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Preface to ”Theory and Application of Fixed Point”

This book collects the published manuscripts submitted to a Special Issue of Axioms entitled

“Theory and Application of Fixed Point”.

Fixed point theory is initiated with the famous Banach contraction mapping principle, and

has been a subject of considerable and increasing interest. It has applications in many areas of

mathematics, science, engineering, economics and even medicine. The pioneering work of Banach

and the huge application potential of fixed point theory have inspired numerous researchers to

advance the theoretical studies in different directions related to the conditions on the contraction

mappings and the relevant spaces. This has resulted in many important achievements in the field.

This book contains some very recent theoretical results related to some new types of contraction

mappings defined in various types of spaces. There are also studies related to applications

of the theoretical findings to mathematical models of specific problems, and their approximate

computations. In this sense, this book will contribute to the area and provide directions for further

developments in fixed point theory and its applications.

Erdal Karapinar, Juan Martı́nez-Moreno, Inci M. Erhan

Editors
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Abstract: Common coupled fixed point theorems for generalized T-contractions are proved for a pair
of mappings S : X × X → X and g : X → X in a bv(s)-metric space, which generalize, extend, and
improve some recent results on coupled fixed points. As an application, we prove an existence and
uniqueness theorem for the solution of a system of nonlinear integral equations under some weaker
conditions and given a convergence criteria for the unique solution, which has been properly verified
by using suitable example.

Keywords: common coupled fixed point; bv(s)-metric space; T-contraction; weakly compatible mapping

1. Introduction

In the last three decades, the definition of a metric space has been altered by many authors to give
new and generalized forms of a metric space. In 1989, Bakhtin [1] introduced one such generalization
in the form of a b-metric space and in the year 2000 Branciari [2] gave another generalization in
the form a rectangular metric space and generalized metric space. Thereafter, using the above two
concepts, many generalizations of a metric space appeared in the form of rectangular b-metric space [3],
hexagonal b-metric space [4], pentagonal b-metric space [5], etc. The latest such generalization was
given by Mitrović and Radenović [6] in which the authors defined a bv(s)-metric space which is
a generalization of all the concepts told above. Some recent fixed point theorems in such generalized
metric spaces can be found in [6–9]. In [10–12], one can find some interesting coupled fixed point
theorems and their applications proved in some generalized forms of a metric space. In the present
note, we have given coupled fixed point results for a pair of generalized T-contraction mappings in
a bv(s)-metric space. Our results are new and it extends, generalize, and improve some of the coupled
fixed point theorems recently dealt with in [10–12].

In recent years, fixed point theory has been successfully applied in establishing the existence of
solution of nonlinear integral equations (see [11–15] ). We have applied one of our results to prove the
existence and convergence of a unique solution of a system of nonlinear integral equations using some
weaker conditions as compared to those existing in literature.

2. Preliminaries

Definition 1. [6] Let X be a nonempty set. Assume that, for all x, y,∈ X and distinct u1, · · · , uv ∈ X −{x, y},
dv : X × X → R satisfies :

Axioms 2020, 9, 129; doi:10.3390/axioms9040129 www.mdpi.com/journal/axioms1
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1. dv(x, y) ≥ 0 and dv(x, y) = 0 if and only if x = y,
2. dv(x, y) = dv(y, x),
3. dv(x, y) ≤ s[dv(x, u1) + dv(u1, u2) + · · ·+ dv(uv−1, uv) + dv(uv, y)], for some s ≥ 1.

Then, (X, dv) is a bv(s)-metric space.

Definition 2. [6] In the bv(s)-metric space (X, dv), the sequence < un >

(a) converges to u ∈ X if dv(un, u) → 0 as n → ∞;
(b) is a Cauchy sequence if dv(un, um) → 0 as n, m → +∞.

Clearly, b1(1)-metric space is the usual metric space, whereas b1(s), b2(1), b2(s), and bv(1)-metric
spaces are, respectively, the b-metric space ([1]), rectangular metric space ([2]), rectangular b-metric
space ([3]), and v-generalized metric space ([2]).

Lemma 1. [6] If (X, dv) is a bv(s)-metric space, then (X, dv) is a b2v(s2)-metric space.

Definition 3. An element (u, v) ∈ X × X is called a coupled coincidence point of S : X × X → X and
g : X → X if g(u) = S(u, v) and g(v) = S(v, u). In this case, we also say that (g(u), g(v)) is the point of
coupled coincidence of S and g. If u = g(u) = S(u, v) and v = g(v) = S(v, u), then we say that (u, v) is
a common coupled fixed point of S and g.

We will denote by COCP{S, g} and CCOFP{S, g} respectively the set of all coupled coincidence
points and the set of all common coupled fixed points of S and g.

Definition 4. S : X × X → X and g : X → X are said to be weakly compatible if and only if S(g(u), g(v)) =
g(S(u, v)) for all (u, v) ∈ COCP{S, g}.

3. Main Results

We will start this section by proving the following lemma which is an extension of Lemma 1.12
of [6] to two sequences:

Lemma 2. Let (X, dv) be a bv(s)-metric space and let < un > and < vn > be two sequences in X such that
un �= un+1, vn �= vn+1 (n ≥ 0). Suppose that λ ∈ [0, 1) and c1, c2 are real nonnegative numbers such that

Km,n ≤ λKm−1,n−1 + c1λm + c2λn, for all m, n ∈ N, (1)

where Km,n = max{dv(um, un), dv(vm, vn)} or Km,n = dv(um, un) + dv(vm, vn). Then, < un > and
< vn > are Cauchy sequences.

Proof. From (1), we have

Kn,n+1 ≤ λKn−1,n + c1λn + c2λn+1

≤ · · ·
≤ λnK0,1 + c1nλn + c2nλn+1

≤ λnK0,1 + C0nλn.

(2)

2
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For m, n, k ∈ N, by (1), we have

Km+k,n+k ≤ λ max{Km+k−1,n+k−1, c1λm+k−1 + c2λn+k−1)}

≤ λKm+k−1,n+k−1 + c1λm+k + c2λn+k)

· · ·
≤ λkKm,n + kC1λk(λm + λn).

(3)

Since 0 < λ < 1, we can find a positive integer qk such that 0 < λqk < 1
s . Now, suppose v ≥ 2.

Then, by using condition 3. of a bv(s)-metric and inequalities (2) and (3), we have

Km,n ≤ s[Km,m+1 + Km+1,m+2 + · · ·+ Km+v−3,m+v−2 + Km+v−2,m+qk + Km+qk ,n+qk + Kn+qk ,n]

≤ s[λm + λm+1 + · · ·+ λm+v−3]K0 + sC0[mλm + (m + 1)λm+1 + · · ·+ (m + v − 3)λm+v−2]

+s[λmKv−2,qk + mλm(λv−2 + λqk )K0]

+s[λqk Km,n + qkλqk (λm + λn)K0] + s[λnKqk ,0 + nλn(λqk + 1)K0].

Then,

Km,n ≤ sλm

(1 − sλqk )(1 − λ)
K0,1 +

s(m + v − 3)λm

(1 − λ)(1 − sλqk )

+
s

1 − sλqk
[λmKv−2,qk + mλm(λv−2 + λqk )K0,1]

+
s

1 − sλqk
[qkλqk (λm + λn)K0,1] +

s
1 − sλqk

[λnKqk ,0 + nλn(λqk + 1)K0,1].

Thus, from the definition of Km,n, we see that, as m, n → +∞, dv(um, un) → 0 and dv(vm, vn) → 0
and thus < un > and < vn > are Cauchy sequences.

3.1. Coupled Fixed Point Theorems

We now present our main theorems as follows:

Theorem 1. Let (X, dv) be a bv(s)-metric space , T : X → X be a one to one mapping, S : X × X → X and
g : X → X be mappings such that S(X × X) ⊂ g(X), Tg(X) is complete. If there exist real numbers λ, μ, ν

with 0 ≤ λ < 1, 0 ≤ μ, ν ≤ 1, min{λμ, λν} < 1
s such that, for all u, v, w, z ∈ X

dv(TS(u, v), TS(w, z)) ≤ λ max{dv(Tgu, Tgw), dv(Tgv, Tgz), μdv(Tgu, TS(u, v)), μdv(Tgv, TS(v, u),

νdv(Tgw, TS(w, z)), νdv(Tgz, TS(z, w))}
(4)

then the following holds :

1. There exist wx0 , wy0 in X, such that sequences < Tgun > and < Tgvn > converge to Tgwx0 and Tgwy0

respectively, where the iterative sequences < gun > and < gvn > are defined by gun = S(un−1, vn−1)

and gvn = S(vn−1, un−1) for some arbitrary (u0, v0) ∈ X × X.
2. (wx0 , wy0) ∈ COCP{S, g} .
3. If S and g are weakly compatible, then S and g have a unique common coupled fixed point.

Proof. 1. We shall start the proof by showing that the sequences < Tgun > and < Tgvn > are Cauchy
sequences, where < gun > and < gvn > are as mentioned in the hypothesis.

3
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By (4), we have

dv(Tgun, Tgun+1) = dv(TS(un−1, vn−1), TS(un, vn))

≤ λ max{dv(Tgun−1, Tgun), dv(Tgvn−1, Tgvn), μdv(Tgun−1, TS(un−1, vn−1)),

μdv(Tgvn−1, TS(vn−1, un−1)), νdv(Tgun, TS(un, vn)), νdv(Tgvn, TS(vn, un))}
≤ λ max{dv(Tgun−1, Tgun), dv(Tgvn−1, Tgvn), dv(Tgun−1, Tgun),

dv(Tgvn−1, Tgvn), dv(Tgun, Tgun+1), dv(Tgvn, Tgvn+1)}.

(5)

Similarly, we get

dv(Tgvn, Tgvn+1) ≤ λ max{dv(Tgvn−1, Tgvn), dv(Tgun−1, Tgun), dv(Tgvn−1, Tgvn),

dv(Tgun−1, Tgun), dv(Tgvn, Tgvn+1), dv(Tgun, Tgun+1)}. (6)

Let Kn = max{dv(Tgun, Tgun+1), dv(Tgvn, Tgvn+1)}. By (5) and (6), we get

Kn ≤ λ max{dv(Tgvn−1, Tgvn), dv(Tgun−1, Tgun), dv(Tgvn, Tgvn+1), dv(Tgun, Tgun+1)}. (7)

If

max{dv(Tgvn−1, Tgvn), dv(Tgun−1, Tgun), dv(Tgvn, Tgvn+1), dv(Tgun, Tgun+1)}
= dv(Tgvn, Tgvn+1) or dv(Tgun, Tgun+1),

then (7) will yield a contradiction. Thus, we have

max{dv(Tgvn−1, Tgvn), dv(Tgun−1, Tgun), dv(Tgvn, Tgvn+1), dv(Tgun, Tgun+1)}
= max{dv(Tgvn−1, Tgvn), dv(Tgun−1, Tgun)},

and then (7) gives

Kn ≤ λ max{dv(Tgvn−1, Tgvn), dv(Tgun−1, Tgun)} = λKn−1 � λ2Kn−2 � · · · � λnK0. (8)

For any m, n ∈ N, we have

dv(Tgum, Tgun) = dv(TS(um−1, vm−1), TS(un−1, vn−1)

≤ λ max{dv(Tgum−1, Tgun−1), dv(Tgvm−1, Tgvn−1),

μdv(Tgum−1, TS(um−1, vm−1)), μdv(Tgvm−1, TS(vm−1, um−1)),

νdv(Tgun−1, TS(un−1, vn−1)), νdv(Tgvn−1, TS(vn−1, un−1))}
≤ λ max{dv(Tgum−1, Tgun−1), dv(Tgvm−1, Tgvn−1), dv(Tgum−1, Tgum),

dv(Tgvm−1, Tgvm), dv(Tgun−1, Tgun), dv(Tgvn−1, Tgvn)}.

Then, by using (8), we get

dv(Tgum, Tgun) ≤ λ max{dv(Tgum−1, Tgun−1), dv(Tgvm−1, Tgvn−1)}
+(λm + λn)K0}. (9)

4
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Similarly, we have

dv(Tgvm, Tgvn) ≤ λ max{dv(Tgum−1, Tgun−1), dv(Tgvm−1, Tgvn−1)}
+(λm + λn)K0}. (10)

Let Km,n = max{dv(Tgum, Tgun), dv(Tgvm, Tgvn)}. By (9) and (10), we get

Km,n ≤ λKm−1,n−1 + (λm + λn)K0.

Thus, we see that inequality (1) is satisfied with c1 = c2 = K0. Hence, by Lemma 2, < Tgun >

and < Tgvn > are Cauchy sequences. For v = 1, the same follows from Lemma 1.
Since (Tg(X), d) is complete, we can find wx0 , wy0 ∈ X such that

lim
n→∞

Tgun = Tgwx0and lim
n→∞

Tgvn = Tgwy0 .

2. Now,

dv(TS(wx0 , wy0), Tgwx0) ≤ s[dv(TS(wx0 , wy0), TS(un, vn) + dv(TS(un, vn), TS(un+1, vn+1))

+ · · ·+ dv(TS(un+v−2, vn+v−2), TS(un+v−1, vn+v−1) + dv(TS(un+v−1, vn+v−1), Tgwx0)

≤ s[λmax{dv(Tgwx0 , Tgun), dv(Tgwy0 , Tgvn), μdv(Tgwx0 , TS(wx0 , wy0)),

μdv(Tgwy0 , TS(wy0 , wx0), νdv(Tgun, TS(un, vn)), νdv(Tgvn, TS(vn, un))}
+dv(Tgun+1, Tgun+2) + · · ·+ dv(Tgun+v−1, Tgun+v) + dv(Tgun+v, Tgwx0)

≤ s[λmax{dv(Tgwx0 , Tgun), dv(Tgwy0 , Tgvn), μdv(Tgwx0 , TS(wx0 , wy0)),

μdv(Tgwy0 , TS(wy0 , wx0), νdv(Tgun, Tgun+1), νdv(Tgvn, Tgvn+1)}
+dv(Tgun+1, Tgun+2) + · · ·+ dv(Tgun+v−1, Tgun+v + dv(Tgun+v, Tgwx0).

(11)

Note that, since < Tgun > and < Tgvn > are Cauchy sequences, by definition,
dv(Tgun, Tgun+1) → 0, dv(Tgvn, Tgvn+1) → 0 as n → ∞. Thus, from (11), as n → ∞, we get

dv(TS(wx0 , wy0), Tgwx0) ≤ sλ max{μdv(Tgwx0 , TS(wx0 , wy0)), μdv(Tgwy0 , TS(wy0 , wx0))}.

Similarly, we get

dv(TS(wy0 , wx0), Tgwy0) ≤ sλ max{μdv(Tgwx0 , TS(wx0 , wy0)), μdv(Tgwy0 , TS(wy0 , wx0)}.

Thus, we have

max{dv(TS(wx0 , wy0), Tgwx0), dv(TS(wy0 , wx0), Tgwy0)}
≤ sλμ max{dv(Tgwx0 , TS(wx0 , wy0)), dv(Tgwy0 , TS(wy0 , wx0)}. (12)

Proceeding along the same lines as above, we also have

max{dv(Tgwx0 , TS(wx0 , wy0)), dv(Tgwy0 , TS(wy0 , wx0))}
≤ sλν max{dv(Tgwx0 , TS(wx0 , wy0)), dv(Tgwy0 , TS(wy0 , wx0)}. (13)

Using (12) and (13) along with the condition min{λμ, λν} < 1
s , we get TS(wx0 , wy0) = Tgwx0

and TS(wy0 , wx0) = Tgwy0 . As T is one to one, we have S(wx0 , wy0) = gwx0 and S(wy0 , wx0) = gwy0 .
Therefore, (wx0 , wy0) ∈ COCP{S, g} .

5
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3. Suppose S and g are weakly compatible. First, we will show that, if (w∗
x0

, w∗
y0
) ∈ COCP{S, g},

then gw∗
x0

= gwx0 and gw∗
y0

= gwy0 , or in other words the point of coupled coincidence of S and g is
unique. By (5), we have

dv(Tgw∗
x0

, Tgwx0) = dv(TS(w∗
x0

, w∗
y0
), TS(wx0 , wy0))

≤ λmax{dv(Tgw∗
x0

, Tgwx0), dv(Tgw∗
y0

, Tgwy0), μdv(Tgw∗
x0

, TS(w∗
x0

, w∗
y0
)),

μdv(Tgw∗
y0

, TS(w∗
y0

, w∗
x0
), νdv(Tgwx0 , TS(wx0 , wy0)), νdv(Tgwy0 , TS(wy0 , wx0))}

≤ λmax{dv(Tgw∗
x0

, Tgwx0), dv(Tgw∗
y0

, Tgwy0)}.

Similarly, we have

dv(Tgw∗
y0

, Tgwy0) ≤ λmax{dv(Tgw∗
x0

, Tgwx0), dv(Tgw∗
y0

, Tgwy0)}.

Thus, from the above two inequalities, we get

max{dv(Tgw∗
x0

, Tgwx0), dv(Tgw∗
y0

, Tgwy0) ≤ λmax{dv(Tgw∗
x0

, Tgwx0), dv(Tgw∗
y0

, Tgwy0)}

which implies that Tgw∗
x0

= Tgwx0 and Tgw∗
y0

= Tgwy0 . Since T is one to one, we get gw∗
x0

= gwx0

and gw∗
y0

= gwy0 , which is the point of coupled coincidence of S and g is unique. Since S and g are
weakly compatible and, since (wx0 , wy0) ∈ COCP{S, g}, we have

ggwx0 = gS(wx0 , wy0) = S(gwx0 , gwy0)

and
ggwy0 = gS(wy0 , wx0) = S(gwy0 , gwx0)

which shows that (gwx0 , gwy0) ∈ COCP{S, g}. By the uniqueness of the point of coupled coincidence,
we get ggwx0 = gwx0 and ggwy0 = gwy0 and thus (gwx0 , gwy0) ∈ CCOFP{S, g}. Uniqueness of the
coupled fixed point follows easily from (4).

Our next result is a generalized version of Theorem 2.1 of Gu [10].

Theorem 2. Let (X, dv), T, S and g be as in Theorem 1 and suppose there exist β1, β2, β3 in the interval [0,1),
such that β1 + β2 + β3 < 1, minimum{β2, β3} < 1

s and for all u, v, w, z ∈ X

dv(TS(u, v), TS(w, z) + dv(TS(v, u), TS(z, w) ≤ β1(dv(Tgu, Tgw) + dv(Tgv, Tgz)) +

β2(dv(Tgu, TS(u, v)) + dv(Tgv, TS(v, u)) + β3(dv(Tgw, TS(w, z)) + dv(Tgz, TS(z, w))). (14)

Then, conclusions 1, 2, and 3 of Theorem 1 are true.

Proof. Let K
′
n = dv(Tgun, Tgun+1) + dv(Tgvn, Tgvn+1) and K

′
m,n = dv(Tgum, Tgun) +

dv(Tgvm, Tgvn). From condition (14), we obtain

dv(Tgun, Tgun+1) + dv(Tgvn, Tgvn+1) = dv(TS(un−1, vn−1), TS(un, vn)) +

dv(TS(vn−1, un−1), TS(vn, un))

≤ β1[dv(Tgun−1, Tgun) + dv(Tgvn−1, Tgvn)] + β2[dv(Tgun−1, TS(un−1, vn−1))

+dv(Tgvn−1, TS(vn−1, un−1))] + β3[dv(Tgun, TS(un, vn)) + dv(Tgvn, TS(vn, un))]

≤ (β1 + β2)[dv(Tgun−1, Tgun) + dv(Tgvn−1, Tgvn)]

+β3[dv(Tgun, Tgun+1) + dv(Tgvn, Tgvn+1)].

6



Axioms 2020, 9, 129

Therefore,

dv(Tgun, Tgun+1) + dv(Tgvn, Tgvn+1) ≤ λ
′
[dv(Tgun−1, Tgun) + dv(Tgvn−1, Tgvn)],

where λ
′
=

β1 + β2

1 − β3
< 1. Thus, we get

K
′
n ≤ λ

′
K

′
n−1 ≤ · · · ≤ λ

′n
K

′
0. (15)

For any m, n ∈ N, we have

dv(Tgum, Tgun) + dv(Tgvm, Tgvn) = dv(TS(um−1, vm−1), TS(un−1, vn−1) +

dv(TS(vm−1, um−1), TS(vn−1, un−1)

≤ β1[dv(Tgum−1, Tgun−1) + dv(Tgvm−1, Tgvn−1)]

+β2[dv(Tgum−1, TS(um−1, vm−1)) + dv(Tgvm−1, TS(vm−1, um−1))]

+β3[dv(Tgun−1, TS(un−1, vn−1)) + dv(Tgvn−1, TS(vn−1, un−1))]

≤ β[dv(Tgum−1, Tgun−1) + dv(Tgvm−1, Tgvn−1)] + β2[dv(Tgum−1, Tgum)

+dv(Tgvm−1, Tgvm)] + β3[dv(Tgun−1, Tgun) + dv(Tgvn−1, Tgvn)].

Then, by using (15), we get

dv(Tgum, Tgun) + dv(Tgvm, Tgvn) ≤ β1[dv(Tgum−1, Tgun−1) + dv(Tgvm−1, Tgvn−1)]

+(β2λ
′m

+ β3λ
′n
)K

′
0}.

That is,

K
′
m,n ≤ λK

′
m−1,n−1 + (λm + λn)K

′
0

where λ
′
= β1 + β2 + β3 < 1. Now for m, n, r ∈ N. Thus, we see that inequality (1) is satisfied with

c1 = c2 = K0. Hence, by Lemma 2, < Tgun > and < Tgvn > are Cauchy sequences. For v = 1,
the same follows from Lemma 1.

Since (Tg(X), d) is complete, we can find wx0 , wy0 ∈ X such that

lim
n→∞

Tgun = Tgwx0and lim
n→∞

Tgvn = Tgwy0 .

Again, from condition 3 in Definition 1, we have

dv(TS(wx0 , wy0), Tgwx0)) ≤ s[dv(TS(wx0 , wy0), TS(un, vn)) + dv(TS(un, vn), TS(un+1, vn+1)) + · · ·+
+dv(TS(un+v−2, vn+v−2), TS(un+v−1, vn+v−1))+

dv(TS(un+v−1, vn+v−1), Tgwx0))]

and

dv(TS(wy0 , wx0), Tgwy0)) ≤ s[dv(TS(wy0 , wx0), TS(vn, un)) + dv(TS(vn, un), TS(vn+1, un+1)) + · · ·+
dv(TS(vn+v−2, un+v−2), TS(vn+v−1, un+v−1))+

dv(TS(vn+v−1, un+v−1), Tgwx0))].

7
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Therefore,

dv(TS(wx0 , wy0), Tgwx0) + dv(TS(wy0 , wx0), Tgwy0) ≤ s[dv(TS(wx0 , wy0), TS(un, vn)

+dv(TS(wy0 , wx0), TS(vn, un)

+dv(TS(un, vn), TS(un+1, vn+1)) + · · ·+ dv(TS(un+v−2, vn+v−2), TS(un+v−1, vn+v−1))

+dv(TS(vn, un), TS(vn+1, un+1)) + · · ·+ dv(TS(vn+v−2, un+v−2), TS(vn+v−1, un+v−1))

+dv(TS(un+v−1, vn+v−1), Tgwx0) + dv(TS(vn+v−1, un+v−1), Tgwy0)]

≤ s[β1(dv(Tgwx0 , Tgun) + dv(Tgwy0 , Tgvn)) + β2(dv(Tgwx0 , TS(wx0 , wy0)) +

dv(Tgwy0 , TS(wy0 , wx0)) + β3(dv(Tgun, TS(un, vn)) + dv(Tgvn, TS(vn, un)))}
+dv(Tgun, Tgun+1) + · · ·+ dv(Tgun−1, Tgun) + +dv(Tgvn, Tgvn+1) + · · ·+ dv(Tgvn−1, Tgvn)

+dv(Tgun+v−1, Tgwx0) + dv(Tgvn+v−1, Tgwy0)].

As n → ∞, we get

dv(TS(wx0 , wy0), Tgwx0) + dv(TS(wy0 , wx0), Tgwy0)

≤ sβ2[dv(Tgwx0 , TS(wx0 , wy0)) + dv(Tgwy0 , TS(wy0 , wx0))]. (16)

Similarly, we can show that

dv(Tgwx0 , TS(wx0 , wy0)) + dv(Tgwy0 , TS(wy0 , wx0))

≤ sβ3[dv(Tgwx0 , TS(wx0 , wy0)) + dv(Tgwy0 , TS(wy0 , wx0)] (17)

Using (16) and (17) along with the condition min{β2, β3} < 1
s , we get dv(Tgwx0 , TS(wx0 , wy0)) +

dv(Tgwy0 , TS(wy0 , wx0)) = 0, i.e., TS(wx0 , wy0) = Tgwx0 and TS(wy0 , wx0) = Tgwy0 . As T is one to
one, we have S(wx0 , wy0) = gwx0 and S(wy0 , wx0) = gwy0 . Therefore, (wx0 , wy0) ∈ COCP{S, g} .

If (w∗
x0

, w∗
y0
) ∈ COCP{S, g}, then, by (14), we have

dv(Tgw∗
x0

, Tgwx0) + dv(Tgw∗
y0

, Tgwy0) = dv(TS(w∗
x0

, w∗
y0
), TS(wx0 , wy0)) + dv(TS(w∗

y0
, w∗

x0
), TS(wy0 , wx0))

≤ β1[dv(Tgw∗
x0

, Tgwx0) + dv(Tgw∗
y0

, Tgwy0)] + β2[dv(Tgw∗
x0

, TS(w∗
x0

, w∗
y0
))

+dv(Tgw∗
y0

, TS(w∗
y0

, w∗
x0
)] + β3[dv(Tgwx0 , TS(wx0 , wy0)) + dv(Tgwy0 , TS(wy0 , wx0))]

≤ β1[dv(Tgw∗
x0

, Tgwx0) + dv(Tgw∗
y0

, Tgwy0)].

Thus, dv(Tgw∗
x0

, Tgwx0) + dv(Tgw∗
y0

, Tgwy0) = 0, which implies that Tgw∗
x0

= Tgwx0 and
Tgw∗

y0
= Tgwy0 . Since T is one to one, we get gw∗

x0
= gwx0 and gw∗

y0
= gwy0 , which is the point of

coupled coincidence of S, and g is unique. The remaining part of the proof is the same as in the proof
of Theorem 1.

The next results can be proved as in Theorems 1 and 2 and so we will not give the proof.

Theorem 3. Theorem 1 holds if we replace condition (4) with the following condition:
There exist βi ∈ [0, 1), i ∈ {1, . . . , 6} such that ∑6

i=1 βi < 1, min{β3 + β4, β5 + β6} < 1
s and for all

u, v, w, z ∈ X,

dv(TS(u, v), TS(w, z)) ≤ β1dv(Tgu, Tgw) + β2dv(Tgv, Tgz) + β3dv(Tgu, TS(u, v))

+β4dv(Tgv, TS(v, u) + β5dv(Tgw, TS(w, z)) + β6dv(Tgz, TS(z, w)). (18)

Taking T to be the identity mapping in Theorems 1–3, we have the following:

8
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Corollary 1. Let (X, dv), S, g, λ, μ and ν be as in Theorem 1 such that, for all u, v, w, z ∈ X, the following holds :

dv(S(u, v), S(w, z) ≤ λmax{dv(gu, gw), dv(gv, gz), μdv(gu, S(u, v)), μdv(gv, S(v, u),

νdv(gw, S(w, z)), νdv(gz, S(z, w))}. (19)

Then, COCP{S, g} �= φ. Furthermore, if S and g are weakly compatible, then S and g has a unique
common coupled fixed point. Moreover, for some arbitrary (u0, v0) ∈ X × X, the iterative sequences (< gun >

,< gvn >) defined by gun = S(un−1, vn−1) and gvn = S(vn−1, un−1) converge to the unique common
coupled fixed point of S and g.

Corollary 2. Corollary 1 holds if the condition (19) is replaced with the following condition:
There exist β1, β2, β3 in the interval [0,1), such that β1 + β2 + β3 < 1, min{β2, β3} < 1

s and for all
u, v, w, z ∈ X

dv(S(u, v), S(w, z) + dv(S(v, u), S(z, w) ≤ β1(dv(gu, gw) + dv(gv, gz)) +

β2(dv(gu, S(u, v)) + dv(gv, S(v, u)) + β3(dv(gw, S(w, z)) + dv(gz, S(z, w))). (20)

Corollary 3. Corollary 1 holds if the condition (19) is replaced with the following condition:
There exist βi ∈ [0, 1), i ∈ {1, . . . 6} such that ∑6

i=1 βi < 1, min{β3 + β4, β5 + β6} < 1
s and, for all

u, v, w, z ∈ X,

dv(S(u, v), S(w, z)) ≤ β1dv(gu, gw) + β2dv(gv, gz) +

β3dv(gu, S(u, v)) + β4dv(gv, S(v, u) + β5dv(gw, S(w, z)) + β6dv(gz, S(z, w)). (21)

Remark 1. Since every b-metric space is a b1(s) metric space, we note that Theorem 1 is a substantial
generalization of Theorem 2.2 of Ramesh and Pitchamani [11]. In fact, we do not require continuity and
sub sequential convergence of the function T.

Remark 2. Note that condition (2.1) of Gu [10] implies (20) and hence Corollary 2 gives an improved version
of Theorem 2.1 of Gu [10].

Remark 3. Condition (3.1) of Hussain et al. [12] implies (18) and hence Theorem 3 is an extended and
generalized version of Theorem 3.1 of [12].

3.2. Application to a System of Integral Equations

In this section, we give an application of Theorem 1 to study the existence and uniqueness of
solution of a system of nonlinear integral equations.

Let X = C[0, A] be the space of all continuous real valued functions defined on [0, A], A > 0.
Our problem is to find (u(t), v(t)) ∈ X × X, t ∈ [0, A] such that, for f : [0, A] × R × R → R and
G : [0, A]× [0, A] → R and K ∈ C([0, A], the following holds:

u(t) =
∫ A

0
G(t, r) f (t, u(r), v(r))dr + K(t)

v(t) =
∫ A

0
G(t, r) f (t, v(r), u(r))dr + K(t). (22)

Now, suppose F : X × X → X is given by

F(u(t), v(t)) =
∫ A

0
G(t, r) f (t, u(r), v(r))dr + K(t).

9
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F(v(t), u(t)) =
∫ A

0
G(t, r) f (t, v(r), u(r))dr + K(t).

Then, (22) is equivalent to the coupled fixed point problem F(u(t), v(t)) = u(t), F(v(t), u(t)) = v(t).

Theorem 4. The system of Equation (22) has a unique solution provided the following holds:

(i) G : [0, A]× [0, A] → R and f : [0, A]× R × R → R are continuous functions.

(ii) K ∈ C([0, A].

(iii) For all x, y, u, v ∈ X and t ∈ [0, A], we can find a function g : X → X and real numbers p ≥ 1, λ, μ, ν

with 0 ≤ λ < 1, 0 ≤ μ, ν ≤ 1, minimum {λμ, λν} < 1
3s−1 satisfying

(iii − a) :| f (t, u(r), v(r)))− f (t, x(r), y(r))) |p ≤ λpmax{| g(u(r))− g(x(r)) |p, | g(v(r))− g(y(r)) |p,
μ | g(u(r))− F(u(r), v(r)) |p, μ | g(v(r))− F(v(r), u(r)) |p,
ν | g(x(r))− F(x(r), y(r)) |p, ν | g(y(r))− F(y(r), x(r)) |p}.

(iii-b) F(g(u(t)), g(v(t))) = g(F(u(t), v(t))) .
(iv) supt∈[0,A]

∫ A
0 | G(t, r) |p dr ≤ 1

λp−1 .

Moreover, for some arbitrary u0(t), v0(t) in X, the sequence (< gun(t) >,< gvn(t) >) defined by

gun(t) =
∫ A

0
G(t, r) f (t, un−1(r), vn−1(r))dr + K(t)

gvn(t) =
∫ A

0
G(t, r) f (t, vn−1(r), un−1(r))dr + K(t) (23)

converges to the unique solution.

Proof. Define dv : X × X → R such that for all u, v ∈ X,

dv(u, v) = supt∈[0,A] | u(t)− v(t) |s . (24)

Clearly, dv is a bv((v + 1)s−1)-metric space.
For some r ∈ [0, A], we have

| F(u(t), v(t)) − F(x(t), y(t)) |p

= | ∫ A
0 G(t, r) f (t, u(r), v(r))dr + g(t)− ∫ A

0 G(t, r) f (t, x(r), y(r))dr + g(t) |p

≤ ∫ A
0 | G(t, r) |p| f (t, u(r), v(r))− f (t, x(r), y(r)) |p dr

≤ (
∫ A

0 | G(t, r) |p dr)λp[max{| g(u(r))− g(x(r)) |p, | g(v(r))− g(y(r)) |p,

μ | g(u(r))− F(u(r), v(r)) |p, μ | g(v(r))− F(v(r), u(r)) |p,

ν | g(x(r))− F(x(r), y(r)) |p, ν | g(y(r))− F(y(r), x(r)) |p}.

≤ (
∫ A

0 | G(t, r) |p dr)λp[max{dv(g(u), g(x)), dv(g(v), g(y)), μdv(g(u), F(u, v)), μdv(g(v), F(v, u)),

νdv(g(x), F(x, y)), νdv(g(y), F(y, x))}.

Thus, using condition (iv), we have

dv(F(u, v), F(x, y)) = supt∈[0,A] | F(u(t), v(t))− F(x(t), y(t)) |p
≤ λ[max{dv(g(u), g(x)), dv(g(v), g(y)), μdv(g(u), F(u, v)), μdv(g(v), F(v, u)),

νdv(g(x), F(x, y)), νdv(g(y), F(y, x))}.

Thus, all the conditions of Corollary 1 are satisfied and so F has a unique coupled fixed
point (u′, v′) ∈ C([0, A] × C([0, A], which is the unique solution of (22) and the sequence
(< gun(t) >,< gvn(t) >) defined by (23) converges to the unique solution of (22).

10
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Example 1. Let X = C[0, 1] be the space of all continuous real valued functions defined on [0, 1] and define
d3 : X × X → R such that, for all u, v ∈ X,

d3(u, v) = supt∈[0,1] | u(t)− v(t) |2 . (25)

Clearly, d3 is a b2(3)-metric. Now, consider the functions f : [0, 1] × R × R → R given by

f (t, u, v) = t2 + 9
20 u + 8

20 v, G : [0, 1] × [0, 1] → R given by G(t, r) =
√

45(t+r)
10 , K ∈ C([0, 1] given

by K(t) = t. Then, Equation (22) becomes

u(t) = t +
∫ 1

0

√
45(t + r)

10
(t2 +

9
20

u(r) +
8
20

v(r))dr

v(t) = t +
∫ 1

0

√
45(t + r)

10
(t2 +

9
20

v(r) +
8

20
u(r))dr. (26)

Then,

| f (t, u, v)− f (t, x, y) |2 = | 9
20

(u − x) +
8

20
(v − y) |2

≤ | Max{ 9
10

(u − x),
8
10

(v − y)} |2

≤ 81
100

Max{| u − x |2, | v − y) |2}.

In addition,

supt∈[0,1]

∫ 1

0
| G(t, r) |2 dr =

∫ 1

0

45
100

(t + r)2dr = 1.05.

We see that all the conditions of Theorem 4 are satisfied, with λ = 9
10 , μ = 0, ν = 0, p = 2 and g = IX(Identity

mapping). Hence, Theorem 4 ensures a unique solution of (26). Now, for u0(t) = 1 and v0(t) = 0, we construct
the sequence (< un(t) >,< vn(t) >} given by

un(t) = t +
∫ 1

0

√
45(t + r)

10
(t2 +

9
20

un−1(r) +
8

20
vn−1(r))dr

vn(t) = t +
∫ 1

0

√
45(t + r)

10
(t2 +

9
20

vn−1(r) +
8
20

un−1(r))dr. (27)

Using MATLAB, we see that above sequence converges to {0.6708t3 + 0.3354t2 + 2.2339t +
0.7677, 0.6708t3 + 0.3354t2 + 2.2339t + 0.7677}, and this is the unique solution of the system of nonlinear
integral Equation (26). The convergence table is given in Table 1 below.

11
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Table 1. Convergence of sequences < un(t) > and < vn(t) >.

n un(t) = t +
∫ 1

0

√
45(t+r)

10 (t2 + 9
20 un−1(r) +

8
20 vn−1(r))dr

vn(t) = t +
∫ 1

0

√
45(t+r)

10 (t2 + 9
20 vn−1(r) +

8
20 un−1(r))dr

1 u1(t) = t + 0.0167(2t + 1)(20t2 + 9)) v1(t) = t + .0671(2t + 1)(5t2 + 2))

2 u2(t) = 0.6708t3 + 0.3354t2 + 1.3t + 0.5007 v2(t) = 0.6708t3 + 0.3354t2 + 1.29t + 0.5115

3 u3(t) = 0.6708t3 + 0.3354t2 + 1.8210t + 0.5174 v3(t) = 0.6708t3 + 0.3354t2 + 1.8208t + 0.5171

4 u4(t) = 0.6708t3 + 0.3354t2 + 1.9734t + 0.6179 v4(t) = 0.6708t3 + 0.3354t2 + 1.9734t + 0.6178

5 u5(t) = 0.6708t3 + 0.3354t2 + 2.0743t + 0.6755 v5(t) = 0.6708t3 + 0.3354t2 + 2.0743t + 0.6755

6 u6(t) = 0.6708t3 + 0.3354t2 + 2.1359t + 0.7111 v6(t) = 0.6708t3 + 0.3354t2 + 2.1359t + 0.7111

7 u7(t) = 0.6708t3 + 0.3354t2 + 2.1737t + 0.73298 v7(t) = 0.6708t3 + 0.3354t2 + 2.1737t + 0.73298

8 u8(t) = 0.6708t3 + 0.3354t2 + 2.19699t + 0.7464 v8(t) = 0.6708t3 + 0.3354t2 + 2.19699t + 0.7464

9 u9(t) = 0.6708t3 + 0.3354t2 + 2.2113t + 0.7547 v9(t) = 0.6708t3 + 0.3354t2 + 2.2113t + 0.7547

10 u10(t) = 0.6708t3 + 0.3354t2 + 2.2200t + 0.7597 v10(t) = 0.6708t3 + 0.3354t2 + 2.2200t + 0.7597

11 u11(t) = 0.6708t3 + 0.3354t2 + 2.2254t + 0.7628 v11(t) = 0.6708t3 + 0.3354t2 + 2.2254t + 0.7628

12 u12(t) = 0.6708t3 + 0.3354t2 + 2.2287t + 0.7647 v12(t) = 0.6708t3 + 0.3354t2 + 2.2287t + 0.7647

13 u13(t) = 0.6708t3 + 0.3354t2 + 2.2308t + 0.7658 v13(t) = 0.6708t3 + 0.3354t2 + 2.2308t + 0.7658

14 u14(t) = 0.6708t3 + 0.3354t2 + 2.23199t + 0.7666 v14(t) = 0.6708t3 + 0.3354t2 + 2.23199t+ 0.7666

15 u15(t) = 0.6708t3 + 0.3354t2 + 2.2328t + 0.7671 v15(t) = 0.6708t3 + 0.3354t2 + 2.2328t + 0.7671

16 u16(t) = 0.6708t3 + 0.3354t2 + 2.2333t + 0.7674 v16(t) = 0.6708t3 + 0.3354t2 + 2.2333t + 0.7674

17 u17(t) = 0.6708t3 + 0.3354t2 + 2.2336t + 0.7675 v17(t) = 0.6708t3 + 0.3354t2 + 2.2336t + 0.7675

18 u18(t) = 0.6708t3 + 0.3354t2 + 2.2338t + 0.7676 v18(t) = 0.6708t3 + 0.3354t2 + 2.2338t + 0.7676

19 u19(t) = 0.6708t3 + 0.3354t2 + 2.2339t + 0.7677 v19(t) = 0.6708t3 + 0.3354t2 + 2.2339t + 0.7677

20 u20(t) = 0.6708t3 + 0.3354t2 + 2.2339t + 0.7677 v20(t) = 0.6708t3 + 0.3354t2 + 2.2339t + 0.7677

Remark 4. Condition (iv) of Theorem 4 above is weaker than the corresponding conditions used in similar
theorems of [11,13,14].

Remark 5. In example 1 above, we see that supt∈[0,1]
∫ 1

0 | G(t, r) |2 dr =
∫ 1

0
45

100 (t + r)2dr = 1.05 > 1 and
thus condition (v) of Theorem 3.1 of [11], condition (30) of Theorem 3.1 of [13] and condition (iii) of Theorem 3.1
of [14] are not satisfied.
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8 Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Beograd, Serbia;

radens@beotel.rs
* Correspondence: erdalkarapinar@tdmu.edu.vn or erdalkarapinar@yahoo.com

Received: 3 November 2020; Accepted: 28 November 2020; Published: 3 December 2020

Abstract: In this manuscript we investigate the existence of start-points for the generalized weakly
contractive multi-valued mappings in the setting of left K-complete quasi-pseudo metric space.
We provide an example to support the given result.

Keywords: quasi-pseudometric; start-point; end-point; fixed point; weakly contractive

MSC: Primary 47H05; Secondary 47H09; 47H10; 54H25

1. Introduction and Preliminaries

The quasi-pseudo metric space, which is obtained by relaxing the symmetry condition, is one of
the refinements of the notion of metric space. In the point view of fixed point theory, the lack of the
symmetry axiom leads to consider the orientation in this new structure. Roughly speaking, fixed points
for mappings are usually limits of the Picard sequence, which is constructed by the recursive iteration
of the operator by starting with an arbitrarily chosen point. On the other hand, in this new structure,
the distance function is not symmetric. Consequently, for an arbitrary initial value ξ0, the value of the
distance from its n-th iteration, Tnx0, to its limit, say x∗ (if exists), and the value of the distance from its
limit, x∗ (if exists), to its n-th iteration, Tnx0, need not be equal. Under this motivation, the notions of
start-point, end-point, ε-start-point, and ε-end-point were defined in [1]. In other words, fixed point has
been investigated in the oriented structure, quasi-pseudo metric space, under the names of start-point
and end-point. It is clear that, under the condition symmetry, the start-points and end-points coincide
with the fixed points [2–5].

An initial result in the theory of start-point was given in [1] in order to extend the idea of fixed
points for multi-valued mappings defined on quasi-pseudo metric spaces. A series of three papers,
see [1,6,7], has given a more or less detailed introduction to the subject. The theory of start-point came
to extend the idea of fixed points for multi-valued mappings that are defined on quasi-pseudo metric
spaces. More detailed introduction to the subject can be read in [1,6–13].

In this paper, we investigate the existence of start-points and end-points for a class of mappings,
which are known as generalized weakly contractive multi-valued maps, in the context of left
K-complete quasi-pseudo metric space.

Axioms 2020, 9, 141; doi:10.3390/axioms9040141 www.mdpi.com/journal/axioms15
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Intuitively, as we mentioned above, the appropriate framework for the theory of start-point
is the quasi-metric setting. For the sake of completeness, we recollect, in the present manuscript,
the necessary notations and fundamental concepts from the literature. We first recall the basic notions
regarding quasi-metric spaces as well as some additional definitions that are related to multi-valued
maps on these spaces[14–16]. For a general approach in metric fixed point theory for multi-valued
operators, see [17–19].

Definition 1 (See [1]). Let q : X × X → [0, ∞) be a function where X is a non-empty set. The function is
called a quasi-pseudometric (respectively, T0-quasi-metric) on X if (q1) and (q2) (respectively, (q1)

∗ and
(q2)) hold, where

(q1) q(ξ, ξ) = 0 for all ξ ∈ X,
(q1)

∗ q(ξ, η) = 0 = q(η, ξ) implies ξ = y, and
(q2) q(ξ, ζ) ≤ q(ξ, η) + q(η, ζ) for all ξ, η, ζ ∈ X.

Note that the condition (q1)
∗ is known as the T0-condition. Furthermore, for a quasi-pseudo metric

q on X, the function q−1 : X × X → [0, ∞), which is defined by q−1(ξ, η) = q(η, ξ) for all ξ, η ∈ X,
forms a quasi-pseudo metric on the same set X and is named as the conjugate of q. For a T0-quasi-metric
d on X, a distance function dq : X × X → [0, ∞), defined by dq(ξ, η) = max{q(ξ, η), q(η, ξ)} for all
(ξ, η) ∈ X × X, becomes a metric on X.

Remark 1. In some sources, the quasi-pseudo metric is called hemi-metric (see [20]). Moreover, T0-quasi-metric
is known also as a quasi-metric in the literature.

In what follows, we consider three well-known examples in order to illustrate the validity of
Definition 1.

Example 1 (Truncated difference). Set R+
0 := [0, ∞) and δ : R+

0 ×R+
0 → R+

0 be given, for any ξ, η ∈ X, by

δ(ξ, η) = max{0, ξ − η}.

Under these conditions, δ forms a T0-quasi-metric. Further, the pair (R+
0 , δ) becomes a T0-quasi-metric space.

Example 2 (cf. [21]). Let A, B be two non-empty set, such that A ∩ B �= ∅. Set X = A ∪ B and
q : X × X → [0, ∞) be given, for any a, b ∈ X, by

q(a, b) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if a = b,
3
2 if a ∈ A, b ∈ B,
2 if b ∈ A, a ∈ B,
1 otherwise.

Under these conditions, q forms a T0-quasi-metric. Further, the pair (X, q) becomes a T0-quasi-metric space.

Example 3 (cf. [22]). Set I := [0, 1], and define δ : I× I → R+
0 be defined as

δ(ξ, η) =

{
ξ − η, : ξ ≥ η,
1, : ξ < η.

Under these conditions, δ forms a quasi-pseudo metric that is obviously not T0.

For a quasi-pseudo metric space (X, q), we define an open ε-ball at a point ξ as follows: For ξ ∈ X
and ε > 0,

Bq(ξ, ε) = {η ∈ X : q(ξ, η) < ε}.
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Let (X, q) be a quasi-pseudo metric space. We say that the sequence {ξn} is q-convergent to ξ (or
left-convergent to ξ), if

q(ξn, ξ) −→ 0,

and we denote this fact by ξn
q−→ ξ. More precisely, {ξn} converges to ξ with respect to τ(q).

In a similar manner, a sequence {ξn} is q−1-convergent to ξ (or right-convergent to ξ), if

q(ξ, ξn) −→ 0, (1)

fact denoted by ξn
q−1

−→ ξ. Actually, {ξn} converges to ξ with respect to τ(q−1)

A sequence {ξn}, in the setting of a quasi-pseudo metric space (X, q), is said to be dq-convergent
to ξ in the case the sequence converges to ξ from left and right, which is,

ξn
q−→ ξ and ξn

q−1

−→ ξ.

Moreover, it is denoted as ξn
dq−→ ξ (or, ξn −→ ξ, if there is no confusion).

Remark 2. From the definition of dq-convergence, we have

dq-convergence implies q-convergence.

The reverse implication does not hold in general, as demonstrated in the following example.

Example 4 (cf. [22]). Set I := [0, 1], and define q : I× I → R+
0 be defined as

q(ξ, η) =

{
0 : ξ ≤ y
1 : ξ > y

Subsequently, it is evident that (X, q) forms a quasi-pseudo metric space.
Consider

ξn =

{
1
2 + 2−n : n is odd
1
3 + 3−n : n is even

It is easy to see that the sequence {ξn} is right-convergent (to 1/3) and left-convergent (to 1), but not
dq-convergent.

Definition 2 (See e.g., [1]). A sequence {ξn} in a quasi-pseudo metric space (X, q) is called left K-Cauchy if
for every ε > 0, there exists n0 ∈ N, such that

for all n, k : n0 ≤ k ≤ n q(ξk, ξn) < ε;

Similarly, we define right K-Cauchy sequences and observe that a sequence is left K-Cauchy with
respect to q if and only if it is right K-Cauchy with respect to q−1.

Example 5 (See [8]). Set I := (0, 1), and define δ : O×O → R+
0 be defined as

q(ξ, η) =

{
ξ − η : ξ ≥ η

1 : ξ < η

Let us define the sequence {ξn} given by ξn = (n + 1)−1. Subsequently,

q(ξr, ξs) < r−1
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for all s > r; hence, {ξn} is left K-Cauchy. However, {ξn} is not right K-Cauchy, since whenever
ξ ∈ X, q(ξm, ξ) = 1 after a certain stage. On the other hand, if one considers the sequence {ηn} where
ηn = 1 − (n + 1)−1, one could easily see that it is right K-Cauchy.

Definition 3 (See [1,13]). We say that (X, q) is left-K-complete if any left K-Cauchy sequence is q-convergent.
Furthermore, we say that quasi-pseudo metric space (X, q) is Smyth complete if any left K-Cauchy sequence is
dq-convergent.

It is easy to see that every Smyth-complete quasi-metric space is left K-complete [13], and the
converse implication does not hold.

Definition 4 ([1]). We say that a T0-quasi-metric space (X, q) is said to be bicomplete if the corresponding
metric dq on X is complete.

Example 6. Let us again consider Example 1. In that case, for any ξ, η ∈ X = [0, ∞), we have that
dq(ξ, η) = max{ξ − η, η − ξ} = |ξ − η|. We know that (R, | . |) is a complete metric space; hence, ([0, ∞), | . |)
is an example of bicomplete T0-quasi-metric space.

However, if we take the quasi-pseudo metric that is defined in Example 3, it is clear that (X, δ) is not
bicomplete, since (X, δ) is not even T0.

Definition 5 ([1]). Let A be a subset of a quasi-pseudo metric space (X, q). We say that A is bounded if there
exists a Δ > 0, such that q(ξ, η) < Δ whenever ξ, η ∈ A.

Example 7.

1. Let X = {a, b, c}. The map q : X × X → [0, ∞) defined by q(a,b) = q(a,c) = 0, q(b,a) = q(b,c) = 1,
q(c, a) = q(c, b) = 2 and q(ξ, ξ) = 0 for all ξ ∈ X is a bounded T0-quasi-metric on X. Indeed, for any
ξ, η ∈ X, q(ξ, η) ≤ 2.

2. The quasi-pseudo metric presented in Example 4 is bounded, as for any ξ, η ∈ X, q(ξ, η) ≤ 1.

Let (X, q) be a quasi-pseudo metric space. We set P0(X) := P0(X) \ {∅}, where P0(X) denotes
the power set of X.

Pcb(X) : = {A ∈ P0(X) : A closed and bounded},
Pk(X) : = {A ∈ P0(X) : A compact },
Pc(X) : = {A ∈ P0(X) : A closed }.

For ξ ∈ X and A ∈ P0(X), we set:

q(ξ, A) := inf{q(ξ, a), a ∈ A}, q(A, ξ) := inf{q(a, ξ), a ∈ A}.

We also define the map H : P0(X)×P0(X) → [0, ∞] by

H(A, B) = max

{
sup
a∈A

q(a, B), sup
b∈B

q(A, b)

}
whenever A, B ∈ P0(X).

Subsequently, the distance function H is called the Hausdorff extended quasi-pseudo metric on P0(X).
Notice that, here, the word "extended" is use to emphasize that H can attain the value ∞ as it appears
in the definition.

Finally, we recall some concepts that are related to the classical fixed point notions in the setting
of a quasi-pseudo metric space.
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Definition 6 (cf.[1]). Let (X, q) be a quasi-pseudo metric space and F : X → P0(X) be a multi-valued map.
Suppose that H is a Hausdorff quasi-pseudo metric on P0(X). We say that ξ ∈ X is

(i) a fixed point of F if ξ ∈ Fξ,
(ii) a strict fixed point if Fξ = {ξ},
(iii) a start-point of F if H({ξ}, Fξ) = 0, and
(iv) an end-point of F if H(Fξ, {ξ}) = 0.

In this context, we can also write H(η, Fη) := H({η}, Fη), η ∈ X. Notice that H({η}, Fη) =

sup
ψ∈Fη

q(η, ψ), while H(Fη, {η}) = sup
ψ∈Fη

q(ψ, η).

2. Main Results

In this section, we give a new start-point theorem for a generalized weakly contractive
multi-valued map.

As we dive into the topic, it could be very interesting to point out this known fact, which is always
good to remember. That is, if ξ is both a start-point and an end-point of a multi-valued F, then ξ is a
fixed point of F. In fact, Fξ is a singleton. Observe that a fixed point of a multi-valued F need not be a
start-point or an end-point. We provide the following three examples in order to illustrate that fact.

Example 8. Consider the T0-quasi-pseudo metric space (X, q), where X = {a, b, c} and q defined by
q(a,b) = q(a,c) = 0, q(b,a) = q(b,c) = 2, q(c,a) = q(c,b) = 4 and q(ξ, ξ) = 0 for ξ = a, b, c. The multi-valued
map F : X → P0(X) is considered by Fa = {a, b} and Fξ = X \ {ξ} for ξ = b, c. Obviously, a is a fixed
point for F. Moreover, since

H({a}, Fa) = max{q(a, a), q(a, b)} = 0,

we derive that a is a start-point, but, since

H(Fa, {a}) = max{q(a, a), q(b, a)} = 2 �= 0,

we derive that a is not an end-point. Furthermore, there is no other start-point or end-point for F.

Example 9. Consider the T0-quasi-pseudo metric space (X, q), as defined in the previous example (Example 8).
The multi-valued map F : X → P0(X) is considered by Fξ = {a, b} for ξ = a, b, c. Obviously, a, b are fixed
points for F. Again, a is a start-point, but not an end-point. Observe this time around that b is an end-point,
but not a start-point.

Example 10. Consider the T0-quasi-pseudo metric space (X, q), as defined in the previous example (Example 8).
The multi-valued map F : X → P0(X) is considered by Fa = {b}, Fb = {c}, Fc = {a}. The map F does not
have any fixed point. However, we can easily that a is the only start-point and c the only end-point for F.

Remark 3. So far in the examples, we have been obtaining fixed points. Let us observe what happens when we
are in the presence of a strict fixed point.

Example 11. Consider the T0-quasi-pseudo metric space (X, q), where X = {a, b, c} and q defined by q(a, b) =
q(a, c) = q(b, c) = 0, q(b, a) = 2, q(c, a) = q(c, b) = 4 and q(ξ, ξ) = 0 for ξ = a, b, c. We define, on X,
the multi-valued map F : X → P0(X) by Fa = {a} and Fb = Fc = {b, c} for ξ = b, c.

H({a}, Fa) = q(a, a) = 0,

and
H(Fa, {a}) = q(a, a) = 0,
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i.e., a is is both a start-point and an end-point for F.
The point b is both a fixed point (which is not strict) and end-point for F, while c is neither a (strict) fixed

point nor a start-point nor an end-point for F.

In fact, the above example illustrates the following fact:

Lemma 1. Let X be non-empty set and H the Hausdorff quasi-pseudo metric that is derived by a quasi-pseudo
metric q. Let F : X → P0(X) be a multi-valued map. If ξ ∈ X is a strict fixed point, then ξ is both a start-point
and an end-point.

Proof. The result is immediate, since, for Fξ = {ξ}, we have

H({ξ}, Fξ) = q(ξ, ξ) = 0 = q(ξ, ξ) = H(Fξ, {ξ}) = 0.

We begin with the following intermediate result.

Lemma 2. Let (X, q) be T0-quasi-metric space and A ⊂ X. If A is a compact subset of (X, dq), then it is a
closed subset of (X, q). That is, Pk(X) ⊂ Pc(X).

Proof. Let {ξn} be a sequence in A, such that q(ξ, ξn) → 0 for some ξ ∈ X. Because A is a compact
subset of (X, dq), there exists a subsequence {ξnk} of {ξn} and a point ζ ∈ A, such that dq(ζ, ξnk ) → 0.
Thus, we have q(ξnk , ζ) → 0. While using the triangle inequality, we have

q(ξ, ζ) ≤ q(ξ, ξnk ) + q(ξnk , ζ).

Letting k → ∞ in above inequality, we obtain ξ = ζ and ξ ∈ A. Thus, A is a closed subset of (X, q).

The concept of weakly contractive maps that appeared in [23] (Definition 1) is one of the
generalizations of contractions on metric spaces. In [23], the authors defined such maps for single
valued maps on Hilbert spaces and proved the existence of fixed points. Later, it was shown that most of
the results of [23] still hold in any Banach space, see e.g., Rhoades[24–29]. As it is expected, this notion
was extended to multi-valued maps and it was characterized in the setting of quasi-metric spaces.

In the literature, one of the useful auxiliary function is the comparison function that is initiated
by [30], and, later, discussed and investigated densely by Rus [31] and many others. A function
ϕ : [0, ∞) → [0, ∞) is called a comparison function [30,31] if it is increasing and ϕn(t) → 0 as n → ∞
for every t ∈ [0, ∞), where ϕn is the n-th iterate of ϕ. A simple example of such mappings is ϕ(t) = kt

n ,
where k ∈ [0, 1) and n ∈ {2, 3, · · · }.

Let Γ be the family of functions γ : [0, ∞) → [0, ∞) satisfying the following conditions:

(Γ1) γ is nondecreasing;

(Γ2)
+∞

∑
n=1

γn(t) < ∞ for all t > 0.

Subsequently, a function φ ∈ Γ is called (c)-comparison function, see also [31,32].

Lemma 3 ([31]). If γ : [0, ∞) → [0, ∞) is a comparison function, then

1. each iterate γk of γ, k ≥ 1 is also a comparison function;
2. γ is continuous at 0; and,
3. γ(t) < t for all t > 0.
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The listed properties above are also valid for (c)-comparison functions, since the class of
(c)-comparison functions is a subclass of comparison functions.

For our own purpose, we introduce the (c)∗-comparison function, as follows:

Definition 7. A function γ : [0, ∞) → [0, ∞) is called a (c)∗-comparison function if

(γ1) γ is nondecreasing with γ(0) = 0 and 0 < γ(t) < t for each t > 0; and,

(γ∗
2 ) for any sequence {tn} of (0, ∞),

∞
∑

n=1
γ(tn) < ∞ implies

∞
∑

n=1
tn < ∞.

Definition 8. Let (X, q) be T0-quasi-metric space.

1. A multi-valued map F : X → P0(X) is called weakly contractive if there exists a (c)∗-comparison
function γ, such that, for each ξ ∈ X there exists η ∈ Fξ satisfying

H(η, Fη) ≤ q(ξ, η)− γ(q(ξ, η)). (2)

2. A single-valued map f : X → X is called weakly contractive if there exists a (c)∗-comparison function γ,
such that

q( f ξ, f η) ≤ q(ξ, η)− γ(q(ξ, η)), for every ξ, η ∈ X. (3)

The following is the main result of the paper.

Theorem 1. Let (X, q) be a left K-complete quasi-pseudo metric space, F : X → Pcb(X) be a weakly
contractive multi-valued mapping. Subsequently, F has a start-point in X.

Proof. Let ξ0 ∈ X be arbitrary. By (2), there exists ξ1 ∈ Fξ0, such that, for every ξ2 ∈ Fξ1, we have

q(ξ1, ξ2) ≤ H(ξ1, Fξ1) ≤ q(ξ0, ξ1)− γ(q(ξ0, ξ1)).

Again, by (2), there exists an element ξ2 ∈ Fξ1, such that, for every ξ3 ∈ Fξ2, we have

q(ξ2, ξ3) ≤ H(ξ2, Fξ2) ≤ q(ξ1, ξ2)− γ(q(ξ1, ξ2)) ≤ q(ξ1, ξ2) ≤ H(ξ1, Fξ1).

Continuing this process, we can find a sequence {ξn} ⊂ X, such that, for n ∈ {0, 1, 2, · · · },
we have

ξn+1 ∈ Fξn

and

q(ξn+1, ξn+2) ≤ H(ξn+1, Fξn+1) ≤ q(ξn, ξn+1)− γ(q(ξn, ξn+1)) ≤ q(ξn, ξn+1) ≤ H(ξn, Fξn).

Thus, the sequence {q(ξn, ξn+1)} is non-increasing and so we can conclude that
lim

n→∞
q(ξn, ξn+1) = l for some l ≥ 0. We show that l = 0. Suppose that l > 0. Subsequently, we have

q(ξn, ξn+1) ≤ q(ξn−1, ξn)− γ(q(ξn−1, ξn)) ≤ q(ξn−1, ξn)− γ(l),

and so
q(ξn+N , ξn+N+1) ≤ q(ξn−1, ξn)− Nγ(l),

which is a contradiction for N large enough. Thus, we have

lim
n→∞

q(ξn, ξn+1) = 0.

For m ∈ N with m ≥ 3, we have
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q(ξm−1, ξm) ≤ q(ξm−2, ξm−1)− γ(q(ξm−2, ξm−1)) · · ·
≤ q(ξ1, ξ2)− γ(q(ξ1, ξ2))− · · · − γ(q(ξm−2, ξm−1)).

Hence, we get

m−2

∑
k=1

γ(q(ξk, ξk+1)) ≤ q(ξ1, ξ2)− q(ξm−1, ξm).

Letting m → ∞ in above inequality, we obtain

∞

∑
k=1

γ(q(ξk, ξk+1)) ≤ q(ξ1, ξ2) < ∞,

which implies, using (γ∗
2), that

∞

∑
k=1

q(ξk, ξk+1) < ∞.

We conclude that {ξn} is a left K-Cauchy sequence. On account of the left K-completeness,

there exists ξ∗ ∈ X, such that ξn
q−→ ξ∗.

Given the function hξ := H(ξ, Fξ), observe that the sequence {hξn} = {H(ξn, Fξn)} is decreasing
and it converges to 0. Recall that h is τ(q)-lower semicontinuous (as supremum of τ(q)-lower
semicontinuous functions), which yields

0 ≤ hξ∗ ≤ lim inf
n→∞

hξn = 0.

Hence, hξ∗ = 0, i.e. H({ξ∗}, Fξ∗) = 0. This completes the proof.

Remark 4. It is clear that, if we replace the condition (2) by the dual condition

H(Fη, η) ≤ q(η, ξ)− γ(q(η, ξ)), (4)

then the conclusion of Theorem 1 would be that the multi-valued function F possesses an end-point. Moreover for
the multi-valued function F to admit a fixed point, it is enough that

Hdq(Fη, η) ≤ min{q(ξ, η)− γ(q(ξ, η)), q(η, ξ)− γ(q(η, ξ))}, (5)

where

Hdq(A, B) = max

{
sup
a∈A

dq(a, B), sup
b∈B

dq(A, b)

}
whenever A, B,∈ P0(X).

If let γ(t) = (1 − k)t for k ∈ [0, 1) in Theorem 1, then we obtain the following version of Nadler’s
theorem in the setting of left K-complete quasi-pseudo metric space.

Theorem 2. Let (X, q) be a left K-complete quasi-pseudo metric space and F : X → Pcb(X) be a multi-valued
mapping. If there exists k ∈ [0, 1), such that, for each ξ ∈ X, there exists η ∈ Fξ satisfying

H(η, Fη) ≤ kq(ξ, η),

then F possesses a start-point in X.

We conclude this part of the paper with the following illustrative example:
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Example 12. Let

X =

{
1
2n : n = 0, 1, 2, · · ·

}
∪ {0}

and let

q(ξ, η) =

{
η − ξ, if η ≥ ξ,

2(ξ − η), if ξ > η.

Subsequently, (X, q) is a left K-complete T0-quasi-metric space. Set γ(t) = t
2 for all t ≥ 0. Let F : X →

Pcb(X) be a multi-valued map defined as

Fξ =

⎧⎨⎩
{

1
2n+1 , 0

}
if ξ = 1

2n : n = 0, 1, 2, · · · ,

{0}, if ξ = 0.

We now show that F satisfies condition (2).

Case 1. ξ = 0, there exists η = 0 ∈ Fξ = F0 = {0} such that

0 = H(η, Fη) = H(0, F0) ≤ q(0, 0)− γ(q(0, 0)) = 0.

Case 2. ξ = 1
2n , there exists η = 0 ∈ Fξ =

{
1

2n , 0
}

, such that

0 = H(η, Fη) = H(0, F0) ≤ q
(

1
2n , 0
)
− γ

(
q
(

1
2n , 0
))

.

The map F satisfies the assumptions of Theorem 1, so it has a start-point, which, in this case, is 0.

In the case of a single-valued mapping, Theorem 1 produces the following existence result.

Theorem 3. Let (X, q) be a left K-complete quasi-pseudo metric space and f : X → X be a weakly contractive
single-valued mapping. Subsequently, f possesses at least one start-point in X, i.e., there exists ξ∗ ∈ X,
such that q(ξ∗, f ξ∗) = 0.

We conclude the paper with a start-point result for a multi-valued mapping satisfying a
stronger weakly contractive type condition. In this case, we can obtain a stability result for the
start-point problem.

Definition 9. Let (X, q) be T0-quasi-metric space. A multi-valued mapping F : X → P0(X) is called s-weakly
contractive if there exists a (c)∗-comparison function γ, such that, for each ξ ∈ X, there exists η ∈ Fξ satisfying

H(η, Fν) ≤ q(ξ, ν)− γ(q(ξ, ν)), for every ν ∈ X. (6)

Notice that any s-weakly contractive multi-valued mapping is weakly contractive,
but not reversely.

The following existence and stability result holds for s-weakly contractive multi-valued mappings.
For the sake of simplicity, we will present the result when γ(t) = (1 − k)t, t ∈ [0, ∞), with some
k ∈ [0, 1).

Theorem 4. Let (X, q) be a left K-complete quasi-pseudo metric space and F : X → Pcb(X) be a multi-valued
mapping. Suppose that there exists k ∈ [0, 1), such that, for each ξ ∈ X, there exists η ∈ Fξ satisfying

H(η, Fν) ≤ kq(ξ, ν), for every ν ∈ X.
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Then:

(a) F possesses a start-point in X; and,
(b) the start-point problem for F is Ulam–Hyers stable with respect to the end-point problem for F, in the sense

that there exists C > 0, such that, for any ε > 0 and any ρ∗ ∈ X with H(Fρ∗, ρ∗) ≤ ε, there exists a
start-point ξ∗ ∈ X of F, such that q(ξ∗, ρ∗) ≤ Cε.

