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Preface to ”Fixed Point Theory and Its Related

Topics II”

This book contains the successful submissions to a Special Issue of Axioms on the subject area

of “Fixed Point Theory and Related Topics”. Fixed point theory arose from the Banach contraction

principle and has been studied for a long time. Its application mostly relies on the existence of

solutions to mathematical problems that are formulated from economics and engineering. Fixed

points of functions depend heavily on the considered spaces that are defined using the intuitive

axioms. Different spaces will result in different types of fixed point theorems

Hsien-Chung Wu

Editor
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Abstract: We point out a vital error in the paper of Gaba et al. (2019), showing that a (ρ,η,μ)
interpolative Kannan contraction in a complete metric space need not have a fixed point. Then
we give an appropriate restriction on a (ρ,η,μ)-interpolative Kannan contraction that guarantees
the existence of a fixed point and provide an equivalent formulation. Moreover, we show that this
formulation can be extended to the interpolative Reich-Rus-Ćirić type contraction.

Keywords: (ρ,η,μ)-interpolative Kannan contraction; fixed point; metric space.

MSC: Primary 47H05; Secondary 47H09, 47H10

1. Introduction and Preliminaries

A mapping T on a metric space (X, d) is called Kannan if there exists λ ∈ [0, 1
2 )

such that
d(Tx, Ty) ≤ λ[d(x, Tx) + d(y, Ty)], for all x, y ∈ X.

Kannan [1] proved that if X is complete, then a Kannan mapping admits a fixed point.
Please note that this well-known Kannan contraction that does not require a continuous
mapping. Recently, Karapinar [2] proposed a new Kannan-type contractive mapping
via the notion of interpolation and proved a fixed point theorem over metric space. The
interpolative method has been used by several researchers to obtain generalizations of
other forms of contractions [3–5]. This notion of interpolative contractions gives directions
to investigate whether existing contraction inequalities can be redefined in this way or
not. The purpose of this paper is to revisit the approach to attain a more general and less
restrictive formultion of Karapinar’s result [2]. Some examples are given to illustrate the
new approach.

Throughout this manuscript, we denote an interpolative Kannan contraction by IKC
and a (ρ, η, μ)-interpolative Kannan contraction by (ρ, η, μ)-IKC. The main result of Karap-
inar [2] is as follows:

Theorem 1. ([2] Theorem 2.2)
Let (X, d) be a complete metric space and T : X → X be an interpolative Kannan type

contraction, i.e., a self-map such that there are ρ ∈ [0, 1) and η ∈ (0, 1) so that

d(Ta, Tb) ≤ ρd(a, Ta)ηd(b, Tb)1−η (1)

Axioms 2021, 10, 212. https://doi.org/10.3390/axioms10030212 https://www.mdpi.com/journal/axioms
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for all a, b ∈ X with a �= Ta. Then T has a unique fixed point in X.

This theorem has been generalized in 2019 by Gaba et al. [6], where they initiated the
notion of (ρ, η, μ)-IKCs. In [6], the authors have defined (ρ, η, μ)-IKC and proved a fixed
point theorem for such mappings. The definition of that mapping is given as follows:

Definition 1. (See [6]) Let (X, d) a metric space and T : X → X be a self-map. We shall call
T a (ρ, η, μ)-IKC or GIK (Gaba Interpolative Kannan) contraction, if there exist 0 ≤ ρ < 1 and
0 < η, μ < 1 with η + μ < 1 such that

d(Ta, Tb) ≤ ρ d(a, Ta)ηd(b, Tb)μ (2)

whenever a �= Ta and b �= Tb.

Theorem 2. (See [6]) Let (X, d) be a complete metric space and T : X → X be a (ρ, η, μ)-IKC.
Then T has a fixed point in X.

The interpolative strategy has been successfully applied to a variant types of contrac-
tions (see [7,8]). One of our goals in this paper is to show that Theorem 2 has a gap by
giving an illustrated example. We will also give its proof correctly.

2. An Error in the Fixed Point Theorem for GIK Contractions

Theorem 2 is not true in general. The next example proves our assertion.

Example 1. Let X =
{

1
4 , 1

6

}
be endowed with the usual metric and T : X → X be given as

T
(

1
4

)
=

1
6

; T
(

1
6

)
=

1
4

.

We have:

0.0833 =

∣∣∣∣14 − 1
6

∣∣∣∣ ≤ 3
5

.
∣∣∣∣14 − 1

6

∣∣∣∣(1/3)
.
∣∣∣∣16 − 1

4

∣∣∣∣(1/3)
= 0.1144.

Hence, T is a GIK contraction with ρ = 3
5 and η = μ = 1

3 . Here, X is complete, but T has no
fixed point in X.

In the proof of Theorem 2 proposed by Gaba et al. in [6], the vital error emanated from
the fact that the inequality, for the real numbers a, η, μ such that 0 < η ≤ μ:

aη ≤ aμ

holds if and only if a ≥ 1, η ≤ μ.

3. Revisiting the GIK Contraction Fixed Point Theorem

We provide an alternative formulation to the existence of (ρ, η, μ)-IKCs.

Theorem 3. (GIK fixed point revisited) Let (X, d) be a complete metric space such that d(a, b) ≥ 1
for a �= b and T : X → X be a GIK contraction. Then T has a fixed point in X.

Proof. Following the steps of the proof of [2] (Theorem 2.2), we build the sequence (an)n≥1
of iterates an = Tna0, where a0 ∈ X is an arbitrary starting point. Without loss of generality,
making the hypothesis that an+1 �= an for each nonnegative integer n, we observe that

d(an, an+1) = d(Tan−1, Tan) ≤ ρ d(an−1, an)
η d(an, an+1)

μ,

2
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i.e.,
d(an, an+1)

1−μ ≤ ρ d(an−1, an)
η ≤ ρ d(an−1, an)

1−μ

since η < 1 − μ and d(an, an+1) ≥ 1.
Similar to the proof of [2] (Theorem 2.2), the usual strategy ensures that there is a

unique fixed point a∗ ∈ X.

Example 2. (See [6] Example 1.) Take X = {a, b, z, w}. We equip with metric:

a b z w

a 0 5/2 2 5/2

b 5/2 0 3/2 1

z 4 3/2 0 3/2

w 5/2 1 3/2 0

Consider on X the self-map T given as Ta = a, Tb = w, Tz = a and Tw = b.
We observed that the inequality:

d(Ta, Tb) ≤ ρd(a, Ta)ηd(b, Tb)μ

is satisfied for:

η =
1
8

, μ =
3
4

, ρ =
8
9
≤ 9

10
;

η =
1
9

, μ =
3
4

, ρ =
8
9
≤ 9

10
;

η =
1
8

, μ =
4
5

, ρ =
8
9
≤ 9

10
.

In all above cases, η + μ < 1, i.e., μ < 1 − η and the hypotheses of Theorem 3 are satisfied.
Moreover, the map clearly possesses a unique fixed point.

On the other hand, when a metric d is such that d(a, b) ≥ 1 whenever a �= y, the inequality

d(Ta, Tb) ≤ ρd(a, Ta)ηd(b, Tb)1−η

could just be replaced by the existence of two reals η, μ so that η + μ < 1,

d(Ta, Tb) ≤ ρd(a, Ta)ηd(b, Tb)μ.

4. Equivalent GIK Formulations

Let (X, d) be a metric space. Denote by Γ(GIK) the set of all GIK contractions on X.
For a mapping T : X → X, T is an s-GIK contraction if there are 0 ≤ ρ < 1, 0 < η, μ < 1
with η + μ < 1 so that

d(Ta, Tb) ≤ ρ [d(a, Ta)d(b, Tb)]
η+μ

2

whenever a �= Ta, b �= Tb.
Let us denote by Γ̃(GIK) the set of all s-GIK contractions on X.

Theorem 4. In a metric space (X, d), such that d(a, b) ≥ 1 for a �= b, we have the equality

Γ(GIK) = Γ̃(GIK).

Proof. Clearly,
Γ̃(GIK) ⊂ Γ(GIK)

3
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since for any s-GIK contraction T, one has

d(Ta, Tb) ≤ ρ [d(a, Ta)d(b, Tb)]
η+μ

2 ⇐⇒ d(Ta, Tb) ≤ ρ d(a, Ta)
η
2 d(b, Tb)

μ
2

and
η

2
+

μ

2
=

η + μ

2
< η + μ < 1.

Now, let T ∈ Γ(GIK), so there are 0 ≤ ρ < 1 and 0 < η, μ < 1 with η + μ < 1 so that

d(Ta, Tb) ≤ ρd(a, Ta)ηd(b, Tb)μ (3)

whenever a �= Ta, b �= Tb.
Additionally, due to symmetry,

d(Ta, Tb) = d(Tb, Ta) ≤ ρd(b, Tb)ηd(a, Ta)μ. (4)

Multiplying the inequalities (3) and (4), it follows that

d(Ta, Tb) ≤ ρ [d(a, Ta)d(b, Tb)]
η+μ

2 . (5)

So far, in our discussions regarding GIK contractions, we overlooked the case where
η + μ = 1. This case is actually central in the present investigation. Indeed, in the definition
of a (ρ, η, μ)-IKC, if we allow the sum η + μ to attain 1, one can see that the IKC in the
sense of Karapinar [2] is a particular case of a GIK. In particular, we have:

Definition 2. Let (X, d) a metric space and T : X → X be a self-map. T is called an extended
(ρ, η, μ)-IKC or extended GIK contraction, if there are 0 ≤ ρ < 1 and 0 < η, μ < 1 with η + μ ≤ 1
so that

d(Ta, Tb) ≤ ρ d(a, Ta)ηd(b, Tb)μ (6)

whenever a �= Ta and b �= Tb.

For a metric space (X, d), let’s denote by e-Γ(GIK) the set of all extended GIK contrac-
tions on X. Moreover, if Γ(IK) denotes the set of all interpolative Kannan type contractions,
it is clear that:

Corollary 1. In a metric space (X, d), such that d(a, b) ≥ 1 for a �= y, we have

Γ(IK) ⊂ e-Γ(GIK).

For a mapping T : X → X, T is an s-GIK contraction if there are 0 ≤ ρ < 1 and
0 < η, μ < 1 with η + μ < 1 so that

d(Ta, Tb) ≤ ρ [d(a, Ta)d(b, Tb)]
η+μ

2

whenever a �= Ta and b �= Tb.
Furthermore, if we plug η + μ = 1 in (5), we achieve

d(Ta, Tb) ≤ ρ [d(a, Ta)d(b, Tb)]
1
2 , (7)

which naturally leads to

Corollary 2.

T : X → X ∈ Γ(IK)

4
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��	
T : X → X and there is 0 ≤ ρ < 1 so that

d(Ta, Tb) ≤ ρ [d(a, Ta)d(b, Tb)]
1
2

whenever a �= Ta and b �= Tb.

5. GI-RRC Contractions

As an extension of interpolative Kannan-type contractive mappings, Karapinar et al.
introduced Interpolative Reich-Rus-Ćirić type contractions (see [9]). The definition is
given below:

Definition 3. ([9]) In a metric space (X, m), a mapping T : X → X is called an interpolative
Reich-Rus-Ćirić type contraction if it satisfies

m(Ta, Tb) ≤ ρ[d(a, y)]μ[m(a, Ta)]η [m(b, Tb)]1−η−μ

for all a, b ∈ X \ Fix(T) = {σ ∈ X : Tσ = σ} for some ρ ∈ [0, 1) and for η, μ ∈ (0, 1).

Theorem 5. ([9]) Let (X, d) be a complete metric space and T : X → X be an interpolative
Reich-Rus-Ćirić type contraction mapping. Then T has a fixed point in X.

In the present paper, we introduce the concept of (ρ, η, μ, γ)-interpolative Reich-Rus-
Ćirić type contractions, which we also call GI-RRC contractions.

Definition 4. Let (X, d) a metric space and T : X → X be a self-map. T is named a (ρ, η, μ)-
Reich-Rus-Ćirić contraction or GI-RRC (Gaba Interpolative Reich-Rus-Ćirić) contraction, if there
exist 0 ≤ ρ < 1, 0 < η, μ, μ < 1 with η + μ + γ < 1 such that

d(Ta, Tb) ≤ ρ[d(a, y)]η [d(a, Ta)]μ[d(b, Tb)]γ (8)

for all a, b ∈ X \ Fix(T).

Let us denote by Γ(GI − RRC) the set of all GI-RRC contractions on X. A mapping
T : X → X, T is an s-GI-RRC contraction if there exist 0 ≤ ρ < 1, 0 < η, μ, γ < 1 with
η + μ + γ < 1 such that

d(Ta, Tb) ≤ ρ d(a, b)η [d(a, Ta)d(b, Tb)]
μ+γ

2

whenever a �= Ta and b �= Tb.
Let us denote by Γ̃(GI − RRC) the set of all s-GI-RRC contractions on X.

Theorem 6. In a metric space (X, d), such that d(a, b) ≥ 1 for a �= b, we have the equality

Γ(GI − RRC) = Γ̃(GI − RRC).

Proof. Clearly,
Γ̃(GI − RRC) ⊂ Γ(GI − RRC)

since for any s-GI-RRC contraction T, one has

d(Ta, Tb) ≤ ρ d(a, b)η [d(a, Ta)d(b, Tb)]
μ+γ

2 ⇐⇒ d(Ta, Tb) ≤ ρd(a, b)η d(a, Ta)
η
2 d(b, Tb)

μ
2

and
μ

2
+

γ

2
=

μ + γ

2
< μ + γ < 1.

5
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Now, let T ∈ Γ(GI − RRC), so there are 0 ≤ ρ < 1, 0 < η, μ, γ < 1 with η + μ + γ < 1
so that

d(Ta, Tb) ≤ ρd(a, b)ηd(a, Ta)μd(b, Tb)γ (9)

whenever a �= Ta, b �= Tb.
Additionally, due to symmetry,

d(Ta, Tb) = d(Tb, Ta) ≤ ρd(b, a)ηd(b, Tb)μd(a, Ta)γ. (10)

Multiplying the inequalities (9) and (10), it follows that

d(Ta, Tb) ≤ ρ d(a, b)η [d(a, Ta)d(b, Tb)]
μ+γ

2 . (11)

To include the interpolative Reich-Rus-Ćirić type contraction in our study, we allow
η + μ + γ = 1 in the following definition:

Definition 5. Let (X, d) be a metric space and T : X → X be a self-map. T is named an
extended (ρ, η, μ)-Reich-Rus-Ćirić contraction or extended GI-RRC contraction, if there exist
0 ≤ ρ < 1, 0 < η, μ, μ < 1 with η + μ + γ ≤ 1 such that

d(Ta, Tb) ≤ ρ[d(a, y)]η [d(a, Ta)]μ[d(b, Tb)]γ (12)

for all a, b ∈ X \ Fix(T).

For a metric space (X, d), let’s denote by e-Γ(GI − RRC) the set of all extended GI-RRC
contractions on X. Moreover, if Γ(GI − RRC) denotes the set of all interpolative Kannan
type contractions, then it is clear that:

Corollary 3. In a metric space (X, d) so that d(a, b) ≥ 1 for a �= b, we have

Γ(GI − RRC) ⊂ e-Γ(GI − RRC).

For a mapping T : X → X, T is an s-GI-RRC contraction if 0 ≤ ρ < 1, 0 < η, μ, γ < 1
with η + μ + γ < 1 such that

d(Ta, Tb) ≤ ρ d(a, b)η [d(a, Ta)d(b, Tb)]
μ+γ

2

whenever a �= Ta, b �= Tb.
Furthermore, if we plug η + μ + γ = 1 in (11), we achieve

d(Ta, Tb) ≤ ρ [d(a, Ta)d(b, Tb)]
1
2 , (13)

which naturally leads to:

Corollary 4.

T : X → X ∈ Γ(GI − RRC)��	
T : X → X and there exists 0 ≤ ρ < 1 such that

d(Ta, Tb) ≤ ρd(a, b)η [d(a, Ta)d(b, Tb)]
1−η

2

whenever a �= Ta, b �= Tb.

6
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6. Conclusions

In this paper, we provided conditions under which a (ρ, η, μ)-IKC on a complete
metric space can lead a fixed point. Moreover, we show how this new formulation can be
extended to the interpolative Reich-Rus-Ćirić type contraction. The authors’ plan is, in
another manuscript (part 2 of the present manuscript), to enlarge the scope of this new
formulation to the frame of different type of interpolative contractions.
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Abstract: In this work, we introduce the notion of cascading non-expansive mappings in the setting
of CAT(0) spaces. This family of mappings properly contains the non-expansive maps, but it differs
from other generalizations of this class of maps. Considering the concept of Δ-convergence in metric
spaces, we prove a principle of demiclosedness for this type of mappings and a Δ-convergence
theorem for a Mann iteration process defined using cascading operators.
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1. Introduction

In [1], Lennard et al. introduced a class of nonlinear operators in Banach spaces called
cascading non-expansive mappings which generalizes the non-expansive mappings. These
mappings arise naturally in the setting of Banach spaces which contain an isomorphic copy
of �1 or c0 and some important concepts like reflexivity [1] and weak compactness [2] have
been characterized in terms of the fixed point property for this family of operators.

Although these mappings were introduced in the framework of Banach spaces, its
definition depends fundamentally on three properties of the space, the metric, the com-
pleteness, and the concept of convexity, so it makes sense to define cascading operators in
metric spaces where there is a notion of convexity.

A nonlinear setting which is natural to extend the concept of cascading operator is
that of uniquely geodesic metric spaces, since in these spaces the notion of geodesic allows
a definition of convex sets. In relation to fixed point problems, it has been specially fruitful
to consider the subclass of CAT(0) spaces, which possesses a metric structure that is similar
to the one in Hilbert spaces.

In Section 3, we introduce the cascading operators in the setting of CAT(0) spaces
and, following the reasoning by Lennard et al. in [1], we distinguish this family from
other collections of operators, which encompass the most common generalizations of
asymptotically non-expansive mappings, studied in metric spaces.

In Section 4, mainly inspired by the results by Dhompongsa et al. in [3] about asymptot-
ically non-expansive mappings and Khamsi et al. in [4] concerning asymptotically pointwise
non-expansive mappings, we establish a demiclosedness principle for cascading non-expansive
mappings in CAT(0) spaces and derive some fixed point results for this family of oper-
ators. We also prove a Δ-convergence theorem for a Mann iteration process ([5]) using a
cascading operator.

2. Preliminaries

A geodesic joining two points x, y in a metric space (X, d) is a mapping γ : [0, 1] → X
such that γ(0) = x, γ(1) = y and, for any t, t′ ∈ [0, 1], we have that:

d(γ(t), γ(t′)) = |t − t′|d(x, y).

Axioms 2021, 10, 20. https://dx.doi.org/10.3390/axioms10010020 https://www.mdpi.com/journal/axioms
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A metric space (X, d) is geodesic if every two points in X are joined by a geodesic.
(X, d) is said to be uniquely geodesic, if, for every x, y ∈ X, there is exactly one geodesic
joining x and y for each x, y ∈ X, which we denote by [x, y]. The point γ(t) in [x, y] is also
denoted by (1 − t)x ⊕ ty.

As a subclass of the uniquely geodesic spaces, we have the CAT(0) spaces which
usually are considered as the nonlinear analogue of Hilbert spaces. These spaces were
introduced by Aleksandrov in [6].

Definition 1. Let (X, d) be a uniquely geodesic metric space, x, y, z ∈ X. We say that (X, d) is
CAT(0) if

d
(( x

2
⊕ y

2

)
, z
)2

≤ 1
2

d(x, z)2 +
1
2

d(y, z)2 − 1
4

d(x, y)2.

The inequality from above is known as the CN inequality of Bruhat and Tits ([7]).
The following result is very useful in order to perform calculations in CAT(0) spaces.

Proposition 1. ([7] Proposition 2.2) Let X be a CAT(0) space. Then, for all x, y, w ∈ X and
t ∈ [0, 1],

d((1 − t)x ⊕ ty, w) ≤ (1 − t)d(x, w) + td(y, w).

Definition 2. A subset C of a uniquely geodesic space is convex if, for any x, y ∈ C, we have that
[x, y] ⊂ C. If K ⊂ X, we define

conv(K) =
⋂
{D ⊂ X : D ⊃ K, D is closed and convex}.

A class of mappings widely studied (see [8–10] among others) in the setting of metric
fixed point theory is the class of asymptotically non-expansive mappings.

Definition 3. Let (X, d) be a metric space. A mapping T : X → X is said to be asymptotically
non-expansive if there exists a sequence of positive numbers (kn), with limn→∞ kn = 1, such that,
for all n ∈ N y x, y ∈ X,

d(Tnx, Tny) ≤ knd(x, y). (1)

These functions were defined first in the context of normed spaces by Kirk in [8]
and properly extend the collection of non-expansive mappings, that is, those functions
T : X → X, such that d(Tx, Ty) ≤ d(x, y).

Finally, given a metric space X, a nonempty set C ⊂ X and a mapping T : C → C,

Fix(T) = {x ∈ C : Tx = x}.

3. Cascading Non-Expansive Mappings

In this section, we introduce the notion of cascading non-expansive mappings in the
setting of complete CAT(0) spaces and compare it to other types of functions that include
the most common generalizations of asymptotically non-expansive mappings studied both
in metric spaces and Banach spaces.

Definition 4. Let (X, d) be a complete CAT(0) space and C ⊂ X a closed convex set.
Define C0 = C, C1 = conv(T(C)),..., Cn = conv(T(Cn−1)). If there exists {kn} ⊂ [1, ∞)

with kn → 1 as n → ∞ such that, for all x, y ∈ Cn

d(Tx, Ty) ≤ kn+1d(x, y),

we say that T is a cascading non-expansive mapping.

10
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Next, we recall the notions of totally asymptotically non-expansive mapping, asymp-
totically pointwise non-expansive mapping and mapping of an asymptotically
non-expansive type.

Definition 5. [11] Let (X, d) be a metric space. A mapping T : X → X is called totally asymptoti-
cally non-expansive if there are nonnegative real sequences (k(1)n ) and (k(2)n ) with k(1)n , k(2)n → 0, as
n → ∞ and a strictly increasing and continuous function ψ : R+ → R+ with ψ(0) = 0 such that:

d(Tnx, Tny) ≤ d(x, y) + k(1)n ψ(d(x, y)) + k(2)n n ∈ N, x, y ∈ X.

Remark 1. This definition unifies several generalizations of the asymptotically non-expansive
mappings.

If ψ(t) = t, we get the nearly asymptotically non-expansive mappings ([12]).
If ψ(t) = t and for all n ∈ N, k(1)n = 0 and

k(2)n = max

(
0, sup

x,y∈X
d(Tnx, Tny)− d(x, y)

)
, we recover the asymptotically non-expansive

mappings in the intermediate sense ([13]).
If ψ(t) = t and for all n ∈ N, k(2)n = 0, we have the asymptotically non-expansive mappings.

Definition 6. [14] Let (X, d) be a metric space. A mapping T : X → X is called asymptotically
pointwise non-expansive if there exists a sequence of mappings αn : X → [0, ∞) such that, for
every x ∈ X, lim supn αn(x) ≤ 1, it is verified that:

d(Tnx, Tny) ≤ αn(x)d(x, y), n ∈ N, x, y ∈ X.

Definition 7. [15] Let (X, d) be a metric space. A mapping T : X → X is said to be an
asymptotically non-expansive type if, for every x ∈ X,

lim sup
n

(sup{d(Tnx, Tny)− d(x, y)) : y ∈ X}) ≤ 0.

In [1], some examples are given that prove that the collections of cascading non-
expansive mappings and asymptotically non-expansive mappings differ, in the sense that,
in general, neither collection is contained in the other. Taking as reference these examples,
we distinguish the collection of cascading non-expansive mappings from the respective
classes of functions given in Definitions 5, 6, and 7 in the setting of CAT(0) spaces. We recall
that a linear space X is CAT(0) if and only if X is pre-Hilbert ([7]) Proposition 1.14 p. 167.

Example 1. [1] (Example 2.5) Let X = (R, | · |) and K =
[
0, 1/

√
2
]
. Let Q denote the set of

rational numbers and I = R/Q be the set of irrational numbers. Define U : K → K such that:

Ux =

{
min

(√
2x, 1√

2

)
, if x ∈ Q∩ K,

Ux = 0, if x ∈ I/K.

If, for all n ∈ N, Kn = conv(U(Kn−1)), where K0 = K, then 0, 1
2 ∈ Kn, but∣∣∣∣U(0)− U

(
1
2

)∣∣∣∣ = ∣∣∣∣0 − 1√
2

∣∣∣∣ = √
2
∣∣∣∣0 − 1

2

∣∣∣∣.
From this, we conclude that U is not a cascading non-expansive mapping. Observe that, for

all n ≥ 2 and x ∈ K, Tnx = 0 and hence T is totally asymptotically non-expansive, asymptotic
pointwise non-expansive and of an asymptotically non-expansive type.

The example shows that the family of asymptotically non-expansive maps is not contained in
the class cascading operators in CAT(0) spaces.
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Example 2. In l2, we consider the following norm:

‖x‖ =

(
∞

∑
i=1

|γix(i)|2
)1/2

where (γi) ⊂ (0, 1) is a sequence such that γi → 1, γi+1
γi

is decreasing. It is straightforward to see
that X = (l2, ‖ · ‖) is a Hilbert space and hence CAT(0) ([7] Proposition 1.14 p. 167).

Let C = C0 =
{

x ∈ Bl2 : x(i) ≥ 0, i ∈ N
}

and, for n ≥ 1,

Cn = {x ∈ C : x(i) = 0, 1 ≤ i ≤ n}.

Let T : C → C be such that

(Tx)(j) =

{
0, if j = 1
x(j − 1), if j > 1.

It is easy to check that, for every n ∈ N, Cn = conv(T(Cn−1)).
Let us see that T is a cascading non-expansive mapping. If x, y ∈ Cn, then

‖Tx − Ty‖ =

(
∞

∑
j=1

(γn+j+1)
2|x(n + j)− y(n + j)|2

)1/2

=

⎛⎝ ∞

∑
j=1

(
γn+j+1

γn+j

)2(
γn+j

)2|x(n + j)− y(n + j)|2
⎞⎠1/2

≤ γn+2

γn+1
‖x − y‖.

If kn = γn+2
γn+1

, then kn → 1; therefore, T is a cascading non-expansive mapping.
However,

‖Tne1 − Tne2‖ =
(

γ2
n + γ2

n+1

)1/2
=

(
γ2

n + γ2
n+1

γ2
1 + γ2

2

)1/2

‖e1 − e2‖

and, as
(

γ2
n+γ2

n+1
γ2

1+γ2
2

)1/2
→
(

2
γ2

1+γ2
2

)1/2
> 1, we deduce that T is neither totally asymptotically

non-expansive, pointwise asymptotically non-expansive nor of an asymptotically non-expansive type.
This example shows that the family of cascading operators is not contained in the family of

asymptotically non-expansive maps in CAT(0) spaces.

Example 3. Consider the following equivalence relation over the set N× [0, 1]:

(n, 0)R(m, 0) and (n, t)R(n, t) n, m ∈ N, t ∈ [0, 1].

Now, we define a metric on X = (N× [0, 1])/R as:

d((n, t), (n, s)) = |t − s| and if n �= m, d((n, t), (m, s)) = t + s.

It is easy to see that (X, d) is a complete R-tree ([7] p. 167), and, consequently, it is a complete
CAT(0) space.

Let C0 = X and, for every n ∈ N, Cn = ((N− {1, . . . , n})× [0, 1])/R.

12
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Let (γn) ⊂ [1, ∞) be such that γn is a strictly decreasing sequence and 1 < ∏∞
n=1 γn < ∞.

Define T : C → C such that, if x = (m, t), then

Tx = (m + 1, min(1, γmt)).

Observe that T is well defined. Let us see that T is a cascading non-expansive mapping. It can
easily be checked that, for every n ∈ N, Cn = conv(T(Cn−1)).

Let x, y ∈ Cn and consider the following cases:
Case 1. x = (m, t), y = (m, s) (m ≥ n + 1)

d(Tx, Ty) = |min(1, γmt)− min(1, γms)| ≤ γm|t − s| ≤ γn+1d(x, y).

Case 2. x = (m, t), y = (p, s) with n + 1 ≤ m < p.

d(Tx, Ty) = min(1, γmt) + min(1, γps) ≤ γmt + γps ≤ γn+1d(x, y).

As γn → 1 when n → ∞, it follows that T is cascading non-expansive. However, T is not
asymptotically non-expansive because, if x = (1, t), y = (1, s) with s < t < 1

∏∞
n=1 γn

, then:

Tnx = (1 + n, min(1, γn . . . γ1t))

= (1 + n, γn . . . γ1t)

due to t < 1
∏∞

n=1 γn
.

Analogously, Tny = (1 + n, γn . . . γ1s). Then,

d(Tnx, Tny) = γn . . . γ1d(x, y).

However, γn · · · γ1 → ∏∞
n=1 γn > 1 when n → ∞. Consequently,

lim sup
n

d(Tnx, Tny) > d(x, y)

and T does not belong to the families given in Definitions 5–7.

Remark 2. In [16], the author studied several generalizations of the asymptotically pointwise
non-expansive mappings in the context of complete CAT(0) spaces. However, throughout similar
examples to those given above, it can be proved that the collection of cascading non-expansive
mappings differs from such generalizations.

4. Fixed Point Results for Cascading Operators

Cascading non-expansive operators constitute a new object of study in the framework
of CAT(0) spaces and, in general, they do not contain and are not contained in the collection
of asymptotically non-expansive mappings as it was illustrated in Section 3. Thus, the
theorems in this section are new and do not follow from the results related to asymptotically
non-expansive maps.

Let (X, d) be a complete CAT(0) space, (xn) be a bounded sequence in X and x ∈ X.
Let r(x, (xn)) = lim supn→∞ d(x, xn). The asymptotic radius of (xn) is given by

r((xn)) = inf {r(x, (xn)) : x ∈ X}

and the asymptotic center of r((xn)) is the set

A((xn)) = {x ∈ X : r(x, (xn)) = r((xn))}.

It is a well known fact that, in complete CAT(0) spaces, A((xn)) is a singleton ([17]
Proposition 3.2).

13
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The following notions of convergence were introduced by Lim and Kakavandi, re-
spectively, in the setting of metric spaces. These notions resemble the weak convergence
defined in Banach spaces and in fact they coincide with the weak convergence in Hilbert
spaces ([18], p. 3452).

Definition 8. Let (X, d) be a complete CAT(0) space and (xn) be a bounded sequence in X.
(i) ([19] p. 180) We say that (xn) Δ-converges to x ∈ X if A

(
(xnk )

)
= {x} for every

subsequence (xnk ) of (xn).
(ii) ([18]) We say that (xn) weakly converges to x ∈ X if

lim
n→∞

(
d2(xn, x)− d2(xn, y) + d2(x, y)

)
= 0, y ∈ X.

Remark 3. From Example 4.7 in [20], if follows that these notions of convergence are different.

Let (X, ‖ · ‖) be a Banach space, C ⊂ X a nonempty closed convex set, and T : C → X
be a mapping. If I : X → X denotes the identity map, it is said that I − T is demiclosed at
zero, if, for any sequence (xn) ⊂ C such that xn weakly converges to x and ‖(I − T)(xn)‖ →
0, we have that Tx = x.

One of the fundamental results in metric fixed point theory for non-expansive map-
pings is the demiclosedness principle of Browder [21], which establishes that, if X is
an uniformly convex Banach space, C ⊂ X is a closed convex set and T : C → X is a
non-expansive mapping, then I − T is demiclosed.

Several works ([4,12,17,22,23] among others) have been devoted to prove demiclosed-
ness principles both in Banach and metric spaces for mappings which generalize the
non-expansive ones. The following theorem could be interpreted as a demiclosedness
principle for cascading non-expansive mappings with respect to the convergence given in
(i) in Definition 8.

Theorem 1. Let (X, d) be a complete CAT(0) space and C a closed convex subset of X. Let
T : C → C be a cascading non-expansive mapping and (kn) be given as in Definition 4 with
∏∞

j=1 kj < ∞. If (xn) ⊂ C Δ-converges to w and limn→∞ d(xn, Txn) = 0, then Tw = w.

Proof. Since d(xn, Txn) → 0, there exists a subsequence (xnl ) such that
d(xnl , Tl xnl ) → 0 whenever l → ∞. Let us see that, if yl = Tl xnl , then yl Δ-converges

to w. Indeed, as (xn) Δ-converges to w, for any x ∈ X:

lim sup
j→∞

d
(

ylj
, w
)

= lim sup
j→∞

d
(

xnlj
, w
)
≤ lim sup

j→∞
d
(

xnlj
, x
)

= lim sup
j→∞

d
(

ylj
, x
)

.

From this, we conclude that w ∈ A
({

ylj

})
, but, since Proposition 3.2 in [17] im-

plies that A
({

ylj

})
is a singleton, it follows that A

({
ylj

})
= {w} and therefore (yl)

Δ-converges to w. By Proposition 3.2 in [24], w ∈ D = ∩∞
n=1Cn. Observe that

d(Tyl , yl) = d
(

Tl+1xnl , Tl xnl

)
≤
(

l

∏
i=1

ki

)
d
(
Txnl , xnl

)
→ 0

when l → ∞.
Hence, for z ∈ X, r(z, (Tyl)) = r(z, (yl)).
In particular,

14
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r(Tw, (yl)) = lim sup
l→∞

d(Tw, Tyl) ≤ lim sup
l→∞

kld(w, (yl))

= r(w, (yl)),

but, since (yl) Δ-converges to w, r(w, (yl)) ≤ r(Tw, (yl)).
Consequently, r(w, (yl)) = r(Tw, (yl)) and, since A((yl)) is a singleton, we get that

w = Tw.

Theorem 1 also holds when we consider the notion of convergence given in ii) in
Definition 8.

Corollary 1. Let (X, d) be a complete CAT(0) space and C a closed convex subset of X. Let
T : C → C be a cascading non-expansive mapping and (kn) be given as in Definition 4 with
∏∞

j=1 kj < ∞. If (xn) ⊂ C is such that limn→∞ d(xn, Txn) = 0 and (xn) weakly converges to w,
then Tw = w.

Proof. If (xn) weakly converges to w, Proposition 2.5 in [20] implies that (xn) Δ-converges
to w, and the conclusion follows from Theorem 1.

By considering the hypothesis of boundedness over C, we have that:

Corollary 2. Let (X, d) be a complete CAT(0) space and C a closed convex subset of X. Let
T : C → C be a cascading non-expansive mapping and (kn) be given as in Definition 4 with
∏∞

j=1 kj < ∞. If C is bounded, the set of fixed points of T, denoted by Fix(T), is a nonempty closed
convex set.

Proof. Let x0 ∈ C and xn = Tnx0. From [24] (p. 3690), (xn) has a subsequence (xnj) which
Δ-converges to w and by Proposition 3.2 in [24]

w ∈ ∩∞
j=1conv

{
xnj , xnj+1 , . . .

}
⊂ ∩∞

n=1Cn.

Consequently, ∩∞
n=1Cn is a nonempty set, and, since T : ∩∞

n=1Cn → ∩∞
n=1Cn is non-

expansive, the conclusions follows from Theorem 5.1 in [4].

Lemma 1. Let (X, d) be a complete CAT(0) space and C a closed convex bounded subset of X. Let
T : C → C be a cascading non-expansive mapping and (kn) be as in Definition 4 with ∏∞

j=1 kj < ∞.
Consider the following variant of the Mann iteration process ([5]):

xn+1 = (1 − αn)Txn ⊕ αnT2xn (2)

where x0 is any element in C and there exist β1, β2 > 0, such that, for all n ∈ N, 0 < β1 ≤ αn ≤
1 − β2 < 1. It holds that:

1. If w ∈ Fix(T), then limn→∞ d(xn, w) exists.
2. limn→∞ d(xn, Txn) = 0.

Proof. Remember that, by Corollary 2, Fix(T) is a nonempty set. Let w ∈ Fix(T).

1. By Proposition 1,

d(xn+1, w) = d((1 − αn)Txn ⊕ αnT2xn, w) ≤ (1 − αn)d(Txn, w)

+ αnd(T2xn, T2w)

≤ (1 − αn)knd(xn, w) + kn+1knαnd(xn, w)

= (1 + αnkn(kn+1 − 1))d(xn, w)

15
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and, from Lemma 1.2 in [25], we get that limn→∞ d(xn, w) exists.
2. Let r = limn→∞ d(xn, w). Since xn ∈ Cn and w ∈ Fix(T),

lim sup
n→∞

d(Txn, w) = lim sup
n→∞

d(Txn, Tw) ≤ lim sup
n→∞

kn+1d(xn, w) = r.

Similarly, lim supn→∞ d(w, T2xn) ≤ r, so, by Lemma 4.5 in [17], we have that
limn→∞ d(Txn, T2xn) = 0.
On the other hand,

d(xn+1, Txn+1) ≤ d
(

xn+1, T2xn

)
+ d
(

T2xn, Txn+1

)
≤ (1 − αn)d(Txn, T2xn) + knαnd(Txn, T2xn)

≤ (1 − αn + knαn)d
(

Txn, T2xn

)
→ 0.

The following example shows a simple application of Theorem 1 and generalizes
Example 3.

Example 4. Let X be the space described in Example 3. For simplicity, we write (m, t) to represent
the class [(m, t)] if t > 0 and define w0 = [(m, 0)]. Let T : X → X be a cascading operator for
which the sequence (kn) is given as in Definition 4, ∏∞

n=1 kn < ∞, and there exists (m0, t0) ∈ X,
such that for all N ∈ N,

{Tn(m0, t0) : n ∈ N} ∩ {(m, t) : m ≥ N, 0 < t ≤ 1} �= ∅. (3)

(Example 3 shows that such T exists) Then, w0 = (m, 0) ∈ Fix(T).
Let (m0, t0) be the point for T satisfying (3). If x0 = (m0, t0) and xn+1 = 1

2 Txn ⊕ 1
2 T2xn,

Lemma 1 implies that d(Txn, xn) → 0. Define π1 : X → N and π2 : X → [0, 1] as

π1((m, t)) =

{
m, if t > 0
1, if t = 0.

and π2((m, t))) = t. From condition (3), by passing to a subsequence if necessary, we may
assume that, for all j ∈ N, π1

(
xnj

)
�= π1

(
Txnj

)
. Thus, d

(
xnj , Txnj

)
= π2xnj + π2Txnj and

limj→∞ d
(

xnj , w0

)
= 0. Since convergence in metric implies Δ-convergence, xnj Δ-converges to

w0 and, from Theorem 1, it follows that Tw0 = w0.

Lemma 2. Let (X, d) be a complete CAT(0) space and T : C → C be a cascading non-expansive
mapping with (kn) as in Definition 4 and ∏∞

n=1 kn < ∞. Let (xn) be a sequence in C such that
limn→∞ d(xn, Txn) = 0 and (d(xn, w)) converges for all w ∈ Fix(T). Then, (xn) Δ-converges to
a fixed point of T.

Proof. It is similar to the proof of Lemma 2.10 in [3].

Finally, from Lemmas 1 and 2, we conclude that the Mann iteration process defined in
Equation (2), Δ-converges to a fixed point of T.

Theorem 2. Suppose that C is a closed convex bounded subset of (X, d) and let T : C → C be a
cascading non-expansive mapping with (kn) as in Definition 4 and ∏∞

n=1 kn < ∞. Let x0 be any
initial point in C and (xn) the sequence defined in Equation (2). Then, (xn) Δ-converges to a fixed
point of T.
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Proof. By Lemma 1, d(xn, Txn) → 0 when n → ∞ and, for any w ∈ Fix(T), limn→∞ d(xn, w)
exists. Therefore, Lemma 2 implies that (xn) Δ-converges to a fixed point w0 of T.

The theorems introduced in Section 4 are inspired by some well known results pre-
viously studied in CAT(0) spaces for asymptotically non-expansive maps. It would be
interesting to find general fixed point theorems which include both families of maps and to
determine conditions under which the two families coincide.
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1. Introduction

The common coupled coincidence points and common coupled fixed points in con-
ventional metric spaces and probabilistic metric spaces have been studied for a long time
in which the symmetric condition is satisfied. In this paper, we shall consider the fuzzy
semi-metric space in which the symmetric condition is not satisfied. In this case, the role of
triangle inequality should be re-interpreted. Therefore, four kinds of triangle inequalities
are considered, which can also refer to Wu [1].

Schweizer and Sklar [2–4] introduced probabilistic metric space, in which the (con-
ventional) metric space is associated with the probability distribution functions. For more
details on the theory of probabilistic metric space, we can refer to Hadžić and Pap [5] and
Chang et al. [6]. An interesting special kind of probabilistic metric space is the so-called
Menger space. Kramosil and Michalek [7] proposed the fuzzy metric space based on
the idea of Menger space. The definition of fuzzy metric space is presented below. Let
X be a nonempty universal set associated with a t-norm ∗. Given a mapping M from
X × X × [0, ∞) into [0, 1], the 3-tuple (X, M, ∗) is called a fuzzy metric space when the
following conditions are satisfied:

• for any x, y ∈ X, M(x, y, t) = 1 for all t > 0 if and only if x = y;
• M(x, y, 0) = 0 for all x, y ∈ X;
• M(x, y, t) = M(y, x, t) for all x, y ∈ X and t ≥ 0; and,
• M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s) for all x, y, z ∈ X and s, t ≥ 0.

The mapping M in the fuzzy metric space (X, M, ∗) can be treated as a membership
function of a fuzzy subset of the product space X × X × [0, ∞). According to the first
and second conditions of fuzzy metric space, the function value M(x, y, t) means that the
membership degree of the distance that is less than or equal to t between x and y.

In this paper, we are going to consider the semi-metric space that is completely differ-
ent from the fuzzy metric space. The so-called fuzzy semi-metric space does not assume the
symmetric condition M(x, y, t) = M(y, x, t). Without this condition, the concept of triangle
inequalities should be carefully treated. In this paper, there are four kinds of different

Axioms 2021, 10, 5. https://doi.org/10.3390/axioms10010005 https://www.mdpi.com/journal/axioms
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triangle inequalities considered. It will be realized that, when the symmetric condition is
satisfied, these four different kinds of triangle inequalities will be equivalent to the classical
one. Being inspired by the intuitive observations, the concepts of rational condition and
distance condition are proposed for the purpose of simplifying the discussions regarding
the common coupled coincidence points and common coupled fixed points in a fuzzy
semi-metric space.

Rakić et al. [8,9] studied the fixed points in b-fuzzy metric spaces.
Mecheraoui et al. [10] obtained the sufficient condition for a G-Cauchy sequence to be an
M-Cauchy sequence in fuzzy metric space. On the other hand, Gu and Shatanawi [11] used
the concept of w-compatible mappings for studying the common coupled fixed points of
two hybrid pairs of mappings in partial metric spaces. Petruel [12,13] studied the fixed
point for graphic contractions and fixed point for multi-valued locally contractive operators.
Hu et al. [14], Mohiuddine and Alotaibi [15], Qiu and Hong [16], and the references therein
studied the common coupled coincidence points and common coupled fixed points in fuzzy
metric spaces. Wu [17] also studied the common coincidence points in fuzzy semi-metric
spaces. In this paper, the common coupled coincidence points and common coupled fixed
points in fuzzy semi-metric spaces will be studied by considering four kinds of triangle
inequalities. Although the common coupled fixed points are the common coupled coinci-
dence points, the sufficient conditions will be completely different when considering the
uniqueness.

This paper is organized, as follows. In Section 2, the concept of fuzzy semi-metric
spaces will be introduced. Because the symmetric condition is not satisfied, four different
kinds of triangle inequalities will be taken into account to study the common coupled fixed
points. In Section 3, in order to study the Cauchy sequence in fuzzy semi-metric space,
the auxiliary functions that are based on the supremun are proposed. In Section 4, while
using the auxiliary functions proposed in Section 3, the desired property regarding the
Cauchy sequence in fuzzy semi-metric space will be presented. In Section 5, many kinds
of common coupled coincidence points in fuzzy semi-metric spaces will be investigated
by considering the four different kinds of triangle inequalities. Finally, in Section 6, the
common coupled fixed points shown in fuzzy semi-metric spaces will also be studied
based on the four different kinds of triangle inequalities.

2. Fuzzy Semi-Metric Spaces

The concept of fuzzy semi-metric space is based on the concept of t-norm (triangular
norm), which will be introduced below. Let ∗ : [0, 1]× [0, 1] → [0, 1] be a function that
is defined on the product set [0, 1]× [0, 1]. We say that ∗ is a t-norm when the following
conditions are satisfied:

• a ∗ 1 = a.
• a ∗ b = b ∗ a.
• b < c implies a ∗ b ≤ a ∗ c.
• (a ∗ b) ∗ c = a ∗ (b ∗ c).

The following properties regarding t-norm will be used in the further study.

Proposition 1. We have the following properties.

(i) Suppose that the t-norm ∗ is left-continuous at 1 with respect to the first or second component.
For any a, b ∈ (0, 1) with a > b, there exists r ∈ (0, 1) that satisfies a ∗ r ≥ b.

(ii) Suppose that the t-norm ∗ is left-continuous at 1 with respect to the first or second component.

For any a ∈ (0, 1) and any p ∈ N, there exists r ∈ (0, 1) satisfying
p times︷ ︸︸ ︷

r ∗ r ∗ · · · ∗ r> a.
(iii) Given any fixed a, b ∈ [0, 1], suppose that the t-norm ∗ is continuous at a and b with respect

the first or second component, and that {an}∞
n=1 and {bn}∞

n=1 are two sequences in [0, 1]
satisfying an → a and bn → b as n → ∞. Subsequently, we have an ∗ bn → a ∗ b as n → ∞.

(iv) Given any fixed a, b ∈ (0, 1], suppose that the t-norm ∗ is left-continuous at a and b with
respect to the first or second component, and that {an}∞

n=1 and {bn}∞
n=1 are two sequences in
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[0, 1] satisfying an → a− and bn → b− as n → ∞. Afterwards, we have an ∗ bn → a ∗ b as
n → ∞.

(v) Given any fixed a, b ∈ [0, 1), suppose that the t-norm ∗ is right-continuous at a and b with
respect to the first or second component, and that {an}∞

n=1 and {bn}∞
n=1 are two sequences in

[0, 1] satisfying an → a+ and bn → b+ as n → ∞. Subsequently, we have an ∗ bn → a ∗ b
as n → ∞.

Wu [1,17,18] proposed the concept of fuzzy semi-metric space. The formal definition
is given below.

Definition 1. Let X be a nonempty set and let M be a mapping from X × X × [0, ∞) into [0, 1].
We say that (X, M) is fuzzy semi-metric space when the following conditions are satisfied:

• for any x, y ∈ X, M(x, y, t) = 1 for all t ≥ 0 if and only if x = y;
• M(x, y, 0) = 0 for all x, y ∈ X with x �= y;

The mapping M is said to satisfy the symmetric condition when M(x, y, t) = M(y, x, t) for
any x, y ∈ X and t ≥ 0.

Definition 2. Let (X, M) be a fuzzy semi-metric space. We say that M satisfies the distance
condition when, for any x, y ∈ X with x �= y, there exists t0 > 0, such that M(x, y, t0) �= 0.

Because the symmetric condition is not necessarily be satisfied in fuzzy semi-metric
space (X, M), by referring to Wu [1,17,18], four kinds of triangle inequalities are proposed
below.

Definition 3. Let X be a nonempty set, let ∗ be a t-norm, and let M be a mapping that is defined
on X × X × [0, ∞) into [0, 1].

• We say that M satisfies the ��-triangle inequality when the following inequality is satisfied:

M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s) for all x, y, z ∈ X and s, t > 0.

• We say that M satisfies the �-triangle inequality when the following inequality
is satisfied:

M(x, y, t) ∗ M(z, y, s) ≤ M(x, z, t + s) for all x, y, z ∈ X and s, t > 0.

• We say that M satisfies the �-triangle inequality when the following inequality
is satisfied:

M(y, x, t) ∗ M(y, z, s) ≤ M(x, z, t + s) for all x, y, z ∈ X and s, t > 0.

• We say that M satisfies the �-triangle inequality when the following inequality
is satisfied:

M(y, x, t) ∗ M(z, y, s) ≤ M(x, z, t + s) for all x, y, z ∈ X and s, t > 0.

Remark 1. Suppose that the mapping M satisfies the ��-triangle inequality. Subsequently, we have

M(a, b, t1) ∗ M(b, c, t2) ∗ M(c, d, t3) ≤ M(a, c, t1 + t2) ∗ M(c, d, t3) ≤ M(a, d, t1 + t2 + t3)

and
M(b, a, t1) ∗ M(c, b, t2) = M(c, b, t2) ∗ M(b, a, t1) ≤ M(c, a, t1 + t2),

which implies

M(b, a, t1) ∗ M(c, b, t2) ∗ M(d, c, t3) ≤ M(d, a, t1 + t2 + t3).
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In general, we have

M(x1, x2, t1) ∗ M(x2, x3, t2) ∗ · · · ∗ M
(

xp, xp+1, tp
)
≤ M

(
x1, xp+1, t1 + t2 + · · ·+ tp

)
and

M(x2, x1, t1) ∗ M(x3, x2, t2) ∗ · · · ∗ M
(

xp+1, xp, tp+1
)
≤ M

(
xp+1, x1, t1 + t2 + · · ·+ tp

)
.

For the case of satisfying the �-triangle inequality, �-triangle inequality and �-triangle in-
equality, we can refer to Wu [17].

Proposition 2 (Wu [1]). Let (X, M) be a fuzzy semi-metric space. Then we have the following
properties.

(i) Suppose that the mapping M satisfies the ��-triangle inequality. Subsequently, M is non-
decreasing in the sense of M(x, y, t1) ≥ M(x, y, t2) for any fixed x, y ∈ X and t1 > t2.

(ii) Suppose that the mapping M satisfies the �-triangle inequality. Subsequently, M is symmet-
rically non-decreasing in the sense of M(x, y, t1) ≥ M(y, x, t2) for any fixed x, y ∈ X and
t1 > t2.

(iii) Suppose that the mapping M satisfies the �-triangle inequality or the �-triangle inequality.
Afterwards, M is both non-decreasing and symmetrically non-decreasing.

Let {xn}∞
n=1 be a sequence in the fuzzy semi-metric space (X, M).

• We write xn
M�

−→ x as n → ∞ when M(xn, x, t) → 1 as n → ∞ for all t > 0.

• We write xn
M�

−→ x as n → ∞ when M(x, xn, t) → 1 as n → ∞ for all t > 0.

• We write xn
M−→ x as n → ∞ when xn

M�

−→ x and xn
M�

−→ x as n → ∞.

Proposition 3 (Wu [17]). Let (X, M) be a fuzzy semi-metric space, and let {xn}∞
n=1 be a sequence

in X. Suppose that the t-norm ∗ is left-continuous at 1 with respect to the first or second component.
Afterwards, we have the following results.

