isolated nanometer and micrometer
particles (Figure 6). SNIF formed at 350 ◦C consisted of nanoparticles of different shapes
(triangle, square, and rectangular), while, at higher temperatures, nanoparticles had only
spherical shape. The latter should be related to the melting of small SNPs during the
heat treatment at temperatures above 400 ◦C [38–40]. Moreover, SEM analysis showed
that the mean diameter of silver particles in the SNIF increased from 140 to 320 nm with
heat treatment temperature increasing from 350 to 500 ◦C. This result correlates with

121



Appl. Sci. 2021, 11, 3891

the changes in absorbance spectra presented in Figure 3. The phase retardation of the
electromagnetic field inside large particles led to the plasmon modes of higher multipole
orders (quadrupolar, octupolar, and hexadecapolar) observed in the spectra [41].

Appl. Sci. 2021, 11, 3891 6 of 17 
 

 

Figure 4. (a) Absorbance spectra of as-synthesized and Na+–Ag+ ion-exchanged PTR-M glass sam-

ples after heat treatment at 500 °С for different durations measured after removing the SNIF. (b) 

The differential absorbance spectra obtained by subtracting the spectrum of the as-synthesized 

sample from the others. 

XRD analysis of the PTR glass samples heat-treated at different temperatures for 3 h 

revealed characteristic peaks for metallic silver (Figure 5), confirming that the observed 

SNIF consisted of silver nanoparticles. SEM analysis of the of the ion-exchanged and heat-

treated PTR-M glass surface revealed the presence of isolated nanometer and micrometer 

particles (Figure 6). SNIF formed at 350 °C consisted of nanoparticles of different shapes 

(triangle, square, and rectangular), while, at higher temperatures, nanoparticles had only 

spherical shape. The latter should be related to the melting of small SNPs during the heat 

treatment at temperatures above 400 °C [38–40]. Moreover, SEM analysis showed that the 

mean diameter of silver particles in the SNIF increased from 140 to 320 nm with heat treat-

ment temperature increasing from 350 to 500 °C. This result correlates with the changes 

in absorbance spectra presented in Figure 3. The phase retardation of the electromagnetic 

field inside large particles led to the plasmon modes of higher multipole orders (quadru-

polar, octupolar, and hexadecapolar) observed in the spectra [41]. 

 

Figure 5. XRD spectra of the ion-exchanged and heat-treated for 3 h PTR-M glass samples with 

SNIF. 

Figure 4. (a) Absorbance spectra of as-synthesized and Na+–Ag+ ion-exchanged PTR-M glass
samples after heat treatment at 500 ◦C for different durations measured after removing the SNIF.
(b) The differential absorbance spectra obtained by subtracting the spectrum of the as-synthesized
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Considering possible mechanisms of the spontaneous growth of SNIF on the ion-
exchanged PTR glass surface, the main question concerns the source of electrons for
reducing silver ions. The mechanism of silver ion reduction by water vapor in a wet argon
atmosphere responsible for growth of SNIF on the surface of Na+–Ag+ ion-exchanged
borosilicate glass was suggested by Kaganovskii et al. [42]. The authors proposed silver–
proton exchange with the formation of silver oxide that thermally decomposes further to
silver and oxygen.

≡ Si−O−Ag+ +
1
2

H2O↔≡ Si−O−H+ +
1
2

Ag2O. (1)

Ag2O→ 2Ag0 + O. (2)

Other routes of silver reduction by glass impurities or nonbridging oxygen can be
excluded considering that they would lead to coloration due to growth of SNPs inside the
glass [43]. Thus, we suggest that SNIF on the surface of Na+–Ag+ ion-exchanged PTR glass
surface growth is the result of interaction with the water molecules always present in air.
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However, further research is needed to clarify the exact mechanism responsible for the
growth of SNIF.
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Figure 6. SEM image of the ion-exchanged PTR-M glass sample heat-treated at 350 ◦C (a) and 450 ◦C
(b–d; various magnifications) for 3 h.

A drop (~5 mm in diameter) of 8 × 10−7 mol/L R6G aqueous solution was deposited
on the samples to investigate SERS-active properties of silver films on the surface of the
PTR-M glass. The Raman spectra were measured after drying the R6G drop with the
confocal Raman microscope (Renishaw); a red laser beam (633 nm) was focused at the
sample surface with a 50×/0.55 micro-objective. A significantly enhanced spectrum was
observed at surface with SNIF compared to pristine PTR-M glass (Figure 7a). As growth
of SNIF on the PTR glass is a diffusion process, it can be grown using the same substrate
in several cycles of thermal treatment and mechanical removal. This makes Na+–Ag+

ion-exchanged PTR glass functionalized with SNIF an attractive platform for developing
reusable SERS sensors. Absorbance spectra of the Na+–Ag+ ion-exchanged PTR-M glass
with SNIF grown during several cycles of the heat treatment at 500 ◦C for 15 min and
removing the film are shown on Figure 7b.