Proof.

(a) follows by Theorem 1. Denote, by ξ∗ ∈ X, a start-point of F.
(b) For any u ∈ Fξ∗, we can write

q(ξ∗, ρ∗) ≤ H(ξ∗, Fξ∗) + H(u, Fρ∗) + H(Fρ∗, ρ∗) = H(u, Fρ∗) + H(Fρ∗, ρ∗).

For ξ∗ ∈ X, there exists u∗ ∈ Fξ∗, such that H(u∗, Fρ∗) ≤ kq(ξ∗, ρ∗).

Thus,

q(ξ∗, ρ∗) ≤ 1
1 − k

ε.
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Abstract: In this paper, we propose and study an iterative algorithm that comprises of a finite family
of inverse strongly monotone mappings and a finite family of Lipschitz demicontractive mappings
in an Hadamard space. We establish that the proposed algorithm converges strongly to a common
solution of a finite family of variational inequality problems, which is also a common fixed point of
the demicontractive mappings. Furthermore, we provide a numerical experiment to demonstrate the
applicability of our results. Our results generalize some recent results in literature.
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1. Introduction

The classical variational inequality problem (VIP) is defined in a real Hilbert space setting as:
find x ∈ D such that

〈Tx, y − x〉 ≥ 0 ∀ y ∈ D, (1)

where T is a nonlinear operator defined on D and D is a nonempty subset of the Hilbert space.
The theory of VIP combines concepts of nonlinear operators and convex analysis in such a way that
it generalizes both and is used to model nonlinear problems of physical phenomena in economics,
sciences and engineering (see [1] for details). The VIP (1) was first introduced in finite dimensional
spaces by Stampacchia [2], and since then researchers have devoted a lot of attention to VIP in finite and
infinite dimensional spaces (see [3–8] and other references therein). Another form of the VIP widely
studied in real Hilbert space settings (see [9,10] and the references therein) is defined as: find x ∈ D
such that

〈x − Tx, y − x〉 ≥ 0 ∀ y ∈ D. (2)

Several algorithms have been developed for solving VIP and related optimization problems
in Hilbert and Banach spaces (see [3,7,11–16] and other references therein). It is well known that
many of the problems in practical applications of optimization are constrained optimization problems,
where the constraints are nonlinear, non-convex and non-smooth. Hence, it is pertinent to extend the
study of these optimization problems to the nonlinear space settings, due to its ability to see non-convex
and non-smooth constrained optimization problems as convex, smooth and unconstrained problems.

Axioms 2020, 9, 143; doi:10.3390/axioms9040143 www.mdpi.com/journal/axioms27
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For this reason, Németh [17] introduced and generalized the existence and uniqueness results of
the classical VIP from Euclidean spaces to complete Riemannian manifolds. This development led
to increasing interest from researchers in the study of VIPs and their generalizations in nonlinear
spaces (see [18–27] and other references therein). Despite the increasing attention of researchers in
this direction, little attention has been given to other more general nonlinear spaces apart from the
Riemannian manifolds. In 2015, Khatibzadeh and Ranjbar [28] extended the study of VIP (2) to the
framework of complete CAT(0) spaces. They formulated the VIP as follows:

Find x ∈ D such that 〈−−→Txx,−→xy〉 ≥ 0 ∀ y ∈ D, (3)

where D is a nonempty, closed and convex subset of an Hadamard space X and T is a nonexpansive
mapping. They established the existence of solutions for the VIP (3) and also employed an inexact
proximal point algorithm to approximate a fixed point of the nonexpansive mapping which is also a
solution of (3). They obtained convergence result for the algorithm under suitable conditions on the
control sequences. Very recently, Alizadeh-Dehghan-Moradlou [29] introduced the notion of inverse
strongly monotone mappings in metric spaces as follows: Let D be a nonempty subset of a metric
space X and T : D → X be a mapping. T is called α-inverse strongly monotone if there exists α > 0
such that

d2(x, y)− 〈−−→TxTy,−→xy〉 ≤ αΦT(x, y), ∀ x, y ∈ D, (4)

where ΦT(x, y) = d2(x, y) + d2(Tx, Ty)− 2〈−−→TxTy,−→xy〉.
Additionally, in [29], the authors studied the VIP (3) in an Hadamard space, where T is an inverse

strongly monotone mapping. They established the existence of solutions for the VIP (3) associated
with an inverse strongly monotone mapping. Furthermore, they introduced the following iterative
algorithm to solve the VIP (3): for arbitrary x1 ∈ D, the sequence {xn} is generated by{

yn = PD[βnxn ⊕ (1 − βn)Txn],

xn+1 = PD[αnxn ⊕ (1 − αn)Sxn], n ≥ 1,
(5)

where {βn} and {αn} ∈ (0, 1), PD is a metric projection, T is inverse strongly monotone and S is
nonexpansive mapping. They obtained that Algorithm (5) Δ-converges to a solution of the VIP (3),
which is also a fixed point of the nonexpansive mapping S.

Very recently, Osisiogu et al. [30] proposed and studied the following Halpern-type algorithm in
Hadamard spaces for approximating a common solution of a finite family of the VIP (3):⎧⎪⎨⎪⎩yn =

N⊕
i=1

βiPDTλi xn,

xn+1 = αnu ⊕ βnxn ⊕ γnSyn ∀ n ≥ 1,
(6)

where Tλi = (1 − λi)x ⊕ λiTx, 0 < λi < 2αi, for each i = 1, 2, · · · , N, {βn}, {αn} and {γn} ∈ (0, 1),
T is an inverse strongly monotone mapping and S is a nonexpansive mapping. They obtained a strong
convergence result of Algorithm (6) under some suitable conditions.

Motivated by the results of Khatibzadeh and Ranjbar [28], Alizadeh-Dehghan-Moradlou [29]
and Osisiogu et al. [30], we propose and study a viscosity iterative algorithm (from the fact that
viscosity-type algorithms converge faster than Halpern-type algorithms and also Halpern-type
algorithms are particular cases of viscosity-type algorithms, see [31,32]) that comprises of a finite family
of inverse strongly monotone mappings (3) and a finite family of Lipchitz demicontractive mappings
in an Hadamard space. Additionally, we establish that the proposed algorithm converges strongly to a
common solution of a finite family of VIPs, which is also a common fixed point of a finite family of
Lipchitz demicontractive mappings in the framework of Hadamard spaces. Furthermore, we provide a
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numerical experiment to demonstrate the applicability of our results. Our result generalizes the works
of Alizadeh-Dehghan-Moradlou [29] and Osisiogu et al. [30] and other similar works in literature.

2. Preliminaries

Let (X, d) be a metric space, x, y ∈ X and I = [0, d(x, y)] be an interval. A curve c (or simply
a geodesic path) joining x to y is an isometry c : I → X such that c(0) = x, c(d(x, y)) = y and
d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ I. The image of a geodesic path is called the geodesic segment,
which is denoted by [x, y] whenever it is unique. We say that a metric space X is a geodesic space
if for every pair of points x, y ∈ X, there is a minimal geodesic from x to y. A geodesic triangle
Δ(x1, x2, x3) in a geodesic metric space (X, d) consists of three vertices (points in X) with geodesic
segments between each pair of vertices. For any geodesic triangle, there is a comparison (Alexandrov)
triangle Δ̄ ⊂ R2 such that d(xi, xj) = dR2(x̄i, x̄j) for i, j ∈ {1, 2, 3}. A geodesic space X is a CAT(0)
space if the distance between arbitrary pair of points on a geodesic triangle Δ does not exceed the
distance between its pair of corresponding points on its comparison triangle Δ̄. If Δ is a geodesic
triangle and Δ̄ is its comparison triangle in X, then Δ is said to satisfy the CAT(0) inequality for all
points x, y of Δ and x̄, ȳ of Δ̄, if

d(x, y) = dR2(x̄, ȳ). (7)

Let x, y, z be points in X and y0 be the midpoint of the segment [y, z]; then the CAT(0)
inequality implies

d2(x, y0) ≤ 1
2

d2(x, y) +
1
2

d2(x, z)− 1
4

d(y, z). (8)

Inequality (8) is known as CN inequality of Bruhat and Tits [33]. A geodesic space X is said to be
a CAT(0) space if all geodesic triangles satisfy the CN inequality. Equivalently, X is called a CAT(0)
space if and only if it satisfies the CN inequality. Examples of CAT(0) spaces includes Hadamard
manifold, R-trees [34], pre-Hilbert spaces [35], hyperbolic metric [36] and Hilbert balls [37].

Let D be a nonempty subset of a metric space (X, d). A point x ∈ X is called a fixed point of a
nonlinear mapping T : D → X, if x = Tx. We denote by F(T) the set of fixed points of T. The mapping
T is said to be:

1. L-Lipschitz, if there exists L > 0 such that

d(Tx, Ty) ≤ Ld(x, y), ∀ x, y ∈ X;

if L = 1, then T is called nonexpansive;
2. Firmly nonexpansive (see [38]), if

d2(Tx, Ty) ≤ 〈−−→TxTy,−→xy〉 ∀ x, y ∈ X;

3. Quasi-nonexpansive, if F(T) �= ∅ and

d(Tx, p) ≤ d(x, p) ∀ x ∈ X and p ∈ F(T);

4. k-demicontractive, if F(T) �= ∅ and there exists k ∈ [0, 1) such that

d2(Tx, p) ≤ d2(x, p) + kd2(x, Tx) ∀ x, y ∈ X, and p ∈ F(T).

Obviously, the class of quasi-nonexpansive are k-demicontractive mappings. However, the converse
is not true (see [39] Example 1.1).
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Definition 1. [40] Let a pair (a, b) ∈ X × X, denoted by
−→
ab , be called a vector in X × X. The quasilinearization

map 〈., .〉 : (X × X)× (X × X) → R is defined by

〈−→ab ,
−→
cd〉 = 1

2
(d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)), ∀ a, b, c, d ∈ X. (9)

It is easy to see that 〈−→ba ,
−→
cd〉 = −〈−→ab ,

−→
cd〉, 〈−→ab ,

−→
cd〉 = 〈−→ae ,

−→
cd〉+ 〈−→eb ,

−→
cd〉 and 〈−→ab ,

−→
cd〉 = 〈−→cd ,

−→
ab〉

for all a, b, c, d, e ∈ X. Furthermore, a geodesic space X is said to satisfy the Cauchy–Schwarz inequality if

〈−→ab ,
−→
cd〉 ≤ d(a, b)d(c, d), ∀ a, b, c, d ∈ X.

It is known from [41] that a geodesically connected metric space is a CAT(0) space if and only if it
satisfies the Cauchy–Schwarz inequality.

We state some known and useful results which will be needed in the proof of our main results.
In the sequel, we denote strong and Δ-convergence by “→ ” and “⇀ ” respectively.

Let {xn} be a bounded sequence in X and r(., {xn}) : X → [0, ∞) be a continuous mapping defined
by r(x, {xn}) = lim sup

n→∞
d(x, xn). The asymptotic radius of {xn} is given by r({xn}) := inf{r(x, {xn}) :

x ∈ X} while the asymptotic center of {xn} is the set A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}. It is
known that in an Hadamard space X, A({xn}) consists of exactly one point. A sequence {xn} in X
is said to be Δ-convergent to a point x ∈ X, if A({xnk}) = {x} for every subsequence {xnk} of {xn}.
In this case, we write Δ- lim

n→∞
xn = x (see [42,43]).

Definition 2. Let D be a nonempty, closed and convex subset of an Hadamard space X. The metric projection
is a mapping PD : X → D which assigns to each x ∈ X, the unique point PDx ∈ D such that

d(x, PDx) = inf{d(x, y) : y ∈ D}.

Lemma 1. [44] Let D be a nonempty, closed convex subset of an Hadamard space X, x ∈ X and u ∈ D.
Then u = PDx if and only if 〈−→xu,−→uy〉 ≥ 0, for all y ∈ D.

Lemma 2. [29] Let D be a nonempty convex subset of an Hadamard space X and T : D → X be an α-inverse
strongly monotone mapping. Assume λ ∈ [0, 1] and define Tλ : D → X by Tλx = (1 − λ)x ⊕ λTx.
If 0 < λ < 2α, then Tλ is nonexpansive and F(Tλ) = F(T).

Lemma 3. [29] Let D be a nonempty convex subset of an Hadamard space X and T : D → X be a
mapping. Then

VI(D, T) = VI(D, Tλ),

where λ ∈ (0, 1] and Tλ : D → X is a mapping defined by Tλx = (1 − λ)x ⊕ λTx, for all x ∈ D.

Remark 1. Observe from Lemma 2 that

F(PDT) = VI(D, T) = VI(D, Tλ) = F(PDTλ).

Lemma 4. [29] Let D be a nonempty bounded closed convex subset of an Hadamard space X and T : D → X
be an α-inverse-strongly monotone mapping. Then VI(D, T) is nonempty, closed and convex.

Lemma 5. [41,45] Let X be an Hadamard space. Then for all x, y, z ∈ X and all t, s ∈ [0, 1], we have

(i) d(tx ⊕ (1 − t)y, z) ≤ td(x, z) + (1 − t)d(y, z),
(ii) d2(tx ⊕ (1 − t)y, z) ≤ td2(x, z) + (1 − t)d2(y, z)− t(1 − t)d2(x, y),
(iii) d2(z, tx ⊕ (1 − t)y) ≤ t2d2(z, x) + (1 − t)2d2(z, y) + 2t(1 − t)〈−→zx,−→zy〉.
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Lemma 6. [46] Let X be a CAT(0) space and z ∈ X. Let x1, · · · , xN ∈ X and γ1, · · · , γN be real numbers in

[0, 1] such that
N
∑

i=1
γi = 1. Then the following inequality holds:

d2( N

∑
i=1

⊕γixi, z
) ≤ N

∑
i=1

γid2(xi, z)−
N

∑
i,j=1,i �=j

γiγjd2(xi, xj).

Lemma 7. [47] Every bounded sequence in an Hadamard space has a Δ-convergent subsequence.

Lemma 8. [48] Let X be an Hadamard space, {xn} be a sequence in X and x ∈ X. Then {xn} Δ-converges to
x if and only if

lim sup
n→∞

〈−→xnx,−→yx〉 ≤ 0, ∀ y ∈ X.

Definition 3. Let D be a nonempty, closed and convex subset of an Hadamard space X. A mapping T :
D → D is said to be Δ-demiclosed, if for any bounded sequence {xn} in X, such that Δ − lim

n→∞
xn = x and

lim
n→∞

d(xn, Txn) = 0, then x = Tx.

Lemma 9. [49] Let X be an Hadamard space and T : X → X be a nonexpansive mapping. Then T is
Δ-demiclosed.

Lemma 10. [50,51] Let {an} be a sequence of non-negative real numbers satisfying

an+1 ≤ (1 − αn)an + δn, n ≥ 0,

where {αn} and {δn} satisfy the following conditions:

(i) {αn} ⊂ [0, 1],
∞
∑

n=0
αn = ∞,

(ii) lim sup
n→∞

δn
αn

≤ 0 or
∞
∑

n=0
|δn| ≤ ∞.

Then limn→∞ an = 0.

Lemma 11. [52] Let {an} be a sequence of non-negative real numbers such that there exists a subsequence
{nj} of {n} with anj < anj+1 for all j ∈ N. Then there exists a nondecreasing sequence {mk} ⊂ N such that
mk → ∞ and the following properties are satisfied by all (sufficiently large) numbers k ∈ N:

amk ≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{i ≤ k : ai < ai+1}.

3. Main Results

In this section, we present our strong convergence results.

Theorem 1. Let X be an Hadamard space and D be a nonempty, closed and convex subset of X. Let Si :
D → D be a finite family of Li-Lipschitz ki-demicontractive mappings and Δ-demiclosed such that L >

0, L = max{Li, i = 1, 2, · · · , N}, k ∈ [0, 1), k = max{ki, i = 1, 2, · · · , N}, ki ∈ [0, 1), i = 1, 2, · · · , N.
Let Ti : D → X be a finite family of αi-inverse strongly monotone mappings and f be a contraction on D with
coefficient θ ∈ (0, 1). Suppose that Γ := ∩N

i=1VI(D, Ti) ∩ ∩N
i=1F(Si) �= ∅. For arbitrary x1 ∈ D, let the

sequence {xn} be generated by
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

wn = γn f (xn)⊕ (1 − γn)xn,

yn = βn,0wn ⊕
N
∑

i=1
⊕βn,iPDTλi wn,

xn+1 = αn,0yn ⊕
N
∑

i=1
⊕αn,iSiyn, ∀ n ≥ 1,

(10)

where Tλi = (1 − λi)x ⊕ λiTix, 0 < λi < 2αi, for each i = 1, 2, · · · , N, {γn}, {βn,i} and {αn,i} ∈ (0, 1)
such that the following conditions are satisfied:

(A1) lim
n→∞

γn = 0;

(A2)
∞
∑

n=1
γn = ∞,

(A3) 0 < a ≤ βn,i, αn,i ≤ b < 1;
N
∑

i=0
αn,i = 1 and

N
∑

i=0
βn,i = 1;

(A4) 0 < c ≤ αn,0 − k ≤ d < 1.

Then, the sequence {xn} converges strongly to an element z̄ = PΓ f (z̄), where PΓ is the metric projection
of X onto Γ.

Proof. Let p ∈ Γ; then by (10), condition (A3), Lemma 6 and the fact that PDTλ is nonexpansive,
we have

d2(yn, p) = d2(βn,0wn

N

∑
i=1

⊕βn,iPDTλi wn, p)

≤ βn,0d2(wn, p) +
N

∑
i=1

βn,id2(PDTλi wn, p)−
N

∑
i=1

βn,0βn,id2(PDTλi wn, wn)

≤ d2(wn, p)−
N

∑
i=1

βn,0βn,id2(PDTλi wn, wn). (11)

Additionally, since Si is demicontractive, we have from (10) and Lemma 6 that

d2(xn+1, p) ≤ αn,0d2(yn, p) +
N

∑
i=1

αn,id2(Siyn, p)−
N

∑
i=1

αn,0αn,id2(yn, Siyn)

≤ αn,0d2(yn, p) +
N

∑
i=1

αn,i
[
d2(yn, p) + kd2(Siyn, yn)

]− N

∑
i=1

αn,0αn,id2(yn, Siyn)

= d2(yn, p)−
N

∑
i=1

αn,i
(
αn,0 − k

)
d2(yn, Siyn). (12)

From (11), (12) and condition (A4), we have

d(xn+1, p) ≤ γnd( f (xn), p) + (1 − γn)d(xn, p)

≤ γnθd(xn, p) + γnd( f (p), p) + (1 − γn)d(xn, p)

≤ (1 − γn(1 − θ))d(xn, p) + γnd( f (p), p).

≤ max{d(xn, p),
1

1 − θ
d( f (p), p)}

...

≤ max{d(x1, p),
1

1 − θ
d( f (p), p)}.

Thus, {xn} is bounded. Consequently, {wn}, {yn}, {Syn} and {PDTλi wn} are also bounded.
Now we divide the rest of the proof into two cases:
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Case 1: Assume that {d2(xn, p)} is a monotonically non-increasing sequence. Then, {d2(xn, p)} is
convergent and

d2(xn, p)− d2(xn+1, p) → 0, as n → ∞.

Hence, from (11) and (12), we have

d2(xn+1, p) ≤ d2(wn, p)−
N

∑
i=1

βn,0βn,id2(PDTλi wn, wn)−
N

∑
i=1

αn,i
(
αn,0 − k

)
d2(yn, Siyn)

≤ γnd2( f (xn), p) + (1 − γn)d2(xn, p)−
N

∑
i=1

βn,0βn,id2(PDTλi wn, wn)−
N

∑
i=1

αn,i
(
αn,0 − k

)
d2(yn, Siyn),

(13)

which implies

N

∑
i=1

βn,0βn,id2(PDTλi wn, wn) ≤ γn(d2( f (xn), p)− d2(xn, p)) + d2(xn, p)− d2(xn+1, p).

By conditions (A1) and (A3), we obtain that

lim
n→∞

d(PDTλi wn, wn) = 0, i = 0, 1, 2, · · · , N. (14)

Similarly, from (13) and condition (A1), we have

lim
n→∞

d(Siyn, yn) = 0, i = 0, 1, 2, · · · , N. (15)

Additionally,

d(wn, xn) ≤ γnd( f (xn), xn) → 0 as n → ∞. (16)

Again from (10) and Lemma 6, we have

d2(yn, xn) ≤ βn,0d2(wn, xn) +
N

∑
i=1

βn,id2(PDTλi wn, xn)

≤ βn,0d2(wn, xn) +
N

∑
i=1

βn,i
[
d(PDTλi wn, wn) + d(wn, xn)

]2.

Hence, from (14) and (16), we obtain

d(yn, xn) → 0 as n → ∞. (17)

Additionally, from (15) and (17), we have

d(Siyn, xn) ≤ d(Siyn, yn) + d(yn, xn) → 0, as n → ∞, i = 0, 1, 2, · · · , N. (18)

Since Si is Lipschitz, then from (17) and (18), we have that

d(Sixn, xn) ≤ d(Sixn, Siyn) + d(Siyn, xn)

≤ Ld(xn, yn) + d(Siyn, xn) → 0, as n → ∞, i = 0, 1, 2, · · · , N. (19)

Hence, from (14), (16) and Lemma 2, we obtain that

d(PDTλi xn, xn) ≤ d(PDTλi xn, PDTλi wn) + d(PDTλi wn, wn) + d(wn, xn)

≤ d(xn, wn) + d(PDTλi wn, wn) + d(wn, xn) → 0, as n → ∞, i = 0, 1, 2, · · · , N. (20)
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Since {xn} is bounded, by Lemma 7 there exists a subsequence {xnk} of {xn} such that Δ −
lim
k→∞

xnk = z for some z ∈ D. Then, it follows from (16) that there exists a subsequence {wnk} of

{wn}, such that Δ- lim
k→∞

wnk = z. Additionally, from (17), we have that Δ- lim
k→∞

ynk = z. Since Si is

Δ-demiclosed for each i = 1, 2, · · · , N, it follows from (19) that z ∈ ∩N
i=0F(Si). Additionally, PDTλi is

nonexpansive (by Lemma 2) for each i = 1, 2, · · · , N, thus we obtain from (20) and Remark 1 that
z ∈ ∩N

i=0F(PDTλi ) = ∩N
i=0F(PDTi). Hence, z ∈ Γ.

Next we show that {xn} converges strongly to z̄ = PΓ f (z̄). Since {xn} is bounded, we may choose
without loss of generality, a subsequence {xnk} of {xn} such that {xnk} Δ-converges to z and

lim sup
n→∞

〈−−−→f (z̄)z̄,−→xnz̄〉 = lim
k→∞

〈−−−→f (z̄)z̄,−−→xnk z̄〉. (21)

Thus, by (21) and Lemma 1, we obtain that

lim sup
k→∞

〈−−−→f (z̄)z̄,−→xnz̄〉 = 〈−−−→f (z̄)z̄,−→zz̄〉 ≤ 0. (22)

From (12), Lemma 5 (iii) and quasilinearization properties in Definition 1, we have that

d2(xn+1, z̄) ≤ γ2
nd2( f (xn), z̄) + (1 − γn)

2d2(xn, z̄) + 2γn(1 − γn)〈
−−−→
f (xn)z̄,−→xnz̄〉

≤ γ2
nd2( f (xn), z̄) + (1 − γn)

2d2(xn, z̄) + 2γn(1 − γn)
[〈−−−−−−→f (xn) f (z̄),−→xnz̄〉+ 〈−−−→f (z̄)z̄,−→xnz̄〉]

≤ γ2
nd2( f (xn), z̄) + (1 − γn)

2d2(xn, z̄) + 2γn(1 − γn)
[
θd2(xn, z̄) + 〈−−−→f (z̄)z̄,−→xnz̄〉]

≤ (1 − 2γn + 2γnθ)d2(xn, z̄) + 2γn(1 − γn)〈
−−−→
f (z̄)z̄,−→xnz̄〉+ γ2

n
(
d2( f (xn), z̄) + d2(xn, z̄)

)
= 1 − 2γn(1 − θ)d2(xn, z̄) + 2γn(1 − θ)

[1 − γn

1 − θ
〈−−−→f (z̄)z̄,−→xnz̄〉+ γn

2(1 − θ)

(
d2( f (xn), z̄) + d2(xn, z̄)

)]
.

That is,

d2(xn+1, z̄) ≤ 1 − 2γn(1 − θ)d2(xn, z̄) + 2γn(1 − θ)Mn, (23)

where
Mn =

[1 − γn

1 − θ
〈−−−→f (z̄)z̄,−→xnz̄〉+ γn

2(1 − θ)

(
d2( f (xn), z̄) + d2(xn, z̄)

)]
.

Thus from (22), (23) and condition (A1), we conclude by Lemma 10 that {xn} converges strongly
to z̄ = PΓ f (z̄).

Case 2: Suppose there exists a subsequence {nk} of {n} such that d2(xnk , p) ≤ d2(xk+1, p) for all k ∈ N.
Then by Lemma 11, there exists a nondecreasing sequence {mk} ⊂ N such that mk → ∞ :

d(xmk , p) < d(xmk+1 , p), and d(xk, p) < d(xk+1, p) ∀ k ∈ N. (24)

Therefore

0 ≤ lim
k→∞

(
d(xmk+1 , p)− d(xmk , p)

)
≤ lim sup

n→∞

(
d(xn+1, p)− d(xn, p)

)
≤ lim sup

n→∞

(
γnd( f (xn), p) + (1 − γn)d(xn, p)− d(xn, p)

)
= lim sup

n→∞

(
γn
(
d( f (xn), p)− d(xn, p)

))
= 0.
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This implies that

lim
k→∞

(
d(xmk+1 , p)− d(xmk , p)

)
= 0. (25)

Following the arguments as in Case 1, we get

lim
k→∞

〈−−−→f (z̄)z̄,−−→xmk z̄〉 ≤ 0. (26)

Hence, from (23), we obtain that

d2(xmk+1 , z̄) ≤ 1 − 2γmk (1 − θ)d2(xmk , z̄) + 2γmk (1 − θ)Mmk .

Additionally, from (24), we have that

d2(xmk , z̄) ≤ Mmk ,

which implies that
lim
k→∞

d2(xmk , z̄) = 0.

Thus, from cases 1 and 2, we conclude that {xn} converges to z̄ = PΓ f (z̄) which is an element
of Γ.

We present some consequences of our main results.
Now, by setting Si to be a family of quasi-nonexpansive mappings in Theorem 1, we obtain the

following result:

Corollary 2. Let X be an Hadamard space and D be a nonempty, closed and convex subset of X. Let Si : D → D
be a finite family of quasi-nonexpansive mappings, Ti : D → X be a finite family of αi-inverse strongly monotone
mappings and f be a contraction on D with coefficient θ ∈ (0, 1). Suppose that Γ := ∩N

i=1VI(D, Ti) ∩
∩N

i=1F(Si) �= ∅. For arbitrary x1,∈ D, let the sequence {xn} be generated by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

wn = γn f (xn)⊕ (1 − γn)xn,

yn = βn,0wn ⊕
N
∑

i=1
⊕βn,iPDTλi wn,

xn+1 = αn,0yn ⊕
N
∑

i=1
⊕αn,iSiyn, ∀ n ≥ 1,

(27)

where Tλi = (1 − λi)x ⊕ λiTix, 0 < λi < 2αi, for each i = 1, 2, · · · , N, {γn}, {βni} and {αni} ∈ (0, 1)
such that conditions (A1)-(A3) of Theorem 1 are satisfied. Then, the sequence {xn} converges strongly to an
element z̄ = PΓ f (z̄), where PΓ is the metric projection of X onto Γ.

Proof. The proof follows from the proof of Theorem 1.

By setting N = 1 in Corollary 2, we obtain the following result:

Corollary 3. Let X be an Hadamard space and D be a nonempty, closed and convex subset of X. Let S : D → D
be a quasi-nonexpansive mapping, T : D → X be an α-inverse strongly monotone mapping and f be a
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contraction on D with coefficient θ ∈ (0, 1). Suppose that Γ := VI(D, T) ∩ F(S) �= ∅. For arbitrary x1 ∈ D,
let the sequence {xn} be generated by⎧⎪⎪⎨⎪⎪⎩

wn = γn f (xn)⊕ (1 − γn)xn,

yn = βn,0wn ⊕ βn,1PDTλwn,

xn+1 = αn,0yn ⊕ αn,1Syn, ∀ n ≥ 1,

(28)

where Tλ = (1 − λ)x ⊕ λTx, 0 < λ < 2α, {γn} and {αn} ∈ (0, 1) such that 0 < a ≤ βn,i, αn,i ≤ b <

1, for i = 0, 1,
1
∑

i=0
αn,i = 1,

1
∑

i=0
βn,i = 1 and conditions (A1)-(A2) of Theorem 1 are satisfied. Then, the sequence

{xn} converges strongly to an element z̄ = PΓ f (z̄), where PΓ is the metric projection of X onto Γ.

Suppose u = f (x) for arbitrary but fixed u ∈ X and for all x ∈ X in Theorem 1, we obtain the
following result:

Corollary 4. Let X be an Hadamard space and D be a nonempty, closed and convex subset of X. Let Si :
D → D be a finite family of Li-Lipschitz demicontractive mappings and Δ-demiclosed such that L > 0, L =

max{Li, i = 1, 2, · · · , N}, k ∈ [0, 1), k = max{ki, i = 1, 2, · · · , N}, ki ∈ [0, 1), i = 1, 2, · · · , N. Let Ti :
D → X be a finite family of αi-inverse strongly monotone mappings and suppose that Γ := ∩N

i=1VI(D, Ti) ∩
∩N

i=1F(Si) �= ∅. For arbitrary x1, u ∈ D, let the sequence {xn} be generated by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

wn = γnu ⊕ (1 − γn)xn,

yn = βn,0wn ⊕
N
∑

i=1
⊕βn,iPDTλi wn,

xn+1 = αn,0yn ⊕
N
∑

i=1
⊕αn,iSiyn, ∀ n ≥ 1,

(29)

where Tλi = (1 − λi)x ⊕ λiTix, 0 < λi < 2αi, for each i = 1, 2, · · · , N, {γn}, {βni} and {αni} ∈ (0, 1)
such that conditions (A1)-(A4) of Theorem 1 are satisfied. Then, the sequence {xn} converges strongly to an
element z̄ ∈ Γ which is the nearest point to u.

By setting Si ≡ I for all i = 1, 2, · · · , N in Theorem 1, we obtain the following result:

Corollary 5. Let X be an Hadamard space and D be a nonempty, closed and convex subset of X. Let Ti : D → X
be a finite family of αi-inverse strongly monotone mappings and f be a contraction on D with coefficient
θ ∈ (0, 1). Suppose that Γ := ∩N

i=1VI(D, Ti) �= ∅. For arbitrary x1 ∈ D, let the sequence {xn} be generated by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

wn = γn f (xn)⊕ (1 − γn)xn,

yn = βn,0wn ⊕
N
∑

i=1
⊕βn,iPDTλi wn

xn+1 = αn,0yn ⊕
N
∑
i=i

⊕αn,iyn ∀ n ≥ 1,

(30)

where Tλi = (1 − λi)x ⊕ λiTix, 0 < λi < 2αi, for each i = 1, 2, · · · , N, {γn}, {βni} and {αni} ∈ (0, 1)
such that conditions (A1)–(A3) of Theorem 1 are satisfied. Then, the sequence {xn} converges strongly to an
element z̄ = PΓ f (z̄), where PΓ is the metric projection of X onto Γ.

4. Numerical Example

In this section, we give a numerical experiment to show the applicability of our result.
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Example 1. [29] Let X = R2 be an R-tree with radial metric dr, where dr(x, y) = d(x, y) if x and y are
situated on a Euclidean straight line passing through the origin and dr(x, y) = d(x, 0) + d(y, 0) otherwise.
We put p = (0, 1), q = (1, 0) and D = A ∪ B ∪ C, where

A = {(0, t) : t ∈ [2/3, 1]}, B = {(t, 0) : t ∈ [2/3, 1]}, C = {(t, s) : t + s = 1, t ∈ (0, 1)}.

Define T : D → X by

Tx =

⎧⎪⎪⎨⎪⎪⎩
q if x ∈ A,

p if x ∈ B,

x if x ∈ C,

(31)

then T is 1
4 -inverse strongly monotone in (X, dr).

Now, define S : D → D by Sx = 5
8 x. We make the following choices of parameters: λ = 1

4 , γn = 1
n+1 ,

αn,0 = 2n
5n+7 , αn,1 = 3n+7

5n+7 , βn,0 = n
3n+2 , βn,1 = 2n+2

3n+2 ∀ n ≥ 1 and f (x) = 1
2 x ∀ x ∈ X; then the conditions

(A1)–(A3) of Theorem 2 are satisfied. Therefore, for x1 ∈ X, Algorithm (28) becomes⎧⎪⎪⎨⎪⎪⎩
wn = 1

n+1 f (xn)⊕ (1 − 1
n+1 )xn,

yn = βn,0wn ⊕ βn,1PDTλwn,

xn+1 = αn,0yn ⊕ αn,1Syn ∀ n ≥ 1.

(32)

We now consider the following 3 cases for our numerical experiments given in Figure 1 above.

Case 1: x1 = (−0.5, 0.5)T .
Case 2: x1 = (0.5,−0.5)T .
Case 2: x1 = (1, 2)T .

(a) (b)

Figure 1. Cont.
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(c)

Figure 1. Errors vs. iteration numbers (n) for Example 1: case 1 (a); case 2 (b); case 3 (c).
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1. Introduction

We consider finding a common fixed point of a finite number of resolvents operators
for proper lower semicontinuous convex functions on a geodesic space. To find this
point, we often use iterative schemes. We focus on Mann’s [1] and Halpern’s [2] iterative
schemes. We know many authors have considered these schemes by using nonexpansive
mappings. In a Banach space, Reich [3] proved weak convergence of Mann-type iteration,
and Takahashi and Tamura [4] proved that by using two nonexpansive mappings. In a
Hilbert space, Wittmann [5] proved strong convergence of the Halpern-type iteration.

We also know many researchers have proved iterative schemes on geodesic spaces. In a
CAT(0) space, Dhompongsa and Panyanak [6] proved Δ-convergence of Mann’s iterative
scheme, and Saejung [7] also proved convergence of Halpern’s iterative scheme. We know a
large number of results by using Mann’s and Halpern’s iterative schemes in a CAT(1) space.
Pia̧tek [8] considered Halpern’s iterative scheme by using a nonexpansive mapping in
CAT(1) space. Kimura and Satô [9] proved that by using a strongly quasi-nonexpansive and
Δ-demiclosed mapping in a complete CAT(1) space. Kimura, Saejung, and Yotkaew [10]
also proved convergence of Halpern’s iterative schemes under the same setting. Kimura
and Kohsaka [11] proved convergence of Mann and Halpern types of iterative schemes
with a sequence of resolvent operators for a single proper lower semicontinuous convex
function. We are particularly interested in these results [9–11], and obtain Theorems 1 and 2
with a finite number of resolvent operators in a complete CAT(1) space.

In a Hilbert space, the resolvent operator J f is defined as follows. Let f be a proper
lower semicontinuous convex function from a Hilbert space H to ]−∞,+∞]. Then, J f is
defined by

J f x = argmin
y∈H

{ f (y) +
1
2
‖y − x‖2}

for all x ∈ H. We know the resolvent J f is a single-valued mapping from H to H and it
is nonexpansive. For a proper lower semicontinuous convex function f from a complete
CAT(0) space X into ]−∞,+∞], Jost [12] and Mayer [13] defined the resolvent R f of f by

R f x = argmin
y∈X

{ f (y) +
1
2

d(y, x)2}
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for all x ∈ X. We also know the resolvent R f is a single-valued mapping from X to X and
it is nonexpansive. In this paper, we use the resolvent in a complete CAT(1) space defined
by Kimura and Kohsaka [11,14].

2. Preliminaries

Let (X, d) be a metric space. For x, y ∈ X, a geodesic between x and y is an isometric
mapping c : [0, d(x, y)] → X with c(0) = x and c(d(x, y)) = y. We say X is an r-geodesic
space for r > 0 if a geodesic exists for every pair of points in X satisfying d(x, y) < r.
Further, a metric space X is said to be r-uniquely geodesic if such a geodesic is unique for
each pair of points satisfying d(x, y) < r. The image of a unique geodesic between x and y
is denoted by [x, y].

For an r-uniquely geodesic space X, the convex combination between x, y ∈ X with
d(x, y) < r is naturally defined. That is, for α ∈ [0, 1], we denote by αx ⊕ (1 − α)y the point
c((1 − α)d(x, y)), where c is a geodesic between x and y. It follows that

d(αx ⊕ (1 − α)y, x) = (1 − α)d(x, y) and d(αx ⊕ (1 − α)y, y) = αd(x, y).

A subset C of X is said to be r-convex if αx⊕ (1− α)y ∈ C for every x, y ∈ C with d(x, y) < r
and α ∈ [0, 1].

If X is r-geodesic for any r > 0, then X is simply called a geodesic space. A uniquely
geodesic space and a convex subset are also defined in the same way.

Let X be a uniquely geodesic space and x, y, z ∈ X. For a triangle �(x, y, z) = [y, z] ∪
[z, x] ∪ [x, y] ⊂ X satisfying d(y, z) + d(z, x) + d(x, y) < 2π, we define its comparison
triangle �(x, y, z) in the two-dimensional unit sphere S2 by the triangle such that each
corresponding edge has the same length as that of the original triangle. Using this notion,
we call X a CAT(1) space if for every x, y, z ∈ X, p, q ∈ �(x, y, z), and their corresponding
points p, q ∈ S2, the following relation is satisfied,

d(p, q) ≤ dS2(x, y),

where dS2 is the spherical metric on S2.
The following results are fundamental and important for our work.

Lemma 1 (Kimura-Satô [15]). Let X be a CAT(1) space. Then, for every x, y, z ∈ X with
d(x, y) + d(y, z) + d(z, x) < 2π and α ∈ [0, 1], the following inequality holds,

cos d(x, w) sin d(y, z) ≥ cos d(x, y) sin(αd(y, z)) + cos d(x, z) sin((1 − α)d(y, z)),

where w = αy ⊕ (1 − α)z.

Lemma 2 (Kimura-Satô [9]). Let X be a CAT(1) space. Then, for every x, y, z ∈ X with
d(x, y) + d(y, z) + d(z, x) < 2π and α ∈ [0, 1], the following inequality holds,

cos d(x, w) ≥ α cos d(x, y) + (1 − α) cos d(x, z),

where w = αy ⊕ (1 − α)z.

Lemma 3 (Kimura-Satô [9]). Let X be a CAT(1) space such that d(v, v′) < π for every v, v′ ∈ X.
Let α ∈ [0, 1] and u, y, z ∈ X. Then,

1 − cos d(αu ⊕ (1 − α)y, z)

≤ (1 − β)(1 − cos d(y, z)) + β

(
1 − cos d(u, z)

sin d(u, y) tan( α
2 d(u, y)) + cos d(u, y)

)
,
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where

β =

⎧⎨⎩1 − sin((1 − α)d(u, y))
sin d(u, y)

(u �= y),

α (u = y).

Let {xn} ⊂ X be a bounded sequence. We say a point z ∈ X is an asymptotic center of
{xn} if it is a minimizer of the function lim supn→∞ d(xn, ·), that is,

lim sup
n→∞

d(xn, z) ≤ lim sup
n→∞

d(xn, y)

for every y ∈ X. If z ∈ X is the unique asymptotic center of all subsequences of {xn},
then we say {xn} is Δ-convergent to a Δ-limit z. We know that in a CAT(1) space,
every sequence {xn} satisfying infy∈X lim supn→∞ d(xn, y) < π/2 has a unique asymp-
totic center and a Δ-convergent subsequence.

Let X be a CAT(1) space and T : X → X. The set of all fixed points of T is denoted by
F(T). Namely, F(T) = {z ∈ X : z = Tz}. T is said to be quasi-nonexpansive if F(T) �= ∅
and d(Tx, z) ≤ d(x, z) for every x ∈ X and z ∈ F(T). A quasi-nonexpansive mapping T
is said to be strongly quasi-nonexpansive if limn→∞ d(xn, Txn) = 0 whenever {xn} ⊂ X
satisfies supn∈N d(xn, p) < π/2 and limn→∞(cos d(xn, p)/ cos d(Txn, p)) = 1 for every
p ∈ F(T).

A mapping T is said to be Δ-demiclosed if z ∈ F(T) whenever {xn} is Δ-convergent
to z and limn→∞ d(xn, Txn) = 0.

Following [16], we define the notions of a strongly quasi-nonexpansive sequence
and a Δ-demiclosed sequence on CAT(1) spaces as follows. Let {Tn} be a sequence of
mappings from X to X. {Tn} is said to be a strongly quasi-nonexpansive sequence if each
Tn is quasi-nonexpansive and limn→∞ d(xn, Tnxn) = 0 whenever supn∈N d(xn, p) < π/2
and limn→∞(cos d(xn, p)/ cos d(Tnxn, p)) = 1 for every p ∈ ⋂∞

n=1 F(Tn). {Tn} is said to
be a Δ-demiclosed sequence if z ∈ ⋂∞

n=1 F(Tn) whenever {xn} is Δ-convergent to z and
limn→∞ d(xn, Tnxn) = 0.

Let X be a complete CAT(1) space and C ⊂ X a nonempty closed π-convex subset
such that d(x, C) = infy∈C d(x, y) < π/2 for every x ∈ X. Then, for each x ∈ X, there exists
a unique point yx ∈ C satisfying d(x, yx) = infy∈C d(x, y). Using this point, we define a
metric projection PC : X → C by PCx = yx for x ∈ X.

Let X be a complete CAT(1) space such that d(v, v′) < π/2 for every v, v′ ∈ X.
Let f : X → ]−∞,+∞] be a proper lower semicontinuous convex function. The resolvent
R f of f is defined by

R f x = argmin
y∈X

( f (y) + tan d(y, x) sin d(y, x))

for all x ∈ X; (see in [14]). We know that R f is a single-valued mapping from X to X. We
also know that the resolvent R f is strongly quasi-nonexpansive and Δ-demiclosed such
that F(R f ) = argminx∈X f (see [11,14]).

We recall some lemmas useful for our results.

Lemma 4 (Kimura-Satô [17]). Let X be a complete CAT(1) space such that d(u, v) < π/2 for
all u, v ∈ X. Let S, T be quasi-nonexpansive mappings from X to X with F(S) ∩ F(T) �= ∅.
Then, for every α ∈ ]0, 1[, F(S) ∩ F(T) = F(αS ⊕ (1 − α)T) and the mapping αS ⊕ (1 − α)T is
quasi-nonexpansive.

Lemma 5 (He-Fang-López-Li [18]). Let X be a complete CAT(1) space and p ∈ X. If a sequence
{xn} in X satisfies that lim supn→∞ d(xn, p) < π/2 and that {xn} is Δ-convergent to x ∈ X,
then d(x, p) ≤ lim infn→∞ d(xn, p).
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Lemma 6 (Saejung-Yotkaew [19], Aoyama-Kimura-Kohsaka [20]). Let {sn} and {tn} be se-
quences of real numbers such that sn ≥ 0 for every n ∈ N. Let {βn} be a sequence in ]0, 1[ such that
∑∞

n=0 βn = ∞. Suppose that sn+1 ≤ (1 − βn)sn + βntn for every n ∈ N. If lim supk→∞ tnk ≤ 0
for every nondecreasing sequence {nk} of N satisfying lim infk→∞(snk+1 − snk ) ≥ 0, then
limn→∞ sn = 0.

3. Lemmas for a Finite Number of Resolvent Operators

In this section, we prove some lemmas by using a finite number of resolvent oper-
ators for iterative schemes. Throughout this section, let X be a CAT(1) space such that
d(v, v′) < π/2 for every v, v′ ∈ X.

Lemma 7. For a given real number a ∈
]
0, 1

2

]
, let σ ∈ [a, 1 − a]. For given points y, y0, y1 ∈ X,

define w ∈ X by
w = σy0 ⊕ (1 − σ)y1.

Then,
cos d(w, y) cos(ad(y0, y1)) ≥ min{cos d(y0, y), cos d(y1, y)}.

Proof. If y0 = y1, it is obvious. Otherwise, by Lemma 1, we have

cos d(w, y) sin d(y0, y1)

≥ cos d(y0, y) sin(σd(y0, y1)) + cos d(y1, y) sin((1 − σ)d(y0, y1))

≥ min{cos d(y0, y), cos d(y1, y)}(sin(σd(y0, y1)) + sin((1 − σ)d(y0, y1)))

= 2 min{cos d(y0, y), cos d(y1, y)} sin
d(y0, y1)

2
cos

(2σ − 1)d(y0, y1)

2
.

Dividing above by 2 sin(d(y0, y1)/2), we have

cos d(w, y) cos
d(y0, y1)

2

≥ min{cos d(y0, y), cos d(y1, y)} cos
(2σ − 1)d(y0, y1)

2

≥ min{cos d(y0, y), cos d(y1, y)} cos
(1 − 2a)d(y0, y1)

2
.

Moreover, dividing above by cos((1 − 2a)d(y0, y1)/2), we have

min{cos d(y0, y), cos d(y1, y)}

≤ cos d(w, y)
cos

(1 − 2a)d(y0, y1)

2
cos(ad(y0, y1))− sin

(1 − 2a)d(y0, y1)

2
sin(ad(y0, y1))

cos
(1 − 2a)d(y0, y1)

2
≤ cos d(w, y) cos(ad(y0, y1)).

This completes the proof.

Lemma 8. For a given real number a ∈
]
0, 1

2

]
, let σl ∈ [a, 1 − a] for every l = 0, 1, . . . , N − 1.

For given points y, yk ∈ X for every k = 0, 1, . . . , N, define wl ∈ X by

wN = yN and wl = σlyl ⊕ (1 − σl)wl+1

for every l = 0, 1, . . . , N − 1. Then,

cos d(w0, y) cos(ad(y0, w1)) ≥ min
k∈{0,1,...,N}

cos d(yk, y).
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Proof. By Lemma 7,

cos d(w0, y) cos(ad(y0, w1)) ≥ min{cos d(y0, y), cos d(w1, y)}.

We also have

cos d(wl , y) ≥ cos d(wl , y) cos(ad(yl , wl+1))

≥ min{cos d(yl , y), cos d(wl+1, y)}

for l = 1, 2, . . . , N − 1. Therefore, cos d(w0, y) cos(ad(y0, w1)) ≥ mink∈{0,1,...,N} cos d(yk, y).
This completes the proof.

Corollary 1. Let Tk be a quasi-nonexpansive mapping from X to X for every k = 0, 1, . . . , N.
For a given real number a ∈

]
0, 1

2

]
, let σl ∈ [a, 1 − a] for every l = 0, 1, . . . , N − 1. Define

Ul : X → X by
UN = TN and Ul = σlTl ⊕ (1 − σl)Ul+1

for every l = 0, 1, . . . , N − 1. Let x ∈ X and p ∈ ⋂N
k=0 F(Tk). Then,

cos d(U0x, p) cos(ad(T0x, U1x)) ≥ cos d(x, p).

Next, we show several properties of a sequence of resolvents. Let f be a proper lower
semicontinuous convex function from X into ]−∞,+∞] such that argminX f �= ∅ and let
{λn} be a real sequence such that inf λn > 0. Then we know that {Rλn f } is a strongly
quasi-nonexpansive sequence and Δ-demiclosed sequence (see [11]). Therefore, we obtain
the following results, using Lemma 4.

Lemma 9. Let f k be a proper lower semicontinuous convex function from X into ]−∞,+∞] for
every k = 0, 1, . . . , N such that

⋂N
k=0 argminX f k �= ∅. For a given real number a ∈

]
0, 1

2

]
,

let σl ∈ [a, 1 − a] for every l = 0, 1, . . . , N − 1 and λk ∈ [a,+∞[ for every k = 0, 1, . . . , N.
Let Rλk f k be the resolvent of λk f k for every k = 0, 1, . . . , N. Define Ul : X → X by

UN = RλN f N and Ul = σl Rλl f l ⊕ (1 − σl)Ul+1

for every l = 0, 1, . . . , N − 1. Then

F(U0) =
N⋂

k=0

argmin
X

f k.

Lemma 10. Let {Tn} be a strongly quasi-nonexpansive sequence. Let f be a proper lower semicon-
tinuous convex function from X into ]−∞,+∞] such that

⋂∞
n=1 F(Tn) ∩ argminX f �= ∅. For a

given real number a ∈
]
0, 1

2

]
, let {σn} ⊂ [a, 1 − a] and {λn} ⊂ [a,+∞[. Let Rλn f be the resolvent

of λn f for every n ∈ N. Then {σnRλn f ⊕ (1 − σn)Tn} is a strongly quasi-nonexpansive sequence.

Proof. Let Vn = σnRλn f ⊕ (1 − σn)Tn for every n ∈ N. From Lemma 4, Vn is a quasi-
nonexpansive mapping for every n ∈ N. From Corollary 1, for {xn} ⊂ X and p ∈⋂∞

n=1 F(Tn)∩ argminX f such that limn→∞ cos d(xn, p)/ cos d(Vnxn, p) = 1 and supn∈N d(xn, p) <
π/2, we have

cos d(Vnxn, p) cos(ad(Rλn f xn, Tnxn)) ≥ cos d(xn, p)

and thus

cos(ad(Rλn f xn, Tnxn)) ≥ cos d(xn, p)
cos d(Vnxn, p)

→ 1.
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That is, limn→∞ d(Rλn f xn, Tnxn) = 0. Therefore, we have

lim
n→∞

d(Tnxn, Vnxn) = lim
n→∞

σnd(Rλn f xn, Tnxn) = 0.

As 1 = limn→∞ cos d(xn, p)/ cos d(Vnxn, p) = limn→∞ cos d(xn, p)/ cos d(Tnxn, p), we have

lim
n→∞

d(Tnxn, xn) = 0.

Thus, we obtain
d(Vnxn, xn) ≤ d(Vnxn, Tnxn) + d(Tnxn, xn) → 0.

This completes the proof.

Corollary 2. Let f k be the same as in Lemma 9 for k = 0, 1, . . . , N. For a given real number
a ∈
]
0, 1

2

]
, let {σl

n} ⊂ [a, 1 − a] for every l = 0, 1, . . . , N − 1 and {λk
n} ⊂ [a,+∞[ for every

k = 0, 1, . . . , N. Let Rλk
n f k be the resolvent of λk

n f k for every k = 0, 1, . . . , N and n ∈ N. Define

Ul
n : X → X by

UN
n = RλN

n f N and Ul
n = σl

nRλl
n f l ⊕ (1 − σl

n)U
l+1
n

for every l = 0, 1, . . . , N − 1 and n ∈ N. Then, {U0
n} is a strongly quasi-nonexpansive sequence.

Lemma 11. Let {Tn} be a quasi-nonexpansive and Δ-demiclosed sequence. Let f be a proper lower
semicontinuous convex function from X into ]−∞,+∞] such that

⋂∞
n=1 F(Tn)∩ argminX f �= ∅.

For a given real number a ∈
]
0, 1

2

]
, let {σn} ⊂ [a, 1 − a] and {λn} ⊂ [a,+∞[. Let Rλn f be the

resolvent of λn f for every n ∈ N. Then {σnRλn f ⊕ (1 − σn)Tn} is a Δ-demiclosed sequence.

Proof. Let Vn = σnRλn f ⊕ (1 − σn)Tn for every n ∈ N. Let p ∈ ⋂∞
n=1 F(Tn) ∩ argminX f ,

{xn} ⊂ X, and z ∈ X such that limn→∞ d(Vnxn, xn) = 0 and suppose that {xn} is Δ-
convergent to z. Then,

cos d(Vnxn, p) cos(ad(Rλn f xn, Tnxn)) ≥ cos d(xn, p)

and thus

1 ≥ cos(ad(Rλn f xn, Tnxn)) ≥ cos d(xn, p)
cos d(Vnxn, p)

≥ cos(d(xn, Vnxn) + d(Vnxn, p))
cos d(Vnxn, p)

→ 1.

Therefore, limn→∞ d(Rλn f xn, Tnxn) = 0. Thus, we have

d(Rλn f xn, Vnxn) = (1 − σn)d(Rλn f xn, Tnxn)

≤ (1 − a)d(Rλn f xn, Tnxn) → 0.

Since Rλn f is a Δ-demiclosed sequence, we have Rλn f z = z. Similarly,

d(Tnxn, Vnxn) = σnd(Rλn f xn, Tnxn)

≤ (1 − a)d(Rλn f xn, Tnxn) → 0.

Since {Tn} is a Δ-demiclosed sequence, we have Tnz = z. Thus, Vnz = z. This completes
the proof.

Corollary 3. Let f k, {σl
n}, {λk

n} and {Ul
n} be the same as in Corollary 2 for k = 0, 1, . . . , N and

l = 0, 1, . . . , N − 1. Then {U0
n} is a Δ-demiclosed sequence.
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4. Iterative Schemes for a Finite Resolvents Operators

We prove convergence of Mann and Halpern types of iterative sequences for finitely
many convex functions by using the properties of a sequence of the resolvents in CAT(1) space.

Theorem 1. Let X be a complete CAT(1) space such that d(v, v′) < π/2 for every v, v′ ∈ X.
Let f k be a proper lower semicontinuous convex function from X into ]−∞,+∞] for every k =

0, 1, . . . , N such that F =
⋂N

k=0 argminX f k �= ∅. For a given real number a ∈
]
0, 1

2

]
, let

{σl
n} ⊂ [a, 1 − a] for every l = 0, 1, . . . , N − 1 and {λk

n} ⊂ [a,+∞[ for every k = 0, 1, . . . , N.
Let Rλk

n f k be the resolvent of λk
n f k for every k = 0, 1, . . . , N and n ∈ N. Define Ul

n : X → X by

UN
n = RλN

n f N and Ul
n = σl

nRλl
n f l ⊕ (1 − σl

n)U
l+1
n

for every l = 0, 1, . . . , N − 1 and n ∈ N. Let {αn} be a real sequence in [a, 1 − a]. For a given
point x1 ∈ X, let {xn} be the sequence in X generated by

xn+1 = αnxn ⊕ (1 − αn)U0
nxn

for n ∈ N. Then, {xn} Δ-converges to a point of F.

Proof. Let z ∈ F. As U0
n is a quasi-nonexpansive mapping, it follows from Lemma 2 that

cos d(xn+1, z) ≥ αn cos d(xn, z) + (1 − αn) cos d(U0
nxn, z)

≥ cos d(xn, z).

Thus we have d(xn+1, z) ≤ d(xn, z) for n ∈ N. There exists D = limn→∞ d(xn, z) ≤
d(x1, z) < π/2. From Lemma 1, we get

cos d(xn+1, z) sin d(xn, U0
nxn)

≥ cos d(xn, z) sin αnd(xn, U0
nxn) + cos d(U0

nxn, z) sin(1 − αn)d(xn, U0
nxn)

≥ 2 cos d(xn, z) sin
d(xn, U0

nxn)

2
cos

(2αn − 1)d(xn, U0
nxn)

2
.

If d(xn, U0
nxn) �= 0, we obtain

cos d(xn+1, z) cos
d(xn, U0

nxn)

2
≥ cos d(xn, z) cos

(2αn − 1)d(xn, U0
nxn)

2
.

As {αn} ⊂ [a, 1 − a], we get

1 >
cos d(xn ,U0

nxn)
2

cos (1−2a)d(xn ,U0
nxn)

2

≥ cos d(xn ,U0
nxn)

2

cos (2αn−1)d(xn ,U0
nxn)

2

≥ cos d(xn, z)
cos d(xn+1, z)

.

As D = limn→∞ d(xn, z) ≤ d(x1, z) < π/2, we have

lim
n→∞

cos d(xn ,U0
nxn)

2

cos (1−2a)d(xn ,U0
nxn)

2

= 1

and thus limn→∞ d(xn, U0
nxn) = 0. Let x0 be an asymptotic center of {xn} and y an asymp-

totic center of any subsequence {xnk} ⊂ {xn}. There exists {xnkl
} ⊂ {xnk} such that {xnkl

}
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Δ-converges to w. As {U0
nkl

} is a Δ-demiclosed sequence and limn→∞ d(U0
nkl

xnkl
, xnkl

) = 0,

we obtain w ∈ F. Since there exists limn→∞ d(xnk , w), we have

lim sup
k→∞

d(xnk , w) = lim
k→∞

d(xnk , w) = lim
l→∞

d(xnkl
, w)

≤ lim sup
l→∞

d(xnkl
, y) ≤ lim sup

k→∞
d(xnk , y).

Therefore, we obtain y = w ∈ F. Similarly, we get x0 = y. Therefore, {xn} Δ-converges to
x0 ∈ F.

Theorem 2. Let X, f k, {σl
n}, {λk

n} and {Ul
n} be the same as in Theorem 1 for k = 0, 1, . . . , N

and l = 0, 1, . . . , N − 1. Let {αn} be a real sequence in ]0, 1[ such that limn→∞ αn = 0 and
∑∞

n=0 αn = ∞. For given points u, x1 ∈ X, let {xn} be the sequence in X generated by

xn+1 = αnu ⊕ (1 − αn)U0
nxn

for n ∈ N. Suppose that one of the following conditions holds:

(a) supv,v′∈X d(v, v′) < π/2;
(b) d(u, PFu) < π/4 and d(u, PFu) + d(x0, PFu) < π/2;
(c) ∑∞

n=0 α2
n = ∞.

Then, {xn} converges to PFu.

To prove this theorem, we also employ the technique proposed in [9]. Note that
F =
⋂N

k=0 argminX f k.

Proof. Let p = PFu and let

sn = 1 − cos d(xn, p),

tn = 1 − cos d(u, p)
sin d(u, U0

nxn) tan( αn
2 d(u, U0

nxn)) + cos d(u, U0
nxn)

,

βn =

⎧⎪⎨⎪⎩1 − sin((1 − αn)d(u, U0
nxn))

sin d(u, U0
nxn)

(u �= U0
nxn),

αn (u = U0
nxn)

for n ∈ N. Since U0
n is a quasi-nonexpansive mapping, it follows from Lemma 3 that

sn+1 ≤ (1 − βn)(1 − cos d(U0
nxn, p)) + βntn ≤ (1 − βn)sn + βntn

for n ∈ N. By Lemma 2, we have

cos d(xn+1, p) = cos d(αnu ⊕ (1 − αn)U0
nxn, p)

≥ αn cos d(u, p) + (1 − αn) cos d(U0
nxn, p)

≥ αn cos d(u, p) + (1 − αn) cos d(xn, p)

≥ min{cos d(u, p), cos d(xn, p)}

for n ∈ N. So we have

cos d(xn, p) ≥ min{cos d(u, p), cos d(x0, p)} = cos max{d(u, p), d(x0, p)} > 0

for n ∈ N. Hence supn∈N d(xn, p) ≤ max{d(u, p), d(x0, p)} < π/2. Next, we will show for
each of the conditions (a–c) imply that ∑∞

n=0 βn = ∞. For the conditions (a) and (b), let
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M = supn∈N d(u, U0
nxn). Thus, we will show M < π/2. In case (a), it is obvious. In case

(b), as supn∈N d(xn, p) ≤ max{d(u, p), d(x0, p)}, we have

M ≤ sup
n∈N

(d(u, p) + d(U0
nxn, p))

≤ sup
n∈N

(d(u, p) + d(xn, p))

≤ max{2d(u, p), d(u, p) + d(x0, p)} < π/2.

Thus, for cases (a) and (b), we have

βn ≥ 1 − sin((1 − αn)M)

sin M

=
2

sin M
sin
(αn

2
M
)

cos
((

1 − αn

2

)
M
)

≥ αn cos M

for n ∈ N. As ∑∞
n=0 αn = ∞, each of the conditions (a) and (b) implies that ∑∞

n=0 βn = ∞.
In the case (c), we have

βn ≥ 1 − sin
(1 − αn)π

2
= 1 − cos

αn

2
≥ α2

nπ2

16

for n ∈ N. Hence the condition (c) also implies that ∑∞
n=0 βn = ∞. For {sni} ⊂ {sn} with a

nondecreasing real sequence {ni} ⊂ N such that lim infi→∞(sni+1 − sni ) ≥ 0, we have

0 ≤ lim inf
i→∞

(sni+1 − sni )

= lim inf
i→∞

(cos d(xni , p)− cos d(xni+1, p))

≤ lim inf
i→∞

(cos d(xni , p)− (αni cos d(u, p) + (1 − αni ) cos d(U0
ni

xni , p)))

= lim inf
i→∞

(cos d(xni , p)− cos d(U0
ni

xni , p))

≤ lim sup
i→∞

(cos d(xni , p)− cos d(U0
ni

xni , p)) ≤ 0.

Hence limi→∞(cos d(xni , p) − cos d(U0
ni

xni , p)) = 0. Since supn∈N d(U0
nxn, p) < π/2,

we have limi→∞(cos d(xni , p)/ cos d(U0
ni

xni , p)) = 1. As {U0
ni
} is a strongly quasi-nonexpansive

sequence, it follows that limi→∞ d(xni , U0
ni

xni ) = 0. Let {xnj} ⊂ {xni} be a Δ-convergent
subsequence such that limj→∞ d(u, xnj) = lim infi→∞ d(u, xni ). Since {U0

n} is a Δ-demiclosed
sequence and limj→∞ d(xnj , U0

nj
xnj) = 0, the Δ-limit z ∈ {xnj} belongs to F. By Lemma 5,

we have

lim inf
i→∞

d(u, U0
ni

xni ) = lim inf
i→∞

d(u, xni ) = lim
j→∞

d(u, xnj) ≥ d(u, z) ≥ d(u, p).

Hence

lim sup
i→∞

tni = lim sup
i→∞

(
1 − cos d(u, p)

sin d(u, U0
ni xni ) tan(

αni
2 d(u, U0

ni xni ) + cos d(u, U0
ni xni )

)

= lim sup
i→∞

(
1 − cos d(u, p)

cos d(u, U0
ni xni )

)
≤ 0.

From Lemma 6, we have limn→∞ sn = 0. Therefore, {xn} converges to p. This completes
the proof.
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5. Applications to the Image Recovery Problem

At the end of this work, we apply our results to the problem of finding a point of the
intersection of a finite family of closed convex subsets. This problem is also known as the
image recovery problem. See the works in [21,22] and references therein.

Let C be a nonempty closed convex subset of a complete CAT(1) space such that
d(v, v′) < π/2 for every v, v′ ∈ X. Then, the indicator function iC : C → X of C defined by

iC(x) =

{
0 (x ∈ C),
∞ (x /∈ C)

is proper, lower semicontinuous, and convex. As is mentioned in [14], the resolvent RiC
of this function coincides with the metric projection PC. Using this fact, we obtain the
following results for the image recovery problem. The first result can be proved by using
Theorem 1.

Theorem 3. Let X be a complete CAT(1) space such that d(v, v′) < π/2 for every v, v′ ∈ X.
Let {C0, C1, . . . , CN} be a finite family of nonempty closed convex subsets of X such that C =⋂N

k=0 CK �= ∅. For a given real number a ∈
]
0, 1

2

]
, let {σl

n} ⊂ [a, 1 − a] for l = 0, 1, . . . , N − 1

and n ∈ N. Let PCk be the metric projection onto Ck for k = 0, 1, . . . , N. Define Ul
n : X → X by

UN
n = PCN and Ul

n = σl
nPCl ⊕ (1 − σl

n)U
l+1
n

for every l = 0, 1, . . . , N − 1 and n ∈ N. Let {αn} be a real sequence in [a, 1 − a]. For a given
point x1 ∈ X, let {xn} be the sequence in X generated by

xn+1 = αnxn ⊕ (1 − αn)U0
nxn

for n ∈ N. Then, {xn} Δ-converges to a point of C.

Note that this theorem is a generalization of the result by [21] in the setting of Hilbert
spaces, to complete CAT(1) spaces.

On the other hand, by using Thoerem 2, we can also prove the following theorem
which was obtained by the authors of [23].

Theorem 4 (Kasahara-Kimura [23]). Let X be a complete CAT(1) space such that d(v, v′) <
π/2 for every v, v′ ∈ X. Let {C0, C1, . . . , CN} be a finite family of nonempty closed convex subsets
of X such that C =

⋂N
k=0 CK �= ∅. For a given real number a ∈

]
0, 1

2

]
, let {σl

n} ⊂ [a, 1 − a]
for l = 0, 1, . . . , N − 1 and n ∈ N. Let PCk be the metric projection onto Ck for k = 0, 1, . . . , N.
Define Ul

n : X → X by

UN
n = PCN and Ul

n = σl
nPCl ⊕ (1 − σl

n)U
l+1
n

for every l = 0, 1, . . . , N − 1 and n ∈ N. Let {αn} be a real sequence in ]0, 1[ such that
limn→∞ αn = 0 and ∑∞

n=0 αn = ∞. For given points u, x1 ∈ X, let {xn} be the sequence in
X generated by

xn+1 = αnu ⊕ (1 − αn)U0
nxn

for n ∈ N. Suppose that one of the following conditions holds:

(a) supv,v′∈X d(v, v′) < π/2;
(b) d(u, PCu) < π/4 and d(u, PCu) + d(x0, PCu) < π/2;
(c) ∑∞

n=0 α2
n = ∞.

Then {xn} converges to PCu.
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6. Conclusions

We proposed a new type of iterative scheme for the problem of finding a com-
mon minimizer of finitely many convex functions defined on a complete CAT(1) space.
We considered the resolvent operators for proper lower semicontinuous convex functions
defined on a complete CAT(1) space and their convex combination. As the convex combi-
nation on a CAT(1) space is defined only between two points, we need to take it repeatedly
for three or more points.