(i) Assume that the mapping M satisfies the ��-triangle inequality or �-triangle inequality.
Subsequently, we have the following properties.

• If xn
M�

−→ x and xn
M�

−→ y as n → ∞, then x = y.

• If xn
M�

−→ x and xn
M�

−→ y as n → ∞, then x = y.

(ii) Assume that M satisfies the �-triangle inequality. If xn
M�

−→ x and xn
M�

−→ y as n → ∞, then
x = y.

(iii) Assume that M satisfies the �-triangle inequality. If xn
M�

−→ x and xn
M�

−→ y as n → ∞, then
x = y.

Proposition 4 (Wu [18]). Let (X, M) be a fuzzy semi-metric space, and let {(xn, yn, tn)}∞
n=1 be

a sequence in X × X × (0, ∞). Assume that the t-norm ∗ is left-continuous with respect to the first
or second component. For any sequences {an}∞

n=1 and {bn}∞
n=1 in [0, 1], we also assume that the

following inequality is satisfied

sup
n
(an ∗ bn) ≥

(
sup

n
an

)
∗
(

sup
n

bn

)
.

(i) Suppose that M satisfies the ��-triangle inequality, and that tn → t◦, xn
M−→ x◦ and

yn
M−→ y◦ as n → ∞. Subsequently, the following statements hold true.

• If M is continuous with respect to the distance at t◦, then M(xn, yn, tn) → M(x◦, y◦, t◦)
as n → ∞.
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• If M is symmetrically continuous with respect to the distance at t◦, then M(xn, yn, tn) →
M(y◦, x◦, t◦) as n → ∞.

(ii) Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �}, and that tn → t◦, xn
M−→

x◦ and yn
M−→ y◦ as n → ∞. If M is continuous or symmetrically continuous with respect

to the distance at t◦, then M(xn, yn, tn) → M(x◦, y◦, t◦) = M(y◦, x◦, t◦) as n → ∞.

(iii) Suppose that M satisfies the �-triangle inequality, and that tn → t◦ as n → ∞, xn
M�

−→ x◦,

and yn
M�

−→ y◦ as n → ∞ simultaneously, or xn
M�

−→ x◦ and yn
M�

−→ y◦ as n → ∞
simultaneously. If M is continuous or symmetrically continuous with respect to the distance
at t◦, then M(xn, yn, tn) → M(y◦, x◦, t◦) = M(x◦, y◦, t◦) as n → ∞.

Definition 4. Let {xn}∞
n=1 be a sequence in the fuzzy semi-metric space (X, M).

• We say that {xn}∞
n=1 is a >-Cauchy sequence when, given any pair (r, t) with t > 0 and

0 < r < 1, there exists nr,t ∈ N satisfying M(xm, xn, t) > 1 − r for all pairs (m, n) of
integers m and n with m > n ≥ nr,t.

• We say that {xn}∞
n=1 is a <-Cauchy sequence when, given any pair (r, t) with t > 0 and

0 < r < 1, there exists nr,t ∈ N satisfying M(xn, xm, t) > 1 − r for all pairs (m, n) of
integers m and n with m > n ≥ nr,t.

• We say that {xn}∞
n=1 is a Cauchy sequence when, given any pair (r, t) with t > 0 and

0 < r < 1, there exists nr,t ∈ N satisfying M(xm, xn, t) > 1 − r and M(xn, xm, t) > 1 − r
for all pairs (m, n) of integers m and n with m, n ≥ nr,t and m �= n.

• We say that (X, M) is (>, �)-complete when each >-Cauchy sequence {xn}∞
n=1 is convergent

in the sense of xn
M�

−→ x.
• We say that (X, M) is (>, �)-complete when each >-Cauchy sequence {xn}∞

n=1 is convergent

in the sense of xn
M�

−→ x.
• We say that (X, M) is (<, �)-complete when each <-Cauchy sequence {xn}∞

n=1 is convergent

in the sense of xn
M�

−→ x.
• We say that (X, M) is (<, �)-complete when each <-Cauchy sequence {xn}∞

n=1 is convergent

in the sense of xn
M�

−→ x.

Definition 5. Let (X, M) be a fuzzy semi-metric space. Four types of continuities are defined below.

• We say that the function f : X → X is (�, �)-continuous with respect to M when, given any

sequence {xn}∞
n=1 in X, xn

M�

−→ x, as n → ∞ implies f (xn)
M�

−→ f (x) as n → ∞.
• We say that the function f : X → X is (�, �)-continuous with respect to M when, given any

sequence {xn}∞
n=1 in X, xn

M�

−→ x, as n → ∞ implies f (xn)
M�

−→ f (x) as n → ∞.
• We say that the function f : X → X is (�, �)-continuous with respect to M when, given any

sequence {xn}∞
n=1 in X, xn

M�

−→ x, as n → ∞ implies f (xn)
M�

−→ f (x) as n → ∞.
• We say that the function f : X → X is (�, �)-continuous with respect to M when, given any

sequence {xn}∞
n=1 in X, xn

M�

−→ x, as n → ∞ implies f (xn)
M�

−→ f (x) as n → ∞.

3. Auxiliary Functions Based on the Supremum

The concept of auxiliary function based on X2 was proposed by Wu [17] to study the
common coincidence point. In this paper, we are going to consider the auxiliary function
that is based on X4 to study the common coupled coincidence point.

Definition 6. Let (X, M) be a fuzzy semi-metric space. We say that the mapping M satisfies the
rational condition when M(x, y, t) → 0, as t → 0+ for any fixed x, y ∈ X.
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Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗. We define the mapping
η : X4 × [0, ∞) → [0, 1] on the product space X4 × [0, ∞), as follows

η(x, y, u, v, t) = M(x, y, t) ∗ M(u, v, t).

Subsequently, we have the following interesting result that will be used to define the
auxiliary functions.

Proposition 5. Let (X, M) be a fuzzy semi-metric space, such that the mapping M satisfies the
rational condition. Suppose that the t-norm ∗ is right-continuous at 0 with respect to the first or
second component. Subsequently, we have

lim
t→0+

η(x, y, u, v, t) = 0. (1)

The following definition of auxiliary functions are based on X4. This new concept
extends the auxiliary functions based on X2, as proposed by Wu [17].

Definition 7. Let (X, M) be a fuzzy semi-metric space, such that M satisfies the rational condition
in which the t-norm ∗ is also right-continuous at 0 with respect to the first or second component. For
any fixed x, y, u, v ∈ X and λ ∈ [0, 1) with x �= y or u �= v, we define a function Φ : X4 → [0, ∞)
on the product space X4 by

Φ(λ, x, y, u, v) = sup{t > 0 : η(x, y, u, v, t) ≤ 1 − λ}

and Φ(λ, x, x, u, u) = 0 for λ ∈ [0, 1).

For x �= y or u �= v, we need to claim that the set {t > 0 : η(x, y, u, v, t) ≤ 1 − λ} is
not empty. Suppose that {t > 0 : η(x, y, u, v, t) ≤ 1 − λ} = ∅. By definition, we must have
η(x, y, u, v, t) > 1 − λ for all t > 0. This says that

lim
t→0+

η(x, y, u, v, t) ≥ 1 − λ,

which contradicts (1). Therefore, we indeed have {t > 0 : η(x, y, u, v, t) ≤ 1 − λ} �= ∅,
which says that the function Φ is well-defined.

Proposition 6. Let (X, M) be a fuzzy semi-metric space such that the mapping M satisfies the
rational condition in which the t-norm ∗ is right-continuous at 0 with respect to the first or second
component. Given any fixed x, y, u, v ∈ X and λ ∈ (0, 1), we have the following properties.

(i) Suppose that Φ(λ, x, y, u, v) < ∞. For any ε > 0, we have

η(x, y, u, v, Φ(λ, x, y, u, v) + ε) > 1 − λ

(ii) Assume that ε > 0 is sufficiently small satisfying Φ(λ, x, y, u, v) > ε. Subsequently, we
have the following properties.

• If the mapping M satisfies the ��-triangle inequality or the �-triangle inequality or the
�-triangle inequality, then

η(x, y, u, v, Φ(λ, x, y, u, v)− ε) ≤ 1 − λ.

• If the mapping M satisfies the �-triangle inequality or the �-triangle inequality, then

η(y, x, u, v, Φ(λ, x, y, u, v)− ε) ≤ 1 − λ and η(x, y, v, u, Φ(λ, x, y, u, v)− ε) ≤ 1 − λ.
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• If the mapping M satisfies the �-triangle inequality or the �-triangle inequality or the
�-triangle inequality, then

η(y, x, v, u, Φ(λ, x, y, u, v)− ε) ≤ 1 − λ.

Proof. The proof is similar to the argument in Wu [17] by considering X4 instead of X2.

Proposition 7. Let (X, M) be a fuzzy semi-metric space, such that the mapping M satisfies the
rational condition in which the t-norm ∗ is right-continuous at 0 with respect to the first or second
component. Given any fixed x, y, u, v ∈ X and λ ∈ (0, 1), we have the following properties.

(i) Assume that η(x, y, u, v, t) ≤ 1 − λ. Then, we have the following results.

• If the mapping M satisfies the ��-triangle inequality or the �-triangle inequality or the
�-triangle inequality, then t ≤ Φ(λ, x, y, u, v).

• If the mapping M satisfies the �-triangle inequality or the �-triangle inequality, then
t ≤ Φ(λ, y, x, u, v) and t ≤ Φ(λ, x, y, v, u).

• If the mapping M satisfies the �-triangle inequality or the �-triangle inequality or the
�-triangle inequality, then t ≤ Φ(λ, y, x, v, u).

(ii) We have the following results.

• Suppose that the mapping M satisfies the ��-triangle inequality or the �-triangle inequal-
ity or the �-triangle inequality. If η(x, y, u, v, t) > 1 − λ, then Φ(λ, x, y, u, v) < ∞
and t ≥ Φ(λ, x, y, u, v).

• Suppose that the mapping M satisfies the �-triangle inequality or the �-triangle inequality.

– If η(x, y, u, v, t) > 1 − λ, then Φ(λ, y, x, u, v) < ∞ and Φ(λ, x, y, v, u) < ∞.
– If η(x, y, u, v, t) > 1 − λ and Φ(λ, x, y, u, v) < ∞, then t ≥ Φ(λ, x, y, u, v).

• Suppose that the mapping M satisfies the �-triangle inequality or the �-triangle inequal-
ity or the �-triangle inequality.

– If η(x, y, u, v, t) > 1 − λ, then Φ(λ, y, x, v, u) < ∞.
– If η(x, y, u, v, t) > 1 − λ and Φ(λ, x, y, u, v) < ∞, then t ≥ Φ(λ, x, y, u, v).

Proof. The proof is similar to the argument in Wu [17] by considering X4 instead of X2.

Proposition 8. Let (X, M) be a fuzzy semi-metric space, such that M satisfies the rational condi-
tion, in which the t-norm ∗ is right-continuous at 0 and left-continuous at 1 with respect to the first
or second component.

(i) Suppose that M satisfies the ��-triangle inequality. Given any fixed x1, x2, · · · , xp, y1, y2, · · · ,
yp ∈ X and any fixed μ ∈ (0, 1], there exists λ ∈ (0, 1), such that

Φ(μ, x1, xp, y1, yp) ≤ Φ(λ, x1, x2, y1, y2) + Φ(λ, x2, x3, y2, y3) + · · ·
+ Φ(λ, xp−2, xp−1, yp−2, yp−1) + Φ(λ, xp−1, xp, yp−1, yp)

Φ(μ, x1, xp, yp, y1) ≤ Φ(λ, x1, x2, y2, y1) + Φ(λ, x2, x3, y3, y2) + · · ·
+ Φ(λ, xp−2, xp−1, yp−1, yp−2) + Φ(λ, xp−1, xp, yp, yp−1)

Φ(μ, xp, x1, y1, yp) ≤ Φ(λ, xp, xp−1, yp−1, yp) + Φ(λ, xp−1, xp−2, yp−2, yp−1)

+ · · ·+ Φ(λ, x3, x2, y2, y3) + Φ(λ, x2, x1, y1, y2)

Φ(μ, xp, x1, yp, y1) ≤ Φ(λ, xp, xp−1, yp, yp−1) + Φ(λ, xp−1, xp−2, yp−1, yp−2)

+ · · ·+ Φ(λ, x3, x2, y3, y2) + Φ(λ, x2, x1, y2, y1).
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(ii) Suppose that M satisfies the �-triangle inequality. Given any fixed x1, x2, · · · , xp, y1, y2, · · · ,
yp ∈ X and any fixed μ ∈ (0, 1], there exists λ ∈ (0, 1) such that

max
{

Φ(μ, x1, xp, y1, yp), Φ(μ, x1, xp, yp, y1), Φ(μ, xp, x1, y1, yp), Φ(μ, xp, x1, yp, y1)
}

≤ Φ(λ, x1, x2, y1, y2) + Φ(λ, x3, x2, y3, y2) + Φ(λ, x4, x3, y4, y3)

+ · · ·+ Φ(λ, xp, xp−1, yp, yp−1)

(iii) Suppose that M satisfies the �-triangle inequality. Given any fixed x1, x2, · · · , xp, y1, y2, · · · ,
yp ∈ X and any fixed μ ∈ (0, 1], there exists λ ∈ (0, 1), such that

max
{

Φ(μ, x1, xp, y1, yp), Φ(μ, x1, xp, yp, y1), Φ(μ, xp, x1, y1, yp), Φ(μ, xp, x1, yp, y1)
}

≤ Φ(λ, x2, x1, y2, y1) + Φ(λ, x2, x3, y2, y3) + Φ(λ, x3, x4, y3, y4)

+ · · ·+ Φ(λ, xp−1, xp, yp−1, yp)

(iv) Suppose that M satisfies the �-triangle inequality. Given any fixed x1, x2, · · · , xp, y1, y2, · · · ,
yp ∈ X and any fixed μ ∈ (0, 1], there exists λ ∈ (0, 1), such that the following inequalities
are satisfied.

• If p is even and Φ(μ, x1, xp, y1, yp) < ∞, then

Φ(μ, x1, xp, y1, yp) ≤ Φ(λ, x1, x2, y1, y2) + Φ(λ, x2, x3, y2, y3) + Φ(λ, x4, x3, y4, y3)

+ Φ(λ, x4, x5, y4, y5) + Φ(λ, x6, x5, y6, y5) + Φ(λ, x6, x7, y6, y7)

+ · · ·+ Φ(λ, xp, xp−1, yp, yp−1) (2)

• If p is even and Φ(μ, x1, xp, yp, y1) < ∞, then

Φ(μ, x1, xp, yp, y1) ≤ Φ(λ, x1, x2, y2, y1) + Φ(λ, x2, x3, y3, y2) + Φ(λ, x4, x3, y3, y4)

+ Φ(λ, x4, x5, y5, y4) + Φ(λ, x6, x5, y5, y6) + Φ(λ, x6, x7, y7, y6)

+ · · ·+ Φ(λ, xp, xp−1, yp−1, yp) (3)

• If p is even and Φ(μ, xp, x1, y1, yp) < ∞, then

Φ(μ, xp, x1, y1, yp) ≤ Φ(λ, x2, x1, y1, y2) + Φ(λ, x3, x2, y2, y3) + Φ(λ, x3, x4, y4, y3)

+ Φ(λ, x5, x4, y4, y5) + Φ(λ, x5, x6, y6, y5) + Φ(λ, x7, x6, y6, y7)

+ · · ·+ Φ(λ, xp−1, xp, yp, yp−1) (4)

• If p is even and Φ(μ, xp, x1, yp, y1) < ∞, then

Φ(μ, xp, x1, yp, y1) ≤ Φ(λ, x2, x1, y2, y1) + Φ(λ, x3, x2, y3, y2) + Φ(λ, x3, x4, y3, y4)

+ Φ(λ, x5, x4, y5, y4) + Φ(λ, x5, x6, y5, y6) + Φ(λ, x7, x6, y7, y6)

+ · · ·+ Φ(λ, xp−1, xp, yp−1, yp) (5)

• If p is odd and Φ(μ, x1, xp, y1, yp) < ∞, then

Φ(μ, x1, xp, y1, yp) ≤ Φ(λ, x2, x1, y2, y1) + Φ(λ, x3, x2, y3, y2) + Φ(λ, x3, x4, y3, y4)

+ Φ(λ, x5, x4, y5, y4) + Φ(λ, x5, x6, y5, y6) + Φ(λ, x7, x6, y7, y6)

+ · · ·+ Φ(λ, xp−1, xp, yp−1, yp) (6)

• If p is odd and Φ(μ, x1, xp, yp, y1) < ∞, then

Φ(μ, x1, xp, yp, y1) ≤ Φ(λ, x2, x1, y1, y2) + Φ(λ, x3, x2, y2, y3) + Φ(λ, x3, x4, y4, y3)

+ Φ(λ, x5, x4, y4, y5) + Φ(λ, x5, x6, y6, y5) + Φ(λ, x7, x6, y6, y7)

+ · · ·+ Φ(λ, xp−1, xp, yp, yp−1) (7)
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• If p is odd and Φ(μ, xp, x1, y1, yp) < ∞, then

Φ(μ, xp, x1, y1, yp) ≤ Φ(λ, x1, x2, y2, y1) + Φ(λ, x2, x3, y3, y2) + Φ(λ, x4, x3, y3, y4)

+ Φ(λ, x4, x5, y5, y4) + Φ(λ, x6, x5, y5, y6) + Φ(λ, x6, x7, y7, y6)

+ · · ·+ Φ(λ, xp, xp−1, yp−1, yp) (8)

• If p is odd and Φ(μ, xp, x1, yp, y1) < ∞, then

Φ(μ, xp, x1, yp, y1) ≤ Φ(λ, x1, x2, y1, y2) + Φ(λ, x2, x3, y2, y3) + Φ(λ, x4, x3, y4, y3)

+ Φ(λ, x4, x5, y4, y5) + Φ(λ, x6, x5, y6, y5) + Φ(λ, x6, x7, y6, y7)

+ · · ·+ Φ(λ, xp, xp−1, yp, yp−1) (9)

Proof. The proof is similar to the argument put foward in Wu [17] by considering X4

instead of X2.

Proposition 9. Let (X, M) be a fuzzy semi-metric space, such that M satisfies the rational condi-
tion, in which the t-norm ∗ is right-continuous at 0 with respect to the first or second component.
Let {xn}∞

n=1 and {yn}∞
n=1 be two sequences in X.

(i) Assume that M satisfies the ��-triangle inequality or the �-triangle inequality or the �-triangle
inequality. Subsequently, we have the following results.

• {xn}∞
n=1 and {yn}∞

n=1 are two >-Cauchy sequences if and only if, given any ε > 0 and
λ ∈ (0, 1), there exists nε,λ ∈ N satisfying Φ(λ, xm, xn, ym, yn) < ε for m > n ≥
nε,λ.

• {xn}∞
n=1 is a >-Cauchy sequences and {yn}∞

n=1 is a <-Cauchy sequences if and only if,
given any ε > 0 and λ ∈ (0, 1), there exists nε,λ ∈ N satisfying Φ(λ, xm, xn, yn, ym) <
ε for m > n ≥ nε,λ.

• {xn}∞
n=1 is a <-Cauchy sequences and {yn}∞

n=1 is a >-Cauchy sequences if and only if,
given any ε > 0 and λ ∈ (0, 1), there exists nε,λ ∈ N satisfying Φ(λ, xn, xm, ym, yn) <
ε for m > n ≥ nε,λ.

• {xn}∞
n=1 and {yn}∞

n=1 are two <-Cauchy sequences if and only if, given any ε > 0 and
λ ∈ (0, 1), there exists nε,λ ∈ N satisfying Φ(λ, xn, xm, yn, ym) < ε for m > n ≥
nε,λ.

(ii) Assume that M satisfies the �-triangle inequality. Then, we have the following results.

• Let {xn}∞
n=1 and {yn}∞

n=1 be two>-Cauchy sequences. Suppose that Φ(λ, xm, xn, ym, yn)
< ∞ for all λ ∈ (0, 1) and m > n. Subsequently, given any ε > 0, there exists nε,λ ∈ N

satisfying Φ(λ, xm, xn, ym, yn) < ε for m > n ≥ nε,λ.
• Let {xn}∞

n=1 be a>-Cauchy sequence and let {yn}∞
n=1 be a<-Cauchy sequence. Suppose

that Φ(λ, xm, xn, yn, ym) < ∞ for any all λ ∈ (0, 1) and m > n. Afterwards, given any
ε > 0, there exists nε,λ ∈ N satisfying Φ(λ, xm, xn, yn, ym) < ε for m > n ≥ nε,λ.

• Let {xn}∞
n=1 be a<-Cauchy sequence and let {yn}∞

n=1 be a>-Cauchy sequence. Suppose
that Φ(λ, xn, xm, ym, yn) < ∞ for all λ ∈ (0, 1) and m > n. Subsequently, given any
ε > 0, there exists nε,λ ∈ N satisfying Φ(λ, xn, xm, ym, yn) < ε for m > n ≥ nε,λ.

• Let {xn}∞
n=1 and {yn}∞

n=1 be two<-Cauchy sequences. Suppose that Φ(λ, xn, xm, yn, ym)
< ∞ for all λ ∈ (0, 1) and m > n. Subsequently, given any ε > 0, there exists nε,λ ∈ N

satisfying Φ(λ, xn, xm, yn, ym) < ε for m > n ≥ nε,λ.
• Suppose that, given any ε > 0 and λ ∈ (0, 1), there exists nε,λ ∈ N satisfying

Φ(λ, xm, xn, ym, yn) < ε for m > n ≥ nε,λ. Then {xn}∞
n=1 and {yn}∞

n=1 are two
<-Cauchy sequences.

• Suppose that, given any ε > 0 and λ ∈ (0, 1), there exists nε,λ ∈ N satisfying
Φ(λ, xm, xn, yn, ym) < ε for m > n ≥ nε,λ. Then {xn}∞

n=1 is a <-Cauchy sequences
and {yn}∞

n=1 is a >-Cauchy sequences.
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• Suppose that, given any ε > 0 and λ ∈ (0, 1), there exists nε,λ ∈ N satisfying
Φ(λ, xn, xm, ym, yn) < ε for m > n ≥ nε,λ. Subsequently, {xn}∞

n=1 is a >-Cauchy
sequences and {yn}∞

n=1 is a <-Cauchy sequences.
• Suppose that, given any ε > 0 and λ ∈ (0, 1), there exists nε,λ ∈ N satisfying

Φ(λ, xn, xm, yn, ym) < ε for m > n ≥ nε,λ. Afterwards, {xn}∞
n=1 and {yn}∞

n=1 are
two >-Cauchy sequences.

Proof. The proof is similar to the argument in Wu [17] by considering X4 instead of X2.

4. Cauchy Sequences

Given any a ∈ [0, 1], for convenience, we write

(∗a)n =

n times︷ ︸︸ ︷
a ∗ a ∗ · · · ∗ a

and

[
∗η

(
a, b, c, d,

t
kn

)]2n

=

2n times︷ ︸︸ ︷
η

(
a, b, c, d,

t
kn

)
∗ η

(
a, b, c, d,

t
kn

)
∗ · · · ∗ η

(
a, b, c, d,

t
kn

)
.

The following results will be used for further discussion.

Proposition 10. Let (X, M) be a fuzzy semi-metric space such that M satisfies the rational
condition in which the t-norm is right-continuous at 0 and left-continuous at 1 in the first or second
component. Let 0 < k < 1 be any fixed constant, and let {xn}∞

n=1 and {yn}∞
n=1 be two sequences

in X.

(i) Suppose that M satisfies the ��-triangle inequality. Subsequently, we have the following
results.

• Assume that there exist fixed elements a1, b1, c1, d1 ∈ X satisfying

sup
λ∈[0,1)

Φ(λ, a1, b1, c1, d1) < ∞ (10)

and

η(xn, xn+1, yn, yn+1, t) ≥
[
∗η

(
a1, b1, c1, d1,

t
kn

)]2n

for each n ∈ N. (11)

Afterwards, {xn}∞
n=1 and {yn}∞

n=1 are <-Cauchy sequences.
• Assume that there exist fixed elements a2, b2, c2, d2 ∈ X satisfying

sup
λ∈[0,1)

Φ(λ, a2, b2, c2, d2) < ∞ (12)

and

η(xn, xn+1, yn+1, yn, t) ≥
[
∗η

(
a2, b2, c2, d2,

t
kn

)]2n

for each n ∈ N. (13)

Subsequently, {xn}∞
n=1 is a <-Cauchy sequence and {yn}∞

n=1 is a >-Cauchy sequence.
• Assume that there exist fixed elements a3, b3, c3, d3 ∈ X satisfying

sup
λ∈[0,1)

Φ(λ, a3, b3, c3, d3) < ∞ (14)
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and

η(xn+1, xn, yn, yn+1, t) ≥
[
∗η

(
a3, b3, c3, d3,

t
kn

)]2n

for each n ∈ N. (15)

Subsequently, {xn}∞
n=1 is a >-Cauchy sequence and {yn}∞

n=1 is a <-Cauchy sequence.
• Assume that there exist fixed elements a4, b4, c4, d4 ∈ X satisfying

sup
λ∈[0,1)

Φ(λ, a4, b4, c4, d4) < ∞ (16)

and

η(xn+1, xn, yn+1, yn, t) ≥
[
∗η

(
a4, b4, c4, d4,

t
kn

)]2n

for each n ∈ N. (17)

Afterwards, {xn}∞
n=1 and {yn}∞

n=1 are >-Cauchy sequences.

(ii) Suppose that the mapping M satisfies the �-triangle inequality or the �-triangle inequality,
and that the conditions (10), (11), (16) and (17) are satisfied. Subsequently, {xn}∞

n=1
and {yn}∞

n=1 are both >-Cauchy and <-Cauchy sequences. In other words, {xn}∞
n=1 and

{yn}∞
n=1 are Cauchy sequences.

(iii) Suppose that the mapping M satisfies the �-triangle inequality, and that any one of the
following two conditions is satisfied:

• conditions (10), (11), (16) and (17) are satisfied;
• conditions (12), (13), (14) and (15) are satisfied.

Afterwards, {xn}∞
n=1 and {yn}∞

n=1 are both >-Cauchy and <-Cauchy sequences.

Proof. To prove part (i), if [
∗η

(
a1, b1, c1, d1,

t
kn

)]2n

≤ 1 − λ,

then, using Proposition 1, there exists λ̄(t) ∈ (0, 1) satisfying

η

(
a1, b1, c1, d1,

t
kn

)
≤ 1 − λ̄(t).

Let
λ0 ≡ inf

t
λ̄(t) ∈ [0, 1).

Then λ0 depends only on λ and

η

(
a1, b1, c1, d1,

t
kn

)
≤ 1 − inf

t
λ̄(t) ≡ 1 − λ0.

It follows that{
t > 0 :

[
∗η

(
a1, b1, c1, d1,

t
kn

)]2n

≤ 1 − λ

}
⊆
{

t > 0 : η

(
a1, b1, c1, d1,

t
kn

)
≤ 1 − λ0

}
. (18)
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Therefore, we obtain

Φ(λ, xn, xn+1, yn, yn+1)

= sup{t > 0 : η(xn, xn+1, yn, yn+1, t) ≤ 1 − λ}

≤ sup

{
t > 0 :

[
∗η

(
a1, b1, c1, d1,

t
kn

)]2n

≤ 1 − λ

}
(by (11))

≤ sup
{

t > 0 : η

(
a1, b1, c1, d1,

t
kn

)
≤ 1 − λ0

}
(by (18))

= sup{kn · t > 0 : η(a1, b1, c1, d1, t) ≤ 1 − λ0}
= kn · sup{t > 0 : η(a1, b1, c1, d1, t) ≤ 1 − λ0}
= kn · Φ(λ0, a1, b1, c1, d1), (19)

where λ0 only depends on λ. Now, we assume that m, n ∈ N with m > n. Given any
μ ∈ (0, 1], by part (i) of Proposition 8, there exists λ ∈ (0, 1), such that

Φ(μ, xn, xm, yn, ym)

≤ Φ(λ, xn, xn+1, yn, yn+1) + Φ(λ, xn+1, xn+2, yn+1, yn+2) + · · ·+ Φ(λ, xm−1, xm, ym−1, ym)

≤ kn · Φ(λ0, a1, b1, c1, d1) + kn+1 · Φ(λ0, a1, b1, c1, d1) + · · ·+ km−1 · Φ(λ0, a1, b1, c1, d1) (by (19))

= Φ(λ0, a1, b1, c1, d1) ·
kn · (1 − km−n)

1 − k
≤ Φ(λ0, a1, b1, c1, d1) ·

kn

1 − k

≤
[

sup
λ∈[0,1)

Φ(λ, a1, b1, c1, d1)

]
· kn

1 − k
→ 0 as n → ∞, (20)

which also says that, given any ε ∈ (0, 1) and μ ∈ (0, 1), there exists nμ,ε ∈ N such
that m > n ≥ nμ,ε implies Φ(μ, xn, xm, yn, ym) < ε. By the fourth case of part (i) of
Proposition 9, it follows that {xn}∞

n=1 and {yn}∞
n=1 are <-Cauchy sequences. The other

results can be similarly obtained by using the corresponding cases of Proposition 9 and
part (i) of Proposition 8.

To prove part (ii), we consider two cases below.

• Suppose that the mapping M satisfies the �-triangle inequality. While using part (ii)
of Proposition 8, we have

max{Φ(μ, xn, xm, yn, ym), Φ(μ, xm, xn, yn, ym), Φ(μ, xn, xm, ym, yn), Φ(μ, xm, xn, ym, yn)}
≤ Φ(λ, xm, xm−1, ym, ym−1) + Φ(λ, xm−1, xm−2, ym−1, ym−2)

+ · · ·+ Φ(λ, xn+2, xn+1, yn+2, yn+1) + Φ(λ, xn, xn+1, yn, yn+1). (21)

By referring to (19), we can similarly obtain

Φ(λ, xn+1, xn, yn+1, yn) ≤ kn · Φ(λ0, a4, b4, c4, d4). (22)

By using (19), (22), (21) and referring to (20), we have

max{Φ(μ, xn, xm, yn, ym), Φ(μ, xm, xn, yn, ym), Φ(μ, xn, xm, ym, yn), Φ(μ, xm, xn, ym, yn)}

≤ max

{[
sup

λ∈[0,1)
Φ(λ, a1, b1, c1, d1)

]
,

[
sup

λ∈[0,1)
Φ(λ, a4, b4, c4, d4)

]}
· kn

1 − k
→ 0 as n → ∞.

Using the above argument, we can show that {xn}∞
n=1 and {yn}∞

n=1 are both>-Cauchy
and <-Cauchy sequences in metric sense.
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• Suppose that the mapping M satisfies the �-triangle inequality. While using part (iii)
of Proposition 8, we have

max{Φ(μ, xn, xm, yn, ym), Φ(μ, xm, xn, yn, ym), Φ(μ, xn, xm, ym, yn), Φ(μ, xm, xn, ym, yn)}
≤ Φ(λ, xn+1, xn, yn+1, yn) + Φ(λ, xn+1, xn+2, yn+1, yn+2)

+ · · ·+ Φ(λ, xm−2, xm−1, ym−2, ym−1) + Φ(λ, xm−1, xm, ym−1, ym).

Using the above argument, we can show that {xn}∞
n=1 and {yn}∞

n=1 are both>-Cauchy
and <-Cauchy sequences in metric sense.

To prove part (iii), we consider two cases below.

• Assume that the conditions (10), (11), (16) and (17) are satisfied. If p is even, then,
using (2) and (5) in part (iv) of Proposition 8, we can similarly show that {xn}∞

n=1
and {yn}∞

n=1 are both >-Cauchy and <-Cauchy sequences in metric sense. If p is odd,
then, using (6) and (9) in Proposition 8, we can similarly obtain the desired results.

• Assume that the conditions (12), (13), (14) and (15) are satisfied. If p is even, then,
using (3) and (4) in part (iv) of Proposition 8, we can similarly show that {xn}∞

n=1 and
{yn}∞

n=1 are both >-Cauchy and <-Cauchy sequences in the metric sense. If p is odd,
then, using (7) and (8) in Proposition 8, we can similarly obtain the desired results.

This completes the proof.

5. Common Coupled Coincidence Points

In this section, we are going to investigate the common coupled coincidence points
in fuzzy semi-metric space under some suitable conditions. We consider two mappings
T : X × X → X and f : X → X.

• Recall that the mappings T and f commute when f (T(x, y)) = T( f (x), f (y)) for all
x, y ∈ X.

• Recall that an element (x∗, y∗) ∈ X × X is called a coupled coincidence point of
mappings T and f when T(x∗, y∗) = f (x∗) and T(y∗, x∗) = f (y∗). In particular, if
x∗ = f (x∗) = T(x∗, y∗) and y∗ = f (y∗) = T(y∗, x∗), then (x∗, y∗) is called a common
coupled fixed point of T and f .

Let {Tn}∞
n=1 be a sequence of mappings from the product space X × X into X, and let

f be a mapping from X into itself satisfying Tn(X, X) ⊆ f (X) for all n ∈ N. Given any two
initial elements x0, y0 ∈ X, since Tn(X, X) ⊆ f (X), there exist x1, y1 ∈ X satisfying

f (x1) = T1(x0, y0) and f (y1) = T1(y0, x0).

Similarly, there also exist x2, y2 ∈ X, satisfying

f (x2) = T2(x1, y1) and f (y2) = T2(y1, x1).

Continuing this process, we can construct two sequences {xn}∞
n=1 and {yn}∞

n=1, satisfying

f (xn) = Tn(xn−1, yn−1) and f (yn) = Tn(yn−1, xn−1) (23)

for n ∈ N.
In the sequel, the common coupled coincidence points will be separately studied by

considering the four different types of triangle inequalities.

Theorem 1 (Satisfying the ��-Triangle Inequality). Let (X, M) be a fuzzy semi-metric space,
such that the mapping M satisfies the rational condition and the ��-triangle inequality. Suppose
that the following conditions are satisfied.

• The t-norm ∗ is left-continuous with respect to the first or second component.
• Given any fixed x, y ∈ X, the mapping M(x, y, ·) : (0, ∞) → [0, 1] is left-continuous at each

point t ∈ (0, ∞).
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• The mappings Tn : X × X → X and f : X → X satisfy the inclusions Tn(X, X) ⊆ f (X) for
all n ∈ N.

• The mappings f and Tn commute; that is, f (Tn(x, y)) = Tn( f (x), f (y)) for all x, y ∈ X and
all n ∈ N.

• Given any x, y, u, v ∈ X, the following contractive inequality is satisfied:

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (x), f (u), t) ∗ M( f (y), f (v), t), (24)

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.

Subsequently, we have the following results.

(i) Suppose that there exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, f (x∗), T1(x∗, y∗), f (y∗), T1(y∗, x∗)) < ∞,

and that any one of the following conditions is satisfied:

(a) (X, M) is (<, �)-complete and f is simultaneously (�, �)-continuous and (�, �)-
continuous with respect to M;

(b) (X, M) is (<, �)-complete and f is simultaneously (�, �)-continuous and (�, �)-
continuous with respect to M.

Afterwards, the mappings {Tn}∞
n=1 and f have a common coupled coincidence point (x◦, y◦).

We further assume that the following conditions are satisfied.

• The inequality (24) is replaced by the following inequality

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (x), f (u), t) · M( f (y), f (v), t), (25)

where the t-norm ∗ is replaced by the product of real numbers.
• The mapping M satisfies the distance condition in Definition 2.
• For any fixed x, y ∈ X and t > 0, the following mapping

(α) = M
(

x, y, klog2 α · t
)

(26)

is differentiable on (0, ∞).

Afterwards, we have the following results.

(A) Suppose that (x̄, ȳ) is another coupled coincidence point of mappings f and Tn0 for
some n0 ∈ N. Subsequently, f (x◦) = f (x̄) and f (y◦) = f (ȳ).

(B) There exists (x◦, y◦) ∈ X × X such that ( f (x◦), f (y◦)) ∈ X × X is the common
coupled fixed point of the mappings {Tn}∞

n=1.

Moreover, the point (x◦, y◦) ∈ X × X can be obtained, as follows.

• Suppose that condition (a) is satisfied. Afterwards, the point (x◦, y◦) ∈ X × X can be

obtained by taking the limit f (xn)
M�

−→ x◦ and f (yn)
M�

−→ y◦.
• Suppose that condition (b) is satisfied. Subsequently, the point (x◦, y◦) ∈ X × X can

be obtained by taking the limit f (xn)
M�

−→ x◦ and f (yn)
M�

−→ y◦.

The sequences {xn}∞
n=1 and {yn}∞

n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X × X according to (23).

(ii) Suppose that there exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, T1(x∗, y∗), f (x∗), T1(y∗, x∗), f (y∗)) < ∞,

and that any one of the following conditions is satisfied:

(c) (X, M) is (>, �)-complete and f is simultaneously (�, �)-continuous and (�, �)-
continuous with respect to M;
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(d) (X, M) is (>, �)-complete and f is simultaneously (�, �)-continuous and (�, �)-
continuous with respect to M.

Afterwards, we have the same result as part (i).

Proof. We can generate two sequences {xn}∞
n=1 and {yn}∞

n=1 from the initial element
x0 = x∗ and y0 = y∗ according to (23). Then we have

f (x∗) = f (x0) and f (y∗) = f (y0)

and
T1(x∗, y∗) = T1(x0, y0) = f (x1) and T1(y∗, x∗) = T1(y0, x0) = f (y1).

To prove part (i), from (23) and (24), we obtain

M( f (x1), f (x2), t) = M(T1(x0, y0), T2(x1, y1), t)

≥ M
(

f (x0), f (x1),
t

k12

)
∗ M

(
f (y0), f (y1),

t
k12

)
and

M( f (y1), f (y2), t) = M(T1(y0, x0), T2(y1, x1), t)

≥ M
(

f (y0), f (y1),
t

k12

)
∗ M

(
f (x0), f (x1),

t
k12

)
.

By induction, we can obtain

M( f (xn), f (xn+1), t) ≥
[
∗M
(

f (x0), f (x1),
t

∏n
i=1 ki,i+1

)]2n−1

∗
[
∗M
(

f (y0), f (y1),
t

∏n
i=1 ki,i+1

)]2n−1

(27)

and

M( f (yn), f (yn+1), t) ≥
[
∗M
(

f (x0), f (x1),
t

∏n
i=1 ki,i+1

)]2n−1

∗
[
∗M
(

f (y0), f (y1),
t

∏n
i=1 ki,i+1

)]2n−1

. (28)

Part (i) of Proposition 2 says that the mapping M(x, y, ·) is nondecreasing. Because ki,i+1 ≤
k for each i ∈ N, using the increasing property of t-norm to (27) and (28), we also have

M( f (xn), f (xn+1), t) ≥
[
∗M
(

f (x0), f (x1),
t

kn

)]2n−1

∗
[
∗M
(

f (y0), f (y1),
t

kn

)]2n−1

=

[
∗η

(
f (x0), f (x1), f (y0), f (y1),

t
kn

)]2n−1

(29)

and

M( f (yn), f (yn+1), t) ≥
[
∗M
(

f (x0), f (x1),
t

kn

)]2n−1

∗
[
∗M
(

f (y0), f (y1),
t

kn

)]2n−1

=

[
∗η

(
f (x0), f (x1), f (y0), f (y1),

t
kn

)]2n−1

. (30)
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Using the increasing property of t-norm to (29) and (30), we have

η( f (xn), f (xn+1), f (yn), f (yn+1), t) = M( f (xn), f (xn+1), t) ∗ M( f (yn), f (yn+1), t)

≥
[
∗η

(
f (x0), f (x1), f (y0), f (y1),

t
kn

)]2n

. (31)

From part (i) of Proposition 10, it follows that { f (xn)}∞
n=1 and { f (yn)}∞

n=1 are <-Cauchy
sequences. We consider the following cases

• Suppose that condition (a) is satisfied. Because (X, M) is (<, �)-complete, there exist
x◦, y◦ ∈ X, such that

f (xn)
M�

−→ x◦ and f (yn)
M�

−→ y◦ as n → ∞. (32)

Since f is simultaneously (�, �)-continuous and (�, �)-continuous with respect to M,
we have

f ( f (xn))
M�

−→ f (x◦) and f ( f (yn))
M�

−→ f (y◦) as n → ∞

and
f ( f (xn))

M�

−→ f (x◦) and f ( f (yn))
M�

−→ f (y◦) as n → ∞,

which say that, for all t > 0,

M( f ( f (xn)), f (x◦), t) → 1 − as n → ∞ (33)

M( f ( f (yn)), f (y◦), t) → 1 − as n → ∞ (34)

M( f (x◦), f ( f (xn)), t) → 1 − as n → ∞ (35)

M( f (y◦), f ( f (yn)), t) → 1 − as n → ∞. (36)

• Suppose that condition (b) is satisfied. Since (X, M) is (<, �)-complete, there exist
x◦, y◦ ∈ X, such that

f (xn)
M�

−→ x◦ and f (yn)
M�

−→ y◦ as n → ∞. (37)

Because f is simultaneously (�, �)-continuous and (�, �)-continuous with respect to
M, we can similarly obtain (33)–(36).

Using (23) and the commutativity of Tn and f , we obtain

f ( f (xn+1)) = f (Tn+1(xn, yn)) = Tn+1( f (xn), f (yn))) (38)

and
f ( f (yn+1)) = f (Tn+1(yn, xn)) = Tn+1( f (yn), f (xn))).

We shall show that f (x◦) = Tn(x◦, y◦) and f (y◦) = Tn(y◦, x◦) for all n ∈ N. Now we have

M( f ( f (xn+1)), Tn(x◦, y◦), kt) ≥ M( f ( f (xn+1)), Tn(x◦, y◦), kn+1,n · t)
= M(Tn+1( f (xn), f (yn))), Tn(x◦, y◦), kn+1,n · t) (by (38))

≥ M( f ( f (xn)), f (x◦), t) ∗ M( f ( f (yn)), f (y◦), t) (by (24)). (39)

Using Proposition 1 and applying (33) and (34) to (39), we obtain

lim inf
n→∞

M( f ( f (xn+1)), Tn(x◦, y◦), t)

≥ lim
n→∞

[
M
(

f ( f (xn)), f (x◦),
t
k

)
∗ M

(
f ( f (yn)), f (y◦),

t
k

)]
= 1 ∗ 1 = 1,

34



Axioms 2021, 10, 5

which says that

1 ≥ lim sup
n→∞

M( f ( f (xn+1)), Tn(x◦, y◦), t) ≥ lim inf
n→∞

M( f ( f (xn+1)), Tn(x◦, y◦), t) ≥ 1.

Therefore, we obtain

lim
n→∞

M( f ( f (xn+1)), Tn(x◦, y◦), t) = 1, i.e., M( f ( f (xn+1)), Tn(x◦, y◦), t) → 1 − . (40)

Using the ��-triangle inequality, we see that

M( f (x◦), Tn(x◦, y◦), 2t) ≥ M( f (x◦), f ( f (xn+1)), t) ∗ M( f ( f (xn+1)), Tn(x◦, y◦), t).

While using the left-continuity of t-norm ∗ to (35) and (40), we obtain M( f (x◦), Tn(x◦, y◦), 2t) =
1 for all t > 0. Therefore we must have f (x◦) = Tn(x◦, y◦) for all n ∈ N. We can similarly
show that f (y◦) = Tn(y◦, x◦) for all n ∈ N.

To prove property (A), let (x̄, ȳ) be another coupled coincidence point of f and Tn0 for
some n0 ∈ N, i.e., f (x̄) = Tn0(x̄, ȳ) and f (ȳ) = Tn0(ȳ, x̄). Because the mapping M(x, y, ·) is
non-decreasing, by (25), we have

M( f (x◦), f (x̄), t) = M(Tn0(x◦, y◦), Tn0(x̄, ȳ), t)

≥ M
(

f (x◦), f (x̄),
t

kn0,n0

)
· M
(

f (y◦), f (ȳ),
t

kn0,n0

)
≥ M

(
f (x◦), f (x̄),

t
k

)
· M
(

f (y◦), f (ȳ),
t
k

)
(41)

and

M( f (y◦), f (ȳ), t) = M(Tn0(y
◦, x◦), Tn0(ȳ, x̄), t)

≥ M
(

f (y◦), f (ȳ),
t

kn0,n0

)
· M
(

f (x◦), f (x̄),
t

kn0,n0

)
≥ M

(
f (y◦), f (ȳ),

t
k

)
· M
(

f (x◦), f (x̄),
t
k

)
. (42)

Therefore we obtain

M( f (x◦), f (x̄), t) ≥ M
(

f (x◦), f (x̄),
t
k

)
· M
(

f (y◦), f (ȳ),
t
k

)
(by (41))

≥
[

M
(

f (x◦), f (x̄),
t

k2

)
· M
(

f (y◦), f (ȳ),
t

k2

)]
·
[

M
(

f (x◦), f (x̄),
t

k2

)
· M
(

f (y◦), f (ȳ),
t

k2

)]
(by (41) and (42))

=

[
M
(

f (x◦), f (x̄),
t

k2

)]2

·
[

M
(

f (y◦), f (ȳ),
t

k2

)]2

≥ · · · ≥
[

M
(

f (x◦), f (x̄),
t

kn

)]2n−1

·
[

M
(

f (y◦), f (ȳ),
t

kn

)]2n−1

(by repeating to use (41) and (42))

≥
[

M
(

f (x◦), f (x̄),
t

kn

)]2n

·
[

M
(

f (y◦), f (ȳ),
t

kn

)]2n

(43)

(since M(x, y, t) ≤ 1 for any x, y ∈ X and t > 0),

Equivalently, we have

M( f (x◦), f (x̄), t) ≥
[

M
(

f (x◦), f (x̄),
t

klog2 n

)]n
·
[

M
(

f (y◦), f (ȳ),
t

klog2 n

)]n
.
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which can be rewritten as

M
(

f (x◦), f (x̄), klog2 n · t
)
≥ [M( f (x◦), f (x̄), t)]n · [M( f (y◦), f (ȳ), t)]n. (44)

We are going to claim that there exists t̄ > 0, such that M( f (y◦), f (ȳ), t) �= 0 for all t ≥ t̄.
We consider the following two cases.

• If f (y◦) = f (ȳ), then M( f (y◦), f (ȳ), t) = 1 for all t > 0.
• If f (y◦) �= f (ȳ), then the distance condition says that there exits t̄ > 0 such that

M( f (y◦), f (ȳ), t̄) �= 0. Part (i) of Proposition 2 says that the mapping M(x, y, ·) is
nondecreasing. It follows that M( f (y◦), f (ȳ), t) �= 0 for all t ≥ t̄.

Therefore, from (44), for any fixed t > 0 with t ≥ t̄, we have[
M
(

f (x◦), f (x̄), klog2 n · t
)]1/n

· 1
M( f (y◦), f (ȳ), t)

≥ M( f (x◦), f (x̄), t). (45)

Because 0 < k < 1 and the mapping M(x, y, ·) is non-decreasing, the function  defined
in (26) is non-increasing, which says that ′(α) ≤ 0 on (0, ∞). Because M satisfies the
rational condition, we have

lim
t→0+

M(x, y, t) = 0 (46)

for any fixed x, y ∈ X with x �= y. We consider

(α) = M
(

f (x◦), f (x̄), klog2 α · t
)

.

Suppose that f (x◦) �= f (x̄). Because 0 < k < 1, it follows that klog2 α · t → 0+ as α → ∞.
Therefore, (46) says that (α) → 0+ as α → ∞. Subsequently, we obtain

lim
n→∞

[
M( f (x◦), f (x̄), klog2 n · t)

]1/n

= lim
n→∞

[(n)]1/n = lim
n→∞

exp
[

ln (n)
n

]
= exp

[
lim

n→∞

′(n)
(n)

]
(using the l’Hospital’s rule)

= 0 (since ′(n) ≤ 0 and (n) → 0+). (47)

By taking n → ∞ in (45) and using (47), it follows that M( f (x◦), f (x̄), t) = 0 for all
t ≥ t̄. Because f (x◦) �= f (x̄), the distance condition says that there exits t0 > 0, such
that M( f (x◦), f (x̄), t0) �= 0, i.e., M( f (x◦), f (x̄), t) �= 0 for all t ≥ t0 by the nondecreasing
property of M(x, y, ·), which contradicts M( f (x◦), f (x̄), t) = 0 for all t ≥ t̄. Therefore, we
must have f (x◦) = f (x̄). We can similarly obtain f (y◦) = f (ȳ).

To prove property (B), using the commutativity of Tn and f , we have

f (Tn(x◦, y◦)) = Tn( f (x◦), f (y◦)) = Tn(Tn(x◦, y◦), Tn(y◦, x◦)) (48)

and
f (Tn(y◦, x◦)) = Tn( f (y◦), f (x◦)) = Tn(Tn(y◦, x◦), Tn(x◦, y◦)). (49)

By regarding x̄ as Tn(x◦, y◦) and ȳ as Tn(y◦, x◦), the equalities (48) and (49) say that

f (x̄) = Tn(x̄, ȳ) and f (ȳ) = Tn(ȳ, x̄).

Therefore, using property (A), we must have

f (x◦) = f (x̄) = f (Tn(x◦, y◦)) = Tn( f (x◦), f (y◦))

and
f (y◦) = f (ȳ) = f (Tn(y◦, x◦)) = Tn( f (y◦), f (x◦)),
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which says that ( f (x◦), f (y◦)) ∈ X × X is the common coupled fixed point of the mappings
{Tn}∞

n=1.
To prove part (ii), we can similarly obtain

η( f (xn+1), f (xn), f (yn+1), f (yn), t) ≥
[
∗η

(
f (x1), f (x0), f (y1), f (y0),

t
kn

)]2n

. (50)

From part (i) of Proposition 10, it follows that { f (xn)}∞
n=1 and { f (yn)}∞

n=1 are >-Cauchy
sequences. We consider two cases below.

• Suppose that condition (c) is satisfied. Because (X, M) is (>, �)-complete, there exist
x◦, y◦ ∈ X, such that

f (xn)
M�

−→ x◦ and f (yn)
M�

−→ y◦ as n → ∞.

Because f is simultaneously (�, �)-continuous and (�, �)-continuous with respect to
M, we can similarly obtain (33)–(36).

• Suppose that condition (d) is satisfied. Because (X, M) is (>, �)-complete, there exist
x◦, y◦ ∈ X, such that

f (xn)
M�

−→ x◦ and f (yn)
M�

−→ y◦ as n → ∞.

Because f is simultaneously (�, �)-continuous and (�, �)-continuous with respect to
M, we can similarly obtain (33)–(36).

The remaining proof follows from the similar argument of part (i). This completes the
proof.

In Theorem 1, since the fuzzy semi-metric M is not necessarily symmetric, if the
contractive inequalities (24) and (25) are not satisfied and, alternatively, the following
converse-contractive inequalities

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) ∗ M( f (v), f (y), t)

and
M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) · M( f (v), f (y), t)

are satisfied, then we can also obtain the desired results by assuming the different condi-
tions.