Thus, heat treatment at temperatures 350–500 ◦C of Na+–Ag+ ion-exchanged PTR-
M glass with no dopants resulted in growth of SERS-active SNIF on the glass surface.
Spectroscopic properties of SNPs on the glass surface can be controlled by changing the
heat treatment temperature and time. Na+–Ag+ ion-exchanged PTR glass can be used as a
substrate for developing reusable biochemical sensors based on the SERS phenomenon.

3.2. Photo- and Thermochromic Behavior of Na+–Ag+ Ion-Exchanged Br-Doped Glasses

In contrast to the PTR-M matrix glass with no dopants, Na+–Ag+ ion-exchanged
bromine-containing glass PTR-Br (see Table 2) revealed an additional long-wavelength
shift of the UV edge of strong absorption after the heat treatment at 500 ◦C (Figure 8a).
Silver bromide crystals are known to possess strong absorption in the UV and visible range,
with absorption coefficients as high as 1000 cm−1 at 400 nm, which may, thus, cause the
long-wavelength shift [44]. Formation of AgBr nanocrystals in the ion-exchanged and heat-
treated PTR-Br glass samples was confirmed by XRD analysis. XRD peaks related to silver
bromide were clearly observed for all ion-exchanged and heat-treated samples (Figure 8b).
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The mean diameter of AgBr nanocrystals calculated according to the well-known Scherrer
equation increased from 5 to 10 nm upon extending the IE process from 15 min to 21 h.
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Figure 8. (a) Absorbance spectra of PTR-Br glass samples before and after the IE and heat treatment
at 500 ◦C for 3 h. (b) XRD patterns of PTR-Br glass samples ion-exchanged for different time and
heat-treated at 500 ◦C for 9 h.

Silver bromide is known to decompose to silver and bromine under UV or visible light.

AgBr hν⇒ Ag0 + Br0. (3)

The process is used in photographic films; after exposure and decomposition of AgBr,
silver atoms aggregate further into colloidal particles and form a latent image, while the
produced bromine volatilizes. In the case of a glass matrix, bromine atoms are unable
to leave the matrix, which enables multiple cycles of recording and relaxation of color
centers. This principle underlies photochromic glasses that reversibly changes transmission
depending on the illumination [45]. In 1968, Garfinkel showed that photochromic glasses
can be produced by Na+–Ag+ ion exchange of borosilicate glasses doped with copper
and bromine/chlorine [46]. Elliptical silver nanoparticles are known to be color centers
in conventional photochromic glasses [47]. The experimental absorbance spectra consist
of two broad bands corresponding to longitudinal and transverse plasmonic modes of
elliptical SNPs. In order to study the photosensitivity of ion-exchanged PTR-Br glass, some
samples were exposed to a mercury UV lamp (λmax = 365 nm). However, only the sample
ion-exchanged for 21 h showed a noticeable change in absorbance (Figure 9).
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Figure 9. (a) Absorbance spectra of the ion-exchanged and heat-treated at 500 ◦C for 9 h PTR-Br glass
samples before and after UV irradiation with a mercury lamp. (b) Photo of the samples before and (c)
after the UV irradiation.

To enhance the formation of color centers in PTR-Br glass samples with AgBr nanocrys-
tals, the samples were irradiated with a pulsed third-harmonic YAG:Nd laser (λ = 355 nm,
f = 10Hz, pulse energy 20 mJ, pulse duration 7 ns). Intense laser UV light resulted in the
growth of SNPs and, as a consequence, origin of a broad absorbance band in the visible
range (Figure 10). Coloration and bleaching kinetics for the studied PTR-Br samples are
shown in Figure 11. The amplitude of UV-induced absorbance increased with the Na+–Ag+

IE time as the concentration of the embedded silver ions determined concentration and
distribution of AgBr nanocrystals formed during the subsequent heat treatment. It should
be noted that saturation of coloration was observed already after 100 s of UV irradiation
for samples ion-exchanged for 0.25, 1, and 9 h, while the sample ion-exchanged for 21 h
did not show saturation even after 1000 s of UV irradiation.
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Figure 10. Absorbance spectra of the PTR-Br glass sample ion-exchanged for 9 h and heat-treated at
500 ◦C for 9 h after irradiation with UV pulses for different times.