In the first result (Theorem 1), we adopted a Mann-type sequence defined by the
following iterative formula: x1 ∈ X is given and

xn+1 = αnxn ⊕ (1 − αn)U0
nxn

for n ∈ N, where a mapping U0
n is defined by the convex combination of finitely many

resolvents. Then, {xn} is Δ-convergent to a solution to our problem.
In the second result (Theorem 2), we used a Halpern-type sequence defined as follows:

u, x1 ∈ X is given and
xn+1 = αnu ⊕ (1 − αn)U0

nxn

for n ∈ N. Then, it converges to PFu, the nearest point of the solution set F to u.
Further, we showed that these results can be applied to the image recovery problem.
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1. Introduction

Let C be a nonempty, closed and convex subset of a real Hilbert space H. The Equilib-
rium Problem (EP) in the sense of Blum and Oettli [1] is to find a point x ∈ C, such that

F(x, y) ≥ 0, y ∈ C, (1)

where F : C × C → R is a bifunction. The EP unify many important problems, such
as variational inequalities, fixed point problems, optimization problems, saddle point
(minmax) problems, Nash equilibria problems and complimentarity problems [2–7]. It also
finds applications in other fields of studies like physics, economics, engineering and so
on [1,2,8–10]. The Generalized Mixed Equilibrium Problem (GMEP) (see e.g., [11]) is to
find x ∈ C, such that

F(x, y) + 〈g(x), y − x〉+ φ(y)− φ(x) ≥ 0, ∀ y ∈ C, (2)

where g : C → H is a nonlinear mapping and φ : C → R ∪ {+∞} is a proper lower
semicontinuous convex function. The solution set of (2) will be denoted GMEP(F, g, φ).

The GMEP includes as special cases, minimization problem, variational inequality
problem, fixed point problem, nash equilibrium etc. GMEP (2) and these special cases
have been studied in Hilbert, Banach, Hadamard and p-uniformly convex metric spaces ,
see [11–21].

For a real Hilbert space H, the Variational Inclusion Problem (VIP) consists of finding
a point x∗ ∈ H such that

0 ∈ Ax∗, (3)
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where A : H → 2H is a multivalued operator. If A is a maximal monotone operator,
then the VIP reduces to the Monotone Inclusion Problem (MIP). The MIP provides a
general framework for the study of many important optimization problems, such as convex
programming, variationa inequalities and so on.

For solving Problem (3), Martinet [22] introduced the Proximal Point Algorithm (PPA),
which is given as follows: x0 ∈ H and

xn+1 = JA
rn xn, (4)

where {rn} ⊂ (0,+∞) and JA
rn = (I + rn A)−1 is the resolvent of the maximal monotone

operator A corresponding to the control sequence {rn}. Several iterative algorithms have
been proposed by authors in the literature for solving Problem (3) and related optimization
problems, see [23–37].

Censor and Elfving [38] introduced the notion of Split Feasibility Problem (SFP). The
SFP consists of finding a point

x∗ ∈ C such that Lx∗ ∈ Q, (5)

where C and Q are nonempty closed convex subsets of Rn and Rm respectively and L is an
m × n matrix. The SFP has been studied by researchers due to its applications in various
field of science and technology, such as signal processing, intensity-modulated radiation
therapy and medical image construction, for details, see [39,40]. In solving (5), Byrne [39]
introduced the following iterative algorithm: let x0 ∈ Rn be arbitrary,

xn+1 = PC(xn − γL∗(I − PQ)Lxn), (6)

where γ ∈ (0, 2/||L||2), L∗ is the transpose of the matrix L, PC and PQ are nearest point
mappings onto C and Q respectively. Lopez et al. [41] suggested the use of a stepsize γn in
place of γ in Algorithm (6), where the stepsize does not depend on operator L. The stepsize
γn is given as:

γn :=
θn||(I − PQ)Lxn||2

2||L∗(I − PQ)Lxn||2 , (7)

where θn ∈ (0, 4) and L∗(I − PQ)Lxn �= 0. They proved a weak convergence theorem of the
proposed algorithm. The authors in [41] noted that for L with higher dimensions, it may
be hard to compute the operator norm and this may have effect on the iteration process.
Instances of this effect can be observed in the CPU time. The algorithm with stepsizes
improves the performance of the Byrne algorithm.

The Split Null Point Problem (SNPP) was introduced in 2012 by Byrne et al. [42].
These authors combined the concepts of VIP and SFP and defined SNPP as follows: Find
x∗ ∈ H1 such that

0 ∈ A1(x∗) and Lx∗ ∈ H2 such that 0 ∈ A2(Lx∗), (8)

where Ai : Hi → 2Hi , i = 1, 2 are maximal monotone operators, H1 and H2 are real Hilbert
spaces. For solving (8), Byrne et al. [42] proposed the following iterative algorithm: For
r > 0 and an arbitrary x0 ∈ H1,

xn+1 = JA1
r (xn − γL∗(I − JA2

r )Lxn), (9)

where γ ∈ (0, 2/||L||2). They prove a weak convergence of (9) to a solution of (8).
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One of our aim in this work is to consider a generalization of Problem (3) in the
following form: Find x∗ ∈ H such that

0 ∈
N⋂

i=1

Ai(x∗), (10)

where Ai is a finite family of maximal monotone operators. There have been some itera-
tive algorithms for approximating the solution of (10) in the literature, (see [37] and the
references therein).

In this study, we consider the problem of finding the common solution of the GMEP
(2) and the SNPP for a finite family of intersection of maximal monotone operator in the
frame work of real Hilbert spaces. We consider the following generalization of the SNPP:
Find x∗ ∈ C such that x∗ ∈ GMEP(F, g, φ) and

x∗ ∈
N⋂

i=1

A−1
i (0) such that Lx∗

N⋂
i=1

B−1
i (0). (11)

In our quest to obtain a common element in the solution set of problems (2) and (11), the
following two research questions arise.

(1) Can we obtain an iterative algorithm which solves problem (11), without depending
on the operator norm?

(2) Can we obtain a strong convergence theorem for the proposed algorithm to the
solution of problem (11) ?

In this work, we give an affirmative answer to the questions above by introducing an
iterative algorithm which solves (11). Further, we prove a strong convergence theorem of
the proposed algorithm to the common solution of problem given by (11).

2. Preliminaries

In this section, we give some important definitions and Lemmas which are useful in
establishing our main results.

From now, we denote by H a real Hilbert space, C a nonempty closed convex subset
of H with inner product and norm denoted by 〈·, ·〉 and || · || respectively. We denote by
xn ⇀ x and xn → x respectively the weak and strong convergence of a sequence {xn} ⊂ H
to a point x ∈ H.

The nearest point mapping PC : H → C is defined by PCx := {x ∈ C : ||x − y|| =
dC(x), ∀y ∈ H}, where dC : H → R is the distance function of C. The mapping PC is known
to satisfy the inequality

〈x − PCx, y − PCx〉 ≤ 0, ∀ x ∈ H and y ∈ C, (12)

see e.g., [9,10] for details.
A point x ∈ C is said to be a fixed point of a mapping T : H → H, if x = Tx. We

denote by F(T) the set of fixed point of T. A mapping f : C → C is said to be a contraction,
if there exists a constant c ∈ (0, 1), such that

|| f (x)− f (y)|| ≤ c||x − y||, ∀ x, y ∈ C. (13)

If c = 1, then f is called nonexpansive.
A mapping T : H → H is said to be firmly nonexpansive if, for all x, y ∈ H, the

following holds

||Tx − Ty||2 ≤ ||x − y||2 − ||(I − T)x − (I − T)y||2, (14)

where I is an identity mapping on H.
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Lemma 1 ([43]). Let T : H → H be a mapping. Then the following are equivalent:

(i) T is firmly nonexpansive,
(ii) I − T is firmly nonexpansive,
(iii) 2T − I is nonexpansive,
(iv) 〈x − y, Tx − Ty〉 ≥ ||Tx − Ty||2,
(v) 〈(I − T)x − (I − T)y, Tx − Ty〉 ≥ 0.

A multivalued mapping A : H → 2H is called monotone if for all x, y ∈ H, u ∈ Ax
and v ∈ Ay, we have

〈x − y, u − v〉 ≥ 0. (15)

A monotone mapping A is said to be maximal if its graph G(A) := {(x, u) ∈ H × H : u ∈
Ax} is not properly contained in the graph of any other monotone operator.

Let A : H → H be a single-valued mapping, then for a positive real number β, A is
said to be β-inverse strongly monotone (β-ism), if

〈x − y, Ax − Ay〉 ≥ β||Ax − Ay||2, ∀ x, y ∈ H. (16)

This class of monotone mapping have been widely studied in literature (see [44,45])
for more details. If A is a monotone operator, then we can define, for each r > 0, a
nonexpansive single-valued mapping JA

r : R(I + rA) → D(A) by JA
r := (I + rA)−1 which

is generally known as the resolvent of A, (see [46,47]). It is also known that A−1(0) = F(JA
r ),

where A−1(0) = {x ∈ H : 0 ∈ Ax} and F(JA
r ) = {x ∈ H : JA

r x = x}.

Lemma 2 ([6,48]). Let H be a real Hilbert space. Then the following hold:

(i) ||x + y||2 ≤ ||x||2 + 2〈y, x + y〉, ∀x, y ∈ H,
(ii) ||x + y||2 = ||x||2 + 2〈x, y〉+ ||y||2, x, y ∈ H,
(iii) ||λx + (1 − λ)y||2 = λ||x||2 + (1 − λ)||y||2 − λ(1 − λ)||x − y||2, ∀x, y ∈ H and λ ∈

[0, 1].

The bifunction F : C × C → R will be assumed to admit the following restrictions:

(C1) F(x, x) = 0 for all x ∈ C;
(C2) F is monotone, i.e., F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C;
(C3) for each x, y, z ∈ C, lim

t↓0
F(tz + (1 − t)x, y) ≤ F(x, y);

(C4) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous.

Lemma 3 ([11]). Let C be a nonempty closed convex subset of real Hilbert space H. Let F be a real
valued bifunction on C × C admitting restrictions C1 − C4, g : C → H be a nonlinear mapping
and let φ : C → R ∪ {+∞} be a proper lower senicontinuous convex function. For any given
r > 0 and x ∈ H, define a mapping KF

r : H → C as

KF
r x = {z ∈ C : F(z, y) + 〈g(z), y − z〉+ φ(y)− φ(z) +

1
r
〈y − z, z − x〉 ≥ 0, ∀ y ∈ C}, (17)

for all x ∈ H. Then the following conclusions hold:

(i) for each x ∈ H, KF
r x �= ∅,

(ii) KF
r is single valued,

(iii) KF
r is firmly nonexpansive, i.e., for any x, y ∈ H

||KF
r x − KF

r y||2 ≤ 〈KF
r x − KF

r y, x − y〉,

(iv) F(KF
r (I − rg)) = GMEP(F, g, φ),

(v) GMEP(F, g, φ) is closed and convex.
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Lemma 4 ([49,50]). Let {an} be a sequence of nonnegative real numbers satisfying the following
relation:

an+1 ≤ (1 − bn)an + bncn + dn, n ∈ N, (18)

where {bn}, {cn} and {dn} are sequences of real numbers satisfying

(i) {bn} ⊂ [0, 1],
∞
∑

n=1
bn = ∞;

(ii) lim sup
n→∞

cn ≤ 0;

(iii) dn ≥ 0,
∞
∑

n=0
dn < ∞.

Then, lim
n=∞

an = 0.

3. Main Result

Throughout, we let ΦAN
λN,n

= JAN
λN,n

◦ JAN−1
λN−1,n

◦ · · · ◦ JA1
λ1,n

, where ΦA0
λ0,n

= I. Define the
stepsize γn by

γn =

⎧⎪⎨⎪⎩
θn ||(I−Φ

Bi
λi,n

)Lun ||2

||L∗(I−Φ
Bi
λi,n

)Lun ||2
, if L∗(I − ΦBi

λi,n
)Lun �= 0,

γ, otherwise,

(19)

where γn depends on θn ∈ [a, b] ⊂ (0, 1) and γ is any nonnegative number.

Lemma 5. Let H be a real Hilbert space and A : H → 2H be a monotone mapping. Then for
0 < s ≤ r, we have

||x − JA
s x|| ≤ 2||x − JA

r x||.

Proof: Notice that 1
s (x − JA

s ) ∈ AJA
s x and 1

r (x − JA
r x) ∈ AJA

r x. Using the monotonicity
of A, we have

〈1
s
(x − JA

s x)− 1
r
(x − JA

r x), JA
s x − JA

r x〉 ≥ 0.

That is

〈x − JA
s x − s

r
(x − JA

r x), JA
s x − JA

r x〉 ≥ 0,

which implies that

〈x − JA
s x, JA

s x − JA
r x〉 ≥ s

r
〈x − JA

r x, JA
s x − JA

r x〉.

Using Lemma 2 (ii), we obtain

1
2
(||x − JA

r x||2 − ||x − JA
s x||2 − ||JA

s x − JA
r x||2) ≥ s

2r
(||x − JA

r x||2 + ||JA
s x − JA

r x||2 − ||x − JA
s x||2),

that is

−
(

1
2
+

s
2r

)
||JA

s x − JA
r x||2 ≥ −

(
1
2
− s

2r

)
||x − JA

r x||2 −
(

s
2r

− 1
2

)
||x − JA

s x||2

and (
r + s

2r

)
||JA

s x − JA
r x||2 ≤

(
r − s

2r

)
||x − JA

r x||2 −
(

r − s
2r

)
||x − JA

s x||2.
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Since 0 < s ≤ r, we obtain

||JA
s x − JA

r x||2 ≤
(

r − s
r + s

)
||x − JA

r x||2,

which implies

||JA
s x − JA

r x|| ≤ ||x − JA
r x||. (20)

Now, since ||x − JA
s x|| ≤ ||x − JA

r x||+ ||JA
r x − JA

s x||, by (20), we obtain

||x − JA
s x|| ≤ ||x − JA

r x||+ ||x − JA
r x||

= 2||x − JA
r x||.

Lemma 6. Let C and Q be nonempty, closed and convex subsets of real Hilbert spaces H1 and
H2 respectively and L : H1 → H2 be a bounded linear operator. Assume F is a real valued
bifunction on C × C which admits condition C1-C4. Let φ : H1 → R∪ {+∞} be a proper, lower
semicontinuous convex function, g be a β-inverse strongly monotone mapping and f : H1 → R be a
differentiable function, such that ∇ f is a contraction with coefficient c ∈ (0, 1). For i = 1, 2 · · · , N,
let Ai : H1 → 2H1 and Bi : H2 → 2H2 be finite families of monotone mappings. Assume
Ω = GMEP(F, g, φ) ∩ Γ �= ∅, where Γ = {x∗ ∈ H1 : 0 ∈ ⋂N

i=1 Ai(x∗) and Lx∗ ∈ H2 : 0 ∈⋂N
i=1 Bi(Lx∗)}. For an arbitrary x0 ∈ H1, let {xn} ⊂ H1 be a sequence defined iteratively by⎧⎪⎪⎨⎪⎪⎩

F(un, y) + 〈g(un), y − un〉+ φ(y)− φ(un) +
1
rn
〈y − un, un − xn〉 ≥ 0, y ∈ H1,

zn = un − γnL∗(I − ΦBi
λi,n

)Lun,

xn+1 = αn∇ f (zn) + (1 − αn)Φ
Ai
λi,n

zn,

(21)

where {rn} is a nonnegative sequence of real numbers, {αn} and {λi,n} are sequences in (0, 1), γn
is a nonnegative sequence defined by (19), satisfying the following restrictions:

(i)
∞
∑

n=1
αn = ∞, lim

n→∞
αn = 0;

(ii) 0 < λi ≤ λi,n;
(iii) 0 < a ≤ rn ≤ b < 2β.

Then {xn}, {zn} and {un} are bounded.

Proof. Observe that un can be rewritten as un = KF
rn(xn − rng(xn)) for each n. Fix p ∈ Ω.

Since p = KF
rn(p − rn p), g is β-inverse strongly monotone and rn ∈ (0, 2β), for any n ∈ R,

we have from (21) and Lemma 2 (ii) that

||un − p||2 = ||KF
rn(xn − rng(xn))− KF

rn(p − rng(p))||2
≤ ||xn − rng(xn)− (p − rng(p))||2
= ||(xn − p)− rn(g(xn)− g(p)||2
= ||xn − p||2 − 2rn〈xn − p, g(xn)− g(p)〉+ r2

n||g(xn)− g(p)||2 (22)

≤ ||xn − p||2 − 2βrn||g(xn)− g(p)||2 + r2
n||g(xn)− g(p)||2

= ||xn − p||2 − rn(2β − rn)||g(xn)− g(p)||2
≤ ||xn − p||2.
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Also by Lemma 2, we have

||zn − p||2 = ||un − γnL∗(I − ΦBi
λi,n

)Lun − p||2

= ||un − p − γnL∗(I − ΦBi
λi,n

)Lun||2

= ||un − p||2 − 2γn〈un − p, L∗(I − ΦBi
λi,n

)Lun〉+ γ2
n||L∗(I − ΦBi

λi,n
)Lun||2

= ||un − p||2 − 2γn〈Lun − Lp, (I − ΦBi
λi,n

)Lun〉+ γ2
n||L∗(I − ΦBi

λi,n
)Lun||2 (23)

≤ ||un − p||2 − 2γn||(I − ΦBi
λi,n

)Lun||2 + γ2
n||L∗(I − ΦBi

λi,n
)Lun||2

≤ ||un − p||2 − γn||(I − ΦBi
λi,n

)Lun||2 + γ2
n||L∗(I − ΦBi

λi,n
)Lun||2

= ||un − p||2 − γn[||(I − ΦBi
λi,n

)Lun||2 − γn||L∗(I − ΦBi
λi,n

)Lun||2].

Using the definition of γn, we obtain

||zn − p||2 ≤ ||un − p||2, (24)

hence, ||zn − p|| ≤ ||un − p|| ≤ ||xn − p||.
Further, we obtain that

||xn+1 − p|| = ||αn∇ f (zn) + (1 − αn)Φ
Ai
λi,n

zn − p||
= ||αn(∇ f (zn)− p) + (1 − αn)(Φ

Ai
λi,n

zn − p)||
≤ αn||∇ f (zn)− p||+ (1 − αn)||ΦAi

λi,n
zn − p||

≤ αn||∇ f (zn)−∇ f (p)||+ αn||∇ f (p)− p||+ (1 − αn)||zn − p|| (25)

≤ αnc||zn − p||+ αn||∇ f (p)− p||+ ||(1 − αn)||zn − p||
= (1 − αn(1 − c))||zn − p||+ αn||∇ f (p)− p||
≤ (1 − αn(1 − c))||xn − p||+ αn(1 − c)

1 − c
||∇ f (p)− p||.

Let K = max{||x0 − p||, ||∇ f (p)−p||
1−c }. We show that ||xn − p|| ≤ K for all n ≥ 0. Indeed, we

see that ||x0 − p|| ≤ K. Now suppose ||xj − p|| ≤ K for some j ∈ N. Then, we have that

||xj+1 − p|| ≤ (1 − αj(1 − c))||xj − p||+ αj(1 − c)||∇ f (p)− p||
1 − c

≤ (1 − αj(1 − c))K + αj(1 − c)K (26)

≤ K.

By induction, we obtain that ||xn − p|| ≤ K for all n. Therefore {xn} is bounded, conse-
quently {zn} and {un} are bounded.

Theorem 1. Let C and Q be nonempty, closed and convex subsets of real Hilbert spaces H1 and H2,
respectively and L : H1 → H2 be a bounded linear operator. Assume F is a real valued bifunction on
C × C which admits condition C1-C4. Let φ : H1 → R∪ {+∞} be a proper, lower semicontinuous
function, g be a β-inverse strongly monotone mapping and f : H1 → R be a differentiable function,
such that ∇ f is a contraction with coefficient c ∈ (0, 1). For i = 1, 2 · · · , N, let Ai : H1 → 2H1

and Bi : H2 → 2H2 be finite families of monotone mappings. Assume Ω = GMEP(F, g, φ) ∩ Γ �=
∅, where Γ = {p ∈ H1 : 0 ∈ ⋂N

i=1 Ai(p) and Lp ∈ H2 : 0 ∈ ⋂N
i=1 Bi(Lp)}. For an arbitrary

x0 ∈ H1, let {xn} ⊂ H1 be a sequence defined iteratively by (21) satisfying the conditions of
Lemma 6. Then {xn} converges strongly to p ∈ Ω, where p = PΩ∇ f (p).

Proof. We observe from (21), that
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||xn+1 − p||2 = 〈αn∇ f (zn) + (1 − αn)(Φ
Ai
λi,n

zn − p), xn+1 − p〉
= αn〈∇ f (zn), xn+1 − p〉+ (1 − αn)〈ΦAi

λi,n
zn − p, xn+1 − p〉

= αn〈∇ f (zn)−∇ f (p), xn+1 − p〉+ αn〈∇ f (p)− p, xn+1 − p〉+ (1 − αn)〈ΦAi
λi,n

zn − p, xn+1 − p〉
≤ αn||∇ f (zn)−∇ f (p)|| · ||xn+1 − p||+ (1 − αn)||ΦAi

λi,n
zn − p|| · ||xn+1 − p||

+αn〈∇ f (p)− p, xn+1 − p〉 (27)

≤ αn

2

(
||∇ f (zn)−∇ f (p)||2 + ||xn+1 − p||2

)
+

(
1 − αn

2

)(
||ΦAi

λi,n
zn − p||2 + ||xn+1 − p||2

)
+αn〈∇ f (p)− p, xn+1 − p〉

≤ αnc2

2
||zn − p||2 + αn

2
||xn+1 − p||2 + (1 − αn)

2
||zn − p||2 + (1 − αn)

2
||xn+1 − p||2

+αn〈∇ f (p)− p, xn+1 − p〉

≤ [1 − αn(1 − c2)]

2
||zn − p||2 + 1

2
||xn+1 − p||2 + αn〈∇ f (p)− p, xn+1 − p〉

≤ [1 − αn(1 − c2)]

2
||un − p||2 + 1

2
||xn+1 − p||2 + αn〈∇ f (p)− p, xn+1 − p〉,

that is

||xn+1 − p||2 ≤ [1 − αn(1 − c2)]||un − p||2 + αn(1 − c2)

(
2

(1 − c2)
〈∇ f (p)− p, xn+1 − p〉

)
≤ [1 − αn(1 − c2)]||xn − p||2 + αn(1 − c2)

(
2

(1 − c2)
〈∇ f (p)− p, xn+1 − p〉

)
. (28)

From now the rest of the proof shall be divide into two cases.
Case 1: Suppose that there exists n0 ∈ N such that {||xn − p||} is not monotonically

increasing. Then by Lemma 6, we have that {||xn − p||} is convergent. From (21), we have
by Lemma 2 that

||xn+1 − p||2 = ||αn∇ f (zn) + (1 − αn)Φ
Ai
λi,n

zn − p||2

= ||αn∇( f (zn)− p) + (1 − αn)(Φ
Ai
λi,n

zn − p)||2 (29)

= αn||∇ f (zn)− p||2 + (1 − αn)||ΦAi
λi,n

zn − p||2 − αn(1 − αn)||∇ f (zn)− ΦAi
λi,n

zn||2

≤ αn||∇ f (zn)− p||2 + (1 − αn)||zn − p||2.

Thus,

||zn − p||2 ≥ ||xn+1 − p||2 − αn(||∇ f (zn)− p||2 − ||zn − p||2). (30)

From (23), we have that

γn
[||(I − ΦBi

λi,n
)Lun||2−γn||L∗(I − ΦBi

λi,n
)Lun||2

]
≤ ||un − p||2 − ||zn − p||2
≤ ||un − p||2 − ||xn+1 − p||2 + αn(||∇ f (zn)− p||2 − ||zn − p||2)
≤ ||xn − p||2 − ||xn+1 − p||2 + αn(||∇ f (zn)− p||2 − ||zn − p||2),

by using restriction (i) in Lemma 6, we have

lim
n→∞

γn
[||(I − ΦBi

λi,n
)Lun||2 − γn||L∗(I − ΦBi

λi,n
)Lun||2

]
= 0. (31)
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Using (19), we have that

[||(I − ΦBi
λi,n

)Lun||2 − γn||L∗(I − ΦBi
λi,n

)Lun||2
]
= θn(1 − θn)

||(I − ΦBi
λi,n

)Lun||4

||L∗(I − ΦBi
λi,n

)Lun||2
, (32)

thus by (31), we obtain

θn(1 − θn)
||(I − ΦBi

λi,n
)Lun||4

||L∗(I − ΦBi
λi,n

)Lun||2
→ 0, as n → ∞.

Therefore, since θn ∈ (0, 1), we obtain

lim
n→∞

||(I − ΦBi
λi,n

)Lun||2

||L∗(I − ΦBi
λi,n

)Lun||
= 0. (33)

Notice that ||L∗(I − ΦBi
λi,n

)Lun|| ≤ ||L∗|| · ||(I − ΦBi
λi,n

)Lun||, which implies

||(I − ΦBi
λi,n

)Lun|| ≤
||L∗|| · ||(I − Φλi,n)Lun||2

||L∗(I − ΦBi
λi,n

)Lun||
,

by (33), we obtain

lim
n→∞

||(I − ΦBi
λi,n

)Lun|| = 0, (34)

consequently,

lim
n→∞

||L∗(I − ΦBi
λi,n

)Lun|| = 0. (35)

From (21), we see that

||zn − un|| = ||un − γnL∗(I − ΦBi
λi,n

)Lun − un||
≤ γn||L∗(I − ΦBi

λi,n
)Lun||.

By (35), we get that

lim
n→∞

||zn − un|| = 0. (36)

Furthermore, we have from (21),

||xn+1 − zn|| = ||αn∇ f (zn) + (1 − αn)Φ
Ai
λi,n

zn − zn||
= ||αn(∇ f (zn)− zn) + (1 − αn)(Φ

Ai
λi,n

zn − zn)|| (37)

≤ αn||∇ f (zn)− zn||+ (1 − αn)||ΦAi
λi,n

zn − zn||
≤ αn||∇ f (zn)−∇ f (p)||+ αn||∇ f (p)− zn||+ (1 − αn)||zn − ΦAi

λi,n
zn||

≤ αnc||zn − p||+ αn||∇ f (p)− zn||+ (1 − αn)||zn − ΦAi
λi,n

zn||.

Observe from (21), that

||ΦAi
λi,n

zn − p|| ≥ ||xn+1 − p|| − αn||∇ f (zn)− ΦAi
λi,n

zn||,
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using the nonexpansivity of ΦAi
λi,n

, we obtain that

0 ≤ ||zn − p|| − ||ΦAi
λi,n

zn − ΦAi
λi,n

p||
= ||zn − p|| − ||ΦAi

λi,n
zn − p||

≤ ||xn − p|| − ||xn+1 − p||+ αn||∇ f (zn)− ΦAi
λi,n

zn||.

Using restriction (i) in Lemma 6, the boundedness of {zn} and the convergence of {||xn −
p||}, we have that ||zn − p|| − ||ΦAi

λi,n
zn − p|| → 0 as n → ∞. Thus by the strong nonexpan-

sivity of ΦAi
λi,n

, we get that

lim
n→∞

||zn − ΦAi
λi,n

zn|| = 0.

Using this and restriction (i) of Lemma 6 in (38), we get

lim
n→∞

||xn+1 − zn|| = 0. (38)

Observe from (28), that

−||un − p||2 ≤ −||xn+1 − p||2 − αn(1 − c2)||un − p||2 + 2αn〈∇ f (p)− p, xn+1 − p〉, (39)

since ||un − xn||2 ≤ ||xn − p||2 − ||un − p||2, using (39), we have that

||un − xn||2 ≤ ||xn − p||2 − ||xn+1 − p||2 − αn(1 − c2)||un − p||2 + 2αn〈∇ f (p)− p, xn+1 − p〉,

thus, by restriction (i) in Lemma 6, we obtain

lim
n→∞

||un − xn|| = ||KF
rn xn − xn|| = 0. (40)

Combining (36) and (40), we obtain

lim
n→∞

||zn − xn|| = 0. (41)

Moreover, since

||xn+1 − xn|| ≤ ||xn+1 − zn||+ ||zn − xn||,

we have that

||xn+1 − xn|| → 0 as n → ∞. (42)

Furthermore,

||xn − ΦAi
λi,n

xn|| ≤ ||xn − xn+1||+ ||xn+1 − ΦAi
λi,n

zn||+ ||ΦAi
λi,n

− ΦAi
λi,n

xn||
≤ ||xn − xn+1||+ ||xn+1 − ΦAi

λi,n
zn||+ ||zn − xn||, (43)

but

||xn+1 − ΦAi
λi,n

zn|| = ||αn∇ f (zn) + (1 − αn)Φ
Ai
λi,n

zn − ΦAi
λi,n

zn||
= αn||∇ f (zn)− ΦAi

λi,n
zn|| → 0, as n → ∞.

Hence, by substituting this, (41) and (42) into (43), we obtain

lim
n→∞

||(I − ΦAi
λi,n

)xn|| = 0.
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Since 0 < λi ≤ λi,n, we have by Lemma 5, that

lim
n→∞

||(I − ΦAi
λi
)xn|| = 0. (44)

Now, since {xn} is bounded in H1, there exists a subsequence {xnj} of {xn} such that
xnj ⇀ x∗ ∈ H1. First, we show that x∗ ∈ ∩N

i=1 A−1
i (0). Consider for each j ∈ N,

||(I − ΦAi
λi
)x∗||2 ≤ 〈(I − ΦAi

λi
)x∗, x∗ − xnj〉+ 〈(I − ΦAi

λi
)x∗, xnj − ΦAi

λi
xnj〉

+〈(I − ΦAi
λi
)x∗, ΦAi

λi
xnj − ΦAi

λi
x∗〉. (45)

Since {xnj} ⊂ {xn}, as a consequence of (44), we have

lim
j→∞

||xnj − ΦAi
λi

xnj || = 0. (46)

Therefore, using xnj ⇀ x∗ and (46) in (45), we have

lim
n→∞

||(I − ΦAi
λi
)x∗|| = 0. (47)

Thus, x∗ = ΦAi
λi

x∗ and hence x∗ ∈ ∩N
i=1 A−1

i (0).

Secondly, we show that Lx∗ ∈ ∩N
i=1B−1

i (0). Consider again for each j ∈ N,

||(I − ΦBi
λi
)Lx∗||2 ≤ 〈(I − ΦBi

λi
)Lx∗, Lx∗ − Lznj 〉+ 〈(I − ΦBi

λi
)Lx∗, Lznj − ΦBi

λi
Lznj 〉

+〈(I − ΦBi
λi
)Lx∗, ΦBi

λi
Lznj − ΦBi

λi
Lx∗〉, (48)

observe that,

||(I − ΦBi
λi,n

)Lun|| ≤ ||(I − ΦBi
λi,n

)Lzn − (I − ΦBi
λi,n

)Lun||+ ||(I − ΦBi
λi,n

)Lun||
≤ ||Lzn − Lun||+ ||ΦBi

λi,n
Lzn − ΦBi

λi,n
Lun||+ ||(I − ΦBi

λi,n
)Lun||

≤ 2||L||||zn − un||+ ||(I − ΦBi
λi,n

)Lun||,

which by (34) and (36), implies

lim
n→∞

||(I − ΦBi
λi,n

)Lzn|| = 0.

Again, since 0 < λi ≤ λi,n, we have by Lemma 5, that

lim
n→∞

||(I − ΦBi
λi
)Lzn|| = 0. (49)

So for any subsequence {znj} ⊂ {zn}, we also have that

lim
n→∞

||(I − ΦBi
λi
)Lznj || = 0. (50)

Thus, by the linearity and continuity of L, Lxnj ⇀ Lx∗ as j → ∞ and ||zn − xn|| → 0 as
n → ∞ implies Lznj ⇀ Lx∗ as j → ∞. Hence from (49), we have

lim
n→∞

||(I − ΦBi
λi
)Lx∗|| = 0. (51)
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Therefore, Lx∗ = ΦBi
λi

Lx∗, that is Lx∗ ∈ ⋂N
i=1 B−1

i (0). Further, we show that x∗ ∈ GMEP
(F, g, φ). From (40), we have unj ⇀ x∗. Since un = KF

rn(xn − rng(xn)), for any y ∈ C,
we have

F(un, y) + 〈g(un), y − un〉+ φ(y)− φ(un) +
1
rn
〈y − un, un − xn〉 ≥ 0. (52)

It follows from condition (C2) of the bifunction F, that

〈g(un), y − un〉φ(y)− φ(un) +
1
rn
〈y − un, un − xn〉 ≥ F(y, un).

Replacing n by nj, we have

〈g(unj), y − unj〉+
1

rnj

〈y − unj − xnj〉 ≥ F(y, unj) + φ(unj)− φ(y). (53)

Let yt = ty + (1 − t)x∗ for all t ∈ (0, 1] and y ∈ C. Then we have yt ∈ C. So from (53),
we have

〈g(yt), yt − unj〉 ≥ 〈yt − unj , g(yt)〉 − 〈yt − unj , g(xnj)〉 −
〈

yt − unj ,
unj − xnj

rnj

〉
+ F(yt, unj) + φ(unj)− φ(yt)

= 〈yt − unj , g(yt)− g(unj)〉+ 〈yt − unj , g(unj)− g(xnj)〉 −
〈

yt − unj ,
unj − xnj

rnj

〉
(54)

+F(yt, unj) + φ(unj)− φ(yt).

Since lim
n→∞

||un − xn|| = 0, we obtain ||g(unj)− g(xnj)|| → 0 as n → ∞. Moreover, since g

is monotone, we have 〈yt − unj , g(yt)− g(unj)〉 ≥ 0. Therefore by (C4) of the bifunction F
and the weak lower semicontinuity of φ, taking the limit of (54), we obtain

〈yt − x∗, g(yt)〉 ≥ F(yt, x∗) + φ(x∗)− φ(yt). (55)

Using (C1) of bifunction F and (55), we obtain

0 = F(yt, yt) + φ(yt)− φ(yt)

≤ tF(yt, y) + (1 − t)F(yt, x∗) + tφ(y) + (1 − t)φ(x∗)− φ(yt)

= t[F(yt, y) + φ(y)− φ(yt)] + (1 − t)[F(yt, x∗) + φ(x∗)− φ(yt)]

≤ t[F(yt, y) + φ(y)− φ(yt)] + (1 − t)〈yt − x∗, g(yt)〉
≤ t[F(yt, y) + φ(y)− φ(yt)] + (1 − t)t〈y − x∗, g(yt)〉,

this implies that

F(yt, y) + (1 − t)〈y − x∗, g(yt)〉+ φ(y)− φ(yt) ≥ 0. (56)

By letting t → 0, we have

F(x∗, y) + 〈g(x∗), y − x∗〉+ φ(y)− φ(x∗)〉 ≥ 0, y ∈ C, (57)

which implies x∗ ∈ GMEP(F, g, φ).
Finally we show that xn → p = PΩ∇ f (p). Let {xnj} be subsequence of {xn}, such

that xnj ⇀ x∗ and

lim sup
n→∞

2
1 − c2 〈∇ f (p)− p, xn+1 − p〉 = lim

j→∞

2
1 − c2 〈∇ f (p)− p, xnj+1 − p〉, (58)
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since ||xn+1 − xn|| → 0 as n → ∞ and xnj ⇀ x∗, it follows that xnj+1 ⇀ x∗. Consequently,
we obtain by (12), that

lim sup
n→∞

2
1 − c2 〈∇ f (p)− p, xn+1 − p〉 = 2

1 − c2 〈∇ f (p)− p, x∗ − p〉 ≤ 0. (59)

By using Lemma 4 in (28), we conlude that ||xn − p|| → 0 as n → ∞. Thus, xn → p as
n → ∞, ditto for both {un} and {zn}.

Case 2: Let Γn = ||xn − p|| be monotonically nondecreasing. Define τ : N → N for all
n ≥ n0 (for some n0 large enough) by

τ(n) := max{k ∈ N : k ≤ n, Γk ≤ Γk+1}.

Clearly, τ is nondecreasing, τ(n) → ∞ as n → ∞ and

0 ≤ Γτ(n) ≤ Γτ(n)+1, ∀ n ≥ n0.

By using similar argument as in Case 1, we make the following conclusions

lim
n→∞

||(I − ΦBi
λi
)Lxτ(n)|| = 0,

lim
n→∞

||L∗(I − ΦBi
λi
)Lxτ(n)|| = 0,

lim
n→∞

||uτ(n) − xτ(n)|| = 0,

lim
n→∞

||xτ(n)+1 − xτ(n)|| = 0

and

lim sup
n→∞

2
1 − c2 〈∇ f (p)− p, xτ(n)+1 − p〉 ≤ 0. (60)

Using the boundedness of {xτ(n)}, we can obtain a subsequence of {xτ(n)} which converges
weakly to x∗ ∈ ⋂N

i=1 A−1
i (0), Lx∗ ∈ ⋂N

i=1 B−1
i (0) and x∗ ∈ GMEP(F, φ, g). Therefore, it

follows from (28), that

||xτ(n)+1 − p||2 ≤ [1 − ατ(n)(1 − c2)]||xτ(n) − p||2

+ατ(n)(1 − c2)

(
2

1 − c2 ∇ f (p)− p, xτ(n)+1 − p〉
)

. (61)

Since Γτ(n) ≤ Γτ(n)+1, we obtain ||xτ(n) − xτ(n)+1|| ≤ 0. Thus, from (61), we obtain

ατ(n)(1 − c2)||xτ(n) − p||2 ≤ ατ(n)(1 − c2)

(
2

1 − c2 ∇ f (p)− p, xτ(n)+1 − p〉
)

. (62)

We note that ατ(n)(1 − c2) > 0, then from (62), we get

lim
n→∞

||xτ(n) − p||2 ≤ 0.

This implies

lim
n→∞

||xτ(n) − p||2 = 0,
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hence

lim ||xτ(n) − p|| = 0.

Using this and lim
n→∞

||xτ(n)+1 − xτ(n)|| = 0, we obtain

||xτ(n)+1 − p|| ≤ ||xτ(n)+1 − xτ(n)||+ ||xτ(n) − p|| → 0, as n → ∞.

Further, for n ≥ n0, we clearly observe that Γτ(n) ≤ Γτ(n)+1 if n �= τ(n), (i.e., τ(n) < n).
Since Γj ≥ Γj+1 for τ(u) + 1 ≤ j ≤ n. Consequently, for all n ≥ n0

0 ≤ Γn max{Γτ(n), Γτ(n)+1} = Γτ(n)+1. (63)

Using (63), we conclude that lim
n→∞

||xn − p|| = 0, that is xn → p.

The following are some consequences of our main theorem.
Let u = ∇ f (zn) in (21), we have the following corollary:

Corollary 1. Let C and Q be nonempty, closed and convex subsets of real Hilbert spaces H1 and H2,
respectively and L : H1 → H2 be a bounded linear operator. Assume F is a real valued bifunction on
C × C which admits condition C1-C4. Let φ : H1 → R∪ {+∞} be a proper, lower semicontinuous
function, g be a β-inverse strongly monotone mapping. For i = 1, 2 · · · , N, let Ai : H1 → 2H1 and
Bi : H2 → 2H2 be finite families of monotone mappings. Assume Ω = GMEP(F, g, φ) ∩ Γ �= ∅,
where Γ = {p ∈ H1 : 0 ∈ ⋂N

i=1 Ai(p) and Lp ∈ H2 : 0 ∈ ⋂N
i=1 Bi(Lp)}. For an arbitrary

u, x0 ∈ H1, let {xn} ⊂ H1 be a sequence defined iteratively by⎧⎪⎪⎨⎪⎪⎩
F(un, y) + 〈g(un), y − un〉+ φ(y)− φ(un) +

1
rn
〈y − un, un − xn〉 ≥ 0, y ∈ H1,

zn = un − γnL∗(I − ΦBi
λi,n

)Lun,

xn+1 = αnu + (1 − αn)Φ
Ai
λi,n

zn,

(64)

where {rn} is a nonnegative sequence of real numbers, {αn}and {λi,n} are sequences in (0, 1), γn
is a nonnegative sequence defined by (19), satisfying the following restrictions:

(i)
∞
∑

n=1
αn = ∞, lim

n→∞
αn = 0;

(ii) 0 < λi ≤ λi,n;
(iii) 0 < a ≤ rn ≤ b < 2β.

Then xn converges strongly to p ∈ Ω, where p = PΩ∇ f (p).

For i = 1, 2, we obtain the following result for approximation a common solution of
a split null point for a sum of monotone operators and generalized mixed equilibrium
problem.

Corollary 2. Let C and Q be nonempty, closed and convex subsets of real Hilbert spaces H1 and H2,
respectively and L : H1 → H2 be a bounded linear operator. Assume F is a real valued bifunction on
C × C which admits condition C1-C4. Let φ : H1 → R∪ {+∞} be a proper, lower semicontinuous
function, g be a β-inverse strongly monotone mapping. For i = 1, 2, let Ai : H1 → 2H1 and
Bi : H2 → 2H2 be finite families of monotone mappings. Assume Ω = GMEP(F, g, φ) ∩ Γ �= ∅,
where Γ = {p ∈ H1 : 0 ∈ ⋂2

i=1 Ai(p) and Lp ∈ H2 : 0 ∈ ⋂2
i=1 Bi(Lp)}. For an arbitrary

u, x0 ∈ H1, let {xn} ⊂ H1 be a sequence defined iteratively by⎧⎪⎪⎨⎪⎪⎩
F(un, y) + 〈g(un), y − un〉+ φ(y)− φ(un) +

1
rn
〈y − un, un − xn〉 ≥ 0, y ∈ H1,

zn = un − γnL∗(I − (JB2
λ2,n

◦ JB1
λ1,n

))Lun,

xn+1 = αnu + (1 − αn)(JA2
λ2,n

◦ JA1
λ1,n

)zn,

(65)
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where {rn} is a nonnegative sequence of real numbers, {αn}and {λi,n} are sequences in (0, 1), γn
is a nonnegative sequence defined by (19), satisfying the following restrictions:

(i)
∞
∑

n=1
αn = ∞, lim

n→∞
αn = 0;

(ii) 0 < λi ≤ λi,n;
(iii) 0 < a ≤ rn ≤ b < 2β.

Then xn converges strongly to p ∈ Ω, where p = PΩ∇ f (p).

4. Numerical Example

In this section, we provide some numerical examples. The algorithm was coded in
MATLAB 2019a on a Dell i7 Dual core 8.00 GB(7.78 GB usable) RAM laptop.

Example 1. Let E1 = E2 = C = Q = �2(R) be the linear spaces of 2-summable sequences
{xj}∞

j=1 of scalars in R, that is

�2(R) :=

{
x = (x1, x2 · · · , xj · · · ), xj ∈ R and

∞

∑
j=1

|xi|2 < ∞

}
,

with the inner product 〈·, ·〉 : �2 × �2 → R defined by 〈x, y〉 :=
∞
∑

j=1
xjyj and the norm || · || :

�2 → R by ||x|| :=

√
∞
∑

i=1
|xj|2, where x = {xj}∞

j=1, y = {yj}∞
j=1. Let L : �2 → �2 be given by

Lx =
(

x1, x2, · · · , xj, · · · ,
)

for all x = {xi}∞
i=1 ∈ �2, then L∗y =

(
y1, y2, · · · , yj, · · · ,

)
for each

y = {yi}∞ ∈ �2.

Let f (x) =
1
2

x(s)2, ∀x ∈ �2, it is easy to that f is differentiable with ∇ f = x. For each

i = 1, 2 · · · N, define Ai(x) : �2 → �2 and Bi(x) : �2 → �2 by Ai(x) = ix and Bi(x) = 2
3 ix

respectively for all x ∈ �2.
For each u, v ∈ �2, define the bifunction F : C × C → R by F(u, v) = uv + 15v − 15u −

u2, the function g : C → H1 by g(u) = u, ∀u ∈ H1 and φ : H1 → R∪ {+∞} by φ(u) = 0,
for each u ∈ H1. For each x ∈ C, we have the following steps to get {un} : Find u such that

0 ≤ F(u, v) + 〈g(u), v − u〉+ φ(v)− φ(u) +
1
r
〈v − u, u − x〉

= uv + 15v − 15u − u2 + v − u +
1
r
〈v − u, u − x〉

= uv + 16v − 16u − u2 +
1
r
〈v − u, u − x〉

= (u + 16)(v − u) +
1
r
〈v − u, u − x〉

= (v − u)
(

u + 16 +
1
r
〈v − u, u − x〉

)

for all v ∈ C. Hence, by Lemma 3 (2), it follows that u =
x − 16r
r + 1

. Therefore, un =

xn − 16rn

rn + 1
.

For i = 1, 2, choose the sequences αn =
1

n + 1
, rn =

1
2n2 − 1

, λi,n =
1

in + 2
and

γ = 0.25. We obtain the graph of errors against the number of iterations for different values
of x0. The following cases are presented in Figure 1 below:

Case 1 x0 = (0.435, 0.896, 1.004, · · · 0, · · · ),
Case 2 x0 = (−0.987, 0.615,−2.804, · · · 0, · · · ),

67



Axioms 2021, 10, 16

Case 3 x0 = (3.45, 6.000, 1.53, · · · 0, · · · ).

Figure 1. Case 1 (top); Case 2 (middle); Case 3 (bottom).
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Example 2. Let H1 = H2 = R2 be endowed with an inner product 〈x, y〉 = x · y = x1y1 + x2y2,
where x = (x1, x2), y = (y1, y2) and the euclidean norm. Let L : R2 → R2 be defined by
L(x) = (x1 + x2, 2x1 + 2x2), x = (x1, x2) and f (x) = 1

4 x2. For each i = 1, 2 · · · N, define
Ai(x) : R2 → R2 and Bi(x) : R2 → R2 by Ai(x) = ix and Bi(x) = 2

3 ix respectively, where
x = (x1, x2). Let y = (y1, y2), z = (z1, z2) ∈ R2. Define F(z, y) = −3z2 + 2zy + y2, g(z) = z
and φ(z) = z. By simple calculation, we obtain that

un =
xn

8rn + 1
.

Choose the sequences αn =
1√

2n2 + 3
, rn =

n − 1
2n2 − 1

, λi,n =
1

in + 2
and γ = 0.25. For

i = 1, 2, (21) becomes⎧⎪⎪⎪⎨⎪⎪⎪⎩
F(un, y) + 〈g(un), y − un〉+ φ(y)− φ(un) +

1
rn
〈y − un, un − xn〉 ≥ 0, y ∈ H1,

zn = un − γnL∗(I − JB1
λn

◦ JB2
λn
)Lun,

xn+1 =
1√

2n2 + 3
∇ f (zn) +

(
1 − 1√

2n2 + 3

)
JA1
λn

◦ JA2
λn

zn,
(66)

We make different choices of our initial value as follow:

Case 1, x = (0.5, 1), Case 2, x = (−0.05, 0.5), and Case 3, x = (−1.5, 1.0).

We use ‖xn+1 − xn‖2 < 2 × 10−3 as our stopping criterion and plot the graphs of
errors against the number of iterations. See Figure 2.

Figure 2. Cont.
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Figure 2. Case 1 (top); Case 2 (middle); Case 3 (bottom).

5. Conclusions

This paper considered the approximation of common solutions of a split null point
problem for a finite family of maximal monotone operators and generalized mixed equilib-
rium problem in real Hilbert spaces. We proposed an iterative algorithm which does not
depend on the prior knowledge of the operator norm as being used by many authors in the
literature [39,42]. We proved a strong convergence of the proposed algorithm to a common
solution of the two problems. We displayed some numerical examples to illustrate our
method. Our result improves some existing results in the literature.
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1. Introduction

Throughout this paper, R, R+, and f℘ denote the set of all real numbers, positive real
numbers, and fixed points of the mapping ℘, respectively.

The fixed point theory is considered one of the most powerful analytical techniques in
mathematics, especially in nonlinear analysis, where it plays a prominent role in algorithm
technology. The purpose of investing in algorithms is to obtain the best algorithms with
a faster convergence rate, because the lower the convergence rate, the faster the speed of
obtaining the solution. This is probably the drawback of using the iterative methods.

It should be noted that the Mann iteration converges faster than the Ishikawa iteration
for the class of Zamfirescu operators [1], and hence the convergence behavior of proclaimed
and empirically proven faster iterative schemes need not always be faster. There was
extensive literature on proclaimed new and faster iteration schemes in ancient times.
Some of the iteration schemes are undoubtedly better versions of previously existed
iteration schemes, whereas a few are only the special cases. There are more than twenty
iteration schemes in the present literature. Our analysis’s focal objective is to unify the
existing results in the framework of Busemann spaces (see [2] for the precise definitions
and properties of Busemann spaces). This analysis has a special significance in terms of
unification, and numerous researchers have intensively investigated various aspects of it.

Apart from Picard, Mann, and Ishikawa, many iterative schemes with better conver-
gence rates are obtained; see, for example, [3–11]. In many cases, these algorithms cannot
obtain strong convergence; therefore, it was necessary to investigate new effective algo-
rithms. Recently, several authors were able to apply the strong convergence of algorithms,
see [12–16].

Recall that a metric space (B, ∂) is called a geodesic path (or simply a geodesic [17]) in B
if there is a path γ : [a, b] → B, such that γ is an isometry for [a, b] ⊂ [0, ∞). A geodesic ray

Axioms 2021, 10, 26. https://doi.org/10.3390/axioms10010026 https://www.mdpi.com/journal/axioms
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is an isometry γ : R+ → B, and a geodesic line is an isometry γ : R → B. For more details
about geodesic path in metric fixed point theory, see [18–24].

Definition 1 ([17]). Let (B, ∂) be a metric space and j, � ∈ B. A geodesic path joining j to � is a
mapping γ : [α, β] ⊆ R+ → B such that γ(α) = j, γ(β) = � and

∂(γ(t), γ(t′)) = |t − t′|

for all t, t′ ∈ [α, β]. Particularly, γ is an isometry and ∂(j, �) = β − α.
A geodesic segment joining j and � in B is the image of a geodesic path in B. The space B is

said to be a geodesic space, if every two points of j are joined by a geodesic.

Definition 2 ([17]). A metric space B is said to be a geodesic space if given two arbitrary points
of B there exists a geodesic path that joins them.

Definition 3 ([17]). The geodesic metric space (B, ∂) is said to be Busemann space, if for any
two affinely reparametrized geodesices γ : [α, β] → B and γ′ : [α′, β′] → B, the map Dγ.γ′ :
[α, β]× [α′, β′] → R defined by

Dγ.γ′(t, t′) = ∂(γ(t), γ′(t′))

is a convex; that is, the metric of Busemann space is convex. In a Busemann space the geodesic
joining any two points is unique.

Proposition 1 ([25]). In such spaces, the hypotheses below hold:

(1) ∂(ε, (1 − α)j ⊕ α�) ≤ (1 − α)∂(ε, j) + α∂(ε, �),
(2) ∂((1 − α)j ⊕ α�), (1 − α′)j ⊕ α′�) = |α − α′|∂(j, �),
(3) (1 − α)j ⊕ α� = α�⊕ (1 − α)j,
(4) ∂((1 − α)j ⊕ αε, ((1 − α)�⊕ αω)) ≤ (1 − α)∂(j, �) + α∂(ε, ω),

where j, �, ε, ω ∈ B and α, α′ ∈ [0, 1].

Busemann spaces are also hyperbolic spaces, which were introduced by Kohlen-
bach [26]. Further, B is said to be uniquely geodesic [17] if there is exactly one geodesic
joining j and � for each j, � ∈ B.

Definition 4 ([17]). Suppose that B is a uniquely geodesic space and γ([α, β]) is a geodesic
segment joining j and � and α ∈ [0, 1]. Then,

ε = γ((1 − α)j + α�)

will be a unique point in γ([α, β]) satisfying

∂(ε, j) = α∂(j, �)

and
∂(ε, �) = (1 − α)∂(j, �).

In the sequel, the notation [j, �] is used for geodesic segment γ([α, β]) and ε is denoted
by (1 − α)j ⊕ α�. A subset κ ⊆ B is said to be geodesically convex if κ includes every
geodesic segment joining any two of its points. Let B be a geodesic metric space and
℘ : B → R. We say that ℘ is convex if for every geodesic path γ : [α, β] → B, the map
℘ ◦ γ : [α, β] → is a convex. It is known that if ℘ : B → R is a convex function and
℘′ : B → R is an increasing convex function, then ℘′ ◦ ℘ : B → R is convex.

We now introduce our algorithm.
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Let B be a complete Busemann space, Bs be a nonempty convex subset of B and
℘ : Bs → Bs be a mapping. For any υ0 ∈ Bs,⎧⎪⎨⎪⎩

�η = τ0
η υη ⊕ κ0

η℘υη ⊕ ι0η jη ⊕ ω0
η℘jη ,

jη = τ1
η υη ⊕ κ1

η℘υη ⊕ ι1η�η ⊕ ω1
η℘�η ,

υn+1 = τ2
η υη ⊕ κ2

η℘υη ⊕ ι2η jη ⊕ ω2
η℘jη ⊕ εη�η ⊕ ση℘�η ,

where {εη}, {ση}, {τi
η}, {κi

η}, {ιiη} and {ωi
η} for i = 0, 1, 2 are sequences in [0, 1]. Moreover,

τ0
η + κ0

η + ι0η + ω0
η = 1, τ1

η + κ1
η + ι1η + ω1

η = 1 and τ2
η + κ2

η + ι2η + εη + ση = 1.

Remark 1. For distinct values of εη , {ση}, τi
η , κi

η , ιiη and ωi
η for i = 0, 1, 2, we have well-known

distinct iteration schemes as follows:

(R1) ι0η = ω0
η = ι1η = κ1

η = ι2η = κ2
η = εη = ση = 0, τ0

η = (1 − κ0
η), τ1

η = (1 − ω1
η),

τ1
η = (1 − ω2

η) in the standard three-step iteration scheme, we obtain the Noor iterative
scheme [27].

(R2) ι0η = ω0
η = ι1η = τ1

η = κ1
η = ι2η = ω2

η = εη = ση = 0, τ0
η = (1 − κ0

η), ι1η = (1 − ω1
η)

and ι2η = (1 − ω2
η) in the standard three-step iteration scheme, we obtain the SP iterative

scheme [28].
(R3) ι0η = ω0

η = ι1η = τ1
η = κ1

η = τ2
η = ι2η = ω2

η = εη = ση = 0, ι0η = (1 − κ0
η), κ1

η = (1 − ω1
η)

and κ2
η = 1 in the standard three-step iteration scheme, we obtain the Picard-S iterative

scheme [29].
(R4) τ0

η = κ0
η = ι0η = ω0

η = ι1η = ω1
η = τ2

η = κ2
η = εη = ση = 0 and τ0

η = (1 − κ0
η),

κ1
η = (1 − ω1

η) and ι2η = (1 − ω2
η) in the standard three-step iteration scheme, we obtain the

CR iterative scheme [30].
(R5) τ0

η = κ0
η = ι1η = τ1

η = τ2
η = ι2η = εη = ση = 0, τ1

η = (1 − κ1
η), κ1

η = (1 − ω1
η) in the

standard three-step iteration scheme, we obtain the Abbas and Nazir iterative scheme [31].
(R6) ι0η = ω0

η = τ1
η = κ1

η = κ2
η = ι2η = ω2

η = εη = 0, τ0
η = (1 − κ0

η), ι1η = (1 − ω1
η)

and σ2
η = (1 − ω2

η) in the standard three-step iteration scheme, we obtain the P iterative
scheme [32].

(R7) ι0η = ω0
η = τ1

η = ι1η = κ2
η = ι2η = τ2

η = εη = 0, τ0
η = (1 − κ0

η), κ1
η = (1 − ω1

η)

and σ2
η = (1 − ω2

η) in the standard three-step iteration scheme, we obtain the D iterative
scheme [33].

(R8) ι0η = ω0
η = τ0

η = κ0
η = ι1η = ω1

η = τ1
η = κ1

η = ω2
η = ι2η = εη = 0, τ2

η = (1 − κ2
η) in the

standard three-step iteration scheme, we obtain the Mann iterative scheme [34].
(R9) ι0η = ω0

η = τ0
η = κ0

η = ι1η = ω1
η = κ2

η = ι2η = εη = ση = 0, τ1
η = (1 − κ1

η) and
τ2

η = (1 − ω2
η) in the standard three-step iteration scheme, we obtain the Ishikawa iterative

scheme [35].

2. Preliminaries

In this section, we present some relevant and essential definitions, lemmas, and
theorems needed in the sequel.

Definition 5 ([36]). The Busemann space B is called uniformly convex if for any ζ > 0 and
ε ∈ (0, 2], there exists a map δ such that for every three points α, j, � ∈ B, ∂(j, α) ≤ ζ, ∂(�, α) ≤ ζ
and ∂(j, �) ≥ εζ implies that

∂(m, α) ≤ (1 − δ)ζ,

where m denotes the midpoint of any geodesic segment [j, �] (i.e., m = 1
2 j ⊕ 1

2 �) and inf{δ : ζ > 0}.
A mapping ℘ : (0, ∞)× (0, 2] → (0, 1] is called a modulus of uniform convexity, for ℘(η, ε) := δ
and for a given η > 0, ε ∈ (0, 2].

Henceforth, the uniform convexity modulus with a decreasing modulus concerning
η (for a fixed ε) is termed as the uniform convexity monotone modulus. The subsequent
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lemmas and geometric properties, which are instrumental throughout the discussion to
learn about essential terms of Busemann spaces, are necessary to achieve our significant
findings and are as follows:

Lemma 1. If ℘ is a mapping satisfying condition (E) and has a fixed point then it is a quasi-
nonexpansive mapping.

Let Bs be a nonempty closed convex subset of a Busemann space B, and let {jη} be a
bounded sequence in B. For j ∈ B, we set

ζ(j, {jη}) = lim sup
η→∞

||jη − j||.

The asymptotic radius of ζ({jη} is given by

ζ(Bs, {jη}) = inf{ζ(j, {jη}) : j ∈ Bs}

and the asymptotic center A({jη}) of {jη} relative to Bs is the set

A(Bs, {jη}) = {j ∈ Bs : ζ(j, jη) = ζ(Bs, {jη})}.

It is known that, in a Busemann space, A({jη}) consists of exactly one point [37].
Recall that a bounded sequence {jη} ∈ B is said to be regular [38], if ζ({jη}) =

ζ({jηk}) for every subsequence {jηk} of {jη}.

Lemma 2 ([4]). Let B be a Busemann space and j ∈ B, {tn} a sequence in [b, c], for some
b, c ∈ (0, 1). If {jη} and {�η} are sequences in B satisfying

lim sup
η→∞

∂(jη , j) ≤ r

also,
lim sup

η→∞
∂(�η , �) ≤ r

and
lim sup

η→∞
∂(tη jη ⊕ (1 − tη)�η , j) = r,

for some r ≥ 0, then
lim

η→∞
∂(jη , �η) = 0.

Lemma 3 ([5]). If Bs is a closed convex subset of a uniformly convex Busemann space B and {jη}
is a bounded sequence in Bs, then the asymptotic center of {jη} belongs to Bs.

Lemma 4 ([38]). Let B be a Busemann space, {jη} be a bounded sequence in B and Bs be a subset
of B. Then {jη} has a subsequence, which is regular in Bs.

Definition 6 ([38]). A sequence {jη} in Busemann space B is said to be Δ − convergent if there
exists some j ∈ B such that j is the unique asymptotic center of jηk for every subsequence {jηk} of
{jη}. In this case we write Δ − limη→∞ jη = j and it is called the Δ − lim of {jη}.

Lemma 5 ([21]). Every bounded sequence in a complete Busemann space always has a Δ −
convergent subsequence.

Lemma 6 ([21]). Suppose that Bs is a closed convex subset of a Busemann space B and ℘ : Bs → B
satisfies the condition (E ). Then {jη}, Δ− converges to j and ∂(℘jη , jη) → 0, implying that j ∈ Bs
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and ℘j = j.

Definition 7. Assume that Bs �= ∅ is a subset of a Busemann space B. For j, � ∈ Bs, a mapping
℘ : Bs → Bs is called:

(i) Contraction if there is μ ∈ (0, 1) so that ∂(℘j,℘�) ≤ μ∂(j, �),
(ii) Nonexpansive if ∂(℘j,℘�) ≤ ∂(j, �),
(iii) Quasi-nonexpansive if ∂(℘j,κ) ≤ ∂(j,κ), κ ∈ F(℘) and F(℘) denote the set {κ ∈ B :

κ = ℘κ}.
(iv) Satisfy Condition (E) if

1
2

∂(j,℘j) ≤ ∂(j, �) ⇒ ∂(℘j,℘�) ≤ ∂(j, �).

(v) Suzuki generalized nonexpansive if it verifies Condition (E).

Garcia-Falset et al. [6] introduced the generalization for nonexpansive mappings
known as condition (Eμ).

Definition 8 ([6]). Let μ ≥ 1. A mapping ℘ : Bs → Bs is said to satisfy condition (Eμ) if for all
j, � ∈ Bs, we have

∂(j,℘�) ≤ μ∂(j,℘j) + ∂(j, �).

We say that ℘ satisfies condition (E), if ℘ satisfies condition (Eμ) for some μ ≥ 1 [39].

Theorem 1. Let Cs be a nonempty bounded, closed and convex subset of a complete CAT(0) space
C. If ℘ : Cs → Cs is a generalized nonexpansive mapping, then ℘ has a fixed point in Cs. Moreover,
f℘ is closed and convex.

3. Main Results

We begin this section with the proof of the following lemmas:

Lemma 7. Let Bs be a nonempty closed convex subset of a complete Busemann space B, and let
℘ : Bs → Bs be a mapping satisfying condition (Eμ). For an arbitrary chosen υ0 ∈ Bs, let the
sequence {υη} be generated by a standard three-step iteration algorithm with the condition

((τ1
η + κ1

η) + (ι1η + ω1
η)(τ

0
η + κ0

η))(1 − (ι1η + ω1
η)(ι

0
η + ω0

η))
−1 ≤ 1

and
(τ2

η + κ2
η + ι2η + ω2

η + (εη + ση)(τ
0
η + κ0

η + ι0η + ω0
η)) ≤ 1.

Then, limn→∞ ∂(υη , υ∗) exists for all υ∗ ∈ f℘.

Proof. Let υ∗ ∈ f℘ and z ∈ Bs. Since ℘ satisfies condition (Eμ), and hence

∂(υ∗,℘j) ≤ μ∂(υ∗,℘υ∗) + ∂(υ∗, j).

From standard three-step iteration algorithm, we have

∂(�η , υ∗) = ∂(τ0
η υη ⊕ κ0

η℘υη ⊕ ι0η jη ⊕ ω0
η℘jη , υ∗)

≤ τ0
η ∂(υη , υ∗) + κ0

η(μ∂(υ∗,℘υ∗) + ∂(υ∗, υn)) + ι0η∂(jη , υ∗) + ω0
η(μ∂(υ∗,℘υ∗) + ∂(υ∗, jn))

≤ τ0
η ∂(υη , υ∗) + κ0

η∂(υη , υ∗) + ι0η∂(jη , υ∗) + ω0
η∂(jη , υ∗)

= (τ0
η + κ0

η)∂(υη , υ∗) + (ι0η + ω0
η)∂(jη , υ∗).

Also,
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∂(jη , υ∗) = ∂(τ1
η υη ⊕ κ1

η℘υη ⊕ ι1η�η ⊕ ω1
η℘�η , υ∗)

≤ τ1
η ∂(υη , υ∗) + κ1

η∂(℘υη , υ∗) + ι1η∂(�η , υ∗) + ω1
η∂(℘�η , υ∗)

≤ τ1
η ∂(υη , υ∗) + κ1

η(μ∂(υ∗,℘υ∗) + ∂(υ∗, υn)) + ι1η∂(�η , υ∗) + ω1
η(μ∂(υ∗,℘υ∗) + ∂(υ∗, �n))

= (τ1
η + κ1

η)∂(υη , υ∗) + (ι1η + ω1
η)∂(�η , υ∗).

Using the value of ∂(�η , υ∗), we have

∂(jη , υ∗) ≤ (τ1
η + κ1

η)∂(υη , υ∗) + (ι1η + ω1
η)((τ

0
η + κ0

η)∂(υη , υ∗) + (ι0η + ω0
η)∂(jη , υ∗))

≤ ((τ1
η + κ1

η) + (ι1η + ω1
η)(τ

0
η + κ0

η))∂(υη , υ∗) + (ι1η + ω1
η)(ι

0
η + ω0

η)∂(jη , υ∗)

∂(jη , υ∗) ≤
(
(τ1

η + κ1
η) + (ι1η + ω1

η)(τ
0
η + κ0

η)

1 − (ι1η + ω1
η)(ι

0
η + ω0

η)

)
∂(υη , υ∗).

Since ((τ1
η + κ1

η) + (ι1η + ω1
η)(τ

0
η + κ0

η))(1 − (ι1η + ω1
η)(ι

0
η + ω0

η))
−1 ≤ 1, we have

∂(jη , υ∗) ≤ ∂(υη , υ∗).

Now,

∂(υn+1, υ∗) ≤ ∂(τ2
η υη ⊕ κ2

η℘υη ⊕ ι2η jη ⊕ ω2
η℘jη ⊕ εη�η ⊕ ση℘�η , υ∗)

≤ τ2
η ∂(υη , υ∗) + κ2

η∂(℘υη , υ∗) + ι2η∂(jη , υ∗) + ω2
η∂(℘jη , υ∗) + εη∂(�η , υ∗) + ση∂(℘�η , υ∗)

≤ τ2
η ∂(υη , υ∗) + κ2

η(μ∂(℘υ∗, υ∗) + ∂(υη , υ∗)) + ι2η∂(jη , υ∗) + ω2
η(μ∂(℘υ∗, υ∗) + ∂(jη , υη))

+ εη∂(�η , υ∗) + ση(μ∂(℘υ∗, υ∗) + ∂(�η , υ∗))
≤ (τ2

η + κ2
η)∂(υη , υ∗) + (ι2η + ω2

η)∂(jη , υ∗) + (εη + ση)∂(�η , υ∗).

Since
∂(jη , υ∗) ≤ ∂(υη , υ∗),

we have

∂(υn+1, υ∗) ≤ (τ2
η + κ2

η + ι2η + ω2
η)∂(υη , υ∗) + (εη + ση)∂(�η , υ∗).