Theorem 2 (Satisfying the ��-Triangle Inequality: Converse-Contractive Inequality). Let
(X, M) be a fuzzy semi-metric space, such that the mapping M satisfies the rational condition and
the ��-triangle inequality. Suppose that the following conditions are satisfied.

• The first four conditions in Theorem 1 are satisfied.
• For any x, y, u, v ∈ X, the following converse-contractive inequality is satisfied:

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) ∗ M( f (v), f (y), t), (51)

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.

Subsequently, we have the following results.

(i) Suppose that there exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, f (x∗), T1(x∗, y∗), f (y∗), T1(y∗, x∗)) < ∞,

and that any one of the following conditions is satisfied:

(a) (X, M) is (<, �)-complete and f is (�, �)-continuous or (�, �)-continuous with
respect to M;
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(b) (X, M) is (<, �)-complete and f is (�, �)-continuous or (�, �)-continuous with
respect to M.

Subsequently, the mappings {Tn}∞
n=1 and f have a common coupled coincidence point

(x◦, y◦). We further assume that the following conditions are satisfied.

• The inequality (51) is replaced by the following inequality

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) · M( f (v), f (y), t),

where the t-norm ∗ is replaced by the product of real numbers;
• The mapping M satisfies the distance condition in Definition 2.
• For any fixed x, y ∈ X and t > 0, the following mapping

(α) = M
(

x, y, klog2 α · t
)

is differentiable on (0, ∞).

Afterwards, we have the following results.

(A) Suppose that (x̄, ȳ) is another coupled coincidence point of f and Tn0 for some n0 ∈ N.
Then f (x◦) = f (x̄) and f (y◦) = f (ȳ).

(B) There exists (x◦, y◦) ∈ X × X, such that ( f (x◦), f (y◦)) ∈ X × X is the common
coupled fixed point of the mappings {Tn}∞

n=1.

Moreover, the point (x◦, y◦) ∈ X × X can be obtained, as follows.

• Suppose that condition (a) is satisfied. Then the point (x◦, y◦) ∈ X × X can be obtained

by taking the limit f (xn)
M�

−→ x◦ and f (yn)
M�

−→ y◦.
• Suppose that condition (b) is satisfied. Subsequently, the point (x◦, y◦) ∈ X × X can

be obtained by taking the limit f (xn)
M�

−→ x◦ and f (yn)
M�

−→ y◦.

The sequences {xn}∞
n=1 and {yn}∞

n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X × X, according to (23).

(ii) Suppose that there exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, T1(x∗, y∗), f (x∗), T1(y∗, x∗), f (y∗)) < ∞,

and that any one of the following conditions is satisfied:

(c) (X, M) is (>, �)-complete and f is (�, �)-continuous or (�, �)-continuous with
respect to M;

(d) (X, M) is (>, �)-complete and f is (�, �)-continuous or (�, �)-continuous with
respect to M;

Subsequently, we have the same result as part (i).

Theorem 3 (Satisfying the �-Triangle Inequality). Let (X, M) be a fuzzy semi-metric space,
such that the mapping M satisfies the rational condition and the �-triangle inequality. Let (x0, y0) ∈
X × X be an initial element that generates the sequences {xn}∞

n=1 and {yn}∞
n=1 according to (23).

Suppose that the following conditions are satisfied.

• The first four conditions in Theorem 1 are satisfied.
• The following contractive inequalities is satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (x), f (u), t) ∗ M( f (y), f (v), t) (52)

or the following converse-contractive inequalities is satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) ∗ M( f (v), f (y), t), (53)

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.
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• There exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, f (x∗), T1(x∗, y∗), f (y∗), T1(y∗, x∗)) < ∞

and
sup

λ∈(0,1)
Φ(λ, T1(x∗, y∗), f (x∗), T1(y∗, x∗), f (y∗)) < ∞.

• Any one of the following conditions is satisfied:

(a) (X, M) is (<, �)-complete or (>, �)-complete and f is (�, �)-continuous with respect
to M;

(b) (X, M) is (<, �)-complete or (>, �)-complete and f is (�, �)-continuous with respect
to M.

Subsequently, the mappings {Tn}∞
n=1 and f have a common coupled coincidence point (x◦, y◦).

We further assume that the following conditions are satisfied.

• The inequality (52) is replaced by the following inequality

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (x), f (u), t) · M( f (y), f (v), t) (54)

and the inequality (53) is replaced by the following inequality

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) · M( f (v), f (y), t), (55)

where the t-norm ∗ is replaced by the product of real numbers, such that any one of the
inequalities (54) and (55) is satisfied.

• The mapping M satisfies the distance condition in Definition 2.
• For any fixed x, y ∈ X and t > 0, the following mapping

(α) = M
(

x, y, klog2 α · t
)

is differentiable on (0, ∞).

Afterwards, we have the following results.

(A) Suppose that (x̄, ȳ) is another coupled coincidence point of f and Tn0 for some n0 ∈ N.
Subsequently, f (x◦) = f (x̄) and f (y◦) = f (ȳ).

(B) There exists (x◦, y◦) ∈ X × X, such that ( f (x◦), f (y◦)) ∈ X × X is the common coupled
fixed point of the mappings {Tn}∞

n=1.

Moreover, the point (x◦, y◦) ∈ X × X can be obtained as follows.

• Suppose that condition (a) is satisfied. Subsequently, the point (x◦, y◦) ∈ X × X can be

obtained by taking the limit f (xn)
M�

−→ x◦ and f (yn)
M�

−→ y◦.
• Suppose that condition (b) is satisfied. Afterwards, the point (x◦, y◦) ∈ X × X can be

obtained by taking the limit f (xn)
M�

−→ x◦ and f (yn)
M�

−→ y◦.

The sequences {xn}∞
n=1 and {yn}∞

n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X × X according to (23).

Theorem 4 (Satisfying the �-Triangle Inequality). Let (X, M) be a fuzzy semi-metric space such
that the mapping M satisfies the rational condition and the �-triangle inequality. Let (x0, y0) ∈
X × X be an initial element that generates the sequences {xn}∞

n=1 and {yn}∞
n=1 according to (23).

Suppose that the following conditions are satisfied.

• The first four conditions in Theorem 1 are satisfied.
• The following contractive inequalities is satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (x), f (u), t) ∗ M( f (y), f (v), t) (56)
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or the following converse-contractive inequalities is satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) ∗ M( f (v), f (y), t), (57)

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.
• There exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, f (x∗), T1(x∗, y∗), f (y∗), T1(y∗, x∗)) < ∞

and
sup

λ∈(0,1)
Φ(λ, T1(x∗, y∗), f (x∗), T1(y∗, x∗), f (y∗)) < ∞;

• Any one of the following conditions is satisfied:

(a) (X, M) is (<, �)-complete or (>, �)-complete and f is (�, �)-continuous with respect
to M;

(b) (X, M) is (<, �)-complete or (>, �)-complete and f is (�, �)-continuous with respect
to M.

Subsequently, the mappings {Tn}∞
n=1 and f have a common coupled coincidence point (x◦, y◦).

We further assume that the following conditions are satisfied.

• The inequality (56) is replaced by the following inequality

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (x), f (u), t) · M( f (y), f (v), t) (58)

and the inequality (57) is replaced by the following inequality

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) · M( f (v), f (y), t), (59)

where the t-norm ∗ is replaced by the product of real numbers, such that any one of the
inequalities (58) and (59) is satisfied.

• The mapping M satisfies the distance condition in Definition 2.
• For any fixed x, y ∈ X and t > 0, the following mapping

(α) = M
(

x, y, klog2 α · t
)

is differentiable on (0, ∞).

Subsequently, we have the following results.

(A) Suppose that (x̄, ȳ) is another coupled coincidence point of f and Tn0 for some n0 ∈ N.
Subsequently, f (x◦) = f (x̄) and f (y◦) = f (ȳ).

(B) There exists (x◦, y◦) ∈ X × X such that ( f (x◦), f (y◦)) ∈ X × X is the common coupled
fixed point of the mappings {Tn}∞

n=1.

Moreover, the point (x◦, y◦) ∈ X × X can be obtained, as follows.

• Suppose that condition (a) is satisfied. Afterwards, the point (x◦, y◦) ∈ X × X can be obtained

by taking the limit f (xn)
M�

−→ x◦ and f (yn)
M�

−→ y◦.
• Suppose that condition (b) is satisfied. Subsequently, the point (x◦, y◦) ∈ X × X can be

obtained by taking the limit f (xn)
M�

−→ x◦ and f (yn)
M�

−→ y◦.

The sequences {xn}∞
n=1 and {yn}∞

n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X × X according to (23).

Theorem 5 (Satisfying the �-Triangle Inequality). Let (X, M) be a fuzzy semi-metric space,
such that the mapping M satisfies the rational condition and the �-triangle inequality. Suppose that
the following conditions are satisfied.

• All five conditions in Theorem 1 are satisfied.
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• There exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, f (x∗), T1(x∗, y∗), f (y∗), T1(y∗, x∗)) < ∞

and
sup

λ∈(0,1)
Φ(λ, T1(x∗, y∗), f (x∗), T1(y∗, x∗), f (y∗)) < ∞.

• Any one of the following conditions is satisfied:

(a) (X, M) is (<, �)-complete or (>, �)-complete, and f is (�, �)-continuous or (�, �)-
continuous with respect to M;

(b) (X, M) is (<, �)-complete or (>, �)-complete, and f is (�, �)-continuous or (�, �)-
continuous with respect to M.

Subsequently, the mappings {Tn}∞
n=1 and f have a common coupled coincidence point (x◦, y◦).

Moreover, the point (x◦, y◦) ∈ X × X can be obtained, as follows.

• Suppose that condition (a) is satisfied. Afterwards, the point (x◦, y◦) ∈ X × X can be obtained

by taking the limit f (xn)
M�

−→ x◦ and f (yn)
M�

−→ y◦.
• Suppose that condition (b) is satisfied. Subsequently, the point (x◦, y◦) ∈ X × X can be

obtained by taking the limit f (xn)
M�

−→ x◦ and f (yn)
M�

−→ y◦.

The sequences {xn}∞
n=1 and {yn}∞

n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X × X according to (23).

Theorem 6 (Satisfying the �-Triangle Inequality: Converse-Contractive Inequality). Let
(X, M) be a fuzzy semi-metric space, such that the mapping M satisfies the rational condition and
the �-triangle inequality. Let (x0, y0) ∈ X × X be an initial element that generates the sequences
{xn}∞

n=1 and {yn}∞
n=1 according to (23). Suppose that the following conditions are satisfied.

• The first four conditions in Theorem 1 are satisfied.
• For any x, y, u, v ∈ X, the following converse-contractive inequality is satisfied:

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) ∗ M( f (v), f (y), t),

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.
• There exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, f (x∗), T1(x∗, y∗), f (y∗), T1(y∗, x∗)) < ∞

and
sup

λ∈(0,1)
Φ(λ, T1(x∗, y∗), f (x∗), T1(y∗, x∗), f (y∗)) < ∞.

• Any one of the following conditions is satisfied:

(a) (X, M) is (<, �)-complete or (>, �)-complete and f is simultaneously (�, �)-continuous
and (�, �)-continuous with respect to M;

(b) (X, M) is (<, �)-complete or (>, �)-complete and f is simultaneously (�, �)-continuous
and (�, �)-continuous with respect to M.

Subsequently, the mappings {Tn}∞
n=1 and f have a common coupled coincidence point (x◦, y◦).

Moreover, the point (x◦, y◦) ∈ X × X can be obtained as follows.

• Suppose that condition (a) is satisfied. Afeterwards, the point (x◦, y◦) ∈ X × X can be

obtained by taking the limit f (xn)
M�

−→ x◦ and f (yn)
M�

−→ y◦.
• Suppose that condition (b) is satisfied. Subsequently, the point (x◦, y◦) ∈ X × X can be

obtained by taking the limit f (xn)
M�

−→ x◦ and f (yn)
M�

−→ y◦.
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The sequences {xn}∞
n=1 and {yn}∞

n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X × X according to (23).

6. Common Coupled Fixed Points

Consider the mappings T : X × X → X and f : X → X. Recall that an element
(x∗, y∗) ∈ X × X is called a common coupled fixed point when

x∗ = f (x∗) = T(x∗, y∗) and y∗ = f (y∗) = T(y∗, x∗).

The common coupled fixed points are also the common coupled coincidence points.
The uniqueness of common coupled coincidence points presented above was not guar-
anteed. In this section, we shall investigate the uniqueness of common coupled fixed
points.

The contractive inequality and converse-contractive inequality should consider the
product of real numbers instead of t-norm ∗ in order to obtain the unique common coupled
fixed point.

Theorem 7 (Satisfying the ��-Triangle Inequality). Let (X, M) be a fuzzy semi-metric space,
such that the mapping M satisfies the rational condition and the ��-triangle inequality. Suppose
that the following conditions are satisfied.

• For any sequences {an}∞
n=1 and {bn}∞

n=1 in [0, 1], the following inequality is satisfied:

sup
n
(an ∗ bn) ≥

(
sup

n
an

)
∗
(

sup
n

bn

)
.

• The t-norm ∗ is left-continuous with respect to the first or second component.
• Given any fixed x, y ∈ X, the mapping M(x, y, ·) : (0, ∞) → [0, 1] is continuous on (0, ∞).
• The mapping M satisfies the distance condition in Definition 2.
• Given any fixed x, y ∈ X and t > 0, the following mapping

(α) = M
(

x, y, klog2 α · t
)

is differentiable on (0, ∞).
• The mappings Tn : X → X and f : X → X satisfy the inclusion Tn(X, X) ⊆ f (X) for all

n ∈ N.
• The mappings f and Tn commute.
• Any one of the following conditions is satisfied:

– the mapping f is simultaneously (�, �)-continuous and (�, �)-continuous with respect
to M;

– the mapping f is simultaneously (�, �)-continuous and (�, �)-continuous with respect
to M.

• for any x, y, u, v ∈ X, the following contractive inequality is satisfied:

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (x), f (u), t) · M( f (y), f (v), t), (60)

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.

Subsequently, we have the following results.

(i) Suppose that the space (X, M) is simultaneously (<, �)-complete and (<, �)-complete. We
also assume that there exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, f (x∗), T1(x∗, y∗), f (y∗), T1(y∗, x∗)) < ∞.

Afterwards, the mappings {Tn}∞
n=1 and f have a unique common coupled fixed point (x◦, y◦).
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(ii) Suppose that the space (X, M) is simultaneously (>, �)-complete and (>, �)-complete. We
also assume that there exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, T1(x∗, y∗), f (x∗), T1(y∗, x∗), f (y∗)) < ∞.

Then the mappings {Tn}∞
n=1 and f have a unique common coupled fixed point (x◦, y◦).

Moreover, the point (x◦, y◦) ∈ X × X can be obtained as follows.

• The point x◦ can be obtained by taking the limit f (xn)
M�

−→ x◦ or the limit f (xn)
M�

−→ x◦;

• The point y◦ can be obtained by taking the limit f (yn)
M�

−→ y◦ or the limit f (yn)
M�

−→ y◦.

The sequences {xn}∞
n=1 and {yn}∞

n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X × X according to (23).

Proof. According to (23), we can generate two sequences {xn}∞
n=1 and {yn}∞

n=1 from the
initial element x0 = x∗ and y0 = y∗. To prove part (i), while using part (i) of Theorem
1, we have f (x◦) = Tn(x◦, y◦) and f (y◦) = Tn(y◦, x◦) for all n ∈ N. According to the
proof of part (i) of Theorem 1, we see that { f (xn)}∞

n=1 and { f (yn)}∞
n=1 are <-Cauchy

sequences. Since (X, M) issimultaneously (<, �)-complete and (<, �)-complete, using

part (i) of Proposition 3, there exists x◦, y◦ ∈ X satisfying f (xn)
M�

−→ x◦, f (xn)
M�

−→ x◦,

f (yn)
M�

−→ y◦ and f (yn)
M�

−→ y◦ as n → ∞, which also says that f (xn)
M−→ x◦ and

f (yn)
M−→ y◦ as n → ∞.

Next, we are going to claim that x◦ is a fixed point of f . While using (60) and the
nondecreasing property of M(x, y, ·) by part (i) of Proposition 2, we have

M( f (xn+1), f (x◦), t) = M(Tn+1(xn, yn), Tn(x◦, y◦), t)

≥ M
(

f (xn), f (x◦),
t

kn+1,n

)
· M
(

f (yn), f (y◦),
t

kn+1,n

)
≥ M

(
f (xn), f (x◦),

t
k

)
· M
(

f (yn), f (y◦),
t
k

)
(61)

and

M( f (yn+1), f (y◦), t) = M(Tn+1(yn, xn), Tn(y◦, x◦), t)

≥ M
(

f (yn), f (y◦),
t

kn+1,n

)
· M
(

f (xn), f (x◦),
t

kn+1,n

)
≥ M

(
f (yn), f (y◦),

t
k

)
· M
(

f (xn), f (x◦),
t
k

)
(62)

Because f (xn)
M−→ x◦ and f (yn)

M−→ y◦ as n → ∞, applying part (i) of Proposition 4 to (61)
and (62), we obtain

M(x◦, f (x◦), t) ≥ M
(

x◦, f (x◦),
t
k

)
· M
(

y◦, f (y◦),
t
k

)
.

and

M(y◦, f (y◦), t) ≥ M
(

x◦, f (x◦),
t
k

)
· M
(

y◦, f (y◦),
t
k

)
.

By referring to (43), we can obtain

M(x◦, f (x◦), t) ≥
[

M
(

x◦, f (x◦),
t

kn

)]2n

·
[

M
(

y◦, f (y◦),
t

kn

)]2n

,

43



Axioms 2021, 10, 5

which is equivalent to

M(x◦, f (x◦), klog2 n · t) ≥ [M(x◦, f (x◦), t)]n · [M(y◦, f (y◦), t)]n. (63)

We are going to claim that there exists t̄ > 0, such that M(y◦, f (y◦), t) �= 0 for all t ≥ t̄. We
consider the following cases.

• If f (y◦) = y◦, then M(y◦, f (y◦), t) = 1 for all t > 0.
• If f (y◦) �= y◦, then the distance condition says that there exits t̄ > 0, such that

M(y◦, f (y◦), t̄) �= 0. Part (i) of Proposition 2 says that the mapping M(x, y, ·) is
nondecreasing. Therefore, we have M(y◦, f (y◦), t) �= 0 for all t ≥ t̄.

From (63), for any fixed t > 0 with t ≥ t̄, we have[
M
(

x◦, f (x◦), klog2 n · t
)]1/n

· 1
M(y◦, f (y◦), t)

≥ M(x◦, f (x◦), t). (64)

Because 0 < k < 1 and the mapping M(x, y, ·) is nondecreasing, the function  that is
defined in (26) is non-increasing, which says that ′(α) ≤ 0 on (0, ∞). Because M satisfies
the rational condition, we have

lim
t→0+

M(x, y, t) = 0 (65)

for any fixed x, y ∈ X with x �= y. We consider

(α) = M
(

x◦, f (x◦), klog2 α · t
)

.

Suppose that f (x◦) �= x◦. Since 0 < k < 1, it follows that klog2 α · t → 0+ as α → ∞.
Therefore, (65) says that (α) → 0+ as α → ∞. Subsequently, we obtain

lim
n→∞

[
M(x◦, f (x◦), klog2 n · t)

]1/n

= lim
n→∞

[(n)]1/n = lim
n→∞

exp
[

ln (n)
n

]
= exp

[
lim

n→∞

′(n)
(n)

]
(using the l’Hospital’s rule)

= 0 (since ′(n) ≤ 0 and (n) → 0+). (66)

Applying (66) to (64), we obtain M(x◦, f (x◦), t) = 0 for all t ≥ t̄. Because f (x◦) �= x◦,
the distance condition says that there exits t0 > 0 such that M(x◦, f (x◦), t0) �= 0, i.e.,
M(x◦, f (x◦), t) �= 0 for all t ≥ t0 by the nondecreasing property of M(x, y, ·), which
contradicts M(x◦, f (x◦), t) = 0 for all t ≥ t̄. Therefore we must have f (x◦) = x◦. We can
similarly obtain f (y◦) = y◦; that is,

x◦ = f (x◦) = Tn(x◦, y◦) and y◦ = f (y◦) = Tn(y◦, x◦)

for all n ∈ N.
In order to prove the uniqueness, let (x̄, ȳ) be another common coupled fixed point

of f and {Tn}∞
n=1, i.e., x̄ = f (x̄) = Tn(x̄, ȳ) and ȳ = f (ȳ) = Tn(ȳ, x̄) for all n ∈ N. The

inequality (43) is equivalent to

M(x◦, x̄, klog2 n · t) ≥ [M(x◦, x̄, t)]n · [M(y◦, ȳ, t)]n. (67)

We can similarly show that there exists t̂ > 0, such that M(y◦, ȳ, t) �= 0 for all t ≥ t̂.
Therefore, from (67), for any fixed t > 0 with t ≥ t̂, we have[

M
(

x◦, x̄, klog2 n · t
)]1/n

· 1
M(y◦, ȳ, t)

≥ M(x◦, x̄, t). (68)
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By referring to (68), it follows that M(x◦, x̄, t) = 0 for all t ≥ t̂. Because x̄ �= x◦, the distance
condition says that there exits t0 > 0, such that M(x◦, x̄, t0) �= 0, i.e., M(x◦, x̄, t) �= 0 for all
t ≥ t0 by the non-decreasing property of M(x, y, ·), which contradicts M(x◦, x̄, t) = 0 for
all t ≥ t̂. Therefore, we must have x̄ = x◦. We can similarly obtain ȳ = y◦. This proves
the uniqueness. Finally, part (ii) can be obtained by applying part (ii) of Theorem 1 to the
above argument. This completes the proof.

Theorem 8 (Satisfying the ��-Triangle Inequality: Converse-Contractive Inequality). Let
(X, M) be a fuzzy semi-metric space such that the mapping M satisfies the rational condition and
the ��-triangle inequality. Suppose that the following conditions are satisfied.

• The first eight conditions of Theorem 7 are satisfied.
• For any x, y, u, v ∈ X, the following converse-contractive inequality is satisfied:

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) · M( f (v), f (y), t), (69)

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.

Subsequently, we have the following results.

(i) Suppose that the space (X, M) is simultaneously (<, �)-complete and (<, �)-complete. We
also assume that there exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, f (x∗), T1(x∗, y∗), f (y∗), T1(y∗, x∗)) < ∞.

Afterwards, the mappings {Tn}∞
n=1 and f have a unique common coupled fixed point (x◦, y◦).

(ii) Suppose that the space (X, M) is simultaneously (>, �)-complete and (>, �)-complete. We
also assume that there exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, T1(x∗, y∗), f (x∗), T1(y∗, x∗), f (y∗)) < ∞.

Subsequently, the mappings {Tn}∞
n=1 and f have a unique common coupled fixed point

(x◦, y◦).

Moreover, the point (x◦, y◦) ∈ X × X can be obtained, as follows.

• The point x◦ can be obtained by taking the limit f (xn)
M�

−→ x◦ or the limit f (xn)
M�

−→ x◦.

• The point y◦ can be obtained by taking the limit f (yn)
M�

−→ y◦ or the limit f (yn)
M�

−→ y◦,

The sequences {xn}∞
n=1 and {yn}∞

n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X × X, according to (23).

Theorem 9 (Satisfying the �-Triangle Inequality). Let (X, M) be a fuzzy semi-metric space,
such that the mapping M satisfies the rational condition and the �-triangle inequality. Suppose that
the following conditions are satisfied.

• The first eight conditions of Theorem 7 are satisfied.
• The following contractive inequalities is satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (x), f (u), t) · M( f (y), f (v), t) (70)

or the following converse-contractive inequalities is satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) · M( f (v), f (y), t), (71)

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.
• There exist x∗, y∗ ∈ X, satisfying

sup
λ∈(0,1)

Φ(λ, f (x∗), T1(x∗, y∗), f (y∗), T1(y∗, x∗)) < ∞
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and
sup

λ∈(0,1)
Φ(λ, T1(x∗, y∗), f (x∗), T1(y∗, x∗), f (y∗)) < ∞.

• The mapping f is (�, �)-continuous or (�, �)-continuous with respect to M.
• Any one of the following conditions is satisfied:

– (X, M) is (<, �)-complete and (<, �)-complete simultaneously;
– (X, M) is (>, �)-complete and (>, �)-complete simultaneously.

Subsequently, the mappings {Tn}∞
n=1 and f have a unique common coupled fixed point

(x◦, y◦). Moreover, the point (x◦, y◦) ∈ X × X can be obtained, as follows.

• The point x◦ can be obtained by taking the limit f (xn)
M�

−→ x◦ or the limit f (xn)
M�

−→ x◦.

• The point y◦ can be obtained by taking the limit f (yn)
M�

−→ y◦ or the limit f (yn)
M�

−→ y◦.

The sequences {xn}∞
n=1 and {yn}∞

n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X × X according to (23).

Theorem 10 (Satisfying the �-Triangle Inequality). Let (X, M) be a fuzzy semi-metric space,
such that the mapping M satisfies the rational condition and the �-triangle inequality. Suppose that
the following conditions are satisfied.

• The first eight conditions of Theorem 7 are satisfied.
• The following contractive inequalities is satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (x), f (u), t) · M( f (y), f (v), t)

or the following converse-contractive inequalities are satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) · M( f (v), f (y), t),

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.
• There exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, f (x∗), T1(x∗, y∗), f (y∗), T1(y∗, x∗)) < ∞

and
sup

λ∈(0,1)
Φ(λ, T1(x∗, y∗), f (x∗), T1(y∗, x∗), f (y∗)) < ∞.

• The mapping f is (�, �)-continuous or (�, �)-continuous with respect to M.
• Any one of the following conditions is satisfied:

– (X, M) is (<, �)-complete and (<, �)-complete simultaneously;
– (X, M) is (>, �)-complete and (>, �)-complete simultaneously.

Subsequently, the mappings {Tn}∞
n=1 and f have a unique common coupled fixed point

(x◦, y◦). Moreover, the point (x◦, y◦) ∈ X × X can be obtained, as follows.

• The point x◦ can be obtained by taking the limit f (xn)
M�

−→ x◦ or the limit f (xn)
M�

−→ x◦.

• The point y◦ can be obtained by taking the limit f (yn)
M�

−→ y◦ or the limit f (yn)
M�

−→ y◦.

The sequences {xn}∞
n=1 and {yn}∞

n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X × X according to (23).

Theorem 11 (Satisfying the �-Triangle Inequality). Let (X, M) be a fuzzy semi-metric space
such that the mapping M satisfies the rational condition and the �-triangle inequality. Suppose that
the following conditions are satisfied.

• All nine conditions of Theorem 7 are satisfied.
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• There exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, f (x∗), T1(x∗, y∗), f (y∗), T1(y∗, x∗)) < ∞

and
sup

λ∈(0,1)
Φ(λ, T1(x∗, y∗), f (x∗), T1(y∗, x∗), f (y∗)) < ∞;

• Any one of the following conditions is satisfied:

(a) (X, M) is (<, �)-complete or (>, �)-complete and f is (�, �)-continuous or (�, �)-
continuous with respect to M;

(b) (X, M) is (<, �)-complete or (>, �)-complete and f is (�, �)-continuous or (�, �)-
continuous with respect to M.

Afterwards, the mappings T and f have a unique common coupled fixed point (x◦, y◦)
Moreover, the point (x◦, y◦) ∈ X × X can be obtained, as follows.

• Suppose that condition (a) is satisfied. Afterwards, the point (x◦, y◦) ∈ X × X can be obtained

by taking the limit f (xn)
M�

−→ x◦ and f (yn)
M�

−→ y◦.
• Suppose that condition (b) is satisfied. Subsequently, the point (x◦, y◦) ∈ X × X can be

obtained by taking the limit f (xn)
M�

−→ x◦ and f (yn)
M�

−→ y◦.

The sequences {xn}∞
n=1 and {yn}∞

n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X × X, according to (23).

Theorem 12 (Satisfying the �-Triangle Inequality: Converse-Contractive Inequality). Let
(X, M) be a fuzzy semi-metric space, such that the mapping M satisfies the rational condition and
the �-triangle inequality. Suppose that the following conditions are satisfied.

• The first eight conditions of Theorem 7 are satisfied.
• The following converse-contractive inequalities are satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) · M( f (v), f (y), t),

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.
• There exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, f (x∗), T1(x∗, y∗), f (y∗), T1(y∗, x∗)) < ∞

and
sup

λ∈(0,1)
Φ(λ, T1(x∗, y∗), f (x∗), T1(y∗, x∗), f (y∗)) < ∞.

• Any one of the following conditions is satisfied:

(a) (X, M) is (<, �)-complete or (>, �)-complete and f is (�, �)-continuous and (�, �)-
continuous with respect to M;

(b) (X, M) is (<, �)-complete or (>, �)-complete and f is (�, �)-continuous and (�, �)-
continuous with respect to M.

Subsequently, the mappings T and f have a unique common coupled fixed point (x◦, y◦)
Moreover, the point (x◦, y◦) ∈ X × X can be obtained, as follows.

• Suppose that condition (a) is satisfied. Subsequently, the point (x◦, y◦) ∈ X × X can be

obtained by taking the limit f (xn)
M�

−→ x◦ and f (yn)
M�

−→ y◦.
• Suppose that condition (b) is satisfied. Afterwards, the point (x◦, y◦) ∈ X × X can be

obtained by taking the limit f (xn)
M�

−→ x◦ and f (yn)
M�

−→ y◦.

The sequences {xn}∞
n=1 and {yn}∞

n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X × X according to (23).

47



Axioms 2021, 10, 5

7. Conclusions

Four different kinds of triangle inequalities play the important role of studying the
common coupled coincidence points and common coupled fixed points in fuzzy semi-
metric spaces. We separately present the theorems of common coupled coincidence points
that are based on the different kinds of triangle inequalities.

• Suppose that the fuzzy semi-metric space satisfies the ��-triangle inequality. Theorem 1
studies the common coupled coincidence points. Because the symmetric condition
is not satisfied. Theorem 2 also studies the common coupled coincidence points by
considering the so-called converse-contractive inequality.

• Theorems 3 and 4 study the common coupled coincidence points when the fuzzy semi-
metric space satisfies the �-triangle inequality and �-triangle inequality, respectively.

• Suppose that the fuzzy semi-metric space satisfies the �-triangle inequality. Theorem 5
studies the common coupled coincidence points, and Theorem 6 studies the com-
mon coupled coincidence points by considering the so-called converse-contractive
inequality.

Because the common coupled fixed points are the common coupled coincidence points,
Theorems 1–6 can also be used to present the common coupled fixed points. However, the
uniqueness cannot be realized from Theorems 1–6. Section 6 studies the uniqueness of
common coupled fixed points.

• Suppose that the fuzzy semi-metric space satisfies the ��-triangle inequality. Theorem 7
studies the uniqueness of common coupled fixed points, and Theorem 8 also stud-
ies the uniqueness of common coupled fixed points by considering the so-called
converse-contractive inequality.

• Theorems 9 and 10 study the uniqueness of common coupled fixed points when the
fuzzy semi-metric space satisfies the �-triangle inequality and �-triangle inequality,
respectively.

• Suppose that the fuzzy semi-metric space satisfies the �-triangle inequality. Theorem 11
studies the uniqueness of common coupled fixed points and Theorem 12 studies the
uniqueness of common coupled fixed points by considering the so-called converse-
contractive inequality.
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1. Introduction and Preliminaries

In 1942, Menger [1] introduced Menger probabilistic metric spaces as an extension of
metric spaces. After that, Sehgal and Bharucha-Reid [2,3] studied some fixed point results
for different classes of probabilistic contractions (also, see and references in the citation).
Moreover, in 2009, Saadati et al. [4] introduced the concept of r-distance on this space.

Throughout this paper, the set of all Menger distance distribution functions are de-
noted by D+.

Definition 1 ([5], page 1). A binary mapping T : [0, 1]× [0, 1] → [0, 1] is called t-norm if the
following propertied are held:

(a) T is commutative and associative;
(b) T is continuous;
(c) T (a, 1) = a if a ∈ [0, 1];
(d) T (a, b) ≤ T (c, d) if a ≤ c and b ≤ d for every a, b, c, d ∈ [0, 1].

Definition 2 ([4]). A t-norm T is called an H-type I if for ε ∈ (0, 1), there exist δ ∈ (0, 1) so
that T m(1 − δ, ..., 1 − δ) > 1 − ε for each m ∈ N, where T m recursively defined by T 1 = T and
T m(t1, t2, ..., tm+1) = T (T m−1(t1, t2, ..., tm), tm+1) for m = 2, 3, · · · and ti ∈ [0, 1].

All t-norms in the sequel are from class of H-type I.
From another point of view, Mustafa and Sims [6] defined G-metric spaces as another

extension of metric spaces, analyzed the structure of this space, and continued the theory of
fixed point in such spaces. In 2014, Zhou et al. [7], by combining Menger PM-spaces and G-
metric spaces, defined Menger probabilistic generalized metric space (shortly, Menger PGM
space). Other researchers extended several fixed point theorems in [8–10] and references
contained therein.

Definition 3 ([7]). Assume that X is a nonempty set, T is a continuous t-norm and G : X 3 → D+

is a mapping satisfying the following properties for all x, y, z, a ∈ X and s, t > 0:

Axioms 2021, 10, 3. https://doi.org/10.3390/axioms10010003 https://www.mdpi.com/journal/axioms
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(PG1) Gx,y,z(t) = 1 if and only if x = y = z;
(PG2) Gx,x,y(t) ≥ Gx,y,z(t), where z �= y;
(PG3) Gx,y,z(t) = Gx,z,y(t) = Gy,x,z(t) = · · · ;
(PG4) Gx,y,z(t + s) ≥ T (Gx,a,a(s), Ga,y,z(t)).

Then (X , G, T ) is named a Menger PGM space.

For the definitions of convergent, completeness, closedness and some theorems by
regarding these concepts in such spaces, one can see [7]. In 2004, Ran and Reurings [11]
discussed on fixed point results for comparable elements of a metric space (X , d) provided
with a partial order. Then, Bhaskar and Lakshmikantham [12] presented several fixed point
results for a mapping having mixed monotone property in such spaces (see [13,14]).

Definition 4 ([12]). Consider a ordered set (X ,�) and a mapping F : X 2 → X . The mapping F
is told to be have mixed monotone property if

x1 � x2 implies that F(x1, y) � F(x2, y) ∀x1, x2 ∈ X ,

y1 � y2 implies that F(x, y1) � F(x, y2) ∀y1, y2 ∈ X .

for every x, y ∈ X .

Here we introduce an e-distance on Menger PGM spaces and some of its properties.
Then we obtain some coupled fixed point results in the quasi-ordered version of such
spaces. The subject of the paper offers novelties compared to the related background
literature since a new distance in Menger spaces is defined while some of its properties are
revisited and extended.

2. Main Results

Here, we consider an e-distance on a Menger PGM space, which is an extension of
r-distance introduced by Saadati et al. [4].

Definition 5. Consider a Menger PGM space (X , G, T ). Then the function g : X 3 × [0, ∞] →
[0, 1] is called an e-distance, if for all x, y, z, a ∈ X and s, t ≥ 0 the following are held:

(r1) gx,y,z(t + s) ≥ T (gx,a,a(s), ga,y,z(t));
(r2) gx,y,.(t) and gx,.,y(t) are continuous;
(r3) for each ε > 0, there exists δ > 0 provided that ga,y,z(t) ≥ 1 − δ and gx,a,a(s) ≥ 1 − δ

conclude that Gx,y,z(t + s) ≥ 1 − ε.

Lemma 1. Each Menger PGM is an e-distance on X .

Proof. Clearly, (r1) and (r2) are true. Only, we prove that (r3) is true. Assume ε > 0 and
select δ > 0 so that T (1− δ, 1− δ) ≥ 1− ε. Then, for Ga,y,z(t) ≥ 1− δ and Gx,a,a(s) ≥ 1− δ,
we get

Gx,y,z(t + s) ≥ T (Ga,y,z(t), Gx,a,a(s)) ≥ T (1 − δ, 1 − δ) ≥ 1 − ε.

Example 1. Assume (X , G, T ) is a Menger PGM space. Define a function g : X 3 × [0, ∞] →
[0, 1] by gx,y,z(t) = 1 − c for each x, y, z ∈ X and t > 0 with c ∈ (0, 1). Then g is an e-distance.

Lemma 2. Consider a Menger PGM space with a continuous mapping A on X and a function
g : X 3 × [0, ∞] → [0, 1] by gx,y,z(t) = min{Gx,y,z(t), GAx,Ay,Az(t)} for each x, y, z ∈ X and
t > 0. Then g is an e-distance on X .

Proof. The condition (r2) is clearly established. To prove (r1), consider x, y, z, a ∈ X and
t, s > 0. Then, we have two following cases:
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Case 1: if Gx,y,z(t) = min{Gx,y,z(t), GAx,Ay,Az(t)}, then

gx,y,z(t + s) = Gx,y,z(t + s)

≥ T (Gx,a,a(t), Ga,y,z(s))

≥ T (min{Gx,a,a(t), GAx,Aa,Aa(t)}, min{Ga,y,z(s), GAa,Ay,Az(s)})
≥ T (gx,a,a(t), ga,y,z(s)).

Case 2: if GAx,Ay,Az(t) = min{Gx,y,z(t), GAx,Ay,Az(t)}, then

gx,y,z(t + s) = GAx,Ay,Az(t + s)

≥ T (GAx,Aa,Aa(t), GAa,Ay,Az(s))

≥ T (min{Gx,a,a(t), GAx,Aa,Aa(t)}, min{Ga,y,z(s), GAa,Ay,Az(s)})
≥ T (gx,a,a(t), ga,y,z(s)).

Therefore, (r1) is established. Now, assume ε > 0 and select δ > 0 so that T (1 − δ, 1 − δ) ≥
1 − ε. Using gx,a,a(t) ≥ 1 − δ and ga,y,z(s) ≥ 1 − δ, we get

min{Gx,a,a(t), GAx,Aa,Aa(t)} = gx,a,a(t) ≥ 1 − δ,

min{Ga,y,z(s), GAa,Ay,Az(s)} = ga,y,z(s) ≥ 1 − δ,

which induces that

Gx,y,z(t + s) ≥ T (Gx,a,a(t), Ga,y,z(s))

≥ T (min{Gx,a,a(t), GAx,Aa,Aa(t)}, min{Ga,y,z(s), GAa,Ay,Az(s)})
= T (gx,a,a(t), ga,y,z(s)) ≥ T (1 − δ, 1 − δ) ≥ 1 − ε.

Thus, (r3) is established. This completes the proof.

Lemma 3. Consider an e-distance g on (X , G, T ) with two sequences {xn} and {yn} in X .
Suppose that {αn} and {βn} are two non-negative sequences converging to 0. Then for x, y, z ∈ X
and t, s > 0 the following assertions are established:

(i) gz,y,xn(t) ≥ 1 − αn and gx,xn ,xn(t) ≥ 1 − βn for any n ∈ N imply x = y = z. Specially,
gx,a,a(t) = 1 and ga,y,z(s) = 1 imply x = y = z;

(ii) gyn ,xn ,xn(t) ≥ 1 − αn and gxn ,ym ,z(t) ≥ 1 − βn for all m > n with m, n ∈ N imply
Gyn ,ym ,z(t + s) → 1 as n → ∞;

(iii) let gxn ,xm ,xl (t) ≥ 1 − αn for all n, m, l ∈ N, where l > m > n. Then {xn} is a Cauchy
sequence;

(iv) let gy,y,xl (t) ≥ 1 − αn for all n ∈ N. Then {xn} is a Cauchy sequence.

Proof. To prove (ii), assume ε > 0. By applying the definition of e-distance, there exists
δ > 0 so that ga,y,z(t) ≥ 1 − δ and gx,a,a(s) ≥ 1 − δ induce Gx,y,z(t + s) ≥ 1 − ε. Select
n0 ∈ N provided that αn ≤ δ and βn ≤ δ for each n ≥ n0. Then gyn ,xn ,xn(t) ≥ 1− αn ≥ 1− δ
and gxn ,ym ,z(t) ≥ 1 − βn ≥ 1 − δ for any n ≥ n0 and hence Gyn ,ym ,z(t + s) ≥ 1 − ε.
Therefore, {yn} converges to z. Now, using (ii), (i) is established. To prove (iii), assume
ε > 0. Similar to the proof of (ii), select δ > 0 and n0 ∈ N. Then, for all n, m, l ≥ n0 + 1,
we get gxn ,xn0 ,xn0

(t) ≥ 1 − αn0 ≥ 1 − δ and gxn0 ,xl ,xm(t) ≥ 1 − αn0 ≥ 1 − δ. Therefore,
Gxn ,xm ,xl (t) ≥ 1 − ε. Hence, {xn} is a Cauchy sequence. Now, it follows from (iii) that (iv)
is true.

Lemma 4. Consider an e-distance g on (X , G, T ). Suppose that Eλ,g : X 3 → R+ ∪{0} is introduced
by Eλ,g(x, y, z) = inf{t > 0 : gx,y,z(t) > 1 − λ} for any x, y, z ∈ X and λ ∈ (0, 1). Then
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(1) for all μ ∈ (0, 1), there exists λ ∈ (0, 1) so that

Eμ,g(x1, x1, xn) ≤ Eλ,g(x1, x1, x2) + Eλ,g(x2, x2, x3) + · · ·+ Eλ,g(xn−1, xn−1, xn)

for each x1, · · · , xn ∈ X ;
(2) for every sequence {xn} in X , gxn ,x,x(t) → 1 iff Eλ,g(xn, x, x) → 0. Further, the sequence

{xn} is Cauchy w.r.t. g iff it is Cauchy with Eλ,g.

Proof.

(1) For every μ ∈ (0, 1), we can gain λ ∈ (0, 1) provided that T n−1(1 − λ, ..., 1 − λ) ≥
1 − μ. Now, for every δ > 0, we have

gx1,x1,xn(Eλ,g(x1, x1, x2) + Eλ,g(x2, x2, x3) + · · ·+ Eλ,g(xn−1, xn−1, xn) + nδ)

≥ T n−1(gx1,x1,x2(Eλ,g(x1, x1, x2) + δ), gx2,x2,x3(Eλ,g(x2, x2, x3) + δ)

, · · · , gxn−1,xn−1,xn(Eλ,g(xn−1, xn−1, xn) + δ))

≥ T n−1(1 − λ, ..., 1 − λ) ≥ 1 − μ

which induces that

Eμ,g(x1, x1, xn) ≤ Eλ,g(x1, x1, x2) + Eλ,g(x2, x2, x3) + · · ·+ Eλ,g(xn−1, xn−1, xn) + nδ.

Since δ > 0 is optional, we obtain

Eμ,g(x1, x1, xn) ≤ Eλ,g(x1, x1, x2) + Eλ,g(x2, x2, x3) + · · ·+ Eλ,g(xn−1, xn−1, xn).

(2) Note that gxn ,x,x(η) → 1 − λ as n → ∞ iff Eλ,g(xn, x, x) < η for each n ∈ N and η > 0.

In the sequel, we establish some coupled fixed point theorems by regarding an e-
distance on a quasi-ordered complete PGM space.

Theorem 1. Let (X , G, T ,�) be a quasi-ordered complete Menger PGM space with T of Hadzić-
type I, g be an e-distance and f : X 2 → X be a mapping having the mixed monotone property on
X . Assume that there exists a k ∈ [0, 1) such that

g f (x,y), f (u,v), f (w,z)(t) ≥
1
2
(gx,u,w(

t
k
) + gy,v,z(

t
k
)) (1)

for all x, y, z, u, v, w ∈ X with x � u � w and y � v � z, where either u �= w or v �= z and

sup{T (gx,y,z(t), gx,y, f (x,y)(t)) : x, y ∈ X} < 1. (2)

for all z ∈ X , where z �= f (z, q) for all q ∈ X . If there exist x0, y0 ∈ X so that x0 � f (x0, y0)
and y0 � f (y0, x0), then f have a coupled fixed point in X 2.

Proof. Since there exist x0, y0 ∈ X with x0 � f (x0, y0) and y0 � f (y0, x0), and f has
the mixed monotone property, we can construct Bhaskar-Lakshmikantham type iterative
as follow:

x0 � x1 � x2 � · · · � xn+1 � · · · , y0 � y1 � y2 � · · · � yn+1 � · · ·

for all n ≥ 0, where

xn+1 = f n+1(x0, y0) = f ( f n(x0, y0), f n(y0, x0)),

yn+1 = f n+1(y0, x0) = f ( f n(y0, x0), f n(x0, y0)).
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If (xn+1, yn+1) = (xn, yn), then f has a coupled fixed point. Otherwise, assume (xn+1, yn+1) �=
(xn, yn) for each n ≥ 0; that is, either xn+1 = f (xn, yn) �= xn or yn+1 = f (yn, xn) �= yn.
Now, by induction and (1), we obtain

gxn ,xn ,xn+1(t) ≥
1
2
(gx0,x0,x1(

t
kn ) + gy0,y0,y1(

t
kn )),

gyn ,yn ,yn+1(t) ≥
1
2
(gy0,y0,y1(

t
kn ) + gx0,x0,x1(

t
kn )),

for each n ≥ 0 which induces that gxn ,xn ,xn+1(t) ≥ 1
2 gx0,x0,x1(

t
kn ) and gyn ,yn ,yn+1(t) ≥

1
2 gy0,y0,y1(

t
kn ). Therefore,

Eλ,g(xn, xn, xn+1) = inf{t > 0 : gxn ,xn ,xn+1(t) > 1 − λ}

≤ inf{t > 0 :
1
2

gx0,x0,x1(
t

kn ) > 1 − λ}

= 2knEλ,g(x0, x0, x1).

Thus, for m > n and λ ∈ (0, 1), there exists γ ∈ (0, 1) so that

Eλ,g(xn, xn, xm) ≤ Eγ,g(xn, xn, xn+1) + · · ·+ Eγ,g(xm−1, xm−1, xm) ≤
2kn

1 − k
Eγ,g(x0, x0, x1).

Now, there exists n0 ∈ N so that for each n > n0, Eλ,g(xn, xn, xm) → 0. By Lemmas 3
and 4, {xn} is a Cauchy sequence. Thus, using Lemma 4 (ii), there exit n1 ∈ N and a
sequence δn → 0 so that gxn ,xn ,xm(t) ≥ 1 − δn for n ≥ max{n0, n1}. Since X is complete,
{xn} converges to a point p ∈ X . Similarly, {yn} is convergent to a point q ∈ X . By (r2), we
obtain gxn ,xn ,p(t) = limm→∞ gxn ,xn ,xm(t) ≥ 1 − δn for n ≥ max{n0, n1}. Moreover, we get
gxn ,xn+1,xn+1(t) ≥ 1 − δn. Now, we show that f has a coupled fixed point. Let p �= f (p, q).
Then, by (2), we obtain

1 > sup{T (gx,y,p(t), gx,y, f (x,y)(t)) : x, y ∈ X}
≥ sup{T (gxn ,xn ,p(t), gxn ,xn+1,xn+1(t)) : n ∈ N}
≥ sup{T (1 − δn, 1 − δn) : n ∈ N} = 1,

which is a contradiction. Consequently, we get p = f (p, q). Similarly, we obtain f (q, p) = q.
Here, the proof ends.

Theorem 2. Assume the assumptions of Theorem 1 are held and consider the continuity of f
instead of relation (2). Then f has a coupled fixed point.

Proof. As in the proof of Theorem 1, construct {xn} and {yn}, where xn → p, yn → q,
xn+1 = f (xn, yn). Now, by the continuity of f and by taking the limit as n → ∞, we get
f (p, q) = p. Analogously, we can obtain f (q, p) = q. Therefore, (p, q) is a coupled fixed
point of f .

Example 2. Assume that X = [0, ∞), “ � ” is a quasi-ordered on X and T (a, b) = min{a, b}.
Define a constant function f : X 2 → X by f (a, b) = p and G : X 3 → D+ by Gx,y,z(t) =

t
t+G∗(x,y,z) with G∗(x, y, z) = |x − y| + |x − z| + |y − z| for each x, y, z ∈ X . Clearly, G
satisfies (PG1)-(PG4). Consider gx,y,z(t) = 1 − c, where c ∈ (0, 1). Then g is an e-distance
on X . Clearly, for all x, y, z, u, v, w ∈ X and for any t > 0, we have g f (x,y), f (u,v), f (w,z)(t) ≥
1
2 (gx,u,w(

t
k ) + gy,v,z(

t
k )). Moreover, there exist x0 = 0 and y0 = 1 so that 0 = x0 � f (x0, y0)

and 1 = y0 � f (y0, x0) = 1. Therefore, all of the hypothesis of Theorem 2 are held. Clearly, (p, p)
is a coupled fixed point the function f .
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3. Application

Consider the following system of integral equations:{
x(t) =

∫ b
a M(t, s)K(s, x(s), y(s))ds,

y(t) =
∫ b

a M(t, s)K(s, y(s), x(s))ds,
(3)

for all t ∈ I = [a, b], where b > a, M ∈ C(I × I, [0, ∞)) and K ∈ C(I ×R×R,R).
Let C(I,R) be the Banach space of every real continuous functions on I with ||x||∞ =

maxt∈I |x(t)| for all x ∈ C(I,R) and C(I × I × C(I,R),R) be the space of every continuous
functions on I × I × C(I,R). Define a mapping G : C(I,R)× C(I,R) → D+ by Gx,y,z(t) =
χ( t

2 − (‖x − y‖∞ + ‖x − z‖∞ + ‖y − z‖∞)) for all x, y, z ∈ C(I,R) and t > 0, where

χ(t) =

{
0 i f t ≤ 0
1 i f t > 0

Then, (C(I,R), G, T ) with T (a, b) = min{a, b} is a complete Menger PGM space ([7]).
Consider an e-distance on X by gx,y,z(t) = min{Gx,y,z(t), GAx,Ay,Az(t)}, where A : C(I,R) →
C(I,R) and Ax = x

2 . Moreover, we define the relation “ � ” on C(I,R) by x � y ⇔
||x||∞ ≤ ||y||∞ for all x, y ∈ C(I,R). Clearly the relation “ � ” is a quasi-order relation on
C(I,R) and (C(I,R), G, T ,�) is a quasi-ordered complete PGM space.

Theorem 3. Let (C(I,R), G, T ,�) be a quasi-ordered complete Menger PGM space and f :
C(I,R)× C(I,R) → C(I,R) be a operator defined by f (x, y)(t) =

∫ b
a M(t, s)K(s, x(s), y(s))ds,

where M ∈ C(I × I, [0, ∞)) and K ∈ C(I ×R×R,R) are two operators. Assume the following
properties are held:

(i) ||K||∞ = sups∈I, x,y∈C(I,R) |K(s, x(s), y(s))| < ∞;
(ii) for every x, y ∈ C(I,R) and every t, s ∈ I, we have

||K(s, x(s), y(s))− K(s, u(s), v(s))||∞ ≤ 1
4
(max |x(s)− u(s)|+ max |y(s)− v(s)|);

(iii) maxt∈I
∫ b

a M(t, s)ds < 1.