After coloration by the UV pulsed laser, samples were kept at room temperature to
study bleaching kinetics. Only partial bleaching of the samples was observed, while a
number of color centers were stable at room temperature. For the samples ion-exchanged
for 0.25, 1, and 9 h, the absorbance increment reached 20–30% of the peak value after 72 h of
relaxation. At the same time, the sample ion-exchanged for 21 h possessed a 45% decrease
in absorbance.

The observed differences in coloration and bleaching kinetics of the ion-exchanged
samples with AgBr nanocrystals may be explained by the different thickness of the glass
layer doped with the nanocrystals and by size effect. According to Araujo, the mean size
of silver halide nanocrystals in photochromic glasses is 8–18 nm because smaller particles
exhibit low coloration efficiency [47]. Thus, the low saturation level in the samples ion-
exchanged for 15 min and 1 h can be explained by small AgBr nanocrystals with a mean
size of 5 and 6 nm, respectively, calculated according to the Scherrer equation. Partial
bleaching of the studied samples resulted from the absence of polyvalent ions, for example,
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copper, that participate in redox reactions occurring in conventional photochromic glasses
during coloration and bleaching [45,47]. It should be noted that full relaxation of color
centers induced by a UV mercury lamp and UV pulsed laser was observed after heating
PTR-Br glass samples above 150 ◦C for 10–15 min.
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during 1000 s.

Silver bromide is an indirect semiconductor with direct and indirect band gap energies
Eg,dir = 4.276 eV and Eg,ind = 2.713 eV for bulk crystals at cryogenic temperatures [48].
The energy bandgap of a semiconductor depends on temperature and decreases with its
increase. In situ measurements of absorbance spectra revealed that the UV absorption edge
of silver bromide nanocrystals formed in PTR-Br glass shifted to a greater wavelength
with heating the sample (Figure 12). The effect was manifested as colored PTR-Br glass
samples due to increasing absorption in the blue range (Figure 12, inset). After cooling
the sample to room temperature and removing SNIF formed during the heating, the
spectrum returned to the initial state. Figure 13a shows the dependence of the location
of the UV absorption edge on the temperature of the samples ion-exchanged for different
time. The experimental data can be fitted using a straight line for all samples. Moreover,
for a wide temperature range between 300 and 500 ◦C, absorbance at a fixed wavelength
linearly depends on the temperature for samples ion-exchanged for 1 and 9 h (Figure 13b).
Thus, the thermochromic properties of PTR-Br glass samples containing AgBr nanocrystals
can be used as temperature sensors or an eye-readable overheating indicator. It should
be noted that chlorine-doped PTR glass samples with AgCl nanocrystals formed with
the Na+–Ag+ IE were also studied. However, the photo- and thermochromic properties
of PTR glass samples with AgCl nanocrystals was poorer compared to their bromine-
doped counterparts.

3.3. Luminescent Properties of Silver Molecular Clusters Formed in Ce- and Sb-Doped Glasses

Silver molecular clusters (SMCs) are subnanometer silver aggregates that consist of
several atoms/ions. SMCs are characterized by photoluminescence and do not possess
plasmon resonance. Stabilized in different matrices, including liquids, polymers, glasses,
and zeolites, SMCs are used for developing white LEDs [49], sensors [50], spectral con-
verters [51,52], and data storage devices [53]. Glasses doped with SMCs attract particular
attention due to transparency in a wide spectral range, high thermal stability, and ex-
cellent chemical durability. A PTR glass matrix transparent in the UV range opens the
possibility to study the spectral properties of SMCs in details. To promote the growth
of SMCs in the Na+–Ag+ ion-exchanged PTR glass, silver ions should be reduced to an
atomic state. Cerium and antimony are polyvalent ions that can be in different charge states
(Ce3+/Ce4+ and Sb3+/Sb5+), which determines their spectroscopic manifestation in glass
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matrices [54,55]. These ions are typically used in PTR glasses to provide photosensitivity
of the glass [3,4]. Possible redox reactions involving silver and cerium/antimony ions are
as follows:

Ag+ + Ce3+ ↔ Ag0 + Ce4+, (4)