On substituting

∂(�η , υ∗) = (τ0
η + κ0

η)∂(υη , υ∗) + (ι0η + ω0
η)∂(jη , υ∗),

we have

∂(υn+1, υ∗) ≤ (τ2
η + κ2

η + ι2η + ω2
η)∂(υη , υ∗) + ((εη + ση)× (τ0

η + κ0
η)∂(υη , υ∗) + (ι0η + ω0

η)∂(jη , υ∗))

≤ (τ2
η + κ2

η + ι2η + ω2
η)∂(υη , υ∗) + (εη + ση)(τ

0
η + κ0

η + ι0η + ω0
η)∂(υη , υ∗)

= (τ2
η + κ2

η + ι2η + ω2
η + (εη + ση)(τ

0
η + κ0

η + ι0η + ω0
η))∂(υη , υ∗).

Also, it is given that

(τ2
η + κ2

η + ι2η + ω2
η + (εη + ση)(τ

0
η + κ0

η + ι0η + ω0
η)) ≤ 1,

we have

∂(υn+1, υ∗) ≤ ∂(υη , υ∗).

This implies that {∂(υη , υ∗)} is bounded and non-increasing for all υ∗ ∈ f℘. Hence,
limn→∞ ∂(υη , υ∗) exists, as required.
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Lemma 8. Let Bs be a nonempty closed convex subset of complete Busemann space B, and
℘ : Bs → Bs be a mapping satisfying condition (Eμ). For an arbitrary chosen υ0 ∈ Bs, let the
sequence {υη} be generated by a standard three-step iteration algorithm. Then, f℘ is nonempty if
and only if {υη} is bounded and limn→∞ ∂(℘υη , υη) = 0 for a unique asymptotic center.

Proof. Since f℘ �= ∅, let υ∗ ∈ f℘ and z ∈ Bs. Using Lemma 7, there is an existence of
limn→∞ ∂(υη , υ∗), which confirms the boundedness of {υη}. Assuming

lim
n→∞

∂(υη , υ∗) = r,

on combining this result with the values of ∂(jη , υ∗) and ∂(�η , υ∗) of Lemma 7

lim sup
n→∞

∂(�η , υ∗) ≤ lim sup
n→∞

∂(υη , υ∗) = r. (2.1)

Also,

lim sup
n→∞

∂(℘υη , υ∗) = lim sup
n→∞

(μ∂(℘υ∗, υ∗) + ∂(υη , υ∗))

≤ lim sup
n→∞

∂(υη , υ∗)

= r.

On the other hand, by using the value of ∂(�η , υ∗) of Lemma 7, we have

∂(υn+1, υ∗) ≤ ∂(τ2
η υη ⊕ κ2

η℘υη ⊕ ι2η jη ⊕ ω2
η℘jη ⊕ εη�η ⊕ σ℘�η , υ∗)

≤ τ2
η ∂(υη , υ∗) + κ2

η∂(℘υη , υ∗) + ι2η∂(jη , υ∗) + ω2
η∂(℘jη , υ∗)

+ εη∂(�η , υ∗) + ση∂(℘�η , υ∗)
≤ τ2

η ∂(υη , υ∗) + κ2
η(μ∂(℘υ∗, υ∗) + ∂(υη , υ∗)) + ι2η∂(jη , υ∗) + ω2

η(μ∂(℘υ∗, υ∗)

+ ∂(jη , υ∗)) + εη∂(�η , υ∗) + ση(μ∂(℘υ∗, υ∗) + ∂(�n, υ∗))
≤ (τ2

η + κ2
η + ι2η + ω2

η)∂(υη , υ∗) + (εη + ση)∂(�η , υ∗)

≤ (τ2
η + κ2

η + ι2η + ω2
η)∂(υη , υ∗) + (εη + ση)∂(�η , υ∗),

by the above-mentioned standard three-step iteration algorithm,

∂(υn+1, υ∗) ≤ (1 − (εη + ση))∂(υη , υ∗) + (εη + ση)∂(�η , υ∗)
≤ ∂(υη , υ∗)− (εη + ση)∂(υη , υ∗) + (εη + ση)∂(�η , υ∗).

This implies that,

∂(υn+1, υ∗) ≤ ∂(υη , υ∗)− (εη + ση)∂(υη , υ∗) + (εη + ση)∂(�η , υ∗).
≤ ∂(υη , υ∗) + (εη + ση)(∂(�η , υ∗)− ∂(υη , υ∗)).

∂(υn+1, υ∗)− ∂(υη , υ∗) ≤ (εη + ση)(∂(�η , υ∗)− ∂(υη , υ∗)).
∂(υn+1, υ∗)− ∂(υη , υ∗)

(εη + ση)
≤ (∂(�η , υ∗)− ∂(υη , υ∗)).

This implies that,

∂(υn+1, υ∗)− ∂(υη , υ∗) ≤ ∂(υn+1, υ∗)− ∂(υη , υ∗)
(εη + ση)

≤ (∂(�η , υ∗)− ∂(υη , υ∗))

and hence, we have

∂(υn+1, υ∗) ≤ ∂(�η , υ∗).
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Therefore,

r ≤ lim
n→∞

∂(�η , υ∗). (2.2)

By using Equations (2.1) and (2.2), we have

r = lim
n→∞

∂(�η , υ∗)

= lim
n→∞

∂(τ0
η υη ⊕ κ0

η℘υη ⊕ ι0η jη ⊕ ω0
η℘jη , υ∗)

= lim
n→∞

(∂(τ0
η υη + κ0

η℘υη , υ∗) + (ι0η + ω0
η)∂(jη , υ∗))

= lim
n→∞

((τ0
η + ι0η + ω0

η)∂(υη , υ∗) + κ0
η∂(℘υη , υ∗))

= lim
n→∞

((τ0
η + ι0η + ω0

η)∂(υη , υ∗) + κ0
η(μ∂(℘υ∗, υ∗) + ∂(υη , υ∗)))

= lim
n→∞

((1 − κ0
η)∂(υη , υ∗) + κ0

η∂(υη , υ∗)).

= lim
n→∞

∂(υη , υ∗). (2.3)

Using Equations (2.1) and (2.3) and the above-mentioned inequalities, we have

lim sup
n→∞

∂(�η , υ∗) ≤ lim sup
n→∞

∂(υη , υ∗) = r,

and hence, by Lemma 2, we have

lim
n→∞

∂(℘υη , υη) = 0.

Conversely, suppose that {υη} is bounded and limn→∞ ∂(℘υη , υη) = 0. Then, by
Lemma 4 {υη} has a subsequence that is regular with respect to Bs. Let υ{ηκ} be a
subsequence of {υη} in such a way that A(Bs, {υη}) = υ. Hence, we have

lim sup
n→∞

∂(υη ,℘υ∗) ≤ lim sup
n→∞

(μ∂(υη ,℘υη) + ∂(υη , υ))

≤ lim sup
n→∞

∂(υη , υ)

As a consequence, the uniqueness of the asymptotic center ensures that υ is a fixed
point of ℘ so this concludes the proof.

Now, we state and prove our main theorems in this section.

Theorem 2. Let Bs be a nonempty closed convex subset of a compete Busemann space B and
℘ : Bs → Bs be a mapping satisfying condition (Eμ). For an arbitrary chosen υ0 ∈ Bs, assume
that {υη} is a sequence generated by a standard three-step iteration algorithm. Then f℘ �= ∅ and
{υη} Δ−converges to a fixed point of ℘.

Proof. Since f℘ �= ∅, so by Lemma 8, we have bounded {υη} and

lim
n→∞

∂(℘υη , υη) = 0.

Also, let
ωω{υη} :=

⋃A(υηκ )

where the union is taken over all subsequences {υηκ} of {υη}. We claim that ωω{υη} ⊂
f℘. Considering υ∗ ∈ ωω{υη}, then there is an existence of subsequence {υηκ} of {υη}
in such a way that A({υη}) = {υ∗}. Using Lemmas 3 and 5 there is an existence of
subsequence {υ′ηκ

} of {υηκ} in such a way that Δ − limη→∞{υ′ηκ
} = υ′∗ ∈ Bs. Since

limη→∞ ∂(υ′ηκ
,℘υ′ηκ

) = 0, then by Lemma 6 υ′ ∈ f℘. We claim that υ∗ = υ′∗. In contrast,
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since ℘ is a mapping satisfying condition (E) and υ∗ ∈ f℘, then by Lemma 7 there is an
existence of limη→∞ ∂(υη , υ∗). Using the uniqueness of asymptotic centers, we have

lim sup
n→∞

∂(υη , υ′∗) < lim sup
n→∞

∂(υ′ηκ
, υ∗)

≤ lim
n→∞

∂(υηκ , υ∗)

< lim
n→∞

∂(υ′ηκ
, υ′∗)

= lim
n→∞

∂(υη , υ′∗)

= lim
n→∞

∂(υ′ηκ
, υ′∗)

which is a contradiction. So υ′ηκ
= υηκ ∈ f℘. To prove that {υη} Δ−converges to a fixed

point of ℘, it is sufficient to show that ωω{υη} consists of exactly one point. Considering
a subsequence {υηκ} of {υη}. By Lemmas 3 and 5 there is existence of subsequence
{υ′ηκ

} of {υηκ}, which is how Δ − limη→∞{υ′ηκ
} = υ′∗ ∈ Bs. Let A({υηκ}) = {υ∗} and

A({υη}) = υ∗∗. We can conclude the explanation by proving that υ∗∗ = υ∗. On the
contrary, since ∂(υη , υ′ηκ

) is convergent, then by the uniqueness of the asymptotic centers,
we have

lim sup
n→∞

∂(υη , υ′∗) < lim sup
n→∞

∂(υ′ηκ
, υ∗∗)

≤ lim
n→∞

∂(υη , υ∗∗)

< lim
n→∞

∂(υη , υ′∗)

= lim
n→∞

∂(υ′ηκ
, υ′∗)

which is a contradiction. Hence, f℘ �= ∅ and {υη} Δ−converges to a fixed point of ℘.

Theorem 3. Let Bs be a nonempty closed convex and complete Busemann space B, and ℘ : Bs →
Bs be a mapping verification condition (Eμ). For an arbitrary chosen υ0 ∈ Bs, assume that {υη} is
a sequence generated by a standard three-step iteration algorithm. Then {υη} converges strongly to
a fixed point of ℘.

Proof. By Lemmas 7, 8 and Theorem 2, we have f℘ �= ∅ so by Lemma 8 {υη} is bounded
and Δ−converges to υ ∈ f℘. Suppose on the contrary that {υη} does not converge strongly
to υ. By the compactness assumption, passing to subsequences if necessary, we may assume
that there exists υ′ ∈ Bs with υ′ �= υ such that {υη} converges strongly to υ′. Therefore,

lim
n→∞

∂(℘υη , υ′) = 0 ≤ lim
n→∞

∂(℘υη , υ).

Since υ is the unique asymptotic center of {υη}, it follows that υ′ = υ, which is a
contradiction. Hence, {υη} converges strongly to a fixed point of ℘.

4. Conclusions

The extension of the linear version of fixed point results to nonlinear domains has its
own significance. To achieve the objective of replacing a linear domain with a nonlinear
one, Takahashi [40] introduced the notion of a convex metric space and studied fixed point
results of nonexpansive mappings in this direction. Since the standard three-step iteration
scheme unifies various existing iteration schemes for different values of εη , ση , τi

η , κi
η , ωi

η ,
and ιiη for i = 0, 1, 2, existing results of the standard three-step iteration scheme including
strong and Δ − convergence results in the setting of Busemann spaces satisfying condition
E are generalized.
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Rouzkard et al. (The Bulletin of the Belgian Mathematical Society 2012). Then after, utilizing the
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1. Introduction

A point on which a self-map remains invariant is called a fixed point for that map.
Fixed point theory plays an important role in solving different kinds of problems of
nonlinear analysis and so it has applications in engineering, medical science, physical
science, computer science, etc. In 1922, Banach [1] proved that a contraction map in a
complete metric space has a fixed point and this result is known as the Banach contraction
principle. Due to the simplicity and usefulness of this result, fixed point theory became
a more aggressive area of research. Many researchers so far have worked in this field,
extending this contraction principle in several possible ways [2–4].

In 1976, Jungck [5] extended the Banach contraction principle for the pair of commut-
ing self-maps by ensuring the existence of a common fixed point for this pair. Sessa [6]
relaxed the condition of commutativity and introduced the class of weak commuting maps.
Again, Jungck [7] gave the weaker version of the commutativity condition by introducing
the class of compatible maps and proved that weak commuting maps are compatible but
the converse is not true in general. After that, many authors obtained more comprehensive
common fixed point theorems under some given hypothesis [8,9].

On the other side, Takahashi [10] defined the notion of a convex structure in a metric
space and called such a space a convex metric space. Further, he studied several properties
of this space and ensure the existence of a fixed point for nonexpansive maps in the
setup of convex metric space. In the last forty years, many fixed point and common fixed
point theorems in the context of convex metric space have been established; for example,
see [11–15].

2. Preliminaries

In the present section we recall some standard notations, basic definitions and auxiliary
results, which are required in the sequel.

In 2014, inspired by the idea of Aamri and Moutawakil [16], the concept of (E.A.)
property in the context of convex metric space was introduced by Kumar and Rathee [17].
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In the present article, we shall show that there is a gap in the proof of the Theorem 1,
which is one of the main results of Rouzkard et al. [18]. Then, we obtain a correct version
of Theorem 1 by utilizing the concept of (E.A.) property in a convex metric space defined
by Kumar and Rathee [17].

Finally, we clarify the importance of the notion (E.A.) property in a convex metric
space in comparison to the hypothesis that the range set of one map is contained in the
range set of another map.

Definition 1. [10] Let (S, ρ) be a metric space. A continuous mapping W : S × S × [0, 1] → S is
called a convex structure on S, if for all x, y ∈ S and λ ∈ [0, 1], we have

d(u, W(x, y, λ)) ≤ λd(u, x) + (1 − λ)d(u, y)

for all u ∈ S. A metric space (S, ρ) equipped with a convex structure is called a convex metric space.

Let M be a subset of a convex metric space (S, ρ). The set M is said to be

(i) convex if W(x, y, λ) ∈ M for all x, y ∈ M and λ ∈ [0, 1];
(ii) q-starshaped if there exists q ∈ M such that W(x, q, λ) ∈ M for all x ∈ M and

λ ∈ [0, 1].

In addition, the map I : M → M is said to be

(i) affine if M is convex and I(W(x, y, λ)) = W(Ix, Iy, λ) for all x, y ∈ M and λ ∈ [0, 1];
(ii) q-affine if M is q-starshaped and I(W(x, q, λ)) = W(Ix, q, λ) for all x ∈ M and

λ ∈ [0, 1].

Clearly, each convex set M is q-starshaped for any q ∈ M but the converse assertion is
not necessarily true (see Example 7 of [19]).

Definition 2. [10] A convex metric space (S, ρ) is said to satisfy the Property (I), if for all
x, y, z ∈ S and λ ∈ [0, 1], we have ρ(W(x, z, λ), W(y, z, λ)) ≤ λρ(x, y).

Notice that Property (I) is always satisfied in a normed linear space and each of its
convex subsets.

Definition 3. [19] Let T, I : S → S be mappings on a metric space (S, ρ). The pair (T, I) is said
to be compatible if

ρ(TIxn, ITxn) → o

whenever {xn} is a sequence in S such that

Txn, Ixn → t ∈ S

Definition 4. [16] Let T, I : S → S be mappings on a metric space (S, ρ). The pair (T, I) is said
to satisfy (E.A.) property if there is a sequence {xn} ∈ S such that

Txn, Ixn → t ∈ S

Definition 5. Let (S, ρ) be a metric space and T, I : S → S. Then the pair (T, I) is said to be
reciprocally continuous if

lim
n→+∞

TIxn = Tt and lim
n→+∞

ITxn = It

whenever {xn} is a sequence in S such that limn→+∞ Txn = limn→+∞ Ixn = t for some t ∈ X.

It is easy to see that if T and I are continuous, then the pair (T, I) is reciprocally
continuous but the converse is not true in general (see Example 2.3 of [20]).
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Moreover, in the setting of common fixed point theorems for compatible pairs of
self-mappings satisfying some contractive conditions, continuity of one of the mappings
implies their reciprocal continuity.

Definition 6. A pair (T, I) of self-maps of a metric space (S, ρ) is said to be sub-compatible if there
exists a sequence {xn} such that

lim
n→+∞

Txn = lim
n→+∞

Ixn = t for some t ∈ X and lim
n→+∞

ρ(TIxn, ITxn) = 0.

Recently, Rouzkard et al. [18] proved the following common fixed point theorem for
the pair of compatible maps in a convex metric space.

Theorem 1. Let C be a nonempty closed convex subset of a convex metric space (X, ρ) satisfying
the Property (I). Denote [x, q] = {W(x, q, k) : 0 ≤ k ≤ 1} where W is a convex structure on the
metric space.

If T and I are compatible self-maps defined on C such that I(C) = C, I is q-affine and
nonexpansive, which satisfy the inequality

ρ(Tx, Ty) ≤ ρ(Ix, Iy) +
(1 − k)

k
max{ρ(Ix, [Tx, q]), ρ(Iy, [Ty, q])} (1)

for all x, y ∈ C, where 1/2 < k < 1, then T and I have a common fixed point provided
cl(T(C)) is compact and T is continuous.

3. Results

3.1. Compatibility in Proof of Theorem 1.

Let us recall the lines of the proof given in Rouzkard et al. [18]. First of all, for each
n ∈ N, the authors define Tn : C → C by

Tnx = W(Tx, q, kn) for all x ∈ C, (2)

where kn is a sequence in ( 1
2 , 1) such that kn → 1. Afterward, to accomplish the compatibil-

ity of the maps Tn and I for each n ∈ N, the authors choose an arbitrary sequence {xm} in
C such that

lim
m→+∞

Ixm = lim
m→+∞

Tnxm = t ∈ C (3)

Using the definition of Tn, it has been written that

ρ(Txm, Tnxm) = ρ(Txm, W(Txm, q, kn))

≤ knρ(Txm, Txm) + (1 − kn)ρ(Txm, q)

= (1 − kn)ρ(Txm, q).

Then by taking m → +∞ and using (3), the authors get

ρ( lim
m→+∞

Txm, t) ≤ (1 − kn)ρ( lim
m→+∞

Txm, q). (4)

Again, on making n → +∞ in (4), the authors wrote the following (see [18], page 323,
line 20–21)

ρ( lim
m→+∞

Txm, t) ≤ 0. (5)

Then, by using this expression, the authors claim the compatibility of the maps Tn and I
for each n ∈ N.

Here, it is pertinent to mention that the compatibility of the maps Tn and I is to be
shown for each n ∈ N and so the compatibility of Tn and I is to be shown for arbitrarily fixed
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natural number n. If n is fixed, then it is superfluous to approach n → +∞, therefore (5)
is not valid because this is obtained by taking n → ∞ in (4). So the compatibility of the
maps Tn and I for each n ∈ N proved by this way is totally wrong. The same mistake
occurred when the authors tried to prove the reciprocal continuity of Tn and I for each
n ∈ N (see [18], page 324, line 3–15).

3.2. Modified Version of Theorem 1

The following definition given by Kumar and Rathee [17] is required to prove the
modified version of Theorem 1.

Definition 7. Let M be a q-starshaped subset of a convex metric space (S, ρ) and let T, I : M → M
with q ∈ F(I). The pair (T, I) is said to satisfy (E.A.) property with respect to q if there exists a
sequence {xn} in M such that for all λ ∈ [0, 1].

lim
n→+∞

Ixn = lim
n→+∞

Tλxn = t for some t ∈ M, (6)

where Tλx = W(Tx, q, λ).

The following lemma is a direct consequence of Theorem 3.2 of Rouzkard et al. [18].

Lemma 1. Let T and I be self-maps of a metric space (S, ρ). If the pair (T, I) is sub-compatible,
reciprocally continuous and satisfies the inequality

ρ(Tx, Ty) ≤ a ρ(Ix, Iy) + (1 − a)max{ρ(Ix, Tx), ρ(Iy, Ty)} (7)

for all x, y ∈ X, where 0 < α < 1. Then T and I have a unique common fixed point in X.

Now we modify Theorem 1 by replacing the condition I(M) = M ⊇ T(M) with the
assumption that the pair (T, I) satisfies (E.A.) property with respect to some q ∈ M.

Theorem 2. Let M be a nonempty q-starshaped subset of a convex metric space (X, ρ) with
Property (I) and let T and I be continuous self-maps of M such that the pair (T, I) satisfies (E.A.)
property with respect to q. Assume that I is q-affine, cl(T(M)) is compact. If T and I are compatible
and satisfy the inequality

ρ(Tx, Ty) ≤ ρ(Ix, Iy) +
1 − k

k
max{ρ(Ix, [Tx, q]), ρ(Iy, [Ty, q])} (8)

for all x, y ∈ M, where 1
2 < k < 1, then T and I have a common fixed point in M.

Proof. For each n ∈ N, we define Tn : M → M by

Tn(x) = W(Tx, q, kn) for all x ∈ M, (9)

where kn is a sequence in ( 1
2 , 1) such that kn → 1.

Now, we have to show that for each n ∈ N, the pair (Tn, I) is sub-compatible. Since T
and I satisfy (E.A.) property with respect to q, there exists a sequence {xm} in M such that
for all λ ∈ [0, 1]

lim
m→+∞

Ixm = lim
m→+∞

Tλxm = t ∈ M, (10)
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where Tλxm = W(Txm, q, λ).

Since kn ∈ (0, 1), in light of (9) and (10), for each n ∈ N, we have

lim
m→+∞

Tnxm = lim
m→+∞

W(Txm, q, kn)

= lim
m→∞

Tkn xm = t ∈ M.

Thus, we have
lim

m→+∞
Ixm = lim

m→+∞
Tnxm = t ∈ M. (11)

Now using the fact that I is q-affine and Property (I) is satisfied, we get

ρ(Tn Ixm, ITnxm) = ρ(W(TIxm, q, kn), I(W(Txm, q, kn)))

= ρ(W(TIxm, q, kn), W(ITxm, q, kn))

≤ kn ρ(TIxm, ITxm). (12)

Since (T, I) satisfies (E.A.) property with T and I are compatible, in view of (10) we have

lim
m→+∞

ρ(TIxm, ITxm) = 0.

Now, letting m → ∞ in (12), we obtain

lim
m→+∞

ρ(Tn Ixm, ITnxm) = 0. (13)

Hence, on account of (11) and (13), it follows that the pair (Tn, I) is sub-compatible for
each n ∈ N. Since T and I are continuous, for each n ∈ N, the pair (Tn, I) is reciprocally
continuous. Furthermore, by (8),

ρ(Tnx, Tny) = ρ(W(Tx, q, kn), W(Ty, q, kn))

≤ kn ρ(Tx, Ty)

≤ kn[ρ(Ix, Iy) +
1 − kn

kn
max{dist(Ix, [Tx, q]), dist(Iy, [Ty, q])}]

≤ kn ρ(Ix, Iy) + (1 − kn)max{ρ(Ix, Tnx), ρ(Iy, Tny)} (14)

for each x, y ∈ M and 1
2 < kn < 1. By Lemma 1, for each n ∈ N, there exists xn ∈ M such

that xn = Ixn = Tnxn.

Now the compactness of cl(T(M)) implies that there exists a sub-sequence {Txm} of
{Txn} such that Txm → z as m → +∞. Further, it follows that

xm = Tmxm = W(Txm, q, km) → z as m → +∞.

Then, by the continuity of T and I, we obtain Iz = z = Tz and so z is a common fixed point
of T and I.

The following remark clarifies that in the context of a convex metric space, the notion
of (E.A.) property introduced by Kumar and Rathee [17] for proving the common fixed
point theorems has importance in comparison to the hypothesis that a range set of one map
is contained in the range set of another map.

Remark 1.

(a) In 2011, Haghi et al. [21] showed that several common fixed point generalizations in the theory
of fixed point are not a real generalization because they can be obtained from the corresponding
fixed point theorems. After the critical analysis of this paper, we reached the conclusion that
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the claim of Haghi et al. [21] is true only in the case if we make the assumption that the range
set of one map is contained in the range set of another map.
So, keeping this in view, we replaced the condition I(M) = M ⊇ T(M) of Theorem 1 with
the assumption that the pair (T, I) satisfies (E.A.) property with respect to some q ∈ M and
due to this we have been able to obtain the modified and correct version of Theorem 1 in the
form of Theorem 2.

(b) (see Example 17 of [16]) Let S = R with usual metric and M = [0, 1]. Define T, I : M →
M by

T(x) =

{
1
2 if 0 ≤ x ≤ 1

2
x
2 + 1

4 if 1
2 ≤ x ≤ 1.

and I(x) =

{
1
2 if 0 ≤ x ≤ 1

2

1 − x if 1
2 ≤ x ≤ 1.

Then (S, ρ) is a convex metric space with W(x, y, λ) = λx + (1 − λ)y. It is easy to verify
that the pair (T, I) satisfies (E.A.) property with respect to q = 1

2 , but the pair violates the
condition that the range set of one map is contained in the range set of another map since
T(M) = [ 1

2 , 3
4 ] �⊆ [0, 1

2 ] = I(M) and I(M) = [0, 1
2 ] �⊆ [ 1

2 , 3
4 ] = T(M).

In this way, we can say that there are certain pairs of self-maps, namely T and I,
defined on a set (say M), which satisfies (E.A.) property in the set up of convex metric
space but violates the condition T(M) ⊆ I(M). Thus, the common fixed point theorems in
which the pair of maps satisfy (E.A.) property with some other hypotheses will ensure the
existence of a common fixed point for such maps.

Remark 2. As an application of Theorem 1, the authors in [18] obtained two more theorems
(see Theorems 4.1 and 4.2 of [18]). Since we have quoted a gap in the proof of Theorem 1, Theorems
4.1 and 4.2 of [18] are no longer valid. Thus, these theorems can also be modified by using the notion
of (E.A.) property in the set up of a convex metric space.

4. Conclusions

In this work, a gap in the proof of the main result of Rouzkard et al. (The Bulletin
of the Belgian Mathematical Society 2012) is detected. Then after, utilizing the concept of
(E.A.) property in convex metric space, we obtained an alternative and correct version of
this result.

In the set up of a convex metric space, the notion of (E.A.) property introduced by
Kumar and Rathee [17] for proving the common fixed point theorems is more important
than the hypothesis that a range set of one map is contained in the range set of another
map and it develops some new extensions.
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1. Introduction and Mathematical Preliminaries

Let (X, d) be a metric space. The following standard notations and definitions will be
used. N(X) is the family of all nonempty subsets of X, B(X) is the family of all nonempty
bounded subsets of X, CB(X) is the family of all nonempty closed and bounded subsets of
X, K(X) is the family of all nonempty compact subsets of X and

D(x, B) = inf {d(x, y) : y ∈ B}, where x ∈ X and B ∈ B(X),

H(A, B) = max{sup
x∈A

D(x, B), sup
y∈B

D(y, A)}, where A, B ∈ CB(X).

H is known as the Hausdorff metric induced by the metric d on CB(X) [1]. Furthermore, if
(X, d) is complete then (CB(X), H) is also complete.

Let X be a nonempty set and � = {(x, x) : x ∈ X}. Consider a directed graph G such
that the set V(G) of its vertices coincides with X and the set E(G) of its edges contains
all loops, i.e., � ⊆ E(G). Assume that G has no parallel edges. By G−1 we denote the
graph obtained from G by reversing the directions of the edges. Thus, V(G−1) = V(G)
and E(G−1) = {(x, y) ∈ X × X : (y, x) ∈ E(G)}. By G̃ we denote the undirected graph
obtained from G by ignoring the direction of edges. Actually, it will be more convenient for
us to treat G̃ as a directed graph for which the V(G̃) = V(G) and E(G̃) = E(G) ∪ E(G−1).
A nonempty set X is said to be endowed with a directed graph G(V, E) if V(G) = X and
� ⊆ E(G).

Let F : (0, ∞) → R be a function with the following properties:
(F1) F is strictly increasing, i.e., x < y =⇒ F(x) < F(y);
(F2) For each sequence {αn}∞

n=1 in (0, ∞), lim
n→∞

αn = 0 if and only if lim
n→∞

F(αn) = −∞;

(F3) There exists k ∈ (0, 1) such that lim
α→0

αkF(α) = 0;
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(F4) F(inf A) = inf F(A) for all A ⊂ (0, ∞) with inf A > 0.
We denote the set of all functions F satisfying (F1 − F3) by � and the set of all functions F
satisfying (F1 − F4) by �∗.

Wardowski [2] introduced the notion of F-contraction and established a new type of
generalization of the Banach’s contraction mapping principle.

Definition 1 ([2]). Let (X, d) be a metric space. A mapping T : X → X is said to be an
F-contraction if there exist F ∈ � and τ > 0 such that

τ + F(d(Tx, Ty)) ≤ F(d(x, y))

holds for any x, y ∈ X with d(Tx, Ty) > 0.

Theorem 1 ([2]). Let (X, d) be a complete metric space and T : X → X be an F-contraction.
Then T has a unique fixed point ξ in X.

Definition 2 ([3]). Let (X, d) be a metric space endowed with a directed graph G(V, E). A
mapping T : X → X is graph-preserving if

(x, y) ∈ E(G), for x, y ∈ X =⇒ (Tx, Ty) ∈ E(G).

Definition 3 ([4]). Let (X, d) be a metric space endowed with a directed graph G(V, E). A
mapping T : X → X is said to be an GF-contraction if T is graph-preserving and there exist F ∈ �
and τ > 0 such that

τ + F(d(Tx, Ty)) ≤ F(d(x, y))

holds for any x, y ∈ X with (x, y) ∈ E(G) and d(Tx, Ty) > 0.

Definition 4 ([5]). Let (X, d) be a metric space endowed with a directed graph G(V, E). A
multivalued mapping T : X → CB(X) is graph-preserving if

(x, y) ∈ E(G), for x, y ∈ X =⇒ (u, v) ∈ E(G), whenever u ∈ Tx and v ∈ Ty.

Lemma 1 ([5]). Let (X, d) be a metric space and T : X → N(X) be an upper semi-continuous
mapping such that Tx is closed for all x ∈ X. If xn → x0, yn → y0 and yn ∈ Txn, then y0 ∈ Tx0.

Definition 5 ([5]). Let (X, d) be a metric space endowed with a directed graph G(V, E). A
multivalued mapping T : X → CB(X) is weakly graph-preserving if (x, y) ∈ E(G) where x ∈ X
and y ∈ Tx, implies that (y, z) ∈ E(G) for all z ∈ Ty.

Let X be a nonempty set and T : X → N(X) be a multivalued mapping. We define

PT = {x ∈ X : x ∈ Tx}, TG = {(x, y) ∈ E(G) : H(Tx, Ty) > 0} and

XT = {x ∈ X : (x, y) ∈ E(G) for some y ∈ Tx}.

The following class of functions will be used in our results in the next section.
Let ψ : [0, ∞)5 → [0, ∞) be such that (i) ψ is continuous and monotone nondecreasing

in each coordinate, (ii) ψ(t, t, t, t, t) ≤ t for all t ≥ 0. We denote the collection of such
functions ψ by the symbol Ψ.

Let φ : [0, ∞)4 → [0, ∞) be such that (i) φ is continuous and monotone nondecreasing
in each coordinate, (ii) φ(x1, x2, x3, x4) = 0 if x1x2x3x4 = 0. We denote the collection of
such functions φ by the symbol Φ.

Using the above mathematical notions in this paper we establish an F-contraction
type multivalued fixed-point result in a metric space with a graph. Fixed-point theory on
metric spaces with the additional structure of a graph is a recent development. Some works
from this line of research can be found in works such as [3,5–10]. We make specific choices
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of a particular function used in the metric inequality to discuss special cases of the main
theorem. This demonstrates the generality of our result. It may be further mentioned that
F-contractions are new concepts in metric fixed-point theory which have been extended
in various ways in works such as [2,4–6,11,12]. Essentially our results are in the domain
of setvalued analysis to which the Banach contraction mapping principle was extended
by Nadler [1]. In his result Nadler used the Hausdorff distance. The work was followed
by several other works such as [5,6,13–15]. The contractive inequality which we use in
our problem involves some rational terms. Dass and Gupta [16] generalized the Banach’s
contraction mapping principle by using a contractive condition of rational type. Fixed-point
theorems for contractive type conditions satisfying rational inequalities in metric spaces
have been developed in several works [17–20]. Finally, we support our main theorem with
illustrative examples.

2. Main Result

Theorem 2. Let (X, d) be a complete metric space endowed with a directed graph G and T :
X → K(X) be a multivalued map. Suppose that (i) T is upper semi-continuous and weakly
graph-preserving, (ii) XT is nonempty, (iii) there exist τ > 0, F ∈ �, ψ ∈ Ψ and φ ∈ Φ such that
for x, y ∈ X with (x, y) ∈ TG,

τ + F(H(Tx, Ty)) ≤ F(M(x, y) + N(x, y)),

where N(x, y) = φ
(

D(x, Tx), D(y, Ty), D(x, Ty), D(y, Tx)
)

and

M(x, y) = ψ
(

d(x, y), D(x, Tx), D(y, Ty),
D(x, Tx)D(y, Ty) + D(x, Ty)D(y, Tx)

1 + d(x, y)
,

D(x, Tx)D(y, Ty) + D(x, Ty)D(y, Tx)
1 + H(Tx, Ty)

)
.

Then PT is nonempty.

Proof. Let us assume T has no fixed point. Then D(x, Tx) > 0 for all x ∈ X. Let x0 ∈ XT .
Then there exists x1 ∈ Tx0 such that (x0, x1) ∈ E(G). Now 0 < D(x1, Tx1) ≤ H(Tx0, Tx1),
which implies that (x0, x1) ∈ TG. Using the assumption (iii) and a property of F, we have

F(D(x1, Tx1)) ≤ F(H(Tx0, Tx1)) ≤ F(M(x0, x1) + N(x0, x1))− τ, (1)

where

M(x0, x1) = ψ
(

d(x0, x1), D(x0, Tx0), D(x1, Tx1),

D(x0, Tx0)D(x1, Tx1) + D(x0, Tx1)D(x1, Tx0)

1 + d(x0, x1)
,

D(x0, Tx0)D(x1, Tx1) + D(x0, Tx1)D(x1, Tx0)

1 + H(Tx0, Tx1)

)
≤ ψ
(

d(x0, x1), d(x0, x1), D(x1, Tx1),
D(x0, Tx0)D(x1, Tx1)

1 + d(x0, x1)
,

D(x0, Tx0)D(x1, Tx1)

1 + H(Tx0, Tx1)

)
≤ ψ
(

d(x0, x1), d(x0, x1), D(x1, Tx1),
D(x0, Tx0)D(x1, Tx1)

1 + d(x0, x1)
,

d(x0, x1)D(x1, Tx1)

1 + D(x1, Tx1)

)
≤ ψ
(

d(x0, x1), d(x0, x1), D(x1, Tx1), D(x1, Tx1), d(x0, x1)
)

(2)
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and

0 ≤ N(x0, x1) = φ(D(x0, Tx0), D(x1, Tx1), D(x0, Tx1), D(x1, Tx0))

≤ φ
(

d(x0, x1), D(x1, Tx1), D(x0, Tx1), d(x1, x1)
)
= 0,

that is, N(x0, x1) = 0.

If possible, suppose that d(x0, x1) ≤ D(x1, Tx1). Then from (2), using the properties
of ψ, we have

M(x0, x1) ≤ ψ
(

D(x1, Tx1), D(x1, Tx1), D(x1, Tx1), D(x1, Tx1), D(x1, Tx1)
)

≤ D(x1, Tx1).

Using (1) and a property of F, we have

F(D(x1, Tx1)) ≤ F(D(x1, Tx1))− τ,

which is a contradiction. Thus, D(x1, Tx1) < d(x0, x1). Using (2) and the properties of ψ,
we have

M(x0, x1) ≤ ψ
(

d(x0, x1), d(x0, x1), d(x0, x1), d(x0, x1), d(x0, x1)
)

≤ d(x0, x1).

By (1) and a property of F, we have

F(D(x1, Tx1)) ≤ F(d(x0, x1))− τ. (3)

Since Tx1 is compact, there exists x2 ∈ Tx1 such that d(x1, x2) = D(x1, Tx1). Hence from
(3), we have

F(d(x1, x2)) ≤ F(d(x0, x1))− τ. (4)

As T is weakly graph-preserving, (x0, x1) ∈ E(G), x1 ∈ Tx0 and x2 ∈ Tx1, we have
(x1, x2) ∈ E(G). Now, 0 < D(x2, Tx2) ≤ H(Tx1, Tx2), which implies that (x1, x2) ∈ TG. By
the assumption (iii) and a property of F, we have

F(D(x2, Tx2)) ≤ F(H(Tx1, Tx2)) ≤ F(M(x1, x2) + N(x1, x2))− τ. (5)

Arguing similarly as before, we have

F(D(x2, Tx2)) ≤ F(d(x1, x2))− τ. (6)

Since Tx2 is compact, there exists x3 ∈ Tx2 such that d(x2, x3) = D(x2, Tx2). From (6), we
have

F(d(x2, x3)) ≤ F(d(x1, x2))− τ. (7)

Continuing this process, we construct a sequence {xn} such that for all n ≥ 0,

xn+1 ∈ Txn, (xn, xn+1) ∈ TG (8)

and
F(d(xn, xn+1)) ≤ F(d(xn−1, xn))− τ. (9)

Let γn = d(xn, xn+1) for all n ≥ 0.
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From (9), we have

F(γn) ≤ F(γn−1)− τ ≤ F(γn−2)− 2τ ≤ ... ≤ F(γ0)− nτ. (10)

Taking limit as n → ∞ in the above inequality, we get lim
n→∞

F(γn) = −∞, which by property

(F2) of F, implies that lim
n→∞

γn = 0. Then by property (F3) of F, there exists k ∈ (0, 1) such

that lim
n→∞

γk
nF(γn) = 0. Now, using (10), we have

γk
nF(γn)− γk

nF(γ0) ≤ −γk
nnτ ≤ 0.

Letting n → ∞ in the above inequality, we obtain

lim
n→∞

nγk
n = 0.

Then there exists n1 ∈ N such that nγk
n ≤ 1 for all n ≥ n1, which implies that

γn ≤ 1

n
1
k

for all n ≥ n1. Then we have

∞

∑
n=n1

d(xn, xn+1) =
∞

∑
n=n1

γn ≤
∞

∑
n=n1

1

n
1
k

.

As 0 < k < 1, ∑∞
n=n1

1

n
1
k

is convergent. Then it follows that ∑ d(xn, xn+1) is convergent.

This implies that {xn} is a Cauchy sequence. As X is complete, there exists z ∈ X such
that lim

n→∞
xn = z. Since T is upper semi-continuous, by Lemma 1, we have z ∈ Tz, which

contradicts the assumption that T has no fixed point. Hence T has a fixed point, i.e., PT is
nonempty.

Remark 1. Varying the functions ψ and φ in the assumption (iii) of Theorem 2, we have different
form of F-contractions for which Theorems 2 hold. For some examples, choosing

(a) ψ(t1, t2, t3, t4, t5) = t1 and φ(x1, x2, x3, x4) = 0,
(b) ψ(t1, t2, t3, t4, t5) = max{t2, t3} and φ(x1, x2, x3, x4) = 0,
(c) ψ(t1, t2, t3, t4, t5) = max{t4, t5} and φ(x1, x2, x3, x4) = 0,
(d) ψ(t1, t2, t3, t4, t5) = max{t1, t2, t3, t4, t5} and φ(x1, x2, x3, x4) = 0,
respectively, we have the following form of F-contractions respectively

1(a) : τ + F(H(Tx, Ty)) ≤ F(d(x, y)),

2(b) : τ + F(H(Tx, Ty)) ≤ F
(

max {D(x, Tx), D(y, Ty)}
)

,

3(c) : τ + F(H(Tx, Ty)) ≤ F
(

max
{D(x, Tx)D(y, Ty) + D(x, Ty)D(y, Tx)

1 + d(x, y)
,

D(x, Tx)D(y, Ty) + D(x, Ty)D(y, Tx)
1 + H(Tx, Ty)

})
,

4(d) : τ + F(H(Tx, Ty)) ≤ F(M(x, y)),

where M(x, y) = max
{

d(x, y), D(x, Tx), D(y, Ty),
D(x, Tx)D(y, Ty) + D(x, Ty)D(y, Tx)

1 + d(x, y)
,

D(x, Tx)D(y, Ty) + D(x, Ty)D(y, Tx)
1 + H(Tx, Ty)

}
.

Remark 2. Theorem 2 is a generalization of Theorem 2 in [6].

97



Axioms 2021, 10, 31

Remark 3. Theorem 2 is true for the class of functions T : X → CB(X) under the consideration
of the class of function �∗ instead of �. Arguing similarly as in the proof of Theorem 2 and taking
into account the condition (F4) of F, we get

F(D(x1, Tx1)) = F(inf {d(x1, z) : z ∈ Tx1})
= inf(F({d(x1, z) : z ∈ Tx1})).

From (3), we have

inf(F({d(x1, z) : z ∈ Tx1})) ≤ F(d(x0, x1))− τ < F(d(x0, x1))− τ

2
.

Then there exists x2 ∈ Tx1 such that

F(d(x1, x2)) ≤ F(d(x0, x1))− τ

2
.

Arguing similarly as in the proof of Theorem 2, it can be proved that PT is nonempty.

Example 1. Take the metric space X = [0, ∞) with usual metric d. Assume that G is a directed
graph with V(G) = X and E(G) = {(x, y) : if x, y ∈ [0, 1]} ∪ {(x, x) : x > 1}. Define a

multivalued mapping T : X → K(X) as Tx =

{
[0, e−τ

5 x] if x ∈ [0, 1],
{ e−τ

5 } if x > 1.
Let F(x) = ln(x), ψ(x1, x2, x3, x4, x5) = x1, φ(x1, x2, x3, x4) = 0 and τ > 0. Then T is
upper semi-continuous and weakly graph-preserving. Let x, y ∈ X with (x, y) ∈ E(G) and
H(Tx, Ty) > 0. Then x, y ∈ [0, 1] with x �= y. Without loss of generality, assume that y < x.
Then

H(Tx, Ty) = e−τ 1
5
|x − y| ≤ e−τ |x − y| = e−τd(x, y).

Taking ‘ln’ on both sides of the above equation, we get

F(H(Tx, Ty)) ≤ −τ + F(d(x, y)),

τ + F(H(Tx, Ty)) ≤ F(d(x, y)),

τ + F(H(Tx, Ty)) ≤ F(M(x, y) + N(x, y)),

where N(x, y) = φ
(

D(x, Tx), D(y, Ty), D(x, Ty), D(y, Tx)
)

and

M(x, y) = ψ
(

d(x, y), D(x, Tx), D(y, Ty),
D(x, Tx)D(y, Ty) + D(x, Ty)D(y, Tx)

1 + d(x, y)
,

D(x, Tx)D(y, Ty) + D(x, Ty)D(y, Tx)
1 + H(Tx, Ty)

)
.

Thus, all the conditions of Theorem 2 are satisfied and here PT = {0} is the fixed-point set of T.

Example 2. Let X = {0, 1, 2, 3, 4, 5, 6, 7, 8} and G be a directed graph with V(G) = X and
E(G) = {(0, 0), (0, 1), (0, 4), (0, 5), (1, 1), (1, 0), (1, 2), (1, 3), (2, 2), (2, 3), (3, 2), (3, 3), (4, 4),
(4, 5), (5, 4), (5, 5), (6, 6), (6, 7), (7, 1), (7, 7), (8, 7), (8, 8)}. Let d be a metric defined on X as

d(x, y) =
{

0 if x = y,
x + y if x �= y.

Let T : X → K(X) be defined as

T(x) =

⎧⎪⎪⎨⎪⎪⎩
{4, 5}, if x ∈ {0, 4, 5},
{2, 3}, if x ∈ {1, 2, 3},
{7}, if x ∈ {6, 8},
{1}, if x = 7.
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Let F(x) = ln(x), ψ(x1, x2, x3, x4, x5) = max(x1, x2, x3, x4, x5), φ(x1, x2, x3, x4) = x1x2x3x4
and τ = 0.2. Then all the conditions of Theorem 2 are satisfied and here PT = {2, 3, 4, 5} is the
fixed-point set of T.

Remark 4. Take x = 0 and y = 1. Then H(T0, T1)= 7, d(0, 1) = 1, D(0, T0) = 4, D(1, T1) =
3, D(0, T1) = 2, D(1, T0) = 5. It is easy to verify that the inequality (3.1) of Theorem 2 in [6]
is not satisfied when x = 0 and y = 1. Therefore, the above example is not applicable in case of
Theorem 2 in [6]. Hence Theorem 2 is an actual extension of Theorem 2 in [6].

3. Conclusions

In this paper, we combine several concepts which have featured prominently in the
recent literature of fixed-point theory. Fixed-point theory has many applications as, for
instances, those in [10,21]. It is our perception that the structure of graph on the metric
space allows us to obtain fixed-point results with more flexibility and for making some
new applications. These problems are supposed to be taken up in our future works.
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14. Ćirić, L.B. Multi-valued nonlinear contraction mappings. Nonlinear Anal. 2009, 71, 2716–2723. [CrossRef]

99



Axioms 2021, 10, 31

15. Mizoguchi, N.; Takahashi, W. Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl.
1989, 141, 177–188. [CrossRef]

16. Dass, B.K.; Gupta, S. An extension of Banach contraction principle through rational expressions. Inidan J. Pure Appl. Math. 1975, 6,
1455–1458.

17. Chandok, S.; Kim, J.K. Fixed point theorem in ordered metric spaces for generalized contractions mappings satisfying rational
type expressions. J. Nonlinear Funct. Anal. Appl. 2012, 17, 301–306.

18. Harjani, J.; López, B.; Sadarangani, K. A fixed point theorem for mappings satisfying a contractive condition of rational type on a
partially ordered metric space. Abstr. Appl. Anal. 2010, 2010, 190701. [CrossRef]

19. Jaggi, D.S.; Das, B.K. An extension of Banach’s fixed point theorem through rational expression. Bull. Calcutta Math. Soc. 1980, 72,
261–264.

20. Luong, N.V.; Thuan, N.X. Fixed point theorem for generalized weak contractions satisfying rational expressions in ordered metric
spaces. Fixed Point Theory Appl. 2011, 2011, 46. [CrossRef]

21. Nguyen, L.V.; Tram, N.T.N. Fixed point results with applications to involution mappings. J. Nonlinear Var. Anal. 2020, 4, 415–426.

100



axioms

Article

Existence of Coupled Best Proximity Points of
p-Cyclic Contractions

Miroslav Hristov 1, Atanas Ilchev 2, Diana Nedelcheva 3 and Boyan Zlatanov 2,*

��������	�
�������

Citation: Hristov, M.; Ilchev, A.;

Nedelcheva, D.; Zlatanov, B.

Existence of Coupled Best Proximity

Points of p-Cyclic Contractions.

Axioms 2021, 10, 39. https://doi.org/

10.3390/axioms10010039

Academic Editor: Wei-Shih Du

Received: 23 February 2021

Accepted: 19 March 2021

Published: 22 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematical Analysis, Faculty of Mathematics and Informatics,
Konstantin Preslavsky University of Shumen, 115, Universitetska St, 9700 Shumen, Bulgaria;
miroslav.hristov@shu.bg

2 Department of Real Analysis, Faculty of Mathematics and Informatics,
University of Plovdiv Paisii Hilendarski, 24 Tzar Assen Str., 4000 Plovdiv, Bulgaria;
atanasilchev@uni-plovdiv.bg

3 Department of Mathematics, Technical University of Varna, 1, Studentska Str., 9000 Varna, Bulgaria;
diana.nedelcheva@tu-varna.bg

* Correspondence: bobbyz@uni-plovdiv.bg; Tel.: +359-89-847-7827

Abstract: We generalize the notion of coupled fixed (or best proximity) points for cyclic ordered
pairs of maps to p-cyclic ordered pairs of maps. We find sufficient conditions for the existence and
uniqueness of the coupled fixed (or best proximity) points. We illustrate the results with an example
that covers a wide class of maps.
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1. Introduction

Banach’s fixed point theorem has proven to be a powerful tool in pure and applied
mathematics. Coupled fixed points were initiated in [1] more than 30 year ago. It turns out
that the last 10 years there is a great interest on coupled fixed points, both in fundamental
results and their applications [2–5]. We would like to mention a new kind of applications
in the theory of equilibrium in duopoly markets [6,7].

A notion that generalizes fixed point results for non-self maps is that of cyclic maps [8]
i.e., T : A → B, T : B → A. Since a cyclic map T does not necessarily have a fixed point,
one can alter the problem x = Tx to a problem to find an element x which is in some sense
closest to Tx. Best proximity points were introduced for cyclic maps in [9] (x is called a best
proximity points of T in A if ‖x− Tx‖ = dist(A, B) = inf{‖a− b‖ : a ∈ A, b ∈ B}) and they
are relevant in this perspective. The notion of best proximity points [9] actually generalizes
the notion of cyclic maps from [8], as far as if A ∩ B �= ∅, then any best proximity point is a
fixed point, too. It turns out that best proximity points are interesting not only as a pure
mathematical results, but also as a possibility for a new approach in solving of different
types of problems [2–7].

We would like to mention just a few very recent results about coupled best proximity
points, that can be applied in solving of different types of problems. The authors have
investigated a generalization of GKT cyclic Φ-contraction mapping in [10] and a non trivial
application for solving of initial value problem is presented. The existence of coupled best
proximity point for a class of cyclic (or noncyclic) condensing operators are studied in [11]
an the main result applied for finding of an optimal solution for a system of differential
equations. A new class of mappings called fuzzy proximally compatible mappings are
considered in [12], where coupled best proximity point results are obtained and further
applied in finding the fuzzy distance between two subsets of a fuzzy metric space.
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Unfortunately all of the mentions above results are for 2–cyclic maps. It is not easy
to generalize the results about 2–cyclic maps to p-cyclic maps. The first breakthrough
was obtained in [13], where authors succeed to show that for wide classes of maps the
distances between the successive sets are equal. The technique from [13] was later widely
used [14–17].

We have tried to unify the techniques from [1,13] to get results for the existence and
uniqueness of coupled fixed (or best proximity points) for p-cyclic maps.

The first results related to finding the error estimate for best proximity points is made
in [18]. In [19], results for the existence and uniqueness of coupled best proximity points
are obtained, as well as an error estimate is obtained. In this article, p-cyclic operators are
considered, and the results obtained include as a special case the results obtained in [13,19].

2. Preliminaries

We will summarize the notions and the results that we will need.
If A and B are nonempty subsets of the metric space (X, d), then a distance between

the sets A and B will be the number dist(A, B) = inf{d(x, y) : x ∈ A, y ∈ B}.
Let {Ai}p

i=1 be nonempty subsets of X. Just to simplify some of the formulas we will
assume the convention that Akp+i = Ai for i = 1, 2, . . . , p and k ∈ N.

Following [13], if {Ai}p
i=1 be nonempty subsets of a metric space (X, d), then the map

T :
⋃p

i=1 Ai → ⋃p
i=1 Ai is called a p-cyclic map if it is satisfied that T(Ai) ⊆ T(Ai+1) for

every i = 1, 2, . . . , p. A point ξ ∈ Ai is called a best proximity point of the cyclic map T in
Ai if d(ξ, Tξ) = dist(Ai, Ai+1).

The next two lemmas are fundamental to the best proximity points theory.

Lemma 1. ([9]) Let A be a nonempty closed, convex subset, and B be a nonempty closed subset of
a uniformly convex Banach space (X, ‖ · ‖). Let {xn}∞

n=1 and {zn}∞
n=1 be two sequences in A and

{yn}∞
n=1 be a sequence in B so that:

1) limn→∞ ‖xn − yn‖ = dist(A, B);
2) limn→∞ ‖zn − yn‖ = dist(A, B);
then limn→∞ ‖xn − zn‖ = 0.

Lemma 2. ([9]) Let A be a nonempty closed, convex subset, and B be a nonempty closed subset
of a uniformly convex Banach space (X, ‖ · ‖). Let {xn}∞

n=1 and {zn}∞
n=1 be sequences in A and

{yn}∞
n=1 be a sequence in B satisfying:

(1) limn→∞ ‖zn − yn‖ = dist(A, B);
(2) for every ε > 0 there is a number N0 ∈ N, such that for any m > n ≥ N0, ‖xn − yn‖ ≤
dist(A, B) + ε,
then for every ε > 0, there is a number N1 ∈ N, so that for all m > n > N1, holds the inequality
‖xm − zn‖ ≤ ε.

The geometric structure of the underlying space X plays a key role. When we consider
the Banach space (X, ‖ · ‖) we will always assume that the distance between the elements
is generated by the norm ‖ · ‖ i.e., d(x, y) = ‖x − y‖.

Definition 1. [20] Let (X, ‖ · ‖) be a Banach space. For every ε ∈ (0, 2] we define the modulus of
convexity of ‖ · ‖ by

δ‖·‖(ε) = inf
{

1 −
∥∥∥∥ x + y

2

∥∥∥∥ : x, y ∈ BX , ‖x − y‖ ≥ ε

}
.

The norm is called uniformly convex if δX(ε) > 0 for all ε ∈ (0, 2]. The space (X, ‖ · ‖) is
then called a uniformly convex space.
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For any uniformly convex Banach space X there holds the inequality [9]∥∥∥∥ x + y
2

− z
∥∥∥∥ ≤ (1 − δX

( r
R

))
R (1)

for any x, y, z ∈ X, such that ‖x − z‖ ≤ R, ‖y − z‖ ≤ R and ‖x − y‖ ≥ r, provided that R, r
be real numbers and R > 0, r ∈ [0, 2R].

For any uniformly convex Banach space (X, ‖ · ‖) its modulus of convexity δX is
strictly increasing function and thus its inverse function δ−1 exists. If there are constants
C > 0 and q > 0, so that the inequality δ‖·‖(ε) ≥ Cεq holds for any ε ∈ (0, 2] we say that
the modulus of convexity is of power type q with a constant C.

An extensive study of the Geometry of Banach spaces can be found in [21–23].

3. Auxiliary Results

The iterated sequence {(xn, yn)}∞
n=0 (defined in ([1] in the statement of Theorem 1 for

coupled fixed points and in [24] in the statement of Lemma 3.8 for coupled best proximity
points) will play a crucial role in the proofs of the results, as far as the ordered pair (x, y) of
coupled fixed (or best proximity) points is obtained as its limit.

Definition 2. ([1,24]) Let {Ai}p
i=1 be nonempty subsets of a metric space X and T :

⋃p
i=1 Ai ×

Ai → Ai+1. For any (x0, y0) ∈ Ai × Ai the sequence {(xn, yn)}∞
n=0 is define inductively by

(x1, y1) = (T(x0, y0), T(y0, x0)) and if (xn, yn) has been already defined then (xn+1, yn+1) =
(T(xn, yn), T(yn, xn)).

When we consider a sequence {(xn, yn)}∞
n=0 we will always assume that it is the

iterated sequence defined in Definition 2. Sometimes we will consider a subsequence
{(xnk , ynk )}∞

k=1 of {(xn, yn)}∞
n=0.

The notion of a coupled best proximity point for cyclic maps was defined in [24]
and the notion of best proximity point for p-cyclic maps was introduced in [13]. We will
combine both definitions to define a coupled best proximity point for a p-cyclic maps.

Definition 3. Let Ai, i = 1, 2, . . . , p be nonempty subsets of a metric space (X, d) and T :
Ai × Ai → Ai+1 for i = 1, 2, . . . , p. A point (x, y) ∈ Ai × Ai is said to be a best proximity point
of T in Ai × Ai, if d(x, T(x, y)) = d(y, T(y, x)) = d(Ai, Ai+1).

Following [13] we will define a p-cyclic contractive condition for T :
⋃i=1

p Ai × Ai →
Ai+1.

Definition 4. Let {Ai}p
i=1 be nonempty subsets of a metric space (X, d). The map T is called

p-cyclic contraction, if it satisfies the following condition:

• T : Ai × Ai → Ai+1
• There exists α, β ≥ 0, α + β ∈ (0, 1), such that the inequality

d(T(x, y), T(u, v)) ≤ αd(x, u) + βd(y, v) + (1 − (α + β))d(Ai, Ai+1) (2)

holds for every (x, y) ∈ Ai × Ai, (u, v) ∈ Ai+1 × Ai+1, 1 ≤ i ≤ p.

Lemma 3. Let {Ai}p
i=1 be nonempty subsets of a metric space (X, d) and T be a p-cyclic contrac-

tion map. Then dist(Ai, Ai+1) = dist(Ai+1, Ai+2) for i = 1, 2, . . . , p.

Proof. Let us put di+1 = dist(Ap−i, Ap−1−i) for i = 0, 1, . . . p − 1 (where we use the
convention dp = dist(A1, A0) = dist(A1, Ap).
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Let us suppose the contrary, that there are two indexes k, j ∈ {1, 2, . . . , p}, such that
max

i∈{1,2,...,p}
{di} = dk > dj. Without loss of generality we may assume, that k = p. There

exists s ∈ (0, 1], such that
dj = (1 − s)dp. (3)

Let (x0, y0) ∈ Ap, then xpn+m, ypn+m ∈ Am, xpn, ypn ∈ Ap, xpn+1, ypn+1 ∈ A1 and
from (2) we get

d(xnp+1, xnp) = d(T(xnp, ynp), T(xnp−1, ynp−1))
≤ αd(xnp, xnp−1) + βd(ynp, ynp−1 + (1 − α − β)d1)

(4)

and
d(ynp+1, ynp) = d(T(ynp, xnp), T(ynp−1, xnp−1))

≤ α(d(ynp, ynp−1) + βd(xnp, xnp−1) + (1 − α − β)d1).
(5)

Let us, for what follows, to use the notation γ = α + β. From (4) and (5) we can write
the chain of inequalities

S1 = d(xnp+1, xnp) + d(ynp+1, ynp)
≤ γ(d(xnp, xnp−1) + d(ynp − ynp−1)) + 2(1 − γ)d1
≤ γ[γ(d(xnp−1, xnp−2) + d(ynp−1, xnp−2) + 2(1 − γ)d2)] + 2(1 − γ)d1
= γ2(d(xnp−1, xnp−2) + d(ynp−1, xnp−2)) + 2(1 − γ)(γd2 + d1)
≤ γ3(d(xnp−2, xnp−3) + d(ynp−2, xnp−3)) + 2(1 − γ)(γ2d3 + γd2 + d1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

≤ γp(d(xn(p−1)+1, xn(p−1)) + d(yn(p−1)+1, xn(p−1))) + 2(1 − γ)
p−1

∑
i=0

γidi+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

≤ γnp(d(x1, x0) + d(y1, x0)) + 2(1 − 2α)
p−1

∑
i=0

γi
n−1

∑
k=0

γkpdi+1

(6)

and thus we get

p−1

∑
i=0

γi
n−1

∑
k=0

γkpdi+1 =
p−1

∑
j=0

n−1

∑
k=0

γkp+jdj+1 ≤ 1
1 − γp

p−1

∑
k=0

γkdk+1.

There exists N ∈ N, so that for any n ≥ N there holds the inequality

γnp(d(x1, x0) + d(y1, y0)) ≤ s
2
(1 − γ)γj

1 − γp dp,

where j and s are the index and the constant from (3), respectively. Therefore using the
assumption that dj = (1 − s)dp = dp − sdp and that for any k �= p there holds dk ≤ dp
we get

2dp ≤ d(xnp+1, xnp) + d(ynp+1, ynp)

≤ γnp(d(x1 + x0) + d(y1 + y0)) +
2(1 − γ)

1 − γp

p−1

∑
k=0

γkdk+1

≤ γnp(d(x1 + x0) + d(y1 + y0))− s
(1 − γ)γj

1 − γp dp +
2(1 − γ

1 − γp

p−1

∑
k=0

γkdp

= γnp(d(x1 + x0) + d(y1 + y0))− s
(1 − γ)γj

1 − γp dp + 2dp

< − s
2
(1 − γ)γj

1 − γp dp + 2dp < 2dp,

(7)
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which is a contradiction and consequently the assumption that there exists j so that dj <
max{di : i = 1, 2, . . . , p} could not holds.

We have just proven in Lemma 3 that for maps, which satisfy Definition 4, there
holds dist(A1, A2) = dist(A2, A3) = · · · = dist(Ap−1, Ap) = dist(Ap, A1) and thus we
can denote in the rest of the article the distance between the consecutive sets by d =
dist(Ai, Ai+1), i = 1, 2, . . . , p.

An easier to apply inequality, which is a consequence from (2) is the inequality

d(T(x, y), T(u, v)) + d(T(y, x), T(v, u))− 2d ≤ γ(d(x, u) + d(y, v)− 2d) (8)

for every (x, y) ∈ Ai × Ai, (u, v) ∈ Ai+1 × Ai+1, 1 ≤ i ≤ p.

Lemma 4. Let {Ai}p
i=1 be nonempty closed subsets of a metric space (X, d) and T be a p-

cyclic contraction. Then for every (x0, y0) ∈ Ai × Ai there hold limn→∞ d(xpn, xpn+1) = d,
limn→∞ d(ypn, ypn+1) = d, limn→∞ d(xpn±p, xpn+1) = d and limn→∞ d(ypn±p, ypn+1) = d.

Proof. By Lemma 3 we have that d(Ai, Ai+1) = d(Ai+1, Ai+2) for i = 1, 2, . . . p − 1. Let us
put (A1, A2) = d. Therefore there holds the chain of inequalities

0 ≤ d(xpn+1, xpn) + d(ypn+1, ypn)− 2d)
≤ γ(d(xpn, ypn−1) + d(ypn, ypn−1)− 2d)
≤ γ2(d(xpn−1, xpn−2) + d(ypn−1, ypn−2)− 2d)

. . . . . . . . . . . . . . . . . . . . . . . . . .
≤ γpn(d(x1, x0) + d(y1, y0))− 2d).

(9)

Consequently after taking a limit in (9) when n → ∞ we get limn→∞(d(xpn, xpn−1) +
d(ypn, ypn−1)) = 2d. From the inequalities d ≤ d(xpn, xpn−1) and d ≤ d(ypn, ypn−1) it
follows that limn→∞ d(xpn, xpn−1) = limn→∞ d(ypn, ypn−1) = d.

The proofs of the other two (actually four, because of ±) limits can be done in a similar
fashion.

Lemma 5. If (X, ‖ · ‖) be a uniformly convex Banach space, {Ai}p
i=1 be nonempty and con-

vex subsets of X. T be a p-cyclic contraction. Then for every (x0, y0) ∈ Ai × Ai there hold
limn→∞ ‖xpn − xpn+p‖ = 0, limn→∞ ‖ypn − ypn+p‖ = 0, limn→∞ ‖xpn+1 − xpn±p+1‖ = 0
and limn→∞ ‖ypn+1 − ypn±p+1‖ = 0.

Proof. By Lemma 4 we have that limn→∞ ‖xpn − xpn+1‖ = limn→∞ ‖xpn+p − xpn+1‖ = d.
According to Lemma 3 it follows that limn→∞ ‖xpn − xpn+p‖ = 0.

Lemma 6. Let {Ai}p
i=1 be nonempty closed subsets of a metric space (X, d) and T be a p-cyclic

contraction. Let (x0, y0) ∈ Ai × Ai and the sequence {(xpn, ypn)}∞
n=0 has a convergent (say to

(ξ, η) ∈ Ai × Ai) subsequence {(xpnj , ypnj)}∞
j=1, then (ξ, η) is a best proximity point of T in

Ai × Ai.

Proof. By the inequality d ≤ d(xpnj−1, ξ) ≤ d(xpnj−1, xpnj) + d(xpnj , ξ), the assumption
that limj→∞ d(xpnj , ξ) = 0 and limj→∞ d(xpnj−1, xpnj) = d we get limj→∞ d(xpnj−1, ξ) = d.
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By similar arguments it follows that limj→∞ d(ypnj−1, η) = d. Using the continuity of the
metric function d(·, ·) and Lemma 4, we can write the chain of inequalities

0 < d(ξ, T(ξ, η)) + d(T(η, ξ), η)− 2d
= lim

j→∞
(d(xpnj , T(ξ, η)) + d(T(ξ, η), ypnj))− 2d)

= lim
j→∞

(d(T(xpnj−1, ypnj−1), T(ξ, η)) + d(T(η, ξ), T(ypnj−1, xpnj−1))− 2d)

≤ γ lim
j→∞

(d(xpnj−1, ξ) + d(ypnj−1, η)− 2d)

= γ

(
lim
j→∞

(d(xpnj−1, xpnj) + d(ypnj−1, ypnj))− 2d
)
= 0.

Consequently d(ξ, T(ξ, η)) + d(T(η, ξ), η) = 2d and from the inequalities d(ξ, T(ξ, η))
≥ d and d(T(η, ξ), η) ≥ d it follows that d(ξ, T(ξ, η)) = d(T(η, ξ), η) = d.

For an arbitrary chosen (z, v) ∈ Ai × Ai, let us denote T2(z, v) = T(T(z, v), T(v, z))
and T2(v, z) = T(T(v, z), T(z, v)) and if we have already defined (Tp−1(z, v), Tp−1(v, z)),
then put

Tp(z, v) = T(Tp−1(z, v), Tp−1(v, z)) and Tp(v, z) = T(Tp−1(v, z), Tp−1(z, v)).

Lemma 7. Let {Ai}p
i=1 be nonempty closed subsets of a metric space (X, d) and T be a p-

cyclic contraction. If there exists a coupled best proximity point (z, v) of T in Ai × Ai, then
(Tn(z, v), Tn(v, z)) is a coupled best proximity point of T in Ai+n × Ai+n. If (z, v) is a limit of the
sequence {(xpn, ypn)}∞

n=0, then the ordered pair (z, v) is a p–periodic point of T, i.e., z = Tpn(z, v)
and v = Tpn(v, z) for n ∈ N and any sequence {(ξpn, ηpn)}∞

n=0 converges to (z, v).