Then, the system (3) have a solution in C(I,R)× C(I,R).

Proof. For all x, y ∈ C(I,R), let ‖x− y‖∞ = maxt∈I(|x(t)− y(t)|). Then, for all x, y, z, u, v, w ∈
C(I,R), we have

‖ f (x, y)− f (u, v)‖∞ ≤ max
t∈I

∫ b

a
M(t, s)|K(s, x(s)y(s))− K(s, u(s), v(s))|ds

≤ max(
1
4
(|x(s)− u(s)|+ |y(s)− v(s)|))max

t∈I

∫ b

a
M(t, s)ds

≤ max(
1
4
(|x(s)− u(s)|+ |y(s)− v(s)|)).

We consider two following cases:
Case 1. Let

g f (x,y), f (u,v), f (w,z)(t) = min{Gf (x,y), f (u,v), f (w,z)(t), GA f (x,y),A f (u,v),A f (w,z)(t)}
= Gf (x,y), f (u,v), f (w,z)(t).
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Then, we obtain

g f (x,y), f (u,v), f (w,z)(t) = Gf (x,y), f (u,v), f (w,z)(t)

= χ(
t
2
− (‖ f (x, y)− f (u, v)‖∞ + ‖ f (x, y)− f (w, z)‖∞ + ‖ f (u, v)− f (w, z)‖∞))

≥ χ(
t
2
− (max(

1
4
(|x(s)− u(s)|+ |y(s)− v(s)|))

+ max(
1
4
(|x(s)− w(s)|+ |y(s)− z(s)|))

+ max(
1
4
(|u(s)− w(s)|+ |v(s)− z(s)|))))

= χ(t − 1
2
(max((|x(s)− u(s)|+ |y(s)− v(s)|))

+ max((|x(s)− w(s)|+ |y(s)− z(s)|)) + max((|u(s)− w(s)|+ |v(s)− z(s)|))))

≥ 1
2
(χ(t − (max(|x(s)− u(s)|+ |x(s)− w(s)|+ |u(s)− w(s)|)))

+ χ(t − (max(|y(s)− v(s)|+ |y(s)− z(s)|+ |v(s)− z(s)|))))

=
1
2
(Gx,u,w(2t) + Gy,v,z(2t)) ≥ 1

2
(gx,u,w(2t) + gy,v,z(2t)).

Case 2. Let

g f (x,y), f (u,v), f (w,z)(t) = min{Gf (x,y), f (u,v), f (w,z)(t), GA f (x,y),A f (u,v),A f (w,z)(t)}
= GA f (x,y),A f (u,v),A f (w,z)(t).

By Ax = x
2 , we have

g f (x,y), f (u,v), f (w,z)(t) = GA f (x,y),A f (u,v),A f (w,z)(t)

= χ(
t
2
− 1

2
(‖ f (x, y)− f (u, v)‖∞ + ‖ f (x, y)− f (w, z)‖∞ + ‖ f (u, v)− f (w, z)‖∞))

≥ χ(
t
2
− (‖ f (x, y)− f (u, v)‖∞ + ‖ f (x, y)− f (w, z)‖∞ + ‖ f (u, v)− f (w, z)‖∞))

≥ χ(
t
2
− (max(

1
4
(|x(s)− u(s)|+ |y(s)− v(s)|))

+ max(
1
4
(|x(s)− w(s)|+ |y(s)− z(s)|))

+ max(
1
4
(|u(s)− w(s)|+ |v(s)− z(s)|))))

= χ(t − 1
2
(max((|x(s)− u(s)|+ |y(s)− v(s)|))

+ max((|x(s)− w(s)|+ |y(s)− z(s)|)) + max((|u(s)− w(s)|+ |v(s)− z(s)|))))

≥ 1
2
(χ(t − (max(|x(s)− u(s)|+ |x(s)− w(s)|+ |u(s)− w(s)|)))

+ χ(t − (max(|y(s)− v(s)|+ |y(s)− z(s)|+ |v(s)− z(s)|))))

=
1
2
(Gx,u,w(2t) + Gy,v,z(2t)) ≥ 1

2
(gx,u,w(2t) + gy,v,z(2t))

for all x, y, z, u, v, w ∈ C(I,R). Therefore, by Theorem 2 with k = 1
2 for all x, y, z, u, v, w ∈

C(I,R) and t > 0, we deduce that the operator f has a coupled fixed point which is the
solution of the system of the integral equations.

4. Conclusions

The new concept of e-distance, which is a generalization of r-distance in PGM space
has been introduced. Moreover, some of properties of e-distance have been discussed. In
addition, we obtained several new coupled fixed point results. Ultimately, to illustrate the
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usability of the main theorem, the existence of a solution for a system of integral equations
is proved.

Author Contributions: All authors contributed equally and significantly in writing this paper. All
authors have read and agree to the published version of the manuscript.

Funding: The authors are very grateful to the Basque Government by its support through Grant
IT1207-19.

Acknowledgments: The first and the second authors are grateful to the Research Council of Shahid
Chamran University of Ahvaz for financial support (Grant Number: SCU.MM99.25894). Moreover,
the authors are very grateful to the Basque Government by its support through Grant IT1207-19.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Menger, K. Statistical metrics. Proc. Natl. Acad. Sci. USA 1942, 28, 535–537. [CrossRef] [PubMed]
2. Sehgal, V.M. Some Fixed Point Theorems in Functional Analysis and Probability. Ph.D. Dissertation, Wayne State University,

Detroit, MI, USA, 1966.
3. Sehgal, V.M.; Bharucha-Reid, A.T. Fixed points of contraction mappings on probabilistic metric spaces. Math. Syst. Theory 1972, 6,

97–102. [CrossRef]
4. Saadati, R.; O’Regan, D.; Vaezpour, S.M.; Kim, J.K. Generalized distance and common fixed point theorems in Menger probabilistic

metric spaces. Bull. Iran. Math. Soc. 2009, 35, 97–117.
5. Hadzic, O.; Pap, E. Fixed Point Theory in Probabilistic Metric Spaces; Kluwer Academic: Dordrecht, The Netherlands, 2001.
6. Mustafa, Z.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 6, 289–297.
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Abstract: We use interpolation to obtain a common fixed point result for a new type of
Ćirić–Reich–Rus-type contraction mappings in metric space. We also introduce a new concept
of g-interpolative Ćirić–Reich–Rus-type contractions in b-metric spaces, and we prove some fixed
point results for such mappings. Our results extend and improve some results on the fixed point
theory in the literature. We also give some examples to illustrate the given results.
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1. Introduction and Preliminaries

Banach’s contraction principle [1] has been applied in several branches of mathematics. As a
result, researching and generalizing this outcome has proven to be a research area in nonlinear
analysis (see [2–6]). It is a well-known fact that a map that satisfies the Banach contraction principle
is necessarily continuous. Therefore, it was natural to wonder if in a complete metric space,
a discontinuous map satisfying somewhat similar contractual conditions may have a fixed point.
Kannan [7] answered yes to this question by introducing a new type of contraction. The concept of the
interpolation Kannan-type contraction appeared with Karapinar [8] in 2018; this concept appealed
to many researchers [8–14], making them invest in various types of contractions: interpolative
Ćirić–Reich–Rus-type contraction [9–11,13], interpolative Hardy–Rogers [15]; and they used it on
various spaces: metric space, b-metric space, and the Branciari distance.

In this paper, we will generalize some of the related findings to the interpolation
Ćirić–Reich–Rus-type contraction in Theorems 1 and 2. In addition, we use a new concept of
interpolative weakly contractive mapping to generalize some findings about the interpolation
Kannan-type contraction in Theorem 3.

Now, we recall the concept of b-metric spaces as follows:

Definition 1 ([16,17]). Let X be a nonempty set and s ≥ 1 be a given real number. A function d : X × X →
R+ is a b-metric if for all x, y, z ∈ X , the following conditions are satisfied:

(b1) d(x, y) = 0 if and only if x = y;
(b2) d(x, y) = d(y, x);
(b3) d(x, z) ≤ s[d(x, y) + d(y, z)].

The pair (X, d) is called a b-metric space.

Note that the class of b-metric spaces is larger than that of metric spaces.

Axioms 2020, 9, 132; doi:10.3390/axioms9040132 www.mdpi.com/journal/axioms59
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The notions of b-convergent and b-Cauchy sequences, as well as of b-complete b-metric spaces are
defined exactly the same way as in the case of usual metric spaces (see, e.g., [18]).

Definition 2 ([19,20]). Let {xn} be a sequence in a b-metric space (X, d). g, h:X → X, are self-mappings, and
x ∈ X. x is said to be the coincidence point of pair {g, h} if gx = hx.

Definition 3 ([10,11]). Let Ψ be denoted as the set of all non-decreasing functions ψ: [0, ∞) → [0, ∞),
such that ∑∞

k=0 ψk(t) < ∞ for each t > 0. Then:

(i) ψ(0) = 0,
(ii) ψ(t) < t for each t > 0.

Remark 1 ([18]). In a b-metric space (X, d), the following assertions hold:

1. A b-convergent sequence has a unique limit.
2. Each b-convergent sequence is a b-Cauchy sequence.
3. In general, a b-metric is not continuous.

The fact in the last remark requires the following lemma concerning the b-convergent sequences
to prove our results:

Lemma 1 ([19]). Let (X, d) be a b-metric space with s ≥ 1, and suppose that {xn} and {yn} are b-convergent
to x, y, respectively, then we have:

1
s2 d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ s2d(x, y).

In particular, if x = y, then we have limn→∞ d(xn, yn) = 0. Moreover, for each z ∈ X, we have:

1
s

d(x, z) ≤ lim inf
n→∞

d(xn, z) ≤ lim sup
n→∞

d(xn, z) ≤ sd(x, z).

2. Results

We denote by Φ the set of functions φ : [0, ∞) → [0, ∞) such that φ(t) < t for every t > 0. Our
main result is the following theorem:

Theorem 1. Let (X, d) be a complete metric space, and T is a self-mapping on X such that:

d(Tx, Ty) ≤ φ([d(x, y)]α[d(x, Tx)]β[d(y, Ty)]γ) (1)

is satisfied for all x, y ∈ X \ Fix(T); where Fix(T) = {a ∈ X|Ta = a}, α, β, γ ∈ (0, 1) such that
α + β + γ > 1, and φ ∈ Φ.

If there exists x ∈ X such that d(x, Tx) < 1, then T has a fixed point in X.

Proof. We define a sequence {xn} by x0 = x and xn+1 = Txn for all integers n, and we assume that
xn �= Txn, for all n.

We have:
d(xn, xn+1) ≤ φ([d(xn−1, xn)]

α[d(xn−1, xn)]
β[d(xn, xn+1)]

γ). (2)

Using the fact φ(t) < t for each t > 0, from (2), we obtain:

d(xn, xn+1) < [d(xn−1, xn)]
α[d(xn−1, xn)]

β[d(xn, xn+1)]
γ.

60



Axioms 2020, 9, 132

which implies:
[d(xn, xn+1)]

1−γ < [d(xn−1, xn)]
α+β. (3)

We have d(x0, x1) < 1, so that there exists a real λ ∈ (0, 1) such that d(x0, x1) ≤ λ and
λ = d(x0,x1)+1

2 .

By (3), we obtain:

d(x1, x2) < [d(x0, x1)]
α+β
1−γ ≤ λ

α+β
1−γ .

By (3), we find:
d(xn+1, xn) ≤ d(xn, xn−1)

1+ε

for all n, with ε = α+β
1−γ − 1 > 0.

Now, we prove by induction that for all n,

d(xn+1, xn) ≤ λ(1+ε)n

where 0 < λ < 1. For n = 1, this is the inequality at the bottom of page 3. The induction step is:

d(xn+2, xn+1) ≤ d(xn+1, xn)
1+ε ≤

(
λ(1+ε)n

)1+ε
= λ(1+ε)n+1

Since (1 + ε)n ≥ 1 + nε by Bernoulli’s inequality and since λ < 1, this implies:

d(xn+1, xn) ≤ λ1+nε = λρn

for all n, where ρ = λε < 1. This implies:

d(xn+k, xn) ≤ λ(ρn+k−1 + ρn+k−2 + · · ·+ ρn) = λρn

(
1 − ρk

1 − ρ

)
= Cρn,

where C = λ
(

1−ρk

1−ρ

)
for some integer k, from which it follows that {xn} forms a Cauchy sequence in

(X, d), and then, it converges to some z ∈ X. Assume that z �= Tz.
By letting x = xn and y = z in (1), we obtain:

d(xn+1, Tz) ≤ φ([d(xn, z)]α[d(xn, xn+1)]
β[d(z, Tz)]γ)

< [d(xn, z)]α[d(xn, xn+1)]
β[d(z, Tz)]γ

for all n, which leads to d(z, Tz) = 0, which is a contradiction. Then, Tz = z.

Example 1. Let X = [0, 2] be endowed with metric d : X × X → [0, ∞), defined by:

d(x, y) =

⎧⎪⎨⎪⎩
0, if x = y;
2
3 , if x, y ∈ [0, 1] and x �= y;
2, otherwise.

Consider that the self-mapping T : X → X is defined by:

Tx =

{
1
2 , if x ∈ [0, 1];
x
2 , if x ∈ (1, 2];
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and the function φ(t) = 0, 4t2 for all t ∈ [0, ∞).

For α = 0, 8, β = 0, 2, and γ = 0, 25.

We discus the following cases:

Case 1. If x, y ∈ [0, 1] or x = y for all x, y ∈ [0, 2]; it is obvious.

Case 2. If x, y ∈ (1, 2] and x �= y.

We have:
d(Tx, Ty) =

2
3

and:

φ([d(x, y)]α[d(x, Tx)]β[d(y, Ty)]γ) = φ(2α+β+γ) =
23,5

5
≥ 2

3
.

Then:
d(Tx, Ty) ≤ φ([d(x, y)]α[d(x, Tx)]β[d(y, Ty)]γ)

for all x, y ∈ (1, 2].

Case 3. If x ∈ [0, 1] and y ∈ (1, 2] with x �= 1
2 .

We have:
d(Tx, Ty) =

2
3

and:

φ([d(x, y)]α[d(x, Tx)]β[d(y, Ty)]γ) = φ

(
2α+γ

(
2
3

)β
)

=
23,5

5.30,2 ≥ 2
3

.

Then:
d(Tx, Ty) ≤ φ([d(x, y)]α[d(x, Tx)]β[d(y, Ty)]γ)

for all x ∈ [0, 1]\{ 1
2} and y ∈ (1, 2].

Case 4. If x ∈ (1, 2] and y ∈ [0, 1] with y �= 1
2 .

We have:
d(Tx, Ty) =

2
3

and:

φ([d(x, y)]α[d(x, Tx)]β[d(y, Ty)]γ) = φ

(
2α+β

(
2
3

)γ)
=

23,5

5.30,25 ≥ 2
3

.

Then:
d(Tx, Ty) ≤ φ([d(x, y)]α[d(x, Tx)]β[d(y, Ty)]γ)

for all x ∈ (1, 2] and y ∈ [0, 1]\{ 1
2}.

Therefore, all the conditions of Theorem 1 are satisfied, and T has a fixed point, x = 1
2 .

Example 2. Let X = {a, q, r, s} be endowed with the metric defined by the following table of values:
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d(x, y) a q r s
a 0 1

3
10
3

5
3

q 1
3 0 3 2

r 10
3 3 0 5

s 5
3 2 5 0

Consider the self-mapping T on X as:

T:

(
a q r s
a a q s

)
.

For ψ(t) = 2t−1
2t+1 for all t ∈ [0, ∞); α = 0, 6; β = 0, 9; and γ = 0, 7.

We have:
d(Tu, Tv) ≤ ψ([d(u, v)]α[d(u, Tu)]β[d(v, Tv)]γ)

for all u, v ∈ X \ {a, s}.

Then, T has two fixed points, which are a and s.

If we take ψ(t) = kt in Theorem (1) with k ∈ (0, 1), then we have the following corollary:

Corollary 1. Let (X, d) be a complete metric space, and T is a self-mapping on X such that:

d(Tx, Ty) ≤ k[d(x, y)]α[d(x, Tx)]β[d(y, Ty)]γ

is satisfied for all x, y ∈ X \ Fix(T); where Fix(T) = {a ∈ X|Ta = a}, and α, β, γ, k ∈ (0, 1) such that
α + β + γ > 1.

If there exists x ∈ X such that d(x, Tx) < 1, then T has a fixed point in X.

Example 3. It is enough to take in Example 1: φ(t) = 57
58 t for all t ∈ [0,+∞).

Example 4. Let X = {a, q, r, s} be endowed with the metric defined by the following table of values:

d(x, y) a q r s
a 0 0, 1 3, 1 4
q 0, 1 0 3 3, 9
r 3, 1 3 0 0, 9
s 4 3, 9 0, 9 0

Consider the self-mapping T on X as:

T :

(
a q r s
a a q s

)
.

For k = 3
10 ; α = 0, 7; β = 0, 1; and γ = 0, 8.

We have:
d(Tu, Tv) ≤ k[d(u, v)]α[d(u, Tu)]β[d(v, Tv)]γ

for all u, v ∈ X \ {a, s}.

Then, T has two fixed points, which are a and s.
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Definition 4. Let (X, d, s) be a b-metric space and T, g : X → X be self-mappings on X. We say that T is a
g-interpolative Ćirić–Reich–Rus-type contraction, if there exists a continuous ψ ∈ Ψ and α, β ∈ (0, 1) such
that:

d(Tx, Ty) ≤ ψ([d(gx, gy)]α[d(gx, Tx)]β[d(gy, Ty)]1−α−β) (4)

is satisfied for all x, y ∈ X such that Tx �= gx, Ty �= gy, and gx �= gy.

Theorem 2. Let (X, d, s) be a b-complete b-metric space, and T is a g-interpolative Ćirić–Reich–Rus-type
contraction. Suppose that TX ⊆ gX such that gX is closed. Then, T and g have a coincidence point in X.

Proof. Let x ∈ X; since TX ⊆ gX, we can define inductively a sequence {xn} such that:

x0 = x, and gxn+1 = Txn, for all integer n.

If there exists n ∈ {0, 1, 2, . . .} such that gxn = Txn, then xn is a coincidence point of g and T.
Assume that gxn �= Txn, for all n. By (4), we obtain:

d(Txn+1, Txn) ≤ ψ([d(gxn+1, gxn]
α[d(gxn+1, Txn+1]

β[d(gxn, Txn]
1−α−β)

= ψ([d(Txn, Txn−1]
α[d(Txn, Txn+1]

β[d(Txn−1, Txn]
1−α−β)

= ψ([d(Txn, Txn−1]
1−β[d(Txn, Txn+1]

β).

Using the fact ψ(t) < t for each t > 0,

d(Txn+1, Txn) ≤ ψ([d(Txn, Txn−1)]
1−β[d(Txn, Txn+1)]

β)

< [d(Txn, Txn−1)]
1−β[d(Txn, Txn+1)]

β. (5)

which implies:
[d(Txn+1, Txn)]

1−β < [d(Txn, Txn−1)]
1−β.

Thus,
d(Txn+1, Txn) < d(Txn, Txn−1) for all n ≥ 1. (6)

That is, the positive sequence {d(Txn+1, Txn)} is monotone decreasing, and consequently, there
exists c ≥ 0 such that limn→∞ d(Txn+1, Txn) = c. From (6), we obtain:

[d(Txn, Txn−1)]
1−β[d(Txn, Txn+1)]

β ≤ [d(Txn, Txn−1)]
1−β[d(Txn, Txn−1)]

β

= d(Txn, Txn−1).

Therefore, with (5) together with the nondecreasing character of ψ, we get:

d(Txn+1, Txn) ≤ ψ([d(Txn, Txn−1)]
1−β[d(Txn, Txn+1)]

β)

≤ ψ(d(Txn, Txn−1)).

By repeating this argument, we get:

d(Txn+1, Txn) ≤ ψ(d(Txn, Txn−1)) ≤ ψ2(d(Txn−1, Txn−2)) ≤ · · · ≤ ψn(d(Tx1, Tx0)). (7)

Taking n → ∞ in (7) and using the fact limn→∞ ψn(t) = 0 for each t > 0, we deduce that c = 0,
that is,

lim
n→∞

d(Txn+1, Txn) = 0. (8)
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Then, {Txn} is a b-Cauchy sequence. Suppose on the contrary that there exists an ε > 0 and
subsequences {Txmk} and {Txnk} of {Txn} such that nk is the smallest integer for which:

nk > mk > k, d(Txnk , Txmk ) ≥ ε, and d(Txnk−1, Txmk ) < ε.

Then, we have:

d(gxnk , gxmk ) = d(Txnk−1, Txmk−1) ≤ sd(Txnk−1, Txmk ) + sd(Txmk , Txmk−1)

≤ sε + sd(Txmk , Txmk−1).

Using (8) in the inequality above, we obtain:

lim sup
k→∞

d(Txnk−1, Txmk−1) = lim sup
k→∞

d(gxnk , gxmk ) ≤ sε. (9)

Putting x = xnk and y = xmk in (4), we have:

ε ≤ d(Txnk , Txmk ) ≤ ψ([d(gxnk , gxmk )]
α[d(gxnk , Txnk )]

β[d(gxmk , Txmk )]
1−α−β)

= ψ([d(Txnk−1, Txmk−1)]
α[d(Txnk−1, Txnk )]

β[d(Txmk−1, Txmk )]
1−α−β). (10)

Taking the upper limit as k → ∞ in (10) and using (8) and (9) and the property of ψ, we get:

ε ≤ lim sup
k→∞

d(Txnk , Txmk ) ≤ ψ(0) = 0,

which implies that ε = 0, a contradiction with ε > 0. We deduce that {Txn} is a b-Cauchy sequence,
and consequently, {gxn} is also a b-Cauchy sequence. Let z ∈ X such that,

lim
n→∞

d(Txn, z) = lim
n→∞

d(gxn+1, z) = 0.

Since z ∈ gX, there exists u ∈ X such that z = gu. We claim that u is a coincidence point of g and
T. For this, if we assume that gu �= Tu, we obtain:

d(Txn, Tu) ≤ ψ([d(gxn, gu)]α[d(gxn, Txn)]
β[d(gu, Tu)]1−α−β)

< [d(gxn, gu)]α[d(gxn, Txn)]
β[d(gu, Tu)]1−α−β.

At the limit as n → ∞ and using Lemma 1, we get:

1
s

d(z, Tu) ≤ lim inf
n→∞

d(Txn, Tu) ≤ lim sup
n→∞

[d(gxn, gu)]α[d(gxn, Txn)]
β[d(gu, Tu)]1−α−β

≤ [sd(z, gu)]α[s2d(z, z)]β[d(gu, Tu)]1−α−β = 0,

which is a contradiction, which implies that:

Tu = z = gu.

Then, u is a coincidence point in X of T and g.

Example 5. Let X = [0,+∞) and d : X × X → [0, ∞) be defined by:

d(x, y) =

{
(x + y)2, if x �= y;
0, if x = y.
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Then, (X, d) is a complete b-metric space.

Define two self-mappings T and g on X by g(x) = x2; for all x ∈ X and:

Tx =

{
1, if x ∈ [0, 2];
1
x , if x ∈ (2,+∞).

T is a g-interpolative Ćirić–Reich–Rus-type contraction for α = 0, 7, β = 0, 4, and:

ψ(t) =

{
3

20 t2, if t ∈ [0, 89
20 ];

3t+1−1
3t+1 , if t ∈ ( 89

20 ,+∞).

For this, we discuss the following cases:

Case 1. If x, y ∈ [0, 2] or x = y for all x ∈ [0,+∞). It is obvious.

Case 2. If x, y ∈ (2,+∞) and x �= y.

We have:
d(Tx, Ty) = (

1
x
+

1
y
)2 ≤ 1.

Using the property of ψ, we get:

ψ([d(gx, gy)]α[d(gx, Tx)]β[d(gy, Ty)]1−α−β) = ψ((x2 + y2)2α(x2 +
1
x
)2β(y2 +

1
y
)2(1−α−β))

≥ ψ(82α.(
9
2
)2(1−α)) ≥ 1.

Therefore,
d(Tx, Ty) ≤ ψ([d(gx, gy)]α[d(gx, Tx)]β[d(gy, Ty)]1−α−β).

Case 3. If x ∈ [0, 2]\{1} and y ∈ (2,+∞).

We have:
d(Tx, Ty) = (1 +

1
y
)2 ≤ (

3
2
)2 =

9
4

,

and:

ψ([d(gx, gy)]α[d(gx, Tx)]β[d(gy, Ty)]1−α−β) = ψ((x2 + y2)2α(x2 + 1)2β(y2 +
1
y
)2(1−α−β))

≥ ψ(42α.12β.(
9
2
)2(1−α−β)) ≥ 9

4
.

Therefore,
d(Tx, Ty) ≤ ψ([d(gx, gy)]α[d(gx, Tx)]β[d(gy, Ty)]1−α−β).

Case 4. If x ∈ (2,+∞) and y ∈ [0, 2]\{1}.

We have:
d(Tx, Ty) = (1 +

1
x
)2 ≤ 9

4
,

and:

ψ([d(gx, gy)]α[d(gx, Tx)]β[d(gy, Ty)]1−α−β) = ψ((x2 + y2)2α(x2 +
1
x
)2β(y2 + 1)2(1−α−β))

≥ ψ(42α.(
9
2
)2β.12(1−α−β)) ≥ 9

4
.
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Therefore,
d(Tx, Ty) ≤ ψ([d(gx, gy)]α[d(gx, Tx)]β[d(gy, Ty)]1−α−β).

Then, it is clear that g, T satisfies (4) for all u, v ∈ X \ {1}. Moreover, one is a coincidence point of g and T.

Example 6. Let the set X = {a, b, q, r} and a function d : X × X → [0, ∞) be defined as follows:

d(x, y) a b q r
a 0 1 16 49

4

b 1 0 9 25
4

q 16 9 0 1
4

r 49
4

25
4

1
4 0

By a simple calculation, one can verify that the function d is a b-metric, for s = 2. We define the
self-mappings g, T on X, as:

g :

(
a b q r
a r q q

)
, T :

(
a b q r
q r r q

)
.

For α = 0, 3; β = 0, 8; and ψ(t) = t
1+t for all t ∈ [0, ∞).

It is clear that g, T satisfies (4) for all u, v ∈ X \ {b, r}. Moreover, b and r are two coincidence points of g and
T.

Definition 5. Let (X, d) is a metric space. A self-mapping T: X → X is said to be an interpolative weakly
contractive mapping if there exists a constant α ∈ (0, 1) such that:

ζ(d(Tx, Ty)) ≤ ζ([d(x, Tx)]α[d(y, Ty)]1−α)− ϕ([d(x, Tx)]α[d(y, Ty)]1−α), (11)

for all x, y ∈ X \ Fix(T), where
Fix(T) = {a ∈ X|Ta = a},
ζ: [0, ∞) → [0, ∞) is a continuous monotone nondecreasing function with ζ(t) = 0 if and only if t = 0,
ϕ: [0, ∞) → [0, ∞) is a lower semi-continuous function with ϕ(t) = 0 if and only if t = 0.

Theorem 3. Let (X, d) be a complete metric space. If T : X → X is a interpolative weakly contractive mapping,
then T has a fixed point.

Proof. For any x0 ∈ X, we define a sequence {xn} by x = x0 and xn+1 = Txn, n = 0, 1, 2, . . .
If there exists n0 ∈ N such that xn0+1 = xn0 , then xn0 is clearly a fixed point in X. Otherwise, xn+1 �= xn

for each n ≥ 0.

Substituting x = xn and y = xn−1 in (11), we obtain that:

ζ(d(xn+1, xn)) ≤ ζ([d(xn, xn+1)]
α[d(xn−1, xn)]

1−α)− ϕ([d(xn, xn+1)]
α[d(xn−1, xn)]

1−α)

≤ ζ([d(xn, xn+1)]
α[d(xn−1, xn)]

1−α). (12)

Using property of function ζ, we get:

d(xn+1, xn) ≤ [d(xn, xn+1)]
α[d(xn−1, xn)]

1−α.

We derive:
[d(xn+1, xn)]

1−α ≤ [d(xn−1, xn)]
1−α.

Therefore:
d(xn+1, xn) ≤ d(xn−1, xn), for all n ≥ 1.
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It follows that the positive sequence {d(xn+1, xn)} is decreasing. Eventually, there exists c ≥ 0
such that limn d(xn+1, xn) = c.

Taking n → ∞ in the inequality (12), we obtain:

ζ(c) ≤ ζ(c)− ϕ(c).

We deduce that c = 0. Hence:
lim

n
d(xn+1, xn) = 0. (13)

Therefore, {xn} is a Cauchy sequence. Suppose it is not. Then, there exists a real number ε > 0,
for any k ∈ N, ∃mk ≥ nk ≥ k such that:

d(xmk , xnk ) ≥ ε. (14)

Putting x = xnk−1 and y = xmk−1 in (11) and using (14), we get:

ζ(ε) ≤ ζ(d(xmk , xnk )) ≤ ζ([d(xmk−1, xmk )]
α[d(xnk−1, xnk )]

1−α)− ϕ([d(xmk−1, xmk )]
α[d(xnk−1, xnk )]

1−α).

Letting k → ∞ and using (13), we conclude:

ζ(ε) ≤ ζ(0)− ϕ(0) = 0,

which is contradiction with ε > 0; thus, {xn} is a Cauchy sequence; since (X, d) is complete,
we obtain z ∈ X such that limn d(xn, z) = 0, and assuming that Tz �= z, we have:

ζ(d(xn+1, Tz)) ≤ ζ([d(xn, xn+1)]
α[d(z, Tz)]1−α)− ϕ([d(xn, xn+1)]

α[d(z, Tz)]1−α) for all n.

Letting n → ∞, we get:

ζ(d(z, Tz)) ≤ ζ([d(z, z)]α[d(z, Tz)]1−α)− ϕ([d(z, z)]α[d(z, Tz)]1−α) = ζ(0)− ϕ(0) = 0,

which is a contradiction; thus, Tz = z.

Example 7. Let the set X = [0, 3] and a function δ : X × X → [0, ∞) be defined as follows:

δ(x, y) =

⎧⎪⎨⎪⎩
0, if x = y;
3, if x, y ∈ [0, 1) and x �= y;
2, otherwise.

Then, (X, δ) is a complete metric space.

Let T: X → X be defined as:

Tx =

{
0, if x ∈ [0, 1);
1, if x ∈ [1, 3].

For ζ(t) = t2, ϕ(t) = 1
2 t for all t ∈ [0,+∞) and α = 0, 6.

We discuss the following cases.

Case 1. If x = y or x, y ∈ (0, 1), or x, y ∈ (1, 3] with x �= y. It is obvious.

Case 2. If x ∈ (0, 1) and y ∈ (1, 3].

We have:
ζ(δ(Tx, Ty)) = ζ(δ(0, 1)) = ζ(2) = 4,
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and:
[δ(x, Tx)]α[δ(y, Ty)]1−α = [δ(x, 0)]α[δ(y, 1)]1−α = 2.(

3
2
)α.

Therefore:

ζ([δ(x, Tx)]α[δ(y, Ty)]1−α)− ϕ([δ(x, Tx)]α[δ(y, Ty)]1−α) = (
3
2
)α[4.(

3
2
)α − 1] ≥ 4 = ζ(2) = ζ(δ(Tx, Ty)).

Case 3. If x ∈ (1, 3] and y ∈ (0, 1).

We have:
ζ(δ(Tx, Ty)) = ζ(δ(1, 0)) = ζ(2) = 4,

and:
[δ(x, Tx)]α[δ(y, Ty)]1−α = [δ(x, 1)]α[δ(y, 0)]1−α = 3.(

2
3
)α.

Therefore,

ζ([δ(x, Tx)]α[δ(y, Ty)]1−α)− ϕ([δ(x, Tx)]α[δ(y, Ty)]1−α) = (
2
3
)α[9.(

2
3
)α − 3

2
] ≥ 4 = ζ(2) = ζ(δ(Tx, Ty)).

Thus,

ζ(d(Tu, Tv)) ≤ ζ([d(u, Tu)]α[d(v, Tv)]1−α)− ϕ([d(u, Tu)]α[d(v, Tv)]1−α),

for all u, v ∈ X \ {0, 1}.

Then, T has two fixed points, which are zero and one.

Example 8. Let X = {a, b, r, s} be endowed with the metric defined by the following table of values:

d(x, y) a b r s
a 0 1 4 1
b 1 0 5 2
r 4 5 0 3
s 1 2 3 0

Consider the self-mapping T on X as:

T :

(
a b r s
a s a s

)
.

For ζ(t) = et −1 and ϕ(t) = 2t − 1 for all t ∈ [0, ∞); α =0, 3.

We have:

ζ(d(Tu, Tv)) ≤ ζ([d(u, Tu)]α[d(v, Tv)]1−α)− ϕ([d(u, Tu)]α[d(v, Tv)]1−α),

for all u, v ∈ X \ {a, s}.

Then, T has two fixed points, which are a and s.

If ζ(t) = t in Theorem (3), then we have the following corollary:
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Corollary 2. Let (X, d) be a complete metric space and T : X → X a self-mapping on X. If there exists a
constant α ∈ (0, 1) such that:

d(Tx, Ty) ≤ [d(x, Tx)]α[d(y, Ty)]1−α − ϕ([d(x, Tx)]α[d(y, Ty)]1−α),

for all x, y ∈ X and x �= Tx, y �= Ty.
ϕ : [0, ∞) → [0, ∞) is a lower semi-continuous function with ϕ(t) = 0 if and only if t = 0.

Then, T has a fixed point.

Remark 2. In Corollary 2, if we take ϕ(t) = (1 − λ)t for a constant λ ∈ (0, 1), then the result of Theorem [8]
is obtained.
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Abstract: A number of applications from mathematical programmings, such as minimax problems,
penalization methods and fixed-point problems can be formulated as a variational inequality model.
Most of the techniques used to solve such problems involve iterative algorithms, and that is why,
in this paper, we introduce a new extragradient-like method to solve the problems of variational
inequalities in real Hilbert space involving pseudomonotone operators. The method has a clear
advantage because of a variable stepsize formula that is revised on each iteration based on the
previous iterations. The key advantage of the method is that it works without the prior knowledge
of the Lipschitz constant. Strong convergence of the method is proved under mild conditions.
Several numerical experiments are reported to show the numerical behaviour of the method.

Keywords: pseudomonotone mapping; subgradient extragradient method; strong convergence;
Hilbert spaces; variational inequality problems

1. Introduction

In this article, we consider the classic variational inequalities problems (VIPs) [1,2] for an operator
F : E → E is formulated in the following way:

Find u∗ ∈ K such that
〈
F (u∗), y − u∗〉 ≥ 0, ∀ y ∈ K, (1)

where K is a nonempty, convex and closed subset of a real Hilbert space E . The inner product and
induced norm on E are denoted by 〈., .〉 and ‖.‖, respectively. Moreover, the set of real and natural
numbers are denoted by R and N , respectively. It is important to note that solving the problem (1) is
equivalent to solving the following problem:

Find an element u∗ ∈ K such that u∗ = PK[u∗ − ζF (u∗)].

We assume that the following requirements have been fulfilled:

(B1) The solution set of the problem (1), represented by SVIP is nonempty.

Axioms 2020, 9, 115; doi:10.3390/axioms9040115 www.mdpi.com/journal/axioms73
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(B2) A mapping F : E → E is called to be pseudomonotone, i.e.,〈
F (y1), y2 − y1

〉
≥ 0 =⇒

〈
F (y2), y1 − y2

〉
≤ 0, ∀ y1, y2 ∈ K.

(B3) A mapping F : E → E is said to be Lipschitz continuous, i.e., there exists L > 0 such that

‖F (y1)−F (y2)‖ ≤ L‖y1 − y2‖, ∀ y1, y2 ∈ K.

(B4) A mapping F : E → E is called to be sequentially weakly continuous, i.e., {F (un)} converges
weakly to F (u), where {un} weakly converges to u.

The concept of variational inequalities has been used as a powerful tool to study different
subjects, i.e., physics, engineering, economics and optimization theory. The problem (1) was firstly
introduced by Stampacchia [1] in 1964 and also provided that this problem (1) is a crucial problem in
nonlinear analysis. This is an efficient mathematical technique that integrates several key elements of
applied mathematics, i.e., the problems of network equilibrium, the necessary optimality conditions,
the complementarity problems and the systems of non-linear equations (for more details [3–9]).
On the other hand, the projection methods are important to find the numerical solution of variational
inequalities. Many authors have proposed and studied different projection methods to solve the
problem of variational inequalities (see for more details [10–20]) and others in [21–32]. In particular,
Karpelevich [10] and Antipin [33] introduced the following extragradient method:⎧⎪⎨⎪⎩

un ∈ K,
vn = PK[un − ζF (un)],
un+1 = PK[un − ζF (vn)].

(2)

Recently, the subgradient extragradient algorithm was established by Censor et al. [12] for solving
problem (1) in real Hilbert space. Their method has the form⎧⎪⎨⎪⎩

un ∈ K,
vn = PK[un − ζF (un)],
un+1 = PEn [un − ζF (vn)].

(3)

where En = {z ∈ E : 〈un − ζF (un)− vn, z − vn〉 ≤ 0}. Migorski et al. [34] proposed a viscosity-type
subgradient extragradient method to solve monotone variational inequalities problems. The main
contribution is the presence of a viscosity scheme in the algorithm that was used to improve the
convergence rate of the iterative sequence and provide strong convergence theorem. The iterative
sequence {un} was generated in the following way: (i) Let u0 ∈ K, μ ∈ (0, 1), ζ0 > 0 and a sequence
γn ⊂ (0, 1) with γn → 0 and ∑∞

n γn = +∞. (ii) Compute⎧⎪⎪⎨⎪⎪⎩
vn = PK[un − ζnF (un)],

wn = PEn [un − ζnF (vn)],

un+1 = γn f (un) + (1 − γn)wn,

(4)

where
En = {z ∈ E : 〈un − ζnF (un)− vn, z − vn〉 ≤ 0}.

(iii) Revised the stepsize in the following way:

ζn+1 =

{
min

{
ζn, μ‖un−vn‖

‖F (un)−F (vn)‖

}
if F (un) �= F (vn),

ζn otherwise.
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In this paper, inspired by the iterative methods in [12,16,35,36], a modified subgradient
extragradient algorithm is proposed for solving variational inequalities problems involving
pseudomonotone mapping in real Hilbert space. It is important to note that our proposed scheme
is effective. In particular, by comparing the results of Migorski et al. [34], our algorithm can solve
pseudomonotone variational inequalities. Similar to the results of Migorski et al. [34] the proof of
strong convergence of the proposed algorithm is proved without knowing the Lipschitz constant
of the operator F . The proposed algorithm could be seen as a modification of the methods that
are appeared in [10,12,34–36]. Under mild conditions, a strong convergence theorem is proved.
Numerical experiments have been shown that the new approach tends to be more successful than the
existing one [34].

The rest of this article has been arranged as follows: Section 2 contains some definitions and basic
results that have been used throughout the paper. Section 3 contains our main algorithm and a strong
convergence theorem. Section 4 presents the numerical results showing the algorithmic efficacy of the
proposed method.

2. Preliminaries

This section contains useful lemmas and basic identities that have been used throughout the
article. The metric projection PK(u1) for u1 ∈ E onto a closed and convex subset K of E is defined by

PK(u1) = arg min{‖u2 − u1‖ : u2 ∈ K}.

Lemma 1. [37,38] Assume K is a nonempty, convex and closed subset of a real Hilbert space E and PK : E → K
is a metric projection from E onto K.

(i) Let u1 ∈ K and u2 ∈ E , we have

‖u1 − PK(u2)‖2 + ‖PK(u2)− u2‖2 ≤ ‖u1 − u2‖2.

(ii) u3 = PK(u1) if and only if
〈u1 − u3, u2 − u3〉 ≤ 0, ∀ u2 ∈ K.

(iii) For u2 ∈ K and u1 ∈ E
‖u1 − PK(u1)‖ ≤ ‖u1 − u2‖.

Lemma 2. [37] Let u, v ∈ E and � ∈ R.

(i) ‖�u + (1 − �)v‖2 = �‖u‖2 + (1 − �)‖v‖2 − �(1 − �)‖u − v‖2.

(ii) ‖u + v‖2 ≤ ‖u‖2 + 2〈v, u + v〉.

Lemma 3. [39] Assume that {χn} be a sequence of non-negative real numbers satisfying

χn+1 ≤ (1 − τn)χn + τnδn, ∀ n ∈ N ,

where {τn} ⊂ (0, 1) and {δn} ⊂ R satisfy the following conditions:

lim
n→∞

τn = 0,
∞

∑
n=1

τn = ∞, and lim sup
n→∞

δn ≤ 0.

Then, limn→∞ χn = 0.

75



Axioms 2020, 9, 115

Lemma 4. [40] Assume that {χn} is a sequence of real numbers such that there exists a subsequence {ni}
of {n} such that χni < χni+1 for all i ∈ N . Then, there exists a non decreasing sequence mk ⊂ N such that
mk → ∞ as k → ∞, and the following conditions are fulfilled by all (sufficiently large) numbers k ∈ N :

χmk ≤ χmk+1 and χk ≤ χmk+1 .

In fact, mk = max{j ≤ k : χj ≤ χj+1}.

Lemma 5. [41] Assume that F : K → E is a pseudomonotone and continuous mapping. Then, u∗ is a solution
of the problem (1) if and only if u∗ is a solution of the following problem.

Find x ∈ K such that 〈F (y), y − x〉 ≥ 0, ∀ y ∈ K.

3. Main Results

We provide a method consisting of two convex minimization problems through a viscosity scheme
and an explicit stepsize formula which is being used to improve the convergence rate of the iterative
sequence and to make the method independent of the Lipschitz constants. The detailed method is
provided in Algorithm 1.

Algorithm 1 (Explicit method for pseudomonotone variational inequalities problems).

Step 0: Let u0 ∈ K, μ ∈ (0, 1), ζ0 > 0 and a sequence γn ⊂ (0, 1) satisfying

lim
n→∞

γn = 0 and
∞

∑
n

γn = +∞.

Step 1: Evaluate
vn = PK[un − ζnF (un)].

If un = vn; STOP. Otherwise, go to Step 2.
Step 2: Evaluate

wn = PEn [un − ζnF (vn)],

where En = {z ∈ E : 〈un − ζnF (un)− vn, z − vn〉 ≤ 0}.
Step 3: Compute

un+1 = γn f (un) + (1 − γn)wn.
Step 4: Evaluate

ζn+1 =

⎧⎨⎩ min
{

ζn, μ‖un−vn‖2+μ‖wn−vn‖2

2
〈
F (un)−F (vn),wn−vn

〉} if
〈
F (un)−F (vn), wn − vn

〉
> 0,

ζn else.

Lemma 6. The stepsize sequence {ζn} is monotonically decreasing with a lower bound min
{ μ

L , ζ0
}

and
converges to a fixed ζ > 0.

Proof. Let
〈
F (un)−F (vn), wn − vn

〉
> 0, such that

μ(‖un − vn‖2 + ‖wn − vn‖2)

2
〈
F (un)−F (vn), wn − vn

〉 ≥ 2μ‖un − vn‖‖wn − vn‖
2‖F (un)−F (vn)‖‖wn − vn‖

≥ 2μ‖un − vn‖‖wn − vn‖
2‖un − vn‖‖wn − vn‖

(5)

≥ μ

L
.
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Clearly, from above we can conclude that {ζn} has a lower bound min
{ μ

L , ζ0
}

. Moreover,
there exists a real number ζ > 0, such that limn→∞ ζn = ζ.

Lemma 7. Assume that F : E → E satisfies the conditions (B1)–(B4). For a given u∗ ∈ SVIP �= ∅, we have

‖wn − u∗‖2 ≤ ‖un − u∗‖2 −
(

1 − μζn

ζn+1

)
‖un − vn‖2 −

(
1 − μζn

ζn+1

)
‖wn − vn‖2.

Proof. Consider that

‖ wn − u∗ ‖2= ‖ PEn [un − ζnF (vn)]− u∗ ‖2

= ‖ PEn [un − ζnF (vn)] + [un − ζnF (vn)]− [un − ζnF (vn)]− u∗ ‖2

= ‖ [un − ζnF (vn)]− u∗ ‖2 + ‖ PEn [un − ζnF (vn)]− [un − ζnF (vn)] ‖2

+2 〈PEn [un − ζnF (vn)]− [un − ζnF (vn)] , [un − ζnF (vn)]− u∗〉 .

(6)

Given that u∗ ∈ SVIP ⊂ K ⊂ En, we get

‖ PEn [un − ζnF (vn)]− [un − ζnF (vn)] ‖2

+ 〈PEn [un − ζnF (vn)]− [un − ζnF (vn)] , [un − ζnF (vn)]− u∗〉
= 〈[un − ζnF (vn)]− PEn [un − ζnF (vn)] , u∗ − PEn [un − ζnF (vn)]〉 ≤ 0,

(7)

which implies that

〈PEn [un − ζnF (vn)]− [un − ζnF (vn)] , [un − ζnF (vn)]− u∗〉
≤ −‖ PEn [un − ζnF (vn)]− [un − ζnF (vn)] ‖2.

(8)

Using expressions (6) and (8), we obtain

‖ wn − u∗ ‖2 ≤ ‖ un − ζnF (vn)− u∗ ‖2 − ‖ PEn [un − ζnF (vn)]− [un − ζnF (vn)] ‖2

≤‖un − u∗ ‖2 −‖ un − wn ‖2 + 2ζn 〈F (vn) , u∗ − wn〉 .
(9)

Since u∗ is the solution of problem (1), we have

〈F (u∗), y − u∗〉 ≥ 0, for all y ∈ K.

Due to the pseudomonotonicity of F on K, we get

〈F (y), y − u∗〉 ≥ 0, for all y ∈ K.

By substituting y = vn ∈ K, we get

〈F (vn), vn − u∗〉 ≥ 0.

Thus, we have〈
F (vn), u∗ − wn

〉
=
〈
F (vn), u∗ − vn

〉
+
〈
F (vn), vn − wn

〉
≤
〈
F (vn), vn − wn

〉
. (10)

Combining expressions (9) and (10), we obtain

‖ wn − u∗ ‖2 ≤‖un − u∗ ‖2 −‖ un − wn ‖2 + 2ζn 〈F (vn) , vn − wn〉
≤‖un − u∗ ‖2 −‖ un − vn + vn − wn ‖2 + 2ζn 〈F (vn) , vn − wn〉
≤‖un − u∗ ‖2 − ‖un − vn ‖2 −‖ vn − wn ‖2 + 2 〈un − ζnF (vn)− vn, wn − vn〉 .

(11)
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Note that wn = PEn [un − ζnF (vn)] and by the definition of ζn+1, we have

2 〈un − ζnF (vn)− vn, wn − vn〉
= 2 〈un − ζnF (un)− vn, wn − vn〉+ 2ζn 〈F (un)−F (vn) , wn − vn〉

≤ 2ζn

ζn+1
ζn+1 〈F (un)−F (vn) , wn − vn〉 ≤

ζn

ζn+1

[
μ ‖un − vn ‖2 +μ‖ wn − vn ‖2

]
.

(12)

Combining expressions (11) and (12), we obtain

‖ wn − u∗ ‖2

≤‖un − u∗ ‖2 − ‖un − vn ‖2 −‖ vn − wn ‖2 +
ζn

ζn+1

[
μ ‖un − vn ‖2 +μ‖ wn − vn ‖2

]
≤‖un − u∗ ‖2 −

(
1 − μζn

ζn+1

)
‖ un − vn ‖2 −

(
1 − μζn

ζn+1

)
‖ wn − vn ‖2.

(13)

Lemma 8. Suppose that conditions (B1)–(B4) hold. Let {un} be a sequence generated by Algorithm 1. If there
is a subsequence {unk} which is weakly convergent to û ∈ E and limn→∞ ‖un − vn‖ = 0, then û ∈ SVIP.

Proof. We have
vnk = PK[unk − ζnkF (unk )], (14)

which is equivalent to
〈unk − ζnkF (unk )− vnk , y − vnk 〉 ≤ 0, ∀ y ∈ K. (15)

From expression (15), we can write

〈unk − vnk , y − vnk 〉 ≤ ζnk 〈F (unk ), y − vnk 〉, ∀ y ∈ K. (16)

Therefore, we get

1
ζnk

〈unk − vnk , y − vnk 〉+ 〈F (unk ), vnk − unk 〉 ≤ 〈F (unk ), y − unk 〉, ∀ y ∈ K. (17)

Due to the boundedness of the sequence {unk} so does {F (unk )}. By using the facts limn→∞ ‖unk −
vnk‖ = 0, and limk→∞ ζnk = ζ > 0, limit as k → ∞ in (17), we get

lim inf
k→∞

〈F (unk ), y − unk 〉 ≥ 0, ∀ y ∈ K. (18)

Moreover, we have

〈F (vnk ), y − vnk 〉 = 〈F (vnk )−F (unk ), y − unk 〉+ 〈F (unk ), y − unk 〉+ 〈F (vnk ), unk − vnk 〉.
(19)

Since limn→∞ ‖unk − vnk‖ = 0, and F is L-Lipschitz continuous on E , we get

lim
n→∞

‖F (unk )−F (vnk )‖ = 0. (20)

From (19) and (20), we obtain

lim inf
k→∞

〈F (vnk ), y − vnk 〉 ≥ 0, ∀ y ∈ K. (21)
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Next, we show that u∗ ∈ SVIP. We choose a sequence {εk} of positive numbers decreasing and
tending to 0. For each k, we denote by mk the smallest positive integer such that

lim inf
k→∞

〈F (uni ), y − uni 〉+ εk ≥ 0, ∀ i ≥ mk. (22)

Due to {εk} being decreasing, the sequence {mk} is increasing.
Case 1: If there is a subsequence unmkj

of unmk
such that F (unmkj

) = 0 (∀j). Letting j → ∞, we obtain

〈F (u∗), y − u∗〉 = lim
j→∞

〈F (unmkj
), y − u∗〉 = 0. (23)

Hence u∗ ∈ K, therefore we have u∗ ∈ SVIP.
Case 2: If there exists N0 such that for all nmk ≥ N0, F (unmk

) �= 0. Suppose that

Θnmk
=

F (unmk
)

‖F (unmk
)‖2 , ∀ nmk ≥ N0. (24)

Due to the above definition, we obtain

〈F (unmk
),F (Θnmk

)〉 = 1, ∀ nmk ≥ N0. (25)

From (18) and (25), for all nmk ≥ N0, we have

〈F (unmk
), y + εkΘnmk

− unmk
〉 ≥ 0. (26)

Due to pseudomonotonicity of F for nmk ≥ N0, we obtain

〈F (y + εkΘnmk
), y + εkΘnmk

− unmk
〉 ≥ 0. (27)

For all nmk ≥ N0, we have

〈F (y), y − unmk
〉 ≥ 〈F (y)−F (y + εkΘnmk

), y + εkΘnmk
− unmk

〉 − εk〈F (y), Θnmk
〉. (28)

Since {unk} converges weakly to u∗ ∈ K and F is sequentially weakly continuous on K, we have
{F (unk )} converges weakly to F (u∗). We can suppose that F (u∗) �= 0. Since the norm mapping is
sequentially weakly lower semicontinuous, we have

‖F (u∗)‖ ≤ lim inf
k→∞

‖F (unk )‖. (29)

Since {unmk
} ⊂ {unk} and limk→∞ εk = 0, we have

0 ≤ lim
k→∞

‖εkΘnmk
‖ = lim

k→∞

εk
‖F (unmk

)‖ ≤ 0
‖F (u∗)‖ = 0. (30)

Now, letting k → ∞ in (28), we obtain

〈F (y), y − u∗ ≥ 0, ∀ y ∈ K. (31)

Applying the well-known Lemma 5, we can deduce that u∗ ∈ SVIP.