2Ag+ + Sb3+ ↔ 2Ag0 + Sb5+. (5)
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To determine the direction of a redox reaction, one needs to know the value of the
standard electrode potential. For example, the reaction in Equation (4) proceeds in standard
conditions from right to left. Adding silver into the PTR glass matrix was earlier shown to
result in a decrease in the Ce4+-related absorption band, proving that silver plays the role
of a reducing agent for cerium ions in the PTR glass melt [56]. However, the concentration
of Ag+ ions in the ion-exchanged PTR glass layer exceeds by orders the equilibrium value
that can be reached via glass synthesis, whereby the equilibria in Equations (4) and (5) shift
to the right-hand side despite the direction of the reaction in standard conditions. Neutral
silver atoms obtained as a result of the redox reactions can aggregate further in SMCs or
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NPs depending on their size. As shown below, the spectral luminescent properties of PTR
Na+-Ag+ ion-exchanged glass can be tuned in a wide range by varying the concentration
of glass dopants, as well as the IE and subsequent heat treatment parameters.

The concentration of polyvalent ions determines the rate of the redox reaction with
silver. Thus, a higher content of polyvalent ions allows a higher concentration of SMCs
and SNPs to be obtained in glass at fixed parameters of the IE and heat treatment processes
(Figure 14). It is worth noting that, for developing efficient phosphors or spectral converters
based on a glass doped with SMCs, the concentration of polyvalent ions should be very
low, so as to increase the possibility of SMCS growth consisting only of few atoms. In the
other case, the growth of large clusters and/or SNPs results in luminescence quenching
and a significant lowering of the photoluminescence quantum yield (PLQY). For example,
a PLQY value as high as 65%, which is among the highest reported values for glasses
doped with SMCs [36], was achieved in PTR-Sb2 glass containing only 0.002 mol.% of
Sb2O3. An increase in Sb2O3 content to 0.01 mol.% led to almost a twofold decrease in
photoluminescence quantum yield.
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Figure 14. Absorbance (a) and emission (b) spectra of undoped PTR-M and antimony-doped PTR
glass samples ion-exchanged for 15 min and heat-treated at 450 ◦C for 15 h. The excitation wavelength
was 350 nm.

Heat treatment at temperatures below the glass transition temperature was found to
result in bright photoluminescence due to the growth of SMCs. PLQY magnitude increases
with heat treatment temperature up to 450 ◦C. Heat treatment at 500 ◦C, i.e., above the Tg
value of the studied antimony-doped glass samples, led to the appearance of an absorption
band around 420 nm corresponding to the localized surface plasmon resonance of SNPs
(Figure 15a). The growth of SNPs inevitably caused luminescence quenching due to the
absorption of SMC emission and the decrease in concentration of emission centers due to
the transformation of SMCs into SNPs (Figure 15b).
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IE parameters, including silver content in the salt melt, temperature, and time, can also
be used to tune the optical properties of silver nanostructures in Na+–Ag+ ion-exchanged
glasses. The IE time and temperature influence the diffusion rate and, as a result, the
thickness of the silver-enriched glass layer. Thus, these parameters change the properties of
the obtained silver nanostructures in a similar way. It was found that varying IE time allows
tuning the location of SMC emission in a wide spectral range. This opens up prospects
for developing highly efficient, thermostable, solid-state LEDs based on PTR glasses with
SMCs. The effect of the IE time on the absorbance and emission of SMCs is demonstrated
in Figures 16 and 17. Emission color varied from cool white to warm and orange upon
increasing the IE time (Figure 16c). It should be noted that the PLQY of the samples
decreased from 60% to 15% with the extension of IE duration [37]. This effect is related
to the increase in absorbance of the remaining silver ions at the excitation wavelength
with an increase in the IE time (a longer IE process leads to a higher amount of silver
remaining in ionic form in the PTR glass due to the constant concentration of reducing
agent). However, we believe that PLQY values can be substantially increased by using
a salt melt with low silver content. The silver concentration in subsurface layers of the
Na+-Ag+ ion-exchanged glass is known to nonlinearly depend on the silver content in the
salt melt for most glasses. Typically, the surface concentration of silver grows exponentially
with AgNO3 content below 5 mol.% and saturates at greater values [57]. IE with a low
silver content may allow decreasing the absorption of silver ions that remain in the PTR
glass after the heat treatment.

The presented results show that the photoluminescence properties of SMCs in the
PTR glass matrix can be tuned in a wide range by controlling the concentration of reducing
agents, as well as the parameters of the Na+–Ag+ IE and subsequent heat treatment
processes. The wide emission spectrum of SMCs in the ion-exchanged PTR glass matrix
and the high PLQY magnitude pave the way for applications of such glasses in lighting as
phosphors for white LEDs and in photovoltaics as spectral converters.
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Na+–Ag+ IE and subsequent heat treatment at 450 ◦C.