Proof. Let (z, v) be any ordered pair, which is a coupled best proximity points of T in
Ai × Ai. From the inequality

S2 = ‖T(z, v)− T2(z, v)‖+ ‖T(v, z)− T2(v, z)‖ − 2d
≤ γ(‖z − T(z, v)‖+ ‖v − T(v, z)‖ − 2d) = 0

it follows that (T(z, v), T(v, z)) is an ordered pair, which is a coupled best proximity points
of T in Ai+1 × Ai+1. From

S3 = ‖T2(z, v)− T3(z, v)‖+ ‖T2(v, z)− T3(v, z)‖ − 2d
≤ γ2(‖z − T(z, v)‖+ ‖v − T(v, z)‖ − 2d) = 0

it follows that (T2(z, v), T2(v, z)) is a coupled best proximity points of T in Ai+2 × Ai+2.
By induction we can prove that (Tn(z, v), Tn(v, z)) is a coupled best proximity points of T
in Ai+n × Ai+n.

Therefore we have

0 ≤ ‖z − Tp+1(z, v)‖+ ‖v − Tp+1(v, z)‖ − 2d
= lim

n→∞

(
‖zpn − Tp+1(z, v)‖+ ‖vpn − Tp+1(v, z)‖ − 2d

)
= lim

n→∞

(
‖T(zpn−1, vpn−1)− Tp+1(z, v)‖+ ‖T(vpn−1, zpn−1)− Tp+1(v, z)‖ − 2d

)
≤ γp lim

n→∞

(
‖zp(n−1) − T(z, v)‖+ ‖vp(n−1) − T(v, z)‖ − 2d

)
= γp(‖z − T(z, v)‖+ ‖v − T(v, z)‖ − 2d) = 0.

Thus ‖z − Tp+1(z, v)‖ = ‖v − Tp+1(v, z)‖ = d. From ‖z − T(z, v)‖ = ‖v − T(v, z)‖ =
d and Lemma 2 it follows that T(z, v) = Tp+1(z, v) and T(v, z) = Tp+1(v, z). From

‖z − T(z, v)‖+ ‖v − T(v, z)‖ − 2d = 0,
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S4 = ‖Tp(z, v)− T(z, v)‖+ ‖Tp(v, z)− T(v, z)‖ − 2d
= ‖Tp(z, v)− Tp+1(z, v)‖+ ‖Tp(v, z)− Tp+1(v, z)‖ − 2d
≤ γp(‖z − T(z, v)‖+ ‖v − T(v, z)‖ − 2d) = 0,

Lemma 2 it follows that z = Tp(z, v) and v = Tp(v, z). Now, by a similar calculations
we can obtain that T2p(z, v) = Tp(z, v) = z, T2p(v, z) = Tp(v, z) = v and by induction,
that Tnp(z, v) = z and Tnp(v, z) = v.

Let there exists (ξ, η) ∈ Ai × Ai, which is a coupled best proximity points of T in
Ai × Ai, i.e., ‖ξ − T(ξ, η)‖ = ‖η − T(η, ξ)‖ = d, that is different from (z, v) and obtained as
a limit of a sequence {(ξpn, ηpn)}∞

n=0. Using the continuity of the norm function, the equality
T(z, v) = Tp+1(z, v), T(v, z) = Tp+1(v, z) we get the inequality

S5 = ‖ξ − T(z, v)‖+ ‖η − T(v, z)‖ − 2d
= lim

n→∞

(
‖ξpn − Tp+1(z, v)‖+ ‖ηpn − Tp+1(v, z)‖ − 2d

)
≤ γp lim

n→∞

(‖ξpn−p − T(z, v)‖+ ‖ηpn−p − T(v, z)‖ − 2d
)

≤ γp(‖ξ − T(z, v)‖+ ‖η − T(v, z)‖ − 2d),

and by the assumption γ ∈ (0, 1) we get the inequality

‖ξ − T(z, v)‖+ ‖η − T(v, z)‖ − 2d < ‖ξ − T(z, v)‖+ ‖η − T(v, z)‖ − 2d = 0.

Consequently ‖ξ − T(z, v)‖+ ‖η − T(v, z)‖ = 2d. Therefore ‖ξ − T(z, v)‖ = ‖η −
T(v, z)‖ = d and from ‖z − T(z, v)‖ = ‖v − T(v, z)‖ = d and by Lemma 2 it follows that
(z, v) = (ξ, η).

4. Main Results

Theorem 1. Let {Ai}p
i=1 be nonempty, closed and convex subsets of a complete metric space (X, d).

Let T :
⋃p

i=1 Ai × Ai → Ai × Ai be a p-cyclic map, so that exist α, β ≥ 0, α + β ∈ (0, 1), such
that the inequality

d(T(x, y), T(u, v)) ≤ αd(x, u) + βd(y, v) (10)

holds for every (x, y) ∈ Ai × Ai, (u, v) ∈ Ai+1 × Ai+1, 1 ≤ i ≤ p.
Then there exists an order pair (z, v) ∈ ∩p

i=1(Ai × Ai), such that, if (x0, y0) ∈ Ai × Ai be
an arbitrary point of Ai × Ai, the sequence {(xn, yn)}}∞

n=0 converges to (z, v) and the order pair
(z, v) is a unique coupled fixed point of T. Moreover, there hold

• the a priori estimate max{ρ(xn, z), ρ(yn, v)} ≤ γn

1 − γ
(ρ(x1, x0) + ρ(y1, y0))

• the a posteriori estimate max{ρ(xn, z), ρ(yn, v)} ≤ γ

1 − γ
(ρ(xn−1, xn) + ρ(yn−1, yn))

• the rate of convergence ρ(xn, z) + ρ(y, v) ≤ γ(ρ(xn−1, z) + ρ(yn−1, v)),

where γ = α + β.

Proof. Let (x0, y0) ∈ ∪p
i=1(Ai × Ai) be arbitrary chosen. Let us consider the iterated

sequence {(xn, yn)}∞
n=1. Then there hold the inequalities

d(xn+1, xn) = d(T(xn, yn), T(xn−1, yn−1)) ≤ αd(xn, xn−1) + βd(yn, yn−1)

and
d(yn+1, yn) = d(T(yn, xn), T(yn−1, xn−1)) ≤ αd(yn, yn−1) + βd(xn, xn−1).

After summing up the above two inequalities we get

d(xn+1, xn) + d(yn+1, yn) ≤ γ(ρ(xn, xn−1) + ρ(yn, yn−1)). (11)

From (11) we get that there holds true

max{d(xn+1, xn), d(yn+1, yn)} ≤ d(xn+1, xn) + d(yn+1, yn) ≤ γn(d(x1, x0) + d(y1, y0)).
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Thus

d(xn, xn+p) ≤
p−1

∑
k=0

d(xn+k, xn+k+1) ≤
p−1

∑
k=0

γn+k(d(x1, x0) + d(y1, y0))

= γn 1 − γp

1 − γ
(d(x1, x0) + d(y1, y0)).

(12)

Therefore {xn}∞
n=1 is a Cauchy sequence in ∪p

i=1 Ai. From the assumption that Ai are
closed subsets of the complete metric space (X, d) it follows that {xn}∞

n=1 is convergent to
some point z ∈ ∪p

i=1 Ai. The sequence {xn}∞
n=1 is an iterated sequence defined by the p-

cyclic map T and thus it has infinite number of terms that belong to each Ai, i = 1, 2, . . . , p.
Consequently z ∈ ∩p

i=1 Ai.
By literary the same arguments we get that limn→∞ yn = v ∈ ∩p

i=1 Ai.
We will show that (z, v) is a coupled fixed point of T. Indeed from

S6 = d(z, T(z, v)) + d(v, T(v, z))
= limn→∞(d(xn, T(z, v)) + d(yn, T(v, z)))
= limn→∞(d(T(xn−1, yn−1), T(z, v)) + d(T(yn−1, xn−1), T(v, z)))
≤ γ limn→∞(d(xn−1, z) + d(yn−1, v)) = 0

it follows that d(z, T(z, v)) = d(v, T(v, z)) = 0, i.e., (z, v) is a coupled fixed point of T.
We will proof that (z, v) is a unique coupled fixed point by assuming the contrary.

Let (x, y) be a coupled fixed point of T, different from (z, v). If x ∈ Ai, then by the
definition of a coupled fixed point it follows that y ∈ Ai, too. From the assumption that
T is a p-cyclic map it follows that (x, y) = (T(x, y), T(y, x)) ∈ Ai+1 × Ai+1 and therefore
(x, y) ∈ ∩p

i=1(Ai × Ai). From the inequality

d(x, z) + d(y, v) = d(T(x, y), T(z, v)) + d(T(y, x), T(v, z)) ≤ γ(d(x, z) + d(y, v))

and the assumption that γ ∈ (0, 1) it follows that d(x, z) = d(y, v) = 0, i.e., the coupled
fixed point (z, v) of T is unique.

After taking a limit in (12) we get

d(xn, z) = lim
p→∞

d(xn, xn+p) ≤ γn

1 − γ
(d(x1, x0) + d(y1, y0)).

and
d(yn, z) = lim

p→∞
d(yn, yn+p) ≤ γn

1 − γ
(d(x1, x0) + d(y1, y0)).

Consequently there holds the a priori estimate

max{d(xn, z), d(yn, z)} ≤ γn

1 − γ
(d(x1, x0) + d(y1, y0)).

From the chain of inequalities

d(xn, xn+p) ≤
p−1

∑
k=0

d(xn+k, xn+k+1) ≤
p

∑
k=1

γk(d(xn−1, xn) + d(yn−1, yn))

= γ
1 − γp

1 − γ
(d(xn−1, xn) + d(yn−1, yn)).

After taking a limit, when p → ∞, in the above inequality, we get

d(xn, z) = lim
p→∞

d(xn, xn+p) ≤ γ

1 − γ
(d(xn−1, xn) + d(yn−1, yn)).
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Consequently, after using the same arguments for d(yn, v), there holds the a posteriori
estimate

max{d(xn, z), d(yn, v)} ≤ γ

1 − γ
(d(xn−1, xn) + d(yn−1, yn)).

From the inequality

d(xn, z) + d(y, v) = d(T(xn−1, yn−1), T(z, v)) + d(T(yn−1, xn−1), T(v, z))
≤ γ(d(xn−1, z) + d(yn−1, v))

we get the estimate the rate of convergence.

We will use the notations Pn,m = ‖xn − xm‖+ ‖yn − ym‖ and Wn,m = ‖xn − xm‖+
‖yn − ym‖ − 2d, where {xn}∞

n=0 and {yn}∞
n=0 be the sequences from Definition 2, when the

text field is too short.
We have proven in Lemma 3, that for any p-cyclic contraction the distances be-

tween the consecutive sets are equal. Therefore in the next theorem we will denote
d = dist(Ai, Ai+1), i = 1, 2, . . . , p.

Theorem 2. Let {Ai}p
i=1 be nonempty, closed and convex subsets of a uniformly convex Banach

space (X, ‖ · ‖). Let T :
⋃p

i=1 Ai × Ai → Ai+1 be a p-cyclic contraction. Then there exists
a unique ordered pair (zi, vi) ∈ Ai × Ai (1 ≤ i ≤ p), which is a limit of the subsequence
{(xpn, ypn)}∞

n=0 ⊂ {(xn, yn)}∞
n=0 for any initial guess (x0, y0) ∈ Ai × Ai and it is a coupled best

proximity point of T in Ai × Ai. Moreover, (T(zi, vi), T(vi, zi)) is a coupled best proximity point
of T in Ai+1 × Ai+1 and (zi, vi) is a p–periodic point of T.

• If d > 0 and (X, ‖ · ‖) be with a modulus of convexity of power type q with a constant C, then
there hold the a priori error estimate

max{∥∥xpn − zi
∥∥, ∥∥ypn − vi

∥∥} ≤ P0,1
q

√
W0,1

Cd
·
(

q
√

γ
)pm

1 − q
√

γp .

and the a posteriori error estimate

max{∥∥xpn − zi
∥∥, ∥∥ypn − vi

∥∥} ≤ Ppn,pn−1
q

√
Wpn,pn−1

Cd

q
√

γ

1 − q
√

γp ,

where γ = α + β, α and β be the constants form Definition 4.
• If d = 0, then there hold the error estimates of Theorem 1.

If p = 2, we get as a particular case the results from [19].

Proof. If dist(Ai, Ai+1) = 0 for some i, then by Lemma 3 it follows that dist(Ai, Ai+1) = 0
for all i. Then the contractive condition induced on T is equivalent to (10). Thus by Theorem 1,
T has a unique coupled fixed point and the error estimates from Theorem 1 holds.

Let us assume that d > 0. Let (x0, y0) ∈ Ai × Ai. Then xnp ∈ Ai and xnp+1 ∈ Ai+1
for all n. By Lemma 4, limn→∞ ‖xnp − xnp+1‖ = d. If, for any arbitrary chosen ε > 0, there
exists an n0 ∈ N, such that for all m > n > n0 the inequality to hold

‖xpm − xpn+1‖+ ‖ypm − ypn+1‖ ≤ 2d + ε, (13)

by the inequalities ‖xpm − xpn+1‖ ≥ d and ‖ypm − ypm+1‖ ≥ d it follows the inequality
max{‖xpm − xpn+1‖, ‖ypm − ypn+1‖} ≤ d + ε holds for all m > n > n0. Then by Lemma 1,
for any ε1 > 0, there exists n1 ∈ N, such that for m > n > n1 the inequality max{‖xmp −
xnp‖, ‖ymp − ynp‖} ≤ ε1 holds, i.e., {xnp}∞

n=1 and {ynp}∞
n=1 are Cauchy sequences and thus

converges to some (z, v) ∈ Ai × Ai. By Lemma 6 (z, v) will be a best proximity point of T
in Ai × Ai.
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Let us assume contrary of (13). Then, there exists an ε0 > 0 such that, for every k ∈ N,
there exists mk > nk ≥ k such that,

‖xpmk − xpnk+1‖+ ‖ypmk − ypnk+1‖ ≥ 2d + ε0. (14)

Let mk be the smallest integer greater than nk, to satisfy the above inequality. Now

S7 = 2d + ε0 ≤ ‖xpmk − xpnk+1‖+ ‖ypmk − ypnk+1‖
≤ ‖xpmk − xpmk−p‖+ ‖xpmk−p − xpnk+1‖+ ‖ypmk − ypmk−p‖+ ‖ypmk−p − ypnk+1‖.

By Lemma 4 we have limk→∞ ‖xpmk − xpmk+p‖ = 0 and limk→∞ ‖ypmk − ypmk+p‖ = 0.
Therefore, using the choice of mk to be the smallest natural, so that to holds the inequality (14),
we get

2d + ε0 ≤ limk→∞
(‖xpmk − xpnk+1‖+ ‖ypmk − ypnk+1‖

)
≤ limk→∞

(‖xpmk−p − xpnk+1‖+ ‖ypmk−p − ypnk+1‖
) ≤ 2d + ε0,

i.e., limk→∞ ‖xpmk − xpnk+1‖+ limk→∞ ‖ypmk − ypnk+1‖ = 2d + ε0.
From the inequality

2d + ε0 ≤ ‖xpmk − xpnk+1‖+ ‖ypmk − ypnk+1‖
≤ ‖xpmk − xpmk+p‖+ ‖xpmk+p − xpnk+p+1‖+ ‖xpnk+p+1 − xpnk+1‖

+‖ypmk − ypmk+p‖+ ‖ypmk+p − ypnk+p+1‖+ ‖ypnk+p+1 − ypnk+1‖.

by using Lemma 4 we have limk→∞ ‖xpmk − xpmk+p‖ = limk→∞ ‖xpnk+p+1 − xpnk+1‖ =
limk→∞ ‖ypmk − ypmk+p‖ = limk→∞ ‖ypnk+p+1 − ypnk+1‖ = 0 and thus

ε0 = lim
k→∞

(‖xpmk − xpnk+1‖+ ‖ypmk − ypnk+1‖ − 2d
)

≤ lim
k→∞

(‖xpmk+p − xpnk+p+1‖+ ‖ypmk+p − ypnk+p+1‖ − 2d
)

≤ γp lim
k→∞

(‖xpmk − xpnk+1‖+ ‖ypmk − ypnk+1‖ − 2d
)

= γpε0.

That is, ε0 ≤ γpε0, which is a contradiction, because γ ∈ (0, 1).
Hence {xnp}∞

n=1 and {ynp}∞
n=1 are Cauchy sequences, converging to some (x, y) ∈

Ai × Ai such that ‖x − T(x, y)‖ = ‖T(y, x)− y‖ = d.
From Lemma 7 it follows that (x, y), which is a limit of the iterated sequences is

unique, for an arbitrary chosen initial guess, (Tn(x, y), Tn(y, x)) is a coupled best proximity
point of T in Ai+n × Ai+n, (x, y) is a p–periodic point of T.

It has remained to prove that x = y. It holds

S8 = ‖x − T(y, x)‖+ ‖y − T(x, y)‖ − 2d
= ‖Tp(x, y)− T(y, x)‖+ ‖Tp(y, x)− T(y, x)‖ − 2d
≤ γ(‖Tp−1(x, y)− y‖+ ‖Tp−1(y, x)− x‖ − 2d)
= γ(‖Tp−1(x, y)− Tp(y, x)‖+ ‖Tp−1(y, x)− Tp(x, y)‖ − 2d)
≤ γp(‖x − T(y, x)‖+ ‖y − T(x, y)‖ − 2d).

Consequently ‖x − T(y, x)‖ = ‖y − T(x, y)‖ = d. From ‖y − T(y, x)‖ = ‖x −
T(x, y)‖ = d and the uniform convexity of X it follows that x = y.

From (8) there holds the inequality

‖xn+1 − xn‖+ ‖yn+1 − yn‖ − 2d ≤ γk(‖xn+1−k − xn−k‖+ ‖yn+1−k − yn−k‖ − 2d).

Thus we get

max{‖xn+1 − xn‖, ‖yn+1 − yn‖} ≤ γk(‖xn+1−k − xn−k‖+ ‖yn+1−k − yn−k‖ − 2d) + d.
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There hold the inequalities

‖xpn+1 − xpn‖ ≤ d + γl(‖xpn+1−l − xpn−l‖+ ‖ypn+1−l − ypn−l‖ − 2d),

‖xpn+p − xpn+p+1‖ ≤ d + γl+1(‖xpn+1−l − xpn−l‖+ ‖ypn+1−l − ypn−l‖ − 2d)
≤ d + γl(‖xpn+1−l − xpn−l‖+ ‖ypn+1−l − ypn−l‖ − 2d)

and

‖xpn+p − xpn‖ ≤ ‖xpn+p − xpn+1‖+ ‖xpn+1 − xpn‖
≤ 2

(
d + γl(‖xpn+1−l − xpn−l‖+ ‖ypn+1−l − ypn−l‖ − 2d)

)
.

After a substitution in (1) with x = xpn, y = xpn+p, z = xpn+1, R = d + γl(‖xpn+1−l −
xpn−l‖+ ‖ypn+1−l − ypn−l‖ − 2d) and r = ‖xpn+p − xpn‖ and using the convexity of the
set A we get the chain of inequalities

d ≤
∥∥∥∥ xpn + xpn+p

2
− xpn+1

∥∥∥∥ ≤
(

1 − δ‖·‖

(‖xpn+p+k − x2n‖
W

))
W, (15)

where we have denoted W = d + γl(‖xpn+1−l − xpn−l‖ + ‖ypn+1−l − ypn−l‖ − 2d).
From (15) we obtain the inequality

δ‖·‖

(‖xpn+p+k − xpn+k‖
W

)
≤ γlWpn+1−l+k,pn−l+k(x, y)

W
. (16)

From the uniform convexity of X is follows that δ‖·‖ is strictly increasing and therefore
there exists its inverse function δ−1

‖·‖, which is strictly increasing too. From (16) we get

‖xpn − xpn+p‖ ≤ Wδ−1
‖·‖

(
γlWpn+1−l,pn−l(x, y)

W

)
. (17)

By the inequality δ‖·‖(t) ≥ Ctq it follows that δ−1
‖·‖(t) ≤

( t
C
)1/q.

From (17) and the inequalities

d ≤ d + γl(‖xpn+1−l − xpn−l‖+ ‖ypn+1−l − ypn−l‖ − 2d)
≤ ‖xpn+1−l − xpn−l‖+ ‖ypn+1−l − ypn−l‖

we obtain

‖xpn − xpn+p‖ ≤
(

d + γlWpn+1−l,pn−l

)
q

√√√√ γlWpn+1−l,pn−l

C
(

d + γlWpn+1−l,pn−l

)
≤ Ppn+1−l,pn−l

q

√
Wpn+1−l,pn−l

Cd
( q
√

γ)l .

(18)

There exists a unique pair (z, v) ∈ Ai × Ai, such that ‖z − T(z, v)‖ = d and z is a limit
of the sequence {xpn}∞

n=1 for any (x, y) ∈ Ai × Ai.
After a substitution with l = pn and k = 0 in (18) we get the inequality

∞

∑
n=1

(‖xpn − xpn+p‖+ ‖ypn − ypn+p‖
) ≤ P0,1(x, y) q

√
W0,1(x, y)

Cd

∞

∑
n=1

( q
√

γ)pn

= P0,1(x, y) q

√
W0,1(x, y)

Cd
·

q
√

γp

1 − q
√

γp
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and consequently the series ∑∞
n=1(xpn − xpn+p) is absolutely convergent. Thus for any

m ∈ N there holds z = xpm − ∑∞
n=m
(
xpn − xpn+p

)
and therefore we get the inequality

∥∥z − xpm
∥∥ ≤ ∞

∑
n=m

∥∥xpn − xpn+p
∥∥ ≤ P0,1(x, y) q

√
W0,1(x, y)

Cd
·
(

q
√

γ
)pm

1 − q
√

γp .

The proof for ‖v − ypm‖ can be done in a similar fashion.
After a substitution with l = 1 + 2i in (18) we obtain

‖xpn+pi − xpn+p(i+1)‖ ≤ Ppn−1,pn(x, y)
q

√
Wpn−1,pn(x, y)

Cd
( q
√

γ)1+2i. (19)

From (19) we get that there holds the inequality

‖xpn − xp(n+m)‖ ≤
m−1

∑
i=0

‖xpn+pi − xpn+p(i+1)‖

≤
m−1

∑
i=0

Ppn−1,pn(x, y)
q

√
Wpn−1,pn(x, y)

Cd
( q
√

γ)1+pi

= Ppn−1,pn(x, y)
q

√
Wpn−1,pn(x, y)

Cd

m−1

∑
i=0

( q
√

γ)1+pi

= Ppn−1,pn(x, y)
q

√
Wpn−1,pn(x, y)

Cd
· 1 − ( q

√
γ
)pm

1 − q
√
(γ)p

q
√

γ

(20)

and after letting m → ∞ in (20) we obtain the inequality

∥∥xpn − z
∥∥ ≤ Ppn−1,pn(x, y)

q

√
Wpn−1,pn(x, y)

Cd

q
√

γ

1 − q
√

γp .

The proof for ‖ypn − v‖ can be done in a similar fashion.

5. Applications

Let ϕ, ψ : [1,+∞) → [1,+∞) be such that max{ϕ(x), ψ(x)} ≤ x for any x ∈ [1,+∞).
Let us define the function f (x, y) = λ + (1 − λ)(μϕ(x) + (1 − μ)ψ(y)). Let us consider the
system of equations∣∣∣∣∣∣∣∣

|x|p + |λ + (1 − λ)(μϕ(x) + (1 − μ)ψ(y))|p = 2
|y|p + |λ + (1 − λ)(μψ(y) + (1 − μ)ϕ(x))|p = 2
x − f ( f ( f (x, y), f (y, x)), f ( f (y, x), f (x, y))) = 0

y − f ( f (y, x), f (x, y)), f ( f (x, y), f (y, x))) = 0

(21)

for x, y ≥ 0 and λ, μ ∈ (0, 1).
Let A1 = {(x, 0, 0) : x ≥ 1}, A2 = {(0, x, 0) : x ≥ 1}, A3 = {(0, 0, x) : x ≥ 1}

be subsets of (R3, ‖ · ‖p), p ∈ (1, ∞). Let us define the map T by T((x, 0, 0), (y, 0, 0)) =
(0, f (x, y), 0); T((0, x, 0), (0, y, 0)) = (0, 0, f (x, y)); T((0, 0, x), (0, 0, y)) = ( f (x, y), 0, 0) for
some λ, μ ∈ (0, 1). It is easy to see that for any x, y ≥ 1 there holds f (x, y) ≥ 1 and therefore
T : Ai × Ai → Ai+1.
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From the inequality, using that (1 − (1 − λ)μ − (1 − λ)(1 − μ)) = λ

S9 = ‖T((x, 0, 0), (y, 0, 0))− T((0, u, 0), (0, v, 0))‖p

= ‖(0, f (x, y), f (u, v))‖p = p
√
| f (x, y)|p + | f (u, v)|p

≤ p
√

λp + λp + (1 − λ) p
√
|μϕ(x) + (1 − μ)ψ(y)|p + |μϕ(u) + (1 − μ)ψ(v)|p

≤ λ p
√

2 + (1 − λ)μ p
√|ϕ(x)|p + |ϕ(u)|p + (1 − λ)(1 − μ) p

√|ψ(y)|p + |ψ(v)|p

≤ λ p
√

2 + (1 − λ)μ p
√|x|p + |u|p + (1 − λ)(1 − μ) p

√|y|p + |v|p

= λdist(A1, A2) + (1 − λ)μ‖x − u‖2 + (1 − λ)(1 − μ)‖y − v‖p

and
S10 = ‖T((x, 0, 0), (y, 0, 0))− T((0, u, 0), (0, v, 0))‖p

= ‖T((0, x, 0), (0, y, 0))− T((0, 0, u), (v, 0, 0))‖p
= ‖T((0, 0, x), (0, 0, y))− T((u, 0, 0), (v, 0, 0))‖p

it follows that T satisfies the conditions of Theorem 2. Therefore there exist (z, z), which
is a coupled best proximity point of T in A1 × A1 and it is easy to see that z = (1, 0, 0).
Consequently (z, z) is the unique solution of the system of equations∣∣∣∣∣∣∣∣

‖x − T(x, y)‖p
p = 2

‖y − T(y, x)‖p
p = 2

x − T3(x, y) = 0
y − T3(y, x) = 0,

which is the solution of (21).
If we try to solve (21) with the use of some Computer Algebraic System, for example

Maple, the software could not find the exact solution even for not too complicated functions
(p = 2, ϕ(x) = x1/2, ψ(x) = x). If we try to solve it numerically, Maple finds that
x = y = 1, but could not find that this is a solution for every λ, μ ∈ (0, 1) and presents two
approximations of λ and μ.

If we consider the particular case p = 3, ϕ(x) =
√

x and ψ(x) =
√

log(x) + 1, then
Maple could not solve (21) even numerically.

6. Discussion

It is interesting whether same conclusions can be made for existence of coupled fixed
(or best proximity) points p-cyclic Meir–Keeler maps [16], Reich Maps p-cyclic maps [25].

We were not able to prove a uniqueness of the coupled best proximity points, as like
as [13,16]. We were able to prove just uniqueness of the best proximity points, if obtained
by the sequence of successive iterations, which is not the case of 2–cyclic maps. It will be
interesting if this gap can be filled.
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1. Introduction

Fixed point theory has been extensively researched and widely applied in a multitude
of directions for many years. The “Banach Contraction Principle” states that under certain
conditions a self map T on a set X admits one or more fixed points x = Tx. The “Banach
Contraction Principle” and its numerous generalizations are widely used in many branches
of mathematics because it requires only the structure of a complete metric space with
conditions on the map which are easily tested.

We will mention just a few directions of the generalizations (fixed points for set-valued
maps, coupled fixed points, fixed points for cyclic maps) of “Banach Contraction Principle”
that initiate the present investigation.

Following the “Banach Contraction Principle”, Nadler introduced the concept of
set-valued contractions in [1]. He also proved that a set-valued contraction possesses a
fixed point in a complete metric space. In the late twentieth century Dontchev and Hager
successfully presented an extension of Nadler’s result in [2]. They determined the location
of a fixed point with respect to an initial value of the set-valued mapping. Their conclusion
was obtained under two modified conditions and it has since been playing an important
role in the development of the metric fixed point theory. We would like just to mention a
few recent results about fixed points for set-valued maps and their applications [3–6].

A different direction is the notion of coupled fixed points introduced in [7]. There are
a lot of recent results about coupled fixed points [8–11].
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Another kind of generalization of the Banach contraction principle is the notation of
cyclic maps [12] and later its generalization to the best proximity point, introduced in [13].
The definition presented in [13] is more general than the one in [12], in the sense that if the
sets intersect, then every best proximity point is a fixed point. Some very recent results in
this field are presented in [14–17].

It seems that recently all mentioned directions of research in fixed point theory are
of interest.

By combining the notions of coupled fixed (or best proximity) points for cyclic maps,
a model of duopoly market was built in [18,19].

We will try to enrich the notions of set-valued maps, coupled fixed points, cyclic maps
and to get results that we will apply in economics and ecology.

2. Preliminaries

We will recall basic notions and facts that we will need for investigation of coupled
fixed points for multi-valued maps. Let (X, ρ) and (Y, σ) be two metric spaces. We will
denote by BX,r(x) the open ball and by BX,r[x] the closed ball with a radius r and a center
x in the metric space X. If no confusion arises, we will denote them with Br(x) and
Br[x], respectively. Let x ∈ X and C ⊂ X. We will denote the distance from x to C by
d(x, C) = inf{ρ(x, z) : z ∈ C}. If C = ∅ then we put d(x, ∅) = ∞.

Let A, B ⊂ X be two subsets. An excess of A beyond B is called e(A, B) = sup{d(x, B) :
x ∈ A}, where the convention is used that

e(∅, B) =
{

0, B �= ∅
∞, B = ∅

.

Let (X, ρ) and (Y, σ) be two metric spaces. Let us denote by F : X ⇒ Y a set-valued
mapping defined on the metric space (X, ρ) with values in the metric space (Y, σ). Let
F be a set-valued map: Its graph is the set gph F = {(x, y) ∈ X × Y | y ∈ F(x)}, its
effective domain is the set dom F = {x ∈ X | F(x) �= ∅} and its effective range is
rge F = {y ∈ Y | there exists x such that y ∈ F(x)}.

Definition 1. ([1]) A point x ∈ X is said to be a fixed point of the set-valued map F : X ⇒ X if
x ∈ F(x).

Definition 2. ([7]) A point (x, y) ∈ X × X is said to be a coupled fixed point of the map F :
X × X → X if x = F(x, y) and y = F(y, x).

Definition 3. ([20]) A point (x, y) ∈ X × X is said to be a coupled fixed point of the set-valued
map F : X × X ⇒ X if x ∈ F(x, y) and y ∈ F(y, x).

The model that will be constructed in the application section will be of two set-valued
maps F1 : X × Y ⇒ X and F2 : X × Y ⇒ Y and we will be interested in the existence of
ordered pairs (x, y), such that x ∈ F1(x, y) and y ∈ F2(x, y), which are called generalized
coupled fixed points for the ordered pair of set-valued maps (F1, F2).

3. Main Results

We will present a result, which extends the result from [2] and establishes a solution
of the generalized coupled fixed point problem for an ordered pair of set-valued maps.

Theorem 1. Let (X, ρ) and (Y, σ) be complete metric spaces, F1 : X ×Y ⇒ X and F2 : X ×Y ⇒
Y be multi-valued maps and x̄ ∈ X, ȳ ∈ Y. Let there exist a constant r > 0 and non-negative
constants α, β, γ, δ, satisfying max{α + γ, β + δ} < 1, such that the following assumptions hold:

(a) F1(x, y) and F2(x, y) are nonempty closed subsets of X and Y for all (x, y) ∈ Br(x̄)× Br(ȳ)
(b) the inequality d(x̄, F1(x̄, ȳ))+ d(ȳ, F2(x̄, ȳ)) < r(1−λ) holds, where λ = max{α + γ, β + δ}
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(c) the inequality

S1 = e(F1(x, y) ∩ Br(x̄), F1(u, v)) + e(F2(z, w) ∩ Br(ȳ), F2(t, s))
≤ αρ(x, u) + βσ(y, v) + γρ(z, t) + δσ(w, s)

(1)

holds for all (x, y), (u, v), (z, w), (t, s) ∈ Br(x̄)× Br(ȳ).

Then, the generalized coupled fixed point problem has at least one solution (x, y) ∈ Br(x̄)× Br(ȳ).

Proof. Let x̄ = x0 and ȳ = y0.
We will construct by induction a sequence {(xn, yn)}∞

n=1, which will satisfy the inclu-
sions xn+1 ∈ F1(xn, yn) ∩ Br(x0) and yn+1 ∈ F2(xn, yn) ∩ Br(y0) for n ≥ 0.

Step one of the induction: We will choose (x1, y1). By assumption (b), there exist
x1 ∈ F1(x0, y0) and y1 ∈ F2(x0, y0) such that ρ(x1, x0)+ σ(y1, y0) < r(1−λ) < r. Therefore,
x1 ∈ F1(x0, y0) ∩ Br(x0) and y1 ∈ F2(x0, y0) ∩ Br(y0).

We will proceed with the choice of (x2, y2). From (1) we have the chain of inequalities

S2 = d(x1, F1(x1, y1)) + d(y1, F2(x1, y1))

≤ e(F1(x0, y0) ∩ Br(x0), F1(x1, y1)) + e(F2(x0, y0) ∩ Br(y0), F2(x1, y1))

≤ αρ(x1, x0) + βσ(y1, y0) + γρ(x1, x0) + δσ(y1, y0)

= (α + γ)ρ(x1, x0) + (β + δ)σ(y1, y0)

≤ max{α + γ, β + δ}(ρ(x1, x0) + σ(y1, y0))
< r(1 − λ)λ.

The above inequalities imply the existence of x2 ∈ F1(x1, y1) and y2 ∈ F2(x1, y1), such
that ρ(x2, x1) + σ(y2, y1) < r(1 − λ)λ. Using the triangular inequality we get

ρ(x2, x0) + σ(y2, y0) ≤ ρ(x2, x1) + σ(y2, y1) + ρ(x1, x0) + σ(y1, y0)
≤ r(1 − λ)λ + r(1 − λ) < r.

Consequently x2 ∈ F1(x1, y1) ∩ Br(x0) and y2 ∈ F2(x1, y1) ∩ Br(y0).
Step two of the induction: Let us suppose that we have already chosen {(xk, yk)}n

k=1,
satisfying for each k = 1, 2, . . . , n

xk ∈ F1(xk−1, yk−1) ∩ Br(x0) , yk ∈ F2(xk−1, yk−1) ∩ Br(y0)

and
ρ(xk, xk−1) + σ(yk, yk−1) < r(1 − λ)λk−1.

Step three of the induction: We will prove that we can choose (xn+1, yn+1), pro-
vided that we have already chosen {(xk, yk)}n

k=1. By assumption (1) we have the chain
of inequalities

S3 = d(xn, F1(xn, yn)) + d(yn, F2(xn, yn))

≤ e(F1(xn−1, yn−1) ∩ Br(x0), F1(xn, yn)) + e(F2(xn−1, yn−1) ∩ Br(y0), F2(xn, yn))

≤ αρ(xn, xn−1) + βσ(yn, yn−1) + γρ(xn, xn−1) + δσ(yn, yn−1)

= (α + γ)ρ(xn, xn−1) + (β + δ)σ(yn, yn−1)

≤ max{α + γ, β + δ}(ρ(xn, xn−1) + σ(yn, yn−1))
< λr(1 − λ)λn−1 = r(1 − λ)λn.

The above inequalities imply that there exist

xn+1 ∈ F1(xn, yn) and yn+1 ∈ F2(xn, yn),
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such that
ρ(xn, xn+1) + σ(yn, yn+1) < r(1 − λ)λn. (2)

Using the triangular inequality we get

ρ(xn+1, x0) + σ(yn+1, y0) ≤
n

∑
k=0

ρ(xk+1, xk) + σ(yk+1, yk) < r(1 − λ)
n

∑
k=0

λk < r.

Consequently, xn+1 ∈ F1(xn, yn) ∩ Br(x0) and yn+1 ∈ F2(xn, yn) ∩ Br(y0) and this
completes the induction.

It follows from (2) that max{ρ(xn, xn+1), σ(yn, yn+1)} < r(1 − λ)λn and thus
the inequality

ρ(xn, xm) ≤
n−1

∑
k=m

ρ(xk+1, xk) < r(1 − λ)λm
n−1

∑
k=0

λk < rλm

holds for any n > m.
Therefore, {xn}∞

n=0 is a Cauchy sequence and from the assumption that X is a complete
metric space it follows that {xn}∞

n=0 converges to some x∗ ∈ Br(x0). By similar arguments
we get that the sequence {yn}∞

n=0 is a Cauchy sequence and converges to some y∗ ∈ Br(y0).
By using of assumption (1) we get the chain of inequalities

S4 = d(xn, F1(x∗, y∗)) + d(yn, F2(x∗, y∗))
≤ e(F1(xn−1, yn−1) ∩ Br(x0), F1(x∗, y∗)) + e(F2(xn−1, yn−1) ∩ Br(y0), F2(x∗, y∗))

≤ αρ(x∗, xn−1) + βσ(y∗, yn−1) + γρ(x∗, xn−1) + δσ(y∗, yn−1)
≤ (α + γ)ρ(x∗, xn−1) + (β + δ)σ(y∗, yn−1)
≤ λ(ρ(x∗, xn−1) + σ(y∗, yn−1)).

Applying the triangle inequality we obtain

S5 = d(x∗, F1(x∗, y∗)) + d(y∗, F2(x∗, y∗))
≤ ρ(x∗, xn) + d(xn, F1(x∗, y∗)) + σ(y∗, yn) + d(yn, F2(x∗, y∗))

≤ ρ(x∗, xn) + λ((ρ(x∗, xn−1) + σ(y∗, yn−1)) + σ(y∗, yn).
(3)

After taking a limit as n → ∞ in (3) we get that d(x∗, F1(x∗, y∗))+ d(y∗, F2(x∗, y∗)) = 0.
From the assumption that F1(x∗, y∗) and F2(x∗, y∗) are closed it follows that x∗ ∈ F1(x∗, y∗)
and y∗ ∈ F2(x∗, y∗), i.e (x∗, y∗) is a generalized coupled fixed point.

Remark 1. If F1 and F2 are single-valued, then assumption (1) implies that (x∗, y∗) is the unique
coupled fixed point of (F1, F2) in Br(x0)× Br(y0).

4. Examples and Applications

We will illustrate Theorem 1 with two examples. We will use these two examples to
construct models in economics and ecology.

4.1. Examples

Example 1: Let us choose 0 ≤ α < β < γ < δ ≤ η < +∞, n, m ∈ (0, 1], so that

max
{

n(γ − β) + m(γ − β)

2((η + 1)n − (α + 1)n)
,

n(γ − β) + m(γ − β)

2(δ + 1)n

}
< 1.

Let us define the maps

f : [0, δ] →
[

β + γ

2
, γ

]
, g : [α, η] →

[
β,

β + γ

2

]
,
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ϕ : [0, δ] →
[

β + γ

2
, γ

]
, ψ : [α, η] →

[
β,

β + γ

2

]
.

by

f (x) =
γ − β

2(δ + 1)n (x + 1)n +
β + γ

2
,

g(x) =
γ − β

2((η + 1)n − (α + 1)n)
(x + 1)n + β − (α + 1)n γ − β

2((η + 1)n − (α + 1)n)
,

ϕ(x) =
γ − β

2(δ + 1)m (x + 1)m +
β + γ

2
,

ψ(x) =
γ − β

2((η + 1)m − (α + 1)m)
(x + 1)m + β − (α + 1)m γ − β

2((η + 1)m − (α + 1)m)
.

Let us denote x = y = β+γ
2 and θ = min{|δ − x|, |α − x|}. Let us endow R with the

absolute value metrics | · − · |. Let us consider the sets X = [0, δ], Y = [α, η]. Let us define
the multivalued maps F : X × Y ⇒ X and G : X × Y ⇒ Y by

F(x, y) = {ξ : g(y) ≤ ξ ≤ f (x)}

and
G(x, y) = {ξ : ψ(y) ≤ ξ ≤ ϕ(x)}.

We will check that F and G satisfy Theorem 1.
It is easy to see that for any (x, y) ∈ Br(x)× Br(y) the sets F(x, y) = [g(y), f (x)] and

G(x, y) = [ψ(y), ϕ(x)] are non empty and closed subsets of X or Y, respectively.
From g(x) ≤ x ≤ f (x) and ψ(x) ≤ x ≤ ϕ(x) we get that F(x, x) ⇒ [g(x), f (x)] and

G(x, x) ⇒ [ψ(x), ϕ(x)]. Then

d(x, F(x, x)) + d(x, G(x, x)) = 0 < r(1 − λ)

for any r > 0 and any λ ∈ [0, 1).
From F(x, y) ⇒ [g(y), f (x)] ⊆ Br(x) and G(x, y) ⇒ [ψ(y), ϕ(x)] ⊆ Br(y) it follows

that F(x, y) ∩ Br(x) = F(x, y) = [g(y), f (x)] and G(x, y) ∩ Br(y) = G(x, y) = [ψ(y), ϕ(x)]
for r = θ.

Consequently,

e(F(x, y) ∩ Br(x), F(u, v)) = e([g(y), f (x)], [g(v), f (u)])
= supx∈[g(y), f (x)] d(x, [g(v), f (u)]).

There are four cases:
(I) x ≤ u and y ≤ v; (II) x ≤ u and y ≥ v; (III) x ≥ u and y ≤ v; (IV) x ≥ u and y ≥ v.
We will need the inequalities:

| f (x)− f (y)| = f ′(ζ)|x − y| ≤ n
γ − β

2((η + 1)n − (α + 1)n)
|x − y|,

and
|g(x)− g(y)| = g′(ζ)|x − y| ≤ n

γ − β

2(δ + 1)n |x − y|.

Case (I). We will illustrate this case with a figure for easier reading (Figure 1). The
other three cases are similar.
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Figure 1. Case (I) x ≤ u and y ≤ v.

S5 = supz∈[g(y), f (x)] d(z, [g(v), f (u)])

= supg(y)≤z≤g(v) |z − g(v)| = |g(y)− g(v)| = n γ−β
2(δ+1)n |y − v|.

Case (II). In this case F1(x, y) ⊆ F1(u, v) and we get

sup
z∈[g(y), f (x)]

d(z, [g(v), f (u)]) = 0.

Case (III). In this case F1(u, v) ⊆ F1(x, y) and we get

S6 = sup
z∈[g(y), f (x)]

d(z, [g(v), f (u)]) = max{|g(y)− g(v)|, | f (x)− f (u)|}

= max
{

n
γ − β

2(δ + 1)n |y − v|, n
γ − β

2((η + 1)n − (α + 1)n)
|x − u|

}
.

Case (IV). This case is very similar to case I) and we get

sup
z∈[g(y), f (x)]

d(z, [g(v), f (u)]) = | f (x)− f (u)| = n
γ − β

2((η + 1)n − (α + 1)n)
|x − u|.

Therefore by combining the four Cases (I) to (IV) we get

S7 = e(F(x, y) ∩ Br(x), F(u, v))

≤ max
{

n
γ − β

2(δ + 1)n |y − v|, n
γ − β

2((η + 1)n − (α + 1)n)
|x − u|

}
≤ n

γ − β

2(δ + 1)n |y − v|+ n
γ − β

2((η + 1)n − (α + 1)n)
|x − u|.

By similar calculations we can get that

S8 = e(G(z, w) ∩ Br(y), G(t, s))

≤ m
γ − β

2(δ + 1)m |w − s|+ m
γ − β

2((η + 1)m − (α + 1)m)
|z − t|.

Thus there holds the inequality

S9 = e(F(x, y) ∩ Br(x), F(u, v)) + e(G(z, w) ∩ Br(y), G(t, s))

≤ n
(γ − β)|x − u|

2((η + 1)n − (α + 1)n)
+ m

(γ − β)|z − t|
2((η + 1)m − (α + 1)m)

+n
γ − β

2(δ + 1)n |y − v|+ m
γ − β

2(δ + 1)m |w − s|.
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A particular case can be obtained if n = m = 1, α = 0, β = 2, γ = 4, δ = 6 and η = 8.
We get f (x) = ϕ(x) = x

7 + 22
7 , g(y) = ψ(y) = y

8 + 2, r = 3, x = y = 3 and

S10 = e(F(x, y) ∩ Br(x), F(u, v)) + e(G(z, w) ∩ Br(y), G(t, s))
≤ 1

8 |x − u|+ 1
7 |y − v|+ 1

8 |z − t|+ 1
7 |w − s|.

Example 2. Let us consider the space R2. Let us choose 0 < αi < βi < γi < δi < ηi <
+∞, ni, mi ∈ (0, 1] for i = 1, 2, so that

max
i=1,2

{
ni(γi − βi)

2(δi + 1)ni

}
+ max

i=1,2

{
mi(γi − βi)

2(δi + 1)mi

}
< 1

and

max
i=1,2

{
ni(γi − βi)

2((ηi + 1)ni − (αi + 1)ni )

}
+ max

i=1,2

{
mi(γi − βi)

2((ηi + 1)mi − (αi + 1)mi )

}
< 1.

Let us define the maps

fi : [0, δi] →
[

βi + γi
2

, γi

]
, gi : [αi, ηi] →

[
βi,

βi + γi
2

]
,

ϕi : [0, δi] →
[

βi + γi
2

, γi

]
, ψi : [αi, ηi] →

[
βi,

βi + γi
2

]
for i = 1, 2 by

fi(x) =
γi − βi

2(δi + 1)ni
(x + 1)ni +

βi + γi
2

,

gi(x) = C(x + 1)ni + βi − (αi + 1)ni C,

ϕi(x) =
γi − βi

2(δi + 1)mi
(x + 1)mi +

βi + γi
2

,

ψi(x) = D(x + 1)mi + βi − (αi + 1)mi D,

where C = γi−βi
2((ηi+1)ni−(αi+1)ni )

and D = γi−βi
2((ηi+1)mi−(αi+1)mi )

.

Let us denote xi =
βi+γi

2 and θi = min{|δi − xi|, |αi − xi|} for i = 1, 2. Let us endow

R2 with the metrics ρ((x, y), (u, v)) =
(∣∣∣ x−u

θ1

∣∣∣p + ∣∣∣ y−v
θ2

∣∣∣p)1/p
, p ∈ (1,+∞). Let us consider

the sets Xi = [0, δi], Yi = [αi, ηi] for i = 1, 2 and let X = X1 × X2, Y = Y1 ×Y2. Let us define
the multivalued maps F : X × Y ⇒ X and G : X × Y ⇒ Y by

F((x1, x2), (y1, y2)) = {(ξ1, ξ2) : gi(yi) ≤ ξi ≤ fi(xi)}

and
G((x1, x2), (y1, y2)) = {(ξ1, ξ2) : ψi(yi) ≤ ξi ≤ ϕi(xi)}.

We will check that the pair (F, G) satisfies Theorem 1.
Let us choose r = 2 and x = y = (x1, x2). By definition

Br(x) ≡ Br(y) = {x = (x1, x2) : ρ(x, x) ≤ 2}.

It is easy to see that R2 ⊆ B2(x) ⊆ R1, where R1 be the rectangular with vertices
(α1, α2), (δ1, α2), (δ1, δ2), (α1, δ2) and R2 be the rectangular with vertices (β1, β2), (γ1, β2),
(γ1, γ2), (β1, γ2) and B2(x) (Figure 2) is an ellipse for p = 2.
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Figure 2. R2 ⊆ B2(x) ⊆ R1.

Indeed, let (x1, x2) ∈ R2. Then βi ≤ xi ≤ γi. Thereafter it holds for i = 1, 2∣∣∣∣ βi + γi
2

− xi

∣∣∣∣ = |xi − xi| ≤ min{|δi − xi|, |αi − xi|} = θi

and consequently we can write the inequalities

ρ((x1, x2), (x1, x2)) =

(∣∣∣∣ x1 − x1

θ1

∣∣∣∣p + ∣∣∣∣ x2 − x2

θ2

∣∣∣∣p)1/p

≤ 21/p < 2.

From gi(xi) ≤ xi ≤ fi(xi) it follows that x = (x1, x2) ∈ F(x1, x2) and from ψi(xi) ≤
xi ≤ ϕi(xi) it follows that x = (x1, x2) ∈ G(x1, x2) and therefore d(x, F(x, y)) = d(y, G(x, y))
= 0 ≤ r(1 − λ) holds for any r ≥ 1 and λ ∈ [0, 1).

We observe that there hold F(x, y) ∩ Br(x) = F(x, y) and G(x, y) ∩ Br(y) = G(x, y).
Therefore we will need to calculate e(F(x, y), F(u, v)) and e(G(z, w), G(t, s)).

The set F(x, y) = F((x1, x2), (y1, y2)) is a rectangular with vertexes (g(y1), g(y2)),
( f (x1), g(y2)), ( f1(x1), f (x2)) and (g(y1), f (x2)). There are several possible cases: g(yi) ≤
g(vi), or g(vi) ≤ g(yi) and f (xi) ≤ f (ui) or f (ui) ≤ f (xi) with all the possible combina-
tions of i = 1, 2.

Let us first consider the case: g(y1) ≤ g(v1) ≤ f (u1) ≤ f (x1) and g(y2) ≤ g(v2) ≤
f (u2) ≤ f (x2). It is easy to observe that e(F(x, y), F(u, v)) = max{Ai : i = 1, 2, 3, 4}
(Figure 3), where

A1 = dist((g(y1), g(y2)), F(u, v)),
A2 = dist(( f (x1), g(y2)), F(u, v)),
A3 = dist(( f (x1), f (x2)), F(u, v)),
A4 = dist((g(y1), f (x2)), F(u, v)).
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Figure 3. e(F(x, y), F(u, v)) = max{Ai : i = 1, 2, 3, 4}.

We will need the inequalities:

| fi(x)− fi(y)| = f ′i (ζ)|x − y| ≤ ni
γi − βi

2(δi + 1)ni
|x − y|,

|gi(x)− gi(y)| = g′i(ζ)|x − y| ≤ ni
γi − βi

2((ηi + 1)ni − (αi + 1)ni )
|x − y|,

where ni ∈ (0, 1) and

f ′(ζ) ≤ ni
γi − βi

2(δi + 1)ni
max{(x + 1)ni−1 : x ∈ [0, δi]} = ni

γi − βi
2(δi + 1)ni

and
g′i(ζ) ≤ ni

γi−βi
2((ηi+1)ni−(αi+1)ni )

max{(x + 1)ni−1 : x ∈ [αi, ηi]}
= ni

γi−βi
2((ηi+1)ni−(αi+1)ni )

= niCi.

We calculate

A1 = p

√∣∣∣ g1(v1)−g1(y1)
θ1

∣∣∣p + ∣∣∣ g2(v2)−g2(y2)
θ2

∣∣∣p
= p

√
1
θ

p
1
|n1C1|p|v1 − y1|p + 1

θ
p
2
|n2C2|p|v2 − y2|p)

≤
(

max
i=1,2

{
ni(γi − βi)

2((ηi + 1)ni − (αi + 1)ni )

})
ρ((v1, v2), (y1, y2))

and

A3 = p

√∣∣∣ f1(u1)− f1(x1)
θ1

∣∣∣p + ∣∣∣ f2(u2)− f2(x2)
θ2

∣∣∣p
= p

√
1
θ

p
1

∣∣∣ n1(γ1−β1)
2(δ1+1)n1

∣∣∣p|u1 − x1|p + 1
θ

p
2

∣∣∣ n2(γ2−β2)
2(δ2+1)n2

∣∣∣p|u2 − x2|p)

≤
(

max
i=1,2

{
ni(γi − βi)

2(δi + 1)ni

})
ρ((x1, x2), (u1, u2)).
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For the estimation of A2 and A4 let us denote (Figure 3)

A = (g1(y1), g2(y2)), B = ( f1(x1), g2(y2)),
C = ( f1(x1), f2(x2)), P = (g1(v1), g2(v2)),
Q = ( f1(u1), g2(v2)), R = ( f1(u1), f2(u2)),
I = (g1(v1), g2(y2)), G = ( f1(u1), g2(y2)),
F = ( f1(x1), g2(v2)), E = ( f1(x1), f2(u2)).

There holds

A2 = ρ(B, Q) ≤ ρ(G, Q) + ρ(Q, F) = ρ(P, I) + ρ(R, E)
≤ ρ(A, P) + ρ(R, C)

≤
(

max
i=1,2

{niCi}
)

ρ(v, y) +
(

max
i=1,2

{
ni(γi − βi)

2(δi + 1)ni

})
ρ(x, u).

By similar observation we can prove that

A4 ≤
(

max
i=1,2

{niCi}
)

ρ(v, y) +
(

max
i=1,2

{
ni(γi − βi)

2(δi + 1)ni

})
ρ(x, u).

Consequently e(F(x, y), F(u, v) ≤ αρ(x, u) + βρ(y, v), where

α = max
i=1,2

{
ni(γi − βi)

2(δi + 1)ni

}
and β = max

i=1,2

{
ni(γi − βi)

2((ηi + 1)ni − (αi + 1)ni )

}
.

Let us denote the two rectangles F(x, y) and F(u, v) by ABCD and PQRS, respectively.
We have just investigated the case PQRS ⊆ ABCD. All the other cases are variants of
Figure 4 and we can get that

e(F(x, y), F(u, v)) ≤ max{ρ(A, P), ρ(B, Q), ρ(C, R), ρ(D, S)}
≤ αρ(x, u) + βρ(y, v).

Figure 4. ABCD and PQRS.

By similar calculations for the multivalued map G we get

e(G(z, w), G(t, s)) ≤ γρ(z, t) + δρp(w, s),

where

γ = max
i=1,2

{
mi(γi − βi)

2(δi + 1)mi

}
and δ = max

i=1,2

{
mi(γi − βi)

2((ηi + 1)mi − (αi + 1)mi )

}
and thus

e(F(x, y), F(u, v)) + e(G(z, w), G(t, s)) ≤ αρ(x, u) + βρ(y, v) + γρ(z, t) + δρ(w, s).

4.2. Examples for the Existence of an Equilibrium in Oligopoly (Duopoly) Markets

The theory of oligopoly (duopoly) markets was initiated in [21]. Following [22,23]
we present the main features of an oligopoly model in economics. The oligopoly is a
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market structure in the presence of imperfect competition in which a limited number of
large companies control the production and sale of a predominant part of the product in a
particular sector of the economy. It is believed that oligopolies are the result of the trend in
the economy towards concentration of capital and labor. The oligopoly is characterized by
product differentiation; high barriers preventing the emergence of new “players”; limited
access to information; non-price competition through advertising and other marketing
activities, as well as price control. In the oligopolistic structure, large companies determine
the behavior of competitors and take it into account when developing their strategy, which
can be rivalry, even “trade wars” in terms of production volume, sales, and prices; the
strategic interaction results in agreements (through secret or open collusion or without
collusion) in order to guarantee stability and ensure high profits. They contribute to
raising economic and organizational barriers, making it difficult for new “players” to
emerge. This is the nature of the large initial capital costs for entering the business and
achieving minimum effective production and sales capacity in view of economies of scale
and resilience against competitors, the development of own research and development for
product innovation, industrial and trade secrets. Oligopolistic market structures arise and
are imposed by three key points (1) the concentration of assets; (2) inter-firm agreements;
and (3) fencing off activities in order to gain market power, restrict competition, and
generate large profits.

The distinctive feature of the oligopoly is that in determining individual supply and
market price, companies are interdependent. The change in the market behavior of each of
them can lead to a change in market conditions and possibly cause a change in the behavior
of other companies.

The equilibrium quantity and price in the oligopoly will depend on the number of
firms on the market, the information available, the strategy chosen by competitors and
whether the firms in the market act independently of each other or in concert. The latter
factor is the basis for two types of oligopolistic equilibrium-coherent and inconsistent,
which differ significantly in end results and economic efficiency.

The classic model of uncoordinated oligopolistic behavior is the Cournot duopoly
model, which considers the problem of the interdependence of firms in the market. The
duopoly is a market structure in which two companies, protected from the emergence of
other sellers, act as the only producers of standardized products that have no close substi-
tutes, in which there are only two sellers of a particular product that are not interconnected
by monopolistic agreement for prices market for selling products and quotas. The partici-
pants in the model try to maximize their payoff functions Π1(x, y) = xP(x + y)− C1(x)
and Π2(x, y) = yP(x + y)− C2(x), respectively, where P(Z) = P(x + y) be the inverse of
the demand function and C1(x) and C2(y) be the cost functions of the two players. By
maximizing its payoff functions, the players get their response functions F : X × Y → X
and f : X × Y → X, respectively.

The company equilibrium would become market if the supply of one company is
equal to the supply of the other company, so that none of the companies is motivated
to change their positions condition for market equilibrium. This condition is present if
each of the companies produces one third of the total market supply under conditions of
perfect competition and both companies sell at a specific market price, which is one third
of the market price. Taking into account the strategic considerations of the companies, their
behavior will depend on the decisions of their competitors.

Cournot’s theory is based on competition and the fact that buyers announce prices
and sellers adjust their products to those prices. Each company evaluates the product
search function and then sets the quantity that will be sold, assuming that the competitor’s
output remains constant.

Deeper research on the oligopoly market can be found in [22–25].
Cournot’s classical model deals with a maximization of the payoff functions of each

of the players. A different approach is presented in [18], where attention is paid to the
response functions of the players. The benefits of this approach are commented on in [18].
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We will just say that as far as the players do not have a perfect knowledge of the market
they react in some sense by not maximizing their payoff function, but rather by choosing a
strategy based on their production and their rival’s production levels. The solution of the
maximization of the payoff function is actually the coupled fixed points (x, y), such that
x = F(x, y) and y = f (x, y).

Focusing on response functions allows us to put Cournot and Bertand’s models
together. Indeed let the first company reaction be F(X, Y) and the second one f (X, Y),
where X = (x, p) and Y = (y, q). Here x and y denote the output quantity and (p, q) are the
prices set by players. In this, companies can compete in terms of both price and quantity.

A disadvantage of the presented model is that players do not choose a fixed production
of a fixed price. Actually, the response of each player is any quality from a set of possible
productions or a price from possible prices. Therefore we will consider the response
functions F : X × Y ⇒ U ⊂ X and f : X × Y ⇒ V ⊂ Y be multivalued maps and a market
equilibrium will be the pair (x, y), such that x ∈ F(x, y) and y ∈ f (x, y).

Now we can restate Theorem 1 in terms of oligopoly.

Theorem 2. Let us assume that two companies are offering products that are perfect substitutes.
The first one can produce qualities from the set X and the second firm can produce qualities from
the set Y, where X and Y be nonempty subsets of a partially ordered complete metric space (Z, ρ)
and x̄ ∈ X, ȳ ∈ Y. Consider F : X × Y ⇒ X and G : X × Y ⇒ Y to be the response function of
players one and two, respectively. Let F and G satisfy all the conditions in Theorem 1.

Then there exists at least one market equilibrium point (x, y) ∈ Br(x̄)× Br(ȳ), which is a
coupled fixed point for the ordered pair of response functions (F, G).

Example 3: Let us consider in Example 1 two firms, producing one commodity, which
is a perfect substitute. Let us put α = 10, β = 30, γ = 50, δ = 80 and η = 100 in Example
1. We may consider the interval [0, η] as the set of the total production. Let the first firm
be a smaller one and its production set is [0, δ] and the second one be a larger firm with a
production set [α, η]. Let n = 1 and m = 1/2. Then for any initial start [x, y] in the market
the first firm chooses a production from the set[

y
9
+

260
9

,
10
81

x +
3250

81

]
,

and the second firm from the set[
10 2
√

y + 1 + 30 2
√

101 − 40 2
√

11
2
√

101 − 2
√

11
,

10
9

2
√

x + 1 + 40

]
,

and
S11 = e(F(x, y) ∩ Br(x), F(u, v)) + e(G(z, w) ∩ Br(y), G(t, s))

≤ 10
81 |x − u|+ 1

9 |y − v|+ 5
9 |z − t|+ γ|w − s|,

where γ = 5√
101−√

11
< 5

6 . From max
{

10
81 + 5

9 , 1
9 + 5

6

}
= max

{
55
81 , 17

18

}
= 17

18 < 1 it follows
that the pair of response functions satisfies Theorem 2 and consequently there exists an
equilibrium pair of productions (x, y), such that x ∈ F(x, y) and y ∈ G(x, y).

Example 4. Let us consider a model of a duopoly with two players, producing
one good, which is a complete substitute, and let they compete on qualities and prices
simultaneously. Let us choose in Example 2, α1 = 10, β1 = 30, γ1 = 40, δ1 = 60, η1 = 100,
α2 = 1, β2 = 3, γ2 = 4, δ2 = 5, η2 = 8 n1 = 1, n2 = 1/2, m1 = 1/2, m2 = 1/4. Let us
consider the sets Xi = [0, δi], Yi = [αi, ηi] for i = 1, 2 and let X = X1 × X2, Y = Y1 × Y2
and the multivalued maps F : X × Y ⇒ X and G : X × Y ⇒ Y from Example 2, which
are the response functions of the two players, respectively, where the first coordinates are
the response on the qualities and the second coordinate is the response on the price. Let
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us endow R2 with the metrics ρ((x, y), (u, v)) =
(∣∣∣ x−u

θ1

∣∣∣p + ∣∣∣ y−v
θ2

∣∣∣p)1/p
, p ∈ (1,+∞) from

Example 2.
We get that

S12 = e(F(x, y), F(u, v)) + e(G(z, w), G(t, s))
≤ 0.2ρ(x, u) + 0.4ρ(y, v) + 0.2ρ(z, t) + 0.4ρ(w, s).

From the inequality max{0.2 + 0.2, 0.4 + 0.4} < 1 it follows that we can apply
Theorem 2. Consequently there exists an equilibrium pair of productions and prices
((x, p), (y, q)), such that (x, p) ∈ F((x, p), (y, q)) and (y, q) ∈ G((x, p), (y, q)).The actual
values of α, β, γ and δ are smaller.

4.3. Example for the Existence of an Equilibrium in Ecology

Despite the long history of aquatic ecosystems contamination and numerous extensive
research undertaken, there are still open questions that remain to be explored. Revealing
the relationship between the pollutant, pathway (water) and biota will help water bodies
assessment and management. Heavy metals and other contaminants can bioaccumulate
in aquatic organisms depending on their bioavailability and concentration in the water
media. Among the most applied biomonitors for evaluating sources and releases of
contaminants are aquatic bryophytes. Many studies reported a positive correlation between
contaminants in aqueous environment and in mosses, for example for Cu [26]. Nevertheless,
numerous research have reported that aquatic mosses often accumulate toxic elements in
concentrations much higher than those reached in their ambient water media [27] or even
when the contaminant in water samples is below the LOD [28].

Now we can restate Theorem 1 in terms of ecology.

Theorem 3. Let us assume that in an aquatic ecosystem there is one pollutant and a kind of aquatic
organisms that accumulate the pollutant. The pollutant can have qualities from the set Y and the
aquatic organisms can accumulate qualities from the pollutant from the set X, where X and Y be
nonempty subsets of a partially ordered complete metric space (Z, ρ) and x̄ ∈ X, ȳ ∈ Y. Consider
F : X × Y ⇒ X and G : X × Y ⇒ Y to be the response function of the aquatic organisms and the
pollutant, respectively. Let F and G satisfy all the conditions in Theorem 1.

Then there exists at least one point (x, y) ∈ Br(x̄)× Br(ȳ), which is a generalized coupled
fixed point for the ordered pair of response functions (F, G).

Example 5. Let us consider in Example 1 two media (water and biota), the first one
of which is an aquatic ecosystem (e.g. river water), which is polluted continuously and
the second one is a bryophyte species that accumulates the contaminant. Let the pollution
be from the set Y = [α, η] and the accumulated substance in the bryophyte be from the set
X = [0, δ]. Let us consider Example 1 with α = 1, β = 3, γ = 7, δ = 8, η = 10, n = 3/4 and
m = 4/5. If the pollution is y and the accumulated substance in the bryophyte is estimated
as x, then, due to the new inflow of pollution and the accumulation of the substance in the
bryophyte, which are also reproduced, the pollution and the accumulation change in time
to be the multivalued maps

F ⇒ [g(y), f (x)] for all (x, y) ∈ X × Y

and
G ⇒ [ψ(y), ϕ(x)] for all (x, y) ∈ X × Y,

respectively, where

f (x) =
2

4√93
4
√
(x + 1)3 + 5, g(y) =

2
4√113 − 4√23

4
√
(y + 1)3 + 3 − 2 4√23

4√113 − 4√23
.
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and

ϕ(x) =
2

5√94
4
√
(x + 1)5 + 5, ψ(y) =

2
5√114 − 5√24

5
√
(y + 1)4 + 3 − 2 5√24

5√114 − 5√24
.

From Example 1 we get the inequality

S13 = e(F(x, y), F(u, v)) + e(G(z, w), G(t, s))
≤ 0.3ρ(x, u) + 0.4ρ(y, v) + 0.3ρ(z, t) + 0.4ρ(w, s).

and consequently there exists an equilibrium pair of (x, y), such that x ∈ F(x, y) and
y ∈ G(x, y). The actual values of α, β, γ and δ are smaller.
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1. Introduction

In 1922, one of the most pivotal results in analysis was proved by Banach [1] in his
doctoral thesis, which asserts that every contraction mapping on a complete metric space
admits a unique fixed point. This principle continues to inspire generations of researchers in
metric fixed-point theory. Thus far, this classical result has been generalized and improved
in various ways, and by now, there exists an extensive literature on and around this premier
result. Over the last several decades, there have been many interesting generalizations of
this classical result in various directions.

There exist several extensions of the Banach contraction principle to various spaces
obtained by lightening the underlying involved metric conditions. In doing so, we are in
receipt of several spaces, namely: rectangular metric spaces, generalized metric spaces,
partial metric spaces, b-metric spaces, partial b-metric spaces, symmetric spaces, quasi-
metric spaces, quasi-partial metric spaces, and many more. In 1976, Cicchese [2] established
the first ever fixed-point theorem in the framework of symmetric spaces. The idea of such
spaces was coined by Wilson [3] by relaxing the triangle inequality from metric conditions.
By now, there exists a considerable literature on fixed-point theory in symmetric spaces.
For work of this kind, one can be referred to [4–11].