Theorem 1. Assume that F : K → E satisfies the conditions (B1)–(B4). Moreover, assume that u∗

belongs to the solution set SVIP. Then, the sequences {un}, {vn} and {wn} generated by Algorithm 1
converge strongly to u∗.
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Proof. By using Lemma 7, we have

‖wn − u∗‖2 ≤ ‖un − u∗‖2 −
(

1 − μζn

ζn+1

)
‖un − vn‖2 −

(
1 − μζn

ζn+1

)
‖wn − vn‖2. (32)

Due to ζn → ζ, there exists a fixed number ε ∈ (0, 1 − μ) such that

lim
n→∞

(
1 − μζn

ζn+1

)
= 1 − μ > ε > 0.

Then, there exists a finite number N1 ∈ N such that(
1 − μζn

ζn+1

)
> ε > 0, ∀ n ≥ N1. (33)

Hence, we obtain

‖wn − u∗‖2 ≤ ‖un − u∗‖2, ∀ n ≥ N1. (34)

From the definition of the sequence {un+1} and the fact that f is a contraction with constant
ρ ∈ [0, 1) and n ≥ N1, we obtain∥∥un+1 − u∗∥∥ =

∥∥γn f (un) + (1 − γn)wn − u∗∥∥
=
∥∥γn[ f (un)− u∗] + (1 − γn)[wn − u∗]

∥∥
=
∥∥γn[ f (un) + f (u∗)− f (u∗)− u∗] + (1 − γn)[wn − u∗]

∥∥ (35)

≤ γn
∥∥ f (un)− f (u∗)

∥∥+ γn
∥∥ f (u∗)− u∗∥∥+ (1 − γn)

∥∥wn − u∗∥∥
≤ γnρ

∥∥un − u∗∥∥+ γn
∥∥ f (u∗)− u∗∥∥+ (1 − γn)

∥∥wn − u∗∥∥.

From expressions (34) and (36) and γn ⊂ (0, 1), we obtain∥∥un+1 − u∗∥∥ ≤ γnρ
∥∥un − u∗∥∥+ γn

∥∥ f (u∗)− u∗∥∥+ (1 − γn)
∥∥un − u∗∥∥

= [1 − γn + ργn]
∥∥un − u∗∥∥+ γn(1 − ρ)

∥∥ f (u∗)− u∗∥∥
(1 − ρ)

≤ max

{∥∥un − u∗∥∥,

∥∥ f (u∗)− u∗∥∥
(1 − ρ)

}
(36)

≤ max

{∥∥uN1 − u∗∥∥,

∥∥ f (u∗)− u∗∥∥
(1 − ρ)

}
.

Hence, we conclude that the sequence {un} is bounded. Next, the reflexivity of E and the
boundedness of the sequence {un} guarantee that there exists a subsequence {unk} such that {unk} ⇀
u∗ ∈ E as k → ∞. Now, we prove the strong convergence of the sequence iterative sequence {un}
generated by Algorithm 1. Due to the continuity and pseudomonotonicity of the operator F imply
that the solution set SVIP is a closed and convex set (for more details see [42,43]). Since the mapping f
is a contraction, PSVIP ◦ f is a contraction. The Banach contraction theorem guarantee the existence of
a fixed point of u∗ ∈ SVIP such that

u∗ = PSVIP( f (u∗)).

By using Lemma 1 (ii), we have

〈 f (u∗)− u∗, y − u∗〉 ≤ 0, ∀ y ∈ SVIP. (37)
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From given un+1 = γn f (un) + (1 − γn)wn, and using Lemma 2 (i) and Lemma 7, we have∥∥un+1 − u∗∥∥2

=
∥∥γn f (un) + (1 − γn)wn − u∗∥∥2

=
∥∥γn[ f (un)− u∗] + (1 − γn)[wn − u∗]

∥∥2

= γn‖ f (un)− u∗‖2 + (1 − γn)‖wn − u∗‖2 − γn(1 − γn)‖ f (un)− wn‖2 (38)

≤ γn‖ f (un)− u∗‖2 + (1 − γn)
[
‖un − u∗‖2 −

(
1 − μζn

ζn+1

)
‖un − vn‖2

−
(

1 − μζn

ζn+1

)
‖wn − vn‖2

]
− γn(1 − γn)‖ f (un)− wn‖2

≤ γn‖ f (un)− u∗‖2 + ‖un − u∗‖2 − (1 − γn)
(

1 − μζn

ζn+1

)[
‖wn − vn‖2 + ‖un − vn‖2

]
.

The rest of the proof shall be divided into the following two parts:
Case 1: Assume that there exists a fixed number N2 ∈ N (N2 ≥ N1) such that

‖un+1 − u∗‖ ≤ ‖un − u∗‖, ∀ n ≥ N2. (39)

Thus, limn→∞ ‖un − u∗‖ exists and let limn→∞ ‖un − u∗‖ = l. From expression (38), we have

(1 − γn)
(

1 − μζn

ζn+1

)[
‖wn − vn‖2 + ‖un − vn‖2

]
≤ γn‖ f (un)− u∗‖2 + ‖un − u∗‖2 − ‖un+1 − u∗‖2. (40)

Due to the existence of limn→∞ ‖un − u∗‖ = l, and γn → 0, we deduce that

lim
n→∞

‖un − vn‖ = lim
n→∞

‖wn − vn‖ = 0. (41)

From expression (41), we have

lim
n→∞

‖un − wn‖ ≤ lim
n→∞

‖un − vn‖+ lim
n→∞

‖vn − wn‖ = 0. (42)

It follows that

‖ un+1 − un ‖ = ‖ γn f (un) + (1 − γn)wn − un ‖
= ‖ γn [ f (un)− un] + (1 − γn) [wn − un] ‖
≤ γn‖ f (un)− un ‖+ (1 − γn) ‖ wn − un ‖ −→ 0.

(43)

Thus, the sequences {un}, {vn} and {wn} are bounded. Thus, we can take a subsequence {unk}
of {un} such that {unk} weakly converges to some û ∈ E . Moreover, due to ‖un − vn‖ → 0 and using
Lemma 8, we have û ∈ SVIP. By following expression (37), we consider that

lim sup
n→∞

〈 f (u∗)− u∗, un − u∗〉

= lim sup
k→∞

〈 f (u∗)− u∗, unk − u∗〉 = 〈 f (u∗)− u∗, û − u∗〉 ≤ 0. (44)

We have limn→∞
∥∥un+1 − un

∥∥ = 0. It follows (44) that

lim sup
n→∞

〈 f (u∗)− u∗, un+1 − u∗〉

≤ lim sup
k→∞

〈 f (u∗)− u∗, un+1 − un〉+ lim sup
k→∞

〈 f (u∗)− u∗, un − u∗〉 ≤ 0. (45)
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From Lemma 2 (ii) and Lemma 7 for all n ≥ N2, we get

∥∥un+1 − u∗∥∥2

=
∥∥γn f (un) + (1 − γn)wn − u∗∥∥2

=
∥∥γn[ f (un)− u∗] + (1 − γn)[wn − u∗]

∥∥2

≤ (1 − γn)
2∥∥wn − u∗∥∥2

+ 2γn〈 f (un)− u∗, (1 − γn)[wn − u∗] + γn[ f (un)− u∗]〉
= (1 − γn)

2∥∥wn − u∗∥∥2
+ 2γn〈 f (un)− f (u∗) + f (u∗)− u∗, un+1 − u∗〉

= (1 − γn)
2∥∥wn − u∗∥∥2

+ 2γn〈 f (un)− f (u∗), un+1 − u∗〉+ 2γn〈 f (u∗)− u∗, un+1 − u∗〉
≤ (1 − γn)

2∥∥wn − u∗∥∥2
+ 2γnρ

∥∥un − u∗∥∥∥∥un+1 − u∗∥∥+ 2γn〈 f (u∗)− u∗, un+1 − u∗〉
≤ (1 + γ2

n − 2γn)
∥∥un − u∗∥∥2

+ 2γnρ
∥∥un − u∗∥∥2

+ 2γn〈 f (u∗)− u∗, un+1 − u∗〉
= (1 − 2γn)

∥∥un − u∗∥∥2
+ γ2

n
∥∥un − u∗∥∥2

+ 2γnρ
∥∥un − u∗∥∥2

+ 2γn〈 f (u∗)− u∗, un+1 − u∗〉

=
[
1 − 2γn(1 − ρ)

]∥∥un − u∗∥∥2
+ 2γn(1 − ρ)

[
γn
∥∥un − u∗∥∥2

2(1 − ρ)
+

〈 f (u∗)− u∗, un+1 − u∗〉
1 − ρ

]
. (46)

It follows from expressions (45) and (46), we obtain

lim sup
n→∞

[
γn
∥∥un − u∗∥∥2

2(1 − ρ)
+

〈 f (u∗)− u∗, un+1 − u∗〉
1 − ρ

]
≤ 0. (47)

Choose n ≥ N3 ∈ N (N3 ≥ N2) large enough such that 2γn(1 − ρ) < 1. Now,
using expressions (46) and (47) and applying Lemma 3, we conclude that

∥∥un − u∗∥∥→ 0, as n → ∞.
Case 2: Suppose that there exists a subsequence {ni} of {n} such that

‖uni − u∗‖ ≤ ‖uni+1 − u∗‖, ∀i ∈ N .

Thus, by Lemma 4, there exits a sequence {mk} ⊂ N and {mk} → ∞, such that

‖umk − u∗‖ ≤ ‖umk+1 − u∗‖ and ‖uk − u∗‖ ≤ ‖umk+1 − u∗‖, ∀ k ∈ N . (48)

Similar to Case 1, using (38), we have

(1 − γmk )
(

1 − μζmk

ζmk+1

)[
‖wmk − vmk‖2 + ‖umk − vmk‖2]

≤ γmk‖ f (umk )− u∗‖2 + ‖umk − u∗‖2 − ‖umk+1 − u∗‖2. (49)

Due to γmk → 0 and
(

1 − μζmk
ζmk+1

)
→ 1 − μ, we can deduce the following:

lim
n→∞

‖umk − vmk‖ = lim
k→∞

‖wmk − vmk‖ = 0. (50)

From expression (50), we have

lim
k→∞

‖umk − wmk‖ ≤ lim
k→∞

‖umk − vmk‖+ lim
k→∞

‖vmk − wmk‖ = 0. (51)
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Hence, we obtain∥∥umk+1 − umk

∥∥ =
∥∥γmk f (umk ) + (1 − γmk )wmk − umk

∥∥
=
∥∥γmk [ f (umk )− umk ] + (1 − γmk )[wmk − umk ]

∥∥
≤ γmk

∥∥ f (umk )− umk

∥∥+ (1 − γmk )
∥∥wmk − umk

∥∥ −→ 0. (52)

We have to use the same justification as in the Case 1, such that

lim sup
k→∞

〈 f (u∗)− u∗, umk+1 − u∗〉 ≤ 0. (53)

Using (46) and (48), we have∥∥umk+1 − u∗∥∥2 ≤
[
1 − 2γmk (1 − ρ)

]∥∥umk − u∗∥∥2

+ 2γmk (1 − ρ)

[
γmk

∥∥umk − u∗∥∥2

2(1 − ρ)
+

〈 f (u∗)− u∗, umk+1 − u∗〉
1 − ρ

]
≤
[
1 − 2γmk (1 − ρ)

]∥∥umk+1 − u∗∥∥2

+2γmk (1 − ρ)

[
γmk

∥∥umk − u∗∥∥2

2(1 − ρ)
+

〈 f (u∗)− u∗, umk+1 − u∗〉
1 − ρ

]
. (54)

It follows that

∥∥umk+1 − u∗∥∥2 ≤ γmk

∥∥umk − u∗∥∥2

2(1 − ρ)
+

〈 f (u∗)− u∗, umk+1 − u∗〉
1 − ρ

.

(55)

Since γmk → 0 and
∥∥umk − u∗∥∥ is a bounded sequence. Thus, expressions (53) and (55) implies that

‖umk+1 − u∗‖2 → 0, as k → ∞. (56)

From the inequality (48), we have

lim
n→∞

‖uk − u∗‖2 ≤ lim
n→∞

‖umk+1 − u∗‖2 ≤ 0. (57)

Consequently, un → u∗. This completes the proof of the theorem.

4. Numerical Experiments

Numerical investigations present in this section to demonstrate the efficiency of the introduced
Algorithm 1 in four test problems, all of which are pseudomonotone. The MATLAB program has
been performed on a PC (with Intel(R) Core(TM)i3-4010U CPU @ 1.70 GHz, RAM 4.00 GB) in
MATLAB version 9.5 (R2018b). We use the built-in MATLAB Quadratic programming to solve
the minimization problems.

Example 1. Consider the non-linear complementarity problem of Kojima-–Shindo where the feasible set K
which is defined by

K = {u ∈ R4 : 1 ≤ ui ≤ 5, i = 1, 2, 3, 4}.
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The mapping F : R4 → R4 is defined by

F (u) =

⎛⎜⎜⎜⎝
u1 + u2 + u3 + u4 − 4u2u3u4

u1 + u2 + u3 + u4 − 4u1u3u4

u1 + u2 + u3 + u4 − 4u1u2u4

u1 + u2 + u3 + u4 − 4u1u2u3

⎞⎟⎟⎟⎠ .

It is easy to see that F is not monotone on the set K. By using the Monte Carlo approach [44], it can be
shown that F is pseudomonotone on K, This problem has a unique solution u∗ = (5, 5, 5, 5)T . Generate many
pairs of points u and v uniformly in K satisfying F (u)T(v − u) ≥ 0 and then check if F (v)T(v − u) ≥ 0.
In this experiment, we take different initial points and Dn = ‖un − vn‖. Moreover, control parameters ζ0 = 0.33,
μ = 0.25, γn = 1

100(n+2) and f (u) = u
2 for Algorithm 1. Numerical investigation regarding the first example

was shown in Table 1.

Table 1. Numerical behaviour of Algorithm 1 using different starting points for Example 1.

TOL 10−2 10−3 10−4 10−5 10−2 10−3 10−4 10−5

u0 Iter. Iter. Iter. Iter. Time Time Time Time

[−2, 2, 8, 10]T 13 51 501 5001 0.079821 0.247776 3.251465 43.637834
[−1, 1, 5, 6]T 12 51 501 5001 0.083870 0.236924 2.684370 39.651178
[−5, 2,−1, 2]T 9 51 501 5001 0.065422 0.235173 3.034747 43.630625
[1, 2, 3, 4]T 6 1004 1004 5001 0.040866 8.051234 6.686632 42.431705

Example 2. Consider the quadratic fractional programming problem in the following form [44]:⎧⎪⎨⎪⎩ min f (u) =
uTQu + aTu + a0

bTu + b0
,

subject to u ∈ K = {u ∈ R4 : bTu + b0 > 0},

where

Q =

⎛⎜⎜⎜⎝
5 −1 2 0
−1 5 −1 3
2 −1 3 0
0 3 0 5

⎞⎟⎟⎟⎠ , a =

⎛⎜⎜⎜⎝
1
−2
−2
1

⎞⎟⎟⎟⎠ , b =

⎛⎜⎜⎜⎝
2
1
1
0

⎞⎟⎟⎟⎠ , a0 = −2, and b0 = 4.

It is easy to verify that Q is symmetric and positive definite on R4 and consequently f is pseudo-convex on
K. Therefore, ∇ f is pseudomonotone. Using the quotient rule, we obtain

∇ f (u) =
(bTu + b0)(2Qu + a)− b(uTQ + aTu + a0)

(bTu + b0)2 . (58)

In this point of view, we can set F = ∇ f in Theorem 1. We minimize f over K = {u ∈ R4 : 1 ≤ ui ≤
10, i = 1, 2, 3, 4}. This problem has a unique solution u∗ = (1, 1, 1, 1)T ∈ K. In this experiment, we take
different initial points and Dn = ‖un − vn‖. Moreover, control parameters ζ0 = 0.33, μ = 0.25, γn = 1

100(n+2)
and f (u) = u

2 for Algorithm 1. Numerical investigation regarding the second example is shown in Table 2.

Table 2. Numerical behaviour of Algorithm 1 using different starting points for Example 2.

TOL 10−2 10−3 10−4 10−5 10−2 10−3 10−4 10−5

u0 Iter. Iter. Iter. Iter. Time Time Time Time

[10, 10, 10, 10]T 43 46 99 989 0.289149 0.249285 0.475520 8.480530
[10, 20, 30, 40]T 41 46 99 989 0.211707 0.187559 0.445240 6.898924
[20,−20, 20,−20]T 29 32 99 989 0.138575 0.169190 0.394654 7.168460
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Example 3. The third example was taken from [45] where F : R2 → R2 is defined by

F (u) =

(
0.5u1u2 − 2u2 − 107

−4u1 − 0.1u2
2 − 107

)
,

on K = {u ∈ R2 : (u1 − 2)2 +(u2 − 2)2 ≤ 1}. It can easily see that F is Lipschitz continuous with L = 5 and
F is not monotone on K but pseudomonotone. The above problem has a unique solution u∗ = (2.707, 2.707)T .
In this experiment, we take different initial points and Dn = ‖un − vn‖. Moreover, control parameters ζ0 = 0.33,
μ = 0.25, γn = 1

100(n+2) and f (u) = u
3 for Algorithm 1. Numerical investigations regarding the third example

is shown in Table 3.

Table 3. Numerical behaviour of Algorithm 1 using different starting points for Example 3.

TOL 10−2 10−3 10−4 10−5 10−2 10−3 10−4 10−5

u0 Iter. Iter. Iter. Iter. Time Time time Time

[0, 0]T 8 27 265 2566 0.606917 1.907212 14.120655 107.506926
[10, 10]T 7 27 265 2591 0.286659 1.057623 10.764532 116.258335
[−5,−5]T 8 26 258 2596 0.388227 1.190191 11.424257 107.584978

Example 4. The fourth example was taken from [45] where F : R2 → R2 is defined by

F (u) =

(
(u2

1 + (u2 − 1)2)(1 + u2)

−u3
1 − u1(u2 − 1)2

)
,

where K = {u ∈ R2 : −10 ≤ ui ≤ 10, i = 1, 2}. It can easily see that F is Lipschitz continuous with
L = 5 and F is not monotone on K but pseudomonotone. In this experiment, we take different initial points
and Dn = ‖un − vn‖. Moreover, control parameters ζ0 = 0.33, μ = 0.25, γn = 1

100(n+2) and f (u) = u
4 for

Algorithm 1. Numerical investigations regarding the fourth example is shown in Table 4.

Table 4. Numerical behaviour of Algorithm 1 using different starting points for Example 4.

TOL 10−2 10−3 10−4 10−5 10−2 10−3 10−4 10−5

u0 Iter. Iter. Iter. Iter. Time Time Time Time

[0, 0]T 16 220 2231 29253 0.21543 2.35401 29.86562 224.95083
[10, 10]T 27 190 2072 25762 0.25322 2.64742 26.84528 198.26446
[−5,−5]T 43 411 3801 47891 0.78262 4.77116 42.41738 427.904781

5. Conclusions

We have developed an extragradient-like method to solve pseudomonotone variational
inequalities in real Hilbert space. The method had an explicit formula for an appropriate and effective
stepsize evaluation on each step. For each iteration, the stepsize formula is modified based on the
previous iterations. The numerical investigation was presented to explain the numerical effectiveness
of our algorithm relative to other methods. These numerical studies suggest that viscosity schemes in
this sense generally improve the effectiveness of the iterative sequence.
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Abstract: There are many methods for finding a common solution of a system of variational inequalities,
a split equilibrium problem, and a hierarchical fixed-point problem in the setting of real Hilbert spaces.
They proved the strong convergence theorem. Many split feasibility problems are generated in real
Hillbert spaces. The open problem is proving a strong convergence theorem of three Hilbert spaces with
different methods from the lasted method. In this research, a new split variational inequality in three
Hilbert spaces is proposed. Important tools which are used to solve classical problems will be developed.
The convergence theorem for finding a common element of the set of solution of such problems and the
sets of fixed-points of discontinuous mappings has been proved.
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1. Introduction

We use the following symbols throughout this paper: let H be a real Hilbert space and C be a
nonempty closed convex subset of H. We also use the symbols �� −→ ′′ and ��⇀ ′′, which represent strong
and weak convergence, respectively. The variational inequality problem (VIP) is a well known problem.
That is to find a point �∗ such that

〈y − �∗, G�∗〉 ≥ 0, for all y ∈ C, (1)

where G : C −→ H is a mapping. The set of all solutions of (1) is denoted by Var(C, G).
The variational inequality problem has been applied in various fields such as industry,

finance, economics, social, ecology, regional, pure and applied sciences; see [1–3]. For every i = 1, 2,
let Hi be a real Hilbert space and C, Q be nonempty closed convex subset of H1, and H2, respectively.
Recently, Censor [4] has introduced a new variational problem called the split inequality problem (SIP).
It entails finding a solution of one variational inequality problem (VIP), the image of which, under a given
bounded linear transformation, is a solution of another VIP.

The split variational inequality problem is assigned to the following formula; find a point �∗ ∈ C
such that

〈 f (�∗) , x − �∗〉 ≥ 0, for all x ∈ C (2)

Axioms 2020, 9, 103; doi:10.3390/axioms9030103 www.mdpi.com/journal/axioms
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and a point y∗ = A�∗ solves

〈y − y∗, g(y∗)〉 ≥ 0, for all y ∈ Q, (3)

where A : H1 → H2 is a bounded linear operator and f : H1 → H1, g : H2 → H2 are mappings. The set of
all solutions of (2) and (3) is denoted by

Ω = {x ∈ Var (C, f ) : for all x ∈ Var (Q, g)} .

The split variational inequality problem can be applied to model in intensity-modulated radiation
therapy (IMRT) treatment planning.

There are also a lot of authors who have introduced convergence theorem related to the split
variational inequality and fixed point problems; see [5–7] for an example. In [8], they have studied
the Mann implicit iterations for strongly accreative and strongly pseudo-contractive mappings and found
that this implicit scheme gives a better convergence rate estimate.

The following definitions are important tools used in this research. A mapping ϑ of H into itself is
called nonexpansive if ‖ϑx − ϑy‖ ≤ ‖x − y‖, for all x, y ∈ H. We denote by F(ϑ) the set of fixed points of
ϑ (i.e., F(ϑ) = {x ∈ C : ϑx = x}). A nonexpansive mapping ϑ is equivalent to the following inequality;

〈(I − ϑ) x − (I − ϑ) y, ϑy − ϑx〉 ≤ 1
2
‖(I − ϑ)x − (I − ϑ) y‖2,

for all x, y ∈ H. From the equation above if y ∈ F(ϑ) and x ∈ H, we can conclude that;

〈(I − ϑ) x, y − ϑx〉 ≤ 1
2
‖(I − ϑ) x‖2 .

A mapping A of C into H is called inverse strongly monotonic, if there exists α > 0 such that

〈x − y, Ax − Ay〉 ≥ α‖Ax − Ay‖2,

for all x, y ∈ C. In [9], Kohsaka and Takahashi introduced the nonspreading mapping in Hilbert spaces
H which is defined by the following inequality 2‖ϑx − ϑy‖2 ≤ ‖ϑx − y‖2 + ‖x − ϑy‖2, for all x, y ∈ C.

Following the terminology of Browder and Petryshyn [10], in [11], Osilike and Isiogugu introduced
the mapping ϑ : C → C, which is called κ−strictly pseudo-nonspreading mapping if there exists κ ∈ [0, 1)
such that

‖ϑx − ϑy‖2 ≤ ‖x − y‖2 + κ‖(I − ϑ)x − (I − ϑ)y‖2 + 2〈x − ϑx, y − ϑy〉,

for all x, y ∈ C. Clearly every nonspreading mapping is κ-strictly pseudo-nonspreading; see, for example, [11].
In [12], Bnouhachem modified a projection process for finding a common solution of a system of

variational inequalities, a split equilibrium problem and a hierarchical fixed-point problem in the setting
of real Hilbert spaces and also proved the strong convergence theorem of the sequence {xn} generated by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

un = ϑF1
rn

(
xn + γA∗

(
TF2

rn − I
)

Axn

)
;

zn = PC [PC [un − α1B2un]− α1B1PC [un − α2B2un]] ;

yn = βnxn + (1 − βn) zn;

xn+1 = PC [αnρU (xn) + (I − αnμF) ϑ (yn))] , for all n ≥ 0,
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where A : H1 → H2 is a bounded linear operator. Assume that F1 : C × C → R and F2 : Q × Q → R are
the bifunctions; Bi : C → H is a θi-inverse strongly monotonic mapping for each i = 1, 2 and S, ϑ : C → C
nonexpansive mapping; F : C → C is a k-Lipschitzian mapping and is η-strongly monotonic; U : C → C is
a τ-Lipschitzian mapping; and the positive parameters are rn, αn, α1, α2, ρ, μ , for all n ∈ N.

Let C and Q be nonempty closed convex subsets of the real Hilbert spaces H1 and H2, respectively.
The split feasibility problem (SFP) is formulated as :

to find x∗ ∈ C such that Ax∗ ∈ Q, (4)

where A : H1 → H2 is a bounded linear operator. The SFP are also applied in [13,14].
Recently, Moudafi [15] introduced the following new split feasibility problem, which is also called

general split equality problem:
Let H1, H2, H3 be real Hilbert spaces, C ⊂ H1, Q ⊂ H2 be two nonempty closed convex sets and

A : H1 → H3, B : H2 → H3 be two bounded linear operators. Moudafi studied the convergence of a
relaxed alternating CQ-algorithm for solving the new split feasibility problem, aiming to find

�∗ ∈ C, y∗ ∈ Q such that A�∗ = By∗. (5)

In order to prove the weak convergence theory to solve general split equality problem (5), Moudafi defined
the following iteration process {xk}:{

xk+1 = PC (xk − γk A∗ (Axk − Byk)) ,

yk+1 = PQ (yk + γkB∗ (Axk+1 − Byk)) ,

where A∗, B∗ are adjoint operators of A, B respectively, proper conditions of the positive paramiter γk,
for all k ≥ 1. In order to avoid using the projection, Moudafi [16] introduced and studied the following
problem: Let T : H1 → H1 and S : H2 → H2 be nonlinear operators such that Fix(T) �= ∅ and Fix(S) �= ∅,
where Fix(T) and Fix(S) denote the sets of fixed points of T and S, respectively. If C = Fix(T) and
Q = Fix(S); then the split equality problem reduces to

to find x ∈ Fix(T) and y ∈ Fix(S) such that Ax = By, (6)

which is called a split equality fixed point problem (SEFPP).
Denote by Γ the solution set of split equality fixed point problem (6). There were recently SEFPP

research articles in [17,18].

Question A. Can we prove a strong convergence theorem of three Hilbert spaces by different
methods from Moudafi [15]?

For every i = 1, 2, 3, let Hi be a real Hilbert space and Ci be a nonempty closed convex subset of Hi.
Let Bi : Ci → Hi be a mapping, for all i = 1, 2, 3, and let A2 : H1 → H2 and A3 : H2 → H3. The split
various variational inequality is to find the points⎧⎪⎪⎨⎪⎪⎩

�∗
1 ∈ C1, such that 〈B1�∗

1 , x1 − �∗
1 〉 ≥ 0, for all x1 ∈ C1, and

�∗
2 = A2�∗

1 ∈ C2, such that 〈B2�∗
2 , x2 − �∗

2 〉 ≥ 0, for all x2 ∈ C2, and

�∗
3 = A3�∗

2 ∈ C3, such that 〈B3�∗
3 , x3 − �∗

3 〉 ≥ 0, for all x3 ∈ C3.

(7)
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The set of the solutions of (7) is denoted by Ω = {�∗ =
(
�∗

1 , �∗
2 , �∗

3
)
∈ C1 × C2 × C3 : �∗

i ∈
Var (Ci, Bi) , for all i = 1, 2, 3}.

To answer question A, we have created a new tool to prove a strong convergence theorem for
three Hilbert spaces to be used for finding the solution of the problem (7) and the fixed points
problem of nonspreading and pseudo-nonspreading mappings. Preliminaries In this section, we collect
some definitions and lemmas in Hilbert space, which will be needed for proving our main results.
More properties of Hilbert space can be found in [19].

Definition 1. The (nearest point) projection PC from H onto C assigns to each x ∈ H the unique point PCx ∈ C
satisfying the property

‖x − PCx‖ = min
y∈C

‖x − y‖.

Lemmas 1 and 2 are properties of PC.

Lemma 1. ([20]) For a given x ∈ H and y ∈ C, PCx = y if and only if there holds the inequality 〈y − x, z − y〉 ≥
0, for all z ∈ C.

Lemma 2. ([21]) Let H be a Hilbert space, let C be a nonempty closed convex subset of H and let A be a mapping
of C into H. Let u ∈ C. Then for λ > 0, u = PC(I − λA)u if and only if u ∈ Var(C, A), where PC is the metric
projection of H onto C.

Lemma 3. ([22]) Let {Υn} be a sequence of nonnegative real numbers satisfying Υn+1 = (1− αn)Υn + δn, for all
n ≥ 0,

where {αn} is a sequence in (0, 1) and {δn} is a sequence such that

(1)
∞
∑

n=1
αn = +∞;

(2) lim sup
n→+∞

δn
αn

≤ 0 or
+∞
∑

n=1
|δn| < +∞.

Then limn→+∞ Υn = 0.

Lemma 4. ([23]) Let {Υn} be a sequence of nonnegative real number satisfying,

Υn+1 = (1 − αn)Υn + αnβn, for all n ≥ 0

where {αn}, {βn} satisfy the conditions

(1) {αn} ⊂ [0, 1],
+∞
∑

n=1
αn = +∞;

(2) lim sup
n→+∞

βn ≤ 0 or
+∞
∑

n=1
|αnβn| < +∞.

Then limn→+∞ Υn = 0.

Lemma 5. For every i = 1, 2, 3, let Hi be a real Hilbert spaces and Ci be a nonempty closed convex subset of
Hi. Let Bi : Ci → Hi be βi-inverse strongly monotonic mappings with η = mini=1,2,3 {βi} and let A2 : H1 →
H2, A3 : H2 → H3 be bounded linear operators with the adjoint operator A∗

2 and A∗
3 , respectively. Assume that

x1 ∈ C1, A2x1 = x2, A3x2 = x3 and Ω �= ∅. The following are equivalent:

92



Axioms 2020, 9, 103

(i) x ∈ Ω, where x = (x1, x2, x3) ∈ C1 × C2 × C3.
(ii) x1 = PC1 (I1 − λ1B1) (x1 − γ2 A∗

2((I2 − PC2 (I2 − λ2B2))x2 + γ3 A∗
3
(

I3 − PC3 (I3 − λ3B3)
)

x3)),

where Ii : Hi → Hi is an identity mapping, for all i = 1, 2, 3, γ2(1 + γ3) ≤
1
L

, L = max{L1, L2} ≤ 1 which

L1, L2 are spectral radii of A2 A∗
2 and A3 A∗

3 , respectively, λi ∈ (0, 2η) , for all i = 1, 2, 3 and γ2, γ3 ≥ 0.

Proof. Let the conditions hold.
(i) ⇒ (ii) Let x ∈ Ω where x = (x1, x2, x3) ∈ C1 × C2 × C3; we have

xi ∈ Var(Ci, Bi), for all i = 1, 2, 3.

From Lemma 2, we have

xi ∈ F(PCi (Ii − λiBi)), for all i = 1, 2, 3.

From determining the definition of x, we have

x1 = PC1 (I1 − λ1B1) (x1 − γ2 A∗
2((I2 − PC2 (I2 − λ2B2))x2 + γ3 A∗

3
(

I3 − PC3 (I3 − λ3B3)
)

x3)).

(ii) ⇒ (i) Let x = (x1, x2, x3) ∈ C1 × C2 × C3, where x2 = A2x1, x3 = A3x2 and

x1 = PC1 (I1 − λ1B1) (x1 − γ2 A∗
2((I2 − PC2 (I2 − λ2B2))x2 + γ3 A∗

3
(

I3 − PC3 (I3 − λ3B3)
)

x3)).

Since Bi is βi-inverse strongly monotonic with λi < 2η, for all i = 1, 2, 3, we have PCi (Ii − λiBi) which
is a nonexpansive mapping, for all i = 1, 2, 3.

Let w ∈ Ω where w = (w1, w2, w3) ∈ C1 × C2 × C3 where w2 = A2w1, w3 = A3w2. From (i) implies
(ii), we have

w1 = PC1(I − λ1B1)(w1 − γ2 A∗
2((I2 − PC2(I2 − λ2B2))w2 + γ3 A∗

3(I3 − PC3(I3 − λ3B3))w3)).

Put M = (I2 − PC2 (I2 − λ2B2))x2 + γ3 A∗
3
(

I3 − PC3 (I3 − λ3B3)
)

x3 and N = (I2 −
PC2 (I2 − λ2B2))w2 + γ3 A∗

3
(

I3 − PC3 (I3 − λ3B3)
)

w3.
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From determining the definition of x and w, we have

‖x1 − w1‖2 ≤ ‖x1 − w1 − γ2 A∗
2(M − N)‖2

= ‖x1 − w1‖2 − 2γ2〈x1 − w1, A∗
2(M − N)〉+ γ2

2‖A∗
2(M − N)‖2

≤ ‖x1 − w1‖2 − 2γ2〈x2 − w2, M − N〉+ γ2
2 L‖M − N‖2

≤ ‖x1 − w1‖2 − 2γ2〈x2 − w2, (I2 − PC2 (I2 − λ2B2))x2 + γ3 A∗
3
(

I3 − PC3 (I3 − λ3B3)
)

x3〉
+γ2

2 L‖(I2 − PC2 (I2 − λ2B2))x2 + γ3 A∗
3
(

I3 − PC3 (I3 − λ3B3)
)

x3‖2

= ‖x1 − w1‖2 − 2γ2(〈x2 − w2, (I2 − PC2 (I2 − λ2B2))x2〉+ γ3〈x3 − w3,(
I3 − PC3 (I3 − λ3B3)

)
x3〉) + γ2

2 L‖(I2 − PC2 (I2 − λ2B2))x2

+γ3 A∗
3
(

I3 − PC3 (I3 − λ3B3)
)

x3‖2

= ‖x1 − w1‖2 + 2γ2〈w2 − x2, (I2 − PC2 (I2 − λ2B2))x2〉+ 2γ2γ3〈w3 − x3,(
I3 − PC3 (I3 − λ3B3)

)
x3〉+ γ2

2 L(‖(I2 − PC2 (I2 − λ2B2))x2‖2

+γ2
3 L‖

(
I3 − PC3 (I3 − λ3B3)

)
x3‖2 + 2γ3〈(I2 − PC2 (I2 − λ2B2))x2,

A∗
3
(

I3 − PC3 (I3 − λ3B3)
)

x3〉)
≤ ‖x1 − w1‖2 + 2γ2〈w2 − PC2 (I2 − λ2B2) x2 + PC2 (I2 − λ2B2) x2 − x2, (8)

(I2 − PC2 (I2 − λ2B2))x2〉+ 2γ2γ3〈w3 − PC3 (I3 − λ3B3) x3 + PC3 (I3 − λ3B3) x3 − x3,(
I3 − PC3 (I3 − λ3B3)

)
x3〉+ γ2

2 L(‖(I2 − PC2 (I2 − λ2B2))x2‖2

+γ2
3 L‖

(
I3 − PC3 (I3 − λ3B3)

)
x3‖2

+γ3‖(I2 − PC2 (I2 − λ2B2))x2‖2 + γ3‖A∗
3
(

I3 − PC3 (I3 − λ3B3)
)

x3‖2)

≤ ‖x1 − w1‖2 + 2γ2(
1
2
‖(I2 − PC2 (I2 − λ2B2))x2‖2 − ‖(I2 − PC2 (I2 − λ2B2))x2‖2)

+2γ2γ3(
1
2
‖
(

I3 − PC3 (I3 − λ3B3)
)

x3‖2 − ‖
(

I3 − PC3 (I3 − λ3B3)
)

x3‖2)

+γ2
2 L(‖((I2 − PC2 (I2 − λ2B2))x2‖2 + γ2

3 L‖
(

I3 − PC3 (I3 − λ3B3)
)

x3)‖2

+γ3‖(I2 − PC2 (I2 − λ2B2))x2‖2 + γ3L‖
(

I3 − PC3 (I3 − λ3B3)
)

x3)‖2)

= ‖x1 − w1‖2 − γ2(1 − γ2L(1 + γ3))‖(I2 − PC2 (I2 − λ2B2))x2‖2

−γ2γ3(1 − γ2L2(1 + γ3))‖
(

I3 − PC3 (I3 − λ3B3)
)

x3)‖2.

By applying above equation and Lemma 2, we have

x2 ∈ F
(

PC2 (I − λ2B2)
)
= Var(C2, B2) and x3 ∈ F

(
PC3 (I − λ3B3)

)
= Var(C3, B3). (9)

From determining the definitions of x and (9), we have

x1 ∈ F
(

PC1 (I − λ1B1)
)
= Var(C1, B1).

Hence x ∈ Ω.

Lemma 6. Let C be a nonempty closed convex subset of Hilbert space H. Let ϑ : C → C be a nonspreading
mapping and  : C → C be κ-pseudo-nonspreding mapping with F(ϑ) ∩ F() �= ∅. Then F(PC(I − γ(a (I − ϑ) +

(1 − a) (I − )))) = F(ϑ) ∩ F() for all a ∈ (0, 1) and γ > 0. Moreover, if γ < 1 − κ, then

‖I − γ (a (I − ϑ) + (1 − a) (I − ))) x − �∗‖ ≤ ‖�∗ − x‖ ,
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for all x ∈ C and �∗ ∈ F() ∩ F(ϑ).

Proof. Let �0 ∈ F() ∩ F(ϑ), we have

PC(I − γ(a (I − ϑ) + (1 + a) (I − )))�0 = �0.

It follows that �0 ∈ F(PC(I − γ(a (I − ϑ) + (1 + a) (I − )))). Therefore

F(ϑ) ∩ F() ⊆ F(PC(I − γ(a (I − ϑ) + (1 + a) (I − ))))

Let �0 ∈ F(PC(I − γ(a (I − ϑ) + (1 + a) (I − )))) and �∗ ∈ F(ϑ) ∩ F(). From Lemma 2, we have

〈y − �0, a (I − ϑ)�0 + (1 − a) (I − )�0〉 ≥ 0,

for all y ∈ C.
From determining the definition of , we have

‖�0 − �∗‖2 + κ ‖(I − )�0‖2 ≥ ‖�0 − �∗‖2

= ‖(I − )�0 − (�0 − �∗)‖2

= ‖(I − )�0‖2 − 2〈(I − )�0, �0 − �∗〉+ ‖�0 − �∗‖2
(10)

From the result of the calculation from the inequality (10), we get

〈(I − )�0, �0 − �∗〉 ≥
(

1 − κ

2

)
‖(I − )�0‖2 (11)

Assume that �0 �= ϑ�0; then we have ‖(I − ϑ)�0‖ > 0. Using the same method as (11) and
definitions of ϑ, we get

〈(I − ϑ)�0, �0 − �∗〉 ≥ 1
2
‖(I − ϑ)�0‖2 (12)

From (11) and a ∈ (0, 1), we obtain

〈�∗ − �0, a (I − ϑ)�0〉 = 〈�∗ − �0, a (I − ϑ)�0 + (1 − a) (I − )�0〉
− (1 − a) 〈�∗ − �0, (I − )�0〉

≥ (1 − a) 〈�0 − �∗, (I − )�0〉.
(13)

From (13), we have

〈�∗ − �0, (I − ϑ)�0〉 ≥ 0.

From above and (12), we have

0 ≤ 〈�∗ − �0, (I − ϑ)�0〉 ≤ −1
2
‖(I − ϑ)�0‖2 .

Thus, ‖(I − ϑ)�0‖ ≤ 0. This is a contradiction.

Thus, we have �0 = ϑ�0 and it implies that

�0 ∈ F(ϑ). (14)

95



Axioms 2020, 9, 103

Similarly, by using the same technique as (14), we have

�0 ∈ F(). (15)

From (14) and (15), we have

F(PC(I − γ(a(I − ϑ) + (1 + a)(I − )))) ⊆ F() ∩ F(ϑ).

Let �∗ ∈ F() ∩ F(ϑ) and x ∈ C; we have

‖(I − γ (a (I − ϑ) + (1 − a) (I − ))) x − �∗‖2 = ‖(I − γ (a (I − ϑ) + (1 − a) (I − ))) x

−(I − γ (a (I − ϑ) + (1 − a) (I − )))�∗‖2

= ‖x − �∗ − γ(a((I − ϑ)x − (I − ϑ)�∗)

+(1 − a)((I − )x − (I − )�∗))‖2

= ‖x − �∗‖2 − 2γ〈a((I − ϑ)x − (I − ϑ)�∗)

+(1 − a)((I − )x − (I − )�∗), x − �∗〉
+γ2‖a((I − ϑ)x − (I − ϑ)�∗)

+(1 − a)((I − )x − (I − )�∗)‖2

≤ ‖x − �∗‖2 − 2γa〈(I − ϑ)x − (I − ϑ)�∗, x − �∗〉
−2γ(1 − a)〈(I − )x − (I − )�∗, x − �∗〉
+γ2a‖(I − ϑ)x − (I − ϑ)�∗‖2

+(1 − a)γ2‖(I − )x − (I − )�∗‖2

≤ ‖x − �∗‖2 − 2γa
‖(I − T)x‖2

2

−2γ(1 − a)(1 − κ)
‖(I − )x‖2

2
+γ2a‖(I − ϑ)x‖2 + (1 − a)γ2‖(I − )x‖2

≤ ‖x − �∗‖2.

2. The Split Various Variational Inequality Theorem

Theorem 7. For every i = 1, 2, 3, let Ci be a closed convex subset of a real Hilbert space Hi. Let Bi : Ci → Hi be
βi-inverse strongly monotonic mappings with η = mini=1,2,3 {βi} and let A2 : H1 → H2, A3 : H2 → H3 be a
bounded linear operator with the adjoint operator A∗

2 and A∗
3 , respectively. Assume that x1 ∈ H1, x2 = A2x1, x3 =

A3x2 and Ω �= ∅. Let ϑ,  : C → C be nonspreading and κ-strictly pseudo-nonspreading mappings, respectively.
Assume that Ω ∩ F(ϑ) ∩ F() �= ∅ and let the sequence {xn} generated by u, x1 ∈ C, and

xn+1 = αnu + βnxn + γnPC1 (I1 − λn (a (I1 − ϑ) + (1 − a) (I1 − ))) xn

+δnPC1(I1 − λ1B1)(x1
n − γ2 A∗

2((I2 − PC2(I − λ2B2))x2
n + γ3 A∗

3(I3 − PC3(I − λ3B3))x3
n)),

for all n ≥ 1 and a ∈ (0, 1), Ii : Hi → Hi are identity mappings, for all i = 1, 2, 3,
where {αn} , {βn} , {γn} , {δn} ⊆ [0, 1] and αn + βn + γn + δn = 1 and xn = x1

n, x2
n = A2x1

n, x3
n = A3x2

n,
for all n ∈ N, 0 < λi < 2η, for all i = 1, 2, 3 and γj > 0, for all j = 2, 3. Suppose that the conditions (i)–(v)
are true;
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(i) limn+→∞ αn = 0, ∑+∞
n=1 αn = +∞;

(ii) γ2 (1 + γ3) ≤ 1
L

, where L = max
{

LA1 , LA2

}
≤ 1 where LA1 LA2 are spectral radius of

A2 A∗
2, A3 A∗

3 , respectively;
(iii) 0 < a ≤ βn, γn, δn ≤ b < 1, for some a, b > 0, for all n ∈ N;
(iv) ∑+∞

n=1 λn < +∞ and 0 < λn < 1 − κ, for all n ∈ N;
(v) ∑+∞

n=1 |αn+i − αn| , ∑+∞
n=1 |βn+i − βn| , ∑+∞

n=1 |γn+1 − γn| < +∞.

Then the sequence {xn} converges strongly to z0 = PΩ∩F(ϑ)∩F()u.

Proof. Put M = a (I − ϑ) + (1 − a) (I − ) and un = PC1(I − λ1B1)(x1
n − γ2 A∗

2((I2 − PC2(I − λ2B2))x2
n +

γ3 A∗
3(I3 − PC3(I − λnB3))x3

n)). Thus, we can rewrite xn as follows:

xn+1 = αnu + βnxn + γnPC1 (I − λn M) xn + δnun, (16)

for all n ≥ 1.
From determining the definition of un put wn =

(
I2 − PC2 (I − λ2B2)

)
x2

n +

γ3 A∗
3
(

I3 − PC3 (I − λ3B3)
)

x3
n and zn =

(
I3 − PC3 (I − λ3B3)

)
x3

n, we have

un = PC1 (I1 − λ1B1) (xn − γ2 A∗
2wn).

For every n ∈ N, we have

‖un − un−1‖2 ≤ ‖xn − γ2 A∗
2wn − xn−1 + γ2 A∗

2wn−1‖2

= ‖xn − xn−1 − γ2 A∗
2 (wn − wn−1)‖2

= ‖xn − xn−1‖2 − 2γ2〈A2xn − A2xn−1, wn − wn−1〉+ γ2
2‖A∗

2(wn − wn−1)‖2

= ‖xn − xn−1‖2 − 2γ2〈x2
n − x2

n−1, (I2 − PC2 (I − λ2B2))x2
n

+γ3 A∗
3zn −

(
I2 − PC2 (I − λ2B2)

)
x2

n−1 − γ3 A∗
3zn−1〉

+γ2
2 ‖A∗

2 (wn − wn−1)‖2

= ‖xn − xn−1‖2 + 2γ2〈x2
n−1 − x2

n, (I2 − PC2 (I − λ2B2))x2
n

−
(

I2 − PC2 (I − λ2B2)
)

x2
n−1〉+ 2γ2γ3〈x3

n−1 − x3
n, zn

−zn−1〉+ γ2
2 ‖A∗

2 (wn − wn−1)‖2

≤ ‖xn − xn−1‖2 + 2γ2〈x2
n−1 − x2

n, (I2 − PC2 (I − λ2B2))x2
n

−
(

I2 − PC2 (I − λ2B2)
)

x2
n−1〉+ 2γ2γ3〈x3

n−1 − x3
n, zn − zn−1〉

+γ2
2L
∥∥∥(I2 − PC2 (I2 − λ2B2))x2

n − (I2 − PC2 (I2 − λ2B2))x2
n−1 + γ3 A∗

3(zn − zn−1

∥∥∥2

≤ ‖xn − xn−1‖2 + 2γ2〈x2
n−1 − x2

n, (I2 − PC2 (I − λ2B2))x2
n

−
(

I2 − PC2 (I − λ2B2)
)

x2
n−1〉+ 2γ2γ3〈x3

n−1 − x3
n, zn − zn−1〉

+γ2
2L(‖(I2 − PC2(I − λ2B2))x2

n − (I2 − PC2(I − λ2B2))x2
n−1‖2

+γ2
3L‖zn − zn−1‖2 + 2γ3〈(I2 − PC2(I − λ2B2))x2

n

−(I2 − PC2(I − λ2B2))x2
n−1, A∗(zn − zn−1)〉)
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≤‖xn − xn−1‖2 + 2γ2〈x2
n−1 − x2

n, (I2 − PC2 (I − λ2B2))x2
n −

(
I2 − PC2 (I − λ2B2)

)
x2

n−1〉
+ 2γ2γ3〈x3

n−1 − x3
n, (I3 − PC3 (I − λ3B3))x3

n −
(

I3 − PC3 (I − λ3B3)
)

x3
n−1〉

+ γ2
2L(‖(I2 − PC2(I − λ2B2))x2

n − (I2 − PC2(I − λ2B2))x2
n−1‖2 + γ2

3L‖zn − zn−1‖2

+ γ3‖(I2 − PC2(I − λ2B2))x2
n − (I2 − PC2(I − λ2B2))x2

n−1‖2 + γ3L‖zn − zn−1‖2)

≤‖xn − xn−1‖2 + 2γ2(−
∥∥∥(I2 − PC2 (I − λ2B2)

)
x2

n −
(

I2 − PC2 (I − λ2B2)
)

x2
n−1

∥∥∥2

+
1
2

∥∥∥(I2 − PC2 (I − λ2B2)
)

x2
n −

(
I2 − PC2 (I − λ2B2)

)
x2

n−1

∥∥∥2
)

+ 2γ2γ3(−‖zn − zn−1‖2 +
1
2
‖zn − zn−1‖2)

+ γ2
2L(‖(I2 − PC2(I − λ2B2))x2

n − (I2 − PC2(I − λ2B2))x2
n−1‖2 + γ2

3L‖zn − zn−1‖2

+ γ3‖(I2 − PC2(I − λ2B2))x2
n − (I2 − PC2(I − λ2B2))x2

n−1‖2 + γ3L‖zn − zn−1‖)

= ‖xn − xn−1‖2 − γ2

∥∥∥(I2 − PC2 (I − λ2B2)
)

x2
n −

(
I2 − PC2 (I − λ2B2)

)
x2

n−1

∥∥∥2

− γ2γ3 ‖zn − zn−1‖2 + γ2
2L‖(I2 − PC2(I − λ2B2))x2

n − (I2 − PC2(I − λ2B2))x2
n−1‖2

+ γ2
2γ2

3L2‖zn − zn−1‖2 + γ2
2γ3L‖(I2 − PC2(I − λ2B2))x2

n − (I2 − PC2(I − λ2B2))x2
n−1‖2

+ γ2
2γ3L2‖zn − zn−1‖

= ‖xn − xn−1‖2 − γ2(1 − γ2L (1 + γ3))‖
(

I2 − PC2 (I − λ2B2)
)

x2
n

−
(

I2 − PC2 (I − λ2B2)
)

x2
n−1‖2 − γ2γ3(1 − γ2L2 (1 + γ3)) ‖zn − zn−1‖2

≤‖xn − xn−1‖2 .