4. Conclusions and Perspectives

In this work, the great effect of small additives in sodium–zinc–alumina glass compo-
sition on the spectral and optical properties of silver nanostructures grown on the surface
or subsurface layers of Na+–Ag+ ion-exchanged glasses was demonstrated. Silver ions
introduced in the PTR glass matrix containing no polyvalent ions can interact with the
atmosphere water molecules during heat treatment to form SERS-active silver nanoisland
films on the glass surface. Trivalent cerium and antimony ions typically used as photo-
sensitive additives in PTR glasses were shown to act as reducing agents for silver ions
in Na+–Ag+ ion-exchanged glasses and to promote the formation of luminescent silver
molecular clusters. The concentration of polyvalent ions, as well as the ion exchange and
subsequent heat treatment parameters, can be used to tune and optimize the emission of
silver molecular clusters in a wide range.

Na+–Ag+ ion exchange of Br(Cl)-containing PTR glass followed by heat treatment
above the glass transition temperature led to the growth of silver bromide nanocrystals.
The obtained nano-glass ceramic possesses photochromic and thermochromic properties.
The presented experimental findings indicate that small additives contained in glass play a
key role in the chemical reactions with silver ions introduced by Na+–Ag+ ion exchange
and determine the properties of the obtained silver nanostructures and functionality of
nano-glass ceramics. We believe that the results of this work can be useful for developing
biochemical sensors based on the SERS phenomenon, white LEDs, spectral converters, and
temperature sensors.
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Abstract: In this work, we report on an investigation of the ytterbium diffusion characteristics in
lithium niobate. Ytterbium-doped substrates were prepared by in-diffusion of thin metallic layers
coated onto x- and z-cut congruent substrates at different temperatures. The ytterbium profiles were
investigated in detail by means of secondary neutral mass spectroscopy, optical microscopy, and
optical spectroscopy. Diffusion from an infinite source was used to determine the solubility limit of
ytterbium in lithium niobate as a function of temperature. The derived diffusion parameters are of
importance for the development of active waveguide devices in ytterbium-doped lithium niobate.

Keywords: thermal diffusion; active waveguide devices; laser active materials

1. Introduction

The ferroelectric crystal lithium niobate (LiNbO3) is a well-known material for various optical
applications due to its favorable electro-optical, acousto-optical, piezoelectric, and nonlinear properties.
Furthermore, low-loss waveguides can be implemented in rare-earth-doped LiNbO3 via several
fabrication techniques [1–6], leading to the development of waveguide amplifiers as well as waveguide
lasers. In the past, a variety of efficient erbium- (Er) and neodymium (Nd)-doped LiNbO3 waveguide
lasers have been realized [7–10]. Another attractive laser material is Yb:LiNbO3. Due to the simple
energy level scheme of ytterbium (Yb) with only one excited state, a small laser quantum defect can
be achieved, allowing for the development of highly efficient Yb lasers [11]. Another benefit of Yb is
the large gain bandwidth, which allows for wide wavelength tuning and the generation of ultrashort
pulses [12,13].

In 1995, Jones et al. reported the demonstration of an Yb:LiNbO3 waveguide laser with a slope
efficiency of 16% [14]. Due to photorefractive damage, the y-propagation Ti-diffused Yb:LiNbO3

waveguide laser showed unstable laser operation. Later, Fujimura et al. reported continuous-wave
lasing with a slope efficiency of 7% in z-cut LiNbO3 annealed/proton-exchanged (APE) waveguides [15]
by using thermally in-diffused Yb. While in the latter works, channel waveguides were used, another
method which also reduces photorefractive damage is using ridge waveguides [16]. In such geometry,
further improvement of the laser performance can be achieved due to the smaller mode fields and
significantly improved overlap of optical pump and laser modes, when compared to their channel
counterparts. Recently, a novel fabrication method has been reported comprising ridge definition by
diamond blade dicing followed by three-side Er/Nd and Ti in-diffusion for the development of highly
efficient rare-earth-doped Ti:LiNbO3 ridge waveguide lasers [17–19]. This fabrication technique is a
promising method for increasing the slope efficiency of Yb:LiNbO3 waveguide lasers, too. For the
development of low-loss Yb:Ti:LiNbO3 ridge waveguides with optimized overlap of the Yb doping
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profile and the intensity profiles of the guided modes, it is essential to know the diffusion constants and
the maximum solubility of Yb in LiNbO3. Apart from a single value for the diffusivity at 1100 ◦C in
z-direction [20], only a few data regarding the diffusion doping of LiNbO3 with Yb can be found [14,21].