On the other hand, there have been various generalizations that were obtained by
varying the class of contractions (e.g., see [12–14]). In 2004, Ran and Reurings [15] obtained
a very useful generalization of the Banach fixed-point theorem in a partially ordered metric
space by taking a relatively weaker contraction condition that is required to hold only on
those elements that were comparable in the underlying ordering. In doing so, they were
essentially motivated by Turinici [16]. This result was further generalized by Nieto and
Rodríguez-López in [17,18] in 2005 and 2007, respectively. Subsequently, in 2015, Alam and
Imdad [19] furnished a natural extension of the Banach contraction principle in a complete
metric space endowed with a binary relation that generalizes all of the above-mentioned
results [15,17,18].

The existing literature contains several results on nonlinear contractions, which were
initiated by Browder [13] and were followed by similar works by Boyd and Wong [14]

Axioms 2021, 10, 50. https://doi.org/10.3390/axioms10020050 https://www.mdpi.com/journal/axioms

131



Axioms 2021, 10, 50

and Matkowski [20]. In 2014, Bessenyei and Páles [21] extended Matkowski’s result in
symmetric spaces, which required an additional regularity condition.

The intent of this paper is to prove a relation-theoretic version of a theorem due to
Bessenyei and Páles [21]. In doing so, we are essentially motivated by [15,17–19].

2. Preliminaries

In this section, we recall some definitions, propositions, and lemmas that will be
utilized in our subsequent discussions. The following are taken from Wilson’s paper [3]
on symmetric space. Throughout the paper, R,R+,N,N0, and Q denote the sets of reals,
nonnegative reals, natural numbers, whole numbers, and rational numbers respectively.

Definition 1. Let X be a nonempty set and let d : X × X → R+ be a mapping satisfying the
following axioms: for each a, b ∈ X,

(i) d(a, b) = 0 if and only if a = b;
(ii) d(a, b) = d(b, a).

Then, d is called symmetric on X and the pair (X, d) is a symmetric space.

In such spaces, the notions of convergent and Cauchy sequences are as usual.

• A sequence
(

xn
) ⊂ X is said to converge to x ∈ X if lim

n→∞
d(xn, x) = 0.

• A sequence
(
xn
) ⊂ X is said to be Cauchy if for each ε > 0, there exists N ∈ N such

that d(xn, xm) < ε ∀n, m ≥ N.

The space is said to be complete if every Cauchy sequence converges. For an open
ball centered at p with radius r, the notation B(p, r) is used. The diameter of B(p, r) is the
supremum of distances taken over the pairs of points of the ball. The topology of such
spaces is the topology induced by the open balls.

Because of the unavailability of the triangle inequality, the following problems are
obvious:

• There is nothing to assure that limits are unique (thus, the space need not be Haus-
dorff);

• A convergent sequence need not be a Cauchy sequence;
• The mapping d(a, .) : X → R need not be continuous.

Definition 2. Consider a symmetric space (X, d). A function ψ : R2
+ → R+ is a triangle

function [21] for d if the following hold:

(i) ψ(u, v) = ψ(v, u) ∀u, v ∈ R+;
(ii) ψ is monotone increasing in both of its arguments;
(iii) ψ(0, 0) = 0;
(iv) d(x, y) ≤ ψ

(
d(x, z), d(y, z)

) ∀x, y, z ∈ X for all x, y, z ∈ X.

It has been shown in [21] that every symmetric space (X, d) admits a unique triangle
function Φd, which has the property that if ψ is any other triangle function for d, then
Φd ≤ ψ. Such a triangle function Φd is called the basic triangle function.

Definition 3. A symmetric space (X, d) is called a regular space if the basic triangle function with
respect to the symmetric d is continuous at (0, 0).

Throughout this paper, we shall restrict our attention to regular spaces only. The
utility of such spaces is enlightened by the next important result.

Lemma 1 ([21]). The topology of a regular symmetric space is Hausdorff. A convergent sequence
in a regular symmetric space has a unique limit and it has the Cauchy property. Moreover, a
symmetric space (X, d) is regular if and only if
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lim
r→0

sup
p∈X

diam B(p, r) = 0.

Definition 4. A monotone increasing function ϕ : R+ → R+ is called a comparison function if
limn→∞ ϕn(t) = 0 for each t ∈ R+. A mapping T : X → X is called a ϕ-contraction if

d
(
T(x), T(y)

) ≤ ϕ
(
d(x, y)

)
for each x, y ∈ X.

These concepts are due to Matkowski [20]. The following is the main result of [21].

Theorem 1. If (X, d) is a complete regular symmetric space and ϕ is a comparison function, then
every ϕ-contraction on X has a unique fixed point.

3. Relation-Theoretic Notions and Related Results

Definition 5 ([22]). Let X be a nonempty set. A subset R of X × X is called a binary relation on
X. For x, y ∈ X when (x, y) ∈ R, we say that x is related to y, or in other words, x relates to y
under R. Sometimes, we write xRy instead of (x, y) ∈ R. If (x, y) /∈ R, we say x is not related
to y.

Definition 6. Let R be a binary relation on a nonempty set X and x, y ∈ X. We say that x and y
are R-comparative if either (x, y) ∈ R or (y, x) ∈ R. When x and y are R-comparative, we write
it as [x, y] ∈ R.

Proposition 1 ([19]). If (X, d) is a symmetric space, R is a binary relation on X, T is a self-
mapping on X, and ϕ : R+ → R+ is a comparison function, then the following conditions are
equivalent:

(i) d(Tx, Ty) ≤ ϕ
(
d(x, y)

) ∀(x, y) ∈ R;
(ii) d(Tx, Ty) ≤ ϕ

(
d(x, y)

) ∀[x, y] ∈ R.

The proof is simple and follows from symmetry of d.

Definition 7. A binary relation R defined on a nonempty set X is called

• reflexive if (x, x) ∈ R ∀x ∈ X;
• transitive if (x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R;
• complete, connected, or dichotomous if [x, y] ∈ R ∀x, y ∈ X.

Definition 8 ([19]). Let X be a nonempty set endowed with a binary relation R. A sequence(
xn
) ⊂ X is called R-preserving if (xn, xn+1) ∈ R ∀n ∈ N.

Definition 9 ([19]). Let X be a nonempty set and let T be a self-mapping on X. A binary relation
R on X is called T-closed if, for any x, y ∈ X,

(x, y) ∈ R ⇒ (Tx, Ty) ∈ R.

Definition 10 ([23]). Let X be a nonempty set and let T be a self-mapping on X. A binary relation
R on X is said to be T-transitive if, for any x, y, z ∈ X,

(Tx, Ty), (Ty, Tz) ∈ R ⇒ (Tx, Tz) ∈ R.

Definition 11 ([22]). Let X be a nonempty set endowed with a binary relation R and E ⊂ X. The
restriction of R to E, denoted as R|E, is the set R∩ E2. Indeed, R|E is a relation on E induced
by R.

Definition 12 ([23]). A binary relation R on a nonempty set X is called locally transitive if,
for each R-preserving sequence

(
xn
) ⊂ X with range E = {xn}n∈N0 , the binary relation R|E

is transitive.
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Definition 13 ([23]). Let X be a nonempty set and let T be a self-mapping on X. A binary relation
R on X is called locally T-transitive if, for each (effectively) R-preserving sequence

(
xn
) ⊂ T(X)

with range E = {xn}n∈N0 , the binary relation R|E is transitive.

Definition 14 ([24]). Let X be a nonempty set and let R be a binary relation on X. For
x, y ∈ X, a path of length k (where k is a natural number) in R from x to y is a finite sequence
{x0, x1, x2, . . . , xk} ⊂ X satisfying the following conditions:

(i) x0 = x and xk = y;
(ii) (xi, xi+1) ∈ R for each i (0 ≤ i ≤ k − 1).

Definition 15 ([23]). Let X be a nonempty set and let R be a binary relation on X. A subset E of
X is called R-connected if, for each pair x, y ∈ X, there exists a path (in R) from x to y.

Definition 16 ([23]). Let X be a nonempty set and let R be a binary relation on X. A subset E of X
is called RS-connected if, for each pair x, y ∈ X, there is a finite sequence {x0, x1, x2, . . . , xk} ⊂ X
satisfying the following conditions:

(i) x0 = x and xk = y;
(ii) [xi, xi+1] ∈ R for each i (0 ≤ i ≤ k − 1).

Now, we define the analogue of the notion of d-self-closedness in metric space due
to [23] in the framework of symmetric spaces.

Definition 17. Let (X, d) be a symmetric space. A binary relation R defined on X is called
d-self-closed if, for any R-preserving sequence

(
xn
)

converging to x, there exists a subsequence(
xnk

)
of
(

xn
)

with (xnk , x) ∈ R.

We will use the following notations in this paper:

• F(T) := {x ∈ X | T(x) = x};
• X(T,R) := {x ∈ X | (x, Tx) ∈ R}.

4. Main Result

In an attempt to prove a relation-theoretic version of Matkowski’s theorem [20] in
symmetric spaces, we prove the following.

Theorem 2. Let (X, d) be a regular symmetric space, R a binary relation on X, and T a self-
mapping on X. Suppose that the following conditions hold:

(a) (X,d) is R-complete;
(b) R is T-closed and locally T-transitive;
(c) T is either R-continuous or R is d-self-closed;
(d) X(T,R) is nonempty;
(e) There is a comparison function ϕ such that

d(Tx, Ty) ≤ ϕ(d(x, y)) ∀(x, y) ∈ R.

Then, T has a fixed point.

Moreover, if

(f) F(T) is RS-connected, then T has a unique fixed point.

Proof. As X(T,R) is nonempty, let x0 be such that (x0, Tx0) ∈ R. If Tx0 = x0, then we
are done. Suppose that Tx0 �= x0. Since (x0, Tx0) ∈ R and R is T-closed, we obtain by
induction that

(Tnx0, Tn+1x0) ∈ R ∀n ∈ N.
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Construct the sequence
(

xn
)

of Picard iterates with initial point x0, i.e., xn = Tn(x0).
So, (xn, xn+1) ∈ R ∀n ∈ N0, i.e., the sequence is R-preserving. As R is locally T-transitive,
we have (xn, xm) ∈ R ∀m > n. Observe that the sequence d(xn, xn+k) tends to zero for all
fixed k ∈ N;

d(xn, xn+k) = d(Txn−1, Txn+k−1)

≤ ϕ
(
d(xn−1, xn+k−1)

)
≤ ϕ2(d(xn−2, xn+k−2)

)
...

≤ ϕnd(x0, xk) → 0 as n → ∞.

Now, we are going to prove that {xn} is a Cauchy sequence. Let ε > 0 be any positive
number. As (X, d) is regular, the basic triangle function Φd is continuous at (0,0). So, there
exists a neighborhood U of the origin such that Φd(u, v) < ε ∀(u, v) ∈ U. In other words,
∃δ > 0 such that Φd(u, v) < ε ∀u, v : 0 ≤ u, v ≤ δ. We take δ < ε. As ϕ is a comparison
function, ϕn(t) → 0 ∀t > 0; so there exists N ∈ N such that ϕN(ε) < δ. Set S = TN . We
can see that

d(Sx, Sy) = d(TN x, TNy) ≤ ϕNd(x, y) when (x, y) ∈ R.

Define nk : d(xn, TkSxn) < δ ∀n ≥ nk and set M= max{n0, n1, . . . , nN}.
If V = {xM, xM+1, xM+2, . . . .xM+k, . . . } then for any y ∈ B(xM, ε) ∩ V, y �= xM, we

have

d(TkSxM, TkSy) = d(STkxM, STky) ≤ ϕNd(TkxM, Tky) as (TkxM, Tky) ∈ R
≤ ϕN ϕkd(xM, y) < ϕNd(xM, y) < ϕN(ε) < δ.

So,

d(TkSy, xM) ≤ Φd
(
d(TkSy, TkSxM), d(TkSxM, xM)

)
≤ Φd(δ, δ) ∀k = 0, 1, 2, . . . , N;

=⇒ d(TkSy, xM) < ε, ∀k = 0, 1, 2, . . . , N.

and for y = xM, d(TkSxM, xM) < δ < ε, ∀k = 0, 1, 2, . . . , N.
Thus we see that TkS maps V ∩ B(xM, ε) into itself. In particular, each iteration of S

maps V ∩ B(xM, ε) into itself. Now, if n > M is any arbitrarily given natural number, i.e.,
n = Nk + p where k ∈ N0 and 0 ≤ p < N, then

TnS = TNk+pS = TpSk+1,

and hence,

TnS
(
V ∩ B(xM, ε)

)
= TpSk+1(V ∩ B(xM, ε)

)
= TpS(Sk(V ∩ B(xM, ε)

)
⊂ TpS

(
V ∩ B(xM, ε)

)
⊂ V ∩ B(xM, ε); as 0 ≤ p < N.

Therefore, TnS(xM) ∈ B(xM, ε) ∀n > M, i.e., xM+N+k ∈ B(xM, ε) ∀k ∈ N. As the
space is regular, diam(xM, ε) → 0 when ε → 0, and from this, we conclude that the
sequence {xn} is a Cauchy sequence. The completeness of the space (X, d) gives some
element x ∈ X such that xn → x.

Now, if T is R-continuous, then T(xn) → T(x), i.e., xn+1 → T(x). As the space is
regular, we conclude that T(x) = x, as the limit is unique in regular spaces. So, the limit of
the sequence constructed above is a fixed point.
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If R is d-self-closed, then there is a subsequence
(
xnk

)
of
(

xn
)

such that [xnk , x] ∈
R ∀k ∈ N0. So,

d(x, Tx) ≤ Φd
(
d(x, xnk+1), d(xnk+1, Tx)

) ≤ Φd
[
d(xnk+1, x), ϕ

(
d(xnk , x)

)]
.

Now, for ε > 0, there exists δ > 0 such that Φd(u, v) < ε ∀u, v : 0 ≤ u, v ≤ δ, and
for δ > 0, there exists K ∈ N such that d(xn, x) ≤ δ ∀n ≥ K. Therefore, if we take nk ≥ K,
we have

d(x, Tx) ≤ Φd(δ, ϕ(δ)) ≤ Φd(δ, δ) < ε.

So, T(x) = x i.e., x is a fixed point.
To show that T has a unique fixed point, let y be any other fixed point of T. Now, F(T)

is RS-connected and x, y ∈ F(T); so, there is a finite sequence of elements {z0, z1, z2, . . . , zk} ⊂
X satisfying the following conditions:

(i) z0 = x, zk = y;
(ii) [zi, zi+1] ∈ R for each i (0 ≤ i ≤ k − 1).

Now, as T is a ϕ-contraction on R, d(Tzi, Tzi+1) ≤ ϕ
(
d(zi, zi+1)

)
. Using induction,

we get d(Tnzi, Tnzi+1) ≤ ϕnd(zi, zi+1). We already have, for ε > 0, ∃δ > 0 such that
Φd(u, v) < ε ∀u, v : 0 ≤ u, v < δ.

Let δ1 = δ, define δi (2 ≤ i ≤ k − 1) : Φd(u, v) < δi−1 ∀u, v : 0 ≤ u, v < δi, and set
α=min{δ1, δ2, . . . , δk−1}.

In addition, set M=max{N1, N2, . . . , Nk−1}, where Ni : d(Tnzi, Tnzi+1) ≤ ϕnd(zi, zi+1) <
α ∀n ≥ Ni. Hence, for n ≥ M, we have

d(Tnzk−1, Tny) < α ≤ δk−1

d(Tnzk−2, Tny) ≤ Φd[d(Tnzk−2, Tnzk−1), d(Tnzk−1, Tny)]

≤ Φd(α, δk−1) ≤ Φd(δk−1, δk−1) < δk−2

d(Tnzk−3, Tny) ≤ Φd[d(Tnzk−3, Tnzk−2), d(Tnzk−2, Tny)]

≤ Φd(α, δk−2) ≤ Φd(δk−2, δk−2) < δk−3

...

d(Tnz1, Tny) ≤ Φd(d(Tnz1, Tnz2), d(Tnz2, Tny))

≤ Φd(α, δ2) ≤ Φd(δ2, δ2) < δ1

d(Tnx, Tny) ≤ Φd(d(Tnx, Tnz1), d(Tnz1, Tny))

≤ Φd(α, δ1) ≤ Φd(δ1, δ1) < ε.

Therefore, d(Tnx, Tny) = d(x, y) = 0, i.e., x = y. Hence, the fixed point of T is
unique.

Now, we consider some special cases, where our result deduces some well-known
results from the existing literature.

(1) Under the universal relation R = X2, our theorem deduces the result by M. Bessenyei
and Z. Pàles [21]. Clearly, under the universal relation, the hypotheses of our result
hold trivially.

(2) As every metric space is a symmetric space, the result of Alam and Imdad [19], which
is a generalization of the classical Banach contraction principle, is yielded immediately.
In this case, we take ϕ(t) = ct as the comparison function, where c ∈ [0, 1) is such
that d(Tx, Ty) ≤ c

(
d(x, y)

) ∀xRy.
(3) The fixed-point result of Ran and Reurings [15] can be obtained from our result, as

every partially ordered complete metric space is automatically a symmetric space,
and the associated relation to the partial order satisfies all the hypotheses of our result
if we take the comparison function ϕ as the same as the earlier case (2), i.e., ϕ(t) = ct.
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(4) The result of Neito and Rodríguez-López becomes a corollary of our result because
of the same reasons as the earlier one. Notice that the d-self-closedness property is a
generalization of the ICU (increasing-convergence upper bound) property.

Finally, we produce an illustrative example to substantiate the utility of our result,
which does not satisfy the hypotheses of the existing results [1,15,17–19,21,23], but satisfies
the hypotheses of our result, and hence has a fixed point.

Example 1. Let X = R and d(x, y) = (x − y)2; then, (X, d) is a complete regular symmetric
space. Consider the binary relation

R = {(x, y) ∈ R2 : x ≥ y ≥ 0, x ∈ Q}.

We define a mapping T : X → X as follows:

T(x) =
{

2x, i f x ≤ 0,
x
3 , i f x > 0.

We see that the self-mapping T on X is not a ϕ-contraction on the whole space X for any
comparison function ϕ. So, the result of Bessenyei and Páles [21] does not apply here. However,
when we consider the elements x, y such that (x, y) ∈ R, then T is a ϕ-contraction on R for
ϕ(t) = t

2 , and all the other hypotheses of our result hold.
In addition, we see that the fixed-point results of [1,15,17–19,23] do not apply here, as the

space is not a metric space.

5. Application to Ordinary Differential Equations

In this section, we study the existence and uniqueness of a first-order periodic bound-
ary value problem as an application of our main fixed-point theorem.

Consider the first-order periodic boundary value problem

x′(t) = g
(
t, x(t)

)
, t ∈ [0, λ]

x(0) = x(λ), (1)

where λ > 0 and g : [0, λ]×R → R is a continuous function.
We consider the space X = C[0, λ] of all continuous functions on [0, λ] under the

symmetric given by
d(x, y) = sup

t∈[0,λ]

(
x(t)− y(t)

)2.

We define a relation R on X as

xRy ⇐⇒ x(t) ≤ y(t) ∀t ∈ [0, λ].

Now, we give the following definition, which will be useful in the subsequent theorem.

Definition 18. A function z is said to be a lower solution of (1) if

z′(t) ≤ g
(
t, z(t)

)
for t ∈ [0, λ]

z(0) ≤ z(λ).

Theorem 3. Consider problem (1) with g : I ×R → R, a continuous function, and suppose that
there exists some k > 0 such that for s1, s2 in R with s1 ≥ s2,

0 ≤ g(t, s1) + ks1 − [g(t, s2) + ks2] ≤ k
√

ϕ(s1 − s2)2,

where ϕ is a comparison function. Then, the existence of a lower solution for (1) guarantees the
existence of a unique solution of (1).
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Proof. Problem (1) can be rewritten as

x′(t) + kx(t) = g
(
t, x(t)

)
+ kx(t), t ∈ [0, λ]

x(0) = x(λ).

This problem is equivalent to the integral equation

x(t) =
∫ λ

0
G(t, s)[g(s, x(s)) + kx(s)]ds,

where

G(t, s) =

{
ek(λ+s−t)

ekλ−1 , 0 ≤ s < t ≤ λ
ek(s−t)

ekλ−1
, 0 ≤ t < s ≤ λ.

Consider the self-mapping T on X defined as

(Tx)(t) =
∫ λ

0
G(t, s)[g

(
s, x(s)

)
+ kx(s)]ds.

Here, it is apparent that a fixed point of T is, in fact, a solution of the above problem (1).
Now, we will show that the hypotheses in Theorem 2 are satisfied.
To prove that the relation R is T-closed, take x, y ∈ X such that xRy, i.e.,

x(t) ≤ y(t) ∀t ∈ [0, λ].

As y(t) ≥ x(t), from the hypothesis, we obtain

g
(
t, x(t)

)
+ kx(t) ≤ g

(
t, y(t)

)
+ ky(t) ∀t ∈ [0, λ].

As G(t, s) > 0 ∀t, s ∈ [0, λ], we have

(Tx)(t) =
∫ λ

0
G(t, s)[g

(
s, x(s)

)
+ kx(s)]ds

≤
∫ λ

0
G(t, s)[g

(
s, y(s)

)
+ ky(s)]ds

= (Ty)(t).

Hence, R is T-closed. In addition, for xRy, we have√
d(Tx, Ty) = sup

t∈[0,λ]
|(Tx)(t)− (Ty)(t)|

≤ sup
t∈[0,λ]

∫ λ

0
G(t, s)|g(s, x(s)

)
+ kx(s)− g

(
s, y(s)

)− ky(s)|ds

≤ sup
t∈[0,λ]

∫ λ

0
G(t, s)

√
ϕ
(
y(s)− x(s)

)2ds

≤
√

ϕd(x, y) sup
t∈[0,λ]

∫ λ

0
G(t, s)ds

=
√

ϕd(x, y) sup
t∈[0,λ]

1
ekλ − 1

(1
k

ek(λ+s−t)
]t

0
+

1
k

ek(s−t)
]λ

t

)
=
√

ϕd(x, y) sup
t∈[0,λ]

1
ekλ − 1

(ekλ − 1)

=
√

ϕd(x, y).

138



Axioms 2021, 10, 50

Thus, we have
d(Tx, Ty) ≤ ϕd(x, y).

Hence, the required contraction condition (2) holds.
Now, as there is some lower solution, say x0 ∈ X, we have

x′0(t) ≤ g
(
t, x0(t)

)
,

which can be rewritten as

x′0(t) + kx0(t) ≤ g
(
t, x0(t)

)
+ kx0(t) for t ∈ [0, λ].

Multiplying both the sides by ekt, we obtain(
x0(t)ekt)′ ≤ [g

(
t, x0(t)

)
+ kx0(t)

]
ekt for t ∈ [0, λ],

and thus, we get

x0(t)ekt ≤ x0(0) +
∫ t

0
[g
(
s, x0(s)

)
+ kx0(s)]eksds for t ∈ [0, λ], (2)

which implies that

x0(0)ekλ ≤ x0(λ)ekλ ≤ x0(0) +
∫ λ

0
[g
(
s, x0(s)

)
+ kx0(s)]eksds,

thereby yielding

x0(0) ≤
∫ λ

0

eks

ekλ − 1
[g
(
s, x0(s)

)
+ x0(s)]ds.

Using the above inequality (2), we get

x0(t)ekt ≤
∫ t

0
[g
(
s, x0(s)

)
+ x0(s)]eksds +

∫ λ

0

eks

ekλ − 1
[g
(
s, x0(s)

)
+ x0(s)]ds

=
∫ t

0
[g
(
s, x0(s)

)
+ x0(s)]

ek(s+λ)

ekλ − 1
ds +

∫ 0

t
[g
(
s, x0(s)

)
+ x0(s)]

eks

ekλ − 1
ds

+
∫ λ

0

eks

ekλ − 1
[g
(
s, x0(s)

)
+ x0(s)]ds

=
∫ t

0
[g
(
s, x0(s)

)
+ x0(s)]

ek(s+λ)

ekλ − 1
ds +

∫ λ

t
[g
(
s, x0(s)

)
+ x0(s)]

eks

ekλ − 1
ds.

Hence,

x0(t) ≤
∫ t

0

ek(s+λ−t)

ekλ − 1
[g
(
s, x0(s)

)
+ x0(s)]ds +

∫ λ

t

ek(s−t)

ekλ − 1
[g
(
s, x0(s)

)
+ x0(s)]ds,

i.e.,

x0(t) ≤
∫ λ

0
G(t, s)[g

(
s, x0(s)

)
+ x0(s)]ds = (Tx0)(t).

Thus, the existence of some element x0 ∈ X such that x0RTx0 is ensured.
To show that R is d-self-closed, let

(
xn
)

be an R-preserving Cauchy sequence con-
verging to x ∈ X. As

(
xn
)

is R-preserving, we have

x0(t) ≤ x1(t) ≤ x2(t) ≤ · · · ≤ xn(t) ≤ xn+1(t) ≤ · · · ≤ x(t) ∀t ∈ [0, λ],

thereby yielding xnRx ∀n ∈ N. Therefore, R is d-self-closed.
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The remaining hypotheses of Theorem 2 also hold and are easy to check. Hence, T
possesses a fixed point in X.
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of b-metric-like spaces. Some consequences of main results are also deduced. We present some
examples to illustrate and support our results. We provide an application to solve simultaneous
linear equations. In addition, we present some open problems.

Keywords: b-metric space; b-metric-like spaces; Cauchy sequence; fixed point

MSC: 47H10; 54H25

1. Introduction

The well-known concept of metric space was introduced by M. Frechet [1] as an
extension of usual distance. In the theory of metric space, Banach’s contraction principle [2]
is one of the most important theorems and a powerful tool. A mapping T : X → X, where
(X, d) is a metric space, is called a contraction mapping if there exists α < 1 such that for all
x, y ∈ X, d(Tx, Ty) ≤ αd(x, y). If the metric space (X, d) is complete, then T has a unique
fixed point. Contraction mappings are continuous. In [3], Kannan proved the following
result which gives the fixed point for discontinuous mapping: let T : X → X, be a mapping
on a complete metric space (X, d) with

d(Tx, Ty) ≤ α(d(x, Tx) + d(y, Ty)),

where α ∈ [0, 1
2 ) and x, y ∈ X. Then, T has a unique fixed point. Contraction map-

pings have been extended or generalized in several directions by various authors (see, for
example, [4–10]). Not only contraction mappings but the concept of metric space is also
extended in many ways in the literature (see, for example, [11–19]).

The concept of b-metric spaces was initiated by Bakhtin [11] and Czerwik [13,14] as
an extension of metric spaces by weakening the triangular inequality.

Definition 1 ([11,13,14]). Let X be a non-empty set. Then, a mapping d : X × X → [0,+∞) is
called a b-metric if there exists a number s ≥ 1 such that for all x, y, z ∈ X,

(d1) d(x, y) = 0 if and only if x = y;

(d2) d(x, y) = d(y, x);

(d3) d(x, z) ≤ s(d(x, y) + d(y, z)).

Then triplet (X, d, s) is called a b-metric space. Clearly, every metric space is a b-metric space with
s = 1, but the converse is not true in general. In fact, the class of b-metric spaces is larger than the
class of metric spaces.

Axioms 2021, 10, 55. https://doi.org/10.3390/axioms10020055 https://www.mdpi.com/journal/axioms
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In [14], Banach’s contraction principle is proved in the framework of b-metric spaces.
In 2013, Kir and Kiziltunc established the results in b-metric spaces, which generalized the
Kannan and Chatterjea type mappings. In [20], the authors introduced the following result
that improves Theorem 1 in [21].

Theorem 1 ([20]). Let (X, d) be a complete b-metric space with a constant s ≥ 1. If T : X → X
satisfies the inequality:

d(Tx, Ty) ≤ λ1d(x, y) + λ2d(x, Tx) + λ3d(y, Ty) + λ4(d(x, Ty) + d(Tx, y)),

where λi ≥ 0 for all i = 1, 2, 3, 4 and λ1 + λ2 + λ3 + 2λ4 < 1 for s ∈ [1, 2] and 2
s < λ1 + λ2 +

λ3 + 2λ4 < 1 for s ∈ (2,+∞); then, T has a unique fixed point.

In [6], the author introduced quasi-contraction mappings in metric spaces (X, d): A
mapping T : X → X is said to be a quasi-contraction if there exists 0 ≤ q < 1 such that for
any x, y,∈ X,

d(Tx, Ty) ≤ q max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(Tx, y)}.

Many authors proved fixed point theorems for quasi-contraction mappings in b-metric
spaces with some more restriction on values of q (see, for example, [20,22–25]). More on
b-metric spaces can be found in [26–37].

In the present work, we define a new class of functions. After that, we define some
new contractive mappings which combine the terms d(x, y), d(x, Tx), d(y, Ty), d(x, Ty)
and d(Tx, y) by means of the member of a newly defined class. We also prove some fixed
point results. To prove our results, we need the following concepts and results from the
literature.

Definition 2 ([27]). Let (X, d, s ≥ 1) be a b-metric space. Then, a sequence {xn} in X is called:

(i) Cauchy sequence if for each ε > 0 there exist n0 ∈ N such that d(xn, xm) < ε for all

n, m ≥ n0.

(ii) convergent if there exists l ∈ X such that for each ε > 0 there exist n0 ∈ N such that

d(xn, l) < ε for all n ≥ n0. In this case, the sequence {xn} is said to converge to l.

Definition 3 ([27]). A b-metric space (X, d, s ≥ 1) is said to be complete if every Cauchy sequence
is convergent in it.

Lemma 1 ([29]). Let (X, d, s ≥ 1) be a b-metric space and suppose that sequences {xn} and {yn}
converge to x and y ∈ X, respectively. Then,

1
s2 d(x, y) ≤ lim inf

n→+∞
d(xn, yn) ≤ lim sup

n→+∞
d(xn, yn) ≤ s2d(x, y).

In particular, if x = y, then lim
n→+∞

d(xn, yn) = 0.

Moreover, for any z ∈ X, we have

1
s

d(x, z) ≤ lim inf
n→+∞

d(xn, z) ≤ lim sup
n→+∞

d(xn, z) ≤ sd(x, z).

Lemma 2 ([31]). Every sequence {xn} of elements from a b-metric space (X, d, s ≥ 1), having
the property that there exists λ ∈ [0, 1) such that d(xn, xn+1) ≤ λd(xn−1, xn) for every n ∈ N,
is Cauchy.
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2. Fixed Point Results in b-Metric Spaces

In this section, we first define a new class of functions, and then we define a new
contractive mapping in b-metric spaces as follows.

Definition 4. For any m ∈ N, we define Ξm to be the set of all functions ξ : [0,+∞)m → [0,+∞)
such that

(ξ1) ξ(t1, t2, ..., tm) < max{t1, t2, ..., tm} if (t1, t2, ..., tm) �= (0, 0, ..., 0);

(ξ2) if {t(n)i }n∈N, 1 ≤ i ≤ m, are m sequences in [0,+∞) such that lim sup
n→+∞

t(n)i = ti

< +∞ for all

i = 1 to m, then lim inf
n→+∞

ξ
(

t(n)1 , t(n)2 , ..., t(n)m

)
≤ ξ(t1, t2, ..., tm).

2.1. First Main Result

Definition 5. Let (X, d, s ≥ 1) be a b-metric space. The mapping T : X → X is said to be an
ξ-contractive mapping of type-I if there exists ξ ∈ Ξ4 and

d(Tx, Ty) ≤ 1
s

ξ

(
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(Tx, y)
2s

)
, (1)

for all x, y ∈ X.

Now, the first result of this paper is as follows:

Theorem 2. Let (X, d, s ≥ 1) be a complete b-metric space and T : X → X be an ξ-contractive
mapping of type-I. Then, T has a unique fixed point.

Proof. Let x0 ∈ X. Define a sequence {xn} in X as xn = Txn−1 for all n ≥ 1. Assume that
any two consecutive terms of the sequence {xn} are distinct; otherwise, T has a fixed point.
First, we prove that {xn} is a Cauchy sequence. For this, let n ∈ N.

Consider

d(xn, xn+1) ≤ 1
s

ξ

(
d(xn−1, xn), d(xn−1, xn), d(xn, xn+1),

d(xn−1, xn+1)

2s

)
(2)

<
1
s

max
{

d(xn−1, xn), d(xn−1, xn), d(xn, xn+1),
d(xn−1, xn+1)

2s

}
=

1
s

max
{

d(xn−1, xn),
d(xn−1, xn+1)

2s

}
≤ 1

s
max
{

d(xn−1, xn),
d(xn−1, xn) + d(xn, xn+1)

2

}
,

which implies that

d(xn, xn+1) <
1
s

d(xn−1, xn) f or all n ≥ 1. (3)

Case 1: If s > 1, then by Lemma 2 in view of (3), {xn} is a Cauchy sequence.
Case 2: If s = 1, then by (3), the sequence {d(xn, xn+1)} is monotonically decreasing

and bounded below. Therefore, d(xn, xn+1) → k for some k ≥ 0. Suppose that k > 0; now,
taking lim inf n → +∞ in (2), we have k ≤ ξ(k, k, k, k′), where

k′ = lim sup
n→+∞

d(xn−1, xn+1)

2
≤ lim sup

n→+∞

d(xn−1, xn) + d(xn, xn+1)

2
= k.
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Now,
k ≤ ξ(k, k, k, k′) < max{k, k, k, k′} = k, which is a contradiction; therefore,

lim
n→+∞

d(xn, xn+1) = 0. (4)

Suppose that {xn} is not a Cauchy sequence; then, there exists ε > 0 such that for any
r ∈ N, there exists mr > nr ≥ r such that

d(xmr , xnr ) ≥ ε. (5)

Furthermore, assume that mr is the smallest natural number greater than nr such that
(5) holds. Then,

ε ≤ d(xmr , xnr )

≤ d(xmr , xmr−1) + d(xmr−1, xnr )

< d(xmr , xmr−1) + ε

< d(xr, xr−1) + ε,

thus, using (4) and taking lim r → +∞, we get

lim
r→+∞

d(xmr , xnr ) = ε. (6)

Now, consider

d(xmr+1, xnr+1) ≤ ξ

(
d(xmr , xnr ), d(xmr , xmr+1), d(xnr , xnr+1),

d(xmr , xnr+1) + d(xmr+1, xnr )

2

)
.

Therefore, we have

d(xmr , xnr ) ≤ d(xmr , xmr+1) + d(xmr+1, xnr+1) + d(xnr+1, xnr )

≤ d(xmr , xmr+1) + d(xnr+1, xnr ) +

ξ

(
d(xmr , xnr ), d(xmr , xmr+1), d(xnr , xnr+1),

d(xmr , xnr+1) + d(xmr+1, xnr )

2

)
.

Thus, by taking lim inf r → +∞ on both sides and also using (4) and (6), we get
ε ≤ 0 + 0 + ξ(ε, 0, 0, ε′), where

ε′ = lim sup
r→+∞

d(xmr , xnr+1) + d(xmr+1, xnr )

2

≤ lim sup
r→+∞

d(xmr , xnr ) + d(xnr , xnr+1) + d(xmr+1, xmr ) + d(xmr , xnr )

2

=
ε + 0 + 0 + ε

2
= ε.

Thus, ε ≤ ξ(ε, 0, 0, ε′) < max{ε, 0, 0, ε′} = ε, which is a contradiction. Thus, {xn} is a
Cauchy sequence in (X, d, s ≥ 1).

Now, (X, d, s ≥ 1) is a complete b-metric space. Therefore, there exists x ∈ X such
that xn → x.

Now, consider

d(Txn, Tx) ≤ 1
s

ξ

(
d(xn, x), d(xn, Txn), d(x, Tx),

d(xn, Tx) + d(x, Txn)

2s

)
,
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which implies that

d(xn+1, Tx) ≤ 1
s

ξ

(
d(xn, x), d(xn, xn+1), d(x, Tx),

d(xn, Tx) + d(x, xn+1)

2s

)
.

Taking lim inf n → +∞ on both sides and using Lemma 1, we get

1
s

d(x, Tx) ≤ 1
s

ξ(0, 0, d(x, Tx), l),

i.e.,
d(x, Tx) ≤ ξ(0, 0, d(x, Tx), l),

where

l = lim sup
n→+∞

d(xn, Tx) + d(x, xn+1)

2s
≤ lim sup

n→+∞

sd(x, Tx) + 0
2s

=
d(x, Tx)

2
.

Thus,
d(x, Tx) ≤ ξ(0, 0, d(x, Tx), l) < max{0, 0, d(x, Tx), l} = d(x, Tx),

which is a contradiction. Therefore, Tx = x.
Let Ty = y for some y ∈ X and suppose that x �= y; then, consider

d(x, y) = d(Tx, Ty) ≤ 1
s

ξ

(
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)
2s

)
≤ 1

s
ξ

(
d(x, y), 0, 0,

d(x, y)
s

)
<

1
s

max
{

d(x, y), 0, 0,
d(x, y)

s

}
=

d(x, y)
s

,

which is a contradiction. Therefore, x = y.

Now, the following remark improves our main result for Theorem 2.

Remark 1. Theorem 2 is also valid if the term d(x,Ty)+d(Tx,y)
2s in (1) is replaced by d(x,Ty)+d(Tx,y)

δs ,
where δ is a real number defined by

δ =

⎧⎨⎩
2, if s = 1,
δ′, if 1 < s ≤ 2,
1, if s > 2,

where δ′ is any number in
(

2
s , 1 + 1

s

)
.

Now, the following result is a consequence of Theorem 2.

Corollary 1. Let (X, d, s ≥ 1) be a complete b-metric space and T : X → X be a mapping such
that there exists q ∈ [0, 1

s ) and

d(Tx, Ty) ≤ q max
{

d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(Tx, y)

2s

}
, (7)

for all x, y ∈ X. Then T has a unique fixed point.

Proof. Let ξ ∈ Ξ4 be defined by ξ(t1, t2, t3, t4) = qs max{t1, t2, t3, t4}. Then, following
Theorem 2, T has a unique fixed point.
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In the following example, we see that conditions of Theorem 2 are satisfied, but
Corollary 1 is not applicable.

Example 1. Let X =
{

1√
n : n ∈ N

}⋃{0}. Define d : X × X → [0,+∞) by d(x, y) = |x − y|2
for all x, y ∈ X. Then d is a b-metric on X with s = 2.

Define T : X → X by T
(

1√
n

)
= 1√

2(n+1)
for all n ∈ N and T(0)=0. Define

ξ(t1, t2, t3, t4) =

{
max{t1,t2,t3,t4}

1+t1
, i f t1 > 0,

1
2 max{t2, t3, t4}, otherwise.

Now, for all x, y ∈ X, (1) is satisfied, and thus the conditions of Theorem 2 are satisfied.
However, we see that if (7) is satisfied for all x, y ∈ X, we have

d(Tx, Ty) ≤ qN(x, y),

for all x, y ∈ X, where N(x, y) = max
{

d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(Tx,y)
2s

}
. So, in par-

ticular, we have

d

(
1√

2(n + 1)
,

1√
2(m + 1)

)
≤ qN

(
1√
n

,
1√
m

)
f or all m, n ∈ N, m �= n.

i.e., ∣∣∣ 1√
n+1

− 1√
m+1

∣∣∣2
N
(

1√
n , 1√

m

) ≤ 2q f or all m, n ∈ N m �= n.

Now, taking lim n, m → +∞, we get 2q ≥ 1, which is a contradiction. Thus, Corollary 1 is
not applicable for this example.

Remark 2. In view of Remark 1, Corollary 1 is also valid, if the term d(x,Ty)+d(Tx,y)
2s is replaced by

d(x,Ty)+d(Tx,y)
δs , where δ is the same as defined in Remark 1.

The following result is another consequence of Theorem 2.

Corollary 2. Let (X, d, s ≥ 1) be a complete b-metric space and T : X → X be a mapping such
that

d(Tx, Ty) ≤ λ1d(x, y) + λ2d(x, Tx) + λ3d(y, Ty) + λ4(d(x, Ty) + d(Tx, y)), (8)

for all x, y ∈ X, where λ1 + λ2 + λ3 + δsλ4 < 1
s and λi ≥ 0 for all i = 1 to 4. Then, T has a

unique fixed point.

Proof. Let ξ ∈ Ξ4 be defined by ξ(t1, t2, t3, t4) = s(λ1t1 + λ2t2 + λ3t3 + δsλ4t4). Then, by
Theorem 2 and Remark 2, T has a unique fixed point.

2.2. Second Main Result

Now, we define another contractive mapping in b-metric space.

Definition 6. Let (X, d, s ≥ 1) be a b-metric space. The mapping T : X → X is said to be an
ξ-contractive mapping of type-I I if there exists ξ ∈ Ξ5 and

d(Tx, Ty) ≤ 1
s

ξ

(
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty)
2s

, d(Tx, y)
)

, (9)
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for all x, y ∈ X.

The proof of our next result proceeds in a similar manner as the proof of Theorem 2.

Theorem 3. Let (X, d, s ≥ 1) be a complete b-metric space and T : X → X be an ξ-contractive
mapping of type-I I. Then T has a unique fixed point.

The following remark improves Theorem 3.

Remark 3. Theorem 3 is also valid, if the term d(x,Ty)
2s in (9) is replaced by d(x,Ty)

δs , where δ is the
same as in Remark 1.

Corollary 3. Let (X, d, s ≥ 1) be a complete b-metric space and T : X → X be a mapping such
that there exists q ∈ [0, 1

s ) and

d(Tx, Ty) ≤ q max
{

d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty)

δs
, d(Tx, y)

}
, (10)

for all x, y ∈ X. Then, T has a unique fixed point.

Proof. Let ξ ∈ Ξ5 be defined by ξ(t1, t2, t3, t4, t5) = qs max{t1, t2, t3, t4, t5}. Then, by
Theorem 3, T has a unique fixed point.

Corollary 4. Let (X, d, s ≥ 1) be a complete b-metric space and T : X → X be a mapping such
that

d(Tx, Ty) ≤ λ1d(x, y) + λ2d(x, Tx) + λ3d(y, Ty) + λ4d(x, Ty) + λ5d(Tx, y), (11)

for all x, y ∈ X, where λ1 + λ2 + λ3 + δsλ4 + λ5 < 1
s and λi ≥ 0 for all i = 1 to 5. Then, T has

a unique fixed point.

Proof. Let ξ ∈ Ξ5 be defined by ξ(t1, t2, t3, t4, t5) = s(λ1t1 + λ2t2 + λ3t3 + δsλ4t4 + λ5t5).
Then by Theorem 3, T has a unique fixed point.

3. Fixed Point Results in b-Metric-Like Spaces

Partial metric spaces were introduced by Matthews (1992) as a generalization of
metric spaces. The self-distance may be non-zero in partial metric space. In 2012, A. A.
Harandi generalized the concept of the partial metric by establishing a new space named
the metric-like-space. We notice that in metric-like space, the self-distance of a point may
be greater than the distance of that point to any other point (see Example 2.2 in [15]). Later
on, S. Shukla (2014) presented the idea of the partial b-metric as a generalization of the
partial metric and b-metric. Meanwhile, in 2013, M.A. Alghamdi et al. introduced the
concept of b-metric-like spaces that generalized the notions of partial b-metric space and
metric-like space. Obviously, b-metric-like space generalizes all abstract spaces that we
have mentioned in our paper. For the sake of clarity, we recall the definitions of these
abstract spaces as follows.

Definition 7 ([12]). Let X be a non-empty set. Then, a mapping d : X × X → [0,+∞) is called a
partial metric if for all x, y, z ∈ X,

(p1) d(x, y) = 0 ⇔ d(x, x) = d(x, y) = d(y, y);

(p2) d(x, x) ≤ d(x, y);

(p3) d(x, y) = d(y, x);

(p4) d(x, z) ≤ d(x, y) + d(y, z)− d(y, y).
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Then, the pair (X, d) is called a partial metric space.

Definition 8 ([15,38]). Let X be a non-empty set. Then, a mapping d : X × X → [0,+∞) is
called a metric-like space if for all x, y, z ∈ X,

(ml1) d(x, y) = 0 ⇒ x = y;

(ml2) d(x, y) = d(y, x);

(ml3) d(x, z) ≤ d(x, y) + d(y, z).

Then, the pair (X, d) is called a metric-like space.

Definition 9 ([17]). Let X be a non-empty set. Then, a mapping d : X × X → [0,+∞) is called a
partial b-metric if there exists a number s ≥ 1 such that for all x, y, z ∈ X,

(pb1) d(x, y) = 0 ⇔ d(x, x) = d(x, y) = d(y, y);

(pb2) d(x, x) ≤ d(x, y);

(pb3) d(x, y) = d(y, x);

(pb4) d(x, z) ≤ s(d(x, y) + d(y, z))− d(y, y).

Then, the triplet (X, d, s) is called a partial b-metric space.

Definition 10 ([16]). Let X be a non-empty set. Then, a mapping d : X × X → [0,+∞) is called
a b-metric-like if there exists a number s ≥ 1 such that for all x, y, z ∈ X,

(bml1) d(x, y) = 0 ⇒ x = y;

(bml2) d(x, y) = d(y, x);

(bml3) d(x, z) ≤ s(d(x, y) + d(y, z)).

Then, the triplet (X, d, s) is called a b-metric-like space.

The following definitions and results related to b-metric-like spaces are required in
the main results of this section.

Definition 11 ([16,39]). Let (X, d, s ≥ 1) be a b-metric-like space and let {xn} be a sequence of
points of X. A point x ∈ X is said to be the limit of sequence {xn} if lim

n→+∞
d(x, xn) = d(x, x),

and we say that the sequence {xn} is convergent to x and denote it by xn → x as n → +∞.

Definition 12 ([16,39]). Let (X, d, s ≥ 1) be a b-metric-like space.

(i) A sequence {xn} in X is called Cauchy sequence if lim
n,m→+∞

d(xn, xm) exists and is finite.

(ii) (X, d, s ≥ 1) is said to be complete if every Cauchy sequence {xn} in X converges to

x ∈ X so that

lim
n,m→+∞

d(xn, xm) = d(x, x) = lim
n→+∞

d(xn, x).

Proposition 1 ([16]). Let (X, d, s ≥ 1) be a b-metric-like space and {xn} be a sequence in X such
that for some x ∈ X, lim

n→+∞
d(xn, x) = 0. Then,

(i) x is unique.

(ii)
1
s

d(x, y) ≤ lim
n→+∞

d(xn, y) ≤ sd(x, y) f or all y ∈ X.
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Lemma 3 ([40]). Let (X, d, s ≥ 1) be a b-metric-like space and {xn} be a sequence in X such that

d(xn, xn+1) ≤ λd(xn−1, xn)

for some λ ∈ [0, 1) and for each n ∈ N. Then, {xn} is a Cauchy sequence with lim
n,m→+∞

d(xn, xm) =

0.

Now, we extend Theorem 2 in the framework of a b-metric-like space. At the end of
the proof, we provide an example in support.

Theorem 4. Let (X, d, s ≥ 1) be a complete b-metric-like space. Let T : X → X be a mapping
such that there exists ξ ∈ Ξ4 and

d(Tx, Ty) ≤ 1
s

ξ

(
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(Tx, y)− d(y, y)
2s

)
(12)

for all x, y ∈ X with d(x, Ty) + d(Tx, y) ≥ d(y, y). Then, T has a unique fixed point.

Proof. Let x0 ∈ X. Define a sequence {xn} in X as xn = Txn−1 for all n ≥ 1. Assume that
any two consecutive terms of the sequence {xn} are distinct; otherwise, T has a fixed point.
First, we prove that {xn} is a Cauchy sequence. For this, let n ∈ N.
Now,

d(xn−1, Txn) + d(Txn−1, xn) = d(xn−1, xn+1) + d(xn, xn) ≥ d(xn, xn);

therefore, using (12), we have

d(xn, xn+1) ≤ 1
s

ξ

(
d(xn−1, xn), d(xn−1, xn), d(xn, xn+1),

d(xn−1, xn+1) + d(xn, xn)− d(xn, xn)

2s

)
(13)

<
1
s

max
{

d(xn−1, xn), d(xn−1, xn), d(xn, xn+1),
d(xn−1, xn+1)

2s

}
=

1
s

max
{

d(xn−1, xn),
d(xn−1, xn+1)

2s

}
≤ 1

s
max
{

d(xn−1, xn),
d(xn−1, xn) + d(xn, xn+1)

2

}
,

which implies that

d(xn, xn+1) <
1
s

d(xn−1, xn) f or all n ≥ 1. (14)

Case 1: If s > 1, then by Lemma 3 and in view of (14), {xn} is a Cauchy sequence in
(X, d, s ≥ 1) and lim

n,m→+∞
d(xn, xm) = 0.

Case 2: If s = 1, then by (14), the sequence {d(xn, xn+1)} is monotonically decreasing
and bounded below. Therefore, d(xn, xn+1) → k for some k ≥ 0. Suppose that k > 0; now,
taking lim inf n → +∞ in (13), we have k ≤ ξ(k, k, k, k′),
where

k′ = lim sup
n→+∞

d(xn−1, xn+1)

2
≤ lim sup

n→+∞

d(xn−1, xn) + d(xn, xn+1)

2
= k.

Now, k ≤ ξ(k, k, k, k′) < max{k, k, k, k′} = k, a contradiction; therefore,

lim
n→+∞

d(xn, xn+1) = 0. (15)
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Furthermore,
d(xn, xn) ≤ d(xn, xn+1) + d(xn+1, xn),

taking lim sup n → +∞, and using (15) we get

lim
n→+∞

d(xn, xn) = 0, (16)

Suppose that lim
n,m→+∞

d(xn, xm) �= 0; then, there exists ε > 0 such that for any r ∈ N,

there exists mr > nr ≥ r such that

d(xmr , xnr ) ≥ ε. (17)

Furthermore, assume that mr is the smallest natural number greater than nr such that
(17) holds. Then,

ε ≤ d(xmr , xnr )

≤ d(xmr , xmr−1) + d(xmr−1, xnr )

< d(xmr , xmr−1) + ε

< d(xr, xr−1) + ε.

Thus, using (15) and taking lim r → +∞, we get

lim
r→+∞

d(xmr , xnr ) = ε. (18)

Now, suppose that there exist infinitely many r such that

d(xmr , Txnr ) + d(Txmr , xnr ) < d(xnr , xnr ).

Taking lim sup r → +∞, and using (16), we get

lim
r→+∞

(d(xmr , Txnr ) + d(Txmr , xnr )) = 0,

which means that

lim
r→+∞

(d(xmr , xnr+1) = lim
r→+∞

d(xmr+1, xnr )) = 0.

Now,

ε = lim
r→+∞

d(xmr , xnr ) ≤ lim sup
r→+∞

((d(xmr , xnr+1) + d(xnr+1, xnr )) = 0,

which is a contradiction. Therefore, there exists r0 ∈ N such that for all r ≥ r0, d(xmr , Txnr )+
d(Txmr , xnr ) ≥ d(xnr , xnr ). Thus, for all r ≥ r0, using (12),

d(xmr+1, xnr+1) ≤ ξ

(
d(xmr , xnr ), d(xmr , xmr+1), d(xnr , xnr+1),

d(xmr , xnr+1) + d(xmr+1, xnr )− d(xnr , xnr )

2

)
.

Now,

d(xmr , xnr ) ≤ d(xmr , xmr+1) + d(xmr+1, xnr+1) + d(xnr+1, xnr )

≤ d(xmr , xmr+1) + d(xnr+1, xnr ) +

ξ

(
d(xmr , xnr ), d(xmr , xmr+1), d(xnr , xnr+1),

d(xmr , xnr+1) + d(xmr+1, xnr )− d(xnr , xnr )

2

)
.
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Thus, by taking lim inf r → +∞ on both sides and also using (15) and (18), we get
ε ≤ 0 + 0 + ξ(ε, 0, 0, ε′), where

ε′ = lim sup
r→+∞

d(xmr , xnr+1) + d(xmr+1, xnr )− d(xnr , xnr )

2

≤ lim sup
r→+∞

d(xmr , xnr ) + d(xnr , xnr+1) + d(xmr+1, xmr ) + d(xmr , xnr )− 0
2

=
ε + 0 + 0 + ε

2
= ε.

Thus, ε ≤ ξ(ε, 0, 0, ε′) < max{ε, 0, 0, ε′} = ε, which is a contradiction. Thus, {xn} is a
Cauchy sequence in (X, d, s ≥ 1) with lim

n,m→+∞
d(xn, xm) = 0.

Now, (X, d, s ≥ 1) is a complete b-metric-like space; therefore, there exists x ∈ X such
that xn → x,

d(x, x) = lim
n→+∞

d(xn, x) = lim
n,m→+∞

d(xn, xm) = 0.

Furthermore, according to Proposition 1, x is unique.
Suppose that Tx �= x. Now, consider

d(Txn, Tx) ≤ 1
s

ξ

(
d(xn, x), d(xn, Txn), d(x, Tx),

d(xn, Tx) + d(x, Txn)− d(x, x)
2s

)
,

i.e.,

d(xn+1, Tx) ≤ 1
s

ξ

(
d(xn, x), d(xn, xn+1), d(x, Tx),

d(xn, Tx) + d(x, xn+1)

2s

)
.

Taking lim inf n → +∞ on both sides and using Proposition 1, we get

1
s

d(x, Tx) ≤ 1
s

ξ(0, 0, d(x, Tx), l);

i.e.,
d(x, Tx) ≤ ξ(0, 0, d(x, Tx), l),

where

l = lim sup
n→+∞

d(xn, Tx) + d(x, xn+1)

2s
≤ lim sup

n→+∞

sd(x, Tx) + 0
2s

=
d(x, Tx)

2
.

Thus,

d(x, Tx) ≤ ξ(0, 0, d(x, Tx), l) < max{0, 0, d(x, Tx), l} = d(x, Tx),

which is a contradiction. Therefore, Tx = x.
Let Ty = y for some y ∈ X; then, by (12), d(y, y) = 0. Now, suppose that x �= y, and

consider
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d(x, y) = d(Tx, Ty)

≤ 1
s

ξ

(
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)− d(x, x)
2s

)
,

=
1
s

ξ

(
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)
2s

)
,

≤ 1
s

ξ

(
d(x, y), 0, 0,

d(x, y)
s

)
<

1
s

max
{

d(x, y), 0, 0,
d(x, y)

s

}
=

d(x, y)
s

,

which is a contradiction. Therefore, x = y.

Example 2. Let X = [0,+∞). Define d : X × X → [0,+∞) by d(x, y) = (x + y)2 for all
x, y ∈ X. Then, d is b-metric-like on X with s = 2, but d is not b-metric on X.

Define T : X → X by T(x) = x
2 . In addition, define ξ(t1, t2, t3, t4) =

1
2 max{t1, t2, t3, t4}.

Now, for all x, y ∈ X, with d(x, Ty) + d(Tx, y) ≥ d(y, y), (12) in Theorem 4 is satisfied and T
has a unique fixed point 0.

4. Application

In this section, as an application of Theorem 2, we present the following result which
provides a unique solution to simultaneous linear equations.

Theorem 5. Consider a system of linear equations

Ax = b (19)

where A = [aij]n×n is an n× n matrix, b = [bi]1×n is a column vector of constants and x = [xi]1×n
is a column matrix of n unknowns. If for each x = [xi]1×n, y = [yi]1×n and i = 1 to n,

|(aii + 1)(xi − yi) +
n

∑
j=1,j �=i

aij(xj − yj)|(1 + n
max
k=1

|xk − yk|) ≤ |xi − yi|; (20)

then, the system has a unique solution.

Proof. Let X = { [xi]1×n | xi is real f or all i = 1 to n, n being f ixed } and d : X × X →
[0,+∞) be defined as

d(x, y) =
n

max
i=1

|xi − yi|

for all x = [xi]1×n, y = [yi]1×n ∈ X. Then, clearly (X, d) is a complete b-metric space with
constant s = 1 (i.e. (X, d) is a complete metric space).

Now, define a n × n matrix C = [cij] by

cij =

{
aij + 1, i f i = j

aij, i f i �= j.

Then, the given system (19) reduces to

x = Cx − b. (21)

Condition (20) becomes

|
n

∑
j=1

cij(xj − yj)|(1 + n
max
k=1

|xk − yk|) ≤ |xi − yi| f or all i = 1, 2, ..., n. (22)
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Now, define a mapping T : X → X by

Tx = Cx − b, where x ∈ X.

For x = [xi]1×n and y = [yi]1×n, suppose that Tx = u = [ui]1×n and Ty = v = [vi]1×n;
then,

ui =
n

∑
j=1

cijxj − bi (i = 1, 2, ..., n)

and

vi =
n

∑
j=1

cijyj − bi (i = 1, 2, ..., n)

Define

ξ(t1, t2, t3, t4) =

{
max{t1,t2,t3,t4}

1+t1
, i f t1 > 0,

1
2 max{t2, t3, t4}, otherwise.

Now, using condition (22),

d(Tx, Ty) =
n

max
i=1

|ui − vi|

=
n

max
i=1

|
n

∑
j=1

cij(xj − yj)|

≤ n
max
i=1

( |xi − yi|
1 + maxn

k=1 |xk − yk|
)

≤ ξ

(
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(Tx, y)
2s

)
.

Thus, it is straightforward to see that the hypothesis of Theorem 2 is satisfied. There-
fore, T has a unique fixed point and system (19) has a unique solution.

5. Conclusions

In this paper, we have defined a new class of functions, and with the help of this class
of functions, we defined some new contractive mappings in b-metric spaces. Furthermore,
we proved some fixed point results for these contractive mappings. One can easily extend
these results to common fixed points for weakly compatible mappings (see [22,41,42]).
We improve our main results in Theorems 2 and 3 with the help of Remarks 1 and 3,
respectively. Can these results be further improved in terms of s? More precisely, we
present here some open questions as follows.

Open Question 1: Does Theorem 2 hold also if the term 1
s (before ξ) in (1) is replaced

by α, for some α ∈ [ 1
s , 1]?

Open Question 2: Does Theorem 3 hold also if the term 1
s (before ξ) in (9) is replaced

by α, for some α ∈ [ 1
s , 1]?
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1. Introduction

In this paper, we consider a so-called pre-metric space that does not assume the
symmetric condition. We first recall the basic concept of (conventional) metric space
as follows.

Given a nonempty universal set X, let d : X × X → R+ be a nonnegative real-valued
function defined on the product set X × X. Recall that (X, d) is a metric space when the
following conditions are satisfied:

• d(x, y) = 0 implies x = y for any x, y ∈ X;
• d(x, x) = 0 for any x ∈ X;
• d(x, y) = d(y, x) for any x, y ∈ X;
• d(x, z) ≤ d(x, y) + d(y, z) for any x, y, z ∈ X.

Different kinds of spaces that weaken the above conditions have been proposed.
Wilson [1] says that (X, d) is a quasi-metric space when the symmetric condition is not
satisfied. More precisely, (X, d) is a quasi-metric space when the following conditions
are satisfied:

• d(x, y) = 0 if and only if x = y for any x, y ∈ X;
• d(x, z) ≤ d(x, y) + d(y, z) for any x, y, z ∈ X.

Many authors (by referring to [2–16] and the references therein) also defined the
different type of quasi-metric space as follows:

• d(x, y) = 0 = d(y, x) if and only if x = y for any x, y ∈ X;
• d(x, z) ≤ d(x, y) + d(y, z) for any x, y, z ∈ X.

In the Wilson’s sense, it is obvious that we also have d(y, x) = 0 if and only if y = x.
Wilson [17] also says that (X, d) is a semi-metric space when the triangle inequality is not
satisfied. More precisely, the following conditions are satisfied:

• d(x, y) = 0 if and only if x = y for any x, y ∈ X;
• d(x, y) = d(y, x) for any x, y ∈ X.

Matthews [11] proposed the concept of partial metric space that satisfies the follow-
ing conditions:

• x = y if and only if d(x, x) = d(x, y) = d(y, y) for any x, y ∈ X;
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• d(x, x) ≤ d(x, y) for any x, y ∈ X;
• d(x, y) = d(y, x) for any x, y ∈ X.
• d(x, z) ≤ d(x, y) + d(y, z)− d(y, y) for any x, y, z ∈ X.

The partial metric space does not assume the self-distance condition d(x, x) = 0.
In this paper, we consider a so-called pre-metric space by assuming that

d(x, y) = 0 implies x = y for any x, y ∈ X.

The triangle inequality always plays a very important role in the study of metric space.
Without considering the symmetric condition, the triangle inequalities can be considered
in four different forms by referring to Wu [18]. The purpose of this paper is to establish the
fixed point theorems in pre-metric space based on the different forms of triangle inequalities.
We separately study the Banach contraction principle and Meir–Keeler type of fixed point
theorems for pre-metric spaces. On the other hand, three types of contraction functions are
considered in this paper. We also mention that the Meir–Keeler type of fixed point theorems
in the context of b-metric spaces have been studied by Pavlović and Radenović [19].

This paper is organized as follows. In Section 2, four different forms of triangle
inequalities in pre-metric space are presented. Many basic properties are also provided
for further study. In Section 3, based on the different forms of triangle inequalities, many
concepts of Cauchy sequences in pre-metric space are proposed in order to establish the
fixed point theorems in pre-metric space. In Section 4, three different types of contraction
functions are considered to establish the fixed point theorems using the different forms of
triangle inequalities.

2. Pre-Metric Spaces

We formally introduce the basic concept of pre-metric space by considering four
different forms of triangle inequalities as follows.

Definition 1. Given a nonempty universal set X, let d be a mapping from X × X into R+.

• The metric d is said to satisfy the ��-triangle inequality when the following inequality
is satisfied:

d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

• The metric d is said to satisfy the �-triangle inequality when the following inequality
is satisfied:

d(x, y) + d(z, y) ≥ d(x, z) for all x, y, z ∈ X.

• The metric d is said to satisfy the �-triangle inequality when the following inequality
is satisfied:

d(y, x) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

• The metric d is said to satisfy the  -triangle inequality when the following inequality
is satisfied:

d(y, x) + d(z, y) ≥ d(x, z) for all x, y, z ∈ X.

Suppose that d satisfies the symmetric condition. It is clear to see that all the concepts of
��-triangle inequality, �-triangle inequality, �-triangle inequality and  -triangle inequality
described above are all equivalent. This means that the pre-metric space extends the
concept of (conventional) metric space.

Remark 1. Now, we represent some interesting observations that are used in the study.

• Suppose that the metric d satisfies the ��-triangle inequality. Then, we have

d(a, b) + d(b, c) + d(c, d) ≥ d(a, c) + d(c, d) ≥ d(a, d).
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We also see that
d(b, a) + d(c, b) = d(c, b) + d(b, a) ≥ d(c, a),

which implies
d(b, a) + d(c, b) + d(d, c) ≥ d(d, a).

In general, we can have the following inequalities

d(x1, x2) + d(x2, x3) + · · ·+ d(xp, xp+1) ≥ d(x1, xp+1)

and
d(x2, x1) + d(x3, x2) + · · ·+ d(xp+1, xp) ≥ d(xp+1, x1).

• Suppose that the metric d satisfies the �-triangle inequality. Since

d(a, b) + d(c, b) ≥ d(a, c) and d(c, b) + d(a, b) ≥ d(c, a),

we see that

d(a, b) + d(c, b) = d(c, b) + d(a, b) ≥ max{d(a, c), d(c, a)}.

Therefore, we obtain

d(a, b) + d(c, b) + d(d, c) ≥ max{d(a, d), d(d, a)}. (1)

In general, we can have the following inequalities

d(x1, x2) + d(x3, x2) + d(x4, x3) + · · ·+ d(xp+1, xp) ≥ max
{

d(x1, xp+1), d(xp+1, x1)
}

.

• Suppose that the metric d satisfies the �-triangle inequality. Since

d(b, a) + d(b, c) = d(b, c) + d(b, a) ≥ max{d(a, c), d(c, a)},

we see that
d(b, a) + d(b, c) + d(c, d) ≥ max{d(a, d), d(d, a)}. (2)

In general, we can have the following inequalities

d(x2, x1) + d(x2, x3) + d(x3, x4) + · · ·+ d(xp, xp+1) ≥ max
{

d(x1, xp+1), d(xp+1, x1)
}

.

• Suppose that the metric d satisfies the  -triangle inequality. Then, we have

d(a, b) + d(b, c) + d(d, c) = d(b, c) + d(a, b) + d(d, c) ≥ d(c, a) + d(d, c) ≥ d(a, d) (3)

and

d(b, a) + d(c, b) + d(c, d) ≥ d(a, c) + d(c, d) = d(c, d) + d(a, c) ≥ d(d, a). (4)

In general, we consider the following cases.

(a) Suppose that p is an even number. Then, we have the following inequalities

d(x1, x2) + d(x2, x3) + d(x4, x3) + d(x4, x5) + d(x6, x5)

+ d(x6, x7) + · · ·+ d(xp, xp+1) ≥ d(xp+1, x1)

and

d(x2, x1) + d(x3, x2) + d(x3, x4) + d(x5, x4) + d(x5, x6)

+ d(x7, x6) + · · ·+ d(xp+1, xp) ≥ d(x1, xp+1).
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(b) Suppose that p is an odd number. Then, we have the following inequalities

d(x1, x2) + d(x2, x3) + d(x4, x3) + d(x4, x5) + d(x6, x5)

+ d(x6, x7) + · · ·+ d(xp, xp+1) ≥ d(x1, xp+1)

and

d(x2, x1) + d(x3, x2) + d(x3, x4) + d(x5, x4) + d(x5, x6)

+ d(x7, x6) + · · ·+ d(xp+1, xp) ≥ d(xp+1, x1).

Definition 2 (Wu [18]). Given a nonempty universal set X, let d be a mapping from X × X into
R+. We say that (X, d) is a pre-metric space when d(x, y) = 0 implies x = y for any x, y ∈ X.

Proposition 1 (Wu [18]). Given a nonempty universal set X, let d be a mapping from X × X into
R+. Suppose that the following conditions are satisfied:

• d(x, x) = 0 for all x ∈ X;
• d satisfies the �-triangle inequality or the �-triangle inequality or the  -triangle inequality.