(17)

Let �∗ ∈ Ω ∩ F() ∩ F(ϑ). From Lemma 6 and utilization of (8), we have

‖xn+1 − �∗‖ ≤ αn ‖u − �∗‖+ βn ‖xn − �∗‖+ γn
∥∥PC1 (I − λn M) xn − �∗∥∥

+δn ‖un − �∗‖
≤ αn ‖u − �∗‖+ (1 − αn) ‖xn − �∗‖
≤ M̃,

(18)

where M̃ = max{‖u − �∗‖ , ‖x1 − �∗‖}. By induction we can conclude that the sequence {xn} is
bounded and so are {un} and {PC1 (I − λn M) xn}.
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From determining the definition of xn and (17), we have

‖xn+1 − xn‖ = ‖αnu + βnxn + γnPC1 (I − λn M) xn + δnun

−αn−1u − βn−1xn−1 − γn−1PC1 (I − λn−1M) xn−1 − δn−1un−1‖
≤ |αn − αn−1| ‖u‖+ βn ‖xn − xn−1‖+ |βn − βn−1| ‖xn−1‖+ δn ‖un − un−1‖

+ |δn − δn−1| ‖un−1‖+ γn
∥∥PC1 (I − λn M) xn − PC1 (I − λn−1M) xn−1

∥∥
+ |γn − γn−1|

∥∥PC1 (I1 − λn−1M) xn−1
∥∥

≤ |αn − αn−1| ‖u‖+ βn ‖xn − xn−1‖+ |βn − βn−1| ‖xn−1‖+ δn ‖un − un−1‖
+ |δn − δn−1| ‖un−1‖+ γn ‖xn − xn−1‖+ ‖λn−1Mxn−1 − λn Mxn‖
+ |γn − γn−1|

∥∥PC1 (I1 − λn−1M) xn−1
∥∥

≤ |αn − αn−1| ‖u‖+ βn ‖xn − xn−1‖+ |βn − βn−1| ‖xn−1‖+ δn ‖xn − xn−1‖
+ |δn − δn−1| ‖un−1‖+ γn ‖xn − xn−1‖+ λn−1‖Mxn−1‖+ λn‖Mxn‖
+ |γn − γn−1|

∥∥PC1 (I1 − λn−1M) xn−1
∥∥

= (1 − αn) ‖xn − xn−1‖+ |αn − αn−1| ‖u‖+ |βn − βn−1| ‖xn−1‖
+ |δn − δn−1| ‖un−1‖+ λn−1‖Mxn−1‖+ λn‖Mxn‖
+ |γn − γn−1|

∥∥PC1 (I1 − λn−1M) xn−1
∥∥ .

From the conditions (i), (iv), (v) and Lemma 3, we have

lim
n→+∞

‖xn+1 − xn‖ = 0 (19)

Applying (8) and the definition of xn, we have

‖xn+1 − �∗‖2 ≤ αn ‖u − �∗‖2 + βn ‖xn − �∗‖2 + γn
∥∥PC1 (I − λn M) xn − �∗∥∥2

+δn ‖un − �∗‖2 − γnβn
∥∥PC1 (I − λn M) xn − xn

∥∥2 − δnβn ‖un − xn‖2

≤ αn ‖u − �∗‖2 + ‖xn − �∗‖2 − γnβn ‖PC1 (I − λn M) xn − xn‖2

−δnβn ‖un − xn‖2 ,

which implies that

γnβn
∥∥PC1 (I − λn M) xn − xn

∥∥2
+ δnβn ‖un − xn‖2 ≤ (‖xn+1 − �∗‖+ ‖xn − �∗‖)‖xn+1 − xn‖

+αn ‖u − �∗‖2 .

From the conditions (i), (iii) and (19) we can conclude the following results

lim
n→+∞

‖un − xn‖ = lim
n→+∞

‖PC1 (I − λn M) xn − xn‖ = 0. (20)

Next, we show that

lim sup
n→+∞

〈u − z0, z0 − xn〉 ≤ 0, (21)
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where z0 = PΩ∩F()∩F(ϑ)u. In order to prove this we may assume that

lim sup
n→+∞

〈u − z0, xn − z0〉 = lim
k→+∞

〈u − z0, xnk − z0〉, (22)

where {xnk} is a subsequence of {xn}. Since {xn} is bounded, we may assume that xnk ⇀ q as k → +∞.
Assume that q /∈ F() ∩ F(ϑ). From Lemma 6, we have q /∈ F

(
PC1

(
I − λnk M

))
. By using properties of

Opial’s condition and (20), we have

lim inf
k→+∞

∥∥xnk − q
∥∥ < lim inf

k→+∞

∥∥xnk − PC1

(
I − λnk M

)
q
∥∥

≤ lim inf
k→+∞

(‖xnk − PC1

(
I − λnk M

)
xnk‖

+‖PC1

(
I − λnk M

)
xnk − PC1

(
I − λnk M

)
q‖)

≤ lim inf
k→+∞

(‖xnk − q‖+ λnk‖Mxnk − Mq‖)

≤ lim inf
k→+∞

∥∥xnk − q
∥∥ .

This is a contradiction. Therefore q ∈ F() ∩ F(ϑ).
Assume q /∈ Ω. From Lemma 5, we have

q �= PC1 (I − λ1B1) (q − γ2 A∗
2((I2 − PC2(I − λ2B2))A2q + γ3 A∗

3(I3 − PC3(I − λ3B3))A3 A2q)).

By using properties of Opial,s condition, and the definitions of un and (20), we have

lim inf
k→+∞

‖xnk − q‖ < lim inf
k→+∞

‖xnk − PC1 (I − λ1B1) (q − γ2 A∗
2((I2 − PC2(I − λ2B2))A2q

+γ3 A∗
3(I3 − PC3(I − λ3B3))A3 A2q))‖

≤ lim inf
k→+∞

(‖xnk − unk‖

+‖unk − PC1 (I − λ1B1) (q − γ2 A∗
2((I2 − PC2(I − λ2B2))A2q

+γ3 A∗
3(I3 − PC3(I − λ3B3))A3 A2q))‖)

≤ lim inf
k→+∞

‖xnk − q‖.

This is a contradiction. Then q ∈ Ω. Therefore q ∈ Ω ∩ F() ∩ F(ϑ).
From (22) and the well-known properties of metric projection, we have

lim sup
n→+∞

〈u − z0, xn − z0〉 ≤ 0.

From determining the definition of xn, we can conclude that

‖xn+1 − z0‖2 ≤ (1 − αn) ‖xn − z0‖2 + 2αn〈u − z0, xn+1 − z0〉,

where z0 = PΩ∩F()∩F(ϑ)u. From Lemma 4, we can conclude that the sequence {xn} converses strongly to
z0 = PΩ∩F()∩F(ϑ)u.

The following results were obtained directly from the main theorem.
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Corollary 8. For every i = 1, 2, 3, let Ci be a closed convex subset of a real Hilbert space Hi. Let Bi : Ci → Hi be
βi-inverse strongly monotonic mappings with η = mini=1,2,3 {βi} and let A2 : H1 → H2, A3 : H2 → lH3 be a
bounded linear operator with the adjoint operator A∗

2 and A∗
3 , respectively. Assume that x1 ∈ H1, x2 = A2x1, x3 =

A3x2 and Ω �= ∅. Let ϑ,  : C → C be nonspreading mappings, respectively. Assume that Ω ∩ F(ϑ) ∩ F() �= ∅
and let the sequence {xn} generated by u, x1 ∈ C, and

xn+1 = αnu + βnxn + γnPC1 (I1 − λn (a (I1 − ϑ) + (1 − a) (I1 − ))) xn

+δnPC1(I1 − λ1B1)(x1
n − γ2 A∗

2((I2 − PC2(I − λ2B2))x2
n + γ3 A∗

3(I3 − PC3(I − λ3B3))x3
n)),

for all n ≥ 1 and a ∈ (0, 1), Ii : Hi → Hi are identity mappings, for all i = 1, 2, 3,
where {αn} , {βn} , {γn} , {δn} ⊆ [0, 1] and αn + βn + γn + δn = 1 and xn = x1

n, x2
n = A2x1

n, x3
n = A3x2

n,
for all n ∈ N, 0 < λi < 2η, for all i = 1, 2, 3 and γj > 0, for all j = 2, 3. Suppose that the conditions (i) to (v) are true;

(i) limn→+∞ αn = 0, ∑+∞
n=1 αn = +∞;

(ii) γ2 (1 + γ3) ≤
1
L

, where L = max
{

LA1 , LA2

}
≤ 1, where LA1 , LA2 are spectral radius of A2 A∗

2, A3 A∗
3 ,

respectively;
(iii) 0 < a ≤ βn, γn, δn ≤ b < 1, for some a, b > 0, for all n ∈ N;
(iv) ∑+∞

n=1 λn < +∞ and 0 < λn < 1 − κ, for all n ∈ N;
(v) ∑+∞

n=1 |αn+i − αn| , ∑+∞
n=1 |βn+i − βn| , ∑+∞

n=1 |γn+1 − γn| < +∞.

Then the sequence {xn} converses strongly to z0 = PΩ∩F(ϑ)∩F()u.

3. Application

We have applied the problem (7) for the various fixed point problems in three Hilbert spaces as follows:
For every i = 1, 2, 3, let Hi be a real Hilbert space and Ci be a nonempty closed convex subset of Hi.

Let ϑi : Ci → Ci be a mapping, for all i = 1, 2, 3 and let A2 : H1 → H2 and A3 : H2 → H3. The fixed points
problem in three Hilbert spaces is meant to find the point⎧⎪⎪⎨⎪⎪⎩

�∗
1 ∈ C1, such that �∗

1 ∈ F (ϑ1) and

�∗
2 = A2�∗

1 ∈ C2, such that �∗
2 ∈ F (ϑ2) and

�∗
3 = A3�∗

2 ∈ C3, such that �∗
3 ∈ F (ϑ3) .

(23)

The set of the solutions of (23) is denoted by Ω =
{

�∗ =
(
�∗

1 , �∗
2 , �∗

3
)
∈ C1 × C2 × C3 : �∗

i ∈ F(ϑi) ,
for all i = 1, 2, 3}. It is clear that Var(C, I − T) = F(ϑ), where ϑ : C → C is a nonexpansive mapping with
F(ϑ) �= ∅. By leveraging Lemma 5 and such knowledge, we have the following results:

Lemma 9. For every i = 1, 2, 3, let Hi be a real Hilbert spaces and Ci be a nonempty closed convex subset of Hi.
Let ϑi : Ci → Ci be nonexpansive mappings and let A2 : H1 → H2, A3 : H2 → H3 be a bounded linear operator
with the adjoint operator A∗

2 and A∗
3 , respectively. Assume that x1 ∈ C1, A2x1 = x2, A3x2 = x3 and Ω �= ∅.

The following are equivalent:

(i) x ∈ Ω, where x = (x1, x2, x3) ∈ C1 × C2 × C3.
(ii) x1 = PC1 (I1 − λ1(I1 − ϑ1)) (x1 − γ2 A∗

2((I2 − PC2 (I2 − λ2(I2 − ϑ2)))x2

+γ3 A∗
3
(

I3 − PC3 (I − λ3(I3 − ϑ3))
)

x3)),

where Ii : Hi → Hi is an identity mapping, for all i = 1, 2, 3, γ2(1 + γ3) ≤
1
L

, L = max{L1, L2} ≤ 1 which

L1, L2 are spectral radii of A2 A∗
2 and A3 A∗

3 , respectively, λi ∈ (0, 1) , for all i = 1, 2, 3 and γ2, γ3 ≥ 0
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Proof. Given F (ϑi) = Var (C, Ii − ϑi) for all i = 1, 2, 3; (Ii − ϑi)—a
1
2

-inverse strongly monotonic; and
Lemma 5, we can summarize the result of Lemma 9.

As the direct benefits of Lemma 9, we get Corollary 10.

Corollary 10. For every i = 1, 2, 3, let Ci be a closed convex subset of a real Hilbert space Hi. Let ϑi : Ci → Ci be a
nonexpansive mapping and let A2 : H1 → H2, A3 : H2 → H3 be a bounded linear operator with the adjoint operator
A∗

2 and A∗
3 , respectively. Assume that x1 ∈ H1, x2 = A2x1, x3 = A3x2. Let ϑ,  : C → C be nonspreading and

κ-strictly pseudo-nonspreading mappings, respectively. Assume that Ω ∩ F (ϑ) ∩ F () �= ∅ and let the sequence
{xn} generated by u, x1 ∈ C, and

xn+1 = αnu + βnxn + γnPC1 (I1 − λn (a (I1 − ϑ) + (1 − a) (I1 − ))) xn

+δnPC1(I1 − λ1(I1 − ϑ1))(x1
n − γ2 A∗

2((I2 − PC2(I − λ2(I2 − ϑ2)))x2
n

+γ3 A∗
3(I3 − PC3(I − λ3(I3 − ϑ3)))x3

n)),

for all n ≥ 1 and a ∈ (0, 1), Ii : Hi → Hi is an identity mapping, for all i = 1, 2, 3,
where {αn} , {βn} , {γn} , {δn} ⊆ [0, 1] and αn + βn + γn + δn = 1 and xn = x1

n, x2
n = A2x1

n, x3
n = A3x2

n,
for all n ∈ N, 0 < λi < 1, for all i = 1, 2, 3 and γj > 0, for all j = 2, 3. Suppose that the conditions (i) to (v)
are true;

(i) limn→+∞ αn = 0, ∑+∞
n=1 αn = +∞;

(ii) γ2 (1 + γ3) ≤ 1
L

, where L = max
{

LA1 , LA2

}
≤ 1, where LA1 , LA2 are spectral radii of

A2 A∗
2, A3 A∗

3 , respectively;
(iii) 0 < a ≤ βn, γn, δn ≤ b < 1, for some a, b > 0, for all n ∈ N;
(iv) ∑+∞

n=1 λn < +∞ and 0 < λn < 1 − κ, for all n ∈ N;
(v) ∑+∞

n=1 |αn+i − αn| , ∑+∞
n=1 |βn+i − βn| , ∑+∞

n=1 |γn+1 − γn| < +∞.

Then the sequence {xn} converses strongly to z0 = PΩ∩F(T)∩F(S)u.

4. Conclusions

We have proposed a new split variational inequality in three Hilbert spaces. The convergence theorem
for finding a common element of the set of solutions of such problems and the sets of fixed-points of
discontinuous mappings are proved.
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Abstract: A plethora of applications from mathematical programming, such as minimax, and mathematical
programming, penalization, fixed point to mention a few can be framed as equilibrium problems.
Most of the techniques for solving such problems involve iterative methods that is why, in this paper,
we introduced a new extragradient-like method to solve equilibrium problems in real Hilbert spaces
with a Lipschitz-type condition on a bifunction. The advantage of a method is a variable stepsize
formula that is updated on each iteration based on the previous iterations. The method also operates
without the previous information of the Lipschitz-type constants. The weak convergence of the
method is established by taking mild conditions on a bifunction. For application, fixed-point theorems
that involve strict pseudocontraction and results for pseudomonotone variational inequalities are
studied. We have reported various numerical results to show the numerical behaviour of the proposed
method and correlate it with existing ones.

Keywords: convex optimization; pseudomonotone bifunction; equilibrium problems; variational
inequality problems; weak convergence; fixed point problems

1. Introduction

For a nonempty, closed and convex subset K of a real Hilbert space E and f : E × E → R is
a bifunction with f (p1, p1) = 0, for each p1 ∈ K. A equilibrium problem [1,2] for f on the set K is
defined in the following way:

Find ℘∗ ∈ K such that f (℘∗, p1) ≥ 0, ∀p1 ∈ K. (1)

The problem (1) is very general, it includes many problems, such as fixed point problems,
variational inequalities problems, the optimization problems, the Nash equilibrium of non-cooperative
games, the complementarity problems, the saddle point problems, and the vector optimization problem
(for further details see [1,3,4]). The equilibrium problem is also considered as the famous Ky Fan
inequality [2]. This above-defined particular format of an equilibrium problem (1) is initiated by
Muu and Oettli [5] in 1992 and further investigation on its theoretical properties studied by Blum and

Axioms 2020, 9, 101; doi:10.3390/axioms9030101 www.mdpi.com/journal/axioms105
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Oettli [1]. The construction of new optimization-based methods and the modification and extension of
existing methods, as well as the examination of their convergence analysis, is an important research
direction in equilibrium problem theory. Many methods have been developed over the last few years
to numerically solve the equilibrium problems in both finite and infinite dimensional Hilbert spaces,
i.e., the extragradient algorithms [6–14] subgradient algorithms [15–21] inertial methods [22–25],
and others in [26–34].

In particular, a proximal method [35] is an efficient way to solve equilibrium problems that are
equivalent to solving minimization problems on each step. This approach is also considered as the
two-step extragradient-like method in [6], because of the early contribution of the Korpelevich [36]
extragradient method to solve the saddle point problems. More precisely, Tran et al. introduced a
method in [6], in which an iterative sequence {un+1} was generated in the following manner:⎧⎪⎪⎨⎪⎪⎩

un ∈ K,
vn = arg min{ξ f (un, y) + 1

2‖un − y‖2 : y ∈ K},

un+1 = arg min{ξ f (vn, y) + 1
2‖un − y‖2 : y ∈ K},

where 0 < ξ < min
{ 1

2k1
, 1

2k2

}
and k1, k2 are Lipschitz constants. Moreover, arg min

y∈K
f (x) is the

value of x in set K for which f (x) attains it’s minimum. The iterative sequence generated from the
above-described method provides a weak convergent iterative sequence and in order to operate it,
previous knowledge of the Lipschitz-like constants are required. These Lipschitz-type constants are
normally unknown or hard to evaluate. In order to overcome this situation, Hieu et al. [12] introduced
an extension of the method in [37] to solve the problems of equilibrium in the following manner:
let [t]+ := max{t, 0} and choose u0 ∈ K, μ ∈ (0, 1) with ξ0 > 0, such that⎧⎨⎩

vn = arg min{ξn f (un, y) + 1
2‖un − y‖2 : y ∈ K},

un+1 = arg min{ξn f (vn, y) + 1
2‖un − y‖2 : y ∈ K},

where the stepsize sequence {ξn} is updated in the following way:

ξn+1 = min
{

ξn,
μ(‖un − vn‖2 + ‖un+1 − vn‖2)

2[ f (un, un+1)− f (un, vn)− f (vn, un+1)]+

}
.

Recently, Vinh and Muu proposed an inertial iterative algorithm in [38] to solve a pseudomonotone
equilibrium problem. The key contribution is an inertial factor in the method that used to enhance
the convergence speed of the iterative sequence. The iterative sequence {un} was defined in the
following manner:

(i) Choose u−1, u0 ∈ K, θ ∈ [0, 1), 0 < ξ < min{ 1
2k1

, 1
2k2

} where a sequence {ρn} ⊂ [0,+∞) is
satisfies the following conditions:

+∞

∑
n=0

ρn < +∞. (2)

(ii) Choose θn satisfying 0 ≤ θn ≤ θ̄n and

θ̄n =

⎧⎨⎩min
{

θ, ρn
‖un−un−1‖

}
if un �= un−1,

θ else.
(3)
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(iii) Compute ⎧⎪⎪⎨⎪⎪⎩
n = un + θn(un − un−1),
vn = arg min{ξ f (n, y) + 1

2‖n − y‖2 : y ∈ K},

un+1 = arg min{ξ f (vn, y) + 1
2‖n − y‖2 : y ∈ K}.

Recently, another efficient inertial algorithm proposed by Hieu et al. in [39] as follows:
let un−1, un, vn ∈ K, θ ∈ [0, 1), 0 < ξ ≤ 1

2k2+8k1
and the sequence {un} was defined in the

following manner: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n = un + θ(un − un−1),
un+1 = arg min{ξ f (vn, y) + 1

2‖n − y‖2 : y ∈ K},

n+1 = un+1 + θ(un+1 − un),
vn+1 = arg min{ξ f (vn, y) + 1

2‖n+1 − y‖2 : y ∈ K}.

In this article, we concentrates on projection methods that are normally well-established and easy
to execute due to their efficient numerical computation. Motivated by the works of [12,38], we formulate
an inertial explicit subgradient extragradient method to solve the pseudomonotone equilibrium
problem. These results can be seen as the modification of the methods appeared in [6,12,38,39].
Under certain mild conditions, a weak convergence theorem is proved regarding the iterative sequence
of the algorithm. Moreover, experimental studies have documented that the designed method tends to
be more efficient when compared to the existing methods that are presented in [38,39].

The remainder of the paper has been arranged, as follows: Section 2 contains the elementary
results used in this paper. Section 3 contains our main algorithm and proves their convergence.
Sections 4 and 5 incorporate the applications of our main results. Section 6 carries out the numerical
results that prove the computational effectiveness of our suggested method.

2. Preliminaries

Assume that h : K → R be a convex function on a nonempty, closed and convex subset K of a
real Hilbert space E and subdifferential of a function h at p1 ∈ K is defined by

∂h(p1) = {p3 ∈ E : h(p2)− h(p1) ≥ 〈p3, p2 − p1〉, ∀p2 ∈ K}.

Assume that K be a nonempty, closed and convex subset of a real Hilbert space E and Normal
cone of K at p1 ∈ K is defined by

NK(p1) = {p3 ∈ E : 〈p3, p2 − p1〉 ≤ 0, ∀p2 ∈ K}.

A metric projection PK(p1) for p1 ∈ E onto a closed and convex subset K of E is defined by

PK(p1) = arg min{‖p2 − p1‖ : p2 ∈ K}.

Now, consider the following definitions of monotonicity a bifunction (see for details [1,40]).
Assume that f : E × E → R on K for γ > 0 is said to be

(1) γ-strongly monotone if

f (p1, p2) + f (p2, p1) ≤ −γ‖p1 − p2‖2, ∀p1, p2 ∈ K;

(2) monotone if
f (p1, p2) + f (p2, p1) ≤ 0, ∀p1, p2 ∈ K;
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(3) γ-strongly pseudomonotone if

f (p1, p2) ≥ 0 =⇒ f (p2, p1) ≤ −γ‖p1 − p2‖2, ∀p1, p2 ∈ K;

(4) pseudomonotone if
f (p1, p2) ≥ 0 =⇒ f (p2, p1) ≤ 0, ∀p1, p2 ∈ K.

We have the following implications from the above definitions:

(1) =⇒ (2) =⇒ (4) and (1) =⇒ (3) =⇒ (4).

In general, the converses are not true. Suppose that f : E × E → R satisfy the Lipschitz-type
condition [41] on a set K if there exist two constants k1, k2 > 0, such that

f (p1, p2) + f (p2, p3) + k1‖p1 − p2‖2 + k2‖p2 − p3‖2 ≥ f (p1, p3), ∀p1, p2, p3 ∈ K.

Lemma 1 ([42]). Suppose K be a nonempty, closed and convex subset of E and PK : E → K is metric projection
from E onto K.

(i) Let p1 ∈ K and p2 ∈ E , we have

‖p1 − PK(p2)‖2 + ‖PK(p2)− p2‖2 ≤ ‖p1 − p2‖2.

(ii) p3 = PK(p1) if and only if
〈p1 − p3, p2 − p3〉 ≤ 0, ∀p2 ∈ K.

(iii) For any p2 ∈ K and p1 ∈ E
‖p1 − PK(p1)‖ ≤ ‖p1 − p2‖.

Lemma 2 ([43,44]). Assume that h : K → R be a convex, lower semicontinuous and subdifferentiable function
on K, where K is a nonempty, convex and closed subset of a Hilbert space E . Subsequently, p1 ∈ K is minimizer
of a function h if and only if 0 ∈ ∂h(p1) + NK(p1), where ∂h(p1) and NK(p1) denotes the subdifferential of h
at p1 ∈ K and the normal cone of K at p1, respectively.

Lemma 3 ([45]). Let {un} be a sequence in E and K ⊂ E , such that the following conditions are satisfied:

(i) for every u ∈ K, the limn→∞ ‖un − u‖ exists;
(ii) each sequentially weak cluster limit point of the sequence {un} belongs to K.

Then, {un} weakly converge to some element in K.

Lemma 4 ([46]). Let {qn} and {pn} be sequences of non-negative real numbers satisfying qn+1 ≤ qn + pn,
for each n ∈ N . If ∑ pn < ∞, then limn→∞ qn exists.

Lemma 5 ([47]). For every p1, p2 ∈ E and ζ ∈ R, then

‖ζ p1 + (1 − ζ)p2‖2 = ζ‖p1‖2 + (1 − ζ)‖p2‖2 − ζ(1 − ζ)‖p1 − p2‖2.

Suppose that bifunction f satisfies the following conditions:

(f1) f is pseudomonotone on K and f (p2, p2) = 0, for every p2 ∈ K;
(f2) f satisfies the Lipschitz-type condition on E with constants k1 > 0 and k2 > 0;
(f3) lim sup

n→∞
f (pn, v) ≤ f (p∗, v) for every v ∈ K and {pn} ⊂ K satisfying pn ⇀ p∗;

(f4) f (p1, .) needs to be convex and subdifferentiable on E for all p1 ∈ E .
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3. The Modified Extragradient Algorithm for the Problem (1) and Its Convergence Analysis

We provide a method consisting of two strongly convex minimization problems with an inertial
term and an explicit stepsize formula that are being used to enhance the convergence rate of the
iterative sequence and to make the algorithm independent of the Lipschitz constants. For the sake of
simplicity in the presentation, we will use the notation [t]+ = max{0, t} and follow the conventions
0
0 = +∞ and a

0 = +∞ (a �= 0). The detailed method is provided below (Algorithm 1):

Algorithm 1 (Modified Extragradient Algorithm for the Problem (1))

Initialization: Choose u−1, u0 ∈ K, μ ∈ (0, 1), βn ∈ (0, 1], θ ∈ [0, 1) and {ρn} ⊂ [0,+∞) satisfying

+∞

∑
n=0

ρn < +∞. (4)

Iterative steps: Choose θn satisfying 0 ≤ θn ≤ θ̄n and

θ̄n =

{
min

{
θ, ρn

‖un−un−1‖

}
if un �= un−1,

θ else.
(5)

Step 1: Compute

vn = arg min
y∈K

{ξn f (n, y) +
1
2
‖n − y‖2},

where n = un + θn(un − un−1). If n = vn; STOP. Else, go to next step.
Step 2: Compute un+1 = (1 − βn)n + βnzn, where

zn = arg min
y∈K

{ξn f (vn, y) +
1
2
‖n − y‖2}.

Step 3: Update the stepsize in the following manner:

ξn+1 = min
{

ξn,
μ‖n − vn‖2 + μ‖zn − vn‖2

2[ f (n, zn)− f (n, vn)− f (vn, zn)]+

}
.

Put n := n + 1 and return to Iterative steps.

Lemma 6. The sequence {ξn} is monotonically decreasing with a lower bound min
{ μ

2 max{k1,k2} , ξ0
}

and it
converges to ξ > 0.

Proof. From the definition of sequence {ξn} implies that sequence {ξn} decreasing monotonically. It is
given that f satisfy the Lipschitz-type condition with k1 and k2. Let f (n, zn)− f (n, vn)− f (vn, zn) > 0,
such that

μ(‖n − vn‖2 + ‖zn − vn‖2)

2[ f (n, zn)− f (n, vn)− f (vn, zn)]
≥ μ(‖n − vn‖2 + ‖zn − vn‖2)

2[k1‖n − vn‖2 + k2‖zn − vn‖2]

≥ μ

2 max{k1, k2}
. (6)

The above implies that {ξn} has a lower bound min
{ μ

2 max{k1,k2} , ξ0
}

. Moreover, there exists a
fixed real number ξ > 0, such that limn→∞ ξn = ξ.
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Remark 1. Because of the summability of
+∞

∑
n=0

ρn and the expression (5) implies that

∞

∑
n=1

θn‖un − un−1‖ ≤
∞

∑
n=1

θ̄n‖un − un−1‖ ≤
∞

∑
n=1

θ‖un − un−1‖ < ∞, (7)

that implies
lim

n→∞
θ‖un − un−1‖ = 0. (8)

Lemma 7. Suppose that f : E × E → R be a bifunction satisfies the conditions (f1)–(f4). For each
℘∗ ∈ EP( f ,K) �= ∅, we have

‖zn − ℘∗‖2 ≤ ‖n − ℘∗‖2 −
(

1 − μξn

ξn+1

)
‖n − vn‖2 −

(
1 − μξn

ξn+1

)
‖zn − vn‖2.

Proof. From the value of zn, we have

0 ∈ ∂2

{
ξn f (vn, y) +

1
2
‖n − y‖2

}
(zn) + NK(zn).

For some ω ∈ ∂ f (vn, zn), there exists ω ∈ NK(zn), such that

ξnω + zn − n + ω = 0.

The above expression implies that

〈n − zn, y − zn〉 = ξn〈ω, y − zn〉+ 〈ω, y − zn〉, ∀y ∈ K.

For given ω ∈ NK(zn), imply that 〈ω, y − zn〉 ≤ 0, ∀ y ∈ K. It provides that

〈n − zn, y − zn〉 ≤ ξn〈ω, y − zn〉, ∀y ∈ K. (9)

From ω ∈ ∂ f (vn, zn), we have

f (vn, y)− f (vn, zn) ≥ 〈ω, y − zn〉, ∀y ∈ E . (10)

Combining expressions (9) and (10) we obtain

ξn f (vn, y)− ξn f (vn, zn) ≥ 〈n − zn, y − zn〉, ∀y ∈ K. (11)

By substituting y = ℘∗ in (11), gives that

ξn f (vn,℘∗)− ξn f (vn, zn) ≥ 〈n − zn,℘∗ − zn〉. (12)

Because f (℘∗, vn) ≥ 0, then f (vn,℘∗) ≤ 0, provides that

〈n − zn, zn − ℘∗〉 ≥ ξn f (vn, zn). (13)

From the formula of ξn+1, we obtain

f (n, zn)− f (n, vn)− f (vn, zn) ≤
μ‖n − vn‖2 + μ‖zn − vn‖2

2ξn+1
(14)
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From the expressions (13) and (14), we have

〈n − zn, zn − ℘∗〉 ≥ ξn{ f (n, zn)− f (n, vn)}

− μξn

2ξn+1
‖n − vn‖2 − μξn

2ξn+1
‖zn − vn‖2.

(15)

Similar to expression (11), the value of vn gives that

ξn f (n, y)− ξn f (n, vn) ≥ 〈n − vn, y − vn〉, ∀y ∈ K. (16)

By substituting y = zn in the above expression, we have

ξn
{

f (n, zn)− f (n, vn)
}
≥ 〈n − vn, zn − vn〉. (17)

Combining the expressions (15) and (17), we obtain

〈n − zn, zn − ℘∗〉 ≥ 〈n − vn, zn − vn〉

− μξn

2ξn+1
‖n − vn‖2 − μξn

2ξn+1
‖zn − vn‖2.

(18)

We have the given formulas:

−2〈n − zn, zn − ℘∗〉 = −‖n − ℘∗‖2 + ‖zn − n‖2 + ‖zn − ℘∗‖2.

2〈vn − n, vn − zn〉 = ‖n − vn‖2 + ‖zn − vn‖2 − ‖n − zn‖2.

The above expressions with (18), we have

‖zn − ℘∗‖2 ≤ ‖n − ℘∗‖2 −
(

1 − μξn

ξn+1

)
‖n − vn‖2 −

(
1 − μξn

ξn+1

)
‖zn − vn‖2.

Theorem 1. Assume that f : E × E → R be a bifunction satisfies the conditions (f1)–(f4) and ℘∗ belongs to
solution set EP( f ,K). Subsequently, the sequences {n}, {vn}, {zn} and {un} generated through Algorithm 1
weakly converges to ℘∗. In addition, limn→∞ PEP( f , K)(un) = ℘∗.

Proof. By value of un+1 through Lemma 5, we obtain

‖un+1 − ℘∗‖2 = ‖(1 − βn)n + βnzn − ℘∗‖2

= ‖(1 − βn)(n − ℘∗) + βn(zn − ℘∗)‖2

= (1 − βn)‖n − ℘∗‖2 + βn‖zn − ℘∗‖2 − βn(1 − βn)‖n − zn‖2

≤ (1 − βn)‖n − ℘∗‖2 + βn‖zn − ℘∗‖2. (19)

By Lemma 7 and expression (19), we obtain

‖un+1 − ℘∗‖2 ≤ ‖n − ℘∗‖2

− βn

(
1 − μξn

ξn+1

)
‖n − vn‖2 − βn

(
1 − μξn

ξn+1

)
‖zn − vn‖2. (20)

Because ξn → ξ, then there exists a fixed number ε ∈ (0, 1 − μ), such that

lim
n→∞

(
1 − μξn

ξn+1

)
= 1 − μ > ε > 0.
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Subsequently, there exist a fixed real number N1 ∈ N such that(
1 − μξn

ξn+1

)
> ε > 0, ∀n ≥ N1. (21)

Combining the expressions (20) and (21), we obtain

‖un+1 − ℘∗‖2 ≤ ‖n − ℘∗‖2, ∀n ≥ N1. (22)

By definition of the n, we have

‖n − ℘∗‖ = ‖un + θn(un − un−1)− ℘∗‖ ≤ ‖un − ℘∗‖+ θn‖un − un−1‖. (23)

From the definition of n in Algorithm 1, we obtain

‖n − ℘∗‖2 = ‖un + θn(un − un−1)− ℘∗‖2

= ‖(1 + θn)(un − ℘∗)− θn(un−1 − ℘∗)‖2

= (1 + θn)‖un − ℘∗‖2 − θn‖un−1 − ℘∗‖2 + θn(1 + θn)‖un − un−1‖2 (24)

≤ (1 + θn)‖un − ℘∗‖2 − θn‖un−1 − ℘∗‖2 + 2θ‖un − un−1‖2. (25)

The expression (22) can also be written as

‖un+1 − ℘∗‖ ≤ ‖un − ℘∗‖+ θ‖un − un−1‖, ∀n ≥ N1. (26)

By using Lemma 4 with expressions (7) and (26), we have

lim
n→∞

‖un − ℘∗‖ = l, for some finite l ≥ 0. (27)

The equality (8) implies that

lim
n→∞

‖un − un−1‖ = 0. (28)

By letting n → ∞ in (24) implies that

lim
n→∞

‖n − ℘∗‖ = l. (29)

From the expression (20) and (25), we have

‖un+1 − ℘∗‖2

≤ (1 + θn)‖un − ℘∗‖2 − θn‖un−1 − ℘∗‖2 + 2θ‖un − un−1‖2

− βn

(
1 − μξn

ξn+1

)
‖n − vn‖2 − βn

(
1 − μξn

ξn+1

)
‖zn − vn‖2, (30)

which further implies that (for n ≥ N1)

εβ‖n − vn‖2 + εβ‖vn − zn‖2

≤ ‖un − ℘∗‖2 − ‖un+1 − ℘∗‖2 + θn
(
‖un − ℘∗‖2 − ‖un−1 − ℘∗‖2)+ 2θ‖un − un−1‖2. (31)

By letting n → ∞ in (31), we obtain

lim
n→∞

‖n − vn‖ = lim
n→∞

‖vn − zn‖ = 0. (32)
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By using the Cauchy inequality and expression (32), we obtain

lim
n→∞

‖n − zn‖ ≤ lim
n→∞

‖n − vn‖+ lim
n→∞

‖zn − vn‖ = 0. (33)

The expressions (29) and (32) imply that

lim
n→∞

‖vn − ℘∗‖ = lim
n→∞

‖zn − ℘∗‖ = l. (34)

It follows from the expressions (27), (29) and (34) that the sequences {n}, {un}, {vn} and {zn}
are bounded. Now, we need to use Lemma 3, for this it is compulsory to show that any weak sequential
limit points of {un} lies in the set EP( f ,K). Consider z to be a weak limit point of {un} i.e., there is a
{unk} of {un} that is weakly converges to z. Because ‖un − vn‖ → 0, then {vnk} also weakly converge
to z and so z ∈ K. Now, it is renaming to show that z ∈ EP( f ,K). From relation (11), due to ξn+1 and
(17), we have

ξnk f (vnk , y) ≥ ξnk f (vnk , znk ) + 〈nk − znk , y − znk 〉

≥ ξnk f (nk , znk )− ξnk f (nk , vnk )−
μξnk

2ξnk+1
‖nk − vnk‖2

− μξnk

2ξnk+1
‖vnk − znk‖2 + 〈nk − znk , y − znk 〉

≥ 〈nk − vnk , znk − vnk 〉 −
μξnk

2ξnk+1
‖nk − vnk‖2

− μξnk

2ξnk+1
‖vnk − znk‖2 + 〈nk − znk , y − znk 〉, (35)

where y ∈ K. It follows from (28), (32), (33) and the boundedness of {un} right hand side tend to
zero. Due to ξnk > 0, condition (f3) and vnk ⇀ z, implies

0 ≤ lim sup
k→∞

f (vnk , y) ≤ f (z, y), ∀y ∈ K. (36)

Because z ∈ K imply that f (z, y) ≥ 0, ∀y ∈ K. It is prove that z ∈ EP( f ,K). By Lemma 3,
provides that {n}, {vn}, {zn} and {un} weakly converges to ℘∗ as n → ∞.

Finally, to prove that limn→∞ PEP( f , K)(un) = ℘∗. Let qn := PEP( f , K)(un), ∀n ∈ N . For any
℘∗ ∈ EP( f ,K), we have

‖qn‖ ≤ ‖qn − un‖+ ‖un‖ ≤ ‖℘∗ − un‖+ ‖un‖. (37)

Clearly, the above implies that sequence {qn} is bounded. Next, we need to show that {qn} is a
Cauchy sequence. By using Lemma 1(iii) and (23), we have

‖un+1 − qn+1‖ ≤ ‖un+1 − qn‖ ≤ ‖un − qn‖+ θ‖un − un−1‖, ∀n ≥ N1. (38)

Thus, Lemma 4 provides the existence of limn→∞ ‖un − qn‖. Next, take (23) ∀ m > n ≥ N1,
we have

‖qn − um‖ ≤ ‖qn − um−1‖+ θ‖un − un−1‖

≤ · · · ≤ ‖qn − un‖+ θ
m−1

∑
k=n

‖un − un−1‖.
(39)
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Suppose that qm, qn ∈ EP( f ,K) for m > n ≥ N1, through Lemma 1(i) and (39), we have

‖qn − qm‖2

≤ ‖qn − um‖2 − ‖qm − um‖2

≤ ‖qn − un‖2 +
(
θ

m−1

∑
k=n

‖un − un−1‖
)2

+ 2θ‖qn − un‖
m−1

∑
k=n

‖un − un−1‖ − ‖qm − um‖2.

(40)

The existence of limn→∞ ‖un − qn‖ and the summability of the series ∑n ‖un − un−1‖ < +∞,
imply limn→∞ ‖qn − qm‖ = 0, ∀ m > n. As a result, {qn} is a Cauchy sequence and due the closeness
of the set EP( f ,K) the sequence {qn} strongly converges to q∗ ∈ EP( f ,K). Next, remaining to show
that q∗ = ℘∗. From Lemma 1(ii) and ℘∗, q∗ ∈ EP( f ,K), we have

〈un − qn,℘∗ − qn〉 ≤ 0. (41)

Because of qn → q∗ and un ⇀ ℘∗, we obtain

〈℘∗ − q∗,℘∗ − q∗〉 ≤ 0,

implies that ℘∗ = q∗ = limn→∞ PEP( f ,K)(un).

4. Applications to Solve Fixed Point Problems

Now, consider the applications of our results that are discussed in Section 3 to solve fixed-point
problems involving κ-strict pseudo-contraction. Let T : K → K be a mapping and the fixed point
problem is formulated in the following manner:

Find ℘∗ ∈ K such as T(℘∗) = ℘∗.

Let a mapping T : K → K is said to be

(i) sequentially weakly continuous on K if

T(pn) ⇀ T(p) for every sequence in K satisfying pn ⇀ p (weakly converges);

(ii) κ-strict pseudo-contraction [48] on K if

‖Tp1 − Tp2‖2 ≤ ‖p1 − p2‖2 + κ‖(p1 − Tp1)− (p2 − Tp2)‖2, ∀p1, p2 ∈ K; (42)

that is equivalent to

〈
Tp1 − Tp2, p1 − p2

〉
≤ ‖p1 − p2‖2 − 1 − κ

2
‖(p1 − Tp1)− (p2 − Tp2)‖2, ∀p1, p2 ∈ K. (43)
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Note: if we define f (p1, p2) = 〈p1 − Tp1, p2 − p1〉, ∀p1, p2 ∈ K. Then, the problem (1) convert
into the fixed point problem with 2k1 = 2k2 = 3−2κ

1−κ . The value of vn in Algorithm 1 convert
into followings:

vn = arg min
y∈K

{ξn f (n, y) +
1
2
‖n − y‖2}

= arg min
y∈K

{ξn〈n − T(n), y − n〉+
1
2
‖n − y‖2}

= arg min
y∈K

{ξn〈n − T(n), y − n〉+
1
2
‖n − y‖2 +

ξ2
n

2
‖n − T(n)‖2 − ξ2

n
2
‖n − T(n)‖2}

= arg min
y∈K

{1
2
‖y − n + ξn(n − T(n))‖2}

= PK
[
n − ξn(n − T(n))

]
= PK

[
(1 − ξn)n + ξnT(n)

]
. (44)

In the similar way to the expression (44), we obtain

zn = PK
[
n − ξn(vn − T(vn))

]
. (45)

As a consequence of the results in Section 3, we have the following fixed point theorem:

Corollary 1. Assume that T : K → K to be a weakly continuous and κ-strict pseudocontraction with
Fix(T) �= ∅. The sequences n, vn, zn and un be generated in the following way:

(i) Choose u−1, u0 ∈ K, μ ∈ (0, 1), βn ∈ (0, 1], θ ∈ [0, 1) and {ρn} ⊂ [0,+∞) satisfies the
following condition:

+∞

∑
n=0

ρn < +∞. (46)

(ii) Choose θn satisfies 0 ≤ θn ≤ θ̄n, such that

θ̄n =

⎧⎨⎩min
{

θ, ρn
‖un−un−1‖

}
if un �= un−1,

θ else.
(47)

(iii) Compute un+1 = (1 − βn)n + βnzn, where⎧⎪⎪⎨⎪⎪⎩
n = un + θn(un − un−1),

vn = PK
[
n − ξn(n − T(n))

]
,

zn = PK
[
n − ξn(vn − T(vn))

]
.

(48)

(iv) Revised the stepsize ξn+1 in the following way:

ξn+1 = min

{
ξn,

μ‖n − vn‖2 + μ‖zn − vn‖2

2
[〈
(n − vn)− (T(n)− T(vn)), zn − vn

〉]
+

}

Subsequently, {n}, {vn}, {zn} and {un} be the sequences converges weakly to ℘∗ ∈ Fix(T).
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5. Application to Solve Variational Inequality Problems

Now, consider the applications of our results that are discussed in Section 3 in order to solve
variational inequality problems involving pseudomonotone and Lipschitz-type continuous operator.
Let a operator L : K → K and the variational inequality problem is formulated as follows:

Find ℘∗ ∈ K such that
〈

L(℘∗), y − ℘∗〉 ≥ 0, ∀y ∈ K.

A mapping L : E → E is said to be

(i) L-Lipschitz continuous on K if

‖L(p1)− L(p2)‖ ≤ L‖p1 − p2‖, ∀p1, p2 ∈ K;

(ii) monotone on K if
〈L(p1)− L(p2), p1 − p2〉 ≥ 0, ∀p1, p2 ∈ K;

(iii) pseudomonotone on K if〈
L(p1), p2 − p1

〉
≥ 0 =⇒

〈
L(p2), p1 − p2

〉
≤ 0, ∀p1, p2 ∈ K.

Note: let f (p1, p2) :=
〈

L(p1), p2 − p1
〉
, ∀p1, p2 ∈ K. Thus, problem (1) translates into the problem

(VIP) with L = 2k1 = 2k2. From the value of vn, we have

vn = arg min
y∈K

{
ξn f (n, y) +

1
2
‖n − y‖2

}
= arg min

y∈K

{
ξn〈L(n), y − n〉+

1
2
‖n − y‖2 +

ξ2
n

2
‖L(n)‖2 − ξ2

n
2
‖L(n)‖2

}
= arg min

y∈K

{1
2
‖y − (n − ξnL(n))‖2

}
= PK[n − ξnL(n)]. (49)

In similar way to the expression (49), we obtain

zn = PK[n − ξnL(vn)].

Suppose that a mapping L satisfies the following conditions:

(L1) L is monotone on K with VI(L,K) �= ∅;
(L2) L is L-Lipschitz continuous on K with L > 0;
(L3) L is pseudomonotone on K with VI(L,K) �= ∅; and,
(L4) lim sup

n→∞
〈L(pn), p − pn〉 ≤ 〈L(p), y − p〉, ∀y ∈ K and {pn} ⊂ K satisfying pn ⇀ p.

Next, let L to be monotone and (L4) can be removed. The condition (L4) is used to defined
f (u, v) = 〈L(u), v − u〉 and satisfy the conditions (L4). The condition (f3) is required to show
z ∈ EP( f ,K) see (36). The condition (L4) is required to show z ∈ VI(L,K). Further, to show that
z ∈ VI(L,K). By letting the monotonicity of operator L, we have

〈L(y), y − vn〉 ≥ 〈L(vn), y − vn〉, ∀y ∈ K. (50)

By letting f (u, v) = 〈L(u), v − u〉 with expression (35), implies that

lim sup
k→∞

〈L(vnk ), y − vnk 〉 ≥ 0, ∀y ∈ K. (51)
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Combining (50) with (51), we deduce that

lim sup
k→∞

〈L(y), y − vnk 〉 ≥ 0, ∀y ∈ K. (52)

Therefore, vnk ⇀ z ∈ K, provides 〈L(y), y − z〉 ≥ 0, ∀ y ∈ K. Let vt = (1 − t)z + ty, ∀ t ∈ [0, 1].
Since vt ∈ K for t ∈ (0, 1), we have

0 ≤ 〈L(vt), vt − z〉 = t〈L(vt), y − z〉. (53)

That is 〈L(vt), y − z〉 ≥ 0 every t ∈ (0, 1). Due to vt → z, while t → 0, we have 〈L(z), y − z〉 ≥ 0,
for all y ∈ K, consequently z ∈ VI(L,K).

Corollary 2. Let L : K → E be a mapping and satisfying the conditions (L1)–(L2). Assume that the sequences
{n}, {vn}, {zn} and {un} generated in the following manner:

(i) Choose u−1, u0 ∈ K, μ ∈ (0, 1), βn ∈ (0, 1], θ ∈ [0, 1) and {ρn} ⊂ [0,+∞), such that

+∞

∑
n=0

ρn < +∞. (54)

(ii) Let θn satisfies 0 ≤ θn ≤ θ̄n and

θ̄n =

⎧⎨⎩min
{

θ, ρn
‖un−un−1‖

}
if un �= un−1,

θ otherwise.
(55)

(iii) Compute un+1 = (1 − βn)n + βnzn, where⎧⎪⎪⎨⎪⎪⎩
n = un + θn(un − un−1),

vn = PK[n − ξnL(n)],

zn = PK[n − ξnL(vn)].

(56)

(iv) Stepsize ξn+1 is revised in the following way:

ξn+1 = min

{
ξn,

μ‖n − vn‖2 + μ‖zn − vn‖2

2
[〈

L(n)− L(vn), zn − vn
〉]

+

}

Subsequently, the sequences {n}, {vn}, {zn} and {zn} converge weakly to ℘∗ ∈ VI(L,K).

Corollary 3. Let L : K → E be a mapping and satisfying the conditions (L2)–(L4). Assume that the sequences
{n}, {vn}, {zn} and {un} generated in the following manner:

(i) Choose u−1, u0 ∈ K, μ ∈ (0, 1), βn ∈ (0, 1], θ ∈ [0, 1) and {ρn} ⊂ [0,+∞), such that

+∞

∑
n=0

ρn < +∞. (57)

(ii) Choose θn satisfying 0 ≤ θn ≤ θ̄n, such that

θ̄n =

⎧⎨⎩min
{

θ, ρn
‖un−un−1‖

}
if un �= un−1,

θ else.
(58)
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(iii) Compute un+1 = (1 − βn)n + βnzn, where⎧⎪⎪⎨⎪⎪⎩
n = un + θn(un − un−1),

vn = PK[n − ξnL(n)],

zn = PK[n − ξnL(vn)].

(59)

(iv) The stepsize ξn+1 is updated in the following way:

ξn+1 = min

{
ξn,

μ‖n − vn‖2 + μ‖zn − vn‖2

2
[〈

L(n)− L(vn), zn − vn
〉]

+

}

Subsequently, the sequences {n}, {vn}, {zn} and {zn} converge weakly to ℘∗ ∈ VI(L,K).

6. Numerical Experiments

The computational results present this section to prove the effectiveness of Algorithm 1 when
compared to Algorithm 3.1 in [39] and Algorithm 1 in [38].

(i) For Algorithm 3.1 (Alg3.1) in [39]:

ξ =
1

10 max {k1, k2}
, θ =

1
2

, Error term (Dn) = max{‖un+1 − vn‖2, ‖un+1 − n‖2}.

(ii) For Algorithm 1 (Alg1) in [38]:

ξ =
1

4 max {k1, k2}
, θ =

1
2

, ρn =
1
n2 , Error term (Dn) = ‖n − vn‖2.

(iii) For Algorithm 1 (mAlg1):

ξ =
1
2

, θ =
1
2

, μ =
1
3

, ρn =
1
n2 , βn =

8
10

, Error term (Dn) = ‖n − vn‖2.

Example 1. Let take the Nash–Cournot Equilibrium Model that found in the paper [6]. A bifunction f consider
into the following form:

f (p1, p2) = 〈Pp1 + Qp2 + q, p2 − p1〉,

where q ∈ Rm with matrices P, Q of order m and Lipschitz constants are k1 = k2 = 1
2‖P − Q‖ (see for more

details [6]). In our case, P, Q are taken at random (choose diagonal matrices A1 and A2 randomly entries from
[0, 2] and [−2, 0], respectively. Two random orthogonal matrices B1 and B2 provide positive semidefinite matrix
M1 = B1 A1BT

1 and negative semidefinite matrix M2 = B2 A2BT
2 . Finally, set Q = M1 + MT

1 , S = M2 + MT
2

and P = Q − S.) and elements of q are taken arbitrary form [−1, 1]. A set K ⊂ Rm is taken as

K := {u ∈ Rm : −10 ≤ ui ≤ 10}.