In this work, we report on an investigation of the incorporation of Yb into LiNbO3 by in-diffusion.
To determine the diffusion constants and the maximum solubility of Yb in LiNbO3, diffusion profiles
measured by SNMS (secondary neutral mass spectrometry) were analyzed. With these data, a first
ridge waveguide sample was prepared, and the absorption and emission spectra of the in-diffused Yb
ions were measured and compared with literature values.

2. Experimental Methods

2.1. Sample Preparation

For the sample fabrication, optical-grade x- and z-cut wafers of congruent LiNbO3 (Yamaju
Ceramics Co., LTD) were used. Pieces of 10 × 10 × 1 mm3 were prepared by diamond saw dicing.
The samples were cleaned using successive baths of acetone, isopropanol and deionized water, and an
ultrasonic cleaner. Plasma cleaning in oxygen was applied as the final cleaning step prior to vacuum
deposition. The samples were coated with 20 nm thick layers of Yb, with a purity of 99.9%, using
electron beam evaporation. For annealing, the samples were placed in a platinum crucible in a high
temperature elevator furnace for diffusion time of 30 h at different temperatures between 930 and
1130 ◦C. The heating and cooling rates were constant for all samples.

One sample with dimensions of 1 × 25 × 8 mm3 (x y z) from the x-cut wafer was also used to
prepare Yb-doped ridge waveguides. For this, ridges were prepared in the x surface running parallel
to the y-axis by precise diamond blade milling, and these samples were coated with 22 nm of Yb under
symmetric angles of ±60◦. For diffusion, the coated ridges were annealed at T = 1125 ◦C for t = 216 h.
Afterwards, 85 nm of Ti were deposited under symmetric angles of ±60◦ and in-diffused to prepare the
ridge waveguides as described in [17].

2.2. SNMS Measurements

The SNMS measurements were performed using the Multimethod System with INA-X from
SPECS. For the direct bombardment mode during sputtering, an RF-excited Krypton plasma was used.
Samples were protected by a copper mask defining a free area with a diameter of 5 mm in the central
part of each sample. After SNMS analysis, the sputtered crater was measured using a white light
interferometer (WLI from FRT) to determine the sputtering rate. The rate was (0.45 ± 0.02) nm/s for
all samples.

3. Results and Discussion

Figure 1 shows the depth profiles of 7Li, 93Nb, 16O, and 70Yb on a semilogarithmic scale giving
two examples of SNMS spectra of the Yb-doped LiNbO3 samples used in this analysis. Figure 1a
demonstrates that at lower temperatures, a certain amount of Yb remains in form of a thin film on the
surface, indicating that the Yb reservoir has not been exhausted.

Diffusion Theory

The Yb concentration profiles obtained in this work can be well approximated utilizing the
one-dimensional diffusion theory described by Fick’s second law of diffusion.

∂C
∂t

= D
∂2C
∂y2 , (1)

where D is the diffusion coefficient and y quantifies the direction normal to the surface. Assuming
an inexhaustible source (i.e., a thick film) of Yb on the surface, the solution of Fick’s law (1) can be
approximated by
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C(y) = Cmax erfc(y/der f ), (2)

with Cmax being the concentration of Yb at the crystal surface and the diffusion depth der f =
√

4Dt. In
the thick-film diffusion regime. Cmax describes the solubility of Yb in LiNbO3. This value is given by

Cmax =

√
π

4Dt

∞∫

0
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Figure 1. Secondary neutral mass spectrometry (SNMS) spectra of x-cut Yb:LiNbO3. The two samples 
were coated with 20 nm Yb, and the diffusion parameters are (a) T = 1060 °C, t = 30 h and (b) T = 1130 
°C, t = 30 h, respectively. 
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Figure 1. Secondary neutral mass spectrometry (SNMS) spectra of x-cut Yb:LiNbO3. The two samples
were coated with 20 nm Yb, and the diffusion parameters are (a) T = 1060 ◦C, t = 30 h and (b) T = 1130 ◦C,
t = 30 h, respectively.