Then d satisfies the symmetric condition.

We also remark that Proposition 4.4 in Wu [18] is redundant and it can be omitted.

3. Cauchy Sequences in Pre-Metric Space

Let (X, d) be a pre-metric space. Many different concepts of limit are proposed below
because of lacking the symmetric condition.

Definition 3. Let (X, d) be a pre-metric space, and let {xn}∞
n=1 be a sequence in X.

• We write xn
d�−→ x as n → ∞ when d(xn, x) → 0 as n → ∞.

• We write xn
d�−→ x as n → ∞ when d(x, xn) → 0 as n → ∞.

• We write xn
d−→ x as n → ∞ when

lim
n→∞

d(xn, x) = lim
n→∞

d(x, xn) = 0.

The uniqueness of limits are given below.

Proposition 2 (Wu [18]). Let (X, d) be a pre-metric space, and let {xn}∞
n=1 be a sequence in X.

(i) Suppose that the metric d satisfies the ��-triangle inequality or  -triangle inequality. If

xn
d�−→ x and xn

d�−→ y, then x = y.

(ii) Suppose that the metric d satisfies the �-triangle inequality. If xn
d�−→ x and xn

d�−→ y, then
x = y. In other words, the d�-limit is unique.

(iii) Suppose that the metric d satisfies the �-triangle inequality. If xn
d�−→ x and xn

d�−→ y, then
x = y. In other words, the d�-limit is unique.

Without the symmetric condition, the different concepts of Cauchy sequences are also
presented below.

Definition 4. Let (X, d) be a pre-metric space, and let {xn}∞
n=1 be a sequence in X.

• We say that {xn}∞
n=1 is a >-Cauchy sequence when, given any ε > 0, there exists an

integer N such that d(xm, xn) < ε for all pairs (m, n) of integers m and n with m > n ≥ N.
• We say that {xn}∞

n=1 is a <-Cauchy sequence when, given any ε > 0, there exists an
integer N such that d(xn, xm) < ε for all pairs (m, n) of integers m and n with m > n ≥ N.
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• We say that {xn}∞
n=1 is a Cauchy sequence when, given any ε > 0, there exists an integer

N such that d(xm, xn) < ε and d(xn, xm) < ε for all pairs (m, n) of integers m and n with
m, n ≥ N and m �= n.

We can also consider the different concepts of completeness for pre-metric space.

Definition 5. Let (X, d) be a pre-metric space.

• We say that (X, d) is (>, �)-complete when each >-Cauchy sequence is convergent in the

sense of xn
d�−→ x.

• We say that (X, d) is (>, �)-complete when each >-Cauchy sequence is convergent in the

sense of xn
d�−→ x.

• We say that (X, d) is (<, �)-complete when each <-Cauchy sequence is convergent in the

sense of xn
d�−→ x.

• We say that (X, d) is (<, �)-complete when each <-Cauchy sequence is convergent in the

sense of xn
d�−→ x.

• We say that (X, d) is �-complete when each Cauchy sequence is convergent in the sense

of xn
d�−→ x.

• We say that (X, d) is �-complete when each Cauchy sequence is convergent in the sense

of xn
d�−→ x.

Based on the above different concepts of completeness, we establish many fixed point
theorems in pre-metric space by using the different types of triangle inequalities. Next, we
present some examples to demonstrate the completeness.

Let S be a bounded subset S of Rk containing infinitely many points. The Bolzano–
Weierstrass theorem says that there exists at least one accumulation point of S, where the
concept of accumulation point is based on the usual topology induced by the conventional
metric. When the metric does not satisfy the symmetric condition, Wu [18] has proposed
two different concepts of open balls given by

B�(x; r) = {y ∈ X : d(x, y) < r}

and
B�(x; r) = {y ∈ X : d(y, x) < r},

which can induces two respective topologies as follows

τ� = {O� ⊆ X : x ∈ O� if and only if there exist r > 0 such that x ∈ B�(x; r) ⊆ O�}.

and

τ� = {O� ⊆ X : x ∈ O� if and only if there exist r > 0 such that x ∈ B�(x; r) ⊆ O�}.

In this case, we can similarly define the concepts of �-accumulation point and �-
accumulation point based on the open balls B�(x; r) and B�(x; r), respectively. Therefore,
we can similarly obtain the �-type of Bolzano–Weierstrass theorem and �-type of Bolzano–
Weierstrass theorem by considering the �-accumulation point and �-accumulation point,
respectively, which is used to present the completeness in R.

Example 1. We are going to claim that every >-Cauchy sequence in R+ is convergent in the sense

of xn
d�−→ x with respect to a pre-metric d : R+ ×R+ → R+ defined by
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d(x, y) =

⎧⎨⎩
x if x > y
0 if x = y
2y − x if x < y,

where the symmetric condition is not satisfied and d satisfies the ��-triangle inequality.
Let T = {x1, x2, · · · , xn, · · · } be a >-Cauchy sequence in R+. We are going to show that T

is �-bounded. Given ε = 1, there is an integer N such that d(xn, xN) < 1 for each n > N. This
means that xn ∈ B�(xN ; 1) for each n ≥ N. We define

r = 1 + max{d(x1, 0), · · · , d(xN , 0)}.

• For n ≤ N, we have

d(xn, 0) ≤ max{d(x1, 0), · · · , d(xN , 0)} < r.

• For n > N, using the ��-triangle inequality, we have

d(xn, 0) ≤ d(xn, xN) + d(xN , 0) < 1 + d(xN , 0) ≤ r.

Then, we see that T ⊆ B�(0; r), which says that T is �-bounded. Using the Bolzano–
Weierstrass theorem, the sequence T has a �-accumulation point x∗ ∈ R+. Next we are going to

show that xn
d�−→ x∗. Given any ε > 0, there exists an integer N such that n > m ≥ N implies

d(xn, xm) < ε/2. Since x∗ is a �-accumulation point of the sequence T, it follows that the open
ball B�(x∗; ε/2) contains a point xm for m ≥ N, i.e., d(xm, x∗) < ε/2. Therefore, for n > N,
using the ��-triangle inequality, we have

d(xn, x∗) ≤ d(xn, xm) + d(xm, x∗) < ε

2
+

ε

2
= ε,

which shows that xn
d�−→ x∗. In other words, the pre-metric space (R, d) is (>, �)-complete

Example 2. Continued from Example 1, we are going to claim that every <-Cauchy sequence in

R+ is convergent in the sense of xn
d�−→ x. Let T = {x1, x2, · · · , xn, · · · } be a <-Cauchy sequence

in R+. We are going to show that T is �-bounded. Given ε = 1, there is an integer N such that
d(xN , xn) < 1 for each n > N. This means that xn ∈ B�(xN ; 1) for each n ≥ N. We define

r = 1 + max{d(0, x1), · · · , d(0, xN)}.

• For n ≤ N, we have

d(0, xn) ≤ max{d(0, x1), · · · , d(0, xN)} < r.

• For n > N, using the ��-triangle inequality, we have

d(0, xn) ≤ d(0, xN) + d(xN , xn) < 1 + d(0, xN) ≤ r.

Then, we see that T ⊆ B�(0; r), which says that T is �-bounded. Using the Bolzano–
Weierstrass theorem, the sequence T has a �-accumulation point x◦ ∈ R+. Next we are going to

show that xn
d�−→ x◦. Given any ε > 0, there exists an integer N such that n > m ≥ N implies

d(xm, xn) < ε/2. Since x◦ is a �-accumulation point of the sequence T, it follows that the open
ball B�(x◦; ε/2) contains a point xm for m ≥ N, i.e., d(x◦, xm) < ε/2. Therefore, for n > N,
using the ��-triangle inequality, we have
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d(x◦, xn) ≤ d(x◦, xm) + d(xm, xn) <
ε

2
+

ε

2
= ε,

which shows that xn
d�−→ x◦. In other words, the pre-metric space (R, d) is (<, �)-complete

Example 3. Continued from Examples 1 and 2, we are going to claim that the pre-metric space
(R, d) is simultaneously �-complete and �-complete. Let T = {x1, x2, · · · , xn, · · · } be a Cauchy
sequence in R+. It means that T is both a >-Cauchy sequence and <-Cauchy sequence in R+.

Examples 1 and 2 say that there exist x∗ and x◦ satisfying xn
d�−→ x∗ and xn

d�−→ x◦. In other
words, the pre-metric space (R, d) is simultaneously �-complete and �-complete. We also remark
that x∗ �= x◦ in general.

4. Banach Contraction Principle for Pre-Metric Spaces

Let T : X → X be a function from a nonempty set X into itself. If T(x) = x, we say
that x ∈ X is a fixed point of T. The well-known Banach contraction principle says that any
functions that are a contraction on X has a fixed point when X is taken to be a complete
metric space. In this paper, we study the Banach contraction principle when X is taken to
be a complete pre-metric space.

Definition 6. Let (X, d) be a pre-metric space. A function T : (X, d) → (X, d) is called a
contraction on X when there is a real number 0 < α < 1 satisfying

d(T(x), T(y)) ≤ αd(x, y)

for any x, y ∈ X.

Given any initial element x0 ∈ X, using the function T, we consider the iterative
sequence {xn}∞

n=1 as follows:

x1 = T(x0), x2 = T(x1) = T2(x0), · · · , xn = Tn(x0), · · · . (5)

We are going to show that the sequence {xn}∞
n=1 can converge to a fixed point of T

under some suitable conditions.

Theorem 1 (Banach Contraction Principle Using the �-Triangle Inequality). Let (X, d) be
a (>, �)-complete pre-metric space or (<, �)-complete pre-metric space such that the �-triangle
inequality is satisfied. Suppose that the function T : (X, d) → (X, d) is a contraction on X. Then
T has a unique fixed point x ∈ X. Moreover, the fixed point x is obtained by the following limit

d(xn, x) → 0 as n → ∞,

where the sequence {xn}∞
n=1 is generated according to (5).

Proof. Given any initial element x0 ∈ X, according to (5), we can generate the iterative
sequence {xn}∞

n=1. The purpose is to show that {xn}∞
n=1 is both a >-Cauchy sequence

and <-Cauchy sequence. Since T is a contraction on X, without having the symmetric
condition, we have the two cases as follows:

d(xm+1, xm) = d(T(xm), T(xm−1)) ≤ αd(xm, xm−1)

= αd(T(xm−1), T(xm−2)) ≤ α2d(xm−1, xm−2)

≤ · · · ≤ αmd(x1, x0)

and
d(xm, xm+1) ≤ αmd(x0, x1).
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For m > n, since the �-triangle inequality is assumed to be satisfied, according to the
third observation in Remark 1, we obtain

d(xm, xn) ≤ d(xm−1, xm) + d(xm−1, xm−2) + · · ·+ d(xn+1, xn)

≤ αm−1 · d(x0, x1) +
(

αm−2 + · · ·+ αn
)
· d(x1, x0)

≤
(

αm−1 + αm−2 + · · ·+ αn
)
· max{d(x0, x1), d(x1, x0)}

= αn · 1 − αm−n

1 − α
· max{d(x0, x1), d(x1, x0)}

and

d(xn, xm) ≤ αn · 1 − αm−n

1 − α
· max{d(x0, x1), d(x1, x0)}.

Since 0 < α < 1, we have 1 − αm−n < 1 in the numerator. Therefore, we obtain

d(xm, xn) ≤ αn

1 − α
· max{d(x0, x1), d(x1, x0)} → 0 as n → ∞

and
d(xn, xm) → 0 as n → ∞,

which shows that {xn}∞
n=1 is both a >-Cauchy sequence and <-Cauchy sequence. Since X

is (>, �)-complete or (<, �)-complete, there exists x ∈ X satisfying d(xn, x) → 0 as n → ∞.
Now, we are going to claim that x is indeed a fixed point. We have

d(x, T(x)) ≤ d(xm, x) + d(xm, T(x)) (using the �-triangle inequality)

= d(xm, x) + d(T(xm−1), T(x))

≤ d(xm, x) + αd(xm−1, x) (using the contraction)

which implies d(x, T(x)) = 0 as m → ∞. We conclude that T(x) = x by the condition of
pre-metric space. The uniqueness will also be obtained. Assume that there is another fixed
point x̄ of T, i.e., x̄ = T(x̄). The contraction of function T says that

d(x̄, x) = d(T(x̄), T(x)) ≤ αd(x̄, x).

Since 0 < α < 1, we conclude that d(x̄, x) = 0, i.e., x̄ = x. This completes the proof.

Theorem 2 (Banach Contraction Principle Using the �-Triangle Inequality). Let (X, d) be
a (>, �)-complete pre-metric space or (<, �)-complete pre-metric space such that the �-triangle
inequality is satisfied. Suppose that the function T : (X, d) → (X, d) is a contraction on X. Then
T has a unique fixed point x ∈ X. Moreover, the fixed point x is obtained by the following limit

d(x, xn) → 0 as n → ∞,

where the sequence {xn}∞
n=1 is generated according to (5).

Proof. Given any initial element x0 ∈ X, according to (5), we can generate the iterative
sequence {xn}∞

n=1. The purpose is to show that {xn}∞
n=1 is both a >-Cauchy sequence and

<-Cauchy sequence. From the proof of Theorem 1, the contraction of function T says that

d(xm+1, xm) ≤ αmd(x1, x0) and d(xm, xm+1) ≤ αmd(x0, x1).

For m > n, since the �-triangle inequality is satisfied, according to the second observa-
tion in Remark 1, we obtain
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d(xm, xn) ≤ d(xm, xm−1) + d(xm−2, xm−1) + · · ·+ d(xn, xn+1)

≤ αm−1 · d(x1, x0) +
(

αm−2 + · · ·+ αn
)
· d(x0, x1)

≤
(

αm−1 + αm−2 + · · ·+ αn
)
· max{d(x0, x1), d(x1, x0)}

= αn · 1 − αm−n

1 − α
· max{d(x0, x1), d(x1, x0)}

and

d(xn, xm) ≤ αn · 1 − αm−n

1 − α
· max{d(x0, x1), d(x1, x0)},

which also imply
d(xm, xn) → 0 and d(xn, xm) → 0 as n → ∞.

Therefore {xn}∞
n=1 is both a >-Cauchy sequence and <-Cauchy sequence. Since X is

(>, �)-complete or (<, �)-complete, there exists x ∈ X satisfying d(x, xn) → 0 as n → ∞.
Regarding the uniqueness, we have

d(x, T(x)) ≤ d(x, xm) + d(T(x), xm) (using the �-triangle inequality)

= d(x, xm) + d(T(x), T(xm−1))

≤ d(x, xm) + αd(x, xm−1) (using the contraction)

which implies d(x, T(x)) = 0 as m → ∞. We conclude that T(x) = x. The uniqueness can
also be obtained from the argument in the proof of Theorem 1. This completes the proof.

Theorem 3 (Banach Contraction Principle Using the ��-Triangle Inequality). Let (X, d) be a
pre-metric space such that the ��-triangle inequality is satisfied. We also assume that any one of the
following conditions is satisfied:

• (X, d) is simultaneously (>, �)-complete and (>, �)-complete;
• (X, d) is simultaneously (>, �)-complete and (<, �)-complete;
• (X, d) is simultaneously (<, �)-complete and (>, �)-complete;
• (X, d) is simultaneously (<, �)-complete and (<, �)-complete;
• (X, d) is simultaneously �-complete and �-complete.

Suppose that the function T : (X, d) → (X, d) is a contraction on X. Then T has a unique
fixed point x ∈ X. Moreover, the fixed point x is obtained by the following limits

d(xn, x) → 0 or d(x, xn) → 0 as n → ∞,

where the sequence {xn}∞
n=1 is generated according to (5).

Proof. Given any initial element x0 ∈ X, according to (5), we can generate the iterative
sequence {xn}∞

n=1. The purpose is to show that {xn}∞
n=1 is both a >-Cauchy sequence and

<-Cauchy sequence. From the proof of Theorem 1, the contraction of function T says that

d(xm+1, xm) ≤ αmd(x1, x0) and d(xm, xm+1) ≤ αmd(x0, x1).

For m > n, since the ��-triangle inequality is satisfied, according to the first observation
in Remark 1, we obtain

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + · · ·+ d(xn+1, xn)

≤
(

αm−1 + αm−2 + · · ·+ αn
)
· d(x1, x0)

= αn · 1 − αm−n

1 − α
· d(x1, x0)
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and

d(xn, xm) ≤ d(xm−1, xm) + d(xm−2, xm−1) + · · ·+ d(xn, xn+1)

≤
(

αm−1 + αm−2 + · · ·+ αn
)
· d(x0, x1)

= αn · 1 − αm−n

1 − α
· d(x0, x1),

which imply
d(xm, xn) → 0 and d(xn, xm) → 0 as n → ∞.

This proves that {xn}∞
n=1 is both a >-Cauchy sequence and <-Cauchy sequence. It

follows that {xn}∞
n=1 is a Cauchy sequence.

Assume that X is simultaneously (>, �)-complete and (<, �)-complete. Then there
exists x∗, x◦ ∈ X satisfying d(xn, x∗) → 0 and d(x◦, xn) → 0 as n → ∞. Now, we have

d(x◦, T(x∗)) ≤ d(x◦, xm) + d(xm, T(x∗)) (using the ��-triangle inequality)

= d(x◦, xm) + d(T(xm−1), T(x∗))
≤ d(x◦, xm) + αd(xm−1, x∗) (using the contraction),

which implies d(x◦, T(x∗)) = 0 as m → ∞. Therefore, we obtain T(x∗) = x◦. Now, we have

d(T(x◦), x∗) ≤ d(T(x◦), xm) + d(xm, x∗) (using the ��-triangle inequality)

= d(T(x◦), T(xm−1)) + d(xm, x∗)
≤ αd(x◦, xm−1) + d(xm, x∗) (using the contraction),

which implies d(T(x◦), x∗) = 0 as m → ∞. We also obtain T(x◦) = x∗. Now, we have

T2(x∗) = T(T(x∗)) = T(x◦) = x∗ and T2(x◦) = T(T(x◦)) = T(x∗) = x◦. (6)

This shows that x∗ and x◦ are fixed points of the composition mapping T ◦ T ≡ T2.
The contraction of function T says that

d(x∗, x◦) = d(T2(x∗), T2(x◦)) ≤ αd(T(x∗), T(x◦)) ≤ α2d(x∗, x◦).

Since 0 < α < 1, i.e., 0 < α2 < 1, we conclude that d(x∗, x◦) = 0, i.e., x∗ = x◦. This
also says that x∗ = x◦ is a fixed point of T.

The uniqueness can be obtained using the argument in the proof of Theorem 1. For
the other three conditions, we can similarly obtain the desired results. This completes
the proof.

Example 4. Continued from Example 3, since the pre-metric space (R, d) is simultaneously
�-complete and �-complete, any function T : (R, d) → (R, d) that is a contraction on R has a
unique fixed point. The concrete examples regarding functions that are contraction on R can be
obtained from the literature.

Theorem 4 (Banach Contraction Principle Using the  -Triangle Inequality). Let (X, d) be a
pre-metric space such that the  -triangle inequality is satisfied. We also assume that any one of the
following conditions is satisfied:

• (X, d) is simultaneously (>, �)-complete and (>, �)-complete;
• (X, d) is simultaneously (>, �)-complete and (<, �)-complete;
• (X, d) is simultaneously (<, �)-complete and (>, �)-complete;
• (X, d) is simultaneously (<, �)-complete and (<, �)-complete.
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Suppose that the function T : (X, d) → (X, d) is a contraction on X. Then T has a unique
fixed point x ∈ X. Moreover, the fixed point x is obtained by the following limits

d(xn, x) → 0 or d(x, xn) → 0 as n → ∞,

where the sequence {xn}∞
n=1 is generated according to (5).

Proof. Given any initial element x0 ∈ X, according to (5), we can generate the iterative
sequence {xn}∞

n=1. The purpose is to show that {xn}∞
n=1 is both a >-Cauchy sequence and

<-Cauchy sequence. From the proof of Theorem 1, the contraction of function T says that

d(xm+1, xm) ≤ αmd(x1, x0) and d(xm, xm+1) ≤ αmd(x0, x1).

For m > n, since the  -triangle inequality is satisfied, according to the fourth observa-
tion in Remark 1 by assuming m − n ≡ p is an even number, we obtain

d(xm, xn) ≤ d(xn, xn+1) + d(xn+1, xn+2) + d(xn+3, xn+2) + d(xn+3, xn+4) + d(xn+5, xn+4)

+ d(xn+5, xn+6) + · · ·+ d(xm−1, xm)

≤ αnd(x0, x1) + αn+1d(x0, x1) + αn+2d(x1, x0) + αn+3d(x0, x1) + αn+4d(x1, x0)

+ αn+5d(x0, x1) + · · ·+ αm−1d(x0, x1)

≤
(

αm−1 + αm−2 + · · ·+ αn
)
· max{d(x0, x1), d(x1, x0)}

= αn · 1 − αm−n

1 − α
· max{d(x0, x1), d(x1, x0)}

and

d(xn, xm) ≤ d(xn+1, xn) + d(xn+2, xn+1) + d(xn+2, xn+3) + d(xn+4, xn+3) + d(xn+4, xn+5)

+ d(xn+6, xn+5) + · · ·+ d(xm, xm−1)

≤ αnd(x1, x0) + αn+1d(x1, x0) + αn+2d(x0, x1) + αn+3d(x1, x0) + αn+4d(x0, x1)

+ αn+5d(x1, x0) + · · ·+ αm−1d(x1, x0)

≤
(

αm−1 + αm−2 + · · ·+ αn
)
· max{d(x0, x1), d(x1, x0)}

= αn · 1 − αm−n

1 − α
· max{d(x0, x1), d(x1, x0)}

which imply
d(xm, xn) → 0 and d(xn, xm) → 0 as n → ∞.

This proves that {xn}∞
n=1 is both a >-Cauchy sequence and <-Cauchy sequence.

Assume that X is simultaneously (>, �)-complete and (<, �)-complete. Then there
exists x∗, x◦ ∈ X satisfying d(xn, x∗) → 0 and d(x◦, xn) → 0 as n → ∞. Now, we have

d(x∗, T(x◦)) ≤ d(xm, x∗) + d(T(x◦), xm) (using the  -triangle inequality)

= d(xm, x∗) + d(T(x◦), T(xm−1))

≤ d(xm, x∗) + αd(x◦, xm−1) (using the contraction),

which implies d(x∗, T(x◦)) = 0 as m → ∞. We conclude that T(x◦) = x∗. We also have

d(T(x∗), x◦) ≤ d(xm, T(x∗)) + d(x◦, xm) (using the  -triangle inequality)

= d(T(xm−1), T(x∗)) + d(x◦, xm)

≤ αd(xm−1, x∗) + d(x◦, xm) (using the contraction),

167



Axioms 2021, 10, 57

which implies d(T(x∗), x◦) = 0 as m → ∞. We conclude that T(x∗) = x◦. The remain-
ing proof follows from the same argument in the proof of Theorem 3. This completes
the proof.

5. Meir–Keeler Type of Fixed Point Theorems for Pre-Metric Spaces

In the sequel, we are going to establish the Meir–Keeler type of fixed point theorems
for pre-metric spaces. First of all, we consider the different contraction.

Definition 7. Let (X, d) be a pre-metric space. A function T : (X, d) → (X, d) is called a weakly
strict contraction on X when the following conditions are satisfied:

• d(x, y) = 0 implies d(T(x), T(y)) = 0;
• d(x, y) �= 0 implies d(T(x), T(y)) < d(x, y).

It is clear to see that if T is a contraction on X, then it is also a weakly strict contraction
on X.

Theorem 5 (Fixed Points Using the �-Triangle Inequality). Let (X, d) be a (>, �)-complete
(resp. (<, �)-complete) pre-metric space such that the �-triangle inequality is satisfied. Suppose
that the function T : (X, d) → (X, d) is a weakly strict contraction on X, and that {Tn(x0)}∞

n=1
forms a >-Cauchy sequence (resp. <-Cauchy sequence) for some x0 ∈ X. Then, the function T has
a unique fixed point x ∈ X. Moreover, the fixed point x is obtained by the following limit

d(Tn(x0), x) → 0 as n → ∞.

Proof. Since {Tn(x0)}∞
n=1 is a >-Cauchy sequence, the (>, �)-completeness says that there

exists x ∈ X satisfying d(Tn(x0), x) → 0 as n → ∞. In other words, given any ε > 0, there
exists an integer N satisfying d(Tn(x0), x) < ε for n ≥ N. Regarding d(Tn(x0), x), we
consider two different cases as follows.

• Suppose that d(Tn(x0), x) = 0. Then, the weakly strict contraction of T says that

d(Tn+1(x0), T(x)) = 0 < ε.

• Suppose that d(Tn(x0), x) �= 0. Then, the weakly strict contraction of T says that

d(Tn+1(x0), T(x)) < d(Tn(x0), x) < ε for n ≥ N.

The above two cases conclude that d(Tn+1(x0), T(x)) → 0 as n → ∞. Using the
�-triangle inequality, we obtain

d(T(x), x) ≤ d
(

Tn+1(x0), T(x)
)
+ d
(

Tn+1(x0), x
)
→ 0 as n → ∞,

which shows that d(T(x), x) = 0, i.e., T(x) = x. In other words, x is a fixed point.
Regarding the uniqueness, suppose that x̄ is another fixed point of T. i.e., T(x̄) = x̄.

Since x �= x̄, the weakly strict contraction of T says that

d(x, x̄) = d(T(x), T(x̄)) < d(x, x̄).

This contradiction shows that x̄ cannot be a fixed point of T.
When {Tn(x0)}∞

n=1 is a <-Cauchy sequence, using the (<, �)-completeness, we can
similarly obtain the desired results. This completes the proof.

Theorem 6 (Fixed Points Using the �-Triangle Inequality). Let (X, d) be a (>, �)-complete
(resp. (<, �)-complete) pre-metric space such that the �-triangle inequality is satisfied. Suppose
that the function T : (X, d) → (X, d) is a weakly strict contraction on X, and that {Tn(x0)}∞

n=1
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forms a >-Cauchy sequence (resp. <-Cauchy sequence) for some x0 ∈ X. Then, the function T has
a unique fixed point x ∈ X. Moreover, the fixed point x is obtained by the following limit

d(x, Tn(x0)) → 0 as n → ∞.

Proof. Since {Tn(x0)}∞
n=1 is a >-Cauchy sequence, the (>, �)-completeness says that there

exists x ∈ X satisfying d(x, Tn(x0)) → 0 as n → ∞. From the proof of Theorem 5, the
weakly strict contraction of T can similarly show that d(T(x), Tn+1(x0)) → 0 as n → ∞.
Using the �-triangle inequality, we obtain

d(T(x), x) ≤ d
(

T(x), Tn+1(x0)
)
+ d
(

x, Tn+1(x0)
)
→ 0 as n → ∞,

which says that d(T(x), x) = 0, i.e., T(x) = x. This shows that x is a fixed point. The
remaining proof follows from the proof of Theorem 5. This completes the proof.

Theorem 7 (Fixed Points Using the ��-Triangle Inequality). Let (X, d) be a simultaneously
(>, �)-complete and (>, �)-complete (resp. (<, �)-complete and (<, �)-complete) pre-metric space
such that the ��-triangle inequality is satisfied. Suppose that the function T : (X, d) → (X, d)
is a weakly strict contraction on X, and that {Tn(x0)}∞

n=1 forms a >-Cauchy sequence (resp.
<-Cauchy sequence) for some x0 ∈ X, then T has a unique fixed point x ∈ X. Moreover, the fixed
point x is obtained by the following limits

d(Tn(x0), x) → 0 or d(x, Tn(x0)) → 0 as n → ∞.

Proof. Since {Tn(x0)}∞
n=1 is a >-Cauchy sequence, the (>, �)-completeness says that

there exists x∗ ∈ X satisfying d(Tn(x0), x∗) → 0 as n → ∞. The (>, �)-completeness
also says that there exists another x◦ ∈ X satisfying d(x◦, Tn(x0)) → 0 as n → ∞.
From the proof of Theorem 5, the weakly strict contraction of T can similarly show that
d(Tn+1(x0), T(x∗)) → 0 and d(T(x◦), Tn+1(x0)) → 0 as n → ∞. Using the ��-triangle
inequality, we obtain

d(T(x◦), x∗) ≤ d
(

T(x◦), Tn+1(x0)
)
+ d
(

Tn+1(x0), x∗
)
→ 0 as n → ∞,

which says that d(T(x◦), x∗) = 0, i.e., T(x◦) = x∗. On the other hand, we also have

d(x◦, T(x∗)) ≤ d
(

x◦, Tn+1(x0)
)
+ d
(

Tn+1(x0), T(x∗)
)
→ 0 as n → ∞,

which says that T(x∗) = x◦. By referring to (6), it follows that x∗ and x◦ are fixed points
of the composition mapping T ◦ T ≡ T2. Suppose that x∗ �= x◦. We want to claim
T(x∗) �= T(x◦). Assume that it is not true, i.e., T(x∗) = T(x◦). Then, we shall have

x◦ = T(x∗) = T(x◦) = x∗,

which contradicts x∗ �= x◦. The weakly strict contraction of T also says that

d(x∗, x◦) = d(T2(x∗), T2(x◦)) < d(T(x∗), T(x◦)) < d(x∗, x◦).

This contradiction shows that x∗ = x◦, and says that x∗ = x◦ is a fixed point of T. The
uniqueness can be obtained from the proof of Theorem 5

When {Tn(x0)}∞
n=1 is a <-Cauchy sequence, using the (<, �)-completeness and (<, �)-

completeness, we can similarly obtain the desired results. This completes the proof.

Theorem 8 (Fixed Points Using the  -Triangle Inequality). Let (X, d) be a simultaneously
(>, �)-complete and (>, �)-complete (resp. (<, �)-complete and (<, �)-complete) pre-metric
space such that the  -triangle inequality is satisfied. Suppose that the function T : (X, d) →
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(X, d) is a weakly strict contraction on X, and that {Tn(x0)}∞
n=1 forms a >-Cauchy sequence

(resp. <-Cauchy sequence) for some x0 ∈ X. Then T has a unique fixed point x ∈ X. Moreover,
the fixed point x is obtained by the following limits

d(Tn(x0), x) → 0 or d(x, Tn(x0)) → 0 as n → ∞.

Proof. From the proof of Theorem 7, there exist x∗, x◦ ∈ X satisfying d(Tn(x0), x∗) → 0,
d(x◦, Tn(x0)) → 0, d(Tn+1(x0), T(x∗)) → 0 and d(T(x◦), Tn+1(x0)) → 0 as n → ∞. Using
the  -triangle inequality, we can obtain

d(x∗, T(x◦)) ≤ d
(

Tn+1(x0), x∗
)
+ d
(

T(x◦), Tn+1(x0)
)
→ 0 as n → ∞,

which says that d(x∗, T(x◦)) = 0, i.e., T(x◦) = x∗. We also have

d(T(x∗), x◦) ≤ d
(

Tn+1(x0), T(x∗)
)
+ d
(

x◦, Tn+1(x0)
)
→ 0 as n → ∞,

which says that T(x∗) = x◦. The remaining proof follows from the similar argument in the
proof of Theorem 7. This completes the proof.

Next, we consider the different fixed point theorems based on the weakly uniformly
strict contraction that was proposed by Meir and Keeler [12].

Definition 8. Let (X, d) be a pre-metric space. A function T : (X, d) → (X, d) is called a weakly
uniformly strict contraction on X when the following conditions are satisfied:

• d(x, y) = 0 implies d(T(x), T(y)) = 0;
• given any ε > 0, there exists δ > 0 such that ε ≤ d(x, y) < ε+ δ implies d(T(x), T(y)) < ε

for any x, y ∈ X with d(x, y) �= 0.

Remark 2. We observe that if T is a weakly uniformly strict contraction on X, then T is also a
weakly strict contraction on X.

Lemma 1. Let (X, d) be a pre-metric space, and let T : (X, d) → (X, d) be a weakly uniformly strict
contraction on X. Then, the sequences {d(Tn(x), Tn+1(x))}∞

n=1 and {d(Tn+1(x), Tn(x))}∞
n=1 are

decreasing to zero for any x ∈ X.

Proof. For convenience, we simply write Tn(x) = xn for all n. Let cn = d(xn, xn+1).
Regarding d(xn−1, xn) ≥ 0, we consider two different cases as follows.

• Suppose that d(xn−1, xn) �= 0. By Remark 2, we have

cn = d(xn, xn+1) = d(Tn(x), Tn+1(x)) < d(Tn−1(x), Tn(x)) = d(xn−1, xn) = cn−1.

• Suppose that d(xn−1, xn) = 0. Then, by the first condition of Definition 8, we have

cn = d(Tn(x), Tn+1(x)) = d(T(xn−1), T(xn)) = 0 ≤ cn−1.

The above two cases conclude that the sequence {cn}∞
n=1 is decreasing. We also

consider the following two cases.

• Let m be the first index in the sequence {xn}∞
n=1 satisfying d(xm−1, xm) = 0. Then, we

want to claim
cm−1 = cm = cm+1 = · · · = 0.

Using the first condition of Definition 8, we have

0 = d(T(xm−1), T(xm)) = d(Tm(x), Tm+1(x)) = d(xm, xm+1) = cm.
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Since d(xm, xm+1) = 0, using the similar argument, we can also obtain cm+1 = 0
and d(xm+1, xm+2) = 0. This shows that the sequence {cn}∞

n=1 is indeed decreasing
to zero.

• Suppose that d(xm, xm+1) �= 0 for all m ≥ 1. Since the sequence {cn}∞
n=1 is decreasing,

we assume that cn ↓ ε > 0, i.e., cn ≥ ε > 0 for all n. Therefore, there exists δ > 0
satisfying ε ≤ cm < ε + δ for some m, i.e., ε ≤ d(xm, xm+1) < ε + δ. Using the second
condition of Definition 8, it follows that

cm+1 = d(xm+1, xm+2) = d(Tm+1(x), Tm+2(x)) = d(T(xm), T(xm+1)) < ε,

which contradicts cm+1 ≥ ε.

Therefore, we conclude that the sequence {d(Tn(x), Tn+1(x))}∞
n=1 is indeed decreas-

ing to zero for any x ∈ X. We can similarly show that the sequence {d(Tn+1(x), Tn(x))}∞
n=1

is decreasing to zero for any x ∈ X. This completes the proof.

Theorem 9 (Meir–Keeler Type of Fixed Points Using the �-Triangle Inequality). Let (X, d)
be a (>, �)-complete pre-metric space such that the �-triangle inequality is satisfied, and let
T : (X, d) → (X, d) be a weakly uniformly strict contraction on X. Then T has a unique fixed
point. Moreover, the fixed point x is obtained by the following limit

d(Tn(x0), x) → 0 as n → ∞ for some x0.

Proof. According to Theorem 5 and Remark 2, we just need to claim that if T is a weakly
uniformly strict contraction, then {Tn(x0)}∞

n=1 = {xn}∞
n=1 is a >-Cauchy sequence for

x0 ∈ X. Suppose that {xn}∞
n=1 is not a >-Cauchy sequence. Then, there exists 2ε > 0 such

that, given any integer N, there exist n > m ≥ N satisfying d(xn, xm) > 2ε. We are going to
lead to a contradiction. The weakly uniformly strict contraction of T says that there exists
δ > 0 satisfying

ε ≤ d(x, y) < ε + δ implies d(T(x), T(y)) < ε for any x, y ∈ X with d(x, y) �= 0.

Let δ′ = min{δ, ε}. We want to show

ε ≤ d(x, y) < ε + δ′ implies d(T(x), T(y)) < ε for any x, y ∈ X with d(x, y) �= 0. (7)

Indeed, when δ′ = ε, i.e., ε < δ, we have ε + δ′ = ε + ε < ε + δ.
Let cn = d(xn, xn+1) and c̄n = d(xn+1, xn). Since the sequences {cn}∞

n=1 and {c̄n}∞
n=1

are decreasing to zero by Lemma 1, we can find a common integer N satisfying

cN < δ′/3 and c̄N < δ′/3. (8)

For n > m ≥ N, we have

d(xn, xm) > 2ε ≥ ε + δ′, (9)

which implicitly says that d(xn, xm) �= 0. Since the sequence {c̄n}∞
n=1 is decreasing by

Lemma 1 again, we can obtain

d(xm+1, xm) = c̄m ≤ c̄N <
δ′

3
≤ ε

3
< ε. (10)

For j with m < j ≤ n, using the �-triangle inequality, it follows that

d(xj+1, xm) ≤ d(xj, xj+1) + d(xj, xm). (11)
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We want to cliam that there exists an integer j with m < j ≤ n satisfying d(xj, xm) �=
0 and

ε +
2δ′

3
< d(xj, xm) < ε + δ′. (12)

Let γj = d(xj, xm) for j = m + 1, · · · , n. Using (9) and (10), we have

γm+1 < ε and γn > ε + δ′. (13)

Let j0 be an index satisfying

j0 = max
{

j ∈ [m + 1, n] : γj ≤ ε +
2δ′

3

}
. (14)

Then, from (13), we see that m + 1 ≤ j0 < n, which also says that j0 is well-defined.
By the definition of j0, it follows that j0 + 1 ≤ n and γj0+1 > ε + 2δ′

3 , which also says that
d(xj0+1, xm) �= 0. Therefore, the expression (12) will be sound if we can show

ε +
2δ′

3
< γj0+1 < ε + δ′.

Suppose that this is not true, i.e., γj0+1 ≥ ε + δ′. From (11), we have

δ′

3
> cN ≥ cj0 = d(xj0 , xj0+1) ≥ γj0+1 − γj0 ≥ ε + δ′ − ε − 2δ′

3
=

δ′

3
.

This contradiction says that the expression (12) is sound. Since d(xj, xm) �= 0, using (7),
it follows that (12) implies

d(xj+1, xm+1) = d(T(xj), T(xm)) < ε. (15)

Using the �-triangle inequality and referring to (2), we can obtain

d(xj, xm) ≤ d(xj+1, xj) + d(xj+1, xm+1) + d(xm+1, xm)

= c̄j + d(xj+1, xm+1) + c̄m < c̄j + ε + c̄m (by (15))

≤ c̄N + ε + c̄N (since {c̄n}∞
n=1 is decreasing)

<
δ′

3
+ ε +

δ′

3
(by (8))

= ε +
2δ′

3
,

which contradicts (12). This contradiction shows that every sequence {Tn(x)}∞
n=1 =

{xn}∞
n=1 is a >-Cauchy sequence. Using Theorem 5, the proof is complete.

Theorem 10 (Meir–Keeler Type of Fixed Points Using the �-Triangle Inequality). Let (X, d)
be a (>, �)-complete pre-metric space such that the �-triangle inequality is satisfied, and let
T : (X, d) → (X, d) be a weakly uniformly strict contraction on X. Then T has a unique fixed
point. Moreover, the fixed point x is obtained by the following limit

d(x, Tn(x0)) → 0 as n → ∞ for some x0.

Proof. According to Theorem 6 and Remark 2, we just need to claim that if T is a weakly
uniformly strict contraction, then {Tn(x0)}∞

n=1 = {xn}∞
n=1 is a <-Cauchy sequence for

x0 ∈ X. Suppose that {xn}∞
n=1 is not a <-Cauchy sequence. Then, there exists 2ε > 0
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such that, given any integer N, there exist n > m ≥ N satisfying d(xm, xn) > 2ε. Let
δ′ = min{δ, ε}. For n > m ≥ N, we have

d(xm, xn) > 2ε ≥ ε + δ′, (16)

which implicitly says that d(xm, xn) �= 0. Let cn = d(xn, xn+1) and c̄n = d(xn+1, xn). Since
the sequence {cn}∞

n=1 is decreasing by Lemma 1, we obtain

d(xm, xm+1) = cm ≤ cN <
δ′

3
≤ ε

3
< ε. (17)

For j with m < j ≤ n, using the �-triangle inequality, we also have

d(xm, xj+1) ≤ d(xm, xj) + d(xj+1, xj). (18)

We want to cliam that there exists an integer j with m < j ≤ n satisfying d(xm, xj) �=
0 and

ε +
2δ′

3
< d(xm, xj) < ε + δ′. (19)

Let γj = d(xm, xj) for j = m + 1, · · · , n. From (16) and (17), we can also obtain (13).
Let j0 be defined in (14). Then, the expression (19) will be sound if we can show that

ε +
2δ′

3
< γj0+1 < ε + δ′.

Suppose that this is not true, i.e., γj0+1 ≥ ε + δ′. From (18) and (8), it follows that

δ′

3
> c̄N ≥ c̄j0 = d(xj0+1, xj0) ≥ γj0+1 − γj0 ≥ ε + δ′ − ε − 2δ′

3
=

δ′

3
.

This contradiction says that (19) is sound. Since d(xm, xj) �= 0, using (7), it follows
that (19) implies

d(xm+1, xj+1) = d(T(xm), T(xj)) < ε. (20)

Using the �-triangle inequality and referring to (1), we can obtain

d(xm, xj) ≤ d(xj, xj+1) + d(xm+1, xj+1) + d(xm, xm+1)

= cj + d(xm+1, xj+1) + cm < cj + ε + cm (using Equation (20))

≤ cN + ε + cN (since {cn}∞
n=1 is decreasing)

<
δ′

3
+ ε +

δ′

3
(using Equation (8))

= ε +
2δ′

3
,

which contradicts (19). This contradiction shows that every sequence {Tn(x)}∞
n=1 =

{xn}∞
n=1 is a <-Cauchy sequence. Using Theorem 6, the proof is complete.

Theorem 11 (Meir–Keeler Type of Fixed Points Using the ��-Triangle Inequality). Let (X, d)
be a pre-metric space such that the ��-triangle inequality is satisfied. We also assume that any one
of the following conditions is satisfied:

• (X, d) is simultaneously (>, �)-complete and (>, �)-complete;
• (X, d) is simultaneously (<, �)-complete and (<, �)-complete;
• (X, d) is simultaneously �-complete and �-complete.
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Suppose that T : (X, d) → (X, d) is a weakly uniformly strict contraction on X. Then T has
a unique fixed point. Moreover, the fixed point x is obtained by the following limits

d(Tn(x0), x) → 0 or d(x, Tn(x0)) → 0 as n → ∞.

Proof. According to Theorem 7 and Remark 2, we just need to claim that if T is a weakly
uniformly strict contraction, then {Tn(x0)}∞

n=1 = {xn}∞
n=1 is both a <-Cauchy sequence

and >-Cauchy sequence for x0 ∈ X. Suppose that {xn}∞
n=1 is not a <-Cauchy sequence.

Then, there exists 2ε > 0 such that, given any integer N, there exist n > m ≥ N satisfying
d(xm, xn) > 2ε. We are going to follow the similar proof of Theorem 10.

Let δ′ = min{δ, ε}, and let γj = d(xm, xj) for j = m + 1, · · · , n. For j with m < j ≤ n,
using the ��-triangle inequality, we have

d(xm, xj+1) ≤ d(xm, xj) + d(xj, xj+1),

which implies

δ′

3
> cN ≥ cj0 = d(xj0 , xj0+1) ≥ γj0+1 − γj0 ≥ ε + δ′ − ε − 2δ′

3
=

δ′

3
.

This contradiction shows that there exists an integer j with m < j ≤ n satisfying
d(xm, xj) �= 0 and

ε +
2δ′

3
< d(xm, xj) < ε + δ′, (21)

which implies
d(xm+1, xj+1) = d(T(xm), T(xj)) < ε. (22)

Using the ��-triangle inequality, we can obtain

d(xm, xj) ≤ d(xm, xm+1) + d(xm+1, xj+1) + d(xj+1, xj)

= cm + d(xm+1, xj+1) + c̄j < cm + ε + c̄j (by (22))

≤ cN + ε + c̄N (since {cn}∞
n=1 and {c̄n}∞

n=1 are decreasing)

<
δ′

3
+ ε +

δ′

3
(by (8))

= ε +
2δ′

3
,

which contradicts (21). This contradiction shows that every sequence {Tn(x)}∞
n=1 =

{xn}∞
n=1 is a <-Cauchy sequence.
Suppose that {xn}∞

n=1 is not a >-Cauchy sequence. Then, there exists 2ε > 0 such that,
given any integer N, there exist n > m ≥ N satisfying d(xn, xm) > 2ε. Let δ′ = min{δ, ε},
and let γj = d(xj, xm) for j = m + 1, · · · , n. For j with m < j ≤ n, using the ��-triangle
inequality, we have

d(xj+1, xm) ≤ d(xj+1, xj) + d(xj, xm),

which implies

δ′

3
> c̄N ≥ c̄j0 = d(xj0+1, xj0) ≥ γj0+1 − γj0 ≥ ε + δ′ − ε − 2δ′

3
=

δ′

3
.

This contradiction shows that there exists an integer j with m < j ≤ n satisfying
d(xj, xm) �= 0 and

ε +
2δ′

3
< d(xj, xm) < ε + δ′, (23)
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which implies
d(xj+1, xm+1) = d(T(xj), T(xm)) < ε. (24)

Using the ��-triangle inequality, we can obtain

d(xj, xm) ≤ d(xj, xj+1) + d(xj+1, xm+1) + d(xm+1, xm)

= cj + d(xj+1, xm+1) + c̄m < cj + ε + c̄m (by (24))

≤ cN + ε + c̄N (since {cn}∞
n=1 and {c̄n}∞

n=1 are decreasing)

<
δ′

3
+ ε +

δ′

3
(by (8))

= ε +
2δ′

3
,

which contradicts (23). This contradiction shows that every sequence {Tn(x)}∞
n=1 =

{xn}∞
n=1 is a >-Cauchy sequence. Using Theorem 7, the proof is complete.

Example 5. Continued from Example 3, since the pre-metric space (R, d) is simultaneously
�-complete and �-complete, any function T : (R, d) → (R, d) that is a weakly uniformly strict
contraction on R has a unique fixed point. The concrete examples regarding functions that are
weakly uniformly strict contraction on R can be obtained from the literature.

We finally remark that the Meir–Keeler type of fixed point theorem based on the
 -triangle inequality cannot be obtained by using an argument similar to Theorem 11. In
other words, we need to design a different argument to obtain the Meir–Keeler type of
fixed point theorem based on the  -triangle inequality. It is also possible that we cannot
establish the Meir–Keeler type of fixed point theorem based on the  -triangle inequality.
Therefore, this problem remains open and could be the subject future research.
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Abstract: In this paper, we introduce four new types of contractions called in this order Kanan-S-
type tricyclic contraction, Chattergea-S-type tricyclic contraction, Riech-S-type tricyclic contraction,
Cirić-S-type tricyclic contraction, and we prove the existence and uniqueness for a fixed point for
each situation.
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1. Introduction

It is well known that the Banach contraction principle was published in 1922 by
S. Banach as follows:

Theorem 1. Let (X, d) be a complete metric space and a self mapping T : X −→ X. If there exists
k ∈ [0, 1) such that, for all x, y ∈ X, d(Tx, Ty) ≤ kd(x, y), then T has a unique fixed point in X.

The Banach contraction principle has been extensively studied and different general-
izations were obtained.

In 1968 [1], Kannan established his famous extension of this contraction.

Theorem 2. Ref. [1] Let (X, d) be a complete metric space and a self mapping T : X −→ X. If T
satisfies the following condition:

d(Tx, Ty) ≤ k[d(x, Tx) + d(y, Ty)] for all x, y ∈ X where 0 < k <
1
2

,

then T has a fixed point in X.

A similar contractive condition has been introduced by Chattergea in 1972 [2]
as follows:

Theorem 3. Ref. [2] Let T : X −→ X, where (X, d) is a complete metric space. If there exists
0 < k < 1

2 such that

d(Tx, Ty) ≤ k[d(y, Tx) + d(Ty, x)] for all x, y ∈ X,

then T has a fixed point in X.

We can also find another extension of the Banach contraction principle obtained by
S. Reich, Kannan in 1971 [3].

Theorem 4. Ref. [3] Let T : X −→ X, where (X, d) is a complete metric space. If there exists
0 < k < 1

3 such that

d(Tx, Ty) ≤ k[d(x, y) + d(x, Tx) + d(y, Ty)] for all x, y ∈ X,
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then T has a fixed point in X.

In addition, in the same year, Cirić gave the following extension [4].

Theorem 5. Ref. [4] Let T : X −→ X, where (X, d) a complete metric space. If there exists
k ∈ [0, 1) such that

d(Tx, Ty) ≤ kMax[d(x, y), d(x, Tx), d(y, Ty), d(y, Tx), d(Ty, x)] for all x, y ∈ X,

then T has a fixed point in X.

Many authors have investigated these situations and many results were proved
(see [5–13]).

In this article, we prove the uniqueness and existence of the fixed points in different
types contractions for a self mapping T defined on the union of tree closed subsets of a
complete metric space with k in different intervals.

2. Preliminaries

In best approximation theory, the concept of tricyclic mappings extends that of ordi-
nary cyclic mappings. Moreover, in the case where two of the sets, say A and C, coincide,
we find a cyclic mapping which is also a self-map, and, hence, a best proximity point result
for a tricyclic mappings means also a fixed point and a best proximity point result for a
self-map and a cyclic mapping.

Definition 1. Let A, B be nonempty subsets of a metric space (X, d). A mapping T : A ∪ B −→
A ∪ B is said to be cyclic if :

T(A) ⊆ B, T(B) ⊆ A.

In 2003, Kirk et al. [14] proved that, if T : A ∪ B −→ A ∪ B is cyclic and, for some
k ∈ (0, 1), d(Tx, Ty) ≤ kd(x, y) for all x ∈ A, y ∈ B, then A ∩ B �= ∅, and T has a unique
fixed point in A ∩ B .

In 2017, Sabar et al. [15] proved a similar result for tricyclic mappings and introduced
the concept of tricyclic contractions.

Theorem 6. Ref. [15] Let A, B and C be nonempty closed subsets of a complete metric space
(X, d), and let a mapping T : A ∪ B ∪C −→ A ∪ B ∪C. If T(A) ⊆ B, T(B) ⊆ C and T(C) ⊆ A
and there exists k ∈ (0, 1) such that D(Tx, Ty, Tz) ≤ kD(x, y, z) for all (x, y, z) ∈ A × B × C,
then A ∩ B ∩ C is nonempty and T has a unique fixed point in A ∩ B ∩ C,

where D(x, y, z) = d(x, y) + d(x, z) + d(y, z).

Definition 2. Ref. [15] Let A, B and C be nonempty subsets of a metric space (X, d). A mapping
T : A ∪ B ∪ C −→ A ∪ B ∪ C is said to be tricyclic contracton if there exists 0 < k < 1 such that:

1. T(A) ⊆ B, T(B) ⊆ C and T(C) ⊆ A.
2. D(Tx, Ty, Tz) ≤ kD(x, y, z) + (1 − k)δ(A, B, C) for all (x, y, z) ∈ A × B × C.

where δ(A, B, C) = inf{D(x, y, z) : x ∈ A, y ∈ B, z ∈ C}

Very Recently, Sabiri et al. introduced an extension of the aforementioned mappings
and called them p-cyclic contractions [16].

3. Main Results

Definition 3. Let A, B and C be nonempty subsets of a metric space (X, d). A mapping T :
A ∪ B ∪ C −→ A ∪ B ∪ C is said to be a Kannan-S-type tricyclic contraction, if there exists
k ∈
(

0, 1
3

)
such that
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1. T(A) ⊆ B, T(B) ⊆ C, T(C) ⊆ A.
2. D(Tx, Ty, Tz) ≤ k[d(x, Tx) + d(y, Ty) + d(z, Tz)] for all (x, y, z) ∈ A × B × C.

We give an example to show that a map can be a tricyclic contraction but not a
Kannan-S-type tricyclic contraction.

Example 1. Let X be R2 normed by the norm ‖ (x, y) ‖= |x|+ |y|, and A = [1, 2]× {0}, B =
{0} × [−2,−1], C = [−2,−1]× {0}, then

δ(A, B, C) = D((1, 0), (0,−1), (−1, 0)) = 6.

Put T : A ∪ B ∪ C −→ A ∪ B ∪ C such that

T(x, 0) =
(

0,− x + 2
3

)
if (x, 0) ∈ A ,

T(0, y) =
(

y − 2
3

, 0
)

i f (0, y) ∈ B,

T(z, 0) =
(
− z − 2

3
, 0
)

if (z, 0) ∈ C,

We have T(A) ⊆ B, T(B) ⊆ C and T(C) ⊆ A, and

D(T(x, 0), T(0, y), T(z, 0)) = D
(
(0,− x + 2

3
), (

y − 2
3

, 0), (− z − 2
3

, 0)
)

=
2
3
(x − y − z) + 4

=
1
3

D((x, 0), (0, y), (z, 0)) + 4

=
1
3

D((x, 0), (0, y), (z, 0)) + (1 − 1
3
)δ(A, B, C)

for all (x, 0) ∈ A, (0, y) ∈ B, (z, 0) ∈ C.
On the other hand,

D(T(2, 0), T(0,−2), T(−2, 0)) = D
(
(0,−4

3
), (

−4
3

, 0), (
4
3

, 0)
)
= 8

and

d((2, 0), T(2, 0)) + d((0,−2), T(0,−2)) + d((−2, 0), T(−2, 0)) = 10,

which implies that
D(T(2, 0), T(0,−2), T(−2, 0))

>
1
3
[d((2, 0), T(2, 0)) + d((0,−2), T(0,−2)) + d((−2, 0), T(−2, 0))]

Then, T is tricyclic contraction but not a Kannan-S-type tricyclic contraction.

Now, we give an example for which T is a Kannan-S-type tricyclic contraction but not
a tricyclic contraction.

Example 2. Let X = R with the usual metric. Let A = B = C = [0, 1], then δ(A, B, C) = 0.
Put T : A ∪ B ∪ C −→ A ∪ B ∪ C such that

Tx =
1
6

if 0 ≤ x < 1, Tx =
1
4

if x = 1
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For x = 1, y = 1 and z = 23
24 , we have

D(T(1), T(1), T(
23
24

)) = D(
1
4

,
1
4

,
1
6
) = 2d(

1
4

,
1
6
) =

1
6

.

and
D(1, 1,

23
24

) = 2d(1,
23
24

) =
1
12

.

Then, T is not tricyclic contraction.
However T is a Kannan-S-type tricyclic contraction. Indeed:

• If x = y = z = 1, we have

D(T(1), T(1), T(1)) = 0 ≤ 9
4

k

for all k ≥ 0, then for 0 ≤ k < 1
3 .

• If x ∈ [0, 1), y ∈ [0, 1) and z ∈ [0, 1), we have

D(Tx, Ty, Tz) = 0 ≤ k(d(x,
1
6
) + d(y,

1
6
) + d(z,

1
6
)

for all k ≥ 0, then for 0 ≤ k < 1
3 .

• If x = 1, y ∈ [0, 1) and z ∈ [0, 1), we have

D(T1, Ty, Tz) = D(
1
4

,
1
6

,
1
6
) =

1
6

and
d(1, T(1)) + d(y, Ty) + d(z, Tz) =

3
4
+ d(y,

1
6
) + d(z,

1
6
),

then, for k = 2
9 , we have

D(T(1), T(y, Tz) ≤ k(d(1, T(1)) + d(y, Ty) + d(z, Tz)).

• If x = 1, y = 1 and z ∈ [0, 1), we have

D(T(1), T(1), Tz) = D(
1
4

,
1
4

,
1
6
) =

1
6

and
d(1, T(1)) + d(1, T(1)) + d(z, Tz) =

3
2
+ d(z,

1
6
).

Then, for k = 2
9 , we have

D(T(1), T(1), Tz) ≤ k(d(1, T(1)) + d(1, T(1)) + d(z, Tz)).

Consequently, for k = 2
9 , we have :

D(Tx, Ty, Tz) ≤ k(d(x, Tx) + d(y, Ty) + d(z, Tz)) for all (x, y, z) ∈ A × B × C.

Theorem 7. Let A, B and C be nonempty closed subsets of a complete metric space (X, d), and let
T : A ∪ B ∪ C −→ A ∪ B ∪ C be a Kannan-S-type tricyclic contraction. Then, T has a unique
fixed point in A ∩ B ∩ C.

Proof. Fix x ∈ A. We have

d
(

T3x, T2x
)
≤ D
(

T3x, T2x, Tx
)
≤ k
[
d
(

T2x, T3x
)
+ d
(

Tx, T2x
)
+ d(x, Tx)

]
.
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Then,
d
(

T3x, T2x
)
≤ k
[
d
(

T2x, T3x
)
+ d
(

Tx, T2x
)
+ d(x, Tx)

]
,

which implies

d
(

T3x, T2x
)
≤ k

(1 − k)

[
d
(

Tx, T2x
)
+ d(x, Tx)

]
.

Similarly, we have

d
(

T2x, Tx
)
≤ k

(1 − k)

[
d
(

T3x, T2x
)
+ d(x, Tx)

]

d
(

T2x, Tx
)
≤ k

(1 − k)

[
k

(1 − k)

[
d
(

Tx, T2x
)
+ d(x, Tx)

]
+ d(x, Tx)

]
=⇒ d

(
T2x, Tx

)
≤ k

1 − 2k
(d(x, Tx)).

Then,

d
(

T2x, Tx
)
≤ td(x, Tx) where t =

k
1 − 2k

and t ∈ (0, 1),

which implies
d
(

Tn+1x, Tnx
)
≤ tnd(x, Tx), for all n ≥ 1

Consequently,
+∞

∑
n=1

d
(

Tn+1x, Tnx
)
≤

+∞
(∑
n=1

tn)d(x, Tx) < +∞

implies that {Tnx} is a Cauchy sequence in (X, d). Hence, there exists z ∈ A ∪ B ∪ C such
that Tnx −→ z. Notice that {T3nx} is a sequence in A, {T3n−1x} is a sequence in C and
{T3n−2x} is a sequence in B and that both sequences tend to the same limit z. Regarding
the fact that A, B and C are closed, we conclude z ∈ A ∩ B ∩ C, hence A ∩ B ∩ C �= ∅.
To show that z is a fixed point, we must show that Tz = z. Observe that

d(Tz, z) = lim d
(

Tz, T3nx
)
≤ lim D

(
T3nx, T3n−1x, Tz

)
≤ lim k[d

(
T3n−1x, T3nx

)
+ d
(

T3n−2x, T3n−1x
)
+ d(z, Tz)]

≤ kd(Tz, z),

which is equivalent to
(1 − k)d(Tz, z) = 0.

Since k ∈
(

0, 1
3

)
, then d(Tz, z) = 0, which implies Tz = z.

To prove the uniqueness of z,, assume that there exists w ∈ A ∪ B ∪ C such that w �= z
and Tw = w. Taking into account that T is tricyclic, we get w ∈ A ∩ B ∩ C. We have

d(z, w) = d(Tz, Tw) ≤ D(Tz, Tw, Tw) ≤ k[d(z, Tz) + d(w, Tw) + d(w, Tw)] = 0

which implies d(z, w) = 0. We get that z = w and hence z is the unique fixed point of T.

Example 3. Let X be R2 normed by the norm ‖ (x, y) ‖= |x|+ |y|, let A = {0} × [0,+1], B =
[0,+1]× {0}, C = {0} × [−1, 0] and let T : A ∪ B ∪ C −→ A ∪ B ∪ C be defined by

T(0, x) =
( x

6
, 0
)

if (0, x) ∈ A ,

T(y, 0) =
(

0,
−y
6

)
if (y, 0) ∈ B,
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T(0, z) =
(

0,
−z
6

)
if (0, z) ∈ C.

We have
T(A) ⊆ B, T(B) ⊆ C and T(C) ⊆ A

In addition, for all (0, x) ∈ A, (y, 0) ∈ B, (0, z) ∈ C, we have

D(T(0, x), T(y, 0), T(0, z)) = D
(( x

6
, 0
)

,
(

0,
−y
6

)
,
(

0,
−z
6

))
=

1
3
(x + y − z)

In addition, we have

d((0, x), T(0, x)) + d((y, 0), T(y, 0)) + d((0, z), T(0, z)) =
7
6
(x + y − z)

This implies

D(T(0, x), T(y, 0), T(0, z)) =
2
7
[d((0, x), T(0, x)) + d((y, 0), T(y, 0)) + d((0, z), T(0, z))].

Then, T is a Kannan-S-type tricyclic contraction, and T has a unique fixed point (0, 0) in
A ∩ B ∩ C.

Corollary 1. Let (X, d) be a complete metric space and a self mapping T : X −→ X. If there exists
k ∈
(

0, 1
3

)
such that

D(Tx, Ty, Tz) ≤ k[d(x, Tx) + d(y, Ty) + d(z, Tz)]

for all (x, y, z) ∈ X3, then T has a unique fixed point.

Now, we shall define another type of a tricyclic contraction.

Definition 4. Let A, B and C be nonempty subsets of a metric space (X, d). A mapping T : A ∪
B ∪ C −→ A ∪ B ∪ C is said to be a Chattergea-S-type tricyclic contraction if T(A) ⊆ B, T(B) ⊆
C, T(C) ⊆ A, and there exist k ∈

(
0, 1

3

)
such that D(Tx, Ty, Tz) ≤ k[d(y, Tx) + d(z, Ty) + d(x, Tz)]

for all (x, y, z) ∈ A × B × C.

Theorem 8. Let A, B and C be nonempty closed subsets of a complete metric space (X, d), and let
T : A ∪ B ∪ C −→ A ∪ B ∪ C be a Chattergea-S-type tricyclic contraction. Then, T has a unique
fixed point in A ∩ B ∩ C.

Proof. Fix x ∈ A. We have

D
(

Tx, T2x, T3x
)
≤ k
[
d(Tx, Tx) + d

(
T2x, T2x

)
+ d
(

T3x, x
)]

which implies
D
(

T3x, T2x, Tx
)
≤ kd
(

T3x, x
)

so

d
(

T3x, T2x
)
≤ k
[
d
(

T3x, T2x
)
+ d
(

T2x, Tx
)
+ d(Tx, x)

]
(by the triangular inequality)

=⇒ d
(

T3x, T2x
)
≤ k

(1 − k)

[
d
(

Tx, T2x
)
+ d(x, Tx)

]
and

d
(

T2x, Tx
)
≤ D
(

T3x, T2x, Tx
)
≤ k

(1 − k)

[
d
(

T3x, T2x
)
+ d(x, Tx)

]
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=⇒ d
(

T2x, Tx
)
≤ k

(1 − k)

[
k

(1 − k)

[
d
(

Tx, T2x
)
+ d(x, Tx)

]
+ d(x, Tx)

]
=⇒ d

(
T2x, Tx

)
≤ k

1 − 2k
(d(x, Tx))

Then,

d
(

T2x, Tx
)
≤ td(x, Tx) where t =

k
1 − 2k

and t ∈ (0, 1),

which implies
d
(

Tn+1x, Tnx
)
≤ tnd(x, Tx)

for all n ≥ 1. Consequently,

+∞

∑
n=1

d
(

Tn+1x, Tnx
)
≤

+∞
(∑
n=1

tn)d(x, Tx) < +∞

implies that {Tnx} is a Cauchy sequence in (X, d). Hence, there exists z ∈ A ∪ B ∪ C such
that Tnx −→ z. Notice that {T3nx} is a sequence in A, {T3n−1x} is a sequence in C, and
{T3n−2x} is a sequence in B and that both sequences tend to the same limit z. Regarding
that A, B and C are closed, we conclude z ∈ A ∩ B ∩ C, hence A ∩ B ∩ C �= ∅.

To show that z is a fixed point, we must show that Tz = z. Observe that

d(Tz, z) = lim d
(

Tz, T3nx
)
≤ lim D

(
Tz, T3nx, T3n−1x

)
≤ lim k[d

(
T3n−1x, Tz

)
+
(

T3n−2x, T3nx
)
+ d(z, T3n−1x)] ≤ kd(Tz, z),

which is equivalent to (1 − k)d(Tz, z) = 0. Since k ∈
(

1, 1
3

)
, then d(Tz, z) = 0, which

implies Tz = z.
To prove the uniqueness of z, assume that there exists w ∈ A ∪ B ∪ C such that w �= z

and Tw = w. Taking into account that T is tricyclic, we get w ∈ A ∩ B ∩ C.
We have

d(z, w) = d(Tz, Tw) ≤ D(Tz, Tw, Tw)

≤ k[d(Tz, w) + d(Tw, w) + d(Tw, z)]

≤ 2kd(z, w).

Then, d(z, w) = 0. We conclude that z = w and hence z is the unique fixed point
of T.

Corollary 2. Let (X, d) be a complete metric space and a self mapping T : X −→ X. If there exists
k ∈
(

0, 1
3

)
such that

D(Tx, Ty, Tz) ≤ k[d(y, Tx) + d(z, Ty) + d(x, Tz)]

for all (x, y, z) ∈ X3, then T has a unique fixed point.

In this step, we define a Reich-S-type tricyclic contraction.

Definition 5. Let A, B and C be nonempty subsets of a metric space (X, d).
A mapping T : A ∪ B ∪ C −→ A ∪ B ∪ C is said to be a Reich-S-type tricyclic contraction if there
exists k ∈

(
0, 1

7

)
such that:

1. T(A) ⊆ B, T(B) ⊆ C, T(C) ⊆ A.
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2. D(Tx, Ty, Tz) ≤ k[D(x, y, z) + d(x, Tx) + d(y, Ty) + d(z, Tz)] for all (x, y, z) ∈ A ×
B × C.

Theorem 9. Let A, B and C be nonempty closed subsets of a complete metric space (X, d), and let
T : A ∪ B ∪ C −→ A ∪ B ∪ C be a Reich-S-type tricyclic contraction. Then, T has a unique fixed
point in A ∩ B ∩ C.