Tables 1 and 2 and Figures 1–8 presented the numerical results by taking u−1 = u0 = v0 = (1, · · · , 1)
and Dn ≤ 10−9.
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Figure 1. Example 1: numerical behaviour of Algorithm 1 by letting different options for ξ0, while m = 10.

Figure 2. Example 1: numerical behaviour of Algorithm 1 by letting different options for ξ0, while m = 20.
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Figure 3. Example 1: numerical behaviour of Algorithm 1 by letting different options for ξ0 while
m = 50.

Figure 4. Example 1: numerical behaviour of Algorithm 1 by letting different options for ξ0 while
m = 100.
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Table 1. Example 1: Algorithm 1 numerical behaviour by letting different options for ξ0 and m.

m = 10 m = 20 m = 50 m = 100

ξ0 iter. time iter. time iter. time iter. time

1.00 20 0.1701 25 0.2153 29 0.2726 40 0.5570
0.80 23 0.1945 27 0.2326 31 0.2788 47 0.5469
0.60 25 0.1995 30 0.2634 35 0.3285 52 0.6228
0.40 29 0.1467 33 0.2979 39 0.3549 55 0.6542
0.20 30 0.2632 35 0.2868 42 0.3849 57 0.6662

Figure 5. Example 1: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38] while m = 60.

Figure 6. Example 1: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38] while m = 120.
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Figure 7. Example 1: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38] while m = 200.

Figure 8. Example 1: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38] while m = 300.

Table 2. Example 1: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38].

Number of Iterations Execution Time in Seconds

m Alg3.1 Alg1 mAlg1 Alg3.1 Alg1 mAlg1

60 50 38 28 0.4362 0.3352 0.2705
120 57 49 33 0.6888 0.6000 0.4047
200 66 57 39 1.4708 1.0881 0.6794
300 62 55 40 1.6213 1.4251 1.0303

Example 2. Suppose that f : K×K → R be a bifunction defined in the following way

f (p, q) =
5

∑
i=2

(qi − pi)‖p‖, ∀p, q ∈ R5,

where K =
{
(p1, · · · , p5) : p1 ≥ −1, pi ≥ 1, i = 2, · · · , 5

}
. A bifunction f is Lipschitz-type continuous with

constants k1 = k2 = 2 and satisfy the conditions (f1)–(f4). In order to evaluate the best possible value of the
control parameters, a numerical test is performed taking the variation of the inertial factor θ. The numerical
comparison results are shown in the Table 3 by using u−1 = u0 = v0 = (2, 3, 2, 5, 5) and Dn ≤ 10−6.
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Table 3. Example 2: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38].

Number of Iterations Execution Time in Seconds

θ Alg3.1 Alg1 mAlg1 Alg3.1 Alg1 mAlg1

0.90 67 56 47 2.8674 2.5324 1.6734
0.70 63 53 45 2.7813 2.6423 1.5026
0.50 57 47 41 2.0912 2.4212 1.4991
0.30 61 48 44 2.4115 2.3567 1.5092
0.10 69 60 47 2.9229 2.2881 1.5098

Example 3. Let E = L2([0, 1]) be a Hilbert space with an inner product 〈p, q〉 =
∫ 1

0 p(r)q(r)dr, and the

induced norm ‖p‖ =
√∫ 1

0 p2(r)dr, ∀p, q ∈ E . The set K := {p ∈ L2([0, 1]) :
∫ 1

0 rp(r)dr = 2}. Suppose that
f : E × E → R is defined by

f (p, q) = 〈L(p), q − p〉,

where L(p(r)) =
∫ r

0 p(s)ds, for every p ∈ L2([0, 1]) and r ∈ [0, 1]. The projection on set K is computed in the
following way:

PK(p)(r) := p(r)−
∫ 1

0 rp(r)dr − 2∫ 1
0 r2dr

r, r ∈ [0, 1].

Table 4 reports the numerical results by using stopping criterion Dn ≤ 10−6 and letting u−1 = u0 = v0.

Table 4. Example 3: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38].

Number of Iterations Execution time in Seconds

u0 Alg3.1 Alg1 mAlg1 Alg3.1 Alg1 mAlg1

3t 33 28 19 4.7654 3.9782 2.9342
3t2 38 31 20 5.2598 4.1458 3.0987

3sin(t) 41 33 22 5.9876 5.3976 4.4298
3cos(t) 47 39 22 6.9921 5.4765 4.4611

3 exp(t)2 58 43 31 8.4691 5.8329 5.0321

Example 4. Assume that a bifunction f is defined by

f (p, q) = 〈L(p), q − p〉 and L(p) = G(p) + H(p),

where
G(p) =

(
g1(p), g2(p), · · · , gm(p)

)
, H(p) = Ep + c, c = (−1,−1, · · · ,−1),

and
gi(p) = p2

i−1 + p2
i + pi−1 pi + pi pi+1, i = 1, 2, . . . , m, p0 = pm+1 = 0.

Let the matrix E of order m are consider in the following way:

ei,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
4 j = i

1 i − j = 1

−2 i − j = −1

0 otherwise,
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where K =
{
(u1, · · · , um) ∈ Rm : ui ≥ 1, i = 2, · · · , m

}
. Figures 9–13 and Table 5 report the numerical

results by taking u−1 = u0 = v0 = (1, · · · , 1) and Dn ≤ 10−6.

Figure 9. Example 4: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38] while m = 20.

Figure 10. Example 4: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38] while m = 50.

Figure 11. Example 4: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38] while m = 100.
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Figure 12. Example 4: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38] while m = 200.

Figure 13. Example 4: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38] while m = 300.

Table 5. Example 4: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38].

Number of Iterations Execution Time in Seconds

m Alg3.1 Alg1 mAlg1 Alg3.1 Alg1 mAlg1

20 90 64 50 1.0089 0.6923 0.5541
50 98 70 52 1.6089 1.9092 0.8464
100 104 74 58 2.9231 2.1456 1.6970
200 109 79 61 22.5299 17.6267 13.6542
300 112 81 63 52.6776 39.0018 36.6305

Remark 2.

(i) It is also significant that the value of ξ0 is crucial and performs best when it is nearer to 1.
(ii) It is observed that the selection of the value ϑ is often significant and roughly the value ϑ ∈ (3, 6)

performs better than most other values.

7. Conclusions

In this paper, we consider the convergence result for pseudomonotone equilibrium problems that
involve Lipschitz-type continuous bifunction but the Lipschitz-type constants are unknown. We modify
the extragradient methods with an inertial term and new step size formula. Weak convergence theorem
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is proved for sequences generated by the algorithm. Several numerical experiments confirm the
effectiveness of the proposed algorithms.
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Abstract: We propose two new iterative algorithms for solving K-pseudomonotone variational inequality
problems in the framework of real Hilbert spaces. These newly proposed methods are obtained by
combining the viscosity approximation algorithm, the Picard Mann algorithm and the inertial subgradient
extragradient method. We establish some strong convergence theorems for our newly developed
methods under certain restriction. Our results extend and improve several recently announced results.
Furthermore, we give several numerical experiments to show that our proposed algorithms performs
better in comparison with several existing methods.
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1. Introduction

In this paper, the set C denotes a nonempty closed convex subset of a real Hilbert space H. The inner
product of H is denoted by 〈., .〉 and the induced norm by ‖.‖. Suppose A : H → H is an operator.
The variational inequality problem (VIP) for the operator A on C ⊂ H is to find a point x∗ ∈ C such that

〈Ax∗, x− x∗〉 ≥ 0 for each x ∈ C. (1)

In this study, we denote the solution set of (VIP) (1) by Γ. The theory of variational inequalities was
introduced by Stampacchia [1]. It is known that the (VIP) problem arise in various models involving
problems in many fields of study such as mathematics, physics, sciences, social sciences, management
sciences, engineering and so on. The ideas and methods of the variational inequalities have been highly
applied innovatively in diverse areas of sciences and engineering and have proved very effective in solving
certain problems. The theory of (VIP) provides a natural, simple and unified setting for a comprehensive
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treatment of unrelated problems (see, e.g., [2]). Several authors have developed efficient numerical
methods in solving the (VIP) problem. These methods includes the projection methods and its variants (see,
e.g., [3–13]). The fundamental objective involves extending the well-known projected gradient algorithm,
which is useful in solving the minimization problem f (x) subject to x ∈ C. This method is given as follows:

xn+1 = PC(xn − αn 
 f (xn)), n ≥ 0, (2)

where the real sequence {αn} satisfy certain conditions and PC is the well-known metric projection onto
C ⊂ H. The interested reader may consult [14] for convergence analysis of this algorithm for the special
case in which the mapping f : H→ R is convex and differentiable. Equation (2) has been extended to the
(VIP) problem and it is known as the projected gradient method for optimization problems. This is done
by replacing the gradient with the operator A thereby generating a sequence {xn} as follows:

xn+1 = PC(xn − αnAxn), n ≥ 0. (3)

However, the major drawback of this method is the restrictive condition that the operator A is strongly
monotone or inverse strongly monotone (see, e.g., [15]) to guarantee the convergence of this method.
In 1976, Korpelevich [16] removed this strong condition by introducing the extragradient method for
solving saddle point problems. The extragradient method was extended to solving variational inequality
problems in both Hilbert and Euclidean spaces. The only required restriction for the extragradient
algorithm to converge is that the operator A is monotone and L-Lipschitz continuous. The extragradient
method is given as follows:

{
yn = PC(xn − τAxn)

xn+1 = PC(xn − τAyn),
(4)

where τ ∈ (0, 1
L ) and the metric projection from H onto C is denoted by PC. If the solution set of the (VIP)

denoted by Γ is nonempty, then the sequence {xn} generated by iterative algorithm (4) converges weakly to
an element in Γ.

Observe that by using the extragradient method, we need to calculate two projections onto the set
C ⊂ H in every iteration. It is known that the projection onto a closed convex set C ⊂ H has a close
relationship with the minimun distance problem. Let C be a closed and convex set, this method may
require a prohibitive amount of computation time. In view of this drawback, in 2011 Censor et al. [5]
introduced the subgradient extragradient method by modifying iterative algorithm in Equation (4) above.
They replaced the two projections in the extragradient method in Equation (4) onto the set C by only
one projection onto the set C ⊂ H and one onto a half-space. It has been established that the projection
onto a given half-space is easier to calculate. Next, we give the subgradient extragradient method of
Censor et al. [5] as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yn = PC(xn − τAxn)

Tn = {x ∈ H|〈xn − τAxn − yn, x− yn〉 ≤ 0}
xn+1 = PTn(xn − τAyn),

(5)

where τ ∈ (0, 1
L ). Several authors have studied the subgradient extragradient method and obtained some

interesting and applicable results (see, e.g., [11]) and the references therein.
The theory of pseudomonotone operators is very crucial in studies in nonlinear analysis, variational

inequalities and optimization problems (see, e.g., [17–20]). One important class of pseudomonotone
operators was introduced in 1976 by Karamardian [21] and have been utilized in solving problems in
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variational inequalities, optimization and economics (see, e.g., [17,20]). In this paper, we shall call the class
of pseudomonotone in the sense of Karamardian K-pseudomonotone. Yao [20] utilized K-pseudomonotone
in solving some variational inequalities problems in Banach spaces. He established some new existence
results which extend many known results in infinite-dimensional spaces under some weak assumptions.
He also proved some uniqueness results for the complementarity problem with K-pseudomonotone
operators in Banach spaces. It is our purpose in the present paper to introduce two new inertial subgradient
extragradient iterative algorithms for solving K-pseudomonotone variational inequality problems in the
framework of real Hilbert spaces.

The inertial type iterative algorithms are based on a discrete version of a second order dissipative
dynamical system (see, [22,23]). These kind of algorithms can be seen as a process of accelerating the
convergence properties of a given method (see, e.g., [24–26]). Alvarez and Attouch [24] in 2001 used
the inertial method to derive a proximal algorithm for solving the problem of finding zero of a maximal
monotone operator. Their method is given as follows: given xn−1, xn ∈ H and any two parameters
θn ∈ [0, 1), λn > 0, obtain xn+1 ∈ H such that

0 ∈ λnA(xn+1) + xn+1 − xn − θn(xn − xn−1). (6)

This algorithm can be written equivalently as follows:

xn+1 = JA
λn
(xn + θn(xn − xn−1), (7)

where JA
λn

is the resolvent of the operator A with the given parameter λn and the inertial is induced by the
term θn(xn − xn−1).

Several researchers have developed some fast iterative algorithms by using inertial methods. These
methods includes the inertial Douglas–Rachford splitting method (see, e.g., [27]), inertial forward–backward
splitting methods (see, e.g., [28]), inertial ADMM (see, e.g., [29]), inertial proximal–extragradient method
(see, e.g., [30]), inertial forward–backward–forward method (see, e.g., [31]), inertial contraction method
(see, e.g., [32]), inertial Tseng method (see, e.g., [33]) and inertial Mann method (see, e.g., [11]).

Inspired by the results above, we propose two inertial subgradient extragradient methods for finding
a solution of K-pseudomonotone and Lipschitz continuous (VIP). Our first proposed iterative algorithm is
a hybrid of the inertial subgradient extragradient method [11], the viscosity method [34] and the Picard
Mann method [35]. Our second method combines the inertial subgradient extragradient method [11] and
the Picard Mann method [35].

This paper is organized as follows. In Section 2, we give some preliminary definitions of concepts and
results that will be crucial in this study. In Section 3, we present our proposed iterative algorithms and
prove some convergence results for them. In Section 4, we present some numerical experiments to support
the convergence of our proposed iterative algorithms. In Section 5, we give the concluding remarks of
the study.

2. Preliminaries

In this paper, the set C denotes a nonempty closed convex subset of a real Hilbert space H. The inner
product of H is denoted by 〈., .〉 and the induced norm by ‖.‖.

We denote the weak convergence of the sequence {xn} to x by xn ⇀ x as n→∞, we denote the strong
convergence of {xn} to x by xn → x as n→∞.

For each x, y ∈ H and α ∈ R, we recall the following inequalities in Hilbert spaces:

‖αx + (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2. (8)
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‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉. (9)

‖x + y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2. (10)

A mapping A : H→ H is said to be nonexpansive if for each x, y ∈ H, we have

‖Ax−Ay‖ ≤ ‖x− y‖.

For each x ∈ H, we can find a unique nearest point in C ⊂ H, denoted by PCx such that we have

‖x− PCx‖ ≤ ‖x− y‖ (11)

for each y ∈ C. Then PC is known as the metric projection of H onto C ⊂ H. It has been proved that the
mapping PC is nonexpansive.

Lemma 1 ([36]). Suppose that C is a closed convex subset of a real Hilbert space H and for each x ∈ H. Then the
following holds:

(i) ‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉 for all y ∈ H.
(ii) ‖PCx− y‖2 ≤ ‖x− y‖2 − ‖x− PCx‖2 for all y ∈ H.

(iii) Given x ∈ H and z ∈ C. Then we have

z = PCx⇐⇒ 〈x− z, z− y〉 ≥ 0

for all y ∈ C.

For more of the metric projection PC, the interested reader should see Section 3 of [36].
The fixed point problem involves finding the fixed point of an operator A : H→ H. The set of fixed

point of the operator A is denoted by F(A) and we assume that it is nonempty, that is F(A) � ∅. The fixed
point problem (FP) is then formulated as follows:

find x ∈ H such that x = A(x). (12)

In this paper, our problem of interest is to find a point x ∈ H such that

x ∈ Γ ∩ F(A). (13)

Definition 1. Let A : H→ H be a mapping. Then for all x, y ∈ H

(i) A is said to be L-Lipschitz continuous with L > 0 if

‖Ax−Ay‖ ≤ L‖x− y‖. (14)

If L ∈ [0, 1) then A is called a contraction mapping.
(ii) A is said to be monotone if

〈Ax−Ay, x− y〉 ≥ 0. (15)

(iii) The mapping A : H→ H is said to be pseudomonotone in the sense of Karamardian [21] or K-pseudomonotone
for short, if for all x, y ∈ H

〈Ay, x− y〉 ≥ 0 =⇒ 〈Ax, x− y〉 ≥ 0. (16)
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The following lemmas will be needed in this paper.

Lemma 2. ([37]) Suppose {xn} is a real sequence of nonnegative numbers such that there is a subsequence {xnj } of
{xn} such that xnj < xnj+1 for any j ∈ N. Then there is a nondecreasing sequence {mk} of N such that limk→∞mk = ∞
and the following properties are fulfilled: for each (sufficiently large) number k ∈ N,

xmk ≤ xmk+1 , xk ≤ xmk+1 .

In fact, mk is the largest number n in the set {1, 2, · · · , k} such that xn < xn+1.

Lemma 3. ([38]) Let {an} be a sequence of nonnegative real numbers such that

an+1 ≤ (1− αn)an + αnbn

for all n ≥ 0, where {αn} ⊂ (0, 1) and {bn} is a sequence such that

(a)
∑∞

n=0 αn = ∞;
(b) lim supn→∞ bn ≤ 0.

Then limn→∞ an = 0.

3. Main Results

The following condition will be needed in this study.
Condition 3.1

The operator A : H→ H is K-pseudomonotone and L-Lipschitz continuous on the real Hilbert space
H, with the solution set of the (VIP) (1.1) Γ � ∅ and the contraction mapping f : H→ H with the contraction
parameter k ∈ [0, 1). The feasible set C ⊂ H is non-empty, closed and convex.

3.1. The Viscosity Inertial Subgradient Extragradient Algorithm

We propose the following algorithm
Algorithm 3.1

Step 0: Given τ ∈ (0, 1
L ). {αn} ⊂ [0,α) for some α > 0 and {βn} ⊂ (0, 1) satisfying the following conditions:

lim
n→∞ βn = 0,

∞∑
n=1

βn = ∞. (17)

Choose initial x0, x1 ∈ C and set n := 1.
Step 1: Compute

wn = xn + αn(xn − xn−1), (18)

yn = PC(wn − τAwn). (19)

If yn = wn, then stop, yn is a solution to the (VIP) problem . Otherwise, go to Step 2.

Step 2: Construct the half-space

Tn :=
{
z ∈ H : 〈wn − τAwn − yn, z− yn〉 ≤ 0

}
(20)

and compute
zn = PTn(wn − τAyn). (21)
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Step 3: Calculate
hn = (1− βn)zn + βn f (zn), (22)

and compute
xn+1 = f (hn). (23)

Let n := n + 1 and return to Step 1.
Next, we prove the following results which will be useful in this study.

Lemma 4. Let {xn} be a sequence generated by Algorithm 3.1. Then

‖xn+1 − p‖2 ≤ ‖wn − p‖2 − (1− τL)‖yn − xn+1‖2 − (1− τL)‖yn −wn‖2, (24)

for all p ∈ Γ.

Proof. Since p ∈ Γ ⊂ C ⊂ Tn, then by Equation (10) and Lemma 2 (i) we have the following

‖xn+1 − p‖2 = ‖PTn(wn − τAyn) − PTnp‖2
≤ 〈xn+1 − p, wn − τAyn − p〉
= 1

2‖xn+1 − p‖2 + 1
2‖wn − τAyn − p‖2 − 1

2‖xn+1 −wn + τAyn‖2
= 1

2‖xn+1 − p‖2 + 1
2‖wn − p‖2 + 1

2τ
2‖Ayn‖2 − 〈wn − p, τAyn〉 − 1

2‖xn+1 −wn‖2
− 1

2τ
2‖Ayn‖2 − 〈xn+1 −wn, τAyn〉

= 1
2‖xn+1 − p‖2 + 1

2‖wn − p‖2 − 1
2‖xn+1 −wn‖2 − 〈xn+1 − p, τAyn〉.

(25)

Hence, from Equation (25) we obtain

‖xn+1 − p‖2 ≤ ‖wn − p‖2 − ‖xn+1 −wn‖2 − 2〈xn+1 − p, τAyn〉. (26)

Using the condition that A is K-pseudomonotone, we have that 2τ〈Ayn, yn − p〉 ≥ 0. We now add this to
the right hand side of inequality (25) to obtain the following

‖xn+1 − p‖2 ≤ ‖wn − p‖2 − ‖xn+1 −wn‖2 − 2〈xn+1 − p, τAyn〉+ 2τ〈Ayn, yn − p〉
= ‖wn − p‖2 − ‖xn+1 −wn‖2 − 2τ〈xn+1 − p, Ayn〉+ 2τ〈yn − p, Ayn〉
= ‖wn − p‖2 − ‖xn+1 −wn‖2 − 2τ〈xn+1 − yn, Ayn〉 − 2τ〈yn − p, Ayn〉+

2τ〈yn − p, Ayn〉
= ‖wn − p‖2 − ‖xn+1 −wn‖2 − 2τ〈xn+1 − yn, Ayn −Awn〉 − 2τ〈xn+1 − yn, Awn〉
= ‖wn − p‖2 − ‖xn+1 −wn‖2 + 2τ〈yn − xn+1, Ayn −Awn〉+ 2τ〈yn − xn+1, Awn〉.

(27)

Next, we have the following estimates using the condition that A is L-Lipschitz continuous

2τ〈yn − xn+1, Ayn −Awn〉 ≤ 2τ‖yn − xn+1‖‖Ayn −Awn‖
≤ 2τL‖yn − xn+1‖‖yn −wn‖
≤ τL‖yn − xn+1‖2 + τL‖yn −wn‖2.

(28)

Since yn = PTn(wn − τAyn) and xn+1 ∈ Tn, we obtain 〈wn − τAwn − yn, xn+1 − yn〉 ≤ 0. This implies that

2τ〈yn − xn+1, Awn〉 ≤ 2〈yn −wn, xn+1 − yn〉
= ‖xn+1 −wn‖2 − ‖yn −wn‖2 − ‖xn+1 − yn‖2.

(29)
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Using Equations (28) and (29) in Equation (27), we obtain:

‖xn+1 − p‖2 ≤ ‖wn − p‖2 − ‖xn+1 −wn‖2 + τL‖yn − xn+1‖2 + τL‖yn −wn‖2 + ‖xn+1 −wn‖2
−‖yn −wn‖2 − ‖xn+1 − yn‖2

= ‖wn − p‖2 − (1− τL)‖yn − xn+1‖2 − (1− τL)‖yn −wn‖2.
(30)

The proof of Lemma 4 is completed. �

Next, we prove the following results for Algorithm 3.1.

Theorem 1. Assume that the sequence {αn} is chosen such that

lim
n→∞

αn

βn
‖xn − xn−1‖ = 0. (31)

Suppose that {xn} is a sequence generated by our Algorithm 3.1, then {xn} converges strongly to an element p ∈ Γ,
where we have that p = PΓ ◦ f (p).

Proof. Claim I

We need to prove that the sequence {xn} is bounded, for each p = PΓ ◦ f (p). By Lemma 4 we have

‖zn − p‖2 ≤ ‖wn − p‖2 − (1− τL)‖yn − xn+1‖2 − (1− τL)‖yn −wn‖2. (32)

This implies that
‖zn − p‖ ≤ ‖wn − p‖. (33)

Using Equation (18), we have

‖wn − p‖ = ‖xn + αn(xn − xn−1) − p‖
≤ ‖xn − p‖+ αn‖xn − xn−1‖
= ‖xn − p‖+ βn.αn

βn
‖xn − xn−1‖.

(34)

Using the condition that limn→∞ αn
βn
‖xn − xn−1‖ = 0; it follows that there exist a constant �1 ≥ 0 such that

αn

βn
‖xn − xn−1‖ ≤ �1, for each n ≥ 0. (35)

Hence, using Equations (34) and (35) in Equation (33) we obtain

‖zn − p‖ ≤ ‖wn − p‖ ≤ ‖xn − p‖+ βn�1. (36)

Using (23) and the condition that f is a contraction mapping, we have

‖xn+1 − p‖ = ‖ f (hn) − p‖
= ‖ f (hn) − f (p) + f (p) − p‖
≤ ‖ f (hn) − f (p)‖+ ‖ f (p) − p‖
≤ k‖hn − p‖+ ‖ f (p) − p‖.

(37)

By Equation (22), we have
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‖hn − p‖ = ‖(1− βn)zn + βn f (zn) − p‖
≤ (1− βn)‖zn − p‖+ βn‖ f (zn) − p‖
≤ (1− βn)‖zn − p‖+ βn‖ f (zn) − f (p)‖+ βn‖ f (p) − p‖
≤ (1− βn)‖zn − p‖+ βnk‖zn − p‖+ βn‖ f (p) − p‖
= (1− βn(1− k))‖zn − p‖+ βn‖ f (p) − p‖.

(38)

Using Equation (38) in Equation (37), we obtain:

‖xn+1 − p‖ ≤ k[(1− βn(1− k))‖zn − p‖+ βn‖ f (p) − p‖] + ‖ f (p) − p‖
= k(1− βn(1− k))‖zn − p‖+ kβn‖ f (p) − p‖+ ‖ f (p) − p‖
≤ k(1− βn(1− k))‖zn − p‖+ k‖ f (p) − p‖+ ‖ f (p) − p‖
= k(1− βn(1− k))‖zn − p‖+ (1 + k)‖ f (p) − p‖.

(39)

Using Equation (36) in Equation (39), we have

‖xn+1 − p‖ ≤ k(1− βn(1− k))‖xn − p‖+ kβn�1 + (1 + k)‖ f (p) − p‖
≤ k(1− βn(1− k))‖xn − p‖+ k�1 + (1 + k)‖ f (p) − p‖
≤ max{‖xn − p‖, �1 + 2‖ f (p) − p‖}
...
≤ max{‖x0 − p‖, �1 + 2‖ f (p) − p‖}.

(40)

This means that {xn} is bounded. Hence, it follows that {zn}, { f (zn)}, {hn}, { f (hn)} and {wn} are bounded.
Claim II

(1− τL)‖yn −wn‖2 + (1− τL)‖yn − xn+1‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + βn�5, (41)

for some �5 > 0. By Equation (23), we have

‖xn+1 − p‖2 = ‖ f (hn) − p‖2
= ‖ f (hn) − f (p) + f (p) − p‖2
≤ (‖ f (hn) − f (p)‖+ ‖ f (p) − p‖)2

≤ (k‖hn − p‖+ ‖ f (p) − p‖)2

≤ ‖hn − p‖2 + 2‖hn − p‖‖ f (p) − p‖+ ‖ f (p) − p‖2
≤ ‖hn − p‖2 + �2,

(42)

for some �2 > 0. From Equation (22), we have

‖hn − p‖2 = ‖(1− βn)zn + βn f (zn) − p‖2
≤ (1− βn)‖zn − p‖2 + βn‖ f (zn) − p‖2
≤ (1− βn)‖zn − p‖2 + βn(‖ f (zn) − f (p)‖+ ‖ f (p) − p‖)2

≤ (1− βn)‖zn − p‖2 + βn(k‖zn − p‖+ ‖ f (p) − p‖)2

≤ (1− βn)‖zn − p‖2 + 2βn‖zn − p‖‖ f (p) − p‖+ βn‖zn − p‖2 + βn‖ f (p) − p‖2
= ‖zn − p‖2 + βn(2‖zn − p‖‖ f (p) − p‖+ ‖ f (p) − p‖2)
≤ ‖zn − p‖2 + βn�3,

(43)

for some �3 > 0. Using Equation (32) in Equation (43), we obtain

‖hn − p‖2 ≤ ‖wn − p‖2 − (1− τL)‖yn − xn+1‖2 − (1− τL)‖yn −wn‖2 + βn�3. (44)
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From Equation (36), we have
‖wn − p‖ ≤ ‖xn − p‖+ βn�1. (45)

This implies that
‖wn − p‖2 ≤ (‖xn − p‖+ βn�1)2

= ‖xn − p‖2 + βn(2�1‖xn − p‖+ βn�21)≤ ‖xn − p‖2 + βn�4,
(46)

for some �4 > 0. Combining Equations (44) and (46), we have

‖hn − p‖2 ≤ ‖xn − p‖2 + βn�4 − (1− τL)‖yn − xn+1‖2 − (1− τL)‖yn −wn‖2 + βn�3. (47)

Using Equation (47) in Equation (42), we have

‖xn+1 − p‖2 ≤ ‖xn − p‖2 + βn�4 − (1− τL)‖yn − xn+1‖ − (1− τL)‖yn −wn‖2 + βn�3 + βn�2. (48)

This implies that

(1− τL)‖yn −wn‖2 + (1− τL)‖yn − xn+1‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + βn�5, (49)

where �5 := �2 + �3 + �4.
Claim III

‖xn+1 − p‖2 ≤ 2k(1− βn(1− k))‖xn − p‖2+
2βn(1− k)

[
2k

1−k 〈 f (p) − p, xn+1 − p〉+ 3D
1−k .αn

βn
‖xn − xn−1‖+ 1

βn(1−k) ‖ f (p) − p‖2
]
,

(50)

for some D > 0. Using Equations (10) and (18), we have

‖wn − p‖2 = ‖xn + αn(xn − xn−1) − p‖2
= ‖xn − p‖2 + 2αn〈xn − p, xn − xn−1〉+ α2

n‖xn − xn−1‖2
≤ ‖xn − p‖2 + 2αn‖xn − p‖‖xn − xn−1‖+ α2

n‖xn − xn−1‖.
(51)

By Equations (10) and (23), we have

‖xn+1 − p‖2 = ‖ f (hn) − p‖2
= ‖ f (hn) − f (p) + f (p) − p‖2
= ‖ f (hn) − f (p)‖2 + ‖ f (p) − p‖2 + 2〈 f (hn) − f (p), f (p) − p〉
≤ k2‖hn − p‖2 + ‖ f (p) − p‖2 + 2‖ f (hn) − f (p)‖‖ f (p) − p‖
≤ k2‖hn − p‖2 + ‖ f (p) − p‖2 + k2‖hn − p‖2 + ‖ f (p) − p‖2
≤ 2k‖hn − p‖2 + 2‖ f (p) − p‖2.

(52)
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Using Equations (9) and (22), we have

‖hn − p‖2 = ‖βn f (zn) + (1− βn)zn − p‖2
= ‖βn( f (zn) − f (p)) + (1− βn)(zn − p) + βn( f (p) − p)‖2
≤ ‖βn( f (zn) − f (p)) + (1− βn)(zn − p)‖2 + 2βn〈 f (p) − p, xn+1 − p〉
≤ βn‖ f (zn) − f (p)‖2 + (1− βn)‖zn − p‖2 + 2βn〈 f (p) − p, xn+1 − p〉
≤ βnk2‖zn − p‖2 + (1− βn)‖zn − p‖2 + 2βn〈 f (p) − p, xn+1 − p〉
≤ βnk‖zn − p‖2 + (1− βn)‖zn − p‖2 + 2βn〈 f (p) − p, xn+1 − p〉
= (1− βn(1− k))‖zn − p‖2 + 2βn〈 f (p) − p, xn+1 − p〉
≤ (1− βn(1− k))‖wn − p‖2 + 2βn〈 f (p) − p, xn+1 − p〉.

(53)

Using Equation (51) in Equation (53), we have

‖hn − p‖2 ≤ (1− βn(1− k))‖xn − p‖2 + 2αn‖xn − p‖‖xn − xn−1‖+ α2
n‖xn − xn−1‖2 + 2βn〈 f (p) − p, xn+1 − p〉. (54)

Using Equation (54) in Equation (52), we have:

‖xn+1 − p‖2 ≤ 2k(1− βn(1− k))‖xn − p‖2 + 4kαn‖xn − p‖‖xn − xn−1‖+ 2kα2
n‖xn − xn−1‖2

+4kβn〈 f (p) − p, xn+1 − p〉+ 2‖ f (p) − p‖2
= 2k(1− βn(1− k))‖xn − p‖2 + 2kαn‖xn − xn−1‖(2‖xn − p‖+ αn‖xn − xn−1‖)+

2(1− k)
[

2kβn
1−k 〈 f (p) − p, xn+1 − p〉+ 1

1−k‖ f (p) − p‖2
]

≤ 2k(1− βn(1− k))‖xn − p‖2 + 2kαn‖xn − xn−1‖(2‖xn − p‖+ α‖xn − xn−1‖)+
2(1− k)

[
2kβn
1−k 〈 f (p) − p, xn+1 − p〉+ 1

1−k‖ f (p) − p‖2
]

≤ 2k(1− βn(1− k))‖xn − p‖2 + 6Dαn‖xn − xn−1‖+
2(1− k)

[
2kβn
1−k 〈 f (p) − p, xn+1 − p〉+ 1

1−k‖ f (p) − p‖2
]

≤ 2k(1− βn(1− k))‖xn − p‖2+
2βn(1− k)

[
2k

1−k 〈 f (p) − p, xn+1 − p〉+ 3D
1−k .αn

βn
‖xn − xn−1‖+ 1

βn(1−k) ‖ f (p) − p‖2
]
,

(55)

where D := supn∈N{‖xn − p‖,α‖xn − xn−1‖} > 0.
Claim IV

We need to prove that the sequence {‖xn − p‖2} converges to zero by considering two possible cases.
Case I

There exists a number N ∈ N such that ‖xn+1 − p‖2 ≤ ‖xn − p‖2 for each n ≥ N. This implies that
limn→∞ ‖xn − p‖ exists and by Claim II, we have

lim
n→∞‖yn −wn‖ = 0, lim

n→∞‖yn − xn+1‖ = 0. (56)

The fact that the sequence {xn} is bounded implies that there exists a subsequence {xnk } of {xn} that converges
weakly to some z ∈ H such that

lim sup
n→∞

〈 f (p) − p, xn − p〉 = lim
k→∞
〈 f (p) − p, xnk − p〉 = 〈 f (p) − p, z− p〉. (57)

Using Equation (56) and Lemma 3, we get z ∈ Γ. From Equation (57) and the fact that p = PΓ ◦ f (p), we get

lim sup
n→∞

〈 f (p) − p, xn − p〉 = 〈 f (p) − p, z− p〉 ≤ 0. (58)
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Next, we prove that
lim

n→∞‖xn+1 − xn‖ = 0. (59)

Clearly,
‖wn − xn‖ = αn‖xn − xn−1‖ = αn

βn
.βn‖xn − xn−1‖ −→ 0 as n→∞. (60)

Combining Equations (56) and (60) we have

‖xn+1 − xn‖ ≤ ‖xn+1 − yn‖+ ‖yn −wn‖+ ‖wn − xn‖ −→ 0 as n→∞. (61)

Using Equations (58) and (59) we have

lim sup
n→∞

〈 f (p) − p, xn+1 − p〉 ≤ lim sup
n→∞

〈 f (p) − p, xn − p〉 = 〈 f (p) − p, z− p〉 ≤ 0. (62)

Hence by Lemma 3 and Claim III we have limn→∞ ‖xn − p‖ = 0.
Case II

We can find a subsequence {‖xnj − p‖2} of {‖xn − p‖2} satisfying ‖xnj − p‖2 < ‖xnj+1 − p‖2 for each j ∈ N. Hence,
by Lemma 2 it follows that we can find a nondecreasing real sequence {mk} of N satisfying limk→∞mk = ∞
and we get the following inequalities for every k ∈ N:

‖xmk − p‖2 ≤ ‖xmk+1 − p‖2, ‖xk − p‖2 ≤ ‖xmk − p‖2. (63)

By Claim II we get

(1− τL)‖ymk −wmk‖2 + (1− τL)‖ymk − xmk+1‖2 ≤ ‖xmk − p‖2 − ‖xmk+1 − p‖2 + βmk�5 ≤ βmk�5. (64)

Hence, we have
lim
k→∞
‖ymk −wmk‖ = 0, lim

k→∞
‖ymk − xmk+1‖ = 0. (65)

By similar arguments as in the proof of Case I, we have

‖xmk+1 − xmk‖ −→ 0 as k→∞, (66)

and
lim sup

k→∞
〈 f (p) − p, xmk+1 − p〉 ≤ 0. (67)

By Claim III we obtain

‖xmk+1 − p‖2 ≤ 2k(1− βmk(1− k))‖xmk − p‖2+
2βmk(1− k)[ 2k

1 − k 〈 f (p) − p, xmk+1 − p〉+ 3D
1 − k .

αmk
βmk
‖xmk − xmk−1‖+

1
βmk (1 − k) ‖ f (p) − p‖2].

(68)

By Equations (63) and (68) we have:

‖xmk+1 − p‖2 ≤ 2k(1− βmk(1− k))‖xmk − p‖2+
2βmk(1− k)[ 2k

1 − k 〈 f (p) − p, xmk+1 − p〉+ 3D
1 − k .

αmk
βmk
‖xmk − xmk−1‖+

1
βmk (1 − k) ‖ f (p) − p‖2].

(69)
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Hence, we have

‖xmk+1 − p‖2 ≤ 2k
1 − k 〈 f (p) − p, xmk+1 − p〉+ 3D

1 − k .
αmk
βmk
‖xmk − xmk−1‖+ 1

βmk (1 − k) ‖ f (p) − p‖2. (70)

Therefore we obtain:
lim sup

k→∞
‖xmk+1 − p‖ ≤ 0. (71)

Combining Equations (63) and (71) we obtain lim supk→∞ ‖xk − p‖ ≤ 0, this means that xk −→ p. The proof
of Theorem 1 is completed. �

Remark 1. Suantai et al. [39] observed that condition (31) can be easily implemented in numerical results since the
value of ‖xn − xn−1‖ is given before choosing αn. We can choose αn as follows:

αn =

⎧⎪⎪⎨⎪⎪⎩
min
{
α, εn
‖xn−xn−1‖

}
, if xn � xn−1,

α otherwise,

where α ≥ 0 and {εn} is a positive sequence such that εn = o(βn).

3.2. Picard–Mann Hybrid Type Inertial Subgradient Extragradient Algorithm

We propose the following algorithm
Algorithm 3.2

Step 0: Given τ ∈ (0, 1
L ). {αn} ⊂ [0,α) for some α > 0, {λn} ⊂ (a, b) ⊂ (0, 1− βn) and {βn} ⊂ (0, 1) satisfying

the following conditions:

lim
n→∞ βn = 0,

∞∑
n=1

βn = ∞. (72)

Choose initial x0, x1 ∈ C and set n := 1.
Step 1: Compute

wn = xn + αn(xn − xn−1), (73)

yn = PC(wn − τAwn). (74)

If yn = wn, then stop, yn is a solution of the (VIP) problem. Otherwise, go to Step 2.

Step 2: Construct the half-space

Tn :=
{
z ∈ H : 〈wn − τAwn − yn, z− yn〉 ≤ 0

}
(75)

and compute
zn = PTn(wn − τAyn). (76)

Step 3: Calculate
hn = (1− λn − βn)xn + λnzn, (77)

and compute
xn+1 = f (hn). (78)

Let n := n + 1 and return to Step 1.
Next, we prove the following important result for Algorithm 3.2.
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Theorem 2. Suppose that {αn} is a real sequence such that the following condition holds:

lim
n→∞

αn

βn
‖xn − xn−1‖ = 0. (79)

Then the sequence {xn} generated by Algorithm 3.2 converges strongly to an element p ∈ Γ, where ‖p‖ = min{‖z‖ :
z ∈ Γ}.
Proof. We now examine the following claims:
Claim I

We claim that the sequence {xn} is bounded. Using similar arguments as in the proof of Theorem 1, we get

‖zn − p‖2 ≤ ‖wn − p‖2 − (1− τL)‖yn − xn+1‖2 − (1− τL)‖yn −wn‖2. (80)

This implies that
‖zn − p‖ ≤ ‖wn − p‖. (81)

Moreover, we have
‖zn − p‖ ≤ ‖wn − p‖ ≤ ‖xn − p‖+ βn�1, (82)

for some �1 > 0.
‖xn+1 − p‖ ≤ k‖hn − p‖+ ‖ f (p) − p‖. (83)

Using Equation (77) we have

‖hn − p‖ = ‖(1− λn − βn)xn + λnzn − p‖
= ‖(1− λn − βn)(xn − p) + λn(zn − p) − βnp‖
≤ ‖(1− λn − βn)(xn − p) + λn(zn − p)‖+ βn‖p‖.

(84)

Using Equations (10) and (82), we have the following estimate:

‖(1− λn − βn)(xn − p) + λn(zn − p)‖2 = (1− λn − βn)2‖xn − p‖2+
2(1− λn − βn)λn〈xn − p, zn − p〉+ λ2

n‖zn − p‖2
≤ (1− λn − βn)2‖xn − p‖2+

2(1− λn − βn)λn‖xn − p‖‖zn − p‖+ λ2
n‖zn − p‖2

≤ (1− λn − βn)2‖xn − p‖2 + (1− λn − βn)λn‖xn − p‖2+
(1− λn − βn)λn‖zn − p‖2 + λ2

n‖zn − p‖2
≤ (1− λn − βn)(1− βn)‖xn − p‖2 + (1− βn)λn‖zn − p‖2

(85)

This implies that

‖(1− λn − βn)(xn − p) + λn(zn − p)‖2 ≤ (1− λn − βn)(1− βn)‖xn − p‖2+
(1− βn)λn(‖xn − p‖+ βn�1)2

≤ (1− λn − βn)(1− βn)‖xn − p‖2 + (1− βn)λn‖xn − p‖2
+2(1− βn)λnβn‖xn − p‖�1 + β2

n�
2
1≤ (1− βn)2‖xn − p‖2 + 2(1− βn)βn‖xn − p‖�1 + β2

n�
2
1

=
{
(1− βn)‖xn − p‖+ βn�1

}2.

(86)

This implies that
‖(1− λn − βn)(xn − p) + λn(zn − p)‖ ≤ (1− βn)‖xn − p‖+ βn�1. (87)

Using Equation (87) in Equation (84), we get
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‖hn − p‖ ≤ (1− βn)‖xn − p‖+ βn�1 + βn‖p‖
= (1− βn)‖xn − p‖+ βn(�1 + ‖p‖). (88)

Using Equation (88) in Equation (83), we have

‖xn+1 − p‖ ≤ (1− βn)‖xn − p‖+ βn(�1 + ‖p‖) + ‖ f (p) − p‖
≤ max

{‖xn − p‖, �1 + ‖p‖+ ‖ f (p) − p‖}
...
≤ max

{‖x0 − p‖, �1 + ‖p‖+ ‖ f (p) − p‖}.
(89)

Therefore, the sequence {xn} is bounded. It follows that {zn}, {wn} and {hn} are all bounded.
Claim II

We want to show that

(1− βn)λn(1− τL)‖yn − xn+1‖2 + (1− βn)λn(1− τL)‖yn −wn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + βn�6, (90)

for some �6 > 0. From Equation (42), we have

‖xn+1 − p‖2 ≤ ‖hn − p‖2 + �2, (91)

for some �2 > 0. Using (10) and (77) we get

‖hn − p‖2 = ‖(1− λn − βn)xn + λnzn − p‖2
= ‖(1− λn − βn)(xn − p) + λn(zn − p) − βnp‖2
= ‖(1− λn − βn)(xn − p) + λn(zn − p)‖2−

2βn〈(1− λn − βn)(xn − p) + λn(zn − p), p〉+ β2
n‖p‖2

≤ ‖(1− λn − βn)(xn − p) + λn(zn − p)‖2 + βn�3,

(92)

for some �3 > 0. Using Equation (85) in Equation (92), we get

‖hn − p‖2 ≤ (1− λn − βn)(1− βn)‖xn − p‖2 + (1− βn)λn‖zn − p‖2 + βn�3. (93)

Using Equation (80) in Equation (93), we get

‖hn − p‖2 ≤ (1− λn − βn)(1− βn)‖xn − p‖2 + (1− βn)λn[‖wn − p‖2−
(1− τL)‖yn − xn+1‖2 − (1− τL)‖yn −wn‖2] + βn�3

= (1− λn − βn)(1− βn)‖xn − p‖2 + (1− βn)λn‖wn − p‖2−
(1− βn)λn(1− τL)‖yn − xn+1‖2 − (1− βn)λn(1− τL)‖yn −wn‖2 + βn�3.

(94)

From Equation (36), we get

‖zn − p‖ ≤ ‖wn − p‖ ≤ ‖xn − p‖+ βn�1. (95)

This implies that
‖wn − p‖2 ≤ ‖xn − p‖2 + βn�4, (96)
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for some �4 > 0. Using Equation (96) in Equation (94), we get

‖hn − p‖2 ≤ (1− λn − βn)(1− βn)‖xn − p‖2 + (1− βn)λn[‖xn − p‖2 + βn�4]−
(1− βn)λn(1− τL)‖yn − xn+1‖2 − (1− βn)λn(1− τL)‖yn −wn‖2 + βn�3

= (1− βn)2‖xn − p‖2 + βn(1− βn)λn�4 − (1− βn)λn(1− τL)‖yn − xn+1‖2−
(1− βn)λn(1− τL)‖yn −wn‖2 + βn�3

≤ ‖xn − p‖2 − (1− βn)λn(1− τL)‖yn − xn+1‖2−
(1− βn)λn(1− τL)‖yn −wn‖2 + βn�5,

(97)

for some �5 > 0. Using Equation (97) in Equation (91), we have

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − (1− βn)λn(1− τL)‖yn − xn+1‖2 − (1− βn)λn(1− τL)‖yn −wn‖2
+βn�5 + �2

≤ ‖xn − p‖2 − (1− βn)λn(1− τL)‖yn − xn+1‖2 − (1− βn)λn(1− τL)‖yn −wn‖2
+βn�6,

(98)

for some �6 > 0. This implies that

(1− βn)λn(1− τL)‖yn − xn+1‖2 + (1− βn)λn(1− τL)‖yn −wn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + βn�6. (99)

Claim III

We want to show that

‖xn+1 − p‖2 ≤ 2k‖xn − p‖2 + 2kβn[2(1− βn)‖xn − p‖�9+
λn.αn
βn
‖xn − xn−1‖�9 + 1

kβn
‖ f (p) − p‖2 − 2〈(1− λn − βn)(xn − p), p〉+ 3�9],

(100)

for some �9 > 0.

Using Equations (10) and (78), we have

‖xn+1 − p‖2 = ‖ f (hn) − f (p) + f (p) − p‖2
= ‖ f (hn) − f (p)‖2 + ‖ f (p) − p‖2 + 2〈 f (hn) − f (p), f (p) − p〉
≤ k2‖hn − p‖2 + ‖ f (p) − p‖2 + 2〈 f (hn) − f (p), f (p) − p〉
≤ k‖hn − p‖2 + ‖ f (p) − p‖2 + 2〈 f (hn) − f (p), f (p) − p〉
≤ k‖hn − p‖2 + ‖ f (p) − p‖2 + 2‖ f (hn) − f (p)‖‖ f (p) − p‖
≤ k‖hn − p‖2 + ‖ f (p) − p‖2 + ‖ f (hn) − f (p)‖2 + ‖ f (p) − p‖2
≤ 2k‖hn − p‖2 + 2‖ f (p) − p‖2.

(101)

Next, we have the following estimate, using Equations (10) and (77)

‖hn − p‖2 = ‖(1− λn − βn)xn + λnzn − p‖2
= ‖(1− λn − βn)(xn − p) + λn(zn − p) − βnp‖2
= ‖(1− λn − βn)(xn − p) + λn(zn − p)‖2−

2βn〈(1− λn − βn)(xn − p) + λn(zn − p), p〉+ β2
n‖p‖2.

(102)
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Using Equation (86) in Equation (102), we have

‖hn − p‖2 ≤ {(1− βn)‖xn − p‖+ βn�1}2 − 2βn〈(1− λn − βn)(xn − p) + λn(zn − p), p〉+ β2
n‖p‖2

≤ (1− βn)‖xn − p‖2 + 2(1− βn)βn‖xn − p‖�7 + βn�27−
2βn〈(1− λn − βn)(xn − p) + λn(zn − p), p〉+ β2

n‖p‖2
= (1− βn)‖xn − p‖2 + 2(1− βn)βn‖xn − p‖�7 + βn�27 − 2βn〈(1− λn − βn)(xn − p), p〉
−2λnβn〈zn − p, p〉+ β2

n‖p‖2
= (1− βn)‖xn − p‖2 + 2(1− βn)βn‖xn − p‖�7 + βn�27 − 2βn〈(1− λn − βn)(xn − p), p〉

+2λnβn〈p− zn, p〉+ β2
n‖p‖2

≤ (1− βn)‖xn − p‖2 + 2(1− βn)βn‖xn − p‖�7 + βn�27 − 2βn〈(1− λn − βn)(xn − p), p〉
+2λnβn‖p− zn‖‖p‖+ β2

n‖p‖2
≤ (1− βn)‖xn − p‖2 + 2(1− βn)βn‖xn − p‖�7 + βn�27 − 2βn〈(1− λn − βn)(xn − p), p〉

+λnβn‖zn − p‖2 + λnβn‖p‖2 + β2
n‖p‖2

≤ (1− βn)‖xn − p‖2 + 2(1− βn)βn‖xn − p‖�7 + βn�27 − 2βn〈(1− λn − βn)(xn − p), p〉
+λnβn‖wn − p‖2 + λnβn‖p‖2 + β2

n‖p‖2.

(103)

Next, we have

‖wn − p‖2 = ‖xn + αn(xn − xn−1) − p‖2
= ‖(xn − p) + αn(xn − xn−1)‖2
= ‖xn − p‖2 + 2αn〈xn − p, xn − xn−1〉+ α2

n‖xn − xn−1‖2
≤ ‖xn − p‖2 + 2αn‖xn − p‖‖xn − xn−1‖+ α2

n‖xn − xn−1‖2
≤ ‖xn − p‖2 + αn‖xn − xn−1‖{2‖xn − p‖+ αn‖xn − xn−1‖}
≤ ‖xn − p‖2 + αn‖xn − xn−1‖�8,

(104)

for some �8 > 0. Using Equation (104) in Equation (103) we have

‖hn − p‖2 ≤ (1− βn)‖xn − p‖2 + 2(1− βn)βn‖xn − p‖�7 + βn�27 − 2βn〈(1− λn − βn)(xn − p), p〉
+λnβn‖xn − p‖2 + λnβnαn‖xn − xn−1‖�8 + λnβn‖p‖2 + β2

n‖p‖2
≤ ‖xn − p‖2 + 2(1− βn)βn‖xn − p‖�7 + βn�27 − 2βn〈(1− λn − βn)(xn − p), p〉

+λnβnαn‖xn − xn−1‖�8 + λnβn‖p‖2 + β2
n‖p‖2.