Using the law of mass conservation, the time needed for the Yb source to be depleted can be
calculated with the metallic Yb density ρ, the atomic mass mYb, and the thickness τ of the initial
Yb layer

td =

(
ρτ

2 mYb Cmax

)2
π
D

. (4)

For sufficiently thin films and/or sufficiently long in-diffusion times (t > td), the Yb source is
depleted and the diffusion profile can be approximated by a Gaussian function

C(y) = C0 exp


−

y2

d2
exp


. (5)

In this case, dexp =
√

4Dt describes the 1/e-depth of the profile. The surface concentration C0 is
below the solubility and given by

C0 =
τCmax√
πDt

. (6)

The temperature dependence of the diffusion coefficient D is given by the Arrhenius relation

D(T) = D0 exp
(
− EA

kBT

)
. (7)

Here, D0 is the diffusion constant, EA the activation energy, kB the Boltzmann constant, and T is
the temperature used for in-diffusion.

As the solubility describes the equilibrium between Yb in LiNbO3 and the pure metallic Yb on the
surface, the concentration at the surface can also be written in terms of an Arrhenius-type equation as

Cmax(T) = Ĉ exp
(
−∆H

kBT

)
, (8)

where ∆H is the mixing enthalpy and Ĉ is a pre-factor.
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Figure 2 shows the high-resolution images of the crystal surfaces obtained using a confocal
microscope and applying the differential interference contrast method for the two crystal orientations.
When the temperature used for annealing is less than 1130 ◦C, an increased surface roughness caused
by insufficient diffusion is visible. For the x-cut surfaces, the arithmetical mean height (Sa) slightly
decreases from 12 to 10 nm when the temperature increases from (a) 1000 to (b) 1060 ◦C.
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Figure 2. Confocal microscope images of LiNbO3 surfaces coated with 20 nm thick Yb films after
annealing for 30 h. Results for x-cut surfaces annealed at (a) 1000, (b) 1060, and (c) 1130 ◦C; results for
z-cut surfaces annealed at (d) 1000, (e) 1060, and (f) 1130 ◦C.

For the z-cut surface shown in (d) and (e), the Sa is reduced from 11 to 7 nm. Annealing for 30 h at
1130 ◦C results in a smooth surface with Sa = 2 nm for both (c) x- and (f) z-cut surfaces, indicating that
the Yb ion source at the surface is completely exhausted, and the Yb profile can be described by the
thin-film diffusion regime of Equation (5).

For calibration of the SNMS data, the samples annealed at 1130 ◦C were used assuming a linear
relation between ion yield and concentration as well as mass conservation in the diffusion process.
For lower temperatures, the experimentally obtained profiles can be best fitted by complementary
error functions, as can be seen in Figure 3.
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Figure 3. SNMS depth profiles of Yb in LiNbO3 for in-diffused layers with an initial thickness of 20 nm
annealed for 30h at different temperatures for (a) x-cut and (b) z-cut substrates. The dotted lines show
the measured profiles and the solid lines indicate complementary error function fits.
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The profiles obtained using the highest temperature were fitted by Gaussian functions; see Figure 4.
The results obtained for the surface concentration and for the depths derf or dexp are summarized in
Table 1.
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Figure 4. SNMS depth profiles of Yb in LiNbO3 for in-diffused layers with an initial thickness of 20 nm
annealed for 30 h at 1130 ◦C for different cut directions.

Table 1. Parameters obtained for the Yb diffusion in LiNbO3.

Temperature
(◦C) Time (h) C0 × 1019

(ions/cm3)
Cmax × 1019

(ions/cm3)
derf (µm) dexp (µm)

z-cut
930 30 6.96 ± 0.10 1.99 ± 0.13

1000 30 11.53 ± 0.09 2.32 ± 0.14
1060 30 16.89 ± 0.10 3.47 ± 0.19
1130 30 10.94 ± 0.05 4.68 ± 0.26
x-cut
930 30 6.89 ± 0.10 1.24 ± 0.08

1000 30 13.21 ± 0.12 1.66 ± 0.10
1060 30 20.06 ± 0.12 2.70 ± 0.15
1130 30 13.62 ± 0.06 3.84 ± 0.21

With the values for the diffusion depth, the diffusion coefficients D are calculated. The temperature
dependence of the diffusion coefficient is given by Equation (7). Figure 5 shows the corresponding
Arrhenius plots for the two crystal-cut directions used. By correlating the fitted lines with Equation
(7), the values for the diffusion coefficients and the activation energy for the x- and z-direction were
obtained. The results are summarized in Table 2.
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Table 2. Diffusion constants and activation energies for Yb diffusion in LiNbO3.