Proof. Fix x ∈ A. We have

d
(

T2x, T3x
)

≤ D
(

Tx, T2x, T3x
)

≤ k
[

D(x, Tx, T2x) + d
(

T2x, T3x
)
+ d
(

Tx, T2x
)
+ d(x, Tx)

]
=⇒ d

(
T2x, T3x

)
(1 − k) ≤ k[2d

(
T2x, Tx

)
+ 2d(x, Tx) + d

(
T2x, x

)
]

=⇒ d
(

T2x, T3x
)

≤ k
1 − k

[
2d
(

T2x, Tx
)
+ 2d(x, Tx) + d

(
T2x, x

)]
≤ k

1 − k

[
2d
(

T2x, Tx
)
+ 2d(x, Tx) + d

(
T2x, Tx

)
+ d(Tx, x)

]
≤ k

1 − k

[
3d
(

T2x, Tx
)
+ 3d(x, Tx)

]
=⇒ d

(
T2x, T3x

)
≤ 3k

1 − k
[d
(

T2x, Tx
)
+ d(x, Tx)]

and

d
(

T2x, Tx
)
≤ D
(

Tx, T2x, T3x
)
≤ k
[

D(x, Tx, T2x) + d
(

T2x, T3x
)
+ d
(

Tx, T2x
)
+ d(x, Tx)

]
=⇒ d

(
T2x, Tx

)
≤ k
[
3d
(

T2x, Tx
)
+ 3d(x, Tx) + d

(
T2x, T3x

)]
=⇒ d

(
T2x, Tx

)
(1 − 3k) ≤ k[d

(
T2x, T3x

)
+ 3d(x, Tx)]

=⇒ d
(

T2x, Tx
)
≤ k

1 − 3k
d
(

T2x, T3x
)
+

3k
1 − 3k

d(x, Tx)

=⇒ d
(

T2x, Tx
)
≤ k

1 − 3k
3k

1 − k
[d
(

T2x, Tx
)
+ d(x, Tx)] +

3k
1 − 3k

d(x, Tx)

=⇒ d
(

T2x, Tx
)
≤ 3k2

(1 − 3k)(1 − k)
d
(

T2x, Tx
)
+ (

3k2

(1 − 3k)(1 − k)
+

3k
(1 − 3k)

)d(x, Tx)

=⇒ d
(

T2x, Tx
)(

1 − 3k2

(1 − 3k)(1 − k)

)
≤ 3k2 + 3k(1 − k)

(1 − 3k)(1 − k)
d(x, Tx)

=⇒ d
(

T2x, Tx
)(

(1 − 3k)(1 − k)− 3k2
)
≤ (3k2 + 3k(1 − k))d(x, Tx)

=⇒ d
(

T2x, Tx
)
(1 − 4k) ≤ 3kd(x, Tx)

=⇒ d
(

T2x, Tx
)
≤ 3k

(1 − 4k)
d(x, Tx).

Then,

d
(

T2x, Tx
)
≤ td(x, Tx) where t =

3k
(1 − 4k)

and t ∈ (0, 1),

which implies
d
(

Tn+1x, Tnx
)
≤ tnd(x, Tx),
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consequently
+∞

∑
n=1

d
(

Tn+1x, Tnx
)
≤

+∞
(∑
n=1

tn)d(x, Tx) < +∞

This implies that {Tnx} is a Cauchy sequence in (X, d). Hence, there exists z ∈
A ∪ B ∪ C such that Tnx −→ z. Notice that {T3nx} is a sequence in A, {T3n−1x} is a
sequence in C and {T3n−2x} is a sequence in B and that both sequences tend to the same
limit z. Regarding the fact that A, B and C are closed, we conclude that z ∈ A ∩ B ∩ C,
hence A ∩ B ∩ C �= ∅.

To show that z is a fixed point, we must show that Tz = z. Observe that

d(Tz, z) = lim d
(

Tz, T3nx
)

≤ lim D
(

T3nx, T3n−1x, Tz
)

≤ lim k[d
(

T3n−1x, T3n−2x
)
+ d
(

T3n−1x, z
)
+ d(T3n−2x, z)

+ d
(

T3n−1x, T3nx
)
+ d
(

T3n−2x, T3n−1x
)
+ d(z, Tz)]

≤ kd(Tz, z),

which is equivalent to (1 − k)d(Tz, z) = 0.
Since k ∈

(
0, 1

7

)
, then d(Tz, z) = 0, which implies Tz = z.

To prove the uniqueness of z, assume that there exists w ∈ A ∪ B ∪ C such that w �= z
and Tw = w. Taking into account that T is tricyclic, we get w ∈ A ∩ B ∩ C.

d(z, w) = d(Tz, Tw)

≤ D(Tz, Tw, Tw)

≤ k[2d(z, w) + d(w, w) + d(z, Tz) + d(Tw, w) + d(Tw, w)]

≤ 2kd(z, w)

implies d(z, w) = 0. We conclude that z = w and hence z is the unique fixed point of T.

Example 4. We take the same example 3.
Let X be R2 normed by the norm ‖ (x, y) ‖= |x|+ |y|,

A = {0} × [0,+1], B = [0,+1]× {0}, C = {0} × [−1, 0]

and let T : A ∪ B ∪ C −→ A ∪ B ∪ C be defined by

T(0, x) =
( x

6
, 0
)

if (0, x) ∈ A ,

T(y, 0) =
(

0,
−y
6

)
if (y, 0) ∈ B,

T(0, z) =
(

0,
−z
6

)
if (0, z) ∈ C,

We have T is tricyclic and for all (0, x) ∈ A, (y, 0) ∈ B, (0, z) ∈ C ,

D(T(0, x), T(y, 0), T(0, z)) = D
(( x

6
, 0
)

,
(

0,
−y
6

)
,
(

0,
−z
6

))
=

1
3
(x + y − z).
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In addition, we have

D((0, x), (y, 0), (0, z)) + d((0, x), T(0, x)) + d((y, 0), T(y, 0)) + d((0, z), T(0, z))

= 2(x + y − z) +
7
6
(x + y − z) =

19
6
(x + y − z).

Then,

D(T(0, x), T(y, 0), T(0, z)) =
2
19

(D((0, x), (y, 0), (0, z)) + d((0, x), T(0, x))

+d((y, 0), T(y, 0)) + d((0, z), T(0, z)))

≤ 1
7
(D((0, x), (y, 0), (0, z)) + d((0, x), T(0, x))

+d((y, 0), T(y, 0)) + d((0, z), T(0, z)))

This implies that T is a Reich-S-type tricyclic contraction, and T has a unique fixed point
(0, 0) in A ∩ B ∩ C.

Corollary 3. Let (X, d) a complete metric space and a self mapping T : X −→ X. If there exists
k ∈
(

0, 1
7

)
such that

D(Tx, Ty, Tz) ≤ k[D(x, y, z) + d(x, Tx) + d(y, Ty) + d(z, Tz)]

for all (x, y, z) ∈ X3, then T has a unique fixed point in X.

The next tricyclic contraction considered in this section is the Cirić-S-type tricyclic
contraction defined below.

Definition 6. Let A, B and C be nonempty subsets of a metric space (X, d), T : A ∪ B ∪ C −→
A ∪ B ∪ C be a Cirié-S-type tricyclic contraction, if there exists k ∈ (0, 1) such that

1. T(A) ⊆ B, T(B) ⊆ C, T(C) ⊆ A
2. D(Tx, Ty, Tz) ≤ kM(x, y, z) for all (x, y, z) ∈ A × B × C.

where M(x, y, z) = max{D(x, y, z), d(x, Tx), d(y, Ty), d(z, Tz)}

The fixed point theorem of the Cirić-S-type tricyclic contraction reads as follows.

Theorem 10. Let A, B and C be nonempty closed subsets of a complete metric space (X, d), and
let T : A ∪ B ∪ C −→ A ∪ B ∪ C be a Cirić-S- type tricyclic contraction, then T has a unique fixed
point in A ∩ B ∩ C.

Proof. Taking x ∈ A, we have D(Tx, Ty, Tz) ≤ kM(x, y, z) for all (x, y, z) ∈ A × B × C.
If M(x, y, z) = D(x, y, z), Theorem 7 implies the desired result.

Consider the case M(x, y, z) = d(x, Tx). We have:

D
(

Tx, T2x, T3x
)
≤ kd(x, Tx) =⇒ d

(
Tx, T2x

)
≤ kd(x, Tx)

=⇒ d
(

Tnx, Tn+1x
)
≤ knd(x, Tx)

Consequently,

+∞

∑
n=1

d
(

Tn+1x, Tnx
)
≤

+∞
(∑
n=1

kn)d(x, Tx) < +∞

which implies that {Tnx} is a Cauchy sequence in (X, d). Hence, there exists z ∈ A ∪ B ∪ C
such that Tnx −→ z. Notice that {T3nx} is a sequence in A, {T3n−1x} is a sequence in C,
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and {T3n−2x} is a sequence in B and that both sequences tend to the same limit z; regarding
the fact that A, B and C are closed, we conclude z ∈ A ∩ B ∩ C, hence A ∩ B ∩ C �= ∅.

To show that z is a fixed point, we must show that Tz = z. Observe that

d(Tz, z) = lim d
(

Tz, T3nx
)
≤ lim D

(
T3nx, T3n−1x, Tz

)
≤ kd(Tz, z),

which is equivalent to (1 − k)d(Tz, z) = 0. Since k ∈ (0, 1), then d(Tz, z) = 0, which
implies Tz = z.

To prove the uniqueness of z, assume that there exists w ∈ A ∪ B ∪ C such that w �= z
and Tw = w.

Taking into account that T is tricyclic, we get w ∈ A ∩ B ∩ C.
d(z, w) = d(Tz, Tw) ≤ D(Tz, Tw, Tw) ≤ kd(z, Tz) = 0 implies d(z, w) = 0. We con-

clude that z = w and hence z is the unique fixed point of T.
Consider the case M(x, y, z) = d(y, Ty). We have :

D
(

Tx, T2x, T3x
)
≤ kd
(

Tx, T2x
)
=⇒ d

(
Tx, T2x

)
≤ kd
(

Tx, T2x
)
< d
(

Tx, T2x
)

,

which is impossible since k ∈ (0, 1)
Consider the case M(x, y, z) = d(z, Tz). We have:

D
(

Tx, T2x, T3x
)
≤ kd
(

T2x, T3x
)
=⇒ d

(
T2x, T3x

)
≤ kd
(

T2x, T3x
)
< d
(

T2x, T3x
)

,

which is impossible since k ∈ (0, 1).

Corollary 4. Let A, B and C be a nonempty subset of a complete metric space (X, d) and let a
mapping T : A ∪ B ∪ C −→ A ∪ B ∪ C. If there exists k ∈ (0, 1) such that

1. T(A) ⊆ B, T(B) ⊆ C, T(C) ⊆ A.
2. D(Tx, Ty, Tz) ≤ k max{D(x, y, z), d(x, Tx)} ∀(x, y, z) ∈ A × B × C.

Then, T has a unique fixed point in A ∩ B ∩ C.
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Abstract: In this paper, we define almost Rg-Geraghty type contractions and utilize the same to
establish some coincidence and common fixed point results in the setting of b2-metric spaces endowed
with binary relations. As consequences of our newly proved results, we deduce some coincidence
and common fixed point results for almost g-α-η Geraghty type contraction mappings in b2-metric
spaces. In addition, we derive some coincidence and common fixed point results in partially ordered
b2-metric spaces. Moreover, to show the utility of our main results, we provide an example and an
application to non-linear integral equations.
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1. Introduction

The extension of fixed point theory to generalized structures, such as cone metric
spaces, partial metric spaces, b-metric spaces and 2-metric spaces has received much
attention. 2-metric space is a generalized metric space which was introduced by Gähler
in [1]. Unlike the ordinary metric, the 2-metric is not a continuous function. The topology
induced by 2-metric space is called 2-metric topology which is generated by the set of all
open spheres with two centers. It is easy to observe that 2-metric space is not topologically
equivalent to an ordinary metric. Hence, there is not any relationship between the results
obtained in 2-metric spaces and the correspondence results in metric spaces. For fixed point
results in the setting of 2-metric spaces, the readers may refer to [2–5] and references therein.

The concept of b-metric spaces was introduced by Czerwik [6,7] which is a generaliza-
tion of the usual metric spaces and 2-metric spaces as well. Several papers have dealt with
fixed point theory for single-valued and multi-valued operators in b-metric spaces have
been obtained (see, e.g., [8–10]).

In 2014, Mustafa et al. [11] introduced the notion of b2-metric spaces, as a generaliza-
tion of both 2-metric and b-metric spaces.

On the other hand, the branch of related metric (metric space endowed with a binary
relation) fixed point theory is a relatively new area was initiated by Turinici [12]. Recently,
this direction of research is undertaken by several researchers such as: Bhaskar and Laksh-
mikantham [13], Samet and Turinici [14], Ben-El-Mechaiekh [15], Imdad et al. [16,17] and
some others.

The aims of this paper are as follows:

• to define almost Rg-Geraghty type contractions;

Axioms 2021, 10, 101. https://doi.org/10.3390/axioms10020101 https://www.mdpi.com/journal/axioms
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• to establish some coincidence and common fixed point results in the setting of b2-
metric spaces endowed with binary relations;

• to deduce some fixed point and common fixed point results in partially ordered
b2-metric spaces;

• to provide an example which shows the utility of our main results;
• to apply our newly proven results to non-linear integral equations.

2. Preliminaries

Definition 1 ([11]). Let X be a non-empty set, s ≥ 1 a given real number and d : X3 → R be a
map satisfying the following conditions:

(i) for every pair of distinct points x, y ∈ X, there exists a point z ∈ X such that d(x, y, z) �= 0;
(ii) if at least two of three points x, y, z are the same, then d(x, y, z) = 0;
(iii) d(x, y, z) = d(x, z, y) = d(y, x, z) = d(y, z, x) = d(z, x, y) = d(z, y, x), for all x, y, z ∈ X;
(iv) d(x, y, z) ≤ s[d(x, y, w) + d(y, z, w) + d(z, x, w)], for all x, y, z, w ∈ X.

Then d is called a b2-metric on X and (X, d) is called a b2-metric space with parameter s.

Obviously, for s = 1, b2-metric reduces to 2-metric.

Example 1. Let (X, d) be a 2-metric space and ρ(x, y, w) = (d(x, y, w))p, where p ≥ 1 is a real
number. We see that ρ is a b2-metric with s = 3p−1. In view of the convexity of f (x) = xp, on
[0, ∞) for p ≥ 1 and Jensen inequality, we have

(a + b + c)p ≤ 3p−1(ap + bp + cp).

Therefore, condition (iv) of Definition 1 is satisfied and ρ is a b2-metric on X.

Definition 2 ([11]). Let {xn} be a sequence in a b2-metric space (X, d). Then

(i) {xn} is said to be b2-convergent and converges to x ∈ X, written lim
n→∞

xn = x, if for all

a ∈ X, lim
n→∞

d(xn, x, a) = 0.

(ii) {xn} is said to be b2-Cauchy in X if for all a ∈ X, lim
m,n→∞

d(xm, xn, a) = 0.

(iii) (X, d) is said to be b2-complete if every b2-Cauchy sequence is a b2-convergent sequence.

Definition 3 ([11]). Let (X, d) and (X̄, d̄) be two b2-metric spaces and let f : X → X̄ be a
mapping. Then f is said to be b2-continuous at a point z ∈ X if for a given ε > 0, there exists
δ > 0 such that x ∈ X and d(z, x, a) < δ for all a ∈ X imply that d̄( f z, f x, a) < ε. The mapping
f is b2-continuous on X if it is b2-continuous at all z ∈ X.

Proposition 1 ([11]). Let (X, d) and (X̄, d̄) be two b2-metric spaces. Then a mapping f : X → X̄
is b2-continuous at a point x ∈ X if it is b2-sequentially continuous at x, that is, whenever {xn} is
b2-convergent to x, { f (xn)} is b2-convergent to f (x).

Lemma 1 ([11]). Let (X, d) be a b2-metric space. Suppose that {xn} and {yn} are b2-converge to
x and y, respectively. Then, we have

1
s2 d(x, y, a) ≤ lim inf

n→∞
d(xn, yn, a) ≤ lim sup

n→∞
d(xn, yn, a) ≤ s2d(x, y, a) for all a ∈ X.

In particular, if yn = y, is constant, then

1
s

d(x, y, a) ≤ lim inf
n→∞

d(xn, y, a) ≤ lim sup
n→∞

d(xn, y, a) ≤ sd(x, y, a) for all a ∈ X.
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Definition 4. Let f and g be two self mappings on a non-empty set X. If w = f x = gx for some
x ∈ X, then x is called a coincidence point of f and g and w is called a point of coincidence of f
and g.

Definition 5 ([18]). Two self mappings f and g are said to be weakly compatible if they commute
at their coincidence points, that is, f x = gx implies that f gx = g f x.

Lemma 2 ([19]). Let f and g be weakly compatible self mappings of a non-empty set X. If f and g
have a unique point of coincidence w = f x = gx, then w is the unique common fixed point of f
and g.

A non-empty subset R of X × X is said to be a binary relation on X. Trivially, X × X
is a binary relation on X known as the universal relation. For simplicity, we will write xRy
whenever (x, y) ∈ R and write xR�y whenever xRy and x �= y. Observe that R� is also a
binary relation on X and R� ⊆ R. The elements x and y of X are said to be R-comparable
if xRy or yRx, this is denoted by [x, y] ∈ R.

Definition 6. A binary relation R on X is said to be:

(i) reflexive if xRx for all x ∈ X;
(ii) transitive if, for any x, y, z ∈ X, xRy and yRz imply xRz; antisymmetric if, for any x, y ∈ X,

xRy and yRx imply x = y;
(iii) preorder if it is reflexive and transitive;
(iv) partial order if it is reflexive, transitive and antisymmetric.

Let X be a nonempty set, R a binary relation on X and Y ⊆ X. Then the restriction of
R to Y is denoted by R|Y and is defined by R∩ Y2. The inverse of R is denoted by R−1

and is defined by R−1 = {(x, y) ∈ X × X : (y, x) ∈ R} and Rs = R∪R−1.

Definition 7 ([20]). Let X be a non-empty set and R a binary relation on X. A sequence {xn} ⊆ X
is said to be an R-preserving sequence if xnRxn+1 for all n ∈ N0.

Definition 8 ([20]). Let X be a non-empty set and f : X → X. A binary relation R on X is said
to be f -closed if for all x, y ∈ X, xRy implies f xR f y.

Definition 9 ([20]). Let X be a non-empty set and f , g : X → X. A binary relation R on X is
said to be ( f , g)-closed if for all x, y ∈ X, gxRgy implies f xR f y.

Definition 10 ([20]). Let (X, d) be a metric space and R a binary relation on X. We say that X is
R-complete if every R-preserving Cauchy sequence in X converges to a limit in X.

Remark 1. Every complete metric space is R-complete, whatever the binary relation R. Particularly,
under the universal relation, the notion of R-completeness coincides with the usual completeness.

Definition 11 ([21]). Let (X, d) be a metric space, R a binary relation on X, f : X → X and
x ∈ X. We say that f is R-continuous at x if, for any R-preserving sequence {xn} ⊆ X such that
xn → x, we have f xn → f x. Moreover, f is called R-continuous if it is R-continuous at each
point of X.

Remark 2. Every continuous mapping is R-continuous, whatever the binary relation R. Particu-
larly, under the universal relation, the notion of R-continuity coincides with the usual continuity.

Definition 12 ([21]). Let (X, d) be a metric space, R a binary relation on X, f , g : X → X and
x ∈ X. We say that f is (g,R)-continuous at x if, for any sequence {xn} ⊆ M such that {gxn} is
R-preserving and gxn → gx, we have f xn → f x. Moreover, f is called (g,R)-continuous if it is
(g,R)-continuous at each point of X.
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Observe that on setting g = I, Definition 12 reduces to Definition 11.

Remark 3. Every g-continuous mapping is (g,R)-continuous, whatever the binary relation
R. Particularly, under the universal relation, the notion of (g,R)-continuity coincides with the
usual g-continuity.

Definition 13 ([21]). Let (X, d) be a metric space, R be a binary relation on X and f , g :
X → X. We say that the pair ( f , g) is R-compatible if for any sequence {xn} ⊆ X such
that { f xn} and {gxn} are R-preserving and limn→∞ gxn = limn→∞ f xn = x ∈ X, we have
limn→∞ d(g f xn, f gxn) = 0.

Remark 4. Every compatible pair is R-compatible, whatever the binary relation R. Particularly,
under the universal relation, the notion of R-compatibility coincides with the usual compatibility.

Definition 14 ([20]). Let (X, d) be a metric space. A binary relation R on X is said to be d-self-
closed if for any R-preserving sequence {xn} ⊆ X such that xn → x, there exists a subsequence
{xnk} of {xn} such that [xnk , x] ∈ R for all k ∈ N0.

3. Common Fixed Point Results for Almost Rg-Geraghty Type Contraction Mappings

Lemma 3. Let (X, d) be a b2-metric space endowed with a binary relation R and f , g : X → X
such that f (X) ⊆ g(X), with R is ( f , g)-closed and R|g(X) is transitive. Assume that there exists
x0 ∈ X such that gx0R f x0. Define a sequence {xn} in X by f xn = gxn+1 for n ≥ 0. Then

gxmRgxn and f xmR f xn for all m, n ∈ N0 with m < n.

Proof. Since there exists x0 ∈ X such that gx0R f x0, f xn = gxn+1, and R is ( f , g)-closed,
we deduce that gx0Rgx1, then gx1 = f x0R f x1 = gx2. By continuing this process, we get
gxnRgxn+1 for all n ∈ N. Suppose that m < n, so gxmRgxm+1 and gxm+1Rgxm+2, by R
is g-transitive we have gxmRgxm+2. Again, since gxmRgxm+2 and gxm+2Rgxm+3, we get
that gxmRgxm+3. By continuing this process, we obtain gxmRgxn. for all m, n ∈ N with
m < n. In similar way and since f (X) ⊆ g(X), we conclude f xmR f xn for all m, n ∈ N with
m < n.

In 1973, Geraghty [22] introduced the class � of all functions β : [0, ∞) → [0, 1) which
satisfy that lim

n→∞
β(tn) = 1 implies lim

n→∞
tn = 0. In addition, the author proved a fixed point

result, generalizing the Banach contraction principle. Afterwards, there are many results
about fixed point theorems by using such functions in this class. Ðukić et al. [23] obtained
fixed point results of this kind in b-metric and from [23] we denote Ω to the family of all
functions βs : [0, ∞) → [0, 1

s ) for a real number s ≥ 1, which satisfy the condition

lim
n→∞

βs(tn) =
1
s

implies lim
n→∞

tn = 0.

Definition 15. Let (X, d) be a b2-metric space and f , g : X → X. Suppose for all x, y, a ∈ X,

M(x, y, a) = max
{

d(gx, gy, a), d(gx, f x, a), d(gy, f y, a),
d(gx, f y, a) + d(gy, f x, a)

2s

}
,

and
N(x, y, a) = min

{
d(gx, f x, a), d(gy, f y, a), d(gx, f y, a), d(gy, f x, a)

}
.

We say that f is almost Rg-Geraghty type contraction mapping if there exist L ≥ 0 and βs ∈ Ω
such that

d( f x, f y, a) ≤ βs(M(x, y, a))M(x, y, a) + LN(x, y, a), (1)

for all x, y, a ∈ X, with gxRgy, f xR � f y.
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Definition 16. Let (X, d) be a b2-metric space and f : X → X. Suppose for all x, y, a ∈ X,

M(x, y, a) = max
{

d(x, y, a), d(x, f x, a), d(y, f y, a),
d(x, f y, a) + d(y, f x, a)

2s

}
,

and
N(x, y, a) = min

{
d(x, f x, a), d(y, f y, a), d(x, f y, a), d(y, f x, a)

}
.

We say that f is almost R-Geraghty type contraction mapping if there exist L ≥ 0 and βs ∈ Ω
such that

d( f x, f y, a) ≤ βs(M(x, y, a))M(x, y, a) + LN(x, y, a), (2)

for all x, y, a ∈ X, with xRy, f xR � f y.

Now, we present our main result as follows:

Theorem 1. Let (X, d) be a b2-metric space endowed with a binary relation R and f , g : X → X
such that f (X) ⊆ g(X), g(X) is a b2-complete subspace of X. Assume that f is almost Rg-
Geraghty type contraction mapping and the following conditions hold:

(i) there exists x0 in X such that gx0R f x0;
(ii) R is ( f , g)-closed and R|g(X) is transitive;
(iii) R|g(X) is d-self closed provided (1) holds for all x, y, a ∈ X with gxRgy and f xR� f y.

Then f and g have a coincidence point in X.

Proof. Let x0 ∈ X such that gx0R f x0. The proof is finished if gx0 = f x0 and x0 is a
coincidence point of f and g. Let us take gx0 �= f x0, then since f (X) ⊆ g(X) we can choose
x1 ∈ X such that f x0 = gx1. Continuing this process, we can define a sequence {gxn} in X
by f xn = gxn+1, for all n ∈ N0.

We divide the proof into three steps as follows.
Step 1: We claim that lim

n→∞
d(gxn, gxn+1, a) = 0. From Lemma 3, we have {gxn} is R-

preserving sequence that is gxnRgxn+1 and f xnR f xn+1, for all n ∈ N0. If f xn0 = f xn0+1,
for some n0 ∈ N0, then xn0+1 is a coincidence point of f and g. Suppose that f xn �= f xn+1,
for all n ∈ N0. Therefore, from (1), we obtain

d(gxn+1, gxn+2, gxn) = d( f xn, f xn+1, gxn)

≤ βs(M(xn, xn+1, gxn))M(xn, xn+1, gxn) + LN(xn, xn+1, gxn) → (∗)

where

M(xn, xn+1, gxn) = max
{

d(gxn, gxn+1, gxn), d(gxn, f xn, gxn), d(gxn+1, f xn+1, gxn),

d(gxn, f xn+1, gxn) + d(gxn+1, f xn, gxn)

2s

}
= max{d(gxn, gxn+1, gxn), d(gxn, gxn+1, gxn), d(gxn+1, gxn+2, gxn),

d(gxn, gxn+2, gxn) + d(gxn+1, gxn+1, gxn)

2s
}

= d(gxn+1, gxn+2, gxn),

and

N(xn, xn+1, gxn) = min
{

d(gxn, f xn, gxn), d(gxn+1, f xn+1, gxn), d(gxn, f xn+1, gxn),

d(gxn+1, f xn, gxn)
}
= 0.
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If d(gxn+1, gxn+2, gxn) �= 0 for some n ∈ N0, then we have (due to (*))

d(gxn+1, gxn+2, gxn) ≤ βs(d(gxn+1, gxn+2, gxn))d(gxn+1, gxn+2, gxn),

yielding that

d(gxn+1, gxn+2, gxn)− βs(d(gxn+1, gxn+2, gxn))d(gxn+1, gxn+2, gxn) ≤ 0,

or
d(gxn+1, gxn+2, gxn)[1 − βs(d(gxn+1, gxn+2, gxn))] ≤ 0 → (∗∗).

Divide both sides in (**) by d(gxn+1, gxn+2, gxn) �= 0, we obtain

1 − βs(d(gxn+1, gxn+2, gxn)) ≤ 0,

or
βs(d(gxn+1, gxn+2, gxn)) ≥ 1,

a contradiction [as βs : [0, ∞) → [0, 1
s ) and s ≥ 1 so βs(c) < 1

s ≤ 1, that is βs(c) < 1 for all
c ∈ [0, ∞)]. Therefore, we must have

d(gxn+1, gxn+2, gxn) = 0, for all n ∈ N0. (3)

Thus, by the rectangle inequality and (3) we get

d(gxn, gxn+2, a) ≤ s[d(gxn, gxn+1, a) + d(gxn+1, gxn+2, a)], (4)

for all n ∈ N0, a ∈ X. Using (4), Lemma 3 and (1) we have

d(gxn+1, gxn+2, a) = d( f xn, f xn+1, a)

≤ βs(M(xn, xn+1, a))M(xn, xn+1, a) + LN(xn, xn+1, a). (5)

Observe that

M(xn, xn+1, a) = max
{

d(gxn, gxn+1, a), d(gxn+1, gxn+2, a)
}

,

and

N(xn, xn+1, a) = min
{

d(gxn, f xn, a), d(gxn+1, f xn+1, a), d(gxn, f xn+1, a), d(gxn+1, f xn, a)
}

= min{d(gxn, gxn+1, a), d(gxn+1, gxn+2, a), d(gxn, gxn+2, a), d(gxn+1, gxn+1, a)}
= 0.

Now, if M(xn, xn+1, a) = d(gxn+1, gxn+2, a), then from (5) we have

d(gxn+1, gxn+2, a) ≤ βs(d(gxn+1, gxn+2, a))d(gxn+1, gxn+2, a) < d(gxn+1, gxn+2, a),

a contradiction. Hence, M(xn, xn+1, a) = d(gxn, gxn+1, a), and

d(gxn+1, gxn+2, a) ≤ βs(d(gxn, gxn+1, a))d(gxn, gxn+1, a) < d(gxn, gxn+1, a), (6)

for all n ∈ N0 and a ∈ X, which implies that the sequence {d(gxn, gxn+1, a)} is strictly de-
creasing of positive numbers. Hence, there exists δ ≥ 0 such that lim

n→∞
d(gxn, gxn+1, a) = δ.

Suppose that δ > 0. So, taking the limit as n → ∞, from (6) we obtain

1
s

δ ≤ δ ≤ lim
n→∞

βs(d(gxn, gxn+1, a))δ ≤ 1
s

δ.
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Hence,

lim
n→∞

βs(d(gxn, gxn+1, a)) =
1
s

.

From the property of βs, we conclude that lim
n→∞

d(gxn, gxn+1, a) = 0 a contradiction, hence,

δ = 0 and
lim

n→∞
d(gxn, gxn+1, a) = 0. (7)

Step 2: We claim that d(gxi, gxj, gxk) = 0 for all i, j, k ∈ N0. Since {d(gxn, gxn+1, a)} is
strictly decreasing and d(gx0, gx1, gx0) = 0, we conclude that d(gxn, gxn+1, gx0) = 0, for
all n ∈ N0.

Since d(gxm−1, gxm, gxm) = 0 for all m ∈ N0 and {d(gxn, gxn+1, a)} is strictly decreas-
ing we obtain that

d(gxn, gxn+1, gxm) = 0, for all n ≥ m − 1. (8)

For 0 ≤ n < m − 1, we have m − 1 ≥ n + 1, so from (8) we have

d(gxm−1, gxm, gxn+1) = d(gxm−1, gxm, gxn) = 0. (9)

Thus, by the rectangle inequality, d(gxn, gxn+1, gxn+1) = 0, and using (9) we obtain

d(gxn, gxn+1, gxm) ≤ s[d(gxn, gxn+1, gxm−1) + d(gxn+1, gxm, gxm−1) + d(gxm, gxn, gxm−1)]

= sd(gxn, gxn+1, gxm−1)

≤ sd(gxn, gxn+1, gxn+1) = 0.

Therefore, we get

d(gxn, gxn+1, gxm) = 0, for all 0 ≤ n < m − 1. (10)

Hence, from (8) and (10) we have

d(gxn, gxn+1, gxm) = 0, for all n, m ∈ N0.

Now, for all i, j, k ∈ N0, i < j and d(gxi, gxj, gxj−1) = d(gxk, gxj, gxj−1) = 0, applying the
rectangle inequality we get

d(gxi, gxj, gxk) ≤ s[d(gxi, gxj, gxj−1) + d(gxj, gxk, gxj−1) + d(gxk, gxi, gxj−1)]

= sd(gxk, gxi, gxj−1)

≤ s2d(gxk, gxi, gxj−2) ≤ . . . ≤ sj−id(gxk, gxi, gxi) = 0.

Therefore, for all i, j, k ∈ N0, we have

d(gxi, gxj, gxk) = 0. (11)

Step 3: We show that {gxn} is a b2-Cauchy sequence. Suppose to the contrary that {gxn} is
not a b2-Cauchy sequence. Then there is ε > 0 such that for an integer k there exist integers
n(k), m(k) with n(k) > m(k) > k such that

d(gxm(k), gxn(k), a) ≥ ε, (12)

for every integer k, let n(k) be the least positive integer with n(k) > m(k), satisfying (12)
and such that

d(gxm(k), gxn(k)−1, a) < ε. (13)

Using the rectangle inequality, (11) and (12) we have

ε ≤ d(gxm(k), gxn(k), a) ≤ s[d(gxm(k), gxn(k)−1, a) + d(gxn(k), gxn(k)−1, a)].
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Again, using the rectangle inequality and (11) in the above inequality, it follows that

ε ≤ s2[d(gxm(k), gxm(k)−1, a) + d(gxm(k)−1, gxn(k)−1, a)] + sd(gxn(k), gxn(k)−1, a)].

In addition,

d(gxm(k)−1, gxn(k)−1, a) ≤ s[d(gxm(k)−1, gxm(k), a) + d(gxn(k)−1, gxm(k), a)].

Taking the upper limit as k → ∞, in the above three inequalities and from (7) and (13) it
follows that

ε ≤ lim sup
k→∞

d(gxm(k), gxn(k), a) < sε, (14)

ε

s2 ≤ lim sup
k→∞

d(gxm(k)−1, gxn(k)−1, a) < sε, (15)

ε

s3 ≤ lim sup
k→∞

d(gxm(k), gxn(k)−1, a) < ε. (16)

Again, using the rectangle inequality, (11) and (12) we get

d(gxm(k)−1, gxn(k), a) ≤ s[d(gxm(k)−1, gxn(k)−1, a) + d(gxn(k), gxn(k)−1, a)],

ε ≤ d(gxm(k), gxn(k), a) ≤ s[d(gxm(k), gxm(k)−1, a) + d(gxn(k), gxm(k)−1, a)].

Taking the upper limit as k → ∞, in the above two inequalities and from (7) and (15), we get

ε

s
≤ lim sup

k→∞
d(gxm(k)−1, gxn(k), a) < s2ε. (17)

Now, from Lemma 3 we have f xm(k)−1R� f xn(k)−1 for all m(k), n(k) ∈ N0 with m(k) < n(k).
Hence, from (1) we conclude that

d(gxm(k), gxn(k), a) = d( f xm(k)−1, f xn(k)−1, a)

≤ βs(M(xm(k)−1, xn(k)−1, a))M(xm(k)−1, xn(k)−1, a) + LN(xm(k)−1, xn(k)−1, a), (18)

where

M(xm(k)−1, xn(k)−1, a) = max{d(gxm(k)−1, gxn(k)−1, a), d(gxm(k)−1, f xm(k)−1, a),

d(gxn(k)−1, f xn(k)−1, a),
d(gxm(k)−1, f xn(k)−1, a) + d(gxn(k)−1, f xm(k)−1, a)

2s
},

= max
{

d(gxm(k)−1, gxn(k)−1, a), d(gxm(k)−1, gxm(k), a), d(gxn(k)−1, gxn(k), a),

d(gxm(k)−1, gxn(k), a) + d(gxn(k)−1, gxm(k), a)
2s

}
, (19)

and

N(xm(k)−1, xn(k)−1, a) = min
{

d(gxm(k)−1, gxm(k), a), d(gxn(k)−1, gxn(k), a), d(gxm(k)−1, gxn(k), a),

d(gxn(k)−1, gxm(k), a)
}

. (20)

Taking the upper limit as k → ∞, in (19), (20) and using (7), (15)–(17) it follows that

ε

s2 ≤ lim sup
k→∞

M(xm(k)−1, xn(k)−1, a) < sε, (21)

and
lim sup

k→∞
N(xm(k)−1, xn(k)−1, a) = 0. (22)
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Now, taking the upper limit as k → ∞ in (18) and using (14), (21) and (22), we conclude that

1
s
=

ε

sε
≤

lim sup
k→∞

d(gxm(k), gxn(k), a)

lim sup
k→∞

M(xm(k)−1, xn(k)−1, a)
≤ lim sup

k→∞
βs(M(xm(k)−1, xn(k)−1, a)) ≤ 1

s
.

Thus, lim sup
k→∞

βs(M(xm(k)−1, xn(k)−1, a)) = 1
s . Hence, lim sup

k→∞
M(xm(k)−1, xn(k)−1, a) = 0,

which is a contradiction. Therefore, {gxn} is a b2-Cauchy sequence. As g(X) is b2-complete
subspace of X, then there exist z ∈ X such that

lim
n→∞

gxn = lim
n→∞

f xn = gz. (23)

Now, we show that z is a point of coincidence of f and g. From condition (iii), we
have R|g(X) is d-self closed and (1) holds for all x, y, a ∈ X with gxRgy and f xR� f y. As
{gxn} ⊆ g(X), {gxn} is R|g(X)-preserving and gxn → gz so there exists a subsequence
{gxn(k)} ⊆ {gxn} such that gxn(k)R|g(X)gz for all k ∈ N0 and since R is ( f , g)-closed then
f xn(k)R|g(X) f z for all k ∈ N0.

If f xn(k) = f z for all k > k0, and k0, k ∈ N0, then lim
k→∞

f xn(k) = f z, and since

lim
n→∞

f xn = gz, we have f z = gz, that is z is a coincidence point of f and g.

On other hand, if f xn(k) �= f z for all k > k0, and k0, k ∈ N0, then f xn(k)R|g(X) f z and
f xn(k) �= f z for all k > k0, and k0, k ∈ N0. Thus, gxn(k)R|g(X)gz and f xn(k)R�|g(X) f z, and
from (1), we have

d(gxn(k)+1, f z, a) = d( f xn(k), f z, a) ≤ βs(M(xn(k), z, a))M(xn(k), z, a) + LN(xn(k), z, a), (24)

where

M(xn(k), z, a) = max
{

d(gxn(k), gz, a), d(gxn(k), gxn(k)+1, a), d(gz, f z, a),

d(gxn(k), f z, a) + d(gz, gxn(k)+1, a)
2s

}
, (25)

and

N(xn(k), z, a) = min
{

d(gxn(k), gxn(k)+1, a), d(gz, f z, a), d(gxn(k), f z, a), d(gz, gxn(k)+1, a)
}

. (26)

Letting k → ∞ in (25), (26), we get

lim sup
k→∞

M(xn(k), z, a) = max
{

d(gz, f z, a),
lim sup

k→∞
d(gxn(k), f z, a)

2s

}
,

and
lim sup

k→∞
N(xn(k), z, a) = 0. (27)

From Lemma 1, we have

d(gz, f z, a)
s

≤ lim sup
k→∞

d(gxn(k), f z, a) ≤ sd(gz, f z, a). (28)

Thus,

max{d(gz, f z, a),
d(gz, f z, a)

2s2 } ≤ lim sup
k→∞

M(xn(k), z, a) ≤ max{d(gz, f z, a),
d(gz, f z, a)

2
},
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yields,

lim sup
k→∞

M(xn(k), z, a) = d(gz, f z, a), (29)

Again, taking the upper limit as k → ∞, in (24) and using Lemma 1, (27) and (29), we get

d(gz, f z, a)
s

≤ lim sup
k→∞

d(gxn(k)+1, f z, a)

≤ lim sup
k→∞

βs(M(xn(k), z, a)) lim sup
k→∞

M(xn(k), z, a)

≤ lim sup
k→∞

βs(M(xn(k), z, a))d(gz, f z, a)

≤ 1
s

d(gz, f z, a).

Hence, lim sup
k→∞

βs(M(xn(k), z, a)) = 1
s , so from the property of βs we conclude that

lim sup
k→∞

M(xn(k), z, a) = 0 implies d(gz, f z, a) = 0 for all a ∈ X. That is, gz = f z. This

shows that f and g have a coincidence point.

The next theorem shows that under some additional hypotheses we can deduce the
existence and uniqueness of a common fixed point.

Theorem 2. In addition to the hypotheses of Theorem 1, suppose that f and g are weakly compatible
and for all coincidence points u, v of f and g, there exists w ∈ X such that guRgw and gvRgw.
Then f and g have a unique common fixed point.

Proof. The set of coincidence points of f and g is not empty due to Theorem 1. Suppose
that u and v are two coincidence points of f and g, that is, f u = gu and f v = gv. We will
show that gu = gv. By our assumption, there exists w ∈ X such that

guRgw and gvRgw. (30)

Now, proceeding similarly to the proof of Theorem 1, we can define a sequence {wn}
in X as f wn = gwn+1 for all n ∈ N0 and w0 = w, with lim

n→∞
d(gwn, gwn+1, a) = 0. Since

guRgw0 (gvRgw0) and R is ( f , g)-closed, we conclude that f uR f w0( f vR f w0). Hence,
guRgw1(gvRgw1). By induction, we have

guRgwn and gvRgwn, ∀n ∈ N0. (31)

From (1) and using (31), we obtain

d(gu, gwn+1, a) = d( f u, f wn, a) ≤ βs(M(u, wn, a))M(u, wn, a) + LN(u, wn, a), (32)

where

M(u, wn, a) = max
{

d(gu, gwn, a), d(gu, f u, a), d(gwn, f wn, a),
d(gu, f wn, a) + d(gwn, f u, a)

2s

}
,

= max
{

d(gu, gwn, a), d(gwn, gwn+1, a),
d(gu, gwn+1, a) + d(gwn, gu, a)

2s

}
,

and

N(u, wn, a) = min
{

d(gu, f u, a), d(gwn, f wn, a), d(gu, f wn, a), d(gwn, f u, a)
}

= min{d(gu, gu, a), d(gwn, gwn+1, a), d(gu, gwn+1, a), d(gwn, gu, a)} = 0.
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Hence,

d(gu, gwn+1, a) ≤ βs(M(u, wn, a))M(u, wn, a)

<
1
s

M(u, wn, a) ≤ M(u, wn, a).

Since,

d(gu, gwn+1, a) < M(u, wn, a)

= max
{

d(gu, gwn, a), d(gwn, gwn+1, a),
d(gu, gwn+1, a) + d(gwn, gu, a)

2s

}
= max

{
d(gu, gwn, a), d(gwn, gwn+1, a)

}
.

Thus,

M(u, wn, a) = max
{

d(gu, gwn, a), d(gwn, gwn+1, a)
}

.

(Case1): if M(u, wn, a) = d(gu, gwn, a), then

d(gu, gwn+1, a) ≤ βs(d(gu, gwn, a))d(gu, gwn, a) <
1
s

d(gu, gwn, a) ≤ d(gu, gwn, a), (33)

it follows that d(gu, gwn+1, a) < d(gu, gwn, a). Thus, {d(gu, gwn, a)} is strictly decreasing.
Hence, there exists γ ≥ 0 such that lim

n→∞
d(gu, gwn, a) = γ. Letting n → ∞ in (33), we obtain

γ

s
≤ γ = lim

n→∞
d(gu, gwn+1, a) ≤ lim

n→∞
βs(d(gu, gwn, a)) lim

n→∞
d(gu, gwn, a)

≤ lim
n→∞

βs(d(gu, gwn, a))γ

≤ γ

s
,

this implies
1
s
≤ lim

n→∞
βs(d(gu, gwn, a)) <

1
s

.

Thus,

lim
n→∞

βs(d(gu, gwn, a)) =
1
s

.

From the property of βs, we conclude that lim
n→∞

d(gu, gwn, a) = 0.

(Case2): If M(u, wn, a) = d(gwn, gwn+1, a), then

d(gu, gwn+1, a) ≤ βs(d(gwn, gwn+1, a))d(gwn, gwn+1, a).

Therefore,

lim
n→∞

d(gu, gwn+1, a) ≤ lim
n→∞

βs(d(gwn, gwn+1, a)) lim
n→∞

d(gwn, gwn+1, a) = 0.

This yields lim
n→∞

d(gu, gwn+1, a) = 0. Therefore, from all cases we conclude that

lim
n→∞

d(gu, gwn, a) = 0. (34)

Similarly, we can show that
lim

n→∞
d(gv, gwn, a) = 0. (35)

199



Axioms 2021, 10, 101

Hence, from (34) and (35), we obtain gu = gv. That is, f and g have a unique point of
coincidence. From Lemma 2 f and g have a unique common fixed point.

Now, we give an example to justify the hypotheses of Theorem 1.

Example 2. Let X = {p, q, r, t} be a set with b2-metric d : X3 → R defined by

d(p, q, r) = 0, d(p, q, t) = 4, d(p, r, t) = 1, d(q, r, t) = 6,

with symmetry in all variables and if at least two of the arguments are equal then d(x, y, a) = 0.
Then (X, d) is a complete b2-metric space with s = 6

5 . Define a binary relation R on X by

R = {(p, p), (q, q), (r, r), (p, q), (q, r), (p, r), (r, p), (r, q)}.

Define f , g : X → X and β : (0, ∞) → [0, 1) as follows:

f =

(
p q r t
p p r t

)
, g =

(
p q r t
p r q t

)
, βs(t) =

1 + t
s(1 + 2t)

We show that all the hypotheses of Theorem 1 are satisfied. Clearly, (X, d) is a complete b2-metric
space and f (X) ⊆ g(X), g(X) is a b2-complete subspace of X. R = R|g(X) is transitive. There is
r ∈ X such that q = grR f r = r. Since R|g(X) is finite, then it is d-self closed. We show that R is
( f , g)-closed, we study the nontrivial cases:

• gpRgr = pRq ⇒ f pR f r = pRr ∈ R, grRgq = qRr ⇒ f rR f q = rRp,
• gpRgq = pRr ⇒ f pR f q = pRp, gqRgp = rRp ⇒ f qR f p = pRp,
• gqRgr = rRq ⇒ f qR f r = pRr.

Now, we check the contractive condition 2. The nontrivial cases are when a = t,
(

gpRgr and
f pR f r

)
,
(

grRgq and f rR f q
)

and
(

gqRgr and f qR f r
)
.

In all three cases, we get M(p, r, t) = M(r, q, t) = M(q, r, t) = 6, N(p, r, a) = N(r, q, t) =
N(q, r, t) = 0, and then

1 = d( f p, f r, t) = d(p, r, t) ≤ 35
13

= βs(6)6 = βs(M(p, r, a))M(p, r, a) + LN(p, r, a),

1 = d( f r, f q, t) = d(r, p, t) ≤ 35
13

= βs(6)6 = βs(M(r, q, a))M(r, q, a) + LN(r, q, a),

1 = d( f q, f r, t) = d(p, r, t) ≤ 35
13

= βs(6)6 = βs(M(q, r, a))M(q, r, a) + LN(q, r, a),

Therefore, all the hypotheses of Theorem 1 are satisfied. Then f and g have two coincidence fixed
points p and t. Noting that p, t are not R-comparable so the uniqueness of coincidence point is
not fulfilled.

By taking g = I in Theorems 1 and 2 we deduce the following result.

Corollary 1. Let (X, d) be a complete b2-metric space endowed with a transitive binary relation
R : X → X and f : X → X. Assume that f is almost R-Geraghty type contraction mapping and
the following conditions hold:

(i) there exists x0 in X such that x0R f x0;
(ii) R is f -closed;
(iii) R is d-self closed provided (2) holds for all x, y, a ∈ X with f xR� f y.

Then f has a fixed point. Moreover, if for u, v ∈ Fix( f ), there exists w ∈ X such that uRw and
vRw, then f has a unique fixed point.
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4. Results for Almost g-α-η Geraghty Type Contraction Mappings in b2-Metric Spaces

Fathollahi et al. [4] introduced the concepts of triangular 2-α-η-admissible mappings
as follows.

Definition 17 ([4]). Let (X, d) be a 2-metric space, f : X → X and α, η : X3 → [0, ∞). We say
that f is a triangular 2-α-η-admissible mapping if for all a ∈ X,

(i) α(x, y, a) ≥ η(x, y, a) implies α( f x, f y, a) ≥ η( f x, f y, a), x, y ∈ X,

(ii)
{

α(x, y, a) ≥ η(x, y, a),
α(y, z, a) ≥ η(y, z, a),

implies α(x, z, a) ≥ η(x, z, a).

If we take η(x, y, a) = 1, then we say that f is a triangular 2-α-admissible mapping. In addition, if
we take α(x, y, a) = 1, then we say that f is a triangular 2-η-subadmissible mapping.

Motivated by Fathollahi [4], we define the following concepts.

Definition 18. Let (X, d) be a b2-metric space, f , g : X → X and α, η : X3 → [0, ∞). We say
that f is a triangular g-b2-α-η-admissible mapping if for all a ∈ X,

(i) α(gx, gy, a) ≥ η(gx, gy, a) implies α( f x, f y, a) ≥ η( f x, f y, a), x, y ∈ X,

(ii)
{

α(gx, gy, a) ≥ η(gx, gy, a),
α(gy, gz, a) ≥ η(gy, gz, a),

implies α(gx, gz, a) ≥ η(gx, gz, a), x, y, z ∈ X.

When η(gx, gy, a) = 1, we say that f is a triangular g-b2-α-admissible mapping. In addition,
when α(gx, gy, a) = 1, we say that f is a triangular g-b2-η-subadmissible mapping.

Definition 19. Let (X, d) be a b2-metric space with s ≥ 1 and f , g : X → X, α, η : X3 → [0, ∞).
Suppose for all x, y, a ∈ X,

M(x, y, a) = max
{

d(gx, gy, a), d(gx, f x, a), d(gy, f y, a),
d(gx, f y, a) + d(gy, f x, a)

2s

}
,

and
N(x, y, a) = min{d(gx, f x, a), d(gy, f y, a), d(gx, f y, a), d(gy, f x, a)}.

We say that f is almost g-α-η Geraghty type contraction mapping if there exist L ≥ 0 and βs ∈ Ω
such that

∀x, y ∈ X, α(gx, gy, a) ≥ η(gx, gy, a)

⇒ d( f x, f y, a) ≤ βs(M(x, y, a))M(x, y, a) + LN(x, y, a), (36)

for all a ∈ X.

Now, we state the following corollaries

Corollary 2. Let (X, d) be a complete b2-metric space and f , g : X → X, such that f (X) ⊆ g(X),
g(X) is a b2-complete subspace of X. Assume that f is almost g-α-η Geraghty type contraction
mapping and the following conditions hold:

(i) there exists x0 in X such that α(gx0, f x0, a) ≥ η(gx0, f x0, a) for all a ∈ X;
(ii) f is a triangular g-b2-α-η-admissible mapping;
(iii) if {gxn} is a sequence in X such that α(gxn, gxn+1, a) ≥ η(gxn, gxn+1, a) for all a ∈ X,

n ∈ N0 and gxn → gz as n → ∞, then there exists a subsequence {gxn(k)} of {gxn} such
that α(gxn(k), gz, a) ≥ η(gxn(k), gz, a) for all k ∈ N0 and all a ∈ X.

Then f and g have a coincidence point in X. Moreover, suppose that for all coincidence points u, v of f
and g, there exists w ∈ X such that α(gu, gw, a) ≥ η(gu, gw, a) and α(gv, gw, a) ≥ η(gv, gw, a)
for all a ∈ X and f , g are weakly compatible. Then f and g have a unique common fixed point.
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Proof. Define R on X as

xRy ⇐⇒ α(x, y, a) ≥ η(x, y, a).

We note the following:

• since there exists x0 ∈ X such that α(gx0, f x0, a) ≥ η(gx0, f x0, a) for all a ∈ X then
gx0R f x0;

• if gxRgy then α(gx, gy, a) ≥ η(gx, gy, a). As f is a triangular g-b2-α-η-admissible
mapping, α( f x, f y, a) ≥ η( f x, f y, a) and so f xR f y. Thus, R is ( f , g)-closed;

• if gxRgy and gyRgz, then α(gx, gy, a) ≥ η(gx, gy, a) and α(gy, gz, a) ≥ η(gy, gz, a).
As f is a triangular g-b2-α-η-admissible mapping, α(gx, gz, a) ≥ η(gx, gz, a), that is,
gxRgz. Therefore, R|g(X) is transitive;

• if gxRgy, f xR � f y, then α(gx, gy, a) ≥ η(gx, gy, a), α( f x, f y, a) ≥ η( f x, f y, a). Since
f is almost g-α-η Geraghty type contraction, so (1) holds;

• from (iii), we have gxnRgxn+1 for all n ∈ N0 and gxn → gz as n → ∞, then there
exists a subsequence {gxn(k)} of {gxn} such that gxn(k)Rgz for all k ∈ N0. Hence, all
conditions of Theorem 1 are satisfied. Thus, f and g have a point of coincidence in X.

Finally, if for all coincidence points u, v of f and g, there exists w ∈ X such that α(gu, gw, a) ≥
η(gu, gw, a) and α(gv, gw, a) ≥ η(gv, gw, a), then guRgw and gvRgw. That is, all hypothe-
ses of Theorem 1 are satisfied. Therefore, f and g have a unique common fixed point.

By taking g = I in Definitions 18 and 19, we say that f is a triangular b2-α-η-admissible
mapping and f is almost α-η Geraghty type contraction mapping.

Now, we have the following corollary.

Corollary 3. Let (X, d) be a complete b2-metric space and f : X → X. Assume that f is almost
α-η Geraghty type contraction mapping and the following conditions hold:

(i) there exists x0 in X such that α(x0, f x0, a) ≥ η(x0, f x0, a) for all a ∈ X;
(ii) f is a triangular b2-α-η-admissible mapping;
(iii) if {xn} is a sequence in X such that α(xn, xn+1, a) ≥ η(xn, xn+1, a) for all a ∈ X, n ∈

N0 and xn → z as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), z, a) ≥ η(xn(k), z, a) for all k ∈ N0 and all a ∈ X.

Then f has a fixed point in X. Moreover, if for u, v ∈ Fix( f ) there exists w ∈ X such that
α(u, w, a) ≥ η(u, w, a) and α(v, w, a) ≥ η(v, w, a) for all a ∈ X, then f has a unique fixed point.

5. Fixed Point Results in Partially Ordered b2-Metric Spaces

Fixed point theorems for monotone operators in ordered metric spaces are widely
investigated and have found various applications in differential and integral equations.
This trend was started by Turinici [12] in 1986. Ran and Reurings in [24] extended the
Banach contraction principle in partially ordered sets with some applications to matrix
equations. The obtained result in [24] was extended and refined by many authors (see,
e.g., [25–27] and references therein). The aim of this section is to deduce our results in the
context of partially ordered b2-metric spaces. At first, we need to recall some concepts. Let
X be a nonempty set. Then (X,�, d) is called a partially ordered b2-metric space with s ≥ 1
if (X, d) is a b2-metric space and (X,�) is a partially ordered set.

Definition 20. Let (X,�) be a partially ordered set and x, y ∈ X. Then x and y are called
comparable if x � y or y � x holds.

Definition 21. Let (X,�) be a partially ordered set. A mapping f on X is said to be monotone
non-decreasing if for all x, y ∈ X, x � y implies f x � f y.
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Definition 22. Let (X,�) be a partially ordered set and f , g : X → X. One says f is g-non-
decreasing if for x, y ∈ X,

g(x) � g(y) implies f (x) � f (y).

By putting R =� in Theorems 1 and 2, we get the following results.

Corollary 4. Let (X, d,�) be a complete partially ordered b2-metric space. Assume that f , g :
X → X, are two mappings such that f (X) ⊆ g(X), g(X) is a b2-complete subspace of X and f is
a g-non-decreasing mapping. Suppose that there exists a function βs ∈ Ω and L ≥ 0 such that

d( f x, f y, a) ≤ βs(M(x, y, a))M(x, y, a) + LN(x, y, a), (37)

where

M(x, y, a) = max
{

d(gx, gy, a), d(gx, f x, a), d(gy, f y, a),
d(gx, f y, a) + d(gy, f x, a)

2s

}
,

and
N(x, y, a) = min

{
d(gx, f x, a), d(gy, f y, a), d(gx, f y, a), d(gy, f x, a)

}
,

for all x, y, a ∈ X with gx � gy. In addition, suppose that the following conditions hold:

(i) there exists x0 in X such that gx0 � f x0,
(ii) if {gxn} is a non-decreasing sequence in X with gxn → gz as n → ∞, then gxn � gz for all

n ∈ N0.

Then f and g have a coincidence point in X. Moreover, suppose that for all coincidence points u, v of
f and g, there exists w ∈ X such that gu � gw or gv � gw and f , g are weakly compatible. Then
f and g have a unique common fixed point.

By taking g = I in Corollary 4, we obtain the following corollary.

Corollary 5. Let (X, d,�) be a complete partially ordered b2-metric space. Assume that f : X →
X is a mapping satisfying the following conditions

(i) f is non-decreasing mapping;
(ii) there exist a function βs ∈ Ω and L ≥ 0 such that

d( f x, f y, a) ≤ βs(M(x, y, a))M(x, y, a) + LN(x, y, a), (38)

where

M(x, y, a) = max
{

d(x, y, a), d(x, f x, a), d(y, f y, a),
d(x, f y, a) + d(y, f x, a)

2s

}
,

and
N(x, y, a) = min

{
d(x, f x, a), d(y, f y, a), d(x, f y, a), d(y, f x, a)

}
,

for all x, y, a ∈ X with x � y;
(iii) there exists x0 in X such that x0 � f x0;
(iv) if {xn} is a non-decreasing sequence in X with xn → z as n → ∞, then xn � z for all

n ∈ N0.

Then f has a fixed point. Moreover, if u, v ∈ Fix( f ) such that there exists w ∈ X with u � w
and v � w, then f has a unique fixed point. Then f has a fixed point. Moreover, if for every pair
(u, v) of fixed points of f such that there exists w ∈ X with u � w and v � w, then f has a unique
fixed point.
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6. Application to Integral Equations

In this section, we study the existence of a solution for an integral equation using the
results proved in Section 3. Let X = (C[a, b], R) be the space of all real continuous functions
on [a, b] and ρ : X × X → R+ defined by

ρ(x, y) = max
t∈[a,b]

|x(t)− y(t)|, ∀x, y ∈ X.

Equip X with the 2-metric given by σ : X3 → R+ which is defined by

σ(x, y, a) = min{ρ(x, y), ρ(y, a), ρ(a, x)}, ∀x, y, a ∈ X.

As (X, ρ) is a complete metric space, (X, σ) is a complete 2-metric space, according to
Example 1, we define a b2-metric on X by

d(x, y, a) = (σ(x, y, a))2, ∀x, y, a ∈ X.

It follows that (X, d) is a complete b2-metric space with s = 3. Define a binary relation R
on X by

R = {(x, y) ∈ X2 : x(t) ≤ y(t) for all t ∈ [a, ∞)}. (39)

Now, consider the integral equation:

x(t) = q(t) +
b∫

a

h(t, s)A
(
s, x(s)

)
ds, (40)

where t ∈ [a, b] ⊆ R+. A solution of the Equation (40) is a function x ∈ X = C[a, b].
Assume that

(i) h : [a, b] × [a, b] → [0, ∞), q : [a, b] → R and A : [a, b] × R → R are continuous
functions on [a, b];

(ii)
b∫
a

h(t, s)dt ≤ r ≤ 1;

(iii) there exists x0 ∈ X such that

x0(t) ≤ q(t) +
b∫

a

h(t, s)A
(
s, x0(s)

)
ds.

(iv) A is nondecreasing in the second variable and for all x, y, a ∈ X, s ∈ [a, b] there exists
0 < k < 1√

3
such that

min {|A(s, x(s)
)− A

(
s, y(s)

)|, |A(s, x(s)
)− a(s)|, |A(s, y(s)

)− a(s)|}
≤ |A(s, x(s)

)− A
(
s, y(s)

)|
≤ ke−M(x,y,a) min{|x(s)− y(s)|, |x(s)− a(s)|, |y(s)− a(s)|},

where

M(x, y, a) = max
{

d(x, y, a), d(x, f x, a), d(y, f y, a),
d(x, f y, a) + d(y, f x, a)

2s

}
.

Now, we are equipped to state and prove our main result in this section.

Theorem 3. Under the assumptions (i)–(iv), the integral Equation (40) has a solution in X.
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Proof. Define f : X → X by

f x(t) = q(t) +
b∫

a

h(t, s)A
(
s, x(s)

)
ds.

Observe that x is a solution for (40) if and only if x is a fixed point of f . Let x, y, a ∈ X such
that xRy for all t ∈ [a, b]. Since A is nondecreasing in the second variable, we have

f x(t) = q(t) +
b∫

a

h(t, s)A
(
s, x(s)

)
ds

≤ q(t) +
b∫

a

h(t, s)A
(
s, y(s)

)
ds

= f y(t)

Hence, f xR f y and R is f -closed. From Condition (iii), we conclude that x0 ≤ f x0 for all
t ∈ [a, b], then x0R f x0. Now, for any x, y, a ∈ X such that f xR� f y we get

| f x(t)− f y(t)| = |
b∫

a

h(t, s)
(

A
(
s, x(s)

)− A
(
s, y(s)

))
ds|

≤
b∫

a

|h(t, s)||A(s, x(s)
)− A

(
s, y(s)

)|ds

≤ ke−M(x,y,a)
b∫

a

|h(t, s)|min{|x(s)− y(s)|, |x(s)− a(s)|, |y(s)− a(s)|}ds

≤ ke−M(x,y,a)
b∫

a

|h(t, s)|min{ max
s∈[a,b]

|x(s)− y(s)|, max
s∈[a,b]

|x(s)− a(s)|,

max
s∈[a,b]

|y(s)− a(s)|}ds

≤ ke−M(x,y,a)
b∫

a

|h(t, s)|min{ρ(x(s), y(s)), ρ(x(s), a(s)), ρ(y(s), a(s))}ds

≤ ke−M(x,y,a)
b∫

a

|h(t, s)|σ(x, y, a)ds ≤ rke−M(x,y,a)σ(x, y, a).

Therefore,

σ( f x, f y, a) ≤ max
t∈[a,b]

| f x(t)− f y(t)| ≤ rke−M(x,y,a)σ(x, y, a).

It follows that

d( f x, f y, a) ≤ r2k2e−2M(x,y,a)d(x, y, a) ≤ r2k2e−2M(x,y,a)M(x, y, a) ≤ e−2M(x,y,a)

3
M(x, y, a).

Thus,

d( f x, f y, a) ≤ e−2M(x,y,a)

3
M(x, y, a) + LN(x, y, a),
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where

M(x, y, a) = max
{

d(x, y, a), d(x, f x, a), d(y, f y, a),
d(x, f y, a) + d(y, f x, a)

2s

}
,

and
N(x, y, a) = min

{
d(x, f x, a), d(y, f y, a), d(x, f y, a), d(y, f x, a)

}
,

with βs(t) = e−2t

3 and L ≥ 0. Then f is almost a R-Geraghty type contraction. In addition,
if {xn} ∈ X is an R-preserving sequence such that limn→∞ xn = x ∈ X, then xn ≤ x for all
n. Hence, xnRx, for all n. Therefore, all the hypotheses of Corollary 1 are satisfied. Hence,
f has a fixed point which is a solution for the integral Equation (40) in X = C([a, b], R).

Author Contributions: All the authors contributed equally and significantly in writing this article.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: All the authors are grateful to the anonymous referees for their excellent sugges-
tions, which greatly improved the presentation of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gähler, S. 2-metrische Räume und ihre topologische Struktur. Math. Nachrichten 1963, 26, 115–148. [CrossRef]
2. Deshpande, B.; Chouhan, S. Common fixed point theorems for hybrid pairs of mappings with some weaker conditions in

2-metric spaces. Fasc. Math. 2011, 46, 37–55.
3. Dung, N.V.; Hang, V.T.L. Fixed point theorems for weak C-contractions in partially ordered 2-metric spaces. Fixed Point

Theory Appl. 2013, 2013, 161. [CrossRef]
4. Fathollahi, S.; Hussain, N.; Khan, L.A. Fixed point results for modified weak and rational α-ψ-contractions in ordered 2-metric

spaces. Fixed Point Theory Appl. 2014, 2014, 6. [CrossRef]
5. Naidu, S.V.R.; Prasad, J.R. Fixed point theorems in 2-metric spaces. Indian J. Pure Appl. Math. 1986, 17, 974–993.
6. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11.
7. Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. Fis. Univ. Modena 1998, 46, 263–276.
8. Aydi, H.; Bota, M.; Karapinar, E.; Moradi, S. A common fixed point for weak ϕ-contractions on b-metric spaces. Fixed Point Theory

2012, 13, 337–346.
9. Hussain, N.; Shah, M.-H. KKM mappings in cone b-metric spaces. Comput. Math. Appl. 2011, 62, 1677–1684 . [CrossRef]
10. Roshan, J.R.; Parvaneh, V.; Sedghi, S.; Shobkolaei, N.; Shatanawi, W. Common fixed points of almost generalized (ψ, φ)s-

contractive mappings in ordered b-metric spaces. Fixed Point Theory Appl. 2013, 2013, 159. [CrossRef]
11. Mustafa, Z.; Parvaneh, V.; Roshan, J.R.; Kadelburg, Z. b2-Metric spaces and some fixed point theorems. Fixed Point Theory Appl.

2014, 2014, 144. [CrossRef]
12. Turinici, M. Abstract comparison principles and multivariable Gronwall-Bellman inequalities. J. Math. Anal. Appl. 1986, 117,

100–127. [CrossRef]
13. Bhaskar, T.G.; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal.

Theory Methods Appl. 2006, 65, 1379–1393. [CrossRef]
14. Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165.

[CrossRef]
15. Ben-El-Mechaiekh, H. The Ran–Reurings fixed point theorem without partial order: A simple proof. J. Fixed Point Theory Appl.

2014, 16, 373–383. [CrossRef]
16. Imdad, M.; Khan, Q.; Alfaqih, W.M.; Gubran, R. A relation theoretic (F,R)-contraction principle with applications to matrix

equations. Bull. Math. Anal. Appl. 2018, 10, 1–12.
17. Gubran, R.; Imdad, M.; Khan, I.A.; Alfaqih, W.M. Order-theoretic common fixed point results for F-contractions. Bull. Math.

Anal. Appl. 2018, 10, 80–88.
18. Jungck, G.; Rhoades, B.E. Fixed Points for set valued functions without continuity. Indian J. Pure Appl. Math. 1998, 29, 227–238.

206



Axioms 2021, 10, 101

19. Abbas, M.; Jungck, G. Common fixed point results for noncommuting mappings withoutcontinuity in cone metric spaces. J. Math.
Anal. Appl. 2008, 341, 416–420. [CrossRef]

20. Alam, A.; Imdad, M. Relation-theoretic contraction principle. J. Fixed Point Theory Appl. 2015, 17, 693–702. [CrossRef]
21. Alam, A.; Imdad, M. Relation-theoretic metrical coincidence theorems, Filomat. arXiv 2017, arXiv:1603.09159.
22. Geraghty, M. On contractive mappings. Proc. Am. Math. Soc. 1973, 40, 604–608. [CrossRef]
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