(105)

Using Equation (105) in Equation (101), we have

‖xn+1 − p‖2 ≤ 2k‖xn − p‖2 + 4k(1− βn)βn‖xn − p‖�7 + 2kβn�27−
4kβn〈(1− λn − βn)(xn − p), p〉+ 2kλnβnαn‖xn − xn−1‖�8 + 2kλnβn‖p‖2
+2kβ2

n‖p‖2 + 2‖ f (p) − p‖2
≤ 2k‖xn − p‖2 + 4k(1− βn)βn‖xn − p‖�7 + 2kβn�27−

4kβn〈(1− λn − βn)(xn − p), p〉+ 2kλnαn‖xn − xn−1‖�8 + 2kλnβn‖p‖2
+2kβ2

n‖p‖2 + 2‖ f (p) − p‖2
≤ 2k‖xn − p‖2 + 2kβn[2(1− βn)‖xn − p‖�7 + �27−

2〈(1− λn − βn)(xn − p), p〉+ λn.αn
βn
‖xn − xn−1‖�8 + λn‖p‖2+

βn‖p‖2 + 1
kβn
‖ f (p) − p‖2]

≤ 2k‖xn − p‖2 + 2kβn[2(1− βn)‖xn − p‖�9+
λn.αn
βn
‖xn − xn−1‖�9 + 1

kβn
‖ f (p) − p‖2 − 2〈(1− λn − βn)(xn − p), p〉+ 3�9],

(106)

for some �9 > 0.
Claim IV

We need to prove that the real sequence {‖xn − p‖2} converges to 0 by considering the following two
cases:
Case I
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There exists a number N ∈ N such that for every n ≥ N, we have ‖xn+1 − p‖2 ≤ ‖xn − p‖2. Hence,
we have that limn→∞ ‖xn − p‖ exists so that by Claim II, we have

lim
n→∞‖yn −wn‖ = 0, lim

n→∞‖yn − xn+1‖ = 0. (107)

Since the sequence {xn} is bounded, it follows that there exists a subsequence {xnk } of {xn} such that {xnk }
converges weakly to some z ∈ H such that

lim sup
n→∞

〈 f (p) − p, xn − p〉 = lim
k→∞
〈 f (p) − p, xnk − p〉 = 〈 f (p) − p, z− p〉. (108)

Using Equation (107) and Lemma 3, we get z ∈ Γ. From Equation (108) and the fact that p = PΓ ◦ f (p), we
get

lim sup
n→∞

〈 f (p) − p, xn − p〉 = 〈 f (p) − p, z− p〉 ≤ 0. (109)

Next, we prove that
lim

n→∞‖xn+1 − xn‖ = 0. (110)

Clearly,
‖wn − xn‖ = αn‖xn − xn−1‖ = αn

βn
.βn‖xn − xn−1‖ −→ 0 as n→∞. (111)

Combining Equations (107) and (111) we have

‖xn+1 − xn‖ ≤ ‖xn+1 − yn‖+ ‖yn −wn‖+ ‖wn − xn‖ −→ 0 as n→∞. (112)

Using Equations (109) and (110) we have

lim sup
n→∞

〈 f (p) − p, xn+1 − p〉 ≤ lim sup
n→∞

〈 f (p) − p, xn − p〉 = 〈 f (p) − p, z− p〉 ≤ 0. (113)

Hence by Lemma 3 and Claim III we have limn→∞ ‖xn − p‖ = 0.
Case II

We can find a subsequence {‖xnj − p‖2} of {‖xn − p‖2} satisfying ‖xnj − p‖2 < ‖xnj+1 − p‖2 for each
j ∈ N. Hence, by Lemma 2 it follows that there is a nondecreasing real sequence {mk} of N satisfying
limk→∞mk = ∞ so that we get the following inequalities for every k ∈ N:

‖xmk − p‖2 ≤ ‖xmk+1 − p‖2, ‖xk − p‖2 ≤ ‖xmk − p‖2. (114)

By Claim II we get

(1− βmk)λmk(1− τL)‖ymk − xmk+1‖2 + (1− βmk)λmk(1− τL)‖ymk −wmk‖2 ≤ ‖xmk − p‖2−
‖xmk+1 − p‖2
+βmk�6

≤ βmk�6

(115)

Hence, we have
lim
k→∞
‖ymk −wmk‖ = 0, lim

k→∞
‖ymk − xmk+1‖ = 0. (116)

By similar arguments as in the proof of Case I, we have

‖xmk+1 − xmk‖ −→ 0 as k→∞, (117)
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and
lim sup

k→∞
〈 f (p) − p, xmk+1 − p〉 ≤ 0. (118)

By Claim III we obtain

‖xmk+1 − p‖2 ≤ 2k‖xmk − p‖2 + 2kβmk [2(1− βmk)‖xmk − p‖�9+
λmk .

αmk
βmk
‖xmk − xmk−1‖�9 + 1

kβmk
‖ f (p) − p‖2−

2〈(1− λmk − βmk)(xmk − p), p〉+ 3�9],

(119)

for some �9 > 0.

By Equations (114) and (119) we have:

‖xmk+1 − p‖2 ≤ 2k‖xmk − p‖2 + 2kβmk [2(1− βmk)‖xmk − p‖�9+
λmk .

αmk
βmk
‖xmk − xmk−1‖�9 + 1

kβmk
‖ f (p) − p‖2−

2〈(1− λmk − βmk)(xmk − p), p〉+ 3�9],

(120)

Hence, we have

‖xmk+1 − p‖2 ≤ 2(1− βmk)‖xmk − p‖�9 + λmk .
αmk
βmk
‖xmk − xmk−1‖�9 + 1

kβmk
‖ f (p) − p‖2−

2〈(1− λmk − βmk)(xmk − p), p〉+ 3�9.
(121)

Therefore we obtain:
lim sup

k→∞
‖xmk+1 − p‖ ≤ 0. (122)

Combining Equations (114) and (122) we obtain lim supk→∞ ‖xk − p‖ ≤ 0, this means that xk −→ p. The proof
of Theorem 2 is completed. �

4. Numerical Illustrations

In this section, we consider two numerical examples to illustrate the convergence of Algorithms 3.1,
Algorithms 3.2 and compare them with three well-known algorithms. All our numerical illustrations were
executed on a HP laptop with the following specifications: Intel(R) Core(TM)i5-6200U CPU 2.3GHz with 4
GB RAM. All our codes were written in MATLAB 2015a. In reporting our numerical results, the following
tables, ‘Iter.’, ‘Sec.’ and Error denote the number of iterations, the CPU time in seconds and ‖xIter − x∗‖,
respectively. We choose βn = 1

(n+1)

αn =

⎧⎪⎪⎨⎪⎪⎩
min{α0, β2

n
‖xn−xn−1‖ }, if xn � xn−1

α0, otherwise.

f (x) = 0.5x for Algorithm 3.1, Algorithm 3.2, λn = 1− 1
n for Algorithm 3.2.

Example 1. Suppose that H = L2([0, 1]) with the inner product

〈x, y〉 :=
∫ 1

0
x(t)y(t)dt,∀x, y ∈ H

146



Axioms 2020, 9, 51

and the included norm

‖x‖ := (

∫ 1

0
|x(t)|2dt)

1
2 ,∀x ∈ H

Let C := {x ∈ H : ‖x‖ ≤ 1} be the unit ball and define an operator A : C→ H by

Ax(t) = max{0, x(t)}.

and Q := {x ∈ H, 〈a, x〉 ≤ b} where 0 � a ∈ H and b ∈ R,
we can easily see that A is 1-Lipschitz continuous and monotone on C. Considering the condition on C and A,

the set of solutions to the variational inequality problem (VIP) is given by

T = {0} � ∅.

It is known that

PC(x) =

⎧⎪⎪⎨⎪⎪⎩
x
‖x‖L2

, if‖x‖L2 > 1,

x, if‖x‖L2 ≤ 1.
.

and

PQ(x) =

⎧⎪⎪⎨⎪⎪⎩
b−〈a,x〉
‖a‖2 a + x, if〈a, x〉 > b,

x, if〈a, x〉 ≤ b.

Now, we apply Algorithm 3.1, Algorithm 3.2, Mainge’s algorithm [37] and Kraikaew and Saejung’s
algorithm [40] to solve the variational inequality problem (VIP). We choose αn = 1

n + 1 for Mainge’s
algorithm and Kraikaew and Saejung’s algorithm and τ = 0.5 for all algorithms. We use stopping rule
‖xn − 0‖ < 10−4 or Iter <= 3000 for all algorithms. The numerical results of all algorithms with different x0

are reported in Table 1 below:

Table 1. Numerical results obtained by other algorithms.

Methods x0 =
sin(−3∗t)

100
x0 =

(sin(−3∗t)+cos(−10∗t))
300

Sec. Iter. Error. Sec. Iter. Error.
Algorithm 3.1 0.0022 10 1.1891 × 10−5 0.0018 9 4.8894 × 10−5

Algorithm 3.2 0.0019 8 4.7288 × 10−5 0.0014 7 5.3503 × 10−5

Algorithm of Kraikaew et al. 0.4063 2287 9.9981 × 10−5 0.1719 1065 9.9924 × 10−5

Algorithm of Mainge 0.1250 2287 9.9981 × 10−5 0.0469 1065 9.9924 × 10−5

The convergence behaviour of algorithms with different starting point is given in Figures 1 and 2.
In these figures, we represent the value of errors ‖xn − 0‖ for all algorithms by the y-axis and the number of
iterations by the x-axis.
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Figure 1. Comparison of all algorithms with x0 =
sin(−3t)
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Figure 2. Comparison of all algorithms with x0 =
(sin(−3∗t)+cos(−10∗t))

300 .

Example 2. Assume that A : Rm → Rm is defined by A(x) = Mx + q with M = BBT + S + D, where S is an
m×m skew-symmetric matrix, B is an m×m matrix, D is an m×m diagonal matrix, whose diagonal entries are
positive (so M is positive definite), q is a vector in Rm and

C := {x ∈ Rm : −5 ≤ xi ≤ 5, i = 1, · · · , m}.

Clearly, we can see that the operator A is monotone and Lipschitz continuous with a Lipschitz constant L = ‖M‖.
Given that q = 0, the unique solution of the corresponding (VIP) is {0}.

We will compare Algorithm 3.1, Algorithm 3.2 with Tseng’s extragradient method (TEGM) [41], Inertial
Tseng extragradient algorithm (ITEGM) of Thong and Hieu [33], subgradient extragradient method (SEGM)

of Censor et al. [5]. We choose τ = 0.9
L for all algorithm, αn = α = 0.99

√
1 + 8ε − 1 − 2ε

2(1 − ε) where ε = 1 − λL
1 + λL for

inertial Tseng extragradient algorithm. The starting points are x0 = (1, 1, ..., 1)T ∈ Rm.
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For experiment, all entries of B, S and D are generated randomly from a normal distribution with
mean zero and unit variance. We use stopping rule ‖xn − 0‖ < 10−4 or Iter <= 1000 for all algorithms.
The results are described in Table 2 and Figures 3 and 4.

Table 2. Numerical results obtained by other algorithms.

Methods
m = 50 m = 100

Sec. Iter. Error. Sec. Iter. Error.

Algorithm 3.1 0.08 10 6.9882 × 10−5 0.14063 10 6.6947 × 10−5

Algorithm 3.2 0.078 8 9.0032 × 10−5 0.1 9 9.9385 × 10−5

TEGM 4.2438 1000 0.0849 9.4531 1000 0.2646
ITEGM 4.5188 1000 0.0790 9.6875 1000 0.2594
SEGM 4.3969 1000 0.0850 9.5156 1000 0.2647
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Figure 3. Comparison of all algorithms with m = 50.
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Figure 4. Comparison of all algorithms with m = 100.

Tables 1 and 2 and Figures 1–4, give the errors of the Mainge’s algorithm [37] and Kraikaew and
Saejung’s algorithm [40], Tseng’s extragradient method (TEGM) [41], Inertial Tseng extragradient algorithm
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(ITEGM) [33], subgradient extragradient method (SEGM) of Censor et al. [5] and Algorithms 3.1, 3.2 as
well as their execution times. They show that Algorithms 3.1 and 3.2 are less time consuming and more
accurate than those of Mainge [37], Kraikaew and Saejung [40], Tseng [41], Thong and Hieu [33] and
Censor et al. [5].

5. Conclusions

In this study, we developed two new iterative algorithms for solving K-pseudomonotone variational
inequality problems in the framework of real Hilbert spaces. We established some strong convergence
theorems for our proposed algorithms under certain conditions. We proved via several numerical
experiments that our proposed algorithms performs better in comparison than those of Mainge [37],
Kraikaew and Saejung [40], Tseng [41], Thong and Hieu [33] and Censor et al. [5].
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Abstract: In this paper we introduce the concepts of ψ-contraction and monotone ψ-contraction
correspondence in “fuzzy b-metric spaces” and obtain fixed point results for these contractive
mappings. The obtained results generalize some existing ones in fuzzy metric spaces and “fuzzy
b-metric spaces”. Further we address an open problem in b-metric and “fuzzy b-metric spaces”.
To elaborate the results obtained herein we provide an example that shows the usability of the
obtained results.
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1. Introduction

Several kinds of nonlinear problems arising in various branches of the sciences can be
formulated as a “fixed point problem” mathematically fx = x (an operator equation) where f is
some nonlinear operator defined on some topological structure. The Banach [1] contraction principle
is a significant tool for solving fixed point problems. The simple and constructive nature of its
proof has attracted the attention of several researchers around the globe to generalize this famous
tool. There are several generalizations; among them, one is to modify the underlying space. In this
regard, a framework of “probabilistic metric spaces” is a matter of great interest for scientists and
mathematicians (for details, see [2–4]). Kramosil and Michalek [5] defined the “fuzzy metric space”.
In [6], George and Veeramani modified the concept of “fuzzy metric spaces” using the continuous
t-norm. This modification is the generalization of the “probabilistic metric space” to the fuzzy situation.
Afterwards the “fuzzy b-metric space” was defined in [7] which generalizes the “fuzzy metric space”
and “b-metric space”.

The fixed point results in “fuzzy metric space” have deep roots (for details, see [8]). This work
has been appreciated by researchers (see [9,10]). This work was extended by several researchers
in various ways (compare with [11–21]). Among one of them, in 1969, Nadler proposed Banach’s
contraction principle for correspondence in Hausdorff metric spaces (see [22]). Various extensions of
this work were subsequently proposed by several authors (for details, see [23]). In 1993, Czerwik [24,25]
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proposed the first Banach fixed point theorem for both single and multivalued mappings in “b-metric
spaces”, introduced by Bourbaki and Bakhtin [26,27]. Afterwards, this concept was extended for
some particular types of contractions in the context of “b-metric spaces” (see [28]). In this direction,
many researchers studied and extended various well known fixed point results for several types of
contractive mappings in the framework of “b-metric spaces” [29–31].

In general, fixed point theory remained successful in challenging and solving various problems
and has contributed significantly to many real-world problems. However, various strong fixed point
theorems are proven under strong assumptions. Particularly, in “fuzzy metric spaces”, some of these
assumptions can lead to some induced norms. Some assumptions do not hold in general or can lead
to reformulations as a particular problem in normed vector spaces. The recent trend of research has
been dedicated to studying the fundamentals of fixed point theorems and relaxing their conditions by
replacing these strong assumptions with weaker ones.

The aim of the work presented in this paper is to provide some fixed point results in “fuzzy
b-metric spaces” and to improve their conditions and assumptions by addressing the open questions
and challenges outlined in the literature by identifying the ties between “fuzzy b-metric spaces” and
“pseudo b-metric spaces”.

This paper starts with a brief introduction to “b-metric spaces” and “fuzzy b-metric spaces” along
with the required concepts. Afterwards we describe the relation between these two particular spaces.
Along with these details, some basic techniques and ways of improving some current fixed point result
are also discussed. Finally, an application of Banach’s contraction to linear equations is provided.

2. Background and Relevant Literature

This section will serve as an introduction to some fundamental concepts related to “b-metric
spaces” and “fuzzy b-metric spaces”. Further, some basic definitions and known results are discussed
which will be needed in the sequel.

Definition 1. [32] Let X be a nonempty set, define a real valued function d : X ×X → [0, ∞) such that for a
given real number s ≥ 1 satisfies the conditions:

1. d(x, y) = 0 if and only if x = y,
2. d(x, y) = d(y, x),
3. d(x, z) ≤ s[d(x, y) + d(y, z)], for all x, y, z ∈ X ,

the pair (X , d) is called a “b-metric space”.

It is important to discuss that every “b-metric space” is not necessarily a “metric space” [32]. With
s = 1, every “b-metric space” is a “metric space”. If we replace Condition 1 with the following:

• If x = y implies d(x, y) = 0,
then (X , d) is called a “pseudo b-metric space”. Moreover, it has been shown that several metric
fixed point theorems can be extended to “b-metric spaces” (see [33]). It is important to mention
that the “b-metric” is not continuous (see [34]). The notion of the “b-metric space” was introduced
for the generalization of the fixed point theorem for single valued mappings and correspondences
(see [24,25]).

Definition 2. Let X be a nonempty set and s ≥ 1 be a real number. A fuzzy subset M of M : X × X ×
[0,+∞) → [0, 1] is called a “fuzzy b-metric” on X if the following conditions are satisfied for all x, y, z ∈ X
and c ∈ R.

M(x, y, t) = 0, for all non-positive real numbers t,
M(x, y, t) = 1, for all t ∈ R+ if and only if x = y,
M(x, y, t) = M(y, x, t),
M(x, z, s(t+ h)) ≥ min{M(x, y, t),M(y, z, h)}, for all s ≥ 1,
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M(cx, y, t) = M(x, y, t
|c| ), for c �= 0,

M(x, y, ·) is a non-decreasing function on R and sup
t
{M(x, y, t)} = 1.

The pair (X ,M) is said to be a “fuzzy b-metric space”.

It is important to discuss that for s = 1, every “fuzzy b-metric space” will reduced to a “fuzzy
metric space”. The following example explains the concept of the “fuzzy b-metric space”.

Example 1. Suppose that (X , d) is a “b-metric space”. Define

M(x, y, t) =

{
t

t+dr(x,y) t > 0,

0 t ≤ 0.

Then, M(x, y, t) is a “fuzzy b-metric space” for all r ∈ R+.

Definition 3. Let (X ,M) be a “fuzzy b-metric space”. We define the following subset of X , as:

Br(x0, t0) = {x∈X : M(x, x0, t0) > r},

where x0 ∈ X , r ∈ (0, 1) and t0 > 0.

Let (X ,M) be a “fuzzy b-metric space” and define an open set O ⊆ X as follows. An element
x ∈ O if and only if there exist r ∈ (0, 1) and t0 > 0 such that Br(x, t0) ⊆ O. Let τM be a topology
induced by M on X which contains all open sets (for details, see [35,36]). Therefore, with τM, some
topological notions such that the convergent sequence, Cauchy sequence, closed set, complete set and
closure of a set are meaningful. Let X be a “fuzzy metric space” and suppose that dr : X ×X → R for
each r ∈ (0, 1) is defined as:

dr(x, y) = sup{t : M(x, y, t) ≤ r}.

Then, dr is known as a pseudo metric. One can verify that if X is a fuzzy b-metric then dr is a
pseudo b-metric (for details, see [37]). The family of the pseudo b-metric dr(x, y) generates a topology
on X which is the same as the topology generated by τM. Therefore, (X ,M) is complete if and only
if (X , dr) is complete. It is easy to show that for x, y, z,w ∈ X and q ∈ [0, ∞), M(z,w, qt) ≥ M(x, y, t)
give that dr(z,w) ≤ qdr(x, y), for each r ∈ (0, 1). If we define such pseudo metrics in a “fuzzy b-metric
space” then it can lead to a smooth proof for many fixed point theorems in “fuzzy b-metric spaces”.

In the following lemma, some equivalences are provided as:

Lemma 1. Let (X ,M) be a “fuzzy b-metric space”.

• A sequence {xn} ∈ X is convergent and converges to x ∈ X if lim
n

M(xn, x, t) = 1 for all t > 0 and
denoted as xn → x.

• If lim
n,m

M(xn, xm, t) = 1 for all sufficiently large m, n and for any t > 0 then xn is called a Cauchy sequence

in X .
• If every Cauchy sequence is convergent in X then X is called a “complete fuzzy b-metric space”.
• A subset C of X is a complete space if and only if it is complete with induced pseudo b-metric dr for every

r ∈ (0, 1).
• A subset C ⊂ X is open if for every x ∈ C there exist t, r > 0 such that M(x, y, t) > r implies y ∈ C.
• A subset C ⊂ X is closed if it contains all of its limit points.
• The closure of C denoted by C is defined as the set of all points of X that are the limit points of some

sequence in C.
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The following theorem is an equivalent to the “Banach fixed point theorem” in “fuzzy
metric space”.

Theorem 1. [8] Let (X ,M) be a “complete fuzzy metric space” and T : X → X . If

M(Tx,Ty, t) ≥ M(x, y,
t

k
),

for x, y ∈ X , k ∈ (0, 1) and t ∈ R. Then T has a fixed point.

Theorem 2. [37] Suppose X is a “complete fuzzy metric space”, T : X → X is a single valued mapping and
for every dr there exists a constant kr with 0 < kr < 1 such that dr(T(x),T(y)) ≤ krdr(x, y) for all x, y ∈ X .
Then there exists a unique point z ∈ X such that T(z) = z.

By a correspondence f on a set X we mean a relation that assigns to each x in X a nonempty
subset of X . For a correspondence f an element x ∈ X is said to be a fixed point if x ∈ f(x). It is
worthwhile mentioning that it is not necessary for the fixed point of a correspondence to be unique
(see Example 3). Define

M(a, f(b), t0) = sup
t<t0

sup
y∈f(b)

M(a, y, t).

In this paper we define the ψ-contractive and monotone ψ-contractive correspondence and prove
some results for the existence of fixed points for these contractive conditions in “fuzzy b-metric
spaces”, where ψ ∈ Ψ and Ψ consists of all the functions ψ : R+ ∪ {0} → R+ ∪ {0} being continuous,
nondecreasing and ψ(1) = 1. It is important to mention that several researchers have obtained fixed
points of correspondence satisfying the contractive conditions via the Hausdorff distance [38–43].
We improve Theorem 1 in a short and comprehensive way and obtain the result without using the
Hausdorff distance. Further we answer an open problem related to the “Banach fixed point theorem”
in “b-metric space”.

3. Main Results

In the sequel, it is assumed that (X ,M) is a “complete fuzzy b-metric space” with some s > 1
and f is a closed correspondence i.e. for every yn ∈ X such that yn ∈ f(xn), for all xn ∈ X then the
following implication holds:

xn → x, yn → y implies y ∈ f(x).

The following lemma is a handy tool that will be used in the sequel.

Lemma 2. [38] A sequence {xn} in a “b-metric space” (X , d) is a b-Cauchy sequence if there exists k ∈ [0, 1)
such that:

d(xn, xn+1) ≤ kd(xn−1, xn),

for every n ∈ N.

It is also verified that Lemma 2 holds for “pseudo b-metric spaces” as well.

Definition 4. Let C be a nonempty subset of (X ,M). A correspondence f : C � X is said to be an
ε − ψ-contraction (ε.ψ. C) if ψ ∈ Ψ, ε ≥ 1, L > 0 and for every y ∈ C there exists w ∈ f(y) such that:

ψ(M(z,w,
t

sε
)) ≥ min{ψ(S(x, y, t)), ψ(I(x, y,

t

L
))}, (1)
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for every x ∈ C, z ∈ f(x) where

S(x, y, t) = min{M(x, y, t),M(x, f(x), t),
M(y, f(y), t)M(x, f(x), t)

M(x, y, t)
,

M(x, f(y), 2st), M(y, f(x), 2st)},

and
I(x, y, t) = max{min{M(x, f(x), t), M(y, f(y), t)},M(x, f(y), t),M(y, f(x), t)}.

For ε = 1, (ε.ψ. C) is called ψ-contractive or (ψ. C). The following theorem is a generalization of
theorem 1 for (ψ.C) correspondences in “fuzzy b-metric spaces”.

Theorem 3. Every (ψ.C) correspondence f has a fixed point.

Proof. Let x0 be any element in the domain of f. If x0 ∈ f(x0) then x0 is the fixed point of f and we have
obtained the required result. However, if x0 /∈ f(x0) then choose an arbitrary element x1 ∈ f(x0). By the
definition of the (ψ.C) correspondence there exists an x2 ∈ f(x1) such that

ψ(M(x2, x1,
t

s
)) ≥ min{ψ(S(x1, x0, t)), ψ(I(x1, x0,

t

L
))}, (2)

Now we have to compute S(x1, x0, t) and I(x1, x0, t
L ) where

S(x1, x0, t) = min{M(x1, x0, t),M(x1, f(x1), t),
M(x0,f(x0),t)M(x1,f(x1),t)

M(x1,x0,t) ,M(x1, f(x0), 2st),

M(x0, f(x1), 2st)},
≥ min{M(x1, x0, t),M(x1, x2, t), M(x0,x1,t)M(x1,x2,t)

M(x1,x0,t) , 1, M(x0, x2, 2st)},

= min{M(x1, x0, t),M(x1, x2, t), M(x0, x2, 2st)},
≥ min{M(x1, x0, t),M(x1, x2, t), 1, min{M(x0, x1, t),M(x1, x2, t)},

(3)

and

I(x1, x0, t
L ) = max{min{M(x1, f(x1), t

L ), M(x0, f(x0), t
L )},M(x1, f(x0), t

L ),
M(x0, f(x1), t

L )}
≥ max{min{M(x1, x2, t

L ), M(x0, x1, t
L )}, 1,M(x0, x2, t

L )} = 1,

if min{M(x0, x1, t),M(x1, x2, t)} = M(x1, x2, t) then from Inequality 3 we have S(x1, x0, t) ≥
M(x1, x2, t). Then, Inequality 2 becomes

ψ(M(x2, x1, t
s )) ≥ min{ψ(M(x1, x2, t)), ψ(1)}

≥ min{ψ(M(x1, x2, t)), 1}
≥ ψ(M(x1, x2, t)).

From the above inequality we have

ψ(M(x2, x1,
t

s
)) ≥ ψ(M(x1, x2, t)).

Since ψ is an increasing function, hence we have

M(x2, x1,
t

s
) ≥ M(x1, x2, t).
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As discussed in the previous section, the related correspondence implies

dr(x1, x2) ≤
1
s
dr(x1, x2),

where dr is a pseudo b-metric induced by a b-fuzzy metric M. Then the above inequality is true if
x1 = x2. In this case, x1 is a fixed point of f and the proof is complete. If not then x1 �= x2. In this case
min{M(x0, x1, t),M(x1, x2, t)} = M(x0, x1, t). From Inequality 3 we have S(x1, x0, t) ≥ M(x0, x1, t) and
I(x1, x0, t

L ) ≥ 1.

ψ(M(x2, x1,
t

s
)) ≥ min{ψ(M(x1, x0, t)), ψ(1)}

≥ min{ψ(M(x1, x0, t)), 1}
≥ ψ(M(x1, x0, t)).

Hence, ψ(M(x2, x1, t
s )) ≥ ψ(M(x1, x2, t)). Continuing in this way we obtain a sequence {xn} for

each n ≥ 1 such that xn+1 ∈ f(xn) and it satisfies:

ψ(M(xn+1, xn,
t

s
)) ≥ min{ψ(S(xn, xn−1, t)), ψ(I(xn, xn−1,

t

L
))}.

If xn+1 = xn for some n ∈ N then f has a fixed point. We assume that xn+1 �= xn. It is easy to show
that I(xn−1, xn, t) = 1. Now we have

S(xn−1, xn, t) = min{M(xn−1, xn, t),M(xn−1, f(xn−1), t),
M(xn ,f(xn),t)M(xn−1,f(xn−1),t)

M(xn−1,xn ,t) ,M(xn−1, f(xn), 2st),M(xn, f(xn−1), 2st)},

≥ min{M(xn−1, xn, t),M(xn−1, xn, t),M(xn, xn+1, t),
M(xn−1, xn+1, 2st),M(xn, xn, 2st)},

≥ min{M(xn−1, xn, t),M(xn, xn+1, t), min{M(xn−1, xn, t),M(xn, xn+1, t)},
= min{M(xn−1, xn, t),M(xn, xn+1, t)}.

If S(xn−1, xn, t) ≥ M(xn, xn+1, t) then we have

ψ(M(xn, xn+1,
t

s
)) ≥ min{ψ(M(xn, xn+1, t)), ψ(1)}

= ψ(M(xn, xn+1, t)).

Since ψ is nondecreasing, so

M(xn, xn+1,
t

s
) ≥ M(xn, xn+1, t).

This implies that dr(xn, xn+1) ≤ 1
sdr(xn, xn+1) where dr is a “pseudo b-metric” induced by a

“b-fuzzy metric” M. Since xn �= xn+1 then above inequality generates a contradiction.
Hence we have

S(xn−1, xn, t) ≥ M(xn−1, xn, t).

This implies

ψ(M(xn, xn+1,
t

s
)) ≥ min{ψ(M(xn−1, xn, t)), ψ(1)} = ψ(M(xn−1, xn, t)).

Thus we have M(xn, xn+1, t
s ) ≥ M(xn−1, xn, t), for all n ∈ N. Hence

dr(xn+1, xn) ≤
1
s
dr(xn−1, xn).
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Lemma 2 implies that {xn} is a Cauchy sequence by dr for each r ∈ (0, 1). Thus, {xn} is a Cauchy
sequence in (X ,M). Since (X ,M) is a “complete fuzzy b-metric space” there exists an x ∈ X such
that limn→∞ M(xn, x, t) = 1. As xn ∈ f(xn−1), xn → x, xn−1 → x and f is closed, this implies x ∈ f(x).

Clearly, (ε.ψ.C) is (ψ.C). Thus, the Theorem 3 also holds for (ε.ψ.C). The following theorem is
equivalent to Nadler’s theorem in [22] in the “fuzzy b-metric space”.

Theorem 4. Suppose that f : X � X is a correspondence in the “fuzzy b-metric space” such that for x, y ∈ X
and z ∈ f(x) there is w ∈ f(y) satisfying the following condition

M(z,w, t) ≥ M(x, y,
t

k
),

where k ∈ (0, 1) and t ∈ R. Then, f has a fixed point.

Proof. The proof follows using similar arguments as in Theorem 3.

The following example supports Theorems 3 and 4.

Example 2. Let X = [0, 1] and (X ,M) be a “fuzzy b-metric space” where

M(x, y, t) =

{
t

t+(x−y)2 t > 0,

0 t ≤ 0.

As in Example 1, (X ,M) is a “complete fuzzy b-metric space” with s = 2. Let f : X � X be defined as
f(x) = { x

2}. It is straightforward to see that for each x, y ∈ X ,

M(
x

2
,
y

2
,
t

4
) ≥ min{S(x, y, t), I(x, y, t)}.

Thus, for L = 1, ε = 2 and ψ(t) = t, Theorem 3 is satisfied and f has a fixed point.

Example 3. Let X = [0, 1
2 ] ∪ {1} and (X ,M) be a "fuzzy b-metric space” where

M(x, y, t) =

{
0 |x− y| ≥ t,
1 |x− y| < t.

Define a correspondence f on X as

f(x) =

{
1
4 x = 1,
{ 1

4 , 1
2} x �= 1.

We claim that for some x, y ∈ X and z ∈ f(x) there exists a w ∈ f(y) such that M(z,w, t) ≥ M(x, y, t
k )

where k ∈ (0, 1). Suppose that for k = 1
2 and

M(z,w, t) = 1 or M(x, y,
t

k
) = 0,

then the claim holds. However,
M(z,w, t) = 0 and M(x, y,

t

k
) = 1,
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is impossible. Without loss of generality we can suppose that y = 1 and x �= 1. Indeed, if x �= 1 and y �= 1 we
can choose z = w and therefore, M(z,w, t) = 1. Take z = 1

4 and w ∈ { 1
4 , 1

2}. If z = w then M(z,w, t) = 1 is
a contradiction. If z = 1

4 and w = 1
2 then

M(
1
4

,
1
2

, t) = 0 and M(x, 1, 2t) = 1

implies that t ≤ 1
4 and |1 − x| < 2t ≤ 1

2 , that is 1
2 < x which is impossible. By Theorem 4, x = 1

2 is a fixed point
of the mapping f.

Corollary 1. Suppose that T : X → X is a single valued mapping on a “fuzzy b-metric space” satisfying

M(T(x),T(y), t) ≥ M(x, y,
t

k
),

for every x, y ∈ X , k ∈ (0, 1) and t ∈ R. Then, T has a unique fixed point.

Corollary 1 is a “fuzzy b-metric” version of the “Banach fixed point theorem”.

Corollary 2. Suppose that T : X → X is a single valued mapping on a “complete b-metric space” (X , d) and

d(T(x),T(y)) ≤ kd(x, y),

holds for every x, y ∈ X , k ∈ (0, 1). Then, T has a fixed point.

Proof. The inequality d(T(x),T(y)) ≤ kd(x, y) implies that

t

t+ d(T(x),T(y))
≥ t

t+ kd(x, y)
.

Therefore
M(T(x),T(y), t) ≥ M(x, y,

t

k
)

Note that every “b-metric” is a “fuzzy b-metric”, as shown in Example 1. The rest of the proof
follows by using Corollary 1.

Remark 1. Corollary 2 has been proven for k ∈ [ 1
s , 1). It is an open problem whether T has a fixed point when

1
s ≤ k < 1. Actually we replied to this important question in the Corollary 2.

Theorem 5. Let x0 ∈ X , r > 0 and t0 > 0. Suppose that f : Br(x0, t0) � X is an (ε.ψ.C) correspondence
where ε > 1. Suppose that there exists x1 ∈ f(x0) such that

M(x1, x0,
sε−1 − 1

sε
t0) > r.

Then, f has a fixed point.

Proof. Since M(x1, x0, s
ε−1−1
sε t0) > r we have M(x1, x0, t0) ≥ M(x1, x0, s

ε−1−1
sε t0) > r. This implies that

x1 ∈ Br(x0, t0). By the similar arguments as in the proof of Theorem 3 there exists x2 ∈ f(x1) such that

M(x2, x1,
t0
sε
) ≥ M(x1, x0, t0) > r.
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Therefore, dr(x2, x1) ≤ 1
sε dr(x1, x0) ≤ sε−1−1

sε t0. Following on the same lines we have

dr(xn+1, xn) ≤ (
1
sε
)ndr(x1, x0),

for all n ∈ N. Hence

dr(xn, x0) ≤ sdr(x1, x0) + s2dr(x1, x2) + s3dr(x2, x3) + . . . + sndr(xn−1, xn),

≤ sdr(x1, x0)[1 + (
s

sε
) + (

s

sε
)2 + . . . + (

s

sε
)n−2 +

sn−2

sε(n−1)
],

≤ sdr(x1, x0)[1 + (
s

sε
) + (

s

sε
)2 + . . . + (

s

sε
)n−2 + (

s

sε
)n−1],

≤ s

1 − 1
sε−1

dr(x1, x0) <
1
sε
dr(x1, x0)

< t0,

for all n ∈ N. Therefore, the sequence xn ∈ Br(x0, t0), for all n ∈ N. Following similar arguments
to those in the proof of Theorem 3, we deduce that {xn} is a Cauchy sequence. By the closeness of
Br(x0, t0) and the completeness of X there exists an x ∈ Br(x0, t0) such that xn → x. f is closed and we
have x ∈ f(x).

A correspondence f : X � X is called monotone if for all x � y, u ∈ f(x) and v ∈ f(y) we have
u � v (for details, see [44,45]). Suppose that in Definition 4 (defined in [46]), (X ,M) is equipped
with a partial order relation � and Inequality 1 holds for x, y ∈ C where x � y. Then, f is said to
be monotone ψ-contractive (briefly, monotone (ψ.C)). The following theorem is a generalization of
theorem 1 to monotone ψ. C correspondences in “ordered fuzzy b-metric space”.

Theorem 6. Let (X ,M) be a complete order “fuzzy b-metric space” and f be a monotone (ψ.C) such that
x0 � f(x0) for some x0 ∈ X . Then, f has a fixed point.

Proof. The proof is closely modeled on Theorem 3.

4. Application to Linear Equations

In this section we will provide an application of the “Banach fixed point theorem” on “fuzzy
b-metric spaces” to linear equations. Now, consider the linear system

a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2,

...

an1x1 + an2x2 + · · ·+ annxn = bn,

which has a unique solution. It is equivalent to show that the following linear system has a
unique solution.

c11x1 + c12x2 + · · ·+ c1nxn = b′1

c21x1 + c22x2 + · · ·+ c2nxn = b′2

...

cn1x1 + cn2x2 + · · ·+ cnnxn = b′n

161



Axioms 2020, 9, 36

where cij =
aij

2nM , i, j ∈ {1, . . . , n}, M =
√

max
i,j

a2
ij and b′ = [ b1

2nM , . . . , bn
2nM ]T. For this we consider the

“fuzzy b-metric space” generated by

M(x, y, t) =
t

t+ max
1≤j≤n

∣∣xj − yj
∣∣2 ,

for all x, y ∈ Rn. Consider the mapping T : Rn → Rn defined as

T(x) = Cx+ b′

where x ∈ Rn, b′ is a column matrix having entries from R and C is an n × n matrix with cij arrays. It is

essay to show that max
i,j

c2
ij = max

i,j

a2
ij

4n2M2 . Now we have to show that the self-mapping T satisfies the

“Banach’s contraction principle” on “fuzzy b-metric spaces”.

max
1≤i≤n

(
n
∑

j=1
cij
∣∣xj − yj

∣∣)2 ≤ max
1≤i≤n

n
∑

j=1
c2

ij

n
∑

j=1

∣∣xj − yj
∣∣2 ,

≤ n2 max
i,j

c2
ij max

j

∣∣xj − yj
∣∣2 ,

≤ 1
4 max

j

∣∣xj − yj
∣∣2 .

This implies that M(T(x),T(y), t) ≥ M(x, y, 4t). Corollary 1 implies that T has a fixed point.
Therefore, the linear system has a unique solution.

5. Conclusions

In this article we defined the ψ-contraction and monotone ψ-contraction correspondence and
obtained fixed point result in the “fuzzy b-metric space”. As a consequence of our main result
we obtained the Banach contraction principle in the “fuzzy b-metric space”. Further we addressed
an open problem in which we generalized the interval of contraction and proved that our results
were also valid if contractive constant k lied in [ 1

s , 1), where s ≥ 1. As an application of our result
we obtained a solution of the system of n linear equations in the “fuzzy b-metric space”. Further we
provided examples that further elaborated the useability of our result.
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Abstract: In this paper, we present a Jungck type common fixed point result in extended rectangular
b-metric spaces. We also give some examples and a known common fixed point theorem in extended
b-metric spaces.

Keywords: fixed points; common fixed points; extended rectangular b-metric space

1. Introduction

The notion of b-metric spaces was first introduced by Bakhtin [1] and Czerwik [2]. This metric
type space has been generalized in several directions. Among of them, we may cite, extended b-metric
spaces [3], controlled metric spaces [4] and double controlled metric spaces [5]. Within another
vision, Branciari [6] initiated rectangular metric spaces. In same direction, Asim et al. [7] included a
control function to initiate the concept of extended rectangular b-metric spaces, as a generalization of
rectangular b-metric spaces [8].

Definition 1 ([7]). Let X be a nonempty set and e : X × X → [1, ∞) be a function. If de : X × X → [0, ∞)

is such that

(ERbM1) de(ω, Ω) = 0 iff ω = Ω;
(ERbM2) de(ω, Ω) = de(Ω, ω);
(ERbM3) de(ω, Ω) ≤ e(ω, Ω)[de(ω, ζ) + de(ζ, σ) + de(σ, Ω)];

for all ω, Ω ∈ X and all distinct elements ζ, σ ∈ X\{ω, Ω}, then de is an extended rectangular b-metric on X
with mapping e.

Definition 2 ([7]). Let (X, de) be an extended rectangular b-metric space, {Ωn} be a sequence in X and
Ω ∈ X.

(a) {Ωn} converges to Ω, if for each τ > 0 there is n0 ∈ N so that de(Ωn, Ω) < τ for any n > n0. We write it
as lim

n→∞
Ωn = Ω or Ωn → Ω as n → ∞.

(b) {Ωn} is Cauchy if for each τ > 0 there is n0 ∈ N so that de(Ωn, Ωn+p) < τ for any n > n0 and p > 0.
(c) (X, d) is complete if each Cauchy sequence is convergent.

Axioms 2020, 9, 4; doi:10.3390/axioms9010004 www.mdpi.com/journal/axioms165
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Note that the topology of rectangular metric spaces need not be Hausdorff. For more examples,
see the papers of Sarma et al. [9] and Samet [10]. The topological structure of rectangular metric spaces
is not compatible with the topology of classic metric spaces, see Example 7 in the paper of Suzuki [11].
Going in same direction, extended rectangular b-metric spaces can not be Hausdorff. The following
example (a variant of Example 1.7 of George et al. [8]) explains this fact.

Example 1. Let X = Γ1 ∪ Γ2, where Γ1 = { 1
n , n ∈ N} and Γ2 is the set of all positive integers. Define de :

X × X → [0, ∞) so that de is symmetric and for all Ω, ω ∈ X,

de(Ω, ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if Ω = ω,

8, if Ω, ω ∈ Γ1,
2
n , if Ω ∈ Γ1 and ω ∈ {2, 3},

4 otherwise.

Here, (X, de) is an extended rectangular b-metric space with e(Ω, ω) = 2. Note that there exist no
τ1, τ2 > 0 such that Bτ1(2) ∩ Bτ2(3) = ∅ (where Bx(τ) denotes the ball of center x and radius τ). That is,
(X, de) is not Hausdorff.

The main result of Jungck [12] is following.

Theorem 1 ([12]). If f and H are commuting self-maps on a complete metric space (X, d) such that
f (X) ⊆ H(X), H is continuous and

d( f Ω, f ω) ≤ δd(HΩ, Hω), (1)

for all Ω, ω ∈ X, where 0 < δ < 1, then there is a unique common fixed point of f and H.

Our goal is to get the analogue of Theorem 1 in the setting of extended rectangular b-metric spaces.
Some examples are also provided.

2. Main Results

Definition 3. Let X be a nonempty set and f , H be two commuting self-mappings of X so that f (X) ⊆ H(X).
Then ( f , H) is called a Jungck pair of mappings on X.

Example 2. Let X = R× R. Define f , H : X → X by f (ω, Ω) = (2ω, (Ω/2) + 3) and H(ω, Ω) =

(3ω, (Ω/3) + 4). Then f (H(ω, Ω)) = (6ω, (Ω/6) + 5) = H( f (ω, Ω)), so that ( f , H) is a Jungck pair of
mappings on X.

Lemma 1. Let X be a nonempty set and ( f , H) be a Jungck pair of mappings on X. Given Ω0 ∈ X. Then there
is a sequence {Ωn} in X so that HΩn+1 = f Ωn, n ≥ 0.

Proof. For such Ω0 ∈ X, f Ω0 and HΩ0 are well defined. Since f Ω0 ∈ H(X), there is Ω1 ∈ X so that
HΩ1 = f Ω0. Going in same direction, we arrive to HΩn+1 = f Ωn.

Definition 4. Let ( f , H) be a Jungck pair of mappings on a nonempty set X. Given e : X × X → [1, ∞). Let
{Ωn} be a sequence such that HΩn+1 = f Ωn, for each n ≥ 0. Then {Ωn} is called a ( f , H) Jungck sequence
in X. We say that {Ωn} is e-bounded if lim sup

n,m→∞
e(HΩn, HΩm) < ∞.
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Remark 1.

1. If H = id, (id(ω) = ω, ω ∈ X) then a ( f , id) Jungck sequence is a Picard sequence.
2. Note that each sequence in a rectangular b-metric space with coefficient s ≥ 1 (see [8]) is e-bounded
(e(Ωm, Ωn) = s, for all m, n ∈ N).

Theorem 2. Let ( f , H) be a Jungck pair of mappings on a complete extended rectangular b-metric space (X, de)

so that
de( f Ω, f ω) ≤ ρde(HΩ, Hω), (2)

for all Ω, ω ∈ X, where 0 < ρ < 1. If H is continuous and there is an e-bounded ( f , H) Jungck sequence, then
there is a unique common fixed point of f and H.

Proof. Let {Ωn} be an e-bounded ( f , H) Jungck sequence. Then for Ω0 ∈ X, f Ωn+1 = HΩn, for each
n ≥ 0. We show that { f Ωn} is Cauchy. From (2), we have

de(HΩm+k, HΩn+k) = de( f Ωm+k−1, f Ωn+k−1)

≤ ρde(HΩm+k−1, HΩn+k−1).

So,
de(HΩm+k, HΩn+k) ≤ ρkde(HΩm, HΩn), (3)

for each k ∈ N.

Case 1:

If HΩn = HΩn+1 for some n, define θ := f Ωn = HΩn. We claim that f θ = Hθ = θ and θ

is unique. First,
f θ = f HΩn = H f Ωn = Hθ.

Let de(θ, f θ) > 0. Here,

de (θ, f θ) = de ( f Ωn, f θ)

≤ ρde (HΩn, Hθ)

= ρde (θ, Hθ)

= ρde (θ, f θ)

< de (θ, f θ) ,

which is a contradiction. Recall that (2) yields that f Ωn = HΩn = θ is the unique common fixed point
of f and H.

Case 2:

If HΩn �= HΩn+1 for all n ≥ 0, then HΩn �= HΩn+k for all n ≥ 0 and k ≥ 1. Namely, if HΩn =

HΩn+k for some n ≥ 0 and k ≥ 1, we have that

de(HΩn+1, HΩn+k+1) = de( f Ωn, f Ωn+k)

≤ ρde(HΩn, HΩn+k)

= 0.

So, HΩn+1 = HΩn+k+1. Then (3) implies that

de(HΩn+1, HΩn) = de(HΩn+k+1, HΩn+k) ≤ ρkde(HΩn+1, HΩn) < de(HΩn+1, HΩn).
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It is a contradiction. Thus we assume that HΩn �= HΩm for all integers n �= m. Note that
HΩm+k �= HΩn+k for any k ∈ N. Also, HΩn+k, HΩm+k ∈ X\{HΩn, HΩm}. Since (X, de) is an
extended rectangular b-metric space, by (ERbM3), we get

de(HΩm, HΩn) ≤ e(HΩm, HΩn)[de(HΩm, HΩm+n0) + de(HΩm+n0 , HΩn+n0)

+ de(HΩn+n0 , HΩn)],

where n0 ∈ N so that lim sup
n,m→∞

e(HΩm, HΩn) <
1

ρn0 . Then

de(HΩm, HΩn) ≤ e(HΩm, HΩn)[ρ
mde(HΩ0, HΩn0) + ρn0 de(HΩm, HΩn)

+ ρnde(HΩ0, HΩn0)].

So,

(1 − e(HΩm, HΩn)ρ
n0)de(HΩm, HΩn) ≤ e(HΩm, HΩn)(ρ

m + ρn)de(HΩ0, HΩn0).

From this, we obtain

de(HΩm, HΩn) ≤
e(HΩm, HΩn)(ρm + ρn)

1 − e(HΩm, HΩn)ρn0
de(HΩ0, HΩn0). (4)

Thus {HΩn} is Cauchy in H(X), which is complete, so there is u ∈ X so that

lim
n→∞

HΩn = lim
n→∞

f Ωn−1 = u. (5)

The continuity of H together with (2) implies that f is itself continuous. The commutativity of f
and H leads to

Hu = H( lim
n→∞

f Ωn) = lim
n→∞

H f Ωn = lim
n→∞

f HΩn = f ( lim
n→∞

HΩn) = f u. (6)

Let v = Hu = f u. Then
f v = f Hu = H f u = Hv. (7)

If f u �= f v, by (2) we find that

de( f u, f v) ≤ ρde(Hu, Hv)

= ρde( f u, f v)

< de( f u, f v).

It is a contradiction, hence f u = f v. Thus,

f v = Hv = v.

Condition (2) yields that v is the unique common fixed point.

Example 3. If we take in Example 3.1. of [7], H = id and f as

f 1 = f 2 = f 3 = f 4 = 2 and f 5 = 1,

then all the other conditions of Theorem 2 are satisfied, and so f and H have a unique fixed point, which is,
θ = 2. Here, the space (X, de) is extended rectangular b-metric space, but it is not extended b-metric space.
Hence Theorem 2 generalizes, compliments and improves several known results in existing literature.
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A variant of Banach theorem in extended rectangular b-metric spaces is given as follows.

Theorem 3. Let (X, de) be a complete extended rectangular b-metric space and f : X → X be so that

de( f Ω, f ω) ≤ ρde(Ω, ω) (8)

for all Ω, ω ∈ X, where ρ ∈ [0, 1). If there is an e-bounded Picard sequence in X, then f has a unique fixed point.

Remark 2. Theorem 3.1 in [7] is a consequence of Theorem 3. Indeed, instead of condition lim
n,m→∞

de(Ωn, Ωm) <
1
ρ

of Theorem 3.1 in [7], we used a weaker condition, that is, lim sup
n,m→∞

de(Ωn, Ωm) < ∞.

3. A Jungck Theorem in Extended b-Metric Spaces

Let (X, de) be an extended b-metric space (see Definition 3 in [3]) and {Ωn} be a ( f , H) e-bounded
Jungck sequence in X. Then

de(HΩm, HΩn) ≤ e(HΩm, HΩn)[de(HΩm, HΩm+n0) + de(HΩm+n0 , HΩn)]

≤ e(HΩm, HΩn)[de(HΩm, HΩm+n0) +

e(HΩm+n0 , HΩn)[de(HΩm+n0 , HΩn+n0) + de(HΩn+n0 , HΩn)]]

≤ e(HΩm, HΩn)e(HΩm+n0 , HΩn)[de(HΩm, HΩm+n0) +

de(HΩm+n0 , HΩn+n0) + de(HΩn+n0 , HΩn)].

Since {Ωn} is a ( f , H) e-bounded Jungck sequence, we find that

lim sup
m,n→∞

e(HΩm, HΩn)e(HΩm+n0 , HΩn) < ∞.

By Theorem 2, we obtain the following.

Theorem 4. Let ( f , H) be a Jungck pair of mappings on a complete extended b-metric space (X, de) so that

de( f Ω, f ω) ≤ ρde(HΩ, Hω), (9)

for all Ω, ω ∈ X, where 0 < ρ < 1. If H is continuous and there is an e-bounded ( f , H) Jungck sequence, then
f and H have a unique common fixed point.

Remark 3. By Theorem 4, we obtain the Banach contraction principle in extended b-metric spaces. It improves
Theorem 2.1 in [13], Theorem 2 in [3] and Theorem 2.1 in [14]. Also Theorem 3 generalizes an open problem
raised by George et al. [8].

Example 4. Let X = [0, ∞), e : X × X → [1, ∞). Consider de : X × X → [0, ∞) as

de(Ω, ω) = (Ω − ω)2,

where e(Ω, ω) = Ω + ω + 2. Then (X, de) is an extended b-metric space. Define f Ω = 3Ω
4 . Then (8) holds for

ρ = 9
16 . Let Ω0 ∈ X and Ωn = f nΩ0, n ∈ N. Then lim

m,n→∞
e(Ωm, Ωn) = 2. So, lim

m,n→∞
e(Ωm, Ωn) >

16
9 and

Theorem 3.1 in [7] is not applicable. Applying Theorem 3, we conclude that f has a unique fixed point.
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