D0 ( × 10-8 cm2/s) EA (eV)

Diffusion in z-direction 9.7 ± 0.8 1.46 ± 0.07
Diffusion in x-direction 24.1 ± 1.9 1.64 ± 0.07

The temperature dependence of the surface concentration is presented in Figure 6. As can be seen,
the measured values for the surface concentration of Yb for the three lowest temperatures indicate
that, in contrast to the diffusivity, the solubility of Yb in LiNbO3 shows no anisotropic behavior.
The solid line is a fit to the data with Equation (8). This way, the values of ∆H = (1.04 ± 0.23) eV and
Ĉ = (1.6 ± 0.35) × 1024 cm−3 were found.
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With these characteristic values for the diffusion of Yb in LiNbO3, a first test was performed for
diffusion doping of a ridge waveguide prepared in an x-cut LiNbO3 substrate oriented parallel to the
y-axis by diamond blade dicing. Figure 7a shows the simulated Yb concentration profile in the ridge
for the case of two 22 nm thick Yb layers being coated under ±60◦ with respect to the x-axis obtained
by numerically solving Fick’s second law. For in-diffusion, the sample is annealed for 216 h at 1125 ◦C.
The concentration profile also shows that at the upper right and left corners of the ridge, the expected
concentration is below the solubility limit. Thus, no additional surface defects are to be expected.
To achieve waveguiding, the upper part of the ridge is additionally doped by in-diffusion of Ti.
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Figure 7. (a) Simulated Yb profile in LiNbO3 for the in-diffusion of two 22 nm thick layers evaporated
under ±60◦ and in-diffused for 216 h at 1125 ◦C. (b) The Yb profile in x-direction in the middle of the
ridge (red line). The results for a plane layer of Yb diffused in from the surface only are included as a
blue line. (c) Simulated (left) and measured (right) intensity distribution for the fundamental mode at
980 nm for a 10 µm-wide ridge-waveguide formed by three-side Ti in-diffusion.

138



Appl. Sci. 2020, 10, 2189

Figure 7c shows the expected intensity distribution of the quasi-TE modes at 800 nm and the
intensity distribution measured at 796 nm. It is clearly visible that a good overlap between the Yb
profile and the intensity distribution of the mode is achieved. The simulated concentration profiles
shown in Figure 7a,b prove that ridge waveguides can be almost homogeneously doped by three-side
in-diffusion while avoiding any surface damage that might be caused by exceeding the maximum
solubility of Yb in LiNbO3.

The transmission spectrum of such a 10 µm wide and 2.2 cm long ridge waveguide was measured
using unpolarized white light coupled into the waveguide by means of a 40×microscope objective.
At the output facet, the transmitted light was collected and coupled into a spectrometer. To measure
absorption as a function of polarization, a polarizer was placed in front of the collimator of the
spectrometer. The measured absorption spectra (π and σ polarization) show three main peaks at 918,
956, and 980 nm (see Figure 8a), which is in good agreement with the absorption spectra reported for
bulk-doped Yb:LiNbO3 [22] and Yb:Ti:LiNbO3 channel waveguides [14]. The losses of the waveguide
of 0.8 dB/cm were determined at 1064 nm using the Fabry–Perot method. Fluorescence spectra (π and
σ polarization) were measured for pumping with a titanium-sapphire laser at 918 nm. Figure 8b shows
the polarized fluorescence spectrum. In agreement with previously reported results for Yb:LiNbO3

waveguides [14,20], we observed the expected four main peaks around 960, 980, 1008, and 1062 nm.
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Figure 8. Polarization-dependent absorption (a) and fluorescence (b) spectrum of a 10 µm wide and
2.2 cm long Yb:Ti:LiNbO3 ridge waveguide.

4. Summary

The diffusion of Yb in LiNbO3 can be described by Fick’s law of diffusion. The experimental values
determined in this work reveal an anisotropic diffusion coefficient with higher values for the diffusion
along the crystallographic c-axis (z-axis). No anisotropy was found for the (maximum) solubility of
Yb in LiNbO3. However, the solubility is temperature-dependent. When the diffusion reservoir is
not exhausted, small grains of Yb remain on top of the surface, leading to high surface roughness,
which has to be strictly avoided when fabricating optical waveguides. Absorption and fluorescence
measurements for Yb diffusion-doped ridge waveguides are in good agreement with results published
for volume-doped bulk substrates. These results are essential for the future development of efficient
Yb-based laser sources in LiNbO3 ridge waveguides.
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